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SUMMARY

Model based control algorithms for electromechanical systems provide such ad-

vantages like precise and smooth control as well as enlarged stability region. However,

comprehensive system models with nonlinear dynamics require complicated controller

formulations and more system states to be measured. Increase in the number of system

states to be measured brings on some disadvantages like additional sensor costs, noisy

feedback signals and implementation difficulty due to non-measurable states. In the lit-

erature, there can be seen a variety of examples of observer designs instead of system

states to be measured and filter designs to eliminate the need of state measurements.

In this study, the nonlinear model based partial state feedback controller formu-

lations have been investigated for electromechanical systems with parametric uncer-

tainties in the system dynamics. After a robust full–state–feedback solution for the

trajectory tracking problem of elastic tendon driven robotic systems, a state–of–the–

art adaptive partial–state–feedback formulation have been presented. An extension on

a levitation system, composed of both electrical and mechanical dynamical terms, is

also presented in order to illustrate the modularity of the design procedure. Backstep-

ping technique have been successfully implemented to both of the system dynamics

and stabilities of overall closed loop system dynamics have been proven via Lyapunov

based arguments. The performances of the proposed controllers have been verified via

numerical simulations. More over some experimental results have been presented for

Tendon Driven Robotic system.

Key Words: Partial state feedback control, tendon driven robots, levitation sys-

tems.
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ÖZET

Model tabanlı denetleyici yöntemleri sistem kararlılığını artırmak ve hassas dene-

tim sağlamak gibi bir çok avantaj sunmaktadırlar. Fakat sistemler karmaşıklaştıkça

hem dinamik model denklemleri karmaşıklaşmakta hem de ölçülmesi gereken sistem

durumlarının sayısı artmaktadır. Ölçülmesi gereken durumların sayısının artması ilave

sensör maliyetleri, gürültülü geri besleme sinyalleri ve ölçülemeyen durumlardan kay-

naklı uygulama zorluğu gibi dezavantajlar getirmektedir. Literatürde bu gibi durum-

larla başa çıkabilmek adına ölçülmek istenmeyen sistem durumları için tasarlanmış

gözlemleyiciler ve ölçüm ihtiyacını ortadan kaldırmaya yönelik tasarlanmış filtreler

bulunmaktadır.

Bu çalışmada, parametrik belirsizlikler içeren elektromekanik sistemler için doğ-

rusal olmayan model tabalı kısmi durum geri beslemeli denetleyici formulasyonları üz-

erine çalışılmıştır. Elastik tendonlarla sürülen robotik sistemlerin yörünge takibi prob-

lemi için gürbüz bir tam durum geri beslemeli denetleyici çözümünden sonra uyarla-

malı bir kısmi durum geri beslemeli denetleyici formulasyonu sunulmuştur. Bu denet-

leyici bu tip sistemler için halihazırda literatürdeki en kapsamlı çözümdür. Denetleyici

tasarım prosedürünün farklı tipteki elektromekanik sistemler üzerinde de kolaylıkla

uygulanabildiğini gösterebilmek adına tek serbeslik dereceli bir levitasyon sistemi için

geliştirilmiş bir denetleyici formulasyonu da sunulmuştur. Levitasyon sistemi için sis-

temin mekanik modeli ve elektriksel modeli kullanılmış ve denetleyici çıkışı olarak

bobinlere uygulanacak gerilim değeri hesaplanmıştır. Tasarlanan tüm denetleyicilerin

kararlılık analizleri Lyapunov analiz tekniği ile gösterilmiş ve performansları benze-

tim çalışmaları ile incelenmiştir. Ayrıca tendon robot sistemi ile deneysel çalışmalar

da gerçekleştirilmiştir.

Anahtar Kelimeler: Kısmi geri beslemeli denetim, tendon robotlar, levitasyon sis-

temleri.
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1. INTRODUCTION

For electro–mechanical systems having nonlinearities in their dynamical equa-

tions, model based controllers have proven to be more effective compared to their

linear counterparts. The main advantages include precise and smoother controller out-

put, enlarged stability region and better performance when dealing with parametric

uncertainties and/or unmeasurable system states[1]. However, the main drawback of

model based controllers is the complexity of the control algorithms especially when the

internal dynamics are also included as the controller implementation requires the mea-

surements of the internal system states. Passivity based approaches [2], back-stepping

techniques [3], adaptive [4] and robust [5] controller design procedures are common

nonlinear controller design tools applied to cope for the complicated model equations.

On the other hand, increase in the number of states used in the controller formula-

tion also increases the total system costs due to the extra sensors required. Therefore

researchers are motivated to reduce system cost and complexity by reducing the num-

ber of required sensors. In the literature, there can be seen a variety of examples of

observer designs [6] instead of system states to be measured and filter designs [7] to

eliminate the need of the internal state measurements.

1.1. Motivation and Scope

In order to emphasize the main motivation of this work, consider the following

robotic manipulator model

M(q)q̈+Vm(q, q̇)q̇+Fd q̇+G(q) = τ (1.1)

where q(t), q̇(t), q̈(t) ∈ R
n represent the link position, velocity and acceleration vec-

tors, respectively, M (q) ∈R
n×n denotes the link inertia effects, Vm(q, q̇) ∈R

n×n repre-

sents the centripetal Coriolis effects, G(q) ∈R
n denotes the gravitational terms related

to the robot, Fd ∈ R
n×n is the constant diagonal link viscous friction matrix and finally

τ (t) ∈ R
n is the control input vector applied the actuators. The output of the robotic

manipulator system is the link positions and input of the system is link actuation torque
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as the actuation system dynamics are not considered in the whole system dynamics.

Since the differential equation given in (1.1) is a second order differential equation,

it has two system states which are q(t) (link position) and q̇(t) (link velocity). If the

whole system states (in this case two states for each link) are measurable, a Full State

Feedback (FSFB) controller can be designed easily with the help of the feedback sig-

nals. When the system states are not available but the output of the system (in this case

position of the links) an Output Feedback (OFB) controller need to be designed to deal

with the lack of the state measurements which usually requires some massive mathe-

matical manipulations. For the systems which consider the internal system dynamics

like actuator dynamics and/or link elasticity, designing a FSFB controller would be an

expensive solution due to the additional sensor costs (some times impossible because

of unmeasurable physical variables) while designing an OFB controller becomes a

tough problem to solve due to additional complexity in the system dynamics. In such

cases, Partial State Feedback (PSFB) controllers could be acceptable solutions with

some state measurements including the output of the system and with some mathemat-

ical work for unmeasurable system states.

The main motivation of this dissertation is to investigate novel PSFB and/or OFB

controller formulations for various kinds of electromechanical systems with compli-

cated system dynamics including parametric uncertainties. Two different kinds of elec-

tromechanical systems (i.e. robotic and mechatronic) have been chosen as a scope of

this study. As a robotic system, an elastic tendon driven system has been studied in

detail and FSFB and PSFB model based controller formulations have been proposed

with simulation studies and experimental validations. A one DOF levitation system

have been investigated as a mechatronic system a PSFB solution have been also pro-

posed as a last chapter as an extension of the proposed controller algorithm.

1.2. Tendon Driven Robots and System Dynamics

Actuators that mounted on robot links have always been limited the performance

of the robotic systems since they add additional bulk, mass and inertia to the me-

chanical systems. Nevertheless separating actuators from links and actuating links via

remote power transmitting methods (i.e. cables, belts, tapes, chains, ropes) brings a re-

2



spectable complexity and uncertainty to the system dynamics. Besides, actuating links

remotely becomes a key design challenge for some applications due to mechanical lim-

itations (i.e. dexterous robotic hands) and/or safety requirements(light-weight robotic

manipulators). Among remote power transmitting methods, tendon-driven transmis-

sion systems (i.e. steel cable with pulleys) have been widely used to design remotely

actuated robotic systems since they provide a good power-to-weight ratio, low back-

lash, low friction and shock absorbent characteristics.To name some; [9], [10], [11]

can be given as examples to small size applications such as robotic hands, and [12],

[13], [14] are some examples for large size manipulators. For some background on

tendon driven robot manipulators and classical linear control approaches on tendon

driven systems, the reader is referred to [15], [16], [17] and the references therein.

The dynamics of an n degree–of–freedom robot manipulator driven by an

m−tendon mechanism have the following form [13]

M(q)q̈+Vm(q, q̇)q̇+Fd q̇+G(q)+d1 =−JT
j (q) ft(l) (1.2)

Jθ̈ +Bθ̇ +Ra ft (l)+d2 = τa (1.3)

d

dt
l = J j (q) q̇+Raθ̇ (1.4)

where q(t), q̇(t), q̈(t) ∈ R
n represent the link position, velocity and acceleration vec-

tors, respectively, θ (t), θ̇ (t), θ̈ (t) ∈ R
m represent the actuator position, velocity and

acceleration vectors, respectively, l (t) ∈ R
m is the m− dimensional tendon expansion

vector, M (q) ∈ R
n×n denotes the link inertia effects, Vm(q, q̇) ∈ R

n×n represents the

centripetal Coriolis effects, G(q) ∈ R
n denotes the gravitational terms related to the

robot, Fd ∈ R
n×n is the constant diagonal link viscous friction matrix, d1 ∈ R

n and

d2 ∈ R
m are used to represent the bounded (with known upper bounds) disturbance

vectors, J,B ∈R
m×m are the diagonal actuator inertia and actuator viscous friction ma-

trices, respectively, Ra ∈ R
m×m is the diagonal matrix containing the known radius of

pulleys mounted on each actuator, J j(q) ∈ R
m×n is the known Jacobian matrix that

maps the joint space to the tendon expansion space, ft (l) ∈ R
m is the known vector

3



of tendon tensile forces generated by the tendon expansions, and finally τa (t) ∈ R
m

is the control input vector applied the actuators. A schematic representation of the

system dynamics is presented in Figure 1.1. In a model based controller, it is nec-

Figure 1.1: Tendon driven System Dynamics: a general view.

essary to include the elastic tendon dynamics to the system model, however, with this

inclusion, the control problem becomes more complicated due to the extra dynamics

and hence possible extra uncertainties. Agrawal et al.[18] and Wang et al.[19] inves-

tigated the flexibility of the tendons in a tendon-sheath mechanism and revealed that

friction has an important effect in the transmission characteristics of a tendon-sheath

mechanism. Lee et al.[20] suggested a model for robotic mechanisms driven by elas-

tic tendons routed via fixed pulleys and Chang et al.[14] investigated the kinematics

of similar systems where the friction effects between tendons and pulleys have been

neglected. In [9], a detailed investigation of a tendon driven robotic hand system have

been presented with tendon elasticity and tendon friction nevertheless the proposed

controller in this study requires almost perfect knowledge of the system parameters. A

detailed kinematic analysis have been given in [21] with the detailed explanation on

calculating the Jacobian matrix between actuator space and link space of tendon driven

mechanisms driven via passive and active tendons. The use of tendon driven actuation

is more popular in dexterous hands as the resultant task space motion in robotic hand

design usually does not need to be accurate[22]. For applications where the main per-

formance criteria is to accurately track a desired task space trajectory, the use of tendon

4



driven mechanisms are limited which is mostly due to the elastic nature of the tendons

where accurate position control and trajectory tracking becomes difficult. A detailed

dynamic model of a tendon driven robotic manipulator has been investigated in [23]

with the tendon elasticity.

A basic control approach, antagonistic control algorithms for tendon driven ro-

botic manipulators have been studied since the early of nineties [24], [25]. In recent

years; some more talented model free controllers have been proposed in the litera-

ture [26], [27], [28]. Controller formulations including system dynamics are limited

in the literature. In [13], Kobayashi and Ozawa presented an adaptive neural network

based controller for tendon driven robotic mechanisms with elastic tendons. In [29],

Nakayama and Fujimoto tackled the tracking control of tendon driven robots by ap-

plying the delayed reflexive force feedback. In [30] and [31], Haiya et al. proposed

controllers for multiple degree–of–freedom (dof) tendon mechanisms using nonlin-

ear springs with hysteresis characteristics like stiffness adjustable tendons. For the

proposed controllers, error of the equation of spring was estimated by a disturbance

observer and compensated by utilizing the estimated disturbance. In [32], Wimbock

et al. proposed an application of the Immersion and Invariance type framework to

tendon driven systems with variable stiffness. The back-stepping approach have been

successfully applied in [33]. Among the above cited works, the only work that consid-

ered the uncertainties in the system dynamics was given in [13], however the proposed

adaptive controller requires the measurement of the second and third time derivatives

of link position measurements (see assumption (2) of [13]). Review of the past re-

search on control of tendon–driven robot manipulators has revealed that almost all of

the control designs required accurate knowledge of the system model along with exact

knowledge of model parameters. The only work considered parametric uncertainties

was [13] which utilized link acceleration and jerk measurements.

The dynamic equations of (1.2) exhibit the following useful properties, which

will be utilized in the controller development and the subsequent stability analysis.

Property 1.1: The inertia matrix can be bounded from above and below by the follow-

ing inequalities [34]

m1In ≤ M(q)≤ m2In (1.5)

5



where m1 and m2 are positive constants, and In is the n×n identity matrix. Likewise

the inverse of the inertia matrix can be bounded as follows

1
m2

In ≤ M−1(q)≤ 1
m1

In. (1.6)

Property 1.2: The inertia and the centripetal Coriolis matrices satisfy the following

relationship [35]

ξ T

(
1
2

Ṁ(q)−Vm(q, q̇)

)
ξ = 0 ∀ξ ∈ R

n (1.7)

where Ṁ(q) represents the time derivative of the inertia matrix.

Property 1.3: The centripetal Coriolis matrix satisfies the following relationship [36]

Vm(q,ν)ξ =Vm(q,ξ )ν ∀ξ ,ν ∈ R
n. (1.8)

Property 1.4: The norm of the centripetal Coriolis matrix, and the gravitational effects

with the friction vector can be upper bounded as follows [34]

‖Vm(q,ξ )‖i∞ ≤ ζc1 ‖ξ‖ , ‖Fd‖ ≤ ζ f , ‖G(q)‖ ≤ ζg ∀ξ ∈ R
n (1.9)

where ζc1, ζ f , ζg ∈ R are known positive bounding constants and ‖·‖i∞ denotes the

induced infinity norm of a matrix.

Property 1.5: The robot dynamics given in (1.2) can be linearly parameterized as fol-

lows [34]

Y (q, q̇, q̈)φr = M(q)q̈+Vm(q, q̇)q̇+G(q)+Fdq̇ (1.10)

where φr ∈R
p contains the constant system parameters, and Y (q, q̇, q̈)∈R

n×p denotes

the regression matrix that is a function of q(t), q̇(t) and q̈(t). The formulation of

(1.10) can be rewritten in terms of the desired trajectory and its time derivatives in the

following manner

Yd(qd, q̇d, q̈d)φr = M(qd)q̈d +Vm(qd, q̇d)q̇d +G(qd)+Fd q̇d (1.11)

6



where the desired regression matrix Yd(qd, q̇d, q̈d) ∈ R
n×p is a function of the desired

link position, velocity, and acceleration vectors denoted by qd(t), q̇d(t), q̈d(t) ∈ R
n,

respectively.

Property 1.6: The unknown actuator parameter matrices J and B are bounded by

known upper bounds which are determined as follows

λmax{J}< J̄, λmax{B}< B̄ (1.12)

where J̄, B̄ ∈ R are positive constants, and λmax{·} denotes the maximum eigenvalue

of a matrix.

Aside from the assumption that the force/elongation characteristics of the ten-

dons being perfectly known, our controller development and stability analysis also

utilizes the following assumptions, similar to that of [13]:

Assumption 1.1: rank(J j(q)) = n for any q ∈ R
n.

Assumption 1.2: There exists a positive valued vector of bias forces, fb, such that

J j(q)
T fb = 0 where this bias vector is used to keep the joint tendon tension vector

ft(l) positive without changing the joint forces generated by the tendons.

Assumption 1.3: Each entry of the vector ft(l) satisfies fti(li)= 0 for li < 0 and fti(li)≥
0, ∂ fti(li)

∂ li
> 0 for li ≥ 0 where i = 1,2, ...,m.

Assumption 1.4: The matrix
∂ ft(l)

∂ l
∈ R

m×m is non–singular.

1.3. Outline of the Thesis

The outline of this dissertation have been organised to present the detailed stud-

ies on tendon driven robots. A FSFB nonlinear robust solution for the link position

tracking problem of the tendon-driven robot manipulators with uncertain dynamical

system parameters is presented in Chapter 2. A robust backstepping approach has
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been utilized to achieve uniformly ultimately bounded tracking performance despite

the lack of exact knowledge of the dynamical parameters and presence of additive

bounded disturbances. The model based PSFB control of tendon driven robotic ma-

nipulators including uncertainty in the system dynamics have been focused on Chapter

3. A backstepping type adaptive controller have been proposed while only link posi-

tions, actuator positions and tendon tension measurements are available. An extension

for eliminating the actuator side position measurements have been also presented in

case of having exact knowledge of the actuator side model parameters. Lyapunov

based arguments have been applied to prove the stability of the closed–loop systems at

the end of the related chapters. To prove the effectiveness of the proposed controllers

some simulation studies have been performed on a two link planar robot manipula-

tor driven by a six tendon mechanism and simulation results are presented in Chapter

4. Besides, experimental results of a standard PID controller, Feed-forward controller

and PSFB controller on one link and two links robotic manipulators are presented in

Chapter 5. An extension on a one degree-of-freedom magnetic levitation system with

hybrid electromagnets have been presentedIn Chapter 6. Nonlinear equations of the

magnetic force model have been used to develop the model based controller. The pro-

posed controller can handle parametric uncertainties and only requires air gap and coil

current measurements. The output of the controller is the voltage input of the coils and

back-stepping procedure have been applied to reach the voltage dynamics over current

dynamics. The stability and convergence of the closed loop system have been proved

via Lyapunov-type arguments. Simulation results are presented to illustrate the perfor-

mance of the proposed robust controller. Finally, some conclusions about the overall

work are reported in Chapter 7.
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2. FSFB ROBUST CONTROLLER

The aim of this chapter is to illustrate the design and the corresponding stability

analysis for a full state feedback (i.e., position and velocity information of both the

actuators and robot links and tension measurements of each tendon) robust controller.

The proposed controller ensures practical joint space trajectory tracking despite the

uncertainties associated with the robot and transmission system parameters. Adding

the dynamics of the power transmission system and considering tendon elasticity yield

a complicated dynamic model, and the resulting system dynamics mandates the use

the backstepping technique twice. The stability analysis ensures the boundedness of

all the signals under the closed–loop operation and uniform ultimate boundedness of

the link position tracking errors.

The rest of the chapter is organized in the following manner. Error system de-

velopment and controller formulation are given in Sections 2.1. The Lyapunov type

stability analysis is presented in 2.2. Finally some concluding remarks are given in

Section 2.3.

2.1. Controller Formulation

The control objective is to design a link position tracking controller for the

tendon–driven robot manipulator model given by (1.2), (1.3) and (1.4) under the re-

strictive constraint that the dynamical system parameters of (1.2), (1.3) are uncertain.

In the subsequent control design, the full state feedback (i.e., position and velocity in-

formation) have been utilized. Specifically, the controller should ensure the robot links

follow a desired trajectory as closely as possible, despite the uncertain robot/actuator

system parameters. In order to quantify the control objective, the link position tracking

error e(t) ∈ R
n have been defined as follows

e , qd −q (2.1)

where it is assumed that the desired link position, qd (t) and its time derivatives are

sufficiently smooth and bounded functions of time. To facilitate the subsequent control
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development, the filtered tracking error r (t) ∈ R
n can be defined as

r , ė+αe (2.2)

where α ∈ R
n×n is a positive definite, diagonal control gain matrix. In addition, to

provide a method of quantifying robustness, the difference between the actual and

estimated parameters can be written as follows

φ̃r , φr − φ̂r (2.3)

where φ̃r(t) ∈ R
p represents the parameter estimation error vector and φ̂r ∈ R

p repre-

sents the constant best guess estimates of φr defined in (1.10). The backstepping based

controller design procedure requires defining two additional auxiliary error terms η f (t),

ηθ (t) ∈ R
m as

η f , ft − fd (2.4)

ηθ , θ̇ − θ̄d (2.5)

where ft (t), θ̇ (t) were defined in (1.2) and (1.3), respectively, and fd (t), θ̄d (t) are

yet to be designed auxiliary control inputs. Taking the time derivative of (2.2), pre–

multiplying the resultant equation by M (q), adding/ subtracting Ydφr, JT
j (q) fd and

Vm(q, q̇)r to the right hand side of the resulting equation, it can be obtained

M(q)ṙ =−Vm(q, q̇)r+χ +d1 + JT
j (q)η f + JT

j (q) fd +Ydφr (2.6)

where χ (q, q̇, t) ∈ R
n is an auxiliary term defined as

χ = M(q)(q̈d +α ė)−M(qd)q̈d

+Vm(q, q̇)(q̇d +αe)−Vm(qd, q̇d)q̇d (2.7)

+G(q)−G(qd)+Fd q̇−Fd q̇d.
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Based on Properties 1.1: and 1.4:, and using (2.1) and (2.2), it can be proven that (see

[34], Chapter 6 Eq: 6.2-9)

‖χ‖ ≤ ρ1(‖z‖)‖z‖ (2.8)

where z(t) ∈ R
2n is defined as

z(t),
[

eT (t) rT (t)
]T

(2.9)

and ρ1 (·) ∈ R is a known positive bounding function. From the structure of (2.6) and

the subsequent stability analysis, fd (t) can be designed in the following form

fd =
(
JT

j (q)
)+ (−Krr− kn

(
ρ2

1 (r,e)+ρ2
2

)
r− e−Yd φ̂r

)
(2.10)

where (·)+ is used to represent the pseudo inverse of a matrix [38], Kr ∈ R
n×n is a

constant, positive definite, diagonal gain matrix, kn ∈ R is a constant positive damping

gain, φ̂r was defined in (2.3), and ρ2 ∈ R is a positive bounding constant designed to

satisfy

ρ2 ≥
∥∥∥F̃

∥∥∥ (2.11)

where F̃ (t) , Ydφr −Yd φ̂r +d1 ∈ R
n. Inserting (2.10) into (2.6), the closed–loop dy-

namics for the filtered tracking error term r (t) is obtained to have the following form

M(q)ṙ =−Vm(q, q̇)r+χ + F̃ + JT
j (q)η f −Krr− kn

(
ρ2

1 (r,e)+ρ2
2

)
r− e. (2.12)

From (2.12), it can be seen that to ensure the stability and convergence of the tracking

error signal, the dynamics of the auxiliary signal η f (t) is also required. To this end,

one can take the time derivative of (2.4) and make use of (1.2), (1.4), (2.2) and (2.10),

to produce

η̇ f = Ω1 +Ω2 +
∂ ft(l)

∂ l
Raθ̇ (2.13)
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where the right hand side is segregated into the auxiliary variables Ω1 (q, q̇, l, t) ∈ R
m

containing known and measurable parameters, and Ω2 (q, q̇, l,φr, t) ∈ R
m containing

uncertain system parameters, and are explicitly defined as

Ω1 ,
∂ ft(l)

∂ l
J j (q) q̇+

d

dt

{(
JT

j (q)
)+

Ydφ̂r

}

− d

dt

{(
JT

j (q)
)+}(−Krr− kn

(
ρ2

1 +ρ2
2

)
r− e

)
(2.14)

+
(
JT

j (q)
)+
{

ė+2knρ1r
∂ρ1

∂e
ė

+

[
Kr + kn

(
ρ2

1 +ρ2
2

)
In +2knr

(
ρ1

∂ρ1

∂ r

)]
(q̈d +α ė)}

and

Ω2 ,
(
JT

j (q)
)+
{[

Kr + kn

(
ρ2

1 +ρ2
2

)
In +2knr

(
ρ1

∂ρ1

∂ r

)]
(2.15)

×
[
M−1 (q)

(
JT

j (q) ft(l)+Vm(q, q̇)q̇+Fd q̇+G(q)+d1
)]}

.

Notice that all the entries of (2.14) are known and/or measurable signals while (2.15)

contains uncertain system parameters, therefore cannot be directly used in the con-

troller design. At this stage, motivated to ensure the convergence of η f (t), one should

add/ subtract
∂ ft(l)

∂ l
Raθ̄d term to the right hand side of (2.13) to obtain

η̇ f = Ω1 +Ω2 +
∂ ft(l)

∂ l
Raηθ +

∂ ft(l)

∂ l
Raθ̄d (2.16)

where (2.5) was utilized. From the structure of (2.16) and the subsequent stability

analysis, the auxiliary signal θ̄d(t) can be designed in the following form

θ̄d = Λ
(
−K f η f − J j (q)r−Ω1 − Ω̂2 − vR1

)
(2.17)

where the auxiliary variable Λ(l) ∈ R
m×m is defined as

Λ ,

(
∂ ft(l)

∂ l
Ra

)−1

, (2.18)
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K f is a positive definite, constant, diagonal gain matrix, Ω1 (·) was defined in (2.14),

Ω̂2
(
φ̂r, t

)
is the estimate of Ω2 (φr, t) with φ̂r being the constant best guess estimates

of φr, and vR1(t) is a differentiable robust term defined in the following form [39]

vR1 =
ρ2

3

ε1
η f (2.19)

where ε1 ∈R is a positive constant, and ρ3 (e,r, l, t)∈R is a positive bounding function

designed to satisfy

ρ3 (e,r, l, t)≥
∥∥∥Ω̃2

∥∥∥ (2.20)

with Ω̃2 , Ω2 − Ω̂2. After substituting (2.17) into (2.16), the closed–loop dynamics

for the auxiliary tracking error signal η f (t) is obtained to have the following form

η̇ f =−K f η f − J j (q)r+
∂ ft(l)

∂ l
Raηθ + Ω̃2 − vR1. (2.21)

At this stage, the backstepping design procedure requires the dynamics of ηθ (t),

which can be obtained by taking the time derivative of (2.5), inserting (2.17) then

pre–multiplying both sides of the resulting equation by J and applying (1.2), (1.3) and

(1.4) as

Jη̇θ = Ω3 +Ω4 + τa (2.22)

where the right hand side is segregated into the auxiliary terms Ω3
(
q, q̇, l, θ̇ , t

)
∈ R

m

containing measurable/known variables, and Ω4
(
q, q̇, l, θ̇ ,φr,J,B, t

)
∈ R

m containing

uncertain system parameters, and are explicitly defined as follows

Ω3 , −Ra ft (l)+ J
dΛ

dt

(
K f η f + J j (q)r+Ω1 + Ω̂2 + vR1

)

+JΛ

{
K f

(
Ω1+

∂ ft(l)

∂ l
Raθ̇

)
+

d

dt

{
J j (q)

}
r+ J j (q)(q̈d +α ė) (2.23)

+
∂

∂q

(
Ω1 + Ω̂2 + vR1

)
q̇+

∂

∂ l

(
Ω1 + Ω̂2 + vR1

)(
J j (q) q̇+Raθ̇

)

+
∂

∂ t

(
Ω1 + Ω̂2 + vR1

)}

13



and

Ω4 , −Bθ̇ −d2 + JΛ

{
K f Ω2 −

(
J j (q)−

∂

∂ q̇

(
Ω1 + Ω̂2 + vR1

))
(2.24)

×
[
M−1 (q)

(
JT

j (q) ft(l)+Vm(q, q̇)q̇+Fd q̇+G(q)+d1
)]}

.

Based on the previous development and the ensuing stability analysis, the control

torque input signal τa (t) have been designed as follows

τa =−Kθ ηθ −
(

∂ ft(l)

∂ l
Ra

)T

η f −Ω3 − Ω̂4 − vR2 (2.25)

where, similar to the design of (2.17), Kθ ∈ R
m×m is a positive definite, constant,

diagonal gain matrix, Ω3 was defined in (2.23), Ω̂4
(
φ̂r, Ĵ, B̂, t

)
∈ R

m is the estimate of

Ω4 (φr,J,B, t) with (·̂) being used to illustrate the constant best guess estimates of (·),
and vR2(t) is the robust term defined in the following form [39]

vR2 =
ρ2

4

ε2
ηθ (2.26)

where ε2 ∈ R is a positive constant, and ρ4 (e,r, l,ηθ , t) ∈ R is a positive bounding

function designed to satisfy

ρ4 (e,r, l,ηθ , t)≥
∥∥∥Ω̃4

∥∥∥ (2.27)

with Ω̃4 , Ω4 − Ω̂4 ∈ R
m. After substituting the control torque input given by (2.25)

into (2.22),the closed–loop error dynamics for ηθ (t) have been obtained as shown

below

Jη̇θ =−Kθ ηθ −
(

∂ ft(l)

∂ l
Ra

)T

η f + Ω̃4 − vR2. (2.28)

A schematic representation of the controller formulation is presented in Figure 2.1.

Having formed the closed–loop dynamics for the error signals r (t), η f (t) and ηθ (t),

it is time to analyse the stability of the overall system and the convergence of the link

position tracking error e(t).
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Figure 2.1: An illustration of the controller formulation.

2.2. Stability Analysis

The stability of the closed–loop system will be investigated by utilizing Lya-

punov based arguments. Following theorem formalizes the stability analysis.

Theorem 2.1: The robust controller of (2.25) and the auxiliary control inputs (2.10)

and (2.17) with the robust terms (2.19) and (2.26) guarantees uniform ultimate bound-

edness of the link position tracking error e(t) in the sense that

‖e(t)‖ ≤
√

a

b
‖x(0)‖2 exp(−β t)+

2ε

bβ
(1− exp(−β t)) (2.29)

where x(t) ,
[

eT rT ηT
f ηT

θ

]T ∈ R
2(n+m)×1 is the combined error signal, a, b,

β , ε ∈ R are positive scalars defined explicitly as

a , max{1,m2, J̄} (2.30)

b , min{1,m1,λmin (J)} (2.31)

β ,
2min

{
min{λmin (Kr) ,λmin(α)}− 1

4kn
,λmin

(
K f

)
,λmin (Kθ )

}

max{1,m2, J̄}
(2.32)
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ε ,
1

4kn
+ ε1 + ε2 (2.33)

where m1, m2, J̄, ε1, ε2, kn, K f , Kθ and Kr were previously defined, and the notation

λmin (·) is used to denote the minimum eigenvalue of a matrix. Proof 2.1: To prove the

Theorem, one can start by defining a non–negative scalar function of the form

V =
1
2

rT Mr+
1
2

eT e+
1
2

ηT
f η f +

1
2

ηT
θ Jηθ (2.34)

which can be bounded from below and above as

1
2

min{1,m1,λmin (J)}‖x‖2 ≤V ≤ 1
2

max{1,m2, J̄}‖x‖2 . (2.35)

Taking the time derivative of (2.34) along (2.12), (2.2), (2.21) and (2.28), making use

of (1.7), and then canceling common terms yields to

V̇ = −rT Krr− eT αe−ηT
f K f η f −ηT

θ Kθ ηθ

+rT
[
χ − knρ2

1 r
]
+ rT

[
F̃ − knρ2

2 r
]

(2.36)

+ηT
f

[
Ω̃2 − vR1

]
+ηT

θ

[
Ω̃4 −

ρ2
4

ε2
ηθ

]
.

Note that using the definition given in (2.19) the ηT
f

[
Ω̃2 − vR1

]
term can be bounded

as follows [39]

ηT
f

[
Ω̃2 − vR1

]
≤ ρ3

∥∥η f

∥∥− ρ2
3

∥∥η f

∥∥2

ε1

≤ ρ3
∥∥η f

∥∥
(

1− ρ3
∥∥η f

∥∥
ε1

)
(2.37)

≤ ε1.

After applying (2.8), (2.11), (2.27) and (2.37), the right hand side of (2.36) can be

upper bounded to have the following form

16



V̇ ≤ −λmin (Kr)‖r‖2 −λmin(α)‖e‖2 −λmin
(
K f

)∥∥η f

∥∥2

−λmin (Kθ )‖ηθ‖2 +
[
ρ1 ‖z‖‖r‖− knρ2

1 ‖r‖2
]

(2.38)

+
[
ρ2 ‖r‖− knρ2

2 ‖r‖2
]
+

[
ρ4‖ηθ‖−

ρ2
4 ‖ηθ‖2

ε2

]
+ ε1.

Applying the nonlinear damping argument (i.e., first by adding and subtracting 1/4kn

and then completing the squares) to the first and second bracketed terms of (2.38) , the

right hand side can further be bounded as

V̇ ≤ −
(

min{λmin (Kr) ,λmin(α)}− 1
4kn

)
‖z‖2 −λmin

(
K f

)∥∥η f

∥∥2
(2.39)

−λmin (Kθ )‖ηθ‖2 +

[
ρ4‖ηθ‖−

ρ2
4 ‖ηθ‖2

ε2

]
+ ε1 +

1
4kn

.

where z(t) was previously defined in (2.9). Finally, using a similar manipulation to

that of (2.37) to the bracketed term of (2.39), we obtain

V̇ ≤−min

{
min{λmin (Kr) ,λmin(α)}− 1

4kn
,λmin

(
K f

)
,λmin (Kθ )

}
‖x‖2 + ε (2.40)

where ε was previously defined in (2.33). Using the definition of x(t) and the upper

bound of V (t) given in (2.35), the upper bound of V̇ (t) given (2.40) can be reformu-

lated as

V̇ ≤−βV + ε (2.41)

where β was defined in (2.32). The solution of the above differential inequality yields

V (t)≤V (0)exp(−β t)+
ε

β
(1− exp(−β t)) (2.42)

and from (2.35), the following upper bound for x(t) can be obtained

‖x(t)‖ ≤
√

a

b
‖x(0)‖2 exp(−β t)+

2ε

bβ
(1− exp(−β t)) (2.43)
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where a and b were previously defined in (2.30) and (2.31), respectively. Based on

the definition of x(t) and (2.43), it can be shown that the tracking error term e(t) is

bounded as stated in (2.29). Similar to the e(t), it can be shown that r(t), η f (t) and

ηθ (t) by an exponential envelope, based on the definition of x(t). Since e, r, qd and q̇d

are bounded signals then ė, q, q̇ are also bounded signals according to (2.1) and (2.2).

From definition of fd given in (2.10) and utilising the boundedness of q, e and r, it can

be shown that fd is bounded and based on the definition of η f given in (3.8) ft(l) is

bounded and so l(t) is bounded. In view of (2.17), we can conclude that θ̄d is bounded

based on the boundedness of the signals in it. Then using the definition of ηθ given in

(2.5), it can be shown that θ̇ is also bounded. Since q, q̇, l and θ̇ are bounded, then l̇

and θ are also bounded based on the dynamics given in (1.4). Based on the definition

of τa given in (2.25) and the boundedness of the signals therein, τa remains bounded,

as well.

2.3. Remarks

In this chapter, a full state feedback, nonlinear robust controller for TDRMs sub-

ject to parametric uncertainty in system dynamics have been presented. Despite the

lack of exact knowledge of system parameters and presence of external disturbances,

the proposed controller ensured practical trajectory tracking in the sense that; the norm

of the link position tracking error signal is forced to enter an ultimate bound in finite

time. Stability of the closed–loop system and boundedness of system states are proven

via Lyapunov based arguments.the proposed controller requires the full state feedback

of all system states (i.e. both position and velocity information of the robot joints and

the actuators) and the exact knowledge of the tendon tensile forces generated by tendon

expansions. From the illustration given Figure 2.1, it is obvious that the implementa-

tion of the proposed controller is far more complex compared to most conventional

controllers. However thanks to the current state of micro–controllers the controller

algorithm is still implementable in real time.

In the controller design it was assumed that the force/elongation characteristic

of the tendon is perfectly known. It should be mentioned that the proposed robust

controller can be modified to compensate for simplistic tendon transmission models
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(i.e. linear). However as presented in [12], [13], [14] the actual tendon characteris-

tics includes highly nonlinear terms as hysteresis. In an actual implementation due to

the robust nature of proposed controller, some of these uncertainties might be com-

pensated by readjusting the controller gains upto a point. Still additional uncertainties

like the elastic tendon characteristics would result in higher tracking errors in an actual

implementation.

The results given in this chapter are printed in volume 80 of Journal of Intelligent

and Robotic Systems (pp.3–14) in October of 2015 [40].
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3. PSFB ADAPTIVE CONTROLLER

FSFB model based control of tendon driven systems require a significant amount

of sensory equipments to measure the necessary system states like positions and ve-

locities of links and actuators since tendon driven systems are usually designed to be

an over-actuated systems. In this chapter, it is focused on model based partial state

feedback (PSFB) controller for tendon driven robot manipulators that does not require

neither acceleration nor velocity measurements of both links and actuators. Moreover

an extension on eliminating the actuator side position measurements have been investi-

gated, as well. The proposed adaptive PSFB controller only requires link and actuator

position measurements and tension measurements of each tendons while the whole

dynamical system parameters are uncertain. Specifically, the proposed semi–global

adaptive PSFB trajectory tracking controller deals with parametric uncertainties via

three different parameter update rules. The need for link velocity measurements are

eliminated by utilizing a nonlinear link velocity filter during the error system devel-

opment, and the lack of actuator velocity measurements have been overcome with the

help of a set of linear filters. Based on the backstepping type model based controller

development procedure presented in the previous chapter, the proposed adaptive con-

troller ensures boundedness of all the signals under the closed–loop operation, and

semi–global asymptotic tracking of the link position error.

The rest of this chapter is organized as follows. Control objectives and detailed

formulation of the adaptive PSFB controller are given in Sections 3.1. Main stability

result and proof of the result can be seen in Section 3.2. An extension on eliminating the

actuator side position measurements and related stability analysis have been presented

in Section 3.3. Concluding remarks are given in Section 3.4.

3.1. Development of Adaptive PSFB Controller

The control objective is to design an adaptive link position tracking controller

for the tendon driven robot manipulator model given by (1.2), (1.3) and (1.4) under

the restrictive constraint that the dynamical system parameters of (1.2) and (1.3) are

uncertain, and velocity and acceleration measurements of both robot links and actua-
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tors are not available. Unknown disturbances given by d1 in (1.2) and d2 in (1.3) have

been neglected due to the adaptive structure of the controller design. Specifically, the

controller should ensure the robot links to asymptotically follow a desired trajectory

despite the uncertain model parameters while only link and actuator position measure-

ments and tendon tension force measurements are available. To this end a link velocity

independent error system for robotic manipulator have been developed with the help

of a link velocity filter design and uncertain manipulator and actuator parameters are

updated via three different adaptation rules. Need for actuator velocity measurements

can be eliminated with the help of a set of linear filters and back–stepping procedure

have been implemented twice during the controller development process to design the

actuator input signals. Since the aim of the controller is the desired output tracking of

the links, the resultant performance of the controller-filter couples can be quantified by

the link position tracking error e(t) ∈ R
n which can be defined as

e , qd −q (3.1)

where it is assumed that the desired link position signal qd (t) and its time derivatives

are sufficiently smooth and bounded functions of time. We define a filtered tracking

error like term η(t) ∈ R
n as follows

η , ė+α1e+α2e f (3.2)

where α1, α2 ∈ R are positive constant filter gains, and e f (t)∈ R
n is an auxiliary filter

variable having the following dynamic expression

ė f =−α3e f +α2e− kη , e f (0) = 0m×1 (3.3)

where α3 ∈ R is a positive constant filter gain and k ∈ R is a positive constant control

gain.
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3.1.1. Link Trajectory Tracking Controller Design

After taking the time derivative of (3.2), pre–multiplying both sides by M(q),

substituting (1.2), (3.2) and (3.3), adding and subtracting Ydφr and Vm(q, q̇)η to the

right hand–side of the resulting equation and using the Property 1.3: we can obtain the

following expression

M(q)η̇ =−Vm(q, q̇)η +Ydφr −α2kM(q)η + JT
j (q) ft(l)+χ (3.4)

where χ (t) ∈ R
n is an auxiliary signal defined as

χ , M(q)q̈d +Vm(q, q̇d)q̇d +Fd q̇+G(q)

−Ydφr +α1M(q)
(
η −α1e−α2e f

)

+α2M(q)
(
−α3e f +α2e

)
(3.5)

−Vm(q,η)
(
q̇d +α1e+α2e f

)

+Vm(q, q̇d)
(
α1e+α2e f

)

+Vm(q, q̇d +α1e+α2e f )
(
α1e+α2e f

)
.

Based on (1.5), (1.9), (1.11) and boundedness of the desired trajectory and its deriva-

tives, it can be shown that

‖χ‖ ≤ ρ(‖x‖)‖x‖ (3.6)

where ρ(·) is a positive scalar bounding function, and x(t)∈ R
3n is defined as follows

x ,
[
eT eT

f ηT
]T

. (3.7)

Based on the manipulator model given in (1.2), it is necessary to show that tendon

tension forces have to stabilize the robot dynamics. As a powerful tool to reach the

lower level dynamics, a back–stepping procedure have been applied to design the de-

sired tendon tension forces which can ensure the robot links track a desired trajectory.
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To obtain this end, an auxiliary error term, denoted by η f (t) ∈ R
m can be defined as

follows

η f , ft(l)− fd (3.8)

where fd(t)∈R
m is an auxiliary control input. After adding and subtracting JT

j (q) fd (t)

to the right–hand side of (3.4), we obtain the following

M(q)η̇ = −Vm(q, q̇)η +Ydφr −α2kM(q)η

+χ + JT
j (q)η f + JT

j (q) fd. (3.9)

To stabilise the open–loop robot dynamics given in (3.9), and motivated by the subse-

quent stability analysis, we design the auxiliary control input fd (t) as

fd =
[
JT

j (q)
]+{−Yd φ̂r + kKse f −Kse

}
(3.10)

where Ks ∈R is a positive scalar gain,
[
JT

j (q)
]+

, J j(q)
[
JT

j (q)J j(q)
]−1

∈R
m×n is the

pseudo inverse of JT
j (q), and φ̂r (t)∈R

p is the estimate of φr updated via the following

˙̂φr = ΓY T
d η (3.11)

where Γ ∈R
p×p is a positive definite, constant, diagonal adaptation gain matrix. From

(3.11), it is clear that the right–hand side depends on η (t) which is not available.

Subsequently, we will provide an implementable (i.e., link velocity independent) form.

The control gain k is chosen as

k =
1

m1

[
1+ kn1ρ2(‖x‖)

]
(3.12)

with kn1 being a positive constant nonlinear damping gain. Substituting (3.10) into

(3.9) yields the closed–loop dynamics to be obtained as follows

M(q)η̇ = −Vm(q, q̇)η +Yd φ̃r −α2kM(q)η (3.13)

+χ + JT
j (q)η f + kKse f −Kse
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where φ̃r (t) ∈ R
p is the parameter estimation error and defined as

φ̃r , φr − φ̂r. (3.14)

3.1.2. Partial Stability Analysis for Manipulator Dynamics

In this subsection, the partial stability analysis for robot dynamics given by (1.2)

have been presented. The results of this analysis will afterwards be used in the com-

posite stability analysis of the overall closed–loop system.

A non–negative Lyapunov–like function, denoted by Vr(η,e,e f , φ̃r) ∈ R, can be

defined as follows

Vr ,
1
2

ηT M(q)η +
1
2

eT Kse+
1
2

eT
f Kse f +

1
2

φ̃ T
r Γ−1φ̃r. (3.15)

Taking the time derivative of (3.15), then substituting (3.2), (3.3), (3.11), (3.13), mak-

ing use of (1.7) and then cancelling common terms, yields to

V̇r = ηT [−α2kM(q)η +χ ]−α1Ks‖e‖2 −α3Ks

∥∥e f

∥∥2
+ηT JT

j (q)η f . (3.16)

Using the definition of the control gain k in (3.12), and the upper bounds of M(q) in

(1.5) and χ (t) in (3.6), one can reach the following upper bound for the right–hand

side of (3.16)

V̇r ≤−α2 ‖η‖2 −α1Ks‖e‖2 −α3Ks

∥∥e f

∥∥2
+ηT JT

j (q)η f +
1

4α2kn1
‖x‖2 (3.17)

where the following nonlinear damping argument [3] was also utilized

−α2kn1ρ2 (‖x‖)‖η‖2 +‖η‖ρ (‖x‖)‖x‖ ≤ 1
4α2kn1

‖x‖2 . (3.18)

Using the definition of x(t) in (3.7), another upper bound can be reached as

V̇r ≤−γ ‖x‖2 +ηT JT
j (q)η f (3.19)
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where γ is some positive bounding constant satisfying min{α2,α1Ks,α3Ks}− 1
4α2kn1

>

0. From (3.19) it can be seen that to ensure the stability and the convergence of the

tracking error signal we need to ensure η f (t) converges to zero.

3.1.3. Actuator Side Velocity Filter Design

Since the stability of the robot manipulator requires the convergence of η f as can

be seen in (3.19), we continue the design process by investigating the dynamics of η f .

At this stage, the control problem becomes more complicated due to the unavailability

of the actuator velocity information. To overcome the lack of the actuator velocity

measurements, a set of linear filters have been developed as presented below. The

actuator dynamics given in (1.3), can be reformed to obtain the following expression

θ̈ = J−1 [τa −Bθ̇ −Ra ft (l)
]
. (3.20)

To write the actuator dynamics in a state space form, a new vector r(t) ∈ R
2m and

auxiliary state variables r1(t), r2(t) ∈ R
m have been defined as follows

r =

[
r1

r2

]
,

[
θ

ṙ1 + J−1Br1

]
. (3.21)

Taking the time derivative of r2(t) and then substituting (3.20) and (3.21) yields to

ṙ2 , J−1τa − J−1Ra ft (l) . (3.22)

The actuator dynamics can be written in the following state space form

ṙ = A0r+

[
k f1Im

k f2Im

]
r1 +A1

[
r1

0m×1

]
+A2

[
0m×1

ft (l)

]
+

[
0m×1

J−1τa

]
(3.23)

where k f1 , k f2 ∈ R are constant positive filter gains, A0, A1, A2 ∈ R
m×m are Hurwitz

matrices, and are defined as [41]

A0 ,

[
−k f1Im Im

−k f2Im 0m×m

]
, (3.24)
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A1 ,

[
−J−1B 0m×m

0m×m −J−1B

]
, (3.25)

A2 ,

[
−J−1Ra 0m×m

0m×m −J−1Ra

]
. (3.26)

Based on the above dynamics, the following linear, actuator velocity independent fil-

ters are designed [42], [43]

ε̇0 = A0ε0 +

[
k f1Im

k f2Im

]
r1; ε0 ,

[
εT

01 εT
02

]T
(3.27)

ε̇1 = A0ε1 +

[
r1

0m×1

]
; ε1 =

[
εT

11 εT
12

]T
(3.28)

ε̇2 = A0ε2 +

[
0

ft (l)

]
; ε2 =

[
εT

21 εT
22

]T
(3.29)

υ̇0 = A0υ0 +

[
0m×1

τa

]
; υ0 =

[
υT

01 υT
02

]T
(3.30)

where ε01 (t), ε02 (t), ε11 (t), ε12 (t), ε21 (t), ε22 (t), υ01 (t), υ02 (t)∈R
m and thus ε0 (t),

ε1 (t), ε2 (t), υ0 (t) ∈ R
2m. Based on the structure of the filters, state estimator for r(t),

denoted by r̂(t) ∈ R
2m, is designed in the following manner

r̂ = ε0 +A1ε1 +A2ε2 +

[
J−1 0mxm

0mxm J−1

]
υ0. (3.31)

The state estimation error, denoted by r̃ (t) ∈ R
2m, is defined as follows

r̃ =

[
r̃1

r̃2

]
, r− r̂. (3.32)

where substituting (3.31) yields

[
r̃1

r̃2

]
=

[
r1 − ε01 + J−1 (Bε11 +Raε21 −υ01)
r2 − ε02 + J−1 (Bε12 +Raε22 −υ02)

]
. (3.33)

Now, θ̇ (t) can be obtained by computing r2(t) from (3.33) and substituting in (3.21)

as
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θ̇ = r̃2 + ε02 − J−1B(ε12 +θ)− J−1Raε22 + J−1υ02. (3.34)

To analyse the stability of the filter, one can take the time derivative of (3.32) and

obtain the following estimation error dynamics

˙̃r = ṙ− ε̇0 −A1ε̇1 −A2ε̇2 +

[
J−1 0mxm

0mxm J−1

]
υ̇0 (3.35)

where the time derivative of (3.31) was utilized. Substituting (3.23) and the set of

linear filters in (3.27) into (3.35), it is easy to obtain

˙̃r = A0r̃. (3.36)

3.1.4. Partial Stability Analysis for Velocity Filter

To investigate the stability analysis for the actuator velocity error generating fil-

ters, a non–negative scalar function, denoted by Vf (r̃) ∈ R, can be defined as follows

Vf , r̃T P0r̃ (3.37)

where P0 ∈ R2m×2m is a positive definite, symmetric, constant matrix chosen to satisfy

AT
0 P0 +P0A0 =−I2m. (3.38)

After taking the time derivative of (3.37), as follows

V̇f = ˙̃rT P0r̃+ r̃T P0 ˙̃r (3.39)

and substituting (3.36) and (3.38) yields

V̇f =−r̃T r̃ =−‖r̃1‖2 −‖r̃2‖2 . (3.40)
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3.1.5. Actuator Torque Input Design

Owing to the exponential stable structure of the linear filter design, the dynamics

of auxiliary error signal η f (t) can be introduced and the stability of auxiliary error

dynamics can be investigated by taking the time derivative of (3.8) which yields to

η̇ f =
∂ ft(l)

∂ l

[
J j (q) q̇+Raθ̇

]

−
[
JT

j (q)
]+{−Ẏd φ̂r −Yd

˙̂φr + kKsė f −Ksė
}

(3.41)

− d

dt

[
JT

j (q)
]+{−Yd φ̂r + kKse f −Kse

}
.

In the last line of the above expression, from the time derivative of the pseudo inverse

of the Jacobian matrix, the time derivative of joint position vector and thus the auxiliary

error signal η (t) shows up. In view of this, the last line can be rewritten as

d

dt

{[
JT

j (q)
]+}{−Yd φ̂r + kKse f −Kse

}
= Ψ1(e,e f , t)+Ψ2(e,e f , t)η (3.42)

where Ψ1(e,e f , t) ∈ R
m and Ψ2(e,e f , t) ∈ R

m×m are known and available functions.

After pre–multiplying both sides of (3.41) with J and then making use of (3.2), (3.3),

(3.11), (3.34), (3.42) to obtain

Jη̇ f =W1φ1 − JΩ1η + J
∂ ft(l)

∂ l
Rar̃2 +

∂ ft(l)

∂ l
Ra (υ02 −Raε22) (3.43)

where W1(e,e f , l,ε02,ε12, φ̂ , t) ∈ R
m×p1 is a known and available regressor matrix and

φ1 ∈ R
p1 is an unknown constant parameter vector, and both are obtained from

W1φ1 = J
∂ ft(l)

∂ l

{
J j (q)(q̇d +α1e+α2e f )+Ra

(
ε02 − J−1B(ε12 +θ)

)}
(3.44)

−J
[
JT

j (q)
]+{−Ẏd φ̂ + kKs

(
−α3e f +α2e

)
−Ks

(
−α1e−α2e f

)}
− JΨ1.

In (3.43), the auxiliary matrix Ω1(e,e f , t)∈R
m×m, which includes known and measur-

able terms, is defined as
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Ω1 ,
∂ ft(l)

∂ l
J j (q)−

[
JT

j (q)
]+ (

YdΓY T
d + k2Ks +Ks

)
+Ψ2. (3.45)

Since the derivative of υ02 which can be seen in (3.27) includes the actuator torque

input signal, the second backstepping procedure can be constructed on υ02 by defining

a new auxiliary error signal, denoted by ηL(t) ∈ R
m, as

ηL(t), υ02 −uL (3.46)

where uL(t) ∈ R
m is an auxiliary input like term. Utilizing (3.46), and adding and

subtracting
∂ ft(l)

∂ l
RauL (t) to the right–hand side of (3.43) results in

Jη̇ f =W1φ1 + JΩ1η + J
∂ ft(l)

∂ l
Rar̃2 +

∂ ft(l)

∂ l
Ra (uL +ηL −Raε22) . (3.47)

From the subsequent stability analysis, the auxiliary input uL (t) can be designed in the

following manner

uL = Λ

(
−K f η f −W1φ̂1 +

∂ ft(l)

∂ l
R2

aε22

)
(3.48)

where the auxiliary variable Λ(l) ∈ R
m×m is defined as

Λ ,

[
∂ ft(l)

∂ l
Ra

]−1

(3.49)

and K f ∈ R is a control gain designed as

K f = k f + kn2J̄2‖Ω1‖2
i∞ + kn3J̄2 ‖Λ‖2

i∞ + kn4
∥∥JT

j (q)
∥∥2

i∞
(3.50)

where k f ∈ R is a constant control gain, kn2, kn3, kn4 ∈ R are constant scalar nonlinear

damping gains, and J̄ was introduced in (1.12). In (3.48), φ̂1 (t) ∈ R
p1 is the estimate

of the unknown parameter vector φ1, and is updated according to

˙̂φ1 = Γ1W T
1 η f (3.51)
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with Γ1 ∈ R
p1×p1 being a positive definite, constant, diagonal, adaptation gain matrix.

After substituting (3.48) into (3.47), closed–loop dynamics for η f (t) can be obtained

as

Jη̇ f =−K f η f +W1φ̃1 + JΩ1η + J
∂ ft(l)

∂ l
Rar̃2 +

∂ ft(l)

∂ l
RaηL (3.52)

where φ̃1 (t) ∈ R
p1 is the parameter estimation error vector and is defined as

φ̃1 , φ1 − φ̂1. (3.53)

In this stage controller design requires investigating the dynamics of ηL (t). Taking the

time derivative of (3.46), and then substitute (1.4), (3.2), (3.11), (3.27), (3.34), (3.43),

and after some straightforward mathematical manipulations yields to

η̇L = Ω2+W2φ2 +Ω3η +Ω4r̃2 + τa (3.54)

where W2 (·) ∈ R
m×p2 is an available regressor matrix, φ2 ∈ R

p2 includes unknown

system parameters, Ω2 (·)∈R
m, Ω3 (·)∈R

m×n, Ω4 (·)∈R
m×m are auxiliary terms that

include known and available signals. According to the subsequent stability analysis,

the actuator control input τa can be designed as follows

τa =−KLηL −Ω2 −W2φ̂2 −
[

∂ ft(l)

∂ l
Ra

]T

η f (3.55)

with KL ∈ R being a control gain designed as

KL = kL + kn5 ‖Ω3‖2
i∞ + kn6 ‖Ω4‖2

i∞ (3.56)

where kL ∈ R is a constant control gain, kn5, kn6 ∈ R are constant scalar nonlinear

damping gains, and φ̂2 (t) ∈ R
p2 is the estimate of the uncertain parameter vector φ2

which is designed to be updated as follows

˙̂φ2 = Γ2W T
2 ηL (3.57)
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with Γ2 ∈ R
p2×p2 being a positive definite, constant, diagonal, adaptation gain ma-

trix. After substituting (3.55) into (3.54), the closed–loop dynamics for ηL (t) can be

obtained as

η̇L =−KLηL +W2φ̃2 +Ω3η +Ω4r̃2 −
[

∂ ft(l)

∂ l
Ra

]T

η f (3.58)

where φ̃2 (t) ∈ R
p2 is the parameter estimation error vector and defined as

φ̃2 , φ2 − φ̂2. (3.59)

3.1.6. Partial Stability Analysis for Auxiliary Error Dynamics

As the third step of the stability analysis, a non–negative scalar function, denoted

by Va

(
η f ,ηL, φ̃1, φ̃2

)
∈ R can be defined as

Va ,
1
2

ηT
f Jη f +

1
2

ηT
L ηL +

1
2

φ̃ T
1 Γ−1

1 φ̃1 +
1
2

φ̃ T
2 Γ−1

2 φ̃2. (3.60)

Taking the time derivative of (3.60), substituting (3.51), (3.52), (3.57), (3.58), using the

control gains K f in (3.50) and KL in (3.56), an upper bound for V̇a (t) can be obtained

as

V̇a ≤ −k f

∥∥η f

∥∥2 − kL ‖ηL‖2 +
‖η‖2

4kn2
+

‖r̃2‖2

4kn3
(3.61)

−kn4
∥∥JT

j (q)
∥∥2

i∞

∥∥η f

∥∥2
+

‖η‖2

4kn5
+

‖r̃2‖2

4kn6
.

3.2. Main Result and Overal Stability analysis

In this section, the stability of the closed–loop system will be investigated by

utilizing Lyapunov–based arguments.

Theorem 3.1: For the tendon driven robot manipulator system given by dynamic equa-

tions (1.2), (1.3) and (1.4), link position tracking adaptive controller given by (3.10),
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(3.48), (3.55), and adaptation laws given by (3.11), (3.51), (3.57), in conjunction with

actuator velocity error generating filter given by (3.27) and (3.31), semi–global asymp-

totic link position tracking is guaranteed in the sense that

‖e(t)‖→ 0 as t → ∞ (3.62)

provided the nonlinear damping gains are selected to satisfy the following conditions

min
{

γ,1,k f ,kL

}
>

6

∑
i=2

1
4kni

(3.63)

kn1 >
λ2

λ1
‖s(0)‖2 +1 (3.64)

where γ ∈ R is some positive bounding constant satisfying min{α2,α1Ks,α3Ks} −
1

4α2kn1
> γ > 0, and s(t) ∈ R

(3n+p)×1, λ1, λ2 ∈ R are defined as follows

s ,
[

eT eT
f ηT φ̃ T

r

]T
(3.65)

λ1 ,
1
2

min
{

m1,λmin (Ks) ,λmin
(
Γ−1)} (3.66)

λ2 ,
1
2

max
{

m2,λmax (Ks) ,λmax
(
Γ−1)} (3.67)

where λmin (·) denotes the minimum eigenvalue of a matrix.

Proof 3.1: In order to investigate the closed–loop system stability, a non–negative

scalar function, denoted by V (t) ∈ R, can be constructed by summing (3.15), (3.37),

(3.60), as

V ,Vr +Vf +Va. (3.68)

After taking the time derivative of (3.68), substituting (3.19), (3.40) and (3.61), and

then simplifying the resulting expression, the following expression will be obtained
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V̇ ≤ −γ ‖x‖2 −‖r̃1‖2 −‖r̃2‖2 − k f

∥∥η f

∥∥2 − kL ‖ηL‖2

+
‖η‖2

4kn2
+

‖r̃2‖2

4kn3
+

‖η‖2

4kn5
+

‖r̃2‖2

4kn6
(3.69)

+ηT JT
j (q)η f − kn4

∥∥JT
j (q)

∥∥2

i∞

∥∥η f

∥∥2
.

Applying a similar nonlinear damping argument to the one in (3.18) to the last line of

(3.69), the upper bound for V̇ (t) can be written as

V̇ ≤ −γ ‖x‖2 −‖r̃1‖2 −‖r̃2‖2 − k f

∥∥η f

∥∥2 − kL ‖ηL‖2 (3.70)

+
‖η‖2

4kn2
+

‖r̃2‖2

4kn3
+

‖η‖2

4kn4
+

‖r̃2‖2

4kn5
+

‖r̃2‖2

4kn6
.

The expression given in (3.70) can further be upper bounded as follows

V̇ ≤−
(

min
{

γ,1,k f ,kL

}
−

6

∑
i=2

1
4kni

)
‖z‖2 (3.71)

where z(t) ∈ R(3n+4m)×1 is defined as follows

z ,
[

xT r̃T
1 r̃T

2 ηT
f ηT

L

]T
. (3.72)

Provided the gain condition in (3.63) is satisfied, the upper bound for V̇ (t) in (3.71)

can be reformulated as

V̇ ≤−δ ‖z‖2 (3.73)

for some positive bounding constant δ ∈ R. Standard signal chasing arguments can

now be utilized to demonstrate boundedness of all the signals under the closed–loop

operation. Barbalat’s Lemma [42] can then be utilized to prove that z(t) is asymptoti-

cally stable, and thus it is easy to see that the tracking objective is met in the sense that

(3.62) is satisfied.
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3.3. Eliminating Actuator Side Measurements

Need for position measurements of the actuators requires a high resolution posi-

tion sensor for each actuator. Since tendon driven robotic systems are generally over-

actuated systems, actuator side position measurements increases the sensor costs dra-

matically. If model parameters of the actuator dynamics given in (1.3) exactly known,

the proposed adaptive controller can be modified with the help of an actuator side state

observer in order to eliminate the position measurements of the actuators. The resul-

tant controller–observer couple can still deal with uncertainties in the link dynamics

while only requires the link position measurements and tendon tension measurements.

3.3.1. Design of Model Dependent State Observer

The actuator dynamics given in (3.20) can be reformed to have a useful state

space form by defining state variables x1(t) = θ , x2(t) = θ̇ ∈ R
m as follows

[
ẋ1

ẋ2

]
=

[
x2

J−1τa − J−1Bx2 − J−1Ra ft (l)

]
. (3.74)

In order to quantify the observation performance, the velocity observation error vector

x̃2 ∈ R
m have been defined as follows

x̃2 , x2 − x̂2 (3.75)

where x̂2 is the observed velocity of the actuators. Similar to the controller formulation

presented in the previous sections, the convergence of the auxiliary error signal η f to

the zero need to be proved, as well. To investigate the dynamics of η f , one can take

the time derivative of (3.8), make use of the tension dynamics given in (1.4) and add

and subtract ∂ ft(l)
∂ l

Rax̂2 to obtain

η̇ f = Ω0 +Ω1η +
∂ ft(l)

∂ l
Rax̃2 +

∂ ft(l)

∂ l
Rax̂2 (3.76)

where Ω0 ∈ R
m and Ω1 ∈ R

m×n include known and measurable terms and can be

calculated as follows
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∂ ft(l)

∂ l
J j (q) q̇− d

dt
fd = Ω0 +Ω1η. (3.77)

Since the observed velocity of the actuators can not be designed directly, the desired

version the observed velocity can be designed and inserted to the controller develop-

ment by the help of backstepping procedure. To apply the backstepping on x̂2, a new

auxiliary input tracking error vector ηb(t) ∈ R
m can be designed as follows

ηb(t), x̂2 − x2d . (3.78)

where x2d(t) ∈ R
m is the desired velocity observation vector which will be designed

as an auxiliary input term. To this end, adding and subtracting
∂ ft(l)

∂ l
Rax2d to (3.76)

yields to

η̇ f = Ω0 +Ω1η +
∂ ft(l)

∂ l
Rax̃2 +

∂ ft(l)

∂ l
Raηb +

∂ ft(l)

∂ l
Rax2d . (3.79)

According to the subsequent stability analysis, the auxiliary input x2d can be designed

in the following manner

x2d = Λ
(
−K f η f −Ω0

)
(3.80)

where the auxiliary variable Λ(l) ∈ R
m×m was defined in (3.49) and K f ∈ R

m×m is the

controller gain matrix which is defined as

K f , k f + kn2 ‖Ω1‖2
i∞ + kn3λmax

(
JT

j (q)
)2

(3.81)

where k f ∈R
m×mis a constant, diagonal control gain matrix, kn2,kn3 ∈R

1 are constant

scalar nonlinear damping gains. After substituting (3.80) in to the (3.79) closed loop

dynamics for η f can be obtained as

η̇ f =−K f η f +Ω1η +
∂ ft(l)

∂ l
Rax̃2 +

∂ ft(l)

∂ l
Raηb. (3.82)

Before going further in the design process, the state observer design for x̂2 need to

be presented. According to actuator dynamics given in (3.74) and to the subsequent

stability analysis actuator side state observer can be designed as follows
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·
x̂2 = J−1 (τa −Bx̂2 −Ra ft (l))+

∂ ft(l)

∂ l
Raη f +Ω7ηb. (3.83)

To prove the convergence of the velocity observer to the zero, the state observer error

term can be defined defined and obtained as follows

·
x̃2 , ẋ2 −

·
x̂2 =−J−1Bx̃2 −

∂ ft(l)

∂ l
Raη f −Ω7ηb. (3.84)

In this step, the control design requires the convergence of the auxiliary error signal

ηb to the zero. To investigate the dynamics of ηb one can take the time derivative of

(3.78), take the other necessary derivatives in the resulting equation and than substitute

(3.83) (3.76), (1.4), (3.2) and do some more mathematical manipulations to obtain

η̇b = Ω5 +Ω6η +Ω7x2 + J−1τa (3.85)

where Ω5 ∈ R
m, Ω7 ∈ R

m×m and Ω6 ∈ R
m×n include the known terms. According

to the subsequent stability analysis, the actuator control input τa can be designed as

follows

τa = J

{
−Kbηb −Ω5 −Ω7x̂2 −

∂ ft(l)

∂ l
Raη f

}
(3.86)

with

Kb = kb + kn4 ‖Ω6‖2
i∞ (3.87)

where kb ∈R
m×mis a constant, diagonal control gain matrix, kn4 ∈R

1 is constant scalar

nonlinear damping gain. After substituting (3.86) in to the (3.85) closed loop dynamics

for ηb can be obtained as

η̇b =−Kbηb +Ω6η +Ω7x̃2 −
∂ ft(l)

∂ l
Raη f . (3.88)

3.3.2. Stability Result of the Extension

Stability of the new observer side of the closed loop signals will be investigated

with the help of a non–negative scalar function which can be defined as
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Vo =
1
2

ηT
f η f +

1
2

ηT
b ηb +

1
2

x̃T
2 x̃2. (3.89)

Taking the time derivative of (3.89), substituting (3.82), (3.88), (3.84), using definitions

of gains K f and Kb given in (3.81) and (3.87) and applying the other similar steps as

applied to V̇r, the upper bound for V̇o can be arranged as follows

V̇o ≤ −k f

∥∥η f

∥∥2 − kb ‖ηb‖2 − J−1B‖x̃2‖2 +
‖η‖2

4kn2
(3.90)

+
‖x̃2‖2

4kn3
− kn4λmax

(
JT

j (q)
)2∥∥η f

∥∥2
asd f

‖η‖2

4kn4
.

To investigate the overall closed loop system stability, a non–negative scalar function

can be constructed by summation of (3.15) and (3.89) as follows

VE =Vr +Vo. (3.91)

After taking the time derivative of (3.91) and substituting (3.19 ) and (3.90) and than

simplifying the resulting expression the following inequality can be obtained

V̇E ≤ −γ ‖x‖2 − k f

∥∥η f

∥∥2 − kb ‖ηb‖2 − J−1B‖x̃2‖2 (3.92)

+
‖η‖2

4kn2
+

‖η‖2

4kn4
+ηT JT

j (q)η f − kn4λmax
(
JT

j (q)
)2∥∥η f

∥∥2
.

Applying the nonlinear damping tool given in (3.18) to the last line of (3.92), the upper

bound for V̇E can further be written in the following manner

V̇E ≤−γ ‖x‖2 − J−1B‖x̃2‖2 − k f

∥∥η f

∥∥2 − kb ‖ηb‖2 +
‖η‖2

4kn2
+

‖η‖2

4kn3
. (3.93)

The expression given in (3.93) can be further upper bounded as follows

V̇E ≤−
(

min
{

γ,1,k f ,kb

}
−

6

∑
i=2

1
4kni

)
‖zE‖2 (3.94)
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where z(t) ∈ R3n+4m is defined as follows

zE ,
[

xT x̃T
2 ηT

f ηT
b

]T
. (3.95)

If the gain condition given below

min
{

γ,1,k f ,kb

}
>

6

∑
i=2

1
4kni

(3.96)

is satisfied then the upper bound for V̇E given in (3.94) can be reformulated as a nega-

tive semi definite function as

V̇E ≤−δ ‖z‖2 (3.97)

where δ is a some positive bounding constant. Based on the definition of zE in (3.95)

and by using standard signal chasing arguments it can be shown that

‖e(t)‖→ 0 as t → ∞. (3.98)

More over all signals in zE converges to zero and all signals in the closed loop system

are bounded.

3.4. Remarks

In this chapter, two different partial state feedback adaptive controller formula-

tions for tendon driven robotic manipulators subject to parametric uncertainty in the

system dynamics have been presented. In the first controller formulation; the proposed

controller ensured the link position tracking error signal is forced to go to zero despite

the lack of exact knowledge of the system parameters and lack of velocity measure-

ments of both links and actuators. In the second formulation, actuator side position

measurements are also eliminated via a model based state observer in case of having

exact knowledge of the actuator parameters. Stability of the closed–loop systems and

boundedness of system states are proven via Lyapunov based arguments for both of

the controllers.
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Note that, although the control input in (3.10) depends on e f (t) (which obviously

requires link velocity measurements), we can construct an implementable (i.e., link

velocity independent) form of the auxiliary control input fd (t). To construct the link

velocity independent version of the filter given by (3.3), we insert (3.2) into (3.3) to

reach the following expression

ė f =−kė+(α2 − kα1)e− (α3 + kα2)e f . (3.99)

We now define, an auxiliary signal, denoted by w(t) ∈ R
n, as

w , e f + ke (3.100)

whose time derivative can be obtained as

ẇ = (α2 − kα1)e− (α3 + kα2)(w− ke) (3.101)

where (3.99) and (3.100) were utilized. From (3.101), it is clear that w(t) can be

obtained from link position measurements only, and thus from (3.100), one can obtain

an implementable form of e f (t). After this, the implementable form of (3.11) is given

as

φ̂r = Γ

∫ t

0
Y T

d (σ)
(
α1e(σ)+α2e f (σ)

)
dσ

+ΓY T
d (t)e(t)−ΓY T

d (0)e(0) (3.102)

+Γ

∫ t

0
Ẏ T

d (σ)e(σ)dσ .

The results given in this chapter are presented in 2014 IEEE Conference on Con-

trol Applications (CCA), Antibes, France[44] and 2015 54th IEEE Conference on De-

cision and Control (CDC), Osaka, Japan[45].
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4. NUMERICAL SIMULATIONS

To verify the performance of the three different proposed controllers (i.e. FSFB,

PSFB, extended PSFB), some numerical simulations have been performed on a two

link robot manipulator driven by six tendons as shown in Figure 4.1. MATLAB

Simulink environment have been used to perform the simulations. In this chapter,

simulation studies will be presented to compare the results of the simulations properly.

Figure 4.1: Overall view of two link planar robot driven by six tendons.

The dynamical parameters of the robot used in our simulation studies has the

following model matrices

M =

[
p1 +2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
(4.1)

Vm =

[
−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)
p3 sin(q2)q̇1 0

]
(4.2)

Fd =

[
fd1 0
0 fd2

]
(4.3)

and the Jacobian matrix is defined as follows [13],

J j = s1

[
1 −1 1 −1 1 −1
0 0 −1 1 1 −1

]T

. (4.4)
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The linearly parametrized version of robot dynamics given in (1.2) has been used in

controller formulation and stability analysis. This linearisation can be performed in

the following manner.

Y φr =

[
q̈1 q̈2 Y13 q̇1 0
0 q̈1 + q̈2 Y23 0 q̇2

]



p1

p2

p3

fd1
fd2




(4.5)

where

Y13 = (2q̈1+ q̈2)cos(q2)− q̇2 sin(q2)(2q̇1+ q̇2) (4.6)

Y23 = q̈1cos(q2)+ q̇1q̇1 sin(q2) (4.7)

Tendon tensile forces can be calculated as a function of tendon expansions in the fol-

lowing manner [13],

ft,i(li) =

{
s2li + s3l3

i li > 0
0 li < 0

(4.8)

for i = 1, ..,6 where li are the tendon expansions and ft,i(li) are the members of the

vector of the tendon tensile forces which is defined as follows

ft(l) =
[

ft,1(l1) ft,2(l2) ft,3(l3) ft,4(l4) ft,5(l5) ft,6(l6)
]T

. (4.9)

The robot parameter values can be seen in Table 4.1 for the simulations. It should be

noted that most of the system and tendon parameters used in our simulation studies are

taken from [13]. The actuator part of the tendon mechanism has identical six DC mo-

tors which have the inertia of 10 gcm2 and viscous friction of 0.25×10−3 Nmsec/rad,

each actuator is assumed to have a gearbox mechanism having 1/32 gear ratio and the

pulleys mounted on the actuators have a radius of 10 cm. The desired trajectory of the

robot is selected as

qd1 = qd2 = 0.5sin(0.5t)(1− exp(−0.3t3)) rad (4.10)

with the initial positions of each link being set to 0.5 rad.
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Table 4.1: Simulation Setup TDRM model parameter values.

Parameter Value Unit
p1 0.006 kgm2

p2 0.003 kgm2

p3 0.002 kgm2

fd1 0.005 Nmsec
fd2 0.001 Nmsec
s1 0.015 m

s2 7907.5 N/m

s3 1.7898×108 N/m3

4.1. Simulation Studies for FSFB Robust Controller

The proposed FSFB robust controller presented in Chapter 2 should ensure the

robot links follow a desired trajectory as closely as possible, despite the uncertain

robot/actuator system parameters. During the simulation studies the best guessed es-

timates of the system parameters are selected to be 80 percent of the actual system

parameters. To ease the tuning process an auxiliary gain

Kp = Kr + kn(ρ
2
1 +ρ2

2 ) (4.11)

was taken and assumed to be a constant gain matrix. In view of (2.40), the controller

gains were selected to ensure that

min(λmin (Kr) ,λmin (α))− 1
4kn

> 0 (4.12)

is satisfied. Controller gain matrices are selected as shown in Table 4.2.

The simulation results are shown in Figures 4.2–4.4. Figure 4.2 shows the link

position tracking errors in degrees and in inner figure the enlarged steady state error

signals can be seen. Figure 4.3 presents the control torques applied to each actuators.

Tendon tensile forces can be seen in 4.4. As can be viewed from Figure 4.2 after a very

short period of time (less than 5 secs.) the tracking error terms for both joint converge

to small values. During this time the controller inputs with the tendon tensile forces

(see Figure 4.3) are in acceptable regions.
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Table 4.2: Controller gains for FSBF controller simulations.

Controller Gains Adaptation Gains
α = diag{8,10} ρ3 = 1
Kp = diag{2.8,2.6} ρ4 = 4
K f = 5I6 ε1 = 0.01
Kθ = 0.1I6 ε2 = 0.1
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Figure 4.2: FSFB Controller: Position tracking errors for each link.

0 20 40
−1

−0.5

0

0.5

1
First Actuator Input Torque

Time   [s]

T
or

qu
e 

 [N
m

]

0 20 40
−1

−0.5

0

0.5

1
Second Actuator Input Torque

Time   [s]

T
or

qu
e 

  [
N

m
]

0 20 40
−1

−0.5

0

0.5

1
Third Actuator Input Torque

Time   [s]

T
or

qu
e 

  [
N

m
]

0 20 40
−1

−0.5

0

0.5

1
Fourth Actuator Input Torque

Time   [s]

T
or

qu
e 

  [
N

m
]

0 20 40
−1

−0.5

0

0.5

1
Fifth Actuator Input Torque

Time   [s]

T
or

qu
e 

  [
N

m
]

0 20 40
−1

−0.5

0

0.5

1
Sixth Actuator Input Torque

Time   [s]

T
or

qu
e 

  [
N

m
]

Figure 4.3: FSFB Controller: Control input torques.
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Figure 4.4: FSFB Controller: Tendon tensile forces.

4.2. Simulation Studies for Adaptive PSFB Controller

The adaptive PSFB controller presented in Section 2.1 should ensure the robot

links to asymptotically follow a desired trajectory despite the uncertain model parame-

ters while only link and actuator position measurements and tendon tension force mea-

surements are available. All the initial estimations of the unknown parameters were

taken as 0. According to the stability analysis estimations of the parameter values are

expected to converge some constant values. Controller gains were selected as given in

Table 4.3.

Table 4.3: Controller gains for PSFB controller simulations.

α1 = diag{6,6} α2 = diag{15,15} α3 = diag{10,10}
k = diag{0.1,0.6} Ks = diag{30,20} K f = 100I6

KL = 50I6 k f 1 = 30 k f 2 = 30
Γ = diag{15,5,2,8,8} Γ1 = diag

{
10−6I6,10−8I6

}
Γ2 = 10−3I12

The simulation results are shown in Figures 4.5–4.6. Figure 4.5 shows the link

position tracking errors. Figure 4.7 presents the control torques applied to each actu-

ator, while Figure 4.8 presents the tendon tensile forces. Figure 4.6 shows the entries

of the parameter estimation vector φ̂r (t). From Figure 4.5, it is clear that the tracking
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control objective was successfully met.
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Figure 4.5: PSFB Controller: Link position tracking error e(t).
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Figure 4.7: PSFB Controller: Actuator inputs τa (t).
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Figure 4.8: PSFB Controller: Tendon tensile forces ft (t).
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4.3. Simulation Studies for Extended PSFB Controller

Similar to the previous controller, extended PSFB controller includes a parameter

update law for robotic manipulator parameters and assures the asymptotic stability of

the trajectory tracking error signal. Besides, the proposed controller can handle the

control objective without actuator side position measurements while requires the exact

knowledge of the actuator parameters. All of the unknown parameter initial estimation

values are taken as 0 and controller gain matrices are selected as shown below.

Table 4.4: Controller gains for extended PSFB controller simulations.

α1 = diag{6,6} α2 = diag{15,15} α3 = diag{10,10}
k = diag{0.5,0.6} Ks = diag{13,15} K f = 100I6

Kb = 100I6 Γ = diag{15,5,2,8,8}

The simulation results are shown in Figures 4.9–4.12. Figure 4.9 shows the

link position tracking errors. Figure 4.10 presents the control torques applied to each

actuator, while Figure 4.11 presents the tendon tensile forces. Figure 4.12 shows the

entries of the parameter estimation vector φ̂r (t). From Figure 4.9, it is clear that the

tracking control objective was successfully met while accurate tuning of the controller

gains could increase the controller performance.
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Figure 4.9: Extended PSFB Controller: Link Errors.
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Figure 4.10: Extended PSFB Controller: Actuator inputs.
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Figure 4.11: Extended PSFB Controller: Tendon tensile Forces.
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Figure 4.12: Extended PSFB Controller: Parameter updates for robot manipulator.

4.4. Remarks

In this chapter, simulation studies performed on an elastic tendon driven robotic

system are presented. There different controllers (i.e. Robust FSFB, Adaptive PSFB,

extended PSFB) have been simulated with the same system and desired link trajecto-

ries. The details of the controller algorithms used in the simulations can be seen in the

previous chapters. As can be seen in the simulation results, controllers can deal with

parametric uncertainties successfully and output error signal remains in an acceptable

range even if the system state measurements are not available.
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5. EXPERIMENTAL STUDIES

To verify the performance of the proposed Adaptive PSFB controller, some ex-

perimental studies on a two link robot manipulator driven by four tendons have been

performed. Experimental validations are only performed to illustrate the performance

and viability of the first PSFB method since it is impossible to determine the exact

values of the actuator model parameters which are essential for the extended version

of the PSFB controller. Besides, a very close estimation of the actuator parameters

could force the tracing error signal in an acceptable range owing to the adaptation in

the robotic manipulator dynamics.

5.1. Experimental Setup

Experimental setup includes a robotic manipulator with two links, four elastic

tendons, four identical S-type load cells and their signal conditioning electronics, four

identical brushed DC motors and 4 motor drivers (see Fig. 5.1). Electric motors

Figure 5.1: Two link planar robot manipulator driven by four tendons.

actuate robot links via elastic tendons and tensions on elastic tendons can be measured

by means of load cells. The pulleys on the links and actuators have diameter of 40

mm. Link positions and actuator positions can be measured by means of incremental

optic encoders with 20000 count per revolution. DC electric motors have 0.0302 Nm/A
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torque constant under 24 V nominal supply voltage. Motor amplifiers work in torque

mode and provides about 11 A maximum output current with the current gain of 2. One

motor can produce about 20 N tension force on the tendons. Tendons are steel cables

which have 0.8 mm diameter. The relationship between tendon expansion and tensile

force represents a nonlinear behaviour due to a purely elastic behaviour of tendons [9].

Tendon expansions have been measured experimentally and the curve fitting process

have been applied to the measurements to obtain the best approximated polynomial as

explained in [13]. As a result, tensile forces can be calculated as a function of tendon

expansions in the following manner

ft(li) =

{
s2li + s3l3

i li > 0
0 li < 0

}
, i = 1, ..,m (5.1)

where li are the tendon expansions, s2 = 1550 N/m and s3 = 1.48× 108 N/m3 are

constant elongation parameters and ft(li) are the members of the vector of the tendon

tensile forces which is defined as follows

ft(l) =
[

ft(l1) ft(l2) ... ft(lm)
]T

. (5.2)

The tensile force definition given in (5.1) satisfies the assumptions 1.2: to 1.4:. Ow-

ing to the modular structure of the experimental setup, two different tendon-link con-

nections have been demonstrated which are one link–two actuator and two link four

actuator configurations as shown in Fig. 5.2.

(a) (b)

Figure 5.2: a) One link tendon configuration, b) Two links tendon configuration.

Jacobian matrices for the first and second configurations are defined as follows

53



JT
j (q) = s1

[
1 −1

]
, (5.3)

JT
j (q) = s1

[
1 −1 1 −1
0 0 −1 1

]
, (5.4)

respectively. Here s1 = 0.02 m. The desired trajectories of the robot was selected as

qd1 = 0.5sin(t)(1− exp(−t3)) rad, (5.5)

qd2 = 0.5sin(1.5t)(1− exp(−t3)) rad (5.6)

in order to see the effects of the nonlinearities in the robot dynamics, clearly. Initial

positions of the robot links were set to 0 rad. All the initial estimations of the unknown

parameters were taken as 0.

5.2. PID Controller Experimental Results

At the beginning of the experimental studies a standart PID Controller have been

implemented as explained in [17] to see capabilities of the experimental setup. Actua-

tor control input signals have been calculated as follows

τa = J j(q)(Kpe+Kd

de

dt
+Ki

∫
edt)+ fb (5.7)

where fb is the constant bias force, Kp, Kd , and Ki are PID controller gains and selected

as shown in Table 5.1.

Table 5.1: Controller gains for PID controller experiments.

First link Second link
Kp1 = 70 Kp2 = 70
Kd1 = 0.5 Kd2 = 0.1
Ki1 = 5 Ki2 = 5
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Figure 5.3-5.4 represents the one link - two actuator configuration experimental

results while Figure 5.5-5.6 represents two link - four actuator configuration experi-

mental results. In Figure 5.3 link error and controller output signal of a one link robot

manipulator can be seen. 5.4 shows the related tension force generated by the actua-

tors. Figure 5.5 represents the link errors for two link robot configurations. Thanks to

the over actuated structure of this configuration, link errors are a little bit better than the

one link configuration while the control inputs are in a similar behaviour(See Figure

5.7). Related tension forces are presented in Figure 5.6.
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Figure 5.3: Link error and controller output for one link PID Controller.
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Figure 5.4: Tendon Tensions for one link PID Controller.
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Figure 5.5: Link position tracking error e(t) for two link PID Controller.
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Figure 5.6: Tendon Tensions for two link PID Controller.
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Figure 5.7: Controller output for two link PID Controller.

5.3. Feed-forward Controller Experimental Results

At the beginning of the controller development and implementation process, we

applied the desired tendon tension signal given in (3.10) as a controller signal since it

is a type of feed-forward computed torque controller signal. In this type of controller,

actuator dynamics have been neglected but it gave us a valuable experience on imple-

menting a model based controller formulation before implementing a very complicated

controller algorithm. Controller gains for two link–four actuators configuration have

been selected as shown in Table 5.2.

Table 5.2: Controller gains for Feed-Forward controller experiments.

α1 = 2.4I2 α2 = 0.1I2 α3 = 0.001I2

k = 4I2 Ks = 0.93I2

Γ = diag{0.01,0.05,0.007,0.0001,0.001}
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Figure 5.8 shows the link errors and Figure 5.9 shows the controller outputs

including bias force fb. Tendon tensile forces are presented in Figure 5.10.
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Figure 5.8: Link position tracking error e(t) for two link Feed-forward Controller.
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Figure 5.9: Controller output for two link Feed-forward Controller.
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Figure 5.10: Tendon Tensions for two link Feed-forward Controller.
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5.4. PSFB Controller Experimental Results

Controller gains for one link–two actuators configuration were selected as shown

in Table 5.3.

Table 5.3: Controller gains for PSFB controller experiments.

α1 = 13 α2 = 0.5 α3 = 0.2
k = 1.94 Ks = 3.05 K f = 0.3I2

KL = 0.7I2 k f 1 = 0.078 k f 2 = 0.078
Γ = diag{0.3,1.5} Γ1 = 10−6I4 Γ2 = 10−5I4

In Fig. 5.11 link position tracking error of the one link robotic manipulator can be seen.

The amplitude of the error signal is relatively small compared to the PID controller,

Feed forward controller and similar studies in the literature (i.e. [13]) even-tough some

of the model parameters are not known and most of the system states are not measured.

Controller output signal is presented in Fig. 5.12 without the bias force component of

the input torque. Total tendon tension forces included bias forces can be seen in Fig.

5.13.
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Figure 5.11: Link position tracking error e(t) for one link configuration.
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Figure 5.12: Controller output for one link two actuator configuration.
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Figure 5.13: Tendon Tensions for one link two tendon configuration.
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Controller gains for two link–four actuators configuration were selected as shown in

Table 5.4

Table 5.4: Controller gains for PSFB controller experiments on two link robot.

α1 = diag{12,12} k = diag{3.9,3.9} KL = 0.35I4

α2 = diag{0.9,0.9} Ks = diag{1.15,1.15} K f = 0.01I4

α3 = diag{0.01,0.01} k f 1 = 0.003 k f 2 = 0.003
Γ = diag{0.1,0.3,0.01,0.01,0.01} Γ1 = 10−6I8 Γ2 = 10−6I8

Link position tracking errors of the two link robotic manipulator are given in

Fig. 5.14 and controller output can be seen in Fig. 5.15. Figure 5.16 presents tendon

tensile forces. The results of the experiments prove the effectiveness and facility of

implementation of the proposed controller.
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Figure 5.14: Link position tracking error e(t) for two link configuration.
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Figure 5.15: Controller output for two link four actuator configuration.
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Figure 5.16: Tendon Tensions for two link four tendon configuration.
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5.5. Remarks

In this chapter, experimental validations have been presented to illustrate the

performance and viability of the adaptive PSFB controller. since it is impossible to

determine the exact values of the actuator model parameters. Besides, a very close es-

timation of the actuator parameters could force the tracing error signal in an acceptable

range owing to the adaptation in the robotic manipulator dynamics.According to the

experimental results, PSFB Adaptive controller provides the best controller performans

compared to the PID and Feedforward controllers.
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6. EXTENSION ON A LEVITATION SYSTEM

Magnetic levitation is a key technology that allow high precision and frictionless

movement and eliminate lubrication needs. Owing to these advantages, magnetic lev-

itation technology is successfully implemented in many areas like high speed trains,

special environment conveyance systems, frictionless bearings and high precision po-

sitioning systems. Recently, control performance of a magnetic levitation system be-

comes much more important as energy efficiency stands a major performance criteria

of these kind of systems. Hybrid electromagnets consisting of permanent magnets and

electromagnets in the same magnetic structure receive an increasing attention because

they give an opportunity to implement the zero power control methods.

Levitation systems that consist of both permanent magnets and electromagnets

have been investigated since the 1960s. In [46], a magnetic levitation system with

hybrid electromagnets has been analysed, advantages and benefits of the usage of per-

manent magnets with electromagnets have been investigated and effects of the size and

type of permanent magnets on these benefits have been presented. [47] is one of the

important and pioneering work on this subject. In this work authors have investigated

hybrid levitated carriage systems which consist of permanent magnets and electromag-

nets together and focused on decreasing the power consumption issue by the help of

permanent magnets. It is carried out in this work that power consumption is the lowest

when permanent magnets are chosen to overcome the mass of the levitated body and

electromagnets are only powered to control the levitation which is also the main idea

of the zero power control method. [48],[49] are focused on the optimal design based

on the electromagnetic analysis of the hybrid electromagnets. In [50], it is shown that

hybrid levitation systems have advantages for both large scale systems such as 50 kg

and small scale systems such as 5 kg.

Magnetically levitated systems are represented with nonlinear mathematical ex-

pressions due to the nature of the magnetic fields but linear and nonlinear control al-

gorithms are equally take place in the literature. [51], [52],[53],[54] and [55] can be

given as an example of nonlinear robust controllers. [56] and [57] applied nonlinear

control techniques with backstepping approach on active magnetic bearings without

permanent magnets nevertheless in [56], authors have been proposed a full state feed-
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back controller which requires the exact knowledge of the model parameters and in

[57], Sivrioglu did not take into consideration the voltage dynamics of the electro-

magnets. [58] represents a nonlinear control method applied to the maglev trains. A

flatness based nonlinear control of magnetic bearings have been investigated in [59]

with both voltage control and current control approaches. A robust trajectory track-

ing controller for magnetic levitation systems have been presented in [60] with a very

simplified model of the current dynamics. In [61], a detailed model of a 4 pole hybrid

electromagnet is presented and 3-degree-of-freedom (DOF) motion control is investi-

gated via linear control methods with zero power control method. [62] and [63] can be

stated as examples of zero power control methods in recent years.

In this chapter, a back stepping type, model based controller have been investi-

gated to ensure that a 1-DOF levitation system with hybrid electromagnets can track a

desired smooth trajectory under the constraint that the model parameters are uncertain

and the air gap velocity measurement is not available. The time dependency of the

electrical subsystem parameters have been ignored and taken into account as paramet-

ric uncertainties during the controller development and stability analysis processes.

The rest of the chapter is organized in the following manner. The dynamical

model of a 1-DOF levitation system is presented in Section 6.1. Controller formulation

is given in Section 6.2. The corresponding stability analysis can be seen in Section 6.3.

Numerical simulations are presented in Section 6.4. Concluding remarks are given in

Section 6.5.

6.1. Modelling of the Levitation System

A hybrid U type electromagnet composed of electromagnets and permanent mag-

nets can be seen in Fig. 6.1. Electrodynamic model of this levitation system can be

written as

mz̈ = mg−Fe(z, i)+Fd. (6.1)

Here, m is the total mass of the levitated body, z is the total air gap of the magnetic cir-

cuit which is the sum of thickness of the permanent magnet (lpm) and distance between
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Figure 6.1: A suspension system consisting of a U type hybrid electromagnet.

the poles and upper part (ϕ) and can be represented as

z = ϕ + lpm, (6.2)

z̈ is the acceleration of the system, i represents the total equivalent current of the mag-

netic circuit which is the sum of current passing through the electromagnet coils (ic)

and the equivalent current of the permanent magnets (Ipm) and can be represented as

i = ic + Ipm, (6.3)

Fe(z, i) is the total electromagnetic force produced by the coils and permanent magnets

and Fd is a bounded disturbance term. According to the flux linkage model, electro-

magnetic force can be calculated as follows [64]

Fe(z, i) =− ∂

∂ z

∫ i

0
λ (z, i)di (6.4)

where λ (z, i) represents the flux linkage. If the magnetic circuit is assumed to be linear,

λ (z, i) can be calculated by the following formula

λ (z, i) = 2N2µ0S
i

z
(6.5)
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where N is the number of coil turns for each coil, S is the cross-sectional area of the

electromagnet poles, µ0 is the constant permeability of the air. Substituting (6.5) into

(6.4), total electromagnetic force can be calculated as follows

Fe(z, i) = N2µ0S
i2

z2 . (6.6)

After substituting (6.6) into the mathematical model given in (6.1), a useful form of

the electromechanical dynamics of the system can be written as follows

Mz̈ = Mg−φ(z)u(i)+
1

N2µ0S
Fd (6.7)

where

M , m
N2µ0S

, φ(z), 1
z2 , u(i), i2. (6.8)

It is assumed that M satisfies the following condition.

m1 ≤ M ≤ m2 (6.9)

where m1,m2 ∈ ℜ are scalar bounding constants. Electrical dynamics of the electro-

magnets can be written as follows [65]

L(z)
di

dt
+Ric +B(z, i)

dz

dt
= v (6.10)

here L(z) is the inductance of the coils and can be calculated with the help of the

magnetic flux linkage model as follows

L(z) =
∂λ (z, i)

∂ i
=

N2µ0S

z
(6.11)

and B(z, i) is the back EMF (Electro-Motive Force) factor and can be calculated as

follows

B(z, i) =
∂λ (z, i)

∂ z
=−N2µ0S

i

z2 . (6.12)
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R is the electrical resistance of the coils and v is the voltage input of the system. Al-

though electrical model parameters L,B are time dependent and their values change

during the operation, they have a constant part and a time dependent part and constant

part is respectively big compared to the time dependent part [65]. During the con-

troller development we assume that electrical model parameters L, B, R are constants

and time varying parts of these parameters will be added as parametric uncertainties to

the system model. A robust controller will be designed to handle these uncertainties.

More over electrical subsystem parameters are asummed to be satisfied the following

conditions.

l1 ≤ L ≤ l2 (6.13)

b1 ≤ B ≤ b2 (6.14)

where l1, l2,b1,b2 ∈ ℜ are scalar bounding constants.

6.2. Problem Formulation and Controller Development

The aim of this section is to design an air gap distance tracking controller for a

magnetic levitation system consisting of hybrid U-type electromagnet given by model

equations (6.7) and (6.10) under the constraint that air gap velocity cannot be measur-

able and model parameters are not known exactly. Specifically; the proposed controller

should force the desired air gap trajectory tracking error to converge to a zone close

to zero despite the uncertain model parameters and lack of velocity measurement. I

design a model based robust controller to over come parametric uncertainties and the

need of velocity measurement is eliminated by using a velocity independent filter term.

The tracking error signal e(t) ∈ ℜ is defined as follows

e , zd − z (6.15)

where zd is the desired air gap trajectory signal and its first, second and third time

derivatives are assumed to be sufficiently smooth and bounded functions of time. To
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eliminate the need for velocity measurement, a filtered tracking error like term η(t) ∈
ℜ is defined as follows

η , ė+α1e+α2e f (6.16)

where α1,α1 are positive constant filter gains and e f (t) ∈ ℜ is an auxiliary filter vari-

able having the following dynamic relationship

ė f ,−α3e f +α2e− kη; e f (0) = 0 (6.17)

where α3 is a positive constant filter gain and k is a positive constant control gain.

The controller design can be started by taking the time derivative of (6.16), then

multiply it with M and substitute mechanical system dynamics given by (6.7) as well

as (6.16) and (6.17) to obtain open loop system dynamics as follows

Mη̇ = M (z̈d −g)+χ −Mkα2η +φ(z)u(i) (6.18)

where

χ , Mα1
(
η −α1e−α2e f

)
+Mα2

(
−α3e f +α2e

)
+

1
N2µ0S

Fd. (6.19)

It can be shown that χ can be upper bounded as follows

χ ≤ ρ1‖x‖+ρ2 (6.20)

where ρ1, ρ2 are bounding constants and defined as

ρ1 , m2 max(α1,α2), (6.21)

1
N2µ0S

Fd ≤ ρ2 (6.22)

x =
[

e e f η
]T

(6.23)
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where m2 was defined in (6.9). To apply back-stepping procedure on u(i) an auxiliary

control input ud(t) ∈ ℜ and an auxiliary error signal ηu(t) ∈ ℜ have been defined as

follows

ηu , u−ud. (6.24)

Finally adding and subtracting φ(z)ud to obtain the open loop error dynamics as fol-

lows

Mη̇ = M (z̈d −g)+χ −Mkα2η +φ(z)ηu +φ(z)ud. (6.25)

Based on the subsequent stability analysis auxiliary control input ud can be designed

as follows

ud , φ(z)−1{−M̂ (z̈d −g)+ kKse f −Kse
}

(6.26)

where M̂ is a constant, best guessed estimation value of M, Ks is a positive constant

controller gain.

Remark 6.1: It is assumed that ud is lower bounded by zero since u defined in (6.8)

cannot track ud when it is negative.

Substituting (6.26) into (6.25) results the closed loop dynamics as follows

Mη̇ = M̃ (z̈d −g)+χ −Mkα2η + kKse f −Kse+φ(z)ηu (6.27)

where

M̃ = M− M̂ (6.28)

which satisfies the following bounding condition

∣∣M̃ (z̈d −g)
∣∣≤ ρ3 (6.29)

where ρ3 is a positive bounding constant. The controller gain k is chosen as
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k =
1

m2

[
1+ kn1

(
ρ2

1 +ρ2
2 +ρ2

3

)]
(6.30)

where kn1 is a positive constant nonlinear damping gain. To ensure the stability of

(6.27), stability of ηu need to be proven, as well. To investigate the dynamics of ηu, I

take the time derivative of (6.24), pre-multiply the resulting equation by L, substitute

the electrical model given by (6.10) as well as (6.16) and time derivative of (6.26) and

obtain the open loop current error dynamics as follows

Lη̇u = 2iv(t)+W1φ1 +Ω0 −φ(z)η (6.31)

where

W1φ1 , −2i
[
Ric +B

(
żd +α1e+α2e f

)]
(6.32)

+Lφ(z)−1 [M̂...
z d + kKs

(
−α3e f +α2e

)
+Ks

(
−α1e−α2e f

)]

−L
∂

∂ z

{
φ(z)−1}(żd +α1e+α2e f

)(
−M̂ (z̈d −g)+ kKse f −Kse

)

and

Ω0 ,
[
2iB+Lφ(z)−1Ks(k

2 +1)+φ(z) (6.33)

+L
∂

∂ z

{
φ(z)−1}(−M̂ (z̈d −g)+ kKse f −Kse

)]
η.

Here, it is assumed that Ω0 satisfies the following boundary condition

Ω0 ≤ ρ4 (‖x‖)‖x‖ (6.34)

where ρ4 (·) is a boundary function. Based on the subsequent stability analysis control

voltage v(t) can be designed as follows

v(t) =
1
2i

(
−Kuηu −W1φ̂1

)
(6.35)

where W1φ̂1 represents the best guessed estimation value of W1φ1, Ku is a positive

constant controller gain.
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Remark 6.2: To avoid the singularity in the control law, ic is assumed to be saturated

to satisfy |ic|< Ipm.

Closed loop dynamics can be obtained by substituting (6.35) into (6.31) as follows

Lη̇u =−Kuηu +W1φ̃1 +Ω0 −φ(z)η (6.36)

where

W1φ̃1 ,W1φ1 −W1φ̂1 (6.37)

which can be upper bounded as follows

W1φ̃1 ≤ ρ5 (6.38)

where ρ5 is a positive bounding constant. The controller gain Ku can be chosen as

Ku = ku + kn2(ρ
2
4 +ρ2

5 ). (6.39)

where kn2 is a positive constant nonlinear damping gain and ku is a positive, constant

controller gain.

6.3. Stability Analysis

In this section, the stability theorem have been presented and the proof of the

theorem have been investigated by utilizing Lyapunov-based arguments.

Theorem 6.1: For a one DOF levitation system given by electromechanical equations

(6.1) and (6.10), the air gap tracking controller given by (6.26) and (6.35) guarantees

the uniformly ultimately boundedness of the air gap tracking error e(t) in the sense

that

‖e(t)‖ ≤
√

a

b
‖xR (0)‖2 exp(−β t)+

2ε

bβ
(1− exp(−β t)) (6.40)
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where xR (t),
[

η e e f ηu

]T
is the combined error signal, a,b,β ,ε are positive

scalars defined explicitly as

a , max{m2,Ks, l2} (6.41)

b , min{m1,Ks, l1} (6.42)

β ,
min(α2,α1Ks,α3Ks,ku)−max( 1

4kn1α2
, 1

4kn2
)

0.5max{m2,Ks, l2}
(6.43)

ε ,
1

4kn1α2
+

1
4kn2

. (6.44)

Proof 6.1: To investigate the stability of the proposed controller a non-negative Lyapunov-

like function have been defined as follows

V =
1
2

Mη2 +
1
2

Kse
2 +

1
2

Kse
2
f +

1
2

Lη2
u (6.45)

which can be lower bounded and upper bounded as

1
2

min{m1,Ks, l1}‖xR‖2 ≤V ≤ 1
2

max{m2,Ks, l2}‖xR‖2 (6.46)

where

xR = [ η e e f ηu ]T . (6.47)

Taking time derivative of (6.45) and substituting closed loop dynamics given by (6.27),

(6.36) and definitions of (6.16), (6.17) and then cancelling the common terms yields to

V̇ = η
(
M̃ (z̈d −g)+χ −Mkα2η

)
−α1Kse

2 (6.48)

−α3Kse
2
f +ηu

(
−Kuηu +W1φ̃1 +Ω0

)
.
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The derivative of V given in (6.48) can be upper bounded by using the definitions of

k given in (6.30) and Ku given in (6.39) and using the bounds given in (6.20), (6.29),

(6.34) and (6.38) as follows

V̇ ≤ −α2η2 −α1Kse
2 −α3Kse

2
f − kuη2

u (6.49)

+
1

4kn1α2
‖x‖2 +

1
4kn1α2

+
1

4kn2
‖x‖2 +

1
4kn2

where the following nonlinear damping tool also utilised

kniρ
2
i ‖·‖2 −ρi ‖·‖+

1
4kni

=

(√
kniρi ‖·‖−

1

2
√

kni

)2

≥ 0. (6.50)

The expression given in 6.49 can be further upper bounded by the help of using the

definition of xR(t) given in (6.47) and the upper bound of V (t) given in (6.46) as follows

V̇ ≤−βV + ε (6.51)

where β was previously defined in (6.43) and ε was previously defined in (6.44). The

solution of the above differential inequality yields

V (t)≤V (0)exp(−β t)+
ε

β
(1− exp(−β t)) (6.52)

and from direct application of (6.46) the following upper bound for xR (t) can be ob-

tained

‖xR (t)‖ ≤
√

a

b
‖xR (0)‖2 exp(−β t)+

2ε

bβ
(1− exp(−β t)) (6.53)

where a,b were previously defined in (6.41) and (6.42). Based on the definition of xR (t)

and (6.53), it can be shown that the tracking error term e(t) is bounded as stated in

(6.40). Moreover applying standard signal chasing argument it can be shown that all

signals in the closed-loop error system are bounded.
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6.4. Simulation Studies

To see the behaviour of the proposed controller some simulation studies have

been performed on a 1 DOF levitation system as shown in Figure 6.1. System param-

eters are listed in Table 6.1. Although the most common desired air gap is a set point

Table 6.1: 1 DOF Levitation system parameters.

Parameter Name Symbol Value [Unit]
Mass m 5 [kg]

PM equivalent current Ipm 12.5[A]
PM thickness lpm 3[mm]

Number of Coil Turns N 200[turns]

Cross sectional Area of PM poles S 9[cm2]
Resistant of Coil R 1.6[Ω]

Permeability of free space µ0 4π ∗10−7[NA−2]

in the levitation systems, the proposed controller can deal with time dependent and

differentiable trajectories, as well. To see this property more clear; two different de-

sired air gap trajectories for the levitated object are selected as zd1 = 0.0122(1−e−t)m

and zd2 = (0.0122+0.001sin0.3t)(1−e−t)m. To keep the control voltage and current

close to zero, levitation point is selected to be the air gap value which the electromag-

netic force produced by permanent magnets equals the total mass, similar to that of the

zero power control. Controller gains are selected as k = 3.1, Ks = 8, Ku = 1.5, α1 = 2,

α2 = 0.43, α3 = 0.05 for both of the desired trajectories.

Simulation results are shown in Figure 6.2-6.6. In Figure 6.2 convergence of

the error signal can be seen clearly as well as the behaviour of the auxiliary control

input. Control voltage and the current passing through the coils can be seen in Fig.

6.3. Figure 6.4 and Figure 6.5 shows trajectory tracking performance of the proposed

controller with a sinusoidal desired trajectory. As stated in the previous sections, L and

B are time dependent parameters but in the controller design and simulations we use

constant estimations of the related parameters. Figure 6.6 represents the time depen-

dent parameter values of L and B during both kinds of trajectory and constant estimated

values of the parameters. Our controller can deal with the difference between the esti-

mation value and real value of the parameters.
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Figure 6.2: Position error and auxiliary control input(zd = zd1).
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Figure 6.3: Control Voltage and Coil Current(zd = zd1).
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Figure 6.4: Position error and auxiliary control input(zd = zd2).

80



0 20 40 60
−10

−8

−6

−4

−2

0

2

4

6

8

10
Input Voltage

Time  [s]

V
ol

ta
ge

 [V
]

0 20 40 60
−5

−4

−3

−2

−1

0

1

2

3

4

5
Coil Current

Time  [s]

C
ur

re
nt

 [A
]

Figure 6.5: Control Voltage and Coil Current(zd = zd2).
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Figure 6.6: Time varying model parameters.

6.5. Remarks

In this chapter, a partial state feedback nonlinear model based robust controller

for a one degree-of-freedom levitation have been presented. It is assumed that the

target system includes parametric uncertainty in system dynamics. The proposed con-

troller ensures that the absolute value of the air gap trajectory tracking error signal is

forced to enter an ultimate bound in finite time despite the lack of exact knowledge

of system parameters, unavailability of the velocity measurements and presence of ex-

ternal disturbances. Stability of the closed-loop system and boundedness of system
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states are proven via Lyapunov based arguments. Simulation studies are performed to

illustrate the effectiveness and viability of the proposed method.

The results given in this chapter are presented in 2015 54th IEEE Conference on

Decision and Control (CDC), Osaka, Japan[66].

82



7. CONCLUSIONS

In this thesis, some partial state feedback controller formulations have been de-

veloped for two different kind of electromechanical systems with different dynamical

properties while both of them include parametric uncertainties in the system mod-

els. The most important outcome of this thesis is novel model based controller design

approaches for tendon driven robotic systems and levitation systems with hybrid elec-

tromagnets. Especially, the proposed controller design technique for over actuated

tendon driven robotic systems allows to design various kinds of implementable partial

state feedback controllers which reduces the sensor needs and system costs, as well.

A brief overview and a detailed model of a tendon driven robotic system have

been presented in Chapter 1. The model presented here includes nonlinear robot dy-

namics, actuator dynamics as well as nonlinear elastic tendon dynamics. In Chapter

2, a novel controller design and the stability analysis have been presented for a tendon

driven robotic system with parametric uncertainties in the overall system model and

provides a robust solution to deal with uncertainties. The proposed controller proves

the uniformly ultimately boundedness of the output tracking error signal with the help

of Lyapunov like analysis tools. Partial state feedback solutions of the proposed con-

troller design approach have been investigated in Chapter 3. Since the tendon actuated

robotic systems are over actuated systems, elimination of any system state measure-

ment would simplify the robotic hardware and decrease the total system costs. Never-

theless it requires heavy mathematical work out and a trustable theoretical background

for stability analysis. In Chapter 3, two different partial state feedback controller for-

mulations have been presented. The first one is a fully adaptive controller formulation

and can deal with parametric uncertainties of manipulator subsystem parameters and

actuator subsystem parameters while it requires link positions, tendon tensions and ac-

tuator position measurements. The second controller formulation shows how to elimi-

nate the actuator side position measurements in case of having exact knowledge of the

actuator parameters. It still provides and adaptation rule for the manipulator parame-

ters. Since it is very hard to define the actuator parameters, the experimental evaluation

could not be implemented, only simulation results are available to see the controller

performance. Besides, a proper estimation of the actuator parameters can provide an
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acceptable output performance owing to the adaptation in the manipulator side. To

prove the effectiveness of controllers, both of the simulation results and experimental

results are presented in Chapter 4 and Chapter 5, respectively.

In Chapter 6, a partial state feedback controller formulation for a one degree-

of-freedom levitation system with hybrid electromagnets have been investigated. The

levitation system model considers mechanical and electrical subsystem models and

the voltage applied to the coils have been designed as a controller signal. Since it

is very hard to measure the air gap velocity, it is eliminated via a filtered error like

term. System parameters of the levitation system can change during the operation in

certain bounds and robust structure of the proposed controller can deal with parametric

uncertainties. Uniformly ultimately boundedness of the output error term have been

proven via Lyapunov-like analysis tools not only for set point control but also trajectory

tracking control of the levitated object. Some simulation results can be seen at the end

of the chapter.

Future work includes many opportunities for researchers because output feed-

back control problem of tendon driven robots is still an open problem. Similarly an

output feedback controller can be formulated for levitation systems by observing the

coil currents. Reforming the proposed controllers for tendon driven robots to dexter-

ous robotic hands and continuum tendon robotic systems and their experimental im-

plementations would be a challenging issue, as well. Experimental implementation of

a levitation system with four pole hybrid electromagnet would be an interesting issue

with reformulating the controller algorithm as a model based zero power controller.
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