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SUMMARY

This thesis investigates the digit serial polynomial basis multipliers performing
multiplication in multiple binary extension fields F,m;, Fym;,..., F,m,. Designing
such versatile multipliers encounters a number of difficulties. First of all, the element
sizes of the supported fields are different from each other, and thus the elements are
represented with different number of bits for each field. To deal with different sized
elements, designs with left or right justified operands are investigated in this study.
Secondly, each field multiplication involves modular reduction with a different
irreducible polynomial, and thus the complexity can increase rapidly with the number
of supported fields A. To prevent this, two methods are studied: Using sparse
irreducible polynomials and unifying the modular reduction computation of the fields
by choosing the irreducible polynomials suitably. The thesis shows that multiple fields

can be supported at the cost of an 0(A) increase in area and an 0(v2) increase in time.

Key Words: Binary extension fields, digit serial multiplier, polynomial basis,

elliptic curve cryptography.



OZET

Bu tez ¢oklu Fymy, Fym,,. .., Fom, ikili alan uzantilarinda ¢alisan polinom bazl
dijit seri carpicilart incelemektedir. Bu tiir esnek ve oOlg¢eklenebilir carpicilarin
tasariminda cesitli sikintilarla karsilasilmaktadir. Desteklenen alanlarin eleman
uzunluklar1 birbirinden farkli oldugundan, bu elemanlar birbirinden farkli bit sayilari
ile temsil edilmektedir. Bu tez ¢alismasinda ilk olarak, birbirinden farkli uzunluktaki
elemanlar ile calisabilmek i¢in sola ve saga dayali terimlere sahip tasarimlar aragtirildi.
Ayrica her bir carpma alani, birbirinden farkli indirgenemez polinomlar kullanan
modiler indirgeme islemleri igcermektedir. Bu ylizden desteklenen alan sayisi A ile
karmagiklik seviyesi ¢cok fazla miktarda artabilmektedir. Daha sonra, bu durumu
engellemek i¢in iki yontem iizerinde c¢alisildi: Az terimli indirgenemez polinomlarin
kullaniminin yanisira her bir alanin modiiler indirgeme hesap islemlerinin
birlestirilmesi i¢in en uygun indirgenemez polinomlar se¢ildi. Bu tez ¢oklu alanlarin
kullanimimin donanim maliyeti O(3) ile ve hesaplama zaman maliyeti olarak 0(V2) ile

arttigint géstermektedir.

Anahtar Kelimeler: ikili alan uzantilar, dijit seri ¢arpicilar, polinomsal baz,

eliptik egri sifrelemesi.

Vi
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1. INTRODUCTION

The arithmetic of the binary extension field F,m is commonly used in
cryptography and coding theory applications [1], [2]. Important cryptographic
applications such as elliptic curve cryptography need large number of field
multiplications in F,m to perform cryptographic transformations [3], [4]. Also, these
applications use quite large fields. For example, the field size m is typically selected
from the range 160 < m < 1000 in elliptic curve cryptography. Thus, efficient
hardware and software implementations of the field multiplication is crucial to reduce
the cost of cryptographic systems.

In this thesis, digit serial [F,m multiplier architectures supporting multiple field
sizes m are presented. The proposed architectures support a set of field sizes
mq, My, ..., m, , i.e. work in one of the fields F,m,, Fym,, ..., F,m; according to the
user selection. The increase in the cost due to supporting multiple fields are also
anlayzed. Moreover, as a case study, The multipliers supporting the five NIST fields
[F,163, [Fy233, [F,283, F 400, and F,s71, recommended for elliptic curve cryptography are
investigated [5], [6].

The proposed digit serial multipliers use polynomial basis. That is, [F,m elements
are represented by the Dbinary polynomials of degree less than
m{a(x) = ym laxt | a; € [F'Z} where x represents the root of some degree m
irreducible polynomial x™ + g(x) called generator. The product f(x) of any two
elements a(x) and b(x) is computed by the polynomial multiplication a(x)b(x)
modulo the generator polynomial x™ + g(x). The digit serial multipliers keep the
coefficients of each polynomial operand in an array of digits. One of the operands is
multiplied by the digits of the other operand, one digit at a time. Each of these partial
product computations is interleaved with a modular reduction step and an
accumulation step.

There are several works studying polynomial basis digit serial multipliers in the
literature [7] - [13] but these multipliers have been developed to support a particular
field size m. The work in [7] introduces efficient digit serial multipliers using
polynomial basis. The work in [11] investigates optimum digit sizes and the effects of
using multiple accumulators. The work in [12] proposes using T flip flops in the

accumulators instead of D flip flops to reduce the area complexity.



The versatility is an important feature for hardware designs since the ASIC
circuits cannot be altered after fabrication. Flexible implementations are possible with
reconfigurable FPGA devices but FPGAs cannot compete with the ASIC in terms of
performance, cost and power consumption. Naturally, customizable elliptic curve
systems [14] and versatile multipliers [15] - [19] have been proposed in the literature
but the proposed multipliers are all bit serial and there is not much work about versatile
digit serial multipliers.

Let the supported field sizes be m; < m, < -+ < m,. Then, the number of the
bits used in the representation must be large enough to represent m, coefficients. When

a field with smaller size m;, < m, is selected, the elements

mg—1 )

a(x) = z a;x' € Fymy (1.1)
i=0

must be justified either to the right or to the left. When a(x) is right justified, the

leading m,; — m,, coefficients are set to zero as follows:
a(x) = 0x™ ™1 + .. + 0x™k + a(x) . (1.2)

In left justified representation, a(x) is shifted, then the trailing m; —my,

coefficients are set to zero as follows:
a(x) = x™ Meq(x) + 0x™2 ™l 4.4 0x + 0. (1.3)

Also, the fields Fymq, Fomg, ..., F,m; supported by the multipliers use different
generator polynomials x™k + g(k)(x) for k =1,2,...,A. Naturally, the modular
reduction by each x™k 4+ g®(x) can be performed with a separate circuit.
Nevertheless, the reduction circuits can be unified when the generator polynomials
x™k + g®) (x) are appropriately chosen.

The thesis is organized as follows: Section 2 introduces the basic polynomial
basis digit serial multipliers supporting a single field size and presents a detailed
analysis of their complexities. Section 3 proposes digit serial multiplier architectures

supporting multiple field sizes. Some of them work with right justified operands and

2



some of them work with left justified operands. Also, some of these employ separate
reduction circuits and some of them employ unified reduction circuits. The
complexities of the proposed multipliers are studied in Section 4. Discussion of our

results are presented in Section 5.



2. DIGIT SERIAL MULTIPLIERS USING
POLYNOMIAL BASIS

Naturally, m bits are sufficient to represent an element

a(x) = 21'?;1aix" (2.1)

in the field F,m . This is because each binary valued coefficient of a(x) can be stored
in a bit. Let the hardware digit size be w bits. A digit serial multiplier divides one of

the operands, say b(x), into [m/w] digits as follows:

m—1 [m/w]-1
b(x) = Z byx' = Z B;x™I 2.2)
i=0 =0

where

w—1 ,
B; = Z by j4ix! 2.3)
l_

is the jth digit of b(x) and holds its consecutive w coefficients. Then,

[m/w]-1

a(x)b(x) mod (x™ + g(x)) = Z a(x)Bjx" mod (x™ + g(x)) (24
j=0

gives the field product. The multiplier computes this product, accumulating the partial
products of the digits B; in [m/w] iterations. Thus, the multiplier gets faster as the
digit size w increases. However, its area also increases because of the digits B;, and
thus their partial products get larger. In each iteration, one of the partial products
a(x)B; is computed and added to an intermediate result / (x) where deg (I (x)) <m+
w. The intermediate result I (x) can be split into degree w — 1 and m — 1 polynomials

as follows:



m+w-1

I1(x) = Z Lxt = q)x™ +r(x) (2.5)

where q(x) = YVt neixt and r(x) = Y7, ;x'. The generator x™ + g(x) is
=0 =0

usually chosen such that

deg(g(x)) =p<m-w (2.6)

for fast modular reduction. Then, the intermediate result can be reduced without

division as follows:

I(x) mod (x™ + g(x)) = q(x)x™ + r(x) mod (x™ + g(x))
= g@)q(x) +rx).

2.7)

This can be done because deg(g(x)q(x)) < m for any degree w — 1 polynomial
q(x) when Equation (2.6) holds.

2.1. Most Significant Digit First Multipliers

The most significant digit first multipliers compute the field product in (2.4),
starting from the most significant digit By,_4 as illustrated in the Table 2.1.

Table 2.1: MSD first field multiplication.

Inputs:  a(x) = Yo" aix’, g(x) = Xi_, gix'
b(X) = Z:’;Bl bixi = ZETZéW]_lBJXW] where B] = Z‘lN:_Ol bwjﬂ-xi

Output: f(x) = a(x)b(x) mod (x™ + g(x))

1: I(x) =0

2: forj=[m/w]—1t00

3 f(x) =I1(x) mod (xm + g(x)), I(x) = a(x)B; + x" f (x)
4: f(x) =1(x) mod (xm + g(x))




In the Table 2.1, I(x) is the accumulated sum of the partial products. I(x) is
initialized to zero in the beginning and reduced to modulo x™ + g(x) in each iteration.

The reduced result

[m/w]-
flx) = Z ! 1a(x)Bl-xW(i_j_1)mod(xm +g(x)) (2.8)

i=j+1

x" f(x) is added with the partial product a(x)B; to update I(x) in the jth iteration.
After all partial products are added, I (x) is reduced one last time. Figure 2.1 and Figure
2.2 illustrate MSD first multiplication. Here, it is chosen that

deg(g(x)) =us<m-w. (2.9)

Thus, the reduction I(x) mod (x™ + g(x)) = g(x)q(x) + r(x) as shown in (2.7)

where q(x) and r(x) are higher and lower terms of 1(x) .

a(z) B g(x)
a(z) B; la(=) g(x) + (=) |
most
m+w—1 e w +m 4+ m
P [(z) foor

M
register

Tu.f‘:l'} Zero

pad

>~ f(z)

Figure 2.1: The block diagram of the MSD first multiplier where M = [m/w] and
deg(g(x))=p<m-—w.



B; Br_1 - < B4 >< By by >

clock
output| /
ready
-
time

Figure 2.2: The timing diagram of the MSD first multiplier where M = [m/w] and
deg(g(x))=p<m-—w.

2.2. Least Significant Digit First Multipliers

These multipliers compute the field product in (2.4), starting from the least

significant digit B, as given in Table 2.2 :

Table 2.2: LSD first field multiplication.

Inputs: a(x) = X% ax', g(x) = XL, gix’
b(X') = 2{261 bixi = Z;T:(/)W]_lBjij where B] = Z‘L/l]:_()l bwj_,_ixi

Output: f(x) = a(x)b(x) mod (xm + g(x))

1: J(x) =0

2: forj=0to [m/w] -1

3:  ifj = 0then I(x) = a(x) else I(x) = A(x)

4:  A(x) =I1(x)x" mod (xm + g(x)), J(x) =1(x)B; + ] (x)

5: f(x) =J(x) mod (xm + g(x))

In the jth iteration of the LSD first multiplication,

I(x) = x"a(x) mod (x™ + g(x)) (2.10)



J(x) = {=0 a(x)B;x"* mod (xm + g(x)) ) (2.11)
Figure 2.3 and Figure 2.4 illustrates this computation. Here, it is chosen that
deg(g(x))=p<m-—w. (2.12)

Thus, x"¥I(x) and J(x) can be reduced without division as shown in (2.7). For

this, 1(x) and J(x) are split as follows:

1(x) = ZTn_llixi =q(x)x™ ¥ +r(x) (2.13)
miw-1
J@ =) =g @ ) @14)
to compute xV1(x) mod (xm + g(x)) =gx)q(x) + x"r(x) and

J(x) mod (x™ + g(x)) = g(x)q'(x) +1'(x).

register alx) qlx) B;
.“-+1 - . 1w Ai—
h J Y
I(x)B;+J(x)
+ m+w—1
L
» reset .
Tm™ 0--—--- -+ J(z) |register
I(x)
most q{:{.‘) ';I"'l[_]_,]l rr{xj q;[_j;} maost
significant significant
w bits w—1 bits
- wr A4 T —w . w—1 4
o 3 ¥ i ¥

Iy
Y

— g(x)g(z)+zwr(x) g(z)g’'(z)+r'(x)

Figure 2.3: The block diagram of the LSD first multiplier where M = [m/w] and
deg(g(x))=p<m-—w.



start N

Bj By >< Bi e < Bnr—1 ><
ol 1
output { S N

ready

time

Figure 2.4: The timing diagram of the LSD first multiplier where M = [m/w] and
deg(g(x)) =p<m-w.

2.3. Complexities of Multipliers

Now, the complexities of the multipliers are studied, using the results of the

following theorem.

Theorem 2.1: Let A(x), u(x), and v(x) be three binary polynomials such that

w-1 -1 -1
Ax) = z Aixt, u(x) = Z wxt, v(x) = Z vixt, (2.15)
=0 i=0 i=0

where deg(v(x)) > deg(A(x)u(x)). Let Tanp and Txor denote an AND gate delay
and an XOR gate delay, respectively. The multiply operation A(x)u(x) has the

following area requirement and critical path delay :
e w? AND gates, (w — 1)(£ — 1) XOR gates, Tynp + Txor [logz (min(w, 8))].

The multiply-add operation A(x)u(x) + v(x) has the following area requirement and

critical path delay.

o w? AND gates, w¥ XOR gates, Tynp + Txor [logz(min(w, f)) + 1] .



Corollary 2.1: Let u(x) have at most T nonzero terms, i.e.

-1 T
u(x) = Z u;xt = Z U, xH (2.16)
i=0 i=1

for some distinct integers p; such that 0 < yu; < €. Then, the multiply-add operation

A(x)u(x) + v(x) has the following area requirement and critical path delay :

e w7t AND gates, wt XOR gates, at most Tynp + Txor [logz (min(w, #)) + 1] .

Proof 2.1: The case w = min(w, ¥, 1) is analyzed in this proof. At the end, the results
are extended to the general case. Note that the product A(x)u(x) is a polynomial of

degree £ + w — 2 and its terms are as follows:

i
( <Z OAjui_j>x‘, 0<i<w-1
j:

w—-1 )
AGOu(x) = 4 <Z 0 Ajui_]) X, w-1<i<? 2.17)
]=

l
(Z Ajui_j>xl, f<i<f+w-1
\ j=it1—¢
( ‘ ;
<Z OAjui_j>x‘, 0<i<w-1
]:

A(X)u(x) = 4 <Zw_1Ajui_,-> xt, w—1<i<? (2.18)

j=0
w-1

<Z Aju¢o+i_j> X€+i, 0<i<w-1.
\ L= j=i+1

As seen, A(x)u(x) has the terms (Zj-"z_olAjui_j)xi for w—-—1<i<?.

Computing the coefficient of each x* requires w AND gates and (w — 1) XOR gates.
Thus, computing all these terms requires w(f — w + 1) AND gates and

(w — 1)(# — w + 1) XOR gates. Also, A(x)u(x) has the following terms.

10



i w-1
(Z Ajui_j>x‘, <Z Aju{)”_}-) x’?“ for 0<i<w-1 (219)

Computing the coefficients of each x* and x**+*

pair requires w AND gates and
(w — 2) XOR gates. Thus, computing all these terms requires w(w — 1) AND gates
and (w — 2)(w — 1) XOR gates.

As a result, all the coefficients of A(x)u(x) are obtained by w(f —w + 1) +
w(w — 1) = wf AND gates and (w — 1) — 0w + D+ (w — 2)(w — 1) =
(w — 1)(# — 1) XOR gates. The coefficient computation ij’;()l Aju;_; causes the
largest delay. Thus, the critical path delay is Tanp + Txorllog, w]. When
A(x)u(x) + v(x) is computed instead of A(x)u(x), XOR gate count increases from
(w—DE -1 to0

(w =1 — 1) +deglA()u(x)) +1 = w? (2.20)

and the critical path delay becomes Tanp + Txor[logz(w + 1)].

In the corollary, the case u(x) has at most T nonzero coefficients are considered,
ie. u(x) = Yisgwix' = Xi_ju, xHi. Then, w(f — 1) AND gates and w(f — 1)
XOR gates are redundant. Thus, AND and XOR gate requirements each reduces from
w? to wt . Also, the critical path delay remains the same or reduced.

The complexities of A(x)u(x) and A(x)u(x) + v(x) have already been
analyzed for the case that A(x) has less terms than u(x), i.e. o = min(w, ¥, 7). Since
A(x)u(x) = u(x)A(x), the same analysis can be repeated just by swapping A(x) with
u(x) for the case that A(x) has more terms than u(x). Then, the complexities can be
found by swapping w with £, and w with t. Naturally, the area complexities
(w — 1D — 1), wt, and wt remain the same. However, the time complexities
change and the general case time complexities are obtained by replacing w with

min(w, ¥) and w with min(w, 7).
2.3.1. MSD First Multiplier

The area and time complexities of the MSD first multiplier can be found by

analyzing Figure 2.1.
11



Computing the product a(x) B; corresponds to the multiplication in Theorem 2.1

for the case w = w and £ = m. Thus, it requires wm AND plus (w — 1)(m — 1)

XOR gates, and has the delay
Tae)s; = Tanp + Txorllogz wl. (2.21)

Computing the reduction f(x) = g(x)q(x) + r(x) corresponds to the multiply-
add operation in Theorem 2.1 for the case w = w, € = u + 1,and £ = m. Thus,

it requires w(u + 1) AND plus w(u + 1) XOR gates and has the delay
Tty = Tanp + Txorllogz(min(w, u + 1) + D]. (2.22)

a(x)B; ism + w — 1 bits and f(x) is m bits. Thus, computing and storing
I(x) = a(x)B; + x" f (x) require m — 1 XOR gates plus m + w flip flops and has the
delay Txogr. Then, the critical path delay

Taelay = Txor + max (Ta(x)Bj ’ Tf(x)) (2.23)

= Tanp + Txor + Txorllog,(w + 1)].

Actually, Tyeiay = Tanp + Txor + Txorllogz wl when w > u + 1 but this

minor improvement is ignored.
2.3.2. LSD First Multiplier

The area and time complexities of the LSD first multiplier can be found by
analyzing Figure 2.3 and Figure 2.4.

Computing I(x)B; + ] (x) corresponds to the multiply-add operation in Theorem
2.1 forthecase w = w,¥ = m,and¢ = w + m — 1. Thus, it requires wm AND

plus wm XOR gates and has the delay

TiBj+100) = Tanp + Txor [log,(w + 1)]. (2.24)
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Computing the reduction g(x)q(x) + x"r(x) corresponds to the multiply-add
operation in Theorem 2.1 for the case w = w, £ = pu + 1, and £ = m. Thus, it
requires w(u + 1) AND plus wu XOR gates. Actually, not only wu XOR gates but
alsow(u + 1) XOR gates are needed according to the theorem. Nevertheless, w XOR
gates can be saved since the least significant w bits of x"r(x) are zero.

Computing the final reduction g(x)q'(x) + r'(x) corresponds to the multiply-
add operation forthecase w = w — 1,£ = u + 1,and €' = m. Thus, it requires
w — D(u + 1) ANDplus (w — 1)(u + 1) XOR gates.

Storing A(x) and J (x) requires 2m + w — 1 flip flops. Multiplexing A(x) and

a(x) requires m-bit multiplexer. Also, the critical path delay

Taetay = Tmux + TieoB;+j) = Tanp + Tuux + Txor [log,(w + 1)]. (2.25)
2.3.3. Comparison of MSD First and LSD First Multipliers

Table 2.3 and Table 2.4 summarize the complexity analyses of the MSD first and
LSD first multipliers. Table 2.3 gives the area complexities for both general and -
nomial generator polynomials. The general and 7-nomial generator polynomials are

respectively given by :

Table 2.3: The area complexities of the multipliers for both general and -nomial

generator polynomials.
Multiplier #AND #XOR #LATCH #MUX
MSD 1st
wm+w(u+1) wm + wu m+w+u+1 -
(general)
MSD 1st
) wm wm + w(t — 2) m+w -
(-nomial)
LSD Ist | wm+w(u+1) wm + wu
Zm+w+pu m
(general) | +(w —1)(u+1) +w—-1Du+1)
LSD 1st wm+ w(t —2)
) wm 2m+w—1 m
(-nomial) +w-1D(t-1)

13



u . t-1
xMm+gx)=xm+ Z gixt, XM+ glx)=x"+ z xHi (2.26)
i=0 i=1

where u; , 4 < m —w to satisfy the restriction (2.6). The complexity results for
general generator polynomials are obtained from the previous analyses in the thesis.
Also, pu + 1 additional flip flops are needed to store the generator coefficients g; for
i = 0,1,..., ¢ in general case as seen from Table 2.1. On the other hand, a -nomial
is a constant coefficient polynomial with ¢t nonzero terms. Since the coefficients are
constant, they do not need to be stored. Also, reduction with a #-nomial requires only
hardwiring and XORing. This computation is very efficient when ¢ is small. Note that

the fast modular reduction in (2.7) becomes

q(x)x™ + 1(x) mod (x™ + g(x)) = r(x) + q(x)g(x)

-1 (2.27)
=G+ ) G

when the generator polynomial x™ + g(x) is a +-nomial. As seen, reduction with a ¢-
nomial modulo requires 0 AND gates and w(t — 1) XOR gates where deg (q (x)) <
w. Our previous analyses in the thesis show that modular reduction requires w(u + 1)
AND gates and w(u + 1) XOR gates when a general generator polynomial with
deg ( g (x)) = pis used. Therefore, the complexities in Table 2.1 for the -nomial case

are obtained from the complexities for the general case in two steps.

o First, the AND gates used in the reduction are excluded from the total AND
count because reduction with constant coefficient #-nomials does not need any
AND gates.

e Secondly, ¢ in the XOR count is substituted with ¢t — 2 because XOR
complexity is w(t — 1) for the t-nomial case while XOR complexity is

w(u + 1) for the general case.

14



Table 2.4: The time complexities of the multipliers.

Multiplier Critical Path Delay Latency
MSD st TAND + TXOR + TXOR [logz(w + 1)] [m/W] + 1
LSD Ist TAND + TMUX + TXOR [logz (W + 1)] [m/W] + 1

Table 2.4 gives the time complexities of the multipliers. The delay of the partial

product computation dominates the delay of the modular reduction as seen from (2.23)

and (2.25). Thus, using sparse t-nomial generator polynomials cannot decrease the

critical path delay here.
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3. MSD FIRST DIGIT

SUPPORTING MULTIPLE FIELDS

SERIAL MULTIPLIERS

In this section, MSD first multipliers supporting multiple fields are proposed.

MSD first multiplication is preferred to LSD first multiplication in the proposed design

because the former requires less area than the latter as seen from Table 2.1.

3.1. Bit Level Representation

Let the supported field sizes be my < m, <---< my . Then, at least m; bits
are required to represent the field elements. When the multiplier works in the field

F,m , its inputs and output are m, bits and they must be stored in m, bits with a

proper alignment. Let u(x) be a multiplier input or output. As seen from Figure 3.1

and Figure 3.2, u(x) can be either right justified by zero extending or left justified by

zero padding as follows:

U(x) = x™ Mky(x) = x™A" % Z u;xt .

mg—1

i=0

bits of higher
significance

p—————— my;, bits ——

u(x)

m, bits |

Figure 3.1: Bit level representation of u(x) = ),

mg—1

i=0 u;x'. Here, the bits in the

unshaded areas are all zero.

pb———— mj bits ——— significance

bits of lower

m; bits |

Figure 3.2: Bit level representation of left justified version @i(x) = x™A™™ky(x).

Here, the bits in the unshaded areas are all zero.

(3.1)
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Note that the digit serial multiplication in (2.7) can be written for any A > 0 as

follows:

xAf(x) = ZEZL’(;/W]_lea(x)Bijf mod (xA+mk + xAg(x)). (3.2)
Then, when A = 0 and when A = my; — my, the digit serial multiplication

becomes

[my/wl-1

f(x) = Z a(x)B;x"/ mod (x™ + g(x)), (3.3)

j=0

[my/wl-1

f(x) = z a(x)B;x" mod (x™ + g(x)), (3.4)

j=0

respectively. Here, a(x), b(x), g(x), f(x) are the right justified and a(x), b(x), §(x),
f (x) are the left justified operands. Figure 3.3 and Figure 3.4 illustrates the multipliers
working with both the right and the left justified operands. As seen, the left justified

alignment is advantageous since I (x) is reduced to modulo degree m,, polynomial,

f(=x) a(x) B; b(x)

My A my w4 oy,
¥ ¥

I{z)mod(z™k+g(x))| [[(x)=a(zx)B;+z"f(x) extract

digits
1

s W 4+ mat+w
I(x) register |

Figure 3.3: Multiplier working with the right justified input and output.
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f(z) a(x) B; b(x)

ma A 17 w ma l
L | J
(@) moa (=" +3(2) | [1()=ate) By +o+Fie| L1 extmt
A

M, W 4 s
I(zx) register |«

Figure 3.4: Multiplier working with the left justified input and output.

regardless of the selected field size m;,. However, when the operands are right
justified, the reduction of 1(x) is performed modulo a degree m;, polynomial, and thus

dependent on the selected field size.

3.2. Multipliers with Right Justified Operands

In this section, the MSD first multiplier in Figure 2.1 is modified to support
multiple field sizes. The modified multiplier has right justified inputs and output.

3.2.1 Obtaining the Digits B;

The MSD first multiplier in Figure 2.1 must extract the digits B; from b(x). For
this, b(x) is put in a w[m/w] bit shift register. As the register shifts left by w bits at
each clock, the most significant w bits are extracted to obtain the digits B; one by one.

When the multiple fields are supported, the digits of b(x) are extracted as shown in
Figure 3.5. The circuit in Figure 3.5 extracts the following wA bits of b(x) in each
cycle.

bwimgwi-i,» 0<isw, 1<k<A. (3.5)

Let the selected field size be my . Then, only the following bits are needed

among the extracted bits.

18



B ={byimywl-i | 0<i<w, k=ko}. (3.6)

Thus, the extracted bits are ANDed with the selection bits s, = §[k — k] and

the results are XORed to produce the digit B; as shown in Figure 3.5.

Shift Register (w bit left shifts at each clock) .
u|—_A-‘ my

b rm b rm b rm e b rm w zero
[Pufza] o o Pufma] ] | Pufzt] o o tufma] w| e b b o] JE| A

4 1w w

[AND cach bit with sx ] -« - - . [AND each bit with s |
T T.
o : — w
BJ

Figure 3.5: Obtaining the w bit digits B; of the operand b(x) where m; < m, <
-+ < m, are the sizes of the supported fields and s4, S5, ..., S; are the selection bits.

3.2.2 Reducing I(x) modulo x™ + g™ (x)

The MSD first multiplier in Figure 2.1 splits the accumulated sum I(x) into the
polynomials q(x) = ¥¥ ! Ipyixt and 7(x) = X xt and reduces it to f(x) =
I(x) mod (x™ + g(x)) = q(x)g(x) + r(x) .

Figure 3.6 illustrates the reduction of I(x), when the multiple field sizes are

supported and the operands are right justified. In the figure, I(x) is split into

mko—l

w-—1
q(x) = Z Imk0+ixi , r(x) = Z Iixt (3.7)
i=0 i=0

where m,, is the selected field size. The selection bits s, = §[k — ko] are used to
select the correct ¢%(x) = Y10 Iy, +ix". Thus, q(x) in (3.7) is computed in Figure

3.6 as follows:

A w-1

4 = ) 5q® @ = g4I = ) Iy i G3)

k=1 i=0
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Also, r(x) in (3.7) is computed in Figure 3.6 as follows:

r(x) = Z Lixt + Z I;5pxt,
i ¢ [mg, mg+w) i €[mg, mg+w)
forl<k<A forl1<k<Ai-1

(3.9)

Sk = 1 — s}, is the negation of the selection bit. Thus, §, = 0 when k = k, and

Sk = 1when k # k,. Then,

mko—l

r(x) = z Lxi = Z Lx! (3.10)
i=0

i € [my,, myy+w)

as given by (3.7). Note that [; = 0 for my, + w < i < m, above, because the
operands are right justified.

The polynomials x™ + g9 (x) are the generators of the fields F,m, for 1 <

k < A. Let the field size m,, be selected. Then, the polynomial used in the reduction

A

A
9g@) =) s,g® () = > 8k — kolg® (x) = g% (x) (3.11)

k=1

and f(x) = I(x) mod (xmko + g(x)) =q(x) g(x) +r(x) can be computed as

shown in Figure 3.6. For example,

x™ 4 gW(x) = x163 4 x38 4 x12 4 x2 41,
x™2 4+ g@(x) = x233 4+ x38 £ x12 +x2 + 1,
x4 g® () = x283 + x38 4 x12 4 x2 + 1, (3.12)
x™ 4 g®(x) = x40 4 x38 + x% +x%2 + 1,

x™s + g (x) = x5+ x22 + x12 + x% 4+ 1
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are irreducible polynomials and can be used as generator polynomials for the NIST

fields. Then,

select I; for | 7'(x) Ty, B+

™ 0< i< m » for 0 < i < w and
= A
for k=1, -, A—1
| select Ly yi | aP(x) @ | AND bits
for 0< i< w | with s

select 1,45 | ¢*(z) w | AND bits
for 0<i< w ' with sa

-E Y
L L
L LN )
L L

L select I, 44 gM(z) w

for 0<i<w

AND bits
with s,

A A A TTL 3
register r(z)
9(2) = L s 9™ (2) —— a(2)g(2) +7(z) = /()

Figure 3.6: The circuit computing the unified reduction f(x) = I(x) mod x™k +

g% (x) where my < m, <...< m, are the supported field sizes and sy, S, ..., s, are
the selection bits.

g(x) = gFo(x) = 52x%2 + 55238 + 53x2 + 5,x° + x% + 1. (3.13)

Here, g(x) is a polynomial with © = 6 terms and s, = &[k — k] are the bits
selecting the field.

The appropriate reduction polynomial g(x) is stored in a register and used in the
reduction q(x)g(x) + r(x) as shown in Figure 3.6. However, the reduction can also
be carried out separately for each field by using its generator polynomial x™k +

g™ (x) as shown in the same Figure.
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Py ™ AND Iy, +:i with sg
F for 0 < i < w and
for k=1, ---, A1

LN

q"l'I{.l-} ?_ﬂ:,' AND bits w 11]U]t-ip1}"
: | by ' ()

L
.
i

with s1

LN

qiﬁi{x} T AND bits w multiply
| with s= ' by g'%)(x)

Y

LN

LE N ]
e RS
- W

"] with s, by g (x)

Ty,

f(=)

Figure 3.7: The circuit computing the separate reduction f(x) = I(x) mod x™k +
g% (x) where my < m, <...< m, are the supported field sizes and sy, s, ..., s, are
the selection bits.

3.2.3 Performing Modular Reductions Separately

When the reduction is carried out separately for each field, the irreducible
polynomials x™ + g (x) must be chosen as sparse as possible to reduce the
complexity. An irreducible pentanomial exists x™ + g(x) = x™ + xHt + xt2 +
x#3 + 1 for each field size m = 4 [20]. When pentanomials are used as generators,
the area requirement and the worst case critical path delay of the reductions are as

follows:

W(ZA - 1) ANDs , 4wl XORs , TAND + TXOR“OgZ(‘l'A + 1)] . (314)
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These complexities can be found by analyzing Figure 3.7. When the generator

polynomials are pentanomials,
(1) (1) (k)
gP(x) =xk +xk2 +xks + 1, (3.15)

Thus, Y-, ¢® () g™ (x) + r(x) is equal to the following, which needs 4

deg (q(k) (x)) A = 4wl XOR gates.

A (9] (k) (k)
r(x)+= Z g®)xH + qg® a2 + qg®)xHs +g® k).  (3.16)
k=1

Also, the worst case critical path delay is Txor([log, (44 + 1)]). Note that, when

w and A are small, the delay can be decreased by choosing ,u-(k)

i suitably. Also, as seen

in Figure 3.7, obtaining r(x) from 7'(x) and selecting the correct ¢® require

w(Ad — 1) plus wA AND gates and has a delay of Tayp.

3.2.4 Unified Modular Reduction Case

In this case, the irreducible polynomials x™« + g (x) generating the supported

(k)

Hi
Ui X7t can

fields [F,m, are chosen such that their trailing coefficients g (x) = ¥7_, g
be nonzero only for the same T terms.
Let the selected field size be my, . Then, g(x) = g% (x) is stored into a T bit

register and used in the reduction computation q(x)g(x) + r(x) as seen in Figure

3.7. The area and delay are as follows:

w(t + 24 —2) ANDs, w(t + 41— 1) XORs, 7 flip flops,
(3.17)
2Tanp + Txor([log, A] + [log, (min(w, 1) + 1)1)

where 7 is the nonzero term count of g(x). These are the complexities of storing g (x),

obtaining q(x) and r(x), and computing g(x)q(x) + r(x). As seen from Figure 3.7,
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obtaining q(x) and r(x) needs w(24 — 1) AND plus w(A2 — 1) XOR gates and has
a delay of Tanp + Txor([log, A]). Also, the area and delay

wt AND, wt XOR, Tanp + Txorllog,(min(w, ) + 1)] (3.18)

are needed to compute g(x)q(x) + r(x) due to Corollary 2.1. But, w AND gates can
be saved above. This is because g(x) = g0 (x) where x™ko + g*o)(x) is an
irreducible and thus, its zeroth term g, = 1 always.

The nonzero term count T of g(x) must be as small as possible to decrease the
complexities in (3.17).

T <log,my + 3 (3.19)

is guaranteed actually where the largest field size my; < 1000. This is because it is
an experimental fact that there always exists an irreducible x™ + }.i_; g, x* in the

following forms :

x™ + Z gux* for m <133,
1ef0,1,...90\{4,7}
x™ + Z gux* for m <658,
uef0,1,..,123\{3,8}
(3.20)
x™ 4+ Z gux* for m <372,
uef0,1,..,113\{8,9}

x™ + Z gux“ for m <1000,
uefo,1,..,123\{8}

As seen above, T can be as small as 8, 10, 11, and 12 form < 133, m < 372,
m < 658,and m < 1000, respectively. As a result, min(r) < log, m + 3 for the
polynomials in the cryptographic range of interest. Also, always an irreducible
polynomial x™ + g(x) exists for m < 2000 such that deg(g(x)) < log, m + 3
[21].

These practical facts are natural consequences of the following heuristic
argument: Let m be an integer large enough so that (1 + 1/m)™ = e (saym >
50). Let uq, Uy, ..., 4y be some distinct integers such that gy =0 < p; < fjp1 <M
for 2 < i < 7. The probability of any of the polynomials
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{x™+ g |g(x) = Tiy gux*i = go + Tiog gu, ¥} (3.21)

being irreducible is approximately equal to (1/ e)?* whent = log, m + ¢ for some
€ = 0. This is because a binary polynomial of degree m is irreducible with 1/m
probability [1]. Then, the probability of any of the polynomials x™ + Yi_; g, x*

being irreducible is

plogam+e

2
-2 -y e
3.3. Multipliers with Left Justified Operands

In this section, the MSD first multiplier in Figure 2.1 is modified to support
multiple field sizes. The modified multiplier has left justified inputs and output as

illustrated in Figure 3.2.
3.3.1 Obtaining the Digits B;

When the left justified operands are used instead of the right justified ones, the
circuit in Figure 3.5 must be replaced with the one in Figure 3.8. In Figure 3.8, the
following wA bits of b(x) are extracted in each cycle.

bw[mk/w]—i+A ) 0<i < w, 1 < k < l (323)

where A = my; — m,. Note that, let ¢, = (—m; mod w) + m,, then these bits can

also be given as follows:
bw[mk/w]—l'+A = b¢k—i , 0<i< w, 1< k < A. (324)

Let the selected field size be my, . Then, only the following bits are needed among the

extracted bits :
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B; = {bwjmy wi-i+a = bg,—i|0 < i <w, k =k} (3.25)
Shift Register (w bit left shifts at each clock) w"m;\ﬁ»w“
‘ by —1 oo by — ‘ --------------- ‘ boy—1 - by — ‘ ------------ bz by bo} . Q:tc;:ld s B(x)

Figure 3.8: Obtaining the digits B; from the left justified operand b(x). Here,

S1,S2, .-
field sizes m; < m, < -+ < my.

., 5y, are the selection bits and ¢, = (—m, mod w) + m; for the supported

Thus, the extracted bits are ANDed with the selection bits s, = 6[k — ky] and the

results are XORed to produce the digit B; as shown in Figure 3.8.

3.3.2 Reducing I(x) modulo x™ + g™ (x)

Figure 3.9 and Figure 3.10 illustrate the reduction of I(x), when the multiple

field sizes are supported and the operands are left justified.

I(z)

register

T 1M W
select I; for LA
0<1i< ma '

select [

m 3, 41

for 0<i<w

L r

r{z)

register

q(x) g(z)+r(=)

JL— My,
flz)

Figure 3.9: The circuit computing the unified reduction f(x) = I(x) mod x™2 +
G (x) where my < m, <...< m, are the supported field sizes and sy, 55, ..., s, are

the selection bits.
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w AND bits w multiply
4§ 7 = \ +—

AND bits | w | multiply
by g% ()

with s

LI 3 ]
LR 3 N
LI I ]
LI 3 ]

multiply
by §*)(x)

AND bits
with s,

Figure 3.10: The circuit computing the separate reduction f(x) = I(x) mod x™ +
§® (x) where m; < m, <...< mj are the supported field sizes and s3, 55, ..., s; are
the selection bits.

The modular reduction circuit in Figure 3.9 and Figure 3.10 is much simpler than the
one in Figure 3.6 and Figure 3.7 for the right justified operands since the left justified
operands have the factor x4~ where m; is the largest field size. Thus, regardless
of the field size my, the most significant ith bit of an operand is stored in the bit m; —
i of its representation and q(x) is stored in the bits my; + i of I(x) for0 < i < w.

Thus,

my—

w-1 1
q(x) = Z Lpyeixt, () = Z Iixt (3.26)
i=0 i=0

as shown in Figure 3.9 and Figure 3.10. Also, if the generators of the fields Fymy
are x™ + g®(x) forl < k < 1,

3@ = xm g @), 2™+ O
(3.27)
= x™A"Mk (xmk +g® (x)) :

Let the field size my, be selected. Then,
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NE

A
300 = ) 5800 = ) 81k — ko] g® @) = g4 ) (3.28)
k=1

k=1

and I (x) can be reduced into f(x) = I(x) mod (xm/1 + g(x)) =qx)g(x) +r(x)as
shown in Figure 3.9 and Figure 3.10. Here, the output f(x) is left justified since the
modulus is a left justified generator polynomial.

For example, the irreducible polynomials:

x™ + gD (x) = x163 + x140 4 x27 4+ x21 +1,

x™2 4+ g@(x) = x%33 4 x110 4 x91 4 x70 4 1,

x™Ms 4+ g(3)(x) = x283 4 5160 4 ,141 4 120 4 1, (3.29)
XM 4 g (x) = x409 4 5286 4 y176 4 126 | 1

can be used as generators for the NIST recommended fields. Then, the left justified
generator polynomials x™ + §(x) = (x™ + g(x))x™ ™ and the reduction

polynomial §(x) are as follows:

XM 4 G (x) = x571 4 xH48 4 (435 4 5429 4 3408
x™Ma 4 g(z)(x) = x571 4 x#48 | 429 4 4408 | 4338
XM 4 §(3)(x) = x571 4 x#48 | 429 4 4408 | 288 (3.30)
x™Ma 4 g(“')(x) — x571 4 x*48 | x338 4 4288 | 4162

Gx) = GEo(x) = x*8 + 5,x*3% + 5,x*%° + 55,0408 4 (5, + 5,)x338 + (55 +
S4)x%88 4+ 5,x162 + 5. . Here, §(x) is a polynomial with T = 8 terms and s;, =
81k — ko] are the bits selecting the field.

The appropriate reduction polynomial g(x) is stored in a register and used in the

reduction q(x)g(x) + r(x) as seen in Figure 3.9 and Figure 3.10 but the reduction
28



can also be carried out separately for each field by using its left justified generator

polynomial x™2 + §® (x) as seen in the same figure.
3.3.3 Performing Modular Reductions Separately

When the reduction is carried out separately for each field as seen in Figure 3.9,
the generator polynomials must be chosen as sparse as possible to reduce the
complexity. When the generators are pentanomials, the area requirement and worst

case critical path delay can be found as follows:

wA AND, 4wA XOR, Tynp + Txorllog,(44+ 1)]. (3.31)

(k) (K (k)
GO (x) = xma Mk g() () = xMa—mu (x“l + xH2” + xH3 + 1) when the

generators x™ + g®)(x) are pentanomials, Thus, the reduction f(x) =

Yt _15q(x) §¥(x) is equal to the following :

& (k) (k)
r(x) + z skq(x)xm)l—mk+ﬂ1 + Skq(x)xm,‘{—mk+u2
=t (3.32)

®
+5,q(x)x™A "Mk 4 g g () x™AT e,

Note that deg(q(x)) < w . Therefore, computing s q(x) for k = 1,2,...,4
requires wA AND gates and computing the additions above requires 4wA XOR gates.
All these computations have a worst case critical path delay of Tynp +

Txor([log,(44 + 1)]). Also, when w and A are small, the delay can be reduced by
(k)

choosing p;™ suitably.

3.3.4 Unified Modular Reduction Case

In this case, the irreducible polynomials x™« + g (x) generating the supported
fields F,m; are chosen such that the coefficients of the polynomials §®(x) can be

nonzero only for the same 7 terms as follows:
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T

g\(k) (x) — g(k) (x)xml—mk — Z.g,(j:)xm+m)‘_mk- (333)

=1

Let the selected field size be my, . Then, g% (x) = §&o)(x) is stored into a T

bit register and used in the reduction computation q(x)g(x) + r(x) as seen in Figure

3.10. The area requirement and the critical path delay are as follows:
wt AND , wt XOR , 7 flip flops, Tynp + Txorllog,(min(w, ) + 1)] (3.34)

where §(x) has T nonzero terms. These are the complexities of storing §(x) and
computing q(x)g(x) + r(x) . As seen from Figure 3.9, q(x) and r(x) are obtained
by just wiring without any cost since the operands are left justified. Due to Corollary

2.1, the cost of computing q(x)§(x) + r(x) is
wt AND, wt XOR, Tunp + Txorllog,(min(w,t) + 1)]. (3.35)

Note that the nonzero term count T of §g(x) must be as small as possible to

decrease the complexities in (3.34). Actually, the probability of finding a value of
t<log,m +e+1-1 (3.36)

is very high for a small positive number € where the supported field sizes are m; <
m, <...<m,.

The section with a heuristic proof of this claim has finished. The irreducible
generator polynomials for the supported fields is x™ + g% (x) for1 < k < A.The
terms of §(x) with degree larger than m;, — m, form the polynomial a® (x)x™"™1

Then, the polynomials
mr—mq

=0
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mp—mq

50 (x) = @ (x)xmimi 4 Z g xi+ma=mi (3.38)

The modular reduction by setting some polynomial terms to zero can be eased

as follows:
p
g0 @) = Y alxtrmem 4 Z o X (3.39)
j=1 j=1
p
g0 =Y alxtrmam 4 Z I X, (3.40)
j=1 j=1

Now, the polynomials §® (x) can be nonzero only for the following p + k

terms where 1 < k < 1:

xt, pe{y+m-—-mlj=12,..,p}
(341
xt, we {m—-milj =12, ..k}

Also, remember thatm; < m, <...<m, .Thus,my —m; <my; —m, <...<
m; —m, = 0 . The terms of the left justified polynomials §® (x) can be classified

into the two following groups :

e High order terms g-(k)xi with degree i > my; —m, .

e Low order terms g(k)

x* with degree i < m; —

As seen from (3.41), the p high order terms of the polynomials g (x) are
allowed to be nonzero. Also, among the low order terms of % (x), only the terms
XM xmaTMe o x™27 ™ = 1 are allowed to be nonzero. These low order terms
cannot be eliminated since x™ + g®(x) for 1 < k < A are all binary irreducible
polynomials. Thus, ggk) =1 and the terms g,(,'f;_mkxml‘mk = gék)xml‘mk =

x™A~Mk cannot be set to zero for all k = 1,2,..., 4, but allowing the other low order
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terms of G (x) to be nonzero is not useful since §* (x) = g™ (x)x™1 "% is left
justified. Thus, their many low order terms are already zero.
Then, the coefficients of the left justified polynomials can be nonzero only for

the same p + k terms as seen from (3.41).

p+k
P (x) = g® ()xmme = Z gl (3.42)
i=1

Then, the probability of none of the polynomials
{xmk + g(k) (x) g(k) () x™ "Mk = Zf:lk g\l(j:)xﬂi} (3.43)

being irreducible is (1 — 1/mk)2p+k because binary polynomial of degree my is
irreducible with 1/m,, probability [1]. When p + k = log, m;, + &, this probability

is

ologzmy+e

e I

As a result, finding an irreducible x™* + g(k) (x) for each k is very highly possible

when choosen

p = max (logymy — k) +¢. (3.45)

The supported fields m; <m, <...<m, satisfy my, < 2% 'm; in practical

applications. Then,

= — < —
p = max(logamy — k) +e<logym, —1+e (3.46)

andt < max(p) + max(k) = log,m; — 1 + ¢ + Aasin (3.36).
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4. COMPLEXITY ANALYSIS

In this section, the complexities of the proposed multipliers are analyzed.

4.1. Area Requirement and Delay

Table 4.1 gives the area requirements of the MSD first multipliers supporting A

different fields. Table 4.1 also gives the area requirement of a usual MSD first

multiplier supporting the single field size m

= m, and using a generator polynomial

with t = 5 terms (pentanomial). The complexity of the multiplier supporting single

field is obtained from Table 2.1. The complexities of the multipliers supporting

multiple fields are obtained by adding the complexities of the three main computations

shown in Figure 3.3 and Figure 3.4. These three computations and their area

requirements are as follows:

Table 4.1: The area requirements of the proposed multipliers where the supported
field sizesare my <m, <...<my .

unified reduction

#AND #XOR #LATCH
MSD 1st multiplier
wm, wmy + 3w my +w
for the field F,m,
Right justified, wm, +
' wm, + w(54 —2) m; +w
separate reduction w(341-1)
Right justified, wm, +
_ _ wmy; +w(@A—-3+71) | mt+tw+rT
unified reduction w@BA-2+71)
Left justified,
' wm, + 2wi wm, + w(54 —2) m; +w
separate reduction
Left justified,
wmy+wA+1) | wmy+wld—-2+1) mtw+rt

e Obtaining the digits B; from b(x) (or from b(x) for the left justified operands)

is the first computation. It requires wA ANDs and w(A — 1) XORs regardless
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of whether the operands are right or left justified. This can be seen from Figure
3.5 and Figure 3.8 easily.

Computing and accumulating the partial products x"f(x) + a(x)B; (or
xVf(x) + a(x)B; for the left justified operands) is the second computation. It
requires wm, ANDs and w(m,; — 1) XORs regardless of whether the operands
are right or left justified. This follows from Theorem 2.1. According to this
theorem, accumulating the products of w bit and £ bit operands requires w?
AND plus wf XOR gates. The maximum supported field size is m,. Thus,
£ = m, bits are used to represent the field element a(x) and w = w bits are
used to represent the digits B; . Then, wm; AND and wm; XOR gates are
needed to accumulate the products a(x)B; (or a(x)B; for the left justified
operands). However, w XOR gates can be saved since the terms
x%,x%, ..., x"~1 are not need to be add , in the sum x"f(x) 4+ a(x)B; (or
xVf(x) + a(x)B; for the left justified operands).

The modular reduction f(x) = I(x) mod (x™ + g(x)) (or f(x) =
I[(x) mod (x™ + g(x)) for the left justified operands) is the third
computation. The area requirements of two different modular reduction

schemes are given by (3.14) and (3.17) (or (3.31) and (3.34) for the left justified

operands).
The critical path delays of the proposed multipliers can be given as follows:

2Tynp + ([logy Al + [log, wl + 1)Txor 4.1)

where A is the number of the supported fields and w is the digit size in bits. This fact

can be explained as follows: As seen from Figure 3.3, the critical path delay of the

proposed design can not be smaller than the sum of the delays of the following three

computations.

e The first one is the extraction of the digit B; from b(x) (or from b(x) for the
left justified operands). This has the delay Tynp + Txor[log, A] as seen from
Figure 3.5 and Figure 3.8.
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e The second one is the my; X w bit partial product a(x)B; (or a(x)B; for the

left justified operands). This has the delay Tynp + Txogrllog, min(w,my)| =

Tanp + Txorllog, w] according to Theorem 2.1.

e Third one is the accumulation of the partial products, which has one Tx,z

delay.

The total delay due to these computations is T = 2Tynp + ([log, A] +

[log, w])Txor + Txor and equal to (4.1). As seen from Figure 3.3 , the critical path

delay is actually max (T, Tredquction + Txor) Where Trequction 1S the delay of the

modular reduction f(x) = I(x) mod (x™ + g(x)) (or f(x) = I(x) mod (x™ +
g (x)) for the left justified operands). Trequction 1S given by (3.14), (3.17), (3.31), and

(3.34) for four different cases. A simple investigation shows that the critical path delay

isT = max(T , Treduction + Txor) and equal to (4.1) .

4.2. NIST Recommended Binary Fields

Table 4.2 gives the area complexities of the MSD first multipliers when they

support the five binary fields recommended by NIST. The number of the NIST fields

A = 5 and the largest NIST field size m; = 571.

Table 4.2: The area requirements of the proposed multipliers supporting the NIST

fields ]F2163, IF2233, IF2283, IF2409, IF2571 .

#AND | #XOR | #LATCH
MSD 1st multiplier for the field [F,s71 571w | 574w | 571 +w
Right justified field elements, separate reduction
585w | 594w | 571 +w
circuits
Right justified field elements, unified reduction
590w | 584w | 577 +w
circuits (7 = 6)
Left justified field elements, separate reduction
o 581w | 594w | 571 +w
circuits
Left justified field elements, unified reduction
o 584w | 582w | 579 +w
circuits (t = 8)
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The complexities in the table are obtained from Table 4.1 for these NIST parameters.

The modular reduction can be unified for the NIST fields by using a common
reduction polynomial. When the field elements are right justified, the polynomial with

T = 6 terms
glx) = 9389538 + 9229522 + gllez + g9x9 + gzxz + 9o 4.2)

given by (3.13) can be used as reduction polynomial. Also, when the field elements

are left justified, the polynomial with T = 8 terms

~CN _ A 448 | A 435 , A 429 | A~ 408
G(X) = Jaagx™™® + JazsXx*°° + GaoX™*” + Gaogx™° +

(4.3)
G338%%%% 4 G288%%%% + G162X"%%* + §o

given by (3.30) can be used as reduction polynomial. The coefficients of these
polynomials are determined by the selected field as seen from (3.13) and (3.30).

Table 4.2 shows that supporting multiple fields instead of a single field does not
increase the cost much and working with the left justified operands is slightly
advantageous. Also, because the number of the fields A = 5 is small for the NIST
case, using a separate reduction circuit for each field is affordable. The delay of the
multipliers supporting the NIST fields can be obtained from (4.1) by substituting
A=5.

4.3. Comparison with Other Multipliers

Table 4.3 and Table 4.4 give the space and time complexities of several digit serial
multipliers. The space complexities of the proposed architectures in the Table are
obtained from Table 4.1 by substituting T with the upper bounds in (3.19) and (3.36).
As seen, the complexities of the multipliers supporting a single field are very similar
and the usual MSD first multiplier shows one of the best performances. Note that the

MSD first multiplier needs where the size of the working field m;, = m,. If this area
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and the areas of the proposed multipliers supporting A fields are analyzed, the

following conclusions are reached :

wm; ANDs, wmy + 3w XORs, m; + w latches (4.4)

e The area increases linearly with A

e wA AND gates can be saved when the multiplication is performed with left
justified operands.

e Unifying the modular reductions of the supported A fields causes the terms
log, m; or log, m, to appear in the area complexities additionally but also,
decreases 51 term in the XOR complexity to 2A. Thus, the multipliers with

unified reduction circuit can be advantageous for large A.

Table 4.3: Comparison of area complexities of digit serial multipliers working in the

field Fymy.
Multiplier #AND #XOR #MUX | #LATCH
T right justified
operands
' w(my + 31 w(m, + 51
separate reduction for ) ) my +w
-1 -2
field sizes m; <
my < m;y
T left justified
operands
. w(m, + 54
separate reduction for w(my + 21) ) my +w
-2
field sizes m; <
m, < my
right justified
operands my; +w+
: : —2) -3)+
unified reduction for log, m;
: +w(og,m; | w(log, my
field sizes my; < +¢&
+¢) +¢)
my < my
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Table 4.3: Continue.

Multiplier #AND #XOR #MUX #LATCH
left justified
operands w(m, w(m, + 24
unified reduction | + 21 —1) -3)+ my+w+A1+
for + w(log,m w(log, m, log,m; +¢—1
field sizesm; < | +¢) + )
m, <my
+ MSD st
multiplier wmy, wmy + 3w my +w
+ LSD 1st wmy + 7w
multiplier [11] Wi -4 M 2y +w =1
. (2w* 5 [Mk my My
Kimetal. [8}.09] | ” [ﬂ 2w [7 2w [7 (10w + 1) [7]
(w — Dmy
1 Meher [12] wmy, w2 +w) 2my, +w
2
Talapatra et al. [22] wmy wmy + 2w 2my, 4my + 3w + 1

T pentanomial and i trinomial generator polynomials are used, w is the digit size,
A 1s the number of the supported fields.

¢ 1s a small positive number, TA, TX, and TMUX are respectively the delays of
AND gate, XOR gate, and multiplexer.

Table 4.4: Comparison of time complexities of digit serial multipliers working in the

ﬁeld IFka .
Multiplier Critical Path Latency
T right justified
operands
m
separate reduction for 2T, + Tx + ([log, A] + [log, w]) Ty [Wk] +1
field sizes m; <
m; < my
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Table 4.4: Continue.

Multiplier Critical Path Latency
T left justified
operands
separate reduction for 2T, + Tx + ([log, Al + [log, w]) Ty [%] +1
field sizes my; <
m, < my
right justified
operands
unified reduction for 2T, + Tx + ([log, A] + [log, w])Tyx [%] +1
field sizes m; <
m, < my
left justified operands
unified reduction for My
held szes . < 2T + T + (llogy A1 + [logo wDTy | [ +1
m, < my
T MSD 1st multiplier Ty + Tx + ([log, w] + 1Ty [%] +1
T LSD 1st multiplier Ty + Ty + (log, w + DT, [ﬂ] +1
[11] w
Kim et al. [8], [9] W(Ty +Ty) + W — DTyux 3 [%
+ Meher [12] T, + (Jlog, w] + 1Ty [%
Talapatra et al. [22] Ty + Tyyx + [log, wlTy 2[%]

T pentanomial and i trinomial generator polynomials are used, w is the digit size,

A is the number of the supported fields.

¢ 1s a small positive number, TA, TX, and TMUX are respectively the delays of

AND gate, XOR gate, and multiplexer.
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Table 4.5: Virtex 5 implementations of digit serial multipliers supporting NIST field
sizes 163, 233, 283, 409, 571.

Multipliers withw = Period
o FF | increase | LUT | increase increase
8 digit size (ns)

MSD 1st multiplier
for the field Fys71

1728 0% 3186 0% 3.224 0%

Right justified
operands, separate 1744 1% 3239 2% 3.987 24%

reduction

Left justified operands,
) 1756 2% 3248 2% 3.688 14%
separate reduction

Right justified
operands, unified 1744 1% 3487 9% 3.896 21%

reduction

Left justified operands,
. . 1756 2% 3477 9% 3.891 21%
unified reduction

Compared to the digit serial multipliers, the versatile bit serial multipliers [15] -
[19] require less area and their critical path delays are also smaller. However, they
need at least m;, cycles to finish the multiplication while many digit serial multipliers
need approximately [m, /w] cycles.

Table 4.5 gives the FPGA implementation results of the usual MSD first
multiplier and proposed multipliers. These results were synthesized using Xilinx ISE
Webpack version 14.7 for the Xilinx Virtex xc5vIx50-111f1153. As seen, the areas of
the proposed multipliers are not significantly larger than the area of the usual MSD
first multiplier, even though they support five NIST fields. However, there is a
considerable increase in the minimum clock period. Also, the area needed for the
multipliers using unified reduction strategy is larger than the area needed for the ones
using separate reduction strategy. This is because the number of the supported fields
A =5 is small compared to log, m,. The unified reduction strategy becomes more

advantageous as A increases.
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5. CONCLUSION

Digit serial multipliers performing multiplication in a collection of binary
extension fields F,mq, Fym,, ..., F,m; have been proposed. Their complexities where
the digit size is w bits and the field sizes satisfy m; < m, <...<m; have been
analyzed. The results are presented in Table 4.3 and Equation (4.1). The area
requirements of the multipliers increase linearly with m;, A, and w . On the other hand,
the critical path delay grows logarithmically with A and w .

When the multiplication is performed with left justified operands, wA AND gates
can be saved. However, this is a minor improvement, compared to the overall area
requirements. The area improvement is obtained because the left justified alignment
eases the modular reduction.

Also, unifying the modular reductions of the supported fields decreases the area
requirements for large A . To unify the modular reductions, the modulus polynomials
are chosen so that their trailing coefficients can be nonzero only for the same 7 terms.
Then, the modular reduction involves only these 7 terms, and thus the reduction
process gets easier. However, T must be large enough so that the irreducible modulus
polynomials can be found for the chosen t terms easily. For this purpose, T must be at

least as large as the logarithm of the supported field sizes as shown in this thesis.
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