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SUMMARY

Given a finite group G, we study functors from G-categories with an action by

natural transformations of G, which are firstly defined by Villaroel-Flores in 1999.

We establish a one-to-one correspondence between such functors and functors from

the Groethendieck construction of certain categories. Villarroel-Flores proves an

equivariant version of Thomason’s theorem which identifies the homotopy type of the

geometric realization of the homotopy colimit of a the composition of a nerve functor

with a diagram of categories functor with the geometric realization of the nerve of

the Groethendieck construction of the diagram. In this thesis, we also study his proof

in details and we give an alternative proof of the equivariant version of Thomason’s

theorem.

Key Words: Simplicial Objects, Homotopy Colimits, Equivariant Homotopy

Colimits, G-Categories, Thomason’s Theorem .
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ÖZET

Verilen sonlu bir G grubu için, bölgeleri G-kategoriler olan ve üzerinde

G grubunun doğal dönüşümlerle etkisi olan izleçleri çalıştık. Bu etkiler

ilk olarak Villarroel-Flores tarafından 1999 yilinda tanımlanmıştır. Biz bu

izleçlerle, ilişkili kategorilerin Groethendieck inşalarından çıkan izleçler arasında

birebir eşleme kurduk. Villarroel-Flores, sinir izleclerinin kategori diagramlari

ile birlesimlerinin izleçlerin homotopi eşlimitlerinin geometrik realizasyonlarının

homotopy tipleri ile Groethendieck inşalarının sinirlerinin geometrik realizasyonlarını

özdeşleştiren Thomasan teoreminin, ekuvaryant versiyonunu ispatlamıştır. Bu tezde,

Villarroel-Flores’in ispatını detaylıca çalıştık ve bu teoremin alternatif bir ispatını

verdik.

Anahtar Kelimeler: Simplicial Nesneler, Homotopi Eşlimitleri, Eşdeğişken

Homotopi Eşlimitleri, G-Kategorileri, Thomason’nın Teoremi .
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1. INTRODUCTION

Let G be a finite group. One way of constructing a topological space with a

G-action is to construct a functor whose values have G-action and then to glue these

values by using the homotopy colimit construction. However, one mostly begins with

a functor F : C → D where C is a G-category and the values of F do not necessarily

have a G-action. Here, a G-category is a category on which elements of G act as

functors where the identity element act as the identity functor and the composition of

these functors respects the group multiplication.

In [Villarroel-Flores, 1999], Villaroel-Flores introduce a notion of an action

of G on functors from G-categories by natural transformations. In this case, the

action of G induces an action on the corresponding homotopy colimit and hence the

above construction yields a topological space with a group action. When there is

a natural transformation between two such functors respecting the actions of G by

natural transformations, then the resulting homotopy colimits are weakly G-homotopy

equivalent.

One of the important results about homotopy colimit construction is the

Thomason’s theorem [Thomason, 1979] which identifies the homotopy colimit of a

diagram obtained by composing the nerve construction with a given functor F of

categories with the classifying space of the Grothendieck construction of the functor,

up to homotopy. The proof uses two important properties of the diagonal functor from

the category of bisimplicial objects in a given category to the that of simplicial objects.

First one identifies two simplicial topological spaces which are the realizations of

the simplicial sets obtained by fixing one of the variables of a bisimplicial set with

the diagonal. The second one states that the diagonals of pointwise weak equivalent

bisimplicial sets are weak homotopy equivalent.

In [Villarroel-Flores, 1999], equivariant version of Thomason’s theorem is

proved when the functor in question has an action of G by natural transformations.

For the proof, Villaroel-Flores first proves the equivariant versions of the above results

about the diagonal functor. Then he shows that all the maps used in the proof are

equivariant. In this thesis, we closely study the proof given by Villaroel-Flores. Then

we give an alternative proof which uses Thomason’s theorem directly and the fact that a
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G-map between CW-complexes is G-homotopy equivalent if and only if its restriction

to every subgroup of G is a homotopy equivalence.

Finally, we show that every functor with an action of G can be obtained as a

restriction of a functor from the Grothendieck construction of a certain category, the

Grothendieck construction on the domain of it.

The thesis is organized as follows:

In chapter 2, we give some background material from the category theory and

the theory of simplicial objects of a given category. We also discuss some properties

of bisimplicial sets.

In chapter 3, we introduce the simplicial replacement of a functor and then we

define the homotopy colimits of diagrams in the category of simplicial objects. At the

end of the chapter we prove the Thomason’s theorem which identifies the homotopy

type of the geometric realization of a nerve of a functor of categories with the geometric

realization of the nerve of a certain category.

In chapter 4, we discuss the homotopy colimits of functors with an action

of finite groups by natural transformations which are defined by Villaroel-Flores

[Villarroel-Flores, 1999]. The main purpose of this chapter to prove the equivariant

version of Thomason’s theorem. For this we follow [Villarroel-Flores, 1999].

In chapter 5, we give an alternative proof to the equivariant version of the

Thomason’s theorem. We also establish a one-to-one correspondence between the

functors with actions by natural transformations and the Grothendieck construction of

certain categories.

2



2. PRELIMINARIES

In this chapter, we give the necessary background on the theory of simplicial

objects in a given category. For the convenience of the reader, we also give the

necessary definitions on the category theory. We refer reader to [Mac Lane, 1971],

[Awodey, 2010], [Hatcher, 2002], and [Simmons, 2011] for more details about the

category theory and to [Goerss and Jardine, 1999], [May, 1967] and [Friedman, 2011]

for the theory of simplicial objects. Throught the chapter, we denote categories with

boldface notation. For example, the category of sets is denoted by Sets, the category

of small categories is denoted by Cat.

2.1. Preliminaries on Category

Definition 2.1: A category C consists of

• a class Ob(C), whose elements are called objects

• a class morC, whose elements are called morphisms. Each morphism has a

unique domain and codomain which are objects of C. We write f : x → y if x

is the domain of f and y is the codomain of f.

• a binary operation ◦, called the composition of morphisms, satisfying the

associativity and the identity axioms. More precisely, given two arrows f : x → y

and g : y → z, the composition g ◦ f is a morphism from x to z such that the

following axioms hold:

– Associativity axiom: If f : x→ y, g : y → z and h : z → t then h ◦ (g ◦ f) =

(h ◦ g) ◦ f ,

– Identity axiom: For every object x in C, there exists a morphism 1x : x → x

called the identity morphism for x, such that for any morphism f : x → y, we

have 1y ◦ f = f = f ◦ 1x.

Definition 2.2: A category C is called small category if both obj(C) and morC are sets.

Otherwise, the category C is said to be large.

Now, we introduce some categories which we use throughout the thesis.
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i) The class of all sets with all functions between them as morphisms forms a

category. This category is denoted by Sets.

ii The class of all groups with all homomorphisms between them as morphisms

forms a category. We denote this category by Grp.

iii) The class of all topological spaces with all continuous maps between them as

morphisms forms a category and denoted by Top.

iii) The class of all small categories with all functors between them as morphisms

forms a category. We denote it by Cat.

Example 2.1: Let X be a pre-ordered set together with a binary operation ≤ which is

reflexive and transtive. This can be viewed as a category, whose set of objects being

the elements of X and morphisms corresponding to the ordering. Thus for x ≤ y ∈ X ,

there is exactly one morphism x→ y in the corresponding category.

Definition 2.3: An initial object of a category C is an object ` in C such that for every

objects X in C, there is a unique morphism `→ X . The dual idea is that of a terminal

object: an object T in C is said to be terminal if for every object X in C there is a

unique morphism X → T .

Definition 2.4: If an object is both initial and terminal, then it is called a zero object.

Example 2.2: The empty set is the unique initial object in the category of sets and every

one-element set is a terminal object in this category and there are no zero objects.

Example 2.3: The empty space is the unique initial object in the category of topological

spaces and every one-point space is a terminal object in this category.

Definition 2.5: Given a category C, the opposite category of C, denoted by Cop, is the

category with Obj(Cop)=Obj(C) and morCop(A,B) = {f |f ∈ morC(B,A)}

Definition 2.6: Let C and D be categories. A (covariant) functor F from C to D is a

mapping that

• sends each object X ∈ C to an object F (X) ∈ D,

• sends each morphism f : X → Y ∈ C to a morphism F (f) : F (X) → F (Y ) ∈

D such that the following two conditions hold:
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– F (1X) = 1F (X) for every object X ∈ C

– F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z.

A contravariant functor F from C to D is a covariant functor from Cop to D. It

means that when f : X → Y in C, F (f) : F (Y )→ F (X) in D.

Example 2.4: Let F : C → D be a functor and d ∈ D. We define the comma category

F/d as the category with objects (c,f) with c ∈ Obj(C) and f : F (c) → d in D. A

morphism from (c, f) to (c′, f ′) is a map g : c→ c′ such that f ′ ◦ F (g) = f .

Similarly, we can define the category d/F whose objects are the pairs (c, u)

where f : d→ F (c).

Let F, G be functors from a category C to a category D. A natural transformation

η : F → G is a family of maps {ηc : F (c) → G(c)}c∈C in D such that for each

f : c→ c′ in C the following diagram commutes:

F (c) G(c)

F (c′) G(c′)

ηc

F (f) G(f)

η′c

(2.1)

that is, η′c ◦ F (f) = G(f) ◦ ηc.

Similarly, one can define a natural transformation between contravariant

functors.

Definition 2.7: The functors G : C→ D and F : D→ C are said to be adjoint if there

exists an isomorphism

ΦY,X : morC(FY,X)
∼=−→ morD(Y,GX) (2.2)

which is natural in X and Y. We then say F is left adjoint to G and G is right adjoint to

F. We write F a G.

The above adjunction between categories C and D is called a hom-set adjunction.

Equivalently, one can define adjointness between functors by using counit-unit

adjuctions. A counit-unit adjuction between two categories C and D consists of two

5



functors F : D → C and G : C → D and two natural transformation η : 1D → GF ,

ξ : FG → 1C, called the unit and the counit of the adjunction respectively, such that

the compositions

G
ηG−→ GFG

Gξ−→ G (2.3)

and

F
Fη−→ FGF

ξF−→ F (2.4)

are the identity transformations 1G and 1F respectively. These equations are called

counit-unit equations. These equations are satiesfied if for each X ∈ C and Y ∈ D,

we have

1GX = G(ξX) ◦ ηGX (2.5)

and

1FY = ξFY ◦ F (ηY ). (2.6)

Theorem 2.1: Counit-unit adjuction induces a hom-set adjuction.

Proof 2.1 : Given two functors G : C → D and F : D → C and a counit-unit

adjunction (ξ, η) : F a G, we can construct a hom-set adjunction by defining a natural

transformation

Φ : morC(F−,−) −→ morD(−, G−) (2.7)

as follows: For each f : FY → X in C and each g : Y → GX in D, we define

ΦY,X(f) = G(f) ◦ ηY (2.8)

and

ψY,X(g) = ξX ◦ F (g) (2.9)

6



Since ξ and η are natural transformations, Φ and ψ are also natural transformations.

Since F is a functor and ξ is a natural transformation, we have

ψ(Φ(f)) = ξX ◦ FG(f) ◦ F (ηY ) = f ◦ ξFY ◦ F (ηY ) = f ◦ 1FY = f (2.10)

that is ψ ◦ Φ is the identity transformation on C.

Similary, since G is a functor and η is natural transformation, we have

Φψg = G(ξX) ◦GF (g) ◦ ηY = G(ξX) ◦ ηGX ◦ g = 1GX ◦ g = g (2.11)

and therefore Φ ◦ ψ is the identity transformation on D. Thus Φ is a natural

isomorphism with inverse Φ−1 = ψ. �

Theorem 2.2: Hom-set adjuction induces a counit-unit adjuction.

Proof 2.2 : Given functors G : C→ D, F : D→ C and a hom-set adjunction

Φ : morC(F−,−) −→ morD(−, G−) (2.12)

we can construct a counit-unit adjunction (ξ, η) : F a G as follows:

For each X ∈ C, let ξX = Φ−1
GX,X(1GX) in morC(FGX,X) where 1GX

in morD(GX,GX) is the identity morphism. Similarly, for each Y ∈ D,

ηY = ΦY,FY (1FY ) in morD(Y,GFY ) where 1FY ∈ morC(FY, FY ) is the identity

morphism. Then we have,

ΦY,X(f) = G(f) ◦ ηY (2.13)

and

Φ−1
Y,X(g) = ξX ◦ F (g) (2.14)

for each f : FY → X and g : Y → GX . Substituting FY for X and ηY = ΦY,FY (1FY )

for g in the second formula we obtain the first counit-unit equation

7



1FY = ξFY ◦ F (ηY ) (2.15)

Similarly, substituting GX for Y and ξX = Φ−1
GX,x(1GX) for f in the first formula, yields

the second counit-unit equation 1GX = G(ξX) ◦ ηGX . �

Example 2.5: Consider the inclusion functor G : Ab → Grp from the category of

abelian groups to category of groups. It has a left adjoint which assigns to every group

G the abelianization Gab = G/[G,G] of G.

Example 2.6: Suppose that F : Set → Grp is the functor assigning to each set Y the

free group generated by the elements of Y, and that U : Grp → Set is the forgetful

functor, which assigns to each group X its underlying set. Then F is left adjoint to U.

Definition 2.8: Let F : J→ C be a functor in a category C. A cone to F is an object N

of C together with a family ψX : N → F (X) of morphisms indexed by the objects of

J, such that for every morphism f : X → Y in J, we have F (f) ◦ ψX = ψY .

A limit of the functor F : J→ C is a cone (L, ϕ) to F such that if (N,ϕ) is any

other cone then there exists a unique morphism U : N → L such that ϕX ◦ U = ψX

for all X in J.

Example 2.7: Let J be the empty category. There there is only one diagram of type J

which is the empty one. A cone to the empty diagram is an object of C. The limit of F is

any object that is uniquely factored through by every other object. So, it is a terminal

object.

Example 2.8: If J is a discrete category then a diagram F is a family of objects of C,

indexed by J. The limit L of F is the product of these objects. The cone ϕ consists of a

family of morphisms ϕX : L→ F (X) called the projections of the product.

A co-cone of a functor F : J → C is an object N of C together with a family

of morphisms ψX : F (X → N) for every object of J, such that for every morphism

f : X → Y in J, we have ψY oF (f) = ψX .

Definition 2.9: A colimit of a diagram F : J → C is a co-cone (L, φ) of F such that

if (N,ψ) is another co-cone, then F there exists a unique morphism U : L → N such

that U ◦ φX = ψX for all X in J.

8



For example, initial objects are colimits of empty diagrams. Coproducts are

colimits of diagrams indexed by discrete categories.

2.2. Preliminaries on Simplicial Objects in a Category

Definition 2.10: The category ∆ of finite totaly ordered sets is the category, whose

objects are finite ordered sets [n]=[1, 2, . . . , n] for each natural number n, and

morphisms f : [n]→ [m] are order-preserving functions.

Here, we can consider [n] as a category with objects 1, 2, . . . , n and a unique

morphism for each i ≤ j.

Every morphism f : [n] → [m] in ∆ can be written in terms of morphisms

δi : [n] → [n + 1] and σi : [n] → [n − 1], called coface and codegeneracy maps,

respectively. These are defined by

δi(j) =

{
j, j < i;
j + 1, j ≥ i. (2.16)

and

σi(j) =

{
j, j ≤ i;
j − 1, j > i. (2.17)

These maps satisfy the following equalities:


δjδi = δiδj−1, i < j;
σjσi = σiσj+1, i ≤ j;
σjδi = δiσj−1, i < j;
σjδi = Id, i = j + 1, j;
σjδi = δi−1sj, i > j + 1.

(2.18)

which are called the cosimplicial identities. Using the above relations one can easily

show that every morphism in ∆ can be written uniquely in the following form,

δji . . . δjmσi1 . . . σin (2.19)

with i1 < . . . < in and j1 > . . . > jm.

9



Definition 2.11: For a given category C, a simplicial object in C is a covariant functor

X:∆op → C . The category of simplicial objects in C is defined to be the functor

category C∆op

and it is denoted by sC.

Definition 2.12: Let X : ∆op → C be a simplicial object in C where C is a category

with objects being sets, we call xn ∈ Xn an n-simplex of X. A simplex x ∈ Xn is

called a degenerate simplex if x = siy for some 0 ≤ i ≤ n − 1. A simplex that is not

degenerate is said to be non-degenerate.

When C=Sets, we call X a simplicial set. The category of simplicial set is

denoted by Sp. When C = Top, we call X a simplicial space. The category of

simplicial space is denoted by SSp.

More precisely, a simplicial set X consists of a family of setsXn (n ≥ 0) together

with maps di = (di)∗ : Xn+1 → Xn , (0 ≤ i ≤ n) and si = (si)∗ : Xn−1 → Xn,

(0 ≤ i ≤ n − 1) called face maps and degeneracy maps respectively. These maps

satisfy the dual of the cosimplicial identites.

Example 2.9: For every n ∈ N, the standard n-simpliex ∆n is a simplicial set

∆n = morCat(.,n) (2.20)

For example, the standard 0-simplex ∆0 is a simplicial set with ∆0
n = ∗. Morever, ∆0

is the terminal object in the category of simplicial sets.

Recall that the standard topological n-simplex is the space

{|∆n| = (t0, . . . , tn) ⊆ Rn+1;
∑

ti = 1, 0 ≤ ti ≤ 1} (2.21)

which has the subspace topology. There are also face maps δi∗ : |∆n| → |∆n+1| and

degeneracy maps σi∗ : |∆n| → |∆n−1| defined by

δi∗(t0, . . . , tn) = (t0, . . . , ti−1, 0, ti, . . . , tn) (2.22)

and

10



σi∗(t0, . . . , tn) = (t0, . . . , ti + ti+1, . . . , tn). (2.23)

Example 2.10: Let X be a topological space and P(X)n be the set of continuous

functions from |∆n| to X.

Let σ : |∆n| → X be a continuous map representing a singular simplex. Then

we define singular simplex diσ : |∆n−1| → X is by

diσ(t0, . . . , tn−1) = σ(t0, . . . ti−1, 0, ti, . . . , tn−1). (2.24)

and the singular simplex siσ : |∆n+1| → X by

siσ(t0, . . . , tn+1) = σ(t0, . . . ti−1, ti + ti+1, ti+2. . . , tn). (2.25)

Together with these face and degeneracy maps P(X)n’s constitute a simplicial set

called the singular set of X denoted by P(X).

Theorem 2.3: P(X) : Top→ Sp defined by

P(X)n = morTop(|∆n|, X) (2.26)

is a functor

Proof 2.3 : Here, for f : X → Y in Top, P(f) sends an n-simplex ϕ : |∆n| → X to

ϕ ◦ f . See [Dwyer and Henn, 2001] for more details. �

Definition 2.13: Let X be a simplicial set. The realization |X| of X is the topological

space

|X| =
∞∐
n=0

Xn × |∆n|/ ∼ (2.27)

where ∼ is an equivalence relation defined by (di(x), p) ∼ (x, δi∗p) for x ∈ Xn+1,

p ∈ |∆n| and the relation (six, p) ∼ (x, σi∗p) for x ∈ Xn−1, p ∈ |∆n|. Here Xn has

the discrete topology and |X| has the quotient topology.
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Theorem 2.4: The above structure makes | − | : Sp→ Top into a functor.

Proof 2.4 : Here, for a simplicial map f = (fn) : X → Y , we have

|f |(x, t) = (fn(x), t) (2.28)

where (x, t) ∈ Xn × |∆n|. See Proposition 3.8 in [Laine, 2013] for more details. �

Example 2.11: In each dimension, the standard 0-simplex has one simplex [0, · · · , 0].

Thus its geometric realization is
∞∐
i=0

|∆i| × [0, · · · , 0]. Therefore in dimension 0 we

have a single vertex v. The gluing instruction identify each (s0[0], p) = ([0, 0], p) in

([0, 0], |∆1|) with ([0], S0(p)) = ([0], v). Thus the |∆1| in dimension 1 gets collapsed

to the vertex. Similarly, since each point of the 2-simplex ([0, 0, 0], |∆2|) gets identified

to a point of ([0, 0], |∆1|), and so on. Therefore,everything collapses down to a single

vertex. Thus the geometric realization of ∆0 is a point. Indeed, it is the standard

topological 0-simplex |∆0|. In general, the geometric realization of the standard

n-simplex is the topological n-simplex.

Theorem 2.5: If X is a simplicial set, then |X| is a CW complex with one n-cell for each

nondegenerate n-simplex of X.

Proof 2.5 : See Theorem 4.9 in [Friedman, 2011]. �

Theorem 2.6: Geometric realization preserves colimits.

Proof 2.6 : See Proposition 2.4, Chapter II in [Goerss and Jardine, 1999]. �

The adjuction relation: The realization functor | − | turns out to be the adjoint to

the singular set functor P .

Theorem 2.7: If X is a simplicial set and Y is a topological space, then

morTop(|X|, Y ) ∼= morSp(X,P (Y )), (2.29)

Proof 2.7 : See Theorem 4.10 [Friedman, 2011]. �
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Definition 2.14: The product X×Y of simplicial sets X and Y is the simplicial set with

(X × Y )n = Xn × Yn = {(x, y)|x ∈ Xn, y ∈ Yn} (2.30)

where di(x, y) = (dix, diy) and si(x, y) = (six, siy).

Let π1 : X × Y → X and π2 : X × Y → Y be projection maps given by

π1(x, y) = x and π2(x, y) = y.

Theorem 2.8: If X and Y are simplicial sets, then |X × Y | ∼= |X| × |Y |. In particular,

if X and Y are countable or one of |X| or |Y | is locally finite as a CW-complex, then

|X × Y | ∼= |X| × |Y | (2.31)

as topological spaces.

Proof 2.8 : A map

η : |X × Y | → |X| × |Y | (2.32)

is defined by η = |π1| × |π2| where π1 : X × Y → X and π2 : X × Y → Y . For more

detail, we refer reader to Theorem 14.3 in [May, 1967] or [Milnor, 1957] for a proof

in the latter situations and to Chapter III in [Gabriel and Zisman , 1967] for a proof

of the general case. �

Example 2.12: Let X be any simplicial set, and Y = ∆0 = [0]. Since ∆0 has a unique

element in each dimension, X ×∆0 ∼= X . Therefore |X ×∆0| ∼= |X| × |∆0| ∼= |X|.

Definition 2.15: For a given category C, the nerve N(C) of C is defined to be the

simplicial set

N(C) = morCat(−,C) (2.33)

Note that an n-simplex X ∈ N(Cn) is a sequence

13



σ : X0
f1−→ X1

f2−→ . . .
fn−→ Xn (2.34)

of composible morphisms in C. Here, σ corresponds to a functor with σ(i) = Xi and

σ((i− 1)→ i) = fi. The face and degeneracy maps are defined as follows:

di(σ) =


σ(1)→ . . . → σ(n), i = 0

σ(0)→ . . . → σ(i− 1)
fi+1fi−−−→ σ(i+ 1). . . → σ(n), 0 < i < n

σ(0)→ . . . → σ(n− 1), i = n

(2.35)

and

si(σ) = σ(0)→ . . . → σ(i)
1σ(i)−−→ σ(i)→ σ(i+ 1)→ . . . → σ(n) (2.36)

A functor F : C1 → C2 between small categories induces a map N(F) from N(C1) to

N(C2) by sending

(X0
f1−→ X1

f2−→ . . .
fq−→ Xq) −→ (FX0

Ff1−−→ FX1
Ff2−−→ . . .

Ffq−−→ FXq) (2.37)

Proposition 2.1: N : Cat→ Sp is a functor

Proof 2.1 : Clearly, the map N(F) defined above is a simplicial map. See Proposition

4.2 in [Laine, 2013] for more details. �

Proposition 2.2: N : Cat→ Sp respects products.

Proof 2.2 : When the product C× D of categories C and D are considered, we have

N(C× D)n = morSp(n,C× D)

∼= morSp(n,C)×morSp(n,D)

= N(C)n ×N(D)n

(2.38)
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This isomorphism clearly commutes with di, si. So we have

N(C× D) ∼= N(C)×N(D). (2.39)

as desired. �

Example 2.13: Let C = [2] with morphism 0
f1−→ 1

f2−→ 2. Then nerve of C is the

simplicial set whose n-simplices are given as follows:

• (NC)0 = {0, 1, 2},

• (Nd)(NC)1 = {0 10−→ 0, 1
11−→ 1, 2

12−→ 2, 0
f1−→ 1, 0

f2f1−−→ 2, 1
f2−→ 2},

• (Nd)(NC)2 = {0 f1−→ 1
f2−→ 2}

where (Nd) denotes the set of nondegenerate simplicies. All the higher degree simplices

are degenerate. So |N(C)| = |∆2|

Example 2.14: Let C = [3] with morphism 0
f1−→ 1

f2−→ 2
f3−→ 3, the nerve of C can be

written as follows:

• (NC)0 = {0, 1, 2, 3},

• (Nd)(NC)1 = {0 f1−→ 1, 0
f2f1−−→ 2, 0

f3f2f1−−−→ 3, 1
f2−→ 2, 1

f3f2−−→ 3, 2
f3−→ 3},

• (Nd)(NC)2 = {0 f1−→ 1
f2−→ 2, 0

f1−→ 1
f3f2−−→ 3, 0

f2f1−−→ 2
f3−→ 3, 1

f2−→ 2
f3−→ 3}

• (Nd)(NC)3 = {0 f1−→ 1
f2−→ 2

f3−→ 3}

all the higher simplices are degenerate. So |[3]| = |∆3|.

Definition 2.16: A bisimplicial object X : ∆op × ∆op → C in a category C is the

simplicial object ∆op → C∆op

in the category of simplicial objects in C.

We denote the external face and degeneracy maps with dhi , shi , where the h stands

for the horizontal and the inner face and degeneracy maps with dvi , s
v
i , where v stands

for the vertical ones.

There is a diagonal functor

diag : ∆op → ∆op ×∆op (2.40)

which induces a functor
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C∆op×∆op → C∆op

(2.41)

which also denote by diag. Therefore, diag(X)n = Xn,n and di = dhi ◦dvi ,si = shi ◦ svi
for a bisimplicial object X in C.

Theorem 2.9: Let X be a bisimplicial set. Construct a simplicial topological space

X1 by sending [p] to the realization of the simplicial set [q] → Xpq. Similarly,

construct another simplicial topological space X2 by sending [q] to the realization

of the simplicial set [p]→ Xpq. Then we have a homeomorphism of topological spaces

|diag(X)| ∼= |X1| ∼= |X2| (2.42)

Proof 2.9 : We refer reader to see p. 19 in [Gelfand and Manin, 1996]. �
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3. HOMOTOPY COLIMITS

In this chapter, we introduce homotopy colimits of a diagram F : C → sD.

We refer reader to [Bousfield and Kan, 1972] and [Goerss and Jardine, 1999] for more

details. The main purpose of this chapter is to give the proof of the famous Thomason’s

theorem. For this, we follow [Thomason, 1979].

3.1. Homotopy Colimits

In this section we introduce the homotopy colimit of a diagram F : C → sD

where C and D are small categories. For this, we need the definition of a simplicial

replacement of a functor.

Definition 3.1: Let F : C→ D be a functor. The simplicial replacement of F is defined

to be the simplicial object srepF in D with

(srepF )n =
∐

σ∈N(C)n

F (σ(0)) (3.1)

where si sends F (σ(0)) indexed by σ to F (si(σ(0))) indexed by si ◦ σ by the identity

map and di sends F (σ(0)) indexed by σ to F (di(σ(0))) indexed by di◦σ by the identity

map when i > 0 and by the map F (α1) when i=0. Here, diσ(0) = σ(0) if i > 0 and

d0σ(0) = σ(1).

We denote the component F (σ(0)) indexed by σ ∈ N(C)n with F (σ(0))σ. We

denote the elements of F (σ(0))σk by xσk , yσk and so on when F (σ(0)) is a set.

Theorem 3.1: If C is a small category, then

srep : DC → sD (3.2)

is a functor.

Proof 3.1:Let F,G : C → D be functors and let τ : F → G be a natural

transformation. For each n, define
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(srepτ)n :
∐

σ∈N(C)n

F (σ(0))→
∐

β∈N(C)n

G(β(0)) (3.3)

to be the map which sends F (σ(0))σ to G(σ(0))σ by τσ(0).

We need to prove that srepτ : srepF → srepG is a map of simplicial spaces,

i.e. the following diagrams commute:

(srepF )n (srepF )n−1

(srepG)n (srepG)n−1

di

(srepτ)n (srepτ)n−1

di

and

(srepF )n (srepF )n+1

(srepG)n (srepG)n+1

si

(srepτ)n (srepτ)n+1

si

(3.4)

for 0 ≤ i ≤ n.

We first show the commutativity of the first diagram. When i > 0, di sends

F (σ(0))σ to F (σ(0))diσ by the identity map and hence (srepτ)n−1 ◦di sends F (σ(0))σ

to G(σ(0))diσ by τσ(0). On the other hand, (srepτ)n sends F (σ(0))σ to G(σ(0))σ by

τσ(0) and di sends G(σ(0))τ to G(σ(0))diτ by the identity. So we have,

(srepτ)n−1 ◦ di = di ◦ (srepτ)n (3.5)

When i=0, d0 sends F (σ(0))σ to F (σ(1))d0(σ) by F (σ) and hence (srepτ)n−1◦d0

sends F (σ(0))σ to G(σ(1))d0(σ) by τσ(1) ◦ F (α1). On the other hand, d0 ◦ (srepτ)n

sends F (σ(0))σ to G(σ(1))d0(σ) by G(α1) ◦ τσ(0).

Since τ is a natural transformation, the following diagram commutes:

F (σ(0)) F (σ(1))

G(σ(0)) G(σ(1))

F (α1)

τσ(0) τσ(1)

G(α1)

(3.6)

i. e. G(α(1))τσ(0) = τσ(1) ◦ F (α1). Therefore we have,

(srepτ)n−1 ◦ d0 = d0 ◦ (srepτ)n (3.7)

For the second diagram, note that (srepτ)n+1 ◦ si sends F (σ(0))σ to G(σ(0))σ

by τσ(0). On the other hand, (srepτ)n sends F (σ(0))σ to G(σ(0))σ by τσ(0) and hence
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si ◦ (srepτ)n sends F (σ(0))σ to G(σ(0))σ by τσ(0). This proves that srepτ is a map of

simplicial spaces.

Finally, let F τ−→ G
θ−→ H be a sequence of natural transformation. Then for

every d ∈ D,

F (d) G(d)

H(d)

τd

(θτ)d
θd (3.8)

commutes and so by the definition of srepτ ,

srep(θτ) = (srepθ) ◦ (srepτ) (3.9)

as desired. �

Definition 3.2: If F : C→ sD is a diagram in sD, then we define the homotopy colimit

of F to be the simplicial object

hocolim(F ) = diag(srepF ) (3.10)

in D.

When D = Set, the hocolim(F) is a simplicial set with n-simplices:

(hocolimF)n = {(X̄, y) | X̄ = (X0
Φ1−→ X1 → . . .

Φn−→ Xn) ∈ N(C)n, y ∈ F (X0)n}

where the face and degeneracy maps are given by:

di(X̄, y) =

{
(d
N(C)
0 X̄, F (Φ1)(d

F (X0)
0 y)), i = 0

(d
N(C)
i X̄, d

F (X0)
i y), i > 0.

(3.11)

and

si(X̄, y) = (s
N(C)
i X̄, s

F (X0)
i y) (3.12)
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Example 3.1: Let C be the category 1 with two objects 0, 1 and a unique morphism

0 ≤ 1. Let F : C→ Sp be the functor defined by F (0) = F (1) = ∆[0] in Sp, then the

homotopy colimit is ∆[1].

Example 3.2: Let X be a simplicial set and F : C → Sp a constant functor, such that

F (c) = X for every c ∈ C and F (c
f−→ c′) = 1X for every morphism f. We show that

hocolim(F ) ∼= X ×N(C) (3.13)

Indeed, since F (c) = X for every c ∈ C, we have

hocolim(F )n = diag(srepF )n =
∐

σ∈N(C)

Xσ
n (3.14)

whereXσ
n = Xn for every σ ∈ N(C)n. For i > 0, we have di(x

(σ)
n ) = (dixn)(diσ). For

i=0, F(f) is the identity map for any f : σ(0)→ σ(1) and hence d0(x
(σ)
n ) = (d0xn)(d0σ).

Morever, si(x
(σ)
n ) = (sixn)(siσ).

Now, let ϕn : hocolim(F )n → Xn ×N(C)n be defined by ϕn(xσn) = (xn, σ). It

is obviously a bijection. So it remains to show that ϕ is a simplicial map, that is, the

following diagrams commute:

hocolim(F )n Xn ×N(C)n

hocolim(F )n−1 Xn−1 ×N(C)n−1

ϕn

di di

ϕn−1

(3.15)

and

hocolim(F )n Xn ×N(C)n

hocolim(F )n+1 Xn−1 ×N(C)n+1

ϕn

si si

ϕn+1

(3.16)

For the face map, we have

ϕdi(x
(σ)
n ) = ϕ((dixn)(diσ)) = (dixn, diσ) = di(xn, σ) = diϕ(x(σ)

n ) (3.17)
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and also for the degeneracy map, we have

ϕsi(x
(σ)
n ) = ϕ((sixn)(siσ)) = (sixn, siσ) = si(xn, σ) = siϕ(x(σ)

n ) (3.18)

Therefore ϕ is a simplicial map.

Theorem 3.2: hocolim : sDC → sD is a functor.

Proof 3.2 :As a composition of two functors srep and diag

sDC srep−−→ (∆op)sD diag−−→ sD. (3.19)

hocolim is a functor. �

3.2. Thomason’s Theorem

Recall that maps f, g : X → Y between topological spaces are said to be

homotopic if there is a continuous map H : X × [0, 1]→ Y such that H(x, 0) = f(x)

and H(x, 1) = g(x) for all x ∈ X . If the maps f and g are homotopic, then we write

f ' g. Topological spaces X and Y are said to be homotopy equivalent if there is

continuous maps f : X → Y and g : Y → X such that f ◦ g ' 1Y and g ◦ f ' 1X .

Definition 3.3: Let X and Y be simplicial sets. A simplicial map f : X → Y is said to

be a weakly homotopy equivalence if |f | : |X| → |Y | is a homotopy equivalence. In

this case, we say that X is weakly homotopy equivalent to Y and we write X ' Y .

Morever, two functors between categories F1, F2 : C→ D are weakly homotopic

if there exists a homotopy from |C| to |D| such that

H(x, 0) = |F1|(x) and H(x, 1) = |F2|(x) (3.20)

Also, we say that two categories C and D are weakly homotopy equivalent if |C| and

|D| are homotopy equivalent.
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Definition 3.4: Let f, g : X → Y be simplicial maps, we say that f is homotopic to g if

there is a simplicial map H : X × I → Y such that H|X×0 = g and H|X×1 = f .

Definition 3.5: Let X and Y be two simplicial sets and φ, ψ : X → Y are maps, we say

that φ is strongly homotopic to ψ if there exists a simplicial map

H : X ×∆1 → Y (3.21)

such that H restricted to X × 0 can be identified with φ and H restricted to X × 1 can

be identified with ψ.

Analogously, we say that two functors between categories F1, F2 : C → D are

strongly homotopic if N(F1) and N(F2) are strongly homotopic.

Theorem 3.3: Let ϕ : X → Y be a map of the simplicial sets. Suppose that for all p,

the simplicial map ϕp : Xp → Yp is a weak homotopy equivalence. Then diag(ϕ) is a

weak homotopy equivalence.

Proof 3.3 : We refer reader to see Chapter IV, Proposition 1.9 in [Goerss and Jardine,

1999]. �

Lemma 3.1: A natural transformation η : F → F ′ between the functors induces a

strong homotopy between F and F ′.

Proof 3.1 : Let F, F ′ : C → D be functors between categories C and D. Define

σ : C× [1]→ D on objects by:

σ(c, 0) = F (c), σ(c, 1) = F ′(c) (3.22)

and on morphisms by :

• (c, 0)
(f,10)−−−→ (d, 0) ; F (f) : F (c)→ F (d),

• (c, 0)
(f,(0≤1))−−−−−→ (d, 1) ; F (c)

F ′(f)◦ηc−−−−−→ F ′(d),

• (c, 1)
(f,11)−−−→ (d, 1) ; F (f) : F ′(c)→ F ′(d)

Since N(C× (0 ≤ 1)) ∼=G N(C×∆1), we have that N(σ) is a homotopy equivalence.

�
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Theorem 3.4: If F : C → D is left adjoint to the functor F ′ : D → C, then F and F ′

are strong homotopy equivalences.

Proof 3.4 : Apply the above lemma to the unit-counit adjuction η : 1C → F ′ ◦ F and

ε : FF ′ → 1D. �

Corollary 3.1: If C is a category with an initial object X, then C is strongly contractible.

Proof 3.1 : Let X be the category with an object X and a morphism and S : C→ X be

a functor which sends every object to X, and all maps to the identity. Let T : X → C

contains the object X in C. So, ST is the identity in X. Since for any object C in C there

exists a unique map C→ X as defining the component of a natural transformation ηC

between TS and the identity, TS is homotopic to the identity. For any object C in C,

define ηC : TS(c) → 1C to be the unique map X → C. Then the following diagram

commutes:

X C

X C ′

ηC

1X f

ηC′

(3.23)

by the uniquness of ηC′ : X → C ′. �

Definition 3.6: Let F : C → Cat be a functor. The Grothendieck construction on F,∫
G F , is the category whose objects are the pairs (c,x) where c an object of C and x

an object of F (C), and whose morphisms are pairs (α, f) : (c, x)→ (d, y) given by a

morphism α : c→ d in C and an f : F (α)(x)→ y in F(d). Composition is defined by

(α, f) ◦ (β, g) = (αβ, f ◦ F (α)g) (3.24)

Note that a natural transformation η : F → F ′ where F, F ′ : C → Cat induces

a functor
∫
G h from

∫
G F to

∫
G F

′ by

(

∫
G
η)(c, x) = (c, h(c)(x)) (3.25)

and
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(

∫
G
η)(α, f) = (α, h(d)(f)) (3.26)

for (α, f) : (c, x)→ (d, y). Thus
∫
G is a functor from CatC to Cat.

Theorem 3.5: [Thomason, 1979] Let F : C → Cat be a functor. There is a weak

homotopy equivalence

ψ : hocolimN(F )→ N(

∫
C
F ) (3.27)

between the homotopy colimit of N ◦ F and the nerve of the Groethendieck

construction.

As in [Thomason, 1979], to prove the above theorem, we first define a natural

transformation then we construct a functor F̃ : C→ Cat and produce weak homotopy

equivalences

hocolimN(F )
λ1←− hocolimN(F̃ )

λ2−→ N(

∫
C
F ) (3.28)

Finally, we construct a simpicial homotopy H : ψ.λ1 ' λ2. Since λ1, λ2 are weak

homotopy equivalences, so is ψ.

Lemma 3.2: There is a simplicial map ψ : hocolimN(F )→ N(
∫
C F ).

Proof 3.2 : The map

ψ : hocolimN(F )→ N(

∫
C
F ) (3.29)

is defined on n-simplicies to be the map which sends

(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, a0

α1−→ a1
α2−→ . . .

αp−→ ap) (3.30)

to

(X0, a0)
(ϕ1,F (ϕ1)(α1))−−−−−−−−→ (X1, F (ϕ1)(a1))

(ϕ2,F (ϕ2)(α2))−−−−−−−−→ . . .

(ϕp,F (ϕp)(αp))−−−−−−−−→ (Xp, F (ϕp)(ap))

(3.31)
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where

(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp) (3.32)

is a string of p-composible morphisms of C and

(a0
α1−→ a1

α2−→ . . .
αp−→ ap) (3.33)

is a string of p-composible morphism of F (X0). Clearly, the above map defines a

simplicial map ψ. �

Now, we define a functor F̃ : C → Cat for X ∈ Obj(C) as follows. Let F̃ (X)

be the category whose objects are the pairs (c,x), where c : Y → X is a map in C and

x ∈ ObjF (Y ) and whose morphisms are pairs (α, f) : (c, x) → (c′, x′) given by a

map α : Y → Y ′ in C such that c = c′α and f : F (α)(x)→ x′ in F (Y ′). Composition

in F̃ (X) is given by

(α1, f1)(α2, f2) = (α1α2, f1 ◦ F (α2)(f2)) (3.34)

A map g : X → Y in C gives a functor F̃ (g) defined on objects by F̃ (g)(c, x) =

(gc, x) and on maps by F̃ (g)(α, f) = (α, f).

Lemma 3.3: There is a natural equivalence λ1 : hocolimNF̃ → hocolimNF .

Proof 3.3: For every x ∈ Obj(C), there is a functor K(x) : F̃ (x)→ F (x) defined on

objects by K(x)(c) = F (c)(x) and on morphisms by K(x)(α, f) = F (c′(f)) where

(α, f) : (c, x) → (c′, x′). This functor has a right adjoint L(x) : F (x) → F̃ defined

by L(x)(c) = (1x, c). Then by Theorem 3.4, N(K(x)) : NF̃ (x)→ NF (x) is a strong

homotopy equivalence. Morever, K(x) : F̃ → F (x) gives a natural transformation

K : F̃ → F of functors. So N(K) : NF̃ → NF is also a natural transformation.

Consider the induced map

Φp : (srepNF̃ )p → (srepNF )p (3.35)

25



which is defined on NF̃ (σ(0)) indexed by σ ∈ Np(C) as K(σ(0)) and hence send

it to NF (σ(0)) indexed by σ. It is clearly a weak homotopy equivalence and hence

λ1 = diag(Φ) is a weak homotopy equivalence by Theorem 3.4. �

Lemma 3.4: There is a natural equivalence λ2 : hocolimNF̃ → N(
∫
C F ).

Proof 3.4 :A p-simplex of NF̃ (X)

(c0, x0)
(α1,f1)−−−−→ (c1, x1)

(α2,f2)−−−−→ . . .
(αp,fp)−−−−→ (cp, xp) (3.36)

corresponds to a p-simplex in N(
∫
C F )

(Y0, x0)
(α1,f1)−−−−→ (Y1, x1)

(α2,f2)−−−−→ . . .
(αp,fp)−−−−→ (Yp, xp) (3.37)

together with the map cp : Yp → X . Thus srepN(F̃ ) has as (p,q)-simplices

X0 → . . . → Xp, Yq → X0, (Y0, x0)→ . . . → (Yq, xq). (3.38)

We define λ2 to be the map which sends such a (q,q)-simplex to the q-simplex

(Y0, x0)→ . . . → (Yq, xq) in N(
∫
C F ). Clearly, it is a simplicial map.

To show that λ2 is a weak homotopy equivalence, let N(
∫
C F ) be a bisimplicial

set which is constant in the p-direction i.e. a bisimplicial set whose (p,q)-simplices are

N(

∫
C
F )pq = N(

∫
C
F )q (3.39)

So N(
∫
C F )∗ = diagN(

∫
C F )∗∗.

Let ∧ : srepN(F̃ )→ N(
∫

C F )∗∗ be the simplicial map which sendes

X0 → . . . → Xp, Yq → X0, (Y0, x0)→ . . . → (Yq, xq) (3.40)

to
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(Y0, x0)→ . . . → (Yq, xq) (3.41)

Then, λ2 = diag(∧). Therefore, by Theorem 3.3 it suffices to show that ∧ is a weak

homotopy equivalence. Here ∧ can be expessed as the coproduct of simplicial maps

N(Yq \ C)→ ∆0. More precisely

∧ :
⋃

(Y0,x0→. . . →(Yq ,xq)

N(Yq \ C) −→
⋃

(Y0,x0)→. . . →(Yq ,xq)

∆0 (3.42)

On the other hand, since I1q : Yq → Yq is a an initial object in Yq, by Theorem 3.4, the

map |N(Yq \ C)| → |∆2| is a homotopy equivalence. Since the geometric realization

commutes with coproducts, | ∧ | is a homotopy equivalence and hence ∧ is a weak

homotopy equivalence. �

Lemma 3.5: There is a simplicial homotopy

H : (hocolimNF̃ )×41 → N(

∫
C
F ) (3.43)

from ψ.λ1 to λ2

Proof 3.5 : Define

H : (hocolimNF̃ )×41 → N(

∫
C
F ) (3.44)

to be the map which sends

(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, (c0, x0)

(α1,f1)−−−−→ (c1, x1)
(α2,f2)−−−−→

. . .
(αp,fp)−−−−→ (cp, xp), vi : p→ [1])

(3.45)

where v(0) = . . . = v(i) = 0 and v(i+ 1) = . . . = v(p) = 1, to
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(Y0, x0)
(α1,f1)−−−−→ (Y1, x1)→ · · · (αi−1,fi−1)−−−−−−→ (Yi−1, xi−1)

(Φici−1,F (Φici)(fi))−−−−−−−−−−−→ (Xi, F (Φici)(xi))→ (Xi+1, F (Φi+1)(ci+1)(xi+1))

(Φi+1ci,F (Φi+1ci+1)(fi+1))−−−−−−−−−−−−−−−−→ · · · (Φpcp−1,F (Φpcp)(fp))−−−−−−−−−−−−→ (Xp, F (Φpcp)(xp))

(3.46)

where Φi = ϕi ◦ ϕi−1 ◦ · · · ◦ ϕ1.

Clearly, H|0 = ψ ◦ λ1 and H|1 = λ2. It remains to show that H is a simplicial

map.

For the commutativity of H with the face maps. Note that sends

X0
ϕ1−→ . . .

ϕp−→ Xp, (c0, x0)
(α1,f1)−−−−→ . . .

(αp,fp)−−−−→ (cp, xp), vi (3.47)

to

X1
ϕ2−→ . . .

ϕp−→ Xp, (ϕ1c1, x1)
(α2,f2)−−−−→

. . .
(αp,fp)−−−−→ (ϕ1cp, xp), vi ◦ d0

(3.48)

Therefore, Hd0 sends it to

(Y1, x1)→ · · · → (Yi−1, xi−1)
(Φici−1,F (Φici)(fi))−−−−−−−−−−−→ (Xi, F (Φici)(xi)) (3.49)

→ · · · (Φpcp,F (Φpcp)(fp))−−−−−−−−−−−→ (Xp, F (Φpcp)(xp) (3.50)

Since (ϕi · · · ◦ ϕ2) ◦ (ϕ1ck) = Φick.

On the other hand, d0 sends

(Y0, x0) → · · · → (Yi−1, xi−1)
((ϕici−1,F (ϕici)(fi)))−−−−−−−−−−−−→ (Xi, F (ϕici)(xi)) (3.51)

→ (Xi+1, F (ϕi+1)(ci+1xi+1))→ . . . → (Xp, F (ϕpcp)(xp)) (3.52)

to
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((Y1, x1)→ · · · → (Yi−1, xi−1)
(ϕici−1,F (ϕici)(fi))−−−−−−−−−−−→ (Xi, F (ϕici)(xi)) (3.53)

→ · · · (ϕpcp,F (ϕpcp)(fp))−−−−−−−−−−−→ (Xp, F (ϕpcp)(xp)) (3.54)

So, we can identify Hd0 = d0H . The other identifications hold, similarly. �
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4. EQUIVARIANT HOMOTOPY COLIMIT

In this section, we discuss theorems about homeomorphisms and homotopy

equivalences of simplicial sets in the equivariant setting and we introduce the

equivariant homotopy colimit. We also give the equivariant version of the Thomason’s

theorem. For this we follow the [Villarroel-Flores, 1999].

4.1. Basic Definitions and Theorems

For a finite group G, let G be the category with one object, whose morphisms

are the elements of the group G where the composition is given by the group

multiplication. The category of G-objects in a category C is the category CG of

functors from G to C.

Theorem 4.1: Given a bisimplicial G-set X, let X1 be the simplicial G space which

sends [p] to the realization of the simplicial set [q]→ Xpq and let X2 be the simplicial

G space which sends [q] to the realization of the simplicial set [p] → Xpq. Then we

have a homomorphism of G-topological spaces

| diag(X) |∼=G| X1 |∼=G| X2 | (4.1)

Proof 4.1 : The non-equivariant version of this theorem is proved in [Gelfand and

Manin, 1996]. It can be easily show that all the maps defined are G-maps when X is a

bisimplicial G-set. �

For example, G-category or a G-object in the Cat is a functor γ : G → Cat. It

consists of a category γ(∗) = D, and actions of G on the set of objects of D and on the

set of morphisms ∪
A,B∈ObjD

morD(A,B) which satisfy the following axioms:

i) g1A = 1gA for all g ∈ G and A ∈ ObjD,

ii) gφ ∈ morD(gA, gB) for all g ∈ G and φ ∈ morD(A,B),

iii) g(φ ◦ ψ) = (gφ) ◦ (gψ) for all g ∈ G, and φ, ψ morphisms in D.

Then, we say D is a G-category.

Let D1 and D2 be G-categories, given by functors γ1, γ2 : G→ Cat respectively.
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An equivariant G-functor D1 → D2 is defined to be a natural transformation from γ1

to γ2. So it is determined by a functor η : D1 → D2 such that η(gA) = gη(A) for all

objects A in D and g ∈ G, and η(gφ) = gη(φ) for all morphisms φ in D and g ∈ G.

Definition 4.1: Given a finite group G, let εG be the category whose objects are pairs

(G/H, aH) where H ≤ G and a ∈ G and morphisms from (G/H, aH) to (G/K, bK)

are G-maps f : G/H → G/K such that F (aH) = bK.

Note that there is a morphism f from (G/H, aH) to (G/K, bK) if and only if

Ha−1b ≤ K. In this case, the morphism is unique and we denote it by fa−1b. Here εG

is a G-category with a G-action given by

• g(G/H, aH) = (G/H, gaH)

• gf : (G/H, gaH) → (G/K, gbK) is the map gf : G/H → G/K defined by

(gf)(xH) = gf(xH).

Example 4.1: Let G be a cyclic group of order two with a generator t. Then objects of

εG are (G/1, 1.1), (G/1, t.1) and (G/G, 1.G) and the category εG is

(G/1, 1.1) (G/1, t.1)

(G/G, 1.G)

(4.2)

Example 4.2: Let G be a symmetric group of order three that is

G = S3 = {r, s|r2 = s3 = 1, rsr = s2} = {1, r, s, rs, rs2, s2} (4.3)

The subgroups of G are
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G

H1 =< r >

H2 =< rs >

H3 =< rs2 >

K =< s >

E =< 1 >

(4.4)

Then, objects of εG are (G/G, 1G) (G/H1, H1), (G/H1, sH1), (G/H1, s
2H1),

(G/H2, H2), (G/H2, sH2), (G/H2, s
2H2), (G/H3, H3), (G/H3, sH3),

(G/H3, s
2H3), (G/K,K), (G/K, rK), (G/E,E), (G/E, rE), (G/E, sE),

(G/E, rsE), (G/E, rs2E), (G/E, s2E). There is a unique morphism from

(G/E, gE) to every object of εG and there is a unique morphism from every object to

(G/G, 1.G). The other morphisms are given as follows:

• mor((G/K,K), (G/K, rK)) = {fr},

• mor((G/K, rK), (G/K,K)) = {fr},

• mor((G/H2, s
2H2), (G/H,s

2H3)) = {f1},

• mor((G/H,s
2H3), (G/H2, s

2H2)) = {f1},

• mor((G/H1, H1), (G/H3, sH3)) = {fs}

• mor((G/H2, H2), (G/H1, sH1)) = {fs}

• mor((G/H1, sH1), (G/H3, s
2H3)) = {fs}

• mor((G/H2, s
2H2), (G/H1, H1)) = {fs}

• mor((G/H1, s
2H1), (G/H3, H3)) = {fs}

• mor((G/H3, s
2H3), (G/H2, H2)) = {fs}

• mor((G/H3, H3), (G/H2, sH2)) = {fs}

• mor((H/H2, sH2), (G/H1, s
2H1)) = {fs}

• mor((G/H1, sH1), (G/H2, H2)) = {fs2}

• mor((G/H1, H1), (G/H2, s
2H2)) = {fs2}

• mor((G/H2, H2), (G/H3, s
2H3)) = {fs2}
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• mor((G/H2, sH2), (G/H3, H3)) = {fs2}

• mor((G/H1, s
2H1), (G/H2, sH2)) = {fs2}

• mor((G/H3, sH3), (G/H1, H1)) = {fs2}

• mor((G/H3, s
2H3), (G/H1, sH1)) = {fs2}

• mor((H/H3, H3), (G/H1, s
2H1)) = {fs2}

Now, we recall the following definitions from equivariant homotopy theory.

Definition 4.2: Let f, g : X → Y be G-maps between G-spaces X and Y. A G-homotopy

from f to g is a homotopy H : X × [0, 1] → Y such that H(gx, t) = gH(x, t) for all

g ∈ G, x ∈ X and t ∈ [0, 1]. In this case, the G-maps f and g are called G-homotopic

and we write f 'G g.

Definition 4.3: Let X and Y be two G-spaces. We say that X and Y are G-homotopy

equivalent if there exists G-maps f : X → Y and g : Y → X such that f ◦ g 'G 1Y

and g ◦ f 'G 1X .

For simplicial maps, we have the analoguous definitions.

Definition 4.4: If X and Y are G-simplicial sets and φ, ψ : X → Y are G-maps, we say

that φ is weakly G-homotopic to ψ if there is a G-homotopy from |X| to |Y | such that

H(x, 0) = |φ|(x) and H(x, 1) = |ψ|(x).

Similarly, we say that two G-functors between G-categories F1, F2 : D→ C are

weakly G-homotopic if there is a G-homotopy from |D| to |C|. Hence two G-categories

D and C are weakly G-homotopy equivalent if |D| and |C| are G-homotopy equivalent.

Definition 4.5: Let X and Y be G-simplicial sets and φ, ψ : X → Y be simplicial

G-maps. The simplicial map φ is called strongly G-homotopic to ψ if there exists a

G-simplicial map

H : X ×∆1 → Y (4.5)

such that H restricted to X × 0 is φ and H restricted to X × 1 is ψ.

Similarly, two G-functors between G-categories F1, F2 : C → D are called

strongly G-homotopic if N(F1) and N(F2) are strongly G-homotopic.
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Theorem 4.2: If X and Y are G-simplicial sets, we have a G-homeomorphism

|X × Y | ∼=G |X| × |Y | (4.6)

if the topology on the right side is taken to be compactly generated.

Proof 4.2 : It can be easily checked that the maps, in the proof of Theorem 2.8 are

G-maps when X and Y are G-simplicial sets. �

Corollary 4.1: Let X and Y be G-simplicial sets and φ, ψ : X → Y be strogly

G-homotopic G-maps. Then φ and ψ are also weakly G-homotopic maps.

Proof 4.1 : Let φ and ψ be two strongly G-homotopic maps, i.e. there is a G-map

H : X × ∆1 → Y such that H|X×0 = φ and H|X×1 = ψ. Then that |H||X×0 = |φ|

and |H||X×1 = |ψ|. Therefore, |H| : |X| × |∆1| → |Y | gives the desired weak

G-homotopy from φ to ψ. �

Lemma 4.1: A natural transformation η : F → F ′ between the G-functors induces a

strong G-homotopy between F and F ′.

Proof 4.1 : Clearly, the maps defined in Lemma 3.1 are G-maps. �

Corollary 4.2: If the G-functor F : C→ D is left adjoint to the G-functor F ′ : D→ C,

then F and F ′ are strongly G-homotopy equivalences.

Definition 4.6: Let C be a G-category. If C is a (strongly) weakly G-homotopy

equivalent to a point, then C is called (strongly) weakly G-contractible.

Corollary 4.3: If C is a G-category with an initial object X fixed by G, then C is strongly

G-contractible.

Proof 4.3 : Since * and X are fixed objects, the functors T and S defined in Corollary

3.1 are G-functors.�

Theorem 4.3: Let X and Y be G-CW-complexes and φ : X → Y be a G-equivariant

cellular map. For each subgroup H of G, φH : XH → Y H is a homotopy equivalence

if and only if φ is a G-homotopy equivalence.
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Proof 4.3 : See Section II in [Bredon, 1967] �

If F is a G-functor, then both F/d and d/F have an action of the stabilizer

Gd induced by the action of G on C and D such that g(c, v) = (gc, gv). In

[Villarroel-Flores, 1999], the following generalization of Quillen’s Theorem [Quillen,

1978] and (1.4) from [Thevenaz and Webb, 1991] is proved.

Theorem 4.4: Let F : C → D be a G-functor. F is a weak G-homotopy equivalence if

for every object d ∈ D the category d/F is weakly Gd-contractible.

Proof 4.4 :Let H be a subgroup of G and CH be the subcategory of C whose objects

are the objects of C which are fixed by H and morphisms are those of C which are fixed

by H. Since the geometric realization preserves small limits, we have |CH | = |C|H . By

the Theorem 4.3, it suffices to show that FH : CH → DH is a homotopy equivalence

where FH is the restriction of F. Let d ∈ Obj(DH) i.e. hd=d for all h ∈ H . Then

we have H ≤ Gd. Now, consider d/FH . It is the category whose objects are the

pairs (c, f : d → FH(c)) where c ∈ CH , f ∈ morHC (d, F (c)) and a morphism in

mord/FH ((c, f), (c′, f ′)) is a morphism g : c→ c′ in CH such that f ′ = FH(g)f . As a

subgroup of Gd, it acts on d/F by

h(c, f) = (hc, hf) (4.7)

and

h.g = hg : (hc, hf)→ (hc′, hf ′) (4.8)

Therefore,

Obj((d/F )H) = {(c, f : d→ F (c)) | hc = c, hf = f, ∀h ∈ H}

= Obj(d/FH)

(4.9)

and
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mor(d/F )H ((c, f), (c′, f ′)) = {g : (c, f)→ (c′, f ′) | F (g) ◦ f = f, hg = g,∀h ∈ H}

= {g : c→ c′ in cH | f ′ = FH(g)(f)} (4.10)

= mord/FH ((c, f), (c′, f ′)

So, we can identify the categories d/FH and (d/F )H when d ∈ Obj(DH). Since d/F

is weakly Gd-contractible, (d/F )H = d/FH is weakly contractible. So, FH is a weak

homotopy equivalent by the nonequivariant version. �

4.2. Actions of G by Natural Transformations on Functors
from G-Categories

Definition 4.7: Let C be a G-category and F : C → D be a functor. We say that η

acts by natural transformations on F if for each g ∈ G, X ∈ Obj(C), there is a map

ηg,X : F (X)→ F (gX) such that

i) η1,X = 1F (X) for all X ∈ ObjC,

ii) the following diagram commutes for X ∈ Obj(C), g1, g2 ∈ G:

F (X) F (g1X)

F (g1g2X)

ηg2,X

ηg1g2,X
ηg1,g2X (4.11)

iii) the following diagram is commutative for g ∈ G and f : X → Y a map in C:

F (X) F (Y )

F (gX) F (gY )

F (f)

ηg,X ηg,Y

F (gf)

(4.12)

Remark 4.1: Let F : C → D be a functor with an action of η by natural

transformations. Then for any functor T : D → E, we can define an action of Tη

by natural transformations on TF : C→ E by (Tη)g,X = T ◦ ηg,X . Clearly,

i) (Tη)1,X : TF (X)→ TF (X), so (Tη)1,X = 1TF (X) for all X ∈ ObjC,
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ii) the following diagram is commutative for X ∈ ObjC, g1, g2 ∈ G:

TF (X) TF (g2X)

TF (g1g2X)

(Tη)g2,X

(Tη)g1g2,X
(Tη)g1,g2X

(4.13)

iii) the following diagram is commutative for g ∈ G and f : X → Y a map in C:

TF (X) TF (Y )

TF (gX) TF (gY )

TF (f)

Tηg,X Tηg,Y

TF (gf)

(4.14)

Each object FX obtains an action of the subgroup GX by ηg,X : FX → FX in such a

way that if φ : X → Y is a map in C, then Fφ : FX → FY is GX ∩GY -equivaiant.

Recall that a G-simplicial set is a functorG→ Sp. Let H be a subgroup of G, C a

G-category and F : C→ D be a functor with an action of η by natural transformation.

A category of H-fixed points of C is the category whose objects are c ∈ Obj(C) with

hc=c for all h ∈ H and morphisms f : c → c′ are f ∈ morC(c, c′) with hf=f for all

h ∈ H .

A functor F : C → D restricts to a functor FH : CH → D by FH(X) = F (X)

and FH(f) = F (f). There is an induced action on FH given by

η′gH,X = ηg,X : F (X)→ F ((gH), X) (4.15)

where (gH).X =: gX .

Proposition 4.1: Given a G-category C and an action of η by natural transformations

on F : C→ D there is a natural structure of G-simplicial object on srepF.

Proof 4.1 : For g ∈ G, let gn : (srepF )n → (srepF )n be the map which sends

F (σ(0)) indexed by σ ∈ N(C)n by ηg,σ0 to F ((gσ)(0)) indexed by gσ. Then the

simplicial map g = (gn) : srepF → srepF defines a simplicial map. �
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Corollary 4.4: Let C be a G-category, F : C → sD a functor and η an equivariant

automorphism of F. Then hocolimF is a G-simplicial object in D, with action on the

p-simplices given by

g(X0
φ1−→ X1 → . . .

φp−→ Xp, y) = (gX0
gφ1−−→ gX1 → . . .

gφp−−→ gXp, ηg,X0(y)) (4.16)

for every y ∈ (FX0)p.

Proof 4.4 : Since the G-action on diag(srepF) induced from the G-action on srepF, the

corollary holds. �

Lemma 4.2: Let X be a G-simplicial set. Then |X|G is naturally homeomorpic to |XG|.

Proof 4.2 : Since | · | preserves finite limits, we have | X |G∼=| XG |. �

Theorem 4.5: Let φ : X → Y be a map of bisimplicial G-sets. Then diag(φ) is a weak

G-homotopy equivalence if φp : Xp → Yp is a weak G-homotopy equivalence for all p.

Proof 4.5 : If we show that | diag(φ) |H is an ordinary homotopy equivalence, then it

follows by Theorem 4.3 that |diag(φ)| is a G-homotopy equivalence and hence diagφ

is a weak G-homotopy equivalence. By the Lemma 4.2, it suffices to show that the

simplicial map

diag(φH) : diag(XH)→ diag(Y H) (4.17)

is a weak homotopy equivalence because diag(Y )H can be identified with diag(Y H).

Since |(XH)p| = |Xp|H and the equivariant homotopy equivalence |φp| : |Xp| → |Yp|

restricts to fixed points, the map

|(φH)p| : |(XH)p| → |(Y H)p| (4.18)

is a homotopy equivalence. Then the result follows by the non-equivariant version of

the Theorem 4.5. �

Now, we give the equivariant version of the Thomason’s theorem.
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Theorem 4.6: [Theorem 3.23 in [Villarroel-Flores, 1999] ]. Let C be a G-category and

F : C → Cat be a functor with an action of η by natural transformations. Then there

is a weak G-homotopy equivalence

ψ : hocolimN(F )→ N(

∫
C
F ) (4.19)

between the homotopy colimit of N(F) and the nerve of the Groethendieck construction.

Here, the G-action on hocolimN(F) is given by N(η) and the G-action on N(
∫

C F ) is

given by η.

Proof 4.6 : In the [Thomason, 1979], it is proved that ψ is a homotopy equivalence.

Now, we first show that ψ is equivariant, then we descibe an action by natural

transformation η̃ on F̃ which is constructed in Theorem 3.5 and then produce weak

G-homotopy equivalences

λ1 : hocolimN(F̃ )→ hocolimN(F ) (4.20)

and

λ2 : hocolimN(F̃ )→ N(

∫
C
F ) (4.21)

Finally, we prove that ψλ1 is strongly G-homotpic to λ2. Since λ1, λ2 are weak

G-homotopy equivalence, it follows that ψ is also weak G-homotopy equivalence.�

Lemma 4.3: There is an equivariant map ψ : hocolimN(F )→ N(
∫

C F )

Proof 4.3: We prove in Lemma 3.2 that ψ is a simplicial map. We now have
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ψ(g(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, a0

α1−→ a1
α2−→ . . .

αp−→ ap))

= ψ(gX0
gϕ1−−→ . . .

gϕp−−→ gXp, ηg,X0(a0)
ηg,X0

(α1)
−−−−−→ . . .

ηg,X0
(αp)

−−−−−→ ηg,X0(ap))

= (gX0, ηg,X0(a0))
(gϕ1,F (gϕ1)(ηg,X0

(α1)))
−−−−−−−−−−−−−−→ (gX1, F (gϕ1)ηg,X0(a1)) · · · (4.22)

(gXp−1, F (gϕp−1)ηg,X0(ap−1))
(gϕp,F (gϕp)(ηg,X0

(αp)))
−−−−−−−−−−−−−−→ (gXp, F (gϕp)ηg,X0(ap))

= (gX0, ηg,X0(a0))
(gϕ1,ηg,X1

(F (ϕ1)(α1))
−−−−−−−−−−−−−→ (gX1, ηg,X1(F (ϕ1)(a1)) · · ·

(gXp−1, ηg,Xp−1(F (ϕp−1)(ap−1)))
(gϕp,ηg,xp−1F (ϕp)(αp))
−−−−−−−−−−−−−→ (gXp, ηg,Xp−1F (ϕp)(ap))

= gψ((X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, a0

α1−→ a1
α2−→ . . .

αp−→ ap))

and hence ψ is equivariant. �

In the Theorem 3.5, we define a functor F̃ : C→ Cat associated to the functor F.

Now, from the action by natural transformation η on F, we define an action by natural

transformation η̃ on F̃ by

η̃g,X(c, x) = (gc, ηg,X(x)) (4.23)

and

η̃g,X(α, f) = (gα, ηg,X(f)) (4.24)

Lemma 4.4: There is a weak G-homotopy equivalence

λ1 : hocolimNF̃ → hocolimNF (4.25)

Proof 4.4 : Here λ1 is defined as in the proof of Lemma 3.3. The result follows from

Corollary 4.2 and Theorem 4.5 which are the equivariant versions of Theorem 3.4 and

Theorem 3.5 respectively. �

Remark 4.2: Let G be a group, H be a subgroup of G and X be a H-set. The product

G ×X carries an H-action (h, (g, x)) 7→ (gh−1, hx). Define an equivalence relation
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on G × X by (g, x) ∼ (g′, x′) if there exists h ∈ H such that g = g′h and x′ = hx.

The orbit space is denoted by

indGHX = {[g, x] | g ∈ G, x ∈ X} (4.26)

Here, indGHX is a G-set with a G-action given by

g′[g, x] = [g′g, x] (4.27)

for all g′ ∈ G and [g, x] ∈ indGHX .

For any H-map f : X → Y , we have an induced G-map

indGHf : G×H X → G×H Y (4.28)

defined by f([g, x]) = [g, f(x)]. Clearly, indGH is a functor from the category of H-sets

to the category of G-sets.

Similarly, we can define indGH for H-spaces, H-simplicial sets and so on.

Proposition 4.2: Let H ≤ G. If f : X → Y is a H-homotopy equivalence between

H-spaces, then indGHf is a G-homotopy equivalence.

Proof 4.2 : Let f : X → Y be a H-homotopy equivalent with a homotopy inverse

g : Y → X . LetH1 : X×I → X be H-homotopy from g◦f to 1X andH2 : Y ×I → Y

be H-homotopy from f ◦ g to 1X . Then indGHH2 and indGHH1 give the G-homotopies

between (indGHf) ◦ (indGHg) ' 1X and (indGHg) ◦ (indGHf) ' 1Y , respectively . �

Lemma 4.5: There is a weak equivariant homotopy equivalence

λ2 : hocolimNF̃ → N(

∫
C
F ) (4.29)

Proof 4.5 : As we have shown in Lemma 3.4, λ2 is a natural homotopy equivalence

between hocolimNF̃ and the nerve of the Groethendieck construction. It is a G-map,

since
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λ2(g(X0
ϕ1−→ · · · ϕp−→ Xp, (c0, x0)

(α1,f1)−−−−→ (c1, x0)
(α2,f2)−−−−→ · · · (αp,fp)−−−−→ (cp, xp)))

= λ2(gX0
gϕ1−−→ · · · gϕp−−→ gXp, η̃g,X0(c0, x0)

η̃g,X0
(α1,f1)

−−−−−−−→ · · ·
η̃g,X0

(αp,fp)
−−−−−−−→ η̃g,X0(cp, xp))

= (gX0, η̃g,X0(c0, x0))
(gϕ1,F (gϕ1)(η̃g,X0

(α1,f1)))
−−−−−−−−−−−−−−−→ (gX1, F (gϕ1)η̃g,X0(c1, x1))

· · ·
(gϕp−1,F (gϕp−1)(η̃g,X0

(αp−1,fp−1)))
−−−−−−−−−−−−−−−−−−−−−→ (gXp−1, F (gϕp−1)η̃g,X0(cp−1, xp−1))

(gϕp,F (gϕp)(η̃g,X0
(αp,fp)))

−−−−−−−−−−−−−−−−→ (gXp, F (gϕp)η̃g,X0(cp, xp))

= (gX0, η̃g,X0(c0, x0))
(gϕ1,η̃g,X1

(F (ϕ1)(α1,f1))
−−−−−−−−−−−−−−→ (gX1, η̃g,X1(F (ϕ1)(c1, x1)) (4.30)

· · ·
(gϕp−1,η̃g,xp−2F (ϕp−1)(αp−1,fp−1))
−−−−−−−−−−−−−−−−−−−−−→ (gXp−1, η̃g,Xp−1(F (ϕp−1)(cp−1, xp−1)))

(gϕp,η̃g,xp−1F (ϕp)(αp,fp))
−−−−−−−−−−−−−−−→ (gXp, η̃g,Xp−1F (ϕp)(cp, xp))

= gλ2((X0
ϕ1−→ · · · ϕp−→ Xp, (c0, x0)

(α1,f1)−−−−→ (c1, x1)
(α2,f2)−−−−→ · · · (αp,fp)−−−−→ (cp, xp))

As in the non-equivariant case,λ2 = diag(∧) where ∧ : srep(NF̃ ) → N(
∫

C F ). By

Theorem 4.1 , we have

|diagN(

∫
C
F )∗∗| ∼=G |N(

∫
C
F )| (4.31)

Therefore, it suffices to show that

∧q : srep(NF̃ )q → N(

∫
C
F )q (4.32)

is a weak G-homotopy equivalence by Theorem 4.5.

As in the non-equivariant case, ∧q can be expressed as the coproduct of

simplicial maps

N(Yq/C)→ ∆(0) (4.33)

taken over the points of N(
∫

C F )q. Since the geometric realization commutes with the

coproducts, it suffices to show that the map
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⊔
(Y0,x0)→. . . →(Yq ,xq)

|N(Yq/C)| −→
⊔

(Y0,x0)→. . . →(Yq ,xq)

|∆0| (4.34)

is a G-homotopy equivalence. Let Iq be the set of representatives of the G-orbits of the

action of G on N(
∫
F )q. Let i = (Y0, x0) → . . . → (Yq, xq) ∈ I . Since 1Yq is an

initial object in Yq/C which is fixed by the stabilizer Gi of i, the map

indGGi |N(Yq/C)| → indGGi |∆
0| (4.35)

is a G-homotopy equivalence. Therefore the induced map

⊔
i∈Iq

indGGi |N(Yq/C)| →
⊔
i∈Iq

indGGi |∆
0| (4.36)

which equals to

⊔
(Y0,x0)→. . . →(Yq ,xq)

|N(Yq/C)| −→
⊔

(Y0,x0)→. . . →(Yq ,xq)

|∆0| (4.37)

is a G-homotopy equivalence as desired.

Lemma 4.6: There is a G-homotopy

H : (hocolimNF̃ )×41 → N(

∫
C
F ) (4.38)

from ψλ1 to λ2.

Proof 4.6 : In the Lemma 3.5, we proof that H : ψλ1 ' λ2 is a simplicial homotopy.

It remains to show that, H is equivariant. Here, g sends

(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, (c0, x0)

(α1,f1)−−−−→(c1, x1)
(α2,f2)−−−−→

. . .
(αp,fp)−−−−→ (cp, xp), vi)

(4.39)
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to

(gX0
gϕ1−−→ · · · gϕp−−→ gXp, gYq → gX0, (gc0,ηg,Y0(x0))

(gα1,ηg,Y0 (f1))
−−−−−−−−→

· · · → (gcp, ηg,Yp(xp)) , vi)

(4.40)

and H sends it to

(gY0,ηg,Y0(x0))→ · · · (gYi−1, ηg,Yi−1
(xi−1))

gΦici−1,F (gΦici)(ηg,Y0 (fi))−−−−−−−−−−−−−−−−→

(gXi, F (gΦici)(ηg,Yi(xi)))→ · · · → (gXp, F (gΦpcp)(ηg,Yp(xp)))

(4.41)

since, (gΦkck) = (gϕk) ◦ · · · ◦ (gϕ1) ◦ (gϕk).

On the other hand, H sends

(X0
ϕ1−→ X1

ϕ2−→ . . .
ϕp−→ Xp, (c0, x0)

(α1,−−−−→f1) (c1, x1)
(α2,f2)−−−−→

. . .
(αp,fp)−−−−→ (cp, xp), vi)

(4.42)

to

(Y0, x0)→(Y1, x1)→ . . . → (Yi−1, xi−1)
((Φici−1,F (Φici)(fi)))−−−−−−−−−−−−→ (Xi, F (Φici)(xi))

→ (Xi+1, F (Φi+1)(ci+1xi+1))→ . . . → (Xp, F (Φpcp)(xp))

(4.43)

which is send by g to

(gY0, ηg,Y0(x0))→ · · · → (gYi−1, ηg,Yi−1
(xi−1)

(gΦgci−1,gF (Φici)(fi))−−−−−−−−−−−−−→

(gXi, gF (Φici)(xi))→ · · · → (gXp, gF (Φpcp)(xp)))

(4.44)

Since gF (Φkck)(fk) = F (gΦkck)(ηg,Yk(fk)), H is G-equivariant.

This completes the proof of the theorem. �
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5. AN ALTERNATIVE PROOF OF THOMASON’S
THEOREM

In this chapter, we give an alternative proof of the equivariant version of

the Thomason’s theorem which identifies the G-homotopy type of the geometric

realization of the equivariant homotopy colimit of a nerve of a functor with an action by

natural transformation to the geometric realization of the nerve of its Groethendieck

construction. We also establish one to one correspondence with such functors and

functors from the Groethendieck contruction of related categories.

5.1. Another Proof of Equivariant Version of Thomason’s
Theorem

We discussed the nonequivariant version of the Thomason’s theorem [Thomason,

1979] in the Chapter 3 and we provided a proof of the equivariant version of the

Thomason’s theorem in the Chapter 4 given by [Villarroel-Flores, 1999]. For each

step of the proof, we have closely followed [Villarroel-Flores, 1999]. In this section,

we give an altenative proof to the equivariant version of the Thomason’s theorem by

using fixed point categories. For this, we need the following observations:

Lemma 5.1: Let C be a G-category. Then N(C)H and N(CH) are identical as

simplicial sets.

Proof 5.1 : An n-simplex in N(Cn) is a sequence

σ : X0
f1−→ X1

f2−→ . . .
fn−→ Xn (5.1)

of composible morphism in C. The set N(Cn)H is the subset of N(Cn) consisting of

σ’s which are fixed by H that is hσ = σ for ever h ∈ H where

hσ : hX0
hf1−−→ hX1

hf2−−→ . . .
hfn−−→ hXn (5.2)

So, the elements of N(Cn)H are σ : X0
f1−→ X1

f2−→ . . .
fn−→ Xn with hXi = Xi and

hfi = fi for all h ∈ H .
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On the other hand, CH is the subcategory of C whose objects are X ∈ Obj(C)

with hx=x for all h ∈ H and morphisms are f : X → X ′ with hf=f for all h ∈ H . So

the set of CH
n consists of sequences:

σ : X0
f1−→ X1

f2−→ . . .
fn−→ Xn (5.3)

where hXi = Xi and hfi = fi. Since the coface and codegeneracy maps are also the

same, we can identify N(C)H with N(CH). �

Let F : C → Cat be a functor with an action of G by natural transformations.

Then for every object c in C, we consider F(c) as a Gc-category. Here, the Gc-action

on objects and morphisms are given by ηg,c that is g.x = ηg,c(x) and gf = ηg,c(f) for

all g ∈ Gc .

If c ∈ Obj(CH), then H ≤ Gc. Since F(c) is a Gc-category, we can take the H

fixed points of F(c). Then we can define a functor FH : CH → Cat by FH(c) = F (c)H

and FH(f) = F (f). This is well-defined since

i) Let x ∈ Obj(F (c)H), that is x ∈ Obj(F (c)) with hx = ηh,c(x) = x for all

h ∈ H . So, we have

hF (f)(x) = ηh,C′(F (f)(x))

= F (hf) ◦ ηh,C(x)

= F (f)(x)

(5.4)

that is F (f)(x) in Obj(F (C)H)

ii) For a morphism α : X → Y in F (c)H that is hα = ηh,cα = α for all h ∈ H , we

have

hF (f)(α) = ηh,C′(F (f)(α))

= F (hf) ◦ ηh,C(α)

= F (f)(α)

(5.5)
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So, F (f)(α) in Obj(F (C)H) is a morphism in F (C′)H as desired.

Lemma 5.2: (
∫

C F )H =
∫

CH F
H .

Proof 5.2 : Here (
∫

C F )H is the category whose objects are the pairs (c,x) where

c ∈ Obj(C) and x ∈ Obj(F (c)) such that h(c, x) = (hc, ηh,C(x)) = (c, x) that is

hc=c, ηh,C(x) = x. So the objects of (
∫

C F )H are the pairs (c,x) where c ∈ ObjCH

and x ∈ F (C)H . Also, the mophisms of (
∫

C F )H are (α, f) : (c, x)→ (d, y) such that

(hα, ηh,Cf) that is hα = α and ηh,Cf = f . Since the coface and the codegeneracy

maps are also the same, we can identify (
∫

C F )H with (
∫

CH F
H). �

Lemma 5.3: (srepNF )H = srepN(FH)

Proof 5.3 : A (p,q)-simplices of a bisimplicial G-set srepNF are the expression of the

form

(X0
f1−→ . . .

fp−→ Xp, a0
α1−→ . . .

αq−→ aq) (5.6)

where the second sequence is a q-simplex in N(F (X0)). Here the G-action is given by

g(X0
f1−→ . . .

fp−→ Xp, a0
α1−→. . . αq−→ aq) = (gx0

gf1−−→ . . .
gfp−−→ Xp,

ηg,X0(a0)
ηg,X1

(α1)
−−−−−→ . . .

ηg,Xq (αq)
−−−−−→ ηg,X0(aq))

(5.7)

So, the element of the set (srepNF )Hp,q are pairs

(X0
f1−→ . . .

fp−→, a0
α1−→ . . .

αq−→ aq) (5.8)

with hXi = Xi, hfi = fi, ηh,X0(ai) = ai and ηh,Xi(αi) = αi for all h ∈ H . These are

exactly the element of srepN(FH)p,q. Since the coface and codegeneracy maps are the

same, we identify srepN(FH) with srepN(FH).

Since diag also respects H-fixed points, we can identify

(hocolimNF )H = hocolimN(FH) (5.9)
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by the above Lemma 5.3.

By the Lemma 5.1 and Lemma 5.2 we have

(N

∫
C
F )H = N(

∫
C
F )H = N(

∫
CH
FH) (5.10)

Therefore, for all H ≤ G there exists a weak homotopy equivalence

(hocolimNF )H ' (N

∫
C
F )H (5.11)

This implies that there is a weak G-homotopy equivalence

hocolimNF ' N(

∫
C
F ) (5.12)

between the homotopy colimit ofN◦F and the nerve of the Groethendieck construction

of F. �

5.2. Lifting of Functors F : C→ D with η Actions to
Functors from

∫
G C to D

Theorem 5.1: Let F : C→ D be a functor where C is a G-category determined by the

functor γc : G → Cat. Then there is an action on F by natural transformation if and

only if F factors through

F̃ :

∫
G
γC −→ D (5.13)

i. e. the following diagram commutes:

C
∫
G γC

D

i

F F̃
(5.14)

where the functor i defined by i(c) = (∗, c) and i(f) = (1∗, f).
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Proof 5.1 : We firstly prove the necessity part of the Theorem 5.1. Now given a functor

F : C→ D with an action by natural transformations. Define the functor F̃ :
∫
G γC →

D on objects by

F̃ (∗, c) = F (c) (5.15)

and on morphisms by

F̃ ((g, f)) = F (f) ◦ ηg,c (5.16)

where (g, f) : (∗, c1)→ (∗, c2).

A map
∫
G γC −→ D gives a functor F̃ since

F̃ (1, 1c) = F (1c) ◦ η1,c = 1F (c) ◦ 1F (c) = 1F (c) (5.17)

and

F̃ ((g2, f2)) ◦ (g1 ◦ f1)) = F̃ (g2g1, f2(g2f1))

= F (f2(g2f1)) ◦ ηg2g1,c1

= F (f2(g2f1)) ◦ ηg2,g1c1 ◦ ηg1c1 (5.18)

= F (f2) ◦ F (g2f1) ◦ ηg2,g1c1 ◦ ηg1,c1

= F (f2) ◦ ηg2,c2 ◦ F (f1) ◦ ηg1,c1

= F̃ ((g2, f2)) ◦ F̃ ((g1, f1))

Also, F factors through F̃ since

• F̃ (∗, c) = F (c)

• F̃ (1, f) = F (f) ◦ η1,c = F (f) ◦ 1F (c) = F (f)

Now, we prove the sufficiency of the Theorem 5.1, let F : C → Cat be a functor

that factors through F̃ . Define ηg,c : F (c)→ F (gc) by ηg,c := F̃ (g., 1c). Then we have

49



i) For c ∈ Obj(C), we have η1,c = F̃ (1, 1c) = 1F (c)

ii) For c ∈ Obj(C), g1, g2 ∈ G, we have

ηg2,g1c ◦ ηg1,c = F̃ (g2, 1g2g1c) ◦ F̃ (g1, 1g,c) = F̃ ((g2, 1g2g1,c) ◦ (g1, 1g1c))

= F̃ (g2g1, 1g2g1,c ◦ g2(1g,c)) = F̃ (g2g1, 1g2g1,c) = ηg2g1,c

(5.19)

iii) For g ∈ G and f : c1 → c in C, we have

ηg1,c1 ◦ F (f) = F̃ (g1, 1g1,c) ◦ F̃ (1, f) = F̃ ((g1, 1g1,c) ◦ (1, f))

= F̃ (g1, 1g1,c ◦ g1(1, f)) = F̃ (g1, 1g1,c◦gf ) (5.20)

= F̃ (g1, gf) = F̃ ((1, gf) ◦ (g1, 1gc1))

= F̃ (1, gf) ◦ F̃ (g1, 1gc1) = F (gf) ◦ ηg1,c1

This proves the theorem. �

Here, the map i induces a map

i∗ : hocolimNF → hocolimNF̃ (5.21)

which sends

(X0
ϕ1−→ . . .

ϕn−→ Xn, a0
α1−→ . . .

αn−→ an) (5.22)

to (hocolimNF )n such that

((∗, X0)
(1,ϕ1)−−−→ . . .

(1,ϕn)−−−→ (∗, Xn), a0
α1−→ . . .

αn−→ an) (5.23)

in (hocolimNF̃ )n. Clearly, this is a simplicial map.

It also induces a map

i∗ : N(

∫
C
F )→ N(

∫
∫
G γc

F̃ ) (5.24)
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by sending an n-simplex

(c0, a0)
(ϕ1,α1)−−−−→ . . .

(ϕn,αn)−−−−→ (cn, an) (5.25)

where ci is an object in C and ai is an object in F (ci) to an n-simplex

((∗, c0), a0)
((1∗,ϕ1),α1)−−−−−−−→ . . .

((1∗,ϕn),αn)−−−−−−−→ ((∗, cn), an) (5.26)

Proposition 5.1: The following diagram commutes:

hocolimNF hocolimNF̃

N(
∫

C F ) N(
∫∫
G γc

F̃ )

i∗

ψF ψF̃

i∗

(5.27)

where ψF and ψF̃ are the maps given in Thomason’s theorem.

Proof 5.1 : For the commutativity of the diagram

ψF̃ ◦ i∗(X0
ϕ1−→ . . .

ϕp−→ Xp, a0
α1−→ . . .

αp−→ ap)

= ψF̃ ((∗, X0)
(1,ϕ1)−−−→ . . .

(1,fn)−−−→ (∗, Xp), a0
α1−→ . . .

αp−→ ap)

= ((∗, X0), a0)
(ϕ1,F (ϕ1)(α1))−−−−−−−−→ . . .

(ϕp,F (ϕp)(αp))−−−−−−−−→ ((∗, Xp), F (ϕp)(ap))

(5.28)

On the other hand, we have

i∗ ◦ ψF (X0
ϕ1−→ . . .

ϕp−→ Xp, a0
α1−→ . . .

αp−→ ap)

= i∗((X0, a0)
ϕ1,F (ϕ1)(α1)−−−−−−−→ . . .

ϕp,F (ϕp)(αp)−−−−−−−→ (Xp, F (ϕp)(ap))

= ((∗, X0), a0)
(ϕ1,F (ϕ1)(α1))−−−−−−−−→ . . .

(ϕp,F (ϕp)(αp))−−−−−−−−→ ((∗, Xp), F (ϕp)(ap))

(5.29)

and hence ψF̃ ◦ i∗ = i∗ ◦ ψF . �
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