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SUMMARY 
 
 

In this thesis, detection performance of a pulse induction metal detector is 

investigated by using Maxwell’s equations based Quasi-Static Finite-Difference 

Time-Domain (QS-FDTD) method in three dimensional Cartesian coordinates. Type 

of source is a rectangular pulse wave which is excited by a magnetic dipole antenna. 

A numerical problem space is terminated with a modified Mur Absorbing Boundary 

Condition. The QS-FDTD solution is validated with a canonical problem of 

frequency signature calculations of a conducting sphere located in a weakly lossy 

medium. Time signatures of a buried metallic and an air cube are calculated for 

different scenarios. Thus, fundamental knowledge is obtained for the detection and 

classification of the buried objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Words: Quasi-Static Finite-Difference Time-Domain (QS-FDTD), Pulse 

Induction Metal Detector, Detection and Identification.  
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ÖZET 
 
 

Bu tezde, Maxwell denklemi tabanlı Kuvazi-Statik Zaman-Uzayı Sonlu-Farklar 

(KS-ZUSF) yöntemi ile üç boyutlu Kartezyen koordinatlarda darbe indüksiyonlu bir 

metal detektörünün tespit başarımı zaman uzayında incelenmiştir. Kaynak işareti 

olarak dikdörtgen darbe dalga fonksiyonu kullanılmıştır. Sayısal problem uzayı 

modifiye edilmiş Mur tipi Soğurucu Sınır Koşulu uygulanarak sonlandırılmıştır. 

Düşük kayıplı bir ortamdaki iletken bir kürenin frekans imzası hesaplanarak 

yöntemin doğruluğu gösterilmiştir. Küp şeklindeki gömülü metal ve hava boşluğu 

için zaman imzaları farklı senaryolar için hesaplanmıştır. Böylece, gömülü cisimlerin 

tespiti ve sınıflandırılması için temel bilgi elde edilmiştir. 
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1. INTRODUCTION 
 

1.1. Overview 
 

Metal detectors are a kind of devices based on Electromagnetic Induction 

(EMI) principle at low frequencies from 100 Hz to 100 kHz. Their aim is to detect 

buried dangerous or valuable metallic objects. These devices can be used as fixed 

frames (installed e.g. at the airports) or portable forms. The portable detectors are 

generally used for humanitarian and military demining, archeological investigations 

and gold hunting. 

The operational principle of a metal detector is depicted in Figure 1.1. A 

transmitter coil excites electromagnetic waves and induces Eddy currents in a 

metallic object. The Eddy currents give rise to a secondary electromagnetic radiation. 

This secondary field is measured by a receiver coil. Therefore, a detection process is 

completed. 

 

 
 

Figure 1.1: The operational principle of the metal detector. 
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There are two main metal detector types basing on their source signals. These 

are Continuous Wave (CW) and Pulse Induction (PI) metal detectors. 

 

• The Continuous Wave (CW) metal detectors 

The operational principle of the CW metal detectors is that a continuous 

sinusoidal signal at a single frequency or multiple frequencies is used as a 

transmitted signal. A secondary magnetic field originated from the metallic object is 

received. In general, analyses of the CW detectors are made in the frequency domain. 

Therefore, they are also named as Frequency Domain (FD) metal detectors. 

 

• The Pulse Induction (PI) metal detectors 

The principle of the PI metal detectors is that a pulse shaped signal is used as a 

transmitted signal. A secondary magnetic field from the metallic object is received. 

The PI detectors usually use rectangular pulses which have pulse lengths from 50µs 

to 500µs. An example for a source (primary) pulse current and the secondary induced 

voltage waveforms are shown in Figure 1.2. Analyses of the PI metal detectors are 

performed in the time domain. Therefore, they are also named as Time Domain (TD) 

metal detectors. 

The one of the problem for the PI metal detectors is discrimination ability with 

strong background signals from difficult soils consist of magnetic particles. These 

particles can cause different time decay than the buried objects. On the other hand, 

one of the disadvantages of the PI metal detectors is susceptibility on the humidity 

and temperature. To overcome this problem is not easy and needs advanced research 

[Aksoy, 2018]. 
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Figure 1.2: The source current waveform and received voltage response. 

 

The rise-time of the secondary induced voltage is equal to the fall-time of the 

transmitted magnetic field since the Electromotive Force (EMF) causing the Eddy 

current, proportional to time derivative of the magnetic induction field strength. 

However, the fall time, that is the electrical time constant, depends on the shape, size 

and magnetic properties of the object. For poor conductors, the electrical time 

constant is small and for good conductors it is large. It is also bigger for large objects 

[Colani, 1966], [Colani and Aitken, 1966], [Jiracek, 2017].  

The metal detectors can also be classified as Monostatic and Bistatic due to 

their configuration of the receiver and transmitter antennas. The monostatic systems 

are commonly used for the mine detection and gold hunting. In these systems, the 

receiver and transmitter are located as a concentric form, shown in Figure 1.3. In the 

PI detectors, the same coil can also be used as the transmitter and receiver antenna. 

In the bistatic systems, the transmitter is fixed and the receiver is generally 

shifted horizontally as shown in Figure 1.4. 
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Figure 1.3: Monostatic antenna placements. 

 

 
 

Figure 1.4: Bistatic antenna placement. 
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The PI detectors have some advantages; 

 

− they can be designed with only single coil, 

− the associated electronics is relatively simple, 

− weak resistance to soil signals of small ferromagnetic particles,  

− the instruments have low power consumption. 

 

However, these instruments have limited capability to challenge the two most serious 

problems of modern metal detectors:  

 

− strong background signal from magnetic soil and 

− false alarms arising from different metal scraps. 

 

In some cases, the CW detectors may be more suitable to suppress these problems 

(noises) with a narrow band filter [Ripka and Lewis, 2006], [Ripka et al., 2006]. 

 

1.2. Historical Development 
 

In this section, the historical developments of the QS-FDTD method and PI 

metal detectors will be discussed, separately. 

 

• Historical Developments of the QS-FDTD Method 

In low frequency problems, it is not feasible to use classical Finite-Difference 

Time-Domain (FDTD) method because of extremely large wavelength 

corresponding to very long iteration times for a simulation of a full source period. 

Consideration of the quasi-static approximation in the FDTD method is a 

solution to overcome to this problem. If the quasi-static criterion is valid, the 

classical FDTD method can be modified by slowing down the propagation velocity. 

In this manner, the FDTD unit time step can be extended efficiently for solution of 

the low frequency problems [Özakın and Aksoy, 2016]. 

Details of the FDTD and QS-FDTD method will be explained in Chapter 5. 
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• Historical Developments of the Pulse Induction Metal Detectors 

The history of the PI metal detectors is a very wide topic. Therefore, it will be 

explained in Chapter 2, 3 and 4 in detail. 

 

1.3. The Purpose and the Scope of this Thesis 
 

In the literature, there are no sufficient, full and realistic analytical or numerical 

solutions for the PI metal detector. Therefore, behavior of the system is not well-

understand. To eliminate lack of knowledge in this topic, the PI metal detector is 

simulated by using the QS-FDTD method in this thesis. Consequently, useful 

information for classification and discrimination purposes can also be obtained. 
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2. MODELING AND SIMULATION 
 

2.1. Analytical Methods 
 

2.1.1. Circuit Modeling 
 

Riggs et al. developed an equivalent circuit model to calculate time domain 

response of a buried object excited by a transmitter dipole. A quadrupole antenna 

was used as a receiver. The calculations were made using the Laplace transform for a 

pulse and continuous wave excitation. The induced current in the receiver was 

calculated as a function of time. The frequency domain response was also calculated. 

In the circuit model, direct coupling between the transmitter and receiver was 

assumed to be zero. For the direct coupling, the experimental investigations were 

performed. The results showed that the direct coupling in the case of the symmetric 

receiver position was reduced -70 dB comparing to the arbitrary receiver positions 

[Riggs et al., 2002]. 

 

2.1.2. Helmholtz Equation 
 

2.1.2.1. Laplace Transform Solution 
 

Wait investigated a magnetic dipole (or a small current-carrying loop) 

propagation in an isotropic medium. The Laplace transform solution of the wave 

equation was used in the cylindrical coordinates. A Hertz (potential) vector was used 

for the formulation. At large values of the time, a static approximation was used. A 

rectangular pulse (step function current) response of the dipole in the sea water was 

calculated at the different distances of the observation point [Wait, 1953]. 

 

2.1.3. Diffusion Equation 
 

Nabighian calculated transient response of a conducting permeable sphere 

excited by a magnetic dipole source in the free space using the solution of diffusion 
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equation. The dipole source solution was obtained from the differentiation of the pole 

source solution. Different orders of the multipoles were calculated for the different 

permeability values [Nabighian, 1970]. 

 

2.1.3.1. Inverse Fourier Transformation 
 

2.1.3.1.1. Exact Solution 
 

• Free Space and Conducting Half Space 

Nabighian computed transient response of the earth due to an arbitrary loop 

located at the earth’s surface using the Fourier transform solution of diffusion 

equation. A step function was used for the source excitation. The contour plots of the 

current density in the earth for the different moments were calculated [Nabighian, 

1979]. 

Bowler and Johnson computed time domain response of a conducting half 

space excited by a coil of rectangular cross section using the inverse Laplace 

transform solution (𝑠 = 𝑗𝜔) of diffusion equation. The coil was excited by a unit step 

function. The integrated EMF (Electro Motive Force) and field changes were 

calculated for the different time constants at the different heights of the coil. The 

analytical results were confirmed with the experimental results [Bowler and Johnson, 

1997]. 

Karmis et al. calculated time domain response of a layered earth using the 

inverse Laplace transform (𝑠 = 𝑗𝜔) solution of diffusion equation. Two concentric 

loops were used as a receiver and transmitter, both located on the surface of the 

earth. The transmitter coil was excited by a rectangular pulse. The induced voltages 

and effective resistivities as functions of time were calculated for the two, three, four 

and five layers earth models for the different thickness of layers, the different sizes of 

the coils and the different conductivity values of the some layers. The advantages of 

this method were pointed out comparing to the electrical DC method [Karmis et al., 

2003]. 

Das calculated time domain response of conducting magnetic soil from a loop 

antenna excited by a step function. The time domain results were obtained from the 

inverse Laplace transform of the frequency domain solution of the diffusion 
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equation. A coplanar receiver and transmitter coils were located in the free space. 

The equivalent magnetic and electric dipole models were used for the solutions. The 

time signatures of the soils for the different conductivities and magnetic 

susceptibilities were calculated [Das, 2004]. 

 

2.1.3.1.2. Series Expansion 
 

• Object in Free Space 

Time domain EMI response of a conducting permeable sphere excited by a 

transmitter coil antenna with a pulse and pulse train signals (for non-homogeneous 

fields) was calculated by solving diffusion equation inside the sphere and Maxwell’s 

equations outside the sphere. The time signatures for the different permeability 

values of the aluminum and steel spheres at the different depths were found by taking 

the inverse Laplace transform (𝑠 = 𝑗𝜔 ) of the frequency domain solution. The 

analytical solutions were compared with the experimental results [Das et al, 1984].  

Das et al. studied for determination of the depth of a shallowly buried 

conducting and permeable sphere by an induced voltage ratio of two receiver coils. 

The two receiver coils and one transmitter coil were located at the different heights 

above the earth in the free space. The transmitter coil was excited a by the periodic 

pulse train signal. For the time domain results, the inverse Laplace transform solution 

of the diffusion equation was used. The voltage ratios as functions of the time and 

depth were calculated for the different permeability and conductivity values of the 

sphere. The analytical results were verified with the experimental results. In 

conclusion, it was mentioned that the proposed method is not applicable for the 

different shaped materials [Das et al., 1985]. 

Song et al. calculated Transient Electromagnetic (TEM) response of a highly 

conducting and permeable cylinder using the inverse Fourier transform solution of 

diffusion equation with a model-based Spheroidal Excitation Approach (SEA) 

method. The frequency domain response and time signatures were calculated. The 

frequency domain results were validated with the measurements using the Geophex 

GEM-3 frequency domain EMI sensor; the time domain results were validated with 

the measurements using the Geonics EM 63 time domain EMI sensor. The different 

orientations of the cylinder were also analyzed [Song vd, 2008]. 

9 



 

− Numerical Integration 

Raiche and Spies calculated inverse Laplace transform solution of diffusion 

equation using a Gaussian quadrature numerical integration method for interpreting 

of apparent conductivity curves of two-layer earths using a transmitting loop 

antenna. The antennas were excited by a step function, half sine wave and sawtooth 

signal. The apparent conductivity curves were shown as functions of time [Raiche 

and Spies, 1981]. 

 

• Buried Objects in Lossy Medium 

Wait calculated transient behavior of induced magnetic field of a conducting 

sphere in a relatively poorly conducting medium under a homogeneous magnetic 

field source. I/Q signature and time signature were extracted by solving the diffusion 

equation. Sinusoidal and step function sources were used for the frequency and time 

domain solutions, respectively. The inverse Fourier transform was used for the time 

domain results [Wait, 1951]. 

Wait and Spies investigated transient behavior of the induced magnetic fields 

in a conducting and permeable sphere located in a relatively poorly conducting 

medium with a homogeneous magnetic field excitation. Diffusion equation inside the 

sphere and Maxwell’s equations outside the sphere were solved. The time domain 

results were obtained using the inverse Fourier transform. The impulse and step 

response of the non-permeable conducting sphere and, the step response of the 

permeable sphere with the different permeability values were calculated [Wait and 

Spies, 1969]. 

Wait and Ott calculated time domain impulse response of a non-magnetic 

conducting half-space from a magnetic dipole source using the inverse Laplace 

transform of the series expansion solution of diffusion equation in the cylindrical 

coordinates [Wait and Ott, 1972]. 

Singh calculated time domain response of a conducting sphere by a magnetic 

dipole source excited by a Heaviside function in a conducting infinite space. The 

analytical solution of the diffusion equation inside the sphere and the Laplace 

equation outside the sphere was utilized in the frequency domain at the spherical 

coordinates. The time domain responses were obtained for the different 
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conductivities and different orientations of the source. The inverse Fourier transform 

was used for the time domain calculations. Five independent functions were required 

for modeling the time domain response [Singh, 1973]. 

 

• Buried Objects in the Lossless Medium 

Das calculated time domain response of a metallic sphere buried in non-

conducting magnetically dispersive soil. A series expansion solution with the inverse 

Fourier transform used to solve the diffusion equation. Two concentric and coplanar 

circular coils used as a transmitter and receiver. The transmitter coil excited with a 

step function. The time signatures of the soil, aluminum sphere in the air and 

aluminum sphere in the soil at the different heights and different depths were 

calculated. The analytical results compared with the experiments using the Scheibel 

AN19/2 metal detector [Das, 2006]. 

 

2.1.3.2. Inverse Laplace Transformation 
 

2.1.3.2.1. Exact Solution 
 

• Free Space and Conducting Half Space 

Bowler solved diffusion equation using the Laplace transform for the time 

domain response calculations of a conducting half space. A pancake shaped, a square 

section and a solenoid coil were used as a source. All these coils were excited by a 

unit step function. With the help of the reflection coefficient, the normalized coil 

EMF and its integrated response were calculated as a function of time [Bowler, 

1990]. 

 

 

2.1.3.3. U-V Method 
 

Davey and Han computed induced voltage in a conducting cylinder in the free 

space from the solution of a vector Helmholtz equation using U-V method that 

separates a vector equation into the two scalar equations. The inverse Laplace 

transform was used for the time domain data extraction. The time domain responses 
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for the different size of the cylinders and different time constants were obtained. The 

obtained results were also validated with the experimental results [Davey and Han, 

1987]. 

 

2.2. Numerical Methods 
 

2.2.1. Helmholtz Equation 
 

2.2.1.1. Method of Moments 
 

Sebak and Shafai calculated transient response of imperfectly conducting and 

permeable buried spheroidal objects excited by a circular transmitter loop antenna in 

the free space. Method of Moment (MoM) method was used with an Impedance 

Boundary Condition (IBC) in the frequency domain. The air-earth interface was 

neglected due to the high signal penetration into the soil. The inverse Fourier 

transform was used for the time domain data extraction. A periodic pulse train was 

used for a transmitter excitation. The time signatures were obtained for the different 

permeable materials at the different depths and orientations of the objects. The 

results were confirmed with an equivalent magnetic dipole method and analytical 

pulse induction technique [Sebak and Shafai, 1984]. 

 

2.2.1.2. Numerical Integral Calculation 
 

Sebak et al. calculated transient response of rotationally symmetric permeable 

buried objects using a numerical solution (in frequency domain) of a magnetic field 

integral equation with the IBC. The air-earth interface was neglected due to the high 

signal penetration into the soil. The inverse Fourier transform was used for 

calculation of the time domain data. A circular loop antenna located in the free space 

was used as a transmitter and was excited by a periodic pulse train signal. The time 

signatures for the different permeability values and different orientations of the 

objects were calculated. The induced voltage as a function of position was also 

shown [Sebak et al., 1988]. 
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2.2.2. Diffusion Equation 
 

Mackie at al. solved diffusion equation using Finite Difference Fourier Domain 

(FDFD) method combined with an impedance matrix method. The magnetotelluric 

response of the layered earth was calculated at very low frequencies. A plane wave 

excitation was used as a source. Apparent resistivities were shown as functions of 

position and time for the different periods of the source. The results were compared 

with the integral equation solution [Mackie at al., 1993]. 

Uyeshima and Schultz computed electromagnetic induction response of an 

arbitrary heterogeneous conducting sphere by an external source placed in the air 

which is modeled with a very low conductivity. Three-dimensional FDFD method 

was used to solve the diffusion equation in the spherical coordinates. A minimum 

residual conjugate gradient method was used to solve the matrix system. The 

magnetic and electric field components were calculated as functions of geomagnetic 

co-latitude. The surface values of the magnetotelluric impedance and the magnetic 

field distributions were also shown. The results were compared with an integral 

equation solution and a quasi-analytical solution [Uyeshima and Schultz, 2000]. 

 

2.2.2.1. Crank-Nicholson (CN) FDTD 
 

Chou et al. calculated time domain response of single, two and four layered 

conducting media under homogeneous fields using the 2D/3D Crank-Nicolson 

Finite-Difference Time-Domain (CN-FDTD) solution of diffusion equation with a 

conjugate gradient scheme. A periodic boundary condition was used. The numerical 

codes were speeded up with the CPU parallel programming. The time signatures for 

the different values of the conductivities were calculated with a sinusoidal and pulse 

excitation. The results were compared with the analytical solutions [Chou et al., 

2000]. 

Hamano developed a three dimensional Crank-Nicolson Finite-Difference 

Time-Domain (CN-FDTD) algorithm to solve diffusion equation. Time domain 

response of a heterogeneous conducting sphere at very low frequencies was 

calculated. The impulse responses of the homogeneous earth and different model of 

the heterogeneous earths and the spatial distributions were calculated. The numerical 
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results were confirmed with the analytical results. In addition, the CN-FDTD method 

was compared with a staggered grid finite difference (in the frequency domain) 

method. The Fourier transform was used for the frequency domain transformation 

[Hamano, 2002]. 

Chou et al. developed a Crank-Nicholson FDTD algorithm to solve diffusion 

equation at the spherical coordinates. The magnetic field distribution of the layered 

earth was calculated with a magnetic dipole source excitation at very low 

frequencies. The numerical algorithm was speeded up with the CPU parallelization 

[Chou et al., 2001]. 

 

2.2.2.2. Finite Element Method (FEM) 
 

Tsuboi et al. computed transient Eddy currents induced in an aluminum plate from 

an exciting coil using a time stepping method and a Fourier transform method. An 

axisymmetric Finite Element Method (FEM) was used with the coarse and fine 

meshing in the computation. Time dependency of the flux (with pulse and half 

sinusoidal excitations) and the time dependency of the Eddy current density were 

calculated for the 2-D and 3-D problems. The TEAM Workshop Problem 27 was 

analyzed for the 3-D transient Eddy current problem. The numerical results were 

compared with the analytical results [Tsuboi et al., 2004]. 

Ludwig and Dai computed transient response of a conducting and non-magnetic 

half space from an infinite wire and current loop antennas. The two dimensional 

weighted-residual-based FEM was used to solve the diffusion equation at the 

rectangular and cylindrical coordinates. A unit step function was used for the 

excitation. The spatial Eddy current distributions at the various time steps and the 

temporal Eddy currents at the various depths were computed. The field distributions 

with the subsurface defects were also shown. The numerical results were validated 

with the analytical models in the time domain employing the inverse Laplace 

transforms (𝑠 = 𝑗𝜔) [Ludwig and Dai, 1990]. 

Dyck et al. performed a study for effect of a pulse shape on a signal amplitude for 

a round hole through a conducting (aluminum alloy) plate (TEAM Workshop 

Problem 27). The FEM method was used for the solution of the diffusion equation. 

The peak values for the different turn-off times and the time domain response of the 
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horizontal differential flux densities with the horizontal, square and vertical flaws 

were calculated. The peak differential flux density as a function of the width and 

height of the flaw was also shown. The analysis performed using MagNet transient 

analysis software from Infolytica Corporation. The numerical results were compared 

with the experimental results [Dyck et al., 2004]. 

Xie et al. developed a FEM (edge elements) algorithm based on a static solution 

combined with a linear interpolation method to detect a global wall thinning in the 

thick plates. The repetitive square waves were used for the excitation. The time 

domain solution was calculated by the Inverse Fourier transform. The differential 

magnetic fields as a function of time for the different number of harmonics and 

differential magnetic fields as a function of frequency for the different thicknesses of 

a plate were calculated. In order to compare the time domain results, the FEM time 

domain algorithm with a Crank-Nicholson time scheme was developed. The 

experiments were also performed for the same problem [Xie et al., 2011].  

Antoun and Perriard developed a volumetric estimation method in the FEM 

simulation. This technique based on a modification of the finite element mesh of a 

target due to a magnetic vector potential variation in the two computational time 

steps. The computational times as a function of frequency for the seven different skin 

modeling cases were extracted. The results showed that the computational time can 

be reduced tenfold. An instantaneous vector potential derivative of a copper sphere, 

instantaneous Eddy current distribution of the steel and copper spheres and flux 

densities at the surface of the spheres of the different materials were computed. The 

joule heating as functions of time were also computed for the spheres, made of 

different materials. The numerical results were validated with the experiments 

[Antoun and Perriard, 2013]. 
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3. IDENTIFICATION AND DISCRIMINATION 
 

3.1. Simple Time Signatures 
 

Chilaka et al. investigated detection performance of the Continuous Wave 

(CW) and Pulse Induction (PI) metal detectors using an equivalent circuit model and 

FEM solutions. The transmitted pulse duration of the PI detector was 800 µs with a 

50 Hz (20 ms period) repetition frequency. The importance of the late time 

information was highlighted for better discrimination. The frequency band of the CW 

detector was extended down from 30 Hz – 24 kHz to 1 Hz – 24 kHz for the better 

discrimination performance. The CW detector performance was shown as a function 

of the Signal-to-Noise Ratio (SNR). The I/Q and time signatures of the copper loop 

were measured on the receiver. The results were compared with the circuit model 

solutions and FEM solutions. As the receiver, a shape-8 coil was used to compensate 

the noise effects. The I/Q and time signatures of the steel cylinders also were 

measured with the different wall thicknesses [Chilaka et al., 2005]. 

McFee et al. designed an EMI sensor system for measuring the time domain 

response of the conductive spheroidal objects in the free space. The sensor was 

comprised of the coaxial transmitter and receiver coils and the transmitter excited by 

the periodic pulse train signal. The time signatures for the different depth, 

electromagnetic properties, size, shape and orientation of the spheroidal objects were 

measured. The background noise information was also given [McFee et al., 1984]. 

 

3.2. Magnetic Polarizability Tensor 
 

3.2.1. Object in Free Space 
 

Ambruš et al. dealt with a problem of estimation time dependent directional 

magnetic polarizabilities using a planar time domain EMI sensor. The sensor consists 

of the three coaxial circular loops (the main transmitter, the bucking transmitter and 

receiver). The induced voltage distributions for the steel sphere, the steel cylinder 

and the aluminum cylinder were measured. The mean values of the magnetic 
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polarizabilities and their standard deviations were calculated for the same targets 

[Ambruš et al., 2016]. 

 

3.3. Dipole Model 
 

3.3.1. Simple Dipole Model 
 

3.3.1.1. Object in Free Space 
 

Fernandez et al. designed a Man-Portable Vector (MPV) EMI sensor for 

classification of UXO like metallic objects based on a tensor dipole model. The EMI 

sensor consists of the five cubic receiver coils and one transmitter coil surrounds 

them. The device works at the two modes of the operation that the static mode 

(yields the higher SNR and lower data diversity) and the dynamic mode (yields the 

lower SNR and higher data diversity). The time domain responses at the different 

measurement points and the field distributions were measured. The polarizabilities as 

functions of time were also measured for the different scenarios: the different 

orientations of the objects, the different depths of the aluminum and steel cylinders, 

two UXOs and the one UXO with the nails [Fernandez et al., 2011]. 

Fernandez et al. designed a new version of the MPV EMI sensor named as a 

MPV-II. The MPV-II was used for the classification of the UXOs from the time 

domain data using a simple dipole model. The transverse and axial polarizability 

elements in the time domain were extracted from the one target, the one target with 

clutters and two targets scenarios for the various projectiles [Fernandez et al., 2011]. 

 

3.3.2. Advanced Dipole Model 
 

3.3.2.1. Object in Free Space 
 

Barrowes et al. developed a classification technique based on an advanced 

dipole model, Normalized Surface Magnetic Source (NSMS), using time domain 

data from the MPV EMI sensor. In this manner, the time signatures for the different 
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orientations and different depths of the various objects were analyzed with and 

without the noise effect [Barrowes et al., 2009]. 

Shubitidze et al. developed a high power EMI sensor for detection and 

classification of deeply buried metal objects. The sensor system consists of the four 

coplanar square transmitter loops and four tri-axial (cube) receiver coils placed at the 

center of each transmitter. The transmitter current is boosted from 6 A (previous 

version of the sensor) to 14 A. The Ortho-Normalized Volume Magnetic Source 

(ONVMS) model which is based on the distributed equivalent magnetic dipoles was 

used for the classification. For simplicity, the soil response was neglected. The total 

ONVMS data as a function of time for the different sizes of the UXOs were 

measured and the probability of detection was extracted [Shubitidze et al., 2016].  

Shubitidze et al. studied for identification and classification of metallic objects 

using the time domain EMI sensor. The orthonormalized volume magnetic source 

(distributed magnetic dipoles) model was used for the identification. All the 

displacement currents were neglected for simplicity. A TEMTADS sensor array (5x5 

grid of the concentric rectangular Tx-Rx antennas) was used for the measurements. 

The time decay curves for the single and multiple targets (the UXO, the aluminum 

and steel spheres and the spheroids) were extracted using the single and multiple 

sources [Shubitidze et al., 2014]. 
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4. OTHER WORKS 
 

4.1. Compensation 
 

Nelson and Arabian developed a portable robot system for the PI metal 

detectors. The two concentric receiver-transmitter loops were placed on the robot 

symmetrically to compensate the influence of the electronic components of the 

system. The induced voltages in the number of calibration loops and coke can at a 

depth of 15 cm were measured [Nelson and Arabian, 2002]. 

Olhoeft and Strangway investigated effect of magnetic losses on the frequency 

signature (I/Q signature) of a permeable sphere with a Cole-Cole frequency 

distribution model. The series expansion solution of the diffusion equation was used 

for the calculation of the I/Q signatures. The magneto-electric and nonlinear effects 

were neglected. The I/Q signatures of the spheres with the constant permeabilities 

and different electrical time constants and the I/Q signatures of the sphere with the 

Cole-Cole frequency distribution model of the complex permeability with the 

different magnetic time constants were calculated. It was observed that the 

permeable materials change sign of the in-phase and quadrature components of the 

I/Q signatures at the frequencies higher than the peak electrical loss. The loss tangent 

spectrums for the different magnetic materials and the time decay curves of the 

copper and magnetite were also extracted. Therefore, it was noted that the complex 

permeability gives rise to the phase difference between the electrical and magnetic 

relaxation times. The analytical results were compared with the experimental results 

[Olhoeft and Strangway, 1974]. 

 

4.2. Conducting Half-Space (Earth) 
 

4.2.1. Layered, Stratified 
 

Mogilatov et al. calculated time domain response of a conducting half-space 

with an insulating layer using the inverse Laplace transform solution of Maxwell’s 

equation. The electric and magnetic dipoles were used as the sources and excited by 
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a step function. The time domain electric field responses were obtained for the 

different permittivity values of the earth. It was shown that the insulating layer 

totally masks underlying resistivities with the quasi-static approximation [Mogilatov 

et al., 2014]. 

Verma and Mallick calculated transient response of three-layer earth by a 

coplanar loop system and loop wire element. The time domain data was obtained 

with the Fourier series summation technique. The transmitter antenna was excited by 

the half-sinusoidal and square pulses of the alternating polarity. The time domain 

responses of the three-layer earth were calculated for the different thickness ratios of 

the layers and the RMS difference were calculated as a function of thickness ratio. 

The frequency response was also calculated [Verma and Mallick, 1979]. 

 

4.3. Reports 
 

Kim et al. proposed a magnetic sheet backing of a search coil to improve 

detection range of the PI detector which has a planar square spiral mono coil search 

coil. The magnetic field strength as a function of distance was simulated using 

ANSYS Maxwell Software for different thicknesses of the magnetic sheet. It was 

shown that with magnetic sheet, the field pattern stronger in one direction. The coil 

inductance and resistance were measured for different thicknesses of the magnetic 

sheet. It was observed that the inductance was increased while the resistance was not 

affected by the magnetic sheet. The time signatures were measured with and without 

the target (M15 anti-tank mine) and with and without the magnetic sheet. The 

rectangular pulse signal with 700 us pulse width and 1 kHz repetition frequency was 

used for the coil excitation. The detection range was also measured for the different 

thicknesses of the magnetic sheet and it was proven that the detection range was 

increased with the magnetic sheet. Furthermore, it was also noted that the weight of 

the sensor is heavy with the magnetic sheet. Therefore, it is more suitable for the 

vehicle mounted operations than the hand held operations [Kim et al, 2014]. 
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5. FINITE-DIFFERENCE TIME-DOMAIN 
METHOD 
 

Finite-Difference Time-Domain (FDTD) method is based on numerical 

calculation of spatial and temporal derivatives in Maxwell’s equations via central, 

backward and forward differences approximation technique [Yee, 1966]. Mostly, 

central differences technique is preferred due to its higher accuracy. In the FDTD 

method, the numerical derivatives are replaced by Taylor series expansion with 

second or higher order accuracy. One of the major disadvantages of the FDTD 

method is the requirement of excessive temporal discrimination [Aksoy, 2017]. 

Some advantages of the FDTD method: 

 

• Does not use linear algebra: Does not need matrix inversions. Theoretically, it 

has no limitation for number of unknowns. 

• Presents controllable numerical results: Since it is well understood, the 

numerical solutions are under control. 

• Gives pulse response directly: With a single run, it gives wide bandwidth pulse 

or sinusoidal steady state response. 

• Solves wide variety of problems due to geometry and material types: It can be 

examined lossy, inhomogeneous, anisotropic, dispersive and nonlinear 

materials of complex geometries. 

• Presents full-wave solution: It involves diffractions. 

• Real-time visualization is possible: Electromagnetic field distributions can be 

viewed, instantaneously. 
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5.1. One Dimensional Finite Differences 
 

 
 

Figure 5.1: Types of the finite difference techniques. 

 

One of the favorable numerical methods to solve differential equations is the 

finite differences technique. There are three different finite differences technique 

which are the forward, the backward and central differences as seen in Figure 5.1. To 

apply this technique to a differentiable function, the function should be discretized, 

initially. Therefore, a one dimensional 𝑓(𝑥) function is split by ∆𝑥 unit cell size and 

number of 𝑖 pieces. Then, the function can be shown below 

 

 𝑥𝑖 = 𝑖∆𝑥  ⇒   𝑓(𝑥) = 𝑓(𝑥𝑖) = 𝑓(𝑖∆𝑥). (5.1) 

 

According to this, to obtain the derivative of 𝑑𝑓(𝑥)/𝑑𝑥 , Taylor series 

expansion of 𝑓(𝑥) is required  at the point of 𝑥 = 𝑥𝑖 as 

 

 

𝑓(𝑥) = �
𝑓𝑛(𝑥𝑖)
𝑛!

∞

𝑛=0

(𝑥 − 𝑥𝑖)𝑛

= 𝑓(𝑥)|𝑥=𝑥𝑖 + (𝑥 − 𝑥𝑖)𝑓′(𝑥)|𝑥=𝑥𝑖

+
(𝑥 − 𝑥𝑖)2

2!
𝑓′′(𝑥)|𝑥=𝑥𝑖 + ⋯ 

(5.2) 

 

If ℎ = (𝑥 − 𝑥𝑖), it can be written like below 
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 𝑓(𝑥𝑖 + ℎ) = 𝑓(𝑥𝑖) + ℎ𝑓′(𝑥𝑖) +
ℎ2

2!
𝑓′′(𝑥𝑖) + ⋯ (5.3) 

 

Then, at 𝑥 = 𝑥𝑖, the equation becomes 

 

 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +

ℎ3

3!
𝑓′′′(𝑥) + ⋯ (5.4) 

 

then, it is found that 

 

 𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

= 𝑓′(𝑥) +
ℎ
2!
𝑓′′(𝑥) +

ℎ2

3!
𝑓′′′(𝑥) + ⋯ (5.5) 

 

In a similar way for 𝑓(𝑥 − ℎ) 

 

 𝑓(𝑥 − ℎ) = 𝑓(𝑥) − ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) −

ℎ3

3!
𝑓′′′(𝑥) + ⋯ (5.6) 

 

and 

 

 −
𝑓(𝑥 − ℎ) − 𝑓(𝑥)

ℎ
= 𝑓′(𝑥) −

ℎ
2!
𝑓′′(𝑥) +

ℎ2

3!
𝑓′′′(𝑥) −⋯ (5.7) 

 

then, summing these two equations, the central difference expression is found as 

 

 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ

= 𝑓′(𝑥) +
ℎ2

3!
𝑓′′′(𝑥) + ⋯ (5.8) 

 

Therefore, with the second order error 𝑂(ℎ2), the first derivative of 𝑓(𝑥) becomes 

 

 𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
+ 𝑂(ℎ2). (5.9) 

 

In this manner, 𝑑𝑓(𝑥)/𝑑𝑥  can be expressed using the central difference 

approximation with second order accuracy as 
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 𝑑𝑓(𝑥)
𝑑𝑥

≅
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
. (5.10) 

   

5.2. Finite Difference Time Domain Method and Maxwell’s 
Equations 
 

Spatial and temporal derivatives of Maxwell’s equation are solved iteratively in 

the time domain using the finite difference technique. Maxwell’s equations with 

space (𝑟) and time (𝑡) dependencies is given 

 

 

∇ × 𝐸�⃗ (𝑟, 𝑡) = −
𝜕
𝜕𝑡
𝐵�⃗ (𝑟, 𝑡) 

∇ × 𝐻��⃗ (𝑟, 𝑡) =
𝜕
𝜕𝑡
𝐷��⃗ (𝑟, 𝑡) + 𝐽(𝑟, 𝑡) 

∇ ∙ 𝐷��⃗ (𝑟, 𝑡) = 𝜌(𝑟, 𝑡) 

∇ ∙ 𝐵�⃗ (𝑟, 𝑡) = 0 

(5.11) 

 

where ∇  is Nabla operator, 𝐸�⃗ (𝑟, 𝑡) [V m⁄ ] , 𝐵�⃗ (𝑟, 𝑡) [Wb m2⁄ ] , 𝐻��⃗ (𝑟, 𝑡) [A m⁄ ] , 

𝐷��⃗ (𝑟, 𝑡) [C m2⁄ ] , 𝐽(𝑟, 𝑡) [A m2⁄ ]  and 𝜌(𝑟, 𝑡) [C m3⁄ ]  are electric field strength, 

magnetic induction field, magnetic field strength, displacement field, current density 

vector and charge density, respectively. 

Firstly, let us apply the central differences to the time derivatives in the first 

Maxwell’s equation. For ∆𝑡 unit time step interval, the central difference expression 

of the first Maxwell’s equation in 𝑛∆𝑡 instant becomes 

 

 ∇ × 𝐸�⃗ (𝑟)�
𝑛
≅ −

𝐵�⃗ (𝑟)�
𝑛+12 − 𝐵�⃗ (𝑟)�

𝑛−12

∆𝑡
 (5.12) 

 

where 𝑛 is integer. For the latest term in time domain 𝐵�⃗ (𝑟)�
𝑛+12, the update equation 

is obtained as follows 

 

 𝐵�⃗ (𝑟)�
𝑛+12 ≅ 𝐵�⃗ (𝑟)�

𝑛−12 − ∆𝑡 �∇ × 𝐸�⃗ (𝑟)�
𝑛
�. (5.13) 
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Similarly, for the second Maxwell’s equation, if the central difference is taken 

for time derivatives at (𝑛 + 1 2⁄ )∆𝑡 moment, the update equation for 𝐷��⃗ (𝑟)�
𝑛+1

 is 

found as below 

 

 𝐷��⃗ (𝑟)�
𝑛+1

≅ 𝐷��⃗ (𝑟)�
𝑛
− ∆𝑡 �𝐽(𝑟)�

𝑛+12 − ∇ × 𝐻��⃗ (𝑟)�
𝑛+12�. (5.14) 

 

As it turns out, the electric and magnetic fields are shifted in the time and space 

relatively to each other. To apply the FDTD method to Maxwell’s equations, only 

first two Maxwell’s equations will be enough because, the last two equations are 

inherently provided by placements of the electric and magnetic fields in the FDTD 

cell [Taflove, 2005]. 

 

5.3. FDTD Update Equations with Loss in Cartesian 
Coordinates 
 

Maxwell’s equations in a simple lossy medium are 

 

 
∇ × 𝐸�⃗ (𝑟, 𝑡) = 𝜇

𝜕
𝜕𝑡
𝐻��⃗ (𝑟, 𝑡) 

∇ × 𝐻��⃗ (𝑟, 𝑡) = 𝜀
𝜕
𝜕𝑡
𝐸�⃗ (𝑟, 𝑡) + 𝜎𝐸�⃗ (𝑟, 𝑡) + 𝐽(𝑟, 𝑡) 

(5.15) 

 

where 𝜀 [F m⁄ ] , 𝜇 [H m⁄ ]  and 𝜎 [S m⁄ ]  are permittivity, permeability and 

conductivity of the medium, respectively. In the Cartesian coordinates, each field 

components become 

 

𝜕𝐻𝑥
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑦
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑦

�                     
𝜕𝐸𝑥
𝜕𝑡

=
1
𝜀
�
𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦
𝜕𝑧

− 𝜎𝐸𝑥 − 𝐽𝑥� 

𝜕𝐻𝑦
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑧
𝜕𝑥

−
𝜕𝐸𝑥
𝜕𝑧

�                     
𝜕𝐸𝑦
𝜕𝑡

=
1
𝜀
�
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑥

− 𝜎𝐸𝑦 − 𝐽𝑦� 

𝜕𝐻𝑧
𝜕𝑡

=
1
𝜇
�
𝜕𝐸𝑥
𝜕𝑦

−
𝜕𝐸𝑦
𝜕𝑥

�                     
𝜕𝐸𝑧
𝜕𝑡

=
1
𝜀
�
𝜕𝐻𝑦
𝜕𝑥

−
𝜕𝐻𝑥
𝜕𝑦

− 𝜎𝐸𝑧 − 𝐽𝑧�. 

(5.16) 
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These field components are discretized in the space and time and located in the 

FDTD unit cell as shown in Figure 5.2. The cell locations are expressed with (𝑖, 𝑗,𝑘) 

terms along (𝑥,𝑦, 𝑧) directions, respectively. The spatial and temporal discretization 

of the electric and magnetic field components are shifted relative to each other. In the 

time discretization, the magnetic and electric field components are placed on the 

integer and half values of the time steps, respectively. 

 

 
 

Figure 5.2: The field components in the unit Yee cell. 

 

If the temporal and spatial derivatives are expressed with the central 

differences, the update equations of each magnetic field components are obtained as 
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𝐻𝑥|
𝑖,𝑗+12,𝑘+12

𝑛+12 = 𝐻𝑥|
𝑖,𝑗+12,𝑘+12

𝑛−12

+
∆𝑡

𝜇
𝑖,𝑗+12,𝑘+12

�−
𝐸𝑧|

𝑖,𝑗+1,𝑘+12

𝑛 − 𝐸𝑧|
𝑖,𝑗,𝑘+12

𝑛

∆𝑦

+
𝐸𝑦�𝑖,𝑗+12,𝑘+1

𝑛
− 𝐸𝑦�𝑖,𝑗+12,𝑘

𝑛

∆𝑧
� 

(5.17) 

 

𝐻𝑦�𝑖+12,𝑗,𝑘+12

𝑛+12 = 𝐻𝑦�𝑖+12,𝑗,𝑘+12

𝑛−12

+
∆𝑡

𝜇
𝑖+12,𝑗,𝑘+12

�−
𝐸𝑧|

𝑖+1,𝑗,𝑘+12

𝑛 − 𝐸𝑧|
𝑖,𝑗,𝑘+12

𝑛

∆𝑥

+
𝐸𝑥|

𝑖+12,𝑗,𝑘+1
𝑛 − 𝐸𝑥|

𝑖+12,𝑗,𝑘
𝑛

∆𝑧
� 

(5.18) 

  

𝐻𝑧|
𝑖+12,𝑗+12,𝑘

𝑛+12 = 𝐻𝑧|
𝑖+12,𝑗+12,𝑘

𝑛−12

+
∆𝑡

𝜇
𝑖+12,𝑗+12,𝑘

�−
𝐸𝑥|

𝑖+12,𝑗+1,𝑘
𝑛 − 𝐸𝑥|

𝑖+12,𝑗,𝑘
𝑛

∆𝑦

+
𝐸𝑦�𝑖+1,𝑗+12,𝑘

𝑛
− 𝐸𝑦�𝑖,𝑗+12,𝑘

𝑛

∆𝑥
�. 

(5.19) 

 

Because of the half time step is not defined in the FDTD algorithm, the mean 

value of two time steps is used for the electric field components like below 

 

 𝐸𝑥|
𝑖+12,𝑗,𝑘

𝑛+12 =
𝐸𝑥|

𝑖+12,𝑗,𝑘
𝑛+1 + 𝐸𝑥|

𝑖+12,𝑗,𝑘
𝑛

2
 (5.20) 

 

and the update equations for the each electric field components are obtained as 
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𝐸𝑥|
𝑖+12,𝑗,𝑘
𝑛+1 = �

2𝜀
𝑖+12,𝑗,𝑘

− ∆𝑡𝜎
𝑖+12,𝑗,𝑘

2𝜀
𝑖+12,𝑗,𝑘

+ ∆𝑡𝜎
𝑖+12,𝑗,𝑘

�𝐸𝑥|
𝑖+12,𝑗,𝑘
𝑛

+ �
2∆𝑡

2𝜀
𝑖+12,𝑗,𝑘

+ ∆𝑡𝜎
𝑖+12,𝑗,𝑘

�

⎣
⎢
⎢
⎢
⎡𝐻𝑧|

𝑖+12,𝑗+12,𝑘

𝑛+12 − 𝐻𝑧|
𝑖+12,𝑗−12,𝑘

𝑛+12

∆𝑦

−
𝐻𝑦�𝑖+12,𝑗,𝑘+12

𝑛+12 − 𝐻𝑦�𝑖+12,𝑗,𝑘−12

𝑛+12

∆𝑧
− 𝐽𝑥|

𝑖+12,𝑗,𝑘

𝑛+12

⎦
⎥
⎥
⎥
⎤

 

(5.21) 

  

𝐸𝑦�𝑖,𝑗+12,𝑘
𝑛+1

= �
2𝜀

𝑖,𝑗+12,𝑘
− ∆𝑡𝜎

𝑖,𝑗+12,𝑘

2𝜀
𝑖,𝑗+12,𝑘

+ ∆𝑡𝜎
𝑖,𝑗+12,𝑘

�𝐸𝑦�𝑖,𝑗+12,𝑘
𝑛

+ �
2∆𝑡

2𝜀
𝑖,𝑗+12,𝑘

+ ∆𝑡𝜎
𝑖,𝑗+12,𝑘

�

⎣
⎢
⎢
⎢
⎡𝐻𝑥|

𝑖,𝑗+12,𝑘+12

𝑛+12 − 𝐻𝑥|
𝑖,𝑗+12,𝑘−12

𝑛+12

∆𝑧

−
𝐻𝑧|

𝑖+12,𝑗+12,𝑘

𝑛+12 − 𝐻𝑧|
𝑖−12,𝑗+12,𝑘

𝑛+12

∆𝑥
− 𝐽𝑦�𝑖,𝑗+12,𝑘

𝑛+12

⎦
⎥
⎥
⎥
⎤

 

(5.22) 

  

𝐸𝑧|
𝑖,𝑗,𝑘+12

𝑛+1 = �
2𝜀

𝑖,𝑗,𝑘+12
− ∆𝑡𝜎

𝑖,𝑗,𝑘+12
2𝜀

𝑖,𝑗,𝑘+12
+ ∆𝑡𝜎

𝑖,𝑗,𝑘+12

�𝐸𝑧|
𝑖,𝑗,𝑘+12

𝑛

+ �
2∆𝑡

2𝜀
𝑖,𝑗,𝑘+12

+ ∆𝑡𝜎
𝑖,𝑗,𝑘+12

�

⎣
⎢
⎢
⎢
⎡𝐻𝑦�𝑖+12,𝑗,𝑘+12

𝑛+12 − 𝐻𝑦�𝑖−12,𝑗,𝑘+12

𝑛+12

∆𝑥

−
𝐻𝑥|

𝑖,𝑗+12,𝑘+12

𝑛+12 − 𝐻𝑥|
𝑖,𝑗−12,𝑘+12

𝑛+12

∆𝑦
− 𝐽𝑧|

𝑖,𝑗,𝑘+12

𝑛+12

⎦
⎥
⎥
⎥
⎤

. 

(5.23) 
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5.4. Numerical Dispersion 
 

Dispersion is a phenomenon that phase velocity of the electromagnetic wave 

will depend on frequency. On the other hand, numerical dispersion is a dispersion 

caused by FDTD meshing. In this manner, the numerical dispersion can cause some 

undesired situations: 

 

• Non-physical results, 

• Insufficient accuracy for phase canceling in multiple scatterings, 

• Numerical anisotropy, 

• Fake refractions. 

 

Numerical dispersion depends on 

 

• Wavelength, 

• Direction of wave propagation in mesh, 

• Sort of mesh and discretization. 

 

The numerical dispersion relation for the three dimensional FDTD in the Cartesian 

coordinates is given  

 

 

�
1
𝑐∆𝑡

sin �
𝜔∆𝑡

2
��
2

= �
1
∆𝑥

sin�
𝑘𝑥𝑁∆𝑥

2
��

2

+ �
1
∆𝑦

sin�
𝑘𝑦𝑁∆𝑦

2
��

2

+ �
1
∆𝑧

sin�
𝑘𝑧𝑁∆𝑧

2
��

2

 

(5.24) 

 

where 𝑘𝑥𝑁, 𝑘𝑦𝑁 and 𝑘𝑧𝑁 show the numerical wavelength on the directions of 𝑥, 𝑦 and 𝑧, 

respectively. When 𝑘2 = (𝑘𝑥𝑁)2 + (𝑘𝑥𝑁)2 + (𝑘𝑥𝑁)2 , a dispersionless situation is 

ensured where 𝑘 = 𝜔 𝑐⁄  is an analytical wavenumber. Therefore, to decrease the 

numerical dispersion error, ∆𝑥, ∆𝑦 and ∆𝑧 should be chosen minimum as much as 
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possible. Mostly, it is sufficient to choose the cell size nearby 𝜆 10⁄   [Taflove and 

Hagness, 2005]. 

 

5.5. Numerical Stability 
 

All numerical solutions must be stable. Therefore, to maintain the stability in 

the sense of the spatial and temporal discretization, the FDTD method must satisfy 

Courant-Friedrichs-Lewy (CFL) stability condition. Within this scope, for the 

numerical stability of the FDTD method in the three dimensional Cartesian 

coordinates, the unit time step must satisfy the following condition 

 

 Δ𝑡 ≤
1

𝑐� 1
Δ𝑥2 + 1

Δ𝑦2 + 1
Δ𝑧2

 (5.25) 

 

where 𝑐 is velocity of the light [Chu et al., 1991]. 

 

5.6. Mur Absorbing Boundary Condition 
 

Many applications of the FDTD method are generally open space problems. 

However, the FDTD method must work in the finite spaces. To model the open space 

problems with the FDTD method, the finite space must be terminated with no 

reflecting boundaries. This boundary condition is named as Absorbing Boundary 

Condition, ABC. There are many ABC types in the FDTD applications. From these 

techniques, Perfectly Matched Layer (PML) has highest accuracy but it is hard for 

programming and it has heavy computation burden. In this work, a modified second 

order Mur type ABC is used because of its simplicity for programming. 

 

5.6.1. One-Way Enquist-Majda Wave Equation 
 

One-Way Wave Equation (OWWE) models wave propagation along one 

direction. If the OWWE is analytically applied to the any boundaries, there is no 
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reflection. In the Cartesian coordinates, the three dimensional wave equation in an 

operator form is 

 

 

𝜕2

𝜕𝑥2
𝑢(𝑥,𝑦, 𝑧, 𝑡) +

𝜕2

𝜕𝑦2
𝑢(𝑥, 𝑦, 𝑧, 𝑡) +

𝜕2

𝜕𝑧2
𝑢(𝑥,𝑦, 𝑧, 𝑡)

−
1
𝑐2

𝜕2

𝜕𝑡2
𝑢(𝑥,𝑦, 𝑧, 𝑡) = 0 

 

⟹ �
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
−

1
𝑐2

𝜕2

𝜕𝑡2
� 𝑢(𝑥, 𝑦, 𝑧, 𝑡)

= �𝐿𝑥2 + 𝐿𝑦2 + 𝐿𝑧2 −
𝐿𝑡2

𝑐2
� 𝑢 = 0 

(5.26) 

 

and expanding the operators 

 

 𝐿𝑢 = �𝐿𝑥2 + 𝐿𝑦2 + 𝐿𝑧2 −
𝐿𝑡2

𝑐2
� 𝑢 = 𝐿−𝐿+𝑢 = 0 (5.27) 

 

where 𝐿+ and 𝐿− operators are 

 

 𝐿+ = 𝐿𝑥 +
𝐿𝑡
𝑐
�1 − �𝑐

𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

 (5.28) 

   

 𝐿− = 𝐿𝑥 −
𝐿𝑡
𝑐
�1 − �𝑐

𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

 (5.29) 

 

where the 𝐿+ and 𝐿− indicate the wave propagation on the right and left directions, 

respectively. No reflection is possible under below condition 

 

 𝐿+𝑢|𝑥=𝑙𝑥 = 0 ,   𝐿−𝑢|𝑥=0 = 0. (5.30) 

 

Because of the square root function, the 𝐿+ and 𝐿− operators are hard to solve exactly 

with the numerical methods [Enquist and Majda, 1977]. Therefore, instead of using 
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the square root function, its Taylor series expansion is used to obtain different ABCs 

[Mur, 1981]. 

 

5.6.2. First Order Mur ABC 
 

Under 𝑐𝐿𝑦 𝐿𝑡 ≪ 1⁄  and 𝑐𝐿𝑧 𝐿𝑡 ≪ 1⁄  conditions the square root is 

approximately equal to 1 as 

 

 �1 − �𝑐
𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

≅ 1 (5.31) 

 

where this situation shows that the derivatives on the directions 𝑦  and 𝑧  can be 

neglected. Accordingly, if the 𝐿+ is rewritten at 𝑥 = 0, 𝐿+ becomes  

 

 𝐿+ = 𝐿𝑥 +
𝐿𝑡
𝑐
�1 − �𝑐

𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

≅ 𝐿𝑥 −
𝐿𝑡
𝑐

. (5.32) 

 

Therefore, at 𝑥 = 0 and 𝑥 = 𝑙𝑥  boundaries, the first order Mur (FOMUR) ABC is 

obtained below 

 

 
𝐿+𝑢|𝑥=𝑙𝑥 = 0  ⟹   

𝜕
𝜕𝑥

𝑢|𝑥=𝑙𝑥 −
1
𝑐
𝜕
𝜕𝑡
𝑢|𝑥=𝑙𝑥 = 0 

𝐿−𝑢|𝑥=0 = 0  ⟹   
𝜕
𝜕𝑥

𝑢|𝑥=0 −
1
𝑐
𝜕
𝜕𝑡
𝑢|𝑥=0 = 0 

(5.33) 

 

If these equations are discretized, the FDTD update equations are 

 

 
𝑢|0,𝑗,𝑘

𝑛+1 = 𝑢|1,𝑗,𝑘
𝑛 +

𝑐∆𝑡 − ∆𝑥
𝑐∆𝑡 + ∆𝑥

�𝑢|1,𝑗,𝑘
𝑛+1 − 𝑢|0,𝑗,𝑘

𝑛 � 

𝑢|𝑁𝑥,𝑗,𝑘
𝑛+1 = 𝑢|𝑁𝑥−1,𝑗,𝑘

𝑛 +
𝑐∆𝑡 − ∆𝑥
𝑐∆𝑡 + ∆𝑥

�𝑢|𝑁𝑥−1,𝑗,𝑘
𝑛+1 − 𝑢|𝑁𝑥,𝑗,𝑘

𝑛 �. 
(5.34) 
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For Maxwell’s equations, these update equations are valid for the electric and 

magnetic fields. It is also sufficient to apply only the electric field components for 

termination [Mur, 1981]. 

 

5.6.3. Second Order Mur ABC 
 

If the first two terms of the Taylor series expansion of the square root function 

in the OWWE are taken into account as 

 

 �1 − �𝑐
𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

≅ 1 −
1
2
��𝑐

𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

� (5.35) 

 

where the second order accuracy is reached. Accordingly, if 𝐿+ is rewritten at 𝑥 = 𝑙𝑥, 

it becomes 

 

 
𝐿+ = 𝐿𝑥 +

𝐿𝑡
𝑐
�1 − �𝑐

𝐿𝑦
𝐿𝑡
�
2

− �𝑐
𝐿𝑧
𝐿𝑡
�
2

≅ 𝐿𝑥 +
𝐿𝑡
𝑐
−

𝑐
2𝐿𝑡

�𝐿𝑦2 + 𝐿𝑧2�. 

(5.36) 

 

Therefore, at 𝑥 = 0 and 𝑥 = 𝑙𝑥 boundaries, the second order accurate Mur (SOMUR) 

ABC is obtained like below 

 

 

𝐿+𝑢|𝑥=𝑙𝑥 = 0  ⟹   
𝜕2

𝜕𝑥𝜕𝑡
𝑢|𝑥=𝑙𝑥 +

1
𝑐
𝜕2

𝜕𝑡2
𝑢|𝑥=𝑙𝑥

−
𝑐
2
�
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
�𝑢|𝑥=𝑙𝑥 = 0 

 

𝐿−𝑢|𝑥=0 = 0  ⟹   
𝜕2

𝜕𝑥𝜕𝑡
𝑢|𝑥=0 −

1
𝑐
𝜕2

𝜕𝑡2
𝑢|𝑥=0

+
𝑐
2
�
𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
�𝑢|𝑥=0 = 0. 

(5.37) 

 

If these equations are discretized, the FDTD update equations are 

33 



 

 

𝑢|0,𝑗,𝑘
𝑛+1 = −𝑢|1,𝑗,𝑘

𝑛 + �
𝑐∆𝑡 − ∆𝑥
𝑐∆𝑡 + ∆𝑥

� �𝑢|1,𝑗,𝑘
𝑛+1 + 𝑢|0,𝑗,𝑘

𝑛 �

+ �
2∆𝑥

𝑐∆𝑡 + ∆𝑥
� �𝑢|1,𝑗,𝑘

𝑛 + 𝑢|0,𝑗,𝑘
𝑛 �

+ �
𝑐2∆𝑡2

2∆𝑥(𝑐∆𝑡 + ∆𝑥)� �𝑢
|1,𝑗+1,𝑘
𝑛 − 4𝑢|1,𝑗,𝑘

𝑛

+ 𝑢|1,𝑗−1,𝑘
𝑛 + 𝑢|0,𝑗+1,𝑘

𝑛 − 4𝑢|0,𝑗,𝑘
𝑛

+ 𝑢|0,𝑗−1,𝑘
𝑛 + 𝑢|1,𝑗,𝑘+1

𝑛 + 𝑢|1,𝑗,𝑘−1
𝑛

+ 𝑢|0,𝑗,𝑘+1
𝑛 + 𝑢|0,𝑗,𝑘−1

𝑛 � 

(5.38) 

 

and 

 

 

𝑢|𝑁𝑥+1,𝑗,𝑘
𝑛+1 = −𝑢|𝑁𝑥,𝑗,𝑘

𝑛

+ �
𝑐∆𝑡 − ∆𝑥
𝑐∆𝑡 + ∆𝑥

� �𝑢|𝑁𝑥,𝑗,𝑘
𝑛+1 + 𝑢|𝑁𝑥+1,𝑗,𝑘

𝑛 �

+ �
2∆𝑥

𝑐∆𝑡 + ∆𝑥
� �𝑢|𝑁𝑥,𝑗,𝑘

𝑛 + 𝑢|𝑁𝑥+1,𝑗,𝑘
𝑛 �

+ �
𝑐2∆𝑡2

2∆𝑥(𝑐∆𝑡 + ∆𝑥)� �𝑢
|𝑁𝑥,𝑗+1,𝑘
𝑛

− 4𝑢|𝑁𝑥,𝑗,𝑘
𝑛 + 𝑢|𝑁𝑥,𝑗−1,𝑘

𝑛 + 𝑢|𝑁𝑥+1,𝑗+1,𝑘
𝑛

− 4𝑢|𝑁𝑥+1,𝑗,𝑘
𝑛 + 𝑢|𝑁𝑥+1,𝑗−1,𝑘

𝑛 + 𝑢|𝑁𝑥,𝑗,𝑘+1
𝑛

+ 𝑢|𝑁𝑥,𝑗,𝑘−1
𝑛 + 𝑢|𝑁𝑥+1,𝑗,𝑘+1

𝑛

+ 𝑢|𝑁𝑥+1,𝑗,𝑘−1
𝑛 �. 

(5.39) 

 

For the solution of the two and three dimensional problems, the second order 

accurate Mur ABC does not work at the corners [Yang and Liou, 1998]. Therefore, 

the first order Mur ABC must be used at the corners. 
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Figure 5.3: Mesh diagrams for the first and second order Mur ABCs. 

 

5.6.4. Modified Mur ABC 
 

The modified Mur ABC is an alternate form of the classical second order Mur 

ABC [Arabi and Mittra, 1995]. 

Manipulating the approximation of the OWWE, we can rewrite it as 

 

 �
𝜕𝑢
𝜕𝑥

−
1
𝑐
𝜕𝑢
𝜕𝑡
� �
𝜕𝑢
𝜕𝑥

−
1
𝑐
𝜕𝑢
𝜕𝑡
� = 0 (5.40) 

 

where note that this equation involves only the normal derivatives. If this equation is 

discretized, the FDTD update equation at 𝑥 = 0 is 

 

 

𝑢|0,𝑗,𝑘
𝑛+1 = 2𝑢|1,𝑗,𝑘

𝑛 − 𝑢|2,𝑗,𝑘
𝑛−1

− 2𝐾𝑥�𝑢|0,𝑗,𝑘
𝑛 − 𝑢|1,𝑗,𝑘

𝑛+1 − 𝑢|1,𝑗,𝑘
𝑛−1 + 𝑢|2,𝑗,𝑘

𝑛 �

− 𝐾𝑥2�𝑢|0,𝑗,𝑘
𝑛−1 + 𝑢|2,𝑗,𝑘

𝑛+1 − 2𝑢|1,𝑗,𝑘
𝑛 � 

(5.41) 

 

where 𝐾𝑥 = (𝑐∆𝑡 − ∆𝑥) (𝑐∆𝑡 + ∆𝑥)⁄ . This form of the modified Mur ABC has some 

advantages: 

 

• It is computationally simpler than the conventional SOMUR ABC, 

• It has no tangential derivatives, therefore it works at the corners, 
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• It has higher accuracy than the conventional SOMUR ABC. 

 

There is also another study to overcome long time instability problem of the 

second order Mur ABC. For this aim, upwind finite differences are used instead of 

the central differences approximation [Yusheng and Wenbing, 1996]. 

 

5.6.5. Performance of the Mur ABCs 
 

The reflection errors of the first, second, modified and upwind finite difference 

of Mur ABC are shown in Figure 5.4. A wideband pulse is used for the excitation of 

a magnetic dipole source located at the center of the FDTD mesh in the lossy 

medium. The results show that the modified Mur ABC has the lowest reflection 

error. 

 

 
 

a) 

Figure 5.4: The reflection error comparisons of the modified Mur with a) the 
FOMUR, b) the conventional SOMUR and c) the upwind SOMUR. 
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b) 

 
 

c) 
 

Figure 5.4: Continuation. 

 

It is also observed in Table 5.1, the modified Mur ABC requires less 

computational time than the other second order Mur ABCs. Therefore, the modified 

Mur ABC is preferred in this study.  
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Table 5.1: The computational times for the four different Mur ABC types. 
 

 FOMUR 
Conventional 

SOMUR 

Upwind 

SOMUR 

Modified 

Mur 

Computational 

Time (s) 
108.507 112.431 111.446 110.435 

 

5.7. Quasi-Static FDTD Method 
 

In the low frequency metal detector problem, the wavelength is far bigger than 

the buried object dimensions. This gives rise to a limitation that the classical FDTD 

unit cell size must be too smaller than the wavelength. This leads to the extremely 

small FDTD time step because of the CFL stability criterion. Therefore, to run the 

classical FDTD method for a full period of time, it is required unsuitable 

computational times such as years with todays’ computer technology. To overcome 

this limitation, a Quasi-Static FDTD (QS-FDTD) method is proposed and valid for 

quasi-static approximation. 

There are two types of the quasi-static approximations based on neglecting 

displacement currents and magnetic induction currents which are known as Magneto-

Quasi-Static (MQS) and Electro-Quasi-Static (EQS), respectively. 

In the metal detectors, the displacement currents on the metal object are 

smaller than the conduction currents. Therefore, the MQS condition is valid. In the 

time domain, this condition is shown as below 

 

 
𝜕
𝜕𝑡
𝐷��⃗ (𝑟, 𝑡) ≪ 𝜎𝐸�⃗ (𝑟, 𝑡). (5.42) 

 

In the simple lossy medium, this condition becomes in the frequency domain for the 

monochromatic wave 

 

 𝑗𝜔𝜀𝐸�⃗ (𝑟) ≪ 𝜎𝐸�⃗ (𝑟)     ⟹     |𝑗𝜔𝜀 ≪ 𝜎|     ⟹     2𝜋𝑓𝜀 ≪ 𝜎. (5.43) 
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Under this condition, if the displacement currents are completely neglected, the wave 

equation turns into the diffusion equation. However, in the QS-FDTD method, the 

displacement currents are kept under the MQS condition and the propagation 

velocity is slowed down by scaling up the dielectric permittivity. Therefore, the 

FDTD unit time step becomes bigger and it makes the problem solvable in 

reasonable computational times [Özakın and Aksoy, 2016]. 

Effects of the MQS approximation on the fundamental parameters are analyzed 

below. 

 

1) Propagation Constant: The propagation constant in the lossy medium is 

 

 𝑘 = 𝑘𝑟𝑒𝑎𝑙 + 𝑗𝑘𝑖𝑚𝑎𝑔 = �𝜔2𝜀𝜇 + 𝑗𝜔𝜎𝜇 (5.44) 

 

where the real part (𝑘𝑟𝑒𝑎𝑙) and imaginary part (𝑘𝑖𝑚𝑎𝑔) can be expressed as 

 

 
𝑘𝑟𝑒𝑎𝑙 = �𝜀0𝜇0���

𝑘0

�𝜀𝑟𝜇𝑟 �
1
2
��1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2

+ 1��

1 2⁄

�������������������������
�𝛼𝑘

 (5.45) 

 

 

𝑘𝑖𝑚𝑎𝑔 = �𝜀0𝜇0���
𝑘0

�𝜀𝑟𝜇𝑟 �
1
2
��1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2
− 1��

1 2⁄

 
(5.46) 

 

where 𝑘𝑟𝑒𝑎𝑙 models the wave propagation phenomenon and it is �𝛼𝑘 times bigger 

than the propagation constant (𝑘0 ) in the free space. Therefore, the propagation 

velocity 𝑐 in the lossy medium reduces as 

 

 𝑐 =
𝜔

𝑘𝑟𝑒𝑎𝑙
=

𝜔
�𝛼𝑘𝑘0

=
1

�𝛼𝑘
𝑐0 (5.47) 

 

where 𝑐 ≪ 𝑐0. This fact shows that the velocity of propagation in the lossy medium 

slows down. 
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If 𝑘𝑟𝑒𝑎𝑙  and 𝑘𝑖𝑚𝑎𝑔  are equal, the displacement currents are completely 

neglected. Then 

 

 𝑘 ≅ �𝑗𝜔𝜇𝜎   ⟹   𝑘𝑟𝑒𝑎𝑙 = 𝑘𝑖𝑚𝑎𝑔 ≅ �
𝜔𝜇𝜎

2
 (5.48) 

 

where this condition leads to the diffusion equation. 

 

2) Skin Depth: The skin depth 𝛿 is 

 

 
𝛿 =

1
𝑘𝑟𝑒𝑎𝑙

=
1

�𝜀0𝜇0√𝜀𝑟𝜇𝑟 �
1
2 ��1 + � 𝜎

𝜔𝜀0𝜀𝑟
�
2

+ 1��
1 2⁄ . 

(5.49) 

 

Under the MQS condition it becomes 

 

 𝑘𝑟𝑒𝑎𝑙 ≅ �
𝜔𝜇𝜎

2
  ⟹   𝛿 =

1
𝑘𝑟𝑒𝑎𝑙

≅ �
2

𝜔𝜇𝜎
. (5.50) 

   

3) Impedance: The wave impedance in the lossy medium is 

 

 𝑍 =
�𝐸�⃗ �
�𝐻��⃗ �

= �
𝜇

𝜀 + 𝑗 𝜎𝜔
 (5.51) 

 

and 𝑍 can also be approximated with neglecting the displacement currents as 

 

 𝑍 =
�𝐸�⃗ �
�𝐻��⃗ �

= �
𝜇𝜔
𝑗𝜎

. (5.52) 

   

4) Critical Model Time Parameters and Continuity Equation: Three time constants 

must be considered in the MQS problems: The relaxation time (𝜏𝑒 = 𝜀 𝜎⁄ ), the 

transmit time (𝜏𝑡 = 𝐿√𝜀𝜇), and the magnetic diffusion time (𝜏𝑚 = 𝜎𝜇𝐿2) where 𝐿 is 

40 



the characteristic dimension of the object. In the MQS approximation, the following 

condition must be satisfied in the lossy media 

 

 𝜏𝑒 < 𝜏𝑡 < 𝜏𝑚. (5.53) 

 

To analyze the numerical behavior of the FDTD method in the lossy medium, 

it is necessary to extract the numerical wave number (𝑘𝑁) 

 

 𝑘𝑁 = 𝜔�𝜀𝑁𝜇 = 𝜔��𝜀 + 𝑗
𝜎∆𝑡

2 tan(𝜔∆𝑡 2⁄ )� 𝜇 (5.54) 

 

where 𝜀𝑁 is the numerical dielectric permittivity. The real and imaginary parts of 𝑘𝑁 

are 

 

𝑘𝑟𝑒𝑎𝑙𝑁 = 𝑘0�𝜀𝑟𝜇𝑟 �
1
2
�1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2
�

𝜔 ∆𝑡 2⁄
tan(𝜔∆𝑡 2⁄ )�

2

+ 1�

1 2⁄

 (5.55) 

 

𝑘𝑖𝑚𝑎𝑔𝑁 = 𝑘0�𝜀𝑟𝜇𝑟 �
1
2
�1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2
�

𝜔 ∆𝑡 2⁄
tan(𝜔∆𝑡 2⁄ )�

2

− 1�

1 2⁄

 (5.56) 

 

where tan(𝜔∆𝑡 2⁄ ) ≅ 𝜔∆𝑡 2⁄  for small argument approximation. Thus, 𝑘𝑟𝑒𝑎𝑙𝑁  and 

𝑘𝑖𝑚𝑎𝑔𝑁  are 

 

𝑘𝑟𝑒𝑎𝑙𝑁 ≅ 𝑘0�𝜀𝑟𝜇𝑟 �
1
2
�1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2

+ 1�

1 2⁄

⟹   𝑘𝑟𝑒𝑎𝑙𝑁 = 𝑘𝑟𝑒𝑎𝑙 (5.57) 

 

𝑘𝑖𝑚𝑎𝑔𝑁 ≅ 𝑘0�𝜀𝑟𝜇𝑟 �
1
2
�1 + �

𝜎
𝜔𝜀0𝜀𝑟

�
2
− 1�

1 2⁄

⟹   𝑘𝑖𝑚𝑎𝑔𝑁 = 𝑘𝑖𝑚𝑎𝑔 (5.58) 
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where it is clear that the numerical wave number is equal to the analytical wave 

number. 

In the FDTD numerical solution, the propagation velocity slows down because 

𝑘𝑁 > 𝑘0 . However, the slowed propagation velocity does not affect ∆𝑡  in the 

classical FDTD method because the stability condition depends on 𝑐0, not the slowed 

𝑐. Therefore, it is necessary to use a material scaling technique. The material scaling 

technique can be applied by scaling the parameters 𝜀, 𝜇, 𝜎 and 𝜔. However, only the 

𝜀-scaling is feasible for the FDTD solution. 

To find a proper value for the scaling factor, its effects on the following critical 

parameters and conditions must be analyzed: 

 

i) The QS and MQS conditions, 

ii) Parameters of 𝜏𝑒, 𝜏𝑡 and 𝜏𝑚, 

iii) Parameters of 𝛿, 𝑍 and rescaling, 

iv) Numerical dispersion and stability. 

   

i) QS Condition and k: The scaling does not strongly affect the QS condition and 𝑘 

because 𝑘𝑟𝑒𝑎𝑙 is not strongly depend on 𝜀. 

ii) MQS Condition: The MQS condition is directly affected by the scaling. Therefore, 

the scaling factor must obey the following criterion 

 

 2𝜋𝑓𝛼𝑀𝑄𝑆𝜀 ≪ 𝜎    ⟹     𝛼𝑀𝑄𝑆 ≪
𝜎

2𝜋𝑓𝜀
. (5.59) 

   

iii) 𝜏𝑒, 𝜏𝑡 and 𝜏𝑚: To model the MQS condition properly in the QS-FDTD method, 

the modified unit time step ∆𝑡𝑄𝑆 must satisfy the following condition 

 

 ∆𝑡𝑄𝑆 < 𝜏𝑒
𝑄𝑆 < 𝜏𝑡

𝑄𝑆 < 𝜏𝑚 (5.60) 

 

where 𝜏𝑒
𝑄𝑆  and 𝜏𝑡

𝑄𝑆  are the changed forms of 𝜏𝑒  and 𝜏𝑡  after the 𝜀 -scaling. 

Furthermore, 𝜏𝑚 is not affected by the scaling. These limitations can be analyzed one 

by one as follows. 

The first case: 
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 ∆𝑡𝑄𝑆 = √𝛼∆𝑡 < 𝜏𝑒
𝑄𝑆 = 𝛼𝜏𝑒   ⟹   𝛼∆𝑡 > �

∆𝑡
𝜏𝑒
�
2

 (5.61) 

 

where, 𝜏𝑒
𝑄𝑆 reduces for the very high conductive objects. This strongly limits the QS-

FDTD unit time step. Therefore, the transient charge calculation using the QS-FDTD 

method for the high conductive objects is not feasible. 

The second and third cases have same limitation: 

 

 𝜏𝑒
𝑄𝑆 < 𝜏𝑡

𝑄𝑆   ⟹   𝛼𝜏𝑒 < �𝛼𝜏𝑒𝜏𝑚   ⟹   𝛼 = 𝛼𝜏 <
𝜏𝑚
𝜏𝑒

 (5.62) 

   

 𝜏𝑡
𝑄𝑆 < 𝜏𝑚   ⟹   �𝛼𝜏𝑒𝜏𝑚 < 𝜏𝑚   ⟹   𝛼 = 𝛼𝜏 <

𝜏𝑚
𝜏𝑒

 (5.63) 

   

iv) 𝛿 , 𝑍  and Rescaling: The skin depth can be approximated as 

𝛿 = 1 𝑘𝑟𝑒𝑎𝑙 ≅ (2 𝜔𝜎𝜇⁄ )1 2⁄⁄ . Therefore, 𝛿 is weakly affected by the 𝜀-scaling. The 

wave impedance is affected by the 𝜀-scaling 

 

 𝑍𝑄𝑆 =
|𝐸|𝑄𝑆

|𝐻|𝑄𝑆 = �
𝜇

𝛼𝜀 + 𝑗 𝜎𝜔
;     𝑍 = �

𝜇

𝜀 + 𝑗 𝜎𝜔
 (5.64) 

 

where 𝑍𝑄𝑆  is the scaled and 𝑍  is the unscaled wave impedance. Under the MQS 

condition, they can be approximated as 

 

 𝑍 = �
𝜇
𝜀 �

1

1 + 𝑗 𝜎𝜔𝜀
≅ 𝑍0�

1

𝑗 𝜎𝜔𝜀
 (5.65) 

   

and 

 

 𝑍𝑄𝑆 = 𝑍0�
1

𝛼 + 𝑗 𝜎𝜔𝜀
= 𝑍0�

1

𝑗 𝜎𝜔𝜀
�

1

1 + 𝛼𝜔𝜀𝑗𝜎
 (5.66) 
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where 𝑍0  is the wave impedance in the free space. Under the MQS condition, 

|𝛼𝜔𝜀 𝑗𝜎⁄ | ≪ 1  is true. Using the generalized binomial expansion, 𝑍𝑄𝑆  can be 

approximated as 

 

 𝑍𝑄𝑆 = 𝑍�
1

1 + 𝛼 𝜔𝜀𝑗𝜎
≅ 𝑍

1

1 + 1
2𝛼

𝜔𝜀
𝑗𝜎

=
𝑍
𝛼′

 (5.67) 

 

where 𝛼′ is the rescaling factor between 𝑍𝑄𝑆 and 𝑍. The rescaling factor depends on 

the problem type. If the source is an electric field type, the magnetic field must be 

scaled up by |𝛼′|. Therefore, the magnetic field must be rescaled by |𝛼′|. If the 

source is the magnetic field type, the electric field must be scaled up by |𝛼′| . 

Therefore, the electric field must be rescaled by |𝛼′|. 

 

v) Numerical Stability and Dispersion: The QS-FDTD stability criterion is the same 

as the classical FDTD method below 

 

 
𝑐𝑄𝑆∆𝑡𝑄𝑆

∆𝑥𝑄𝑆
≤ 1  ⟹   ∆𝑡𝑄𝑆 ≤

∆𝑥𝑄𝑆

𝑐𝑄𝑆
= √𝛼

∆𝑥
𝑐0

≤ √𝛼∆𝑡. (5.68) 

 

Nyquist sampling limitation is also important factor in the QS-FDTD method. 

∆𝑡 must be smaller than the Nyquist unit time step ∆𝑡𝑁 

 

 ∆𝑡 ≤ ∆𝑡𝑁 =
1

2𝑓𝑚𝑎𝑥
 (5.69) 

 

where 𝑓𝑚𝑎𝑥 is the maximum frequency value. After the scaling, ∆𝑡 becomes ∆𝑡𝑄𝑆 =

√𝛼∆𝑡, and the Nyquist criterion must be again satisfied as 

 

 ∆𝑡𝑄𝑆 = √𝛼∆𝑡 ≤ ∆𝑡𝑁 =
1

2𝑓𝑚𝑎𝑥
  ⟹   𝛼𝑁 ≤ �

1
2𝑓𝑚𝑎𝑥∆𝑡

�
2

. (5.70) 

 

To choose the proper value of 𝛼 under all these considerations, a flowchart is 

developed in Figure 5.5.  
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Figure 5.5: The flowchart for the selection of the scaling factor. 

 

In Table 5.2, it is also shown how the scaling affects these parameters. 

 

Table 5.2: Effect of the scaling factor on the critical parameters. 
 

Parameters Effect of the 𝜺-scaling 

𝑘 = �𝜔2𝜀𝜇 + 𝑗𝜔𝜇𝜎 Weakly affected 

𝑍 = �𝜇 �𝜀 + 𝑗(𝜎 𝜔⁄ )�⁄  
Weakly affected 

𝑐 = 1 �𝜀𝜇⁄  Reduced 

𝛿 = 1 𝑘𝑟𝑒𝑎𝑙⁄  Weakly affected 

𝜏𝑒 = 𝜀 𝜎⁄  Increased 

𝜏𝑡 = 𝐿�𝜀𝜇 Increased 

𝜏𝑚 = 𝜇𝜎𝐿2 Not affected 

∇ ∙ 𝐸(𝑟, 𝑡) = 𝜌 𝜀⁄  Affected 
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5.8. Validation of the QS-FDTD Method 
 

5.8.1. Pattern Calculation of a Magnetic Dipole 
 

In the electromagnetic induction problems, the loop antennas are generally 

used as a sensor. In this study, instead of the loop antenna, its equivalent magnetic 

dipole model is used for simplicity. This equivalence for an infinitesimal magnetic 

dipole of length 𝑙 and spatial magnetic current 𝐼𝑚 can be shown as 

 

 𝐼𝑚𝑙 = 𝑗𝑆𝜔𝜇𝐼0 (5.71) 

   

where 𝑆 and 𝐼0 are the area and current of the loop, respectively [Balanis, 2005]. 

Analytical solution of an infinitesimal magnetic dipole is given in the near field 

region (𝑘𝑟 ≪ 1) as 

 

𝐻𝑟 ≅
𝐼𝑚𝑙 cos 𝜃

2𝜋𝜂𝑟2
�1 +

1
𝑗𝑘𝑟

� 𝑒−𝑗𝑘𝑟 

 
𝐻𝜃 ≅ 𝑗

𝑘𝐼𝑚𝑙 sin𝜃 𝑒−𝑗𝑘𝑟

4𝜋𝜂𝑟
�1 +

1
𝑗𝑘𝑟

−
1

(𝑘𝑟)2� 𝑒
−𝑗𝑘𝑟 

𝐻𝜙 = 0 

 (5.72) 

𝐸𝑟 = 0  

𝐸𝜃 = 0  

𝐸𝜙 ≅ −𝑗
𝑘𝐼𝑚𝑙 sin 𝜃

4𝜋𝑟
�1 +

1
𝑗𝑘𝑟

� 𝑒−𝑗𝑘𝑟  

 

The near field patterns of the magnetic and electric field components are 

calculated in the Cartesian coordinates using the QS-FDTD method and validated 

with the analytical solution [Özakın and Aksoy, 2017]. In Figure 5.6 and Figure 5.7 

the three dimensional patterns of each field components are shown for the analytical 

solution and QS-FDTD solution, respectively. A good agreement is observed 

between the QS-FDTD and analytical solutions. 
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Figure 5.6: The analytical near field pattern of the magnetic dipole. 

 

 
 

Figure 5.7: The numerical near field pattern of the magnetic dipole. 
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5.8.2. I/Q Signature Calculation 
 

To validate the QS-FDTD method, Wait’s analytical solution of scattered fields 

from a high conducting sphere located in a poorly conducting medium is used with a 

homogeneous magnetic field excitation [Wait, 1951]. The Phase (𝐼) and Quadrature 

(𝑄) component of the scattered field are calculated in the frequency domain. In the 

Wait’s solution the displacement currents are neglected in the sphere region but they 

are kept in the QS-FDTD solution. The analytical 𝐼 and 𝑄 values are given as 

 

 𝐼 + 𝑗𝑄 =
1
𝛽2

+
1
3
−

cosh𝛽
𝛽 sinh𝛽

 (5.73) 

   

and 

 

 𝛽 = �𝑗𝜎1𝜇1𝜔 − 𝜀1𝜇1𝜔2 (5.74) 

   

where 𝜀1 = 𝜀0, 𝜇1 = 𝜇0 and 𝜎1 = 106 S/m are the dielectric permittivity, magnetic 

permeability and conductivity of the sphere, respectively. The radius of the sphere is 

taken as 1 m. 

In Figure 5.8, it is clearly seen that there is a good agreement between the 

Wait’s analytical solution and the QS-FDTD solution at the low and medium 

frequencies. There is a small deflection for 𝐼 component at the higher frequencies. It 

is thought that there can be many reasons of this deflection; negligence of the 

displacement currents in the sphere region or exact homogeneous wave excitation in 

analytical solution. 
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Figure 5.8: The I/Q signature of the conducting sphere. 
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6. NUMERICAL EXAMPLE 
 

Time signatures of a buried cubic metallic object and a buried cubic air gap are 

investigated for different positions of the antenna and object. The scattered fields are 

calculated by subtraction of the incident fields from the total fields. The magnetic 

dipole model is used for excitation. 

 

 
 

Figure 6.1: The 3D problem space. 

 

The geometry of the problem is shown in Figure 6.1. Here, 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are 

the dimensions of the problem space on the directions of 𝑥, 𝑦 and 𝑧, respectively. ℎ 

shows the height of the source, 𝑑𝑝 is the depth of the soil and 𝑑𝑐 is the depth of the 

cube. The magnetic dipole on the 𝑧 direction is used as the excitation source. All the 

geometrical and physical parameters of this problem are listed in Table 6.1. The 

applied current pulse waveform and its frequency spectrum are shown in Figure 6.2. 

The bandwidth of the pulse signal is about 10 kHz. In the FDTD solution, to a strong 

numerical dispersion is observed in the transient part of the wideband response of the 

source signal. To solve this problem, an advanced adaptive filter of Butterworth type 

is used. 
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Figure 6.2: The applied current pulse waveform and its frequency spectrum. 

 

Table 6.1: The geometrical and physical parameters used in the QS-FDTD solution. 
 

Parameter Value Unit Definition 
𝐿𝑥 1.40 m Length on the direction of 𝑥 

𝐿𝑦 0.30 m Length on the direction of 𝑦 

𝐿𝑧 0.75 m Length on the direction of 𝑧 

𝑑𝑠 0.50 m Depth of the soil 

∆𝑥 0.01 m Unit cell size on the direction of 𝑥 

∆𝑦 0.01 m Unit cell size on the direction of 𝑦 

∆𝑧 0.01 m Unit cell size on the direction of 𝑧 

𝑁𝑥 140 - Number of cells on the direction of 𝑥 

𝑁𝑦 30 - Number of cells on the direction of 𝑦 

𝑁𝑧 75 - Number of cells on the direction of 𝑧 

𝛼 5 × 108 - QS-FDTD scaling factor 

𝜀0 10−9 (36𝜋)⁄  F m⁄  Dielectric permittivity in the free space 

𝜇0 4𝜋 × 10−7 H m⁄  Magnetic permeability in the free space 
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Table 6.1: Continuation. 
 

𝜀𝑎𝑖𝑟
𝑄𝑆  𝛼 × 𝜀0 F m⁄  Scaled dielectric permittivity of the air 

𝜇𝑎𝑖𝑟 𝜇0 H m⁄  Magnetic permeability of the air 

𝜎𝑎𝑖𝑟 5.56 × 10−3 S m⁄  Conductivity of the air 

𝜀𝑠𝑜𝑖𝑙
𝑄𝑆  𝛼 × 1.5 × 𝜀0 F m⁄  Scaled dielectric permittivity of the soil 

𝜇𝑠𝑜𝑖𝑙 𝜇0 H m⁄  Magnetic permeability of the soil 

𝜎𝑠𝑜𝑖𝑙 8.33 × 10−3 S m⁄  Conductivity of the soil 

𝜀𝑐𝑢𝑏𝑒
𝑄𝑆  𝛼 × 2.5 × 𝜀0 F m⁄  Scaled dielectric permittivity of the cube 

𝜇𝑐𝑢𝑏𝑒 𝜇0 H m⁄  Magnetic permeability of the cube 

𝜎𝑐𝑢𝑏𝑒 1 × 106 S m⁄  Conductivity of the cube 

∆𝑡𝑄𝑆 4.3053 × 10−10 sn QS-FDTD unit time step 

𝑇 696824 - Total number of iteration 

 

6.1. Buried Metal Cube 
 

The effects of the height of the source ℎ  and depth of the cube 𝑑𝑐  are 

investigated for the buried metal cube. The side length of the cube is set to 0.1 m and 

located at the middle of the 𝑥 axis. The calculations are made for five times with five 

different locations of the source on the 𝑥 axis (1, 2, 3, 4 and 5 locations in Figure 

6.1). The time domain data is collected at the source location. 

The effects of the antenna height and location; the object depth, size, 

orientation, shape and material type can be analyzed by decay curve and amplitude 

of the voltage response. In this work, the voltage responses are extracted at the 

different antenna heights and horizontal locations and different object depths for air 

filled and aluminum cubic objects. 

 

6.1.1. Effect of the Source Height 
 

In Figure 6.3, the magnetic field strength and induced voltage in the time 

domain are shown at ℎ = 10 cm and 𝑑𝑐 = 20 cm for location 3. The voltage value is 
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obtained by differentiating the magnetic field strength. The voltage response is used 

for the analysis. 

 

 
 

Figure 6.3: The time domain scattered magnetic field (𝐻𝑧) and voltage response. 

 

Two calculations are made at the two heights of the source ℎ = 10 cm and 

20 cm for the fixed object depth 𝑑𝑐 = 20 cm. The source located at location 3 on the 

𝑥 axis. Figure 6.4 shows that the source height affects only the amplitude of the 

voltage response, not the decay time. The dispersion caused by the pulse type signal 

is stronger for sources located at the higher height. Therefore, it is difficult to filter 

raw data for obtaining the clear response. 
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a) 

 

 
 

b) 
 

Figure 6.4: The time domain voltage responses for the metal cube at a) ℎ = 10 cm 
and b) ℎ = 20 cm. 
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6.1.2. Effect of the Object Depth 
 

Three calculations are performed at the three depths of the object 𝑑𝑐 = 10 cm, 

20 cm  and 30 cm  for the fixed source height ℎ = 10 cm . The source located at 

location 3 on the 𝑥  axis. Figure 6.5 shows that the object depth affects only the 

amplitude of the voltage response, not the decay time. The numerical dispersion 

caused by the pulse type signal is stronger for the objects buried deeper. Therefore, it 

is difficult to filter for obtaining the clear response. 

 

 
 

a) 

Figure 6.5: The time domain voltage responses for the buried metal cube at a) 
𝑑𝑐 = 10 cm, b) 𝑑𝑐 = 20 cm and c) 𝑑𝑐 = 30 cm. 
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b) 

 

 
 

c) 
 

Figure 6.5: Continuation. 
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6.1.3. Effect of the Horizontal Source Location 
 

The five calculations are made at the five locations of the source on the 𝑥 axis. 

The source height ℎ and object depth 𝑑𝑐 are 10 cm, both. Figure 6.6 shows that the 

horizontal location of the source affects only the amplitude of the voltage response, 

not the decay time. The numerical dispersion caused by the pulse type signal is 

stronger for the further locations of the sources from the object. It is also seen that 

location 1, 5 and location 2, 4 have the same results because of the symmetry of the 

problem geometry. Therefore, it is sufficient to calculate the response only at 

location 1 and location 2. 

 

 
 

a) 

Figure 6.6: The time domain voltage responses for the metal cube at the five 
horizontal locations. 
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b) 

 

 
 

c) 

Figure 6.6: Continuation. 
 

58 



 
 

d) 

 

 
 

e) 
 

Figure 6.6: Continuation. 
 

 

59 



6.2. Buried Air Cube 
 

The effects of the source height (ℎ) and the depth of the air filled cube (𝑑𝑐) are 

investigated. The side length of the air cube is 0.1 m and located at the middle of the 

𝑥 axis. The calculations are made for the five times at five locations of the source on 

the 𝑥  axis (1 , 2 ,  3 , 4  and 5  locations in Figure 6.1). The time domain data is 

collected at the same locations. 

 

6.2.1. Effect of the Source Height 
 

In Figure 6.7, the magnetic field strength and voltage in the time domain at 

location 3 are shown for ℎ = 10 cm and 𝑑𝑐 = 20 cm. The voltage data is obtained 

by differentiating the magnetic field strength. As seen in Figure 6.7, the very small 

induced voltage response is obtained from the buried air cube. This makes difficult to 

analyze its detection. 

 

 
 

Figure 6.7: The time domain scattered magnetic field (𝐻𝑧) and voltage response. 

 

The two calculations are made at the two heights of the source ℎ = 10 cm and 

20 cm for the fixed depth of the buried air cube 𝑑𝑐 = 10 cm. The source located at 
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location 3  on the 𝑥  axis. Figure 6.8 shows that the source height affects only 

amplitude of the voltage response, not the decay time. 

 

 
 

a) 

 

 
 

b) 
 

Figure 6.8: The time domain voltage response of the buried air cube at a) ℎ = 10 cm 
and b) ℎ = 20 cm. 
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6.2.2. Effect of the Depth for the Air Cube 
 

Three calculations are made at the three depths for the buried air gap 𝑑𝑐 =

10 cm, 20 cm and 30 cm with the fixed height of the source ℎ = 10 cm. The source 

is located at location 3 on the 𝑥 axis. Figure 6.9 shows that the depth of the air cube 

affects only the amplitude of the voltage response, not the decay time. The numerical 

dispersion caused by the pulse type signal is stronger for the deeper buried air cube. 

Therefore, it is very difficult to filter for obtaining the clear response. 

 

 
 

a) 

Figure 6.9: The time domain voltage responses for the buried air cube at a) 𝑑𝑐 =
10 cm, b) 𝑑𝑐 = 20 cm and c) 𝑑𝑐 = 30 cm. 
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b) 

 

 
 

c) 
 

Figure 6.9: Continuation. 
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6.2.3. Effect of the Horizontal Source Location 
 

Five calculations are made at the five locations of the source on the 𝑥 axis. The 

source height ℎ and depth of the air cube 𝑑𝑐 are 10 cm, both. Figure 6.10 shows that 

the horizontal location of the source affects only the amplitude of the voltage 

response, not the decay time. The numerical dispersion caused by the pulse type 

signal is stronger for the further locations of the sources from the buried air cube. It 

is also seen that location 1, 5 and location 2, 4 have the same results because of the 

symmetry of the problem geometry. Therefore, it is sufficient to calculate the 

response only at location 1 and location 2. 

 

 
 

a) 

Figure 6.10: The time domain voltage responses for the buried air cube at the five 
horizontal locations. 
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b) 

 

 
 

c) 

Figure 6.10: Continuation. 
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d) 

 

 
 

e) 
 

Figure 6.10: Continuation. 
 

66 



6.3. Comparisons of the Results for the Metal and Air 
Cubes 
 

The results for the buried metal and air cube are compared for the three 

different scenarios. In Figure 6.11.a, the normalized values of the time domain 

voltage responses for the antenna height ℎ = 10 cm  and the object depth 𝑑𝑐 =

10 cm are shown. The source located at location 3 on the 𝑥 axis. In Figure 6.11.b, 

the normalized values of time domain voltage responses for the antenna height 

ℎ = 10 cm  and the object depth 𝑑𝑐 = 20 cm  are shown. The source located at 

location 3 on the 𝑥  axis. In Figure 6.11.c, the normalized values of time domain 

voltage responses for the antenna height ℎ = 10 cm  and the object depth 𝑑𝑐 =

10 cm are shown. The source located at location 1 on the 𝑥 axis. 

These results show that the time decay curves are significantly different for the 

buried metal and air cube. The time decay curves for the air cube have oscillations 

and the amplitude values of the voltage responses are extremely low for detection. 

These situations make complicated the analysis for the buried air cube. On the other 

hand, the time decay curves for the metal cube are smooth and its amplitude values 

are in measurable levels. 

 

 
 

a) 
 

Figure 6.11: The comparisons of the time domain voltage responses of the buried 
metal and air cube for the three different scenarios. 
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b) 

 

 
 

c) 
 

Figure 6.11: Continuation. 
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7. DISCUSSIONS AND FUTURE WORKS 
 

The QS-FDTD simulation of the pulse induction metal detector is performed in 

the three dimensional Cartesian coordinates. A magnetic dipole is used as the 

transmitter antenna. The monostatic configuration is set for the transmitter and 

receiver antenna placements. The time signatures are obtained for the different 

scenarios. Therefore, the fundamental knowledge is obtained for the detection and 

classification of the buried objects. 

The effects of the buried object depth, the antenna height and horizontal 

antenna location on the time signatures were investigated for the buried metal and air 

cubes. The results show the time decay curves of for the buried metal and air cubes 

are markedly differed from each other. Therefore, classification for different material 

types is possible due to time decay curves. It was also clearly observed that the 

object depth, the antenna height and horizontal antenna location simply affect the 

amplitude of the received signal. It can also be concluded that the detection and 

discrimination of the buried air cube very difficult. This is because of its extremely 

low voltage response. 

There are also potential future works to be investigated: 

 

− Time signatures of the different soils, 

− Effects of the object shape, the material type, the object orientation, the source 

type etc., 

− Time signatures of buried magnetic objects, 

− Ground compensation possibilities, 

− Effects of magnetic dispersive soils on the received signal. 
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