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SUMMARY

In this thesis work, geometrically nonlinear dynamic analysis of composite
panels with variable thickness subjected to time dependent loading using Chebyshev
collocation method is studied. First-order shear deformation theory is used to
consider transverse shear effect through the thickness direction. An extension of
Sanders nonlinear strain-displacement relationships are used to take into account
geometric nonlinearity due to large displacements. Dynamic equations for composite
doubly curved panels with variable thickness are obtained using virtual work
principle. The displacement fields in the governing equilibrium equations are
expressed with fast converging finite double Chebyshev series. Newmark-beta
average acceleration scheme is used for temporal discretization. A computer program
based on Chebyshev collocation method is developed to solve the governing
equilibrium equations. Several examples are solved with Chebyshev Collocation
Method to emphasize the effectiveness of the proposed method. The obtained results
are compared with the finite element method. Finally, parametric studies such as
effects of taper ratios, materials, panel radius and boundary conditions on the
response of composite panels are investigated.

Key Words: Laminated Composite Tapered Panel, Chebyshev Collocation
Method, First Order Shear Deformation Theory, Nonlinear Transient Analysis.
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OZET

Bu tez kapsaminda, zamana bagl yiik altinda kalinhig1 degisken kompozit
panellerin lineer olmayan dinamik davranisi Chebyshev kollokasyon metodu
kullanilarak incelenmistir. Kalinlik dogrultusundaki kayma etkilerini hesaba katmak
icin birinci mertebeden kayma teorisi kullanilmistir. Genisletilmis Sanders lineer
olmayan birim uzama-yer degistirme bagintilari, biiyiik yer degistirmeler sebebiyle
olusan geometrik agidan lineer olmama etkilerini hesaba katmak i¢in kullanilmistir.
Degisken kalinliklt kompozit panelin dinamik denklemleri, virtiiel is prensibi
kullanilarak elde edilmistir. Hareket denklemlerindeki yer degistirme alanlari, hizl
yakinsayan sonlu ¢ift Chebyshev serileri kullanilarak acilmistir. Zaman
ayriklastirmasi i¢in Newmark-beta ortalama ivme metodu kullanilmigtir. Chebyshev
kollokasyon metoduna dayali bir bilgisayar programi, hareket denklemleri ¢6zmek
icin gelistirilmistir. Onerilen metodun verimliligini vurgulamak icin birgok &rnek
Chebyshev kollokasyon metodu ile ¢ozlilmistiir. Sonuglar sonlu elemanlar metodu
ile kiyaslanmistir. Son olarak, kompozit panellerin cevabinda kalinlik degisimi,

malzeme, panel yarigapi ve sinir sartlar parametrik olarak incelenmistir.

Anahtar Kelimeler: Degisken Kalinhkhh Kompozit Panel, Chebyshev
Kollokasyon Metodu, Birinci Mertebeden Kayma Teorisi, Lineer Olmayan

Dinamik Analiz.
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1. INTRODUCTION

1.1. General

Panel structures have initially been used for the construction of mosques,
domes, temple roofs, cathedrals, monuments and other historic buildings. Along
with the rapid progress in science and technology, especially after World War 11, the
usage of panels in several industries such as aviation, naval and construction industry
have considerably increased. As a consequence of this rapid development, analysis of
dynamic behavior of panels under different type of loading has been attracting
attention of many researchers.

Panels, which have smaller thickness comparing with its other dimensions, are
structural elements. Panels contain single or double curvature and form compression,
tensile and shear strength during the transfer of loading that is applied over them. In
some cases, panels can be made with variable thickness due to design, geometric
necessities, strength capacities and minimum weight requirements. The wing skin
panels of an aircraft can be given as usage area for tapered panels. Helicopters rotor
blades as shown in Figure 1.1 can also be given as another important usage area [1].
The thickness of rotor blades varies from leading edge to trailing edge along with
chord line [2].

Figure 1.1: Helicopter rotor blades.



Composite materials are obtained by combining two or more materials that
have different mechanical properties. Composite materials are mostly used in the
field of aircraft structures, space stations, automobiles, ships, submarines due to its
high strength-to-weight ratio, high resistance to corrosion etc. Thus, in this study,
composite materials are chosen for panels materials.

Equations of motion including the effects of geometric nonlinearity by the
reason of large displacements are derived using principle of virtual work. The
displacement fields in the partial derivatives of equations are expressed by using
double Chebyshev series for a rapid converging and Newmark average acceleration
scheme is used in order to separate time domain. Equations of motion are solved by
Chebyshev collocation method. In order to specify the effectiveness of the
implemented method, cases with different parameters such as different taper ratios,
materials, panel radius and boundary conditions are studied. The obtained results are

compared with the commercial finite element software ANSYS.

1.2. Literature Review

Many researches have been conducted on the linear and nonlinear analysis of
isotropic and laminated composite plates and panels with uniform depth under
different type of loading. Thinking over the comprehensive number of studies on the
topic of dynamic analysis of composite laminated flat plates, a brief summary of the
literature is given in following text.

Upadhyay et al. investigated nonlinear dynamic analysis of laminated
composite plates based on third-order shear deformation theory subjected to different
type of pulse loading by using fast converging finite double Chebyshev series and
Houbolt time marching scheme [3]. Civalek published a paper about nonlinear static
and dynamic behavior of thin isotropic plates by coupling discrete singular
convolution (DSC) and harmonic differential quadrature (HDQ) methods [4]. Maleki
et al. carried out linear transient analysis of laminated plates for arbitrary conditions
with generalized differential quadrature method (GDQ) [5]. Birman et al. studied
dynamic behavior of thin laminated plates subjected to explosive loads by using
Runge-Kutta procedure [6]. Tsouvalis et al. investigated the nonlinear dynamic
response of composite laminated plates under lateral loads with Galerkin method [7].
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Kazanci et al. implemented finite difference method to find nonlinear dynamic
response of a laminated composite plate under blast load [8]. Chen et al. improved
the semi-analytical finite strip method to evaluate the geometrically nonlinear
response of rectangular composite laminated plates [9]. Yosibash et al. is solved
nonlinear dynamic response of plates using Chebyshev collocation method [10].

Dynamic responses of laminated composite panels have also been an
investigation area for researchers. Nath and Alwar used Chebyshev series to study
nonlinear transient response of shallow spherical shells with and without damping
[11]. Reddy et al. developed a finite element theory using a dynamic, shear
deformation theory of a doubly curved shell to determine geometrically nonlinear
transient response of spherical and cylindrical shells [12]. Wu et al. carried out free
and forced nonlinear dynamics of composite shell structures using a 48 degrees-of-
freedom shell element based on Kirchhoff-Love Theory [13]. To and Wang studied
nonlinear dynamic response of laminated composite shells subjected transient
excitations using the hybrid strain-based flat triangular finite element theory [14].
Kurtaran performed nonlinear transient analysis of moderately thick laminated
composite shallow shells using generalized differential quadrature method (GDQM)
[15]. Kundu and Sinha analyzed geometrically nonlinear transient response of the
cross-ply and the specially laminated spherical, cylindrical, hyperbolic and
paraboloid composite shells using a nine-noded isoparametric composite shell
element [16]. Maleki et al. analyzed static-transient analysis of moderately thick
laminated cylindrical shell by using GDQM in their other study. [17]. Isoldi et al.
surveyed geometrically nonlinear static and dynamic behavior of laminate composite
shells by using triangular finite element [18]. Kant et al. presented a C° continuous
finite element formulation of a higher order shear deformation theory to foresee the
linear and geometrically nonlinear transient responses of composite and sandwich
laminated shells [19]. Tirkmen et al. carried out nonlinear dynamic analysis of
cylindrically curved laminated panels and solved governing equations of these panels
by Runge Kutta method [20].

Extensive research has been carried out on dynamic response of plate and panel
structures in the studies above. Nevertheless, no study has been conducted about the
nonlinear dynamic behavior of tapered panels using Chebyshev Collocation Method.

Most of the studies on the literature about tapered plate and panels have been limited



to static, free vibration and buckling analysis. Ganesan and Rasul studied buckling
analysis of tapered laminated shells considering uniaxial compression using Ritz
method based on different first order shell theories. A comprehensive parametric
study including boundary conditions, stacking sequence, taper configurations, radius
and geometric parameters of the shells has been done in this research [21]. Susler et
al. analyzed geometrically nonlinear transient behavior of simply supported tapered
laminated composite plates to evaluate the effect of air blast loading using a closed
form solution and then compared with finite element method (FEM). The effect of
the taper ratio, the stacking sequence and fiber orientation angle has been taking into
consideration as a parametric study to obtain displacement-time and strain-time
results in this article [2]. Ashaur applied finite strip technique in conjunction with
the transition matrix to examine the vibration of orthotropic tapered plates for
different taper ratio, aspect ratio and different combinations of boundary conditions
[22]. Turvey examined large deflection static analysis of thin tapered square plates
with simply supported boundary conditions by using dynamic relaxation method
[23]. Javed et al. carried out free vibration of anti-symmetric angle-ply composite
plates with variable thickness using spline function approximation by taking
parameter of material properties, ply orientation, number of lay ups, aspect ratio and
coefficients of thickness variations [24]. Bert and Malik presented the free vibration
analysis of rectangular tapered plates having simply supported conditions at two
opposite edges and general boundary conditions at the other two edges by differential
quadrature method which is firstly introduced by Bert as a tool for structural analysis
[25]. Babu et al. investigated dynamic analysis of various configurations thickness
tapered laminated composite plate by experimental study and validation of the
developed finite element formulations [26]. Kobayashi et al. surveyed buckling
problem of uniaxially compressed rectangular tapered plates by a power series
method. The influences of thickness variation, plate aspect ratios, and boundary
conditions on the buckling load have been taken as parameters in the survey [27].
Civalek solved free vibration problems of isotropic and orthotropic rectangular

thickness tapered plates by coupling discrete singular convolution (DSC) [28].



1.3. Purpose and Organization of Thesis

In this dissertation, geometrically nonlinear transient analysis of composite
panels with variable thickness subjected to time dependent loading is investigated
using Chebyshev collocation method. The effects of taper ratios, material properties,
panel radius and boundary conditions are studied. Chebyshev polynomials are used
for spatial discretization of the problem, whereas Newmark beta method is used for
temporal discretization. Nonlinear differential equations of motion are solved with
Newton-Raphson method.

Unlike classical laminated plate theory (CPT), which ignores shear
deformations and provides reasonable results for thin laminates, first order laminated
shear deformation theory, known as also Kirchhoff—Love theory, takes transverse
shear effect into consideration through the thickness [29] . Hence, in this study,
Kirschoff-Love theory for doubly curved shells is considered. An extension of
Sanders nonlinear strain-displacement relationships are taken geometric nonlinearity
into account due to large displacements.

The thesis contains six chapters. Chapter one includes general review, a
literature survey of some published papers about plate and panel with constant and
variable thickness distribution. Chapter two contains panel theory, relationship
between stress- strain and strain-displacement, derivations of equilibrium equations
with virtual work principle for tapered panel. Chapter three involves the theory of
Chebyshev collocation method, Newmark-beta Method, Newton Raphson method
for linearization of the nonlinear differential equation and the finite element method.
Chapter four contains numerical results for plate and panel with flat or variable
thickness obtained by proposed method and comparisons with ANSYS. Chapter five
consists of the comments about the contribution of this thesis to the literature and

further studies.



2. THEORY OF COMPOSITE PANEL

In this chapter, firstly, a brief description of panel theory is given and
assumptions for this theory are expressed. The assumptions to obtain displacement
correlation of panel are explained and displacement equations are derived. After
giving strain-displacement correlations, assumptions for mechanics of laminated
composites are mentioned and constitution equations are given. Governing
differential equations for tapered composite panel are obtained by using principle of
virtual work.

Panel is restricted with two inclined surfaces and the distance along the
thickness direction is smaller than the other dimensions. Panels contain single or
double curvature and form compression, tensile and shear strength during the transfer
of loading that is applied over them. Panel with variable thickness (length a, width b)
is demonstrated in Figure 2.1. The points, which have equal distances to the two
inclined surfaces, are known to be middle surface. h(x) indicates thickness function
varying through the x direction and is linearly expressed as shown in Equation 2.1. In

this equation, S is the taper ratio. X, y and z stated the curvilinear coordinate system.

h(x) = hy. (1 + BZ) 2.1)

Figure 2.1: The composite panel with variable thickness.



The following assumptions are taken into account for the theory of structure. If
the structure gets its former state after the removal of load applied to itself, it exhibits
the behavior of linear elastic material. In this study, plate and panel structures are
assumed to be linear elastic material. It is also assumed that, there is no penetration
between the layers and perfectly bonded faces. Layers cannot slip on each other and
displacement in the area of adhesion are continuous. Therefore, no delamination of
composite layers is expected.

2.1. Displacement Field

The displacement field at general point (X, y and z) of the shell at t time based

on first order shear deformation theory (FSDT) may be written as [30]:

ulx,y,z,t) = uy(x,y, t) + z.6,(x,y,t)
v(x,y,2,t) =vo(x,y,t) + 2.6, (x,y,t) (2.2)

w(x,y,z,t) = we(x,y,t)

where Uo, Vo, Wo are the displacement field of a point on the middle surface of the
shell along the x, y and z axes, respectively. 6x and 6y are the rotations around the y
and x axes, respectively and come from the rotations of the shell.

FSDT is an extension of the classical plate theory by including constant
transverse shear strains and stresses through the thickness. Transverse shear stress
distribution must be parabolic through the thickness direction. This conflict between
the certain stress and the constant stress based on FSDT must be revised. By
multiplying with shear correction factor (ks) in FSDT in calculation of the transverse
shear forces (Qyz, Qx) in allows us to correct this conflict. The value of ks is
determined from the equilibrium of the shear energy due to transverse shear stress on
the shell theory and the strain energy calculated by 3-D elasticity theory. Shear

correction factor is given 5/6 for shell.



2.2. Strain-Displacement Relations

The strain-displacement correlations of doubly curved panels using the
displacement field in Equation 2.2 and employing the case of an extension of
Sanders nonlinear kinematics is written as [29]:

_Oug a0, N wy, 1 <6W0>2
T ox T ok R, 2\ 0dx

0y, 96, wy 1(6w0)2

&y = 0y+ZW+Ry > W
V"y=aaI;OJ’aal;O”aa?”ifiyﬁa?%?”"'(%‘%) 23)
Yyz = 6y+%—;—z
Yaz = 9x+%—g—i

Here R; (i=x, y) is the radius of the curvature of the panel and co specifies the

1(1 1

E<R_ - R—) term. The strain displacement relations described in Equation 2.3, which
y x

are divided into two parts as stretching and bending, can be written in the matrix
format as:

P . [ &t ]
& gy £ 1
Y 0 [ ™ |
y}Cy = yxy + Z. 'yxyl (2.4)
Yzl fyy,° [ 0 }
Y
T yy,® 0



The terms in Equation 2.4 can be written explicitly as below:

0

duy, wy 1 /0wp\> , 00y
5= Gt 2 () o T

_6x+Rx+§ d0x ~ ox
o 0wy wy  1rawg\® | 26,
dy R, 2\0y dy

o Ovo  Oduy  Odwydwy c (6170 6u0>
—_ 0-

Vxy 0x+ay+ d0x 6y+ W_W (2.5)
26, 00 '
1 9%  OY
Vay oy T ox
aw, v
Vyzo = 93/ +a_y0_ R_;)/
owy U

0 — .
)/XZ 9x+ ax Rx

2.3. Constitution Equations for Tapered Panel

Lamina coordinate system can be observed in Figure 2.2. 1-2 axes specify the
local coordinate system of lamina. @ is the fiber angle of each laminate with the
global panel axis x direction. All results should be determined in one global

coordinate system of panel.

Figure 2.2: Lamina geometry.



In order to get the results in global coordinate system, stresses and strains are
converted by using the transformation matrix [T], and inverse of itself [T];' as

given in Equations 2.6-2.7.

cos?6 sin?0 2c0s0sinb
[T]x = [ sin@ cos?6 —2c0s0sind ] (2.6)
—cos0sin® cosOsinfd cos?0 — sin?0
cos?0 sin?0 —2sinfcosH
[T]i* =[ sin?0 cos?6 2sinfcosb ] (2.7)
sinfcos® —sinfcosO cos?O — sin?0

The stress-strain correlations for the kth layer of a laminated panel under plane

stress using Hooke’s Law are expressed in Equation 2.8 with the elements of the

transformed reduced stiffness matrix, [Q;], [30].

[ Ox [(211 glz Qm 0 0] Exo [&x' ]

I Oy | |Q12 922 926 8 8 | [ & : I gyt I

Txyl - |Q16 Q26 Qo6 -~ ~ l Vry ™| + Zl)’xy1| (2.8)
lTsz l 0 0 0 Q‘l—‘l- Q4—5J )/yZO l 0 J

Tz 0 0 0 Qs Qssl .0 0

ox, Oy, Txy, Tyz, Txz are stress components. The transformed reduced stiffness

matrix can be obtained using the conversion of the [Qif]k which specifies the

properties of k™ lamina's fiber. This conversation can be expressed as following by

applying [T]; transformation matrix:

[Qij]k = [T_l]k[Qij]k[T]k (2.9)

10



The relationship between[Q;;] and [Q;;], is given as follows:

Q11 = Q11c05*0 + 2(Q15 + 2Qgg)sin?6cos?6 + Q,,sin*0
Q12 = (Q11 + Q22 — 4Q¢6)sin?0cos%0 + Q1,(sin*0 + cos*H)
Q22 = Q115in*0 + 2(Q13 + 2Q¢¢)sin?0cos?6 + Qy,c05*6
Q16 = (Q11 — Q12 — 2Q¢)sinBcos30 + (Q13 — Qs

+ 2Q¢6)sin30cos6

@26 = (Q11— Q12 — 2Q66)5in39C059 + (Q12 — Q22

(2.10)
+ 2Q¢¢)sinbcos*0
666 = (Qll + QZZ - 2Q12 - 2Q66)Sin20C0520 + Q66(Sin49
+ cos*6)
Q44 = Q44c05%6 + Qsssin?6
Q45 = (Qs5 — Q44) cosfsind
Qss = Q=5c05%60 + Q445in?6
In Equation 2.10, the components of [Q;;], are shown as:
Ey E19,; E;0,4
_ B
QZZ - 1-— 19121921 ) (2.11)
Qe6 = G12;

Q44 = G33; Q55 = G13

E:1 and E; are the elastic modulus and vi2 and v2; are the Poisson's ratios of
composite layer in orthogonal directions. G2, G23 and Gys are shear modulus.

2.4. Equilibrium Equations for Tapered Panel

Force and moment resultants of laminated composite panel can be stated in
Equation 2.12 as the summation of stress components in each layer. Nx, Ny, and Nxy
are the in-plane force resultants, My, My, and My are the in-plane moment resultants

and Qy; and Qx; are the transverse shear force resultants.
11



n Zk(x)
(Ny, Ny, Nyy) = z f (0%, 0y, Txy) ds
k=1 zj_1(x)
n Zk(x)
(M, My, M,,,) = Z f (04, 0y, Txy) 2d, (2.12)
k=1 zp_;(x)
n Zk(x)

(0 @)= Y. [ ke(rymta)d,

k=1 z}_1(x)

The force, moment and transverse shear force components can be acquired as

follows by replacement of Equation 2.8.

N, 73 (%) @1 Q12 @6 &
Ny = 912 922 926 Ey ZdZ
Ney| =\ 10016 Qa6 Qoel vy®

r B 3 (2.13)
2o [Qun Q2 Que][ &
* f Oz Q2 Qa|| &’ ZZdZ)
Zk-1(%) Q16 Q26 Qes nyl
M, n 200 [Q11 Q12 Que Ex’
My | = Q12 Q2 626 gyo zdz
Myy| =1 721 Q16 Q26 Qoel lyxy®
(2.14)

Z () (211 @2 (216 gxl
+J Q12 (_?22 (_?26 €y z%dz
Ze-1() Q16 (26 Wos ny1

Qyz — C ( 200 644 Q45] I)/yzold> 215
sz] kZl Lk—l(x) Qss  Qss| [ ’ (213)

Equations 2.13, 2.14 and 2.15 can be expressed in Equations 2.16, 2.17 and

2.18, respectively when the integration is employed and the equations are rearranged.

Nx A11 A12 A16 ng B11 B12 BlG Exl
Ny | =141, Az Az gyo +|B12 Bi; Bye Eyl (2.16)
Necy Are Aze  Agel |y, ° Bis Bazs Besl|[y,,!

12



0 1

M, Bi1 Bi; Big]| Di; D1 Dyl &x
My |=|Biz Baz Biys||&° |+|Diz D2z Dag|| &y’ (2.17)
M,y Bis Bas  Besl|y,,° Dig D26 Deel |y,,*

sz ksA45 ksASS Yxz

Here Aijj, Bijj and Djj are the extensional, flexural-extension coupling and

flexural rigidities matrices, respectively. They are obtained as:

N Zg(x)
(45,8505} =y | Wzend) (@) de Gi=126)
k=1zp_1(x)
N Z(x) (2.19)
{4} = Z kik; f (éij)kdz (i,j =4)5)
k=1 Zg—1(%)
Force and moment components in matrix format can also be shown as:
— g 0 -
N1 [A11 A1z A Bin Bz Bie gxo
Ny Ay Az Aze Biz Bax Bl ™Y o
Nl _|A16 Az6 Aes Bisc Bas Bes||Vxy (2.20)
M, Biy Biz Big D11 D1z Digl| &l '
M, Bi, By; Bys D1z Diy Dy gyl
Mxy Bl6 BZ6 B66 D16 D26 D66 1
_ny |

2.5. Governing Equations of Motion for Tapered Panel

Dynamic equilibrium equations of tapered panel are obtained in curvilinear
coordinate system by using principle of virtual work. This principle is based on the
equilibrium and for an equilibrium of a dynamic system; the work done by internal
forces and inertia forces must be equal to the work done by external forces. The

dynamic version of virtual work equilibrium is expressed as:

13



SU+ 6T — W =0 (2.21)

where the virtual potential work of internal forces due to internal stresses (5U),
the virtual work done by inertia forces caused by accelerations (87) and the virtual

work done by distributed load (61 are given in Equations 2.22-2.24.

h(x,y)

a rb
2 0 1 0 )
(5U=L fo f_h(x’y){(ax(&x + z8¢,) + 0,(8¢,” + zb¢,)

’ (2.22)
+ Txy (6ny0 + Snyl) + ks (Ty26yy20

+ T4z 0Yx2°) Jdxdydz

h(x,y)

arb 2 . =
5T = fo jo fM{p[(uo+26x)(6uo+zé'0x) .

2

+ (vo + Zéy)(SVO + Z(Sgy) + W06W0] dXdde}

a rb
W = f f q 6wy dxdy (2.24)
o Jo

where q is the distributed load, p is the density of panel material. Equation 2.22 can
be written in terms of force and moment resultants and integrating through the

thickness of laminate as below:

a rb
U = f f (Ny 6% + My 8e,* + N, 8,° + My, Syt + Ny 6yyy)°
o Jo (2.25)

+ Mxy Syxyl + Qyz6yyzo + sz6yxzo)dxdy

Integrating through the thickness of the work done by inertia forces in Equation
2.23 can be obtained as in Equation 2.26. I, I, I, are the mass moments of inertia.

iy, Vo, Wo, 8, and 8, indicate the accelerations of mid-plane.

14



a b
ST = f f (o i + I 6,). 810} + {(Io B0 + I1 6. 6vo)
00

) (2.26)
+ {(Iy V). Swo} + {(Iy ilg + 15 6,). 56, }
+{(L, 9 + 1, 6,).66,}]dxdy
h(xy)
2
o, Luy ) = f p.(1,2,7%) d, (2.27)
_hlxy)

2

The virtual strains are written in terms of the virtual displacements as shown in

Equation 2.28.

dou, OSwy, OJdwydoéw as0o
0 _ 0 0 0 0 1 X
6Ex_6x+Rx+6x ax 0% T Tox
dévy dSwy 0wy déw aso
§e,0 = ——+——+————,8e,t = —2
ay R, dy Ody ady
dbéug 08vy 0wydéwy 0wy ddw aév
0_ 0 0 0 0 0 0 0
07y oy + ox + ox 0y + dy Ox * Co. 0x
dou, 298
5" (228)
. 060, 060,
Xy dy 0x
adw, v,
5y,,° = 66, + - —
vz y dy R,
aéw, du
0 _ o_ 70
6sz - 69x Ox Rx

Equation 2.29 is obtained subrogating the virtual strains from Equation 2.28

into Equation 2.25.

15



5U = J‘ j‘ 66u0 6W0+N aw, 66W0+M 060,
N R, ' ox ' ox ' ox

N.66v°+N.6W°+N.%.m+ 906y
Y 9y "R, Y oy " dy ' oy
+ny.%+Nx 90vo , . 9o 00w
dy Y 9x V' ox T oy
awy 6w, 350, 256,

050, 999 2.29
gy Tax | a5y (229)

ddv, ddu,
+ Mxy Co- ( ax ) Mxy'CO.'W_*_ Qyz-dgy
66W0 a(SWO
0y T 0, 00 4 080, + Qo
y
dug
Qyz dxdy

Integration of an expression can be done using Gauss Green Theorem which
equates the double integral over the plane region as shown below [28]:

déu JN.
ff Nx.wo.dx.dy — jng.(?uo My dg — f axx' dy.d,y (2.30)

Q

Equation 2.29 can be written as in Equation 2.31 by applying the mentioned

Gauss Green Theorem.
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6U = fo.cin Ny d

N

Ny
6 dw,
+ f(Nx o ) Swy.ny. d fa o ——).6wy.dy. d,,

+ fo.sex.nx.dS - fa—x".aex.dx.dy + ?gNy.c?vo.ny.dS
N Q S

oN, N,
_ fw.6v0.dx.dy+ jR—.(SWO.dx.dy

o Y

ow

+f(Nya)6wony fay ya)éwodd
391\/1 56,.n,.d faysedd

+3§ ,-8uq .1y, dg jaxySuodd

+ 3€ny.5v0.nx.d5 —f a;y.Svo.dx.dy
S

aw
+3§(N —% Swy.n f 20y swp.dy.d,
s Xy:* a 0- y a xy a (M

(2.31)
aw adw,
+f(ny i ) 5W0 Tlx — fa(ny.W).(SWO.dx.dy
$ Q

OM,,
+ foy.aex.ny.ds - f 57 00y dx. dy
s ) oy

oM,
+9§Mxy.59y.nx.ds—f =22, 50,.d..d
s Q

oM,,,
+ O M,y co. 6V . Ny ds — W-Co-avo-dx-dy
$ Q
oM,,,
- Mxy.C0.6u0.ny.ds+ a—.C0.6uo.dx.dy
s 4 y

+ f Qyz- 60, .dy.d,, +nyz.6wo.ny.ds
Q S

aQyz
dy

SWo.dy.dy, — f%.&vo.dx.dy
y

+ f Qxz- 00y .dy.dy + ngxz.cSwo.nx.ds
Q S

aQX'Z
0x

Q
Swo.dy.dy — fR—x:.Suo.dx.dy
Q

17



If the obtained statements in Equations 2.24, 2.26 and 2.31 are written in
virtual work equation specified form in Equation 2.21, the following equation is
obtained.

aNx any sz d . ]
- f{ “ox 9y R, +@(Mxy-%)+(Iouo+’19x)]5”°
Q

N, ONy 0Q,, 0
+l_ dy  ox R, _ﬁ(M"y'CO)

+ (Iobo + Iy éy)l SV,

0 dwg adwy,
o[- 2 (2 g, 20)

ax\ ¥ ax Y gy
—i(N %4_1\/ %) &4_&_%
ay\' 7" oy Y ox/) Ry R, 0y
aq 4
= G;Z + 1wy — ql owy
oM, oM )
& = - a"y + Qup + (Iy ity +129x)]59x
x y (2.32)
oM, M,
Ty T O

+ (I 9 + I éy)] 59y} .dy.d,

+ ; {(Nx.nx + Nyy. 1y, — My, co.ny). duy
S

+ (Ny.ny + Nyy. Ny + My, co.nx). v,

adw, adwy adw,
+ ((Nx.g).nx + (Ny.W).ny + (ny.a).ny

aWO
+ (ny.W).nx + Qyz.ny + sz.nx) oW
+ (Mx.nx + Mxy.ny). 60,

+ (My.n, + My,.ny). 50y} . ds

The governing equations are achieved as given in Equations 2.33-2.37 by
setting the coefficient virtual displacements (Sug, §vo, 5wy, 66y, 66,) in area
18



domain (Q) to zero. The remaining parts except space domain in Equation 2.32 gives

the essential and natural boundary conditions [28].

dN, ON. 0 11 1
e e (Mo )
y x y y x (2.33)
L 629"+
092 T Mg T
ON, ON,, Q,, 0 11 1 0%v, 020y
— |\ Myy=(——) | =1 I 2.34
3y ox +Ry+0x *V'2°R, Rx) "Gz T (2.34)
d adw, adwy d adw, 6W0> N, N,
— (N =2 =)+ —(n,. =2 ) — — e
6x< * Ty T xy 6y)+6y< V" dy V5 ) T Rx Ry (235)
aQyz anz azWO .
=]
T oy T ax Tz T
OM, O0My, 0%u, 0%6x
— — g I 2.36
oM, 0M,, 0%v, %0y
—_— - =1 I 2.37
oy TTax Y =hge thogn (237)

2.6. Boundary and Initial Conditions

In this thesis work, clamped and simply support boundary conditions on all
sides of panel are considered. The clamped boundary conditions on all sides are

expressed as shown below:

X:0,a uOZUO:W():BxZHy:O
(2.38)
y:0,b U.O:UO:WOZHXZH},:O

Time derivatives of clamped boundary conditions are used in the calculation of

initial acceleration and is given in Equation 2.39.
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x=0,a iip = o = Wo =0, =6, =0

o (2.39)
y:0,b il0=1'7'0=17\'/0=9x=9y=0

Simply supported boundary conditions (SS3) on all sides can be expressed as
below [28]:

X:0,a u0=U0=W0=9x=My=0

(2.40)
y:O,b u0=v0=W0=9y=Mx=0

Time derivatives of simply supported boundary conditions are used in the
calculation of initial acceleration and is given in Equation 2.39.

x=0,a ily = P =Wy = 0, =M, =0

v (2.41)
y:O,b il():'b.o:wO:ey:Mx:O

where My and My are the natural boundary conditions and can be expressed in terms
of displacements as below:

(')uo Wy 1 6W0 6170 Wy 1 6W0 2
Mx =B <6x +R—x+z(W)> Bz (63} +R_y+7(W>

0vy  O0ug . Owgyowy dvg  dug 2 49
20, 20, 06, 96, \
+D11'<6x> Dlz(@y) D16-<W+W>_O

auo Wy 1 aWO 6170 Wy 1 aWO z
My =Bz <0x +R—x+7<W)) Bzz(@y +R—+7(W>

y
vy auo aWO dwg dvy  Juy 2.43
+BZG< ax 6y+c <6x 6y>> (243)
20, 00,
+0i () + DZZ( o)+ e (5 + 52)

20



Moment type boundary conditions in simply support can be expressed in terms
of accelerations in Equations 2.44-2.45 by taking the second derivative with respect

to time and neglecting the nonlinear terms.

_— au() Wy OWO 2 aW()aWo
Mx _B“'<W+R_x+< 6x> 9% ox

n Blz. (6170 + Wy + (c')wo) + 6W0 aW())

dy "R, \0dy dy dy
01'}0 auo 6170 Ouo aWO GWO
_ 2.44
+Bl6'<ax+0y+co'<6x 6y>+6y 0x ( )

OWO OWO aWO OWO GHX 60y
+ 2% dy T ox 6y)+D11' ox ) TPz dy

5 o0
+Dl6.<69" —y>

Jdy = 0x

B auo WO OWO 2 aWO OWO
Y —B1z-<—+—+< ) T 9% ox

Ay W  [Owe\>  dwy A
+BZZ'<W+R_y+<6y) "3y oy

i i 6170 auo aWO OWO
vy ity _ 245
+BZ6'<6x+ay+CO'<ax 6y)+6y o (249)

E)Wo E)Wo aWO BWO 60x 69y
+2 ax ay + Ix ay)-l—Dlz. Bx + Dop,. W

00, 00

All initial displacement and velocity components is given zero for this thesis
work. Thus, at any point of the panel (t=0) displacement and velocity values for both

boundary condition types are equal to zero. This can be expressed as follows:

t=0 uOZUOZWOZHXZByZO
C (2.46)
t:0 uoz‘l']O:WOZHXZByZO
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3. SOLUTION METHOD

In this section, obtained governing differential equations of tapered panel is
solved with numerical method. Chebyshev polynomials are used for the spatial
discretization of the problem, whereas Newmark-Beta method is used for the
temporal discretization. The displacements and rotations in the direction of x, y and z
of middle point and also the loadings are expressed as a summation of double
Chebyshev series. Equation of motions are written in terms of displacement and
nonlinear differential equations of motion are solved with Newton-Raphson method.
The code to solve these differential equations were written using MATLAB

programing language.
3.1. Chebyshev Collocation Method

Chebyshev polynomials are very usable orthogonal polynomials especially in
the field of numerical analysis. The Chebyshev polynomials of the first kind

denoted as Tn (x) and can be expressed [31]:

T,,(x) = cos(nf),x =cos(f),-1<x<1 (3.1)

where n is the degree of polynomial. By combining the trigonometric relation in
Equation 3.1, we can obtain

cos((n+ 1)0) + cos((n — 1)0) = cos(2n0H) (3.2)

The recurrence relations for Chebyshev polynomials can be generated as:

Tn+1(x) = ZxTn(x) - Tn—l(x):n =1

(3.3)
To(x) =1, T;(x) =x
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The first kind Chebyshev polynomials can be expanded as below by using the

recurrence relation in Equation 3.3.

T,(x) =2x?> -1
T3(x) = 4x3 — 3x
T,(x) =8x*—8x?+1
Ts(x) = 16x° — 20x3 + 5x
To(x) = 32x% — 48x* + 18x2 — 1
T,(x) = 64x7 —112x° + 56x3 — 7x
Te(x) = 128x8 — 256x° + 160x* — 32x% + 1
To(x) = 256x° — 576x7 + 432x5 — 120x3 + 9x
Ti0(x) = 512x1° — 1280x8 + 1120x° — 400x* + 50x2 — 1
T;1(x) = 1024x — 2816x° + 2816x7 — 1232x° + 220x3 — 11x

(3.4)

The displacement functions and load are written in terms of the summation of

Chebyshev polynomials as following:

M N

Uo(x,y,t) = Z z Smn- Umnn (0)- T (). T (¥)
0 0

Vo598 = D> S Uan (). T (). Ta )
0 0
M N

wo(x,y,t) = Z z Smn- Winn (8). Trn (). T ()
o (3.5)

0267, 0) = D ) S Bun(0): T (). Tol)
0 o0

0,067, = "> S Omn(6)- T (). Ta )
0 O

M N
q= Z Z Smn- Gmn- T (). T, (¥)
0 0
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M and N are the number of Chebyshev series terms. u,,,(t), Vmn(t),
Wina (1), Oy, (t) and 6, (t) are the unknown coefficients for displacements and

rotations to be determined. The displacement fields in Equation 3.5 can be
rearranged for simplicity as follows:

o[M]= o[\”4§ o[M]=
oMz oMz o[ V]=

uo(x' Y, t) 6mn-umn(t)-Numn(xr y)

Vo(x’% t) 6mn- vmn(t)-Nvmn(xl y)

wo(x,y,t) Smn-Wmn(t)-Nwmn(x: y) (3.6)

HX(x' Y, t) Smn- exmn(t)-Nmen (x: y)

oMz o[M]=
oMz o[\M]=

6,(x,y,1) SOy, (- No, (x,)

Ny, (x,y), N, (x,¥),N,, (x,y), No, (x,y) and N, (x,y) represent the

product of Chebyshev polynomials in Equation 3.6 and will be shortly denoted as

Ny, Ny, N, Ng,_ and No,,- 8mn takes the following values [10]:

8;j = 1if otherwise

The derivatives of the displacement function u,(x, y, t) are shown in Equation

3.8. The derivatives for other displacement functions can be also enlarged as shown
in Equation 3.8.
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a%@ym> AN 0Ty (%)
z Z 6mn-umn(t)'T'Tn(y)
M
=2,

a”“m ZZ%memuﬂgz

Smn- Umn (). Nu, x

o[M]=

(3.8)

Omn- Umn (t).Nu, y

Il
OME
[Nz

uo(x y,t) ii5 ©® 0T, (x) 9T, (x)
- oxdy i £ mn: hmn -5, 7 dy

M N
= Z Z Smn- Umn (£). Nu, xy
0 0

where N, ., N, and N, ., are the derivatives of the N,, according to x, y and xy,

respectively. Derivations are illustrated more clearly in Equation 3.9 and can be also
enlarged for other derivatives of N, Ny, Ng, and Ng,,.

u M N a
o= D) 59000
0 0
M N
u 0T
Nyy = mn(x y) :ZZ a;x) T () (3.9)
0 0
me_MNa(@w@>
Ny = 0xdy B ZOJZOJ '

Displacements, rotations in Equation 3.6 and derivatives in Equation 3.8 are
written in the governing differential equations given in Equations 2.33-2.37. The
equilibrium equations are consisted of the unknown coefficients which will be
calculated. Chebyshev collocation method, grid points in the structure must be
determined to apply the differential equations and boundary conditions. In this study,
Chebyshev-Gauss Lobatto points are selected as grid points for the solution. This is

because, the points with uniform distribution can cause high oscillations at the points
25



close to boundaries. Chebyshev-Gauss Lobatto points are distributed more
extensively in internal points and also creates grid points on the boundaries. Chosen

grid points can be calculated from Equations 3.10-3.11 for spatial discretization.

I v
- a8 »|
|
N+1 T . ! . P A
=== ——r———7¥-——-r———T-———9---—-
' ' ' 1 ' i i
LY LY 4 __ | I
1 i T h 1 | 1
I I 1 1 1 |
[ | 1 1 1 H [
Co B
b v X Yoo ;oo
| | . |
J A A e S S el I
1 1 1 1 1 ' |
i [] I 1 I J i
' 1 I 1 I H i
[ [} I [] : i i
[] [} 1 [] i i
B R St
I | : 1 : N [
7 IO S R S |
~ | | 1 1 1 y |
l: 1 | i 1 1 1 H | L 4 > X
i=1 2 3 M+1

Figure 3.1: Grid points in two dimensional coordinate system.

(i-Dm

X = %(1 = COS((M—I))' i=12.,M+1 (3.10)
_b._ -Dm\ . _
yj =5 (1 —cos (_(N—l))' j=12,..,N+1 (3.11)

The entire number of unknown coefficients in terms of displacements is
5(M+1)(N+1). The governing differential equations are written for internal grid
points and gives us 5(M-1)(N-1) equations. The boundary conditions give
10(M+1)+10(N-1) equations. It can be seen that total number of equations is equal to
the total number of unknown coefficients. Since dynamic differential equations are
including nonlinear terms, Newton-Raphson method as given in section 3.3 is used

for linearization and Newmark-Beta method is used for time discretization.
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3.2. Newmark-Beta Method

The Newmark-beta method is a widely used numerical integration method to
evaluate the dynamic response of structures. Newmark-beta method indicates that the

acceleration and velocity at the nth time step can be expressed as:

.Un+1 = .Co(Un+1 —Up) _ c1Un _"Un (3.12)
Unt1 = Un+ (1 = y)AUn + vAUnia

where co = 4/At?, ¢1 = 4/At and y=0.5 which yields the constant average acceleration

method, is chosen. The governing equilibrium equations consists of the

displacements and rotations in terms of unknown coefficients to be calculated after

writing the displacements, rotations and their derivatives to the governing

equilibrium equations. U, in Equation 3.13 represent unknown coefficients at the nth

time step.

r U1q
V11
W11
x11

Y11
Uin,,
Vin,,

Win,

X1N,,
V1N,
UNyN,,
UNyN,,
WN,Ny,

XNyNy

[ Y Ny, |
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3.3. Newton-Raphson Method

Newton-Raphson method, which is an iterative method, can be used for solving
nonlinear differential equation. It is based on the simple idea of linear approximation.
Nonlinear differential equation group shown in Equations 2.33-2.37 can be written in

matrix form as follows:

MU+ P(U)=F (3.14)

Equation of motion in Equation 3.14 is nonlinear in terms of unknown
displacement coefficients, Un. M is mass matrix and F, P, U are external force,
internal force and acceleration vectors, respectively.

Dynamic response of panel at (n+1)th time step can be expressed in the
following equation using Newmark-beta direct integration scheme specified in

section 3.2.

CoMUy 41 + P(Unt1) = Fryr + M(coUp + Clun + Un) (3.15)

Newton-Raphson Method is applied to solve nonlinear Equation 3.15 in terms
of unknown displacement coefficients. Equation 3.15 is rewritten in terms of error

function or residual forces Rn+1 as:

Rny1 = coMUpyq + P(Upy1) = Fppa — M. (COUn + Clun + Un) =0 (3-16)

Nonlinear terms can be found in the expression of P, ;. Equation 3.17 can be

linearized by taking the increment as shown in Equation 3.17.

ARpy1 = coMAUy 11 + AP(Upi1) — AFy49
— M. (coAU, + AU, + AU,) = 0 (3.17)
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Linearization of AP, is expressed as below.

AP(Un+1) = Kn418Un44 (3.18)

Equation 3.17 takes the following form at the ith iteration by neglecting the

zeros terms after increment [14].

ARL . = (coM + KL, 1)AU} 4y (3.19)

Equation 3.19, which was written in incremental form, can also be expressed as

follows:

RUL = Ry + (CoM + Kby ) (USRS — ULyy) (3.20)

L, is an approximate trial solution at the ith iteration. U} is an improved
solution at the (i+1)th iteration that is needed to be calculated. Equation 3.20 must be
rearranged as follows since the error function at the (i+1)th iteration, Rn+1, is required

to approach to zero:

RES = Rhyy + Ky (Ui = Ujyy) = 0 (3.21)

where KTil ., denotes to tangent stiffness matrix and expressed in Equation 3.22.

Krl, =CoM+Ki, (3.22)

Equation 3.21 can be transformed into a form as below:

Kt AUy = —Rhys (3.23)
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where AU}, which is the displacement increment at each iteration, can be found
easily by matrix solution. Improved solution at (i+1)th iteration can be found easily
by adding the displacement increment as in Equation 3.24.

Uﬁiﬁ = U‘ril+1 + AUTil+1 (3.24)

To start the Newton-Raphson solution, the initial acceleration values can be
found by using initial displacements and velocities values at time t=0. lterative
computation is expired when the convergence parameter, conv is small than 0.005

(conv <£0.005).Convergence parameter is calculated as given below [32]:

conv = M (3.25)
1+ || Fus”|

Governing differential equations in incremental form mentioned in Equation

3.19 can be written as follows:

R, R,

J0AN, O0AN. A d 1/1 1 dA

X + Xy + sz —— (A ey —] Ug
0x dy R, dy 2

(3.26)

0206,

~hge T

JdAN. JAN A
y n xy_l_ Qyz

dy 0x R

+
Sl

Ay L L1, 97w
N xy'z(Ry rY) 0o
(3.27)
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AN 02w, N 02Aw, N 0AN, 0w, 0N, 0Aw, A 92w,
* 0x2 X 0x2 ox 0x  O0x Ox Y 0x0y

N 02Aw, N 0AN,, 0wy 0Ny, 0Aw,
XV 0xdy ox 0y ox dy
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ady dx

The Equations 3.26-3.30 are written by extracting AU term which is matrix as
shown in Equation 3.31 in Appendix A. Thus, it is simplified by using matrix format.
The details for the linearization of terms in the Equations 3.26-3.30 can be found in
Appendix A.

3.4. Finite Element Method

The isotropic and composite plate and panel structures with variable thickness
are modelled with FEM by using ANSYS finite element software. 40x40 shell
elements (Shell 281) are used for discretization of the structure. Shell 281 is
convenient for analyzing thin to moderately-thick shell structures and have geometric
nonlinearity capability. The element has six degrees of freedom with three in
translation and three in rotation at each node.

By modeling the composite structure in ANSY'S, the faces between the laminas
are assumed to be perfectly bonded and structures are assumed to be linear elastic
material. The thickness function given in Equation 2.1 is used for the thickness
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distribution. For simply support boundary conditions, the displacements through the
three direction are restricted. For clamped boundary conditions, all displacements
and rotations are restricted.

Nonlinear transient analysis of tapered panel are performed in ANSYS for
comparison with the obtained result. The finite element model and cross section of

the structure are shown in Figures 3.2-3.3.
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Figure 3.2: Finite Element Model of the tapered composite panel.
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Figure 3.3: Cross section of tapered composite panel.
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4. NUMERICAL EXAMPLES

Nonlinear dynamic equilibrium equations of composite doubly curved panels
with variable thickness were obtained using virtual work principle. A computer
program using Matlab is developed to solve these obtained equations by using
Chebyshev collocation method. The structure is carried out parametrically by
changing material type, boundary conditions, the taper ratios and panel radius. In all
examples, the radius of panel, Rx and Ry is denoted with R. Loading is thought
uniform distributed external pressure with step pulse on the structure. The external
pressure is o =-6x107 Pa in the solution of all problems. Step pulse type can be seen
in Figure 4.1 in which g, is the peak pressure and t is the duration of loading on the
structure. The final termination, t is taken 0.01 s. Time step is taken 0.1 ms. Grid
points are selected as odd numbers for locating a grid point at the center of plate and
panel.

Non-dimensional displacement-time histories (w/h) at the center of plate and
panel are compared with the commercial finite element software ANSY'S in order to

confirm theoretical calculations.

qJo

Figure 4.1: Step loading.

4.1. Validation example for isotropic plate and panel

In this section, the comparison between the Chebyshev collocation method and
finite element method for the linear/nonlinear transient response of isotropic plate
and panel structures for different boundary conditions are carried out parametrically.

Steel material is chosen as an isotropic material. The material properties of steel are:
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E=210 GPa, G=80.769 GPa, p=7800 kg/m3, v=0.30. The dimensions for the plate are

taken as a=b=1 m, h=0.05 m. The dimensions for the panel are taken as a=b=1 m,

h=0.05 m, Rx = Ry = R =10 m. 9x9 Chebyshev collocation term was used for the

converged results in all examples in this section.

The linear/nonlinear transient responses at the middle of isotropic plate and

panel structures with clamped and simply supported conditions can be seen in
Figures 4.2-4.13.
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Figure 4.2: Non-dimensional displacement-time history at the center of clamped
isotropic plate for linear analysis (a/h=20, R/a=00).
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Figure 4.3: Non-dimensional displacement-time history at the center of clamped
isotropic plate for nonlinear analysis (a/h=20, R/a=x)
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Figure 4.4: Non-dimensional displacement-time history at the center of clamped
isotropic panel for linear analysis (a/h=20, R/a=10).
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Figure 4.5: Non-dimensional displacement-time history at the center of clamped
isotropic panel for nonlinear analysis (a/h=20, R/a=10).
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Figure 4.6: Non-dimensional displacement-time history at the center of simply
supported (SS3) isotropic plate for linear analysis (a/h=20, R/a=c0).
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Figure 4.7: Non-dimensional displacement-time history at the center of simply
supported (SS3) isotropic plate for nonlinear analysis (a/h=20, R/a=c0).
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Figure 4.8: Non-dimensional displacement-time history at the center of simply
supported (SS3) isotropic panel for linear analysis (a/h=20, R/a=10).
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Figure 4.9: Non-dimensional displacement-time history at the center of simply
supported (SS3) isotropic panel for nonlinear analysis (a/h=20, R/a=10).
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Figure 4.10: The comparison of simply support and clamped isotropic plate for linear
analysis (a/h=20, R/a=c).
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Figure 4.11: The comparison of simply support and clamped isotropic plate for
nonlinear analysis (a/h=20, R/a=c0).
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Figure 4.12: The comparison of simply support and clamped isotropic panel for
linear analysis (a/h=20, R/a=10).
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Figure 4.13: The comparison of simply support and clamped isotropic panel for
nonlinear analysis (a/h=20, R/a=10).

4.2. Validation example for composite plate and panel

In this section, the comparison between the Chebyshev collocation method and
finite element method for the linear/nonlinear transient response of composite plate
and panel structures for different taper ratios and boundary conditions are carried out
parametrically. Boron-Epoxy composite material is used for the all examples in this
section. Stacking sequence of symmetric composite layers are [0°/90°/30°/90°/0°]
and 5 layers have equal thicknesses. The material properties are: E1=204 GPa,
E>=18.5 GPa, G12=5.59 GPa, p=2100 kg/m?, v12=0.23. The dimensions for the plate
and panel structures are taken as the same with the previous section. Taper ratios
of the plate and panel structures in the samples are taken as 0, 0.7 and 1.2 to
understand the effect of taper ratio. Thickness changes of the plate and panel edge

through x direction are given in Figures 4.14-4.15, respectively.
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Figure 4.14: Thickness changes of the plate edge through the x direction
for p =0,0.7,1.2 (R/a=10).

Figure 4.15: Thickness changes of the panel edge through the x direction
for p =0,0.7,1.2 (R/a=10).

Some of the examples in this section were converged with 11x11 Chebyshev
terms and specified in related figures with these examples. The rest of the examples
converged with 9x9 Chebyshev terms. The linear/nonlinear transient responses at the

middle of composite plate and panel structures with clamped and simply supported
conditions can be seen in Figures 4.16-4.21.
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Figure 4.16: Non-dimensional displacement-time history at the center of clamped
composite plate for nonlinear analysis (a/h=20, R/a=0, f = 0).
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Figure 4.17: Non-dimensional displacement-time history at the center of clamped
composite plate for nonlinear analysis (a/h=20, R/a=w0, f = 0.7).
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Figure 4.18: Non-dimensional displacement-time history at the center of clamped
composite plate for nonlinear analysis (a/h=20, R/a=w0, f = 1.2).
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Figure 4.19: The comparison of taper ratios (f) of clamped composite plate for
nonlinear analysis (a/h=20, R/a=).
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Figure 4.20: Non-dimensional displacement-time history at the center of simply
supported composite plate for nonlinear analysis (a/h=20, R/a=cw, § = 0).
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Figure 4.21: Non-dimensional displacement-time history at the center of simply
supported composite plate for nonlinear analysis (a/h=20, R/a=, 8 = 0.7).
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Figure 4.22: Non-dimensional displacement-time history at the center of simply
supported composite plate for nonlinear analysis (a/h=20, R/a=o0, f = 1.2).
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Figure 4.23: The comparison of taper ratios (f) of simply supported composite plate
for nonlinear analysis (a/h=20, R/a=x).
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Figure 4.25: Non-dimensional displacement-time history at the center of clamped
composite panel for nonlinear analysis (a/h=20, R/a=10, f = 0.7).
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Figure 4.26: Non-dimensional displacement-time history at the center of clamped
composite panel for nonlinear analysis (a/h=20, R/a=10, § = 1.2).
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Figure 4.27: The comparison of taper ratios (f) of clamped composite panel for
nonlinear analysis (a/h=20, R/a=10).
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Figure 4.28: Non-dimensional displacement-time history at the center of simply
supported composite panel for nonlinear analysis (a/h=20, R/a=10, 8 = 0).
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Figure 4.29: Non-dimensional displacement-time history at the center of simply
supported composite panel for nonlinear analysis (a/h=20, R/a=10, g = 0.7).
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Figure 4.30: Non-dimensional displacement-time history at the center of simply
supported composite panel for nonlinear analysis (a/h=20, R/a=10, § = 1.2).
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Figure 4.31: The comparison of taper ratios (f) of simply supported composite panel

for nonlinear analysis (a/h=20, R/a=10).
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4.3 The effect of radius on dynamic behavior of composite
panel

In this section, the effect of different radius values (R/a=5, 10, 20, 50) for the
nonlinear transient responses of composite panels with clamped and simply
supported boundary conditions and also different taper ratios is considered
parametrically. The Boron-Epoxy composite material properties can be taken from
the Sec.4.2. The angle orientations of symmetric composite layers and the
dimensions for panel structures are the same with the previous section. Taper ratios,
B of the panel structures in the samples are taken as 0, 0.7 and 1.2.

Some of the examples in this section were converged with 11x11 Chebyshev
terms and specified in related figures with these examples. The rest of the examples
converged with 9x9 Chebyshev terms. The comparison of different radius values for
the nonlinear transient responses of composite panels with different taper ratios is
shown in Figures 4.32-34 for clamped boundary condition and in Figures 4.35-4.37
for simply supported boundary conditions. Peak displacement values in the middle of
the clamped and simply supported panel with respect to taper ratio and panel radius
Is shown in Figures 4.38-4.39, respectively.
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Figure 4.32: The comparison of different radius values of clamped composite panel
for nonlinear analysis (a/h = 20,8 = 0).
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Figure 4.33: The comparison of different radius values of clamped composite panel
for nonlinear analysis (a/h = 20,8 = 0.7).
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Figure 4.34: The comparison of different radius values of clamped composite panel

for nonlinear analysis (a/h = 20,8 = 1.2).
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Figure 4.36: The comparison of different radius values of simply supported

composite panel for nonlinear analysis (a/h = 20,5 = 0.7).
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Figure 4.37: The comparison of different radius values of simply supported
composite panel for nonlinear analysis (a/h = 20,5 = 1.2).
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Figure 4.38: Peak non-dimensional displacement values in the middle of the clamped
panel with respect to taper ratio and panel radius (a/h = 20).
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Figure 4.39: Peak non-dimensional displacement values in the middle of the simply
supported panel with respect to taper ratio and panel radius (a/h = 20).
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5. CONCLUSIONS AND FUTURE WORK

In this thesis, several plate and panel examples were solved with Chebyshev
Collocation Method. The effects of taper ratios, material properties, panel radius and
boundary conditions were studied. The results of Chebyshev collocation method
were compared with those of finite element method and very similar results were
observed.

The brief conclusion obtained from the results in the previous chapter is

summarized as follows:

e The deflection of tapered plate and panel structures decreases for increasing
taper ratios.

e The displacement decreases for increasing curvature ratios (R/a) from 5-50.
The effects of curvature ratios are comparatively less than after the R/a ratio
exceeds 20.

e The displacement in dynamic analysis is much higher for simply supported
panels than those for clamped panels.

e Generally 9x9 terms can yield sufficiently accurate results with Chebyshev
Collocation Method.

e The computational cost of Chebyshev Collocation Method is lower than FEM

in transient analyzes.
As a conclusion, Chebyshev Collocation Method can be applied to the efficient

solution of other engineering problems and can serve as a bench work for

forthcoming surveys.
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APPENDICES

Appendix A: Linearization of the Terms in Governing Differential
Equations

The each terms in governing differential equations in incremental form can be

written as shown below.
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