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SUMMARY 

 

 
Klebsiella pneumoniae is an etiological agent of serious life-threatening 

nosocomial infections. Conventional treatment approaches are not sufficient to control 

the Klebsiella-mediated infections. Therefore, different approaches must be employed 

to handle resistant species of this pathogen. Network-based analysis methods provide 

a comprehensive view to decipher cellular metabolism. Genome-scale metabolic 

network models (GEMs) are promising platforms that allow analysis of whole 

metabolic network of a cell. Notably, they are useful to identify novel metabolic drug 

targets. To date, two metabolic models of K. pneumoniae (iYL1228 for MGH 78578 

strain and iKp1289 for highly strain KPPR1 strain) have been reconstructed. In the 

scope of this work, computational systems biology approach based on constraint-based 

genome-scale metabolic network analysis was used to comparatively analyze the 

metabolisms of two Klebsiella strains and to discover new enzyme-based drug targets. 

Over 30 essential gene without human homologs were identified through growth 

simulations of each strain in different host-mimicking conditions. A total of 31 non-

homologous genes are found to be druggable. Five of them associated with virulence 

and show a broad distribution among some popular pathogen species were suggested 

as drug targets in the study. This putative target list was extended using an updated 

biomass reaction. Furthermore, three non-homologous genes were also predicted as 

drug target via a metabolite-centric approach. To our knowledge, this is the first 

comprehensive effort to elucidate putative drug targets of K. pneumoniae strains 

through the analysis of their GEMs. These findings provide crucial insight for further 

research. 
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ÖZET 

 

 
Klebsiella pneumoniae yaşamı tehdit eden, ciddi hastane enfeksiyonlarına sebep 

olmaktadır. Klasik tedavi yaklaşımları Klebsiella aracılı enfeksiyonların kontrolünde 

yetersiz kalmaktadır. Bu yüzden bu patojenle başa çıkabilmek için daha farklı 

yaklaşımlara ihtiyaç vardır. Ağ-tabanlı analiz yöntemleri, hücresel metabolizmanın 

çözülebilmesi için kapsamlı çıktılar sunar. Genom-ölçekli metabolik ağ modelleri bir 

hücreye ait tüm metabolik ağının analizine izin veren önemli platformlardır. Açıkça 

bu yaklaşım yeni ilaç hedeflerinin belirlemesi için ümit vericidir. Günümüze kadar, K. 

pneumoniae için iki tane genom-ölçekli metabolik ağ modeli (MGH 78578 suşu için 

iYL1228 ve KPPR1 suşu için iKp1289) oluşturulmuştur. Bu çalışma kapsamında, iki 

farklı K. pneumoniae türünün metabolizmalarının karşılaştırılması ve enzim türevi ilaç 

hedeflerinin belirlenmesi amacıyla kısıt-tabanlı genom-ölçekli metabolik ağ analizine 

dayanan hesaplamalı sistem biyolojisi yaklaşımı kullanılmıştır. Böylece, konak 

ortamını taklit eden iki farklı besiyerinde büyütülen her bir suş için insanda homoloğu 

bulunmayan 30’un üzerinde hayati gen tespit edilmiştir. Toplamda homolog olmayan 

31 gen ilaç molekülüne bağlanabilme özelliğine sahiptir. Bu genlerin virulanslıkla 

ilişkili olan ve bazı popüler patojen türleri arasında geniş bir yayılım beş tanesi 

çalışmada ilaç hedefi olarak önerilmiştir. Güncel biyokütle oluşum denklemi 

kullanılarak bu olası hedef listesi genişletilmiştir. Ayrıca metabolit-odaklı bir yaklaşım 

kullanılarak belirlenen ve insanda homoloğu olmayan üç gen de olası ilaç hedefi olarak 

önerilmiştir. Bilgimiz dahilinde, K. pneumoniae için oluşturulan genom-ölçekli 

metabolik ağ modelleri ilk kez bu çalışmada olası ilaç hedeflerinin belirlenmesi 

amacıyla kullanılmıştır. Bu tez çalışmanın sonuçları, gelecek çalışmalara yönelik 

önemli bulgular sunmaktadır. 
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1. INTRODUCTION 

Klebsiella pneumoniae is a member of the Enterobacteriaceae family and it 

inhabits a wide range of habitats such as humans, plants, surfaces of various medical 

devices, water and soil [1, 2].  

Although this pathogen usually infects immunocompromised patients, elderly 

individuals and neonates, hypervirulent strains harboring drug resistance genes can 

lead to serious diseases (e.g., pneumonia, endophthalmitis, pyogenic liver/neck/lung 

abscess, and meningitis) in even healthy individuals [3, 4]. Thus, the current notoriety 

of K. pneumoniae is not surprising. It is one of the ‘ESKAPE’ pathogens (a group of 

nosocomial pathogens including Enterococcus faecium, Staphylococcus aureus, K. 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 

species) that are capable of escaping the activity of antimicrobial drugs [5, 6]. Even if 

various therapeutic strategies (e.g., bacteriophage therapy and use of synergistic drug 

combinations) were proposed to cope with K. pneumoniae, these approaches are 

insufficient to eradicate this pathogen [1, 5–7]. Therefore, more comprehensive 

strategies are necessary to bring Klebsiella infections under control. In this context, it 

is crucial to examine the behavior of a biological system as a whole in order to detect 

more efficient drug targets. 

Time-consuming, expensive and labor-intensive nature of the high-throughput 

technologies limit the discovery of new drugs despite the recent advances. Moreover, 

experimentally generated datasets must be properly interpreted in order to decode the 

behavior of the systems. Therefore, systems biology has emerged as a promising 

framework to comprehensively analyze an organism instead of focusing on its isolated 

parts. This interdisciplinary field generates new hypotheses for wet-lab experiments 

through in silico experiments by considerably narrowing down the solution space. 

Genome-scale metabolic models (GEMs) are in silico representations of the 

metabolism. To date, GEMs of many biologically important organisms were 

constructed [8]. The constraint-based flux analysis of the GEMs of pathogens is an 

extremely promising approach to reveal putative drug targets through rapid systematic 

perturbations [9]. Thus, the use of computational approaches allows identification of 

the candidate genes to be targeted for growth inhibition of the pathogens. 
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Here, two genome scale metabolic network models of different Klebsiella strains 

(i.e., iYL1228 and iKp1289) were analyzed through gene-centric and metabolite-

centric approaches to reveal potential metabolic drug targets. To reduce potential side 

effects and to select more efficient targets, the target candidates were prioritized by 

applying several criteria based on homology, virulence, druggability, connectivity and 

broad-spectrum analyses. Thus, over 30 essential genes with no human homologs were 

determined for each strain in different growth simulations. Particularly five druggable 

virulence genes (hldD (rfaD), kdsA, gmhA (lpcA), lpxA and lpxC) were predicted to be 

broad-spectrum targets. Most of these genes were reported as potential drug targets for 

different pathogens in previous studies [10–14]. This list was extended by using an 

updated biomass reaction through the gene-centric approach. Thus, 11 additional 

putative targets were suggested. They are associated with nicotinamide adenine 

dinucleotide synthesis, pantothenate production, coenzyme A biosynthesis, and the 

riboflavin synthesis. In addition, three genes (mrcB, pbpC and mrcA) without human 

homologs were identified by the metabolite-centric approach. Importantly, the 

remaining non-homologous, essential genes should be also assessed in detail to extend 

the putative target list. Therefore, a further work is required to evaluate and validate 

all possible candidate drug targets. 

1.1. Aim and Objectives of the Thesis 

Klebsiella pneumoniae is among the etiologic agents of various serious diseases 

with significant morbidity and mortality worldwide. For instance, hypervirulent strains 

of this pathogen can lead to a wide variety of diseases such as pneumonia, meningitis, 

endophthalmitis, bloodstream and urinary tract infections [3, 4].  

Despite intensive efforts, K. pneumoniae continues to pose a serious public 

health threat and it was reported among the urgent threat level multidrug 

resistant pathogens by the World Health Organization, the UK Department of Health 

and the US Centers for Disease Control and Prevention [15]. Herein, the genome scale 

metabolic network models of two different K. pneumoniae strains were used for a 

system-level analysis of their metabolisms. The superiority of this study is utilization 

of multi-level information in the filtering process to reveal the most efficient putative 

targets.  
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Briefly, the objective of this study is to reveal the convenient drug targets with a 

minimal side effect on the host and to gain a better insight into the K. pneumoniae 

metabolism. To date, various  proteome- and transcriptome-based studies on the K. 

pneumoniae were reported [83–86]. However, to our knowledge, it is the first effort to 

identify putative drug targets for K. pneumoniae through a comparatively and 

comprehensive analysis of its GEMs by gene- and metabolite-centric approaches.  
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2. BACKGROUND ASPECTS 

2.1. Klebsiella pneumoniae 

Klebsiella pneumoniae is a gram-negative, rod-shaped, lactose-fermenting, 

usually encapsulated and nonmotile pathogen that was first observed in the 

postmortem lung samples of pneumonia patients in 1882 [16–18].  

K. pneumoniae can be traditionally classified according to their capsular and 

lipopolysaccharide (LPS) serotypes. The strains of this pathogen with the K1 and K2 

capsular types within 79 capsular (K antigen) serotypes represent a hypermucoviscous 

(also known as hypervirulent) phenotype likely owing to the increased biosynthesis of 

capsular polysaccharide (CPS) [3, 19]. Furthermore, it was suggested that K1 and K2 

strains reduce the level of reactive oxygen species released by human neutrophils and 

the capsule structure including sialic acid may also allow evasion from the immune 

system by mimicking the host cells. Alternatively, the lack of mannose residue repeats 

of these strains protects the pathogen against an efficient lectinophagocytosis (an 

opsonin-independent form of phagocytosis) and against a possible attack by the 

neutrophiles via blocking the formation of proinflammatory signals that recruit the 

immune cells [4]. Thus, hypervirulent Klebsiella strains lead to serious community-

acquired infections. In the similar vein, 9 different O-antigen types were reported for 

K. pneumoniae and O1 serotype is commonly found in clinical isolates [3, 4, 19].  

The Klebsiella strains can inhabit a wide range of conditions such as water, soil, 

sewage, medical devices like catheters in addition to humans, plants and other 

organisms. These pathogens can also be found in the normal flora of intestine, skin, 

mouth, and nose in humans [1, 2]. They can readily spread to other tissues by 

colonizing human mucosal surfaces (e.g., gastrointestinal tract, respiratory tract and 

oropharynx [4, 19]. The colonization rate varies by the type of Klebsiella (i.e., 

community- or hospital-acquired K. pneumoniae), tissue and antibiotic treatment. 

Particularly antibiotic treatment considerably increases the colonization rate [17]. K. 

pneumoniae can also form biofilm on various biotic and abiotic surfaces like wounds 

and catheters. Thus, they become more resistant to antibiotics and immune response 

and eventually can lead to chronic infections [19, 20].  
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2.1.1. Antibiotic Resistance 

Drug-resistant infections cause high mortality (over 700,000 deaths/year) and 

the reduction in the antimicrobial activity of the drugs poses a major therapeutic 

challenge by affecting global economic cost and public health. A global lose at least 

US$100 trillion is expected throughout the next few decades if the drug-resistance 

issue is not addressed [21]. This bad scenario prompts the scientists to investigate the 

antibiotic resistance mechanisms and novel therapeutic approaches. The recent 

increase in the publications on antibiotic resistance is presented in Figure 2.1 [22]. 

  

 
 

Figure 2.1: Number of scientific publications including “antibiotic resistance” and 

“antimicrobial resistance” terms in their abstracts from PubMed.  

 

The resistance genes can trigger dissemination of the antibiotic resistance 

through two major routes including vertical gene transfer (transfer of genetic material 

with de novo mutations from the parent to its daughter cells) or horizontal gene transfer 

(gene transfer via mobile genetic elements like plasmids through phage transduction, 

conjugation or transformation) (Figure 2.2) [16, 23]. Resistance mutations support 

survival of the mutant populations while wild-type populations are eliminated. Thus, 

the resistant populations predominate [24]. For instance, fluoroquinolones are 

antibiotics that disrupt the DNA replication by targeting DNA gyrase and 

topoisomerase IV of the bacterial cell [25]. The resistance against this antibiotic is 

mainly facilitated through some resistance-conferring mutations on the targets of this 

antibiotic (i.e., gyrA, gyrB, parC, and parE). The affinity of this antibiotic for the 
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targets depends on the bacterial type and resistant allele formation. If one of these 

targets is converted into the resistant form, the antibiotic binds to another target. It is 

important to note that the ratio of fluoroquinolone-resistant K. pneumoniae isolates is 

increasing. For instance, the proportion of these isolates has increased fivefold in Italy 

between 2005 and 2012 [26].  

 

 
  

Figure 2.2: Acquisition of antibiotic resistance. a) Antibiotic treatment,                       

b) Verticle gene transfer, c) Horizontal gene transfer. 

 

Especially human gastrointestinal tract provides an ideal condition to trigger 

transfer of the mobile genetic elements (e.g., resistance-conferring plasmids) due to 

antibiotic pressure and high bacterial density [27]. Transfer of the resistance genes can 

be mediated via three main mechanisms including conjugation, natural transformation 

and transduction (Figure 2.2) [23]. The most common mechanism for horizontal gene 

transfer is the conjugation. This mechanism provides transmission of conjugative 

plasmids (self-transmissible plasmids) and integrative conjugative elements (e.g., 

conjugative transposons) through a conjugative pilus between the donor and recipient 

bacterial cells [23, 27]. This process can promote conversion of the antibiotic sensitive 

bacteria to antibiotic resistant microorganisms [28]. As well as the gene transmission 

between the living cells, the DNAs released from especially lysing bacteria can also 

be transferred to over 80 different species of naturally transformable bacteria [27, 28]. 

Moreover, Woo and colleagues (2003) suggested that the horizontal gene exchange 

may occur through transformation of cell-wall deficient bacteria as a result of 

administration of antibiotics. This hypothesis is based on the observation that some 

antibiotics (e.g., beta-lactams and glycopeptides) suppress bacterial cell wall 

a) c) b) 
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assembly. Thus, the cell-wall deficient bacteria can acquire the extracellular resistance 

encoding DNA more easily [29].   

We have less information regarding the emergence of antibiotic resistance 

through transduction when compared to the natural transformation and conjugation. 

Transduction refers to transfer of the DNA via bacteria infecting viruses 

(bacteriophages) [27, 28]. After penetration, these viruses can integrate their DNAs 

into the bacterial genomes to replicate their genetic materials in conjunction with the 

bacterial genomes. Thus, they may confer resistance to the host due to presence of 

acquired resistance genes in the virome [23, 27]. Colomer-Lluch and colleagues 

demonstrated the contribution of the resistance gene bearing phages for the emergence 

of resistant E. coli strains [30]. Furthermore, transfer of the resistance-conferring genes 

to the other bacteria including Salmonella and Enterococcus was also shown through 

in vitro experiments [27]. Collectively, continuous exposure to antibiotics leads to 

resistance development and emergence of multidrug resistant (MDR) and extensively 

drug resistant (XDR) pathogens by means of vertical or horizontal gene transfer 

mechanisms. The resistant bacteria have different mechanisms to cope with 

antimicrobial compounds. Intra and inter-species transmission of these resistance 

mechanisms is a serious public health threat counteracting the action of available 

antibiotics.  

Antibiotics damage bacterial cells by a) mostly targeting the ribosome in order 

to block protein synthesis (e.g., aminoglycosides), b) inhibiting metabolic processes 

(e.g., sulfonamides), c) targeting DNA maintenance (e.g., quinolones) and d) 

preventing cell-wall synthesis and disrupting structural integrity (e.g., β‑lactams) 

(Figure 2.3) [21, 31]. The resistant bacteria can cope with the attacks of the 

antibacterial compounds via two major mechanisms:  (1) intrinsic resistance and (2) 

acquired resistance.  

Intrinsic resistance is related to the natural, structural and functional 

characteristics of bacteria regardless of administration of an antibiotic [24]. For 

instance, outer membrane of the bacteria act as a barrier against large antibiotics such 

as vancomycin. Pseudomonas does not include any sensitive targets for the biocide 

triclosan (i.e., bearing of only Triclosan-insensitive allele of fabI). Modification of the 

membrane regulated by GraRS (also known as aps) sensor/regulator system reduces 

the positive charge in Staphylococcus aureus in order to confer resistance. The aerobic 

bacteria are naturally resistant to metronidazole because the reduction of this antibiotic 
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to the active form takes place under anaerobic conditions. Removal the antimicrobial 

compounds by the Sap (sensitivity to antimicrobial peptides) efflux system and by the 

putative ABC transporters of S. typhimurium contributes to the intrinsic resistance of 

the bacteria [28, 31]. In addition, the inherent efflux system is also crucial for an 

efficient resistance to fluoroquinolone. Much as the acquired  resistance developed via 

mutations in DNA gyrase and topoisomerase IV confers the bacteria resistance against 

fluoroquinolone, it was shown this resistance mechanism is not sufficient per se. This 

is because the inhibition of the inherent efflux system results in a fluoroquinolone-

sensitive population. Therefore, both intrinsic and acquired resistance mecahnisms 

may be significant to cope with fluoroquinolone antibiotic [26]. 

    

 
 

Figure 2.3: Antibiotic resistance mechanisms. 

 

Acquired resistance can occur through various vertical/horizontal gene transfers 

[28, 31]. As a result of the gene exchange, some strategies (e.g., export of the 

intracellular antibiotics, modification of the antibiotic targets/antibiotics and 

degradation of the antibiotics) are employed by these microorganisms to cope with the 

selective antibiotic pressure (Figure 2.3) [21, 24, 31]. The acquired resistance can 

emerge only in a subpopulation of the species as the intrinsic resistance emerges in a 

wide range of bacterial groups [28]. For instance, streptothricin serves as a protein 

synthesis inhibitor, and the first plasmid-borne resistance to this antibiotic was 
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detected in E. coli isolates after the introduction of streptothricin F [32]. In a similar 

vein, colistin-resistant E. coli isolates harbour a horizontally transferable plasmid 

bearing the mcr-1 gene that mediates lipid A modification [33]. Interactions between 

antibiotics and their targets can be also prevented through mutations of the targets. In 

this process, some changes in the target structure decrease binding affinity of the 

antibiotics while the target can maintain its function [31]. An example of this 

phenomenon was reported for polymyxin-resistant K. pneumoniae. Some mutations in 

mgrB gene play a prominent role in the polymyxin resistance by decreasing the 

interaction of the antibiotic with the bacterial membrane [34–36].  

Another strategy adapted by bacteria is the minimization of the antibiotic uptake. 

High‑level carbapenem resistance of Enterobacter cloacae is associated with porin 

alteration. Mutations in the porin genes render this bacteria resistant although they do 

not have any known carbapenemases [21, 31]. Minimization of the antibiotic 

concentration can be also supported via the inactivation of the antibiotics by 

hydrolysis. Resistance of K. pneumoniae to the commonly used antibiotics such as β-

lactam antibiotics (e.g., penicillins, cephalosporins, carbapenems and monobactams), 

aminoglycosides and fluoroquinolones have emerged at a rapid pace through transfer 

of various resistance-conferring plasmids [6].  

Commonly shared plasmids across different Enterobacteriaceae members 

including K. pneumoniae, K. oxytoca, Escherichia coli, Salmonella sp. and 

Enterobacter sp., support the dissemination of MDR isolates. Thus, increasing 

prevelance of the resistant strains is not surprising. Most resistance mechanisms of 

gram-negative bacteria are also found in K. pneumoniae clinical isolates [37]. Some 

resistance-related Klebsiella genes responsible for the different resistance mechanisms 

against two popular antibiotic classes (β-lactam and aminoglycoside antibiotics) are 

illustrated in Figure 2.4 [16]. 
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Figure 2.4: Antibiotic resistance genes against β-lactam and aminoglycoside 

antibiotics. 

 

Particularly integration of some carbapenemase-encoding genes (e.g., blaKPC) 

onto the chromosome makes eradication of the resistant K. pneumoniae strains 
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difficult. Therefore, more efficient treatment approaches are necessary to handle these 

pathogens [16, 38]. 

2.1.2. Virulence Characteristics of Klebsiella 

Resistance is directly correlated with the virulence allowing the pathogen to 

survive in a hostile environment. There are various regulatory factors mediating 

regulation of both virulence and antimicrobial resistance. A global transcriptional 

regulator in the Klebsiella, RamA, is one of them and it is responsible for the regulation 

of LPS synthesis and drug resistance [39, 40]. CPS, LPS, fimbriae, outer membrane 

proteins (OMPs) and siderophores are among the significant virulence factors of K. 

pneumoniae demonstrated in Figure 2.5 [4, 41]. 

                     

 
 

Figure 2.5: Main virulence factors of classical and hypervirulent K. pneumoniae 

strains. 

                                                             

One of the most highly investigated virulence factor of K. pneumoniae is the 

thick polysaccharide capsule which surrounds the microorganism. The capsule of this 

pathogen includes complex polysaccharides consisting of repeating subunits of sugars 

and its biosynthesis is regulated by the capsule polysaccharide locus (cps) [19, 42]. 

These gene clusters are essential for synthesis, assembly and transport of the capsule 

compounds [19]. Moreover, synthesis of the capsule can be enhanced by (1) 

transcriptional regulators (i.e., regulator of mucoid phenotype A (rpmA and rpmA2), 

(2) regulation of the capsule synthesis A and B genes (rcsA and rcsB) and (3) external 

clues (e.g., an increase in the glucose concentration) in the hypervirulent K. 

pneumoniae [4]. Expression of the cps gene can be stimulated by the antimicrobial 
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peptides in sublethal concentrations. Bacterial CPS prevents the access of the 

antimicrobial peptides (e.g., β-defensins) to the pathogen [19, 43]. Thus, capsule 

structure is a significant indicator determining the virulence of the pathogen and 

conferring resistance to the antibacterial agents. Moreover, it has a potential function 

in mediating the bacterial colonization. As well as the above-mentioned functions, 

CPS is especially essential for evading or suppressing the host immune response. An 

example of this phenomenon is the phagocytosis-inhibitory role of the capsule. Thus, 

the pathogen can be protected from the attacks of human neutrophils and macrophages 

with the help of the capsule [43]. Although it is vital to protect the bacteria against the 

host immune response, CPS is not sufficient per se. Outer membrane protein A 

(OmpA) is one of the major components of outer membrane that has a potential 

function in immune evasion and attenuation of airway epithelial cell-mediated 

inflammatory responses [19, 43]. This protein was suggested to suppress immune 

response and to enhance the bacterial resistance against antimicrobial proteins despite 

some controversial results. It was documented that OmpA-deficient bacteria induced 

the production of some cytokines (e.g., IL-8 and IL-6) differently from wild-type cells 

both in vitro and in vivo (in mouse lungs) [4]. Akin to OmpA, OmpK35 and/or 

OmpK36 proteins of K. pneumoniae are also significant to confer resistance against 

neutrophil phagocytosis. The ΔompK35/36 mutation leads to a reduced resistance and 

bacterial fitness [43]. LPS (also known as endotoxin) is one of the major components 

of the outer membrane. It is another group of virulence factors of K. pneumoniae that 

consists of three main parts (i.e., O-antigen, core oligosaccharide and lipid A) (Figure 

2.6) [44]. LPS is a strong inducer of Toll-like receptors (TLRs) such as TLR4, much 

as it is essential to protect the pathogen from the complement-mediated killing, 

macrophage/neutrophil phagocytosis and activity of the antimicrobial peptides [4, 19, 

43]. Therefore, it was suggested that the pathogens can mask LPS by the capsule 

components (e.g., K1, K10 and K16 antigens) to prevent the detection by TLRs [4]. 

Moreover, lipid A modification of the LPS also decreases the activation of 

inflammatory response (e.g., induction of the nuclear factor κB (NF-κB) signaling) via 

prevention of the recognition of the lipid A patterns by the immune system [43]. LpxO-

dependent lipid A modification was reported to be essential for both survival and 

colistin resistance of the Klebsiella in the lung [39]. 
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Figure 2.6: Bacterial cell wall structures (OM and IM stand for outer and inner 

membranes). 

 

Apart from the immune evasion, colonization and biofilm formation is also 

crucial to persist in the host for long a time. In this context, K. pneumoniae includes 

multiple fimbrial gene clusters responsible for fimbria biosynthesis [42]. Type I 

fimbriae (a component of the K. pneumonaiae cell membrane) contributes to the 

biofilm synthesis by supporting adhesions to the biotic/abiotic surfaces. Moreover, it 

was suggested that the fimbria-mediated adherence may contribute to the bacterial 

colonization and persistence in vivo. Thus, this membrane component which is found 

in the most of the clinical and environmental isolates of K. pneumoniae is significant 

in the virulence of the pathogen. [43]. However, it exhibits tissue-specific expression 

that is controlled by various external signals. Therefore, it does not contribute the 

virulence of the bacteria in some tissues. For example, type I fimbriae is not expressed 

in the gastrointestinal tract and lung in contrast to the urinary tract [4]. Type 3 fimbria 

encoded by some gene clusters (e.g., mrkA gene regarding production of the fimbrial 

subunit and mrkD gene associated with the synthesis of an adhesin polypeptide) is 

another membrane component which mediates the bacterial interactions with biotic 

(host cells/tissues) and abiotic surfaces [43]. In summary, the fimbrial structures are 

essential for adhesion to distinct surfaces and eventually colonization/biofilm 

formation. Thus, they facilitate the bacterial resistance in a hostile environment. 

The battle between the immune system and pathogen is not limited to the 

suppression of the immune response or immune evasion. Pathogens can also fight to 
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utilize some host factors. For instance, iron is required for the bacterial growth. 

However, it is also used  by the host immune system for an efficient immune response. 

Therefore, the host organism sequesters the iron using various iron transporters (e.g., 

transferrin) to prevent the access of the pathogen [4, 19]. To address this challenge, 

pathogens secrete small iron-scavenging molecules (e.g., siderophores) with different 

iron affinities. K. pneumoniae can produces the siderophores including enterobactin, 

salmochelin, yersiniabactin, and aerobactin [4]. Yersiniabactin is one of the virulence-

associated siderophores in Klebsiella that promotes the lethality in pneumonia mice. It 

also induces the invasive respiratory tract infections in human as well as supporting 

the respiratory tract colonization. Another siderophore, enterobactin, has also an 

crucial role in the growth under iron-limited conditions [43]. Despite these advantages, 

activity of these small iron-scavenging molecules cannot be sufficient to cope with the 

iron chelators per se. To escape the blocking activity of the host iron chelators, 

hypervirulent K. pneumoniae strains produce more and more active siderophore 

combinations than the classical K. pneumoniae [4].  

Virulence of the K. pneumoniae can be triggered by different factors and the 

hypervirulent strains bearing multiple drug resistance genes can lead to serious 

diseases (e.g., pyogenic liver, neck or lung abscess, pneumonia, meningitis, 

endophthalmitis, cellulitis, and so on) in even healthy individuals. On the other hand, 

the classical Klebsiella strains that are etiological agents of some severe infections 

including pneumonia, urinary tract infections, or bacteremia (primary or secondary 

bacteremia) in only immunocompromised individuals (e.g., diabetics and patients with 

malignancies, neonates and the elderly) [3, 4]. Though a high prevalence of mainly 

Staphylococcus aureus was documented in the hospitalized pneumonia patients 

(pneumonia is the second most common nosocomial infection), some gram-negative 

bacteria such as K. pneumoniae have also drawn a great interest to cope with 

pneumonia infections in the recent years [45]. Classical K. pneumoniae infections can 

be treated by application of β-lactams and other antibiotics. However, particularly 

hypervirulent K. pneumoniae strains is a significant threat for the community health. 

Considering the ever-increasing antibiotic resistance and the prevalence of the 

pathogen (it is first common gram-negative bacteria causing bloodstream infections 

behind E. coli), a deeper understanding of the molecular mechanisms of its virulence 

and the development of antibiotic resistance is a tremendous need to tackle this 

pathogen [17, 46]. Recent studies have revealed that the additional virulence factors 
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are mostly related to the metabolism and the regulation of transcription [4]. Thus, 

understanding of the pathogen metabolism may hold a great promise to decipher the 

relationship between virulence and the cellular metabolism and to improve the current 

treatment strategies via identification of new drug targets and molecular biomarkers. 

2.1.3. Therapeutic Approaches for K. pneumoniae Infections  

The clinical K. pneumoniae strains are more resistant to antibiotics than the 

environmental strains though both strains exhibit a similar virulence and pathogenicity 

characteristics [17]. The reason of this phenomenon is the accumulation of the 

antibiotic resistance genes in the hospital-adapted K. pneumoniae isolates due to the 

selective pressure. The MDR pathogen can tolerate different antibiotics mostly 

through the production of (1) extended-spectrum β-lactamases (ESBLs) and (2) 

carbapenemases encoded by plasmid-borne blaKPC gene providing resistance to almost 

all available antibiotics [47, 48]. Ratio of the resistant K. pneumoniae isolates based 

on some countries are presented in Figure 2.7 [49]. 

 

 
 

Figure 2.7: Distribution of antibiotic resistance of Klebsiella pneumoniae in 

selected countries. 

 

The carbapenemase-producing K. pneumoniae isolates are defined as CRE as 

other carbapenem-resistant Enterobacteriaceae. They were reported among the top 

three urgent drug-resistant threats in 2013 by Centers for Disease Control and 

Prevention [47]. Despite nephro- and neurotoxic effect of colistin antibiotic, it has been 

introduced as the last treatment option to overcome CREs. However, mutations in the 

chromosomal LPS-modification regulatory genes has caused the emergence of the 

colistin-resistant strains (e.g., epidemic clone sequence type 258 (ST258)) via the 

reduction of negative charge on the bacteria surface [15, 48]. Thus, the ability of 
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carbapenem-resistant K. pneumoniae to gain multiclass antibiotic resistance leads to 

high mortality and important clinical challenges [43]. Collectively, CRE and ESBL 

producing strains are unarguably much more dangerous than WT strains owing to lack 

of any effectient therapeutic approaches [4]. Moreover, as mentioned before, easy 

transfer of the multidrug resistance encoded on plasmids to other strains poses another 

devastating problem [16, 50]. Therefore, spread of the Klebsiella plasmids bearing 

ESBL and carbapenemase genes is a significant risk factor that likely increases the 

morbidity and mortality rates at a significant level. Besides, infections by the 

respiratory pathogens like K. pneumoniae are not currently vaccine-treatable [51].  

To date, a serious effort has been undertaken to determine novel drug targets and 

development of combinatorial therapies in order to cope with MDR K. pneumoniae. 

Cefiderocol (S-649266) with a potent activity against a broad range of aerobic gram-

negative bacteria (e.g., CREs) is a siderophore cephalosporin in Phase 3 trial [52]. 

Potential use of cefiderocol against carbapenem-resistant K. pneumoniae was 

suggested for the treatment of lung infections [53]. S649266 (Shionogi Inc.) is a novel 

siderophore cephalosporin with an antimicrobial activity against beta-lactam and 

carbapenem resistant pathogens. It has a potential role against multidrug-resistant K. 

pneumoniae infections. As well as individual usage of administration of beta-lactam 

agents, combination with a beta-lactamase inhibitor is also a significant approach to 

manage β-lactamase-mediated resistance development. Use of ceftazidime-avibactam 

(Avycaz) combination in Phase 2 clinical trial is an example of such therapeutic efforts 

[54]. This drug has been approved by the U.S. Food and Drug Administration (FDA) 

to manage treatment of complicated intra-abdominal infections and complicated 

urinary tract infections with limited/no currently available treatment options. 

Moreover, it is used for the treatment of patients with different types of pneumonia in 

Europe [55]. Ceftolozane/tazobactam (Zerbaxa) is another drug combination. An FDA 

approved cephalosporin–beta-lactamase inhibitor combination, Zerbaxa, is useful for 

intra-abdominal infections and the complicated intra-abdominal infections despite 

various side effects (e.g., nausea, headache, diarrhea, and fever) [5, 54] However, it 

does not have any effects on serine group of carbapenamases including KPC and 

metallo-beta-lactamases [5]. To manage serine carbapenemase-producing K. 

pneumoniae infection, another β-lactamase inhibitor RPX7009 (aka vaborbactam)  

combined with meropenem (carbavance) was suggested as a drug candidate in a recent 

study. This drug combination is in phase 3 clinical development [54, 56]. It was 
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suggested that the carbavance can tackle serious gram-negative ‘superbugs’ [54]. 

Alternatively, bacteriophage therapy and identification of novel drug combinations via 

drug repositioning are among the prominent approaches to preclude the Klebsiella 

infections without emergence of resistance [5, 7]. In a recent study, some synergistic 

drug combinations out of 25 approved drugs against two drug-resistant K. pneumoniae 

strains were determined. For example, colistin–auranofin–ceftazidime and colistin–

auranofin–rifabutin were found to show broad-spectrum activity against some MDR 

strains of K. pneumoniae, A. baumannii, P. aeruginosa, C. freundii, E. cloacae and E. 

coli [7]. 

Currently available treatments cannot completely eradicate the MDR Klebsiella 

and more than half of patients die due to spread of hospital-acquired K. pneumoniae. 

Therefore, it is essential to prevent emergence of resistance via new effective treatment 

approaches [1, 6].  

2.2. Systems Biology Approach 

Organisms consist of many complex cellular networks for the homeostatic 

maintenance. These networks are involved in vital cellular processes (e.g., repair 

mechanisms, cell division, cellular metabolism, and so on) and/or pathogenesis of the 

infectious agents. Considering the interconnected and complicated nature of the 

cellular networks, focusing on a single element of the networks is not sufficient to 

decipher the whole infection system. Taking this view into account, there was a need 

for a new field to quantify and analyze all molecular components through an individual 

network or the integrated networks. 

Development of experimental technologies (e.g., tandem affinity purification, 

yeast two-hybrid, pull-down assay, microarray, RNA sequencing (RNA-seq), dual 

RNA-Seq, NMR, LC-MS/MS and phage display) and increasingly massive high-

throughput data paved the way for the emerge of the concept of ‘omics’ [57–60]. Many 

‘omics’ research fields based on the analysis of high-throughput datasets (e.g., 

genome, transcriptome, proteome, metabolome and interactome) have emerged in 

recent years. Each omic data has a crucial importance to provide an important insight 

into the infection mechanisms and to develop new threupeutic approaches. However, 

they have some pros and cons in comparison with each other. For example, genome 

represents only static information although they are commonly used for classification 
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and characterization of pathogens, development of novel therapeutic drugs, diagnosis, 

and detection of virulence factors. On the other hand, some other data sets like 

transcriptome (non-coding RNA (ncRNA) molecules in addition to protein-coding 

mRNAs) reflects dynamic nature of the cell [60]. Even if the transcriptome data is 

much more efficient approach to understand cellular changes in comparison with the 

genome data, it is also not sufficient per se. This is because high expression level of a 

gene cannot ensure that amount of its product will be also high or it will be operational 

[61]. Furthermore, pathogens can utilize a great deal of macromolecules so that they 

can survive in this host and regulate the gene expression profiles of the host cells. 

Thus, metabolome data also strongly contribute to our knowledge about the infection 

mechanisms. As one example, iron is an essential molecule not only for the host cells 

in terms of its activity for release of the cytokines and regulation of activities of some 

trascription factors, but it is also vital for pathogens like Candida albicans [62, 63]. If 

a large amount of iron exists in the host cell, the pathogen can uptake it and utilize in 

the metabolic processes. Therefore, there is a tight regulatory control for iron 

homeostasis in the host systems [62]. Briefly, use of the different ‘-omics’ datasets is 

essential to understand the whole picture. As a holistic approach “systems biology” 

has integrated different disciplines in order to decipher complex biological information 

via use of ‘-omics’ data at the beginning of the 21st century. Thus, it plays a crucial 

role in the comprehensive analysis of different datasets and this approach is superior 

than wet-lab techniques (e.g., RNA silencing or transposon mutagenesis or RNA 

silencing) in terms of manpower, cost and time.  

2.2.1. Constraint-Based Analysis of Genome-Scale Metabolic 

Network Models 

The rapid technologic advancements contributed to the development of omics 

data collection that provided emergence of metabolic modeling approaches. This 

systems biology approach is quite useful to reveal the nuances that are not easily 

realized by the laborious and time consuming experimental techniques and to generate 

a holistic picture of the cell metabolism. Metabolic models are mathematical 

representation of the complex systems. They are explicitly useful in some fields like 

metabolic engineering and medicine because they facilitate various genetic 

modifications that alter the metabolic phenotypes of the cells [64, 65]. Thus, the 
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reaction rates can be altered so as to the maximize product of interest [65]. To this end, 

many metabolic network models have been constructed for a great number of 

microorganisms such as Escherichia coli [66] and Saccharomyces cerevisia [67]. 

Another special focus within the metabolic modeling approach  is the  modification of 

the cellular metabolism to predict potential drug targets. It is achieved by investigating 

the effects of perturbations (e.g., gene knockouts) on the growth of the pathogen [64].  

The superiority of the metabolic network modeling approach in terms of time 

and cost paves the way for the emergence of different modeling techniques that can be 

broken down into two main categories: (1) kinetic approaches, (2) stoichiometry-based 

(constraint-based) methods. Even if the kinetic approaches are successful to reflect the 

real situations via time-dependent dynamic simulations, they need detailed kinetic 

information [68, 69]. On the other hand, the whole-network metabolic modeling is 

based on the determination of the constraints, and it is often much easier than 

identification of the kinetic parameters [70]. Therefore, the constraint-based methods 

are often preferred in order to analyze a system in the genome-scale manner without 

challenges of kinetic data acquisition [71, 72].  

The stoichiometric models used two major metabolic informations including the 

metabolic stoichiometry and an objective function (e.g., biomass synthesis). The flux 

(metabolic reaction rate) distributions were predicted based on the objective function, 

and there are different stoichiometric modeling techniques to determine metabolic 

fluxes. Flux balance analysis (FBA) is the most prominent approach [73]. 

FBA is one of the most frequently used constraint-based modeling methods to 

predict internal steady-state flux distributions in a genome-scale metabolic network 

model (GEM) [71, 74]. Thus, it is convenient to reflect only the steady-state growth in 

continuous cultures or balanced batch cultures [75]. FBA approach applies linear 

programming to select a metabolic flux vector that satisfies the given objective 

function (e.g., maximization of the growth reaction) under some constraints (Figure 

2.7) [70, 74, 76]. There are three major constraints in the FBA approach: (1) upper and 

lower bound constraints obtained based on reaction reversibility and flux limitations 

(information about maximum and minimum reaction rates), (2) equality constraints 

due to conservation laws for mass (mass and balance) and (3) measurement constraints 

(Figure 2.8) [70, 73]. The measurement constraints (e.g., uptake rates of the nutrients) 

are imposed based on the model conditions (e.g., the availability of nutrients) [70]. It 

should be noted that there are many possible solutions in the underdetermined systems 
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(more linear equations than unknowns), and these constraints are essential to constrain 

the solution space.  

FBA approach approach is commonly used to improve the production of a useful 

metabolite [77] and to determine potential drug targets [78, 79]. The formulation of 

FBA approach is presented in the section 3.3.3. There are different types of FBA 

approaches such as parsimonious enzyme usage FBA (pFBA) [80], regulatory FBA 

[81], dynamic FBA (DFBA) [75] and flexible-optimality FBA (flexoFBA) [82] 

developed in recent years.  

 

 
 

Figure 2.8: A toy metabolic network. a) Metabolic network including three 

metabolites (A, B and C), b) Mass balance, c) Mathematical representiation of 

constraints, d) Assumptions, constraints, and an objective. 

 

FBA is an explicitly useful technique but it is insufficient to represent the 

variations in the microbial populations. Both microenvironment and intrinsic factors 

stimulate a variation in microbial cells. Thus, each single microorganism does not have 

to exhibit the same growth behaviour. Different flux distributions in a culture due to 

these differences implying that a microbial cell culture may not grow at the optimal 

theoretical value. The approach of flexoFBA was developed to reflect the suboptimal 

growth behaviour of the microorganisms. Even if the microorganisms have a variations 

in their growth characteristics, they exhibit low flexibility. Therefore, flexoFBA also 

focuses on enzyme minimization as a secondary objective function. Thus, this 

approach reduces the solution space more using two consecutive objective functions 

[82]. 
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In summary, use of FBA (or an FBA-derived approach) enables rapid analysis 

of the complicated genome-scale metabolic networks. Thus, it is a promising approach 

to enlighten the pathogen metabolisms and putative drug targets against infectious 

diseases. 

2.2.2. Genome-Scale Metabolic Network Models of K. pneumoniae  

Hypervirulent K. pneumoniae strains are the etiologic agents of some serious 

diseases such as pneumonia, endophthalmitis, meningitis, bloodstream and urinary 

tract infections. Hence, they are the leading global causes of morbidity and mortality. 

Despite the presence of proteome- and transcriptome-based studies on the K. 

pneumoniae [83–86], any comprehensive studies regarding the constraint-based 

analysis of their metabolic networks were not reported.  

To date, two genome scale metabolic network models of different K. 

pneumoniae strains (i.e., MGH 78578 strain and KPPR1 strain) were developed [46, 

74]. The GEM of iYL1228 (1,229 genes and 1,658 metabolites involved in 2,262 

reactions) was the first reported K. pneumoniae model in the literature. This GEM was 

reconstructed for MGH 78578 strain by mapping from an E. coli reconstruction 

(iAF1260). An experimentally determined biomass equation of the MGH 78578 strain 

was included in the model. Using FBA approach, the reconstructed model was refined 

and validated. It was shown that iYL1228 can predict the effects of the carbon sources 

on the bacterial growth, giving the consistent results with in vitro studies. In addition, 

in silico gene deletion analysis was performed to identify essential genes of the 

microorganism. 118 essential genes were predicted computationally. Eight out of these 

genes were found as unique when compared to the computational predictions by E. 

coli and S. typhimurium models [46]. 

The second model was derived from iYL1228, designated as iKp1289 (2,474 

reactions, 2,000 metabolites and 1,290 genes), through translation of the genes of 

MGH 78578 into the genes in the KPPR1 genome using KBase platform [87]. KPPR1 

strain is a rifampin-resistant human isolate with a higher virulence. This model was 

also confirmed by comparing the in silico and in vitro results. The growth assays were 

designed based on both investigation of the growth profiles on different carbon sources 

and gene essentiality analysis. Furthermore, both Klebsiella models were compared in 

the study. The researchers revealed that KPPR1 can utilize a larger range of carbon 
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sources and it can use the nutrients more robustly in comparison with MGH 78578 

[46]. Both GEMs were used in the scope of this thesis for a comprehensive system-

level analysis of the bacterial metabolisms.  

2.2.3. Identification of Drug Targets via Constraint-Based Metabolic 

Network Modeling 

Constraint-based modeling of the pathogens has been a popular approach in 

order to reveal putative drug targets by dealing with the underlying metabolism [88]. 

Identification processes of the drug targets can be broken down into two general 

categories: (1) gene-centric approaches and (2) metabolite-centric approaches. These 

approaches provide both elucidation of relationships between network components 

and anti-pathogen target discovery through identification of essential 

genes/metabolites.  

Gene-centric approaches include detection of the novel genes that are putative 

drug targets in much shorter time in comparison with the labor-intensive and time-

consuming experimental techniques. This approach is based on the identification of 

the genes/reactions essential for survival (Figure 2.9) [89]. Essential genes/reactions 

can be predicted independent from the condition (regardless of aerobic, anaerobic or 

facultatively anaerobic) or they can be identified based on a certain culture condition 

[89]. Many approaches focus on mimicking the real systems by simulating the 

bacterial growth under conditions similar to host environment for more precise 

predictions [90]. Mimicking the host environment can be achieved via integration of 

the host and pathogen metabolism [91] or simulation of the media representing the 

host environment  [92]. Then, FBA approach can be used to identify all essential 

enzyme targets of the pathogen specified in the GEM that support production of the 

growth-related metabolites [71, 90]. Thus, many targets can be screened at a low cost 

in comparison with the high-throughput experimental techniques (e.g., transposon 

mutagenesis or RNA silencing). Moreover, the results considerably narrow down the 

targets that will be experimentally validated [71]. Thus, constraint-based approaches 

provides elucidation of the common and species-specific drug targets by 

simultaneously screening the genes under the specified conditions [93]. Then, these 

targets are evaluated based on some criteria such as druggability or minimal side effect 

to select the most efficient targets with mimimum harm. For instance, Plata and 
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colleagues (2010) constructed a genome-scale metabolic network of Plasmodiu 

falciparum (1,001 reactions and 616 metabolites) to prevent malaria through 

identification of potential enzymatic drug targets. Using FBA approach, they 

suggested 40 candidate drug targets (e.g., nicotinate mononucleotide 

adenylyltransferase involved in NAD+ metabolism) that exhibit a low sequence 

similarity with human proteins [94]. Clostridium difficile is another serious pathogen 

which leads to diarrhea and intestinal inflammation, with a potential to lead to fatal 

colitis [95]. Genome-scale metabolic network of C. difficile strain 630 was 

reconstructed to identify essential genes of the pathogen and this network consists of 

806 genes and 1031 reactions. Thus, Larocque and colleagues (2014) detected 76 

essential genes and 39 essential gene pairs that were specific to this strain. Of these 

putative targets, some genes (e.g., isoprenoid synthase, aspartate-semialdehyde 

dehydrogenase, UDP-N-acetylenolpyruvoylglucosamine reductase and NH3-

dependent NAD(+) synthetase and diaminopimelate epimerase) are crucial in the 

amino acid metabolisms [96].  

 

 
       

Figure 2.9: General drug development pipeline. 

 

Identification of the drug targets based on a metabolite-based approach is another 

useful method. The logic underlying this approach is the use of chemical similarity of 

metabolite structures to the existing drug molecules. Moreover, this approach can 

delay the resistance development by targeting more than one reaction [97].  Essential 
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metabolites are identified in the first step of the metabolite-centric approach. After 

some filtering processes these metabolites can be used for drug screening [97, 98]. 

Thus, inhibitors may be designed based on the structural resemblance to the selected 

metabolites. Using this approach, ten candidate metabolites (i.e., lipid II, meso-

diaminopimelate, pantothenate, biotin, shikimate, l-aspartyl-4-phosphate, dTDP-α-L-

rhamnose, UDP-D-galacto-1, 4-furanose, des-N-acetyl mycothiol/Cys-GlcN-Ins and 

siroheme) with broad spectrum activity were suggested by Sarker and colleagues 

(2010). These candidates were selected through literature mining, comparative 

analysis and pathway analysis mainly based on the following criteria: (1) examination 

of essentiality of these metabolites for the specified pathogens (M. tuberculosis, K. 

pneumoniae, E. coli, P. aeruginosa, S. typhirium, S. aureus, B. Subtilis and so on) but 

not involved in human metabolism, (2) determination of biological functions of the 

metabolites, (3) convenience of the metabolites’ physio-chemical characteristics to 

design the inhibitors, (4) investigation of widely distribution of the metabolites among 

pathogens, (5) presence of any inhibitors against the enzymes that are associated with 

the synthesis of the selected metabolites and (6) presence of any knowledges about 

antimicrobial activity of the metabolite analogs [98]. Similarly, Kim and colleagues 

(2011) developed EM-Filter approach to select the most efficient essential metabolites 

in the GEM of Vibrio vulnificus CMCP6. This approach has focuses on higher 

connectivity and lack of the essential metabolites of the pathogen or the related 

enzymes in human metabolism. Then, they identified the structural analogs of the 

selected metabolites. An analog of PABA was reported to be a potential inhibitor 

against V. vulnificus [99]. Considering these efforts, evaluation of the essential 

metabolites can facilitate design of more efficient drugs or screening of the existing 

structural analogs from chemical compound libraries. Furthermore, this approach can 

delay resistance development [8].  

In the scope of the thesis, putative drug targets were suggested through two 

approaches discussed in this section. These analyses were performed for both 

Klebsiella strains (MGH 78578 strain and KPPR1 strain) in order to contibute to 

treatment of the infections by the resistant strains. Another aim of this study is to get 

insight into the metabolism of both strain. Using the genome-scale metabolic network 

models, five druggable virulence factors with broad-spectrum distribution among 

important pathogens were proposed as promising drug target candidates. Moreover, 

the metabolite-centric approach reveals three metabolic enzymes to be putative drug 
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targets in order to handle infections caused by both Klebsiella strains. It is the first 

comprehensive study on analysis of the GEMs of MGH 78578 and KPPR1 strains. 

Further analyses and validation of these putative targets may pave the way for more 

efficient control of the Klebsiella infections in the future. 
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3. MATERIALS AND METHODS 

3.1. K.  pneumoniae Strains and Their Genome-Scale Metabolic 

Network Models 

Prominent reference strains including a highly virulent, rifampin resistant 

derivative of K. pneumoniae ATCC 43816 (a K2 clinical pneumonia isolate) known 

as KPPR1 strain (GenBank accession number: CP009208) and relatively avirulent, 

carbapenem sensitive K52 pneumonia isolate known as MGH 78578 strain (GenBank 

accession number: CP000647) were used within the scope of this study [43]. Even if 

these strains exhibit different levels of virulence, the genome of MGH 78578 strain 

shares highly homology (88%) over the genome of KPPR1 strain. Thus, they share a 

similar metabolic profile [46]. 

K. pneumoniae strain MGH 78578 first isolated from the sputum of a pneumonia 

patient. It contains five plasmids and this MDR pathogen is resistant to ampicillin, 

ticarcillin, trimethoprim-sulphamethoxazole and gentamicin as it is sensitive to 

ciprofloxacin, amikacin, and imipenem [46, 100]. Moreover, it harbours some 

virulence factor-encoding genes regarding biosynthesis of CPS, siderophores, LPS and 

fimbriae. Expression levels of these genes mostly change based on the growth phase 

of the bacteria. For instance, most of the genes involved in siderophore and CPS 

biosynthesis show lower expression levels in the stationary phase [85]. A GEM of this 

strain with an experimentally defined biomass equation was constructed by Liao et al., 

in 2011. This model includes 1,229 genes and 1,658 metabolites involved in 2,262 

reactions [74]. 

On the other hand, K. pneumoniae strain KPPR1 is a clinical pneumonia isolate 

that contains a single circular chromosome for a total of 5,374,834 bp in size with 

5,191 predicted genes (25 rRNA, 85 tRNA, and 5,081 protein-coding sequences) but 

it does not have any plasmids. This strain is more virulent in comparison with the 

MGH 78578 [1, 101]. Lawlor and colleagues observed hypertrophy and hyperplasia at 

12 h after pulmonary KPPR1 infection in a mouse model [102]. Hence, this Klebsiella 

strain seems more promising to understand the characteristics of virulence and 

pathogenesis of this pathogen. A GEM of KPPR1 strain (iKp1289) including 2,474 

reactions, 2,000 metabolites and 1,290 genes was recently developed by Henry and 
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colleagues [46] from closely related model iYL1228 [74]. Both metabolic network 

models of K. pneumoniae were used in this study.  

3.2. Softwares and Toolboxes 

Herein, MATLAB R2017a platform with some user-friendly toolboxes 

including Systems Biology Markup Language (SBML) toolbox and Constraint Based 

Reconstruction and Analysis (COBRA) toolbox was used in the analyses [103]. Fast-

SL function developed [104], an in-house developed algorithm (Figure 3.3) and a 

single gene deletion function in COBRA Toolbox were used to identify essential genes 

of the strains. Essential metabolites were identified and prioritized by the other in-

house MATLAB codes. In addition to FBA approach, flexoFBA was also used as 

described by Tarlak and colleagues [82] (section 3.3.3). 

3.3. Bacterial Growth Under Different Conditions  

3.3.1. Bacterial Growth Conditions 

In this work, the GEMs of K. pneumoniae strains (iYL1228 and iKp1289) were 

evaluated through a two-step process. First, growth simulations were validated through 

model-based predictions and measured values in the literature [46, 74]. Second, the 

validated metabolic networks were used to identify the putative drug targets.  

Validation of the models was performed by simulating the growth conditions 

highlighted in the articles [46, 74] for elucidation of the bacterial growth phenotypes 

(i.e., M9 or carbon-D-glucose medium (CDG (Table A1.1): its recipe is also available 

upon KBase [87]) supplemented with different carbon sources [46, 74]) and for the 

gene essentiality analyses (i.e., M9 minimal medium (M9) or Luria-Bertani (LB) broth 

medium (Table A1.2): its recipe is also available upon KBase [87]). M9 medium has 

been already integrated into the iYL1228 by the developers of the model whereas CDG 

medium was integrated into iKp1289 in this study. Therefore, there is no need to 

integrate glucose-supplemented mimimal medium condition into iYL1228. Of note, 

both minimal media include only glucose as the carbon source. Therefore, these media 

were modified replacing the glucose by each carbon source one by one for each growth 

simulation.  
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 Host-cell mimicking nutrient environments were constructed based on the 

literature searches and they were used in the drug target discovery. For instance, K. 

pneumoniae induces production of thick jelly sputum through inflammation in the 

lungs. This pathogen can be isolated from the sputum and the sputum cultures are 

prominent for diagnosis [4, 105]. On the other hand, Cano and colleagues proved that 

K. pneumoniae can survive inside alveolar macrophages by blocking phagosome 

maturation [106]. These conditions including sputum [92] and alveolar macrophage 

[91] were combined to simulate bacterial growth in this work (Table B1.1 and Table 

B1.2). In addition to sputum, cultures of other body fluids (e.g., blood, urine, etc.) are 

frequently tested to reveal the etiological agents of various diseases (e.g., pulmonary 

diseases, gastrointestinal disorders, etc.), as well [107]. Therefore, human body fluid 

[108] was also integrated into the models to construct a more comprehensive 

environment for the simulation of K. pneumoniae growth in human body (Table B1.3 

and Table B1.4).  

3.3.2. Constraining Sytem Boundaries and Stoichiometric 

Coefficients 

Constraining the system boundaries and/or the stoichiometric coefficients is a 

prerequisite for the growth simulation in a defined condition and refinement of a 

redundant model. 

Herein, each medium was integrated into the model through setting the system 

boundaries. Lower and upper bounds (lb and ub: maximum and minimum reaction 

rates) were set based on the medium content (except for M9 medium for iYL1228). 

Thus, uptake rates of the metabolites were allowed to change between a certain range 

based on the media used in the study.  

Next step of the medium-integration process is to block the use of the other 

compounds apart from the medium components. This was achieved by allowing uptake 

of the metabolites only in the growth medium. Therefore, uptake of other metabolites 

were prevented by setting the corresponding reaction rates to 0. On the other hand, by-

product production was not limited. Thus, the bacterial cell could only consume the 

metabolites in the medium as it could produce any metabolites (by-products) based on 

its metabolic profile.  
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In addition to the proper construction of the growth conditions, boundaries of 

the non-growth-associated maintenance (NGAM) were set to agree with the values 

from the original papers [46, 74]. NGAM represents the energy (mmolATP/gDCW/h) 

essential to maintain the cellular processes apart from growth (e.g., motility, cell repair 

and membrane potential) [109].  

Preliminary assessment of the models revealed some redundant reactions (31 

duplicated uptake reactions) and metabolites (200 duplicated metabolite names) in the 

GEM of iKp1289 although this redundancy does not affect simulation results of the 

model. Nevertheless, the model was refined by ignoring the redundant metabolites and 

reactions. This step was achieved by setting all non-zero stoichiometric coefficients 

corresponding to the redundant metabolites to zero; pratically removing the redundant 

metabolites from the system. For the redundant reactions, the corresponding columns 

of the stoichiometric matrix were all made zero. 

3.3.3. Simulation of Bacterial Growth  

The growth simulations were performed using FBA and/or flexoFBA after 

medium integration process described in the section 3.3.2. As highlighted earlier, FBA 

is a useful approach to predict the flux distribution in a GEM by assuming the net 

change in the metabolite concentrations as zero. That is the assumption of steady-state 

conditions. This powerful technique is based on the mass balance constraint given in 

the equation (3.1) 

 

∑ (𝑆𝑖𝑗𝑉𝑗) = 0     𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚   
𝑛

𝑗=1
          (3.1) 

 

where the stoichiometric matrix with the coefficient of the metabolite i (within a total 

of m metabolites) is denoted as Sij and Vj implies the rate of the jth reaction (within a 

total of n reactions). 

To constraint the solution space further, the flux boundaries are also defined 

based on the reaction reversibility (equation (3.2)) 

 

   lb𝑗  ≤ V𝑗 ≤ ub𝑗      𝑓𝑜𝑟 𝑗 = 1, 2, … , n       (3.2) 
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where lbj and ubj are the lower and upper bounds for the jth reaction flux. The fluxes 

are predicted between an upper bound (+∞) and a lower bound (-∞) for reversible 

reactions whereas the lower bound is set to zero for irreversible reactions. For 

modelling purposes, a huge number (i.e., 1000) was used to represent infinity in this 

study. 

FBA approach focuses on prediction of the flux distributions satisfying an 

optimal objective function under the defined constraints. Maximization of the bacterial 

growth is commonly used as the biological objective (equation 3.3.a and equation 

3.3.b) 

 

    R𝐵𝑖𝑜𝑚𝑎𝑠𝑠: 0.621  Alanine +  0.306 Arginine +  0.204 Asparagine + ⋯      (3.3.a) 

 

                                  Objective: 𝑚𝑎𝑥 (V𝑏𝑖𝑜𝑚𝑎𝑠𝑠)                          (3.3.b) 

 

To find out the steady-state flux distributions at the optimal biomass production, 

this optimization problem (known as a linear programming problem) must be solved 

using a mathematical optimization software (e.g., open source examples (lp_solve and 

GLPK) and proprietary versions (CPLEX, LINDO and Gurobi)) [110]. Herein, 

iYL1228 and iKp1289 were downloaded from ‘BiGG Models’ [111] and ‘KBase’ 

databases. MATLAB platform was used to load the models and to solve corresponding 

flux distributions using Gurobi based on the FBA approach. 

Although FBA is a prominent approach to predict intracellular flux distributions, 

it ignores the variations within microbial populations. However, microorganisms 

exhibit a metabolic variability due to the enzymatic differences and intrinsic variations. 

Therefore, investigation of the microbial metabolisms by considering a strict 

optimality is not a realistic approach. On the other hand, the experimentally detected 

replicate fluxes were reported to be similar despite the intrinsic variations. This 

phenomenon indicates that the organisms may prefer low flexibility. With these 

assumptions, a relatively new approach (flexoFBA) was developed by Tarlak et al., 

(2014). This approach takes account of the microbial variations to reflect the slightly 

suboptimal growth rates [82]. First, it sets the boundaries of the maintenance reaction 

to a flexible interval (20% range) instead of using a fixed constraint. Then, the optimal 

growth rate is calculated and is multiplied with a normally distributed (left-tailed) 

random number with mean 1 and standard deviation 0.05. This step repeats 1000 times. 
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Thus, the flexibility in the metabolism of microorganisms is reflected. Internal flux 

distributions are predicted for the objective of minimal enzyme production per cycle. 

Lastly, the average growth rate is calculated. This method was also used in the study. 

3.3.4. Generation of A New Biomass Reaction 

Biomass reaction is the mathematical representation of the cell composition and 

it is prominent to predict essential genes as the putative drug targets accurately. Xavier 

and colleagues (2017) defined some universally essential organic cofactors (i.e., 

nicotinamide adenine dinucleotide (NAD), NADH, nicotinamide adenine dinucleotide 

phosphate (NADP), NADPH, flavin adenine dinucleotide (FAD), coenzyme A (CoA), 

flavin mononucleotide (FMN), pyridoxal 5′-phosphate (PYDX5P), S-adenosyl-L-

methionine (SAM/AMET) and thiamin diphosphate (THMPP)) involved in the 

biomass compositions of the prokaryotes [112]. These cofactors are missing in the 

biomass equation of the Klebsiella strains. Therefore, a new biomass equation was 

generated based on these cofactors. This process was achieved by resetting the 

biomass-associated stoichiometric coefficients of the missing cofactors in the model. 

In this context, the coefficients of these cofactors were identified based on the biomass 

compositions of three GEMs of E. coli (iAF1260 [66], iJO1366 [113] and iJR904 

[114]). If a cofactor is absent in the biomass equations of these GEMs, a small 

coefficient (1x10-5) was assigned. Then, 1023 combinations of all cofactor coefficients 

were integrated to the biomass equation through the S matrix. Effect of each 

combination on the bacterial growth was evaluated to distinguish presence of any 

cofactors inhibiting the biomass formation. THMPP was removed from the biomass 

equation due to blocking the bacterial growth. The new biomass equation is illustrated 

in Figure 3.1.  
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Figure 3.1: Generation of a new biomass reaction. The added cofactors are given in 

bold and red letters. 

3.4. Gene Essentiality Analysis 

In silico analysis of gene essentiality was performed under different conditions 

to validate both models and to determine the putative drug targets. An essential gene 

implies that the gene is indispensable for survival under a specific growth condition. 

Therefore, these genes are candidate drug targets. To identify the essential genes for 

K. pneumoniae growth,  lb and ub of the reactions related to each gene were set to 0 in 

the GEM one by one (i.e., removal of each gene by blocking the corresponding 

reactions). After each change on lb and ub values, the GEM was solved to understand 

whether the gene has any effects on the bacterial growth or not. If the removal of the 

reactions associated with any genes resulted in a considerable reduction of the flux 

regarding the biomass objective function, these genes were accepted to be essential.  

There are some common algorithms for the gene deletion in scientific literature. 

Two of them, used in this study, are based on single gene deletion. One of which is 

single gene deletion function in COBRA toolbox. This function calls the deletion 

procedure for each unique gene, mentioned above. The other algorithm is Fast-SL, 

based on an eliminated reactions list (eliList), which excludes ATP maintenance, 

uptake, exchange, and dead-end reactions from the gene deletion procedure. Thus, it 

narrows down the search space and performs single or multiple gene deletions faster.  

To narrow down the search space and increase the sensitivity, an in-house 

algorithm was also developed for single gene deletion in the scope of the thesis. This 

algorithm, first, identifies the combination of gene sets affecting each reaction 

individually. To determine the gene sets for each reaction, first, gene-reaction 

associations must be defined in a convenient format. Therefore, a matrix including the 

gene indices and logical operators (OR/AND) was generated using ‘rules’ matrix in 
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the SBML model. Then, the logical operators were replaced by 0 or 1 (i.e., 1 instead 

of “|” and 0 instead of  “&”) and the blank cells were filled with 0. This new matrix 

was called reaction-gene matrix (RGM) in this study. It displays the relationships 

between the reactions and genes. For the sake of clarity, the generation process of the 

reaction-gene matrix (RGM) is illustrated in two stages (Figure 3.2). 

 

 
 

Figure 3.2: Generation of reaction-gene matrix (RGM). 

 

Of the combination of gene sets, one gene set was selected to be deleted for each 

reaction based on the reaction-gene matrix (RGM). It should be noted that one gene 

can be associated with multiple reactions. Therefore, all related reactions regarding 

each gene set were evaluated in the deletion process. If the deletion of the related 

reactions considerably reduced the bacterial growth (smaller than 1% of the maximum 

WT growth rate [104]), these gene sets were considered computationally essential. The 

in-house single gene deletion algorithm is given in Figure 3.3. 
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Figure 3.3: The algorithm for the gene essentiality analysis. 

3.5. Metabolite Essentiality Analysis  

Essential metabolites were identified by another in-house developed algorithm. 

The logic behind this algorithm is to block all outgoing reactions associated with each 

metabolite and to examine the effect of this perturbation on the bacterial growth. It 

was achieved by setting the sitoichiometric cofficients of the related reactions to zero. 

This is the same as setting lb and ub of the outgoing reactions to zero. The same cut-

off with gene essentiality analysis (cut-off: 1% of the wild-type growth rate) was used 

to identify the essential metabolites. Thus, the metabolites whose deletions 

considerably reduced the bacterial growth were selected.  
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3.6. Prioritization of Putative Drug Targets 

The lists of essential genes and metabolites were filtered to decide more effective 

drug targets causing no/minimal side-effects in the host. The drug target discovery 

process is summarized by the following flowchart (Figure 3.4).  

 

 
 

Figure 3.4: Priorization of the drug targets. 
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Some databases were used to prioritize the essential genes based on (i) homology 

(BLAST at the NCBI website [115]), (ii) subcellular localization (CELLO2GO [116], 

PSORTb [117] and iLoc-Gneg [118]), (iii) antibiotic resistance (ARG-ANNOT [119]), 

(iv) virulence (virulence factor database (VFDB) [120]) and (v) druggability 

(DrugBank [121]). In addition, prevalence of the selected genes among different 

pathogens was investigated through PBIT: Pipeline Builder for Identification of drug 

Targets (PBIT) web browser [122]. 

 

 
 

Figure 3.5: Databases used in the scope of this thesis study. 

 

Essential metabolites were also prioritized through (i) elimination of the 

pathogen metabolites/gene products found in human metabolome/proteome, (ii) 

removal of the currency metabolites and (iii) selection of the metabolites with the 

higher connectivity. These steps are discussed in detail in the subsections 3.6.7 and 

3.6.8. Two major databases (HumanCyc [123] and Metabolites Biological Role 

(MBRole) [124]) were used in the prioritization of the essential metabolites. The 

MBRole server is useful for functional enrichment analysis of metabolites from 

metabolomics experiments by extracting biological and chemical information from 

various databases (e.g., KEGG, HMDB and so on) and it contains an ID conversion 

tool [124]. Thus, it provides IDs of the compounds in the pathogen and human models. 

HumanCyc includes the manually curated data regarding metabolic pathways and 
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various enzyme-powered reactions. Likewise, it is useful to detect the metabolites 

found in human metabolism [123]. HumanCyc also stores a list of compounds in the 

human metabolism. 

The main databases applied in this study are illustrated in Figure 3.5. All 

analyses used in for priorization of essential genes and metabolites are explained in 

the following subsections. 

3.6.1. Non-Homology Analysis 

Non-homology analysis is crucial to reduce the potential hazardous side effects. 

To identify the genes with no human homologs (non-homologous genes), the essential 

genes were determined via gene essentiality analysis as highlighted in the section 3.4. 

These genes were screened in terms of homology. In this step, BLAST search was 

used against all human protein sequences in the Refseq database [125]. The 

significantly similar proteins were accepted to be homologous for the expected value 

(E-value) cut-off <1x10-3. The genes having more than 30% sequence identity with 

their human counterparts were removed [126].  

3.6.2. Analysis of the Subcellular Localization 

Subcellular localization is an important parameter determining protein functions 

since the cellular compartments include various compounds necessary for the protein 

function. Information on the protein localization is also useful to identify potential 

vaccine candidates and drug targets [127]. To date, many different approaches were 

developed in order to predict subcellular localization of a protein. Some of them like 

TargetP is based on the characteristics of the signal sequences to be directed to the 

certain localizations in a cell [128]. Another approach is to use information of amino 

acid composition. This method is based on different approaches such as neural network 

approach or support vector machine (SVM) techniques [129]. A SVM-based method, 

CELLO, is a prominent web service to predict five main subcellular localizations of 

the proteins including cytoplasm, periplasm, inner membrane, outer membrane, and 

extracellular space. It is quite useful to elucidate the localizations of the proteins for 

both gram-negative and gram-positive bacteria [130]. CELLO2GO server was 

published in 2014 for more detailed analyses. It provides both localization and GO 

information by integrating CELLO and BLAST tools [116]. PSORTb is another 
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commonly used tool that predicts the localizations based on different characteristic 

properties of the proteins (e.g., inference from the localization of known proteins, 

amino acid composition, presence of a signal peptide and so on) and Bayesian 

networks [117]. Unlike CELLO and PSORTb, iLoc-Gneg provides more 

comprehensive compartment information such as fimbrium, flagellum and nucleoid 

[118]. In this study, PSORTb (p-value >7.5 [127]), CELLO and iLoc-Gneg were used 

to predict the subcellular localizations of non-homologous gene products. If at least 

two of the services lead to the same prediction for a gene product, this location was 

assumed to be appropriate. Unclear results were validated using UniProt database 

[131]. Furthermore, some localizations of the gene products were determined using a 

detailed subcellular localization study of E. coli [132]. 

3.6.3. Antibiotic Resistance Analysis 

Recent bioinformatic advances have allowed emergence of various databases for 

identification of the previously defined or putative antibiotic resistance genes from 

nucleotide or protein sequences. In this context, Antibiotic Resistance Genes Online 

(ARGO) has been developed in 2005 as a first attempt. However, it represents limited 

information about resistance genes. It harbours the sequence information restricted to 

only lactamase, tetracycline, and vancomycin genes [119, 133]. Antibiotic Resistance 

Genes Database (ARDB) released in 2009 is proper only if the sequence entry is 

smaller than 5 kb. Besides, it has not been updated since 2009 [119, 134]. 

Comprehensive Antibiotic Resistance Database (CARD) includes a manually curated 

data related to intrinsic, mutation-driven and acquired resistance. This database has 

been updated in a regular manner. Similarly, Antibiotic Resistance Gene-

ANNOTation (ARG-ANNOT) database stores the regularly updated sequences [119, 

135]. This versatile database stores the resistance gene sequences against different 

antibiotic classes (i.e., aminoglycosides, beta-lactamases, fosfomycin, 

fluoroquinolones, glycopeptides, macrolide-lincosamidestreptogramin, phenicols, 

rifampicin, sulfonamides, tetracyclines and trimethoprim). Herein, ARG-ANNOT 

database was used along with a local sequence alignment editor (Bioedit). 

Identification of the existing and putative new antibiotic resistance genes within the 

non-homologous gene list was aimed. In this context, the genes with a possible role in 
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antibiotic resistance were determined using a recently updated data (May, 2018) with 

E-value threshold of 1x10-4 via local BLAST in Bioedit without a web interface. 

3.6.4. Virulence Analysis 

Putative targets related to both survival and virulence of the cell are promising 

candidates [122]. Virulence factor (VF)-related genes of Klebsiella strains within the 

essential non-homologous gene lists were revealed using Virulence Factor Database 

(VFDB). This database includes up-to-date, curated data of VFs belonging to 30 

popular bacterial pathogens (e.g., Escherichia, Salmonella, Pseudomonas, 

Mycoplasma, Streptomyces and so on) [136].  

Briefly, VF screening was carried out by browsing amino acid sequences of the 

essential, non-homologous genes against the VFDB core dataset with E-value cut-off 

<1x10-4, bit score >100 and identity ≥ 65% [137]. 

3.6.5. Druggability Analysis 

The capacity of a target to bind to a drug-like molecule is called druggability. It 

is a significant parameter in drug target prioritization because all protein structures are 

not convenient for drug-binding [122]. Since the first release in 2006, DrugBank is 

widely used up-to-date knowledgebase for drug/target design and it contains 

comprehensive information regarding drug molecules, prediction of drug metabolism 

or interaction, docking and so on [121]. To investigate druggability of the selected 

targets (i.e., essential, non-homologous genes) and to identify the existing drugs for 

alternate therapeutic aims (drug repositioning/repurposing), BLAST tool was used 

with E-value of 1x10-25 against DrugBank database [138]. 

3.6.6. Broad Spectrum Analysis 

In addition to the use of the databases specified in Figure 3.5, PBIT: Pipeline 

Builder for Identification of drug Targets (PBIT) web browser was used to determine 

broad spectrum activity of druggable virulence factors. This analysis involves 

identification of the targets having homologs in other pathogens [122]. Elucidation of 

widely distributed pathogenic drug targets is important for a comprehensive treatment 

because a bacterium does not have to lead to the infection process per se. This process 
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can be managed by multiple distinct bacteria. Broad-spectrum antibacterial target 

analysis can provide: (1) identification of the targets found in the bacteria causing co-

infection, (2) development of broad-spectrum drugs to treat multiple infections and (3) 

identification of the conserved genes to delay the resistance development. This 

analysis was performed using BLAST algorithm against protein sequences of 181 

pathogenic organisms with E-value cut-off of 1x10-25, minimum identity of 70% and 

alignment length cut-off of 90%. 

3.6.7. Generation of A Common Metabolite List  

Akin to essential genes, essential metabolites must be also selected to avoid any 

possible side-effects. To eliminate the metabolites involved in both pathogen and 

human metabolisms, first, ‘a common metabolite list’ was compiled. The common 

metabolites were detected using GEMs of Recon 1 (a comprehensive literature-based 

human metabolic network accounting for 1,905 genes, 2,766 metabolites and 3,741 

metabolic reactions) [139] and Recon 2 (updated human metabolic network including 

1,789 enzyme-encoding genes, 7,440 reactions and 2,626 unique metabolites) [140] as 

well as a human metabolite list from HumanCyc [123]. Three main steps used in the 

study are summarized in Figure 3.6.  

Firstly, metabolite names in the models were modified to distinguish the same 

metabolites with slightly different denominations. The host metabolites from the 

GEMs of human and HumanCyc database were compared with the names of the 

compounds in iYL1228 and iKp1289, respectively. The common metabolites were 

listed. Using MBRole server, both pathogen and human metabolite names were 

converted to various IDs in databases including KEGG, PubChem, ChEBI and 

HMDB. The compounds from HumanCyc were also converted to these metabolite IDs 

by means of MBRole and Metabolite Translation Service of HumanCyc. Thus, the 

common metabolite lists were extended by detecting the common metabolites of the 

Klebsiella strains with human through comparison of the IDs. Lastly, these lists were 

combined to obtain a general common metabolite list.  
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Figure 3.6: Identification of the pathogen metabolites also found in the human 

metabolism. 

3.6.8. Filtering Process to Select Metabolite-Based Targets  

Initial set of essential metabolites were filtered based on a modified procedure 

of Kim and colleagues (2010) (i.e., a modified EMFilter approach) in order to narrow 

the list of potential targets. This process includes (1) removal of the metabolites 

involved in the human metabolism, (2) elimination of the currency metabolites, (3) 

selection of the essential metabolites involved in at least one essential outgoing 

reaction and (4) elimination of the metabolites associated with human homologous 

enzymes [141]. 

To identify metabolites also found human metabolism, all essential pathogen 

metabolites were screened against the common metabolite list compiled as described 

in the section 3.6.7. If a pathogen metabolite was detected in the list, it was removed 

to prevent any distruptions in the host metabolism. Then, currency metabolites were 

investigated by performing literature search [142]. These metabolites are involved in 

many reactions in a wide range of different organisms. Therefore, they must be also 

eliminated to avoid inhibition of general reactions like electron transport in human.  

A bit different strategy from the EMFilter approach was executed to evaluate the 

connectivity of each essential compound [141]. Firstly, essential outgoing reactions 

were found out by blocking each reaction (one by one) upon the sitoichiometric 

coefficients. If the inhibition of a reaction considerably reduced the cellular growth 

(cut-off: 1% of the wild-type growth rate), this reaction was accepted to be essential. 
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Then, the number of such reactions associated with each essential metabolite was 

determined.  

The last step of the filtering process is homology screening of the genes involved 

in the outgoing reactions related to each selected metabolite. To this aim, another 

common list was compiled by comparing the protein sequences of the pathogen with 

human proteome from the Refseq database [125]. The homologous genes were 

selected for the E-value (cut-off) <1x10-3 and identity ≥ 30% that were added into the 

‘homologous gene list’. Then, the pathogen metabolites were consumed in the 

reactions catalyzed by the human-homologous enzymes were eliminated. 

The algorithm was developed to determine the number of essential reactions 

consuming each essential metabolite and to identify the non-homologous genes 

involved in the outgoing recations associated with these metabolites that is given in 

Figure 3.7. 
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Figure 3.7: The algorithm to determine the non-homologous genes and the number of 

essential outgoing reactions associated with each essential metabolite. 
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4. RESULTS 

4.1. Validation of The Models 

Herein, two GEMs of K. pneumoniae MGH 78578 (iYL1228) and the more 

virulent strain K. pneumoniae strain KPPR1 (iKp1289) were used to examine the 

metabolic profiles of these bacteria via investigation of growth profiles of the strains 

in different media. In addition, accuracy of the models was assessed based on the 

agreement of model predictions with the in silico and in vitro growth data under the 

selected growth media given in the articles [46, 74].  

4.1.1. Validation of the Models Based on Growth Phenotypes on Different 

Carbon Sources 

To examine the growth phenotypes of the Klebsiella strains, minimal media 

supplied by different carbon sources were used. The growth in the minimal media 

supplied with a carbon source (i.e., acetate, citrate, D-xylose, D-glucose, glycerol, L-

lactate, L-malate, myo-inositol or gluconate) was simulated at the specified uptake 

rates of carbon sources and oxygen for MGH 78578 strain [74]. In addition, the growth 

of the time-dependent adapted strain in M9 medium with myo-inositol was simulated. 

The growth rates predicted via FBA and flexoFBA are compatible with those seen in 

the article [74] (Table 4.1).  

Table 4.1: Examination of in silico growth phenotypes (growth rates (1/h)) of K. 

pneumoniae MGH 78578 for different carbon sources (Exptl: experimental).      

 

Carbon source  

uptake rate 

(mmol/gDW/h) 

Oxygen  

uptake rate 

(mmol/gDW/h) 

Growth rate (1/h) 

Experimental 

(Article) 

In silicob 

(Article) 

In silicob 

(This 

study) 

In silicoc 

(This 

study) 

      Acetate (14.291) 14.657 0.293 0.355 0.355 0.346 

Citrate (14.017) 21.837 0.570 0.937 0.939 0.914 

D-Xylose (6.006) 11.229 0.481 0.479 0.479 0.466 

D-Gluconate 

(17.909)  

21.837 0.965 1.264 1.263 1.226 
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Table 4.1: Continued.  

 

              

The same simulations were repeated for the KPPR1 strain. This more virulent 

pathogen exhibits slightly more efficient metabolism (Table 4.2) as it exhibited higher 

growth rates in different media despite having the same biomass equation with the 

MGH 78578 strain.  

 

Table 4.2: Comparison of the growth rates (1/h) of the different K. pneumoniae 

strains in different carbon sources. 

 

Carbon source 

uptake rate 

(mmol/gDW/h) 

Oxygen  

uptake rate 

(mmol/gDW/h) 

Growth rate (1/h) 

In silicoa  

(This study) 

In silicob  

(This study) 

    Acetate (14.291) 14.657 0.355 0.432 

Citrate (14.017) 21.837 0.939 1.072 

D-Xylose (6.006) 11.229 0.479 0.570 

D-Gluconate 

(17.909)  

21.837 1.263 - 

    

Carbon source  

uptake rate 

(mmol/gDW/h) 

Oxygen  

uptake rate 

(mmol/gDW/h) 

Growth rate (1/h) 

Experimental 

(Article) 

In silicob 

(Article) 

In silicob 

(This 

study) 

In silicoc 

(This 

study) 

      
D-Glucose (10.457) 21.744 1.084 1.040 1.040 1.005 

Glycerol (10.609)  13.618 0.804 0.599 0.599 0.580 

L-Lactate (22.686) 21.837 0.658 0.655 0.658 0.644 

L-Lactate (22.686) 21.837 0.658 0.655 0.658 0.644 

L-Malate (34.572) 21.837 0.834 1.053 1.054 1.023 

myo-Inositol 

(13.802) 

21.837 0.570 1.029 1.029 0.997 

myo-Inositola 

(11.024) 

21.837 0.760 0.941 0.940 0.914 

 
a Adaptive growth of K. pneumoniae MGH 78578 on myo-inositol.  

b Growth rates predicted using FBA.  

c Growth rates predicted using flexoFBA. 
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Carbon source 

uptake rate 

(mmol/gDW/h) 

Oxygen  

uptake rate 

(mmol/gDW/h) 

Growth rate (1/h) 

In silicoa  

(This study) 

In silicob  

(This study) 

    
D-Glucose (10.457) 21.744 1.040 1.140 

Glycerol (10.609)  13.618 0.599 0.692 

L-Lactate (22.686) 21.837 0.658 0.884 

L-Malate (34.572) 21.837 1.054 1.203 

myo-Inositol 

(13.802) 

21.837 1.029 - 

 
a Growth rates of K. pneumoniae MGH 78578 on different carbon sources. 

b Growth rates of K. pneumoniae KPPR1 on different carbon sources.  

                     

To understand whether the differences in the growth rates are due to differences 

in the minimal growth media (M9 for MGH 78578 and CDG for KPPR1 (Table 

A.1.1)), medium compositions were compared. The uptake of only two metabolites 

are different in the models. Ni+2 is available in only CDG medium and tungstate 

consumption is allowed in only iYL1228. However, it was revealed that the reason 

underlying different bacterial growth rates was not associated with the differences in 

the medium compositions. Closer inspection of the growth rates calculated by the two 

models revealed a bit higher uptake rates of some metabolites (e.g., iron) in both 

media. Therefore, the reason behind the higher growth rate of KPPR1 may be the 

ability to assimilate particular metabolites. 

Effect of another set of carbon sources [46] on the bacterial growth was also 

investigated. Growth profiles of the strains were validated by a comparison of the in 

silico predicted growth rates with the computationally and experimentally calculated 

growth rates in the article [46] (Table 4.3). The growth rate of KPPR1 in carbon-L-

lysine medium found in this study was inconsistent with the result given in the article. 

Here, it was found that this strain could not grow in L-lysine. However, its growth rate 

was reported as 0.4262 h-1 in the article. Interestingly, other carbon sources in Table 

4.3 were correctly simulated, leading to the same growth rates reported in the article 

[46].  

Table 4.2: Continued. 
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As for the growth profile of the MGH 78578 strain, the same growth rates were 

predicted with the article [46] apart from the simulations of two growth media (i.e., 

carbon-succinic-acid medium and carbon-dulcitol medium). The simulation results are 

listed in Table 4.3. The table presents a comparison of the growth rates in the article 

(found through the KBase platform and the an experimental approach) with in silico 

predicted growth rates in this study. 

Table 4.3: Comparison of the growth rates (1/h) predicted in iKp1289 and iYL1228 

simulations with the article and each other.                                                                                                      

Minimal 

Media 
MGH 78578 strain KPPR1 strain 

Carbon 

source  

In silicoa 

Article 

In silicob 

This study 

In vitroc 

Article 

In silicoa 

Article 

In silicob 

This 

study 

In vitroc 

Article 

None - - - - - - 

Carbon-a-D-

Glucose 

0.5113 0.5113 + 0.5155 0.5155 + 

Carbon-L-

Arabinose 

0.4212 0.4212 + 0.5155 0.5155 + 

Carbon-L-

Serine 

0.1944 0.1944 + 0.2944 0.2944 + 

Carbon-L-

Proline 

0.3387 0.3387 + 0.4478 0.4478 + 

Carbon-L-

Aspartic-

Acid 

0.2426 0.2426 + 0.3373 0.3373 + 

Carbon-L-

Arginine 

0.4216 0.4216 + 0.5066 0.5066 + 

Carbon-L-

Alanine 

0.2305 0.2305 + 0.3313 0.3313 + 

Carbon-L-

Asparagine 

0.2428 0.2428 + 0.3376 0.3376 + 

Carbon-L-

Lysine 

0.0000 0.0000 - 0.4262 0.0000 - 

Carbon-

Succinic-

Acid 

0.2575 0.0000 + 0.3524 0.3524 + 

Carbon-

Dulcitol 

0.5155 0.5483 + 0.0000 0.0000 + 

 a Growth rates of MGH 78578 and KPPR1 strains predicted using FBA in the 

article. 
b Growth rates of MGH 78578 and KPPR1 strains predicted using FBA in this 

study. 
c Experimentally calculated growth rates of MGH 78578 and KPPR1 strains. 
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In summary, in silico predicted growth rates are compatible with the 

experimental and computational results reported in the articles [46, 74]. Whole results 

support the better proliferation capacity of KPPR1 in comparison with MGH 78578.  

4.1.2. Validation of the Models Based on Gene Essentiality Analysis 

Metabolic profiles of the MGH 78578 and KPPR1 strains were also examined 

through elucidation of the essential genes in different growth conditions. In silico gene 

knockout results were validated by comparing the predicted results with those given 

in the articles [46, 74].  

For MGH 78578, single gene deletions were performed for in silico growth of 

MGH 78578 under aerobic minimal glucose growth medium (M9). The glucose uptake 

rate being in the range of 0-10 mmol/gDW/h and the oxygen uptake rate being in the 

range of 0-20 mmol/gDW/h were used based on the article [74].  Consistent with the 

article [46], KPPR1 growth was simulated in LB medium (Table A1.2). 

The gene essentiality analysis using iYL1228 resulted in the identification of 

119 essential genes while 118 essential genes were documented in the article. On the 

other hand, when Fast-SL algorithm was used, the same 119 genes were  identified via 

in silico single gene deletions, further confirming the predictions in this study. The 

difference may be due to the use of a different solver in this study. GO Enrichment 

Analysis was also used to characterize the essential genes. It should be noted that, gene 

annotations of two closely related microorganisms (E. coli and Salmonella) were used 

for the GO Enrichment Analysis owing to the lack of K. pneumoniae in AmiGO 

website [143].  Analysis of the biological processes demonstrated that the essential 

genes found in the study are mainly responsible for fatty acid/lipid A biosynthesis, 

glutamine metabolic process, leucine/arginine/lysine, biosynthetic process, 

peptidoglycan production process and cell cycle. Moreover, 8 essential genes were 

reported as the specific to K. pneumoniae (i.e., KPN_02202, KPN_02492, 

KPN_02493, KPN_03963, KPN_01515, KPN_01093, KPN_04659 and KPN_02834) 

in comparison with E. coli (iAF1260) and Salmonella (iRR1083 [144]) in the article 

[74]. These genes were successfully predicted in this study. A further analyis revealed 

that the genes are mainly associated with lipopolysaccharide biosynthesis, capsule 

production and lipid biosynthesis.  
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As for the model of iKp1289, 58 essential genes (including one unknown gene) 

were identified through in silico gene deletions. The 57 annotated essential genes 

found in this study are the same with the 57 essential genes in the article. Thus,  

essential genes were successfully predicted via the single gene deletion algorithm 

developed in this study. Investigation of the biological processes regarding these 

essential genes revealed that they are mostly found in the processes supporting the 

virulence of the bacteria (e.g., extracellular polysaccharide biosynthesis, lipid A 

biosynthesis, regulation of cell shape and peptidoglycan production).   

Taken together, the prediction of essential genes in this study was found to be 

completely compatible with the published results.  

4.2. Identification of Essential Genes for Gene-Centric Drug 

Target Discovery 

It is an expensive and time-consuming task to determine the essential genes 

experimentally due to the large and complex nature of the high-throughput techniques. 

On the other hand, this information is crucial to understand the cellular metabolism 

and to discover novel drug targets. In silico deletion of each gene provides 

comprehensive information on gene essentiality in a time and cost-saving manner. 

Hence, in silico gene essentiality analysis was used to identify the putative drug targets 

in this work.  

Essentiality of each gene was evaluated by simulating growth of the in two host-

mimicking media (SM medium (Table B1.1 and Table B1.2) and HBF medium (Table 

B1.3 and Table B1.4). A gene was considered as essential if its deletion resulted in the 

growth rate less than a specified cut-off (1% of the maximum WT growth rate). Three 

different methods (i.e., an in-house function, Fast-SL algorithm, a COBRA Toolbox 

function) were applied comparatively to perform the single gene deletion.  

50 essential genes were identified in growth simulations of K. pneumoniae MGH 

78578 in the HBF-mimicking condition by own developed algorithm while 51 genes 

were detected to be essential using COBRA Toolbox and Fast-SL algorithm for the 

same cut-off (Figure 4.1.a). Of these 51 genes, 50 genes were found by all three 

algorithms whereas KPN_01284 (fabI) was identified by COBRA Toolbox function 

and Fast-SL algorithm. Therefore, the essentiality of fabI was investigated in detail. 

Using the reaction-gene matrix (RGM), 24 reactions associated with this gene were 
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detected. All of these reactions are related to enoyl-[acyl-carrier-protein] (ACP) 

reductase (NADPH) activity necessary for the last step of the fatty acid elongation 

[145]. This process is reasonable for drug targeting, and its deletion was reported to be 

lethal for two closely related microorganisms including S. enterica sv. Typhimurium 

[146] and E. coli [147] in LB medium. For the further insight into the essentiality of 

this gene, the reactions associated with fabI were specifically blocked. However, the 

growth rate of K. pneumoniae MGH 78578 was not changed in HBF medium when 

flux boundaries of these 24 reactions were set to zero concurrently. Differently from 

HBF simulation, fabI was found to be essential in SM medium by all methods used in 

this study. These findings highlight the importance of the simulated condition to 

determine the gene essentiality. 

Similarly, most of the essential genes determined by the three methods were the 

same for the growth simulation of K. pneumoniae MGH 78578 in SM medium. 76 

common essential genes were predicted. Of these genes, KPN_00983 (fabA) was 

identified to be essential via our own algorithm and Fast-SL algorithm but not by 

COBRA Toolbox. On the other hand, KPN_00193 (fabZ) was predicted to be essential 

by only COBRA Toolbox (Figure 4.1.b).  

 

 
 

Figure 4.1: Comparison of the number of results from different methods for 

growth simulations in a) HBF and b) SM (SD_gurobi: in-house algorithm). 

                 

Both FabA and its homologue known as FabZ function in fatty acid synthesis by 

catalyzing the dehydration of β-hydroxyacyl-AcpP in Gram-negative bacteria (Figure 

4.2) [148–150]. FabA (β-hydroxyldecanoyl-ACP dehydratase/isomerase) also 

catalyzes synthesis of unsaturated fatty acids in many bacteria [148]. Despite relatively 

limited presence of fabA genes among bacteria in comparison with FabZ (indicating 

a) b) 
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FabZ is a more convenient target for broad spectrum antibiotics), FabA may be also a 

promising drug target [150, 151]. This is because FabA can replace FabZ with its 

similar substrate binding pocket but not vice versa. Furthermore, lack of any isozymes 

for FabA is an increasing evidence that supports essentiality of this enzyme [150]. 

Notably, this phenomenon has also already taken into consideration as designing the 

GEM of iYL1228. Both FabA and FabZ are responsible for dehydration of beta-

hydroxyacyl acyl carrier protein (ACP) to trans 2-enoyl ACP but only FabA can 

catalyze the conversion of trans-2-decenoyl-ACP to cis-3-dodecenoyl-ACP [148, 

150]. Therefore, iYL1228 includes 12 reactions related to fabA gene, and 11 out of 

them were found to be associated with 3-hydroxyacyl-[acyl-carrier-protein] 

dehydratase activity. These 11 reactions are active in the presence of either FabA or 

FabZ. Therefore, inhibition of one of them did not affect the bacterial growth. On the 

other hand, the bacterial growth was not observed due to lack of trans-2-decenoyl-

ACP isomerase activity when fabA gene was deleted. 

To ensure the fabZ is not essential for the bacterial growth in SM medium, effect 

of deletion of the associated reactions on the bacterial growth was also investigated. 

Only the previously defined 11 reactions (dehydration of beta-hydroxyacyl acyl carrier 

protein (ACP) to trans 2-enoyl ACP) were found to be related to FabZ and thus deletion 

of fabZ gene was compensated with FabA activity.   

 

 
 

Figure 4.2: Type II fatty acid biosynthesis pathway in various bacteria. 
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These findings demonstrated that the COBRA Toolbox function or Fast-SL 

algorithm can report erroneous results in some cases probably by ignoring the 

compensatory function of the isoenzymes (overlapping functions). Therefore, gene 

deletion simulations of K. pneumoniae KPPR1 growth were performed in host-

mimicking medium using only the in-house developed algorithm. 75 essential genes 

in addition to 1 unannotated gene were predicted for SM medium whilst 49 essential 

genes and 1 unannotated gene were revealed through the growth simulations in HBF. 

4.3. Drug Target Prioritization for the Gene-Centric 

Candidates 

Some of the in silico identified drug targets are not convenient candidates to take 

into consideration for medical use. For instance, a human-homologous gene should be 

eliminated from the list in order to avoid a possible side effect due to binding of the 

drug to off-targets in the host cell. Moreover, some of the identified targets may not 

be convenient for drug-binding [122]. Taken together, further criteria must be applied 

to evaluate and filter the putative drug targets. 

4.3.1. Identification of Essential Non-homologous Pathogen Genes 

Homology search was conducted in the first step of drug prioritization to 

minimize/prevent any possible damages to the human cells. This approach was 

performed by comparing the amino acid sequences of the pathogen proteins (predicted 

as essential) with human proteome. 50 genes of MGH 78578 and 49 genes of KPPR1 

were predicted to be essential in the HBF simulation (section 4.2). 33 out of these 

essential genes were found to be non-homologous for MGH 78578 strain while a 

significant sequence similarity was not found for 34 essential genes of KPPR1 strain. 

These genes were compared based on their names. Four non-homologous, unannotated 

genes of  KPPR1 were excluded from Figure 4.3. When the remaining genes were 

compared, 26 common genes with no human homologs were identified. In addition, 

one common gene (asd/asd2) was erroneously excluded from the common gene list 

due to the difference in the nomenclatures. Thus, three non-human homologous genes 

(fabD, yaeD and lpxH) were determined to be essential only for the KPPR1 strain and  

six non-human homologous genes (murE, thrB, murF, uge, gmhB and ybbF) were 

found as essential for MGH 78578 strain (Figure 4.3.a). The same comparison was 
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performed for the growth simulation in SM medium. 39 out of 43 non-human 

homologous genes identified through iKp1289 are the annotated genes (with no gene 

names). This gene list was compared with 42 genes determined via iYL1228 (Figure 

4.3.b). The same bacteria-specific genes were detected. Consequently, most of the 

essential, non-homologous genes are common for both strains. This finding highlights 

that these pathogenic strains have a similar metabolism. 

 

 
 

Figure 4.3: Comparison of the number of non-homologous, essential genes in 

K. pneumoniae strains with respect to human proteome, predicted through different 

simulations: a) HBF simulation and b) SM simulation. 

4.3.2. Analysis of  Subcellular localizations for Non-homologous 

Gene Products 

Subcellular localization is useful in identification of the protein function and also 

in determination of the potential drug targets and vaccine candidates [127]. Therefore, 

the second filtering process was used to search localization of the proteins encoded by 

the in silico predicted essential genes with no homology to human proteins.  

Three web services including CELLO, PSORTb and iLoc-Gneg were used to 

determine the subcellular localizations of non-homologous gene products. If at least 

two of the services lead to the same prediction for a gene product, this location was 

accepted. The uncertain results were validated through a literature survey and UniProt 

database [131]. Apart from the products of uge and murI genes, a subcellular location 

was assigned to each gene product. About 92% and 94% of the gene products of the 

strain MGH 78578 from the growth simulations in SM and HBF were found to be 

localized in the cytoplasm (Figure 4.4). On the other hand, products of three genes 

(fabI, mraY and murG) identified through SM simulation and products of two genes 

a) b) 
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from HBF simulation (excluding fabI) were found to be localized in the inner 

membrane.  

 

 
                     

Figure 4.4: Subcellular localizations of the essential, non-human homologous 

gene products of the strain MGH 78578 : a) SM simulation and b) HBF simulation. 

 

In the similar vein, the cellular components harboring the essential non-

homologous gene products of the strain KPPR1 were investigated. High amount of the 

gene products (almost 88% and 87%) from the growth simulations in SM and HBF 

were detected to be localized in the cytoplasm (Figure 4.5). On the other hand, five 

genes (fabI, mraY, lpxK, murG as well as a gene encoding 1-acylglycerol-3-phosphate 

O-acyltransferases domain protein) identified through SM simulation were found be 

localized in the inner membrane. Four out of these genes (apart from  fabI) were found 

in the HBF simulation, as well. 

 

 
 

Figure 4.5: Subcellular localizations of the essential, non-human homologous 

gene products of the strain KPPR1: a) SM simulation and b) HBF simulation. 

               

a) b) 

a) b) 
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Mostly cytoplasmic essential proteins were detected in this study. It is important 

to note that both cytoplasmic and inner membrane proteins can be putative drug 

targets. On the other hand, potential vaccine candidates are selected among 

extracellular, the outer membrane and periplasmic proteins [152]. However, any 

vaccine candidates were not identified in the study.  

4.3.3. Investigation of Possible Antibiotic Resistance Genes 

Next step is to search whether there are any known or putative antibiotic 

resistance genes in the non-homologous gene list in order to target antibiotic resistance 

mechanisms. ARG-ANNOT database [119] includes the sequences of the resistance 

genes against different antibiotic classes (i.e., macrolide-lincosamide-streptogramin, 

aminoglycosides, fosfomycin, fluoroquinolones, sulfonamides, glycopeptides, 

trimethoprim, rifampicin, tetracyclines, phenicols and trimethoprim and beta-

lactamases).  

ARG-ANNNOT along with Bioedit was used in this work. Only glmU gene of 

was identified as essential in SM and HBF simulations for both strains that exhibited 

a significantly similarity with resistance-related genes. N-Acetylglucosamine-1-

phosphate uridyltransferase (GlmU)  is a bifunctional enzyme with uridyltransferase 

and acetyltransferase activities in both gram-positive and gram-negative bacteria [153, 

154]. It plays an important role in the peptidoglycan synthesis and in production of the 

lipopolysaccharides by catalyzing the UDP-N-acetylglucosamine formation. LPS is 

indispensable for growth of almost all known bacteria. Considering vital functions of 

GlmU on the membrane integrity, inhibition of this protein exhibits a bactericidal 

effect [155]. Therefore, there are significant efforts to design inhibitors againts this 

protein for different pathogens [154, 155].  

This promising non-homologous gene was found as significantly similar to the 

resistance genes against macrolide-lincosamide-streptogramin and phenicols. 

However, it has an unacceptable alignment length. Besides, these antibiotic classes are 

responsible for the inhibition of protein synthesis and a direct relationship of these 

antibiotics with GlmU protein could not be found in the literature searches. However, 

an indirect link may be exist. Petráčková and colleagues reported the glmU 

overexpression after 43 h in E. coli cells continuously grown in the presence of 

erythromycin (a member of macrolide antibiotics) [156]. Moreover, such genes can 
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confer resistance to the antibiotics damaging the cell wall. They can contribute to the 

reconstruction of the wall even if this hypothesis could not be proved through the 

ARG-ANNOT database. 

4.3.4. Examination of Virulence Gene Profiles 

There is an interplay between antibiotic resistance and virulence, and they can 

be regulated by common global transcriptional regulators [39, 40]. Thus, inhibition of 

the putative targets associated with both survival and virulence harms the pathogens 

in many ways. Therefore, the virulence genes of MHG 78578 and KPPR1 were 

examined in detail. 

Virulence-related genes within the non-homologous gene lists were identified 

through BLAST against VFDB core dataset. To start with, the non-homologous, 

essential genes from SM simulation of iYL1228 were analyzed. Six genes (hldD 

(rfaD), kdsA, gmhA (lpcA), lpxD, lpxA and lpxC) which were significantly similar to 

the virulence genes of Haemophilus influenzae Rd KW20 were identified. Those six 

genes were also found to support virulent characteristics of the strain KPPR1 (Table 

4.4). This analysis was not repeated for the gene list from HBF simulation because 

essential, non-homologous gene list from HBF simulations is only a subset of the list 

of genes from SM simulations. 

The identified six genes are associated with lipopolysaccharide synthesis. For 

example, the rfaD gene encoding ADP-L-glycero-D-mannoheptose-6-epimerase 

catalyzes the generation of ADP-L-glycero-D-manno-heptose through ADP-L-

glycero-D-manno-heptose synthetic pathway. This component is crucial for the 

synthesis of core region of LPS. LPS is the major outer membrane component 

supporting the outer-leaflet integrity and protection against antimicrobial molecules so 

rfaD product may be a promising drug target [157]. Recently, it was reported that 

enterohemorrhagic E. coli (EHEC) O157:H7 RfaD contributes to the virulence of 

bacteria via mainly promoting colonization and resistance against some antimicrobial 

peptides. Thus, RfaD was suggested as a potential drug target [158]. The lpxA, lpxC, 

and lpxD are other essential genes crucial for the lipid A biosynthesis, and their 

deletions increase the sensivity to hydrophobic antibiotics (e.g., erythromycin) [159]. 

Thus, the virulence factors identified in this study were proposed as putative drug 

targets (Table 4.4). 
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Table 4.4: Virulence factors identified in both GEMs. 

Query        

(Tag ID) 

Gene VFDB ID Description Score Expect Identity         

(%) 

VK055_3508 

KPN_03963 

rfaD 

hldD  

VFG000332 (rfaD) ADP-L-glycero-D-

mannoheptose-6-epimerase 

[LOS] 

504 

bits 

(1297) 

1,00E-144 241/308 

(78%) 

VK055_0220 

KPN_02230 

kdsA  VFG013465 (kdsA) 2-dehydro-3-

deoxyphosphooctonate 

aldolase [LOS] 

480 

bits 

(1235) 

1,00E-137 235/283 

(83%) 

VK055_2330 

KPN_00236 

gmhA  VFG013418 (gmhA/lpcA) 

phosphoheptose isomerase 

[LOS] 

309 

bits 

(792) 

6,00E-86 152/192 

(79%) 

VK055_2373 

KPN_00192 

lpxD  VFG013374 (lpxD) UDP-3-O-(3-

hydroxymyristoyl) 

glucosamine N-

acyltransferase[LOS] 

438 

bits 

(1127) 

1,00E-124 214/324 

(66%) 

VK055_2371 

KPN_00194 

lpxA  VFG013390 (lpxA) UDP-N-

acetylglucosamine 

acyltransferase [LOS] 

366 

bits 

(940) 

1,00E-103 176/262 

(67%) 

VK055_2471 

KPN_00100 

lpxC  VFG013412 (lpxC) UDP-3-O-(R-3-

hydroxymyristoyl)-N-

acetylglucosaminedeacetylase 

[LOS] 

483 

bits 

(1243) 

1,00E-138 236/304 

(77%) 

4.3.5. Evaluation of Therapeutic Targets for Druggability 

Considering the fact that all protein structures are not convenient for drug-

binding, it is crucial to determine the most efficient drug targets [122]. DrugBank 

database was used to identify druggability properties of the gene products and to reveal 

the existing drugs targeting these proteins. Evaluation of the existing drugs is a 

promising strategy that reduces an enormous time and cost. Therefore, it is a promising 

approach in the drug discovery. Approximately 10 to 17 year process (target discovery 

and validation: 2-3 years, screening or development of biologically active compounds: 

0.5-1 year, candidate optimization: 1-3 years, pre-clinical trials including ADMET 

evaluation through animal models, clinical trials: 5-6 years and approval: 1-2 years) is 

necessary in a drug approval pipeline. The cost of all the processes for a new successful 

drug is almost US$1.78 billion [160]. On the other hand, the efficacies or toxicities of 

existing drugs were priorly known. Therefore, the existing drugs can be screened in 

order to detect the drugs having a potential to bind to the products of the putative 

targets identified by in silico simulations of GEMs.  
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21 common genes out of  31 potential druggable non-homologous targets were 

identified in KPPR1 and MGH 78578 for E-value cut-off of 1x10-25. List of the targets 

and interacting drugs are presented in Table 4.5. These genes are mostly related to 

pyrimidine synthesis, cell wall structure and fatty acid synthesis. They may be assessed 

as drug targets for the treatment of the K. pneumoniae infection in future. By 

supporting this assumption, a mutation in uge gene encoding UDP galacturonate 4-

epimerase negatively affects the virulent characteristics and colonization ability of K. 

pneumoniae. Thus, the mutant cells cannot induce virulence in the septicemia and 

pneumonia animal models as well as urinary tract infections in rats [161]. 

Table 4.5: Evaluation of druggability properties of the putative targets and drug 

repositioning.                                                                                                      

Tag ID 
Gene 

Name 

Number of 

Drug 
Interacting Drug Drug Group 

VK055_5030 - 1 Uridine-Diphosphate-N-

Acetylgalactosamine 

experimental 

VK055_2483 - 3 Uridine-5'-Diphosphate-N-

Acetylmuramoyl-L-Alanine-D-Glutamate 

experimental 

      2,6-Diaminopimelic Acid experimental 

      Lysine Nz-Carboxylic Acid experimental 

VK055_2482  - 

 

1 2-CHLORO-N-(3-CYANO-5,6-

DIHYDRO-4H-

CYCLOPENTA[B]THIOPHEN-2-YL)-5-

DIETHYLSULFAMOYL-BENZAMIDE 

experimental 

VK055_3672

KPN_03799 

asd2       

asd  

3 2'-Monophosphoadenosine 5'-

Diphosphoribose 

experimental 

      (4s)-4-{[(2s)-2-Amino-3-

Oxopropyl]Sulfanyl}-L-Homoserinate 

experimental 

      Aspartate Semialdehyde experimental 

VK055_4699 

KPN_02812 

dapA  1 Nz-(1-Carboxyethyl)-Lysine experimental 

VK055_2536 

KPN_00039 

dapB  2 3-Acetylpyridine Adenine Dinucleotide experimental 

      Dipicolinic Acid experimental 

VK055_2386 

KPN_00179 

dapD  5 Pimelic Acid experimental 

      Coenzyme A investigational, 

nutraceutical 

      2-Aminopimelic Acid experimental 

      Succinyl-Coenzyme A experimental 

      Succinamide-Coa experimental 

VK055_1504 

KPN_00983 

fabA  2 2-Decenoyl N-Acetyl Cysteamine experimental 

      2-Decenoyl N-Acetyl Cysteamine experimental 

VK055_1375 fabD  1 3,6,9,12,15-PENTAOXAHEPTADECAN-

1-OL 

experimental 
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Table 4.5: Continued. 
 

Tag ID 
Gene 

Name 

Number of 

Drug 
Interacting Drug Drug Group 

VK055_1165 

KPN_01284 

fabI 24 Indole Naphthyridinone experimental 

      3-(6-Aminopyridin-3-Yl)-N-Methyl-N-[(1-

Methyl-1h-Indol-2-Yl)Methyl]Acrylamide 

experimental 

      4-(2-Thienyl)-1-(4-Methylbenzyl)-1h-

Imidazole 

experimental 

      3-[(Acetyl-Methyl-Amino)-Methyl]-4-

Amino-N-Methyl-N-(1-Methyl-1h-Indol-2-

Ylmethyl)-Benzamide 

experimental 

      1,3,4,9-Tetrahydro-2-(Hydroxybenzoyl)-9-

[(4-Hydroxyphenyl)Methyl]-6-Methoxy-

2h-Pyrido[3,4-B]Indole 

experimental 

      Beta-D-Glucose experimental 

      2-(TOLUENE-4-SULFONYL)-2H-

BENZO[D][1,2,3]DIAZABORININ-1-OL 

experimental 

      Triclosan approved, 

investigational 

      6-METHYL-2(PROPANE-1-

SULFONYL)-2H-THIENO[3,2-

D][1,2,3]DIAZABORININ-1-OL 

experimental 

      Triclosan approved, 

investigational 

      Triclocarban approved 

      Soneclosan experimental 

      Triclosan approved, 

investigational 

      Triclosan approved, 

investigational 

      Ethionamide approved 

      Isoniazid approved, 

investigational 

      C16-Fatty-Acyl-Substrate-Mimic experimental 

      Genz-10850 experimental 

      (3S)-N-(3-CHLORO-2-

METHYLPHENYL)-1-CYCLOHEXYL-5-

OXOPYRROLIDINE-3-CARBOXAMIDE 

experimental 

      N-(4-METHYLBENZOYL)-4-

BENZYLPIPERIDINE 

experimental 

      (3S)-1-CYCLOHEXYL-5-OXO-N-

PHENYLPYRROLIDINE-3-

CARBOXAMIDE 

experimental 

      5-PENTYL-2-PHENOXYPHENOL experimental 

      (3S)-1-CYCLOHEXYL-N-(3,5-

DICHLOROPHENYL)-5-

OXOPYRROLIDINE-3-CARBOXAMIDE 

experimental 

      (3S)-N-(3-BROMOPHENYL)-1-

CYCLOHEXYL-5-OXOPYRROLIDINE-

3-CARBOXAMIDE 

experimental 

VK055_3340 

KPN_04135 

glmU  5 Coenzyme A investigational, 

nutraceutical 

      Uridine-Diphosphate-N-Acetylglucosamine experimental 

      2-(N-Morpholino)-Ethanesulfonic Acid experimental 
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Table 4.5: Continued. 
 

Tag ID 
Gene 

Name 

Number of 

Drug 
Interacting Drug Drug Group 

      4-chloro-N-(3-methoxypropyl)-N-[(3S)-1-

(2-phenylethyl)piperidin-3-yl]benzamide 

experimental 

      Uridine-Diphosphate-N-Acetylglucosamine experimental 

VK055_2330 gmhA  1 D-Glycero-D-Mannopyranose-7-Phosphate experimental 

VK055_0220 

KPN_02230 

kdsA  12 2-phospho-D-glyceric acid experimental 

      Phosphoenolpyruvate experimental 

      Ribose-5-phosphate experimental 

      {[(2,2-Dihydroxy-Ethyl)-(2,3,4,5-

Tetrahydroxy-6-Phosphonooxy-Hexyl)-

Amino]-Methyl}-Phosphonic Acid 

experimental 

      1-Deoxy-6-O-Phosphono-1-

[(Phosphonomethyl)Amino]-L-Threo-

Hexitol 

experimental 

      2-(Phosphonooxy)Butanoic Acid experimental 

      Arabinose-5-phosphate experimental 

      Erythose-4-Phosphate experimental 

      Phosphoenolpyruvate experimental 

      {[(2,2-Dihydroxy-Ethyl)-(2,3,4,5-

Tetrahydroxy-6-Phosphonooxy-Hexyl)-

Amino]-Methyl}-Phosphonic Acid 

experimental 

      3-Fluoro-2-(Phosphonooxy)Propanoic Acid experimental 

      1-Deoxy-Ribofuranose-5'-Phosphate experimental 

KPN_00236 lpcA 1 D-Glycero-D-Mannopyranose-7-Phosphate experimental 

VK055_2371 

KPN_00194 

lpxA  2 D-tartaric acid experimental 

      2-HYDROXYMETHYL-6-

OCTYLSULFANYL-TETRAHYDRO-

PYRAN-3,4,5-TRIOL 

experimental 

VK055_2471 

KPN_00100 

lpxC  6 Tu-514 experimental 

      Palmitoleic Acid experimental 

      3-(heptyloxy)benzoic acid experimental 

      N-{(1S,2R)-2-hydroxy-1-

[(hydroxyamino)carbonyl]propyl}-4-{[4-

(morpholin-4-

ylmethyl)phenyl]ethynyl}benzamide 

experimental 

      Myristic acid experimental 

      (2R)-N-hydroxy-3-naphthalen-2-yl-2-

[(naphthalen-2-

ylsulfonyl)amino]propanamide 

experimental 

VK055_3878 

KPN_03599 

murA  7 Uridine-Diphosphate-N-Acetylglucosamine experimental 

      (S)-2-{Methyl-[2-(Naphthalene-2-

Sulfonylamino)-5-(Naphthalene-2-

Sulfonyloxy)-Benzoyl]-Amino}-

Succinicacid 

experimental 

      Aminomethylcyclohexane experimental 

      Cyclohexylammonium Ion experimental 

      3'-1-Carboxy-1-Phosphonooxy-Ethoxy-

Uridine-Diphosphate-N-Acetylglucosamine 

experimental 
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Table 4.5: Continued. 
 

Tag ID 
Gene 

Name 

Number of 

Drug 
Interacting Drug Drug Group 

      1-Anilino-8-Naphthalene Sulfonate experimental 

      Fosfomycin approved 

 

VK055_3124 

KPN_04350 

 

murB  

 

2 

 

Flavin adenine dinucleotide 

 

approved 

      (5Z)-3-(4-CHLOROPHENYL)-4-

HYDROXY-5-(1-

NAPHTHYLMETHYLENE)FURAN-

2(5H)-ONE 

experimental 

VK055_2476 

KPN_00095 

murC  3 Uridine-5'-Diphosphate-N-

Acetylmuramoyl-L-Alanine 

experimental 

      Adenosine-5'-[Beta, Gamma-

Methylene]Triphosphate 

experimental 

      Phosphoaminophosphonic Acid-Adenylate 

Ester 

experimental 

VK055_2480 

KPN_00092 

murD  8 Uridine-5'-Diphosphate-N-

Acetylmuramoyl-L-Alanine 

experimental 

      Uridine-5'-Diphosphate-N-

Acetylmuramoyl-L-Alanine-D-Glutamate 

experimental 

      Lysine Nz-Carboxylic Acid experimental 

      N-[(6-butoxynaphthalen-2-yl)sulfonyl]-L-

glutamic acid 

experimental 

      N-[(6-butoxynaphthalen-2-yl)sulfonyl]-D-

glutamic acid 

experimental 

      N-{[6-(PENTYLOXY)NAPHTHALEN-2-

YL]SULFONYL}-D-GLUTAMIC ACID 

experimental 

      N-({6-[(4-

CYANOBENZYL)OXY]NAPHTHALEN-

2-YL}SULFONYL)-D-GLUTAMIC ACID 

experimental 

      N-({6-[(4-CYANO-2-

FLUOROBENZYL)OXY]NAPHTHALEN

-2-YL}SULFONYL)-D-GLUTAMIC 

ACID 

experimental 

KPN_00089 murE 3 Uridine-5'-Diphosphate-N-

Acetylmuramoyl-L-Alanine-D-Glutamate 

experimental 

 

2,6-Diaminopimelic Acid experimental 

Lysine Nz-Carboxylic Acid experimental 

KPN_00090 murF 1 2-CHLORO-N-(3-CYANO-5,6-

DIHYDRO-4H-

CYCLOPENTA[B]THIOPHEN-2-YL)-5-

DIETHYLSULFAMOYL-BENZAMIDE 

 

 

experimental 

VK055_2477 

KPN_00094 

murG  1 Uridine-Diphosphate-N-

Acetylgalactosamine 

experimental 

VK055_2069 

KPN_00478 

purE  1 Citric Acid approved, 

nutraceutical, 

vet_approved 

VK055_1392 

KPN_01074 

pyrC  4 Dihydroorotic Acid experimental 

      Orotic Acid experimental, 

investigational 

      Lysine Nz-Carboxylic Acid experimental 

      N-Carbamoyl-L-Aspartate experimental 
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Table 4.5: Continued. 
 

Tag ID 
Gene 

Name 

Number of 

Drug 
Interacting Drug Drug Group 

VK055_3486 

KPN_03983 

pyrE  2 Alpha-Phosphoribosylpyrophosphoric Acid approved, 

experimental, 

investigational 

       

Orotic Acid 

experimental, 

 investigational 

VK055_1174 

KPN_01277 

pyrF  3 6-Hydroxyuridine-5'-Phosphate experimental 

      1-(5'-Phospho-Beta-D-

Ribofuranosyl)Barbituric Acid 

experimental 

      Uridine monophosphate experimental 

VK055_3508 

KPN_03963 

rfaD  

hldD 

2 Adenosine-5'-Monophosphate 

Glucopyranosyl-Monophosphate Ester 

experimental 

      2'-Monophosphoadenosine 5'-

Diphosphoribose 

experimental 

VK055_1369 

KPN_01096 

tmk  1 P1-(5'-Adenosyl)P5-(5'-

Thymidyl)Pentaphosphate 

experimental 

VK055_5029 

KPN_02493 

ugd  4 Sucrose 

 

approved, 

experimental, 

investigational 

   Guanosine 5'-(Trihydrogen Diphosphate), 

P'-D-Mannopyranosyl Ester 

experimental 

Udp-Alpha-D-Xylopyranose  experimental 

UDP-alpha-D-glucuronic acid experimental 

KPN_02492 uge 2 Uridine-Diphosphate-N-

Acetylgalactosamine 

experimental 

      Uridine diphosphate glucose experimental 
 

4.3.6. Broad Spectrum Analysis of Druggable Virulence Factors  

Six unique virulence factors were proposed as drug targets in the section 4.3.4. 

The virulence factors found in the druggable, non-homologous gene list (Table 4.5) 

were determined to evaluate the druggability of the virulence factors. 

It should be noted that, hldD gene was formerly known as rfaD similar to gmhA 

and lpcA genes. Therefore, five unique cytosolic virulence factors (rfaD (hldD), lpxA, 

gmhA (lpcA), lpxC and ksdA) were found to be druggable although seven druggable 

virulence factors are demonstrated in Figure 4.6. Any drug molecules targeting the 

lpxD gene were not identified for the given cut-off in this study. Therefore, a less strict 

E-value cut-off may be selected in DrugBank to extend the non-homologous druggable 

gene list.  
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Figure 4.6: Druggable virulence factors (red and blue arrows indicate the same 

genes). 

                                                    

At least one drug molecule was found through screening all virulence-related 

genes apart from lpxD. Thus, five unique druggable virulence factors were selected for 

a detailed analysis. In this context, prevalance of these essential genes among other 

pathogens was investigated using PBIT tool [122]. Broad distribution of a gene is  

particularly prominent to handle co-infections/multiple infections and to target the 

conserved genes for delaying the development of antibiotic resistance.  

These five druggable, virulence factors were revealed to be involved in the LPS 

synthesis process. LPS is the outer membrane component surrounding the bacterial 

cell (Figure 2.6). It contains three main layers including O-antigen, core 

oligosaccharide and lipid A. Lipid A is the inner layer of LPS that is crucial for both 

protection and survival of the bacteria [11, 39]. The core oligosaccharide region of 

LPS consists of inner core (association of 3-deoxy-D-manno-oct-2-ulosonic acid 

(Kdo) and heptose residues) and outer core (association of hexoses and 2-acetoamido-

2-deoxy-hexose residues). The virulence-related genes, gmhA/lpcA and hldD/rfaA are 

crucial in the synthesis of the heptose precursors while ksdA is responsible for the 

production of the Kdo. Lipid A and core oligosaccharides are linked by Kdo [162]. In 

addition, the lpxA and lpxC genes function in lipid A biosynthesis [159].  

Broad spectrum analysis has resulted in 26 matches belonging from different 

pathogens (8 distinct genera except for Klebsiella) for the virulence factor lpxC (locus 

tags: VK055_2471 and KPN_00100) under the criteria supporting E-value cut-off  

<1x10-25 and similarity >70% (Table 4.6). Many of these significantly similar genes 

were found in Enterobacteriaceae members when screening for 32 genera in this 

family using PATRIC database [163] (Table 4.6).  
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Table 4.6: Broad spectrum analysis of lpxC gene.                                                                                                       

Query 

Gene 
Gene Desription Organism Score Expect 

identitiy 

(%) 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Klebsiella pneumoniae 

subsp. Pneumoniae (strain  

ATCC700721/MGH7857

8) 

633 

bits  

(1633) 

0 100 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Citrobacter koseri (strain 

ATCCBAA-

895/CDC4225-

83/SGSC4696) 

618 

bits 

(1594) 

0 96 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Shigella dysenteriae 

serotype 1 (strain Sd197) 

617 

bits 

(1590) 

0 96 

lpxC ECoA

_0134

9 

UDP-3-0-acyl N-

acetylglucosaminedeace

tylase 

Escherichia coli O157:H7 

str.1044 

617 

bits 

(1590) 

0 96 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosamine 

deacetylase 

Shigella flexneri 617 

bits 

(1590) 

0 96 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl]  N-

acetylglucosaminedeace

tylase 

Shigella flexneri 617 

bits 

(1590) 

0 96 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Salmonella typhimurium 

(strain 

14028s/SGSC2262) 

613 

bits 

(1582) 

0 95 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Shigella boydii serotype 4 

(strain Sb227) 

613 

bits 

(1581) 

0 95 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Salmonella typhi 611 

bits 

(1576) 

0 95 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia enterocolitica 

serotype O:8/biotype1B 

(strain 8081) 

595 

bits 

(1534) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia 

pseudotuberculosis  

serotype  IB (strain 

PB1/+) 

595 

bits 

(1533) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia 

pseudotuberculosis  

serotype O:3 (strain 

YPIII) 

595 

bits 

(1533) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia pestis KIMD27 594 

bits 

(1532) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia pestis bv. 

Antiqua (strain  Angola) 

594 

bits 

(1532) 

0 91 
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Query 

Gene 
Gene Desription Organism Score Expect 

identitiy 

(%) 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeac

etylase 

Yersinia 

pseudotuberculosis 

serotype O:1b (strain 

IP31758) 

594 

bits 

(1532) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia pestis (strain 

PestoidesF) 

594 

bits 

(1532) 

0 91 

lpxC lpxC1 UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase1 

Yersinia pestis bv.Antiqua 

(strain  Nepal516) 

594 

bits 

(1532) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Yersinia 

pseudotuberculosis 

594 

bits 

(1532) 

0 91 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Haemophilus influenzae 

(strain PittEE) 

503 

bits 

(1294) 

1,00E-

180 

78 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Pasteurella multocida 502 

bits 

(1293) 

2,00E-

180 

77 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Haemophilus influenzae 

(strain PittGG) 

501 

bits 

(1291) 

3,00E-

180 

78 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Haemophilus influenzae 

(strain 86-028NP) 

501 

bits 

(1289) 

7,00E-

180 

77 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Haemophilus somnus 

(strain 129Pt) 

493 

bits 

(1270) 

5,00E-

177 

75 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Haemophilus somnus 

(strain 2336) 

492 

bits 

(1267) 

1,00E-

176 

75 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Vibrio parahaemolyticus 489 

bits 

(1259) 

3,00E-

175 

75 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Vibrio vulnificus (strain 

YJ016) 

487 

bits 

(1254) 

2,00E-

174 

75 

lpxC lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

Vibrio vulnificus 487 

bits 

(1254) 

2,00E-

174 

75 

 

Table 4.6: Continued. 
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Another gene responsible for lipid A biosynthesis, lpxA (locus tags: 

VK055_2371 and KPN_00194), was detected to be significantly similar to 20 genes 

in distinct pathogens, most of which are members of the Enterobacteriaceae family 

(Table 4.7). 

Table 4.7: Broad spectrum analysis of lpxA gene.   

Query 

Gene 
Gene Description Organism Score Expect 

Identitity 

(%) 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Klebsiella pneumoniae 

subsp.  pneumoniae 

(strain ATCC 700721 / 

MGH 78578) 

533 bits 

(1373) 

0 100 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Shigella dysenteriae 

serotype  1 (strain 

Sd197) 

493 bits 

(1270) 

2,00E-

178 

90 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Shigella flexneri 493 bits 

(1270) 

2,00E-

178 

90 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Shigella flexneri 493 bits 

(1270) 

2,00E-

178 

90 

lpxA ECoA

_0431

4 

Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Escherichia coli 

O157:H7  str. 1044 

491 bits 

(1265) 

1,00E-

177 

90 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Shigella boydii serotype 

4  (strain Sb227) 

489 bits 

(1259) 

1,00E-

176 

90 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Salmonella typhimurium 

(strain  14028s / SGSC 

2262) 

482 bits 

(1241) 

6,00E-

174 

89 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Salmonella typhi 480 bits 

(1236) 

3,00E-

173 

88 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia enterocolitica 

serotype  O:8 / biotype 

1B (strain 8081) 

463 bits 

(1192) 

2,00E-

166 

84 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia pestis KIM 

D27 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia 

pseudotuberculosis  

serotype IB (strain 

PB1/+) 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

Yersinia 

pseudotuberculosis  

451 bits 

(1159) 

2,00E-

161 

81 
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Query 

Gene 
Gene Description Organism Score Expect 

Identitity 

(%) 

acetylglucosamine O-

acyltransferase 

serotype O:3 (strain 

YPIII) 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia pestis bv. 

Antiqua  (strain Angola) 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia 

pseudotuberculosis  

serotype O:1b (strain IP 

31758) 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia pestis (strain 

Pestoides  F) 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia pestis bv. 

Antiqua  (strain 

Nepal516) 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Yersinia 

pseudotuberculosis 

451 bits 

(1159) 

2,00E-

161 

81 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Pasteurella multocida 396 bits 

(1017) 

7,00E-

140 

71 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Haemophilus somnus 

(strain  2336) 

394 bits 

(1011) 

7,00E-

139 

71 

lpxA lpxA Acyl-[acyl-carrier-

protein]--UDP-N-

acetylglucosamine O-

acyltransferase 

Haemophilus somnus 

(strain  129Pt) 

392 bits 

(1008) 

2,00E-

138 

71 

lpxA CKO_

03185 

Putative 

uncharacterized 

protein 

Citrobacter  koseri 

(strain ATCC BAA-895 

/ CDC 4225-83 / 

SGSC4696) 

305 bits 

(781) 

2,00E-

105 

91 

 

Broad spectrum distribution of the genes responsible for the synthesis of  heptose 

precursors of LPS including gmhA/lpcA (locus tags: VK055_2330 and KPN_00236) 

and hldD/rfaA (locus tags: VK055_3508 and KPN_03963) were also investigated.  

The gmhA/lpcA gene of the K. pneumoniae strain MGH 78578/KPPR1 was 

found to be homologous with the genes in nine different pathogenic genera and a total 

of 30 hits (by excluding the K. pneumoniae strain MGH 78578) were determined via 

the comparison the amino acid sequences against the proteomes of different pathogens 

(Table 4.8).  

Table 4.7: Continued. 
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Table 4.8: Broad spectrum analysis of gmhA/lpcA gene.  

Query 

Gene 
Gene Description Organism Score Expect 

Identitiy 

(%) 

gmhA/ 

lpcA 

 

gmhA Phosphohep

tose 

isomerase 

Klebsiella pneumoniae  subsp. 

pneumoniae (strain ATCC 

700721 / MGH 78578) 

395 bits 

(1016) 

6,00E-

142 

100 

gmhA/ 

lpcA 

CKO_0

2963 

Putative 

uncharacteri

zed protein 

Citrobacter  koseri (strain 

ATCC BAA-895 / CDC 4225-

83 / SGSC4696) 

375 bits 

(962) 

1,00E-

133 

94 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Salmonella  typhimurium 

(strain 14028s / SGSC 2262) 

372 bits 

(955) 

1,00E-

132 

93 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Salmonella typhi 372 bits 

(955) 

1,00E-

132 

93 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pestis  KIM D27 368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

YPTS_0

926 

Phosphohep

tose 

isomerase 

Yersinia pseudotuberculosis  

serotype IB (strain PB1/+) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pseudotuberculosis  

serotype O:3 (strain YPIII) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pestis  bv. Antiqua 

(strain Angola) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pseudotuberculosis  

serotype O:1b (strain IP 31758) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pestis  (strain 

Pestoides F) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pestis  bv. Antiqua 

(strain Nepal516) 

368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia pseudotuberculosis 368 bits 

(945) 

4,00E-

131 

92 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Yersinia enterocolitica  

serotype O:8 / biotype 1B 

(strain 8081) 

366 bits 

(940) 

2,00E-

130 

91 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Shigella boydii  serotype 4 

(strain Sb227) 

362 bits 

(929) 

1,00E-

128 

91 

gmhA/ 

lpcA 

ECoA_0

4833 

Phosphohep

tose 

isomerase 1 

Escherichia  coli O157:H7 str. 

1044 

362 bits 

(929) 

1,00E-

128 

91 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Shigella flexneri 362 bits 

(929) 

1,00E-

128 

91 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Shigella dysenteriae  serotype 

1 (strain Sd197) 

356 bits 

(913) 

3,00E-

126 

90 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Aeromonas hydrophila  subsp. 

hydrophila (strain ATCC 7966 

/ NCIB 9240) 

332 bits 

(851) 

9,00E-

117 

84 
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Query 

Gene 
Gene Description Organism Score Expect 

Identitiy 

(%) 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Shigella dysenteriae  serotype 

1 (strain Sd197) 

356 bits 

(913) 

3,00E-

126 

90 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Aeromonas hydrophila  subsp. 

hydrophila (strain ATCC 7966 

/ NCIB 9240) 

332 bits 

(851) 

9,00E-

117 

84 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Pasteurella  multocida 324 bits 

(831) 

1,00E-

113 

80 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Haemophilus  influenzae (strain 

PittGG) 

320 bits 

(820) 

4,00E-

112 

80 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Haemophilus  somnus (strain 

2336) 

320 bits 

(820) 

4,00E-

112 

80 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Haemophilus  influenzae (strain 

86-028NP) 

319 bits 

(817) 

1,00E-

111 

79 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Haemophilus  influenzae (strain 

PittEE) 

318 bits 

(815) 

2,00E-

111 

79 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Haemophilus  ducreyi 318 bits 

(814) 

4,00E-

111 

79 

gmhA/ 

lpcA 

lpcA Phosphohep

tose 

isomerase 

Haemophilus  somnus (strain 

129Pt) 

316 bits 

(810) 

1,00E-

110 

81 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Vibrio parahaemolyticus 303 bits 

(776) 

2,00E-

105 

80 

gmhA/ 

lpcA 

VV2518 Phosphohep

tose 

isomerase 

Vibrio vulnificus  (strain 

YJ016) 

303 bits 

(775) 

3,00E-

105 

81 

gmhA/ 

lpcA 

gmhA Phosphohep

tose 

isomerase 

Vibrio vulnificus 303 bits 

(775) 

3,00E-

105 

81 

 

Similarly, broad spectrum analysis of hldD/rfaD gene was performed to 

understand whether this gene exhibits a broad distribution among the pathogens. It 

revealed that 28 hits from nine different pathogenic genera (Salmonella, Shigella, 

Citrobacter, Haemophilus, Vibrio, Yersinia, Aeromonas, Escherichia and Pasteurella) 

apart from Klebsiella. All significant matches are listed in Table 4.9.  

 

 

 

Table 4.8: Continued.  
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Table 4.9: Broad spectrum analysis of hldD/rfaD gene.   

Query 

Gene 
Gene Description Organism Score Expect 

Identity 

(%) 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Klebsiella pneumoniae subsp. 

pneumoniae (strain ATCC 

700721  / MGH 78578) 

642 bits 

(1656) 

0 100 

rfaD/ 

hldD 

ECoA

_0543

7 

ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Escherichia coli O157:H7 str. 

1044 

627 bits 

(1618) 

0 97 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Shigella dysenteriae serotype 

1 (strain Sd197) 

625 bits 

(1613) 

0 97 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Shigella boydii serotype 4 

(strain Sb227) 

625 bits 

(1612) 

0 97 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Shigella flexneri 625 bits 

(1612) 

0 97 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Shigella flexneri 625 bits 

(1612) 

0 97 

rfaD/ 

hldD 

rfaD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Salmonella typhimurium 

(strain 14028s / SGSC 2262) 

620 bits 

(1598) 

0 96 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Salmonella typhi 620 bits 

(1598) 

0 96 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Citrobacter koseri (strain 

ATCC BAA-895 / CDC 

4225-83 /  SGSC4696) 

619 bits 

(1595) 

0 95 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia enterocolitica 

serotype O:8 / biotype 1B 

(strain  8081) 

547 bits 

(1410) 

0 83 

rfaD/ 

hldD 

rfaD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pestis KIM D27 546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pseudotuberculosis 

serotype IB (strain PB1/+) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pseudotuberculosis 

serotype O:3 (strain YPIII) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pestis bv. Antiqua 

(strain Angola) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pseudotuberculosis 

serotype O:1b (strain IP 

31758) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pestis (strain 

Pestoides F) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pestis bv. Antiqua 

(strain Nepal516) 

546 bits 

(1406) 

0 83 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Yersinia pseudotuberculosis 546 bits 

(1406) 

0 83 
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Query 

Gene 
Gene Description Organism Score Expect 

Identity 

(%) 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus influenzae 

(strain 86-028NP) 

508 bits 

(1309) 

0 79 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus influenzae 

(strain PittGG) 

506 bits 

(1304) 

0 78 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus somnus (strain 

2336) 

487 bits 

(1253) 

3E-174 75 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus somnus (strain 

129Pt) 

487 bits 

(1253) 

3E-174 75 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus ducreyi 486 bits 

(1252) 

5E-174 74 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Vibrio parahaemolyticus 473 bits 

(1218) 

8E-169 75 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Pasteurella multocida 472 bits 

(1215) 

2E-168 75 

rfaD/ 

hldD 

CGSH

iEE_0

6480 

ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Haemophilus influenzae 

(strain PittEE) 

471 bits 

(1212) 

2E-168 77 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Aeromonas hydrophila subsp. 

hydrophila (strain ATCC 

7966  / NCIB 9240) 

472 bits 

(1214) 

4E-168 71 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Vibrio vulnificus 465 bits 

(1197) 

1E-165 74 

rfaD/ 

hldD 

hldD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

Vibrio vulnificus (strain 

YJ016) 

463 bits 

(1192) 

8E-165 74 

 

Lastly, homologues of kdsA gene (locus tags: VK055_0220 and KPN_02230) 

were investigated against 181 pathogenic bacteria specified in PBIT web server. This 

gene was found in ten different pathogenic genera (Salmonella, Shigella, Citrobacter, 

Haemophilus, Vibrio, Yersinia, Aeromonas, Escherichia, Neisseria and Pasteurella) 

in addition to Klebsiella. A total of 31 hits were identified for this gene. They are 

presented in Table 4.10.  

In summary, non-homologous, essential genes predicted in this study have been 

identified in a number of bacteria. Therefore, they may be considered good potential 

targets for drug by facilitating design of broad-spectrum drugs. 

 

 

 

Table 4.9: Continued.  
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Table 4.10: Broad spectrum analysis of ksdA gene. 

Query 

Gene 

Marched 

Gene 
Description Organism Score Expect 

Identity 

(%) 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Klebsiella pneumoniae 

subsp. pneumoniae 

(strain ATCC 700721  / 

MGH 78578) 

580 

bits 

(1495) 

0 100 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Shigella dysenteriae 

serotype 1 (strain 

Sd197) 

556 

bits 

(1434) 

0 95 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Shigella boydii serotype 

4 (strain Sb227) 

556 

bits 

(1434) 

0 95 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Shigella flexneri 556 

bits 

(1434) 

0 95 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Shigella flexneri 556 

bits 

(1434) 

0 95 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Citrobacter koseri 

(strain ATCC BAA-895 

/ CDC 4225-83 /  

SGSC4696) 

556 

bits 

(1433) 

0 96 

kdsA ECoA_02

867 

2-Keto-3-deoxy-D-

manno-octulosonate-

8-phosphate synthase 

Escherichia coli 

O157:H7 str. 1044 

556 

bits 

(1432) 

0 95 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Salmonella typhimurium 

(strain 14028s / SGSC 

2262) 

542 

bits 

(1397) 

0 94 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Salmonella typhi 542 

bits 

(1397) 

0 94 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia pestis KIM 

D27 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia 

pseudotuberculosis 

serotype IB (strain 

PB1/+) 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia 

pseudotuberculosis 

serotype O:3 (strain 

YPIII) 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia pestis bv. 

Antiqua (strain Angola) 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia 

pseudotuberculosis 

serotype O:1b (strain IP 

31758) 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia pestis (strain 

Pestoides F) 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia pestis bv. 

Antiqua (strain 

Nepal516) 

533 

bits 

(1372) 

0 91 
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Query 

Gene 

Marched 

Gene 
Description Organism Score Expect 

Identity 

(%) 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia 

pseudotuberculosis 

533 

bits 

(1372) 

0 91 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Yersinia enterocolitica 

serotype O:8 / biotype 

1B (strain  8081) 

530 

bits 

(1365) 

0 90 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus influenzae 

(strain 86-028NP) 

497 

bits 

(1279) 

6,00E-

179 

83 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus influenzae 

(strain PittEE) 

494 

bits 

(1271) 

9,00E-

178 

83 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus influenzae 

(strain PittGG) 

493 

bits 

(1269) 

1,00E-

177 

83 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Vibrio vulnificus (strain 

YJ016) 

490 

bits 

(1261) 

3,00E-

176 

84 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Vibrio vulnificus 490 

bits 

(1261) 

3,00E-

176 

84 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Vibrio 

parahaemolyticus 

489 

bits 

(1259) 

6,00E-

176 

83 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus somnus 

(strain 129Pt) 

488 

bits 

(1256) 

2,00E-

175 

79 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus somnus 

(strain 2336) 

488 

bits 

(1255) 

2,00E-

175 

79 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Haemophilus ducreyi 483 

bits 

(1244) 

1,00E-

173 

79 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Pasteurella multocida 481 

bits 

(1237) 

1,00E-

172 

80 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Aeromonas hydrophila 

subsp. hydrophila (strain 

ATCC 7966  / NCIB 

9240) 

471 

bits 

(1211) 

1,00E-

168 

79 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Neisseria meningitidis 

serogroup C (strain 

053442) 

402 

bits 

(1033) 

1,00E-

141 

71 

kdsA kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

Neisseria gonorrhoeae 

(strain NCCP11945) 

402 

bits 

(1033) 

1,00E-

141 

71 

4.4. Gene-Centric Approach to Identify Drug Targets Using 

the Updated Biomass Reaction 

Prediction of single-gene essentiality is directly related to the biomass definition. 

Thereby, the biomass equation of MGH 78578 strain was refined by adding universally 

Table 4.10: Continued. 
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essential cofactors of prokaryotes (NAD, NADH, NADP, NADP, FAD, CoA, FMN, 

PYDX5P and SAM/AMET) to increase the accuracy of the model and to extend the 

putative drug target list. Generation and integration processes of the biomass equation 

are summarized in the section 3.3.4.  

Investigation of the essential genes of MGH 788578 strain through SM 

simulation by using the updated biomass equation has resulted in 102 essential genes 

but only 61 out of these genes were found to be non-human homologues. These non-

homologous genes were compared with 42 non-homologous genes predicted using 

original biomass equation (section 4.3.1) and 19 new genes (nadD, ribC, aceK, panD, 

ppnK, ribB, ribH, panB, ribF, dxs, nadE, coaD, coaA, dfp, pdxB, nadA, ribA, panC 

and ribD) were identified. Any virulence-related genes were not determined among 

these 19 genes. Then, these genes were screened in terms of druggability. 11 genes 

listed in Table 4.11 were detected as druggable. All of them encode cytosolic proteins. 

That is any vaccine candidates were not identified.  

Table 4.11: Evaluation of druggability properties of the putative targets and drug 

repositioning for an additional target list.                                                                                                      

Tag ID 
Gene 

Name 

Number 

of Drug 
Interacting Drug Drug Group 

KPN_04352 coaA 3 Pantothenic acid approved, 

nutraceutical, 

vet_approved 

      Coenzyme A investigational, 

nutraceutical 

      Phosphoaminophosphonic Acid-

Adenylate Ester 

experimental 

KPN_03974 coaD 5 Coenzyme A investigational, 

nutraceutical 

      Dephospho Coenzyme A experimental 

      4'-Phosphopantetheine experimental 

      4'-Phosphopantetheine experimental 

      4'-Phosphopantetheine experimental 

KPN_03979 dfp 2 Cytidine-5'-Triphosphate experimental 

      Cytidine-5'-Monophosphate experimental 

KPN_00671 nadD 2 Citric Acid approved, 

nutraceutical, 

vet_approved 

      Deamido-Nad+ experimental 

KPN_01228 nadE 6 Gamma-Arsono-Beta, Gamma-

Methyleneadenosine-5'-Diphosphate 

experimental 

      

Deamido-Nad+ experimental 

Pyrophosphoric acid 

 

approved, 

experimental 
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Table 4.11: Continued. 
 

Tag ID 
Gene 

Name 

Number 

of Drug 
Interacting Drug Drug Group 

      

Alpha,Beta-Methyleneadenosine-5'-

Triphosphate 

experimental 

      Deamido-Nad+ experimental 

      Gentamicin approved, 

vet_approved 

KPN_00141 panB 2 2-Dehydropantoate experimental 

      Alpha-ketoisovalerate experimental 

KPN_00140 panC 5 Tris-Hydroxymethyl-Methyl-

Ammonium 

experimental 

      2,4-Dihydroxy-3,3-Dimethyl-

Butyrate 

experimental 

      Alpha,Beta-Methyleneadenosine-5'-

Triphosphate 

experimental 

      Pantoyl Adenylate experimental 

      Beta-Alanine experimental 

KPN_00139 panD 2 Malonic acid experimental 

      S-oxy-L-cysteine experimental 

KPN_02000 ribC 1 Riboflavin approved, 

investigational, 

nutraceutical, 

vet_approved 

KPN_00020 ribF 3 Flavin mononucleotide approved, 

investigational 

      Citric Acid approved, 

nutraceutical, 

vet_approved 

      7,8-dimethylalloxazine experimental 

KPN_00367 ribH 14 5-Nitro-6-Ribityl-Amino-2,4(1h,3h)-

Pyrimidinedione 

experimental 

      6,7-Dioxo-5h-8-

Ribitylaminolumazine 

experimental 

      5-Nitroso-6-Ribityl-Amino-

2,4(1h,3h)-Pyrimidinedione 

 

experimental 

      3-(7-hydroxy-8-ribityllumazine-6-yl) 

propionic acid 

experimental 

      Dithioerythritol experimental 

      4-{2,6,8-Trioxo-9-[(2R,3S,4R)-

2,3,4,5-Tetrahydroxypentyl]-

1,2,3,6,8,9-Hexahydro-7h-Purin-7-

Yl}Butyl Dihydrogen Phosphate 

 

experimental 

      D-1,4-dithiothreitol experimental 

      3-{2,6,8-trioxo-9-[(2S,3S,4R)-

2,3,4,5-tetrahydroxypentyl]-

1,2,3,6,8,9-hexahydro-7H-purin-7-

Yl}propyl dihydrogen phosphate 

 

experimental 

      (4S,5S)-1,2-dithiane-4,5-diol experimental 
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Table 4.11: Continued. 
 

Tag ID 
Gene 

Name 

Number 

of Drug 
Interacting Drug Drug Group 

      4-{2,6,8-Trioxo-9-[(2S,3R,4R)-

2,3,4,5-Tetrahydroxypentyl]-

1,2,3,6,8,9-Hexahydro-7h-Purin-7-

Yl}Butyl Dihydrogen Phosphate 

 

experimental 

      3-{2,6,8-trioxo-9-[(2R,3S,4R)-

2,3,4,5-tetrahydroxypentyl]-

1,2,3,6,8,9-hexahydro-7H-purin-7-

Yl}propyl dihydrogen phosphate 

 

experimental 

      3-{2,6,8-trioxo-9-[(2S,3R,4R)-

2,3,4,5-tetrahydroxypentyl]-

1,2,3,6,8,9-hexahydro-7H-purin-7-

Yl}propyl dihydrogen phosphate 

 

experimental 

      3-{2,6,8-trioxo-9-[(2R,3R,4R)-

2,3,4,5-tetrahydroxypentyl]-

1,2,3,6,8,9-hexahydro-7H-purin-7-

Yl}propyl dihydrogen phosphate 

 

experimental 

      4-(6-CHLORO-2,4-DIOXO-1,2,3,4-

TETRAHYDROPYRIMIDIN-5-YL) 

BUTYL PHOSPHATE 

experimental 

4.5. Identification of Essential Metabolites for Metabolite-

Centric Drug Target Discovery 

Essential metabolites were identified by following the procedure described in 

the section 3.5. These simulations were performed in the host-mimicking media 

including SM and HBF. 38 essential metabolites were identified for the growth 

simulations in SM for the GEM of iYL1228 while 31 essential metabolites were 

determined for iKp1289. Growth simulation in HBF medium revealed 20 essential 

metabolites for iYL1228 and 18 essential metabolites  for iKp1289, respectively.  

To determine more efficient drug-targets, these metabolites were filtered based 

on presence of them either in the human metabolism or in the reactions catalyzed by 

human-homologous enzymes. Connectivity was also used as the another parameter in 

drug target prioritization. 
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4.6. Drug Target Prioritization for the Metabolite-Centric 

Candidates 

One of the most significant processes in the drug target identification pipeline is 

to avoid possible side effects in the host and to provide an optimal efficacy in 

treatment. Two main routes suggested by Kim and colleagues (2010) were followed 

to eliminate the targets which may contribute to the toxic side effects. Firstly, a 

common metabolite list was compiled using HumanCyc database and two GEMs 

(Recon 1 and Recon 2). The essential metabolites were screened against this list and 

common metabolites were eliminated. A further filtering was performed to eliminate 

the currency metabolites. Thus, the metabolites which are not found in the human 

metabolism were considered in the study. Secondly, homologous gene lists were 

compiled for both models to eliminate the metabolites associated with the reactions 

catalyzed by human-homologous enzymes. Thus, the metabolites take part in the 

reactions catalyzed by only non-homologous genes that were selected.  

Kim and colleagues (2010) suggested that targeting of many outgoing reactions 

simultaneously may delay the resistance development. However, they did not consider 

essentiality of the reactions to be blocked whereas inhibition of many essential 

reactions is pleusible to damage the metabolism of a pathogen more effectively. 

Furthermore, all nonessential reactions associated with an essential metabolite must 

be blocked simultaneously to induce cell death. Therefore, targeting of a single non-

essential reaction is not sufficient to completely suppress the bacterial growth. In this 

context, any mutations in an enzyme catalyzing one of these nonessential reactions 

may cause loss of this target’s effect. On the other hand, inhibition of a single essential 

reaction prevents survival of the pathogen per se. Moreover, it was shown that essential 

genes were more conserved in many bacteria by a comparative study [164]. Thus, 

targeting of the essential reactions may contribute to a lower mutation rate. Therefore, 

essentiality may be crucial as much as connectivity. Herein, the metabolites involved 

in the essential outgoing reactions were taken into consideration differently from 

EMFilter approach [165].  

Filtering process resulted in the prediction of a single essential metabolite known 

as the undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-ala-D-

glu meso-2,6-diaminopimeloyl-D-ala-D-ala (uaagmda). This metabolite is not 

involved in the human metabolism. It is linked with 3 reactions in the pathogen 
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metabolism: (1) murein polymerizing transglycosylase reaction, (2) murein 

polymerizing transglycosylase 2 (three linked units) reaction and (3) UDP-N-

acetylglucosamine-N-acetylmuramyl-(pentapeptide)pyrophosphoryl-undecaprenol N-

acetylglucosamine transferase reaction. First two reactions consumed this coumpound 

as the last reaction facilitates production of the metabolite. Of these reactions, the first 

reaction was predicted as essential in SM and HBF simulations. A total of four genes 

(mrcB, pbpC, mrcA and murG) were detected associated with the outgoing reactions. 

Three of  three of them (mrcB (penicillin-binding protein 1b), pbpC (penicillin binding 

protein 1C) and mrcA (bifunctional penicillin-binding protein 1a: transglycosylase/ 

transpeptidase)) are involved in the first essential outgoing reaction. 
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5. DISCUSSION 

Conventional medical treatment approaches are insufficient to handle resistant 

Klebsiella pneumoniae strains, being an etiological agent of serious life-threatening 

nosocomial infections. Therefore, more comprehensive approaches must be 

introduced to decipher the complicated cellular pathways of the pathogen and 

eventually to elucidate new drug targets for the treatment of Klebsiella-mediated 

infections. Constraint-based analysis of the GEMs representing whole metabolism of 

the pathogens is a quite promising approach from this perspective.  

The focus of the thesis is analysis of the GEMs of two strains of K. pneumoniae 

(MGH 78578 and KPPR1 strains) to reveal putative drug targets. To this end, these 

models were validated as discussed in section 4.1 in the first step. It was revealed that 

K. pneumoniae KPPR1 can reach higher growth rates in comparison with the MGH 

78578 strain for the same growth condition. Closer inspection of the growth rates 

predicted using the models revealed a bit higher uptake rates of some metabolites (e.g., 

iron) by the KPPR1 strain. Thus, the higher proliferation rate of KPPR1 may be linked 

to uptake of some compounds in a more efficient manner. This hypothesis seems 

plausible considering that more virulent strains can adapt to host environment better 

in order to exploit host sources more efficiently. Therefore, the bacterial pathogenicity 

is directly correlated with a proficient metabolism. This situation is also linked to the 

term of ‘nutritional virulence’ that refers to the adaptation strategy to provide the 

assimilation of the host sources efficiently [166]. As an example of this phenomenon, 

Klebsiella can utilize the iron by gaining access to this metabolite using small iron-

scavenging molecules (e.g., siderophores). Thus, some virulence-related properties of 

the pathogens may support the bacterial growth by triggering the adaptation into the 

hostile environment. In other words, the degree of pathogenicity can be associated with 

efficient bacterial growth.  

Comparison of the growth rates were followed to the identify the essential genes, 

and different approaches (an in-house algorithm developed in this study, a function 

under COBRA Toolbox and the Fast-SL algorithm) were used in this process. Slightly 

different results were obtained in simulations through different gene deletion 

algorithms. As a result of growth simulations in iYL1228, a total of 2 false-positive 
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and 1 false-negative results were detected by the COBRA function, and 1 false-

positive result was found using Fast-SL algorithm.  

Homology analysis was performed to eliminate the Klebsiella genes manifesting 

by a significant similarity in the amino acid sequence with human after the essential 

genes were identified via different simulations. Thus, only protein-coding genes whose 

homologues are absent on the human genome were selected. In this regard, the 

sequence similarity search for 30% amino acid identity was used to reveal human-

homologues. It should be noted that the higher conservation of the protein structures 

(e.g., the secondary structure) than the sequence was reported. Therefore, comparison 

of the secondary structures can be useful particularly to determine the related proteins 

with divergent sequences (smaller than 30% similarity). Comparison of only protein 

sequences may fail to identify the related proteins with 20%–30% (or lower) identity 

[167]. This phenomenon reveals that the sequence similarity (for cut-off of 30%) does 

not guarantee homology.  

Many of the essential genes were found to share no homology with the human 

in this study. Thus, their products are more conventient to be drug targets. On the other 

hand, the genes sharing lower than 30% similarity should be evaluated further using 

their structure information.. A list of the non-homologous essential genes of MGH 

78578 strain determined for the 30% similarity and lack of similarity is given in Table 

5.1. 

 

Table 5.1: Comparison of the non-homologous essential genes of MGH 78578 based 

on different sequence similarity criteria. 

   

SM Simulation HBF Simulation 

Gene Description 30% 

similarity 

No similarity 30% 

similarity 

No similarity 

      
fabA 3-hydroxydecanoyl-ACP 

dehydratase 

KPN_00983 - - - 

accA acetyl-CoA carboxylase 

alpha subunit 

KPN_00198 - KPN_00198 - 

accD acetyl-CoA carboxylase 

beta subunit 

KPN_02706 - KPN_02706 - 

accB acetyl-CoA carboxylase KPN_03664 KPN_03664 KPN_03664 KPN_03664 

purB adenylosuccinate lyase KPN_01139 KPN_01139 - - 

rfaD ADP-L-glycero-D-

manno-heptose-6-

epimerase 

KPN_03963 - KPN_03963 - 

purK phosphoribosylaminoimid

azole carboxylase 

KPN_00477 KPN_00477 - - 
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Table 5.1: Continued. 
 

  SM Simulation HBF Simulation 

Gene Description 30% 

similarity 

No similarity 30% 

similarity 

No similarity 

      
purE phosphoribosylaminoimid

azole carboxylase 

catalytic subunit 

KPN_00478 - - - 

asd aspartate-semialdehyde 

dehydrogenase 

KPN_03799 KPN_03799 KPN_03799 KPN_03799 

pyrI aspartate 

carbamoyltransferase 

regulatory subunit 

KPN_04656 KPN_04656 - - 

dapF diaminopimelate 

epimerase 

KPN_04308 KPN_04308 KPN_04308 KPN_04308 

dapB dihydrodipicolinate 

reductase 

KPN_00039 KPN_00039 KPN_00039 KPN_00039 

dapA dihydrodipicolinate 

synthase 

KPN_02812 - KPN_02812 - 

pyrC dihydroorotase KPN_01074 - - - 

tmk thymidylate kinase KPN_01096 KPN_01096 KPN_01096 KPN_01096 

fabI enoyl-(acyl carrier 

protein) reductase 

KPN_01284 - - - 

glmU bifunctional N-

acetylglucosamine-1-

phosphate 

uridyltransferase/glucosa

mine-1-phosphate 

acetyltransferase 

KPN_04135 KPN_04135 KPN_04135 KPN_04135 

uge uridine diphosphate 

galacturonate 4-epimerase 

KPN_02492 - KPN_02492 - 

murI glutamate racemase KPN_04256 KPN_04256 KPN_04256 KPN_04256 

gmhB hypothetical protein KPN_00214 KPN_00214 KPN_00214 KPN_00214 

thrB homoserine kinase KPN_00003 KPN_00003 KPN_00003 KPN_00003 

kdsA 2-dehydro-3-

deoxyphosphooctonate 

aldolase 

KPN_02230 KPN_02230 KPN_02230 KPN_02230 

lpxB lipid-A-disaccharide 

synthase 

KPN_00195 KPN_00195 KPN_00195 KPN_00195 

pyrF orotidine 5'-phosphate 

decarboxylase 

KPN_01277 KPN_01277 - - 

pyrE orotate 

phosphoribosyltransferase 

KPN_03983 - - - 

mraY phospho-N-

acetylmuramoyl-

pentapeptide-transferase 

KPN_00091 KPN_00091 KPN_00091 KPN_00091 

pssA phosphatidylserine 

synthase 

KPN_02908 KPN_02908 KPN_02908 KPN_02908 

gmhA phosphoheptose 

isomerase 

KPN_00236 KPN_00236 KPN_00236 KPN_00236 

lpxK tetraacyldisaccharide 4'-

kinase 

KPN_00942 KPN_00942 KPN_00942 KPN_00942 

dapD 2,3,4,5-

tetrahydropyridine-2-

carboxylate N-

succinyltransferase 

KPN_00179 KPN_00179 KPN_00179 KPN_00179 
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Table 5.1: Continued. 
 

  SM Simulation HBF Simulation 

Gene Description 30% 

similarity 

No similarity 30% 

similarity 

No similarity 

      
lpxD UDP-N-

acetylmuramoylalanyl-D-

glutamate--2,6-

diaminopimelate ligase 

KPN_00192 - KPN_00192 - 

murE UDP-N-

acetylglucosamine 

acyltransferase 

KPN_00089 KPN_00089 KPN_00089 KPN_00089 

lpxA UDP-N-

acetylglucosamine 1-

carboxyvinyltransferase 

KPN_00194 KPN_00194 KPN_00194 KPN_00194 

murA N-acetylglucosaminyl 

transferase 

KPN_03599 KPN_03599 KPN_03599 KPN_03599 

murG UDP-N-acetylmuramoyl-

L-alanyl-D-glutamate 

synthetase 

KPN_00094 - KPN_00094 - 

murD UDP-N-acetylmuramate--

L-alanine ligase 

KPN_00092 KPN_00092 KPN_00092 KPN_00092 

murC UDP-N-

acetylenolpyruvoylglucos

amine reductase 

KPN_00095 KPN_00095 KPN_00095 KPN_00095 

murB UDP-glucose 

dehydrogenase 

KPN_04350 KPN_04350 KPN_04350 KPN_04350 

ugd D-alanine:D-alanine-

adding enzyme 

KPN_02493 - KPN_02493 - 

murF UDP-3-O-acyl N-

acetylglucosamine 

deacetylase 

KPN_00090 KPN_00090 KPN_00090 KPN_00090 

lpxC UDP-2,3-

diacylglucosamine 

hydrolase 

KPN_00100 KPN_00100 KPN_00100 KPN_00100 

ybbF 
 

KPN_00480 KPN_00480 KPN_00480 KPN_00480 

      
 

The non-homologous essential genes of the KPPR1 strain identified for the 30% 

and 0% similarity criteria. They are listed in Table 5.2. 

 

Table 5.2: Comparison of the non-homologous essential genes of KPPR1 based on 

different sequence similarity criteria. 

 

  SM Simulation HBF Simulation 

Gene Description 30% similarity 

No 

similarity 30% similarity No similarity 

      
fabA beta-hydroxyacyl-(acyl-

carrier-protein) 

dehydratase FabA  

VK055_1504 VK055_1504 - - 

accA acetyl-CoA carboxylase, 

carboxyl transferase, 

alpha subunit  

VK055_2367 - VK055_2367 - 
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Table 5.2: Continued. 
 

  SM Simulation HBF Simulation 

Gene Description 30% similarity No similarity 30% similarity No similarity 

      
accB acetyl-CoA carboxylase, 

biotin carboxyl carrier 

protein  

VK055_3812 VK055_3812 VK055_3812 VK055_3812 

accD acetyl-CoA carboxylase, 

carboxyl transferase, 

beta subunit  

VK055_4807 - VK055_4807 - 

purB adenylosuccinate lyase  VK055_1323 VK055_1323 - - 

rfaD ADP-glyceromanno-

heptose 6-epimerase  

VK055_3508 - VK055_3508 - 

- 1-acylglycerol-3-

phosphate O-

acyltransferases domain 

protein  

VK055_4038 - VK055_4038 - 

purK phosphoribosylaminoim

idazole carboxylase, 

ATPase subunit  

VK055_2070 VK055_2070 - - 

purE phosphoribosylaminoim

idazole carboxylase 

catalytic subunit       

VK055_2069 - - - 

asd2 aspartate-semialdehyde 

dehydrogenase  

VK055_3672 VK055_3672 VK055_3672 VK055_3672 

pyrI aspartate 

carbamoyltransferase, 

regulatory subunit  

VK055_2808 VK055_2808 - - 

dapF diaminopimelate 

epimerase  

VK055_3167 VK055_3167 VK055_3167 VK055_3167 

dapB dihydrodipicolinate 

reductase  

VK055_2536 VK055_2536 VK055_2536 VK055_2536 

dapA dihydrodipicolinate 

synthase  

VK055_4699 - VK055_4699 - 

pyrC dihydroorotase, 

homodimeric type  

VK055_1392 - - - 

tmk thymidylate kinase  VK055_1369 VK055_1369 VK055_1369 VK055_1369 

fabI NADH-dependent 

enoyl-(acyl carrier 

protein) reductase  

VK055_1165 - - - 

glmU UDP-N-

acetylglucosamine 

diphosphorylase/glucosa

mine-1-phosphate N-

acetyltransferase  

VK055_3340 VK055_3340 VK055_3340 VK055_3340 

- polysaccharide 

biosynthesis family 

protein  

VK055_5030 - VK055_5030 - 

murI glutamate racemase  VK055_3220 VK055_3220 VK055_3220 VK055_3220 

yaeD D,D-heptose 1,7-

bisphosphate 

phosphatase  

VK055_2352 VK055_2352 VK055_2352 VK055_2352 

kdsA 3-deoxy-8-

phosphooctulonate 

synthase  

VK055_0220 VK055_0220 VK055_0220 VK055_0220 

lpxB lipid-A-disaccharide 

synthase  

VK055_2370 VK055_2370 VK055_2370 VK055_2370 
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Table 5.2: Continued. 
 

  SM Simulation HBF Simulation 

Gene Description 30% similarity No similarity 30% similarity No similarity 

      
fabD malonyl CoA-acyl 

carrier protein 

transacylase  

VK055_1375 VK055_1375 VK055_1375 VK055_1375 

pyrF orotidine 5prime-

phosphate 

decarboxylase         

VK055_1174 VK055_1174 - - 

pyrE orotate 

phosphoribosyltransfera

se        

VK055_3486 - - - 

mraY phospho-N-

acetylmuramoyl-

pentapeptide- 

transferase  

VK055_2481 VK055_2481 VK055_2481 VK055_2481 

pssA CDP-diacylglycerol--

serine O-

phosphatidyltransferase  

VK055_4593 VK055_4593 VK055_4593 VK055_4593 

gmhA phosphoheptose 

isomerase  

VK055_2330 VK055_2330 VK055_2330 VK055_2330 

lpxK tetraacyldisaccharide 4'-

kinase  

VK055_1542 VK055_1542 VK055_1542 VK055_1542 

dapD 2,3,4,5-

tetrahydropyridine-2,6-

dicarboxylate N-

succinyltransferase  

VK055_2386 VK055_2386 VK055_2386 VK055_2386 

lpxD UDP-3-O-[3-

hydroxymyristoyl] 

glucosamine N-

acyltransferase 

VK055_2373 - VK055_2373 - 

- UDP-N-acetylmuramyl 

tripeptide synthase  

VK055_2483 VK055_2483 VK055_2483 VK055_2483 

lpxA acyl-[acyl-carrier-

protein]-UDP-N- 

acetylglucosamine O-

acyltransferase 

VK055_2371 VK055_2371 VK055_2371 VK055_2371 

murA UDP-N-

acetylglucosamine 1-

carboxyvinyltransferase  

VK055_3878 VK055_3878 VK055_3878 VK055_3878 

murG undecaprenyldiphospho-

muramoylpentapeptide 

beta-N-

acetylglucosaminyltrans

ferase  

VK055_2477 - VK055_2477 - 

murD UDP-N-

acetylmuramoylalanine-

-D-glutamate ligase  

VK055_2480 VK055_2480 VK055_2480 VK055_2480 

murC UDP-N-

acetylmuramate--

alanine ligase  

VK055_2476 VK055_2476 VK055_2476 VK055_2476 

murB UDP-N-

acetylenolpyruvoylgluc

osamine reductase  

VK055_3124 VK055_3124 VK055_3124 VK055_3124 

ugd nucleotide sugar 

dehydrogenase family 

protein  

VK055_5029 - VK055_5029 - 
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Table 5.2: Continued. 
 

  SM Simulation HBF Simulation 

Gene Description 30% similarity No similarity 30% similarity No similarity 

      
- UDP-MurNAc-L-Ala-

D-Glu-L-Lys:D-Ala-D-

Ala ligase  

VK055_2482 VK055_2482 VK055_2482 VK055_2482 

lpxC UDP-3-O-[3-

hydroxymyristoyl] N-

acetylglucosaminedeace

tylase 

VK055_2471 VK055_2471 VK055_2471 VK055_2471 

lpxH UDP-2,3-

diacylglucosamine 

hydrolase  

VK055_2067 VK055_2067 VK055_2067 VK055_2067 

      
 

Another filtering strategy is to reveal subcellular localizations of proteins. The 

protein locations were investigated through three prediction tools (CELLO, PSORTb 

and iLoc-Gneg), literature survey and UniProt database. It was found that the products 

of all predicted essential, non-homologous genes are localized in either the cytoplasm 

or the inner membrane. It indicates that these gene products may be putative drug 

targets (but not vaccine candidates). Another approach in the drug target prioritization 

process is to investigate presence of any defined or putative antibiotic resistance genes 

within the non-homologous gene list. ARG-ANNOT database was used in the 

screening process. A single gene (i.e., glmU) was identified as a potential resistance-

related gene for the aforementioned cut-off value. N-Acetylglucosamine-1-phosphate 

uridyltransferase (GlmU) is a bifunctional enzyme with uridyltransferase and 

acetyltransferase activities in both gram-positive and gram-negative bacteria [153, 

154]. It is crucial in peptidoglycan and lipopolysaccharide synthesis [155]. Thus, glmU 

gene is essential for the membrane integrity, supporting that it may be a potential drug 

target. On the other hand, a direct relationship was not detected between the predicted 

antibiotics (macrolide-lincosamide-streptogramin and phenicol antibiotics) and glmU 

gene although there was a significant similarity between the glmU gene and the 

matched resistance genes. Therefore, an indirect link may exist between these genes 

or  it may be false positive considering the short alignment lenght. Even if ARG-

ANNOT database [119] is prominent thanks to its flexibility to find out distantly 

related genes, this flexibility may result in emergence of false positives. Therefore,  

considering the alignment lenght as an additional filetering parameter may produce 

more accurate results.  
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There is a clear relationship between the antibiotic resistance and virulence. In 

this context, inhibition of the putative targets responsible for both survival and 

virulence of the cell may severely damage the pathogen in many ways. Therefore, 

virulence factors were identified through the bacterial virulence analysis. It should be 

noted that VFDB database does not include any data for K. pneumoniae. However, six 

non-homologous, essential Klebsiella genes (hldD (rfaD), kdsA, gmhA (lpcA), lpxD, 

lpxA and lpxC) were predicted as the virulence-related genes in Haemophilus 

influenzae Rd KW20. The same virulence genes were identified for both Klebsiella 

models. Then, druggability of products of these genes (i.e., virulence factors) was 

investigated to evaluate the binding capacity to drug molecules. At least one 

experimental drug was determined for five out of six identified virulence factors. Then, 

the broad distribution of these genes among different attracting pathogens was 

screened. All of them are found in at least seven distinct pathogenic genera (Shigella, 

Escherichia, Salmonella, Yersinia, Pasteurella, Citrobacter and Haemophilus). Most 

of these pathogenic genera are members of Enterobacteriaceae family. The relatively 

high prevalence of these genes among different popular pathogens prompted us for the 

further investigation of these genes. All of these genes were found to be associated 

with the LPS synthesis. 

As mentioned before, LPS is the outer membrane component that consists of 

three main parts including O-antigen, core oligosaccharide and lipid A. Lipid A is 

essential for the protection (e.g., resistance against a great variety of antibiotics) and 

survival of the bacteria [11, 39]. Its biosynthesis is managed through nine enzyme-

catalyzed reactions, and lpxA, lpxC, lpxD are among the essential genes in this process. 

Thereof, deletion of these genes triggers the sensivity to hydrophobic antibiotics such 

as erythromycin [159]. In the beginning of the lipid A synthesis, LpxA (UDP-GlcNAc 

acyltransferase) catalyzes production of UDP-3-(O)-acyl-GlcNAc through acylation 

of uridine diphosphate (UDP-GlcNAc) in Raetz pathway. Next steps in this pathway 

are the deacetylation of the GlcNAc and acylation to generate UDP-2,3-(O)-diacyl-

GlcN mediated by LpxC and LpxD, respectively. After formation of the UDP-2,3-(O)-

diacyl-GlcN, Lipid A is synthesized via additional reactions catalyzed by other 

enzymes [12, 168]. All of the enzymes involved in the Raetz pathway have a potential 

to be drug targets for an effective therapy [168]. In a consistent manner, LpxD was 

predicted as a drug target for K. pneumoniae in both  this study and a proteome-based 

in silico study by Georrge and colleagues [83]. Inhibitor design against especially 
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LpxC enzyme is a popular approach owing to its conservation within gram-negative 

bacteria. However, essentiality of this gene depends on its level in E. coli cells. 

Another enzyme in the Raetz pathway, LpxA, does not exhibit any structural/sequence 

homology with mammalian enzymes. Therefore, this enzyme was also reported as a 

promising drug target [11, 12]. Recently, the crystal structure of Moraxella catarrhalis 

LpxA was elucidated by Pratap and colleagues (2017). The researchers suggested 

potential LpxA inhibitors via the computational methods by asserting that these 

inhibitors may also bind to the LpxA enzymes from other gram-negative bacteria [10].  

One of the identified putative targets, hldD (formerly known as rfaD) gene, 

encodes ADP-L-glycero-D-mannoheptose-6-epimerase. This enzyme catalyzes the 

generation of ADP-L-glycero-D-manno-heptose (heptose) essential for the LPS core 

domain biosynthesis in gram-negative bacteria [157, 158]. Mammalian cells do not 

have the heptose contrary to bacteria.  Moreover, it has been shown that LPS of rfaD 

mutants (i.e., core-defective/heptoseless mutants) loses its barrier characteristics. 

Thus, the mutated gene leads to a poorer survival of the pathogen in the host due to 

the reduced pathogenic characteristics and impairments in the intrinsic resistance, 

causing an enhanced antibiotic susceptibility [157]. More recently, researchers have 

demonstrated the contribution of Enterohemorrhagic E. coli (EHEC) O157:H7 RfaD 

to the virulence of bacteria and they suggested that this protein can be a suitable drug 

target as highlighted in the section 4.3.4 [158]. Furthermore, this enzyme was predicted 

to be essential in Yersinia pestis through a computational approach [93]. Thus, it may 

be a potential target to handle the infection triggered by different pathogens. Similarly, 

kdsA gene was reported as essential in Francisella tularensis and Y. pestis in the same 

study [93]. In addition to F. tularensis and Y. Pestis, kdsA gene was identified to be a 

candidate drug target for P. aeruginosa [13] and Leptospira interrogans [14]. 3-deoxy-

D-manno-octulosonate 8-phosphate synthetase (Kdo-8-phosphate synthetase) enzyme 

encoded by kdsA gene is responsible for the production of one of the major components 

of LPS known as 3-deoxy-D-manno-octulosonic acid (Kdo). Kdo plays an important 

role in linking lipid A with the core oligosaccharides [162]. In silico analysis of the 

kdsA gene revealed that it does not have any human homologues and it is essential for 

the survival of P. aeruginosa [13]. Essentiality of this gene in P. aeruginosa PAO1 

was also validated through in vitro approaches [169]. Thus, development of inhibitors 

against the KdsA may enable to cope with antibiotic-resistant K. pneumoniae strains.  
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Another druggable virulence gene involved in the synthesis of heptose 

precursors of the LPS inner core (ADP-L-glycero-D-manno heptose) is gmhA (lpcA) 

encoding a sedoheptulose 7-phosphate isomerase. It was reported that inhibition of 

GmhA has increased the susceptibility of Fusobacterium nucleatum to various 

antimicrobial agents (e.g., novobiocin) in even low concentrations by causing 

emergence of heptoseless mutants [170].  

Collectively, all identified druggable virulence factors may be evaluated as drug 

targets to handle an infection by K. pneumoniae strain MGH 78578 or strain KPPR1. 

However, the genes involved in lipid A and Kdo biosynthesis may be particularly 

promising because inhibition of these processes leads to a lethal effect. On the other 

hand, inhibition of the genes responsible for the biosynthesis of heptoses causes an 

enhanced antibiotic sensitivity and a dramatic reduction of virulence. It is important to 

note that novel strategies should be introduced to design inhibitors against these targets 

to overcome the difficulties related to substrate availability and the chemically 

complicated structures of these enzymes  [171].  

The target list identified in the study was also extended by addition of an updated 

biomass equation reaction into iYL1228. A total of 102 essential genes was identified 

via SM simulation and 11 non-homologous, druggable genes could not be determined 

via the old biomass reaction. These 11 genes (nadE, nadD, panB, panC, panD, coaA, 

dfp, coaD, ribH, ribF and ribD) are mainly related to NAD synthesis, pantothenate 

production, coenzyme A biosynthesis and riboflavin synthesis. Nicotinic acid 

mononucleotide (NaMN) adenylyltransferase (nadD) and NAD synthetase (nadE) are 

responsible in the last two steps of NAD biosynthesis process. These steps are broadly 

conserved while the early steps vary across bacteria [172, 173]. On the other hand, 

they have substantial differences compared with the human counterparts [173]. These 

ezymes are crucial in the maintenance of NAD+ pool and so cell survival [174]. In this 

context, there are many studies supporting the potenial of these enzymes to be 

antibacterial drug targets and/or investigating potential inhibitors against these 

enzymes in distinct bacterial pathogens [172, 174–176]. 

Coenzyme A is another prominent organic cofactor in all organisms which 

participates in many significant metabolic processes such as degradation and synthesis 

of the fatty acids, production of nonribosomal proteins and biosynthesis of 

phospholipids [177, 178]. CoA biosynthesis pathway was reported as a potential target 

for novel inhibitors [179]. This essential acyl carrier was synthesized through a 
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reaction system begining with formation of β-alanine from aspartate by aspartate-1-

decarboxylase (encoded by panD gene). Then, ketopantoate hydroxymethyltransferase 

enzyme (encoded by panB gene) catalyzes production of pantoate that is essential for 

the bacterial growth [177, 180]. After the pantoate was reduced by ketopantoate 

reductase (encoded by panE gene), pantothenate synthetase (the panC gene product) 

catalyzes the condensation of the intermediates (β-alanine and pantoate) to the 

pantothenic acid (vitamin B5) [177]. The genes of panB, panC and panD were 

suggested to be essential, non-homologous candidate drug targets in this work. The 

pantothenic acid synthesis pathway seems a promising target to handle Klebsiella 

infection because production of this vitamin is crucial for biosynthesis of CoA. In this 

context, prevention of the pantothenic acid synthesis may cause lethal effect on the 

MGH 78578 strain due to inhibition of CoA synthesis and eventually suppression of 

many vital cellular processes. Nevetheless, pantothenic acid synthesis pathway as a 

drug target should be investigated further because it was reported that suppression of 

this process was not lethal in E. coli owing to uptake of exogenous pantothenate [181]. 

Transportation of this vitamin into the bacterial cells was managed by a sodium-

dependent permease (encoded by panF gene) and this enzyme is involved in the 

metabolism of MGH 78578 strain. Therefore, this process is nonessential if this 

pathogen can utilize the pantothenic acid (HMDB ID: HMDB0000210) from the host 

environment. Although panB, panC and panD were predicted to be essential in the SM 

medium, they were not essential for the survival in the HBF. This is because the HBF 

includes this compound. This phenomenon shows that selection of the growth medium 

is crucial for accurate essentiality predictions. 

Synthesis or uptake of pantothenate is essential in the five-step universal 

pathway of CoA biosynthesis. To aid this process, pantothenate kinase (the coaA gene 

product) mediates conversion of  the pantothenate to 4’-phosphopantetheine in in most 

organisms [177, 178, 182]. This rate limiting step is essential for the bacterial growth. 

It is a potential target for designing antimicrobials against pathogenic bacteria due to 

the structural differences with the human counterpart. The structure of PanK enzyme 

from K. pneumoniae was solved by co-crystallization with N-[2-(1,3-benzodioxol-5-

yl)ethyl] pantothenamide in 2014 and it may be useful for the target based drug design 

[183]. After the PanK-catalysed step of the CoA biosynthesis, condensation of 4′-

phosphopanthenate with cysteine and decarboxylation  of the product are mediated by  

a bifunctional enzyme (the product of coaBC/dfp gene in iYL1228/iKp1289) [177]. It 
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was proposed as a target for K. pneumoniae infections in this work. This enzyme 

(phosphopantothenoylcysteine synthase/decarboxylase) is found in various bacteria 

and mostly shares a homology with E. coli coaBC gene. Phosphopantothenoylcysteine 

synthase/decarboxylase of Mycobacterium tuberculosis was reported as essential for 

in vitro and in vivo conditions. Therefore, the silencing of coaBC manifests a 

bactericidal effect and it was also suggested as a new bactericidal drug target for M. 

tuberculosis infections by Evans and colleagues  [184]. Next step of the CoA synthesis 

is formation of dephospho-CoA catalyzed by 4’-phosphopantetheine 

adenylyltransferase (the coaD gene product) and eventually formation of CoA via 

phosphorylation of the product by dephospho-CoA kinase (the coaE gene product) 

[177]. 4’-phosphopantetheine adenylyltransferase is a prominent target due to its 

structurally conservation among bacteria and a distant relationship with the human 

counterpart. Therefore, intracellular activity of CoaD inhibitors were screened for both 

gram-positive and gram-negative bacteria to support the design of efficient compounds 

in different studies [179, 185]. Collectively, the transporter PanF can likely 

compensate the suppression of the pantothenic acid synthesis in K. pneumoniae so it 

may not be an efficient target. However, other genes related to coenzyme A synthesis 

are promising targets. Nevertheless, a further analysis of these targets is necesary to 

validate the suppressive effect on the Klebsiella-mediated infections. 

Riboflavin (vitamin B2) is an essential precursor of flavin mononucleotide 

(FMN) and flavin adenine dinucleotide (FAD) that can be synthesized by many 

microorganisms and plants [186, 187]. Animals and humans cannot synthesize this 

vitamin so they must obtain it through the diet [187]. Broad spectrum antibiotics acting 

as a potent inhibitor of the riboflavin synthesis were reported [188]. Biosynthesis of 

the riboflavin is managed by GTP cyclohydrolase II (the ribA gene product), 3,4-

dihydroxy-2-butanone-4-phosphate (DHBP) synthase (the ribB gene product), 

riboflavin synthase α subunit (the ribC gene product), riboflavin deaminase/reductase 

(the ribD gene product), and ribityl lumazine synthase (the ribE gene product) in E. 

coli [187]. Riboflavin synthesis is essential for the gram-negative bacteria including 

E. coli and Salmonella sp. because they do not have any uptake systems for flavins. 

Furthermore, ribC gene was also reported to be essential in Haemophilus influenzae 

Rd strain KW20 [189]. Thus, the enzymes responsible for riboflavin biosynthesis may 

be drug targets depending on the presence of uptake system [187]. Three essential 

genes (ribC, ribE and ribH) from SM simulation of iYL1228 were related to the 
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riboflavin synthesis in Klebsiella and they were found to be non-homologous and 

druggable in this study. 

In addition to the gene-centric approach, some putative drug targets were also 

elucidated based on the metabolite essentiality in this study. All simulations of both 

GEMs predicted a single essential metabolite (uaagmda) involved in one essential 

outgoing reaction (murein polymerizing transglycosylase reaction) in addition to two 

nonessential reactions (UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) 

pyrophosphoryl-undecaprenol N-acetylglucosamine transferase and the murein 

polymerizing transglycosylase 2 (three linked units) reaction. Then, three essential 

genes (mrcB, pbpC and mrcA) associated with this essential reaction were identified. 

 The murein (peptidoglycan) is a cross-linked polymer in the periplasm that 

protects the gram-negative bacteria from a high intracellular pressure [190, 191]. 

Transfer of peptidyl disaccharide subunit from lipid II to the growing glycan chain is 

a necessary step for synthesis of the cell wall peptidoglycan, and this polymerization 

process is managed by glycosyltransferases. Another essential enzyme involved in the 

peptidoglycan biosynthesis is transpeptidase, and it functions in the production of 

cross-linked peptidoglycan from lipid intermediates [192]. Penicillin-binding proteins 

(PBPs) are divided into two classes: (1) bifunctional enzymes (class A) responsible for 

both polymerization and transpeptidation and monofunctional enzymes (class B) with 

only transpeptidation activity. There are many antibiotics (e.g., penicillin) targeting 

transpeptidases to prevent peptidoglycan synthesis because inhibition of its synthesis 

results in the bacterial death via lysis [193]. Therefore, these targets seem to be 

convenient to cope with the Klebsiella infections. Moreover, the drugs identified 

through DrugBank can be evaluated or a structural analog of ‘uaagmda’ can be 

designed to block the related enzymes.  

Whole gene list which includes the suggested putative drug targets in  the scope 

of this thesis is given in Table 5.3. Herein, the initial findings regarding metabolisms 

of two different Klebsiella strains were reported and eventually the potential drug 

targets for these strains were suggested. Essential, druggable and non-homologous 

targets including virulence factors, cofactor synthesis-related genes and the putative 

targets from a metabolic-centric approach were mainly evaluated in the study. 

Investigation of the other non-homologous, druggable, essential genes may pave the 

way for the detection of additional target candidates. Of these genes, some of them 

such as murA, murG and murD were revealed as the putative targets by Georrge and 
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colleagues via an in silico proteome-based study [83]. Therefore, there is a need for a 

further evaluation of essential, druggable targets predicted in this study. 

 

Table 5.3: Drug target list suggested in this study. 

 

Method Gene Description Function 

Gene-centric approach 

(original biomass) 

hldD 

(rfaD) 

ADP-L-glycero-D-manno-heptose-6-

epimerase 

 

LPS 

biosynthesis 

  lpxA UDP-N-acetylglucosamine acyltransferase 

 

  

  lpxC UDP-3-O-acyl N-acetylglucosamine 

deacetylase 

 

  

  lpcA 

(gmhA) 

Phosphoheptose isomerase   

  kdsA 2-dehydro-3-deoxyphosphooctonate 

aldolase 

  

Gene-centric approach       

(updated biomass) 

nadD Nicotinic acid mononucleotide 

adenyltransferase 

 

Cofactor 

production 

  nadE NAD(+) synthetase 

 

  

  coaA Pantothenate kinase 

 

  

  dfp 

(coaBC) 

Phosphopantothenoylcysteine 

synthase/decarboxylase 

 

  

  coaD Phosphopantetheine adenylyltransferase 

 

  

  panB 3-methyl-2-oxobutanoate 

hydroxymethyltransferase 

 

  

  panC Pantoate-beta-alanine ligase 

 

  

  panD Aspartate 1-decarboxylase precursor 

 

  

  ribC Riboflavin synthase subunit alpha 

 

  

  ribF Hypothetical protein 

 

  

  ribH Riboflavin synthase subunit beta   

Metabolite-centric 

approach 

mrcA Bifunctional penicillin-binding protein 1a: 

transglycosylase/transpeptidase 

 

Peptidoglycan 

synthesis 

  mrcB Penicillin-binding protein 1b 

 

  

  pbpC Penicillin-binding protein 1C (PBP 1C)   
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6. CONCLUSIONS 

A system-level analysis of the bacterial metabolisms is the requisite to decipher the 

tremendous, complicated systems and to discover effective therapeutic approaches. 

Herein, putative drug targets for two different K. pneumoniae strains were determined 

through two approaches: gene- and metabolic-centric methods.  

Single gene deletion was taken into consideration in the gene-centric approach 

and it was based on the completely deletion of each gene to detect the impact of this 

intervention on the bacterial growth. In other words, the whole related reactions were 

completely blocked in this approach. On the other hand, high drug levels may be 

required to completely inhibit these enzymes. Therefore, if the pathogen can be killed 

through a partly reduction of  an enzymatic activity (but not completely inhibition of 

the related reactions), the gene encoding this enzyme may be more efficient drug 

target. Moreover, targeting such genes may reduce drug dose. A reduction in the drug 

concentration may decrease a negative impact of the drug on the gut microbiota. 

Protection of these bacteria is significant to combat antibiotic-resistant pathogens. It 

should be noted that the targets of K. pneumoniae suggested in this study share a 

homology with many gut bacteria based on the ‘non-homology analysis against gut 

microbiota proteomes’ through PBIT [122]. Thus, new approaches are necessay to 

reduce any serious damages to gut microbiota. In addition to gut microbiota, the host 

organism may also have structurally similar proteins. Thus, reduction of the drug dose 

may decrease any damages due to off-target effect. Therefore, the proposed targets 

should be also evaluated in terms of structural homology. 

Identification of the proper putative drug targets depends on simulation of the 

real growth conditions of the pathogens. To construct a more realistic environment, 

host-mimicking media were used in the study. In addition, an important insight into 

condition-specific and more realistic behivour of the pathogen can be provided by 

integration of the expression data. More recently, an expression data (GEO accession: 

GSE110628) of some pathogens including K. pneumoniae strain MGH 78578 exposed 

to pulmonary surfactant has been published. The pulmonary surfactant contributes 

colonization and pathogenesis of the bacteria (e.g., lipopolysaccharide modification, 

biofilm formation, antibiotic resistance and capsule production) via induction of 

virulence gene expression [86]. Thus, this data can help to elucidate the interactions 
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between pathogen and host at the infection site. Moreover, it may support to identify 

additional drug targets.  

Importantly, most of the putative targets in MGH 78578 and KPPR1 strains were 

found to be common in this work. Therefore, examination of these strains (with the 

different virulence levels) in terms of their virulence characteristics may provide more 

promising results to distinguish their metabolic backgrounds. In this context, virulence 

factor synthesis may be selected as the objective function in the simulations [194]. 

Considering the virulence-linked targets can delay the spread of the antibiotic 

resistance, this approach may also reveal more conserved drug targets. Of note, 

synthesis of the virulence factors is highly connected to the growth phase of the 

bacteria. In this regard, the growth phase dependent-expression data of K. pneumoniae 

MGH 78578 was published in  2012 (GEO accession: GSE35926) may be guiding in 

future studies [85]. 

Briefly, introduction and use of alternative approaches may provide discovery 

of more efficient and selective alternative targets in future studies. 
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APPENDICES 

 

  
Appendix A: Media Used in Model Validation 

 

Minimal growth medium was used in the model validation by in silico prediction 

of the growth rates . Composition of carbon-D-glucose (CDG) medium was imported 

from KBase platform and this medium was integrated into the iKp1289 to simulate the 

growth phenotype of the bacteria in the minimal medium. Other minimal media used 

in this study were generated by replacing the carbon source (glucose) in the CDG 

medium for iKp1289. 

  

Table A1.1: In silico CDG Medium (iKp1289). 

 

Recipe for CDG Medium: Metabolite in iKp1289: 
Lower 

bound: 

Upper 

bound: 

H2O cpd00001[e0] -100 1000 

O2 cpd00007[e0] -10 1000 

Phosphate cpd00009[e0] -100 1000 

NH3 cpd00013[e0] -100 1000 

D-Glucose (any carbon sourcesa) cpd00027[e0] -5 1000 

Mn2+ cpd00030[e0] -100 1000 

Zn2+ cpd00034[e0] -100 1000 

Sulfate cpd00048[e0] -100 1000 

Cu2+ cpd00058[e0] -100 1000 

Ca2+ cpd00063[e0] -100 1000 

H+ cpd00067[e0] -100 1000 

Cl- cpd00099[e0] -100 1000 

Co2+ cpd00149[e0] -100 1000 

K+ cpd00205[e0] -100 1000 

Ni2+ cpd00244[e0] -100 1000 

Mg cpd00254[e0] -100 1000 

Na+ cpd00971[e0] -100 1000 

Fe2+ cpd10515[e0] -100 1000 

Fe3 cpd10516[e0] -100 1000 

Molybdate cpd11574[e0] -100 1000 

    a Each minimal medium was obtained by changing the carbon source.  
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Luria-Bertani (LB) broth medium was used in the validation of iKp1289 via the 

gene essentiality analysis. Composition of LB medium was identified upon online 

KBase platform. 

 

Table A1.2: In silico LB Medium (iKp1289). 

 

Recipe for LB 

Medium: 
Metabolite in iKp1289: 

Lower 

bound: 

Upper 

bound: 

H2O cpd00001[e0] -100 100 

O2 cpd00007[e0] -100 100 

Phosphate cpd00009[e0] -100 100 

NH3 cpd00013[e0] -100 100 

AMP cpd00018[e0] -100 100 

L-Glutamate cpd00023[e0] -100 100 

D-Glucose cpd00027[e0] -100 100 

Heme cpd00028[e0] -100 100 

Mn2+ cpd00030[e0] -100 100 

Glycine cpd00033[e0] -100 100 

Zn2+ cpd00034[e0] -100 100 

L-Alanine cpd00035[e0] -100 100 

L-Lysine cpd00039[e0] -100 100 

L-Aspartate cpd00041[e0] -100 100 

CMP cpd00046[e0] -100 100 

Sulfate cpd00048[e0] -100 100 

L-Arginine cpd00051[e0] -100 100 

L-Serine cpd00054[e0] -100 100 

Cu2+ cpd00058[e0] -100 100 

L-Methionine cpd00060[e0] -100 100 

Ca2+ cpd00063[e0] -100 100 

L-Tryptophan cpd00065[e0] -100 100 

L-Phenylalanine cpd00066[e0] -100 100 

H+ cpd00067[e0] -100 100 

L-Tyrosine cpd00069[e0] -100 100 

UMP cpd00091[e0] -100 100 

Uracil cpd00092[e0] -100 100 

Cl- cpd00099[e0] -100 100 

L-Leucine cpd00107[e0] -100 100 

L-Histidine cpd00119[e0] -100 100 

GMP cpd00126[e0] -100 100 

L-Proline cpd00129[e0] -100 100 

Co2+ cpd00149[e0] -100 100 

L-Valine cpd00156[e0] -100 100 

L-Threonine cpd00161[e0] -100 100 

Adenosine cpd00182[e0] -100 100 

Thymidine cpd00184[e0] -100 100 

K+ cpd00205[e0] -100 100 
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Table A1.2: Continued. 

 

Recipe for LB Medium: Metabolite in iKp1289: Lower bound: Upper bound: 

Pyridoxal cpd00215[e0] -100 100 

Niacin cpd00218[e0] -100 100 

Riboflavin cpd00220[e0] -100 100 

HYXN cpd00226[e0] -100 100 

H2S cpd00239[e0] -100 100 

Ni2+ cpd00244[e0] -100 100 

Inosine cpd00246[e0] -100 100 

Uridine cpd00249[e0] -100 100 

Mg cpd00254[e0] -100 100 

Guanosine cpd00311[e0] -100 100 

L-Isoleucine cpd00322[e0] -100 100 

L-Cystine cpd00381[e0] -100 100 

Folate cpd00393[e0] -100 100 

Deoxyadenosine cpd00438[e0] -100 100 

Hg2+ cpd00531[e0] -100 100 

Lipoate cpd00541[e0] -100 100 

PAN cpd00644[e0] -100 100 

Deoxycytidine cpd00654[e0] -100 100 

Thiamine phosphate cpd00793[e0] -100 100 

Na+ cpd00971[e0] -100 100 

Cd2+ cpd01012[e0] -100 100 

Arsenate cpd01048[e0] -100 100 

Vitamin B12 cpd03424[e0] -100 100 

Fe2+ cpd10515[e0] -100 100 

Fe3 cpd10516[e0] -100 100 

Molybdate cpd11574[e0] -100 100 

Chromate cpd11595[e0] -100 100 

 

Appendix B: Host-Mimicking Media Used in the Thesis 

 

Host-mimicking media were integrated into the both models in the drug 

discovery process. The outgoing reactions, their indices, the uptake rates and the 

reaction formulas associated with each compound involved in the medium are listed 

in the following tables. SM medium was developed by combining the sputum and 

alveolar macrophage environments as highlighed before. Each medium was developed 

by searching synonyms of each compound owing to lack of the consensus 

nomenclature in the models. In addition to metabolite names, the metabolite IDs 

(PubChem, HMDB, ChEBI and KEGG IDs) were also considered by screening each 

metabolite in both models against HBF.  
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Table B1.1: In silico SM Medium (iYL1228). 

 

Index: Matched reaction name: Lower 

bound: 

Upper 

bound: 

Reaction 

formula: 2179 Sodium exchange -10 1000 na1[e]  <=>  

2147 potassium exchange -10 1000 k[e]  <=>  

2181 Ammonium exchange -10 1000 nh4[e]  <=>  

2172 magnesium exchange -10 1000 mg2[e]  <=>  

2186 Nitrate exchange -10 1000 no3[e]  ->  

2198 Phosphate exchange -10 1000 pi[e]  <=>  

2220 Sulfate exchange -10 1000 so4[e]  <=>  

2216 L-Serine exchange -10 1000 ser_L[e]  ->  

2229 L-Threonine exchange -10 1000 thr_L[e]  ->  

2014 L-Alanine exchange -10 1000 ala_L[e]  ->  

2112 Glycine exchange -10 1000 gly[e]  ->  

2204 L-Proline exchange -10 1000 pro_L[e]  ->  

2141 L-Isoleucine exchange -10 1000 ile_L[e]  ->  

2152 L-Leucine exchange -10 1000 leu_L[e]  ->  

2253 L-Valine exchange -10 1000 val_L[e]  ->  

2024 L-Aspartate exchange -10 1000 asp_L[e]  ->  

2111 L-Glutamate exchange -10 1000 glu_L[e]  ->  

2196 L-Phenylalanine exchange -10 1000 phe_L[e]  ->  

2242 L-Tyrosine exchange -10 1000 tyr_L[e]  ->  

2236 L-Tryptophan exchange -10 1000 trp_L[e]  ->  

2155 L-Lysine exchange -10 1000 lys_L[e]  ->  

2136 L-Histidine exchange -10 1000 his_L[e]  ->  

2020 L-Arginine exchange -10 1000 arg_L[e]  ->  

2192 Ornithine exchange -10 1000 orn[e]  ->  

2049 L-Cysteine exchange -10 1000 cys_L[e]  ->  

2169 L-Methionine exchange -10 1000 met_L[e]  ->  

2105 D-Glucose exchange -10 1000 glc_D[e]  <=>  

2150 L-Lactate exchange -10 1000 lac_L[e]  ->  

2074 Fe2+ exchange -10 1000 fe2[e]  <=>  

2029 Calcium exchange -10 1000 ca2[e]  <=>  

2037 Chloride exchange -10 1000 cl[e]  <=>  

2126 H+ exchange -10 1000 h[e]  <=>  

2128 H2O exchange -10 1000 h2o[e]  <=>  

2187 O2 exchange -10 1000 o2[e]  <=>  

2190 octadecenoate (n-C18:1) exchange -10 1000 ocdcea[e]  ->  

2110 L-Glutamine exchange -10 1000 gln_L[e]  ->  

2238 tetradecanoate (n-C14:0) exchange -10 1000 ttdca[e]  ->  

2209 Pyruvate exchange -10 1000 pyr[e]  ->  

2189 octadecanoate (n-C18:0) exchange -10 1000 ocdca[e]  ->  

2026 Butyrate (n-C4:0) exchange -10 1000 but[e]  ->  
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Table B1.2: In silico SM Medium (iKp1289). 

 

Index: 
Matched reaction 

name: 

Lower 

bound: 

Upper 

bound: 
Reaction formula: 

2208 EX_Na_plus_(e) -10 1000 cpd00971[e0]  <=>  

2325 EX_K_plus_(e) -10 1000 cpd00205[e0]  <=>  

2358 EX_NH3(e) -10 1000 cpd00013[e0] + 

cpd00013[e0]  <=>  

2350 EX_Mg(e) -10 1000 cpd00254[e0] + 

cpd00254[e0]  <=>  

2375 EX_Phosphate(e) -10 1000 cpd00009[e0]  <=>  

2397 EX_Sulfate(e) -10 1000 cpd00048[e0]  <=>  

2393 EX_L_Serine(e) -10 1000 cpd00054[e0] + 

cpd00054[e0]  <=>  

2408 EX_L_Threonine(e) -10 1000 cpd00161[e0]  <=>  

2184 EX_L_Alanine(e) -10 1000 cpd00035[e0]  <=>  

2296 EX_Glycine(e) -10 1000 cpd00033[e0]  <=>  

2382 EX_L_Proline(e) -10 1000 cpd00129[e0]  <=>  

2318 EX_L_Isoleucine(e) -10 1000 cpd00322[e0]  <=>  

2328 EX_L_Leucine(e) -10 1000 cpd00107[e0]  <=>  

2430 EX_L_Valine(e) -10 1000 cpd00156[e0]  <=>  

2194 EX_L_Aspartate(e) -10 1000 cpd00041[e0]  <=>  

2288 EX_L_Glutamate(e) -10 1000 cpd00023[e0]  <=>  

2374 EX_L_Phenylalanine(e) -10 1000 cpd00066[e0]  <=>  

2420 EX_L_Tyrosine(e) -10 1000 cpd00069[e0]  <=>  

2413 EX_L_Tryptophan(e) -10 1000 cpd00065[e0]  <=>  

2333 EX_L_Lysine(e) -10 1000 cpd00039[e0]  <=>  

2311 EX_L_Histidine(e) -10 1000 cpd00119[e0]  <=>  

2190 EX_L_Arginine(e) -10 1000 cpd00051[e0] + cpd00051[e0]  

<=>  
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Index: 
Matched reaction 

name: 

Lower 

bound: 

Upper 

bound: 
Reaction formula: 

2369 EX_Ornithine(e) -10 1000 cpd00064[e0] + cpd00064[e0]  

<=>  

2221 EX_L_Cysteine(e) -10 1000 cpd00084[e0]  <=>  

2349 EX_L_Methionine(e) -10 1000 cpd00060[e0]  <=>  

2286 EX_D_Glucose(e) -10 1000 cpd00027[e0] + cpd00027[e0]  

<=>  

2326 EX_L_Lactate(e) -10 1000 cpd00159[e0]  <=>  

2251 EX_Fe2_plus_(e) -10 1000 cpd10515[e0]  <=>  

2200 EX_Ca2_plus_(e) -10 1000 cpd00063[e0]  <=>  

2210 EX_Cl_(e) -10 1000 cpd00099[e0]  <=>  

2180 EX_H_plus_(e) -10 1000 cpd00067[e0] + cpd00067[e0]  

<=>  

2304 EX_H2O(e) -10 1000 cpd00001[e0] + cpd00001[e0]  

<=>  

2365 EX_O2(e) -10 1000 cpd00007[e0] + cpd00007[e0]  

<=>  

2362 EX_Nitrate(e) -10 1000 cpd00209[e0] + cpd00209[e0]  

<=>  

2287 EX_L_Glutamine(e) -10 1000 cpd00053[e0]  <=>  

2386 EX_Pyruvate(e) -10 1000 cpd00020[e0]  <=>  

2367 EX_octadecenoate(e) -10 1000 cpd15269[e0]  <=>  

2415 EX_Myristic_acid(e) -10 1000 cpd03847[e0]  <=>  

2198 EX_Butyrate(e) -10 1000 cpd00211[e0] + cpd00211[e0]  

<=>  

 

 

  

Table B1.2: Continued. 
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Table B1.3: In silico HBF Medium (iYL1228). 

 

Index: Matched reaction name: 
Lower 

bound: 

Upper 

bound: 
Reaction formula: 

1989 4-Aminobutanoate exchange -10 1000 4abut[e]  ->  

1991 4-Hydroxyphenylacetate exchange -10 1000 4hphac[e]  ->  

1996 Acetate exchange -10 1000 ac[e]  ->  

1997 Acetaldehyde exchange -10 1000 acald[e]  ->  

2000 N-Acetyl-D-glucosamine exchange -10 1000 acgam[e]  ->  

2006 Adenine exchange -10 1000 ade[e]  ->  

2007 Adenosine exchange -10 1000 adn[e]  ->  

2011 2-Oxoglutarate exchange -10 1000 akg[e]  ->  

2012 beta-Alanine exchange -10 1000 ala_B[e]  ->  

2013 D-Alanine exchange -10 1000 ala_D[e]  ->  

2014 L-Alanine exchange -10 1000 ala_L[e]  ->  

2017 AMP exchange -10 1000 amp[e]  ->  

2019 L-Arabinose exchange -10 1000 arab_L[e]  ->  

2020 L-Arginine exchange -10 1000 arg_L[e]  ->  

2021 L-Ascorbate exchange -10 1000 ascb_L[e]  ->  

2022 L-Asparagine exchange -10 1000 asn_L[e]  ->  

2024 L-Aspartate exchange -10 1000 asp_L[e]  ->  

2026 Butyrate (n-C4:0) exchange -10 1000 but[e]  ->  

2028 Benzoate exchange -10 1000 bz[e]  ->  

2029 Calcium exchange -10 1000 ca2[e]  <=>  

2034 Cys-Gly exchange -10 1000 cgly[e]  ->  

2035 Choline exchange -10 1000 chol[e]  ->  

2036 Citrate exchange -10 1000 cit[e]  ->  

2037 Chloride exchange -10 1000 cl[e]  <=>  

2038 CMP exchange -10 1000 cmp[e]  ->  

2039 CO2 exchange -10 1000 co2[e]  <=>  

2042 L-Carnitine exchange -10 1000 crn[e]  ->  

2043 Cytosine exchange -10 1000 csn[e]  ->  

2046 Hydrogen cyanide exchange -10 1000 cyan[e]  ->  

2049 L-Cysteine exchange -10 1000 cys_L[e]  ->  

2050 Cytidine exchange -10 1000 cytd[e]  ->  

2051 Deoxyadenosine exchange -10 1000 dad_2[e]  ->  

2055 Deoxycytidine exchange -10 1000 dcyt[e]  ->  

2058 Deoxyguanosine exchange -10 1000 dgsn[e]  ->  

2062 Deoxyinosine exchange -10 1000 din[e]  ->  

2065 Dopamine exchange -10 1000 dopa[e]  ->  

2068 Deoxyuridine exchange -10 1000 duri[e]  ->  

2071 Ethanol exchange -10 1000 etoh[e]  ->  

2074 Fe2+ exchange -10 1000 fe2[e]  <=>  

2075 Fe3+ exchange -10 1000 fe3[e]  <=>  

2081 Formate exchange -10 1000 for[e]  ->  

2082 D-Fructose exchange -10 1000 fru[e]  ->  

2085 L-Fucose exchange -10 1000 fuc_L[e]  ->  

2094 D-Galactose exchange -10 1000 gal[e]  ->  

2102 D-Glucosamine exchange -10 1000 gam[e]  ->  
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Table B1.3: Continued 

 
 

 

Index: Matched reaction name: 
Lower 

bound: 

Upper 

bound: 
Reaction formula: 

2104 GDP exchange -10 1000 gdp[e]  ->  

2105 D-Glucose exchange -10 1000 glc_D[e]  <=>  

2110 L-Glutamine exchange -10 1000 gln_L[e]  ->  

2111 L-Glutamate exchange -10 1000 glu_L[e]  ->  

2112 Glycine exchange -10 1000 gly[e]  ->  

2114 Glycine betaine exchange -10 1000 glyb[e]  ->  

2115 Glycerol exchange -10 1000 glyc[e]  ->  

2120 GMP exchange -10 1000 gmp[e]  ->  

2121 Guanosine exchange -10 1000 gsn[e]  ->  

2122 Oxidized glutathione exchange -10 1000 gthox[e]  ->  

2123 Reduced glutathione exchange -10 1000 gthrd[e]  ->  

2124 GTP exchange -10 1000 gtp[e]  ->  

2125 Guanine exchange -10 1000 gua[e]  ->  

2126 H+ exchange -10 1000 h[e]  <=>  

2128 H2O exchange -10 1000 h2o[e]  <=>  

2129 Hydrogen peroxide exchange -10 1000 h2o2[e]  ->  

2133 Hexadecanoate (n-C16:0) exchange -10 1000 hdca[e]  ->  

2134 Hexadecenoate (n-C16:1) exchange -10 1000 hdcea[e]  ->  

2136 L-Histidine exchange -10 1000 his_L[e]  ->  

2137 L-Homoserine exchange -10 1000 hom_L[e]  ->  

2139 Hypoxanthine exchange -10 1000 hxan[e]  ->  

2141 L-Isoleucine exchange -10 1000 ile_L[e]  ->  

2142 IMP exchange -10 1000 imp[e]  ->  

2144 myo-Inositol exchange -10 1000 inost[e]  ->  

2145 Inosine exchange -10 1000 ins[e]  ->  

2149 D-Lactate exchange -10 1000 lac_D[e]  ->  

2150 L-Lactate exchange -10 1000 lac_L[e]  ->  

2151 Lactose exchange -10 1000 lcts[e]  ->  

2152 L-Leucine exchange -10 1000 leu_L[e]  ->  

2155 L-Lysine exchange -10 1000 lys_L[e]  ->  

2159 Maltose exchange -10 1000 malt[e]  ->  

2162 Maltotriose exchange -10 1000 malttr[e]  ->  

2164 D-Mannose exchange -10 1000 man[e]  ->  

2169 L-Methionine exchange -10 1000 met_L[e]  ->  

2179 Sodium exchange -10 1000 na1[e]  <=>  

2180 Nicotinate exchange -10 1000 nac[e]  ->  

2184 Nitric oxide exchange -10 1000 no[e]  ->  

2187 O2 exchange -10 1000 o2[e]  <=>  

2188 Superoxide anion exchange -10 1000 o2s[e]  ->  

2189 octadecanoate (n-C18:0) exchange -10 1000 ocdca[e]  ->  

2190 octadecenoate (n-C18:1) exchange -10 1000 ocdcea[e]  ->  

2191 octanoate (n-C8:0) exchange -10 1000 octa[e]  ->  

2192 Ornithine exchange -10 1000 orn[e]  ->  

2196 L-Phenylalanine exchange -10 1000 phe_L[e]  ->  

2197 Protoheme exchange -10 1000 pheme[e]  ->  
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Table B1.3: Continued. 

 
 

 

Index: Matched reaction name: 
Lower 

bound: 

Upper 

bound: 
Reaction formula: 

2198 Phosphate exchange -10 1000 pi[e]  <=>  

2199 (R)-Pantothenate exchange -10 1000 pnto_R[e]  ->  

2204 L-Proline exchange -10 1000 pro_L[e]  ->  

2209 Pyruvate exchange -10 1000 pyr[e]  ->  

2211 Ribitol exchange -10 1000 rbt[e]  ->  

2212 D-Ribose exchange -10 1000 rib_D[e]  ->  

2215 D-Serine exchange -10 1000 ser_D[e]  ->  

2216 L-Serine exchange -10 1000 ser_L[e]  ->  

2220 Sulfate exchange -10 1000 so4[e]  <=>  

2222 Succinate exchange -10 1000 succ[e]  ->  

2223 Sucrose exchange -10 1000 sucr[e]  ->  

2226 Taurine exchange -10 1000 taur[e]  ->  

2227 Thiocyanate exchange -10 1000 tcynt[e]  ->  

2228 Thiamin exchange -10 1000 thm[e]  ->  

2229 L-Threonine exchange -10 1000 thr_L[e]  ->  

2231 Thymine exchange -10 1000 thym[e]  ->  

2232 Thymidine exchange -10 1000 thymd[e]  ->  

2235 Trehalose exchange -10 1000 tre[e]  ->  

2236 L-Tryptophan exchange -10 1000 trp_L[e]  ->  

2237 Thiosulfate exchange -10 1000 tsul[e]  ->  

2238 tetradecanoate (n-C14:0) exchange -10 1000 ttdca[e]  ->  

2242 L-Tyrosine exchange -10 1000 tyr_L[e]  ->  

2249 UMP exchange -10 1000 ump[e]  ->  

2250 Uracil exchange -10 1000 ura[e]  ->  

2251 Urea exchange -10 1000 urea[e]  ->  

2252 Uridine exchange -10 1000 uri[e]  ->  

2253 L-Valine exchange -10 1000 val_L[e]  ->  

2257 D-Xylose exchange -10 1000 xyl_D[e]  ->  

2147 potassium exchange -10 1000 k[e]  <=>  

2200 Propionate (n-C3:0) exchange -10 1000 ppa[e]  ->  

                                          

Table B1.4: In silico HBF Medium (iKp1289). 

 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2165 EX_GABA_e0 -10 1000 cpd00281[e0]  <=>  

2166 EX_Acetaldehyde_e0 -10 1000 cpd00071[e0]  <=>  

2170 EX_N_Acetyl_D_gluc

osamine_e0 

-10 1000 cpd00122[e0] + 

cpd00122[e0]  <=>  

2175 EX_Acetate_e0 -10 1000 cpd00029[e0]  <=>  
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Table B1.4: Continued 

 
 

 
 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2176 EX_Adenine_e0 -10 1000 cpd00128[e0]  <=>  

2177 EX_Adenosine_e0 -10 1000 cpd00182[e0]  <=>  

2180 EX_H_plus__e0 -10 1000 cpd00067[e0] + 

cpd00067[e0]  <=>  

2182 EX_2_Oxoglutarate_e

0 

-10 1000 cpd00024[e0] + 

cpd00024[e0]  <=>  

2184 EX_L_Alanine_e0 -10 1000 cpd00035[e0]  <=>  

2187 EX_AMP_e0 -10 1000 cpd00018[e0]  <=>  

2189 EX_L_Arabinose_e0 -10 1000 cpd00224[e0] + 

cpd00224[e0]  <=>  

2190 EX_L_Arginine_e0 -10 1000 cpd00051[e0] + 

cpd00051[e0]  <=>  

2191 EX_L_Ascorbate_e0 -10 1000 cpd00059[e0]  <=>  

2192 EX_L_Asparagine_e0 -10 1000 cpd00132[e0]  <=>  

2194 EX_L_Aspartate_e0 -10 1000 cpd00041[e0]  <=>  

2195 EX_beta_Alanine_e0 -10 1000 cpd00085[e0]  <=>  

2199 EX_Benzoate_e0 -10 1000 cpd00153[e0]  <=>  

2200 EX_Ca2_plus__e0 -10 1000 cpd00063[e0]  <=>  

2205 EX_Cys_Gly_e0 -10 1000 cpd01017[e0]  <=>  

2206 EX_Choline_e0 -10 1000 cpd00098[e0]  <=>  

2207 EX_Citrate_e0 -10 1000 cpd00137[e0]  <=>  

2208 EX_Na_plus__e0 -10 1000 cpd00971[e0]  <=>  

2210 EX_Cl__e0 -10 1000 cpd00099[e0]  <=>  

2211 EX_CMP_e0 -10 1000 cpd00046[e0]  <=>  

2212 EX_CO2_e0 -10 1000 cpd00011[e0] + 

cpd00011[e0]  <=>  

2215 EX_Cytosine_e0 -10 1000 cpd00307[e0]  <=>  
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Table B1.4: Continued. 

 
 

 
 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2218 EX_HCN_e0 -10 1000 cpd00150[e0]  <=>  

2221 EX_L_Cysteine_e0 -10 1000 cpd00084[e0]  <=>  

2222 EX_Cytidine_e0 -10 1000 cpd00367[e0]  <=>  

2223 EX_D_Lactate_e0 -10 1000 cpd00221[e0]  <=>  

2225 EX_Deoxyadenosine_

e0 

-10 1000 cpd00438[e0]  <=>  

2226 EX_D_Alanine_e0 -10 1000 cpd00117[e0]  <=>  

2231 EX_Deoxycytidine_e0 -10 1000 cpd00654[e0]  <=>  

2235 EX_Deoxyguanosine_

e0 

-10 1000 cpd00277[e0]  <=>  

2238 EX_Deoxyinosine_e0 -10 1000 cpd03279[e0]  <=>  

2241 EX_Dopamine_e0 -10 1000 cpd02357[e0]  <=>  

2242 EX_D_Serine_e0 -10 1000 cpd00550[e0]  <=>  

2245 EX_Deoxyuridine_e0 -10 1000 cpd00412[e0]  <=>  

2248 EX_Ethanol_e0 -10 1000 cpd00363[e0]  <=>  

2251 EX_Fe2_plus__e0 -10 1000 cpd10515[e0]  <=>  

2254 EX_fe3_e0 -10 1000 cpd10516[e0] + 

cpd10516[e0]  <=>  

2258 EX_Formate_e0 -10 1000 cpd00047[e0]  <=>  

2261 EX_D_Fructose_e0 -10 1000 cpd00082[e0] + 

cpd00082[e0]  <=>  

2262 EX_L_Fucose_e0 -10 1000 cpd00751[e0]  <=>  

2281 EX_GDP_e0 -10 1000 cpd00031[e0]  <=>  

2286 EX_D_Glucose_e0 -10 1000 cpd00027[e0] + 

cpd00027[e0]  <=>  

2287 EX_L_Glutamine_e0 -10 1000 cpd00053[e0]  <=>  

2288 EX_L_Glutamate_e0 -10 1000 cpd00023[e0]  <=>  
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Table B1.4: Continued. 

 
 

 
 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2295 EX_Glycerol_e0 -10 1000 cpd00100[e0]  <=>  

2296 EX_Glycine_e0 -10 1000 cpd00033[e0]  <=>  

2297 EX_GMP_e0 -10 1000 cpd00126[e0]  <=>  

2298 EX_Guanosine_e0 -10 1000 cpd00311[e0]  <=>  

2299 EX_Oxidized_glutathi

one_e0 

-10 1000 cpd00111[e0]  <=>  

2300 EX_GSH_e0 -10 1000 cpd00042[e0]  <=>  

2301 EX_GTP_e0 -10 1000 cpd00038[e0]  <=>  

2302 EX_Guanine_e0 -10 1000 cpd00207[e0]  <=>  

2303 EX_H2O2_e0 -10 1000 cpd00025[e0]  <=>  

2304 EX_H2O_e0 -10 1000 cpd00001[e0] + 

cpd00001[e0]  <=>  

2311 EX_L_Histidine_e0 -10 1000 cpd00119[e0]  <=>  

2312 EX_L_Homoserine_e0 -10 1000 cpd00227[e0]  <=>  

2313 EX_4_Hydroxyphenyl

acetate_e0 

-10 1000 cpd00489[e0]  <=>  

2318 EX_L_Isoleucine_e0 -10 1000 cpd00322[e0]  <=>  

2319 EX_IMP_e0 -10 1000 cpd00114[e0]  <=>  

2322 EX_Inosine_e0 -10 1000 cpd00246[e0]  <=>  

2325 EX_K_plus__e0 -10 1000 cpd00205[e0]  <=>  

2326 EX_L_Lactate_e0 -10 1000 cpd00159[e0]  <=>  

2328 EX_L_Leucine_e0 -10 1000 cpd00107[e0]  <=>  

2333 EX_L_Lysine_e0 -10 1000 cpd00039[e0]  <=>  

2338 EX_Amylotriose_e0 -10 1000 cpd01262[e0]  <=>  

2340 EX_Maltose_e0 -10 1000 cpd00179[e0] + 

cpd00179[e0]  <=>  
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Table B1.4: Continued. 

 
 

 
 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2344 EX_D_Mannose_e0 -10 1000 cpd00138[e0] + 

cpd00138[e0]  <=>  

2349 EX_L_Methionine_e0 -10 1000 cpd00060[e0]  <=>  

2357 EX_Niacin_e0 -10 1000 cpd00218[e0]  <=>  

2358 EX_NH3_e0 -10 1000 cpd00013[e0] + 

cpd00013[e0]  <=>  

2363 EX_NO_e0 -10 1000 cpd00418[e0]  <=>  

2365 EX_O2_e0 -10 1000 cpd00007[e0] + 

cpd00007[e0]  <=>  

2369 EX_Ornithine_e0 -10 1000 cpd00064[e0] + 

cpd00064[e0]  <=>  

2373 EX_Heme_e0 -10 1000 cpd00028[e0]  <=>  

2374 EX_L_Phenylalanine_

e0 

-10 1000 cpd00066[e0]  <=>  

2375 EX_Phosphate_e0 -10 1000 cpd00009[e0]  <=>  

2378 EX_Propionate_e0 -10 1000 cpd00141[e0]  <=>  

2382 EX_L_Proline_e0 -10 1000 cpd00129[e0]  <=>  

2386 EX_Pyruvate_e0 -10 1000 cpd00020[e0]  <=>  

2389 EX_D_Ribose_e0 -10 1000 cpd00105[e0]  <=>  

2391 EX_Ribitol_e0 -10 1000 cpd00366[e0]  <=>  

2393 EX_L_Serine_e0 -10 1000 cpd00054[e0] + 

cpd00054[e0]  <=>  

2397 EX_Sulfate_e0 -10 1000 cpd00048[e0]  <=>  

2399 EX_Succinate_e0 -10 1000 cpd00036[e0]  <=>  

2400 EX_Sucrose_e0 -10 1000 cpd00076[e0] + 

cpd00076[e0]  <=>  

2403 EX_Taurine_e0 -10 1000 cpd00210[e0]  <=>  

2404 EX_Thiocyanate_e0 -10 1000 cpd01211[e0]  <=>  

2405 EX_Thymidine_e0 -10 1000 cpd00184[e0]  <=>  
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Table B1.4: Continued 

 
 

 
 

Index: Matched reaction 

name: 

Lower 

Bound: 

Upper 

Bound: 

Reaction Formula: 

2406 EX_Thiamin_e0 -10 1000 cpd00305[e0]  <=>  

2408 EX_L_Threonine_e0 -10 1000 cpd00161[e0]  <=>  

2409 EX_Thymine_e0 -10 1000 cpd00151[e0]  <=>  

2413 EX_L_Tryptophan_e0 -10 1000 cpd00065[e0]  <=>  

2420 EX_L_Tyrosine_e0 -10 1000 cpd00069[e0]  <=>  

2426 EX_UMP_e0 -10 1000 cpd00091[e0]  <=>  

2427 EX_Uracil_e0 -10 1000 cpd00092[e0]  <=>  

2428 EX_Urea_e0 -10 1000 cpd00073[e0] + 

cpd00073[e0]  <=>  

2429 EX_Uridine_e0 -10 1000 cpd00249[e0]  <=>  

2430 EX_L_Valine_e0 -10 1000 cpd00156[e0]  <=>  

2464 EX_Acetoacetate_e0 -10 1000 cpd00142[e0]  <=>  

2208 EX_Na_plus__e0 -10 1000 cpd00971[e0]  <=>  

2321 EX_L_Inositol_e0 -10 1000 cpd00121[e0]  <=>  

2198 EX_Butyrate_e0 -10 1000 cpd00211[e0] + 

cpd00211[e0]  <=>  

2214 EX_Carnitine_e0 -10 1000 cpd00266[e0]  <=>  

2278 EX_Galactose_e0 -10 1000 cpd00108[e0]  <=>  

2309 EX_hexadecenoate_e0 -10 1000 cpd15237[e0]  <=>  

2364 EX_O2__e0 -10 1000 cpd00532[e0]  <=>  

2367 EX_octadecenoate_e0 -10 1000 cpd15269[e0]  <=>  

2368 EX_octanoate_e0 -10 1000 cpd03846[e0]  <=>  

2435 EX_Xylose_e0 -10 1000 cpd00154[e0]  <=>  

 

 


