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SUMMARY 

 

 
The Hamilton-Waterloo problem with uniform cycle sizes, denoted by 

(𝑛,𝑚) − URD(𝑣; 𝑟, 𝑠), asks for a resolvable cycle decomposition of the complete 

graph 𝐾𝑣 (for odd 𝑣) or 𝐾𝑣 minus a 1 −factor (for even 𝑣) where 𝑟 parallel classes 

consist of cycles of length 𝑛 and 𝑠 parallel classes consist of cycles of length 𝑚 with 

𝑟 + 𝑠 = ⌊
𝑣−1

2
⌋. In this dissertation, firstly, the Hamilton-Waterloo problem with 

4 −cycle and 𝑚−cycle factors for odd 𝑚 ≥ 3 is studied and all possible solutions 

with a few possible exceptions are determined. Then, all possible solutions for the 

𝑚 −cycle and 4𝑚 −cycle with a few possible exceptions when 𝑚 is odd are 

obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words: Cycle Decompositions, 𝟐 −Factorizations, Resolvable 

Decompositions, Oberwolfach Problem, Hamilton–Waterloo Problem.  
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ÖZET 

 

 
Çift döngülü Hamilton-Waterloo problemi, kısaca (𝑛,𝑚) − URD(𝑣; 𝑟, 𝑠), 𝑣 tek 

tamsayı iken tam çizge 𝐾𝑣’nin ya da 𝑣 çift tamsayı olduğunda tam çizge eksi 

1 −faktör 𝐾𝑣 − 𝐼’nın, parallel sınıflarından 𝑟 tanesi 𝑛 uzunluğunda, 𝑠 tanesi ise 𝑚 

uzunluğunda döngülerden oluşan 𝑟 + 𝑠 = ⌊
𝑣−1

2
⌋ olacak şekilde bir çözülebilir döngü 

parçalanışının olup olmadığını inceler. Bu tezde ilk olarak, döngü uzunluklarının 

birinin 4, diğerinin 𝑚 ≥ 3 olacak şekilde bir tek tamsayı olduğu durum için, bir kaç 

olası istisnai durum dışında, bütün mümkün sonuçlar elde edilmiştir. Daha sonra 

döngü uzunluklarının 𝑚 ve 4𝑚 olduğu durum için, yani bir döngü uzunluğu diğer 

döngü uzunluğunun dört katı olduğunda problem, çift 𝑚 değerleri için tamamen, tek 

𝑚 değerleri için bir kaç olası istisnai durum dışında tamamen çözülmüştür. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Anahtar Kelimeler: Döngü Parçalanışları, 𝟐 −Faktorizasyon, Çözülebilir 

Parçalanışlar, Oberwolfach Problemi, Hamilton–Waterloo Problemi. 



vii 

ACKNOWLEDGEMENTS 

 

 
First and foremost, I would like to express my sincere appreciation to my 

advisor Dr. Sibel Özkan, for her guidance, background knowledge, insightful 

comments, editing skills and considerable encouragements in the completion of this 

thesis. It has been a great honor for me to be her first PhD. student. I would also like 

to thank my thesis committee Dr. Selda Küçükçifçi, Dr. Mustafa Akkurt, Dr. Didem 

Gözüpek and Dr. Emre Kolotoğlu for their valuable comments and suggestions. 

I want to thank my former colleagues at Gebze Technical University and 

friends from Istanbul University for their friendship and support. 

Last, but not least, I would like to thank my family: my parents, Elmas and 

Şükrü, for their support and encouragement, not only during the completion of the 

thesis but also throughout my life; my lovely wife Şafak for her constant love, all of 

the support she has given through all of these years; my little boy Rüzgar, for his 

unconditional love and his sweet smile which encourage me to finish my thesis. 

Their love and support provided me the energy to attain my study. This dissertation 

is dedicated to them. 

This thesis is supported by The Scientific and Technological Research Council 

of Turkey (TÜBİTAK) under project number 113F033. 

 

 

  



viii 

TABLE of CONTENTS 

 

 
 Page 

SUMMARY v 

ÖZET vi 

ACKNOWLEDMENTS vii 

TABLE of CONTENTS viii 

LIST of FIGURES ix 

  

1. INTRODUCTION 1 

1.1. Definitions and Notation 2 

2. CYCLE DECOMPOSITIONS 5 

2.1. History 7 

2.2. Preliminary Results 10 

3. 2-FACTORIZATIONS OF 𝐶𝑚[4] 16 

4. SOLUTION TO (4,𝑚) − URD(𝑣; 𝑟, 𝑠) 21 

4.1. When 𝑟 is Odd 22 

4.2. When 𝑟 is Even 23 

4.3. First Main Result 28 

5. SOLUTION TO (𝑚, 4𝑚) − URD(𝑣; 𝑟, 𝑠) 30 

5.1. When 𝑚 is Even 31 

5.2. When 𝑚 is Odd 35 

5.3. Second Main Result 36 

6. CONCLUSION 37 

  

REFERENCES 38 

BIOGRAPHY 42 

APPENDICES 43 

 



ix 

LIST of FIGURES 

 

 
Figure No: Page 

1.1: 𝐶𝑎𝑦(ℤ9, {±1,±2}). 4 

2.1: A 2 −factor in a given graph 𝐺. 5 

2.2: A {𝐶7, 𝐶6, 𝐶5, 𝐶3} −decomposition of 𝐾7. 6 
 

2.3: A {𝐶8, 𝐶8, 𝐶4, 𝐶4} −decomposition of 𝐾8 − 𝐼. 7 
 

2.4: A solution to (3, 4) − URD(12; 2, 3). 10 
 

2.5: 𝐶6, 𝐶6[2] and 𝐶12 −decomposition of 𝐶6[2]. 11 
 

3.1: A 𝐶5 −factorization of 𝐶5[4]. 17 

 

3.2: A {𝐶4
2, 𝐶5

2} −factorization of 𝐶5[4]. 18 

 

5.1: A {𝐶5
1, 𝐶20

4 } −factorization of 𝐶5[4] ⊕ 5𝐾4 − 𝐼. 31 

 

5.2: 𝐺6
∗, 𝐺6

∗[2] and 𝐶12 −factorization of 𝐺6
∗[2]. 33 

 

 



1 

1. INTRODUCTION 

 

Combinatorial design theory and graph theory are two of the major branches of 

discrete mathematics.  

The roots of the combinatorial design theory can be found in the recreational 

mathematics of the second half of the nineteen century, statistical theory of 

experimental design and geometry of the mid-nineteen century. Since then, the 

theory of combinatorial designs rapidly developed and became an active area of 

research of discrete mathematics that has connections with graph theory, linear and 

abstract algebra and number theory, and with various applications in areas such as 

coding theory, cryptography, and computer science.  

Although graph theory has a history of more than two centuries, it has received 

great interest only recently. The first result on graph theory is Euler’s paper on the 

Königsberg bridge problem [1] and now it is an essential and powerful modeling tool 

in mathematical research, computer science, biology, chemistry, social sciences and 

many more. 

Most of the problems in design theory and graph theory are easy to explain, but 

they can be extremely difficult to solve and solutions generally involve innovative 

new combinatorial techniques as well as advanced tools and methods of other areas 

of mathematics such as algebra, geometry and number theory. The most classical 

problems still remain unsolved. 

A great number of design theory problems can be viewed in terms of 

decomposition of graphs into prescribed subgraph. One of the main problem in 

combinatorial design theory is the 2 −factorization problem, that is, whether or not 

there exists a 2 −factorization of 𝐾𝑣, where each of the 2 −factors is of a prescribed 

type. In this dissertation we will focus on one particular 2 −factorization problem, 

so-called Hamilton-Waterloo problem, and we will give solutions to the problem for 

the case of two different cycle sizes.  

This introduction will first give a number of very general graph and design 

theoretic terms and concepts that will be used throughout this dissertation, and then 

give a brief history of some well-known problems related to the results in this 

dissertation. The remainder of this dissertation will be devoted to proving the results 

that have obtained. 
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1.1. Definitions and Notation 

 

The notation and definitions used here are mostly standard and may be found, 

for instance, in [2]-[5]. 

A graph 𝐺 is a triple consisting of an edge set 𝐸(𝐺), a vertex set 𝑉(𝐺), and a 

relation that associates with each edge of 𝐺 either one or two vertices called its 

endpoints. A graph in which each edge has distinct endpoints and no two edges have 

the same pair of endpoints is called a simple graph. A graph 𝐻 is said to be a 

subgraph of a graph 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺) A spanning subgraph or 

factor of 𝐺 is a subgraph that has the same vertex set as 𝐺. 

 A complete graph with 𝑣 vertices is denoted by 𝐾𝑣. A complete equipartite 

graph, denoted by 𝐾𝑎:𝑏, is a simple graph whose vertex set can be partitioned into 𝑏 

parts of size 𝑎 each such that any two vertices in different parts connected by an 

edge, but no edge joining any two vertices in the same part. In particular, 𝐾𝑎:2 is 

called complete bipartite graph and denoted by 𝐾𝑎,𝑎  as well. 

A path is a finite sequence of distinct vertices 𝑃 = 𝑝0𝑝1𝑝2. . . 𝑝𝑘 together with 

the edges 𝑝𝑖𝑝𝑖+1, 0 ≤ 𝑖 ≤ 𝑚 − 1. A graph is connected if there is a path between 

every pair of distinct vertices. Two endpoints of an edge are said to be adjacent to 

each other. The number of edges adjacent to a vertex 𝑣 in a graph 𝐺 is called the 

degree of 𝑣. A 𝑘 −regular graph is a graph such that every vertex has degree 𝑘 and a 

𝑘 −factor is a spanning 𝑘 −regular subgraph. Besides regular graphs have a long 

history, they have nice properties such as having a lot more symmetry than arbitrary 

graphs.  

A cycle is a 2 −regular connected graph. A cycle with the vertices 𝑣0, 𝑣1, 𝑣2,

. . . , 𝑣𝑚 and the edges 𝑣0𝑣1, 𝑣1𝑣2, … ,   𝑣𝑚−1𝑣𝑚 is called an 𝑚 −cycle and denoted by 

𝐶𝑚 = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚). The length of a cycle is the number of edges on the cycle 

(equal to the number of vertices). Also, a spanning cycle in a graph is called 

Hamilton cycle. 

Given two paths 𝑃 = 𝑝0𝑝1𝑝2. . . 𝑝𝑘 and 𝑄 = 𝑞0𝑞1𝑞2. . . 𝑞𝑙, we define the 

concatenation of paths 𝑃 and 𝑄 by 𝑃𝑄 = 𝑝0𝑝1. . . 𝑝𝑘𝑞0𝑞1. . . 𝑞𝑙 and for 0 ≤ 𝑖 < 𝑗 ≤ 𝑘 

we write 

 

 𝑃𝑝𝑗 = 𝑝0𝑝1𝑝2. . . 𝑝𝑗 , 
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 𝑝𝑖𝑃 = 𝑝𝑖𝑝𝑖+1𝑝𝑖+2. . . 𝑝𝑘 and 

 𝑝𝑖𝑃𝑝𝑗 = 𝑝𝑖𝑝𝑖+1𝑝𝑖+2. . . 𝑝𝑗. 

 

We denote the (𝑘 + 1) −cycle obtained from adding an edge between 𝑝0 and 

𝑝𝑘 in 𝑃 by (𝑃). Also 𝑃−1 will denote the path on the same vertex set as 𝑃 but the 

vertices are listed in reverse order. 

Let 𝐻 be a finite additive group and let 𝑆 be a subset of 𝐻 − {0} such that the 

opposite of every element of 𝑆 also belongs to 𝑆. The Cayley graph over 𝐻 with 

connection set 𝑆, denoted by 𝐶𝑎𝑦(𝐻, 𝑆), is the graph with vertex set 𝐻 and edge set 

𝐸(𝐶𝑎𝑦(𝐻, 𝑆)) = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ 𝐻, 𝑎 − 𝑏 ∈ 𝑆}. Note that the definition is not 

ambiguous since 𝑆 = −𝑆 by assumption, and that the degree of each vertex is |𝑆|. As 

is also understood from this definition, there are some obvious necessary and 

sufficient conditions of Cayley graphs depending on the properties of 𝑆. For 

example, 𝐶𝑎𝑦(𝐻, 𝑆) is connected if and only if 𝑆 is a generator set for 𝐻, and 

𝐶𝑎𝑦(𝐻, 𝑆) is a complete graph if and only if 𝑆 = 𝐻 − {0}. 

Cayley graphs provides a link between group theory and graph theory with 

various applications, especially in computer science. Regularity and underlying 

algebraic features of these graphs make them attractive to study. 

 

Example 1.1: Figure 1.1 shows an example of a Cayley graph over the group ℤ9 with 

the connection set {±1,±2}. 

 

If 𝐺1 and 𝐺2 are two edge disjoint graphs on the same vertex set, then 𝐺1⊕𝐺2 

will denote the graph on the same vertex set with 𝐸(𝐺1⊕𝐺2) = 𝐸(𝐺1) ∪ 𝐸(𝐺2). 

The union of graphs 𝐺1 and 𝐺2, denoted by 𝐺1 ∪ 𝐺2, is the graph with 𝑉(𝐺1 ∪ 𝐺2) =

𝑉(𝐺1) ∪ 𝑉(𝐺2) and 𝐸(𝐺1 ∪ 𝐺2) = 𝐸(𝐺1) ∪ 𝐸(𝐺2). If 𝐻 is a subgraph of 𝐺, then 𝐺 −

𝐻 denotes the graph with 𝑉(𝐺 − 𝐻 ) = 𝑉(𝐺) and 𝐸(𝐺 − 𝐻) = 𝐸(𝐺)\𝐸(𝐻). Also 

𝛼𝐺 will denote the vertex-disjoint union of the 𝛼 copies of 𝐺. 
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Figure 1.1: 𝐶𝑎𝑦(ℤ9, {±1,±2}). 
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2. CYCLE DECOMPOSITIONS 

 

A decomposition of a graph 𝐺, is a set 𝓗 = {𝐻1, 𝐻2, … , 𝐻𝑘} of edge-disjoint 

subgraphs of 𝐺 such that ⋃ 𝐸(𝐻𝑖) = 𝐸(𝐺)
𝑘
𝑖=1 . An 𝐻 −decomposition is a 

decomposition of 𝐺 such that 𝐻𝑖 ≅ 𝐻 for all 𝐻𝑖 ∈ 𝓗. If each 𝐻𝑖 is a cycle (or a 

disjoint union of cycles), then 𝓗 is called a cycle decomposition. It is easy to see that 

if a graph 𝐺 admits a cycle decomposition, then each vertex of 𝐺 must be even. The 

converse was shown by Veblen [6]. 

 

Theorem 2.1: [6] A graph can be decomposed into cycles if and only if every vertex 

has even degree. 

 

A parallel class in a decomposition is a set of vertex disjoint graphs that 

partitions the vertex set. A cycle decomposition is called resolvable if it has a 

partition of the cycles into parallel classes. A resolvable cycle decomposition is also 

known as a 2 −factorization and a parallel class can be called a 2 −factor. If a 

decomposition of a graph 𝐺 consists precisely of 𝑘𝑖 parallel classes isomorphic to 𝐹𝑖, 

then we say that a {𝐹1
𝑘1 , 𝐹2

𝑘2 , … , 𝐹𝑙
𝑘𝑙} −factorization of 𝐺 exists. 

 

 

 

                   𝐺                                                             𝐶4                           𝐶3 
                   a)              b) 

 

Figure 2.1: a) A given graph 𝐺, b) a 2 −factor in 𝐺. 

 

One of the first results in graph theory that obtained by Petersen [7] in 1891 is 

the 2 −factor theorem about regular graphs of even degree. 

 

Theorem 2.2: [7] Every (2𝑘) −regular graph has a 2 −factor and hence can be 

decomposed into 𝑘 edge disjoint 2 −factors. 
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Complete graphs are the most natural graphs to decompose and cycle 

decomposition is the one of the most studied family of decompositions. Since there is 

no cycle decomposition of 𝐾𝑣 when 𝑣 is even by Theorem 2.1, in this case it is 

common practice to consider cycle decompositions of 𝐾𝑣 − 𝐼, the complete graph on 

𝑣 vertices with a 1 −factor 𝐼 removed. 

 

Example 2.1: A decomposition of 𝐾7 into a 7 −cycle, a 6 −cycle, a 5 −cycle and a 

3 −cycle is shown in Figure 1.1. 

 

 

 
  

 

Figure 2.2: A {𝐶7, 𝐶6, 𝐶5, 𝐶3} −decomposition of 𝐾7. 

 

Example 2.2: A decomposition of 𝐾8 − 𝐼 into two 8 −cycles and two 4 −cycles is 

shown in Figure 1.2. 

 

It should be noted that decomposition of a graph into cycles is an NP-complete 

problem in general [8]. Dor and Tarsi [9] proved that if 𝐻 contains a connected 
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component with at least three edges, then the problem of deciding whenever a graph 

has an 𝐻 −decomposition is NP-complete. Moreover, it has been shown in [41] that 

for every simple graph 𝐻 and an integer 𝑣 where 𝑣 ≥ 𝑣0(𝐻) for some integer 𝑣0(𝐻), 

an 𝐻 −decomposition of complete graph 𝐾𝑣 exists if and only if |𝐸(𝐻)| divides 

𝑣(𝑣−1)

2
 and 𝑣 − 1 is divisible by the greatest common divisor of the vertex degrees in 

𝐻. 

 

 

 
 

 

Figure 2.3: A {𝐶8, 𝐶8, 𝐶4, 𝐶4} −decomposition of 𝐾8 − 𝐼. 

 

2.1. History 

 

The earliest question concerning cycle decompositions of complete graphs was 

posed by Kirkman [11] in 1847 which asks an 𝐻 −decomposition of 𝐾𝑣 where 𝐻 is 

the union of 𝑣 3⁄  disjoint 3 −cycles. The problem is known as Kirkman's schoolgirl 

problem and it was shown by Ray-Chadhuri and Wilson in [12] that desired 
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decomposition exists if and only if 𝑣 ≡ 3 (𝑚𝑜𝑑 6). Since then, cycle decomposition 

of a graph 𝐺 has been attracted a lot of interests, particularly the case where 𝐺 is a 

complete graph. In the 1890s, Walecki [13] has constructed a Hamilton cycle 

decomposition of 𝐾𝑣 and 𝐾𝑣 − 𝐼 In 1965, Kötzig [14] showed that 4𝑚 −cycle 

decomposition of 𝐾𝑣 exists when 𝑣 ≡ 1 (𝑚𝑜𝑑 8𝑚). One year later, Rosa [15], [16] 

proved that 𝐾𝑣 can be decomposed into 𝐶𝑚 −cycles for 𝑚 ≡ 2 (𝑚𝑜𝑑 4) and 𝑣 ≡

1 (𝑚𝑜𝑑 2𝑚), also settled the problem for 𝑚 = 5, 7. 

It is obvious that if 𝐾𝑣 (or 𝐾𝑣 − 𝐼 for even 𝑣) has a decomposition into cycles, 

then length of each cycle must be greater than or equal to 3 and less than or equal to 

𝑣, and the sum of the cycle lengths must equal the number of edges of 𝐾𝑣 (or 𝐾𝑣 − 𝐼 

for even 𝑣). It was conjectured in 1981 by Alspach [17] that these obvious necessary 

conditions are also sufficient. 

 

Conjecture 2.1: Let 𝑣 ≥ 3 be an odd integer and 𝑚1, 𝑚2, … ,𝑚𝑡 be integers such that 

3 ≤ 𝑚𝑖 ≤ 𝑣 for 𝑖 = 1,2, … , 𝑡 with 𝑚1 +𝑚2 +⋯+𝑚𝑡 =
𝑣(𝑣−1)

2
. Then 𝐾𝑣 has a 

{𝐶𝑚1 , 𝐶𝑚2 , … , 𝐶𝑚𝑡} −decomposition. 

 

Conjecture 2.2: Let 𝑣 ≥ 4 be an even integer, 𝐼 is a 1 −factor in 𝐾𝑣 and 

𝑚1, 𝑚2, … ,𝑚𝑡 be integers such that 3 ≤ 𝑚𝑖 ≤ 𝑣 for 𝑖 = 1,2, … , 𝑡 with 𝑚1 +𝑚2 +

⋯+𝑚𝑡 =
𝑣(𝑣−2)

2
. Then 𝐾𝑣 − 𝐼 has a {𝐶𝑚1 , 𝐶𝑚2 , … , 𝐶𝑚𝑡} −decomposition. 

 

In a number of special cases of this problem there are additional obvious 

necessary conditions. One of the most studied case is the uniform cycle 

decomposition, that is, all the cycle lengths are the same, and in [18], [19] it has been 

shown that Alspach's conjecture is true when the cycle lengths are all the same. 

Also, a great deal of work has been done for the case where the lengths of the 

cycles vary. Finally, Alspach’s Conjecture was verified in 2012 by Bryant et al. [20]. 

One variation of the cycle decomposition problem is the Oberwolfach problem 

was first formulated by Ringel in 1967 at a graph theory conference in Oberwolfach, 

Germany and first mentioned in [21]. The problem is related to the possible seating 

arrangements at the conference and was inspired by a question of whether v 

mathematicians could be seated in such a way that each mathematician sits next to 
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each other mathematician exactly once over 
𝑣−1

2
 days, where there are 𝑘𝑖 round tables 

with 𝑚𝑖 seats for 1 ≤ 𝑖 ≤ 𝑡 satisfying ∑ 𝑘𝑖𝑚𝑖 = 𝑣
𝑡
𝑖=1 . In graph theory language, the 

problem asks for a decomposition of the complete graph 𝐾𝑣 into 2 −factors each of 

which is isomorphic to a given 2 −factor 𝐻. If 𝐻 consists of 𝑘𝑖 𝑚𝑖 −cycles, 1 ≤ 𝑖 ≤

𝑡, then the corresponding Oberwolfach problem is denoted by OP( 𝑚1
𝑘1 ,  𝑚2

𝑘2 ,

… ,  𝑚𝑡
𝑘𝑡). As previously mentioned, a decomposition into 2 −factors clearly requires 

that the degree of each vertex be even and so 𝑣 must be odd, in the case when 𝑣 is 

even it is natural to consider a decomposition of the graph 𝐾𝑣 − 𝐼 into 2 −factors 

instead, where 𝐼 is a 1 −factor of 𝐾𝑣. The corresponding problem when 𝑣 is even is 

called the spouse-avoiding version of the Oberwolfach problem.  

A generalization of the Oberwolfach Problem is the Hamilton-Waterloo 

Problem where the conference takes places in two venues; Hamilton and Waterloo, 

the first of which has 𝑘 round tables, each seating 𝑛𝑖 people for 𝑖 = 1,2, … , 𝑘, the 

second of which has 𝑙 round tables each seating 𝑚𝑖 people for 𝑖 = 1,2, … , 𝑙 

(necessarily ∑ 𝑛𝑖 = ∑ 𝑚𝑖 = 𝑣
𝑙
𝑖=1

𝑘
𝑖=1 ). 

If we let 𝑛 = 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘 and 𝑚 = 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑘, then each 

2 −factor is composed of either 𝑛 −cycles or 𝑚−cycles. This corresponds to the 

uniformly resolvable cycle decomposition of 𝐾𝑣 (or 𝐾𝑣 − 𝐼 for even v) into 𝑛 −cycles 

and 𝑚 −cycles. This version of the Hamilton-Waterloo problem, with uniform cycle 

sizes, has attracted most of the attention and we use the notation to denote the 

problem with 𝑟 factors of 𝑛 −cycles and 𝑠 factors of 𝑚 −cycles by (𝑛,𝑚) −

URD(𝑣; 𝑟, 𝑠). 

 

Example 2.3: Figure 2.4 shows a {𝐶3
2, 𝐶4

3} −factorization of 𝐾12 − 𝐼. 

 

The obvious necessary conditions for the existence of a solution to (𝑛,𝑚) −

URD(𝑣; 𝑟, 𝑠) are given by Adams et al. in [22]:  

 

Lemma 2.1: [22] Let 𝑣, 𝑛,𝑚, 𝑟 and 𝑠 be non-negative integers with 𝑚,n≥ 3. If there 

exists a solution to (𝑛,𝑚) − URD(𝑣; 𝑟, 𝑠), then 

 

i) 𝑠 > 0 for 𝑣 ≡ 0 (𝑚𝑜𝑑 𝑚)  
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ii) 𝑟 + 𝑠 = ⌊
𝑣−1

2
⌋. 

 

 

 
   a 𝐶3 −factor                       a 𝐶3 −factor                          a 𝐶4 −factor 

 

 

 
          a 𝐶4 −factor                       a 𝐶4 −factor                  removed 1 −factor 

 

Figure 2.4: A solution to (3, 4) − URD(12; 2, 3). 
 

Solving the problem completely for 𝑛 −cycles and 𝑚 −cycles means finding a 

solution to the problem for all possible 𝑟 and 𝑠 satisfying the obvious necessary 

conditions. 

 

2.2. Preliminary Results 

 

Let 𝐺 be a graph and {𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑘−1} be vertex disjoint copies of 𝐺 with 

𝑣𝑖 ∈ 𝑉(𝐺𝑖) for each 𝑣 ∈ 𝑉(𝐺). Then the graph 𝐺[𝑘] is a graph with vertex set 

𝑉(𝐺[𝑘]) = 𝑉(𝐺0) ∪ 𝑉(𝐺1)…∪ 𝑉(𝐺𝑘−1) and edge set 𝐸(𝐺[𝑘]) = {𝑢𝑖𝑣𝑗  ∶   𝑢𝑣 ∈
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𝐸(𝐺) 𝑎𝑛𝑑  0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1}. For example 𝐾𝑚[2] ≅ 𝐾2𝑚 − 𝐼 and 𝐾2[𝑚] ≅ 𝐾𝑚,𝑚 

where 𝐼 is a 1 −factor of 𝐾2𝑚. 

It is easy to see that if a graph G has an 𝐻 −decomposition, then there exists an 

𝐻[𝑘] −decomposition of 𝐺[𝑘]. Moreover if a graph 𝐺 has an 𝐻 −factorization, then 

there exists an 𝐻[𝑘] −factorization of 𝐺[𝑘]. 

In fact, this graph operation is a generalization of Häggkvist's doubling 

construction and it coincides with a special case of a graph product called 

lexicographic product. Häggkvist [23] constructed 2 −factorizations containing even 

cycles using 𝐺[2]. 

 

Lemma 2.2: [23] Let 𝐺 be a path or a cycle with 𝑚 edges and let 𝐻 be a 2 −regular 

graph on 2𝑚 vertices where each component of 𝐻 is a cycle of even length. Then 

𝐺[2] has an 𝐻 −decomposition. 

 

Example 2.4: Let 𝐺 be a 6 −cycle. Then 𝐺[2] can be decomposed two Hamilton 

cycle. 

 

 

 

         6C                     6[2]C  

 

 

                  12C                        12C  

a) b) 

 

Figure 2.5: a) 𝐶6 and 𝐶6[2], b) 𝐶12 −decomposition of 𝐶6[2]. 
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Baranyai and Szasz [24] have shown that if a graph 𝐺 can be decomposed into 

𝑥 Hamilton cycles and if 𝐻 is a graph with 𝑦 vertices and can be decomposed into 𝑧 

Hamilton cycles then their lexicographic product is decomposable into 𝑥𝑦 + 𝑧 

Hamilton cycles. So, 𝐶𝑚[𝑛] has a 𝐶𝑚𝑛 −factorization. Also Alspach et al. [25] have 

shown that for an odd integer 𝑚 and a prime 𝑝 with 3 ≤ 𝑚 ≤ 𝑝, 𝐶𝑚[𝑝] has a 

𝐶𝑝 −factorization. 

It is known that the solutions to the cases OP(32), OP(34), OP(4,5), and 

OP(32, 5) do not exist [25]-[27]. The Oberwolfach Problem for a single cycle size 

OP(𝑚𝑘), for all 𝑚 ≥ 3 has been solved in two separate cases: odd cycles in 1989 by 

Alspach et al. [25] and the even cycle case in 1991 by Hoffman and Schellenberg 

[28]. This results will be used in the main construction. 

 

Theorem 2.3: [25],[28] A resolvable 𝑚 −cycle decomposition of 𝐾𝑣 (or 𝐾𝑣 − 𝐼 for 

even 𝑣) exists if and only if 𝑚|𝑣 and 𝑚 ≠ 3 when 𝑣 = 6, 12. 

 

The following theorem summarizes the known results on the Oberwolfach 

problem for non-uniform length cycles given in the survey [4] and more recent 

results in [29]-[32]. 

 

Theorem 2.4: [23],[29]-[34] The following Oberwolfach problems all have 

solutions: 

 

 OP(𝑚1
𝑘1 ,𝑚2

𝑘2 , … ,𝑚𝑡
𝑘𝑡) for 𝑚1𝑘1 +𝑚2𝑘2+. . . +𝑚𝑡𝑘𝑡 ≤ 40; 

 OP(3𝑘, 4) for all odd 𝑘 ≥ 1; 

 OP(3𝑘, 5) for all even 𝑘 ≥ 4; 

 OP(𝑚𝑘, 𝑣 − 𝑚𝑘) for 𝑣 ≥ 6𝑘𝑚 − 1, 𝑘 ≥ 1, 𝑚 ≥ 3; 

 OP(𝑚, 𝑣 − 𝑚) for 𝑚 = 3,4,5,6,7,8,9 and 3v m  ; 

 OP(𝑚2, 𝑣 − 2𝑚) for 𝑚 = 3,4 and 𝑣 ≥ 2𝑚 + 3; 

 OP(2𝑚1, 2𝑚𝑡, … ,2𝑚𝑡) for all 𝑚𝑖 ≥ 2 and 𝑚1 +𝑚2+. . . +𝑚𝑡 odd; 

 OP(𝑚,𝑚 + 1) and OP(𝑚,𝑚 + 2) for 𝑚 ≥ 3; 

 OP((2𝑠 + 1)2, 2𝑠 + 2) for 𝑠 ≥ 1; 

 OP(3, (4𝑠)2) for 𝑠 ≥ 1; 
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 OP(4𝑘, 2𝑠 + 1) (4 ,2 1)kOP s   for 𝑠 > 1, 𝑘 ≥ 0; 

 OP((4𝑠)2, 2𝑠 + 1) for 𝑠 > 1, 𝑘 ≥ 0; 

 OP(𝑚1, 𝑚2) for all 𝑚1, 𝑚2 ≥ 3 with 𝑚1 ≠ 𝑚2 except (𝑚1,𝑚2) = (4,5). 

 

Also in [35], the Oberwolfach problem is completely solved for an infinite set 

of prime orders. 

Piotrowski [36] solved the bipartite analogue of the Oberwolfach problem. 

 

Theorem 2.5: [36] There is a 2 −factorization of 𝐾𝑎,𝑎 in which each 2 −factor 

consists of vertex disjoint cycles 𝐶𝑛1 , 𝐶𝑛2 , … , 𝐶𝑛𝑙 if and only if a is even, 𝑛𝑖 ≥ 4 is 

even for 1 ≤ 𝑖 ≤ 𝑙 and 𝑛1 + 𝑛2+. . . +𝑛𝑙 = 2𝑎, except that 𝑎 = 6 and 𝑛𝑖 = 6 for 1 ≤

𝑖 ≤ 𝑙. 

 

Moreover, Liu [37] gave a complete solution to the Oberwolfach Problem for 

complete equipartite graphs where all cycles have the same length and we will use 

this result in our main construction. 

 

Theorem 2.6: [37] The complete equipartite graph 𝐾𝑎:𝑏 has a 𝐶𝑙 −factorization for 

𝑙 ≥ 3 and 𝑎 ≥ 2 if and only if 𝑙|𝑎𝑏, 𝑎(𝑏 − 1) is even, 𝑙 is even if 𝑏 = 2 and 

(𝑎, 𝑏, 𝑙) ≠ (2,3,3), (6,3,3), (2,6,3), (6,2,6). 

 

The first results on the Hamilton-Waterloo Problem [22], settled the problem 

for all 𝑣 ≤ 17 and in addition solved the cases (𝑛,𝑚) ∈

{(4,6), (4,8), (4,16), (8,16), (3,5), (3,15), (5,15)} except that a solution to (3, 5) −

𝑈𝑅𝐷(15; 6, 1) does not exist and the case (3, 5) − URD(𝑣; 
𝑣−3

2
, 1) is unresolved for 

𝑣 ≡ 0 (𝑚𝑜𝑑 15) with 𝑣 > 15. With a few possible exceptions when 𝑚 = 24 and 48, 

Danziger et al. [38] solved the problem for the case (𝑛,𝑚) = (3,4).  

 

Theorem 2.7: [38] For all positive integers 𝑟 and 𝑠, a solution to (3, 4) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 12|𝑣, 𝑟 + 𝑠 =
𝑣−2

2
 and (𝑣, 𝑟) ≠ (12,5) except 

possibly when 𝑣 = 24  and 𝑟 = 5,7,9 or 𝑣 = 48 and 𝑟 = 5,7,9,13,15,17. 
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The case 𝑛 = 3 and 𝑚 = 𝑣, that is triangle-factors and Hamilton cycles, has 

attracted much attention and remarkable progress has been made by Horak et al. [23], 

Dinitz and Ling [40], [41], Lei and Shen [42]. The following theorem summarizes 

the results for this case. 

 

Theorem 2.8: [39]-[42] Let 𝑟 and 𝑠 be non-negative integers with 𝑟 + 𝑠 = ⌊
𝑣−1

2
⌋. 

Then, a solution to(3, 𝑣) − URD(𝑣; 𝑟, 𝑠) exists except when 

 

 𝑟 = 5 and 𝑣 = 6,12; 

 𝑟 = 3 and 𝑣 = 9; 

 

except possibly when 

 

 𝑣 = 18 and 𝑠 = 1, 𝑣 = 36 and 𝑠 ∈ {2,4}; 

 𝑣 ≡ 6 (𝑚𝑜𝑑 36) and 𝑠 = 1; 

 𝑣 ≡ 12 (𝑚𝑜𝑑 18) and 𝑠 ∈ {1,2, … ,
𝑣−6

6
}; 

 𝑣 ∈ {93,111,123,129,141,153,159,177,183,201,207,213,249} and 𝑠 = 1; 

 𝑣 ≡ 15 (𝑚𝑜𝑑 18) and 𝑠 ∈ {2,3, … ,
𝑣−3

6
,
𝑣+9

6
}. 

 

In [43], Bryant et al. have settled the Hamilton-Waterloo Problem for bipartite 

2 −factors, and in [44] Buratti and Rinaldi studied regular 2 −factorizations leading 

to some cyclic solutions to Oberwolfach and Hamilton-Waterloo Problems, and also 

in [45], an infinite class of cyclic solutions to the Hamilton-Waterloo Problem is 

given. 

Fu and Huang [46] solved the case of 4 −cycles and 𝑚−cycles for even 𝑚, 

and also settled all cases where 𝑚 = 2𝑛 and 𝑛 is even in 2008.  

 

Theorem 2.9: [46] Let 𝑟 and 𝑠 be non-negative integers with 𝑟 + 𝑠 =
𝑣−2

2
. Then 

 

 for all even 𝑚 ≥ 6, a solution to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) exists if and only if 4 | v

and 𝑚|𝑣; 
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 for all even 𝑚 ≥ 4, a solution to (𝑚, 2𝑚) − URD(𝑣; 𝑟, 𝑠) exists if and only if 

2𝑚|𝑣. 

 

Two years later Keranen and Özkan [47] solved the case of 4 −cycles and a 

single factor of 𝑚 −cycles for odd 𝑚. 

 

Theorem 2.10: [47] For all odd m, a solution to (4,𝑚) − URD(𝑣; 𝑟, 1) exists if and 

only if 4𝑚|𝑣 and 𝑟 =
𝑣−4

2
. 

 

In a recent paper [48], a complete solution to the problem for 3 −cycles and 

7 −cycles is given. 

Uniformly resolvable decompositions of 𝐾𝑣 or 𝐾𝑣 − 𝐼 into graphs other than 

cycles have also been considered in [49]-[54]. 

Most of the results about uniformly resolvable decomposition of 𝐾𝑣 (or 𝐾𝑣 − 𝐼 

for even 𝑣) involve the cases of even cycles or some graphs other than cycle. Solving 

the Hamilton-Waterloo Problem for cycles with different parity is a more difficult 

problem and is not studied much. 

In this dissertation, firstly 4 −cycle and odd cycle factors is considered, and the 

remaining cases in [47] are completed. This result also complements the results of Fu 

and Huang [46] and shows that the necessary conditions are sufficient also for odd 𝑚 

with a few exceptions. Then, the problem for the case of 𝑚 −cycles and 4𝑚 −cycles 

is studied, and a complete solution is given for even 𝑚 as well as all possible 

solutions with a few possible exceptions are determined for odd 𝑚. 

When we give solutions to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) and (𝑚, 4𝑚) − URD(𝑣; 𝑟, 𝑠), 

first we give some cycle decompositions of 𝐶𝑚[4] and 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 in Section 

3, then we show how to decompose 𝐾𝑣 − 𝐼 into subgraphs including 𝐶𝑚[4]'s and one 

𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 in Sections 4 and 5. 
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3. 2-FACTORIZATIONS OF 𝑪𝒎[𝟒] 

 

It is obvious that a 2 −factorization of 𝐶𝑚[4] has exactly four factors. The 

following results will be shown: 

 

 𝐶𝑚[4] has a 𝐶4 −factorization (Lemma 3.1), 

 𝐶𝑚[4] has a 𝐶𝑚 −factorization (Lemma 3.2), 

 𝐶𝑚[4] has a {𝐶4
2, 𝐶𝑚

2 } −factorization (Lemma 3.3), 

 𝐶𝑚[4] has no {𝐶4
1, 𝐶𝑚

3 } −factorization (Lemma 3.4), 

 𝐶𝑚[4] has a {𝐶𝑚
2𝑎, 𝐶4𝑚

2𝑏 } −factorization for 𝑎, 𝑏 ∈ {0,1,2} with 𝑎 + 𝑏 = 2 

(Lemma 3.5). 

 

Lemma 3.1: For every integer 𝑚 ≥ 3, 𝐶𝑚[4] has a 𝐶4 −factorization. 

 

Proof 3.1: Note that 𝐶𝑚[4] ≅ 𝐶𝑚[2][2]. By Lemma 2.2, 𝐶𝑚[2] can be decomposed 

into 𝐶2𝑚 −factors, and each 𝐶2𝑚 can be decomposed into two 1 −factors. So 𝐶𝑚[2] 

has a 1 −factorization. If 𝐹 is a 1 −factor in 𝐶𝑚[2], 𝐹[2] is a 𝐶4 −factor in 𝐶𝑚[4] 

since 𝐾2[2] ≅ 𝐶4. Hence 𝐶𝑚[4] has a 𝐶4 −factorization. 

 

Lemma 3.2: For every integer 𝑚 ≥ 3, 𝐶𝑚[4] has a 𝐶𝑚 −factorization. 

 

Proof 3.2: We can represent 𝐶𝑚[4] as the Cayley graph over 𝑉4 × ℤ𝑚 with 

connection set 𝑉4 × {1,−1} where 𝑉4 is the additive group of  𝔽4 = {0,1, 𝑥, 𝑥
2}, the 

finite field of order 4. Let 𝐶 = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚−1) be an 𝑚 −cycle of 𝐶𝑚[4] where 

𝑣𝑖 = (𝑥
𝑖 , 𝑖) for 0 ≤ 𝑖 ≤ 𝑚 − 1. In the case of 𝑚 ≡ 1 (𝑚𝑜𝑑 3) replace 𝑣𝑚−1 with 

(𝑥,𝑚 − 1). Then 

 

𝐹 = 𝐶 ∪ (𝑥, 1) ∙ 𝐶 ∪ (𝑥2, 1) ∙ 𝐶 ∪ (0,1) ∙ 𝐶 (3.1) 

 

is a 2 −factor of 𝐶𝑚[4]. And also 

 

ℱ = {𝐹, 𝐹 + (1,0), 𝐹 + (𝑥, 0), 𝐹 + (𝑥2, 0)} (3.2) 
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is a 2 −factorization of 𝐶𝑚[4]. 

 

It is evident that the addition by (1,0) and multiplication by (𝑥, 1) are 

automorphisms of the above factorization ℱ. These automorphisms clearly generate 

𝐴𝐺𝐿(1,4) (the 1 − dimensional affine general linear group over 𝔽4). 

 

Example 3.1: The Figure 3.1 shows a decomposition of 𝐶5[4] into four 𝐶5 −factors. 

 

 

 
 

              𝐹                      𝐹 + (1,0)                   𝐹 + (𝑥, 0)                𝐹 + (𝑥2, 0) 

 

Figure 3.1: A 𝐶5 −factorization of 𝐶5[4]. 
 

Lemma 3.3: For every integer 𝑚 ≥ 3, 𝐶𝑚[4] has a {𝐶4
2, 𝐶𝑚

2 } −factorization. 

 

Proof 3.3: We can represent 𝐶𝑚[4] as the Cayley graph 𝛤 over ℤ4 × ℤ𝑚 with 

connection set ℤ4 × {1,−1}.  

When 𝑚 is even, let 𝐶 = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚−1) and 𝐶′ = (𝑣0
′ , 𝑣1

′ , 𝑣2
′ , . . . , 𝑣𝑚−1

′ ) 

be the 𝑚−cycles of 𝛤 where 𝑣𝑖 = (2𝑖, 𝑖) and 𝑣𝑖
′ = (0, 𝑖) for 0 ≤ 𝑖 ≤ 𝑚 − 1. Then 

 

𝐹1 = 𝐶 ∪ (𝐶 + (1,0)) ∪ (𝐶 + (2,0)) ∪ (𝐶 + (3,0)) and 

 

𝐹1
′ = 𝐶′ ∪ (𝐶′ + (1,0)) ∪ (𝐶′ + (2,0)) ∪ (𝐶′ + (3,0)) 

(3.3) 

 

are two edge-disjoint 𝑚 −cycle factors of 𝛤. 

Also let 𝐶∗ = ((0,1), (1,0), (2,1), (3,0)) be a 4 −cycle of 𝛤. Then 

 

𝐹2 = ⋃(𝐶∗ + (0, 𝑖))

𝑚−1

𝑖=0

 (3.4) 
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is a 4 −cycle factor of 𝛤. Moreover 

 

ℱ = {𝐹1, 𝐹1
′, 𝐹2, 𝐹2 + (1,0)} (3.5) 

 

is a 2 −factorization of 𝛤. 

When 𝑚 is odd, let 𝐶, 𝐶′ and 𝐶∗ be defined as above with 𝑣𝑚−1 = (1,𝑚 − 1). 

Also let 𝐶∗
′ = ((0,0), (2,𝑚 − 1), (1,𝑚 − 2), (3,𝑚 − 1)) be a 4 −cycle of 𝛤. Then 

 

𝐹1 = 𝐶 ∪ (𝐶 + (1,0)) ∪ (𝐶 + (2,0)) ∪ (𝐶 + (3,0)), 
 

𝐹1
′ = 𝐶′ ∪ (𝐶′ + (1,0)) ∪ (𝐶′ + (2,0)) ∪ (𝐶′ + (3,0)) and 

 

𝐹2 = ⋃((𝐶∗ + (0, 𝑖)) ∪ 𝐶∗
′ ∪ (𝐶∗

′ + (2,0)))

𝑚−3

𝑖=0

 

(3.6) 

 

are 2 −factors of 𝛤. Moreover 

 

ℱ = {𝐹1, 𝐹1
′, 𝐹2, 𝐹2 + (1,0)} (3.7) 

 

is a 2 −factorization of 𝛤. 

 

Example 3.2: The Figure 3.2 shows a {𝐶4
2, 𝐶5

2} −factorization of 𝐶5[4]. 

 

 

 
 

            1F                            1F                                      2F                        2 1,0F   

 

Figure 3.2: A {𝐶4
2, 𝐶5

2} −factorization of 𝐶5[4]. 
 

 

Lemma 3.4: For every odd integer 𝑚 ≥ 3, 𝐶𝑚[4] has no {𝐶4
1, 𝐶𝑚

3 } −factorization; 

that is, 𝐶𝑚[4] ≇ 𝑚𝐶4⊕4𝐶𝑚⊕4𝐶𝑚⊕4𝐶𝑚. 
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Proof 3.4: Consider 𝐶𝑚[4] as the Cayley graph 𝛤 over ℤ4 × ℤ𝑚 with connection set 

ℤ4 × {1, −1} as before. 

We prove the Lemma by contradiction. So assume that 𝛤 can be decomposed 

into three 𝐶𝑚 −factors and a single 𝐶4 −factor. 

Since 𝑚 is odd, each 𝑚 −cycle in 𝛤 contains one and only one vertex (𝑎, 𝑖) of 

𝛤 for each 𝑖 ∈ ℤ𝑚. When we remove the three 𝐶𝑚 −factors, we are left with a 

2 −regular graph where each vertex (𝑎, 𝑖) is adjacent to only one vertex (𝑏, 𝑖 − 1) 

and only one vertex (𝑐, 𝑖 + 1) for some 𝑏, 𝑐 ∈ ℤ4. So, this 2 −regular graph can not 

contain any 4 −cycles. 

Hence, 𝛤 has no {𝐶4
1, 𝐶𝑚

3 } −factorization. 

 

Let 𝐶𝑚[4] be the Cayley graph over ℤ4 × ℤ𝑚 with connection set ℤ4 × {1,−1} 

and in the 𝐾4 −factor of 𝐾4𝑚, each 𝐾4 consists of vertices (0, 𝑖), (1, 𝑖), (2, 𝑖) and 

(3, 𝑖) for 0 ≤ 𝑖 ≤ 𝑚 − 1. 

Now, define paths in 𝐶𝑚[4]; 

 

𝑃0 = 𝑝0𝑝1…𝑝𝑚−1 
 

𝑄0 = 𝑞0𝑞1…𝑞𝑚−1 
 

𝑅0 = 𝑟0𝑟1…𝑟𝑚−1 
 

𝑆0 = 𝑠0𝑠1…𝑠𝑚−1 

(3.8) 

 

where 𝑝𝑖 = (0, 𝑖), 𝑞𝑖 = (2𝑖, 𝑖), 𝑟𝑖 = {
(0, 𝑖)   𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛
(1, 𝑖)    𝑖𝑓 𝑖 𝑖𝑠 𝑜𝑑𝑑

, 𝑠𝑖 = (3,1) ∙ 𝑟𝑖 for 0 ≤ 𝑖 ≤

𝑚 − 2, and 𝑝𝑚−1 = (1,𝑚 − 1), 𝑞𝑚−1 = (2𝑚 − 2,𝑚 − 1), 𝑟𝑚−1 = (0,𝑚 − 1) and 

𝑠𝑚−1 = (3,𝑚 − 1). Also for 𝑗 = 1,2,3, 𝑃𝑗 = 𝑃0 + (𝑗, 0), 𝑄𝑗 = 𝑄0 + (𝑗, 0), 𝑅𝑗 =

𝑅0 + (𝑗, 0) and 𝑆𝑗 = 𝑆0 + (𝑗, 0). 

For the sake of brevity, we use the following notations to denote the following 

four 𝑚−cycle factors and three 4𝑚 −cycle factors of 𝐶𝑚[4]: 

 

𝐹𝑃 = ((𝑃0) ∪ (𝑃1) ∪ (𝑃2) ∪ (𝑃3)) and 𝐹𝑃
′ = (𝑃0𝑃1𝑃2𝑃3), (3.9) 

 

𝐹𝑅 = ((𝑅0) ∪ (𝑅1) ∪ (𝑅2) ∪ (𝑅3)) and 𝐹𝑅
′ = (𝑅0𝑅1𝑅2𝑅3), (3.10) 



20 

 

𝐹𝑆 = ((𝑆0) ∪ (𝑆1) ∪ (𝑆2) ∪ (𝑆3)) and 𝐹𝑆
′ = (𝑆0𝑆1𝑆2𝑆3), 

(3.11) 

 

and 

 

𝐹𝑄 = ((𝑄0) ∪ (𝑄1) ∪ (𝑄2) ∪ (𝑄3)). (3.12) 

 

Lemma 3.5: Let 𝑎, 𝑏 ∈ {0,1,2} with 𝑎 + 𝑏 = 2. Then for every integer 𝑚 ≥  3, 

𝐶𝑚[4] has a {𝐶𝑚
2𝑎, 𝐶4𝑚

2𝑏 } −factorization. 

 

Proof 3.5: Note that 𝐶𝑚[4] ≅ 𝐶2𝑚[2][2]. Since 𝐶2𝑚[2] can be decomposed into two 

𝐶2𝑚 −factors by Lemma 2.2, 𝐶𝑚[4] has a 𝐶2𝑚[2] −factorization, that is 𝐶𝑚[4] ≅

𝐶2𝑚[2] ⊕ 𝐶2𝑚[2]. 

For even 𝑚, each 𝐶2𝑚[2] −factor of 𝐶𝑚[4] can be decomposed into two 

𝐶𝑙 −factors for 𝑙 ∈ {𝑚, 4𝑚} by Lemma 2.2. Thus we have the desired 

2 −factorizations for even 𝑚. 

Similarly for odd 𝑚, 𝐶𝑚[4] has a 𝐶4𝑚 −factorization since each 𝐶2𝑚[2] can be 

decomposed into two 𝐶4𝑚 −factors. Also by Lemma 3.2, 𝐶𝑚[4] can be decomposed 

into four 𝐶𝑚 −factors for all integers with 𝑚 ≥ 3. In addition to these 

{𝐹𝑃, 𝐹𝑄 , 𝐹𝑅
′ , 𝐹𝑆

′} is a {𝐶𝑚
2 , 𝐶4𝑚

2 } −factorization of 𝐶𝑚[4] for odd 𝑚. 
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4. SOLUTION TO (𝟒,𝒎) − 𝐔𝐑𝐃(𝒗; 𝒓, 𝒔) 

 

In this section, first we decompose 𝐾𝑣 − 𝐼 into subgraphs including 𝐶𝑚[4]’s, 

and then we give solutions to the problem for 4 −cycles and 𝑚 −cycles using 

appropriate factorizations of 𝐶𝑚[4]. 

 

By [25] and [28], solutions to OP(4𝑣/4) and OP(𝑚𝑣/𝑚) exist except 𝑚 = 3 

and 𝑣 = 6 or 𝑣 = 12. That is a solution to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) exists for 𝑟 = 0 or 

𝑠 = 0 with exceptions (𝑣,𝑚, 𝑟) = (6,3,0) and (𝑣,𝑚, 𝑟) = (12,3,0). So, we can 

assume that 𝑟 ≠ 0 and 𝑠 ≠ 0. 

In our case 4|𝑣, 𝑚|𝑣 and 𝑚 is odd. Then there exists a 𝑡 ∈ ℤ+ such that 𝑣 =

4𝑚𝑡. 

Note that; 

 

𝐾4𝑚𝑡 ≅ 𝐾𝑚𝑡[4] ⊕𝑚𝑡𝐾4 (4.1) 

 

or equivalently 

 

𝐾4𝑚𝑡 − 𝐼 ≅ 𝐾𝑚𝑡[4] ⊕𝑚𝑡𝐶4 (4.2) 

 

where 𝑉(𝐾4𝑚𝑡) = 𝑉(𝐾𝑚𝑡[4]) and 𝐼 is a 1 −factor in 𝐾4𝑚𝑡. Since 𝐾𝑚𝑡 has a 

𝐶𝑚 −factorization for odd 𝑡 [25] and by the equivalence (4.1), 𝐾4𝑚𝑡 has 

{(𝐶𝑚[4])
(𝑚𝑡−1)/2, 𝐾4 } −factorization for odd 𝑡. In short, for odd 𝑡 we have 

 

𝐾4𝑚𝑡 ≅ 𝑡𝐶𝑚[4] ⊕ 𝑡𝐶𝑚[4]…⊕ 𝑡𝐶𝑚[4]⏞                  ⊕𝑚𝑡𝐾4

(𝑚𝑡−1)/2

 
(4.3) 

 

Similarly, since 𝐾𝑚𝑡 has {𝐶𝑚
(𝑚𝑡−2)/2

, 𝐾2 } −factorization for even 𝑡 [16] and by the 

equivalence (4.1), 𝐾4𝑚𝑡 has a {(𝐶𝑚[4])
(𝑚𝑡−2)/2, 𝐾4,4, 𝐾4 } −factorization for even 𝑡. 

In short, for even 𝑡, we have 
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𝐾4𝑚𝑡 ≅ 𝑡𝐶𝑚[4] ⊕ 𝑡𝐶𝑚[4]…⊕ 𝑡𝐶𝑚[4]⏞                  ⊕
𝑚𝑡

2
𝐾4,4⊕𝑚𝑡𝐾4

(𝑚𝑡−2)/2

 
(4.4) 

 

with exceptions 𝑚 = 3 and 𝑡 = 2 or 𝑡 = 4. 

In our proofs, we will use these decompositions with appropriate factorizations 

of 𝐶𝑚[4]’s. 

 

4.1. When 𝒓 is Odd 

 

Now, we can prove that for odd 𝑚 ≥ 3, a solution to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) 

exists for all odd 𝑟 (or even 𝑠) satisfying the necessary conditions. 

 

Theorem 4.1: For all positive odd integers 𝑟 and 𝑚 ≥ 3, a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4|𝑣, 𝑚|𝑣 and 𝑟 + 𝑠 =
𝑣−2

2
 except possibly 𝑣 =

24,48 when 𝑚 = 3. 

 

Proof 4.1: If a solution to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) exists, then by Lemma 2.1, 𝑚|𝑣, 4|𝑣 

and 𝑟 + 𝑠 =
𝑣−2

2
 since 𝑣 is even. 

For the sufficiency part, assume 𝑚 ≥ 3 is odd, 𝑚|𝑣 and 4|𝑣. Then, since 

𝑔𝑐𝑑(4,𝑚) = 1, 4𝑚|𝑣. Thus, there exists a positive integer 𝑡 such that 𝑣 = 4𝑚𝑡. 

We will prove the theorem in two cases; 𝑡 is odd or even. 

 

 Case 1: Assume 𝑡 is odd. 

By (4.3), 𝐾4𝑚𝑡 − 𝐼 has a {(𝐶𝑚[4])
(𝑚𝑡−1)/2, 𝐶4 } −factorization. Now, let 𝑟1, 𝑠1 

and 𝑥 be non-negative integers with 𝑟1 + 𝑠1 + 𝑥 =
𝑚𝑡−1

2
. Placing a 𝐶4 −factorization 

on 𝑟1 of the 𝐶𝑚[4] −factors by Lemma 3.1, a 𝐶𝑚 −factorization on 𝑠1 of the 

𝐶𝑚[4] −factors by Lemma 3.2 and a {𝐶4
2, 𝐶𝑚

2 } −factorization on the remaining  𝑥 

𝐶𝑚[4] −factors by Lemma 3.3 gives us a {𝐶4
4𝑟1+2𝑥+1, 𝐶𝑚

4𝑠1+2𝑥} −factorization of the 

𝐾4𝑚𝑡 − 𝐼. That is, a solution to (4,𝑚) − URD(𝑣; 𝑟, 𝑠) exists for 𝑟 = 4𝑟1 + 2𝑥 + 1 

(any positive odd integer can be written in this form for non-negative 𝑟1 and 𝑥) and 
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𝑠 = 4𝑠1 + 2𝑥. It is not difficult to see that 𝑟 ≥ 1 is odd and 𝑠 ≥ 0 is even with 𝑟 +

𝑠 = 4𝑟1 + 2𝑥 + 1 + 4𝑠1 + 2𝑥 = 2𝑚𝑡 − 1 =
𝑣−2

2
. 

Therefore, a solution to (4,𝑚) − URD(4𝑚𝑡; 𝑟, 𝑠) exists for all odd integers r 

and t with 𝑟 + 𝑠 = 2𝑚𝑡 − 1. 

 

 Case 2: Now assume t is even, except 𝑡 ≠ 2,4 when 𝑚 = 3. 

By (4.4), 𝐾4𝑚𝑡 − 𝐼 has a {(𝐶𝑚[4])
(𝑚𝑡−2)/2, 𝐶4

3 } −factorization. Now, let 𝑟1, 𝑠1 

and 𝑥 be non-negative integers with 𝑟1 + 𝑠1 + 𝑥 =
𝑚𝑡−2

2
. Similarly, placing a 4C 

factorization on 𝑟1 of the 𝐶𝑚[4] −factors by Lemma 3.1, a 𝐶𝑚 −factorization on 𝑠1 

of the 𝐶𝑚[4] −factors by Lemma 3.2 and a {𝐶4
2, 𝐶𝑚

2 } −factorization on the remaining 

𝑥 𝐶𝑚[4] −factors by Lemma 3.3 gives us a {𝐶4
4𝑟1+2𝑥+3, 𝐶𝑚

4𝑠1+2𝑥} −factorization of 

the 𝐾4𝑚𝑡 − 𝐼. 

Since any odd integer 𝑟 ≥ 3 can be written as 𝑟 = 4𝑟1 + 2𝑥 + 3 for non-

negative integers 𝑟1 and 𝑥, we obtain that for even 𝑡, a solution to (4,𝑚) −

URD(4𝑚𝑡; 𝑟, 𝑠) exists for all odd integers 𝑟 ≥ 3 (or even 𝑠 ≥ 0) with and 𝑚 ≥ 3, 

except 𝑡 ≠ 2,4 when 𝑚 = 3. 

For 𝑟 = 1, since 𝐾𝑚𝑡[4] ≅ 𝐾4:𝑚𝑡 and by the equivalence (4.2), we can write 

𝐾4𝑚𝑡 − 𝐼 ≅ 𝐾4:𝑚𝑡⊕𝑚𝑡𝐶4. From [18], 𝐾4:𝑚𝑡 has a 𝐶𝑚 −factorization. So, placing a 

𝐶𝑚 −factorization on the 𝐾4:𝑚𝑡 −factor yields a factorization of 𝐾4𝑚𝑡 − 𝐼 with 𝑠 =

2𝑚𝑡 − 2. 

 

4.2. When 𝒓 is Even 

 

Since 𝐶𝑚[4] has no {𝐶4
1, 𝐶𝑚

3 } −factorization, we cannot obtain a solution to 

(4,𝑚) − URD(4𝑚𝑡; 𝑟, 𝑠) for even 𝑟 (or equivalently odd 𝑠) using the construction in 

the proof of Theorem 4.1. However, we will use a similar construction via switching 

the edges of a 1 −factor from 𝐾4’s with some edges of 𝐶𝑚[4] in (4.3) and (4.4), then 

we will get a {𝐶4
2, 𝐶𝑚

3 } −factorization of the new graph. In short, if we let 𝐶𝑚
∗ [4] ≅

𝐶𝑚[4] ⊕ 𝐾4 and 𝐼  is a 1 −factor of 𝐶𝑚[4], then we will show that  

 

𝐶𝑚
∗ [4] − 𝐼 ≅ 𝑚𝐶4⊕𝑚𝐶4⊕4𝐶𝑚⊕4𝐶𝑚⊕4𝐶𝑚 (4.5) 
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that is, 𝐶𝑚
∗ [4] − 𝐼 has a {𝐶4

2, 𝐶𝑚
3 } −factorization.  

 

Lemma 4.1: For any odd integer 𝑚 ≥ 3, (𝐶𝑚[4] − 𝐼) ⊕𝑚𝐾4 has a 

{𝐶4
2,  𝐶𝑚

3 } −factorization for some 1 −factor in 𝐶𝑚[4] where each 𝐾4 consists of four 

copies of the vertex 𝑣𝑖 for any 𝑣𝑖 ∈ 𝐶𝑚. 

 

Proof 4.1: Consider 𝐶𝑚[4] as the Cayley graph over ℤ4 × ℤ𝑚 with connection set 

ℤ4 × {1, −1}, so each 𝐾4 consists of the vertices (0, 𝑖), (1, 𝑖), (2, 𝑖) and (3, 𝑖) for 𝑖 ∈

 ℤm. And let 𝐶(1) = (𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑚−1), 𝐶(2) = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚−1) and 𝐶(3) =

(𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑚−1) be 𝑚−cycles of 𝛤 defined by the vertices 𝑢𝑖 = (0,1), 𝑣𝑖 =

(𝑖2, 𝑖), and 𝑦𝑖 = (−𝑖
2, 𝑖) for 𝑢𝑚−1 = (3,𝑚 − 1), 𝑣𝑚−1 = (1,𝑚 − 1), 𝑦𝑚−1 =

(0,𝑚 − 1). Then  

 

𝐹1 = 𝐶(1) ∪ (𝐶(1) + (1,0)) ∪ (𝐶(1) + (2,0)) ∪ (𝐶(1) + (3,0)) 

 

𝐹2 = 𝐶(2) ∪ (𝐶(2) + (1,0)) ∪ (𝐶(2) + (2,0)) ∪ (𝐶(2) + (3,0))  

 

𝐹3 = 𝐶(3) ∪ (𝐶(3) + (1,0)) ∪ (𝐶(3) + (2,0)) ∪ (𝐶(3) + (3,0))  

(4.6) 

 

are 𝑚 −cycle factors of 𝛤.  

Let 𝐶(4) = ((1,0), (2,0), (0,1), (3,1)) and 𝐶(5) = ((0,0), (1,0), (3,0), (2,0)) be 

4 −cycles of 𝛤. Then 

 

𝐹4 = ⋃((𝐶(4) + (0, 𝑖))

𝑚−1

𝑖=0

 

 

𝐹5 = ⋃((𝐶(5) + (0, 𝑖))

𝑚−1

𝑖=0

 

(4.7) 

 

are 4 −cycle factors of (𝛤 − 𝐼) ⊕𝑚𝐾4. Then 

 

ℱ = {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5} (4.8) 
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is a 2 −factorization of (𝛤 − 𝐼) ⊕𝑚𝐾4 where 𝐼 is a 1 −factor of 𝛤 with the edges 

(0, 𝑖)(2, 𝑖 + 1) and (3, 𝑖)(1, 𝑖 + 1) for each 𝑖 ∈ ℤm. 

 

Now, we give solutions to the Hamilton-Waterloo Problem for some small 

cases and improve the results given in [38]. 

 

Theorem 4.2: For all positive integer 𝑟, a solution to (4, 3) − URD(24; 𝑟, 𝑠) exists if 

and only if 𝑟 + 𝑠 = 11 except possibly when 𝑟 = 2 and 𝑟 = 6. 

 

Proof 4.2: All the cases are covered by [22] with possible exceptions when 𝑟 =

2,4,6. Let the vertex set 𝐾24 be ℤ24. Then, let 

 

 𝐹1 = (0,1,10,9) ∪ (2,3,17,16) ∪ (4,5,19,18) ∪ (6,7,8,15) ∪ (11,12,21,20) ∪

(13,14,23,22), 

 𝐹2 = (0,2,4,6) ∪ (1,3,5,7) ∪ (8,10,12,14) ∪ (16,18,20,22) ∪ (17,19,21,23) ∪

(9,11,13,15), 

 𝐹3 = (0,3,4,7) ∪ (1,2,5,6) ∪ (10,11,14,15) ∪ (16,19,20,23) ∪

(17,18,21,22) ∪ (9,12,13,8), 

 𝐹4 = (0,4,1,5) ∪ (2,6,3,7) ∪ (11,15,12,8) ∪ (16,20,17,21) ∪ (18,22,19,23) ∪

(9,13,10,14), 

 𝐹5 = (0,8,16) ∪ (1,9,17) ∪ (2,10,18) ∪ (3,11,19) ∪ (4,12,20) ∪ (5,13,21) ∪

(6,14,22) ∪ (7,15,23), 

 𝐹6 = (0,13,19) ∪ (1,14,20) ∪ (2,15,21) ∪ (3,8,22) ∪ (4,9,23) ∪ (5,10,16) ∪

(6,11,17) ∪ (7,12,18), 

 𝐹7 = (0,14,18) ∪ (1,15,19) ∪ (2,8,10) ∪ (3,9,21) ∪ (4,10,22) ∪ (5,11,23) ∪

(6,12,16) ∪ (7,13,17), 

 𝐹8 = (0,15,20) ∪ (1,8,21) ∪ (2,9,22) ∪ (3,10,23) ∪ (4,11,16) ∪ (5,12,17) ∪

(6,13,18) ∪ (7,14,19), 

 𝐹9 = (0,12,23) ∪ (1,13,16) ∪ (2,14,17) ∪ (3,15,18) ∪ (4,8,19) ∪ (5,9,20) ∪

(6,10,21) ∪ (7,11,22), 

 𝐹10 = (0,11,21) ∪ (1,12,22) ∪ (2,13,23) ∪ (3,14,16) ∪ (4,15,17) ∪

(5,8,18) ∪ (6,9,19) ∪ (7,10,20), 
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 𝐹11 = (0,10,17) ∪ (1,11,18) ∪ (2,12,19) ∪ (3,13,20) ∪ (4,14,21) ∪

(5,15,22) ∪ (6,8,23) ∪ (7,9,16). 

 

Then, 

 

ℱ = {𝐹1, 𝐹2, … , 𝐹11} (4.9) 

 

is a 2 −factorization of 𝐾24 − 𝐼 with four 𝐶4 −factors where 𝐼 = {(0,22),

(1,23), (3,12), (4,13), (5,14), (6,20), (7,21), (8,17), (9,18), (10,19), (15,16)}. This 

completes the case 𝑟 = 4. 

Here we give a sketch of the construction of this result. We assumed that the 

vertex set of 𝐾24 is 𝐴 ∪ 𝐵 ∪ 𝐶 where 𝐴 = {𝑎𝑖  ∶ 𝑖 = 0,1,2, … ,7}, 𝐵 = {𝑏𝑖  ∶ 𝑖 =

0,1,2, … ,7} and 𝐶 = {𝑐𝑖  ∶ 𝑖 = 0,1,2, … ,7}. Also we let the sets of edges 

 

 (𝐴𝐵)𝑑 = {(𝑎𝑖, 𝑏𝑖+𝑑)  ∶   𝑖 = 0,1,2, … ,7}, 

 (𝐵𝐶)𝑑 = {(𝑏𝑖, 𝑐𝑖+𝑑)  ∶   𝑖 = 0,1,2, … ,7} and 

 (𝐶𝐴)𝑑 = {(𝑐𝑖, 𝑎𝑖+𝑑)  ∶   𝑖 = 0,1,2, … ,7} 

 

for 0 ≤ 𝑑 ≤ 27 and 𝐸(𝐾24) = 𝐸(𝐴) ∪ 𝐸(𝐵) ∪ 𝐸(𝐶) ∪ ⋃ {(𝐴𝐵)𝑑 ∪ (𝐵𝐶)𝑑 ∪
7
𝑖=0

(𝐶𝐷)𝑑} where 𝐸(𝐴), 𝐸(𝐵) and 𝐸(𝐶) are the edges of the complete graphs induced 

by the set of vertices 𝐴, 𝐵 and 𝐶 respectively. Then, 

 

 𝐹5 = (𝐴𝐵)0 ∪ (𝐵𝐶)0 ∪ (𝐶𝐴)0, 

 𝐹6 = (𝐴𝐵)5 ∪ (𝐵𝐶)6 ∪ (𝐶𝐴)5, 

 𝐹7 = (𝐴𝐵)6 ∪ (𝐵𝐶)4 ∪ (𝐶𝐴)6, 

 𝐹8 = (𝐴𝐵)7 ∪ (𝐵𝐶)5 ∪ (𝐶𝐴)4, 

 𝐹9 = (𝐴𝐵)4 ∪ (𝐵𝐶)3 ∪ (𝐶𝐴)1, 

 𝐹10 = (𝐴𝐵)3 ∪ (𝐵𝐶)2 ∪ (𝐶𝐴)3 and 

 𝐹11 = (𝐴𝐵)2 ∪ (𝐵𝐶)7 ∪ (𝐶𝐴)7 

 

are edge-disjoint 3 −factors of 𝐾24. 
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Finally, using the remaining edges (𝐴𝐵)1, (𝐵𝐶)1, (𝐶𝐴)2, 𝐸(𝐴), 𝐸(𝐵) and 𝐸(𝐶) 

we construct four 𝐶4 −factors 𝐹1,  𝐹2,  𝐹3,  𝐹4 and 1 −factor 𝐼. And at the end we 

rename the vertices as 𝑥𝑖 = 𝑖, 𝑦𝑖 = 𝑖 + 8 and 𝑧𝑖 = 𝑖 + 16. 

 

Theorem 4.3: For all positive integer 𝑟 a solution to (4, 3) − URD(48; 𝑟, 𝑠) exists if 

and only if 𝑟 + 𝑠 = 23 wih a possible exception when 𝑟 = 6. 

 

Proof 4.3: It is known that (4, 3) − URD(48; 𝑟, 𝑠) has a solution with the possible 

exceptions when 𝑟 = 6,8,10,14,16,18 [22]. By (4.1), 𝐾48 ≅ 𝐾12[4] ⊕ 12𝐾4 and a 

solution to (4, 3) − URD(12; 1, 4) has given in the Appendix of [21]. Hence a 

{(𝐶3[4])
4, 𝐶4[4], 𝐾4,4, 𝐾4} −factorization of 𝐾48 exists. Also by Lemma 3.1, 𝐶4[4] 

can be decomposed into four 𝐶4 −factors, by Lemma 4.2, (𝐶3[4] − 𝐼) ⊕ 3𝐾4 has a 

{𝐶4
2, 𝐶3

3} −factorization, and it is easy to see that 𝐾4,4 can be decomposed into two 

𝐶4 −factors. So we now have 8 𝐶4 −factors and 3 𝐶3 −factors already. For the 

remaining three 𝐶3[4]’s, decompose 𝑟1 of them into 𝐶4 −factors, 𝑠1 of them into 

𝐶3 −factors and 𝑥 of them into two 𝐶4 −factors and two 𝐶3 −factors where 𝑟1 + 𝑠1 +

𝑥=3 by Lemmas 3.1, 3.2 and 3.3 respectively. Hence, we get 𝑟 = 4𝑟1 + 2𝑥 + 8 and 

𝑠 = 4𝑠1 + 2𝑥 + 3 and this gives us a {𝐶4
𝑟 , 𝐶3

𝑠} −factorization of 𝐾48 − 𝐼 for 𝑟 =

8,10,12,14,16,18,20. 

 

We would like to note that, in the preparation of this dissertation, we have 

discovered that in their preprint [55] Bonvicini and Buratti have given an 

independent solution to all of the nine remaining cases from [38]. We include our 

independent solutions for six of these cases.  

 

Theorem 4.4: For all positive even 𝑟  and odd 𝑚 ≥ 3, a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4|𝑣, 𝑚|𝑣 and 𝑟 + 𝑠 =
𝑣−2

2
 except possibly 𝑣 = 8𝑚 

when 𝑟 = 2, and 𝑣 = 24, 48 when 𝑚 = 3. 

 

Proof 4.4: We will consider two cases depending on the parity of 𝑡. 

 

 Case 1: Assume 𝑡 is odd. 

By (4.3), 𝐾4𝑚𝑡 has a {(𝐶𝑚[4])
(𝑚𝑡−1)/2, 𝐾4} −factorization. 
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Let I be a 1 −factor of 𝐾4𝑚 as defined in Lemma 4.2 and, 𝑟1, 𝑠1 and 𝑥 be non-

negative integers with 𝑟1 + 𝑠1 + 𝑥 =
𝑚𝑡−3

2
. Placing a 𝐶4 −factorization on 𝑟1 of the 

𝐶𝑚[4]’s by Lemma 3.1, a 𝐶𝑚 −factorization on 𝑠1 of the 𝐶𝑚[4]’s by Lemma 3.2, a 

{𝐶4
2, 𝐶𝑚

2 } −factorization on 𝑥 of the 𝐶𝑚[4]’s by Lemma 3.3 and a 

{𝐶4
2, 𝐶𝑚

3 } −factorization on the remaining (𝐶𝑚[4] − 𝐼)⊕𝑚𝐾4 −factor by Lemma 

4.2 gives us a {𝐶4
4𝑟1+2𝑥+2, 𝐶𝑚

4𝑠1+2𝑥+3} −factorization of the 𝐾4𝑚𝑡 − 𝑡𝐼 where 𝑡𝐼 gives 

a 1 −factor in 𝐾4𝑚𝑡. 

Then, since any integer 𝑟 ≥ 2 can be written as 𝑟 = 4𝑟1 + 2𝑥 + 2  for non-

negative integers 𝑟1 and 𝑥, a solution to (4,𝑚) − URD(4𝑚𝑡; 𝑟, 𝑠) exists  

For any even 𝑟 ≥ 2 and odd 𝑡 satisfying 𝑟 + 𝑠 = 2𝑚𝑡 − 1 =
𝑣−2

2
. 

 

 Case 2: Let 𝑡 be even. 

By (4.4), 𝐾4𝑚𝑡 has a {(𝐶𝑚[4])
(𝑚𝑡−1)/2, 𝐾4,4, 𝐾4} −factorization. 

For 𝑟1 + 𝑠1 + 𝑥 =
𝑚𝑡−2

2
, placing a 𝐶4 −factorization on 𝑟1 of the 𝐶𝑚[4]’s, a 

𝐶𝑚 −factorization on 𝑠1 of the 𝐶𝑚[4]’s, a {𝐶4
2, 𝐶𝑚

2 } −factorization on 𝑥 of the 

𝐶𝑚[4]’s and two 𝐶4 −factor on the 𝐾4,4 −factor and a {𝐶4
2, 𝐶𝑚

3 } −factorization on 

the remaining (𝐶𝑚[4] − 𝐼)⊕𝑚𝐾4 −factor yields a solution to (4,𝑚) −

URD(4𝑚𝑡; 𝑟, 𝑠) for all even 𝑟 ≥ 4 except 𝑡 = 2 or 𝑡 = 4 when 𝑚 = 3. 

Now, we consider the case 𝑟 = 2 and 𝑡 is even. Partitioning the vertices of 

𝐾4𝑚𝑡 into 𝑡 sets of size 4𝑚 gives the equivalence: 𝐾4𝑚𝑡 − 𝐼 ≅ 𝑡(𝐾4𝑚 − 𝐼′) ⊕ 𝐾4𝑚:𝑡 

where 𝐼′ is a 1 −factor of 𝐾4𝑚. By case 1, 𝐾4𝑚 − 𝐼′  has a {𝐶4
2,

𝐶𝑚
2𝑚−3} −factorization and also from Theorem 2.8, 𝐾4𝑚:𝑡 has a 𝐶𝑚 −factorization 

for 𝑡 ≠ 2. Thus, 𝐾4𝑚𝑡 − 𝐼 has a {𝐶4
2, 𝐶𝑚

2𝑚𝑡−3} −factorization. 

 

4.3. First Main Result 

 

Combining the results of the previous section it is now possible to obtain the 

proof of the following Theorem. 
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Theorem 4.5: For all positive integers 𝑟, 𝑠 and odd 𝑚 ≥ 3, a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4|𝑣, 𝑚|𝑣 and 𝑟 + 𝑠 =
𝑣−2

2
 except possily when 𝑟 =

2 and 𝑣 = 8𝑚 or 𝑣 = 24,48 when 𝑚 = 3 and 𝑟 = 6. 

 

Proof 4.5: Odd r follows from Theorem 4.1 and even 𝑟 follows from Theorem 4.5 

with possible exceptions when 𝑟 = 2 and 𝑣 = 8𝑚, and 𝑣 = 24 or 𝑣 = 48 when 𝑚 =

3. Theorem 4.3 and Theorem 4.4 cover some of these exceptions for 𝑚 = 3 and the 

remaining cases are 𝑟 = 2 when 𝑣 = 8𝑚, and 𝑣 = 24,48 and 𝑟 = 6 when 𝑚 = 3. 

 

Although our solution is for odd m, our results in Lemmas are valid for even m 

as well and will be used in the forthcoming section. Our result also complements the 

result of Fu and Huang [46]; altogether, existence of a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) is shown for all integers 𝑚 ≥ 3 with a few possible exceptions. 

Regarding the results of Bonvicini and Buratti, only exception would be 𝑟 = 2 when 

𝑣 = 8𝑚, for odd 𝑚 ≥ 5. 

We can then combine these results as follows. 

 

Theorem 4.6: For all positive integers 𝑟, 𝑠 and 𝑚 ≥ 3, a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4|𝑣, 𝑚|𝑣 and 𝑟 + 𝑠 =
𝑣−2

2
 except possibly when 𝑟 =

2 and 𝑣 = 8𝑚 for 𝑚 ≥ 5 odd. 
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5. SOLUTION TO (𝒎, 𝟒𝒎) − 𝐔𝐑𝐃(𝒗; 𝒓, 𝒔) 

 

In this section, firstly we decompose the 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 into 𝐶𝑚 and 

𝐶4𝑚 −cycles, then we show how to decompose 𝐾𝑣 − 𝐼 into subgraphs including 

𝐶𝑚[4]’s and one 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼. Secondly, using these decompositions we will 

be able to obtain solutions to the problem for even and odd 𝑚. 

 

Lemma 5.1: For all positive integer 𝑚 ≥ 3, 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 has a 

{𝐶𝑚
𝑎 ,  𝐶4𝑚

𝑏 } −factorization for some 1 −factor 𝐼 in 𝐶𝑚[4] ⊕𝑚𝐾4, 𝑎 = 0,1,2,3 and 

also 𝑎 = 4 when 𝑚 is even, satisfying 𝑎 + 𝑏 = 5 where each 𝐾4consists of four 

copies of the vertex 𝑣𝑖 for any 𝑣𝑖 ∈ 𝐶𝑚. 

 

Proof 5.1: Let 𝐶𝑚[4] be the Cayley graph over ℤ4 × ℤ𝑚 with connection set ℤ4 ×

{1,−1} and in the 𝐾4 −factor of 𝐾4𝑚, each 𝐾4 consists of vertices (0, 𝑖), (1, 𝑖), (2, 𝑖) 

and (3, 𝑖) for 0 ≤ 𝑖 ≤ 𝑚 − 1. Now define paths in 𝐶𝑚[4] ⊕𝑚𝐾4; 

 

𝑋 = 𝑥0𝑥1𝑥2. . . 𝑥2𝑚−1, 
 

𝑌 = 𝑦0𝑦1𝑦2. . . 𝑦2𝑚−1, 
 

𝑍 = 𝑧0𝑧1𝑧2. . . 𝑧2𝑚−1, 
 

𝑊 = 𝑌 + (1,0) 

(5.1) 

 

where 𝑥4𝑖 = (3,2𝑖), 𝑥4𝑖+1 = (0,2𝑖), 𝑥4𝑖+2 = (2,2𝑖 + 1), 𝑥4𝑖+3 = (1,2𝑖 + 1), 𝑦2𝑖 =

(0, 𝑖), 𝑦2𝑖+1 = (2, 𝑖), 𝑧4𝑖 = (2,2𝑖), 𝑧4𝑖+1 = (1,2𝑖), 𝑧4𝑖+2 = (3,2𝑖 + 1) and 𝑧4𝑖+3 =

(0,2𝑖 + 1). Then, 

 

 𝐹𝑃
′ ⊕𝐹𝑅

′ ⊕𝐹𝑆
′⊕ (𝑌𝑊−1) ⊕ (𝑍𝑋−1) is a factorization with (𝑎, 𝑏) = (0,5), 

 𝐹𝑃⊕𝐹𝑅
′ ⊕𝐹𝑆

′⊕ (𝑌𝑊−1) ⊕ (𝑍𝑋−1) is a factorization with (𝑎, 𝑏) = (1,4), 

 𝐹𝑃⊕𝐹𝑅⊕𝐹𝑆
′⊕ (𝑌𝑊−1) ⊕ (𝑍𝑋−1) is a factorization with (𝑎, 𝑏) = (2,3) and 

 𝐹𝑃⊕𝐹𝑅⊕𝐹𝑆⊕ (𝑌𝑊−1) ⊕ (𝑍𝑋−1) is a factorization with (𝑎, 𝑏) = (3,2) 

 

where 𝐹𝑃,  𝐹𝑃
′ ,  𝐹𝑅 , 𝐹𝑅

′ ,  𝐹𝑆 and 𝐹𝑆
′ are 2 −factors defined as before. 
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Now for even 𝑚 define paths in 𝐶𝑚[4] ⊕𝑚𝐾4; 

𝑌0 = 𝑌𝑦𝑚
2
−1, 𝑌1 = 𝑦𝑚

2
𝑌𝑦𝑚−1, 𝑌2 = 𝑦𝑚𝑌𝑦3𝑚

2
−1
, 𝑌3 = 𝑦3𝑚

2

𝑌𝑦2𝑚−1 and 𝑊𝑗 = 𝑌𝑗 +

(1,0) for 0,1,2,3j  . Then, 

 

 𝐹𝑃⊕𝐹𝑅⊕𝐹𝑆⊕ ((𝑌0𝑊0
−1) ∪ (𝑌1𝑊1

−1) ∪ (𝑌2𝑊2
−1) ∪ (𝑌3𝑊3

−1))⊕ (𝑍𝑋−1)  

 

is a factorization with (𝑎, 𝑏) = (4,1) for even 𝑚. 

 

Example 5.1: Figure 5.1 shows a {𝐶5
1, 𝐶20

4 } −factorization of 𝐶5[4] ⊕ 5𝐾4 − 𝐼. 

 

 

 
         P                        'R                          'S                 1( )YW                   1( )ZX   

 

Figure 5.1: A {𝐶5
1, 𝐶20

4 } −factorization of 𝐶5[4] ⊕ 5𝐾4 − 𝐼. 
 

5.1. When 𝒎 is Even 

 

First we give a well-known result of Walecki [13] for Hamilton cycle 

decompositions of complete graph minus a 1 −factor, then using the result we will 

obtain solutions to our problems when 𝑣 = 4𝑚 which will be generalized at the end 

of this section. 

 

Lemma 5.2: [10] For all even 𝑚 ≥ 4, 𝐾𝑚 − 𝐼
∗ has a Hamilton decomposition with 

prescribed cycles{𝐶∗, 𝜌(𝐶∗), 𝜌2(𝐶∗), … , 𝜌
𝑚−4

2 (𝐶∗)} for some permutation 𝜌 of 

{𝑣0, 𝑣1, … , 𝑣𝑚−1} where 𝐶∗ = (𝑣0, 𝑣1, … , 𝑣𝑚−1) and 𝐸(𝐼∗) = {𝑣0𝑣𝑚/2, 𝑣𝑖𝑣𝑚−𝑖  ∶

  1 ≤ 𝑖 ≤
𝑚

2
− 1}. 

 

By (4.1), 
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𝐾4𝑚 ≅ 𝐾𝑚[4] ⊕𝑚𝐾4 (5.2) 

 

where 𝑉(𝐾4𝑚) = 𝑉(𝐾𝑚[4]). Then, by (5.2) and Lemma 5.2, we have a 

{(𝐶𝑚[4])
(𝑚−6)/2, (𝐶∗⊕ 𝐼∗)[4], 𝐶𝑚[4] ⊕𝑚𝐾4} −factorization of 𝐾4𝑚 for 𝑚 ≥ 6. 

In short, for even 𝑚 ≥ 6 we have 

 

𝐾4𝑚 ≅ 𝐶𝑚[4] ⊕ 𝐶𝑚[4]…⊕ 𝐶𝑚[4]⏞                
(𝑚−4)/2

⊕ (𝐶∗⊕ 𝐼∗)[4] ⊕𝑚𝐾4 
(5.3) 

 

or equivalently for some 1 −factor 𝐼 in 𝐶𝑚[4] ⊕ 𝐾4, 

 

𝐾4𝑚 − 𝐼 ≅ 𝐶𝑚[4] ⊕ 𝐶𝑚[4]…⊕ 𝐶𝑚[4]⏞                

𝑚−6

2

⊕ (𝐶∗⊕ 𝐼∗)[4] ⊕ 
                                                                                    

  (𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼)  

(5.4) 

 

Now we give some 2 −factorizations of (𝐶∗⊕ 𝐼∗)[4] using the following 

lemma. 

 

Lemma 5.3: Let 𝑚 ≥ 4 be an even integer and 𝐺𝑚
∗ = 𝐶∗⊕ 𝐼∗ where 𝐶∗ =

(𝑣0, 𝑣1, … , 𝑣𝑚−1) be an 𝑚 −cycle and 𝐼∗ is a 1 −factor of 𝐾𝑚 with 𝐸(𝐼∗) =

{𝑣0𝑣𝑚/2, 𝑣𝑖𝑣𝑚−𝑖  ∶   1 ≤ 𝑖 ≤
𝑚

2
− 1}. Then 𝐺𝑚

∗ [2] has a 𝐶2𝑚 −factorization. 

 

Proof 5.3: Let the vertex set of 𝐺𝑚
∗  be ℤ2 × ℤm and define a cycle and two paths in 

𝐺𝑚
∗  as follow: 

 

𝐶 = (𝑢0, 𝑢1, … , 𝑢2𝑚−1) 
 

𝐴 = (𝑎0𝑎1…𝑎𝑚−1) 
 

𝐵 = (𝑏0𝑏1…𝑏𝑚−1) 

(5.5) 

 

where 𝑢𝑖 = {
(𝑖, 𝑖)    𝑓𝑜𝑟    0 ≤ 𝑖 ≤ 𝑚 − 1          
(𝑖 + 1, 𝑖)    𝑓𝑜𝑟    0 ≤ 𝑖 ≤ 2𝑚 − 1

, 𝑎𝑖 = (0,1) and 𝑏0 = (1,0), and for 

1 ≤ 𝑖 ≤ 𝑚 − 1 if 𝑚 ≡ 0 (𝑚𝑜𝑑 4), then  
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𝑏𝑖 = {
(1,

𝑚

2
+ ⌊

𝑖

2
⌋)     𝑓𝑜𝑟    𝑖 ≡ 0,3 (𝑚𝑜𝑑 4)  

(1,
𝑚

2
− ⌊

𝑖

2
⌋)     𝑓𝑜𝑟    𝑖 ≡ 1,2 (𝑚𝑜𝑑 4) 

, and if 𝑚 ≡ 2 (𝑚𝑜𝑑 4), then  

𝑏𝑖 = {
(1,

𝑚

2
+ ⌊

𝑖

2
⌋)     𝑓𝑜𝑟    𝑖 ≡ 1,2 (𝑚𝑜𝑑 4)  

(1,
𝑚

2
− ⌊

𝑖

2
⌋)     𝑓𝑜𝑟    𝑖 ≡ 0,3 (𝑚𝑜𝑑 4) 

. Then 𝐶 and (𝐴𝐵) are two edge-

disjoint 2𝑚 −cycles in 𝐺𝑚
∗ [2]. Also it can be checked that 𝐶′ = 𝐺𝑚

∗ − (𝐶 ⊕ (𝐴𝐵)) is 

an 2𝑚 −cycle. Thus {𝐶, 𝐶′, (𝐴𝐵)} is a 𝐶2𝑚 −factorization of 𝐺𝑚
∗ [2]. 

 

Corollary 5.1: Let 𝑚 ≥ 4 be an even integer and 𝐺𝑚
∗ = 𝐶∗⊕ 𝐼∗ where 𝐶∗ =

(𝑣0, 𝑣1, … , 𝑣𝑚−1) be an 𝑚 −cycle and 𝐼∗ is a 1 −factor of 𝐾𝑚 with 𝐸(𝐼∗) =

{𝑣0𝑣𝑚/2, 𝑣𝑖𝑣𝑚−𝑖  ∶   1 ≤ 𝑖 ≤
𝑚

2
− 1}. Then 𝐺𝑚

∗ [4] has a {𝐶𝑚
2𝑎, 𝐶4𝑚

2𝑏 } −factorization 

for all non-negative integers 𝑎 and 𝑏 with 𝑎 + 𝑏 = 3. 

 

Proof 5.1: By Lemma 5.3, 𝐺𝑚
∗ [2] can be decomposed into three 𝐶2𝑚 −factors, that is, 

𝐺𝑚
∗ [2] ≅ 𝐶2𝑚⊕𝐶2𝑚⊕𝐶2𝑚. So we have 𝐺𝑚

∗ [4] ≅ 𝐶2𝑚[2] ⊕ 𝐶2𝑚[2] ⊕ 𝐶2𝑚[2], 

since 𝐺𝑚
∗ [4] ≅ 𝐺𝑚

∗ [2][2]. Also by Lemma 2.4, each 𝐶2𝑚[2] − factor of 𝐺𝑚
∗ [4] can be 

decomposed into two 𝐶𝑙 −factors for 𝑙 ∈ {𝑚, 4𝑚}. Hence 𝐺𝑚
∗ [4] has desired 

2 −factorization. 

 

 

 

    𝐺6
∗                𝐺6

∗[2] 

 

 

              𝐶12                      𝐶12                     𝐶12 

a) b) 

 

Figure 5.2: a) 𝐺6
∗ and 𝐺6

∗[2], b) 𝐶12 −factorization of 𝐺6
∗[2]. 
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In our proofs, we will use these decompositions with appropriate factorizations 

of 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼, (𝐶
∗⊕ 𝐼∗)[4] and 𝐶𝑚[4]’s.  

 

Lemma 5.5: For all positive integers 𝑟, 𝑠 and even 𝑚 ≥ 4, a solution to (𝑚, 4𝑚) −

URD(4𝑚; 𝑟, 𝑠) exists if and only if 𝑟 + 𝑠 = 2𝑚 − 1. 

 

Proof 5.5: Since the problem has a solution for 𝑚 = 4 in [30], we may assume that 

𝑚 > 4. Also by (10), a {(𝐶𝑚[4])
(𝑚−6)/2, (𝐶∗⊕ 𝐼∗)[4], 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼} −

 factorization of 𝐾4𝑚 − 𝐼 exists. Let 𝑟𝑖 and 𝑠𝑖 be integers for 𝑖 = 1,2,3 with 𝑟1 + 𝑠1 =

𝑚 − 6, 𝑟2 + 𝑠2 = 3, 𝑟3 + 𝑠3 = 5 and 0 ≤ 𝑟1 ≤ 𝑚 − 6, 0 ≤ 𝑟2 ≤ 3, 0 ≤ 𝑟3 ≤ 4. 

Now, factor 
𝑚−6

2
 many 𝐶𝑚[4] −factors of 𝐾4𝑚 into a {𝐶𝑚

2𝑟1 , 𝐶4𝑚
2𝑠1} −factor by Lemma 

3.5, and (𝐶∗⊕ 𝐼∗)[4] into a {𝐶𝑚
2𝑟2 , 𝐶4𝑚

2𝑠2} −factor by Corollary 5.4. Then, factoring 

𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 into a {𝐶𝑚
𝑟3 , 𝐶4𝑚

𝑠3 } −factor by Lemma 5.1 gives us a {𝐶𝑚
𝑟 ,

𝐶4𝑚
𝑠 } −factorization of 𝐾4𝑚 − 𝐼 where 𝑟 = 𝑟3 + 2(𝑟2 + 𝑟1) and 𝑠 = 𝑠3 + 2(𝑠2 + 𝑠1) 

It can be checked that 𝑟 + 𝑠 = 2𝑚 − 1 with 1 ≤ 𝑟, 𝑠 ≤ 2𝑚 − 2. 

 

Now, we give some general solutions to our problem for even m. 

 

Theorem 5.1: For all non-negative integers 𝑟, 𝑠 and even 𝑚 ≥ 4, a solution to 

(𝑚, 4𝑚) − URD(𝑣; 𝑟, 𝑠) exists if and only if 𝑟 + 𝑠 =
𝑣−2

2
 and 4𝑚|𝑣. 

 

Proof 5.1: The cases where one of the 𝑟 and 𝑠 is zero and other is non-zero have 

been 

solved in [28]. So, we can assume that 𝑟 ≠ 0 and 𝑠 ≠ 0. 

In our case, 𝑚|𝑣 and 4𝑚|𝑣. Then there exists a 𝑡 ∈ ℤ+ such that 𝑣 = 4𝑚𝑡. 

Since 𝐾2𝑡 − 𝐼 has a 1 −factorization, 𝐾4𝑚𝑡 − 𝐼 has a {𝑡(𝐾4𝑚 − 𝐼
′),

(𝑡𝐾2𝑚,2𝑚)
2𝑡−2} −factorization where 𝐼′ is a 1 −factor in 𝐾4𝑚 and 𝐼 = 𝑡𝐼′. That is, 

 

𝐾4𝑚𝑡 − 𝐼 ≅ 𝑡(𝐾4𝑚 − 𝐼
′) ⊕ 𝑡𝐾2𝑚,2𝑚⊕ 𝑡𝐾2𝑚,2𝑚…⊕ 𝑡𝐾2𝑚,2𝑚⏞                      

2𝑡−2

 
(5.6) 
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Then by Theorem 2.4, factor 𝑟1 of the 𝐾2𝑚,2𝑚 into 𝐶𝑚 −factors and 𝑠1 of the 

𝐾2𝑚,2𝑚 into 𝐶4𝑚 −factors with 0 ≤ 𝑟1, 𝑠1 ≤ 2𝑡 − 2 and 𝑟1 + 𝑠1 = 2𝑡 − 2. Also by 

Lemma 5.5, 𝐾4𝑚 − 𝐼′ has a {𝐶𝑚
𝑟2 , 𝐶4𝑚

𝑠2 } −factorization for all 𝑟2 and 𝑠2 satisfying 𝑟2 +

𝑠2 = 2𝑚 − 1 with 0 ≤ 𝑟2, 𝑠2 ≤ 2𝑚 − 1. 

Thus, {𝐶𝑚
𝑟 , 𝐶4𝑚

𝑠 } −factorization of 𝐾4𝑚𝑡 − 𝐼 exists where 𝑟 = 𝑟2 +𝑚𝑟1 and 

𝑠 = 𝑠2 +𝑚𝑠1. It can be checked that 𝑟 + 𝑠 = 2𝑚𝑡 − 1 with 0 ≤ 𝑟, 𝑠 ≤ 2𝑚𝑡 − 1. 

 

5.2. When 𝒎 is Odd 

 

For a given odd integer 𝑡, we have 

 

𝐾4𝑚𝑡 − 𝐼 ≅ 𝑡𝐶𝑚[4] ⊕ 𝑡𝐶𝑚[4]…⊕ 𝑡𝐶𝑚[4]⏞                  
(𝑚𝑡−3)/2

⊕ 𝑡𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼. 
(5.7) 

 

And for even 𝑡, we have 

 

𝐾4𝑚𝑡 − 𝐼 ≅ 𝑡𝐶𝑚[4] ⊕ 𝑡𝐶𝑚[4]…⊕ 𝑡𝐶𝑚[4]⏞                  

𝑚𝑡−4

2

⊕
𝑚𝑡

2
𝐾4,4⊕ 𝑡𝐶𝑚[4] ⊕ 

 

𝑚𝐾4 − 𝐼.  

(5.8) 

 

with exceptions 𝑚 = 3 and 𝑡 = 2, 4. 

 

Theorem 5.2: For all positive integers 𝑟, 𝑠 and odd 𝑚 ≥ 3, a solution to (𝑚, 4𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4𝑚|𝑣  and 𝑟 + 𝑠 =
𝑣−2

2
 except possibly when 𝑣 ≡

0 (𝑚𝑜𝑑 8) or 𝑣 ≡ 4 (𝑚𝑜𝑑 8) and 𝑠 = 1. 

 

Proof 5.2: Since 4𝑚|𝑣, there exists a 𝑡 ∈ ℤ+ such that 𝑣 = 4𝑚𝑡. Assume that 𝑡 be an 

odd integer, that is 𝑣 ≡ 4 (𝑚𝑜𝑑 8). Also 𝑟𝑖 and 𝑠𝑖 be integers for 𝑖 = 1,2 with 𝑟1 +

𝑠1 = 𝑚𝑡 − 3, 𝑟2 + 𝑠2 = 5 and 0 ≤ 𝑟1 ≤ 𝑚𝑡 − 3, 0 ≤ 𝑟2 ≤ 3. By (5.7), 𝐾4𝑚𝑡 − 𝐼 has 

{(𝑡𝐶𝑚[4])
(𝑚𝑡−3)/2, 𝑡𝐶𝑚[4] ⊕𝑚𝑡𝐾4 − 𝐼} −factorization. Now, factor (𝑚𝑡 − 3)/2 

many 𝐶𝑚[4] −factors of 𝐾4𝑚𝑡 into a {𝐶𝑚
2𝑟1 , 𝐶4𝑚

2𝑠1} −factor by Lemma 3.5 and 

𝑡𝐶𝑚[4] ⊕𝑚𝑡𝐾4 − 𝐼 into a {𝐶𝑚
𝑟2 , 𝐶4𝑚

𝑠2 } −factor with 𝑠2 ≠ 1 by Lemma 5.1. Then, we 
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have {𝐶𝑚
𝑟 , 𝐶4𝑚

𝑠 } −factorization of 𝐾4𝑚𝑡 − 𝐼 where 𝑟 = 𝑟2 + 2𝑟1 and 𝑠 = 𝑠2 + 2𝑠1. It 

can be checked that 𝑟 + 𝑠 = 2𝑚𝑡 − 1 with 1 ≤ 𝑟 < 2𝑚𝑡 − 2 and 1 < 𝑟 ≤ 2𝑚𝑡 − 2. 

 

5.3. Second Main Result 

 

Combining the results of the previous section it is now possible to obtain the 

following result. 

 

Theorem 5.3: For all non-negative integers 𝑟, 𝑠 and 𝑚 ≥ 3, a solution to (𝑚, 4𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 𝑟 + 𝑠 =
𝑣−2

2
 and 4𝑚|𝑣 except possibly when 𝑚 is 

odd and 

 

 𝑣 ≡ 0 (𝑚𝑜𝑑 8), or 

 𝑣 ≡ 4 (𝑚𝑜𝑑 8) and 𝑠 = 1. 
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6. CONCLUSION 

 

In this dissertation, we gave solutions to the Hamilton-Waterloo problem for 

two different cycle sizes. 

In section 3, we gave some 2 −factorizations of 𝐶𝑚[4] which are also 

generalizations of cycle decompositions of Cayley graphs given in [23]-[25]. Then 

using these results, we obtained the following result in section 4. 

 

Theorem 4.5: For all positive integers 𝑟, 𝑠 and odd 𝑚 ≥ 3, a solution to (4,𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 4|𝑣, 𝑚|𝑣 and 𝑟 + 𝑠 =
𝑣−2

2
 except possily when 𝑟 =

2 and 𝑣 = 8𝑚 or 𝑣 = 24, 48 when 𝑚 = 3 and 𝑟 = 6. 

 

In section 5, we decomposed the graph 𝐶𝑚[4] ⊕𝑚𝐾4 − 𝐼 into 𝐶𝑚 and 

𝐶4𝑚 −factors. Then using these results and results of Walecki [13], we gave a 

complete solution to the problem for 𝑚 and 4𝑚 −cycle factors when 𝑚 is even. At 

the end of the section 5, we determined all possible solutions to the problem for the 

odd case with a few possible exceptions. The following theorem summarizes these 

results: 

 

Theorem 5.3: For all non-negative integers 𝑟, 𝑠 and 𝑚 ≥ 3, a solution to (𝑚, 4𝑚) −

URD(𝑣; 𝑟, 𝑠) exists if and only if 𝑟 + 𝑠 =
𝑣−2

2
 and 4𝑚|𝑣 except possibly when 𝑚 is 

odd and 

 

 𝑣 ≡ 0 (𝑚𝑜𝑑 8), or 

 𝑣 ≡ 4 (𝑚𝑜𝑑 8) and 𝑠 = 1. 

 

The lemmas proved in section 3, 4 and 5 provide some powerful methods 

which we used in our main construction and can be used in different constructions 

such as generalization of the Hamilton-Waterloo problem for three or more different 

cycle sizes. 
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