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SUMMARY

Given a finite group G, we study functors from G-categories with an action by
natural transformations of G, which are firstly defined by Villaroel-Flores in 1999.
We establish a one-to-one correspondence between such functors and functors from
the Groethendieck construction of certain categories. Villarroel-Flores proves an
equivariant version of Thomason’s theorem which identifies the homotopy type of the
geometric realization of the homotopy colimit of a the composition of a nerve functor
with a diagram of categories functor with the geometric realization of the nerve of
the Groethendieck construction of the diagram. In this thesis, we also study his proof
in details and we give an alternative proof of the equivariant version of Thomason’s

theorem.

Key Words: Simplicial Objects, Homotopy Colimits, Equivariant Homotopy

Colimits, G-Categories, Thomason’s Theorem .
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OZET

Verilen sonlu bir G grubu i¢in, bolgeleri G-kategoriler olan ve iizerinde
G grubunun dogal doniisiimlerle etkisi olan izlegleri caligtik. Bu etkiler
ilk olarak Villarroel-Flores tarafindan 1999 yilinda tanimlanmistir. Biz bu
izleclerle, iligkili kategorilerin Groethendieck ingalarindan cikan izlecler arasinda
birebir esleme kurduk. Villarroel-Flores, sinir izleclerinin kategori diagramlari
ile birlesimlerinin izleclerin homotopi eglimitlerinin geometrik realizasyonlarinin
homotopy tipleri ile Groethendieck ingalarinin sinirlerinin geometrik realizasyonlarim
0zdeslestiren Thomasan teoreminin, ekuvaryant versiyonunu ispatlamistir. Bu tezde,
Villarroel-Flores’in ispatin1 detaylica calistik ve bu teoremin alternatif bir ispatini

verdik.

Anahtar Kelimeler: Simplicial Nesneler, Homotopi Eslimitleri, Esdegisken

Homotopi Eslimitleri, G-Kategorileri, Thomason’nin Teoremi .
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1. INTRODUCTION

Let GG be a finite group. One way of constructing a topological space with a
G-action is to construct a functor whose values have G-action and then to glue these
values by using the homotopy colimit construction. However, one mostly begins with
a functor ' : C — D where C is a G-category and the values of F' do not necessarily
have a G-action. Here, a G-category is a category on which elements of G act as
functors where the identity element act as the identity functor and the composition of
these functors respects the group multiplication.

In [Villarroel-Flores, [1999]], Villaroel-Flores introduce a notion of an action
of G on functors from (G-categories by natural transformations. In this case, the
action of (G induces an action on the corresponding homotopy colimit and hence the
above construction yields a topological space with a group action. When there is
a natural transformation between two such functors respecting the actions of G' by
natural transformations, then the resulting homotopy colimits are weakly G-homotopy
equivalent.

One of the important results about homotopy colimit construction is the
Thomason’s theorem [Thomason, 1979] which identifies the homotopy colimit of a
diagram obtained by composing the nerve construction with a given functor F' of
categories with the classifying space of the Grothendieck construction of the functor,
up to homotopy. The proof uses two important properties of the diagonal functor from
the category of bisimplicial objects in a given category to the that of simplicial objects.
First one identifies two simplicial topological spaces which are the realizations of
the simplicial sets obtained by fixing one of the variables of a bisimplicial set with
the diagonal. The second one states that the diagonals of pointwise weak equivalent
bisimplicial sets are weak homotopy equivalent.

In [Villarroel-Flores, [1999]], equivariant version of Thomason’s theorem is
proved when the functor in question has an action of GG by natural transformations.
For the proof, Villaroel-Flores first proves the equivariant versions of the above results
about the diagonal functor. Then he shows that all the maps used in the proof are
equivariant. In this thesis, we closely study the proof given by Villaroel-Flores. Then

we give an alternative proof which uses Thomason’s theorem directly and the fact that a



G-map between CW-complexes is G-homotopy equivalent if and only if its restriction
to every subgroup of GG is a homotopy equivalence.

Finally, we show that every functor with an action of GG can be obtained as a
restriction of a functor from the Grothendieck construction of a certain category, the
Grothendieck construction on the domain of it.

The thesis is organized as follows:

In chapter 2, we give some background material from the category theory and
the theory of simplicial objects of a given category. We also discuss some properties
of bisimplicial sets.

In chapter 3, we introduce the simplicial replacement of a functor and then we
define the homotopy colimits of diagrams in the category of simplicial objects. At the
end of the chapter we prove the Thomason’s theorem which identifies the homotopy
type of the geometric realization of a nerve of a functor of categories with the geometric
realization of the nerve of a certain category.

In chapter 4, we discuss the homotopy colimits of functors with an action
of finite groups by natural transformations which are defined by Villaroel-Flores
[Villarroel-Flores, [1999]. The main purpose of this chapter to prove the equivariant
version of Thomason’s theorem. For this we follow [Villarroel-Flores, [1999]).

In chapter 5, we give an alternative proof to the equivariant version of the
Thomason’s theorem. We also establish a one-to-one correspondence between the
functors with actions by natural transformations and the Grothendieck construction of

certain categories.



2. PRELIMINARIES

In this chapter, we give the necessary background on the theory of simplicial
objects in a given category. For the convenience of the reader, we also give the
necessary definitions on the category theory. We refer reader to [Mac Lane, 1971],
[Awodey, 2010]], [Hatcher, 2002], and [Simmons, 2011]] for more details about the
category theory and to [Goerss and Jardine, [1999], [May, [1967] and [Friedman, |[2011]
for the theory of simplicial objects. Throught the chapter, we denote categories with
boldface notation. For example, the category of sets is denoted by Sets, the category

of small categories is denoted by Cat.

2.1. Preliminaries on Category

Definition 2.1: A category C consists of

e a class Ob(C), whose elements are called objects
e a class more, whose elements are called morphisms. Each morphism has a
unique domain and codomain which are objects of C. We write [ : v — y if x
is the domain of f and y is the codomain of f.
e a binary operation o, called the composition of morphisms, satisfying the
associativity and the identity axioms. More precisely, given two arrows [ : © — y
and g : y — =z, the composition g o f is a morphism from x to z such that the
following axioms hold:
— Associativity axiom: If f :x — vy, g:y — zandh: z — tthenho (go f) =
(hog)o f,
— Identity axiom: For every object x in C, there exists a morphism 1, : x — x
called the identity morphism for x, such that for any morphism f : v — y, we

have 1,0 f = f = fol,.

Definition 2.2: A category C is called small category if both obj(C) and morc are sets.

Otherwise, the category C is said to be large.

Now, we introduce some categories which we use throughout the thesis.



1) The class of all sets with all functions between them as morphisms forms a
category. This category is denoted by Sets.
ii The class of all groups with all homomorphisms between them as morphisms
forms a category. We denote this category by Grp.

iii) The class of all topological spaces with all continuous maps between them as
morphisms forms a category and denoted by Top.

iii) The class of all small categories with all functors between them as morphisms

forms a category. We denote it by Cat.

Example 2.1: Let X be a pre-ordered set together with a binary operation < which is
reflexive and transtive. This can be viewed as a category, whose set of objects being
the elements of X and morphisms corresponding to the ordering. Thus for x <y € X,

there is exactly one morphism x — vy in the corresponding category.

Definition 2.3: An initial object of a category C is an object { in C such that for every
objects X in C, there is a unique morphism { — X. The dual idea is that of a terminal
object: an object T in C is said to be terminal if for every object X in C there is a

unique morphism X — T.
Definition 2.4: If an object is both initial and terminal, then it is called a zero object.

Example 2.2: The empty set is the unique initial object in the category of sets and every

one-element set is a terminal object in this category and there are no zero objects.

Example 2.3: The empty space is the unique initial object in the category of topological

spaces and every one-point space is a terminal object in this category.

Definition 2.5: Given a category C, the opposite category of C, denoted by C, is the
category with Obj(C?)=0bj(C) and morcor (A, B) = {f|f € mor¢(B, A)}

Definition 2.6: Let C and D be categories. A (covariant) functor F from C to D is a

mapping that

e sends each object X € C to an object F(X) € D,
e sends each morphism f : X — Y € C to a morphism F(f) : F(X) — F(Y) €

D such that the following two conditions hold:



- F(1x) = 1p(x) for every object X € C
- F(go f)=F(g)o F(f)forall morphisms f : X — Y andg:Y — Z.

A contravariant functor F from C to D is a covariant functor from C? to D. It

means that when f : X — Y inC, F(f): F(Y) — F(X) inD.

Example 2.4: Let F' : C — D be a functor and d € D. We define the comma category
F/d as the category with objects (c,f) with ¢ € Obj(C) and f : F(c) — dinD. A
morphism from (c, f) to (¢, f") isamap g : ¢ — ¢ such that f' o F(g) = f.

Similarly, we can define the category d/F whose objects are the pairs (c,u)
where f :d — F(c).

Let F, G be functors from a category C to a category D. A natural transformation
n : F — G is a family of maps {n. : F(c) — G(c)}eec in D such that for each

f:c—  in C the following diagram commutes:
F(f)l G(f) 2.1

thatis, n.o F'(f) = G(f) o ne.

Similarly, one can define a natural transformation between contravariant

functors.

Definition 2.7: The functors G : C — D and F' : D — C are said to be adjoint if there

exists an isomorphism
Dy.x : more(FY, X) = morp(Y, GX) (2.2)

which is natural in X and Y. We then say F is left adjoint to G and G is right adjoint to
FE. We write F 1 G.

The above adjunction between categories C and D is called a hom-set adjunction.
Equivalently, one can define adjointness between functors by using counit-unit

adjuctions. A counit-unit adjuction between two categories C and D consists of two

5



functors F' : D — C and G : C — D and two natural transformation n : 1p — GF,
¢ : FG — 1¢, called the unit and the counit of the adjunction respectively, such that

the compositions

R iNel YeliNe! (2.3)
and
FOrar S p (2.4)

are the identity transformations 15 and 1y respectively. These equations are called
counit-unit equations. These equations are satiesfied if for each X € Cand Y € D,

we have

lex = G(€x) onax (2.5)

and

lrpy = &py o F(ny). (2.6)

Theorem 2.1: Counit-unit adjuction induces a hom-set adjuction.

Proof 2.1 : Given two functors G : C — D and F : D — C and a counit-unit
adjunction (§,m) : F' - G, we can construct a hom-set adjunction by defining a natural

transformation

® : more(F—,—) — morp(—,G—) (2.7)

as follows: Foreach f : FY — X inCand each g : Y — GX in D, we define

Py x(f)=G(f)ony (2.8)

and

Yy, x(g) =&x 0 F(g) (2.9



Since £ and n are natural transformations, ® and 1 are also natural transformations.

Since F is a functor and £ is a natural transformation, we have

Y(@(f)) =Ex o FG(f)oF(ny) = folpyoF(ny) = folpy = f (2.10)

that is 1 o ® is the identity transformation on C.

Similary, since G is a functor and 7 is natural transformation, we have

DYy = G(€x) o GF(g)ony = G(Ex)omexog=1lexog=g (2.11)
and therefore ® o 1 is the identity transformation on D. Thus ® is a natural
isomorphism with inverse ®=! = ). B
Theorem 2.2: Hom-set adjuction induces a counit-unit adjuction.

Proof : Given functors G : C — D, F' : D — C and a hom-set adjunction

O : morc(F—,—) — morp(—,G—) (2.12)

we can construct a counit-unit adjunction (&,m) : F' = G as follows:

For each X € C, let {x = CI>5§(’X(1GX) in morc(FGX, X) where 1gx
in morp(GX,GX) is the identity morphism.  Similarly, for each Y € D,
ny = Py ry(lpy) in morp(Y,GFY') where 1py € morc(FY,FY) is the identity

morphism. Then we have,

Py x(f)=G(f)ony (2.13)
and
Oy (9) = Ex 0 Flg) (2.14)

foreach f : FY — X and g : Y — GX. Substituting FY for X and ny = ®y py (1ry)

for g in the second formula we obtain the first counit-unit equation



lpy = &py o F(ny) (2.15)

Similarly, substituting GX for Y and {x = ®5§7x(1g x) for fin the first formula, yields

the second counit-unit equation 1ax = G(£x) ongx.

Example 2.5: Consider the inclusion functor G : Ab — Grp from the category of
abelian groups to category of groups. It has a left adjoint which assigns to every group
G the abelianization G* = G /|G, G| of G.

Example 2.6: Suppose that F' : Set — Grp is the functor assigning to each set Y the
free group generated by the elements of Y, and that U : Grp — Set is the forgetful

functor, which assigns to each group X its underlying set. Then F is left adjoint to U.

Definition 2.8: Let F' : J — C be a functor in a category C. A cone to F is an object N
of C together with a family 1x : N — F(X) of morphisms indexed by the objects of
J, such that for every morphism f : X — Y in J, we have F(f) o )x = y.

A limit of the functor F' : J — Cis a cone (L, ¢) to F such that if (N, ¢) is any
other cone then there exists a unique morphism U : N — L such that px o U = 9x

for all X in J.

Example 2.7: Let J be the empty category. There there is only one diagram of type J
which is the empty one. A cone to the empty diagram is an object of C. The limit of F is
any object that is uniquely factored through by every other object. So, it is a terminal

object.

Example 2.8: If J is a discrete category then a diagram F is a family of objects of C,
indexed by J. The limit L of F is the product of these objects. The cone p consists of a
family of morphisms px : L — F(X) called the projections of the product.

A co-cone of a functor F' : J — C is an object N of C together with a family
of morphisms 1 x : F(X — N) for every object of J, such that for every morphism
f: X — Y in], we have ¥y oF (f) = tx.

Definition 2.9: A colimit of a diagram F : J — C is a co-cone (L, ¢) of F such that
if (N, ) is another co-cone, then F there exists a unique morphism U : L — N such

that U o px = x forall X in J.



For example, initial objects are colimits of empty diagrams. Coproducts are

colimits of diagrams indexed by discrete categories.

2.2. Preliminaries on Simplicial Objects in a Category

Definition 2.10: The category A of finite totaly ordered sets is the category, whose
objects are finite ordered sets [n]=[1, 2, . . . , n] for each natural number n, and

morphisms f : [n] — [m] are order-preserving functions.

Here, we can consider [n] as a category with objects 1,2,...,n and a unique
morphism for each ¢ < 7.

Every morphism f : [n] — [m] in A can be written in terms of morphisms
6" : [n] = [n+ 1] and ¢ : [n] — [n — 1], called coface and codegeneracy maps,

respectively. These are defined by

and

These maps satisfy the following equalities:

8ot =607, i < g

oot = gloltt, i < g

aldt = 6ol i< g; (2.18)
018 = Id, 1=7+1,7;

oI5 = §s1, Q> j 4 1.

which are called the cosimplicial identities. Using the above relations one can easily

show that every morphism in A can be written uniquely in the following form,

& Img gt (2.19)

withi; < ... <iyandj; > ... > Jn.



Definition 2.11: For a given category C, a simplicial object in C is a covariant functor
X:A? — C . The category of simplicial objects in C is defined to be the functor
category C* and it is denoted by sC.

Definition 2.12: Let X : A°? — C be a simplicial object in C where C is a category
with objects being sets, we call z,, € X, an n-simplex of X. A simplex v € X,, is
called a degenerate simplex if v = s;y for some 0 < @ < n — 1. A simplex that is not

degenerate is said to be non-degenerate.

When C=Sets, we call X a simplicial set. The category of simplicial set is
denoted by Sp. When C = Top, we call X a simplicial space. The category of
simplicial space is denoted by SSp.

More precisely, a simplicial set X consists of a family of sets X, (n > 0) together
with maps d; = (d')* : X117 — X, , (0 <i<n)ands; = (s)* : X,.1 — X,,
(0 < i < n—1) called face maps and degeneracy maps respectively. These maps

satisfy the dual of the cosimplicial identites.

Example 2.9: For every n € N, the standard n-simpliex A" is a simplicial set
A" = morcy(.,n) (2.20)

For example, the standard 0-simplex A° is a simplicial set with A° = x. Morever, A°

is the terminal object in the category of simplicial sets.

Recall that the standard topological n-simplex is the space
{|A"] = (o, . tn) CR™LD 1 =1,0 <8 < 13 2.21)

which has the subspace topology. There are also face maps ¢’ : |A"| — |A™"1| and

degeneracy maps o : |[A"| — |A""!| defined by
8(toy. .. tn) = (to,. .., tii1, 0.t . .. 1) (2.22)

and

10



l(to, . o tn) = (toy. s tiFtigt,. s tn). (2.23)

Example 2.10: Let X be a topological space and P(X),, be the set of continuous
functions from |A"| to X.
Let o : |A"| — X be a continuous map representing a singular simplex. Then

we define singular simplex d;o : |A""'| — X is by
dio(to, ..., tho1) =0(to,. .. ti_1,0,t;, ...ty 1). (2.24)
and the singular simplex s;o : |A"" — X by
50 (tos -+« tup1) = 0o, - tits by + tivts b - - o L), (2.25)

Together with these face and degeneracy maps P(X),’s constitute a simplicial set

called the singular set of X denoted by P(X).

Theorem 2.3: P(X) : Top — Sp defined by
7)<X)n - mOTT0p<|An|7 X) (226)

is a functor

Proof 2.3]: Here, for f : X — Y in Top, P(f) sends an n-simplex ¢ : |A,| — X to
p o f. See [[Dwyer and Henn, 2001 for more details. B

Definition 2.13: Let X be a simplicial set. The realization | X| of X is the topological

space

X[ = J] X0 x A"/ ~ (2.27)
n=0

where ~ is an equivalence relation defined by (d;(z),p) ~ (z,0'p) for v € X, 1,
p € |A"| and the relation (s;x,p) ~ (x,0lp) forx € X,,_1, p € |A"|. Here X,, has
the discrete topology and | X | has the quotient topology.

11



Theorem 2.4: The above structure makes | — | : Sp — Top into a functor.

Proof [2.4): Here, for a simplicial map f = (f,) : X =Y, we have

[, t) = (fu(2), 1) (2.28)

where (z,t) € X,, x |A"|. See Proposition 3.8 in [Laine, 2013] for more details. R

Example 2.11: In each dimension, the standard 0-simplex has one simplex [0, - - - , 0).
Thus its geometric realization is ] |AY| x [0,---,0]. Therefore in dimension 0 we
i=0

have a single vertex v. The gluing_instruction identify each (so[0],p) = ([0,0],p) in
([0,0],|AY) with ([0], So(p)) = ([0],v). Thus the |A| in dimension 1 gets collapsed
to the vertex. Similarly, since each point of the 2-simplex ([0, 0, 0], |A?|) gets identified
to a point of ([0,0],|Al]), and so on. Therefore,everything collapses down to a single
vertex. Thus the geometric realization of A is a point. Indeed, it is the standard
topological O-simplex |A°|. In general, the geometric realization of the standard

n-simplex is the topological n-simplex.

Theorem 2.5: If X is a simplicial set, then | X | is a CW complex with one n-cell for each

nondegenerate n-simplex of X.
Proof [2.5]: See Theorem 4.9 in [Friedman, 2011|]. B
Theorem 2.6: Geometric realization preserves colimits.

Proof [2.6]: See Proposition 2.4, Chapter Il in [Goerss and Jardine| [1999]. B
The adjuction relation: The realization functor | — | turns out to be the adjoint to

the singular set functor P.

Theorem 2.7: If X is a simplicial set and Y is a topological space, then

morpy (| X[, Y) = mors,(X, P(Y)), (2.29)

Proof [2.7): See Theorem 4.10 [Friedman| 2011)]. R

12



Definition 2.14: The product X XY of simplicial sets X and Y is the simplicial set with

(X xY), =X, xY,={(z,y)|r € X,y € Y,,} (2.30)

where d;(x,y) = (d;x,dyy) and s;(x,y) = (s;z, $;Y)-

Letm : X XY — Xand m, : X XY — Y be projection maps given by

mi(z,y) = z and mo(z, y) = y.

Theorem 2.8: If X and Y are simplicial sets, then |X x Y| = |X| x |Y|. In particular,

if X and Y are countable or one of | X | or |Y| is locally finite as a CW-complex, then

X x Y| |X| x|V (2.31)

as topological spaces.

Proof 2.8 : A map

n: | X xY|—= |X]|x|Y] (2.32)
is defined by n = |m1| X |mo| where w1 : X XY — X and 7wy : X XY — Y. For more
detail, we refer reader to Theorem 14.3 in [May, 1967] or [Milnor, 1957] for a proof

in the latter situations and to Chapter Il in [Gabriel and Zisman | |1967|] for a proof

of the general case. B

Example 2.12: Let X be any simplicial set, and Y = A° = [0]. Since A° has a unique
element in each dimension, X x A° = X. Therefore | X x A°| = |X| x |AY] 2 | X]|.

Definition 2.15: For a given category C, the nerve N(C) of C is defined to be the

simplicial set

N(C) = morcu(—,C) (2.33)

Note that an n-simplex X € N(C,) is a sequence

13



o X x, B Iy x, (2.34)

of composible morphisms in C. Here, o corresponds to a functor with o (i) = X; and

o((i —1) — i) = f;. The face and degeneracy maps are defined as follows:

o(l) > ... = o(n), i =
di(0) =3 ¢(0) > ... s oli—1) 2 5 +1)... s o), O<i<n (235
o(0)—... »o(n—-1), i=n
and
si(0) = a(0) = ... = 0() 2D o)) s olitl) = ... wa(n)  (236)

A functor F' : C; — C5 between small categories induces a map N(F) from N(C;) to
N(C;) by sending

Ffi Ffq

XX, & x) — xS X B I Ex) 3)

Proposition 2.1: N : Cat — Sp is a functor

Proof 2.1]: Clearly, the map N(F) defined above is a simplicial map. See Proposition
4.2 in [Laine, |2013] for more details. B

Proposition 2.2: N : Cat — Sp respects products.

Proof [2.2]: When the product C x D of categories C and D are considered, we have
N(C x D),, = mors,(n,C x D)
= morgy(n, C) x mors,(n,D) (2.38)

— N(C), x N(D),
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This isomorphism clearly commutes with d;, s;. So we have
N(C xD)= N(C) x N(D). (2.39)

as desired. B

Example 2.13: Let C = [2] with morphism 0 B 1 2 9 Then nerve of C is the

simplicial set whose n-simplices are given as follows:
[ ] (NC)O {0,1,2}
e (Nd
e (Nd

(NC), :{0—>0 15122008 1,020 91 29y,
(

)
f2

JINC)2 ={0 = 1= 2}

where (Nd) denotes the set of nondegenerate simplicies. All the higher degree simplices

are degenerate. So |[N(C)| = |A?|

Example 2.14: Let C = [3] with morphism 0 Ty 1 29 53 the nerve of C can be

written as follows:

o (NC)o = {0, }
o (Nd)(NC), :{ 1,0 20 0 0 L85y 3 B9 g Sl g 0 55y 5y
o (NO)(NC)y={0I51 2008 1 82308098371 208 5
o (Nd)(NC); ={02L51 L2253y
all the higher simplices are degenerate. So |[3]| = |A3|.

Definition 2.16: A bisimplicial object X : AP x A’ — C in a category C is the

simplicial object A — C*” in the category of simplicial objects in C.

We denote the external face and degeneracy maps with d”, s”, where the h stands
for the horizontal and the inner face and degeneracy maps with d?, s?, where v stands
for the vertical ones.

There is a diagonal functor

diag : AP — A% x A% (2.40)

which induces a functor
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CATXAT A" (2.41)

which also denote by diag. Therefore, diag(X),, = X,,,, and d; = d!od? s, = sl o s?

for a bisimplicial object X in C.

Theorem 2.9: Let X be a bisimplicial set. Construct a simplicial topological space
X1 by sending [p] to the realization of the simplicial set [q] — X, Similarly,
construct another simplicial topological space X? by sending [q] to the realization

of the simplicial set [p| — X,,,. Then we have a homeomorphism of topological spaces

diag(X)| = | X' = |X? (2.42)

Proof : We refer reader to see p. 19 in [Gelfand and Manin, 1996].
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3. HOMOTOPY COLIMITS

In this chapter, we introduce homotopy colimits of a diagram F' : C — sD.
We refer reader to [Bousfield and Kan, [1972]] and [Goerss and Jardine, |1999]] for more
details. The main purpose of this chapter is to give the proof of the famous Thomason’s

theorem. For this, we follow [Thomason, [1979].

3.1. Homotopy Colimits

In this section we introduce the homotopy colimit of a diagram F' : C — sD
where C and D are small categories. For this, we need the definition of a simplicial

replacement of a functor.

Definition 3.1: Let F' : C — D be a functor. The simplicial replacement of F is defined

to be the simplicial object srepF in D with

(srepF), = [ Flo(0) (3.1)

O'EN(C)TL

where s; sends F(c(0)) indexed by o to F(s;(c(0))) indexed by s; o o by the identity
map and d; sends F'(c(0)) indexed by o to F(d;(c(0))) indexed by d; oo by the identity
map when i > 0 and by the map F(«y) when i=0. Here, d;o(0) = o(0) if i > 0 and
doo(0) = a(1).

We denote the component F'(c(0)) indexed by o € N(C),, with F/(c(0))?. We

denote the elements of F'(c(0))7 by 7, yy and so on when F'(¢(0)) is a set.

Theorem 3.1: If C is a small category, then
srep : D¢ — sD (3.2)

is a functor.

Proof B.1fLet F,G : C — D be functors and let T : F — G be a natural

transformation. For each n, define
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(srepr)n: [ Flo(0) = ] &(8(0) (3.3)

c€N(C)n BEN(C)n

to be the map which sends F'(c(0))” to G(c(0))7 by T (o).
We need to prove that srept : srepl’ — srepG is a map of simplicial spaces,

i.e. the following diagrams commute:

(srepF), SEUEN (srepF )1 (srepF), —— (srepF )i
(srep‘r)nl (srepT)n_1l and (srepﬂ')nl (srep‘r)n_,_ll (34)
(srepG)p SEUEN (srepG)p_1 (s7epG) — (s7epG)pit
for0 <1 <n.

We first show the commutativity of the first diagram. When i > 0, d; sends
F(0(0))° to F(0(0))%° by the identity map and hence (srept),_1od; sends F(c(0))°
1o G(0(0))%° by 7y(). On the other hand, (srepr),, sends F(c(0))° to G(c(0))° by
To(0) and d; sends G(o(0))™ to G(c(0))%T by the identity. So we have,

(srepT)p—1 0 d; = d; o (srepT)n (3.5)

When i=0, dy sends F(c(0))? to F(o(1))%®) by F(c) and hence (srept),_10dy
sends F(0(0))? to G(o(1))%) by 7,4y o F(c). On the other hand, dy o (srept),
sends F(0(0))7 to G(o(1))%@) by G(ay) o To(0).-

Since T is a natural transformation, the following diagram commutes:

F(o(0)) =2 F(a(1))

T"(‘”l lml) (3.6)
G(o(0)) 2% G(o(1))

i. e. G(a(1))To0) = To() © F(ar). Therefore we have,
(srepT)n_10dy = dyo (srepT), 3.7)
For the second diagram, note that (srept), .1 0 s; sends F(0(0))? to G(c(0))?

by T,(0). On the other hand, (srept), sends F'(c(0)) to G(c(0))? by 7, and hence
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s; 0 (srept)y sends F(0(0))7 to G(0(0))? by T,(). This proves that srept is a map of
simplicial spaces.
Finally, let F © G 4 Hbea sequence of natural transformation. Then for

every d € D,

o L o8

commutes and so by the definition of srepr,
srep(01) = (sreph) o (srept) 3.9

as desired. B

Definition 3.2: If F' : C — sD is a diagram in sD, then we define the homotopy colimit

of F to be the simplicial object
hocolim(F') = diag(srepF") (3.10)

inD.

When D = Set, the hocolim(F) is a simplicial set with n-simplices:

Pn

(hocolimF), = {(X,y) | X = (Xo 2% X; = ... 25 X)) € N(C)n,y € F(Xo),}

where the face and degeneracy maps are given by:

g [ @O F@0@g ), i =0 .
z( ,y) = (dl]-V(C)X,df(XO)y), i>0 (3.11)
and

si(X,y) = (sVOX, 57 Xy) (3.12)

19



Example 3.1: Let C be the category 1 with two objects 0, 1 and a unique morphism
0 < 1. Let F : C — Sp be the functor defined by F'(0) = F(1) = A[0] in Sp, then the

homotopy colimit is A[l].

Example 3.2: Let X be a simplicial set and ' : C — Sp a constant functor, such that

F(c) = X foreveryc € Cand F(c ER ') = 1x for every morphism f. We show that
hocolim(F) = X x N(C) (3.13)
Indeed, since F(c) = X for every ¢ € C, we have

hocolim(F),, = diag(srepF),, H X7 (3.14)
ceN(C)

where X7 = X,, foreveryo € N(C),. Fori > 0, we have di(argf ) = (d;z,) %), For
i=0, F(f) is the identity map for any f : 0(0) — o(1) and hence dg(mn )) = (doy) (@),

Morever, s;(z¥)) = (si, ).

Now, let oy, : hocolim(F), — X,, x N(C),, be defined by ©,,(x%) = (xp,0). It
is obviously a bijection. So it remains to show that o is a simplicial map, that is, the

following diagrams commute:

hocolim(F),, —2— X, x N(C),

d,l ldi (3.15)

hocolim(F),_1 AN GRS N(C)p1

and

hocolim(F),, —2— X, x N(C),

l l (3.16)

hocolim(F'),, 11 Sy X, ¥ N(C)ps1

For the face map, we have

odi (') = o((diz,) ) = (diy, dio) = di(zn, 0) = dip(z?) (3.17)
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and also for the degeneracy map, we have

cpsi(:pgf)) = gp((sixn)(si")) = (8iTp, 8;0) = 8i(Tp,0) = sigp(ng)) (3.18)

Therefore  is a simplicial map.
Theorem 3.2: hocolim : sD€ — sD is a functor:

Proof [3.2]:As a composition of two functors srep and diag

sDC 2Py (AP)D D99, opy (3.19)

hocolim is a functor. B

3.2. Thomason’s Theorem

Recall that maps f,g : X — Y between topological spaces are said to be
homotopic if there is a continuous map H : X x [0,1] — Y such that H(z,0) = f(z)
and H(z,1) = g(x) for all z € X. If the maps f and g are homotopic, then we write
f =~ g. Topological spaces X and Y are said to be homotopy equivalent if there is

continuous maps f : X - Yandg:Y — X suchthat fog~1yandgo f ~ 1y.

Definition 3.3: Let X and Y be simplicial sets. A simplicial map f : X — Y is said to
be a weakly homotopy equivalence if | f| : | X| — |Y| is a homotopy equivalence. In

this case, we say that X is weakly homotopy equivalent to Y and we write X ~ Y.

Morever, two functors between categories £, F5 : C — D are weakly homotopic

if there exists a homotopy from |C| to |D| such that

H(z,0) =|Fi|(z) and H(z,1)=|F|(x) (3.20)

Also, we say that two categories C and D are weakly homotopy equivalent if |C| and

|D| are homotopy equivalent.
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Definition 3.4: Let f,g : X — Y be simplicial maps, we say that f is homotopic to g if
there is a simplicial map H : X x I — Y such that H|x«o = g and H|xx1 = f.

Definition 3.5: Let X and Y be two simplicial sets and ¢, : X — Y are maps, we say

that ¢ is strongly homotopic to 1) if there exists a simplicial map
H:X xA'=Y (3.21)

such that H restricted to X x 0 can be identified with ¢ and H restricted to X X 1 can
be identified with 1.

Analogously, we say that two functors between categories Fi, Fy : C — D are

strongly homotopic if N(F}) and N (F3) are strongly homotopic.

Theorem 3.3: Let p : X — Y be a map of the simplicial sets. Suppose that for all p,
the simplicial map ¢, : X, = Y, is a weak homotopy equivalence. Then diag(y) is a

weak homotopy equivalence.

Proof [3.3]: We refer reader to see Chapter IV, Proposition 1.9 in [|Goerss and Jardine,
1999]. 1

Lemma 3.1: A natural transformation n : F' — F' between the functors induces a

strong homotopy between F and F’.

Proof : Let F,F' : C — D be functors between categories C and D. Define
o : C x [1] — D on objects by:

o(c,0) = F(c¢),0(c,1) = F'(c) (3.22)

and on morphisms by :

o (,0) L1 (4,0~ F(f) : F(e) = F(d),
o (c, O) (£,(0<1)) (d,l)«» F(c) F'(f)one F’(d),

o (c,1) Y (4 1)~ F(f): F'(e) — F'(d)

Since N(C x (0 < 1)) g N(C x A'), we have that N(c) is a homotopy equivalence.
[
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Theorem 3.4: If F : C — D is left adjoint to the functor F' : D — C, then F and F'

are strong homotopy equivalences.

Proof . Apply the above lemma to the unit-counit adjuctionn : 1¢ — F' o F and
e: FF' — 1p. [ |

Corollary 3.1: If C is a category with an initial object X, then C is strongly contractible.

Proof : Let X be the category with an object X and a morphism and S : C — X be
a functor which sends every object to X, and all maps to the identity. LetT : X — C
contains the object X in C. So, ST is the identity in X. Since for any object C in C there
exists a unique map C — X as defining the component of a natural transformation 1)¢
between TS and the identity, TS is homotopic to the identity. For any object C in C,
define nc : TS(c) — 1¢ to be the unique map X — C. Then the following diagram

commutes:

) QENLCENY

lxl lf (3.23)

X 2
by the uniquness of nc: : X — C'.

Definition 3.6: Let F' : C — Cat be a functor. The Grothendieck construction on F,
fg F, is the category whose objects are the pairs (c,x) where ¢ an object of C and x
an object of F(C), and whose morphisms are pairs («, f) : (¢,x) — (d,y) given by a
morphism« : ¢ — dinCandan f : F(a)(x) — yin F(d). Composition is defined by

(@, ) o (B,9) = (af, f o F(a)g) (3.24)

Note that a natural transformation n : ' — F” where F, I’ : C — Cat induces

a functor [, h from [, F'to [, F' by

( /g n)(e.x) = (e h(e)(x)) (3.25)

and
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( /g e f) = (o, h(d)(/)) (3.26)

for (o, f) : (¢, ) — (d,y). Thus [, is a functor from Cat® to Cat.

Theorem 3.5: [Thomason, |1979] Let F' : C — Cat be a functor. There is a weak

homotopy equivalence

¥ : hocolimN (F') — N(/ F) (3.27)
c

between the homotopy colimit of N o F' and the nerve of the Groethendieck

construction.

As in [Thomason, |1979], to prove the above theorem, we first define a natural
transformation then we construct a functor F' : C — Cat and produce weak homotopy

equivalences

hocolimN (F) €& hocolimN (F) 22 N( / F) (3.28)
C

Finally, we construct a simpicial homotopy H : ¥).\; >~ A,. Since \;, A\, are weak

homotopy equivalences, so is 7).
Lemma 3.2: There is a simplicial map 1 : hocolimN (F) — N( [, F).

Proof [3.2]: The map

¥ : hocolimN (F) — N(/ F) (3.29)
C

is defined on n-simplicies to be the map which sends
(Xo 2 X, 2 05X, a0 a2 .0 Bay) (3.30)

to

(Xo,ap) ELENCD, (¢ p(p)(ay)) EEECD,
(3.31)

(pp F(p)(ap))

(Xp, Fpp)(ap))
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where

(Xo & x, 2. X)) (3.32)

is a string of p-composible morphisms of C and

(a0 2 ay 2 ... oay) (3.33)

is a string of p-composible morphism of F(Xy). Clearly, the above map defines a
simplicial map ). B

Now, we define a functor F' : C — Cat for X € Obj(C) as follows. Let F/(X)
be the category whose objects are the pairs (c,x), where ¢ : Y — X is a map in C and
x € ObjF(Y) and whose morphisms are pairs («, f) : (¢,z) — (¢, 2’) given by a
map o : Y — Y'in Csuchthatc = daand f : F(a)(z) — 2/ in F(Y’). Composition

in F(X) is given by

(a1, fi)(ae, f2) = (qag, fi o Faz)(f2)) (3.34)

Amap g : X — Y in C gives a functor F(g) defined on objects by F(g)(c,z) =
(g, x) and on maps by F'(g)(a, f) = (a, f).

Lemma 3.3: There is a natural equivalence )\ : hocolim N F — hocolimNF.

Proof ' For every z € Obj(C), there is a functor K (z) : F(z) — F(x) defined on
objects by K(z)(c) = F(c)(x) and on morphisms by K(z)(«, f) = F(d(f)) where
(o, f) = (¢,x) = (¢, a). This functor has a right adjoint L(x) : F(x) — F defined
by L(z)(c) = (14, ¢). Then by Theorem 3.4, N(K (z)) : NF(x) — NF(z) is a strong
homotopy equivalence. Morever, K(x) : ' — F(x) gives a natural transformation
K:F = F of functors. So N(K) : N F — NF is also a natural transformation.

Consider the induced map

®, : (srepNFEF), — (srepNF), (3.35)
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which is defined on NF(0(0)) indexed by 0 € N,(C) as K(o(0)) and hence send
it to NF(0(0)) indexed by o. It is clearly a weak homotopy equivalence and hence

A1 = diag(®P) is a weak homotopy equivalence by Theorem 3.4. B

Lemma 3.4: There is a natural equivalence )\ : hocolimNE — N( Jo F).

Proof |3.4):A p-simplex of NF(X)

(a1,f1)

(007960) E— (017%

) (0‘27f2)\ o (ap:fp) (Cp,xp) (336)

corresponds to a p-simplex in N( [ b )

ai,f1 a2, f2 ap,fp
(Yo, o) 20y vy ) L0282 ende) (e oy (3.37)

together with the map c, : Y,, — X. Thus srepN (F') has as (p,q)-simplices
Xo—... =X, Y,—»Xo, (Yo,z0) = ... = (Y, z,). (3.38)

We define \o to be the map which sends such a (q,q)-simplex to the g-simplex
(Yo, w0) = ... = (Y, xq) in N(J, F). Clearly, it is a simplicial map.
To show that \y is a weak homotopy equivalence, let N ( fc F) be a bisimplicial

set which is constant in the p-direction i.e. a bisimplicial set whose (p,q)-simplices are

N( /C F),q = N( /C F), (3.39)

So N([, F). = diagN( [, F).

Let \ : srepN(F) — N( [ F).. be the simplicial map which sendes
Xo— ... =X, Y= X, (Yo,mo)—... = (Y2 (3.40)

to
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(Yo,20) = ... = (Yg, ) (3.41)

Then, \y = diag(N). Therefore, by Theorem 3.3 it suffices to show that N is a weak
homotopy equivalence. Here N\ can be expessed as the coproduct of simplicial maps

N(Y,\ C) — A°. More precisely

A U N(Y,\ C) — U A (3.42)

(Yo,x0—>. . —>(Yq,.’Eq) (Yo,mo)—>. - —>(Yq,xq)

On the other hand, since I, : Y, — Y, is a an initial object in Yy, by Theorem 3.4, the

map |N (Y, \ C)| — |A?| is a homotopy equivalence. Since the geometric realization

commutes with coproducts, | N\ | is a homotopy equivalence and hence N is a weak

homotopy equivalence. B

Lemma 3.5: There is a simplicial homotopy

H : (hocolimNF) x A' — N / F) (3.43)
C
from .\ to Ay
Proof [3.5]: Define
H : (hocolimNF) x A' — N( / F) (3.44)
C

to be the map which sends

(XO (’0—1> X1 ﬁ) e Sp—p) Xp7 (C(),Io) —Hal,fl) (01,1‘1> —>(a27f2)
(3.45)
(apafp)

wherev(0) = ... =v(i) =0andv(i+1)=... =v(p)=1 1o
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(ci—1,fi—1)

(Yo, z0) 2 (v, 2) — - (Yie1, zi1)

(®ici—1,F(®ici)(fi))

(Xi, F(Pici) (i) = (Xigr, F(Piga)(Cir1) (Ti41)) (3.46)

7

(Pir1ci,F(Pitrci41)(fi41))  (Ppcp—1,F (Ppcp)(fp)), (

Xy, F(®pcy)(2p))

where ®; = p; 0 p; 10---0 ;.

Clearly, H|yp = 1 o Ay and H|; = Xs. It remains to show that H is a simplicial

map.
For the commutativity of H with the face maps. Note that sends
Xo & X, (coymo) LM B ) (3.47)
to
P2 Pp (a2,f2)
X1 — Xp, (@161,1’1) —_—

(3.48)

Therefore, Hdy sends it to

(}/1,1'1) e { (}/;—1;1‘1‘_1) (<1>iCi—17F(<I>ici)(fi))\ (

. (Ppep, ' (Ppep)(fp)) (

- Xy, F(®pep) () (3.50)

Since (i -+ 0 pa) o (prcx) = Picy.
On the other hand, dg sends

(Yo, 20) — -+ — (Yoop, a_y) Fiat TG,

Xi, F(pici)(z:)) (3.51)

= (Xip1, Flpin) (cinmin) = . = (Xp, Fopep) () (3.52)

to
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(pici—1,F(pici) (fi)) (

(Yi,21) = -+ = (Yic1, 7i1) Xi, F(pici)(x;)) (3.53)

(epep,F'(wpep)(fp))
e : (Xp, Fppcp)(zp)) (3.54)

So, we can identify Hdy = doH. The other identifications hold, similarly. B
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4. EQUIVARIANT HOMOTOPY COLIMIT

In this section, we discuss theorems about homeomorphisms and homotopy
equivalences of simplicial sets in the equivariant setting and we introduce the
equivariant homotopy colimit. We also give the equivariant version of the Thomason’s

theorem. For this we follow the [[Villarroel-Flores, [1999].

4.1. Basic Definitions and Theorems

For a finite group G, let G be the category with one object, whose morphisms
are the elements of the group G where the composition is given by the group
multiplication. The category of G-objects in a category C is the category C¢ of

functors from G to C.

Theorem 4.1: Given a bisimplicial G-set X, let X' be the simplicial G space which
sends [p] to the realization of the simplicial set |q) — X,, and let X* be the simplicial
G space which sends [q] to the realization of the simplicial set [p] — X,,. Then we

have a homomorphism of G-topological spaces
| diag(X) |=a| X' =g X? | 4.1)

Proof : The non-equivariant version of this theorem is proved in [Gelfand and
Manin, 1996]. It can be easily show that all the maps defined are G-maps when X is a
bisimplicial G-set. B

For example, G-category or a G-object in the Cat is a functor v : G — Cat. It
consists of a category () = D, and actions of G on the set of objects of D and on the

set of morphisms A,BgObijOTMA’ B) which satisfy the following axioms:

i) gla =1 4 forall g € G and A € ObjD,
ii) g¢ € morp(gA, gB) forall g € G and ¢ € morp(A, B),
iii) g(¢p o) = (g¢) o (gy) forall g € G, and ¢, ¥ morphisms in D.

Then, we say D is a G-category.

Let D; and D, be G-categories, given by functors vy, 72 : G — Cat respectively.
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An equivariant G-functor D; — D» is defined to be a natural transformation from -y,
to 2. So it is determined by a functor 7 : D; — D5 such that n(gA) = gn(A) for all
objects Ain D and g € G, and 1(g¢) = gn(¢) for all morphisms ¢ in D and g € G.

Definition 4.1: Given a finite group G, let € be the category whose objects are pairs
(G/H,aH) where H < G and a € G and morphisms from (G/H,aH) to (G/K,bK)
are G-maps  : G/H — G /K such that F(aH) = bK.

Note that there is a morphism f from (G/H,aH) to (G/K,bK) if and only if
He ' < K. In this case, the morphism is unique and we denote it by f,-1,. Here e

is a G-category with a G-action given by

e g(G/H,aH) = (G/H,gaH)
e gf : (G/H,gaH) — (G/K,gbK) is the map gf : G/H — G/K defined by
(9f)(xH) = gf (xH).

Example 4.1: Let G be a cyclic group of order two with a generator t. Then objects of
eqare (G/1, 1.1), (G/1, t.1) and (G/G, 1.G) and the category c¢ is

(G/1,1.1) —— (G/1,¢.1)

\ l (4.2)

(GG, 1.G)

Example 4.2: Let G be a symmetric group of order three that is

G =S3={rslr*=5"=1rsr =s°} = {1,r,s,rs,15%, 5} 4.3)

The subgroups of G are
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Hi=<r>

Hy =<rs>
“4.4)
Hy =< rs? >

K=<s>

EF=<1>

Then, objects of e¢ are (G/G,1G) (G/Hy,H,), (G/Hy,sH,), (G/H,,s*H,),
(G/H,, Hy), (G/Hy, sHj), (G/H,, s*H,), (G/Hs, Hs), (G/Hs, sH3),
(G/Hs3,s*H3), (G/K,K), (G/K,rK), (G/E,E), (G/E,rE), (G/E,sE),
(G/E,rsE), (G/E,rs’E), (G/E,s?E).  There is a unique morphism from
(G/E, gF) to every object of e and there is a unique morphism from every object to
(

G /G, 1.G). The other morphisms are given as follows:

o mor((G/K, K),(G/K,rK)) ={/},

e mor((G/K,rK),(G/K,K)) ={f-},

e mor((G/Hs, s*H,), (G/H s*H3)) = {f1},

e mor((G/H s*Hs), (G/Hy, s*Hs)) = {f1},

e mor((G/Hy, Hy),(G/Hs,sH3)) = {fs}

e mor((G/Hs, Hy), (G/Hy,sHy)) = {fs}

o mor((G/Hy,sHy),(G/H;,s*°Hs)) = {f}
(G/Hs, s*H,
(
(
(
(
(
(
(

)
), (G/Hy, Hy)) = {fs}
e mor((G/Hy,s*H,),(G/Hs, H3)) = {f.}
o mor((G/Hs,s*Hy), (G/Hy, Hy)) = {fs}
o mor((G/Hs, Hs), (G/Hy, sHy)) = {fs}
o mor((H/Hy,sH,),(G/Hy,s*H,)) = {f}

(
(
(
(
(
(
(
e mor(
(
(
(
(
e mor((G/Hy,sHy),(G/Hay, Hy)) = {fs}
o mor((G/Hy, H1),(G/Hy, s*H)) = {f.2}
((G/Hs, Hy), (G/Hs, s*H3)) = { f2}
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mor((G/Hz, sH3),(G/Hs, Hs)) = {2}
mor((G/Hy, s*Hy), (G/Hs, sH3)) = { fe}
e mor((G/Hs, sHs), (G/Hy, Hy)) = { s}
mor((G/Hs, s*H;), (G/Hy, sHy)) = { fe}
mor((H/Hjz, H3), (G/Hy,s*H1)) = {fs}

Now, we recall the following definitions from equivariant homotopy theory.

Definition4.2: Let f,g : X — Y be G-maps between G-spaces X and Y. A G-homotopy
from fto g is a homotopy H : X x [0,1] — Y such that H(gx,t) = gH (z,t) for all
g€ G, x e Xandt € |0,1]. Inthis case, the G-maps f and g are called G-homotopic

and we write [ ~¢q g.

Definition 4.3: Let X and Y be two G-spaces. We say that X and Y are G-homotopy
equivalent if there exists G-maps f : X — Y and g :' Y — X such that f o g ~¢ 1y

and go f ~q 1x.
For simplicial maps, we have the analoguous definitions.

Definition 4.4: If X and Y are G-simplicial sets and ¢, : X — Y are G-maps, we say
that ¢ is weakly G-homotopic to 1) if there is a G-homotopy from | X| to |Y | such that
H(x,0) = |¢[(x) and H(x,1) = |¢|(x).

Similarly, we say that two G-functors between G-categories Fi, F, : D — C are
weakly G-homotopic if there is a G-homotopy from |D| to |C|. Hence two G-categories

D and C are weakly G-homotopy equivalent if |D| and |C| are G-homotopy equivalent.

Definition 4.5: Let X and Y be G-simplicial sets and ¢,v : X — Y be simplicial
G-maps. The simplicial map ¢ is called strongly G-homotopic to 1) if there exists a

G-simplicial map

H: X xA'—>Y 4.5)

such that H restricted to X x 0 is ¢ and H restricted to X x 1 is 1.

Similarly, two G-functors between G-categories Fi, F, : C — D are called
strongly G-homotopic if N(F}) and N (F3) are strongly G-homotopic.
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Theorem 4.2: If X and Y are G-simplicial sets, we have a G-homeomorphism

X x Y] =¢ X[ x[Y] (4.6)

if the topology on the right side is taken to be compactly generated.

Proof : It can be easily checked that the maps, in the proof of Theorem 2.8 are

G-maps when X and Y are G-simplicial sets. B

Corollary 4.1: Let X and Y be G-simplicial sets and ¢,v) : X — Y be strogly

G-homotopic G-maps. Then ¢ and 1) are also weakly G-homotopic maps.

Proof : Let ¢ and ) be two strongly G-homotopic maps, i.e. there is a G-map
H : X x A' = Y such that H|xxo = ¢ and H|xx1 = 1. Then that |H||xxo = |9
and |H||xx1 = |¢|. Therefore, |H| : |X| x |AY| — |Y| gives the desired weak
G-homotopy from ¢ to ). B

Lemma 4.1: A natural transformation n : F — F' between the G-functors induces a

strong G-homotopy between F and F".
Proof : Clearly, the maps defined in Lemma 3.1 are G-maps. B

Corollary 4.2: If the G-functor F' : C — D is left adjoint to the G-functor F' : D — C,

then F and F' are strongly G-homotopy equivalences.

Definition 4.6: Let C be a G-category. If C is a (strongly) weakly G-homotopy

equivalent to a point, then C is called (strongly) weakly G-contractible.

Corollary 4.3: If C is a G-category with an initial object X fixed by G, then C is strongly

G-contractible.

Proof : Since * and X are fixed objects, the functors T and S defined in Corollary
3.1 are G-functors.l

Theorem 4.3: Let X and Y be G-CW-complexes and ¢ : X — Y be a G-equivariant
cellular map. For each subgroup H of G, ¢*' : X — YH is a homotopy equivalence

if and only if ¢ is a G-homotopy equivalence.
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Proof : See Section Il in [|Bredon| [1967]] B

If F is a G-functor, then both F/d and d/F have an action of the stabilizer
(4 induced by the action of G on C and D such that g(c,v) = (gc,gv). In
[Villarroel-Flores, 1999, the following generalization of Quillen’s Theorem [Quillen,

1978]] and (1.4) from [Thevenaz and Webb), |1991] is proved.

Theorem 4.4: Let F' : C — D be a G-functor. F is a weak G-homotopy equivalence if
for every object d € D the category d/F' is weakly G 4-contractible.

Proof :Let H be a subgroup of G and C™ be the subcategory of C whose objects
are the objects of C which are fixed by H and morphisms are those of C which are fixed
by H. Since the geometric realization preserves small limits, we have |C"| = |C|". By
the Theorem it suffices to show that F : C' — D" is a homotopy equivalence
where F is the restriction of F. Let d € Obj(D™) i.e. hd=d for all h € H. Then
we have H < Gg4. Now, consider d/F™. It is the category whose objects are the
pairs (¢, f + d — F(c)) where c € C", f € morl(d, F(c)) and a morphism in
morypu((c, f),(, f')) is a morphism g : ¢ — ¢ in C" such that f' = FH(g)f. As a
subgroup of G, it acts on d/F by

h(c, f) = (he,hf) 4.7
and
h.g =hg: (he,hf) — (R hf) (4.8)
Therefore,
Obj((d/F)™) = {(c, f - d — F(e)) | he = e, hf = f,%h € H}
4.9)
= Obj(d/F")
and
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morgpyn (¢, £), (¢ f) ={g: (e, f) = (¢, f') | F(g) o f = f,hg = g,Yh € H}
={g:c—cinc | f=F(g9)(f)} (4.10)

= mOT’d/FH((Q f); (Cl7 fl)

So, we can identify the categories d)F™ and (d/F)" when d € Obj(D™). Since d/F
is weakly G y4-contractible, (d/F)" = d/F is weakly contractible. So, F! is a weak

homotopy equivalent by the nonequivariant version. B

4.2. Actions of G by Natural Transformations on Functors
from G-Categories

Definition 4.7: Let C be a G-category and F' : C — D be a functor. We say that n

acts by natural transformations on F if for each g € G, X € Obj(C), there is a map
nex : F(X) — F(gX) such that

i) mx = lpx) forall X € ObjC,
ii) the following diagram commutes for X € Obj(C), g1, 92 € G:

7792,X

F(X) F(g1X)
Uglh lnngzX (411)
F(g192X)

iii) the following diagram is commutative for g € Gand f : X — Y amap in C:

FX) S By
ng,xl ln (4.12)
F(gf)

F(gX) ——= F(gY)

Remark 4.1: Let F' : C — D be a functor with an action of n by natural
transformations. Then for any functor T' : D — E, we can define an action of T'n

by natural transformations on TF : C — E by (Tn)y x =T o ngy x. Clearly,

l) (Tn)l,X : TF(X) — TF(X), N (T?’])LX = 1TF(X)f0r all X € Objc,
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ii) the following diagram is commutative for X € ObjC, g1, g, € G:

) (T'm)gq,x

TF(X TF(g2X)

T 4.13)
(Tmm\ l( Mo oz

TF(9192X)

iii) the following diagram is commutative for g € Gand f : X — Y amap in C:

TR(x) Y rRy)
Ty x Tngy (4.14)
TF(gX) 290 rp(gy)

Each object FX obtains an action of the subgroup G x by ng x : FX — FX in such a
way thatif ¢ : X — Y isamap in C, then F¢ : FX — FY is Gx N Gy-equivaiant.

Recall that a G-simplicial set is a functor G — Sp. Let H be a subgroup of G, C a
G-category and [ : C — D be a functor with an action of 7 by natural transformation.
A category of H-fixed points of C is the category whose objects are ¢ € Obj(C) with
he=c for all h € H and morphisms f : ¢ — ¢ are f € morc(c, ¢’) with hf=f for all
heH.

A functor F' : C — D restricts to a functor F7 : C¥ — D by F(X) = F(X)
and FH(f) = F(f). There is an induced action on F'# given by

My x = Ngx : F(X) = F((gH), X) (4.15)

where (gH).X =: gX.

Proposition 4.1: Given a G-category C and an action of n by natural transformations

on F' : C — D there is a natural structure of G-simplicial object on srepF.

Proof H.1|: For g € G, let g, : (srepF), — (srepF), be the map which sends
F(0(0)) indexed by ¢ € N(C), by 144, to F((go)(0)) indexed by go. Then the
simplicial map g = (g,,) : srepF — srepF’ defines a simplicial map. B
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Corollary 4.4: Let C be a G-category, F' : C — sD a functor and n an equivariant
automorphism of F. Then hocolimF is a G-simplicial object in D, with action on the

p-simplices given by

$1

Pp 1 ép
9(Xo S X o B X y) = (0X0 259Xy — . L X, 0, x,(y) (4.16)

forevery y € (FXj),.

Proof : Since the G-action on diag(srepF) induced from the G-action on srepF, the
corollary holds.

Lemma 4.2: Let X be a G-simplicial set. Then | X | is naturally homeomorpic to | X /.
Proof [4.2]: Since | - | preserves finite limits, we have | X |9~ X< |. B

Theorem 4.5: Let ¢ : X — Y be a map of bisimplicial G-sets. Then diag(¢) is a weak

G-homotopy equivalence if ¢, : X, — Y, is a weak G-homotopy equivalence for all p.

Proof : If we show that | diag(¢) |* is an ordinary homotopy equivalence, then it
follows by Theorem 4.3\ that |diag(¢)| is a G-homotopy equivalence and hence diago
is a weak G-homotopy equivalence. By the Lemma it suffices to show that the

simplicial map

diag(¢™) : diag(X") — diag(Y™) (4.17)

is a weak homotopy equivalence because diag(Y )™ can be identified with diag(Y'H).
Since |(XH),| = | X,|" and the equivariant homotopy equivalence |¢,| : | X,| — |Y,|

restricts to fixed points, the map
(@)l = [(X )] = [(YH), (4.18)

is a homotopy equivalence. Then the result follows by the non-equivariant version of
the Theoremd.5 A

Now, we give the equivariant version of the Thomason’s theorem.
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Theorem 4.6: [Theorem 3.23 in [Villarroel-Flores,|1999] |. Let C be a G-category and
F : C — Cat be a functor with an action of n by natural transformations. Then there

is a weak G-homotopy equivalence

¥ : hocolimN (F) — N(/ F) (4.19)
c

between the homotopy colimit of N(F) and the nerve of the Groethendieck construction.
Here, the G-action on hocolimN(F) is given by N (1) and the G-action on N ([, F) is
given by .

Proof s In the [Thomason, 1979], it is proved that 1 is a homotopy equivalence.
Now, we first show that 1 is equivariant, then we descibe an action by natural
transformation 7 on I which is constructed in Theorem 3.5 and then produce weak

G-homotopy equivalences

A1 @ hocolimN (F') — hocolimN (F') (4.20)

and

Az : hocolimN (F) — N( / F) (4.21)
C

Finally, we prove that )\ is strongly G-homotpic to \s. Since A\, Ao are weak

G-homotopy equivalence, it follows that 1) is also weak G-homotopy equivalence.ll
Lemma 4.3: There is an equivariant map v : hocolimN (F) — N( [, F)

Proof H.3} We prove in Lemma 3.2] that 1 is a simplicial map. We now have
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Pg(Xo 2 X1 B B X a0 o D))

p Ng,xq (1) Ng,X¢ (ap)

= P(gXo 25 0T g Xy g xo(a0) = ... =05 g v (ay)
(9¥1,F(g¥1)(ng,x,(a1)))

= (9 X0, 1g,x0 (a0)) ————"205 (g X1, F(g1)ng xo(a1)) -+ (4.22)

)) (gsoan(gSé’p)(77g,X0(Ulp)))> (

(9Xp—1, F(9¢p—1)1g,x0 (ap—1 9Xp, F(99p)n4,x0(ap))

)) (9¢1,mg,x7 (F(p1)(1))

= (9Xo0, ng,x, (a0 y (9X1,nyx, (F(1)(a1)) - -

(90pg,2,_1 F(ep)(ap))

(gXp—l»ng,prl(F@Dp—l)(ap—l))) ” (gXp7ng,Xp71F(‘Pp)<ap))

—g(Xo B X B B X a0 B a0 D)

and hence v is equivariant. B
In the Theorem 3.5, we define a functor F : C — Cat associated to the functor F.
Now, from the action by natural transformation 7 on F, we define an action by natural

transformation 7j on £ by

Mgx (¢ ) = (g¢,mg x(x)) (4.23)

and

flg.x (v, f) = (ga,ng x (f)) (4.24)

Lemma 4.4: There is a weak G-homotopy equivalence

AL hocolimNE — hocolimN F (4.25)

Proof H.4): Here \ is defined as in the proof of Lemma The result follows from
Corollary|d.2land Theorem{|.5|which are the equivariant versions of Theorem 3.4 and
Theorem 3.5 respectively. B

Remark 4.2: Let G be a group, H be a subgroup of G and X be a H-set. The product

G x X carries an H-action (h, (g, 1)) — (gh™!, hx). Define an equivalence relation
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on G x X by (g,x) ~ (¢',2') if there exists h € H such that g = ¢'h and z' = hz.
The orbit space is denoted by

ind4 X ={[g,7] | g € G,z € X} (4.26)
Here, ind% X is a G-set with a G-action given by

J'lg,x] = [g'g, 7] (4.27)

forall ¢ € Gand |g,z] € ind%X.

For any H-map f : X — Y, we have an induced G-map
indSf:Gxyg X = GxgY (4.28)

defined by f([g,z]) = [g, f(x)]. Clearly, ind$; is a functor from the category of H-sets

to the category of G-sets.
Similarly, we can define ind$, for H-spaces, H-simplicial sets and so on.

Proposition 4.2: Let H < G. If f : X — Y is a H-homotopy equivalence between

H-spaces, then ind$, f is a G-homotopy equivalence.

Proof s Let f : X — Y be a H-homotopy equivalent with a homotopy inverse
g:Y = X. Let H) : X xI — X be H-homotopy from goftolxand Hy : Y X1 — Y
be H-homotopy from f o g to 1x. Then ind$, Hy and ind$, H, give the G-homotopies

between (ind$, f) o (ind%g) ~ 1x and (ind%g) o (ind$ f) ~ 1y, respectively . B

Lemma 4.5: There is a weak equivariant homotopy equivalence

Ay%MWWﬁ%NVﬁ) (4.29)
C

Proof . As we have shown in Lemma A2 is a natural homotopy equivalence
between hocolimNF and the nerve of the Groethendieck construction. It is a G-map,

since
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Ma(g(Xo 25 25 X, (co,m0) T (o1, m0) 22, LD (0 )
- Tlg, x (a1, /1) flg.xo(@p:fp)
= Xa(gXo =55 - - e 9 g,x0 (€05 T0) = e g0 (Cp, Tp))

(991, F (91)(fig,x (@1,f1)))
) - (

= (9X0, 7g,x, (€0, To 9 X1, F(g91)g,x,(c1, 1))

o o e Do D (91, F(90p1) o155 1)
’ p—Lb p—1)%g,Xo\*p—1> ~p—

(QSDWF(QLPP)WQ,XQ (ap,fp)))

(9Xy, F(gwp)ﬁg,Xo (cpsxp))

(91,75, 5, (Fln)(@1,2)
) ——— (

= (9X0> ﬁg,Xo (007 Zo 9X1, ﬁg,Xl (F(901) (01, 1’1)) (4.30)

(990;771fig,a:p,gF(‘prl)(apflafpfl))

? (gXp_1, Mg, Xp 1 (F(Wp—l) (Cp—lv xp—l)))

(9p 7ﬁgva7p—1 F(ep)(ap 7fp))\

(gXpa ﬁg,XpﬂF(‘pp) (cp, Ip))

(Oél,fl) (a27f2) . (apufp)\ <

— g)\Q((XO ﬂ> o &) Xp; (CO,[EO) —_— (Cla$1) Cpaxp))

As in the non-equivariant case,\; = diag(\) where A : srep(NF) — N([.F). By

TheoremH. 1|, we have
diogN( [ Pl = IN([ F) @31)
c c
Therefore, it suffices to show that
Ag : srep(NE), — N( / F), (4.32)
c

is a weak G-homotopy equivalence by Theorem
As in the non-equivariant case, N\, can be expressed as the coproduct of

simplicial maps

N(Y,/C) — A(0) (4.33)

taken over the points of N( |, ¢ F)q- Since the geometric realization commutes with the

coproducts, it suffices to show that the map
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| ] IN(Y,/C)| — L] A7)

(Y(),CL'())*). . %(Yq,xq) (Yo,xo)%. A %(Yq,wq)

(4.34)

is a G-homotopy equivalence. Let 1, be the set of representatives of the G-orbits of the

action of G on N([ F),. Leti = (Yo, z0) = ... — (Yy,x,) € I. Since 1y, is an

initial object in 'Y, /C which is fixed by the stabilizer G; of i, the map
ind%, [N (Y,/C)] = ind, | A"
is a G-homotopy equivalence. Therefore the induced map

|| ind& IN(Y,/C)| = | | indg,|A")

icl, ielq

which equals to

|| IN(Y,/C)] — L] A7)

(Y(),I())-). .. —>(Yq,xq) (Y(),x())—>. .. —>(Yq7xq)

is a G-homotopy equivalence as desired.

Lemma 4.6: There is a G-homotopy

H : (hocolimNF) x A} —>N(/F)
c

from Y\ to As.

(4.35)

(4.36)

(4.37)

(4.38)

Proof H.6]: In the Lemma we proof that H : 1)\ ~ Xy is a simplicial homotopy.

It remains to show that, H is equivariant. Here, g sends

(4.39)
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to

1 p (9o1,mg,v, (1))
(9Xo 225 - 2% g X, gV, — X0, (gco,gxy (o)) —— X0
(4.40)
g (gcpang,Yp(xp)) , ;)
and H sends it to
9®ici—1,F(g®ici)(ng,v, (i)
(gyoﬂig,Yo (z0)) — "'(932_1,77%1@_1(%—1)) : B
(4.41)
(9Xi, F(g®ici)(ng,v; (1)) = -+ = (9Xp, F(9Ppcy) (1g,y, ()
since, (gPrcr) = (gpr) o -+ 0 (g¢1) o (9¢k)-
On the other hand, H sends
(XO ﬁ) Xl ﬂ) e ﬁ) Xp, (Co,$0) L>f1) (Cl,xl) M)
(4.42)
(apvfp)
L (e, 1), V)
to
Dici—1,F(Pici)(fi
(Yo, 20) = (Y1, 21) — ... = (Yic1, 1) (@ @)U, (Xi, F(®ic;)(w4))
(4.43)
= (Xig1, F(@ia)(ciazir)) = -0 = (Xp, F(Ppep)(zp))
which is send by g to
(9Pgci—1,9F (®ici)(fi)
(9Y0, 1o (20)) = = = (Yi1, Ty, () Lot ol
(4.44)

(9Xi, gF (®ii) (1)) = -+ - = (9Xp, gF (Ppcy) ()

Since gF (®pci)(fr) = F(9Prcr)(ng,v,. (fx)), H is G-equivariant.

This completes the proof of the theorem. R
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5. AN ALTERNATIVE PROOF OF THOMASON’S
THEOREM

In this chapter, we give an alternative proof of the equivariant version of
the Thomason’s theorem which identifies the G-homotopy type of the geometric
realization of the equivariant homotopy colimit of a nerve of a functor with an action by
natural transformation to the geometric realization of the nerve of its Groethendieck
construction. We also establish one to one correspondence with such functors and

functors from the Groethendieck contruction of related categories.

5.1. Another Proof of Equivariant Version of Thomason’s
Theorem

We discussed the nonequivariant version of the Thomason’s theorem [[Thomason,
1979]] in the Chapter 3 and we provided a proof of the equivariant version of the
Thomason’s theorem in the Chapter 4 given by [Villarroel-Flores, 1999]. For each
step of the proof, we have closely followed [Villarroel-Flores, [1999]. In this section,
we give an altenative proof to the equivariant version of the Thomason’s theorem by

using fixed point categories. For this, we need the following observations:

Lemma 5.1: Let C be a G-category. Then N(C) and N(C") are identical as

simplicial sets.

Proof : An n-simplex in N(C,,) is a sequence
o Xo X B Iy x, (5.1)

of composible morphism in C. The set N(C,)" is the subset of N(C,) consisting of
o’s which are fixed by H that is ho = o for ever h € H where

hfn

ho - hXo M5 px, 22y Mg x (5.2)

So, the elements of N(C,)" are o : X, Iy X EENE (N X, with hX; = X, and
hf; = fiforallh € H.
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On the other hand, C™ is the subcategory of C whose objects are X € Obj(C)
with hx=x for all h € H and morphisms are [ : X — X' with hf=f for all h € H. So

the set of CY consists of sequences:

= X, (5.3)

where hX; = X; and hf; = f;. Since the coface and codegeneracy maps are also the
same, we can identify N(C)™ with N(C"). B

Let F' : C — Cat be a functor with an action of G by natural transformations.
Then for every object c in C, we consider F(c) as a GG.-category. Here, the (G.-action
on objects and morphisms are given by 7, . thatis g.x = n, () and gf = n,.(f) for
allg € G, .

If ¢ € Obj(C"), then H < G.. Since F(c) is a G.-category, we can take the H
fixed points of F(c). Then we can define a functor '/ : C? — Catby ¥ (c) = F(c)"
and FH(f) = F(f). This is well-defined since

i) Let z € Obj(F(c)"), thatis x € Obj(F(c)) with hx = n,.(x) = x for all

h € H. So, we have

hE(f)(x) = e (F(f)(x))

= F(hf)onpc(z) (5.4)

that is F'(f)(z) in Obj(F(C)™)
ii) For a morphism o : X — Y in F(c)¥ thatis ha =, .a = a forall h € H, we

have

hE(f) (@) = mhe (F(f)(a))

= F(hf) o mncl(e) (5.5)
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So, F(f)(a) in Obj(F(C)™) is a morphism in F(C')¥ as desired.
Lemma 5.2: ([, F)" = [.u F™.

Proof : Here ( fc F) is the category whose objects are the pairs (c,x) where
¢ € Obj(C) and x € Obj(F(c)) such that h(c,x) = (he,nnc(x)) = (¢, x) that is
he=c, nuc(x) = x. So the objects of ([, F)" are the pairs (c,x) where ¢ € objc?
and x € F(C)". Also, the mophisms of ([, F)" are (o, f) : (¢,x) — (d,y) such that
(ha,npcf) that is ha = o and nncf = f. Since the coface and the codegeneracy

maps are also the same, we can identify ( [ F)" with ( [.n F''). B
Lemma 5.3: (srepN F)H = srepN (FH)

Proof : A (p,q)-simplices of a bisimplicial G-set srepNF are the expression of the

form

oD o X, ap . 2, (5.6)

where the second sequence is a q-simplex in N(F(Xy)). Here the G-action is given by

g(Xof—1>... f—p>Xp, ap . .. Oé—q>aq):(gxog—1>... %Xp,
(5.7)
Ng,x1 (1) Ng,Xq ()
Mg,%(a0) S L Ng,%0(aq))
So, the element of the set (srepNF)}f{q are pairs
fl f;D (5} Qgq
(Xo—)...—>7 G,Q——>...——>Clq> (58)

with hX; = X;, hf; = fi, nn.x,(a:;) = a; and ny, x,(ow;) = o, forall h € H. These are
exactly the element of srepN (F),, .. Since the coface and codegeneracy maps are the
same, we identify srepN(FH) with srepN (FH).

Since diag also respects H-fixed points, we can identify

(hocolimN F)® = hocolimN (F™) (5.9)
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by the above Lemma
By the Lemma5.1|and Lemma 5.2 we have

o [Py = [ P

Therefore, for all H < G there exists a weak homotopy equivalence
(hocolimN F)H ~ (N/ )
c
This implies that there is a weak G-homotopy equivalence

hocolimN F ~ N(/ F)
c

(5.10)

(5.11)

(5.12)

between the homotopy colimit of N o F' and the nerve of the Groethendieck construction

of F

5.2. Lifting of Functors F' : C — D with 1 Actions to

Functors from [, C to D

Theorem 5.1: Let F' : C — D be a functor where C is a G-category determined by the

functor . : G — Cat. Then there is an action on F by natural transformation if and

only if F factors through

F:/70—>D
g

i. e. the following diagram commutes:

Cc ;) fg’yC

RN

D

where the functor i defined by i(c) = (x,c) and i(f) = (14, f).

(5.13)

(5.14)
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Proof : We firstly prove the necessity part of the Theorem 5.1. Now given a functor
F' . C — D with an action by natural transformations. Define the functor F: I g Yo —

D on objects by

F(x,¢c) = F(c) (5.15)

and on morphisms by

F((g,f)) = F(f)onge (5.16)

where (g, f) : (x,¢1) = (%, ¢2).

A map fg Yo — D gives a functor F since
F(1,1.) = F(1.) o e = lp() 0 Lr) = Lr(o (5.17)

and

F((g2, f2) o (g1 0 f1)) = F(g201, fal92/1))
= F(f2(92.1)) © Nlgagi e
= F(f2(921)) © Ngargner © Mgy (5.18)
= F(f2) 0 F(g2.f1) © Ngs.g1¢1 © Ng1.en
= F(f2) 0 gyer © F(f1) © gy

= F((g2, f2)) © F((g1, /1))

Also, F factors through F since

o [(x,¢) = F(c)
o F(1.f)=F(f)ome=F(f)olre=F(f)
Now, we prove the sufficiency of the Theorem let F' : C — Cat be a functor
that factors through F. Define n, . : F(c) — F(gc) by n,. := F(g.,1.). Then we have
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i) Forc € Obj(C), we have . = F(1,1,) = 1
iit) Forc € Obj(C), g1, 92 € G, we have

Nga.gre © Ngre = (92, Lgagie) © F(g1, 1g.6) = F (92, Lgagr.c) © (91, 1gc))

(5.19)
= F(g2glv Lopgie © 92(lge)) = F(9291> Losgne) = Mgagn,e
iii) For g € G and f : ¢y — cin C, we have
Ng1,e1 © F(f) = F(glu 19170) o F(L f) = F((.gl? 191,C> © (17 f))
- F(glalghcogl(laf)) = F(glalghCng) (520)
= F(glagf) = F((lvgf) o (gla 1961))
= F(l,gf) © F(gh 1901) = F(gf) © MNgy,e1
This proves the theorem. B
Here, the map i induces a map
ix : hocolimNF — hocolimN F (5.21)
which sends
(Xo & 0 B Xpa0 2 .0 I ay) (5.22)
to (hocolimN F’),, such that
(%, Xo) L2 0 0o Xy ap 25 L 2 ) (5.23)
in (hocolimN F),,. Clearly, this is a simplicial map.
It also induces a map
iy N(/ F)— N(/ F) (5.24)
C fg Ye
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by sending an n-simplex

(@1,0&1)\ (cpmom)\ (

(co, ap) > Cny Q)

where ¢; is an object in C and a; is an object in F'(¢;) to an n-simplex

((egn o), (Lopn)an)
) - > ((

((*, o), ag %,Cn), Q)

Proposition 5.1: The following diagram commutes:
hocolimNF —— hocolimN F
"/’Fl lt/’i

N(Jo F) — N(J; .. F)

where r and 1) . are the maps given in Thomason’s theorem.

Proof [5.1): For the commutativity of the diagram

Yroi(Xo 2 ... %Xp,ao = 2>ap)
= a((x, Xo) L2 B X ) a0 9L )
= (%, Xo), ap) LTI, LTI, (5, X,), Flpy) ()
On the other hand, we have
iy ohp(Xg 25 .. ﬁ>Xp,aoa—1>... a—p>ap)

. 7F( )(O‘ ) va( P)(ap)
= i.((Xo, ap) T L T (Xp, F(0p)(ap))

(LPeD@), (e F(e)(0p)
= ((x, Xo),ap) ———> ... » (%, Xp), Fp)(ap))

and hence Yz 01, =i, 0p. B

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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