

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MACHINE LEARNING TECHNIQUES FOR THE ESTIMATION

OF MATERIAL PROPERTIES FROM LIGHT SPECTRUM DATA

EMRE ARDIÇ

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

GEBZE

2018

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MACHINE LEARNING TECHNIQUES

FOR THE ESTIMATION OF MATERIAL

PROPERTIES FROM LIGHT SPECTRUM

DATA

EMRE ARDIÇ

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR

ASSIST. PROF. DR. YAKUP GENÇ

GEBZE

2018

T.C.

GEBZE TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

IŞIK SPEKTRUM VERİSİNDEN MADDE

ÖZELLİKLERİNİN TAHMİNİ İÇİN

MAKİNE ÖĞRENMESİ TEKNİKLERİ

EMRE ARDIÇ

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

DANIŞMANI

DR. ÖĞR. ÜYESİ YAKUP GENÇ

GEBZE

2018

v

SUMMARY

The absorbance spectrum technique is as old as the first alchemists. They desired

to learn and identify their potions by examining the color and opacity of solutions as

different reagents were mixed, heated, and stirred. Today, it is still the most frequently

used spectroscopic technique on studies of liquids and gases as it is simple, accurate,

and easy to use. An absorbance spectrum can be used to identify substances or measure

the concentration of a molecule in solution. In this work, partial least squares

regression (PLSR), gradient boosting regression (GBR), random forests (RF),

convolutional neural network (CNN) and long short-term memory (LSTM) models

were trained on absorbance spectrums of different liquid solvents and concentration of

a specific molecule was predicted. A large data set was collected to train and test the

models. In order to increase accuracy of the models, data set was scaled and cleaned

from abnormal data. Single-tasking and multi-tasking CNNs were designed and

optimized. The models were compared by performance metrics of mean absolute error

(MAE) and coefficient of determination. As shown in experiments, the proposed CNN

models gave the best results with about 1.1% mean absolute error.

Key Words: Absorbance Spectrum Analysis, Concentration Prediction, Multi-

Task Learning (MTL), Convolutional Neural Network (CNN).

vi

ÖZET

Emilim spektrumu tekniği ilk simyacılar kadar eskidir. İksirlerin rengine,

saydamlığına bakarak ve farklı karışımlar deneyerek onları öğrenmeye ve tanımaya

çalışmışlardır. Bugünlerde bile basit, hassas ve kullanımı kolay olduğu için sıvılar ve

gazlar üzerindeki çalışmalarda sıkça kullanılmaktadır. Emilim spektrumu tekniği sıvı

kimyasal çözeltilerdeki bir maddenin tanınmasında veya bir molekülün yoğunluğunun

ölçülmesinde kullanılabilir. Bu çalışmada farklı sıvı çözeltilerin emilim spektrumları

üzerinde kısmi en küçük kareler, gradyan destekli regresyon, rastgele ormanlar,

evrişimsel sinir ağları ve uzun kısa-süreli bellek modelleri eğitilerek belirli bir

molekülün yoğunluğu tahmin edilmiştir. Modellerin eğitimi ve testi için büyük bir veri

kümesi oluşturulmuştur. Modellerin doğruluğunu artırabilmek için veri kümesi

ölçeklendirilip ve anormal verilerden temizlenmiştir. Tek ve çok görevli evrişimsel

sinir ağları geliştirilmiş ve optimize edilmiştir. Modeller ortalama mutlak hata (MAE)

ve belirlilik katsayısı performans metriklerine göre karşılaştırılmıştır. Deneylerde

görüldüğü üzere önerilen evrişimsel sinir ağları yaklaşık %1,1 ortalama mutlak hata

ile en iyi sonuçları vermiştir.

Anahtar Kelimeler: Emilim Spektrumu Analizi, Konsantrasyon Tahmini, Çok-

Görevli Öğrenme (MTL), Evrişimsel Sinir Ağları (CNN).

vii

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervisor, Assist.

Prof. Yakup GENÇ, who not only shared his profound scientific knowledge with me

but also taught me great lessons of life. His support, suggestions and encouragement

gave me the drive and will to complete this work.

The project was completed by support of Bioelectronics Devices and System

Development Laboratory in TÜBİTAK UEKAE. I would like to thank to Cihan KILIÇ

for the creation of spectrum dataset, who currently is Researcher at TÜBİTAK.

I am grateful to my parents for their love and support.

viii

TABLE of CONTENTS

 Page

SUMMARY v

ÖZET vi

ACKNOWLEDMENTS vii

TABLE of CONTENTS viii

LIST of ABBREVIATIONS and ACRONYMS x

LIST of FIGURES xi

LIST of TABLES xv

1. INTRODUCTION 1

1.1. Electromagnetic Radiation 1

1.2. Absorption Spectroscopy 2

1.3. Beer-Lambert Law 4

2. RELATED WORKS 7

2.1. Predicting Compound Concentration in Tablets 7

2.2. Classification of Various Spectrums 9

2.3. Predicting Organic Acids Concentration in Digesters 10

2.4. Identification of Absorption Bumps 11

3. METHODS 13

3.1. Dataset Preparation 13

 3.1.1. Preprocessing 15

 3.1.2. Outlier Removal 15

3.2. Partial Least Squares Regression 18

 3.2.1. Prerequisite Notions and Notations 18

 3.2.2. Decompositions of Variables 18

 3.2.3. Regression Procedure 19

3.3. Random Forest Regression 19

 3.3.1. Classification Trees 20

 3.3.2. Regression Trees 23

3.4. Gradient Boosting Regression 24

 3.4.1. Function Estimation 24

ix

 3.4.2. Steepest Descent 25

 3.4.3. Approximations for Finite Datasets 26

 3.4.4. Regression Algorithms 27

 3.4.5. Regularization 29

3.5. Convolutional Neural Networks 30

 3.5.1. Core Layers 31

 3.5.2. Regularization 34

 3.5.3. Optimization Principles 35

 3.5.4. Proposed Architectures 39

3.6. Long Short-Term Memory 43

4. EXPERIMENTS AND RESULTS 47

4.1. Partial Least Squares Regression 47

4.2. Random Forest Regression 50

4.3. Gradient Boosting Regression 55

4.4. Convolutional Neural Networks 62

 4.4.1. Single-Tasking Architecture 62

 4.4.2. Multi-Tasking Architecture 69

 4.4.3. Multivariate Regression 73

4.5. Long Short-Term Memory 74

4.6. Analysis and Results 77

5. CONCLUSIONS 79

REFERENCES 81

BIOGRAPHY 85

APPENDICES 86

x

LIST of ABBREVIATIONS and ACRONYMS

Abbreviations

and Acronyms

Explanations

1D : 1 Dimensional

2D : 2 Dimensional

30D : 30 Dimensional

4D : 4 Dimensional

ANN : Artificial Neural Network

CNN : Convolutional Neural Network

GBR : Gradient Boosting Regression

GerDA : Generalized Discriminant Analysis

GTU : Gebze Technical University

KNN : K-Nearest Neighbor

LDA : Linear Discriminant Analysis

LSTM : Long Short-Term Memory

MLP : Multi-Layer Perceptron

MLR : Multiple Linear Regression

NIR : Near Infrared

PCA : Principal Component Analysis

PLS : Partial Least Squares

PLSR : Partial Least Squares Regression

ReLU : Rectifier Linear Unit

RF : Random Forests

RVM : Relevance Vector Machine

SVM : Support Vector Machine

UV : Ultraviolet

xi

LIST of FIGURES

Figure No: Page

1.1: Plane-polarized electromagnetic radiation on the 𝑥 axis; electric

component is 𝐸𝑦; wavelength is 𝜆; magnetic component is 𝐻𝑧; 𝐴 is

amplitude of wave.

2

1.2: Structure of an atom with two energy levels. 3

1.3: An example of absorption spectrum where absorption lines are

shown as vertical black lines.

4

1.4: Absorbance spectrum measurement system; 𝐼𝑜 is transmitted light

to the sample and 𝐼𝑡 is received light that comes from sample.

4

1.5: Light is absorbed by sample in a cuvette where 𝐼𝑜 is transmitted

light to the sample, 𝐼𝑡 is received light that comes from sample and

𝑙 is the path length of light.

5

1.6: Example absorption band between wavenumbers of 𝜆1 and 𝜆2; 𝑐 is

concentration of the absorbing material in the solution.

5

2.1: Bjerrum’s deep convolutional neural network for predicting weight

of active compound in pharmaceutical tablets.

8

2.2: Example of 1D CNN architecture for two-class classification

problem with one convolution layer and two output neurons.

10

3.1: Absorbance spectrum measurement system including spectrometer,

UV-Visible light source, 1 cm path-length cuvette, cuvette holder,

fibers and computer.

14

3.2: Distribution of the entire dataset by concentration values. 15

3.3: Scaled absorption spectrums of three samples with concentration of

0%, 103% and 140%.

16

3.4: Average 𝑅2 scores of PLSR model for 10-fold cross-validation sets.

The best score (0.93) was achieved for 13 components.

16

3.5: Spectral outliers are detected by PLSR model trained on the entire

dataset. Blue line represents 𝑦 = 𝑥, red and green dots indicates

abnormal and normal spectrums, respectively.

17

xii

3.6: A decision tree example for a dataset. Circular shapes are the

decision nodes and rectangles are leaf nodes. The univariate

decision node splits throughout one axis and consecutive splits are

orthogonal to each other. After the first split, {𝑥|𝑥1 < 𝑤10} is pure

and is not divided further.

20

3.7: Tree construction algorithm for a classification problem. 22

3.8: Gradient boosting algorithm for least squares loss function. 28

3.9: GBR algorithm for LAD regression. 29

3.10: A three-layered feedforward neural network with an input layer, a

hidden layer and an output layer.

30

3.11: An example CNN architecture with five layers for classification of

MNIST images.

31

3.12: A visual representation of a convolutional layer. 32

3.13: Max and average pooling examples. The spatial extent (𝐹) and the

stride (𝑆) parameters are 2.

33

3.14: An example of dropout operation applied on the network at left. The

ignored neurons are shown as red.

34

3.15: An example of simple perceptron. 𝑥1, 𝑥2, . . , 𝑥𝑁 are inputs.

𝑤1, 𝑤2, . . , 𝑤𝑁 are weight of connections. 𝑓 is nonlinear function and

𝑦 is the output.

36

3.16: An example of neural network with a hidden layer. Inputs are

𝑥1, 𝑥2, . . , 𝑥𝑁, outputs are 𝑦1, 𝑦2, . . , 𝑦𝑀 and hidden layers are defined

as ℎ1, ℎ2, . . , ℎ𝐾. Weight matrices are defined as 𝑊𝑁𝑥𝐾 and 𝑊’𝐾𝑋𝑀

respectively.

37

3.17: Single-tasking 1D CNN with one convolutional layer. 40

3.18: Multi-tasking 1D CNN with one convolutional layer. 40

3.19: An example of 1D convolution applied on a 1D vector. 41

3.20: Hard parameter sharing for multi-task learning in deep neural

networks.

42

3.21: Soft parameter sharing for multi-task learning in deep neural

networks.

42

xiii

3.22: Example of RNN for time series with length 𝑛. Each node

represents a time 𝑡 and the information at time 𝑡 flows to the node

at time 𝑡 + 1

44

3.23: A common architecture of LSTM units with input 𝑖, output 𝑜 and

forget 𝑓 gates. The input vector is 𝑥𝑡, output vector is ℎ𝑡 and

memory cell is 𝑐𝑡 at time step 𝑡.

45

4.1: Average 𝑅2 score of the models trained by 10-fold cross-validation.

The best 𝑅2 scores were achieved for 15, 32 and 41 components.

48

4.2: Average MAE of the models trained by 10-fold cross-validation.

The lowest MAE was achieved for 41 components.

48

4.3: True and predicted concentrations for the model trained for 32

components.

49

4.4: True and predicted concentrations for the model trained for 41

components.

49

4.5: Average 𝑅2 scores of the models trained for different number of

decisions trees. The best 𝑅2 score (0.97) was achieved for 51

decision trees.

51

4.6: Average MAEs of the models trained for different number of

decisions trees. The lowest MAE (2.59) was achieved for 51

decision trees.

51

4.7: True and predicted concentrations for the model trained for

minimum 10 samples splits.

52

4.8: True and predicted concentrations for the model trained for

maximum 50 splits.

53

4.9: True and predicted concentrations for the model trained for

minimum 10 samples leaf.

54

4.10: True and predicted concentrations for the model trained for

minimum 20 samples leaf.

54

4.11: True and predicted concentrations for the best model. 55

4.12: True and predicted concentrations of the model trained by using the

parameters in Table 4.6, with 10-fold cross-validation.

57

4.13: Average 𝑅2 scores of the models trained by using the parameters in

Table 4.6, with 10-fold cross-validation.

58

xiv

4.14: Average 𝑅2 scores of the models trained for learning rate 0.05 and

various maximum depths, with 10-fold cross-validation.

59

4.15: Average MAE of the models trained for various maximum depths,

learning rate 0.6 and 100 estimators, with 10-fold cross-validation.

60

4.16: Predicted concentrations of the best model trained on the entire

dataset with the parameters in Table 4.25. Green, red and blue colors

refer to chemical 1, 2 and 3, respectively.

68

4.17: Average MAE of the models trained on the entire dataset with the

parameters in Table 4.25.

68

4.18: Predicted concentrations of the best model trained on the entire

dataset with the parameters in Table 4.25. Green, red and blue colors

refer to chemical 1, 2 and 3, respectively.

72

4.19: Average MAE of the models trained on the entire dataset with the

parameters in Table 4.25.

72

4.20: Single-layered LSTM network architecture. 74

4.21: The deep network with 1D CNN and LSTM layers. 74

xv

LIST of TABLES

Table No: Page

2.1: The optimized hyperparameters of the proposed neural network. 9

2.2: Performance of CNN and PLS models on test set of standard

global scaled dataset.

9

4.1: The average MAE and 𝑅2 scores acquired for 15, 32 and 41

components.

48

4.2: Training parameters of the best RF model. 50

4.3: The MAE and 𝑅2 score of the models trained for different number

of estimators.

50

4.4: The MAE and 𝑅2 score of the models trained for different number

of minimum samples split.

52

4.5: The MAE and 𝑅2 score of the models trained for different number

of minimum samples leaf.

53

4.6: The parameters of the best GBR model. 56

4.7: Average 𝑅2 score and MAE of the model trained by using various

number of estimators, learning rate 0.1 and maximum depth 3,

with 10-fold cross-validation.

56

4.8: Average MAE and 𝑅2 score of the model trained by using different

maximum depths, learning rate 0.1 and estimator count 100, with

10-fold cross-validation.

57

4.9: Average MAE and 𝑅2 score of the GBR model trained by using

various maximum depths, learning rate 0.05 and estimator count is

100.

58

4.10: Average MAE and 𝑅2 score of the GBR model trained by using

different maximum depths, learning rate 0.2 and estimator count is

100, with 10-fold cross-validation.

59

4.11: Average MAE and 𝑅2 score of the GBR model trained for

different maximum depth values with learning rate 0.6 and

estimator count is 100.

60

xvi

4.12: Average MAE and 𝑅2 score of the GBR model trained by using

different number of estimators, learning rate 0.1 and maximum

depth 9.

61

4.13: Average MAE and 𝑅2 score of the GBR model trained by using

different loss functions, 100 estimators, learning rate 0.1 and

maximum depth 9.

61

4.14: Hyperparameter search space for Bayesian optimizer. 63

4.15: Initial parameters of the shallow CNN for Bayesian optimization. 63

4.16: The hyperparameters found by Bayesian optimizer for the shallow

CNN.

64

4.17: Average MAE and 𝑅2 score of the CNN model for 50, 100 and

200 filters.

64

4.18: Average MAE and 𝑅2 score of the CNN model for different filter

lengths.

65

4.19: Average MAE and 𝑅2 score of the CNN model for various strides

and filter length 25.

65

4.20: Average MAE and 𝑅2 score of the CNN model for various noise

level in the input.

65

4.21: Average MAE and 𝑅2 score of the CNN model for different

learning rates.

66

4.22: Average MAE and 𝑅2 score of the CNN model for various dropout

probabilities.

66

4.23: Average MAE and 𝑅2 score of the CNN model for two

convolutional layers.

67

4.24: Average MAE and 𝑅2 score of the CNN model for additional one

fully connected layer.

67

4.25: The hyperparameters found by fine-tuning the parameters found by

Bayesian optimizer.

67

4.26: Average MAE and 𝑅2 scores for 50, 100 and 200 filters. 69

4.27: Average MAE and 𝑅2 scores for various filter lengths and 50

filters.

70

4.28: Average MAE and 𝑅2 scores for various filter lengths and 100

filters.

70

xvii

4.29: Average MAE and 𝑅2 scores for 10, 100 and 1000 neurons in task

layers.

70

4.30: Average MAE and 𝑅2 scores for extra one convolutional layer in

the shared layer.

71

4.31: Average MAE and 𝑅2 scores for extra one convolutional layer in

the task layers.

71

4.32: Average 𝑅2 score and MAE of the multivariate regression models. 73

4.33: Initial parameters of the LSTM network. 75

4.34: Initial parameters of the LSTM layer. 75

4.35: Average MAE and 𝑅2 score of the single-layered LSTM model for

dimensions of 1, 5, 10 and 20.

76

4.36: The hyperparameters of the CNN layer. 76

4.37: Average MAE and 𝑅2 score of the model with 1D CNN and

LSTM layers for 20 and 100 units.

76

4.38: Average 𝑅2 score and MAE of all the proposed models. 77

1

1. INTRODUCTION

Light is an electromagnetic radiation of any wavelength, whether visible or not.

All materials absorb light energy and intensity of the absorbed energy can be expressed

as a function of frequency and wavelength. Absorption spectroscopy is a technique to

measure amount of energy that is absorbed by a substance. It is mainly used to

determine the presence of a specific substance in a sample and quantify the amount of

the substance present. It has many applications such as particle size analysis, polymer

processing, trace detection of metals, ozone monitoring, analysis of composition in

dairy products and clinical blood diagnostics.

In this work, various machine and deep learning models were trained on

absorbance spectrums of different solvents and concentration of a specific substance

in these solvents was predicted. Partial least squares, random forests, gradient boosting

and convolutional neural networks were used to generate the models. Ultraviolet-

visible spectroscopy technique was employed to measure absorption levels of specific

wavelengths. Large data set was collected by preparing and measuring different type

of solvents. Data sets were cleaned and scaled before training. Mean absolute error

and coefficient of determination (𝑅2) were used to evaluate and compare the regression

models.

1.1. Electromagnetic Radiation

Light is an electromagnetic radiation of longer and shorter wavelengths. It

consists of both a magnetic and an electric component, which can be considered as

plane-polarized radiation [1]. Figure 1.1 shows one photon of this kind of radiation

moving on the 𝑥 axis. Equation (1.1) illustrates electric and magnetic components of

photons where 𝑣 is frequency of photon and 𝐴 is the amplitude.

𝐸𝑦 = 𝐴𝑠𝑖𝑛(2𝜋𝑣𝑡 − 𝑘𝑥)

𝐻𝑧 = 𝐴𝑠𝑖𝑛(2𝜋𝑣𝑡 − 𝑘𝑥)
} (1.1)

 The electric component of the radiation is considered as an oscillating electric

field of strength 𝐸 and the magnetic component is considered as an oscillating

magnetic field of strength 𝐻. If 𝐸 and 𝐻 vectors are 𝑦 and 𝑧, then the angle between

2

these oscillating fields is 90 degrees. Thus, the fields oscillate sinusoidally with 2𝜋𝑛

frequency. Since 𝑘 is the same for 𝐸 and 𝐻 components, they are in-phase.

Figure 1.1: Plane-polarized electromagnetic radiation on the 𝑥 axis; electric

component is 𝐸𝑦; wavelength is 𝜆; magnetic component is 𝐻𝑧; 𝐴 is amplitude of

wave.

The polarization plane is taken to be the plane in the direction of 𝐸 and that of

propagation; this is the 𝑥𝑦 plane in Figure 1.1. The reason for this selection is that

interaction of matter with electromagnetic radiation is mostly through the electric

component.

1.2. Absorption Spectroscopy

Atoms contain very small particles such as electrons, protons and neutrons.

Electrons and protons are the negatively and positively charged particles, respectively.

Neutrons are neutral particles since they have no charge.

The electrostatic attraction force between the electrons and nucleus induces

electrons to turn around the nucleus. The electrons have different energy levels based

on the distance from the nucleus. The electrons revolving very close to the nucleus

have the lowest energy level while the electrons revolving at the longest distance from

nucleus have the highest energy level. As shown in Figure 1.2, the lowest energy level

is 𝐸1 and the next higher energy level is 𝐸2.

The electrons in 𝐸1 state needs additional energy such as light, heat or electric

field to move into next 𝐸2 state. When the electrons in the lower energy state (𝐸1)

gain sufficient energy from photons, they move into next higher energy state (𝐸2).

After a short period, they lose their energy and fall back to the lower energy level. The

3

electrons in the higher energy level lose their energy by emitting photons before they

fall back to the lower energy state.

Figure 1.2: Structure of an atom with two energy levels.

The process of absorbing energy from photons is called absorption of radiation.

When the electrons in 𝐸1 state absorb energy that is equal to the energy difference

between 𝐸1 and 𝐸2, the electrons jump from 𝐸1 to 𝐸2 state. Absorption happens only

if the energy of photon exactly matches the energy difference between the two electron

shells or orbits.

ℎ𝑣 = 𝐸1 − 𝐸2 (1.2)

Equation (1.2) illustrates the relation between energy levels and frequency of

photons where frequency of photon is 𝑣, Planck’s constant is ℎ, lower energy level is

𝐸1 and higher energy level is 𝐸2.

Absorption spectroscopy is a method to measure the energy that is absorbed by

a substance. Absorption spectrum of a substance is calculated by measuring

absorptions over a range of frequencies [1]. The spectrum is mostly affected by the

atomic and molecular structure of a material. Light energy is absorbed at frequencies

if the energy difference between two quantum mechanical states of the molecules

matches. The absorption taking place because of this transition is known as absorption

line as shown in Figure 1.3. An absorption spectrum contains many of it. The

frequencies where absorption line is seen mostly depend on molecular structure of the

4

sample. They are also affected by temperature, pressure, electromagnetic fields and

interactions between molecules.

Figure 1.3: An example of absorption spectrum where absorption lines are

shown as vertical black lines.

The most common case for measuring absorption spectra is to send a generated

beam of radiation (𝐼𝑜) to a sample and measure the intensity of the radiation (𝐼𝑡) that

passes through it as shown in Figure 1.4. The transmitted energy (𝐼𝑜) can be used to

calculate the absorption. The light source, sample arrangement and detection methods

change according to the wavelengths and the type of the experiment.

Figure 1.4: Absorbance spectrum measurement system; 𝐼𝑜 is transmitted light

to the sample and 𝐼𝑡 is received light that comes from sample.

1.3. Beer-Lambert Law

Beer-Lambert law explains the linear relationship between absorbance and

concentration of an absorbent material. Figure 1.5 demonstrates a measurement system

to calculate concentration of an analyte in solution by using absorption.

5

Figure 1.5: Light is absorbed by sample in a cuvette where 𝐼𝑜 is transmitted

light to the sample, 𝐼𝑡 is received light that comes from sample and 𝑙 is the path

length of light.

The law is generally defined as Equation (1.3) where 𝐴 is measured absorbance,

𝜀(𝜆) is wavelength-dependent absorptivity coefficient, 𝑐 is concentration and 𝑙 is path

length of light in cuvette. Since 𝐴 is dimensionless, 𝜀(𝜆) has dimensions of

𝑚𝑜𝑙−1𝑑𝑚3𝑐𝑚−1. Path length of light (𝑙) and concentration (𝑐) is directly proportional

to absorbance (𝐴) where 𝐴 ranges from 0 to 1. As shown in Figure 1.6, 𝜀(𝜆) can be

determined by using maximum absorbance value in a given wavelength range or

integrating the area under the curve.

𝐴 = 𝑙𝑜𝑔10(
𝐼𝑜

𝐼𝑡
) = 𝜀(𝜆)𝑐𝑙 (1.3)

The linearity of the law is limited due to some chemical and instrumental factors

such as light scattering effect caused by particulates in the sample, stray light,

deviations in absorptivity coefficients at high and low concentrations.

Figure 1.6: Example absorption band between wavenumbers of 𝜆1 and 𝜆2; 𝑐 is

concentration of the absorbing material in the solution.

6

Chemical interactions between the analyte and the solvent produce a substance

with different absorption behaviors and this phenomenon causes nonlinearities

between the absorption and concentration. For instance, pH of the solvent affects the

electron arrangement of phenol molecule in it. Since UV-Visible spectroscopy is based

on electrons, the change in pH of the solvent alters the absorption spectrum of the

samples.

When concentration of solute increases in the solution, solute molecules induce

different charge distribution on their adjacent species. Thus, absorption wavelength of

the analyte is shifted. High analyte concentrations may alter refractive index of the

solution and this affects measured absorbance. At very low concentrations, some

molecules or ions such as methylene blue can cause deviations in absorptivity

coefficients.

Stray light or false light is unintended light in an optical system and it is caused

by light scattering, malfunction of spectrometer or diffraction. Stray light causes a

decrease in measured absorbance and breaks the linear relationship between

concentration and absorbance. It can be filtered by cut-off filters which absorbs lights

in specific wavelength range and transmits higher wavelengths.

As shown in Equation (1.3), cuvettes having different path lengths causes

deviations in calculated absorbance. Thus, cuvettes should have equal optical

properties. All surfaces of the cuvette must be clean since fingerprints, dust and dirt

may cause light scattering and add absorbance signatures of their own.

7

2. RELATED WORKS

Purpose of this work is to predict concentration of specific substance in different

chemical solutions via absorption spectroscopy. There are various related regression

and classification works based on absorption spectrums. Frequently used methods in

these works are partial least squares (PLS), linear discriminant analysis (LDA),

support vector machines (SVM), multi-layer perceptron (MLP), RF and k-nearest

neighbor (KNN). Recent works employ CNN and other deep neural networks to deal

with nonlinearity and noise explained in Section 1.3. According to related works, CNN

architectures provide promising result for classification and regression tasks as they

are easy to use, deal with noise and nonlinearity better, and so on.

2.1. Predicting Compound Concentration in Tablets

Bjerrum et. al. designed and optimized a deep convolutional neural network on

near infrared (NIR) spectra data to predict compound concentration in tablets [2]. CNN

models outperformed the PLS models for all combinations of preprocessing.

Bjerrum used the dataset containing NIR spectra from 654 pharmaceutical

tablets from two spectrometers [2]. Dataset was normalized by subtracting the global

mean of the training set and dividing by two times the global standard deviation of the

training to make sure that values were in the range -1 to 1. Test and validation sets

were created randomly by using 20% of the dataset. The training and validation sets

were created by spectrums obtained with instrument one, whereas the test sets were

only taken from instrument two. The wavelength region from 600 to 1798 nm was

used for modelling.

Bjerrum identified spectral outliers by PLS modeling using the implementation

of the NIPALS algorithm [3], without scaling, a maximum of 100.000 iterations and a

tolerance of 10−16. The all dataset was applied to 10-fold cross-validation for the

number of principal components between 1 and 30. The number that gave the lowest

average Huber loss [4] for the cross-validation sets was used to train PLS model on

the entire dataset and the samples having more than 2.5 times the standard deviation

of the absolute error of prediction identified as outliers.

8

Bjerrum designed the deep neural network as shown in Figure 2.1. The input was

given to a Gaussian noise layer with standard deviation of 0.01 and then fed to 1D

CNN layers with ReLU [5] activation function. The output of final CNN layer was

flattened and given to a dropout layer. The output of dropout layer was fed to a fully

connected dense layer with linear activation function. Final output was a single neuron

with linear activation function. Huber loss [4] was used as loss function and Adadelta

[6] optimizer was used to train the network.

Bjerrum used Bayesian optimization framework implemented in GpyOpt [7]

package to find optimal hyperparameters for the network. Search space of kernel and

filter size of CNN layers were set to [2, 40] and [5, 150], respectively. Search space

of dropout probability and number of neurons in fully connected layer were set to

[0, 0.5] and [4, 1000], respectively. Hyperparameter optimization was done with

learning rates of 0.084 and 0.094 for 40 or 200 epochs. Batch size was set to 45 and

the loss function was used as average of validation loss for the last 10 epochs of

training. Maximum 40 iterations of Gaussian process optimization with expected

improvement acquisition function was employed for the hyperparameter optimization.

The optimized hyperparameters are shown in Table 2.1.

Figure 2.1: Bjerrum’s deep convolutional neural network for predicting weight

of active compound in pharmaceutical tablets.

9

Bjerrum optimized the number of principal components for PLS model by

minimizing Huber loss on test set. The lowest loss was found at 5 principal

components as shown in Table 2.1.

Table 2.1: The optimized hyperparameters of the proposed neural network.

Hyperparameter Optimized Value

Conv Layer 1 Number of Kernel 14

Conv Layer 1 Filter Size 29

Conv Layer 2 Number of Kernel 30

Conv Layer 2 Filter Size 22

Dropout Probability 0.045

Dense Layer Number of Neuron 176

Principal Components 5

Table 2.2: Performance of CNN and PLS models on test set of standard global

scaled dataset.

Model 𝑅2 RMSE Huber

CNN 0.97 4.01 2.51

PLS 0.94 4.43 2.60

Bjerrum used coefficient of determination, root mean squared error and Huber

loss metrics to measure performance of the trained CNN and PLS models. As shown

in Table 2.2, CNN model outperformed PLS model without data preprocessing.

2.2. Classification of Various Spectrums

Acquarelli et. al. designed a shallow 1D CNN architecture as shown in Figure

2.2 to classify spectrums of beer, tablet, wine, coffee, olive oil, juice and meat datasets

having different number of classes [8] – [15]. The proposed CNN model outperformed

standard classification algorithms used in chemometrics such as PLS-LDA (Linear

Discriminant Analysis), KNN and logistic regression in terms of accuracy. It achieved

86% and 96% average accuracy on raw and preprocessed test data, respectively.

Acquarelli used Glorot [16] initialization function for initial weights and

Stochastic Gradient Descent (SGD) [17] algorithm for training the network. Softmax

activation function was employed for output neurons to calculate probability of

classes. Cross-entropy error loss with custom regularization term was used to enforce

similarity between nearby features. Random Grid Search Cross-Validation framework

10

(RGS-CV) [18] was used to optimize parameters of the models. Various data

preprocessing methods such as Savitsky-Golay [19], Polynomial detrending [20] and

Robust Normal Variate transform [21] were employed to filter common data artifacts

such as light scatter effects, baseline and instrumental noise [22].

Figure 2.2: Example of 1D CNN architecture for two-class classification

problem with one convolution layer and two output neurons.

2.3. Predicting Organic Acid Concentration in Digesters

Wolf et. al. developed an online measurement system using UV-Visible

spectroscopic probes to predict the concentration of organic acids in anaerobic

digesters by using LDA, GerDA, SVM, RVM, RF, and MLP models [23]. The models

are trained on absorption spectrums from 200 to 750 nm. As a result, SVM and GerDA

based classifiers outperformed other models and achieved 87% accuracy on test data.

Wolf obtained total of 4437 spectral measurements from a full-scale 1.3-MW

industrial biogas plant and used them to create training and validation datasets with

3326 and 1109 samples respectively. The unnecessary spectral region from 640 to 750

11

nm removed from the spectrums and feature vectors with 176 dimensions were

obtained. For classification problem, spectrums clustered to 5 classes such as low, low-

normal, normal, normal-high, and high according to concentration. The uneven

distribution of the samples between classes 4 and 5 was solved by replicating the

samples in class 5 and adding them to dataset.

Wolf used LDA and GerDA methods to get 4D feature vectors followed by linear

classification. RF was used for feature selection and classification on 30D feature

space. SVM, MLP and RF were used for classification of 4D GerDA features.

Performance of the models were compared by normalized mean misclassification rate

(NMCR) calculated from confusion matrix. GerDA and RF feature extractors

improved accuracy of the classifiers significantly. RF classifier based on GerDA

features provided very good classification results for NMCR (12.1%) and SVM

yielded the best overall performance for NMCR (12%).

2.4. Identification of Absorption Bumps

The 217.5 nm broad absorption bump is very important among the research

topics about cosmic dust grains and it is believed to be highly related with some types

of aromatic carbonaceous materials that are known as organic molecules in our Milk

Way and other neighboring galaxies [24]-[27]. Therefore, detection of the absorption

bump is crucial for understanding origin and development of the organic life. Yuan et.

al. [28] designed and analyzed CNN architecture to detect the absorption bumps on a

subset of spectra in Mg II catalog from SDSS Data Release 7 [29]. With data

augmentation, the proposed CNN model achieved about 99% prediction accuracy for

the real-world data.

Yuan applied two data augmentation methods based on curve fitting procedures

to the datasets and generated total of 30K samples. Half of the samples contained the

bump and half did not. The samples divided into two sets, 22K as training set and 8K

as testing set. The samples were converted to 1D vectors by using only flux values.

Yuan designed fully connected and convolutional neural network architectures

to identify absorption bumps in the dataset. The 1D vectors were fed to the fully

connected networks with different layer and neuron configurations. The output layers

were Softmax with two values indicating with or without absorption bump. Initial

learning rate was selected as 0.01 and applied step decreasing policy. The best

12

accuracy (96.75%) was achieved by two hidden layer network with 400 neurons per

layer. Another architecture was 2D CNN based on modified version of AlexNet [30]

and GoogLeNet [31]. The 1D input vectors were padded and folded into 69*69

matrices to make it possible for filters in convolutional layers to detect localized

patterns in flux values. Two fully connected layers were used after the convolutional

layers. The activation function was ReLU in the convolutional layers. The CNN

models were tested for different configurations and the best model achieved 99.404%

accuracy. The best model had 4 convolution layers with 50 filters and size of the filters

were 5*5, 3*3, 3*3 and 3*3 respectively.

13

3. METHODS

In this work, concentration of a specific substance in different chemical solutions

was predicted by using RF, PLSR, GBR, CNN and LSTM models trained on the

absorption spectrums of the solutions. A large dataset was created for training and

testing the models. Before the training, the dataset was scaled, abnormal spectrums

were cleaned and the wavelength regions where the specific substance had no effect

were removed from the spectrums. Coefficient of determination, mean absolute error

and mean squared error (MSE) metrics were used to train and compare the models.

The parameters of the models were optimized for the highest 𝑅2 and the lowest MAE.

In this section, the details about the dataset, data preprocessing methods and the

learning models were discussed.

3.1. Dataset Preparation

There are three types of chemical solutions produced by a chemical process. The

color and molecular structure of each solution are different. There is a specific X

substance dissolved homogeneously in these solutions and the concentration of the

substance is different due to the chemical process.

Total of 6167 solutions and transparent cuvettes were prepared for all solution

types and total of 31 measurement systems were developed as shown in Figure 3.1.

The solutions were poured into the cuvettes with 1 cm path-length and placed on the

cuvette holder. Optical lenses and cuvettes were checked and cleaned before the

measurements. UV-Visible light was transferred to the solution via fiber cable. The

light passed through the sample was measured by the spectrometer with 1 nm

sensitivity. Temperature of the sample and the room where the measurement was taken

were recorded since concentration of X substance was affected by environmental

conditions as explained in Section 1.3. The actual concentration of the X substance

was measured in a laboratory environment with ±1 percent sensitivity.

14

Figure 3.1: Absorbance spectrum measurement system including spectrometer,

UV-Visible light source, 1 cm path-length cuvette, cuvette holder, fibers and

computer.

Reference and dark measurements are required for the accurate calculation of

absorption spectrums. Equation (3.1) shows the absorption calculation with dark and

reference spectrums. Dark measurement (𝐼𝑑𝑎𝑟𝑘) is performed with the light source

switched off and without cuvette. The light source is allowed to stay opened for 30

seconds to come to thermal equilibrium and then reference (𝐼𝑟𝑒𝑓) and sample (𝐼𝑠𝑎𝑚)

measurements are taken with empty cuvette and filled cuvette, respectively. This

technique eliminates the noises that were caused by the measurement system and

environment.

𝐴 = 𝑙𝑜𝑔10(
𝐼𝑠𝑎𝑚 − 𝐼𝑑𝑎𝑟𝑘

𝐼𝑟𝑒𝑓 − 𝐼𝑑𝑎𝑟𝑘
) = 𝜀(𝜆)𝑐𝑙 (3.1)

For entire dataset, Figure 3.2 demonstrates distribution of the samples by

concentration of the X substance. As seen in the figure, most of the samples have

concentration between 90 and 120 due to nature of the chemical process. For each

chemical type and concentration, there are about 40 different samples. The number of

samples for each chemical group is almost the same. There are missing samples for

some concentrations and there are not any samples with concentration above 140.

15

Figure 3.2: Distribution of the entire dataset by concentration values.

3.1.1. Spectrum Preprocessing

The calculated absorption spectrums were smoothed and cleaned from noises by

Savitsky-Golay [19] method. The wavelength regions where the X substance had no

effect were removed from the absorption spectrums leaving feature vectors with 164

dimensions. The all vectors were normalized by subtracting the global mean and

dividing by the global standard deviation ensuring that the values were mostly in the

range -1 to 1. This normalization was done by StandardScaler algorithm in Scikit-

Learn [32]. Scaled absorption spectrums of randomly selected three samples are shown

in Figure 3.3.

3.1.2. Outlier Removal

Spectral outliers were identified by PLSR modeling trained on the entire dataset

without preprocessing. For the model, implementation of the NIPALS algorithm [3]

in Scikit-Learn [32] was used, without scaling, a maximum of 100.000 iterations and

a tolerance of 10−16. The best number of principal components was achieved for 13

as shown in Figure 3.4. The all dataset was applied to 10-fold cross-validation for the

number of principal components between 1 and 30. The number that gave the highest

16

average 𝑅2 score for the cross-validation sets was used to train PLSR model on the

entire dataset and the samples having more than 𝜏 = 3.7 times the standard deviation

of the absolute error of prediction identified as outliers.

Figure 3.3: Scaled absorption spectrums of three samples with concentration of

0%, 103% and 140%.

Figure 3.4: Average 𝑅2 scores of PLSR model for 10-fold cross-validation sets.

The best score (0.93) was achieved for 13 components.

17

Equation (3.2) shows the outlier decision function where 𝑃𝑠 and 𝑇𝑠 are predicted

and true concentration of a specific sample 𝑆, 𝜏 is outlier boundary constant, 𝑃 and 𝑇

are arrays containing all predicted and true concentrations for the entire dataset,

|𝑃 − 𝑇| is the resulting array calculated by subtracting elements of 𝑃 and 𝑇 arrays at

the same indexes and getting absolute values of them. 𝑆𝑡𝑑(|𝑃 − 𝑇|) is standard

deviation of |𝑃 − 𝑇| array whose all elements are positive.

|𝑃𝑠 − 𝑇𝑠|

𝑆𝑡𝑑(|𝑃 − 𝑇|)
≥ 𝜏 (3.2)

Equation (3.2) was tested for various 𝜏 constants and the best value was found

to be 3.7 for the entire dataset. For 𝜏 = 3.7, total of 131 samples were identified and

removed from the dataset as shown in Figure 3.5.

Figure 3.5: Spectral outliers are detected by PLSR model trained on the entire

dataset. Blue line represents 𝑦 = 𝑥, red and green dots indicates abnormal and

normal spectrums, respectively.

18

3.2. Partial Least Squares Regression

Partial least squares regression is a method to reduce a collection of features to

a smaller set of components uncorrelated with each other. It generalizes and associates

features by using principal component analysis (PCA) and multiple linear regression

(MLR) [3]. It is a good alternative to the more classical MLR and PCA methods since

it is more robust and the model parameters do not vary very much for new samples. It

is widely used in the drug, plastic, chemical and food industries. As explained in

Section 2, it is commonly used to model the relation between spectrums having many

correlated variables.

3.2.1. Prerequisite Notions and Notations

The purpose of PLSR is to predict 𝑌𝑂𝑥𝐷 matrix from 𝑋𝑂𝑥𝑃 matrix where 𝑂 is

observations, 𝐷 is dependent variables and 𝑃 is predictors extracted from 𝑂

observations. The matrix 𝑋 is possibly singular and the regression becomes ineffective

due to multicollinearity when the number predictors are larger than the number of

observations. Thus, PCA is performed on 𝑋 to get a smaller set of uncorrelated

elements. The matrix 𝑋 is decomposed via singular value decomposition which is

defined as 𝑋 = 𝑈∆𝑉𝑇 and 𝑈𝑇𝑈 = 𝑉𝑇𝑉 = 𝐼 where 𝐼 is identity matrix and ∆ is a

diagonal matrix with singular values. The columns of 𝑈 and 𝑉 are left and right

singular vectors, respectively. The singular vectors are ordered by their related singular

values that correspond to the square root of the variance of 𝑋 which is explained by

the singular vectors. The left singular vectors can be used to predict 𝑌 by using MLR

since the orthogonality of the singular vectors prevents the multicollinearity issue.

3.2.2. Decompositions of Variables

The matrices 𝑋 and 𝑌 are decomposed as 𝑋 = 𝑇𝑃𝑇 with 𝑇𝑇𝑇 = 𝐼 where 𝐼 is

identity matrix, 𝑇 is score matrix and 𝑃 is the loading matrix which is not orthogonal

in PLSR. Similarly, the matrix 𝑌 is estimated by 𝑌′ = 𝑇𝐵𝐶𝑇 where 𝐵 is a diagonal

matrix with regression weights and 𝐶 is a weight matrix with dependent variables. The

columns of the matrix 𝑇 is called latent vectors. Two sets of weights 𝑤 and 𝑐 are

19

obtained by maximizing their covariance, and then linear combination of the columns

of 𝑋 and 𝑌 is created by using them. The purpose is to find an initial pair of vectors

that maximizing 𝑏 = 𝑡𝑇𝑢 where 𝑡 = 𝑋𝑤 and 𝑢 = 𝑌𝑐 with constraint of 𝑤𝑇𝑤 = 1 and

𝑡𝑇𝑡 = 1. At each step, a latent vector is found and subtracted from 𝑋 and 𝑌 until 𝑋

becomes null matrix.

3.2.3. Regression Procedure

The PLSR algorithm is presented below. The matrices 𝐾 = 𝑋 and 𝐿 = 𝑌 are

created, column centered and normalized. The vector 𝑢 is initialized randomly.

• Estimate weights of 𝑋 matrix by 𝑤 = 𝐾𝑇𝑢

• Estimate factor scores of 𝑋 matrix by 𝑡 = 𝐾𝑤

• Estimate weights of 𝑌 matrix by 𝑐 = 𝐿𝑇𝑡

• Estimate scores of 𝑌 matrix by 𝑢 = 𝐿𝑐

If 𝑡 converges, then 𝑏 = 𝑡𝑇𝑢 is calculated to predict 𝑌 from 𝑡 and the factor

loadings for 𝑋 is computed by 𝑝 = 𝐾𝑇𝑡, otherwise the first step is executed again. The

vector 𝑡 is removed from 𝐾 and 𝐿 by 𝐾 = 𝐾 − 𝑡𝑝𝑇 and 𝐿 = 𝐿 − 𝑏𝑡𝑐𝑇. The 𝑏 value is

stored as a diagonal element of the matrix 𝐵 and the vectors 𝑡, 𝑢, 𝑤, 𝑐 and 𝑝 are stored

in the related matrices. The procedure continues beginning from the first step until 𝐾

is a null matrix. Finally, the dependent variables are estimated by multivariate

regression 𝑌′ = 𝑇𝐵𝐶𝑇 = 𝑋𝑃𝑇𝐵𝐶𝑇 where 𝑃𝑇 is Moore-Penrose pseudo inverse of 𝑃𝑇 .

3.3. Random Forests Regression

Random forests regression is an ensemble learning method that fits many

regression trees on randomly created subset of dataset and uses averaging to improve

the predictive accuracy and control over-fitting [33]. It uses bagging technique that

predictions are made by using and combining all decisions from a set of base models.

All the base models are constructed separately using a various subsample of the data.

RF models can capture non-linear relations between features but they are not very

effective for datasets having sparse features. The predictions for new or unseen

20

samples 𝑥 can be obtained by averaging the predictions from all the individual

regression trees on 𝑥 as shown in Equation (3.3) where the number of base learners is

𝐵, base learner is 𝑓 and 𝑅(𝑥) is the predicted value.

𝑅(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=0

 (3.3)

3.3.1. Classification Trees

Regression tree is a type of decision tree that is a hierarchical model for

supervised learning. A decision tree consists of decision nodes and leaves with discrete

outcomes that label the branches as shown in Figure 3.6 [34]. At each node 𝑢, a specific

condition is checked by 𝑓𝑢(𝑥) function and one of the branches is followed for a given

input by starting at the root node. The function 𝑓𝑢(𝑥) returns a discrete output labeling

the branches. This process continues recursively until a leaf node is reached. The value

is stored in the leaf that determines the output. The decision tree is a nonparametric

model since any parametric form for class densities is not used and the tree gets bigger

by adding branches and leaves during learning.

Figure 3.6: A decision tree example for a dataset. Circular shapes are the

decision nodes and rectangles are leaf nodes. The univariate decision node splits

throughout one axis and consecutive splits are orthogonal to each other. After the

first split, {𝑥|𝑥1 < 𝑤10} is pure and is not divided further.

21

The function 𝑓𝑢(𝑥) defines a separation in the 𝑑-dimensional input space and

splits the input space into smaller regions by beginning from the root node. The leaves

have an output label which is a class code or a numeric value for classification and

regression problems, respectively. A leaf specifies a localized region in the input

space. The inputs that fall in the same localized region have the similar classes for

classification or numeric values for regression. The boundaries of the regions are

specified by the separations in the input space.

Univariate trees use one input in each node while multivariate trees use all inputs

in each node. In a univariate tree, the decision function 𝑓𝑢(∙) in a node takes one input

and returns 𝑛 possible values. If an attribute 𝑥𝑘 ∈ {𝑣𝑎𝑙1, 𝑣𝑎𝑙2} has two possible values

then a node on that attribute has two branches. Each of the branches get one of the

possible two values of the attribute. If input 𝑥𝑖 is numeric, then decision function is

𝑓𝑢(𝑥): 𝑥𝑖 > 𝛼𝑢0 where 𝛼𝑢0 is a proper threshold value.

Quality of splits is determined by impurity measures. A split is considered pure

if all the instances that go through a branch belong to the same class. Specifically, a

node 𝑢 is considered pure if 𝑝𝑢
𝑗

= 𝑁𝑢
𝑗
/𝑁𝑢 is either 0 or 1 where 𝑁𝑢 is the number of

training samples that hit the node and 𝑁𝑢
𝑗
 of 𝑁𝑢 is the number of samples that belong

to class 𝐶𝑗. If the node 𝑢 is pure for the class 𝐶𝑗, then a leaf node that labeled with the

class 𝐶𝑗 can be added to the node. If the node is not pure, then the samples can be split

to increase purity. Multiple split points are probable for a numeric attribute and the

split that maximizes purity should be selected to create the smallest tree.

The algorithm of classification tree construction is shown in Figure 3.7 [34].

Node entropy for a node 𝑢 can be defined as Equation (3.4) where 𝐾 is the number of

classes. For a two-class problem, if 𝑝1 = 1 and 𝑝2 = 0, then all the samples belong to

the same class.

𝜀𝑢 = − ∑ 𝑝𝑢
𝑖 𝑙𝑜𝑔2 𝑝𝑢

𝑖
𝐾

𝑖=1
 (3.4)

Split entropy for a node 𝑢 can be defined as Equation (3.5) where 𝑛 is the number

of possible values for a discrete attribute, 𝑁𝑢𝑗 of 𝑁𝑢 is the number of samples taking

branch 𝑗, 𝑁𝑢𝑗
𝑖 of 𝑁𝑢𝑗 is the number of samples that belong to class 𝐶𝑖 and the estimate

for the probability of class 𝐶𝑖 is 𝑝𝑢𝑗
𝑖 = 𝑁𝑢𝑗

𝑖 /𝑁𝑢𝑗.

22

𝜀𝑢
′ = − ∑

𝑁𝑢𝑗

𝑁𝑢
∑ 𝑝𝑢𝑗

𝑖 𝑙𝑜𝑔2 𝑝𝑢𝑗
𝑖

𝐾

𝑖=1

𝑛

𝑗=1
 (3.5)

Figure 3.7: Tree construction algorithm for a classification problem.

The impurity scores are measured for all attributes and split positions to find the

tree with minimum entropy. Until all branches are pure, the tree is constructed

recursively and in parallel. Specifically, the split that gives the largest increase in

purity is chosen at each step. For example, the impurity difference for a node 𝑢 can be

measured by the difference between the impurity of data hitting the node (𝜀𝑢) and the

total entropy of data hitting its branches after split (𝜀𝑢
′).

Noisy datasets may cause construction of very large trees. Since the trees are

constructed until they are the purest, the trees overfit. To cope with the overfitting,

construction of the trees is ended when they are pure enough. The subset of data is not

split further if 𝜀𝑢 < 𝜃𝐼 and this means that 𝑝𝑢𝑗
𝑖 is not exactly 0 or 1 but close enough

with threshold 𝜃𝑝. In a case like this, a leaf node is created and labeled with the class

having the largest 𝑝𝑢𝑗
𝑖 . The threshold values 𝜃𝐼 or 𝜃𝑝 is known as complexity

23

parameter. If the complexity parameter is high, then variance gets low and a small tree

is constructed, otherwise variance gets high and the tree represents the training samples

accurately by growing larger.

3.3.2. Regression Trees

Regression tree is built in a very similar way as a classification tree. The

difference is that the impurity measure is replaced by a proper one for regression. The

algorithm presented in Figure 3.7 can be modified to train a regression tree by

replacing entropy function with MSE and class labels with averages. The partial

function 𝑏𝑢(𝑥) is defined in Equation (3.6) where 𝑥 ∈ 𝑋𝑢 is all samples hitting the

node 𝑢. In regression, the training dataset is defined as 𝑋 = {𝑥𝑡 , 𝑟𝑡} where 𝑟𝑡 ∈ ℝ and

𝑟𝑡 = 𝑔(𝑥𝑡) + 𝜖.

𝑏𝑢(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝑋𝑢 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑛𝑜𝑑𝑒 𝑢
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.6)

Quality of a split can be measured by MSE from predicted value. If 𝑝𝑢 is

predicted value inside a node 𝑢, then the variance at the node is defined in Equation

(3.7) where 𝑁𝑢 = |𝑋𝑢| = ∑ 𝑏𝑢(𝑥𝑡)𝑡 .

𝜏𝑢 =
1

𝑁𝑢
∑ (𝑟𝑡 − 𝑔𝑢)2𝑏𝑢(𝑥𝑡)

𝑡
 (3.7)

Outputs of the instances hitting a node are averaged as in Equation (3.8). If the

error in a node is feasible (𝜏𝑢 < 𝜃𝑟) then a leaf node containing the 𝑔𝑢 value is added,

otherwise data that hits the node 𝑢 is divided further such that the sum of the errors in

the branches is minimum. As in classification, the attribute or split threshold for a

numeric attribute that minimizes the error is searched recursively.

𝑔𝑢 =
∑ 𝑏𝑢(𝑥𝑡)𝑟𝑡

𝑡

∑ 𝑏𝑢(𝑥𝑡)𝑡
 (3.8)

The partial function 𝑏𝑢ℎ(𝑥) is defined in Equation (3.9) where 𝑋𝑢 = ⋃ 𝑋𝑢ℎ
𝑛
ℎ=1

and 𝑋𝑢ℎ is a subset of 𝑋𝑢 that uses branch ℎ.

24

𝑏𝑢ℎ(𝑥) = {
1, 𝑖𝑓 𝑥 ∈ 𝑋𝑢ℎ 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑛𝑜𝑑𝑒 𝑢 𝑎𝑛𝑑 𝑢𝑠𝑒𝑠 𝑏𝑟𝑎𝑐ℎ ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9)

Equation (3.10) defines the predicted value 𝑔𝑢ℎ in branch ℎ of node 𝑢 and the

error caused by the split is defined in Equation (3.11).

𝑔𝑢ℎ =
∑ 𝑏𝑢ℎ(𝑥𝑡)𝑟𝑡

𝑡

∑ 𝑏𝑢ℎ(𝑥𝑡)𝑡
 (3.10)

The decrease in error caused by a split is defined as the difference between 𝜏𝑢

and 𝜏𝑢
′ which are denoted in Equation (3.7) and Equation (3.11), respectively. The split

that caused the maximum decrease in error is searched recursively.

𝜏𝑢
′ =

1

𝑁𝑢
∑ ∑(𝑟𝑡 − 𝑔𝑢ℎ)2𝑏𝑢ℎ(𝑥𝑡)

𝑡ℎ

 (3.11)

3.4. Gradient Boosting Regression

Gradient boosting regression is an additive ensemble learning method that

optimizes many regression trees in a forward stage-wise fashion [35]. In each stage, a

regression tree is added to the model that is fit on the negative gradient of a

differentiable loss function. It uses boosting technique that new predictors learn from

mistakes committed by previous predictors. The trees are not trained independently,

but sequentially. The trees are constructed by selecting the best split points according

to purity scores, and the loss is minimized. The trees in the models are not changed

and the new trees are added one by one. For the new trees, a gradient descent procedure

is applied to minimize the loss. The output of the new tree is added to the output of the

existing series of trees to boost the final output of the model.

3.4.1. Function Estimation

Let {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁 denote the training set that 𝑥𝑖 is a random input or explanatory

variable and 𝑦𝑖 ∈ ℝ is a random output or response. Using the training set of known

(𝑦, 𝑥) values, the goal is to find 𝐹′(𝑥) of function 𝐹∗(𝑥) that maps 𝑥 to 𝑦 by

minimizing the value of a specific loss function 𝐿(𝑦, 𝐹(𝑥)). The generic function

25

ℎ(𝑥; 𝑎) in Equation (3.12) is a simple parameterized function of the input variables 𝑥,

determined by 𝑎 = {𝑎1, 𝑎2, 𝑎3, … } whose elements change in the joint values 𝑎𝑚 for

these parameters. The function ℎ(𝑥; 𝑎) can be a small regression tree or another model.

𝐹(𝑥; {𝛽𝑚, 𝑎𝑚}1
𝑀) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)

𝑀

𝑚=1

 (3.12)

The parameterized model 𝐹(𝑥; 𝑃) is optimized by Equation (3.14) where

𝜙(𝑃) = 𝐸𝑦,𝑥𝐿(𝑦, 𝐹(𝑥; 𝑃)) and 𝐹∗(𝑥) = 𝐹(𝑥; 𝑃∗). Numerical optimization methods

are employed to solve 𝜙(𝑃) for the parameters in the form 𝑃∗ = ∑ 𝑝𝑚
𝑀
𝑚=0 where 𝑝0 is

initial value and {𝑝𝑚}𝑖=1
𝑀 are successive steps that depends on the previous steps. The

steps are defined by the optimization method.

𝑃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑃

𝜙(𝑃) (3.13)

3.4.2. Steepest Descent

Steepest-descent is a popular numerical optimization method that defines the

increments {𝑝𝑚}𝑖=1
𝑀 . The current gradient 𝑔𝑚 in Equation (3.14) is calculated where

𝑃𝑚−1 = ∑ 𝑝𝑖
𝑚−1
𝑖=0 . The negative gradient −𝑔𝑚 denotes steepest-descent direction and

𝜌𝑚 is called “line search” along that direction. The step is defined as 𝑝𝑚 = −𝜌𝑚𝑔𝑚

where 𝜌𝑚 = arg min
𝑃

𝜙(𝑃𝑚−1 − 𝜌𝑔𝑚).

𝑔𝑚 = {𝑔𝑗𝑚} = {[
𝜕𝜙(𝑃)

𝜕𝑃𝑗
]
𝑃 = 𝑃𝑚−1

} (3.14)

In the function space, numerical optimization is applied with a nonparametric

approach. The function 𝐹(𝑥) is computed at each point 𝑥 and considered as a

parameter. The goal is to minimize Equation (3.15) with respect to 𝐹(𝑥).

𝜙(𝐹(𝑥)) = 𝐸𝑦[𝐿(𝑦, 𝐹(𝑥))|𝑥] (3.15)

26

There is infinitive number of such parameters in function space, but only a finite

number {𝐹(𝑥𝑖)}1
𝑁 is available in datasets. Using the numerical optimization paradigm,

Equation (3.16) solves the problem where 𝑓𝑜(𝑥) is initial guess and {𝑓𝑚(𝑥)}1
𝑀 are

incremental functions (steps or boosts) defined in the optimization method.

𝐹∗(𝑥) = ∑ 𝑓𝑚(𝑥)
𝑀

𝑚=0
 (3.16)

In the case of steepest-descent, the incremental function 𝑓𝑚(𝑥) is defined as

𝑓𝑚(𝑥) = −𝜌𝑚𝑔𝑚(𝑥) where the line search 𝜌𝑚 and the gradient 𝑔𝑚(𝑥) are described

in Equation (3.17) and Equation (3.18), respectively.

𝑔𝑚(𝑥) = 𝐸𝑦 [
𝜕𝐿(𝑦, 𝐹(𝑥))

𝜕𝐹(𝑥)
|𝑥]

𝐹(𝑥) = 𝐹𝑚−1(𝑥)
 (3.17)

In Equation (3.17), the previous step is computed by 𝐹𝑚−1(𝑥) = ∑ 𝑓𝑖(𝑥)𝑚−1
𝑖=0 .

The multiplier 𝜌𝑚 in Equation (3.18) is acquired by the line search.

𝜌𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜌

𝐸𝑦,𝑥𝐿(𝑦, 𝐹𝑚−1(𝑥) − 𝜌𝑔𝑚(𝑥)) (3.18)

3.4.3. Approximations for Finite Datasets

Accurate calculation of 𝐸𝑦[. |𝑥] is not possible by its data value at each 𝑥𝑖 since

the dataset is composed of finite samples {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 . Nearby data points can be used

to create a smooth solution to minimize the expected loss by using parameter

optimization.

(𝛽𝑚, 𝑎𝑚) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛽, 𝑎

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎))
𝑁

𝑖=1
 (3.19)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥; 𝑎𝑚) (3.20)

It is hard to solve Equation (3.19) for a specific loss function 𝐿(𝑦, 𝐹) and base

learner ℎ(𝑥; 𝑎) because of the smoothness constraint. This constraint can be applied to

27

the unconstrained (rough) solution by fitting ℎ(𝑥; 𝑎) to the pseudo-responses

{�̌�𝑖 = −𝑔𝑚(𝑥𝑖)}𝑖=1
𝑁 where the gradient is defined in Equation (3.21). This allows least

squares function minimization in Equation (3.22) to be used instead of difficult

function minimization in Equation (3.19), followed by a single parameter optimization

that uses the criterion in Equation (3.23). Therefore, a feasible least squares algorithm

can be applied to any ℎ(𝑥; 𝑎) to solve Equation (3.22) and any differentiable loss

function can be optimized by using this approach. As a result, the update rule model

𝐹𝑚(𝑥) becomes as Equation (3.24).

−𝑔𝑚(𝑥𝑖) = − [
𝜕𝐿(𝑦𝑖, 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥) = 𝐹𝑚−1(𝑥)

 (3.21)

𝑎𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑎, 𝛽

∑ [−𝑔𝑚(𝑥𝑖) − 𝛽ℎ(𝑥𝑖; 𝑎)]2
𝑁

𝑖=1
 (3.22)

𝜌𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜌

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝜌ℎ(𝑥𝑖; 𝑎𝑚))
𝑁

𝑖=1
 (3.23)

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ(𝑥; 𝑎𝑚) (3.24)

3.4.4. Regression Algorithms

Least squares boosting regression is shown in Figure 3.8 [35]. The loss function

is defined as 𝐿(𝑦, 𝐹) = (𝑦 − 𝐹)2 2⁄ . The pseudo-response is �̌�𝑖 = 𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖). The

current residuals are fit in line 4 of the algorithm. The line search at line 5 of the

algorithm yields 𝜌𝑚 = 𝛽𝑚 where 𝛽𝑚 is the minimizing 𝛽 of line 4. Therefore, gradient

boosting on squared-error loss gives the stage-wise method of iteratively fitting the

current residuals.

Each of base learners is an J-terminal regression tree that has additive form

defined in Equation (3.25), where {𝑅𝑗}1
𝐽
 are disjoint regions covering the space of all

joint values of 𝑥. The regions are represented by the terminal nodes of related tree. The

function 1(∙) return 0 for false, and 1 for true argument. The coefficients {𝑏𝑗}1
𝐽
 and

values of them are the parameters of the base learner in Equation (3.25). The

parameters define the boundaries of the regions and represent the splits at the

28

nonterminal nodes of the tree. Since the regions are disjoint, Equation (3.25) is the

same as the prediction rule “if 𝑥 ∈ 𝑅 then ℎ(𝑥) = 𝑏𝑗”.

ℎ (𝑥; {𝑏𝑗 , 𝑅𝑗}
1

𝐽
) = ∑ 𝑏𝑗1(𝑥 ∈ 𝑅𝑗)

𝐽

𝑗=1
 (3.25)

Figure 3.8: Gradient boosting algorithm for least squares loss function.

The terminal nodes of the tree define the regions {𝑅𝑗𝑚}1
𝐽
 at the 𝑚𝑡ℎ iteration.

The regions are needed for computation of the pseudo-responses {�̃�}1
𝑁 by least squares.

The {𝑏𝑗𝑚} are coefficients of least squares where 𝑏𝑗𝑚 = 𝑎𝑣𝑒𝑥𝑖∈𝑅𝑗𝑚
�̃�𝑖. The scaling

factor 𝜌𝑚 is the solution of “line search”. The update equation is like Equation (3.26)

where 𝛾𝑗𝑚 = 𝜌𝑚𝑏𝑗𝑚.

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚1(𝑥 ∈ 𝑅𝑗𝑚)
𝐽

𝑗=1
 (3.26)

Using the disjoint property of the regions, 𝛾𝑗𝑚 can be calculated by using

Equation (3.27). For the loss function 𝐿 and the current approximation 𝐹𝑚−1(𝑥), this

is the optimal constant update in each terminal node region.

𝛾𝑗𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛾

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾)
𝑥𝑖 ∈ 𝑅𝑗𝑚

 (3.27)

Figure 3.9 denotes the regression algorithm of least absolute deviations (LAD)

[35]. The 𝛾𝑗𝑚 is defined by Equation (3.28) where 𝑥𝑖 ∈ 𝑅𝑗𝑚. It is the median of the

current residuals in the 𝑗𝑡ℎ terminal node at the 𝑚𝑡ℎ iteration.

𝛾𝑗𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖)} (3.28)

29

Figure 3.9: GBR algorithm for LAD regression.

By the least squares criterion, a regression tree is used to estimate the sign of the

current residuals 𝑦𝑖 − 𝐹𝑚−1(𝑥𝑖). The median of the residuals in each of the terminal

nodes is used to update the approximation. The algorithm is robust since the trees use

only order on the input variables 𝑥𝑗 and the pseudo-responses �̃�𝑖 ∈ {−1, 1} have only

two values.

3.4.5. Regularization

Exact fit on the training data and reducing the loss after some point can cause

the overall expected loss to increase. Regularization techniques can be used to

eliminate such overfitting by putting some limitation to fitting procedures. A common

regularization parameter is the number of components 𝑀 which can be optimized by

using a separate test set.

Shrinkage method provides more promising result than restricting the number of

components 𝑀 [36]. Additive models defined in Equation (3.12) are built in a forward

stage-wise manner as defined in Equation (3.19) and Equation (3.20), respectively.

The shrinkage is defined in Equation (3.29) where 𝜆 is between 0 and 1. Updates are

scaled by the learning rate parameter 𝜆. Increasing 𝜆 decreases the best value of 𝑀 and

increasing 𝑀 requires more computational power. Increasing 𝜆 too much can cause

overfitting behaviors.

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜆𝜌𝑚ℎ(𝑥; 𝑎𝑚) (3.29)

30

3.5. Convolutional Neural Networks

Artificial neural networks (ANNs) are computational processing systems that are

heavily inspired by the human brain. ANNs are usually composed of many

interconnected computational nodes or neurons as shown in Figure 3.10 [38]. The

neurons operate in a distributed manner to learn from the input and optimize their final

outputs. Inputs are usually loaded in a multidimensional vector form and fed to the

hidden layers. The hidden layers make decisions using the information in previous

layers and try to improve the final output.

DNNs are like ANNs that they have neurons that self-optimize by learning and

they have multiple hidden layers stacked on each other. The neurons perform an

operation such as a scalar product by using their inputs. They have learnable weights

and biases. CNNs are special type of DNNs containing convolutional and subsampling

layers mostly followed by fully connected layers [37], [38]. CNNs are usually used in

the field of pattern recognition for images.

Traditional forms of ANN are not very effective for complex multidimensional

input data. For instance, MNIST database of handwritten digits has images with

dimension of 28x28 which makes a single neuron to hold 784 weights. For ANNs, this

is mostly manageable, but the number of weights in a neuron is 16,384 for images with

dimension of 128x128 and the network need to be much larger to deal with this input.

Figure 3.10: A three-layered feedforward neural network with an input layer, a

hidden layer and an output layer.

31

3.5.1. Core Layers

A traditional CNNs have three types of layers which are convolutional, pooling

and fully connected layers. A basic CNN architecture for MNIST is shown in Figure

3.11 [38]. The input layer holds pixel values of the image. The convolutional layer

calculates outputs of neurons that are connected to local regions of the input image by

scalar product of their weights and the connected region in the input. ReLU [5]

activation function is applied in an elementwise way to output of the activation of

previous layer. The pooling layer performs downscaling operation for given input and

reduces the number of parameters for that activation. Fully connected layers calculate

class scores from the activations. As a summary, CNNs can transform raw input to

class scores for classification and regression by using many convolutional and pooling

layers.

Figure 3.11: An example CNN architecture with five layers for classification of

MNIST images.

Convolutional layers are very important for CNN architectures. The layer

parameters are used with learnable kernels that have generally small spatial

dimensions and spread along the depth of the input. The layer convolves each filter

over the input and produces a 2D activation map as shown in Figure 3.12 [38]. While

the kernel is slid on the input, the scalar product is calculated for each value in the

kernel. In this way, the network learns kernels that activate when they detect a

particular feature at a given spatial position of the input. These are generally known as

32

activations. Full output volume of the convolutional layer is created by the kernel with

an associated activation map placed along the depth dimension.

Convolutional layers considerably reduce the complexity of the model by

optimizing their outputs. These are optimized by the depth, the stride and zero-

padding.

The depth corresponds to the number of filters and each of them learns how to

detect something different in the input. Reducing this the depth can significantly

minimize the total number of neurons in the network, but this makes the model lose

the pattern recognition capabilities.

The stride is the step number for the filter movement. When the stride is 1, then

the filters are moved one pixel at once. When the stride is 2, then the filters are slid 2

pixels at a time. In this way, output volumes become spatially small. Small stride

values can cause the receptive fields of neurons to overlap and produce large

activations.

Figure 3.12: A visual representation of a convolutional layer.

The process of padding the border of the input is called zero-padding. It is a

useful method to control the dimensionality of the output volumes. It is commonly

used to preserve width and height of the input and output volumes.

Dimensions of the convolutional layers are calculated by Equation (3.30) where

the size of input is 𝑊1 𝑥 𝐻1 𝑥 𝐷1, the receptive field size is 𝑅, the number of filters is

𝐾, the amount of zero-padding is 𝑍 and the stride is 𝑆.

𝑊2 =
(𝑊1 − 𝑅) + 2𝑍

𝑆
+ 1, 𝐻2 =

(𝐻1 − 𝑅) + 2𝑍

𝑆
+ 1, 𝐷2 = 𝐾 (3.30)

33

Parameter sharing assumes that if one feature is useful to compute at some spatial

position (𝑥, 𝑦), then it is likely to be useful to compute at another position (𝑥′, 𝑦′).

This technique massively reduces the number of parameters produced by the

convolutional layers since the neurons in each depth slice use the same weights and

bias.

Pooling layers reduce the dimensionality of a given input. Thus, the

computational complexity of the models is decreased. This layer is performed on each

activation map in the input by using max or average function as shown in Figure 3.13.

The pooling layer accepts a volume of size 𝑊1𝑥𝐻1𝑥𝐷1, the stride 𝑆 and its spatial

extent 𝐹, and then produces 𝑊2𝑥𝐻2𝑥𝐷2 where 𝑊2 = 𝑊1 − 𝐹 𝑆⁄ + 1, 𝐻2 =

𝐻1 − 𝐹 𝑆⁄ + 1 and 𝐷2 = 𝐷1. The depth of the volume is maintained.

Figure 3.13: Max and average pooling examples. The spatial extent (𝐹) and the

stride (𝑆) parameters are 2.

A fully connected layer has neurons that are fully connected to all activations in

the previous layer. This is similar to the way that neurons are organized in usual forms

of ANNs as shown in Figure 3.10. It is the final learning stage which maps extracted

features to desired outputs. Activations of the neurons can be calculated by using a

matrix multiplication, followed by a bias offset.

34

3.5.2. Regularization

There are several regularization techniques to deal with overfitting in CNN

architectures. Some of these methods are L1/L2, dropout, noise and batch

normalization. The methods are only active during training stage.

Dropout [39] is a method to prevent overfitting in CNNs. As shown in Figure

3.14, the main purpose is to randomly drop neurons and connections of them with a

probability 𝑝 from the neural network. It effectively prevents overfitting by reducing

correlation between neurons.

Figure 3.14: An example of dropout operation applied on the network at left.

The ignored neurons are shown as red.

Batch normalization [40] makes the neural networks robust to bad weight

initializations. It is generally inserted right before activation layers and it reduces

covariance shift by normalizing and scaling inputs to either the range of [0, 1] or

[−1, 1] or to mean=0 and variance=1. The scale and shift parameters are trainable to

avoid losing stability of the network. It helps networks to learn faster as they do not

have to adjust to covariate shift any more. It optimizes gradient flow in the network

since the gradient becomes less dependent on the scale of the parameters and their

initial values.

Gaussian noise layer can be used to apply additive zero-centered Gaussian noise

to the input. It is useful to deal with overfitting as a form of random data augmentation.

L1 and L2 regularization are two closely related weight penalty techniques. In

the objective, they are applied to all parameters to reduce overfitting. In the network,

for every weight 𝑤, 𝐿2 =
1

2
𝜆𝑤2 and 𝐿1 = 𝜆|𝑤| are added to the cost function where

35

𝜆 is the regularization strength. L1 regularization makes the weight vectors sparse

during optimization and the features that are not needed can become very close to 0.0.

This is a form of feature selection. However, L2 regularization does not prune any

weights by setting them to 0.0 and heavily penalizes peaky weight vectors. L2

regularization can be used for all forms of training but L1 cannot be used easily with

all of them. Trial and error must be done to determine which type of regularization is

better or not for a problem.

3.5.3. Optimization Principles

Loss or cost functions are crucial for optimization of the neural networks. They

define the difference between predicted and ground-true values. They answer how well

the models are doing their job with the current set of weight and bias. For a regression

problem, Equation (3.31) denotes MSE loss function where 𝑛 is the number of training

data, 𝑦𝑗 is ground-truth value and 𝑦𝑗
′ is predicted value. The lower MSE values are

better for predictive power of models.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑗 − 𝑦𝑗

′)
2

𝑛

𝑗=1

 (3.31)

Optimization algorithms such as SGD [17] and Adam [41] minimizes or

maximizes an objective function dependent on learnable parameters of a model. The

parameters are used to compute the target values from the set of predictors.

Figure 3.15 shows a simple perceptron with a single output, a nonlinear function,

inputs and weights. SGD algorithm can be used for the optimization of the simple

perceptron. Equation (3.32) denotes output calculation of the perceptron in Figure

3.15. Weighed sum of the inputs are given to the nonlinear function 𝑓 and 𝑦 is

determined. An additional element is usually added to the input vector that is always

equal to 1 with a corresponding additional weight which behaves as a bias.

𝑦 = 𝑓 (∑ 𝑥𝑗𝑤𝑗

𝑁

𝑗=1

) = 𝑓(𝑤𝑇𝑥) (3.32)

36

Figure 3.15: An example of simple perceptron. 𝑥1, 𝑥2, . . , 𝑥𝑁 are inputs.

𝑤1, 𝑤2, . . , 𝑤𝑁 are weight of connections. 𝑓 is nonlinear function and 𝑦 is the output.

Logistic function is a common choice for the nonlinear function 𝑓 defined in

Equation (3.33) and it nonlinearly binds the input and output. It is differentiable and

bound between 0 and 1.

𝑓(𝑣) =
1

1 + 𝑒𝑣
, 𝑦 = 𝑓(𝑤𝑇𝑥) =

1

1 + 𝑒𝑤𝑇𝑥
 (3.33)

Equation (3.34) defines the derivative of the logistic function. This derivative

can be used to learn the weight vector 𝑤 by SGD.

𝜕𝑓(𝑣)

𝜕𝑣
= 𝑓(𝑣)𝑓(−𝑣) (3.34)

Equation (3.35) defines squared loss function that is a simple choice to measure

the difference between target 𝑡 and predicted output 𝑦. The aim is to minimize the loss

function by finding the proper weights 𝑤.

𝐿 =
1

2
(𝑡 − 𝑦)2 =

1

2
(𝑡 − 𝑓(𝑤𝑇𝑥))2 (3.35)

SGD optimizer updates weight parameters iteratively by using the gradient of

the loss function and it continues until the minimum gradient is reached. A single data

is randomly selected from the dataset and direction of the gradient is followed respect

to that data. Equation (3.36) denotes gradient calculation of the loss function 𝐿 with

respect an arbitrary element 𝑥𝑖 and its weight 𝑤𝑖.

37

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐿

𝜕𝑦
∙

𝜕𝑦

𝜕𝑣
∙

𝜕𝑣

𝜕𝑤𝑖
= (𝑦 − 𝑡) ∙ 𝑦(1 − 𝑦) ∙ 𝑥𝑖 (3.36)

Vector form of weight update is shown in Equation (3.37) where 𝑤𝑛𝑒𝑤 and 𝑤𝑜𝑙𝑑

are the new and old weights, respectively, and 𝜑 > 0 is the number of steps. The

dataset is sequentially given to Equation (3.37) until the weights 𝑤 converge to their

optimal.

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝜑 ∙ (𝑦 − 𝑡) ∙ 𝑦(1 − 𝑦) ∙ 𝑥 (3.37)

Figure 3.16 shows a simple neural network with one hidden layer. The output of

each neuron in the output and hidden layer is calculated as single neuron example in

Figure 3.15.

Figure 3.16: An example of neural network with a hidden layer. Inputs are

𝑥1, 𝑥2, . . , 𝑥𝑁, outputs are 𝑦1, 𝑦2, . . , 𝑦𝑀 and hidden layers are defined as ℎ1, ℎ2, . . , ℎ𝐾.

Weight matrices are defined as 𝑊𝑁𝑥𝐾 and 𝑊’𝐾𝑋𝑀 respectively.

The output of a neuron in the hidden layer ℎ𝑘 and in the output layer 𝑦𝑚 are

calculated by Equation (3.38) where 𝑤𝑛𝑖 is (𝑛, 𝑘)𝑡ℎ element in 𝑊𝑁𝑥𝐾, 𝑤𝑘𝑚 is (𝑘, 𝑚)𝑡ℎ

element in 𝑊𝐾𝑥𝑀, 𝑥𝑛 is 𝑛𝑡ℎ the input and ℎ𝑘 is the output of hidden layer.

ℎ𝑘 = 𝑓 (∑ 𝑥𝑛𝑤𝑛𝑘

𝑁

𝑛=1

) , 𝑦𝑚 = 𝑓 (∑ ℎ𝑘𝑤𝑘𝑚
′

𝐾

𝑘=1

) (3.38)

38

Equation (3.39) denotes the objective or loss function between target 𝑡𝑚 and

predicted output 𝑦𝑚 in the neural network. It resembles the single neuron’s loss

function as in Equation (3.35).

𝐿 =
1

2
∑ (𝑦𝑚 − 𝑡𝑚)2

𝑀

𝑚=1

 (3.39)

Weight update models are defined from the input to hidden layer and from the

hidden to output layer for the optimization. The gradient of the loss function 𝐿 with

respect to 𝑤𝑛𝑘 and 𝑤𝑘𝑚 are calculated. The gradients are computed beginning with the

final output error and the error gets propagated throughout the neural network to

update the weights. This process is called backpropagation. Chain rule is applied to

compute 𝜕𝐿 𝜕𝑤𝑘𝑚
′⁄ as shown in Equation (3.40). The derivative of 𝐿 with respect to

𝑦𝑚 is 𝜕𝐿 𝜕𝑦𝑚⁄ = 𝑦𝑚 − 𝑡𝑚 and the derivative of 𝑦𝑚 with respect to 𝑣𝑚
′ is 𝜕𝑦𝑚 𝜕𝑣𝑚

′⁄ =

𝑦𝑚(1 − 𝑦𝑚) by Equation (3.34). The derivative of 𝑣𝑚
′ = ∑ 𝑤𝑘𝑚

′ ℎ𝑘
𝐾
𝑘=1 with respect

𝑤𝑘𝑚
′ is 𝜕𝑣𝑚

′ 𝜕𝑤𝑘𝑚
′⁄ = ℎ𝑘.

𝜕𝐿

𝜕𝑤𝑘𝑚
′ =

𝜕𝐿

𝜕𝑦𝑚
∙

𝜕𝑦𝑚

𝜕𝑣𝑚
′

∙
𝜕𝑣𝑚

′

𝜕𝑤𝑘𝑚
′ = (𝑦𝑚 − 𝑡𝑚) ∙ 𝑦𝑚(1 − 𝑦𝑚) ∙ ℎ𝑘 (3.40)

Equation (3.41) denotes update of the weight 𝑤𝑘𝑚
′ with the gradient computed

by Equation (3.40).

𝑤𝑘𝑚
𝑛𝑒𝑤 = 𝑤𝑘𝑚

𝑜𝑙𝑑 − 𝜑 ∙ (𝑦𝑚 − 𝑡𝑚) ∙ 𝑦𝑚(1 − 𝑦𝑚) ∙ ℎ𝑘 (3.41)

The gradient of the loss function with respect to 𝑤𝑛𝑘 (between the hidden and

input layer) is defined in Equation (3.42). The gradients are summed since the hidden

units are connected to every output unit.

𝜕𝐿

𝜕𝑤𝑛𝑘
= ∑ (

𝜕𝐿

𝜕𝑦𝑚
∙

𝜕𝑦𝑚

𝜕𝑣𝑚
′

∙
𝜕𝑣𝑚

′

𝜕ℎ𝑛
)

𝑀

𝑚=1

∙
𝜕ℎ𝑛

𝜕𝑣𝑘
∙

𝜕𝑣𝑘

𝜕𝑤𝑛𝑘
 (3.42)

Equation (3.43) is obtained by using the equations 𝜕𝑣𝑚
′ 𝜕ℎ𝑛⁄ = 𝑤𝑛𝑚

′ ,

𝜕ℎ𝑛 𝜕𝑣𝑘⁄ = ℎ𝑛(1 − ℎ𝑛) and 𝜕𝑣𝑘 𝜕𝑤𝑛𝑘⁄ = 𝑥𝑛.

39

𝜕𝐿

𝜕𝑤𝑛𝑘
= (∑ [(𝑦𝑚 − 𝑡𝑚) ∙ 𝑦𝑚(1 − 𝑦𝑚) ∙ 𝑤𝑛𝑚

′]

𝑀

𝑚=1

) ∙ ℎ𝑛(1 − ℎ𝑛) ∙ 𝑥𝑛 (3.43)

Equation (3.44) denotes the update model for the weight 𝑤𝑛𝑘 with the gradient

computed by Equation (3.43).

𝑤𝑛𝑘
𝑛𝑒𝑤 = 𝑤𝑛𝑘

𝑜𝑙𝑑𝜑 (∑ [(𝑦𝑚 − 𝑡𝑚)𝑦𝑚(1 − 𝑦𝑚)𝑤𝑛𝑚
′]

𝑀

𝑚=1

) ℎ𝑛(1 − ℎ𝑛)𝑥𝑛 (3.44)

As a summary, the neural networks are optimized by the algorithms such as SGD

that uses the efficient weight update algorithm called backpropagation.

3.5.4. Proposed Architectures

In this work, single and multi-tasking 1D CNNs are designed to predict

concentration of a substance in solutions as shown in Figure 3.17 and Figure 3.18,

respectively. 1D CNNs are designed to work on 1D data and uses 1D convolution

operation in the convolutional layers. They can be used for extracting local

subsequences and can capture local patterns in the convolution window. Since the

same transformation is applied to different parts of the input, the same pattern can be

captured at different positions. This operation makes the network translation invariant.

1D CNNs are easy to manage and useful in signal analysis over fixed length signals.

They work well for audio signal analysis and natural language processing.

1D convolution operation is defined in Equation (3.45) where input vector is 𝑓

with length 𝑁, kernel is 𝑔 with length 𝑀 and the convolution of 𝑓 and 𝑔 is 𝑓 ∗ 𝑔. The

kernel is slid over the input vector and each of element in the kernel is multiplied with

the overlapping values in the input vector. The resulting sum of products are the output

vector at the point in the input vector where the kernel is centered. An example

operation is shown in Figure 3.19.

(𝑓 ∗ 𝑔)(𝑥) = ∑ 𝑔(𝑦). 𝑓(𝑥 − 𝑦 + 𝑀/2)
𝑀

𝑦=1
 (3.45)

40

Figure 3.17: Single-tasking 1D CNN with one convolutional layer.

Figure 3.18: Multi-tasking 1D CNN with one convolutional layer.

Dimensions of the 1D convolutional layers are calculated by Equation (3.46)

where the size of input is 𝑊1 𝑥 𝐷1, the receptive field size or length of the kernel is 𝑅,

the number of filters is 𝐾, the amount of zero-padding is 𝑍 and the stride is 𝑆.

𝑊2 =
(𝑊1 − 𝑅) + 2𝑍

𝑆
+ 1, 𝐷2 = 𝐾 (3.46)

41

Figure 3.19: An example of 1D convolution applied on a 1D vector.

For the concentration predicting problem defined in this thesis, a traditional

single-tasking 1D CNN was designed as shown in Figure 3.17. Single-tasking means

that the network has one output and loss function for all types of input data. MSE loss

function was employed and the network was trained by batches with size of 𝑁 that

were composed of absorbance spectrums that were selected randomly from training

set.

Proposed multi-tasking network is shown in Figure 3.18. Multi-tasking learning

(MTL) is inspired by human learning as humans use knowledge of related tasks to

learn new tasks [42]. MTL has been very popular for various applications of machine

learning such as natural language processing [43] and drug discovery [44]. MTL is

commonly employed with either hard or soft parameter sharing of hidden layers as

shown in Figure 3.20 and Figure 3.21, respectively [42].

 Hard parameter sharing is the most frequently used technique. Hidden layers are

shared between all tasks and several task-specific output layers are used as shown in

Figure 3.20. Baxter [45] proved that the more tasks are used, the more the

corresponding model has to find a representation that detects all of the tasks. Thus, it

considerably reduces the chance of overfitting on original task.

Soft parameter sharing method uses different models associated for each task as

shown in Figure 3.21. Each task owns a separate model with its own parameters and

the distance between the model parameters is regularized to make the parameters

similar to each other.

42

Figure 3.20: Hard parameter sharing for multi-task learning in deep neural

networks.

Figure 3.21: Soft parameter sharing for multi-task learning in deep neural

networks.

In this work, as shown in Figure 3.18, hard parameter sharing is used because it

is easy to construct and risk of overfitting is greatly reduced. There are three types of

absorbance spectrums defined in Section 3.1. Each type was considered as a task and

three outputs or tasks were added to the network. The output of batch normalization

was flattened and the resulting one-hot vector was fully connected to the outputs

separately. The MSE loss function was used for all outputs. In training, only one task

was optimized and weights of other two tasks were frozen.

The network was trained with batches of size 𝑁. The batches were created in two

ways. In the first way, the batches composed of the same type of spectrums.

Specifically, at each iteration 𝑖 ∈ {1, . . , 𝑁}, the network was trained with the batch 𝐵𝑖
𝐾

where 𝐾 ∈ {𝐶1, 𝐶2, 𝐶3} was task identifier. At each epoch, all batches were fed to the

network in the order {𝐵1
𝐶1, 𝐵2

𝐶2, 𝐵3
𝐶3, 𝐵4

𝐶1, … , 𝐵𝑁
𝐾} to help the network learn spectrum

43

types better. In the second way, the batches were created randomly such that each

batch contained all types of spectrums not the same.

In both proposed 1D CNNs, Gaussian noise layer was added right after the input

layer to prevent overfitting as Bjerrum [2] did. Then, 1D convolution layer was added

with ReLU [5] activation function, L1-L2 regularization and Glorot [16] initialization.

Output of the 1D convolutional layer was given to the batch normalization layer

followed by a dropout layer. The output of the dropout layer was flattened to one-hot

vector. Environment and sample temperatures were appended to end of the one-hot

vector. The resulting vector was fully connected to output layer with linear activation.

The MSE loss function defined in Equation (3.31) was employed with Adam [41]

optimization.

Adam optimizer is an extension of SGD algorithm and combines advantages of

both adaptive gradient algorithm (AdaGrad) and root mean square propagation

(RMSProp) algorithms [41]. AdaGrad algorithm uses a learning rate for each

parameter and improves performance of the problems having sparse gradients.

Similarly, RMSProp uses learning rates for each parameter and the learning rates are

updated by the average of recent magnitudes of the gradients. Adam optimizer adapts

the per-parameter learning rates by using the average first moment as in RMSProp and

uses the second moments of the gradients. In other words, an exponential moving

average of the gradient and the squared gradient are calculated. The decay rates of the

moving averages are adjusted by the parameters 𝛽1 and 𝛽2. The initial value of these

parameters is recommended to be very close to 1.0.

3.6. Long Short-Term Memory

LSTM units or blocks are a type of recurrent neural network (RNN) that contains

nodes connected along a sequence in a form of a directed graph as shown in Figure

3.22 [46]. This structure provides dynamic temporal behavior. RNNs process sequence

of input values by using an internal memory or state. Thus, they are effective for

applications, such as handwriting and speech recognition, that decisions are affected

by previous information or states.

The differences between MLPs and RNNs are that MLPs only map from input

to output and they do not have cyclical connections. However, RNNs map from all

previous inputs to outputs and they have cyclical connections.

44

LSTM architectures contain subnets that are recurrently connected. These

subnets are called memory blocks. The blocks consist of single or multiple memory

cells that are self-connected. As shown in Figure 3.23, the blocks have three

multiplicative units which are input, output and forget gates. LSTM networks have

memory blocks in the hidden layer instead of summation units that classical RNNs

have.

Figure 3.22: Example of RNN for time series with length 𝑛. Each node

represents a time 𝑡 and the information at time 𝑡 flows to the node at time 𝑡 + 1.

LSTM memory cells store and access historical information over long periods

of time by the input, output and forget gates. In this way, vanishing gradient problem

is reduced because the activation of the cell is not overwritten by the new inputs if the

activation of input gate is close to 0. Thus, the cell activation may flow to the end of

the sequence by the output gate.

Several architectures of LSTM units are present and a common one contains

input, output and forget gate as shown in Figure 3.23. LSTM networks are

differentiable and can be trained with backpropagation without gradients vanished.

The input gate controls how the new values are transferred to the cell, the forget gate

decides which values are stored in the cell and output gate determines which value in

the cell is used to calculate the output of the LSTM. The gates have their own biases

and weights that need to be learned during training.

As shown in Figure 3.23, the gates compute an activation of a weighted sum. At

time step 𝑡, activations of the input, output and forget gates are 𝑖𝑡, 𝑜𝑡 and 𝑓𝑡

respectively. The circular shapes with × denote element-wise multiplication and the

45

circular shapes with S defines a differentiable function such as sigmoid to a weighted

sum. The dashed arrows from the memory cell 𝑐 to the gates defines the activation of

the cell at time step 𝑡 − 1.

Figure 3.23: A common architecture of LSTM units with input 𝑖, output 𝑜 and

forget 𝑓 gates. The input vector is 𝑥𝑡, output vector is ℎ𝑡 and memory cell is 𝑐𝑡 at

time step 𝑡.

The forget gate 𝑓𝑖
𝑡 for time step 𝑡 and cell 𝑖 is defined in Equation (3.47) where

𝑥𝑡 is the input vector at time 𝑡, ℎ𝑡 is the hidden layer vector at time 𝑡, 𝑏𝑓 is biases, 𝑈𝑓

is the input weights and 𝑊𝑓 is the recurrent weights of the gate [46]. Sigmoid

activation function 𝜎 is employed to get a value between 0 and 1.

𝑓𝑖
𝑡 = 𝜎 (𝑏𝑖

𝑓
+ ∑ 𝑊𝑖,𝑗

𝑓
ℎ𝑗

𝑡−1

𝑗
+ ∑ 𝑈𝑖,𝑗

𝑓
𝑥𝑗

𝑡

𝑗
) (3.47)

The state of the cell is determined by the Equation (3.48) where 𝑈, 𝑏 and 𝑊 are

the recurrent weights, biases and input weights, respectively.

𝑠𝑖
𝑡 = 𝑓𝑖

𝑡𝑠𝑖
𝑡−1 + 𝑔𝑖

𝑡𝜎 (𝑏𝑖 + ∑ 𝑊𝑖,𝑗ℎ𝑗
𝑡−1

𝑗
+ ∑ 𝑈𝑖,𝑗𝑥𝑗

𝑡

𝑗
) (3.48)

46

As shown in Equation (3.49), the input gate is calculated with its own parameters

(𝑏𝑔, 𝑈𝑔 and 𝑊𝑔) like the forget gate.

𝑔𝑖
𝑡 = 𝜎 (𝑏𝑖

𝑔
+ ∑ 𝑊𝑖,𝑗

𝑔
ℎ𝑗

𝑡−1

𝑗
+ ∑ 𝑈𝑖,𝑗

𝑔
𝑥𝑗

𝑡

𝑗
) (3.49)

The output of the LSTM unit ℎ𝑖
𝑡 is controlled by the output gate 𝑞𝑖

𝑡 with sigmoid

activation and its own parameters (𝑏𝑜, 𝑈𝑜 and 𝑊𝑜) as shown in Equation (3.50).

𝑞𝑖
𝑡 = 𝜎 (𝑏𝑖

𝑜 + ∑ 𝑊𝑖,𝑗
𝑜 ℎ𝑗

𝑡−1

𝑗
+ ∑ 𝑈𝑖,𝑗

𝑜 𝑥𝑗
𝑡

𝑗
) (3.50)

As shown in Equation (3.51), the output of the LSTM unit is calculated via

hyperbolic tangent activation function and the output gate 𝑞𝑖
𝑡.

ℎ𝑖
𝑡 = 𝑡𝑎𝑛ℎ(𝑠𝑖

𝑡) 𝑞𝑖
𝑡 (3.51)

Learnable parameter count of LSTM units is computed by 4(𝑛𝑚 + 𝑛2) where

size of 𝑊 is 𝑛 ∗ 𝑛 and size of 𝑈 is 𝑛 ∗ 𝑚 and there are 4 neural network layers input,

output, forget gate and memory cell. If biases are added, then parameter count is

4((𝑛 + 1)𝑚 + 𝑛2).

Parameter fine tuning is not required for LSTM networks since the networks run

well with parameters such as learning rate and biases. If large learning rate is used,

then the output gates get close to 0 and the learning procedure is not affected badly.

Update complexity of LSTM algorithms is 𝑂(𝑁) where 𝑁 is the number weights.

LSTMs can cope with noises, continuous values and separated representations in the

input [47].

47

4. EXPERIMENTS AND RESULTS

In this section, the proposed regression models explained in Section 3 were

tested for different parameters and compared by using MAE and 𝑅2 score. Absorbance

spectrums were loaded by using Numpy 1.14 [48] and normalized by StandardScaler

algorithm in Scikit-Learn 0.19 [32].

The PLSR, GBR and RF models were constructed by using Scikit-Learn. These

three models were trained with 10-fold cross-validation on the preprocessed dataset

without outliers. Each of the cross-validation sets was used as a test set and

concentration predictions were acquired for all spectrums in entire dataset. Thus, total

of 10 models were trained. MAEs and 𝑅2 scores of these models were averaged.

The proposed deep neural networks including CNN and LSTM layers were built

by using Keras 2.1.3 [49] with Tensorflow 1.4 [50] backend. The hyperparameters of

the deep networks were optimized by using Bayesian optimization framework on a

random optimization dataset [7]. The result of the models was visualized by using

Matplotlib 2.1.2 [51]. The models were trained and tested by a system with NVIDIA

GTX 1070 graphics card with 8GB memory, Ryzen 5 1600X CPU and 16GB RAM.

4.1. Partial Least Squares Regression

The PLSR model was trained by 10-fold cross-validation and NIPALS algorithm

[3] in Scikit-Learn [32], with maximum of 100.000 iterations and a tolerance of 10−16.

Built-in scaling operation was not used since the dataset was normalized before the

training.

The number of principal components was changed from 0 to 50 to find the best

model. For each of the number of components, 10 different PLSR models were trained

by using 10-fold cross-validation. The MAEs and 𝑅2 scores of these 10 models were

averaged. As shown in Table 4.1, Figure 4.1 and Figure 4.2, the best MAE and 𝑅2

score were achieved for 41 components. The highest 𝑅2 score was 0.95 for 32

components and the lowest MAE was 3.87 for 41 components.

48

Table 4.1: The average MAE and 𝑅2 scores acquired for 15, 32 and 41

components.

Number of Components 𝑅2 Score MAE

15 0.94 4.45

32 0.95 3.97

41 0.94 3.87

Figure 4.1: Average 𝑅2 score of the models trained by 10-fold cross-validation.

The best 𝑅2 scores were achieved for 15, 32 and 41 components.

Figure 4.2: Average MAE of the models trained by 10-fold cross-validation.

The lowest MAE was achieved for 41 components.

49

In Figure 4.3 and Figure 4.4, true and predicted concentrations for the models

trained by 32 and 41 components are shown on the 𝑥 = 𝑦 red line. When predicted

values get close to the red line, 𝑅2 score increases. Thus, the model trained for 32

components is slightly better than that of the model trained for 41 components.

Figure 4.3: True and predicted concentrations for the model trained for 32

components.

Figure 4.4: True and predicted concentrations for the model trained for 41

components.

50

4.2. Random Forest Regression

The RF regression model in Scikit-Learn [32] was trained with 10-fold cross-

validation on the preprocessed dataset without outliers. Total of 10 models were

trained and performance metrics were averaged as in the training of PLSR models.

Training parameters are shown in Table 4.2. Maximum features refer the number

of features to use to find the best split. It was set to 164 which was the length of

spectrum vectors. Quality of split criterion defines the function that measures split

quality. It was set to MSE for regression trees. The maximum depth of the tree was set

to unlimited and this means that nodes are expanded until all leaves contain less than

two samples. Minimum samples split is the minimum number of samples needed to

split a node and minimum samples leaf is the minimum number of samples needed to

create a leaf node.

Table 4.2: Training parameters of the best RF model.

Parameter Name Parameter Value

Number of Base Learners 51

Maximum Features 164

Quality of Split Criterion MSE

Maximum Depth Unlimited

Minimum Samples Split 2

Minimum Samples Leaf 1

Firstly, the number of base learners was tuned for the parameters in Table 4.2. It

was changed from 0 to 60. The highest average 𝑅2 score and the lowest average MAE

for 10 cross-validation sets were achieved for 51 trees as shown in Table 4.3, Figure

4.5 and Figure 4.6.

Table 4.3: The MAE and 𝑅2 score of the models trained for different number

of estimators.

Number of Estimators 𝑅2 Score MAE

1 0.93 3.89

10 0.96 2.74

30 0.97 2.61

40 0.97 2.60

51 0.97 2.59

51

Figure 4.5: Average 𝑅2 scores of the models trained for different number of

decisions trees. The best 𝑅2 score (0.97) was achieved for 51 decision trees.

Figure 4.6: Average MAEs of the models trained for different number of

decisions trees. The lowest MAE (2.59) was achieved for 51 decision trees.

52

After tuning the number of base learners, by using the parameters in Table 4.2,

the minimum samples split was tested for 2, 10 and 50 as shown in Table 4.4. The best

model was acquired by minimum 2 samples split. Predicted values for 10 and 50 are

shown in Figure 4.7 and Figure 4.8, respectively. As a result, increasing the minimum

samples split caused underfitting meaning that the model could not capture underlying

trend of the data.

Table 4.4: The MAE and 𝑅2 score of the models trained for different number

of minimum samples split.

Minimum Samples Split 𝑅2 Score MAE

2 0.97 2.59

10 0.97 2.64

50 0.96 3.31

Figure 4.7: True and predicted concentrations for the model trained for

minimum 10 samples splits.

53

Figure 4.8: True and predicted concentrations for the model trained for

maximum 50 splits.

Using the parameters in Table 4.2, the minimum samples leaf was tested for 1,

10 and 20 as shown in Table 4.5. The best model was acquired by minimum 1 samples

split. Predicted values for 10 and 20 are shown in Figure 4.9 and Figure 4.10,

respectively. As a result, it was observed that increasing the minimum samples leaf

caused underfitting. As shown in these figures, the model failed to learn the linear

relation between concentrations and spectrums. The predicted points moved away

from the red line.

Table 4.5: The MAE and 𝑅2 score of the models trained for different number

of minimum samples leaf.

Minimum Samples Leaf 𝑅2 Score MAE

1 0.97 2.59

10 0.96 3.05

20 0.95 3.38

54

Figure 4.9: True and predicted concentrations for the model trained for

minimum 10 samples leaf.

Figure 4.10: True and predicted concentrations for the model trained for

minimum 20 samples leaf.

55

The best model with the highest 𝑅2 (0.97) and the lowest MAE (2.59) was

acquired with the parameters in Table 4.2 by tuning minimum samples split, minimum

samples leaf and number of base learners. The maximum depth of the base learners

was between 20 and 33. Increasing the minimum samples leaf and split caused

underfitting. After number of 51 trees, the model showed overfitting behaviors. True

and predicted concentrations for the best model are shown in Figure 4.11. It seems that

the model managed the learn linear relation between concentrations and spectrums.

Figure 4.11: True and predicted concentrations for the best model.

4.3. Gradient Boosting Regression

The GBR model in Scikit-Learn [32] was employed with 10-fold cross-

validation on the preprocessed dataset cleaned from outliers. Total of 10 models were

trained and performance scores were averaged as in the training of PLSR and RF

models.

The model parameters are shown in Table 4.6. Learning rate limits the

contribution of each tree, the number of estimators is the number of boosting stages to

do, maximum depth limits the number of nodes in the regression trees, criterion

function measures the quality of a split, loss function specifies the function to be

56

optimized and max features is the number of features to use for the best split in trees.

For the regression problem, criterion and loss function were set to MSE and least

squares, respectively. Max features was set to length of spectrum vectors.

In order to find the best model, loss function, learning rate, number of estimators

and maximum depth parameters were tested for various configurations. For each

parameter configuration, the model trained by 10-fold cross-validation on the entire

dataset, and then MAE and 𝑅2 metrics of the 10 models were averaged. As a result,

the best MAE and 𝑅2 score were acquired by the parameters in Table 4.6.

Table 4.6: The parameters of the best GBR model.

Parameter Name Parameter Value

Learning Rate 0.1

Loss Function Least Squares

Number of Estimators 100-1000

Maximum Depth 9

Criterion MSE

Max Features 164

Firstly, number of estimators was changed from 100 to 2000 with maximum

depth 3 and rest of the parameters in Table 4.6. As shown in Table 4.7, the best average

𝑅2 score and MAE were achieved by 2000 estimators, but training time increased

significantly after 1000 estimators.

Table 4.7: Average 𝑅2 score and MAE of the model trained by using various

number of estimators, learning rate 0.1 and maximum depth 3, with 10-fold cross-

validation.

Number of Estimators 𝑅2 Score MAE

100 0.96 3.5

500 0.97 2.76

1000 0.97 2.65

2000 0.97 2.61

As shown in Table 4.8, maximum depth was changed from 3 to 15 for fixed

learning rate 0.1 and 100 estimators. The best model was achieved by maximum depth

9 and increasing it much further caused overfitting and long training time. True and

predicted concentrations for the best model are shown in Figure 4.12.

57

Table 4.8: Average MAE and 𝑅2 score of the model trained by using different

maximum depths, learning rate 0.1 and estimator count 100, with 10-fold cross-

validation.

Maximum Depth 𝑅2 Score MAE

3 0.96 3.45

5 0.97 2.84

7 0.97 2.55

9 0.97 2.47

11 0.97 2.51

13 0.96 2.64

15 0.96 2.79

Figure 4.12: True and predicted concentrations of the model trained by using

the parameters in Table 4.6, with 10-fold cross-validation.

As shown in Table 4.9, Table 4.10 and Table 4.11, while the number of

estimators was fixed at 100, maximum depth was changed for learning rates 0.05, 0.2

and 0.6. As a result, decreasing and increasing the default learning rate (0.1) caused

degraded performance for almost all maximum depths.

58

Figure 4.13: Average 𝑅2 scores of the models trained by using the parameters

in Table 4.6, with 10-fold cross-validation.

As shown in Figure 4.13, 𝑅2 score increases smoothly until maximum depth 9

and after that depth, the model shows overfitting behaviors. The best model was

achieved for maximum depth 9 as shown in Table 4.9.

Table 4.9: Average MAE and 𝑅2 score of the GBR model trained by using

various maximum depths, learning rate 0.05 and estimator count is 100.

Maximum Depth 𝑅2 Score MAE

3 0.94 4.15

5 0.96 3.17

7 0.97 2.72

9 0.97 2.53

11 0.97 2.56

13 0.96 2.67

15 0.96 2.84

59

Figure 4.14: Average 𝑅2 scores of the models trained for learning rate 0.05 and

various maximum depths, with 10-fold cross-validation.

Increasing the learning rate to 0.2 provided slightly worse MAE and 𝑅2 score

for the maximum depth 9 as shown in Table 4.10.

Table 4.10: Average MAE and 𝑅2 score of the GBR model trained by using

different maximum depths, learning rate 0.2 and estimator count is 100, with 10-fold

cross-validation.

Maximum Depth 𝑅2 Score MAE

3 0.94 3.14

5 0.96 2.72

7 0.97 2.59

9 0.97 2.55

11 0.96 2.58

13 0.96 2.69

15 0.96 2.83

As expected, for the learning rate 0.6, the estimators were corrected more

aggressively and overfit the data at each step. Thus, as shown in Table 4.11 and Figure

4.15, MAE and 𝑅2 metrics were fluctuated while the maximum depth increased.

60

Table 4.11: Average MAE and 𝑅2 score of the GBR model trained for different

maximum depth values with learning rate 0.6 and estimator count is 100.

Maximum Depth 𝑅2 Score MAE

3 0.96 3.30

5 0.95 3.25

7 0.95 3.21

9 0.96 3.08

11 0.95 3.03

12 0.96 2.98

13 0.95 3.02

15 0.95 3.05

Figure 4.15: Average MAE of the models trained for various maximum depths,

learning rate 0.6 and 100 estimators, with 10-fold cross-validation.

As shown in Table 4.12, the number of estimators was changed from 100 and

1500 for fixed learning rate 0.1 and maximum depth 9. Increasing estimator count

much further provided slightly better results, but training time significantly increased

after 1000 estimators.

61

Table 4.12: Average MAE and 𝑅2 score of the GBR model trained by using

different number of estimators, learning rate 0.1 and maximum depth 9.

Number of Estimators 𝑅2 Score MAE

100 0.97 2.47

500 0.97 2.42

1000 0.97 2.41

1500 0.97 2.41

Finally, the loss function parameter was changed as shown in Table 4.13, with

100 estimators, learning rate 0.1 and maximum depth 9 as in Table 4.6. The best MAE

and 𝑅2 score were 2.47 and 0.97 acquired by the default loss function (least squares),

respectively.

Table 4.13: Average MAE and 𝑅2 score of the GBR model trained by using

different loss functions, 100 estimators, learning rate 0.1 and maximum depth 9.

Loss Function 𝑅2 Score MAE

Least Squares 0.97 2.47

Least Absolute Deviation 0.97 2.81

As a result, the best model was achieved by the parameters in Table 4.6. The

best learning rate was found as 0.1, whereas lower and higher values caused

underfitting and overfitting, respectively. Number of estimators was tested manually

and the best model was achieved by 1000 and more estimators, as shown in Table 4.12.

However, training time increased significantly for more than 1000 estimators.

Maximum depth was changed between 0 and 15 for learning rates 0.05, 0.1, 0.2 and

0.6. The best model was achieved by the maximum depth 9 in most of the cases.

Finally, for the maximum depth 9, learning rate 0.1 and 100 estimators, the best model

was achieved by least squares loss function instead of LAD loss. As shown in Table

4.12, the best MAE and 𝑅2 score were 2.41 and 0.97 obtained by 1000 and more

estimators, respectively.

62

4.4. Convolutional Neural Networks

The proposed 1D CNNs in Section 3.5.4 were designed by inspiring from the

works of Bjerrum and Acquarelli explained in Section 2.1 and Section 2.2,

respectively. The proposed networks were built by using Keras [49] with Tensorflow

[50] backend. The CNNs were optimized by the help of Bayesian optimization

framework [7]. Various CNN architectures with different number of layers and

parameters were devised, trained and tested in Python. The result of the models was

visualized by using Matplotlib [51].

To speed up parameter optimization, the proposed CNNs were trained and tested

for a small optimization dataset containing 1600 samples that were randomly selected

from the preprocessed dataset with 6167 samples. The training and testing sets were

created randomly by using 75% and 25% of this optimization dataset, respectively.

The networks were trained by using batches with size of 60.

For each parameter configuration, the CNNs were trained and tested 10 times on

the optimization dataset that was created randomly each time. The models were

evaluated by performance metrics of MAE and 𝑅2 score. Average of these metrics was

calculated by using the results of 10 experiments.

Adam [41] optimizer and MSE loss function defined in Equation (3.31) were

employed in the proposed CNNs. Weights of the networks were initialized by Glorot

uniform initializer [16]. The initializer draws samples from uniform distribution

between [−𝛼, 𝛼] where 𝛼 = √6 (𝑤𝑖𝑛 + 𝑤𝑜𝑢𝑡)⁄ , 𝑤𝑖𝑛 is the number of input units and

𝑤𝑜𝑢𝑡 is the number of output units.

4.4.1. Single-Tasking Architecture

The proposed 1D CNN with one convolutional layer and single output is shown

in Figure 3.17. In order to find optimal hyperparameters of the network that generalizes

and captures linear relationship between concentration and spectrums, Bayesian

optimization framework was used to get initial hyperparameters for fine tuning later.

For the shallow CNN in Figure 3.17, hyperparameter search space was defined as in

Table 4.14. The optimization was initialized with the parameters in Table 4.15,

followed by up to 200 iterations of standard Gaussian process optimization with the

63

expected improvement acquisition function. In each iteration, the optimizer selected a

parameter set in Table 4.14 and total of 10 networks were created from these

parameters. The networks were trained for 150 epochs on 75% of the optimization

dataset and each of the models was tested on 25% of the optimization dataset. Each

model was trained and tested on randomly created datasets. At the end of each

iteration, MAEs of the models were averaged. The aim of the optimizer was to

minimize this average MAE.

Table 4.14: Hyperparameter search space for Bayesian optimizer.

Parameter Type Range

Learning Rate Float [10−4, 0.1]
Dropout Probability Float [10−2, 0.3]
Number of Filters Float [1, 500]

Filter Length Odd Number [3, 25]
Stride Integer [1, 5]

Table 4.15 shows the initial hyperparameters of the network. The loss function

was selected as MAE, Adam optimizer was used with default beta values, L1-L2

regularization was applied to convolutional layer with 10−4 multiplier, Gaussian noise

was applied to the input layer with standard deviation of 0.01 as in Bjerrum’s work,

the network was trained for 150 epochs, batch size was 60, number of models in each

optimization iteration was 10 and weights were initialized by Glorot uniform.

Table 4.15: Initial parameters of the shallow CNN for Bayesian optimization.

Parameter Value

Loss Function MSE

Optimizer Adam

L1-L2 Regularization 10−4

Gaussian Noise 10−2

Training Epoch 150

Batch Size 60

Number of Models 10

Weight Initializer Glorot Uniform

The hyperparameters found by the optimizer are shown in Table 4.16. The

parameters were fine-tuned by testing various parameter configurations manually.

Firstly, number of filters was set to 50 and 200. After that, for these number of filters,

filter length was set to 5, 10, 25 and 35. Stride, learning rate, dropout probability and

64

Gaussian standard deviation were changed for the best model achieved by number of

filters and filter length. Additionally, one convolutional layer and one fully connected

layer were added. The fully connected layer was tested for 10, 100 and 500 neurons.

The two convolutional layers were tested for different number of filters configurations

such as 10-10, 50-50 and 100-5. Finally, the network was trained and tested on the

entire dataset with 75:25 training and testing ratio, by using the fine-tuned parameters.

Table 4.16: The hyperparameters found by Bayesian optimizer for the shallow

CNN.

Parameter Value

Learning Rate 0. 0413

Dropout Probability 0.02

Number of Filters 100

Filter Length 15

Stride 3

For the different number of filters, the average performance of the network is

shown in Table 4.17. For 50 filters, the network showed the best performance.

However, according to 𝑅2 score, predicted concentrations could not form a perfect

linear relationship. For more than 50 filters, the network complexity increased and

failed to identify some spectrums because of possible overfitting.

Table 4.17: Average MAE and 𝑅2 score of the CNN model for 50, 100 and 200

filters.

Number of Filters 𝑅2 Score MAE

50 0.93 1.43

100 0.93 1.55

200 0.92 1.58

Since the spectrum lengths were 164, the number of filters was changed between

5 and 35 to find optimal window length of the convolutional layer. Number of filters

was set to 100 for the training of the network. The average performance of the network

is shown in Table 4.18. The lowest MAE was obtained by filter length 25. For filter

length 5, 𝑅2 score was decreased below 0.90 and failed to capture important regions

in the spectrums.

65

Table 4.18: Average MAE and 𝑅2 score of the CNN model for different filter

lengths.

Filter Length 𝑅2 Score MAE

5 0.87 1.60

10 0.92 1.56

15 0.93 1.55

25 0.94 1.47

35 0.93 1.50

Stride of the convolutional layer was set to 3, 5 and 7 for fixed filter length 25.

Number of filters was set to 50 and 100. The performance of the network is shown in

Table 4.19. The best model was achieved by 100 filters and stride 5. For stride 7, the

input vectors were shrunk too much, overlapping of the windows decreased, and then

MAEs began to increase. For smaller stride 3, overlapping of the windows increased

and complexity of the model possibly increased.

Table 4.19: Average MAE and 𝑅2 score of the CNN model for various strides

and filter length 25.

Stride Number of Filters 𝑅2 Score MAE

3
50 0.93 1.43

100 0.94 1.47

5
50 0.94 1.34

100 0.95 1.33

7 50 0.94 1.36

Standard deviation of Gaussian noise in the input layer was set to 0.05, 0.01 and

0.1 for filter length 25, stride 5 and 100 filters. The performance of the network is

shown in Table 4.20. As expected, increasing the noise in the input layer caused high

error rates. The most convenient value was seemed to be 0.01.

Table 4.20: Average MAE and 𝑅2 score of the CNN model for various noise

level in the input.

Standard Deviation of Noise 𝑅2 Score MAE

0.01 0.95 1.33

0.05 0.95 1.38

0.1 0.94 1.39

66

The initial learning rate of Adam optimizer was set to 0.02 and 0.08 for filter

length 25, stride 5 and 100 filters. As shown in Table 4.21, the learning rate that

Bayesian optimizer found was seemed to be optimal.

Table 4.21: Average MAE and 𝑅2 score of the CNN model for different

learning rates.

Learning Rate 𝑅2 Score MAE

0.02 0.938 1.53

0.0413 0.95 1.33

0.08 0.897 1.74

As shown in Table 4.22, the dropout probability was increased to control

overfitting for filter length 25, stride 5, learning rate 0.0413 and 100 filters. As seen in

the table, increasing the dropout probability reduced the performance of the network.

Table 4.22: Average MAE and 𝑅2 score of the CNN model for various dropout

probabilities.

Dropout Probability 𝑅2 Score MAE

0.02 0.95 1.33

0.1 0.945 1.46

0.2 0.928 1.67

Structure of the proposed network was changed by adding more convolutional

and fully connected layers. The purpose of adding new layers is to check whether the

new layers extract new features or not. Firstly, three layers having one convolutional

layer with the same L1-L2 regularization as the present convolutional layer, batch

normalization layer and dropout layer with 0.02 probability were added to the network

after the present batch normalization layer, respectively. The network was tested with

different number of filters and filter lengths. As shown in Table 4.23, number of filters

(F), filter length (L) and stride (S) of the convolutional layers were tested for different

configurations. As a result, adding new layer increased the complexity of the network

and overfit the data.

67

Table 4.23: Average MAE and 𝑅2 score of the CNN model for two

convolutional layers.

Conv. Layer 1 Conv. Layer 2 𝑅2 Score MAE

F100-L25-S5 F5-L3-S1 0.936 1.51

F10-L25-S5 F10-L3-S1 0.933 1.51

F50-L25-S5 F50-L3-S1 0.92 1.55

Additional one fully connected layer was added after the flatten layer and

number of neurons in this layer was set to 10, 100 and 500 as shown in Table 4.24. As

observed in the case of two convolutional layers, increasing the number of neurons in

the network decreased the performance of the network.

Table 4.24: Average MAE and 𝑅2 score of the CNN model for additional one

fully connected layer.

Number of Neurons 𝑅2 Score MAE

10 0.90 1.80

100 0.88 2.07

500 0.81 2.47

As a result, the fine-tuned hyperparameters of the network are shown in Table

4.25. The network was trained and tested 10 times on the original preprocessed dataset

and the performance metrics were averaged. The distribution of the dataset by

concentration is shown in Figure 3.2. Predicted concentrations are shown in Figure

4.16 and average MAE value of each chemical type is shown in Figure 4.17. As shown

in the results, predicted concentrations are very close to the laboratory measurements.

Table 4.25: The hyperparameters found by fine-tuning the parameters found by

Bayesian optimizer.

Parameter Value

Learning Rate 0. 0413

Dropout Probability 0.02

Number of Filters 100

Filter Length 25

Stride 5

68

Figure 4.16: Predicted concentrations of the best model trained on the entire

dataset with the parameters in Table 4.25. Green, red and blue colors refer to

chemical 1, 2 and 3, respectively.

Figure 4.17: Average MAE of the models trained on the entire dataset with the

parameters in Table 4.25.

69

4.4.2. Multi-Tasking Architecture

The proposed 1D CNN with three tasks or outputs is shown in Figure 3.18. By

using the hyperparameters in Table 4.15 and Table 4.25, the optimal hyperparameters

of the multi-tasking network were explored by testing various parameter

configurations manually. As mentioned in Section 3.5.4, the training was done by

using two different batch creation procedures. In the first one, the batches were

grouped in such a way that each batch contained the same type of spectrums. In the

second one, the batches contained mixed type of spectrums as in the training of single-

tasking architecture. The idea of the grouped batching is to try whether the multi-

tasking network captures common features better or not.

For the multi-tasking network in Figure 3.18, number of filters, filter length,

stride parameters and structure of the network was modified and tested for different

configurations. The learning rate and dropout probability were not changed since

single-tasking and multi-tasking networks were very similar and it was proofed that

they were optimal for single-tasking network. For example, after the batch

normalization layer, one convolutional layer was added to the shared layer. Similarly,

before the flatten layer, one convolutional layer was added to three task layers. One

fully connected layer was added to the task layers after the flatten layer. The fully

connected layer was tested for 10, 100 and 1000 neurons. Finally, the network was

trained and tested on the entire dataset with 75:25 training and testing ratio, by using

the fine-tuned parameters.

Table 4.26: Average MAE and 𝑅2 scores for 50, 100 and 200 filters.

Number of Filters
Grouped Batches Mixed Batches

𝑅2 Score MAE 𝑅2 Score MAE

50 0.922 1.73 0.954 1.37

100 0.933 1.56 0.947 1.37

200 0.938 1.76 0.944 1.42

Firstly, for the parameters in Table 4.15 and Table 4.25, the network was trained

by 50, 100, 200 filters. As shown in Table 4.26, the best results were obtained by 50

and 100 filters in mixed batch mode. In both batch modes, the complexity of the

network increased for more than 100 filters and the performance of the network

reduced.

70

Table 4.27: Average MAE and 𝑅2 scores for various filter lengths and 50

filters.

Filter Length Stride
Grouped Batches Mixed Batches

𝑅2 Score MAE 𝑅2 Score MAE

15
3 0.832 1.87 0.836 1.63

5 0.888 1.90 0.929 1.46

25 5 0.922 1.73 0.954 1.37

Since the best model was achieved by 50 and 100 filters as shown in Table 4.26,

filter length and stride of the convolutional layer was tested for various configurations

as shown in Table 4.27 and Table 4.28. As a result, the network showed the best

performance for the filter length 25 and stride 5 in mixed batch mode.

Table 4.28: Average MAE and 𝑅2 scores for various filter lengths and 100

filters.

Filter Length Stride
Grouped Batches Mixed Batches

𝑅2 Score MAE 𝑅2 Score MAE

15

3 0.874 2.05 0.750 1.51

5 0.899 1.74 0.934 1.51

7 0.954 1.60 0.947 1.46

25

3 0.937 1.86 0.911 1.52

5 0.933 1.56 0.947 1.37

7 0.963 1.70 0.954 1.45

35 5 0.938 2.25 0.949 1.46

For each branch or task in the network, a dense layer was added before the flatten

layer. The number of neurons in the dense layer was tested for 10, 100 and 1000 as

shown in Table 4.29. As observed in the fine-tuning of the single-tasking network,

adding more layers to the multi-tasking network reduced performance due to increased

number of neurons and complexity.

Table 4.29: Average MAE and 𝑅2 scores for 10, 100 and 1000 neurons in task

layers.

Number of Neurons
Grouped Batches Mixed Batches

𝑅2 Score MAE 𝑅2 Score MAE

10 0.920 1.79 0.937 1.51

100 0.903 1.81 0.895 1.86

1000 0.679 3.44 0.569 3.82

71

Table 4.30: Average MAE and 𝑅2 scores for extra one convolutional layer in

the shared layer.

Configuration Grouped Batches Mixed Batches

Convolution 1 Convolution 2 𝑅2 Score MAE 𝑅2 Score MAE

F100-L25-S5

F5-L5-S1 0.90 1.55 0.94 1.40

F10-L5-S1 0.89 1.64 0.92 1.41

F30-L5-S1 0.85 2.07 0.92 1.58

Structure of the shared layer in the network was modified by adding an extra

convolutional layer after the present batch normalization layer. To control overfitting

and speed up learning dropout and batch normalization layers were added after the

new convolutional layer. As shown in Table 4.30, number of filters (F), filter length

(L) and stride (S) parameters were tested and the best performance was obtained by

F5-L5-S1 configuration in mixed batch mode. For higher number of filters,

performance of the network became worse.

Table 4.31: Average MAE and 𝑅2 scores for extra one convolutional layer in

the task layers.

Configuration Grouped Batches Mixed Batches

Convolution 1 Convolution 2 𝑅2 Score MAE 𝑅2 Score MAE

F100-L25-S5
F5-L5-S1 0.93 1.57 0.91 1.55

F10-L5-S1 0.89 1.68 0.83 1.69

Structure of the task layers was modified by adding an extra convolutional layer

before the flatten layers. As in modification of shared layer above, one convolutional

layer, batch normalization layer and dropout layer were added. The idea of this was to

try whether increasing complexity in these branches helped the network identify the

spectrums better or not. As shown in Table 4.31, the performance of the network

reduced, although number of filters and filter lengths were small.

As a result, modifying the parameters in Table 4.25 such as number of filters,

filter lengths, strides and number of neurons reduced test performance of the network.

As observed in single-tasking network optimization, increasing complexity of the

network with regularization also decreased average test performance of the network.

Mixed batching provided better results than grouped one since grouped batching might

cause the shared layer to adapt to each task and the network could not capture common

features properly. The average MAE of the network for entire dataset is shown in

Figure 4.19. For the model with best 𝑅2 score in 10 trials, predicted concentrations are

72

shown in Figure 4.18. The performance of the network is slightly worse than single-

tasking one and it seems that multi-tasking architecture is not suitable for this problem.

Figure 4.18: Predicted concentrations of the best model trained on the entire

dataset with the parameters in Table 4.25. Green, red and blue colors refer to

chemical 1, 2 and 3, respectively.

Figure 4.19: Average MAE of the models trained on the entire dataset with the

parameters in Table 4.25.

73

4.4.3. Multivariate Regression

Multivariate regression is a technique to create a model for prediction of multiple

response variables. In this work, there are three response variables since the dataset

has three different spectrum types defined in Section 3.1. The response variables are

concentration of X substance.

The proposed single-tasking 1D CNN architecture is shown in Figure 3.17. The

network was modified to have three outputs instead of one output and tested with

various hyperparameters. This architecture is an alternative to the proposed multi-

tasking network. The modified network was trained with the same procedure as single-

tasking network. The target concentration values were converted to the vectors of size

three for multivariate regression. The three chemical types were mapped to indexes

from 0 to 2 and the vectors were filled according to these indexes. For the first, second

and third chemical types, the target vectors are [𝐶1 0 0], [0 𝐶2 0] and [0 0 𝐶3] where

𝐶1, 𝐶2 and 𝐶3 are corresponding concentration values, respectively. The network was

trained with the fine-tuned parameters of single-tasking network denoted in Table

4.25. The network was tested 10 times and the performance metrics were averaged.

The average 𝑅2 score was -3.19 and the average MAE was 15.10 as shown in Table

4.32.

Table 4.32: Average 𝑅2 score and MAE of the multivariate regression models.

Chemical Type MAE

Chemical 1 8.90

Chemical 2 18.25

Chemical 3 18.14

Average 15.10

The negative value of 𝑅2 score means that the model does not follow the trend

of the data. As a result, the multivariate regression architecture could not learn from

the dataset and failed to capture the linear and nonlinear relationships between

spectrums and concentration values.

74

4.5. Long Short-Term Memory

Since the absorbance spectrums in the dataset are sequential in terms of

wavelengths, two different LSTM networks are designed as shown in Figure 4.20 and

Figure 4.21. By using the hyperparameters in Table 4.33, the optimal hyperparameters

of the networks were explored manually by testing various parameter configurations

with the entire dataset. The training and testing sets were created randomly by using

75% and 25% of the dataset, respectively. The networks were trained and tested 10

times and the performance metrics were averaged.

Figure 4.20: Single-layered LSTM network architecture.

Figure 4.21: 1D CNN with LSTM network architecture.

75

Table 4.33: Initial parameters of the LSTM network.

Parameter Value

Loss Function MSE

Optimizer Adam

Gaussian Noise 10−2

Training Epoch 150

Batch Size 60

Weight Initializer Glorot Uniform

Learning Rate 0.0413

Single-layered LSTM network with noise and batch normalization layers is

shown in Figure 4.20. The hyperparameters of the LSTM layer is shown in Table 4.34.

Hard sigmoid function is used for activation of the gates in LSTM since it is easy to

compute compared to sigmoid function which requires computation of 𝑒𝑥 term. Hard

sigmoid is defined as 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(1, 𝑥 ∗ 0.2 + 0.5)) where 𝑥 is the input.

Hyperbolic tangent function is used to compute output of LSTM layer explained in

Section 3.6. Dropout operation was only applied to the input of the LSTM layer with

0.02 probability. Kernel weights were initialized by using Glorot [16] uniform and

recurrent weight matrices were initialized to be random orthogonal.

Table 4.34: Initial parameters of the LSTM layer.

Parameter Value

Input Dropout 0.02

Output Activation Hyperbolic Tangent

Recurrent Activation Hard Sigmoid

Kernel Weight Initializer Glorot Uniform

Recurrent Weight Initializer Orthogonal

The single-layered LSTM network was tested by changing dimensionality of the

LSTM layer to 1, 5, 10 and 20. The output of the LSTM layer for these units was

(𝐵, 164, 1), (𝐵, 164, 5), (𝐵, 164, 10) and (𝐵, 164, 20), respectively. The length of the

spectrums is 164 and 𝐵 is the number of spectrums in each batch.

The average performances of the network for different number of units are

denoted in Table 4.35. For 10 units, the trained model demonstrated the best

performance and MAE of the model was better than that of machine learning models.

For 20 units, 𝑅2 score stayed the same, but MAE increased. This shows that

predictions are mostly linear, but a bit far from true values.

76

Table 4.35: Average MAE and 𝑅2 score of the single-layered LSTM model for

dimensions of 1, 5, 10 and 20.

Number of Units 𝑅2 Score MAE

1 0.83 2.44

5 0.91 1.76

10 0.94 1.34

20 0.91 1.81

As a second alternative, the network with LSTM and 1D CNN layers in Figure

4.21 was tested for various architectures and hyperparameters. The intuition behind of

this architecture is that CNN extracts spatial features and LSTM captures temporal

structures since the spectrums are a type of sequential data. For the training, the

parameters in Table 4.33, Table 4.34 and Table 4.36 was used and the network was

tested for 20 and 100 units for LSTM layer. The output of the CNN layer and input of

LSTM layer was (𝐵, 28, 100) where 𝐵 is size of batches. For 20 and 100 units, the

output of LSTM layer was (𝐵, 560) and (𝐵, 2800), respectively.

Table 4.36: The hyperparameters of the CNN layer for the network with LSTM

and 1D CNN layers.

Parameter Value

Number of Filters 100

Filter Length 25

Stride 5

Table 4.37: Average MAE and 𝑅2 score of the model with 1D CNN and LSTM

layers for 20 and 100 units.

Number of Units 𝑅2 Score MAE

20 0.94 1.37

100 0.95 1.28

150 0.94 1.33

The average performances of the network for different number of units are

denoted in Table 4.37. For 20 and 150 units, the corresponding models demonstrated

similar performances. The best model was achieved by 100 units and its performance

was similar to the performance of the multi-tasking model. As a result, both

architectures learned spectral features and demonstrated considerable performances

compared to machine learning models.

77

4.6. Analysis and Results

The PLSR, GBR, RF, CNN and LSTM models were trained on the normalized

dataset without outliers. The models were trained 10 times and the performance

metrics were averaged. In this way, the parameters of the models were optimized by

testing various parameter configurations. For the fine-tuned parameters, the

performance of the models is shown in Table 4.38.

Table 4.38: Average 𝑅2 score and MAE of all the proposed models.

Model 𝑅2 Score MAE

Single-Task CNN 0.95 1.19

Multi-Task CNN 0.95 1.28

CNN + LSTM 0.95 1.28

Single LSTM 0.94 1.37

Gradient Boosting 0.97 2.41

Random Forests 0.97 2.59

Partial Least Squares 0.94 3.87

Multivariate CNN -3.19 15.10

As explained in Section 1.3, chemical and instrumental factors such as scattering

of light, stray light, deviations in absorptivity coefficients at high and low

concentrations cause nonlinearities between concentrations of a target substance and

absorbance spectrums.

The PLSR algorithm is a type of linear regression algorithm that applies MLR

on the new features extracted by PCA. The PLSR model yielded the worst MAE and

𝑅2 score among all the models since the dataset contains multiple spectrum types and

nonlinear relations.

RF and GBR are ensemble learning methods based on regression trees. They are

tolerant to overfitting and can capture nonlinear relations in training data. As shown in

Table 4.38, the performance of the models was superior to the PLSR model. They both

managed to capture nonlinear relations in data. The GBR model produced less MAE

then the RF model, but training time of the GBR model was much higher.

CNNs are easy to use, noise tolerant, translation invariant and can capture local

patterns in the inputs. As shown in Table 4.38, the single-tasking network

demonstrated slightly better performance then multi-tasking one. They produced the

lowest MAE among all the models. They both managed to identify different spectrum

78

types and captured nonlinear relations, but 𝑅2 scores of the models were slightly lower

than that of RF and GBR.

As an alternative to multi-tasking network, multivariate regression method was

applied on the single-tasking network, but the multivariate model failed to learn

spectral features and the results were disappointing as shown in Table 4.38. The

possible reason of this failure may be the zeros in target vectors.

Overfitting problem is very common in deep neural network. Thus, the proposed

single-tasking network was modified and trained to predict 31 devices that spectrums

were measured. The intuition behind of this was to check whether the proposed deep

networks memorize the dataset or not for specific devices. By using the

hyperparameters of single-tasking network, Softmax and categorical cross-entropy,

average accuracy of 10 runs was %12. The network was fine-tuned for device

prediction problem and the best average accuracy was %45 for 10 filters in 1D CNN

layer. This can be interpreted as that the chance of overfitting was weak for these

networks.

LSTMs are a special type of RNN that is capable of processing sequential

information such as a numerical time-series data. They have an internal memory to

store historical information. They are good for capturing temporal structures and long-

term dependencies. In this work, LSTMs were tested with and without 1D CNN layers

and acquired significant performances as shown in Table 4.38. However, the best

MAE was acquired by the single-tasking deep network.

79

5. CONCLUSIONS

Light is an electromagnetic radiation of longer and shorter wavelength and all

materials absorb the energy of light around them. The intensity of the absorbed energy

can be expressed as a function of frequency and wavelength. Absorption spectroscopy

is used to measure energy that is absorbed by a substance. It is the most frequently

used spectroscopic technique for liquids and gases as it is simple, accurate and easy to

use. Absorption spectrum of a substance is calculated by measuring absorptions over

a range of frequencies [1]. Molecular and atomic structure of a material affect the

spectrum considerably. An absorbance spectrum can be used to identify substances or

measure the concentration of a molecule in solution. It has many applications such as

particle size analysis, polymer processing, trace detection of metals, ozone monitoring,

analysis of composition in dairy products and clinical blood diagnostics. The purpose

of this work is to predict concentration of a specific substance by using learning models

trained on the absorbance spectrums of liquids.

There are lots of related regression and classification works based on absorption

spectrums. Mostly used methods in these works are PLS, LDA SVM, MLP, RF and

KNN. Recent works use deep neural networks to deal with nonlinearity and noise due

to environmental and instrumental factors. According to related works, performance

of the CNNs are superior to these machine learning models for classification and

regression tasks since they are easy to use, noise tolerant and deal with nonlinearity

better.

In this work, total of 6167 absorbance spectrums were obtained from three

different type of liquid solvents containing a specific X substance by using total of 31

measurement systems. Concentration of X substance in these solutions were predicted

by using learning models trained on the spectrums. Inspiring from the previous works,

PLSR, RF, GBR and CNN were used as the learning models. In order to increase

accuracy of the models and speed up learning, data set was scaled, smoothed and

cleaned from outliers by PLSR modeling. Single-tasking and multi-tasking CNN

architectures were designed and optimized. The models were compared by

performance metrics of MAE and 𝑅2 score.

The PLSR, GBR and RF models were trained with 10-fold cross-validation on

the preprocessed dataset without outliers. Total of 10 models were trained and average

80

of MAEs and 𝑅2 scores of these models were computed. The optimal parameters of

the models were explored by testing various parameter configurations. The best PLSR

model produced the worst performance since the dataset contains multiple spectrum

types and nonlinear relations. The performance of the best RF and GBR models were

better and demonstrated similar performances. They both managed to capture

nonlinear relations. The performance of the GBR model was superior to the RF model,

but training time of the GBR model was much higher.

Single-tasking, multi-tasking and multivariate 1D CNN architectures and LSTM

networks were designed, trained and tested on the preprocessed dataset without

outliers. Total of 10 models were trained and tested for each parameter configuration

and the optimal parameters were explored. The single-tasking network demonstrated

slightly better performance than that of multi-tasking network, but performance of the

LSTM networks was a bit lower than that of multi-tasking network. Multivariate

regression models failed to learn spectral features and produced the worst MAE and

𝑅2 score among all the models. The proposed single-tasking 1D CNN model produced

the lowest MAE among all the models. The deep learning models managed to identify

different spectrum types, learned spectral features and captured nonlinear relations.

However, 𝑅2 scores of the models were slightly lower than that of RF and GBR.

In conclusion, it is shown that 1D CNNs are better than robust machine learning

algorithms such as RF and GBR for the spectrum dataset containing multiple type of

spectrums. In future works, more absorbance spectrums are recommended to be

measured for concentrations lower than 80 and higher than 120 since the dataset

contains fewer samples for this concentration range. Thus, distribution of the samples

by concentration will be even and the models are most likely to learn the nonlinear

relations better.

81

REFERENCES

[1] Hollas J. M., (2004), “Modern Spectroscopy”, 4th Edition, John Wiley & Sons.

[2] Bjerrum E. J., Glahder M., Skov T., (2017), “Data Augmentation of Spectral

Data for Convolutional Neural Network (CNN) Based Deep Chemometrics”,

arXiv preprint: 1710.01927.

[3] Geladi P., Kowalski B. R., (1986), “Partial least-squares regression: a tutorial”,

Analytica chimica acta, 185, 1-17.

[4] Huber P. J., (1964), “Robust estimation of a location parameter”, The annals of

mathematical statistics, 35(1), 73-101.

[5] Nair V., Hinton G. E., (2010), “Rectified linear units improve restricted

boltzmann machines”, In Proceedings of the 27th international conference on

machine learning (ICML-10), 807-814, Haifa, Israel, 21-24 June.

[6] Zeiler M. D., (2012), “ADADELTA: an adaptive learning rate method”, arXiv

preprint arXiv:1212.5701.

[7] Web 1, (2018), https://github.com/SheffieldML/GPyOpt, (Date of Access:

10/04/2018).

[8] Acquarelli J., van Laarhoven T., Gerretzen J., Tran T. N., Buydens L. M.,

Marchiori E., (2017), “Convolutional neural networks for vibrational

spectroscopic data analysis”, Analytica chimica acta, 954, 22-31.

[9] Engel J., Blanchet L., Buydens L.M., Downey G., (2012), “Confirmation of

brand identity of a trappist beer by mid-infrared spectroscopy coupled with

multivariate data analysis”, Talanta, 99, 426-432.

[10] Skov T., Ballabio D., Bro R., (2008), “Multiblock variance partitioning: A new

approach for comparing variation in multiple data blocks”, Analytica chimica

acta, 615(1), 18-29.

[11] Dyrby M., Engelsen S. B., Nørgaard L., Bruhn M., Lundsberg-Nielsen L.,

(2002), “Chemometric quantitation of the active substance (containing C≡ N) in

a pharmaceutical tablet using near-infrared (NIR) transmittance and NIR FT-

Raman spectra”, Applied Spectroscopy, 56(5), 579-585.

[12] Briandet R., Kemsley E. K., Wilson R. H., (1996), “Discrimination of Arabica

and Robusta in instant coffee by Fourier transform infrared spectroscopy and

chemometrics”, Journal of agricultural and food chemistry, 44(1), 170-174.

[13] Tapp H. S., Defernez M., Kemsley E. K., (2003), “FTIR spectroscopy and

multivariate analysis can distinguish the geographic origin of extra virgin olive

oils”, Journal of agricultural and food chemistry, 51(21), 6110-6115.

82

[14] Rasmus A., Berglund M., Honkala M., Valpola H., Raiko T., (2015), “Semi-

supervised learning with ladder networks”, In Advances in Neural Information

Processing Systems, 28, 3546-3554.

[15] Al-Jowder O., Kemsley E. K., Wilson R. H., (1997), “Mid-infrared spectroscopy

and authenticity problems in selected meats: a feasibility study”, Food

Chemistry, 59(2), 195-201.

[16] Glorot X., Bengio Y., (2010), “Understanding the difficulty of training deep

feedforward neural networks”, In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, 249-256, Sardinia, Italy, 13-

15 May.

[17] Bottou L., (2010), “Large-scale machine learning with stochastic gradient

descent”, In Proceedings of COMPSTAT-2010, 177-186, Paris, France, 22-27

August.

[18] Bergstra J., Bengio Y., (2012), “Random search for hyper-parameter

optimization”, Journal of Machine Learning Research, 13, 281-305.

[19] Savitzky A., Golay M. J., (1964), “Smoothing and differentiation of data by

simplified least squares procedures”, Analytical chemistry, 36(8), 1627-1639.

[20] Barnes R. J., Dhanoa M. S., Lister S. J., (1989), “Standard normal variate

transformation and de-trending of near-infrared diffuse reflectance spectra”,

Applied spectroscopy, 43(5), 772-777.

[21] Guo Q., Wu W., Massart D. L., (1999), “The robust normal variate transform for

pattern recognition with near-infrared data”, Analytica chimica acta, 382(1-2),

87-103.

[22] Engel J., Gerretzen J., Szymańska E., Jansen J. J., Downey G., Blanchet L.,

Buydens L. M., (2013), “Breaking with trends in pre-processing?”, TrAC Trends

in Analytical Chemistry, 50, 96-106.

[23] C. Wolf, D. Gaida, A. Stuhlsatz, T. Ludwig, S. McLoone, M. Bongards, (2013),

“Predicting organic acid concentration from UV/VIS spectrometry

measurements–a comparison of machine learning techniques”, Transactions of

the Institute of Measurement and Control, 35(1), 5–15.

[24] Draine B. T., (2003), “Interstellar dust grains”, Annual Review of Astronomy

and Astrophysics, 41(1), 241-289.

[25] Li A., Greenberg J. M., (2003), “In dust we trust: an overview of observations

and theories of interstellar dust”, In Solid State Astrochemistry, 120, 37-84.

[26] Li A., Draine B. T., (2001), “Infrared emission from interstellar dust. II. The

diffuse interstellar medium”, The Astrophysical Journal, 554(2), 778.

83

[27] Peeters E., Allamandola L. J., Hudgins D. M., Hony S., Tielens A. G. G. M.,

(2003), “The unidentified infrared features after ISO”, arXiv preprint astro-

ph/0312184.

[28] Yuan X., Li M., Gaddam S., Li X., Zhao Y., Ma J., Ge J., (2016), ”DeepSky:

Identifying Absorption Bumps via Deep Learning”, 2016 IEEE International

Congress on Big Data, 214-221, San Francisco, USA, June 27 – July 2.

[29] Quider A. M., Nestor D. B., Turnshek D. A., Rao S. M., Monier E. M., Weyant

A. N., Busche J. R., (2011), “The pittsburgh sloan digital sky survey mg ii quasar

absorption-line survey catalog”, The Astronomical Journal, 141(4), 137.

[30] Krizhevsky A., Sutskever I., Hinton G. E., (2012), “Imagenet classification with

deep convolutional neural networks”, In Advances in neural information

processing systems, 2, 1097-1105.

[31] Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Rabinovich A.,

(2015), “Going deeper with convolutions”, arXiv preprint arXiv:1409.4842.

[32] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O.,

Vanderplas J., (2011), “Scikit-learn: Machine learning in Python”, Journal of

machine learning research, 12, 2825-2830.

[33] Breiman L., (2001), “Random forests”, Machine Learning, 45(1), 5–32.

[34] Alpaydin E., (2014), “Introduction to Machine Learning”, 3th Edition, The MIT

Press.

[35] Friedman J. H., (2001), “Greedy function approximation: a gradient boosting

machine”, Annals of Statistics, 29(5), 1189–1232.

[36] Copas J. B., (1983), “Regression, prediction and shrinkage”, Journal of the

Royal Statistical Society, Series B (Methodological), 45(3), 311-354.

[37] LeCun Y., Bengio Y., Hinton G., (2015), “Deep learning”, Nature, 521(7553),

436.

[38] O'Shea K., Nash R., (2015), “An introduction to convolutional neural networks”,

arXiv preprint arXiv:1511.08458.

[39] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R., (2014),

“Dropout: A simple way to prevent neural networks from overfitting”, The

Journal of Machine Learning Research, 15(1), 1929-1958.

[40] Ioffe S., Szegedy C., (2015), “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167.

[41] Kingma D. P., Ba J., (2014), “Adam: A method for stochastic optimization”,

arXiv preprint arXiv:1412.6980.

84

[42] Ruder S., (2017), “An overview of multi-task learning in deep neural networks”,

arXiv preprint arXiv:1706.05098.

[43] Deng L., Hinton G. E., Kingsbury B., (2013), “New types of deep neural network

learning for speech recognition and related applications: An overview”, 2013

IEEE International Conference on Acoustics, Speech and Signal Processing,

8599–8603, Vancouver, Canada, 26-31 May.

[44] Ramsundar B., Kearnes S., Riley P., Webster D., Konerding D., Pande V.,

(2015), “Massively multitask networks for drug discovery”, arXiv preprint

arXiv:1502.02072.

[45] Baxter J., (1997), “A Bayesian/information theoretic model of learning to learn

via multiple task sampling”, Machine Learning, 28(1), 7–39

[46] Goodfellow I., Bengio Y., Courville A., (2016), “Deep learning”, Vol. 1,

Cambridge: MIT press.

[47] Hochreiter S., Schmidhuber J., (1997), “Long short-term memory”, Neural

computation, 9(8), 1735-1780.

[48] Walt S. V. D., Colbert S. C., Varoquaux G., (2011), “The NumPy array: a

structure for efficient numerical computation”, Computing in Science &

Engineering, 13(2), 22-30.

[49] Web 2, https://github.com/fchollet/keras, (Date of Access: 10/05/2018).

[50] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Kudlur M., (2016),

“TensorFlow: A System for Large-Scale Machine Learning”, In OSDI-16, 265-

283.

[51] Hunter J. D., (2007), “Matplotlib: A 2D graphics environment”, Computing in

science & engineering, 9(3), 90-95.

85

BIOGRAPHY

Emre Ardıç was born in 1991 in Turkey. He graduated at the top of Computer

Engineering Department from Gebze Technical University at 2014. He started his

professional carrier as Software Developer at PHI Tech Bioinformatics Inc. in 2014.

Since 2015, he has been a graduate student at the Computer Engineering Department

of Gebze Technical University. Currently, he is working as Researcher at TÜBİTAK

BİLGEM. His research interests include computer vision, artificial intelligence,

machine learning and deep learning.

86

APPENDICES

Appendix A: The Publications about the Thesis

Ardıç E., Genç Y., (2018), “Classification Of 1D Signals Using Deep Neural

Networks”, 26th IEEE Signal Processing and Communication Applications

Conference (SIU), İzmir, Turkey, 02-05 May.

