
 

 

 

 
 

T.R. 
GEBZE TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 
 
 
 
 

VERSATILE DIGIT SERIAL MULTIPLIERS FOR BINARY 
EXTENSION FIELDS 

 
 
 
 
 

BİLAL USLU 
A THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

DEPARTMENT OF ELECTRONICS ENGINEERING 
 
 
 
 

GEBZE 
2016 

 
  



 

 

T.R. 
GEBZE TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 
 
 
 

VERSATILE DIGIT SERIAL MULTIPLIERS 
FOR BINARY EXTENSION FIELDS 

 
 

BİLAL USLU 
A THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
DEPARTMENT OF ELECTRONICS ENGINEERING 

 
 

THESIS SUPERVISOR 

ASSIST. PROF. DR. SERDAR SÜER ERDEM 

 
 
 

GEBZE 
2016 

  



 

 

T.C. 
GEBZE TEKNİK ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 
 
 
 

İKİLİ SONLU GENİŞLEME CİSMİ İÇİN 

ESNEK VE ÖLÇEKLENEBİLİR DİGİT SERİ 

ÇARPICILAR 
 
 
 

BİLAL USLU 
DOKTORA TEZİ 

ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI 
 
 

DANIŞMANI 

YRD. DOÇ. DR. SERDAR SÜER ERDEM 

 
GEBZE 

2016 





 

v 

 

SUMMARY 
 
 

This thesis investigates the digit serial polynomial basis multipliers performing 

multiplication in multiple binary extension fields 𝔽2m1, 𝔽2m2 , . . . , 𝔽2mλ . Designing 

such versatile multipliers encounters a number of difficulties. First of all, the element 

sizes of the supported fields are different from each other, and thus the elements are 

represented with different number of bits for each field. To deal with different sized 

elements, designs with left or right justified operands are investigated in this study. 

Secondly, each field multiplication involves modular reduction with a different 

irreducible polynomial, and thus the complexity can increase rapidly with the number 

of supported fields λ. To prevent this, two methods are studied: Using sparse 

irreducible polynomials and unifying the modular reduction computation of the fields 

by choosing the irreducible polynomials suitably. The thesis shows that multiple fields 

can be supported at the cost of an 𝒪(λ) increase in area and an 𝒪(√λ) increase in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Key Words: Binary extension fields, digit serial multiplier, polynomial basis, 
elliptic curve cryptography.  



 

vi 

 

ÖZET 
 
 

Bu tez çoklu 𝔽2m1, 𝔽2m2 , . . . , 𝔽2mλ  ikili alan uzantılarında çalışan polinom bazlı 

dijit seri çarpıcıları incelemektedir. Bu tür esnek ve ölçeklenebilir çarpıcıların 

tasarımında çeşitli sıkıntılarla karşılaşılmaktadır. Desteklenen alanların eleman 

uzunlukları birbirinden farklı olduğundan, bu elemanlar birbirinden farklı bit sayıları 

ile temsil edilmektedir. Bu tez çalışmasında ilk olarak, birbirinden farklı uzunluktaki 

elemanlar ile çalışabilmek için sola ve sağa dayalı terimlere sahip tasarımlar araştırıldı. 

Ayrıca her bir çarpma alanı, birbirinden farklı indirgenemez polinomlar kullanan 

modüler indirgeme işlemleri içermektedir. Bu yüzden desteklenen alan sayısı λ ile 

karmaşıklık seviyesi çok fazla miktarda artabilmektedir. Daha sonra, bu durumu 

engellemek için iki yöntem üzerinde çalışıldı: Az terimli indirgenemez polinomların 

kullanımının yanısıra her bir alanın modüler indirgeme hesap işlemlerinin 

birleştirilmesi için en uygun indirgenemez polinomlar seçildi. Bu tez çoklu alanların 

kullanımının donanım maliyeti 𝒪(λ) ile ve hesaplama zaman maliyeti olarak 𝒪(√λ) ile 

arttığını göstermektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: İkili alan uzantıları, dijit seri çarpıcılar, polinomsal baz, 

eliptik eğri şifrelemesi. 



 

vii 

 

ACKNOWLEDGEMENTS 
 
 

I would like to express my sincere gratitude to my advisor Asst. Prof. Dr. Serdar 

Süer Erdem for the continuous support of my Ph.D study and related research, for his 

patience, motivation, and immense knowledge. His guidance helped me in all the time 

of research and writing of this thesis.  

Besides my advisor, I would like to thank my family: my parents and to my wife 

and kids for supporting me spiritually throughout writing this thesis and my my life in 

general. 

 

 

 

 

  



 

viii 

 

TABLE of CONTENTS 
 
 

 Page 

SUMMARY v 

ÖZET vi 

ACKNOWLEDMENTS vii 

TABLE of CONTENTS viii 

LIST of ABBREVIATIONS and ACRONYMS x 

LIST of FIGURES xi 

LIST of TABLES xiii 

  

1. INTRODUCTION 1 

2. DIGIT SERIAL MULTIPLIERS USING POLYNOMIAL BASIS 4 

2.1. Most Significant Digit First Multipliers 5 

2.2. Least Significant Digit First Multipliers 7 

2.3. Complexities of Multipliers 9 
2.3.1. MSD First Multiplier 11 

2.3.2. LSD First Multiplier 12 

2.3.3. Comparison of MSD First and LSD First Multipliers 13 

3. MSD FIRST DIGIT SERIAL MULTIPLIERS SUPPORTING 

    MULTIPLE FIELDS 

16 

3.1. Bit Level Representation 16 

3.2. Multipliers with Right Justified Operands 18 

3.2.1. Obtaining the Digits Bj 18 

3.2.2. Reducing I(x) modulo xmk + g(k)(x) 19 

3.2.3. Performing Modular Reductions Separately 22 

3.2.4. Unified Modular Reduction Case 23 

3.3. Multipliers with Left Justified Operands 25 

3.3.1. Obtaining the Digits Bj 25 

3.3.2. Reducing I(x) modulo xmλ + ĝ(k)(x) 26 

3.3.3. Performing Modular Reductions Separately 29 

3.3.4. Unified Modular Reduction Case 29 

4. COMPLEXITY ANALYSIS 33 



 

ix 

 

4.1. Area Requirement and Delay 33 

4.2. NIST Recommended Binary Fields 35 

4.3. Comparison with Other Multipliers 36 

5. CONCLUSION 41 

  
REFERENCES 42 

BIOGRAPHY 44 

APPENDICES 45 

 

 

 

 

  



 

x 

 

LIST of ABBREVIATIONS and ACRONYMS 
 
 

Abbreviations 
and Acronyms 

Explanations 

ASIC : Application Specific Integrated Circuit 

FPGA : Field Programmable Gate Array 

LSD : Least Significant Digit 

MSD : Most Significant Digit 

NIST : National Institute of Standards and Technology 

   

   

   

 

  



 

xi 

 

LIST of FIGURES 
 

Figure No: Page 

2.1: The block diagram of the MSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ 

and 𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

6 

2.2: The timing diagram of the MSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ 

and 𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

7 

2.3: The block diagram of the LSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ 

and 𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

8 

2.4: The timing diagram of the LSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ 

and 𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

9 

3.1: Bit level representation of 𝑢(𝑥) = ∑ 𝑢𝑖𝑥𝑖
𝑚𝑘−1
𝑖=0 . Here, the bits in the 

unshaded areas are all zero. 

16 

3.2: Bit level representation of left justified version 𝑢̂(𝑥) =

𝑥𝑚𝜆−𝑚𝑘𝑢(𝑥). Here, the bits in the unshaded areas are all zero. 

16 

3.3: Multiplier working with the right justified input and output. 17 

3.4: Multiplier working with the left justified input and output. 18 

3.5: Obtaining the 𝑤 bit digits 𝐵𝑗 of the operand 𝑏(𝑥) where 𝑚1 < 𝑚2 <

⋯ < 𝑚𝜆 are the sizes of the supported fields and 𝑠1, 𝑠2, … , 𝑠𝜆 are the 

selection bits. 

19 

3.6: The circuit computing the unified reduction 𝑓(𝑥) =

𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the 

supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are the selection bits. 

21 

3.7: The circuit computing the separate reduction 𝑓(𝑥) =

𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the 

supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are the selection bits. 

22 

3.8: Obtaining the digits 𝐵𝑗 from the left justified operand 𝑏̂(𝑥). Here, 

𝑠1, 𝑠2, . . . , 𝑠λ are the selection bits and 𝜙𝑘 = (−𝑚𝑘 𝑚𝑜𝑑 𝑤) + 𝑚𝜆 

for the supported field sizes 𝑚1 < 𝑚2 < ⋯ < 𝑚𝜆 

26 

3.9: The circuit computing the unified reduction 𝑓(𝑥) =

𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝜆 + 𝑔̂(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the 

supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are the selection bits 

26 



 

xii 

 

3.10: The circuit computing the separate reduction 𝑓(𝑥) =

𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝜆 + 𝑔̂(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the 

supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are the selection bits 

27 

 
  



 

xiii 

 

LIST of TABLES 
 

Table No: Page 

2.1: MSD first field multiplication. 5 

2.2: LSD first field multiplication. 7 

2.3: The area complexities of the multipliers for both general and t-

nomial generator polynomials. 

13 

2.4: The time complexities of the multipliers. 15 

4.1: The area requirements of the proposed multipliers where the 

supported field sizes are 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 . 

33 

4.2: The area requirements of the proposed multipliers supporting the 

NIST fields 𝔽2163, 𝔽2233, 𝔽2283, 𝔽2409, 𝔽2571 . 

35 

4.3: Comparison of area complexities of digit serial multipliers working 

in the field 𝔽2𝑚𝑘  

37 

4.4: Comparison of time complexities of digit serial multipliers working 

in the field 𝔽2𝑚𝑘  

38 

4.5: Virtex 5 implementations of digit serial multipliers supporting NIST 

field sizes 163, 233, 283, 409, 571. 

40 

   

   

   

   

   

   

   

 
  



 

   1 

 

1. INTRODUCTION 
 

The arithmetic of the binary extension field 𝔽2𝑚  is commonly used in 

cryptography and coding theory applications [1], [2]. Important cryptographic 

applications such as elliptic curve cryptography need large number of field 

multiplications in 𝔽2𝑚  to perform cryptographic transformations [3], [4]. Also, these 

applications use quite large fields. For example, the field size m is typically selected 

from the range 160 ≤ 𝑚 ≤ 1000 in elliptic curve cryptography. Thus, efficient 

hardware and software implementations of the field multiplication is crucial to reduce 

the cost of cryptographic systems.  

In this thesis, digit serial 𝔽2𝑚  multiplier architectures supporting multiple field 

sizes 𝑚 are presented. The proposed architectures support a set of field sizes 

𝑚1,𝑚2,… ,𝑚𝜆 , i.e. work in one of the fields 𝔽2𝑚1 , 𝔽2𝑚2 , . . . , 𝔽2𝑚𝜆  according to the 

user selection. The increase in the cost due to supporting multiple fields are also 

anlayzed. Moreover, as a case study, The multipliers supporting the five NIST fields 

𝔽2163, 𝔽2233, 𝔽2283, 𝔽2409, and 𝔽2571, recommended for elliptic curve cryptography are 

investigated [5], [6]. 

The proposed digit serial multipliers use polynomial basis. That is, 𝔽2𝑚  elements 

are represented by the binary polynomials of degree less than 

𝑚 {𝑎(𝑥) =  ∑ 𝑎𝑖𝑥𝑖𝑚−1
𝑖=0 | 𝑎𝑖 ∈ 𝔽2} where 𝑥 represents the root of some degree 𝑚 

irreducible polynomial 𝑥𝑚 + 𝑔(𝑥) called generator. The product 𝑓(𝑥) of any two 

elements 𝑎(𝑥) and 𝑏(𝑥) is computed by the polynomial multiplication 𝑎(𝑥)𝑏(𝑥) 

modulo the generator polynomial 𝑥𝑚 + 𝑔(𝑥). The digit serial multipliers keep the 

coefficients of each polynomial operand in an array of digits. One of the operands is 

multiplied by the digits of the other operand, one digit at a time. Each of these partial 

product computations is interleaved with a modular reduction step and an 

accumulation step. 

There are several works studying polynomial basis digit serial multipliers in the 

literature [7] - [13] but these multipliers have been developed to support a particular 

field size 𝑚. The work in [7] introduces efficient digit serial multipliers using 

polynomial basis. The work in [11] investigates optimum digit sizes and the effects of 

using multiple accumulators. The work in [12] proposes using T flip flops in the 

accumulators instead of D flip flops to reduce the area complexity. 



 

   2 

 

The versatility is an important feature for hardware designs since the ASIC 

circuits cannot be altered after fabrication. Flexible implementations are possible with 

reconfigurable FPGA devices but FPGAs cannot compete with the ASIC in terms of 

performance, cost and power consumption. Naturally, customizable elliptic curve 

systems [14] and versatile multipliers [15] - [19] have been proposed in the literature 

but the proposed multipliers are all bit serial and there is not much work about versatile 

digit serial multipliers. 

Let the supported field sizes be 𝑚1 < 𝑚2 < ⋯ < 𝑚𝜆. Then, the number of the 

bits used in the representation must be large enough to represent 𝑚𝜆 coefficients. When 

a field with smaller size 𝑚𝑘 < 𝑚𝜆 is selected, the elements  

 

𝑎(𝑥) =  ∑ 𝑎𝑖𝑥𝑖
𝑚𝑘−1

𝑖=0
∈ 𝔽2𝑚𝑘  (1.1) 

 

must be justified either to the right or to the left. When 𝑎(𝑥) is right justified, the 

leading 𝑚𝜆 −𝑚𝑘 coefficients are set to zero as follows: 

 

𝑎(𝑥) = 0𝑥𝑚𝜆−1 + ⋯+ 0𝑥𝑚𝑘 + 𝑎(𝑥) . (1.2) 

 

In left justified representation, 𝑎(𝑥) is shifted, then the trailing 𝑚𝜆 −𝑚𝑘 

coefficients are set to zero as follows: 

 

𝑎̂(𝑥) = 𝑥𝑚𝜆−𝑚𝑘𝑎(𝑥) + 0𝑥𝑚𝜆−𝑚𝑘−1 + ⋯+ 0𝑥 + 0 . (1.3) 

 

Also, the fields 𝔽2𝑚1 , 𝔽2𝑚2 , . . . , 𝔽2𝑚𝜆  supported by the multipliers use different 

generator polynomials 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) for 𝑘 = 1,2, … , 𝜆. Naturally, the modular 

reduction by each 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) can be performed with a separate circuit. 

Nevertheless, the reduction circuits can be unified when the generator polynomials 

𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) are appropriately chosen. 

The thesis is organized as follows: Section 2 introduces the basic polynomial 

basis digit serial multipliers supporting a single field size and presents a detailed 

analysis of their complexities. Section 3 proposes digit serial multiplier architectures 

supporting multiple field sizes. Some of them work with right justified operands and 



 

   3 

 

some of them work with left justified operands. Also, some of these employ separate 

reduction circuits and some of them employ unified reduction circuits. The 

complexities of the proposed multipliers are studied in Section 4. Discussion of our 

results are presented in Section 5. 

  



 

   4 

 

2. DIGIT SERIAL MULTIPLIERS USING 
POLYNOMIAL BASIS 
 

Naturally, 𝑚 bits are sufficient to represent an element 

 

𝑎(𝑥) =  ∑ 𝑎𝑖𝑥𝑖
𝑚−1

𝑖=0
 (2.1) 

 

in the field 𝔽2𝑚  . This is because each binary valued coefficient of 𝑎(𝑥) can be stored 

in a bit. Let the hardware digit size be 𝑤 bits. A digit serial multiplier divides one of 

the operands, say 𝑏(𝑥), into ⌈𝑚/𝑤⌉ digits as follows: 

 

𝑏(𝑥) =  ∑ 𝑏𝑖𝑥𝑖
𝑚−1

𝑖=0

=  ∑ 𝐵𝑗𝑥𝑤𝑗
⌈𝑚/𝑤⌉−1

𝑗=0

 (2.2) 

where  

𝐵𝑗 =  ∑ 𝑏𝑤𝑗+𝑖𝑥𝑖
𝑤−1

𝑖=0
 (2.3) 

 

is the 𝑗th digit of 𝑏(𝑥) and holds its consecutive 𝑤 coefficients. Then, 

 

𝑎(𝑥)𝑏(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) = ∑ 𝑎(𝑥)𝐵𝑗𝑥𝑤𝑗 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥))
⌈𝑚/𝑤⌉−1

𝑗=0

 (2.4) 

 

gives the field product. The multiplier computes this product, accumulating the partial 

products of the digits 𝐵𝑗 in ⌈𝑚/𝑤⌉ iterations. Thus, the multiplier gets faster as the 

digit size 𝑤 increases. However, its area also increases because of the digits 𝐵𝑗, and 

thus their partial products get larger. In each iteration, one of the partial products 

𝑎(𝑥)𝐵𝑗 is computed and added to an intermediate result 𝐼(𝑥) where 𝑑𝑒𝑔(𝐼(𝑥)) < 𝑚 +

𝑤. The intermediate result 𝐼(𝑥) can be split into degree 𝑤 − 1 and 𝑚−  1 polynomials 

as follows: 

 



 

   5 

 

𝐼(𝑥) = ∑ 𝐼𝑖𝑥𝑖 = 𝑞(𝑥)𝑥𝑚 + 𝑟(𝑥)
𝑚+𝑤−1

𝑖=0

 (2.5) 

 

where 𝑞(𝑥) =  ∑ 𝐼𝑚+𝑖𝑥𝑖𝑤−1
𝑖=0  and 𝑟(𝑥) =  ∑ 𝐼𝑖𝑥𝑖𝑚−1

𝑖=0 . The generator 𝑥𝑚 + 𝑔(𝑥) is 

usually chosen such that 

 

𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤 (2.6) 

 

for fast modular reduction. Then, the intermediate result can be reduced without 

division as follows: 

 

𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) = 𝑞(𝑥)𝑥𝑚 + 𝑟(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) 
(2.7) 

= 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥) . 

 

This can be done because 𝑑𝑒𝑔(𝑔(𝑥)𝑞(𝑥)) < 𝑚 for any degree 𝑤 − 1 polynomial 

𝑞(𝑥) when Equation (2.6) holds. 

 
2.1. Most Significant Digit First Multipliers 
 

The most significant digit first multipliers compute the field product in (2.4), 

starting from the most significant digit 𝐵𝑀−1 as illustrated in the Table 2.1. 

 

Table 2.1: MSD first field multiplication. 
 

Inputs: 𝑎(𝑥) =  ∑ 𝑎𝑖𝑥𝑖𝑚−1
𝑖=0 , 𝑔(𝑥) =  ∑ 𝑔𝑖𝑥𝑖

𝜇
𝑖=0  

𝑏(𝑥) =  ∑ 𝑏𝑖𝑥𝑖𝑚−1
𝑖=0 = ∑ 𝐵𝑗𝑥𝑤𝑗

⌈𝑚/𝑤⌉−1
𝑗=0  where 𝐵𝑗 =  ∑ 𝑏𝑤𝑗+𝑖𝑥𝑖𝑤−1

𝑖=0  

Output: 𝑓(𝑥) = 𝑎(𝑥)𝑏(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) 

 

1:  𝐼(𝑥) = 0 

2:  for 𝑗 = ⌈𝑚/𝑤⌉ − 1 to 0 

3:      𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)),     𝐼(𝑥) = 𝑎(𝑥)𝐵𝑗 + 𝑥𝑤𝑓(𝑥) 

4:  𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) 



 

   6 

 

In the Table 2.1, 𝐼(𝑥) is the accumulated sum of the partial products. 𝐼(𝑥) is 

initialized to zero in the beginning and reduced to modulo 𝑥𝑚 + 𝑔(𝑥) in each iteration. 

The reduced result 

 

𝑓(𝑥) ≡∑ 𝑎(𝑥)𝐵𝑖𝑥𝑤(𝑖−𝑗−1)𝑚𝑜𝑑(𝑥𝑚 + 𝑔(𝑥))
⌈𝑚/𝑤⌉−1

𝑖=𝑗+1
 (2.8) 

 

𝑥𝑤𝑓(𝑥) is added with the partial product 𝑎(𝑥)𝐵𝑗 to update 𝐼(𝑥) in the 𝑗th iteration. 

After all partial products are added, 𝐼(𝑥) is reduced one last time. Figure 2.1 and Figure 

2.2 illustrate MSD first multiplication. Here, it is chosen that  

 

𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤 . (2.9) 

 

Thus, the reduction 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) = 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥) as shown in (2.7) 

where 𝑞(𝑥) and 𝑟(𝑥) are higher and lower terms of 𝐼(𝑥) . 

 

 
 

Figure 2.1: The block diagram of the MSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ and 
𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

 



 

   7 

 

 
 

Figure 2.2: The timing diagram of the MSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ and 
𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

 

2.2. Least Significant Digit First Multipliers 
 

These multipliers compute the field product in (2.4), starting from the least 

significant digit 𝐵0 as given in Table 2.2 : 

 

Table 2.2: LSD first field multiplication. 
 

Inputs: 𝑎(𝑥) =  ∑ 𝑎𝑖𝑥𝑖𝑚−1
𝑖=0 ,     𝑔(𝑥) =  ∑ 𝑔𝑖𝑥𝑖

𝜇
𝑖=0  

𝑏(𝑥) =  ∑ 𝑏𝑖𝑥𝑖𝑚−1
𝑖=0 = ∑ 𝐵𝑗𝑥𝑤𝑗

⌈𝑚/𝑤⌉−1
𝑗=0  where 𝐵𝑗 =  ∑ 𝑏𝑤𝑗+𝑖𝑥𝑖𝑤−1

𝑖=0  

Output: 𝑓(𝑥) = 𝑎(𝑥)𝑏(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) 

 

1:  𝐽(𝑥) = 0 

2:  for 𝑗 = 0 to ⌈𝑚/𝑤⌉ − 1 

3:      if 𝑗 = 0 then 𝐼(𝑥) = 𝑎(𝑥) else 𝐼(𝑥) = 𝐴(𝑥) 

4:      𝐴(𝑥) = 𝐼(𝑥)𝑥𝑤 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)),      𝐽(𝑥) = 𝐼(𝑥)𝐵𝑗 + 𝐽(𝑥) 

5:  𝑓(𝑥) = 𝐽(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) 

 

In the 𝑗th iteration of the LSD first multiplication, 

 

𝐼(𝑥) ≡ 𝑥𝑤𝑗𝑎(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) (2.10) 

 



 

   8 

 

𝐽(𝑥) ≡ ∑ 𝑎(𝑥)𝐵𝑖𝑥𝑤𝑖 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥))
𝑗
𝑖=0  . (2.11) 

 

Figure 2.3 and Figure 2.4 illustrates this computation. Here, it is chosen that  

 

𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. (2.12) 

 

Thus, 𝑥𝑤𝐼(𝑥) and 𝐽(𝑥) can be reduced without division as shown in (2.7). For 

this, 𝐼(𝑥) and 𝐽(𝑥) are split as follows: 

 

𝐼(𝑥) =∑ 𝐼𝑖𝑥𝑖
𝑚−1

𝑖=0
= 𝑞(𝑥)𝑥𝑚−𝑤 + 𝑟(𝑥) (2.13) 

 

𝐽(𝑥) =∑ 𝐽𝑖𝑥𝑖
𝑚+𝑤−1

𝑖=0
= 𝑞′(𝑥)𝑥𝑚 + 𝑟′(𝑥) (2.14) 

 

to compute 𝑥𝑤𝐼(𝑥) 𝑚𝑜𝑑  (𝑥𝑚 + 𝑔(𝑥)) = 𝑔(𝑥)𝑞(𝑥) + 𝑥𝑤𝑟(𝑥) and 

𝐽(𝑥) 𝑚𝑜𝑑  (𝑥𝑚 + 𝑔(𝑥)) = 𝑔(𝑥)𝑞′(𝑥) + 𝑟′(𝑥). 

 

 
 

Figure 2.3: The block diagram of the LSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ and 
𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 



 

   9 

 

 
 

Figure 2.4: The timing diagram of the LSD first multiplier where 𝑀 = ⌈𝑚/𝑤⌉ and 
𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 ≤ 𝑚 −𝑤. 

 

2.3. Complexities of Multipliers 
 

Now, the complexities of the multipliers are studied, using the results of the 

following theorem. 

 

Theorem 2.1: Let ∆(𝑥), 𝑢(𝑥), and 𝑣(𝑥) be three binary polynomials such that 

 

∆(𝑥) = ∑ ∆𝑖𝑥𝑖
𝜔−1

𝑖=0

 ,     𝑢(𝑥) =∑𝑢𝑖𝑥𝑖
ℓ−1

𝑖=0

 ,    𝑣(𝑥) =∑𝑣𝑖𝑥𝑖
ℓ̀−1

𝑖=0

 , (2.15) 

 

where 𝑑𝑒𝑔(𝑣(𝑥)) ≥ 𝑑𝑒𝑔(∆(𝑥)𝑢(𝑥)). Let TAND and TXOR denote an AND gate delay 

and an XOR gate delay, respectively. The multiply operation ∆(𝑥)𝑢(𝑥) has the 

following area requirement and critical path delay : 

 

x 𝜔ℓ AND gates, (𝜔 − 1)(ℓ − 1) XOR gates, 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2(𝑚𝑖𝑛(𝜔, ℓ))⌉. 

 

The multiply-add operation ∆(𝑥)𝑢(𝑥) + 𝑣(𝑥) has the following area requirement and 

critical path delay. 

 

x 𝜔ℓ AND gates,  𝜔ℓ XOR gates, 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2(𝑚𝑖𝑛(𝜔, ℓ)) + 1⌉ . 



 

   10 

 

 

Corollary 2.1: Let 𝑢(𝑥) have at most 𝜏 nonzero terms, i.e. 

 

𝑢(𝑥) =∑𝑢𝑖𝑥𝑖
ℓ−1

𝑖=0

=∑𝑢𝜇𝑖𝑥
𝜇𝑖

𝜏

𝑖=1

 (2.16) 

 

for some distinct integers 𝜇𝑖 such that 0 ≤ 𝜇𝑖 ≤ ℓ. Then, the multiply-add operation 

∆(𝑥)𝑢(𝑥) + 𝑣(𝑥) has the following area requirement and critical path delay : 

 

x 𝜔𝜏 AND gates, 𝜔𝜏 XOR gates, at most 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2(𝑚𝑖𝑛(𝜔, ℓ)) + 1⌉ . 

 

Proof 2.1: The case 𝜔 = 𝑚𝑖𝑛(𝜔, ℓ, 𝜏) is analyzed in this proof. At the end, the results 

are extended to the general case. Note that the product ∆(𝑥)𝑢(𝑥) is a polynomial of 

degree ℓ + 𝜔 − 2 and its terms are as follows: 

 

∆(𝑥)𝑢(𝑥) =

{
  
 

  
 (∑ ∆𝑗𝑢𝑖−𝑗

𝑖

𝑗=0
) 𝑥𝑖, 0 ≤ 𝑖 < 𝜔 − 1

(∑ ∆𝑗𝑢𝑖−𝑗
𝜔−1

𝑗=0
) 𝑥𝑖, 𝜔 − 1 ≤ 𝑖 < ℓ

(∑ ∆𝑗𝑢𝑖−𝑗
𝑖

𝑗=𝑖+1−ℓ
) 𝑥𝑖, ℓ ≤ 𝑖 < ℓ + 𝜔 − 1

 (2.17) 

 

∆(𝑥)𝑢(𝑥) =

{
  
 

  
 (∑ ∆𝑗𝑢𝑖−𝑗

𝑖

𝑗=0
) 𝑥𝑖, 0 ≤ 𝑖 < 𝜔 − 1  

(∑ ∆𝑗𝑢𝑖−𝑗
𝜔−1

𝑗=0
) 𝑥𝑖, 𝜔 − 1 ≤ 𝑖 < ℓ  

(∑ ∆𝑗𝑢ℓ+𝑖−𝑗
𝜔−1

𝑗=𝑖+1
) 𝑥ℓ+𝑖, 0 ≤ 𝑖 < 𝜔 − 1 .

 (2.18) 

 

As seen, ∆(𝑥)𝑢(𝑥) has the terms (∑ ∆𝑗𝑢𝑖−𝑗𝜔−1
𝑗=0 )𝑥𝑖 for 𝜔 − 1 ≤ 𝑖 < ℓ. 

Computing the coefficient of each 𝑥𝑖 requires 𝜔 AND gates and (𝜔 −  1) XOR gates. 

Thus, computing all these terms requires 𝜔(ℓ −  𝜔 +  1) AND gates and 

(𝜔 −  1)(ℓ −  𝜔 +  1)  XOR gates. Also, ∆(𝑥)𝑢(𝑥)  has the following terms. 



 

   11 

 

(∑ ∆𝑗𝑢𝑖−𝑗
𝑖

𝑗=0
) 𝑥𝑖 ,     (∑ ∆𝑗𝑢ℓ+𝑖−𝑗

𝜔−1

𝑗=𝑖+1
) 𝑥ℓ+𝑖       for   0 ≤ 𝑖 < 𝜔 − 1 (2.19) 

 

Computing the coefficients of each 𝑥𝑖 and 𝑥ℓ+𝑖 pair requires 𝜔 AND gates and 

(𝜔 −  2) XOR gates. Thus, computing all these terms requires 𝜔(𝜔 −  1) AND gates 

and (𝜔 −  2)(𝜔 −  1) XOR gates. 

As a result, all the coefficients of ∆(𝑥)𝑢(𝑥) are obtained by 𝜔(ℓ − 𝜔 +  1) +

𝜔(𝜔 −  1) = 𝜔ℓ AND gates and (𝜔 −  1)(ℓ −  𝜔 +  1) + (𝜔 −  2)(𝜔 −  1)  =

 (𝜔 −  1)(ℓ −  1) XOR gates. The coefficient computation ∑ ∆𝑗𝑢𝑖−𝑗𝜔−1
𝑗=0  causes the 

largest delay. Thus, the critical path delay is 𝑇AND  + 𝑇XOR⌈log2 𝜔⌉. When 

∆(𝑥)𝑢(𝑥) + 𝑣(𝑥) is computed instead of ∆(𝑥)𝑢(𝑥), XOR gate count increases from 

(𝜔 −  1)(ℓ −  1)  to 

 

(𝜔 −  1)(ℓ −  1) + 𝑑𝑒𝑔(∆(𝑥)𝑢(𝑥)) + 1 = 𝜔ℓ (2.20) 

 

and the critical path delay becomes 𝑇AND  + 𝑇XOR⌈log2(𝜔 + 1)⌉. 

In the corollary, the case 𝑢(𝑥) has at most 𝜏 nonzero coefficients are considered, 

i.e. 𝑢(𝑥) = ∑ 𝑢𝑖𝑥𝑖ℓ−1
𝑖=0 = ∑ 𝑢𝜇𝑖𝑥

𝜇𝑖𝜏
𝑖=1 . Then, 𝜔(ℓ −  𝜏) AND gates and 𝜔(ℓ −  𝜏) 

XOR gates are redundant. Thus, AND and XOR gate requirements each reduces from 

𝜔ℓ to 𝜔𝜏 . Also, the critical path delay remains the same or reduced. 

The complexities of ∆(𝑥)𝑢(𝑥) and ∆(𝑥)𝑢(𝑥) + 𝑣(𝑥) have already been 

analyzed for the case that Δ(𝑥) has less terms than 𝑢(𝑥), i.e. 𝜔 =  𝑚𝑖𝑛(𝜔, ℓ, 𝜏). Since 

∆(𝑥)𝑢(𝑥) = 𝑢(𝑥)∆(𝑥), the same analysis can be repeated just by swapping ∆(𝑥) with 

𝑢(𝑥) for the case that ∆(𝑥) has more terms than 𝑢(𝑥). Then, the complexities can be 

found by swapping 𝜔 with ℓ, and 𝜔 with 𝜏. Naturally, the area complexities 

(𝜔 −  1)(ℓ −  1), 𝜔ℓ, and 𝜔𝜏 remain the same. However, the time complexities 

change and the general case time complexities are obtained by replacing 𝜔 with 

𝑚𝑖𝑛(𝜔, ℓ) and 𝜔 with 𝑚𝑖𝑛(𝜔, 𝜏). 

 

2.3.1. MSD First Multiplier 
 

The area and time complexities of the MSD first multiplier can be found by 

analyzing Figure 2.1.  



 

   12 

 

Computing the product 𝑎(𝑥)𝐵𝑗 corresponds to the multiplication in Theorem 2.1 

for the case 𝜔 =  𝑤 and ℓ =  𝑚. Thus, it requires 𝑤𝑚 AND plus (𝑤 −  1)(𝑚 −  1) 

XOR gates, and has the delay 

 

𝑇𝑎(𝑥)𝐵𝑗 = 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2 𝑤⌉. (2.21) 

 

Computing the reduction 𝑓(𝑥) = 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥) corresponds to the multiply-

add operation in Theorem 2.1 for the case 𝜔 =  𝑤, ℓ =  𝜇 +  1, and ℓ′ =  𝑚. Thus, 

it requires 𝑤(𝜇 +  1) AND plus 𝑤(𝜇 +  1) XOR gates and has the delay 

 

𝑇𝑓(𝑥) = 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2(𝑚𝑖𝑛(𝑤, 𝜇 + 1) + 1)⌉. (2.22) 

 

𝑎(𝑥)𝐵𝑗 is 𝑚 +  𝑤 −  1 bits and 𝑓(𝑥) is 𝑚 bits. Thus, computing and storing 

𝐼(𝑥) = 𝑎(𝑥)𝐵𝑗 + 𝑥𝑤𝑓(𝑥) require 𝑚 − 1 XOR gates plus 𝑚 +𝑤 flip flops and has the 

delay 𝑇𝑋𝑂𝑅. Then, the critical path delay 

 

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑋𝑂𝑅 + 𝑚𝑎𝑥 (𝑇𝑎(𝑥)𝐵𝑗 , 𝑇𝑓(𝑥)) 
(2.23) 

= 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅 + 𝑇𝑋𝑂𝑅⌈log2(𝑤 + 1)⌉. 

 

Actually, 𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅 + 𝑇𝑋𝑂𝑅⌈log2 𝑤⌉ when 𝑤 >  𝜇 +  1 but this 

minor improvement is ignored. 

 
2.3.2. LSD First Multiplier 
 

The area and time complexities of the LSD first multiplier can be found by 

analyzing Figure 2.3 and Figure 2.4. 

Computing 𝐼(𝑥)𝐵𝑗 + 𝐽(𝑥) corresponds to the multiply-add operation in Theorem 

2.1 for the case 𝜔 =  𝑤, ℓ =  𝑚, and ℓ′ =  𝑤 +  𝑚 −  1. Thus, it requires 𝑤𝑚 AND 

plus 𝑤𝑚 XOR gates and has the delay 

 
𝑇𝐼(𝑥)𝐵𝑗+𝐽(𝑥) = 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅⌈log2(𝑤 + 1)⌉. (2.24) 

 



 

   13 

 

Computing the reduction 𝑔(𝑥)𝑞(𝑥) + 𝑥𝑤𝑟(𝑥) corresponds to the multiply-add 

operation in Theorem 2.1 for the case 𝜔 =  𝑤, ℓ =  𝜇 +  1, and ℓ′ =  𝑚. Thus, it 

requires 𝑤(𝜇 +  1) AND plus 𝑤𝜇 XOR gates. Actually, not only 𝑤𝜇 XOR gates but 

also 𝑤(𝜇 +  1) XOR gates are needed according to the theorem. Nevertheless, 𝑤 XOR 

gates can be saved since the least significant 𝑤 bits of 𝑥𝑤𝑟(𝑥) are zero. 

Computing the final reduction 𝑔(𝑥)𝑞′(𝑥)  +  𝑟′(𝑥) corresponds to the multiply-

add operation for the case 𝜔 =  𝑤 −  1, ℓ =  𝜇 +  1, and ℓ′ =  𝑚. Thus, it requires 

(𝑤 −  1)(𝜇 +  1) AND plus (𝑤 −  1)(𝜇 +  1) XOR gates. 

Storing 𝐴(𝑥) and 𝐽(𝑥) requires 2𝑚 +  𝑤 −  1 flip flops. Multiplexing 𝐴(𝑥) and 

𝑎(𝑥) requires 𝑚-bit multiplexer. Also, the critical path delay 

 

𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑀𝑈𝑋 + 𝑇𝐼(𝑥)𝐵𝑗+𝐽(𝑥) = 𝑇𝐴𝑁𝐷 + 𝑇𝑀𝑈𝑋 + 𝑇𝑋𝑂𝑅⌈log2(𝑤 + 1)⌉. (2.25) 

 
2.3.3. Comparison of MSD First and LSD First Multipliers 
 

Table 2.3 and Table 2.4 summarize the complexity analyses of the MSD first and 

LSD first multipliers. Table 2.3 gives the area complexities for both general and t-

nomial generator polynomials. The general and t-nomial generator polynomials are 

respectively given by : 

 

Table 2.3: The area complexities of the multipliers for both general and t-nomial 
generator polynomials. 

 
Multiplier #AND #XOR #LATCH #MUX 

MSD 1st 

(general) 
𝑤𝑚 +𝑤(𝜇 + 1) 𝑤𝑚+𝑤𝜇 𝑚 +𝑤 + 𝜇 + 1 - 

MSD 1st 

(t-nomial) 
𝑤𝑚 𝑤𝑚 +𝑤(𝑡 − 2) 𝑚 +𝑤 - 

LSD 1st 

(general) 

𝑤𝑚 +𝑤(𝜇 + 1) 

+(𝑤 − 1)(𝜇 + 1) 

𝑤𝑚+𝑤𝜇 

+(𝑤 − 1)(𝜇 + 1) 
2𝑚 + 𝑤 + 𝜇 𝑚 

LSD 1st 

(t-nomial) 
𝑤𝑚 

𝑤𝑚 +𝑤(𝑡 − 2) 

+(𝑤 − 1)(𝑡 − 1) 
2𝑚 + 𝑤 − 1 𝑚 

 

 



 

   14 

 

𝑥𝑚 + 𝑔(𝑥) = 𝑥𝑚 +∑ 𝑔𝑖𝑥𝑖
𝜇

𝑖=0
 ,         𝑥𝑚 + 𝑔(𝑥) = 𝑥𝑚 +∑ 𝑥𝜇𝑖

𝑡−1

𝑖=1
   (2.26) 

 

where 𝜇𝑖 , 𝜇 ≤  𝑚 − 𝑤 to satisfy the restriction (2.6). The complexity results for 

general generator polynomials are obtained from the previous analyses in the thesis. 

Also,    𝜇 + 1 additional flip flops are needed to store the generator coefficients 𝑔𝑖 for 

𝑖 =  0, 1, . . . , 𝜇 in general case as seen from Table 2.1. On the other hand, a t-nomial 

is a constant coefficient polynomial with 𝑡 nonzero terms. Since the coefficients are 

constant, they do not need to be stored. Also, reduction with a t-nomial requires only 

hardwiring and XORing. This computation is very efficient when 𝑡 is small. Note that 

the fast modular reduction in (2.7) becomes 

 

𝑞(𝑥)𝑥𝑚 + 𝑟(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) = 𝑟(𝑥) + 𝑞(𝑥)𝑔(𝑥) 
(2.27) 

= 𝑟(𝑥) +∑ 𝑞(𝑥)𝑥𝜇𝑖
𝑡−1

𝑖=1
 

 

when the generator polynomial 𝑥𝑚 + 𝑔(𝑥) is a t-nomial. As seen, reduction with a t-

nomial modulo requires 0 AND gates and 𝑤(𝑡 −  1) XOR gates where 𝑑𝑒𝑔(𝑞(𝑥)) ≤

𝑤. Our previous analyses in the thesis show that modular reduction requires 𝑤(𝜇 +  1) 

AND gates and 𝑤(𝜇 +  1) XOR gates when a general generator polynomial with 

𝑑𝑒𝑔(𝑔(𝑥)) = 𝜇 is used. Therefore, the complexities in Table 2.1 for the t-nomial case 

are obtained from the complexities for the general case in two steps. 

 

x First, the AND gates used in the reduction are excluded from the total AND 

count because reduction with constant coefficient t-nomials does not need any 

AND gates. 

x Secondly, 𝜇 in the XOR count is substituted with 𝑡 −  2 because XOR 

complexity is 𝑤(𝑡 −  1) for the t-nomial case while XOR complexity is 

𝑤(𝜇 +  1) for the general case. 

 
 
 
 
 
 



 

   15 

 

Table 2.4: The time complexities of the multipliers. 
 

Multiplier Critical Path Delay Latency 

MSD 1st 𝑇𝐴𝑁𝐷 + 𝑇𝑋𝑂𝑅 + 𝑇𝑋𝑂𝑅⌈log2(𝑤 + 1)⌉ ⌈𝑚/𝑤⌉ + 1 

LSD 1st 𝑇𝐴𝑁𝐷 + 𝑇𝑀𝑈𝑋 + 𝑇𝑋𝑂𝑅⌈log2(𝑤 + 1)⌉ ⌈𝑚/𝑤⌉ + 1 

 

Table 2.4 gives the time complexities of the multipliers. The delay of the partial 

product computation dominates the delay of the modular reduction as seen from (2.23) 

and (2.25). Thus, using sparse t-nomial generator polynomials cannot decrease the 

critical path delay here. 

  



 

   16 

 

3. MSD FIRST DIGIT SERIAL MULTIPLIERS 
SUPPORTING MULTIPLE FIELDS 
 

In this section, MSD first multipliers supporting multiple fields are proposed. 

MSD first multiplication is preferred to LSD first multiplication in the proposed design 

because the former requires less area than the latter as seen from Table 2.1. 

 

3.1. Bit Level Representation 
 

Let the supported field sizes be 𝑚1  <  𝑚2  < · · · <  𝑚𝜆 . Then, at least 𝑚𝜆 bits 

are required to represent the field elements. When the multiplier works in the field 

𝔽2𝑚𝑘  , its inputs and output are 𝑚𝑘 bits and they must be stored in 𝑚𝜆 bits with a 

proper alignment. Let 𝑢(𝑥) be a multiplier input or output. As seen from Figure 3.1 

and Figure 3.2, 𝑢(𝑥) can be either right justified by zero extending or left justified by 

zero padding as follows: 

 

𝑢̂(𝑥) = 𝑥𝑚𝜆−𝑚𝑘𝑢(𝑥) = 𝑥𝑚𝜆−𝑚𝑘 ∑ 𝑢𝑖𝑥𝑖
𝑚𝑘−1

𝑖=0

  . (3.1) 

 

 
 

Figure 3.1: Bit level representation of 𝑢(𝑥) = ∑ 𝑢𝑖𝑥𝑖
𝑚𝑘−1
𝑖=0 . Here, the bits in the 

unshaded areas are all zero. 
 

 
 

Figure 3.2: Bit level representation of left justified version 𝑢̂(𝑥) = 𝑥𝑚𝜆−𝑚𝑘𝑢(𝑥). 
Here, the bits in the unshaded areas are all zero. 



 

   17 

 

Note that the digit serial multiplication in (2.7) can be written for any Δ ≥  0 as 

follows: 

 

𝑥Δ𝑓(𝑥) = ∑ 𝑥Δ𝑎(𝑥)𝐵𝑗𝑥𝑤𝑗 𝑚𝑜𝑑 (𝑥Δ+𝑚𝑘 + 𝑥Δ𝑔(𝑥))⌈𝑚𝑘/𝑤⌉−1
𝑗=0 .  (3.2) 

 

Then, when Δ =  0 and when Δ =  𝑚𝜆 − 𝑚𝑘, the digit serial multiplication 

becomes 

 

𝑓(𝑥) = ∑ 𝑎(𝑥)𝐵𝑗𝑥𝑤𝑗 𝑚𝑜𝑑 (𝑥𝑚𝑘 + 𝑔(𝑥)),
⌈𝑚𝑘/𝑤⌉−1

𝑗=0

 (3.3) 

 

𝑓(𝑥) = ∑ 𝑎̂(𝑥)𝐵𝑗𝑥𝑤𝑗 𝑚𝑜𝑑 (𝑥𝑚𝑘 + 𝑔̂(𝑥)),
⌈𝑚𝑘/𝑤⌉−1

𝑗=0

 (3.4) 

 

respectively. Here, 𝑎(𝑥), 𝑏(𝑥), 𝑔(𝑥), 𝑓(𝑥) are the right justified and 𝑎̂(𝑥), 𝑏̂(𝑥), 𝑔̂(𝑥),  

𝑓(𝑥) are the left justified operands. Figure 3.3 and Figure 3.4 illustrates the multipliers 

working with both the right and the left justified operands. As seen, the left justified 

alignment is advantageous since 𝐼(𝑥) is reduced to modulo degree 𝑚𝑘 polynomial, 

 

 
 

Figure 3.3: Multiplier working with the right justified input and output. 

 



 

   18 

 

 
 

Figure 3.4: Multiplier working with the left justified input and output. 

 

regardless of the selected field size 𝑚𝑘. However, when the operands are right 

justified, the reduction of 𝐼(𝑥) is performed modulo a degree 𝑚𝑘 polynomial, and thus 

dependent on the selected field size. 

 

3.2. Multipliers with Right Justified Operands 
 

In this section, the MSD first multiplier in Figure 2.1 is modified to support 

multiple field sizes. The modified multiplier has right justified inputs and output. 

 

3.2.1 Obtaining the Digits 𝑩𝒋 
 

The MSD first multiplier in Figure 2.1 must extract the digits 𝐵𝑗 from 𝑏(𝑥). For 

this, 𝑏(𝑥) is put in a 𝑤⌈𝑚/𝑤⌉ bit shift register. As the register shifts left by 𝑤 bits at 

each clock, the most significant 𝑤 bits are extracted to obtain the digits 𝐵𝑗 one by one. 

When the multiple fields are supported, the digits of 𝑏(𝑥) are extracted as shown in 

Figure 3.5. The circuit in Figure 3.5 extracts the following 𝑤𝜆 bits of 𝑏(𝑥) in each 

cycle. 

 

𝑏𝑤⌈𝑚𝑘/𝑤⌉−𝑖 ,     0 < 𝑖 ≤ 𝑤 ,   1 ≤ 𝑘 ≤ 𝜆 .     (3.5) 

 

Let the selected field size be 𝑚𝑘0. Then, only the following bits are needed 

among the extracted bits. 

 



 

   19 

 

𝐵𝑗 = { 𝑏𝑤⌈𝑚𝑘/𝑤⌉−𝑖  |  0 < 𝑖 ≤ 𝑤 ,   𝑘 = 𝑘0 } . (3.6) 

 

Thus, the extracted bits are ANDed with the selection bits 𝑠𝑘 = 𝛿[𝑘 − 𝑘0] and 

the results are XORed to produce the digit 𝐵𝑗 as shown in Figure 3.5. 

 

 
 

Figure 3.5: Obtaining the 𝑤 bit digits 𝐵𝑗 of the operand 𝑏(𝑥) where 𝑚1 < 𝑚2 <
⋯ < 𝑚𝜆 are the sizes of the supported fields and 𝑠1, 𝑠2, … , 𝑠𝜆 are the selection bits. 

 

3.2.2 Reducing 𝑰(𝒙) modulo 𝒙𝒎𝒌 + 𝒈(𝒌)(𝒙)  
 

The MSD first multiplier in Figure 2.1 splits the accumulated sum 𝐼(𝑥) into the 

polynomials 𝑞(𝑥) = ∑ 𝐼𝑚+𝑖𝑥𝑖𝑤−1
𝑖=0  and 𝑟(𝑥) = ∑ 𝐼𝑖𝑥𝑖𝑚−1

𝑖=0  and reduces it to 𝑓(𝑥) =

𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚 + 𝑔(𝑥)) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) . 

Figure 3.6 illustrates the reduction of 𝐼(𝑥), when the multiple field sizes are 

supported and the operands are right justified. In the figure, 𝐼(𝑥) is split into 

 

𝑞(𝑥) = ∑ 𝐼𝑚𝑘0+𝑖
𝑥𝑖

𝑤−1

𝑖=0

  ,     𝑟(𝑥) = ∑ 𝐼𝑖𝑥𝑖
𝑚𝑘0−1

𝑖=0

 (3.7) 

 

where 𝑚𝑘0 is the selected field size. The selection bits 𝑠𝑘 = 𝛿[𝑘 − 𝑘0] are used to 

select the correct 𝑞(𝑘)(𝑥) = ∑ 𝐼𝑚𝑘+𝑖𝑥
𝑖𝑤−1

𝑖=0 . Thus, 𝑞(𝑥) in (3.7) is computed in Figure 

3.6 as follows: 

 

𝑞(𝑥) = ∑𝑠𝑘𝑞(𝑘)(𝑥) = 𝑞(𝑘0)(𝑥)
𝜆

𝑘=1

= ∑ 𝐼𝑚𝑘0+𝑖
𝑥𝑖

𝑤−1

𝑖=0

. (3.8) 

 



 

   20 

 

Also, 𝑟(𝑥) in (3.7) is computed in Figure 3.6 as follows: 

 

𝑟(𝑥) = ∑ 𝐼𝑖𝑥𝑖
𝑖 ∉ [𝑚𝑘 , 𝑚𝑘+𝑤)
𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝜆

+ ∑ 𝐼𝑖𝑠𝑘̅𝑥𝑖.
𝑖 ∈ [𝑚𝑘 , 𝑚𝑘+𝑤)
𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝜆−1

 
(3.9) 

 

𝑠𝑘̅ = 1 − 𝑠𝑘 is the negation of the selection bit. Thus, 𝑠𝑘̅ = 0 when 𝑘 =  𝑘0 and 

𝑠𝑘̅ = 1 when 𝑘 ≠  𝑘0. Then, 

 

𝑟(𝑥) = ∑ 𝐼𝑖𝑥𝑖

𝑖 ∉ [𝑚𝑘0 , 𝑚𝑘0+𝑤)

= ∑ 𝐼𝑖𝑥𝑖
𝑚𝑘0−1

𝑖=0

 (3.10) 

 

as given by (3.7). Note that 𝐼𝑖  =  0 for 𝑚𝑘0  +  𝑤 ≤  𝑖 <  𝑚𝜆 above, because the 

operands are right justified. 

The polynomials 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) are the generators of the fields 𝔽2𝑚𝑘  for 1 ≤

𝑘 ≤ 𝜆. Let the field size 𝑚𝑘0 be selected. Then, the polynomial used in the reduction 

 

𝑔(𝑥) = ∑𝑠𝑘𝑔(𝑘)(𝑥)
𝜆

𝑘=1

= ∑𝛿[𝑘 − 𝑘0]𝑔(𝑘)(𝑥)
𝜆

𝑘=1

= 𝑔(𝑘0)(𝑥) (3.11) 

 

and 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝑘0 + 𝑔(𝑥)) = 𝑞(𝑥) 𝑔(𝑥) + 𝑟(𝑥) can be computed as 

shown in Figure 3.6. For example,  

 

𝑥𝑚1 + 𝑔(1)(𝑥) = 𝑥163 + 𝑥38 + 𝑥12 + 𝑥2 + 1 , 

𝑥𝑚2 + 𝑔(2)(𝑥) = 𝑥233 + 𝑥38 + 𝑥12 + 𝑥2 + 1 , 

𝑥𝑚3 + 𝑔(3)(𝑥) = 𝑥283 + 𝑥38 + 𝑥12 + 𝑥2 + 1 , 

𝑥𝑚4 + 𝑔(4)(𝑥) = 𝑥409 + 𝑥38 + 𝑥9 + 𝑥2 + 1 , 

𝑥𝑚5 + 𝑔(5)(𝑥) = 𝑥571 + 𝑥22 + 𝑥12 + 𝑥2 + 1  

(3.12) 

 



 

   21 

 

are irreducible polynomials and can be used as generator polynomials for the NIST 

fields. Then, 

 

 
 

Figure 3.6: The circuit computing the unified reduction 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝑘 +
𝑔(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are 

the selection bits. 
 

𝑔(𝑥) = 𝑔𝑘0(𝑥) = 𝑠5̅𝑥22 + 𝑠5𝑥38 + 𝑠4̅𝑥12 + 𝑠4𝑥9 + 𝑥2 + 1 . (3.13) 

 

Here, 𝑔(𝑥) is a polynomial with 𝜏 =  6 terms and 𝑠𝑘  =  𝛿[𝑘 − 𝑘0] are the bits 

selecting the field. 

The appropriate reduction polynomial 𝑔(𝑥) is stored in a register and used in the 

reduction 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) as shown in Figure 3.6. However, the reduction can also 

be carried out separately for each field by using its generator polynomial 𝑥𝑚𝑘 +

𝑔(𝑘)(𝑥) as shown in the same Figure. 



 

   22 

 

 

 
 

Figure 3.7: The circuit computing the separate reduction 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝑘 +
𝑔(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are 

the selection bits. 
 

3.2.3 Performing Modular Reductions Separately 

 

When the reduction is carried out separately for each field, the irreducible 

polynomials 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) must be chosen as sparse as possible to reduce the 

complexity. An irreducible pentanomial exists 𝑥𝑚 + 𝑔(𝑥) = 𝑥𝑚 + 𝑥𝜇1 + 𝑥𝜇2 +

𝑥𝜇3 + 1 for each field size 𝑚 ≥  4 [20]. When pentanomials are used as generators, 

the area requirement and the worst case critical path delay of the reductions are as 

follows: 

 

𝑤(2𝜆 −  1) ANDs ,   4𝑤𝜆 XORs , 𝑇AND + 𝑇XOR⌈log2(4𝜆 +  1)⌉ . (3.14) 



 

   23 

 

 

These complexities can be found by analyzing Figure 3.7. When the generator 

polynomials are pentanomials, 

 

𝑔(𝑘)(𝑥) = 𝑥𝜇1
(𝑘)
+ 𝑥𝜇2

(𝑘)
+ 𝑥𝜇3

(𝑘)
+ 1 . (3.15) 

 

Thus, ∑ 𝑞(𝑘)(𝑥)𝑔(𝑘)(𝑥) + 𝑟(𝑥)𝜆
𝑘=1  is equal to the following, which needs 4 

𝑑𝑒𝑔 (𝑞(𝑘)(𝑥)) 𝜆 =  4𝑤𝜆 XOR gates. 

 

𝑟(𝑥)+=∑ 𝑞(𝑘)(𝑥)𝑥𝜇1
(𝑘)
+ 𝑞(𝑘)(𝑥)𝑥𝜇2

(𝑘)
+ 𝑞(𝑘)(𝑥)𝑥𝜇3

(𝑘)
+ 𝑞(𝑘)(𝑥)

𝜆

𝑘=1
. (3.16) 

 

Also, the worst case critical path delay is 𝑇XOR(⌈log2(4𝜆 + 1)⌉). Note that, when 

𝑤 and 𝜆 are small, the delay can be decreased by choosing 𝜇𝑖
(𝑘) suitably. Also, as seen 

in Figure 3.7, obtaining 𝑟(𝑥) from 𝑟′(𝑥) and selecting the correct 𝑞(𝑘) require 

𝑤(𝜆 −  1) plus 𝑤𝜆 AND gates and has a delay of 𝑇AND. 

 

3.2.4 Unified Modular Reduction Case 

 

In this case, the irreducible polynomials 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) generating the supported 

fields 𝔽2𝑚𝑘  are chosen such that their trailing coefficients 𝑔(𝑘)(𝑥) = ∑ 𝑔𝜇𝑖
(𝑘)𝑥𝜇𝑖𝜏

𝑖=1  can 

be nonzero only for the same 𝜏 terms. 

Let the selected field size be 𝑚𝑘0. Then, 𝑔(𝑥) = 𝑔(𝑘0)(𝑥) is stored into a 𝜏 bit 

register and used in the reduction computation 𝑞(𝑥)𝑔(𝑥)  +  𝑟(𝑥) as seen in Figure 

3.7. The area and delay are as follows: 

 

𝑤(𝜏 + 2𝜆 − 2) ANDs,   𝑤(𝜏 + 𝜆 − 1) XORs,   𝜏 𝑓𝑙𝑖𝑝 𝑓𝑙𝑜𝑝𝑠 , 
(3.17) 

2𝑇AND + 𝑇XOR(⌈log2 𝜆⌉ + ⌈log2(𝑚𝑖𝑛(𝑤, 𝜏) + 1)⌉) 

 

where 𝜏 is the nonzero term count of 𝑔(𝑥). These are the complexities of storing 𝑔(𝑥), 

obtaining 𝑞(𝑥) and 𝑟(𝑥), and computing 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥). As seen from Figure 3.7, 



 

   24 

 

obtaining 𝑞(𝑥) and 𝑟(𝑥) needs 𝑤(2𝜆 − 1) AND plus 𝑤(𝜆 −  1) XOR gates and has 

a delay of 𝑇AND + 𝑇XOR(⌈log2 𝜆⌉). Also, the area and delay 

 

𝑤𝜏 AND , 𝑤𝜏 XOR , 𝑇AND + 𝑇XOR⌈log2(𝑚𝑖𝑛(𝑤, 𝜏) + 1)⌉ (3.18) 

 

are needed to compute 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥) due to Corollary 2.1. But, w AND gates can 

be saved above. This is because 𝑔(𝑥) = 𝑔(𝑘0)(𝑥) where 𝑥𝑚𝑘0 + 𝑔(𝑘0)(𝑥) is an 

irreducible and thus, its zeroth term 𝑔0  =  1 always. 

The nonzero term count 𝜏 of 𝑔(𝑥) must be as small as possible to decrease the 

complexities in (3.17). 

𝜏 ≤ log2 𝑚𝜆 + 3 (3.19) 

 

is guaranteed actually where the largest field size 𝑚𝜆  ≤  1000. This is because it is 

an experimental fact that there always exists an irreducible 𝑥𝑚 + ∑ 𝑔𝜇𝑖𝑥
𝜇𝑖𝜏

𝑖=1  in the 

following forms : 

 

𝑥𝑚 +∑ 𝑔𝜇𝑥𝜇
𝜇∈{0,1,…,9}\{4,7}

      for     𝑚 ≤ 133 , 

𝑥𝑚 +∑ 𝑔𝜇𝑥𝜇
𝜇∈{0,1,…,12}\{3,8}

      for     𝑚 ≤ 658 , 

𝑥𝑚 +∑ 𝑔𝜇𝑥𝜇
𝜇∈{0,1,…,11}\{8,9}

      for     𝑚 ≤ 372 , 

𝑥𝑚 +∑ 𝑔𝜇𝑥𝜇
𝜇∈{0,1,…,12}\{8}

      for     𝑚 ≤ 1000 , 

(3.20) 

 

As seen above, 𝜏 can be as small as 8, 10, 11, and 12 for 𝑚 ≤  133, 𝑚 ≤  372, 

𝑚 ≤  658, and 𝑚 ≤  1000, respectively. As a result, 𝑚𝑖𝑛(𝜏)  ≤  log2 𝑚 + 3 for the 

polynomials in the cryptographic range of interest. Also, always an irreducible 

polynomial 𝑥𝑚 + 𝑔(𝑥) exists for 𝑚 ≤  2000 such that 𝑑𝑒𝑔(𝑔(𝑥)) ≤ log2 𝑚 + 3 

[21]. 

These practical facts are natural consequences of the following heuristic 

argument: Let 𝑚 be an integer large enough so that (1 +  1/𝑚)𝑚  ≈  𝑒 (say 𝑚 >

 50). Let 𝜇1, 𝜇2, . . . , 𝜇𝜏 be some distinct integers such that 𝜇1 = 0 < 𝜇𝑖 < 𝜇𝑖+1 < 𝑚 

for 2 ≤ 𝑖 ≤ 𝜏. The probability of any of the polynomials 



 

   25 

 

{𝑥𝑚 + 𝑔(𝑥)|𝑔(𝑥) = ∑ 𝑔𝜇𝑖𝑥
𝜇𝑖𝜏

𝑖=1 = 𝑔0 + ∑ 𝑔𝜇𝑖𝑥
𝜇𝑖𝜏

𝑖=2 } (3.21) 

 

being irreducible is approximately equal to (1/𝑒)2𝜀 when 𝜏 =  log2 𝑚  +  𝜀 for some 

𝜀 ≥ 0. This is because a binary polynomial of degree 𝑚 is irreducible with 1/𝑚 

probability [1]. Then, the probability of any of the polynomials 𝑥𝑚 + ∑ 𝑔𝜇𝑖𝑥
𝜇𝑖𝜏

𝑖=1  

being irreducible is 

 

(1 −
1
𝑚)

2𝜏

= (1 −
1
𝑚)

2log2𝑚 + 𝜀

= (1 −
1
𝑚)

𝑚2𝜀

≈ (
1
𝑒)

2𝜀

 . (3.22) 

 

3.3. Multipliers with Left Justified Operands 
 

In this section, the MSD first multiplier in Figure 2.1 is modified to support 

multiple field sizes. The modified multiplier has left justified inputs and output as 

illustrated in Figure 3.2. 

 

3.3.1 Obtaining the Digits 𝑩𝒋 

 

When the left justified operands are used instead of the right justified ones, the 

circuit in Figure 3.5 must be replaced with the one in Figure 3.8. In Figure 3.8, the 

following 𝑤𝜆 bits of 𝑏(𝑥) are extracted in each cycle. 

 

𝑏𝑤⌈𝑚𝑘/𝑤⌉−𝑖+∆  ,     0 < 𝑖 ≤ 𝑤,   1 ≤ 𝑘 ≤ 𝜆   (3.23) 

 

where  Δ =  𝑚𝜆 − 𝑚𝑘. Note that, let 𝜙𝑘 = (−𝑚𝑘 𝑚𝑜𝑑 𝑤) + 𝑚𝜆, then these bits can 

also be given as follows: 

 

𝑏𝑤⌈𝑚𝑘/𝑤⌉−𝑖+∆ = 𝑏𝜙𝑘−𝑖  ,     0 < 𝑖 ≤ 𝑤,   1 ≤ 𝑘 ≤ 𝜆  . (3.24) 

 

Let the selected field size be 𝑚𝑘0 . Then, only the following bits are needed among the 

extracted bits : 

 



 

   26 

 

𝐵𝑗 = {𝑏𝑤⌈𝑚𝑘/𝑤⌉−𝑖+∆ = 𝑏𝜙𝑘−𝑖|0 < 𝑖 ≤ 𝑤,   𝑘 = 𝑘0}. (3.25) 

 

 
 

Figure 3.8: Obtaining the digits 𝐵𝑗 from the left justified operand 𝑏̂(𝑥). Here, 
𝑠1, 𝑠2, . . . , 𝑠λ are the selection bits and 𝜙𝑘 = (−𝑚𝑘 𝑚𝑜𝑑 𝑤) + 𝑚𝜆 for the supported 

field sizes 𝑚1 < 𝑚2 < ⋯ < 𝑚𝜆. 
 

Thus, the extracted bits are ANDed with the selection bits 𝑠𝑘 = 𝛿[𝑘 − 𝑘0] and the 

results are XORed to produce the digit 𝐵𝑗 as shown in Figure 3.8. 

 
3.3.2 Reducing 𝑰(𝒙) modulo 𝒙𝒎𝝀 + 𝒈̂(𝒌)(𝒙) 

 
Figure 3.9 and Figure 3.10 illustrate the reduction of 𝐼(𝑥), when the multiple 

field sizes are supported and the operands are left justified. 

 

 

Figure 3.9: The circuit computing the unified reduction 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝜆 +
𝑔̂(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are 

the selection bits. 



 

   27 

 

 
 
Figure 3.10: The circuit computing the separate reduction 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 𝑥𝑚𝜆 +
𝑔̂(𝑘)(𝑥) where 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 are the supported field sizes and 𝑠1, 𝑠2, . . . , 𝑠𝜆 are 

the selection bits. 
 

The modular reduction circuit in Figure 3.9 and Figure 3.10 is much simpler than the 

one in Figure 3.6 and Figure 3.7 for  the right justified operands since the left justified 

operands have the factor 𝑥𝑚𝜆−𝑚𝑘 where 𝑚𝜆 is the largest field size. Thus, regardless 

of the field size 𝑚𝑘, the most significant ith bit of an operand is stored in the bit 𝑚𝜆 −

𝑖 of its representation and 𝑞(𝑥) is stored in the bits 𝑚𝜆 + 𝑖 of 𝐼(𝑥) for 0 ≤  𝑖 <  𝑤 . 

Thus, 

 

𝑞(𝑥) = ∑ 𝐼𝑚𝜆+𝑖𝑥
𝑖

𝑤−1

𝑖=0

  ,      𝑟(𝑥) = ∑ 𝐼𝑖𝑥𝑖
𝑚𝜆−1

𝑖=0

 (3.26) 

 

as shown in Figure 3.9 and Figure 3.10. Also, if the generators of the fields 𝔽2𝑚𝑘   

are 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) for 1 ≤  𝑘 ≤  𝜆 , 

 

𝑔̂(𝑘)(𝑥) = 𝑥𝑚𝜆−𝑚𝑘𝑔(𝑘)(𝑥)   ,       𝑥𝑚𝜆 + 𝑔̂(𝑘)(𝑥) 
(3.27) 

= 𝑥𝑚𝜆−𝑚𝑘 (𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥))  . 

Let the field size 𝑚𝑘0 be selected. Then, 



 

   28 

 

𝑔̂(𝑥) = ∑𝑠𝑘𝑔̂(𝑘)(𝑥)
𝜆

𝑘=1

= ∑𝛿[𝑘 − 𝑘0]𝑔̂(𝑘)(𝑥)
𝜆

𝑘=1

= 𝑔̂(𝑘0)(𝑥) (3.28) 

 

and 𝐼(𝑥) can be reduced into 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝜆 + 𝑔̂(𝑥)) = 𝑞(𝑥)𝑔̂(𝑥) + 𝑟(𝑥) as 

shown in Figure 3.9 and Figure 3.10. Here, the output 𝑓(𝑥) is left justified since the 

modulus is a left justified generator polynomial. 

For example, the irreducible polynomials: 

 

𝑥𝑚1 + 𝑔(1)(𝑥) = 𝑥163 + 𝑥140 + 𝑥27 + 𝑥21 + 1, 

𝑥𝑚2 + 𝑔(2)(𝑥) = 𝑥233 + 𝑥110 + 𝑥91 + 𝑥70 + 1, 

𝑥𝑚3 + 𝑔(3)(𝑥) = 𝑥283 + 𝑥160 + 𝑥141 + 𝑥120 + 1, 

𝑥𝑚4 + 𝑔(4)(𝑥) = 𝑥409 + 𝑥286 + 𝑥176 + 𝑥126 + 1, 

𝑥𝑚5 + 𝑔(5)(𝑥) = 𝑥571 + 𝑥448 + 𝑥429 + 𝑥408 + 1 
 

(3.29) 

 

can be used as generators for the NIST recommended fields. Then, the left justified 

generator polynomials 𝑥𝑚𝜆 + 𝑔̂(𝑥) = (𝑥𝑚𝑘 + 𝑔(𝑥))𝑥𝑚𝜆−𝑚𝑘  and the reduction 

polynomial 𝑔̂(𝑥) are as follows: 

 

𝑥𝑚𝜆 + 𝑔̂(1)(𝑥) = 𝑥571 + 𝑥448 + 𝑥435 + 𝑥429 + 𝑥408, 

𝑥𝑚𝜆 + 𝑔̂(2)(𝑥) = 𝑥571 + 𝑥448 + 𝑥429 + 𝑥408 + 𝑥338, 

𝑥𝑚𝜆 + 𝑔̂(3)(𝑥) = 𝑥571 + 𝑥448 + 𝑥429 + 𝑥408 + 𝑥288, 

𝑥𝑚𝜆 + 𝑔̂(4)(𝑥) = 𝑥571 + 𝑥448 + 𝑥338 + 𝑥288 + 𝑥162, 

𝑥𝑚𝜆 + 𝑔̂(5)(𝑥) = 𝑥571 + 𝑥448 + 𝑥429 + 𝑥408 + 1 
 

(3.30) 

 

𝑔̂(𝑥) = 𝑔̂(𝑘0)(𝑥) = 𝑥448 + 𝑠1𝑥435 + 𝑠4̅𝑥429 + 𝑠4̅𝑥408 + (𝑠2 + 𝑠4)𝑥338 + (𝑠3 +

𝑠4)𝑥288 + 𝑠4𝑥162 + 𝑠5 . Here, 𝑔̂(𝑥) is a polynomial with 𝜏 =  8 terms and 𝑠𝑘 =

𝛿[𝑘 − 𝑘0] are the bits selecting the field. 

The appropriate reduction polynomial 𝑔̂(𝑥) is stored in a register and used in the 

reduction 𝑞(𝑥)𝑔̂(𝑥)  +  𝑟(𝑥) as seen in Figure 3.9 and Figure 3.10 but the reduction 



 

   29 

 

can also be carried out separately for each field by using its left justified generator 

polynomial 𝑥𝑚𝜆 + 𝑔̂(𝑘)(𝑥) as seen in the same figure. 

 

3.3.3 Performing Modular Reductions Separately  
 

When the reduction is carried out separately for each field as seen in Figure 3.9, 

the generator polynomials must be chosen as sparse as possible to reduce the 

complexity. When the generators are pentanomials, the area requirement and worst 

case critical path delay can be found as follows: 

 

𝑤𝜆 AND ,    4𝑤𝜆 XOR ,    𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2(4𝜆 + 1)⌉ . (3.31) 

 

𝑔̂(𝑘)(𝑥) = 𝑥𝑚𝜆−𝑚𝑘𝑔(𝑘)(𝑥) = 𝑥𝑚𝜆−𝑚𝑘 (𝑥𝜇1
(𝑘)
+ 𝑥𝜇2

(𝑘)
+ 𝑥𝜇3

(𝑘)
+ 1) when the 

generators 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) are pentanomials, Thus, the reduction 𝑓(𝑥) =

∑ 𝑠𝑘𝑞(𝑥)𝜆
𝑘=1 𝑔̂(𝑘)(𝑥) is equal to the following : 

 

𝑟(𝑥) +∑ 𝑠𝑘𝑞(𝑥)𝑥𝑚𝜆−𝑚𝑘+𝜇1
(𝑘)
+ 𝑠𝑘𝑞(𝑥)𝑥𝑚𝜆−𝑚𝑘+𝜇2

(𝑘)𝜆

𝑘=1
 

+𝑠𝑘𝑞(𝑥)𝑥𝑚𝜆−𝑚𝑘+𝜇3
(𝑘)
+ 𝑠𝑘𝑞(𝑥)𝑥𝑚𝜆−𝑚𝑘. 

(3.32) 

 

Note that 𝑑𝑒𝑔(𝑞(𝑥))  <  𝑤 . Therefore, computing 𝑠𝑘𝑞(𝑥) for 𝑘 =  1, 2, . . . , 𝜆 

requires 𝑤𝜆 AND gates and computing the additions above requires 4𝑤𝜆 XOR gates. 

All these computations have a worst case critical path delay of 𝑇𝐴ND +

𝑇𝑋𝑂𝑅(⌈log2(4𝜆 + 1)⌉). Also, when 𝑤 and 𝜆 are small, the delay can be reduced by 

choosing 𝜇𝑖
(𝑘) suitably. 

 
3.3.4 Unified Modular Reduction Case 

 

In this case, the irreducible polynomials 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) generating the supported 

fields 𝔽2𝑚𝑘  are chosen such that the coefficients of the polynomials 𝑔̂(𝑘)(𝑥) can be 

nonzero only for the same 𝜏 terms as follows: 

 



 

   30 

 

𝑔̂(𝑘)(𝑥) = 𝑔(𝑘)(𝑥)𝑥𝑚𝜆−𝑚𝑘 =∑𝑔𝜇𝑖
(𝑘)𝑥𝜇𝑖+𝑚𝜆−𝑚𝑘.

𝜏

𝑖=1

 (3.33) 

 

Let the selected field size be 𝑚𝑘0 . Then, 𝑔̂(𝑘)(𝑥) = 𝑔̂(𝑘0)(𝑥) is stored into a 𝜏 

bit register and used in the reduction computation 𝑞(𝑥)𝑔̂(𝑥)  +  𝑟(𝑥) as seen in Figure 

3.10. The area requirement and the critical path delay are as follows: 

 

𝑤𝜏 AND , 𝑤𝜏 XOR , 𝜏 flip flops, 𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2(min (𝑤, 𝜏) + 1)⌉ (3.34) 

 

where 𝑔̂(𝑥) has 𝜏 nonzero terms. These are the complexities of storing 𝑔̂(𝑥) and 

computing 𝑞(𝑥)𝑔̂(𝑥)  +  𝑟(𝑥) . As seen from Figure 3.9, 𝑞(𝑥) and 𝑟(𝑥) are obtained 

by just wiring without any cost since the operands are left justified. Due to Corollary 

2.1, the cost of computing 𝑞(𝑥)𝑔̂(𝑥)  +  𝑟(𝑥) is 

 

𝑤𝜏 AND ,   𝑤𝜏 XOR ,   𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2(min (𝑤, 𝜏) + 1)⌉. (3.35) 

 

Note that the nonzero term count 𝜏 of 𝑔̂(𝑥) must be as small as possible to 

decrease the complexities in (3.34). Actually, the probability of finding a value of 

 

𝜏 ≤ log2 𝑚1 + 𝜀 + 𝜆 − 1 (3.36) 

 

is very high for a small positive number 𝜀 where the supported field sizes are 𝑚1 <

𝑚2 < . . . < 𝑚𝜆. 

The section with a heuristic proof of this claim has finished. The irreducible 

generator polynomials for the supported fields is 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥)  for 1 ≤  𝑘 ≤  𝜆. The 

terms of 𝑔̂(𝑥) with degree larger than 𝑚𝑘 −𝑚1 form the polynomial 𝛼(𝑘)(𝑥)𝑥𝑚𝑘−𝑚1. 

Then, the polynomials 

 

𝑔(𝑘)(𝑥) = 𝛼(𝑘)(𝑥)𝑥𝑚𝑘−𝑚1 + ∑ 𝑔𝑖
(𝑘)𝑥𝑖

𝑚𝑘−𝑚1

𝑖=0

, (3.37) 

 

 



 

   31 

 

𝑔̂(𝑘)(𝑥) = 𝛼(𝑘)(𝑥)𝑥𝑚𝑘−𝑚1 + ∑ 𝑔𝑖
(𝑘)𝑥𝑖+𝑚𝜆−𝑚𝑘

𝑚𝑘−𝑚1

𝑖=0

. (3.38) 

 

The modular reduction by setting some polynomial terms to zero can be eased 

as follows: 

 

𝑔(𝑘)(𝑥) =∑𝛼𝑣𝑗
(𝑘)𝑥𝑣𝑗+𝑚𝑘−𝑚1

𝜌

𝑗=1

+∑𝑔𝑚𝑘−𝑚𝑗
(𝑘) 𝑥𝑚𝑘−𝑚𝑗

𝑘

𝑗=1

  , (3.39) 

 

𝑔̂(𝑘)(𝑥) =∑𝛼𝑣𝑗
(𝑘)𝑥𝑣𝑗+𝑚𝜆−𝑚1

𝜌

𝑗=1

+∑𝑔𝑚𝑘−𝑚𝑗
(𝑘) 𝑥𝑚𝜆−𝑚𝑗

𝑘

𝑗=1

. (3.40) 

 

Now, the polynomials 𝑔̂(𝑘)(𝑥) can be nonzero only for the following 𝜌 +  𝑘 

terms where 1 ≤  𝑘 ≤  𝜆 : 

 

𝑥𝜇 ,       𝜇 ∈  {𝑣𝑗 + 𝑚𝜆 −𝑚1|𝑗 = 1,2, … , 𝜌} 

𝑥𝜇 ,       𝜇 ∈  {𝑚𝜆 − 𝑚𝑗|𝑗 = 1,2, … , 𝑘}. 
(3.41) 

 

Also, remember that 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 . Thus, 𝑚𝜆 −𝑚1 < 𝑚𝜆 −𝑚2 < . . . <

𝑚𝜆 − 𝑚𝜆 = 0 . The terms of the left justified polynomials 𝑔̂(𝑘)(𝑥) can be classified 

into the two following groups : 

 

x High order terms 𝑔̂𝑖
(𝑘)𝑥𝑖 with degree 𝑖 > 𝑚𝜆 − 𝑚1 . 

x Low order terms 𝑔̂𝑖
(𝑘)𝑥𝑖 with degree 𝑖 ≤ 𝑚𝜆 − 𝑚1 . 

 

As seen from (3.41), the 𝜌 high order terms of the polynomials 𝑔̂(𝑘)(𝑥) are 

allowed to be nonzero. Also, among the low order terms of 𝑔̂(𝑘)(𝑥), only the terms 

𝑥𝑚𝜆−𝑚1,  𝑥𝑚𝜆−𝑚2, … , 𝑥𝑚𝜆−𝑚𝜆 = 1 are allowed to be nonzero. These low order terms 

cannot be eliminated since 𝑥𝑚 + 𝑔(𝑘)(𝑥)  for 1 ≤  𝑘 ≤  𝜆 are all binary irreducible 

polynomials. Thus, 𝑔0
(𝑘) = 1 and the terms 𝑔𝑚𝜆−𝑚𝑘

(𝑘) 𝑥𝑚𝜆−𝑚𝑘 = 𝑔0
(𝑘)𝑥𝑚𝜆−𝑚𝑘 =

𝑥𝑚𝜆−𝑚𝑘 cannot be set to zero for all 𝑘 =  1, 2, . . . , 𝜆, but allowing the other low order 



 

   32 

 

terms of 𝑔̂(𝑘)(𝑥) to be nonzero is not useful since 𝑔̂(𝑘)(𝑥) = 𝑔(𝑘)(𝑥)𝑥𝑚𝜆−𝑚𝑘 is left 

justified. Thus, their many low order terms are already zero. 

Then, the coefficients of the left justified polynomials can be nonzero only for 

the same 𝜌 +  𝑘 terms as seen from (3.41). 

 

𝑔̂(𝑘)(𝑥) = 𝑔(𝑘)(𝑥)𝑥𝑚𝜆−𝑚𝑘 = ∑ 𝑔̂𝜇𝑖
(𝑘)𝑥𝜇𝑖

𝜌+𝑘

𝑖=1

 (3.42) 

 

Then, the probability of none of the polynomials 

 

{𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥)|𝑔(𝑘)(𝑥)𝑥𝑚𝜆−𝑚𝑘 = ∑ 𝑔̂𝜇𝑖
(𝑘)𝑥𝜇𝑖𝜌+𝑘

𝑖=1 } (3.43) 

 

being irreducible is (1 −  1/𝑚𝑘)2
𝜌+𝑘  because binary polynomial of degree 𝑚𝑘 is 

irreducible with 1/𝑚𝑘 probability [1]. When 𝜌 + 𝑘 =  log2 𝑚𝑘 + 𝜀, this probability 

is 

 

(1 −
1
𝑚𝑘
)
2log2𝑚𝑘+𝜀

= (1 −
1
𝑚𝑘
)
𝑚𝑘2𝜀

≈ (
1
𝑒)

2𝜀

  . (3.44) 

 

As a result, finding an irreducible 𝑥𝑚𝑘 + 𝑔(𝑘)(𝑥) for each 𝑘 is very highly possible 

when choosen 

 

𝜌 = max
1≤𝑘≤𝜆

(log2 𝑚𝑘 − 𝑘) + 𝜀 . (3.45) 

 

The supported fields 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 satisfy 𝑚𝑘 < 2𝑘−1𝑚1 in practical 

applications. Then, 

 

𝜌 = max
1≤𝑘≤𝜆

(log2 𝑚𝑘 − 𝑘) + 𝜀 ≤ log2 𝑚1 − 1 + 𝜀   (3.46) 

 

and 𝜏 ≤  𝑚𝑎𝑥(𝜌)  +  𝑚𝑎𝑥(𝑘)  =  log2 𝑚1 −  1 +  𝜀 +  𝜆 as in (3.36). 

  



 

   33 

 

4. COMPLEXITY ANALYSIS 
 

In this section, the complexities of the proposed multipliers are analyzed. 

 

4.1. Area Requirement and Delay 
 

Table 4.1 gives the area requirements of the MSD first multipliers supporting 𝜆 

different fields. Table 4.1 also gives the area requirement of a usual MSD first 

multiplier supporting the single field size 𝑚 =  𝑚𝜆 and using a generator polynomial 

with 𝑡 =  5 terms (pentanomial). The complexity of the multiplier supporting single 

field is obtained from Table 2.1. The complexities of the multipliers supporting 

multiple fields are obtained by adding the complexities of the three main computations 

shown in Figure 3.3 and Figure 3.4. These three computations and their area 

requirements are as follows: 

 

Table 4.1: The area requirements of the proposed multipliers where the supported 
field sizes are 𝑚1 < 𝑚2 < . . . < 𝑚𝜆 . 

 
 #AND #XOR #LATCH 

MSD 1st multiplier  

for the field 𝔽2𝑚𝜆   
𝑤𝑚𝜆 𝑤𝑚𝜆 + 3𝑤 𝑚𝜆 + 𝑤 

Right justified, 

separate reduction 

𝑤𝑚𝜆 + 

𝑤(3𝜆 − 1) 
𝑤𝑚𝜆 + 𝑤(5𝜆 − 2) 𝑚𝜆 + 𝑤 

Right justified, 

unified reduction 

𝑤𝑚𝜆 + 

𝑤(3𝜆 − 2 + 𝜏) 
𝑤𝑚𝜆 + 𝑤(2𝜆 − 3 + 𝜏) 𝑚𝜆 + 𝑤 + 𝜏 

Left justified, 

separate reduction 
𝑤𝑚𝜆 + 2𝑤𝜆 𝑤𝑚𝜆 + 𝑤(5𝜆 − 2) 𝑚𝜆 + 𝑤 

Left justified, 

unified reduction 
𝑤𝑚𝜆 + 𝑤(𝜆 + 𝜏) 𝑤𝑚𝜆 + 𝑤(𝜆 − 2 + 𝜏) 𝑚𝜆 + 𝑤 + 𝜏 

 

x Obtaining the digits 𝐵𝑗 from 𝑏(𝑥) (or from 𝑏̂(𝑥) for the left justified operands) 

is the first computation. It requires 𝑤𝜆 ANDs and 𝑤(𝜆 − 1) XORs regardless 



 

   34 

 

of whether the operands are right or left justified. This can be seen from Figure 

3.5 and Figure 3.8 easily. 

x Computing and accumulating the partial products 𝑥𝑤𝑓(𝑥) + 𝑎(𝑥)𝐵𝑗 (or 

𝑥𝑤𝑓(𝑥) + 𝑎̂(𝑥)𝐵𝑗 for the left justified operands) is the second computation. It 

requires 𝑤𝑚𝜆 ANDs and 𝑤(𝑚𝜆 − 1) XORs regardless of whether the operands 

are right or left justified. This follows from Theorem 2.1. According to this 

theorem, accumulating the products of 𝜔 bit and ℓ bit operands requires 𝜔ℓ 

AND plus 𝜔ℓ XOR gates. The maximum supported field size is 𝑚𝜆. Thus,   

ℓ = 𝑚𝜆 bits are used to represent the field element 𝑎(𝑥) and 𝜔 =  𝑤 bits are 

used to represent the digits 𝐵𝑗 . Then, 𝑤𝑚𝜆 AND and 𝑤𝑚𝜆 XOR gates are 

needed to accumulate the products 𝑎(𝑥)𝐵𝑗 (or 𝑎̂(𝑥)𝐵𝑗 for the left justified 

operands). However, 𝑤 XOR gates can be saved since the terms 

𝑥0, 𝑥1, … , 𝑥𝑤−1 are not need to be add , in the sum 𝑥𝑤𝑓(𝑥) + 𝑎(𝑥)𝐵𝑗 (or 

𝑥𝑤𝑓(𝑥) + 𝑎̂(𝑥)𝐵𝑗 for the left justified operands). 

x The modular reduction 𝑓(𝑥)  =  𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝑘  +  𝑔(𝑥)) (or 𝑓(𝑥)  =

 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝑘  + 𝑔̂(𝑥)) for the left justified operands) is the third 

computation. The area requirements of two different modular reduction 

schemes are given by (3.14) and (3.17) (or (3.31) and (3.34) for the left justified 

operands). 

 

The critical path delays of the proposed multipliers can be given as follows: 

 

 2𝑇𝐴ND + (⌈log2 𝜆⌉ + ⌈log2 𝑤⌉ + 1)𝑇𝑋𝑂𝑅 (4.1) 

 

where 𝜆 is the number of the supported fields and 𝑤 is the digit size in bits. This fact 

can be explained as follows: As seen from Figure 3.3, the critical path delay of the 

proposed design can not be smaller than the sum of the delays of the following three 

computations. 

 
x The first one is the extraction of the digit 𝐵𝑗 from 𝑏(𝑥) (or from 𝑏̂(𝑥) for the 

left justified operands). This has the delay 𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2 𝜆⌉ as seen from 

Figure 3.5 and Figure 3.8. 



 

   35 

 

x The second one is the 𝑚𝜆  ×  𝑤 bit partial product 𝑎(𝑥)𝐵𝑗 (or 𝑎̂(𝑥)𝐵𝑗 for the 

left justified operands). This has the delay 𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2 𝑚𝑖𝑛(𝑤,𝑚𝜆)⌉ =

𝑇𝐴ND + 𝑇𝑋𝑂𝑅⌈log2 𝑤⌉ according to Theorem 2.1. 

x Third one is the accumulation of the partial products, which has one 𝑇𝑋𝑂𝑅 

delay. 

 

The total delay due to these computations is 𝑇 = 2𝑇𝐴ND + (⌈log2 𝜆⌉ +

⌈log2 𝑤⌉)𝑇𝑋𝑂𝑅 + 𝑇𝑋𝑂𝑅 and equal to (4.1). As seen from Figure 3.3 , the critical path 

delay is actually 𝑚𝑎𝑥(𝑇 , 𝑇reduction  +  𝑇XOR) where 𝑇reduction is the delay of the 

modular reduction 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝑘 + 𝑔(𝑥)) (or 𝑓(𝑥) = 𝐼(𝑥) 𝑚𝑜𝑑 (𝑥𝑚𝑘 +

𝑔̂(𝑥)) for the left justified operands). 𝑇reduction is given by (3.14), (3.17), (3.31), and 

(3.34) for four different cases. A simple investigation shows that the critical path delay 

is 𝑇 = 𝑚𝑎𝑥(𝑇 , 𝑇reduction  +  𝑇XOR) and equal to (4.1) . 

 

4.2. NIST Recommended Binary Fields 
 

Table 4.2 gives the area complexities of the MSD first multipliers when they 

support the five binary fields recommended by NIST. The number of the NIST fields 

𝜆 =  5 and the largest NIST field size 𝑚𝜆  =  571. 

 

Table 4.2: The area requirements of the proposed multipliers supporting the NIST 
fields 𝔽2163, 𝔽2233, 𝔽2283, 𝔽2409, 𝔽2571 . 

 
 #AND #XOR #LATCH 

MSD 1st multiplier for the field 𝔽2571  571𝑤 574𝑤 571 + 𝑤 

Right justified field elements, separate reduction 

circuits 
585𝑤 594𝑤 571 + 𝑤 

Right justified field elements, unified reduction 

circuits (𝜏 =  6) 
590𝑤 584𝑤 577 + 𝑤 

Left justified field elements, separate reduction 

circuits 
581𝑤 594𝑤 571 + 𝑤 

Left justified field elements, unified reduction 

circuits (𝜏 =  8) 
584𝑤 582𝑤 579 + 𝑤 



 

   36 

 

The complexities in the table are obtained from Table 4.1 for these NIST parameters. 

 

The modular reduction can be unified for the NIST fields by using a common 

reduction polynomial. When the field elements are right justified, the polynomial with 

𝜏 =  6 terms 

 

𝑔(𝑥) = 𝑔38𝑥38 + 𝑔22𝑥22 + 𝑔12𝑥12 + 𝑔9𝑥9 + 𝑔2𝑥2 + 𝑔0 (4.2) 

 

given by (3.13) can be used as reduction polynomial. Also, when the field elements 

are left justified, the polynomial with 𝜏 =  8 terms 

 

𝑔̂(𝑥) = 𝑔̂448𝑥448 + 𝑔̂435𝑥435 + 𝑔̂429𝑥429 + 𝑔̂408𝑥408 + 
(4.3) 

𝑔̂338𝑥338 + 𝑔̂288𝑥288 + 𝑔̂162𝑥162 + 𝑔̂0 

 

given by (3.30) can be used as reduction polynomial. The coefficients of these 

polynomials are determined by the selected field as seen from (3.13) and (3.30). 

Table 4.2 shows that supporting multiple fields instead of a single field does not 

increase the cost much and working with the left justified operands is slightly 

advantageous. Also, because the number of the fields 𝜆 =  5 is small for the NIST 

case, using a separate reduction circuit for each field is affordable. The delay of the 

multipliers supporting the NIST fields can be obtained from (4.1) by substituting      

𝜆 = 5 . 

 

4.3. Comparison with Other Multipliers 
 

Table 4.3 and Table 4.4 give the space and time complexities of several digit serial 

multipliers. The space complexities of the proposed architectures in the Table are 

obtained from Table 4.1 by substituting τ with the upper bounds in (3.19) and (3.36). 

As seen, the complexities of the multipliers supporting a single field are very similar 

and the usual MSD first multiplier shows one of the best performances. Note that the 

MSD first multiplier needs where the size of the working field 𝑚𝑘 = 𝑚𝜆. If this area 



 

   37 

 

and the areas of the proposed multipliers supporting 𝜆 fields are analyzed, the 

following conclusions are reached : 

 

𝑤𝑚𝜆 ANDs,      𝑤𝑚𝜆 + 3𝑤 XORs,      𝑚𝜆 + 𝑤 latches (4.4) 

 

x The area increases linearly with 𝜆 

x 𝑤𝜆 AND gates can be saved when the multiplication is performed with left 

justified operands. 

x Unifying the modular reductions of the supported 𝜆 fields causes the terms 

log2 𝑚1 or log2 𝑚𝜆 to appear in the area complexities additionally but also, 

decreases 5𝜆 term in the XOR complexity to 2𝜆. Thus, the multipliers with 

unified reduction circuit can be advantageous for large 𝜆. 

 

Table 4.3: Comparison of area complexities of digit serial multipliers working in the 
field 𝔽2𝑚𝑘 . 

 
Multiplier #AND #XOR #MUX #LATCH 

† right justified 

operands 

separate reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

𝑤(𝑚𝜆 + 3𝜆

− 1) 

𝑤(𝑚𝜆 + 5𝜆

− 2) 
 𝑚𝜆 + 𝑤 

† left justified 

operands 

separate reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

𝑤(𝑚𝜆 + 2𝜆) 
𝑤(𝑚𝜆 + 5𝜆

− 2) 
 𝑚𝜆 + 𝑤 

right justified 

operands 

unified reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

𝑤(𝑚𝜆 + 3𝜆

− 2)

+ 𝑤(log2 𝑚𝜆

+ 𝜀) 

𝑤(𝑚𝜆 + 2𝜆

− 3) + 

𝑤(log2 𝑚𝜆

+ 𝜀) 

 

𝑚𝜆 + 𝑤 + 

log2 𝑚𝜆

+ 𝜀 

 
 



 

   38 

 

Table 4.3: Continue. 
 

Multiplier #AND #XOR #MUX #LATCH 

left justified 

operands 

unified reduction 

for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

𝑤(𝑚𝜆

+ 2𝜆 − 1)

+ 𝑤(log2 𝑚1

+ 𝜀) 

𝑤(𝑚𝜆 + 2𝜆

− 3) + 

𝑤(log2 𝑚1

+ 𝜀) 

 
𝑚𝜆 +𝑤 + 𝜆 + 

log2 𝑚1 + 𝜀 − 1 

† MSD 1st 

multiplier 
𝑤𝑚𝑘 𝑤𝑚𝑘 + 3𝑤  𝑚𝑘 + 𝑤 

† LSD 1st 

multiplier [11] 
𝑤𝑚𝑘 

𝑤𝑚𝑘 + 7𝑤

− 4 
𝑚𝑘 2𝑚𝑘 + 𝑤 − 1 

Kim et al. [8], [9] 
(2𝑤2

+ 𝑤) ⌈
𝑚𝑘

𝑤 ⌉ 
2𝑤2 ⌈

𝑚𝑘

𝑤 ⌉ 2𝑤 ⌈
𝑚𝑘

𝑤 ⌉ (10𝑤 + 1) ⌈
𝑚𝑘

𝑤 ⌉ 

‡ Meher [12] 𝑤𝑚𝑘 
(𝑤 − 1)𝑚𝑘

+
(𝑤2 + 𝑤)

2  
 2𝑚𝑘 + 𝑤 

Talapatra et al. [22] 𝑤𝑚𝑘 𝑤𝑚𝑘 + 2𝑤 2𝑚𝑘 4𝑚𝑘 + 3𝑤 + 1 

† pentanomial and ‡ trinomial generator polynomials are used, w is the digit size, 

λ is the number of the supported fields. 

 ε is a small positive number, TA, TX, and TMUX are respectively the delays of 

AND gate, XOR gate, and multiplexer. 

 

Table 4.4: Comparison of time complexities of digit serial multipliers working in the 
field 𝔽2𝑚𝑘 . 

 
Multiplier Critical Path Latency 

† right justified 

operands 

separate reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

2𝑇𝐴 + 𝑇𝑋 + (⌈log2 𝜆⌉ + ⌈log2 𝑤⌉)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ + 1 



 

   39 

 

Table 4.4: Continue. 
 

Multiplier Critical Path Latency 

† left justified 

operands 

separate reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

2𝑇𝐴 + 𝑇𝑋 + (⌈log2 𝜆⌉ + ⌈log2 𝑤⌉)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ + 1 

right justified 

operands 

unified reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

2𝑇𝐴 + 𝑇𝑋 + (⌈log2 𝜆⌉ + ⌈log2 𝑤⌉)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ + 1 

left justified operands 

unified reduction for 

field sizes 𝑚1 ≤

𝑚𝑘 ≤ 𝑚𝜆 

2𝑇𝐴 + 𝑇𝑋 + (⌈log2 𝜆⌉ + ⌈log2 𝑤⌉)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ + 1 

† MSD 1st multiplier 𝑇𝐴 + 𝑇𝑋 + (⌈log2 𝑤⌉ + 1)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ + 1 

† LSD 1st multiplier 

[11] 
𝑇𝐴 + 𝑇𝑀𝑈𝑋 + (⌈log2 𝑤⌉ + 1)𝑇𝑋 ⌈

𝑚𝑘

𝑤 ⌉ + 1 

Kim et al. [8], [9] 𝑤(𝑇𝐴 + 𝑇𝑋) + (𝑤 − 1)𝑇𝑀𝑈𝑋 3 ⌈
𝑚𝑘

𝑤 ⌉ 

‡ Meher [12] 𝑇𝐴 + (⌈log2 𝑤⌉ + 1)𝑇𝑋 ⌈
𝑚𝑘

𝑤 ⌉ 

Talapatra et al. [22] 𝑇𝐴 + 𝑇𝑀𝑈𝑋 + ⌈log2 𝑤⌉𝑇𝑋 2⌈𝑚𝑘
𝑤
⌉ 

† pentanomial and ‡ trinomial generator polynomials are used, w is the digit size, 

λ is the number of the supported fields. 

 ε is a small positive number, TA, TX, and TMUX are respectively the delays of 

AND gate, XOR gate, and multiplexer. 

 
 
 
 
 



 

   40 

 

Table 4.5: Virtex 5 implementations of digit serial multipliers supporting NIST field 
sizes 163, 233, 283, 409, 571. 

 
Multipliers with 𝑤 =

 8 digit size 
FF increase LUT increase 

Period 

(ns) 
increase 

MSD 1st multiplier  

for the field 𝐹2571 
1728 0% 3186 0% 3.224 0% 

Right justified 

operands, separate 

reduction 

1744 1% 3239 2% 3.987 24% 

Left justified operands, 

separate reduction 
1756 2% 3248 2% 3.688 14% 

Right justified 

operands, unified 

reduction 

1744 1% 3487 9% 3.896 21% 

Left justified operands, 

unified reduction 
1756 2% 3477 9% 3.891 21% 

 

Compared to the digit serial multipliers, the versatile bit serial multipliers [15] -

[19] require less area and their critical path delays are also smaller. However, they 

need at least 𝑚𝑘 cycles to finish the multiplication while many digit serial multipliers 

need approximately ⌈𝑚𝑘 𝑤⁄ ⌉ cycles. 

Table 4.5 gives the FPGA implementation results of the usual MSD first 

multiplier and proposed multipliers. These results were synthesized using Xilinx ISE 

Webpack version 14.7 for the Xilinx Virtex xc5vlx50-11ff1153. As seen, the areas of 

the proposed multipliers are not significantly larger than the area of the usual MSD 

first multiplier, even though they support five NIST fields. However, there is a 

considerable increase in the minimum clock period. Also, the area needed for the 

multipliers using unified reduction strategy is larger than the area needed for the ones 

using separate reduction strategy. This is because the number of the supported fields 

𝜆 = 5 is small compared to log2 𝑚𝜆. The unified reduction strategy becomes more 

advantageous as 𝜆 increases. 

  



 

   41 

 

5. CONCLUSION 
 

Digit serial multipliers performing multiplication in a collection of binary 

extension fields 𝔽2𝑚1 , 𝔽2𝑚2 , … , 𝔽2𝑚𝜆  have been proposed. Their complexities where 

the digit size is w bits and the field sizes satisfy 𝑚1 < 𝑚2 < . . . < 𝑚𝜆  have been 

analyzed. The results are presented in Table 4.3 and Equation (4.1). The area 

requirements of the multipliers increase linearly with 𝑚𝜆, 𝜆, and 𝑤 . On the other hand, 

the critical path delay grows logarithmically with 𝜆 and 𝑤 . 

When the multiplication is performed with left justified operands, 𝑤𝜆 AND gates 

can be saved. However, this is a minor improvement, compared to the overall area 

requirements. The area improvement is obtained because the left justified alignment 

eases the modular reduction. 

Also, unifying the modular reductions of the supported fields decreases the area 

requirements for large 𝜆 . To unify the modular reductions, the modulus polynomials 

are chosen so that their trailing coefficients can be nonzero only for the same 𝜏 terms. 

Then, the modular reduction involves only these 𝜏 terms, and thus the reduction 

process gets easier. However, 𝜏 must be large enough so that the irreducible modulus 

polynomials can be found for the chosen 𝜏 terms easily. For this purpose, 𝜏 must be at 

least as large as the logarithm of the supported field sizes as shown in this thesis. 

 

 

 

  



 

   42 

 

REFERENCES 
 

[1] Lidl R., Niederreiter H., (1994), “Introduction to Finite Fields and Their 
Applications”, 2nd Edition, Cambridge University Press. 
 

[2] Vanstone S. A., Oorschot P., (1989), “An Introduction to Error Correcting 
Codes with Applications”, 1st Edition, Kluwer. 
 

[3] Hankerson D., Menezes A. J., Vanstone S., (2004), “Guide to Elliptic Curve 
Cryptography”, Springer. 
 

[4] Miller V. S., (1986), “Use of Elliptic Curves in Cryptography”, Springer, 218, 
417–426. 
 

[5] NIST, (1999), “Recommended Elliptic Curves for Federal Government Use”, 
National Institute of Standards and Technology. 
 

[6] NIST, (2009), “Digital Signature Standard”, National Institute of Standards 
and Technology. 
 

[7] Song L., Parhi K. K., (1998), “Low-energy digit-serial/parallel finite field 
multipliers”, Journal of VLSI Signal Processing, 19 (2), 149–166. 
 

[8] Kim C. H., Han S. D., Hong C. P., (2001), “An efficient digit-serial systolic 
multiplier for finite fields GF(2m)”, in: Proc. 14th Ann. IEEE Int. ASIC/SOC 
Conf., IEEE, 361–365, Kyungbuk, Korea, 12-15 September. 
 

[9] Kim C. H., Hong C. P., Kwon S., (2005), “A digit-serial multiplier for finite 
field GF(2m)”, IEEE Transactions on Very Large Scale Integration Systems, 
13 (4), 476–483. 
 

[10] Kim C. H., Kwon S., Hong C. P., (2005), “A fast digit-serial systolic 
multiplier for finite fields GF(2m)”, in: Proc. Asia South Pacific Des. Autom. 
Conf. (ASP-DAC), Vol. 2, IEEE, 1268–1271, Jinryang, Kyungsan, Korea, 
18-21 January. 
 

[11] Kumar S. S., Wollinger T., Paar C., (2006), “Optimum digit serial GF(2m) 
multipliers for curve-based cryptography”, IEEE Transactions on Computers, 
55 (10), 1306–1311. 
 

[12] Meher P. K., (2009), “On efficient implementation of accumulation in finite 
field over GF(2m) and its applications”, IEEE Transactions on Very Large 
Scale Integration Systems, 17 (4), 541–550. 
 

[13] Jeng-Shyang P., Chiou-Yng L., Meher P. K., (2013), “Low-latency digit-
Serial and digit-parallel systolic multipliers for large binary extension fields”, 
IEEE Transactions on Circuits and Systems, 60 (12), 3195–3204. 
 



 

   43 

 

[14] Cheung R. C. C., Telle N. J., Luk W., Cheung P. Y. K., (2005),  
“Customizable elliptic curve cryptosystems”, IEEE Transactions on Very 
Large Scale Integration Systems 13 (9), 1048–1059. 
 

[15] Kitsos P., Theodoridis G., Koufopavlou O. G., (2003), “An efficient 
reconfigurable multiplier architecture for Galois field GF(2m)”, 
Microelectronics Journal, 34, 975–980. 
 

[16] Fournaris A. P., Koufopavlou O. G., (2008), “Versatile multiplier 
architectures in GF(2m) fields using the montgomery multiplication 
algorithm”, Integration, 41 (3), 371–384. 
 

[17] Selimis G. N., Fournaris A. P., Michail H. E., Koufopavlou O. G., (2009), 
“Improved throughput bit-serial multiplier for GF(2m) fields”, Integration, 42 
(2), 217–226. 
 

[18] Nikooghadam M., Malekian E., Zakerolhosseini A., (2009), “A versatile 
reconfigurable bit-serial multiplier architecture in finite fields GF(2m)”, 
Advances in Computer Science and Engineering Communications in 
Computer and Information Science, 6 (2), 227–234. 
 

[19] Zakerolhosseini A., Nikooghadam M., (2013), “Low-power and high-speed 
design of a versatile bit-serial multiplier in finite fields GF(2m)”, Integration, 
46 (2), 211–217. 
 

[20] Seroussi G., (1998), “Table of Low-Weight Binary Irreducible Polynomials”, 
Technical Reportno : HPL-98-135, Hewlett-Packard Laboratories, Palo Alto, 
CA, USA. 
 

[21] Gao S., Howell J., Panario D., (1999), “Irreducible polynomials of given 
forms”, Contemporary Mathematics, 225, 43–54. 
 

[22] Talapatra S., Rahaman H., Saha S. K., (2010), “Unified digit serial systolic 
montgomery multiplication architecture for special classes of polynomials 
over GF(2m)”, in: 2013 Euromicro Conference on Digital System Design, 
IEEE, 427–432, Shibpur, India, 1-3 September. 

  

  

  

  

  

  

  

  

  



 

   44 

 

BIOGRAPHY 
 
 

Bilal Uslu was born December 26, 1979 in İzmir. He received the Bachelor of 

Science in Electronics Engineering from Kocaeli University in 2002 and the Master of 

Science in Electronics Engineering from the Graduate School of Engineering and 

Sciences of Gebze Institute of Technology in 2006. He received Ph.D. degree in 

Electronics Engineering from the Graduate School of Natural and Applied Sciences of 

Gebze Technical University in 2016. His research interests include cryptography, 

computer arithmetic, finite fields, and software design. 

 

  



 

   45 

 

APPENDICES 
 
 

Appendix A: Publications of the Thesis 
 
Uslu B., Erdem S.S., (2015), “Versatile digit serial multipliers for binary extension 

fields”, Elsevier Computers & Electrical Engineering, 46, 29-45 


