
T.C.
SÜLEYMAN DEMİREL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

NEW GLOBAL OPTIMIZATION TECHNIQUE BY USING
AUXILIARY FUNCTION METHOD IN DIRECTIONAL SEARCH

WITH COMPUTER APPLICATIONS

Shehab Ahmed Ibrahem IBRAHEM

Supervisor
Prof. Dr. Ahmet SAHINER

THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF MATHEMATICS

ISPARTA - 2020

© 2020 [Shehab Ahmed Ibrahem IBRAHEM]

TABLE OF CONTENTS

Page
TABLE OF CONTENTS... i
ABSTRACT ... ii
ÖZET .. iii
ACKNOWLEDGMENTS... iv
LIST OF FIGURES... v
LIST OF TABLES ... vi
LIST OF SYMBOLS AND ABBREVIATION.. vii
1. INTRODUCTION... 1

1.1. Global Optimization Formula.. 2
1.2. Global Optimization Classification.. 3
1.3. Objective Function Form... 4
1.4. Various Methods for Solving Global Optimization Problems....................... 7

1.4.1. Stochastic methods ... 7
1.4.2. Heuristic methods ... 8
1.4.3. Deterministic methods... 8

1.5. Thesis Overview ... 10
2. PRELIMINARIES AND TERMINOLOGIES... 12
3. NEW SMOOTHING TECHNIQUE WITH APPLICATION IN GLOBAL

OPTIMIZATION... 14
3.1. Global Smoothing Technique .. 14
3.2. Global Optimization Technique.. 18
3.3. Algorithm .. 22

4. GLOBAL OPTIMIZATION TECHNIQUE IN A DIRECTIONAL SEARCH 23
4.1. Auxiliary Function Method in Global Optimization... 23
4.2. One-dimensional Minimization Problem .. 26
4.3. Algorithm .. 28

5. INCREASING THE EFFECTS OF FILLED FUNCTION IN GLOBAL
OPTIMIZATION... 30
5.1. Overview of the Filled Function Method .. 31

5.1.1. Filled Function Methods with Two-parameter... 31
5.1.2. Filled Function Methods with One-parameter ... 32

5.2. New Filled Function and Its Properties.. 34
5.3. Algorithm .. 37

6. APPLICATION FOR GLOBAL OPTIMIZATION ALGORITHMS 39
6.1. Test Problems... 39
6.2. Applications on Test problems .. 46

7. TOTAL VARIATION APPLICATION IN IMAGE DENOISING 56
7.1. Theoretical part ... 57
7.2. Smoothed TV-function for Denoising .. 58
7.3. Algorithm .. 59

8. Conclusion.. 66
REFERENCES.. 67
CURRICULUM VITAE .. 75
ÖZGEÇMİŞ.. 77

i

ABSTRACT

Doctor of Philosophy

NEW GLOBAL OPTIMIZATION TECHNIQUE BY USING AUXILIARY
FUNCTION METHOD IN DIRECTIONAL SEARCH WITH COMPUTER

APPLICATIONS

Shehab Ahmed Ibrahem IBRAHEM

Süleyman Demirel University
Graduate School of Natural and Applied Sciences

Department of Mathematics

Supervisor: Prof. Dr. Ahmet SAHINER

Global optimization has been applied to a wide range of problems related to science
and engineering design. Although numerous global optimization techniques have been
developed and studied for decades, the results some times are not satisfactory when used
in design or complex systems, so there is still an area for developing these techniques
to be more accurate, fast, and easy to implement.
The difficult issues for global optimization are how to escape from the current local
minimizer and find a lower minimizer of the objective function, then how to evaluate the
convergence to the global minimizer and determine the stopping criteria. The purpose
of this thesis is to solve and avoid the above difficulties by developing and demonstrate
deterministic methods for unconstrained global optimization problems.
The main part of this thesis contains three Sections 3, 4, and 5. Section 3, a new global
smoothing approximation technique is proposed for non-smooth functions and use the
same technique to construct a smoothing auxiliary function for solving unconstrained
global optimization problems. Section 4 presents a new auxiliary function to solve
global optimization problems by converting a multi-dimensional problem into a one-
dimensional problem and decreasing the number of local minimizers and then finding
the global minimizer of the one-dimensional problem, then finding the global minimizer
of the multi-dimensional function by using a new algorithm. Section 5 a new filled
function is proposed for finding a better minimizer of smooth unconstrained global
optimizations and the proposed filled function is continuously differentiable and contains
two parameters.
The applications part of this thesis includes two Sections, Section 6 presents results to a
set of common test problems for the proposed algorithms in Sections 3, 4 and 5. Image
processing is done as a real-life problem, the problem is solved by using the algorithm
introduced in Section 3, and numerical results are shown in Section 7.

Keywords: Global optimization, Smoothing technique, Auxiliary function, Directional
search.

2020, 78 pages

ii

ÖZET

Doktora Tezi

YARDIMCI FONKSIYON YÖNTEMINI YÖNLÜ ARAMA ILE
KULLANARAK YENI BIR GLOBAL OPTIMIZASYON TEKNIĞI VE

BILGISAYAR UYGULAMALARI

Shehab Ahmed Ibrahem IBRAHEM

Süleyman Demirel Üniversitesi
Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı

Danışman: Prof. Dr. Ahmet ŞAHİNER

Global optimizasyon, bilim ve mühendislik ile ilgili çok çeşitli problemlere uygulan-
mıştır. Çok sayıda küresel optimizasyon tekniği on yıllardır incelenmiş ve geliştirilmiş
olmasına rağmen bu teknikler karmaşık sistemlerde kullanıldığında bazen tatmin edici
sonuçlar sunabilmiş değildir. Bu nedenle bu tekniklerden daha doğru sonuçlar elde
edilmesi, hızlı ve kolay uygulanabilmesi için daha da geliştirilmesi gerekmektedir.
Global optimizasyonda zor olan konular; mevcut yerel minimumlaştırıcıdan nasıl kurtu-
lunacağı, objektif fonksiyonun daha düşük bir minimumlaştırıcının nasıl bulunacağı,
daha sonra küresel minimumlaştırıcıya yakınlaşmanın nasıl değerlendirileceği ve dur-
durma kriterlerinin nasıl belirleneceği şeklindedir. Bu tezin amacı, kısıtsız küresel
optimizasyon problemleri için yukarıdaki zorlukları aşacak şekilde deterministik yön-
temler geliştirmektir.
Bu tezin ilk kısmı üç bölüm 3, 4 ve 5 içerir. Bölüm 3’te, düzgün olmayan fonksiyonlar
için yeni bir global düzügnleştirme tekniği önerilmektedir. Aynı teknik, kısıtlanmamış
global optimizasyon problemlerini çözmek için geliştirilen yardımcı fonksiyonu oluştur-
mak için kullanılmaktadır. Bölüm 4’te, çok boyutlu problemi tek boyutlu bir probleme
dönüştürerek ve yerel minimumlaştırıcı sayısını azaltarak yeni bir yardımcı fonksiyon
metodu geliştirilmiştir. Tek boyuta indirgenen problemin global minimumlaştırıcısı
bulunup ardından çok boyutlu probleme lokal minimum bulma algoritması yardımıyla
orjinal problemin global minimumlaştırıcısı bulunur. Bölüm 5’te, düzgün kısıtsız global
optimizasyon problemlerinin daha alt bir minimumlaşrıcısını bulmak için yeni bir doldu-
rulmuş fonksiyon önerilmiştir. Önerilen doldurulmuş fonksiyon türevlenebilir yapıdadır
ve iki parametre içerir.
Bu tezin uygulama kısmı iki bölümden oluşmaktadır. Bölüm 6’da bölümler 3, 4 ve
5’teki önerilen algoritmaları bir dizi test problemine uygulanmasından elde edilen
sonuçlar sunulmuştur. Bölüm 7’de, görüntü işleme problemi bir gerçek yaşam problemi
olarak ele alınmış ve 3. bölümde tanıtılan algoritma bu probleme uygulanarak nümerik
sonuçlar sunulmuştur.

Anahtar Kelimeler: Global optimizasyon, Düzgünleştirme tekniği, Yardımcı
fonksiyon, Yönlü arama

2020, 78 sayfa

iii

ACKNOWLEDGMENTS

I thank almighty Allah for giving me strength and determination to do my dissertation.
Now I would like to express my deep thanks and appreciation to my advisor Prof. Dr.
Ahmet Sahiner. I have had the wonderful opportunity to interact with him for years
and he is an exceptional mentor and professor with excellent expertise. I thank him for
all his encouragement, commitment, patience, and support pending my doctoral study.
It was also a pleasure to have had Dr. Nurullah Yilmaz, I would like to thank him for
introducing me to key researchers relevant to my area of interest, and for the various
advice and bright ideas provided during my study. Thank you Dr. Gaber Faisel and Dr.
Dumitru Baleanu, members of my committee, for sharing their insights and inspiring
me through these years; their support has been absolutely invaluable.
I am very happy to be one of the students at the wonderful University of Süleyman
Demirel. I sincerely thank the entire faculty and staff members in the mathematics
department for all they’ve done to help me, it has been a pleasure to share my life with
these wonderful people.
I am very grateful to my university (Kirkuk University), which gave me the scholarship
to cover my educational expenses. Many thanks to all my wonderful friends here in
Turkey or in my country (Iraq) for their endless support and encouragement. Thank you
to my friend Idris A. Abdulhamid for sharing his knowledge with me.
I am very thankful to my family who has given me the strength to continue through all
this time with their enormous love and support. Thank you for never letting me fall.

Shehab Ahmed Ibrahem IBRAHEM
ISPARTA, 2020

iv

LIST OF FIGURES

Page
Figure 1.1 Continuous and discontinuous functions... 5
Figure 1.2 Convex and non-convex functions ... 6
Figure 1.3 Smooth and non-smooth functions .. 11
Figure 3.1 The graph of ω̃σ (t) (green and solid) and ω(t) (black and dot)

a,b,c and d with σ = 0.8,0.6,0.4,0.2 respectively. 16
Figure 3.2 The graph of ϕ(x) (blue and solid) and ϕ̃σ (x) (green and dot) a

and b with σ = 0.4,0.8 respectively. ... 17
Figure 3.3 (a) The graph of ϕ(x,y), (b) The graph of ϕ̃σ (x,y), (c) The

contour graph of ϕ(x,y) and (d) The contour graph of ϕ̃σ (x,y). 18
Figure 3.4 The graph of f (x) and φ(x,x∗k) before smoothing it, where x∗k is

the current minimizer.. 19
Figure 3.5 After smoothing, the graph of f (x) and φ̃σ ,µ(x,x∗k), where x∗k is

the current minimizer.. 21
Figure 4.1 The one-dimensional problem... 28
Figure 5.1 Some different values of the parameter µ and their effect on the

function F(x,x∗k). .. 35
Figure 5.2 The shape of the functions F(x,x∗k) and f (x) in two dimensions. .. 35
Figure 7.1 The graph of φ(u) (black and solid) and φ̃σ (u) (green and dashed)

with deferent σ .. 58
Figure 7.2 Test images (a) Cameraman, (b) Barbara, (c) Lena and (d) Pepper 60
Figure 7.3 Smoothed TV-function gradient. .. 61
Figure 7.4 The denoising experiment with Cameraman image. (a) Noisy

image. (b) TVF. (c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV. 62
Figure 7.5 The denoising experiment with Barbara image. (a) Noisy image.

(b) TVF. (c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV. 63
Figure 7.6 The denoising experiment with Lena image. (a) Noisy image. (b)

TVF. (c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV. 64
Figure 7.7 The denoising experiment with Peppers image. (a) Noisy image.

(b) TVF. (c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV. 65

v

LIST OF TABLES

Page
Table 6.1 The list of test problems ... 47
Table 6.2 The results of NSA algorithm on problems 1-49 49
Table 6.3 The results of DSA algorithm on problems 1-49 50
Table 6.4 The results of FSA algorithm on problems 1-49....................................... 51
Table 6.5 Iteration, function evaluations and execution time for NSA, DSA,

and FSA algorithms. .. 52
Table 6.6 Comparison NSA algorithms with the algorithm in (Bagirov et al.

(2009)). ... 53
Table 6.7 Comparison DSA algorithms with the algorithm in (Wei et al.

(2014)) . .. 54
Table 6.8 Comparison FSA algorithms with the algorithm in (Sahiner et al.

(2019)). ... 55
Table 7.1 The PSNR value by various methods (unit: dB)....................................... 61

vi

LIST OF SYMBOLS AND ABBREVIATION

x∗k : k− th Local minimizer
x∗ : Global minimizer
xint : Start point
R : The real numbers
Rn : Euclidean n-space
f : The objective function f (x) with Rn→ R maps
D : Domain of the objective function f (x)
d : Direction
n : Dimension of f (x)
B∗k : The basin of x∗k
‖.‖ : Euclidean norm
∇ f (x) : The gradient of f (x)
σ ,β : Smoothing parameters
α,µ : Parameters

vii

1. INTRODUCTION

Optimization is a process to obtain optimal value (minimal or maximal) for a given

problem. Problems can vary from optimization problems with simple objective functions

to problems with complex objective functions that include various properties and

multiple equations. Optimization can be a local search (or global). Local search finds

the optimal value within the neighborhood set of a candidate solution while global

search references to locating the optimal value of a specific objective function in the

whole domain.

Many real-life problems have been formulated as global optimization problems. They

have been applied in many branches of science such as engineering (e. g., architecture,

bridge design, dam design, and rocket design), computer and information technology

(e.g., artificial intelligence, database design, image processing, and network design),

economics (e.g., business prediction and electronic commerce), agriculture (e. g., agri-

cultural production structure, and spatial distribution of agricultural crops), chemistry,

geography (e.g., weather and earthquake prediction), physics (e.g., nanotechnology, and

metal matrix composition), etc, or even in social life such as vacation planning.

Global optimization problems become more and more complicated from year to year

due to the increase in the number variables and the structure of the problems (non-

smoothness). The existence of many local minimizers of objective function makes global

optimization complicated. Furthermore, the major difficulties for global optimization

are listed bellow:

a- When finding a local minimizer with the help of any local minimization method,

and how to override the current local minimizer.

b- How to ignore the local minimizers of which their values are greater than the

value of current minimizer and find a lower minimizer of the objective function.

c- How to evaluate the convergence to the global minimizer and, determine the

stopping criteria.

Global optimization can not always guarantee to gain a global solution for a given set

of computational sources; therefore, approximations are vital. sure global optimization

algorithms cater to precise problems and this has caused a range of evolved global

optimization algorithms. commonly, the focal point of a global optimization algorithm

1

is to achieve a suitable result in a suitable amount of computational time; but, developing

new approaches to solve a selected problem is difficult, and other strategies may be

shown to be better. In recent years many sciences depend on global optimization to

solve many problems. Global optimization problems had existed since ancient times

with many sciences and these problems were ignored until the 1970s. There are many

reasons to ignore the global optimization problems before this date, perhaps one of

the reasons is that the theories and local optimization methods were not discovered

or ready at that time as well as the large computational complications inherent in

global optimization problems could be one of the other reasons. There were no proper

controls and instructions before the 1970s. After that date, the evolution that took

place in computer technologies made problems that had no solution in the past are

solvable nowadays. Since that time, the field of global optimization is in the growth

and expansion. This Section introduces general information for a global optimization

problem, problem properties, preliminaries, and pertinent global optimization methods

to solve the problem. Part 1.1 defines a formula of the global optimization problem.

Part 1.2 presents a classification of global optimization. Part 1.3 describes a formula

of the objective function. Part 1.4 discusses the various methods for solving global

optimization. Part 1.5 overview of dissertation.

1.1. Global Optimization Formula

Global optimization is a search process to locate a global minimizer of a function.

Generally, the formula of global optimization can be as the following:

(P) : min
x∈D

f (x) (1.1)

where f is referred to as the objective function of the problem and D⊂Rn is the feasible

domain of vectors x = (x1,x2, ...,xn) and which is subject to specific constraints. The

solution of problem (P) is to find the global minimizer value x∗, that means

f (x∗) = min
x∈D

f (x).

There are many new theories and algorithms that have been presented for solving

problem (P). In general, methods of global optimization can be classified into three

2

main classes: stochastic methods, heuristic methods and deterministic methods.

1.2. Global Optimization Classification

The global optimization problem is subject to two concepts to define it. These concepts

are the objective function f and the domain D (search area). The problem (P) is defined

as unconstrained global optimization if the whole domain D is as a search area to find

the global minimizer x∗, that means

f (x∗)≤ f (x),

for all x ∈ D. The problem (P) is defined as a constrained global optimization if the

minimization of the objective function subject to constraints. Generally, the formula of

these problems is

min
x∈Rn

f (x),

bound by gi(x) = 0, i ∈ A1

gi(x)≥ 0, i ∈ A2,

where f and functions gi(x) are twice continuously differentiable and the sets A1, A2

are finite. As previously, f is called the objective function, while

gi(x) = 0, i ∈ A1,

are equality constraints and

gi(x)≥ 0, i ∈ A2,

are inequality constraints. So, the set Dc which satisfies the above constraints is called

the feasible set, that is

Dc = {x/gi(x) = 0, i ∈ A1;gi(x)≥ 0, i ∈ A2}.

3

The function f : Dc→ R with the set Dc ⊂ Rn is known as a constrained global opti-

mization problem and it can be written as follows

min
x∈Dc

f (x).

In this thesis, we consider the problem (P) as an unconstrained global optimization

problem.

1.3. Objective Function Form

As mentioned before, a global optimization problem subjects to two concepts to define

it, search space(domain) and objective function. In general, the objective function can

be classified into four main parts based on the properties of function f as follows:

• Continuity

• Convexity

• Differentiability

• Smoothness

Continuity: An objective function f : D→R is called continuous at a vector x = c ∈D

if

lim
x→c

f (x) = f (c),

that means the objective function is called continuous if it is continuous at each point of

its domain. In other words, a function f (x) is continuous at a vector x = c if it satisfies

the following conditions

- f (c) is defined.

- limx→c f (x) exists.

- limx→c f (x) = f (c).

If any of the above conditions are not satisfied then we say f is discontinuous (see Fig.

1.1).

Convexity: An objective function f : D→ R is convex on a set D ⊂ Rn if for any

x1,x2 ∈ D and λ ∈ (0,1) then

f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2).

4

(a) Continuous (b) Discontinuous

Figure 1.1. Continuous and discontinuous functions

If this inequality does not hold, the function f is non-convex, as shown in Fig. 1.2. If

the objective function is convex, the local optimal point is also global optimal point,

therefore only one of the local methods is required to solve the problem. However, if the

objective function is non-convex, that means there are more than one local extrema, and

the search of the global optimal point needs the whole domain, thus the local methods

are not enough to find the global optimal point, in this case, the global methods are

needed to solve the problem.

Differentiability: The objective function f : D→ R is said to be differentiable at

a vector c ∈ D if its derivative exists at c. The gradient direction can be used to

determine information about the local minimizer, maximizer and stationary point in

D. This information about gradient can be used in optimization solutions and finding

the minimizer faster. There are many methods relied on the gradient to find a local

minimizer such as Newton’s method and gradient-descent. Furthermore, first and

second-order optimality conditions are results that give us some structural information

about the properties of optimal solutions. For example, if x∗k is a local minimizer of a

twice continuously differentiable function f : D→R then the first-order condition must

have

∇ f (x∗k) = 0.

The second-order condition explains that if x∗k ∈ D is a local minimizer of f , then

∇ f (x∗k) = 0 and

∇
2 f (x∗k)≥ 0,

that means the Hessian at x∗k is positive semi-definite. Some global optimization methods

use the gradient information of the objective function to find the local minimizer value.

5

(a) Convex

(b) non-convex

Figure 1.2. Convex and non-convex functions

These methods are called deterministic methods which are using the gradient to find the

local minimizer of the objective function and then the global minimizer value with the

help of the auxiliary function, which we will mention later in detail.

Smoothness: The objective function f : D⊂ Rn→ R is said to be a smooth function

if it is continuously differentiable at all points of domain D, and if it has continuous

derivatives in D up to a known limit k, then we say that this function is Dk smooth. If

k = 2, then the objective function is called a twice continuously differentiable, and that

is what we need in optimization problems. On the other hand, if the objective function

f is non-differentiable (no matter it is continuous or discontinuous) and then it is called

non-smooth. A simple example of a non-smooth function is the absolute value, which is

continuous at all domain points but is not differentiable. Fig. 1.3 shows the difference

between smoothness and non-smoothness for a set of functions.

In optimization problems, it is easy to find the local extremum when the objective

function is smooth and then to find the global optimal solution, but there is a real problem

6

when the objective function is a non-smooth no matter this function is discontinuous or

continuous. In this thesis, we introduce new smoothing techniques to make the objective

function and auxiliary function, if necessary, differentiable and smooth to be used in

global optimization.

In recent years, non-smooth functions have received considerable attention. Smooth-

ing studies try to make the objective function continuously differentiable before the

optimization process. The smoothing process focuses on finding the correct modi-

fications for f (x) that makes it simple and easy to minimize. In the approximation,

adjustable parameters are called smoothing parameters that provide the control. In

general, smoothing techniques can be classified into two main classes such as local

and global smoothing techniques. Smoothing techniques belonging to the first class

aim to smooth the objective function locally in a neighborhood of a point at which the

objective function is non differentiable (Bertsekas, 1975; Zang, 1980; Chen and Wan,

2015; Sahiner et al., 2018). Smoothing techniques belonging to the second class use the

whole domain to approximate the function f globally. However, many important studies

related to global smoothing technique have been published by (Xu, 2001; Xavier, 2010;

Xiao and Yu, 2010).

1.4. Various Methods for Solving Global Optimization Problems

In recent decades, global optimization problems have received more attention because

of their importance in many significant applications, therefore the variety of these

methods it easy for us to locate the global optimal value. These methods can generally

be divided into three groups which are stochastic, heuristic and deterministic.

1.4.1. Stochastic methods

Stochastic methods use probabilistic tools by generating many points randomly dis-

tributed over the feasible domain and use some local search methods from some of these

points to converge to the global value. These methods are quite simple, very efficient in

black box problems and robust with respect to the increasement of the dimension of

the problem but some of the stochastic methods can find only a local solution instead

of the global one. The very well-known stochastic approaches are Random search and

7

Adaptive search, Markovian algorithms, and etc. (Anderssen and Bloomfield, 1975;

Huyer and Neumaier, 1999; Zhigljavsky and Zilinskas, 2007; Schäffler, 2012). The

population algorithms included stochastic methods but we handle them in the heuristic

methods.

1.4.2. Heuristic methods

The heuristic methods are based on the simulation of the biological, physical or chemical

processes. These methods are easy applicable and they converge the solution rapidly.

However, they can give different results if they are run again. The very well-known

methods are Genetic algorithm (Storti et al., 2015), Simulated Annealing algorithm

(Suman and Kumar, 2006; Ekren and Ekren, 2010; Samora et al., 2016), Particle

Swarm Optimization (Poli et al., 2007; Kennedy, 2010) and Artificial Bee Colony

algorithm (Karaboga and Basturk, 2007; Akay and Karaboga, 2012). In recent years, the

hybridization of the heuristic global optimization algorithms has come into prominence

(Niknam et al., 2009; Mahi et al., 2015; Zheng et al., 2015; Garg, 2016; Liu et al., 2016).

1.4.3. Deterministic methods

In general, stochastic and heuristic methods are easy and fast in the application, but they

have no guarantees in obtaining the global optimal solution. Deterministic methods are

more effective and reliable, but they need a high cost of computation when compared

to the previous methods. Some methods that use deterministic strategy can be divided

into:

Branch and bound methods:- The main idea of these methods is to divide the feasible

region into several partitions and then dismiss some non-prospective partitions by

bounding the objective function at these partitions using predestined lower bounds.

Then, the search is in the subregions remaining and treated the same way by dividing

them into several smaller partitions based on the lower bounds. There are various

methods for evaluating the lower bounds of the objective functions grant different

branch and bonding methods. For instance, the primal-dual branch bound approaches

used to grant lower boundaries of primal-dual approaches, which was introduced by

(Floudas and Visweswaran, 1990, 1993; Androulakis et al., 1995; Adjiman et al., 1998),

8

whereas the interval branch and bound methods are used interval arithmetic instead,

which was presented by (Alefeld and Herzberger, 2012; Hansen and Walster, 2003;

Grimstad and Sandnes, 2016).

Auxiliary function methods:- These methods are also called the function modification

methods and include all methods that depend on some appropriate modifications of the

objective function to override from the current local minimizer to a better solution. In

general, the steps work of the auxiliary function can be described as follows:

1- (Initialization) Minimizing objective function by using a random point as a

starting point with the help of any local optimization method to find a local

minimizer of the objective function.

2- (Local search) Construct an auxiliary function based on the current objective

function minimizer, and use any point near this point to minimize the auxil-

iary function. Consequently, an auxiliary function minimizer is obtained. This

minimizer will lie in a basin of a good solution to the objective function.

3- (Global search) Use the minimizer of the auxiliary function obtained in step 2

as a starting point to minimize the objective function and find a better minimizer

of f .

Repeating steps 2 and 3 will definitely reduce the number of minimizers and find the

global minimizer of the objective function.

Auxiliary function methods are promising and important methods in global optimiza-

tion. These methods are developed according to deterministic search strategies by

constructing an auxiliary function to escape from the current local minimizer to better

one. Tunneling methods (Levy and Montalvo, 1985), filled function method(Ge and

Qin, 1987; Renpu, 1990; Liu, 2001), and global descent method (Wu et al., 2011) are

among these methods.

The first auxiliary function method was introduced by (Levy and Montalvo, 1985).

(Cetin et al., 1993) developed the tunneling algorithm to resolve constrained global op-

timization problems. However, many important studies related to tunneling algorithms

have been published in (Groenen and Heiser, 1996; Chowdhury et al., 2000; Xu et al.,

2015).

Among other methods, the filled function approach can be considered an effective

approach to solving multi-model global optimization problems, so it seems to have

9

several features over others, for example, finding a better local minimizer sequentially

compared to other methods is easier. The filled function method was first presented

(Ge and Qin, 1987; Renpu, 1990), and improved by (Xu et al., 2001; Wu et al., 2005,

2007). Many valuable studies have been presented in order to make the filled function

applicable for different type of problems such as non-smooth problems (Zhang et al.,

2009; Sahiner et al., 2012), constrained optimization problems (Wang et al., 2015),

system of nonlinear equations (Yuan et al., 2016b) and (Wei et al., 2014; Lin et al.,

2014). Recently, the next generation of filled function or auxiliary function approaches

have been developed (Yilmaz and Sahiner, 2017; Sahiner et al., 2017; Lin et al., 2018;

Liu et al., 2017; Sahiner and Ibrahem, 2019). In this thesis, we introduce some auxiliary

functions to solve multi-model for global optimization problems in different locations.

Moreover, there exists important methods depend on deterministic strategy such as

Covering methods (Jones et al., 1993), Space Filling Curve methods (Lera and Sergeyev,

2015; Ziadi et al., 2016) and other methods (Basso, 1982).

1.5. Thesis Overview

The rest of the thesis is arranged as follows. Section 2 provides some definitions and

assumptions regarding the (P) problem. Section 3 presents a new global smoothing tech-

nique for non-smooth functions and uses the same technique to construct a smoothing

auxiliary function for solving the problem (P). Section 4 describes a new algorithm to

solve the (P) problem by converting a multi-dimensional problem into one-dimensional

problem partitions and using an auxiliary function to reducing the minimizers number

and finding a global minimizer for each partition. Then use these partitions to find the

global minimizer of a multidimensional problem. Section 5 documents a new filled

function method with two parameters to solve the problem (P). This new proposal

is based on putting many stationary points in the lower basin. Section 6 summarizes

the results for algorithms in Sections 3, 4, and 5. Section 7 uses the method defined

in Section 3 to make TV-function differentiable, and then use it as an application for

image denoising. Finally, Section 8 introduces the conclusions.

10

(a) non-smooth(discontinuous and non-differentiable)

(b) non-smooth(continuous and non-differentiable)

(c) smooth(continuous and differentiable)

Figure 1.3. Smooth and non-smooth functions

11

2. PRELIMINARIES AND TERMINOLOGIES

Throughout the thesis, we need some definitions and assumptions of the problem (P)

defined in 1.1 as follows:

Assumption 2.1. D is closed bounded and box-shaped domain, D= [lb,ub] = {x : lb ≤

x≤ ub, lb,ub ∈Rn} and contains all the local minimizers of f , so we define the sets D1

and D2 as D1 = {x ∈ D| f (x)≥ f (x∗k),x 6= x∗k} and D2 = {x ∈ D| f (x)< f (x∗k)}.

Assumption 2.2. The number of different values of local minimizers of the function f

must be finite.

Assumption 2.3. f : D→ Rn is coercive, that means f (x)→+∞ as ‖x‖→+∞.

Definition 2.4. Let x ∈ D and ε > 0, the ball

Nε(x) = {y : ‖y− x‖< ε}

is called an ε−neighborhood of x.

Definition 2.5. A set D⊂ Rn is called bounded set if it can be contained within a ball

of finite radius.

Definition 2.6. A set D⊂ Rn is called compact set if it is closed and bounded.

Definition 2.7. Let D ⊂ Rn. A point x∗ ∈ D is said to be a global minimizer of

the objective function f if f (x∗) ≤ f (x) for all x ∈ D. If x∗k ∈ D and if there is a

neighborhood Nε(x∗k) of x∗k such that f (x∗k)≤ f (x) for all x ∈ Nε(x∗k) then x∗k is said to

be a local minimizer. In a similar way, if f (x∗k)< f (x) for all x ∈ Nε(x∗k)\ x∗k , then x∗k is

said to be a strict local minimizer.

Definition 2.8. : Suppose that x∗k is a local minimizer of f over D. A set B∗k ⊂D is said

to be a basin of f at the point x∗k if any local minimization approach starting from any

point in B∗k finds local minimizer x∗k .

12

Any local minimizer x∗k+1 of f is higher (or lower) than x∗k if f (x∗k+1)≥ f (x∗k), f (x∗k)≥

f (x∗k+1), then the basin B∗k+1 is said to be higher (lower) than B∗k .

Definition 2.9. Suppose that h : Rn→ R is a continuous function. We call the function

h̃ : Rn×R+→ R a smoothing function of h(x), if h̃(·,β) is continuously differentiable

in Rn for any constant β , and for any x ∈ Rn,

lim
z→x,β→0

h̃(z,β) = h(x).

Definition 2.10. The auxiliary function F(x,x∗k) is said to be a filled function of f (x)

at a local minimizer x∗k if the function F(x,x∗k) has the following properties:

• x∗k is a local maximizer of the function F(x,x∗k);

• F(x,x∗k) has no stationary points in the region D1 = {x∈D| f (x)≥ f (x∗k),x 6= x∗k};

• if x∗k is not a global minimizer of f , then the function F(x,x∗k) does have a

minimizer in the region D2 = {x| f (x)< f (x∗k),x ∈ D}.

13

3. NEW SMOOTHING TECHNIQUE WITH APPLICATION IN GLOBAL

OPTIMIZATION

The main idea in smoothing is to use smooth functions to approximate a non-smooth

objective function. The control is provided in the approximation by adjustable param-

eters, called smoothing parameters. In recent years, non-smooth functions have been

attracting significant attention. Smoothing studies aim to make the objective function

continuously differentiable prior to the optimization process. The smoothing methods

focus on finding appropriate modifications to smooth the objective function f and

creating a smoothing function without difficulties and minimizing it easily. Bertsekas

(Bertsekas, 1975) suggests a primary review of the smoothing methodologies. This

Section presents a new global smoothing technique for non-smooth functions and uses

the same technique to construct a smoothing auxiliary function to solve unconstrained

global optimization problems.

3.1. Global Smoothing Technique

The global smoothing technique is one of the smoothing techniques that use the whole

domain to make the objective function differentiable and smooth at points where it is

non-differentiable. Suppose that f and g are two continuously differentiable functions

on Rn, we define the following function ϕ(x) = max{ f (x),g(x)}. The function ϕ is

used in many fields of optimization problems.

First of all, we rewrite ϕ as

ϕ(x) =
1
2
[{ f (x)−g(x)}ω(t)+ f (x)+g(x)], (3.1)

where t = f (x)−g(x) and the function ω(t) : R→ R is given by

ω(t) =

 1, t ≥ 0,

−1, t < 0.

The function ω is obviously not smooth, and neither is the function ϕ . To consider a

smooth approximation ϕ̃ to ϕ , a smooth approximation ω̃ to ω is enough, we present

a new global smoothing technique that can be extended to a number of non-smooth

functions. In addition, any smoothing function ω̃σ (t) can be used if it satisfies the

14

following characteristics:

i. limt→∞ ω̃σ (t) = 1,

ii. limt→−∞ ω̃σ (t) =−1,

iii. ∀t ∈ R, ω̃ ′σ (t)> 0,

iv. ∀t ∈ (−∞,0), ω̃ ′′σ (t)< 0 and ∀t ∈ [0,∞), ω̃ ′′σ (t)≥ 0.

We consider the following smoothing function of our methodology

ω̃σ (t) =
2

1+ exp(−1
2σ

t)
−1, (3.2)

where t = f (x)−g(x) and σ > 0 is a smoothing parameter. Obviously,

lim
σ→0

ω̃σ (t) =

1 t > 0,

0 t = 0,

−1 t < 0.

(3.3)

Finally, we get the smoothing function version for the function ϕ(x) by using (3.2) as:

ϕ̃σ (x) =
1
2
[{ f (x)−g(x)}ω̃σ (t)+ f (x)+g(x)]. (3.4)

The parameter σ is used to squeeze the function ω̃σ (t), that means when σ → 0 the

function ω̃σ (t)→ω(t). The graph of the functions ω̃σ (t) and ω(t) with different values

of σ are displayed in figure 3.1.

Based on the above features of the function ω̃σ (t) we give the following result.

Lemma 3.1. Let ω̃σ (t) be a smoothing function of the function ω(t) and for any σ > 0

‖ω̃σ (t)−ω(t)‖L1 ≤
17
3

σ .

Proof. Since t ∈ (−∞,∞) then

‖ω̃σ (t)−ω(t)‖L1 =
∫

∞

−∞

|ω̃σ (t)−ω(t)|d(t)

=
∫ 0

−∞

|ω̃σ (t)− (−1)|d(t)+
∫

∞

0
|ω̃σ (t)−1|d(t)

= 4σ ln(2)+4σ ln(2)

≤ 17
3

σ .

15

(a) (b)

(c) (d)

Figure 3.1. The graph of ω̃σ (t) (green and solid) and ω(t) (black and dot) a,b,c and d
with σ = 0.8,0.6,0.4,0.2 respectively.

Theorem 3.2. Let f (x) and g(x) are continuously differentiable functions on Rn. The

deference between the functions ϕ(x) and ϕ̃σ (x) which are defined in 3.1 and 3.4 can

be calculated as follows

‖ϕ̃σ (x)−ϕ(x)‖L1 ≤
20
3

σ
2.

Proof. t = f (x)−g(x), then

‖ϕ̃σ (x)−ϕ(x)‖L1 =
∫

∞

−∞

|ϕ̃σ (x)−ϕ(x)|dt

=
1
2

∫
∞

−∞

|t(ω̃σ (t)−ω(t))|d(t)

=
1
2

∫ 0

−∞

|t(ω̃σ (t)− (−1))|d(t)+ 1
2

∫
∞

0
|t(ω̃σ (t)−1)|d(t)

≤ 20
3

σ
2.

Theorem 3.3. Suppose that ϕ̃σ (x) is a smoothing function of the function ϕ(x), then

16

we have

lim
σ→0

ϕ̃σ (x) = ϕ(x).

Proof. Since the functions f (x),g(x) and ω̃σ (t) are smooth, then also the function

ϕ̃σ (x) defined in (3.4) is a smooth for any σ > 0. From the Theorem 3.2, it can be

clearly seen that ϕ̃σ (x) approaches to ϕ(x) when σ → 0.

Example 3.4. For one dimension let f (x) = 6− exp(1
2x) and g(x) = 2x+2, we define

the function

ϕ(x) = max{ f (x),g(x)},

the smoothing function of the ϕ(x) can be described as follows

ϕ̃σ (x) =
1
2
[{ f (x)−g(x)}ω̃σ (t)+ f (x)+g(x)],

where t = f (x)−g(x) and σ > 0. The graph of the functions ϕ(x) and ϕ̃σ (x) are shown

in figure 3.2.

(a) (b)

Figure 3.2. The graph of ϕ(x) (blue and solid) and ϕ̃σ (x) (green and dot) a and b with
σ = 0.4,0.8 respectively.

Example 3.5. For two dimension let us define f (x,y) = 4−exp(5 x
3)+3y and g(x,y) =

2x− y+2, we define the function

ϕ(x,y) = max{ f (x,y),g(x,y)},

17

the smoothing function of the ϕ(x) can be defined as follows

ϕ̃σ (x,y) =
1
2
[{ f (x,y)−g(x,y)}ω̃σ (t)+ f (x,y)+g(x,y)],

where t = f (x,y)−g(x,y), σ > 0. The graph of the functions ϕ(x,y) and ϕ̃σ (x,y) are

presented in figure 3.3.

(a) (b)

(c) (d)

Figure 3.3. (a) The graph of ϕ(x,y), (b) The graph of ϕ̃σ (x,y), (c) The contour graph
of ϕ(x,y) and (d) The contour graph of ϕ̃σ (x,y).

3.2. Global Optimization Technique

Suppose that f is the function of the problem (P) defined in (1.1), and x∗k is the current

local minimizer of f . In this part, we try to find a global minimizer of the objective

function f if it exists. We define the following function to avoid the minimizers that are

higher than the current minimizer x∗k

φ(x,x∗k) = min{ f (x), f (x∗k)}.

18

Figure 3.4. The graph of f (x) and φ(x,x∗k) before smoothing it, where x∗k is the current
minimizer.

The (min− f unction) is the best way to avert the higher local minimizers since this

function has the same function minimizers of f (x) that are lower than f (x∗k). The

one-dimensional graph of functions f (x) and φ(x,x∗k) is given in Fig. 3.4, where the

dotted line is f (x), and the solid line is φ(x,x∗k). Because we use (min− f unction) in

our approach and this function is non-smooth, first we make φ(x,x∗k) smooth, then we

create a smooth auxiliary function that can hold lower minimizer of f (x). To render

φ(x,x∗k) smooth, function φ can be reconstructed as follows:

φ(x,x∗k) =
1
2
[{ f (x)− f (x∗k)}S(t)+ f (x)+ f (x∗k)] (3.5)

where t = f (x)− f (x∗k) and the function S(t) : R→ R is defined by

S(t) =

 1, t < 0,

−1, t ≥ 0.

In order to smooth φ , it is sufficient to smooth the function S(t) and by using t instead

of −t, we can use the function described in (3.2) for that. The smoothing version of

S(t) can be defined as follows:

S̃σ (t) =
2

1+ exp(1
2σ

t)
−1, (3.6)

where t = f (x)− f (x∗k) and σ > 0. It’s clearly,

19

lim
σ→0

S̃σ (t) =

1 t < 0,

0 t = 0,

−1 t > 0.

(3.7)

It is easy to prove that limσ→0 S̃σ (t) = S(t) (see Lemma 3.1).

Remark 3.6. The function S̃σ (t) is continuously differentiable and for all σ > 0, we

have

S̃′σ (t) =−
exp(1

2σ
t)

σ(exp(1
2σ

t)+1)2
,

and

S̃′′σ (t) =
(exp(1

2σ
t))(exp(1

2σ
t)−1)

2σ2(exp(t
2σ

t)+1)3 .

The smoothing function of φ(x,x∗k) by using the equation (3.6) is defined as:

φ̃σ (x,x∗k) =
1
2
[{ f (x)− f (x,x∗k)}S̃σ (t)+ f (x)+ f (x∗k)] (3.8)

Theorem 3.7. Suppose that the functions f (x) is twice continuously differentiable on

Rn and x∗k is a current minimizer of f then

‖φ̃σ (x,x∗k)−φ(x,x∗k)‖L ≤
20
3

σ
2,

and we have

lim
σ→0

φ̃σ (x,x∗k) = φ(x,x∗k).

Proof. See Theorems 3.2 and 3.3.

The smoothing function φ̃σ (x,x∗k) can be very difficult and expensive to transfer from

the current minimizer x∗k throughout the set D1 = {x ∈ D| f (x) ≥ f (x∗k),x 6= x∗k}. To

overcome this problem, φ̃σ (x,x∗k) can be added with any escape function. Eventually,

the entire auxiliary smoothing function (the graph is shown in Fig. 3.5) that helps to

escape from x∗k and to achieve a better minimizer can be described as follows:

φ̃σ ,µ(x,x∗k) = φ̃σ (x,x∗k)+
1

µ +‖x− x∗k‖2 (3.9)

where µ > 0 is a parameter of escape function.

20

Figure 3.5. After smoothing, the graph of f (x) and φ̃σ ,µ(x,x∗k), where x∗k is the current
minimizer.

Theorem 3.8. Suppose that x∗k is a current local minimizer of f , then Oφ̃σ ,µ(x,x∗k) 6= 0

for any x ∈ D1.

Proof. According to the Theorem 3.7 we have

‖φ̃σ (x,x∗k)−φ(x,x∗k)‖L ≤
20
3

σ
2, σ > 0,

that means

lim
σ→0

φ̃σ (x,x∗k) = φ(x,x∗k).

Now, for any x ∈ D1, f (x)≥ f (x∗k), if we choose σ close to 0 enough then we obtain

Oφ̃σ ,µ(x,x∗k) =−
2µ(x− x∗k)

(1+‖x− x∗k‖2)2 6= 0.

Theorem 3.9. Let x∗k is a current minimizer of f but not a global one, and D2 = {x ∈

D| f (x)< f (x∗k)} not empty then φ̃σ ,µ(x,x∗k) has a minimizer when x ∈ D2.

21

Proof. From the equation defined in (3.7) and for all x ∈ D2 we have

lim
σ→0

S̃σ (t) = 1,

then

φ̃σ ,µ(x,x∗k) = f (x)+
1

µ +‖x− x∗k‖2 , µ > 0.

Now, if µ → ∞ or ‖x− x∗k‖2→ ∞ then we obtain

φ̃σ ,µ(x,x∗k)' f (x),

and since x∗k is not a global for f , then there exists another local minimizer x∗k+1 for

f such that f (x∗k+1) < f (x∗k), that means that there is another local minimizer exists

x′ ∈ D2 for the function φ̃σ ,µ(x,x∗k) such that x′ ∈ B(x∗k+1) and

Oφ̃σ ,µ(x′,x∗k) = 0,

for some value of µ.

3.3. Algorithm

According to the above information, an auxiliary function algorithm is introduced:

Step 1. Put k = 1, σ ≤ 10−2, ε = 10−2, µ > 0; directions di for i = 1,2,3,,N (N

number of different directions), and choose xint ∈ D as an initial point.

Step 2. Minimize f (x) and use xint as a start point to find any minimizer x∗k and set i = 1.

Step 3. Construct the auxiliary function φ̃σ ,µ(x,x∗k) at x∗k

φ̃σ ,µ(x,x∗k) = φ̃σ (x,x∗k)+
1

µ +‖x− x∗k‖2 .

Step 4. If i≤ N then put x = x∗k + εdi and go to Step 5; otherwise go to Step 6.

Step 5. Minimize φ̃σ ,µ(x,x∗k) use x as an initial to find a minimizer xφ of φ̃σ ,µ(x,x∗k), if

xφ ∈ D then set xint = xφ , k = k+1 and go to Step 2; otherwise i = i+1 then go

to Step 4.

Step 6. Take x∗ = x∗k as a global minimizer of f (x) and stop the algorithm.

22

4. GLOBAL OPTIMIZATION TECHNIQUE IN A DIRECTIONAL SEARCH

In this Section, a new auxiliary function is presented to solve a multi-model of uncon-

strained global optimization problems, by converting a multidimensional problem into

partitions of some one-dimensional problems based on the number of directions, and

decreasing minimizers number for each direction as well as finding the global minimizer

of the one-dimensional problem. Finally, with the help of a new algorithm, we find the

global minimizer of a multi-dimensional problem.

4.1. Auxiliary Function Method in Global Optimization

Suppose f is the objective function of (P) problem and x∗k is a local minimizer of f . In

this part, we try to find the global minimizer of the function f . To achieve the global

minimizer, we use the function ψ(x,x∗k) = min{ f (x), f (x∗k)}, which has the same local

minimizers with objective function f (x), less than f (x∗k). The function ψ helps to ignore

upper local minimizers but its problem is that it is neither differentiable nor smooth. As

the function ψ is not smooth, first, we make it smooth and then we construct a function

that can be minimized easily to obtain a better solution of objective function lower than

f (x∗k). The ψ function can be reformulated as follows:

ψ(x,x∗k) = min{ f (x)− f (x∗k),0}+ f (x∗k) = { f (x)− f (x∗k)}ωA′k
(t)+ f (x∗k),

where A′k =
{

t ∈ R : t = f (x)− f (x∗k)< 0
}

and ωA′k
: R→ R is defined by

ωA′k
(t) =

 1, t < 0,

0, t ≥ 0.
(4.1)

Since the ωA′k
(t) function is not smooth, then the ψ(x,x∗k) function is also not smooth.

For smoothing the ψ(x,x∗k) function, it is sufficient to try to smooth the ωA′k
(t) function.

Some significant recent studies on this subject include some forms of smoothing

functions in the literature see (Yang et al., 2014; Ralph and Xu, 2005; Wu et al.,

2015).

In this Section, we use the global smoothing technique that was presented in (Yilmaz

and Sahiner, 2019) to smooth the ωA′k
(t) function. In fact we could use any ω̃A′k

(t,β)

smoothing function with the following features for our methodology:

23

i. limt→−0 ω̃A′k
(t,β) = 1,

ii. limt→+0 ω̃A′k
(t,β) = 0,

iii. ∀t ∈ R, ω̃ ′A′k
(t,β)< 0,

iv. ∀t ∈ (−∞,0], ω̃ ′′A′k
(t,β)< 0 and ∀t ∈ [0,∞), ω̃ ′′A′k

(t,β)> 0.

Example for ω̃Ak could be ω̃A′k
(t,β) =

arctan
(
−t
β

)
+ π

2

π
, ω̃A′k

(t,β1,β2) =
arctan

(
−t−β1

β2

)
+ π

2

π
,

β ,β1,β2 > 0, etc. For our methodology and algorithm, we consider the smoothing

function

ω̃A′k
(t,β) =

arctan
(
−t
β

)
+ π

2

π
, (4.2)

where t = f (x)− f (x∗k), β > 0. Clearly,

lim
β→0

ω̃A′k
(t,β) =

0 t > 0,
1
2 t = 0,

1 t < 0.

(4.3)

Additionally, we gain a smoothing function for ψ(x,x∗k) by using (4.2) as:

ψ̃(x,x∗k ,β) = { f (x)− f (x∗k)}ω̃A′k
(t,β)+ f (x∗k).

Based on the above information we give the following results.

Theorem 4.1. Suppose that x∗k is any local minimizer of f and β > 0, then

limβ→0(ψ̃(x,x∗k ,β)−ψ(x,x∗k)) = 0.

Proof. From (4.3) and (4.1) we have

lim
β→0

(ψ̃(x,x∗k ,β)−ψ(x,x∗k)) = t(lim
β→0

ω̃A′k
(t,β)−ωA′k

(t)).

For t = (f (x)− f (x∗k)), now, if t > 0 we obtain

lim
β→0

ω̃A′k
(t,β) = 0 and ωA′k

(t) = 0,

and, if t = 0 we have

lim
β→0

(ψ̃(x,x∗k ,β)−ψ(x,x∗k)) = 0,

24

and, if t < 0 we have

lim
β→0

ω̃A′k
(t,β) = 1 and ωA′k

(t) = 1.

Throughout the set D1, ψ̃(x,x∗k ,β) function can not leave the current local minimizer.

This problem can be solved here by combining a new term to the ψ̃(x,x∗k ,β) function.

Finally, to achieve a lower minimizer, the last version of the smooth function can be

stated as follows:

G(x,x∗k ,β ,µ) = ψ̃(x,x∗k ,β)+µ
1

1+‖x− x∗k‖2 .

Theorem 4.2. Suppose f is a continuously differentiable function on D, x∗k is any

minimizer of f and β > 0 is given. If

µ > L
(

1
2M

+
1

2L
1

πβ

)(
1+M2)

then G(x,x∗k ,β ,µ) function cannot have a stationary point when f (x)> f
(
x∗k
)
, where

M = diamD, ‖∇ f (x)‖ ≤ L.

Proof. Let µ > L
(

1
2M

+
1

2L
1

πβ

)(
1+M2) . If G(x,x∗k ,β ,µ) has a stationary point

then we have ∇G(x,x∗k ,β ,µ) = 0, then

‖
2µ(x− x∗k)

(1+‖x− x∗k‖2)2‖= ‖∇ f (x)(ω̃A′k
(t,β)+(f (x)− f (x∗k)ω̃

′
A′k
(t,β))‖

⇒ |µ|= ‖O f (x)(ω̃A′k
(t,β)+(f (x)− f (x∗k)ω̃

′
A′k
(t,β))‖

‖(1+‖x− x∗k‖2)2‖
‖2(x− x∗k)‖

≤ L
(

1
2M

+
1

2L
1

πβ

)(
1+M2) .

This is clearly a contradiction.

Theorem 4.3. Let f be continuously differentiable of a problem (P) and x∗k is a current

minimizer if f has another minimizer lower than x∗k and

25

µ = |µ| ≤
L(1+LM 1

πβ
)

0.65
,

then G(x,x∗k ,β ,µ) has a stationary point on D2.

Proof. We have G(x,x∗k ,β ,µ) = ψ̃(x,x∗k ,β) + µ
1

1+‖x−x∗k‖2 , we want the decrement

speed of µ

1+‖x−x∗k‖2) to be smaller than or equal to the increment speed of ψ̃(x,x∗k ,β). It

is clear that

‖∇ µ

1+‖x− x∗k‖2‖ ≤ 0.65|µ|,

and

‖O f (x)(ω̃A′k
(t,β)+(f (x)− f (x∗k)ω̃

′
A′k
(t,β))‖ ≤ L(1+LM

1
πβ

).

So if we choose µ = |µ| ≤
L(1+LM 1

πβ
)

0.65 then our function will have a stationary point on

D2.

In the next part, we work on a one-dimensional global optimization problem, and since

this problem is a branch of the multi-variable function and we gave all the proofs in the

previous part, we will give our methodology a one-dimensional version without proof.

4.2. One-dimensional Minimization Problem

Line search strategies are the most usable in global optimization. If we want to describe

them, let f be a function and suppose xk be any point in the domain of f , and let dk be

the search direction at xk. The formulation of a new estimate solution can be described

as

xk+1 = xk +αdk,

where the step length α is some scalar chosen so that

f (xk+1)< f (xk).

If the function value at the next point is less than the function value at the current

point, progress toward the minimizer would be made. Let us look closely at the line

search formula, and we assume that dk is a descent direction at xk, then dk achieves the

26

following condition

dT
k ∇ f (x)≤ 0.

The method used to calculate the line search direction achieves f (xk +αdk)< f (xk) at

least for small positive values of α if dk is a descent direction. Because of this property,

we suppose the step length gets on with α > 0. The technique we described is called a

"line search" because a search is performed for another point xk+1 along with the line

h(α) = xk +αdk. Of course we might want to choose α as an answer for

minH(α) = f (xk +αdk).

That is, α∗k would be the outcome of a one-dimensional minimization problem (Griva et

al., 2009) in the direction dk.

To adjust our methodology for multi-variable function to one dimensional-function,

we will use H(α) in lieu of f (x), ω̃α

A′k
(t,β) in lieu of ω̃A′k

(t,β), ψ̃α(α,αk,β) in lieu

of ψ̃(x,x∗k ,β), Gα(α,αk,β ,µ) in lieu of G(x,x∗k ,β ,µ) and αk is a local minimizer of

one-dimensional problem. Now we give the details as follows: First of all, we create a

single variable function by taking any initial point xint ∈ D and H(α) = f (xint +αdk)

in the direction dk we find first local minimizer α i
k of H(α), and then we create an

auxiliary function Gα(α,α i
k,β ,µ) at this local minimizer α i

k. After that, we find a

minimizer of Gα(α,α i
k,β ,µ) which is certainly in a lower basin of H(α) (This is

guaranteed by the Theorems 4.2 and 4.3). After this step, by using the minimizer αG

of the function Gα(α,α i
k,β ,µ) as a starting point, we minimize H(α) and we obtain a

lower minimizer α
i+1
k . By repeating this process, finally the global minimum point is

obtained as α∗k . Then we find the point x′k in D corresponding to the point α∗k by using

x′k = xint +α∗k dk (see Fig. 4.1). By using this point as an initial point we minimize the

objective function f (x) to obtain the corresponding minimizer x∗k of f (x).

Note that a function H(α) corresponds to each of the directions. Therefore the global

minimizers α∗k of functions H(α) are found by repeating the above cycle for each

of these functions. Finally, we obtain the global minimizer x∗ of f (x) by comparing

function values at these minimizers.

One could think that because of the number of directions our algorithm needs more

time and potential and use the auxiliary function in each direction. In addition, the

27

Figure 4.1. The one-dimensional problem

presented approach is effective and positive, as it is seen from the results in Section 6.

This provides other advantages such as the auxiliary function that can be used only on a

one-dimensional function and obtain the global minimizers of H(α) faster.

4.3. Algorithm

Step 1. Set k = 0, ε = 10−2, β = 10−1, N the number of directions dk for k =

1,2, ...,N, choose an initial point xint ∈ D, and locate boundary of D.

Step 2. Construct the function H(α) = f (xint +αdk), in a one-dimensional function.

Step 3. (1) Find a local minimizer α i
k of the function H(α) from any starting point α0.

and take p =−1.

(2) Construct an auxiliary function Gα(α,α i
k,β ,µ) at α i

k.

(3) Start from α0 = α i
k + pε to find a minimizer αG of Gα(α,α i

k,β ,µ).

(4) If αG in D go to (5) otherwise go to (7).

(5) Start from αG minimize H(α) to obtain lower minimizer α
i+1
k and go to

(6).

(6) If α
i+1
k in D take α i

k = α
i+1
k go to (2).

(7) If p = 1 stop the algorithm take α∗k = α i
k otherwise; take p = 1 go to (3).

Step 4. − Calculate x′k using x′k = xint +α∗k dk.

− Find the local minimizer x∗k of the function f (x) by using x′k as initial point.

Step 5. If k < N, let k = k+1, generate a new search direction dk+1, and go to Step 2;

28

otherwise go to Step 6.

Step 6. Find the global minimizer of f as

x∗ = min{ f (x∗1), f (x∗2), . . . , f (x∗N)} .

29

5. INCREASING THE EFFECTS OF FILLED FUNCTION IN GLOBAL

OPTIMIZATION

Filled function method can be considered as an effective approach to solve different

global optimization problems, so it seems to have several features over other methods,

for example, it is more simple to find a better local minimizer sequentially compared

to other methods. The filled function method presents a good idea to solve global

optimization problems. The main idea of filled function method is to change the

objective function into a filled function by using the current local minimizer and then to

minimize it to obtain a good initial point for the minimization of the objective function

and finally to obtain a better local minimizer from the previous one. In general, the

mechanism work of the filled function can be described as follows:

1- Minimizing objective function by using any random point as an initial point

with using a local optimization method to find a local minimizer of the objective

function.

2- Construct a filled function based on the current minimizer of the objective func-

tion, and use any point near this point (current minimizer) to minimize the filled

function. As a result, a minimizer of the filled function will be obtained. This

minimizer will be a point into a basin of a better solution of the objective function.

3- From the minimizer of filled function which obtained in step 2 and use it as an

initial point to minimize the objective function and a better solution of objective

function will be found.

By repeating the Step 2 and step 3, the number of minimizers will be surely reduced

and global minimizer of objective function will be found. Some of the existing filled

function methods have been constructed to have a surface somewhat like a surface of the

objective function in the lower basin (when f (x)< f (x∗k), x∗k is a current minimizer of

the objective function) of the better solution, this situation has drawbacks; it needs more

time and function evaluations. In this Section and in order to eliminate the drawbacks

in some previous filled function methods we proposed a new filled function method.

This new proposal is based on putting many stationary points in the lower basin, in

fact, the filled function does not need to go down in the lower basin, only it needs to

obtain any stationary point in the lower basin and which can be used as an initial point

30

for minimizing the objective function to obtain a lower minimizer. This idea helps to

reduce the time and function evaluations which are very important in cases of these

methods.

5.1. Overview of the Filled Function Method

In 1987 Ge and Qin proposed a first filled function (we call it as G-function) (Ge and

Qin, 1987) with two parameters to solve the problem (P) at an isolated local minimizer

x∗k that is defined by

G(x,x∗k ,r,ρ) =−(ρ2 ln[r+ f (x)]+‖x− x∗k‖2), (5.1)

and, in 1990 Ge introduced another filled function (P-function) (Renpu, 1990) which

has the following form

P(x,x∗k ,r,ρ) =
1

r+ f (x)
+ exp(−

‖x− x∗k‖2

ρ2), (5.2)

where r and ρ are parameters which need to be chosen conveniently. Generally, the

G-function and P-function of the objective function f (x) at the current minimizer x∗k

must satisfy the Definition 2.10.

Many important studies are developed the filled function method to solve multi-modal

global optimization. These studies can be classified into two categories depending on

the number of adjustable parameters.

5.1.1. Filled Function Methods with Two-parameter

(Wu et al., 2006), proposed a filled function with two parameters to progress the activity

of numerical computation and overcome several drawbacks of filled functions and the

filled function has the following form

Hq,r,x∗k
(x) = q(exp(−

‖x− x∗k‖2

q
)gr(f (x)− f (x∗k))+ fr(f (x)− f (x∗k)), (5.3)

where q,r > 0 are adjustable parameters and fr,gr are continuously differentiable

functions.

In 2009, (Zhang et al., 2009) introduced a new definition for the filled function, which

rectifies several drawbacks of the classic definition. A new filled function with two

31

parameters defined by

P(x,x∗k ,r,a) = ϕ(r+ f (x))−a(‖x− x∗k‖2), (5.4)

where a > 0, r are parameters and the function ϕ(t) is continuously differentiable.

Wei et al., proposed a new continuously differentiable filled function and not sensitive

to parameters (Wei et al., 2014). This function has two parameters and has the following

formula

P(x,x∗k) =
1

(1+‖x− x∗k‖2)
g(f (x)− f (x∗k)), (5.5)

and

g(t) =

 0, t ≥ 0,

r.arctan(tρ), t < 0,

where r, ρ > 1 are parameters and r is an adjustable positive number.

5.1.2. Filled Function Methods with One-parameter

According to general opinion, the existence of more than one adjustable parameter in

the same filled function makes it difficult to control. So, the first filled function which

has only one parameter was Q-function. This function proposed in (1987) by Ge and

Qin and has the following formula:

Q(x,a) =−(f (x)− f (x∗k))exp(a‖x− x∗k‖2). (5.6)

Q-function has one adjustable parameter a, if this parameter becomes large and large,

the value of exponential function quickly increases which negatively affects the com-

putational results (Ge and Qin, 1987). To overcome this weakness, H-function was

introduced by (Liu, 2001) that is given by

H(x,a) =
1

ln(1+ f (x)− f (x∗k))
−a‖x− x∗k‖2. (5.7)

H-function keeps the feature of Q-function with only one adjustable parameter but

without exponential function. Shang et al., introduced a filled function with one

adjustable parameter in the following

Fq(x,x∗k) =
1

(1+‖x− x∗k‖)
ϕq(f (x)− f (x∗k)+q), (5.8)

32

and

ϕq(t) =

 exp(−q3

t), i f t 6= 0,

0, i f t = 0,

so, q is a parameter subject to certain conditions (Shang et al., 2007). Zhang and

Xu constructed a filled function to solve non-smooth constrained global optimization

problems (Zhang et al., 2009). This function constructed to overcome several drawbacks

of the previous filled functions, and it has one parameter as follows:

P(x,x∗1,q) = exp(‖x− x∗k‖) ln(1+q(max{0, f (x)− f (x∗1)+ r}

+
m

∑
i=1

max{0,gi(x)})),

where q > 0 is the parameter, gi(x) > 0 are constrained conditions and r is prefixed

constant.

In 2013, Wei and Wang proposed a new filled function for problem (P) with one

adjustable parameter and it is not sensitive to this parameter (Wei and Wang, 2013).

The filled function has the following formula:

P(x,x∗k) =−‖x− x∗k‖2g(f (x)− f (x∗k)), (5.9)

where

g(t) =

 π

2 , t ≥ 0,

r.arctan(t2)+ π

2 , t < 0,

and r is an adjustable parameter as large as possible, used as the weight parameter.

Wang et. al. constructed a new filled function for smooth and non-smooth constrained

global optimization problems in (Lin et al., 2014). The constructed filled function

defined by

P(x,x∗k ,q) = −1
q
[f (x)− f (x∗k)+max{0,gi(x)}))]2− arg(1+‖x− x∗k‖2)

+q[min(0,max(f (x)− f (x∗k)gi(x), i ∈ I))]3.

The above filled function has only one adjustable parameter which can easily control it

during the minimization process. A new definition and a new filled function is given in

33

(Yuan et al., 2016a). This filled function has one parameter, given by

F1(x,x∗, q) =V (‖x− x∗k‖)Wq(f (x)− f (x∗k)), (5.10)

where q > 0 is an adjustable parameter, V (t) : R→ R and Wq(t) : R→ R are continu-

ously differentiable under some properties.

5.2. New Filled Function and Its Properties

In this Section, we propose a new filled function for the problem (P) with two parameters

at a local minimizer x∗k as follows:

F(x,x∗k) =
1

α +‖x− x∗k‖2 h(f (x)− f (x∗k)),

where

h(t) =

 1 t ≥ 0,

sin(µt + π

2) t < 0,

and 0 < α ≤ 1 and µ > 1 are parameters.

The new idea in this filled function is to put many stationary points in the lower basin

D2 = {x| f (x)< f (x∗1),x ∈ D}, in fact the filled function does not need to go down in

the lower basin, only it needs to obtain any stationary point in D2, which can be used as

an initial for minimizing objective function to obtain a lower minimizer.

The above idea has many advantages, for example, it helps to reduce the time and

evaluation which are very important in cases like this. Furthermore, the parameter µ is

used to increase or decrease the number of stationary points in the interval D2, therefore

we have to choose µ carefully, because if it is small there is a possibility that we may

lose some of the lower minimizers at which the value of the function is close to the

value at the first minimizer (see Fig. 5.1 and Fig. 5.2). The parameter 0 < α ≤ 1 in the

term 1
α+‖x−x∗k‖2 is used to control the hat and it is easy to adjustable it. The following

theorems references that the function F(x,x∗k) is a filled function by Definition 2.10.

Theorem 5.1. Suppose that x∗k is a local minimizer of the function f (x), and F(x,x∗k) is

defined by the Definition 2.10, then x∗k is a strict local maximizer of F(x,x∗k).

34

Figure 5.1. Some different values of the parameter µ and their effect on the function
F(x,x∗k).

Figure 5.2. The shape of the functions F(x,x∗k) and f (x) in two dimensions.

35

Proof. Since x∗k is a local minimizer of f (x), then there exists neighborhood N(x∗k ,ε)⊂

D1 of x∗k for some ε > 0 such that f (x)≥ f (x∗k) for all x∈N(x∗k ,ε) and x 6= x∗k ,0<α ≤ 1.

F(x,x∗k)
F(x∗k ,x

∗
k)

=
α +‖x∗k− x∗k‖2

α +‖x− x∗k‖2 =
α

α +‖x− x∗k‖2 < 1.

That is x∗k a strict local maximizer of F(x,x∗k).

Theorem 5.2. Suppose that x∗k is a local minimizer of f (x), and x is any point in the set

D1, then x is not a stationary point of F(x,x∗k) for any 0 < α ≤ 1.

Proof. We have x ∈ D1, f (x) ≥ f (x∗k) and x 6= x∗k . Then F(x,x∗k) =
1

α+‖x−x∗k‖2 , and

∇F(x,x∗k) =−2 x−x∗k
(α+‖x−x∗k‖2)2 6= 0, for each 0 < α ≤ 1. This implies the function F(x,x∗k)

has no stationary point in the set D1.

Theorem 5.3. Suppose that L = min | f (x∗i)− f (x∗j)|, i, j = 1,2, ...,k, f (x∗i) 6= f (x∗j),

and assume x∗k is a local minimizer of f (x) but not global, then there exists a point

x′ ∈ D2 such that the point x′ is a local minimizer of the function F(x,x∗k) when µ = π

2L

for each 0 < α ≤ 1.

Proof. Since the current local minimizer x∗k is not global minimizer of f (x), then there

exists second minimizer x∗(k+1) ∈ D2 such that f (x∗2)< f (x∗k).

For any point y ∈ D1 we have F(y,x∗k)> 0, so by the continuity of f (x), and if µ = π

2L

we obtain F(x∗2,x
∗
k) < 0. Then, by theorem of the intermediate value of continuous

function, there exist a point lying between the points y and x∗(k+1) on the part [y,x∗(k+1)],

the value of the filled function at this point is equal to 0.

Assuming that z is the nearest point to x∗(k+1) with F(z,x∗k) = 0, then, we obtain the part

[z,x∗(k+1)]. That means z ∈ ∂D2 and z is in the borders of the set B∗(k+1) which is a closed

region. By the continuity of the function F(x,x∗k), there exist a point x′ ∈ B∗(k+1) such

that it is a local minimizer of the function F(x,x∗k) and F(x′,x∗k)< 0, since the function

F(x,x∗k) is continuously differentiable, we obtain

∇F(x′,x∗k) = 0.

36

5.3. Algorithm

According to the previous information, we proposed a new filled function algorithm as

follows:

Step 1. Set k = 1, ε = 10−2, choose Uµ = 30 an upper bound of µ and give µ = 5; N

the number of different directions di for i = 1,2,3,,N, choose an initial point

xint ∈ D, and give 0 < α ≤ 1, where n is the dimension of the problem.

Step 2. Minimize f (x) using xint as a starting point to find local minimizer x∗k .

Step 3. Construct filled function at x∗k

F(x,x∗k) =
1

α +‖x− x∗k‖2 h(f (x)− f (x∗k))

and set i = 1.

Step 4. If i≤ N, set x = x∗k + εdi and go to Step 5; otherwise go to Step 6 .

Step 5. Start from x to find a minimizer xF of F(x,x∗k), if xF ∈ D then set xint = xF ,

k = k+1 and go to Step 2; otherwise i = i+1, go to Step 4.

Step 6. If µ ≤ Uµ , then µ = µ + 5 and go to Step 2; otherwise take x∗k as a global

minimizer of f (x) and stop.

The different set of directions di are given as follows: let θ1, ...,θJ ∈ [0,2π] and

ϑ1, ...,ϑJ ∈ [−π

2 ,
π

2], J′s are uniformly distributed. For each direction di, i = 1,2, ...,N

and j = 1,2, ...,J. If the dimension n is even and n = 2Q we calculate the contents of

d j
i = (y j

1,y
j
2, ...,y

j
2Q) from

y j
2l−1 =

√
2√
n

cos(θ j)

y j
2l =

√
2√
n

sin(θ j)

for l = 1 ∼ Q. If n is odd and n = 2Q + 1 we calculate the contents of d j
l =

(y j
1,y

j
2, ...,y

j
2Q+1) from

y j
1 =

√
2√
n

cos(ϑ j)cos(θ j)

y j
2 =

√
2√
n

cos(ϑ j)sin(θ j)

37

y j
3 =

√
2√
n

sin(ϑ j)

y j
2l =

√
2√
n

cos(θ j)

y j
2l+1 =

√
2√
n

sin(θ j)

for l = 2∼ Q (Wang and Fan, 2010).

38

6. APPLICATION FOR GLOBAL OPTIMIZATION ALGORITHMS

Results for the proposed algorithms were presented in Sections 3, 4 and 5 which have

been applied in this Section to a set of common test problems. A computer program code

was created for each of the global optimization methods addressed in this study. For

each algorithm, the obtained results are shown in detail in the related tables. Therefore,

according to the obtained results, the proposed methods were compared with each

other and then compared to some other available methods shown in the corresponding

tables, the results of these comparisons are presented. To define algorithms for global

optimization, the following abbreviations are used:

NSA : New smoothing auxiliary function (Algorithm which defined in 3.3).

DSA : Directional search algorithm (Algorithm which defined in 4.3).

FSA : Filled function algorithm (Algorithm which defined in 5.3).

6.1. Test Problems

The numerical test of the NSA, DSA and FSA algorithms was performed on the

following test problems:

Problem 1-3. dimensional function

min f (x) = [1−2x2 + csin(4πx2)− x1]
2 +[x2−0.5sin(2πx1)]

2,

for x1,x2 ∈ [−3,3], where c = 0.05,0.2,0.5.

Problem 4. Three-hump back camel function

min f (x) = 2x2
1−1.05x4

1 +
1
6

x6
1− x1x2 + x2

2,

for x1,x2 ∈ [−3,3].

Problem 5. Six-hump back camel function

min f (x) = 4x2
1−2.1x4

1 +
1
3

x6
1− x1x2−4x4

2 +4x4
2,

39

for x1,x2 ∈ [−3,3].

Problem 6. Treccani function

min f (x) = x4
1 +4x3

1 +4x2
1 + x2

2,

for x1,x2 ∈ [−3,3].

Problem 7. Goldstein and Price function

min f (x) = g1(x)g2(x),

where

g1(x) = 1+(x1 + x2 +1)2(19−14x1 +3x2
1−14x2 +6x1x2 +3x2

2),

and

g2(x) = 30+(2x1−3x2)
2(18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2),

for x1,x2 ∈ [−3,3].

Problem 8. Shubert function

min f (x) =

{
5

∑
i=1

icos[(i+1)x1 + i]

}{
5

∑
i=1

icos[(i+1)x2 + i]

}
,

s. t. x1,x2 ∈ [−10,10].

Problems 9. n-dimensional function

min f (x) =
π

n
[10sin2

πx1 +g(x)+(xn−1)2],

where g(x) = ∑
n−1
i=1

[
(xi−1)2(1+10sin2

πxi+1)

]
and xi ∈ [−10,10], i = 1,2, ...,n.

40

Problem 10. (BL2) Beale function)

min f (x) = (1.5− x1 + x1x2)
2 +(2.25− x1 + x1x2

2)
2 +(2.625− x1 + x1x3

2)
2,

s. t. x1,x2 ∈ [−4.5,4.5].

Problem 11. (B2) Bohachevsky 1 function

min f (x) = x2
1 +2x2

2−0.3cos(3πx1)−0.4cos(4πx2)+0.7,

s. t. x1,x2 ∈ [−100,100].

Problem 12. (B2) Bohachevsky 2 function

min f (x) = x2
1 +2x2

2−0.3cos(3πx1)cos(4πx2)+0.3,

s. t. x1,x2 ∈ [−100,100].

Problem 13. (B2) Bohachevsky 3 function

min f (x) = x2
1 +2x2

2−0.3cos(3πx1 +4πx2)+0.3,

s. t. x1,x2 ∈ [−100,100].

Problem 14. (BO2) Booth function

min f (x) = (x1 +2x2−7)2 +(2x1 + x2−5)2,

s. t. x1,x2 ∈ [−10,10].

Problem 15. (RTn) Rastrigin function

min f (x) = 20+
n

∑
i=1

(
x2

i −10cos(2πxi)

)
,

41

for xi ∈ [−5.12,5.12], i = 1, ..,n.

Problem 16. (RCn) Branin function

min f (x) = (x2−
5.1
4π2 x2

1 +
5
π

x1−6)2 +10(1− 1
8π

)cos(x1)+10,

for x1 ∈ [−5,10], x2 ∈ [0,15].

Problem 17. (MT2) Matyas function

min f (x) = 0.26(x2
1 + x2

2)−0.48x1x2,

s. t. x1,x2 ∈ [−10,10].

Problem 18. (H3) Hartmann function

min f (x) =−
4

∑
i=1

bi exp
(
−

3

∑
j=1

Ai j(x j−Qi j)
2
)
,

where

b = (1.0,1.2,3.0,3.2)T

A =

3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35

Q = 10−4

3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828

s. t. xi ∈ [0,1], i = 1,2,3..

Problem 19. (CV4) Colville function

min f (x) = 100(x2
1− x2)

2 +(x3−1)2 +90(x2
3− x4)

2

42

+10.1((x2−1)2 +(x4−1)2)+19.8(x2−1)(x4−1),

s. t. xi ∈ [−10,10], i = 1, ..,4.

Problem 20. (Pn) Perm function

min f (x) =
n

∑
i=1

(n

∑
j=1

(ji +b)
(
(
x j

j
)i−1

))
,

s. t. xi ∈ [−n,n], i = 1, ..,n.

Problem 21. (PSn) Power sum function

min f (x) =
n

∑
i=1

(
(

n

∑
j=1

xi
j)−bi

)2

,

s. t. xi ∈ [0,n], i = 1, ..,n.

Problems 22-24. (S4) Shekel function

min f (x) =−
m

∑
i=1

(
4

∑
j=1

(x j−ai, j)
2 +bi

)−1

,

where m = 5,7,10, bi is an m-dimensional vector, and ai, j is a 4×m-dimensional matrix

where

bi = 0.1
(

1 2 2 4 4 6 3 7 5 5
)
,

ai, j =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 ,

and x j ∈ [0,10], j = 1, ..,4.

Problem 25. (H6) Hartmann function

min f (x) =−
4

∑
i=1

bi exp
(
−

6

∑
j=1

Ai j(x j−Qi j)
2
)
,

43

where

b = (1.0,1.2,3.0,3.2)T

A =

10 3.0 17 3.50 1.7 8.0

0.05 10 17 0.1 8.0 14

3.0 3.5 1.7 10 17 8.0

17 8.0 0.05 10 0.1 14

Q = 10−4

1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381

s. t. xi ∈ [0,1], i = 1, ..,6.

Problem 26. (Tn) Trid function

min f (x) =
n

∑
i=1

(xi−1)2−
n

∑
i=1

xixi−1,

s. t. xi ∈ [−n2,n2], i = 1, ..,n.

Problem 27. (AKn) Ackley function

min f (x) =−aexp
(
−b

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(cxi)

)
+a+ exp(1),

where a = 20,b = 0.2,c = 2π and xi ∈ [−32.768,32.768], i = 1, ..,n.

Problem 28. (DPn) Dixon and Price function

min f (x) = (x1−1)2 +
n

∑
i=2

i(2x2
i − xi−1)

2,

s. t. xi ∈ [−10,10], i = 1, ..,n.

Problem 29. (Gn) Griewank function

44

min f (x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos(
xi√

i
)+1,

s. t. xi ∈ [−600,600], i = 1, ..,n.

Problems 30-37. (Ln) Levy function

min f (x) = sin2(πw1)+
n−1

∑
i=1

(wi−1)2

[
1+10sin2(πwi +1)

]

+(wn−1)2

[
1+ sin2(2πwn)

]

where wi = 1+ xi−1
4 , i = 1, ...,n and xi ∈ [−10,10], i = 1,2, ...,n.

Problem 38. (PWn) Powell function

min f (x) =

n
4

∑
i=1

(
(x4i−3 +10x4i−2)

2 +5(x4i−1− x4i)
2

+(x4i−2−2x4i−1)
4 +10(x4i−3− x4i)

4
)
,

s. t. xi ∈ [−4,5], i = 1, ..,n.

Problem 39. (Rn) Rosenbrock function

min f (x) =
n−1

∑
i=1

(
100(xi+1− x2

i)
2 +(xi−1)2

)
,

s. t. xi ∈ [−5.12,5.12], i = 1, ..,n.

Problem 40. (SRn) Sphere function

min f (x) =
n

∑
i=1

x2
i ,

s. t. xi ∈ [−5.12,5.12], i = 1, ..,n.

45

Problem 41-48. (SSn) Sum squares function

min f (x) =
n

∑
i=1

ix2
i ,

s. t. xi ∈ [−10,10], i = 1, ..,n.

Problem 49. (Zn) Zakharov function

min f (x) =
n

∑
i=1

x2
i +

(n

∑
i=1

0.5ixi

)2

+

(n

∑
i=1

0.5ixi

)4

,

s. t. xi ∈ [−10,10], i = 1, ..,n.

The problems above are rearranged and the list of test problems is shown in Table 6.1.

6.2. Applications on Test problems

In this part, the algorithms of NSA, DSA, and FSA are applied to problems 1-49

presented in Table 1. For each of these problems, these algorithms are implemented by

independently evaluating ten different points as starting points and uniformly selecting

those points from the domain D on an Intel(R) Core(TM) (i7-3687U CPU and 2.60

GHz) computer in Matlab R2016a. The terms used in the tables are as follows:

• No.: the number of the problem,

• iterm: the average number of iteration in the 10 runs,

• feval: the average number of evaluations of functions,

• time: the total runtime average in 10 runs (second),

• fmean: the average of the function values in 10 runs,

• fbest : the best performance of function value in 10 runs,

• Succ: the success rate of different starting points between 10 implementation.

The NSA, DSA, and FSA algorithms have been applied to test problems 1-49 with

dimensions ranging from 2-50 which are listed in Tables 6.2, 6.4, and 6.3 respectively.

Ten different points were tested as a starting point for each problem, 50% and upwards

were achieved through an analysis of the results of these algorithms to reach the global

point at which the overall success rates were 87.77% for NSA, 89.38% for DSA,

and 84.69% for FSA starting from these different points. In addition, the average of

execution time, the average number of iterations, the average function values, and the

46

Table 6.1. The list of test problems

No. n Problem name Optimum value Region
1 2 Two-dimensional function c = 0.05 0 [−3,3]2

2 2 Two-dimensional function c = 0.2 0 [−3,3]2

3 2 Two-dimensional function c = 0.5 0 [−3,3]2

4 2 Three-hump back camel function 0 [−3,3]2

5 2 Six-hump back camel function -1.0316 [−3,3]2

6 2 Treccani function 0 [−3,3]2

7 2 Goldstein and Price function 3.0000 [−3,3]2

8 2 Shubert function -186.73091 [−10,10]2

9 2 n-dimensional function 0 [−10,10]2

10 2 (BL2) Beale function 0 [−4.5,4.5]2

11 2 (B2) Bohachevsky 1 function 0 [−100,100]2

12 2 (B2) Bohachevsky 2 function 0 [−100,100]2

13 2 (B2) Bohachevsky 3 function 0 [−100,100]2

14 2 (BO2) Booth function 0 [−10,10]2

15 2 (RTn) Rastrigin function 0 [−5.12,5.12]2

16 2 (RCn) Branin function 0.3979 [−5,10]× [0,15]
17 2 (MT2) Matyas function 0 [−10,10]2

18 3 (H3) Hartmann function -3.8628 [0,1]3

19 4 (CV4) Colville function 0 [−10,10]4

20 4 (Pn) Perm function 0 [−4,4]4

21 4 (PSn) Power sum function 0 [0,4]4

22 4 (S4) Shekel function -10.1532 [0,10]4

23 4 (S4) Shekel function -10.4029 [0,10]4

24 4 (S4) Shekel function -10.5364 [0,10]4

25 6 (H6) Hartmann function -3.3224 [0,1]6

26 10 (T n) Trid function -210 [−100,100]2

27 10 (AKn) Ackley function 0 [−10,10]10
28 25 (DPn) Dixon and Price function 0 [−10,10]25
29 30 (Gn) Griewank function 0 [−600,600]30
30,31,32,33 2,3,5,7 (Ln) Levy function 0 [−10,10]n

34,35,36,37 10,20,30,50 (Ln) Levy function 0 [−10,10]n

38 30 (PWn) Powell function 0 [−4,5]30
39 50 (Rn) Rosenbrock function 0 [−5.12,5.12]50
40 50 (SRn) Sphere function 0 [−5.12,5.12]50
41,42,43,44 2,3,5,7 (SSn) Sum squares function 0 [−10,10]n

45,46,47,48 10,20,30,50 (SSn) Sum squares function 0 [−10,10]n

49 50 (Zn) Zakharov function 0 [−5,5]50

47

average function evaluation were determined, as well as the best value for the function

was included in these ten different points. These values are different from one problem

to another according to the type of the problem and its size.

Comparison is made of the average iterations (iterm), the average function evaluations

(feval) and the average execution time (time) for test problems for the proposed algo-

rithms. It can be seen that all the proposed algorithms have achieved successful results

in test problems. By observing the results for some of the above fields, there are some

advantages from one algorithm to another, as the DSA algorithm achieved a success rate

of about 89.38 percent of the number of attempts and also a lower percentage for the

average of function evaluations compared to others. Whereas in the filed of (time), the

FSA algorithm has the advantage as shown in Table 6.5. As mentioned before the DSA

algorithm has a preference over the others because the DSA algorithm is presented to

solve the (P) problem by converting a multi-dimensional problem into one-dimensional

problem partitions and using an auxiliary function to reduce the number of minimizers

and finding a global minimizer for each partition. Then use these partitions to find the

global minimizer of a multidimensional problem. Since the test problem is divided

from a multidimensional problem to one dimension problem, it means that there are no

more function evaluations, and this is one of the DSA algorithm’s features.

Tables 6.6, 6.7, and 6.8 provide a summary of the various algorithms described in this

study. Table 6.6 provides a comparison of the NSA with the algorithm described in

(Bagirov et al. (2009)), the results of the NSA algorithm can be seen from this table

in some places, especially in the columns dedicated to function evaluations (feval) and

success rates (Succ) compared to the results of the algorithm in (Bagirov et al. (2009)).

Both of the methods are fairly efficient with respect to values (fbest). Table 6.7 offers

a comparison of DSA with the algorithm provided in (Wei et al. (2014)), from this

table the DSA algorithm results obtain an advantage in a column dedicated to function

evaluations (feval). The algorithm described in Table 6.7 has an advantage in a column

devoted to execution time (time). All methods in terms of (fbest) values and iterations

(iterm) are efficient enough. Whereas Table 6.8 of the algorithm offers an advantage

for FSA in columns dedicated to function evaluations (feval) and success rates (Succ),

especially in broad problem sizes.

48

Table 6.2. The results of NSA algorithm on problems 1-49

No n iterm feval fmean fbest time Succ
1 2 2 187 1.4536e-14 6.5432e-16 0.0911 8/10
2 2 2.5 216 2.3610e-13 2.4535e-14 0.1196 10/10
3 2 1 303 1.2796e-11 3.3378e-15 0.1257 9/10
4 2 1 675 1.6748e-14 0 0.0907 8/10
5 2 2 358 -1.0316 -1.0316 0.0464 10/10
6 2 2 145 3.7911e-10 1.1915e-16 0.0204 10/10
7 2 1.5 460 3.0000 3.0000 0.0623 9/10
8 2 3.5 1400 -186.7309 -186.7309 0.8857 10/10
9 2 2.25 4044 9.7321e-14 8.6220e-15 0.5452 10/10
10 2 1 274 1.2552e-08 4.1242e-14 0.0427 10/10
11 2 3.25 280 1.1634e-13 2.5887e-15 0.9828 7/10
12 2 2.25 306 4.6210e-13 2.6872e-17 0.9619 9/10
13 2 1.5 540 5.4220e-14 8.9750e-16 1.0623 8/10
14 2 1 258 1.2778e-10 1.0089e-14 0.0389 10/10
15 2 2 845 2.2649e-14 0 0.1110 8/10
16 2 1 213 0.3979 0.3979 0.0285 10/10
17 2 1 193 7.4099e-14 4.0478e-16 0.0254 10/10
18 3 1 484 -3.8628 -3.8628 0.0468 8/10
19 4 2.25 910 2.5446e-06 6.0306e-13 0.0758 10/10
20 4 1 1426 1.4358e-04 2.9421e-06 0.3263 6/10
21 4 1 1733 3.5915e-04 1.7632e-07 1.8948 6/10
22 4 2.75 1772 -10.1532 -10.1532 0.1777 10/10
23 4 2.5 1353 -10.4029 -10.4029 0.1429 10/10
24 4 2.5 1436 -10.5321 -10.5321 0.1515 10/10
25 6 1 585 -3.0425 -3.0425 0.0406 10/10
26 10 1 888 -210 -210 0.3263 6/10
27 10 6.5 2912 8.5594e-10 5.3731e-10 0.1774 10/10
28 25 1 55728 3.8734e-8 5.1243e-11 1.9834 6/10
29 30 1 22981 2.8754e-13 1.8112e-13 0.9761 6/10
30 2 3 502 5.0804e-13 4.9451e-17 0.0846 10/10
31 3 2.5 938 1.7220e-12 4.6827e-15 0.1241 8/10
32 5 5.25 1721 2.9544e-13 9.5472e-15 0.1726 7/10
33 7 6.5 2529 3.2636e-12 9.3510e-16 0.2084 6/10
34 10 3 2856 3.7409e-13 7.4937e-15 0.2115 7/10
35 20 2.5 6813 5.6417e-13 7.3256e-15 0.4574 9/10
36 30 4 10810 2.3839e-13 2.1908e-15 0.7524 10/10
37 50 6.5 20445 2.2094e-12 5.6789e-14 1.6759 8/10
38 30 1 3403 4.8804e-06 9.3569e-10 0.2217 10/10
39 50 1 14561 1.1169e-07 7.6706e-11 0.4321 6/10
40 50 1 5523 3.3790e-10 2.3738e-15 0.1943 10/10
41 2 1 129 7.1418e-14 2.5517e-14 0.0184 10/10
42 3 1 244 1.2744e-13 5.4187e-14 0.0289 10/10
43 5 1 600 1.9263e-11 1.0445e-12 0.0528 10/10
44 7 1.5 825 2.4339e-11 9.1360e-13 0.0554 10/10
45 10 1 1262 2.6180e-10 8.3906e-13 0.0737 10/10
46 20 1 2608 8.0341e-10 2.3277e-11 0.1050 10/10
47 30 1.25 3915 1.0642e-08 1.1326e-10 0.1344 10/10
48 50 1 6864 3.3977e-08 4.8552e-10 0.2142 10/10
49 50 1.5 8506.8 5.6232e-06 1.0476e-10 0.2706 10/10

49

Table 6.3. The results of DSA algorithm on problems 1-49

No n iterm feval fmean fbest time Succ
1 2 1 145 2.8106e-12 1.2929e-15 0.0589 10/10
2 2 1.25 120 8.9169e-13 8.1862e-16 0.0699 10/10
3 2 1.15 192 1.1776e-14 7.7555e-16 0.2073 10/10
4 2 1.2 297 3.0290e-16 1.0703e-16 0.1214 10/10
5 2 1.5 114 -1.0316 -1.0316 0.1162 10/10
6 2 2 140 1.2374e-16 9.1354e-18 0.1122 10/10
7 2 1.75 162 3.0000 3.0000 0.1803 9/10
8 2 5.57 207 -186.7309 -186.7309 0.2517 8/10
9 2 1.9 154 6.1757e-13 1.7833e-15 0.1355 10/10
10 2 2.95 146 5.6903e-14 2.0928e-14 0.1180 10/10
11 2 4.4 125 1.1968e-11 1.5543e-15 0.1437 10/10
12 2 3.45 118 2.5438e-13 4.9405e-15 0.1422 9/10
13 2 3.2 102 9.7353e-13 1.1657e-15 0.1514 10/10
14 2 2.4 138 9.7144e-14 2.5354e-15 0.0543 10/10
15 2 2.3 248 3.2330e-13 2.4869e-14 0.1909 6/10
16 2 1.4 152 0.3979 0.3979 0.0638 10/10
17 2 1 137 5.4987e-14 2.6805e-16 0.0686 10/10
18 3 1.35 111 -3.8628 -3.8628 0.0742 10/10
19 4 1.25 187 5.8521e-10 3.3950e-13 0.1918 10/10
20 4 1.25 599 1.9779e-05 8.4586e-06 0.9533 7/10
21 4 1 275 0.0161 0.0161 0.2288 10/10
22 4 1.75 310 -10.1532 -10.1532 0.1812 8/10
23 4 1.5 638 -10.4029 -10.4029 0.4108 9/10
24 4 1.87 667 -10.5321 -10.5321 0.3929 8/10
25 6 1 183 -3.0425 -3.0425 0.0785 10/10
26 10 1 645 -210 -210 0.1690 9/10
27 10 4.5 347 4.6465e-06 7.9323e-07 0.5138 8/10
28 25 1.3 765 3.5502e-05 3.3802e-10 1.2282 6/10
29 30 1.59 1551 2.8975e-11 2.1213e-15 1.4813 5/10
30 2 1.5 189 1.3085e-13 6.7715e-17 0.1011 10/10
31 3 1.7 227 6.2925e-14 1.8777e-15 0.2456 9/10
32 5 2.7 437 2.9336e-13 2.5302e-15 0.3301 8/10
33 7 1.7 350 4.6065e-13 1.8490e-15 0.2431 6/10
34 10 5.3 512 2.8582e-13 1.1873e-15 0.7028 6/10
35 20 1.7 418 1.0709e-12 4.8271e-16 0.4228 7/10
36 30 3.3 759 1.4902e-12 9.7442e-16 1.0371 7/10
37 50 5.6 950 1.7661e-14 2.5524e-15 1.8705 6/10
38 30 1.2 269 1.7461e-09 1.2717e-13 0.6275 10/10
39 50 1 540 7.3042e-05 6.5167e-11 1.9243 7/10
40 50 1 649 2.7006e-16 5.9498e-18 0.2883 10/10
41 2 1.3 110 3.8924e-14 3.2620e-17 0.0683 10/10
42 3 1 150 5.5689e-14 9.9508e-16 0.0814 10/10
43 5 1.5 177 2.8539e-12 7.6193e-16 0.1072 10/10
44 7 1 216 2.7366e-11 6.3709e-13 0.1612 10/10
45 10 3.7 265 9.9834e-12 3.4184e-13 0.2110 10/10
46 20 2.75 313 5.7654e-10 8.7459e-12 0.3173 10/10
47 30 1.6 388 1.1967e-09 2.4248e-11 0.5861 10/10
48 50 1 479 6.3092e-09 1.3800e-10 1.0965 10/10
49 50 5.2 478 3.7096e-07 1.0042e-10 0.7815 10/10

50

Table 6.4. The results of FSA algorithm on problems 1-49

No n iterm feval fmean fbest time Succ
1 2 1 414 5.5023e-13 1.0416e-15 0.0951 7/10
2 2 1.3 426 5.0637e-13 2.4897e-16 0.0949 10/10
3 2 3.25 312 2.1450e-12 2.4059e-15 0.0798 8/10
4 2 1.28 297 4.2567e-14 2.3059e-16 0.0652 8/10
5 2 1.8 249 -1.0316 -1.0316 0.0690 10/10
6 2 1 195 1.8911e-10 2.3324e-16 0.0547 10/10
7 2 1.25 324 3.0000 3.0000 0.0799 8/10
8 2 5.5 990 -186.7309 -186.7309 0.1781 10/10
9 2 2.25 216 1.3655e-12 8.0334e-15 0.0527 10/10
10 2 1 210 2.1415e-09 3.9292e-14 0.0473 10/10
11 2 2.5 260 1.7612e-14 1.3887e-16 0.8727 6/10
12 2 2 290 5.1310e-15 7.6872e-17 0.8615 9/10
13 2 2.5 560 2.1322e-13 3.8751e-15 0.9623 7/10
14 2 1 207 2.5312e-12 2.9352e-15 0.0258 10/10
15 2 1 252 1.3269e-12 0 0.0373 10/10
16 2 1 192 0.3979 0.3979 0.0291 10/10
17 2 1 183 1.1829e-13 3.2168e-17 0.0257 10/10
18 3 1 360 -3.8628 -3.8628 0.0358 8/10
19 4 1 340 4.2280e-06 1.7297e-11 0.0289 9/10
20 4 1 930 4.4280e-06 4.4280e-08 0.0733 6/10
21 4 1 1445 0.0161 0.0161 0.1310 10/10
22 4 1 2550 -10.1532 -10.1532 0.2107 7/10
23 4 1 1550 -10.4029 -10.4029 0.1395 6/10
24 4 1.5 2090 -10.5321 -10.5321 0.2020 8/10
25 6 1 343 -3.0425 -3.0425 0.0287 10/10
26 10 1 1243 -210 -210 0.4378 6/10
27 10 5.4 1100 1.2101e-07 4.4409e-15 0.0714 10/10
28 25 6 5122 1.4691e-8 3.8934e-11 0.1791 5/10
29 30 1.5 20119 1.1213e-10 6.7832e-13 1.0812 5/10
30 2 2.5 249 4.4883e-12 2.8451e-16 0.0326 10/10
31 3 3.57 340 4.9828e-12 4.8602e-16 0.0370 7/10
32 5 2.57 1560 9.6303e-14 7.2187e-15 0.1503 7/10
33 7 2.66 2552 1.8162e-12 1.2567e-14 0.1835 6/10
34 10 3 2662 3.0363e-13 2.8589e-16 0.1632 5/10
35 20 2.57 7602 4.8446e-12 7.4225e-15 0.4800 8/10
36 30 2.33 9579 4.1103e-12 7.4225e-15 0.4570 6/10
37 50 4 6528 1.2428e-11 9.3490e-15 0.4241 8/10
38 30 1 3265 5.6936e-06 1.0917e-09 0.1742 10/10
39 50 1.25 13566 1.1169e-07 1.8954e-11 0.1594 5/10
40 50 1 5253 1.3804e-11 1.2346e-16 0.1943 10/10
41 2 1 210 7.1418e-14 2.5517e-14 0.0304 10/10
42 3 1.25 300 1.2744e-13 5.4187e-14 0.0293 10/10
43 5 1 577 1.7427e-11 3.2479e-14 0.0614 10/10
44 7 1.5 1144 1.4534e-11 2.7828e-14 0.0679 10/10
45 10 1 1584 3.0956e-10 2.5392e-14 0.0786 10/10
46 20 1.5 4515 6.1714e-10 6.0884e-12 0.1985 10/10
47 30 2 12834 8.5200e-09 9.4700e-12 0.4910 10/10
48 50 1.5 21624 3.3257e-08 4.6143e-11 0.6605 10/10
49 50 1 7497 4.1186e-06 1.3670e-10 0.2318 10/10

51

Table 6.5. Iteration, function evaluations and execution time for NSA, DSA, and FSA
algorithms.

NSA DSA FSA
No n iterm feval tim iterm feval time iterm feval tim
1 2 2 187 0.0911 1 145 0.0589 1 414 0.0951
2 2 2.5 216 0.1196 1.25 120 0.0589 1.3 426 0.0949
3 2 1 303 0.1257 1.15 192 0.2073 3.25 312 0.0798
4 2 1 675 0.0907 1.2 297 0.1214 1.28 297 0.0652
5 2 2 358 0.0464 1.5 114 0.1162 1.8 249 0.0690
6 2 2 145 0.0204 2 140 0.1122 1 195 0.0547
7 2 1.5 460 0.0623 1.75 162 0.1803 1.25 324 0.0799
8 2 3.5 1400 0.8857 5.57 207 0.2517 5.5 990 0.1781
9 2 2.25 4044 0.5452 1.9 154 0.1355 2.25 216 0.0527
10 2 1 274 0.0427 2.95 146 0.1180 1 210 0.0473
11 2 3.25 280 0.9828 4.4 125 0.1437 2.5 260 0.8727
12 2 2.25 306 0.9619 3.45 118 0.1422 2 290 0.8615
13 2 1.5 540 1.0623 3.2 102 0.1514 2.5 560 0.9623
14 2 1 258 0.0389 2.4 138 0.0543 1 207 0.0258
15 2 2 845 0.1110 2.3 248 0.1909 1 252 0.0373
16 2 1 213 0.0285 1.4 152 0.0638 1 192 0.0291
17 2 1 193 0.0254 1 137 0.0686 1 183 0.0257
18 3 1 484 0.0468 1.35 111 0.0742 1 360 0.0358
19 4 2.25 910 0.0758 1.25 187 0.1918 1 340 0.0289
20 4 1 1426 0.3263 1.25 599 0.9533 1 930 0.0733
21 4 1 1733 1.8948 1 275 0.2288 1 1445 0.1310
22 4 2.75 1772 0.1777 1.75 310 0.1812 1 2550 0.2107
23 4 2.5 1353 0.1429 1.5 638 0.4108 1 1550 0.1395
24 4 2.5 1436 0.1515 1.87 667 0.3929 1.5 2090 0.2020
25 6 1 585 0.0406 1 183 0.0785 1 343 0.0287
26 10 1 888 0.3263 1 645 0.1690 1 1243 0.4378
27 10 6.5 2912 0.1774 4.5 347 0.5138 2.5 1100 0.0714
28 25 1 55728 0.1774 1.3 765 1.2282 6 5122 0.1791
29 30 1 22981 0.9761 1.59 1551 1.4813 1.5 20119 1.0812
30 2 3 502 0.0846 1.5 189 0.1011 2.5 249 0.0326
31 3 2.5 938 0.1241 1.7 227 0.2456 3.57 340 0.0370
32 5 5.25 1721 0.1726 2.7 437 0.3301 2.57 1560 0.1503
33 7 6.5 2529 0.2084 1.7 350 0.2431 2.66 2552 0.1835
34 10 3 2856 0.2115 5.3 512 0.7028 3 2662 0.1632
35 20 2.5 6813 0.4574 1.7 418 0.4228 2.57 7602 0.4800
36 30 4 10810 0.7524 3.3 759 1.0371 2.33 9579 0.4570
37 50 6.5 20445 1.6759 5.6 950 1.8705 4 6528 0.4241
38 30 1 3403 0.2217 1.2 269 0.6275 1 3265 0.1742
39 50 1 1456 0.4321 1 540 1.9243 1.25 13566 0.1594
40 50 1 5523 0.1943 1 649 0.2883 1 5253 0.1943
41 2 1 129 0.0184 1.3 110 0.0683 1 210 0.0304
42 3 1 244 0.0289 1 150 0.0814 1.25 300 0.0293
43 5 1 600 0.0528 1.5 177 0.1072 1 577 0.0614
44 7 1.5 825 0.0554 1 216 0.1612 1.5 1144 0.0679
45 10 1 1262 0.0737 3.7 265 0.2110 1 1584 0.0786
46 20 1 2608 0.1050 2.75 313 0.3173 1.5 4515 0.1985
47 30 1.25 3915 0.1344 1.6 388 0.5861 2 12834 0.4910
48 50 1 6864 0.2142 1 479 1.0965 1.5 21624 0.6605
49 50 1.5 8506 0.2706 5.2 478 0.7815 1 7497 0.2318

52

Table 6.6. Comparison NSA algorithms with the algorithm in (Bagirov et al. (2009)).

NSA Algorithm in (Bagirov et al. (2009))
No n iterm feval fbest Succ feval fbest Succ
1 2 2 187 6.543E-16 8/10 nil nil nil
2 2 2.5 216 2.454E-14 10/10 nil nil nil
3 2 1 303 3.338E-15 9/10 nil nil nil
4 2 1 675 0 8/10 nil nil nil
5 2 2 358 -1.0316 10/10 1783 -1.03163 10/10
6 2 2 145 1.192E-16 10/10 nil nil nil
7 2 1.5 460 3.0000 9/10 7032 3.0000 10/10
8 2 3.5 1400 -186.7309 10/10 2732 -185.4678 10/10
9 2 2.25 4044 8.622E-15 10/10 nil nil nil
10 2 1 274 4.124E-14 10/10 nil nil nil
11 2 3.25 280 2.589E-15 7/10 1879 0.0000 6/10
12 2 2.25 306 2.687E-17 9/10 1917 0.0000 7/10
13 2 1.5 540 8.975E-16 8/10 1672 0.0000 7/10
14 2 1 258 1.009E-14 10/10 2053 0.0000 9/10
15 2 2 845 0 8/10 4859 0.0000 8/10
16 2 1 213 0.3979 10/10 nil nil nil
17 2 1 193 4.048E-16 10/10 nil nil nil
18 3 1 484 -3.8628 8/10 nil nil nil
19 4 2.25 910 6.031E-13 10/10 nil nil nil
20 4 1 1426 2.942E-06 6/10 nil nil nil
21 4 1 1733 1.763E-07 6/10 nil nil nil
22 4 2.75 1772 -10.1532 10/10 nil nil nil
23 4 2.5 1353 -10.4029 10/10 nil nil nil
24 4 2.5 1436 -10.5321 10/10 nil nil nil
25 6 1 585 -3.0425 10/10 nil nil nil
26 10 1 888 -210 6/10 nil nil nil
27 10 6.5 2912 5.373E-10 10/10 nil nil nil
28 25 1 55728 5.124E-11 6/10 nil nil nil
29 30 1 22981 1.811E-13 6/10 106290 0.0172 10/10
30 2 3 502 4.945E-17 10/10 3038 0.4354 8/10
31 3 2.5 938 4.683E-15 8/10 nil nil nil
32 5 5.25 1721 9.547E-15 7/10 16574 0.1368 8/10
33 7 6.5 2529 9.351E-16 6/10 nil nil nil
34 10 3 2856 7.494E-15 7/10 42393 0.0187 9/10
35 20 2.5 6813 7.326E-15 9/10 nil nil nil
36 30 4 10810 2.191E-15 10/10 143294 0.0000 10/10
37 50 6.5 20445 5.679E-14 8/10 336367 0.0137 8/10
38 30 1 3403 9.357E-10 10/10 nil nil nil
39 50 1 14561 7.671E-11 6/10 nil nil nil
40 50 1 5523 2.374E-15 10/10 nil nil nil
41 2 1 129 2.552E-14 10/10 3362 0.0311 10/10
42 3 1 244 5.419E-14 10/10 nil nil nil
43 5 1 600 1.045E-12 10/10 41825 0.0000 10/10
44 7 1.5 825 9.136E-13 10/10 nil nil nil
45 10 1 1262 8.391E-13 10/10 90110 0.0000 10/10
46 20 1 2608 2.328E-11 10/10 nil nil nil
47 30 1.25 3915 1.133E-10 10/10 321748 0.000003 10/10
48 50 1 6864 4.855E-10 10/10 342501 0.0011 9/10
49 50 1.5 8506.8 1.048E-10 10/10 nil nil nil

53

Table 6.7. Comparison DSA algorithms with the algorithm in (Wei et al. (2014)) .

DSA Algorithm in (Wei et al. (2014))
No n iterm feval fbest time iterm feval fbest time
1 2 1 145 1.2929E-15 0.0589 3 255 8.6721e-18 0.241103
2 2 1.25 120 8.1862E-16 0.0699 2 297 0 0.085445
3 2 1.15 192 7.7555E-16 0.2073 1 374 2.1518e-10 0.348272
4 2 1.2 297 1.0703E-16 0.1214 1 74 3.6795e-15 0.046905
5 2 1.5 114 -1.0316 0.1162 2 74 -1.0316 0.062735
6 2 2 140 9.1354E-18 0.1122 2 72 0 0.050563
7 2 1.75 162 3.0000 0.1803 3 80 3.0000 0.185288
8 2 5.57 207 -186.7309 0.2517 4 78 -186.7309 0.056097
9 2 1.9 154 1.783E-15 0.1355 6 634 0 0.046059
10 2 2.95 146 2.0928E-14 0.118 nil 102 0 nil
11 2 4.4 125 1.5543E-15 0.1437 nil 226 0 nil
12 2 3.45 118 4.9405E-15 0.1422 nil nil nil nil
13 2 3.2 102 1.1657E-15 0.1514 nil nil nil nil
14 2 2.4 138 2.5354E-15 0.0543 nil 77 0 nil
15 2 2.3 248 2.4869E-14 0.1909 nil nil nil nil
16 2 1.4 152 0.3979 0.0638 nil 202 0.3979 nil
17 2 1 137 2.6805E-16 0.0686 nil 207 0 nil
18 3 1.35 111 -3.8628 0.0742 nil 3241 -38628 nil
19 4 1.25 187 3.395E-13 0.1918 nil 167 0 nil
20 4 1.25 599 8.4586E-06 0.9533 nil 103 3.1750e-08 nil
21 4 1 275 0.0161 0.2288 nil 103 7.9352e-09 nil
22 4 1.75 310 -10.1532 0.1812 nil 116 -10.1532 nil
23 4 1.5 638 -10.4029 0.4108 nil 209 -10.4029 nil
24 4 1.87 667 -10.5321 0.3929 nil 507 -10.5364 nil
25 6 1 183 -3.0425 0.0785 nil 827 -3.3224 nil
26 10 1 645 -210.0000 0.169 nil 642 -210 nil
27 10 4.5 347 7.9323E-07 0.5138 nil 647 4.4409e-15 nil
28 25 1.3 765 3.3802E-10 1.2282 nil 16266 6.6175e-03 nil
29 30 1.59 1551 2.1213E-15 1.4813 nil 643 2.6527e-16 nil
30 2 1.5 189 6.7715E-17 0.1011 nil nil nil nil
31 3 1.7 227 1.8777E-15 0.2456 nil nil nil nil
32 5 2.7 437 2.5302E-15 0.3301 nil nil nil nil
33 7 1.7 350 1.849E-15 0.2431 nil nil nil nil
34 10 5.3 512 1.1873E-15 0.7028 nil nil nil nil
35 20 1.7 418 4.8271E-16 0.4228 nil nil nil nil
36 30 3.3 759 9.7442E-16 1.0371 nil 6206 1.8424e-10 nil
37 50 5.6 950 2.5524E-15 1.8705 nil nil nil nil
38 30 1.2 269 1.2717E-13 0.6275 nil 681517 6.6014e-09 nil
39 50 1 540 6.5167E-11 1.9243 nil 316406 3.2891e-10 nil
40 50 1 649 5.9498E-18 0.2883 nil 6215 1.3952e-09 nil
41 2 1.3 110 3.262E-17 0.0683 nil nil nil nil
42 3 1 150 9.9508E-16 0.0814 nil nil nil nil
43 5 1.5 177 7.6193E-16 0.1072 nil nil nil nil
44 7 1 216 6.3709E-13 0.1612 nil nil nil nil
45 10 3.7 265 3.4184E-13 0.211 nil nil nil nil
46 20 2.75 313 8.7459E-12 0.3173 nil nil nil nil
47 30 1.6 388 2.4248E-11 0.5861 nil nil nil nil
48 50 1 479 1.38E-10 1.0965 nil 6277 5.9246e-12 nil
49 50 5.2 478 1.0042E-10 0.7815 nil 316356 3.8675e-03 nil

54

Table 6.8. Comparison FSA algorithms with the algorithm in (Sahiner et al. (2019)).

FSA (Sahiner et al. (2019))
No n iterm feval fbest Succ iterm feval fbest Succ
1 2 1 414 1.0416E-15 7/10 1.5 214 2.6630E−154 8/10
2 2 1.3 426 2.4897E-16 10/10 1.13 290.6250 3.4336E−16 8/10
3 2 3.25 312 2.4059E-15 8/10 1.75 414.2857 4.7243E−16 8/10
4 2 1.28 297 2.3059E-16 8/10 1.4 411 2.8802E−16 10/10
5 2 1.8 249 -1.0316 10/10 1.5 234 −1.0316 10/10
6 2 1 195 2.3324E-16 10/10 1. 216.5000 1.6477E−15 10/10
7 2 1.25 324 3 8/10 1.22 487.8889 3.0000 9/10
8 2 5.5 990 -186.7309 10/10 2.7 813.5000 −186.7309 10/10
9 2 2.25 216 8.0334E-15 10/10 nil nil nil nil
10 2 1 210 3.9292E-14 10/10 nil nil nil nil
11 2 2.5 260 1.3887E-16 6/10 nil nil nil nil
12 2 2 290 7.6872E-17 9/10 nil nil nil nil
13 2 2.5 560 3.8751E-15 7/10 nil nil nil nil
14 2 1 207 2.9352E-15 10/10 nil nil nil nil
15 2 1 252 0 10/10 nil nil nil nil
16 2 1 192 0.3979 10/10 nil nil nil nil
17 2 1 183 3.2168E-17 10/10 nil nil nil nil
18 3 1 360 -3.8628 8/10 nil nil nil nil
19 4 1 340 1.7297E-11 9/10 nil nil nil nil
20 4 1 930 4.428E-08 6/10 nil nil nil nil
21 4 1 1445 0.0161 10/10 nil nil nil nil
22 4 1 2550 -10.1532 7/10 nil nil nil nil
23 4 1 1550 -10.4029 6/10 nil nil nil nil
24 4 1.5 2090 -10.5321 8/10 nil nil nil nil
25 6 1 343 -3.0425 10/10 nil nil nil nil
26 10 1 1243 -210 6/10 nil nil nil nil
27 10 5.4 1100 4.4409E-15 10/10 nil nil nil nil
28 25 6 5122 3.8934E-11 5/10 nil nil nil nil
29 30 1.5 20119 6.7832E-13 5/10 nil nil nil nil
30 2 2.5 249 2.8451E-16 10/10 nil nil nil nil
31 3 3.57 340 4.8602E-16 7/10 nil nil nil nil
32 5 2.57 1560 7.2187E-15 7/10 nil nil nil nil
33 7 2.66 2552 1.2567E-14 6/10 nil nil nil nil
34 10 3 2662 2.8589E-16 5/10 nil nil nil nil
35 20 2.57 7602 7.4225E-15 8/10 nil nil nil nil
36 30 2.33 9579 7.4225E-15 6/10 nil nil nil nil
37 50 4 6528 9.349E-15 8/10 nil nil nil nil
38 30 1 3265 1.0917E-09 10/10 nil nil nil nil
39 50 1.25 13566 1.8954E-11 5/10 nil nil nil nil
40 50 1 5253 1.2346E-16 10/10 nil nil nil nil
41 2 1 210 2.5517E-14 10/10 2.75 743.2500 9.4192E−15 8/10
42 3 1.25 300 5.4187E-14 10/10 1.9 3027 5.6998E−15 10/10
43 5 1 577 3.2479E-14 10/10 1.8 4999.3 3.7007E−15 10/10
44 7 1.5 1144 2.7828E-14 10/10 1.75 8171 1.3790E−14 8/10
45 10 1 1584 2.5392E-14 10/10 2.78 8895.4 3.0992eE−14 9/10
46 20 1.5 4515 6.0884E-12 10/10 2.71 18242 3.0016E−13 7/10
47 30 2 12834 9.47E-12 10/10 3.5 43232 1.7361E−12 6/10
48 50 1.5 21624 4.6143E-11 10/10 2.5 83243 9.8531E−13 6/10
49 50 1 7497 1.367E-10 10/10 nil nil nil nil

55

7. TOTAL VARIATION APPLICATION IN IMAGE DENOISING

Image denoising is a central field in computer vision and image processing. Most

technologies are used for the preservation, recovery or transfer of images, so that noise

from the image can somehow be eliminated during these operations and that the original

image can be retrieved. All images in size n× n are considered. Let x′ ∈ Rn2
is the

original image, and let δ ∈ Rn2
is the noise of Gaussian. Any image y ∈ Rn2

degraded

can be described below y = x′+δ . (7.1)

In order to remove the noise from the image, the inverse of the model in (7.1) can be

taken with considering that the regularization techniques try to integrate both the terms

data-fidelity and the model in (7.1) into a same objective function and the appropriate

solutions for this function can be considered as a minimization problem as the following:

min
x
{‖y− x‖+λJ(x)} (7.2)

where J(x) is a regularization term and λ is a positive scalar that acts as an equalizer in

(7.2). For regularization techniques, the main issue to consider is the correct choice for

the suggested image model and sufficient mathematical definition. Literature includes

several different schemes to define the suggested image (Bruckstein et al., 2009; Ao

et al., 2013; Phillips, 1962). TV-function is one of the most important regularization

functions due to its ability to recover edges and maintain image texture. TV-function was

first implemented by Rudin, Osher, and Fatemi (Rudin and Osher, 1994) as an image

denoising regularizer, then extended and used in deblurring (Beck and Teboulle, 2009;

Chan et al., 2013) and segmentation (He et al., 2012; Chan et al., 2006). Depending on

the TV-function feature equation (7.2) can be written as follows:

min
x
{‖y− x‖+λTV (x)}, (7.3)

and TV (x) =
∫
‖D(x)‖dx = ∑

i

√
(Dh

i x)2 +(Dv
i x)2,

where Dh
i ,D

v
i denote first-order horizontal and vertical finite-difference of x at i− th

pixels. The TV-function defined in (7.3) is convex and this function makes the minimizer

unique, but the problem is that this function is non-differentiable due to the nature of

the norm-term, which is difficult to minimize and its gradient flow is not well-defined.

56

This challenge forced researchers to find alternatives (Chambolle, 2005; Chan et al.,

1999). There are various methods to solve the TV-function, see (Rudin and Osher,

1994; Marquina and Osher, 2000) for more detail. A gradient descent method is one of

the significant methods proposed to solve optimization with a double formulation for

denoising TV-function in several different studies (Chambolle, 2004; Guo et al., 2009;

Yang et al., 2009). In this Section, we use the method defined in Section (3) to make

TV-function differentiable, and then we use it as an application for image denoising.

7.1. Theoretical part

To make TV-function differentiable let ‖v‖= ‖D(x)‖, and in one-dimension ‖v‖= |v|.

From the equation (3.1), if f (x) = v, h(x) =−v then

ϕ(v) = |v|= 1
2
{(v− (−v))ω(v)+ v+(−v)}= vω(v),

where the function ω(v) : R→ R is defined by

ω(v) =

 1, v≥ 0,

−1, v < 0.

Because the ω(v) function is non-smooth it is clear that the ϕ(v) function is non-smooth

too. In order to smooth the ϕ(v) function, it is necessary for ω(v) to be smooth. We

use equation (3.2) to make ϕ(v) as follows:

ϕ̃σ (v) = vω̃(v), (7.4)

where ω̃σ (v) =
2

1+ exp(− 1
2σ

v)
−1.

Fig. 7.1 displays the diagram of the functions ϕ̃σ (v) and ϕ(v) in one-dimensions with

different σ values.

The following results are given in accordance with the above features of the functions

ω̃σ (v) and ϕ̃σ (v).

57

(a) (b)

Figure 7.1. The graph of φ(u) (black and solid) and φ̃σ (u) (green and
dashed) with deferent σ .

Lemma 7.1. Let ω̃σ (v) and ω(v) functions, then for any σ > 0

‖ω̃σ (v)−ω(v)‖L1 ≤
17
3

σ .

Proof. See Lemma 3.1.

Theorem 7.2. Suppose that ϕ̃σ (v) function is a smoothing function of ϕ(v), then

‖ϕ̃σ (v)−ϕ(v)‖L1 ≤ 13.16σ
2.

Proof. See Theorem 3.2.

Theorem 7.3. Assume that ϕ̃σ (v) is a smoothing function of ϕ(v), then

lim
σ→0

ϕ̃σ (v) = ϕ(v).

Proof. See Theorem 3.3.

7.2. Smoothed TV-function for Denoising

We use the results and the properties of the previous part to make the TV-function

smooth. As we described before, we have

TV (x) =
∫
‖D(x)‖dx,

58

the function gradient can be computed as

∇TV (x) = div(
D(x)
‖D(x)‖

).

The TV-function gradient is not defined if one has D(x) = 0 at a pixel x. This means

that it is hard to minimize the TV-function and its gradient flow is not well defined. To

overcome this problem, instead of a smooth TV function, we consider

TVσ (x) =
∫

D(x)S̃(x)dx (7.5)

and S̃(x) =
2

1+ exp(− 1
2σ

D(x))
−1,

where σ > 0. The gradient of the smoothed TV-function is

∇TVσ (x) = div(
σ exp(

1
σ

D(x))+ xexp(
1

2σ
D(x))−σ

σ(exp(
1

2σ
D(x))+1)2

).

Now, the problem set out in (7.3) can be reformulated using smooth TV-function as

min
x
{‖y− x‖+λTVσ (x)} (7.6)

By using (7.6) with the help of a gradient descent minimization method as in the next

algorithm, we can obtain a good image denoising solution.

7.3. Algorithm

Step 1- Set k = 0, choose σ > 0, λ > 0, ε > 0 as a stopping condition, and τ > 0 as

a step.

Step 2- Let x1 = y, y is a noisy image.

Step 3- Calculate a better solution x(k)+1 by

x(k)+1 = x1− τ(y− x1 +λ∇TVσ (x1)).

Step 4- If ‖x(k)+1− x1‖> ε then take x1 = x(k)+1, set k = k+1 and go to (Step 3); else

stop the algorithm and go to (Step 5).

Step 5- Take x(k)+1 as the best solution of image denoising operations.

59

We use some test images size of 256×256 as shown in Fig. 7.2 to show the advantages

of the presented method (NSTV). Fig. 7.3 shows the gradient of the smooth TV-function

with different σ).

(a) (b)

(c) (d)

Figure 7.2. Test images (a) Cameraman, (b) Barbara, (c) Lena and (d)
Pepper

The denoising results are shown in Figs. 7.4, 7.5, 7.6 and 7.7. The efficiency of

the results is calculated in Table 7.1 by peak signal-noise ratio (PSNR) with noise

deviation ρ = 20,25 and the higher PSNR the higher quality of the restoration. We

compared proposed (NSTV) with some current image restore algorithms, such as

FASTA denoising TV (Beck and Teboulle, 2009), the SA-DCT method in (Foi et al.,

2007), the non-sampled contourlet denoising method in (Da Cunha et al., 2006)(DNS-

CT), and generalized TV regularization (Wu et al., 2017) (GTV). The proposed method

shows some advantages in PSNR.

60

Figure 7.3. Smoothed TV-function gradient.

Table 7.1. The PSNR value by various methods (unit: dB).

ρ = 20 ρ = 25
Methods Cameraman Barbara Lena Peppers Cameraman Barbara Lena Peppers
NSTV 29.4642 29.7295 30.3214 30.1947 29.7547 28.5112 29.6008 29.4844
TVF 28.6591 29.3121 29.4092 30.2731 27.5397 27.0854 28.3415 28.4686
SA-DCT 30.0145 30.8906 30.9197 31.8967 28.8963 29.0789 29.7450 29.9224
DNSCT 28.4210 29.1285 29.1131 29.9971 27.3357 26.9872 28.2382 28.2696
GTV 30.3569 31.9690 31.6027 31.7693 29.0712 29.7826 30.5201 30.2162

61

Figure 7.4. The denoising experiment with Cameraman image. (a) Noisy image. (b)
TVF. (c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV.

62

Figure 7.5. The denoising experiment with Barbara image. (a) Noisy image. (b) TVF.
(c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV.

63

Figure 7.6. The denoising experiment with Lena image. (a) Noisy image. (b) TVF. (c)
SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV.

64

Figure 7.7. The denoising experiment with Peppers image. (a) Noisy image. (b) TVF.
(c) SA-DCT. (d) DNSCT. (e) GTV. (f) NSTV.

65

8. Conclusion

In this study, we have presented numerous algorithms aimed at solving a wide range of

global optimization problems and non-smoothing functions. Stochastic and heuristic

methods are easy and fast in the application, but they have no guarantees in obtaining the

global optimal point. Deterministic methods are more effective and reliable, this thesis

focused on deterministic global optimization methods. We presented three algorithms

of global optimization, namely New Smoothing Auxiliary Function (NSA), Directional

Search Algorithm (DSA), and Filled Function Algorithm (FSA). The preliminary results

were very encouraging for all those algorithms.

The NSA algorithm was introduced in Section 3 and includes two parts, a new smooth-

ing approximation technique for non-smooth functions and the new smoothing auxiliary

method by using the same technique to solve unconstrained global optimization prob-

lems with multi-model. This algorithm is efficient for non-smooth functions and solves

multi-model global optimization problems.

In Section 4, the DSA algorithm was introduced, this algorithm presented a new

technique of global optimization by reducing a multidimensional problem to a one-

dimensional problem. The results of the calculation and comparison with NSA and FSA

or with another algorithm showed that this algorithm obtained impressive results as can

be seen from the tables concerned. As a future work, we can extend this algorithm by

adding some restricted on the domain or by reducing the number of directions to be

more efficient.

In Section 5, a new filled function for unconstrained global optimization was presented

to the FSA algorithm. The proposed filled function contains two parameters, which

can be easily adjusted in the process of minimization. Furthermore, it was based on

numerical tests to show the efficacy of the algorithm presented. From empirical results,

it can be seen that the present approach is promising. This algorithm is an effective

approach to solve global multi-modal optimization issues. This algorithm is based on

putting many stationary points in the lower basin. This idea helps to reduce the time

and function evaluations in the minimizing process. These two important properties

make it an advantageous algorithm among the other methods.

Image denoising is an important computer vision field. The NSA algorithm was used in

66

Section 7 as a real-problem to render TV-function smooth and then apply it in image

denoising. This algorithm has been shown to be efficient in image denoising capability.

For the future work, all of the algorithms in this thesis can be applied in the future as

an extension study to many real-life issues such as data mining, chemical processes,

aerospace industries, and image processing such as deblurring and segmentation.

67

REFERENCES

Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A., 1998. A global optimization
method, αBB, for general twice-differentiable constrained NLPs-I. Theoretical
advances. Computers & Chemical Engineering, 22(9), 1137–1158.

Akay, B., Karaboga, D., 2012. A modified artificial bee colony algorithm for real-
parameter optimization. Information sciences, 192, 120–142.

Alefeld, G., Herzberger, J., 2012. Introduction to interval computation. Academic
press.

Anderssen, R., Bloomfield, P., 1975. Properties of the random search in global opti-
mization. Journal of Optimization Theory and Applications, 16(5-6), 383–398.

Androulakis, I.P., Maranas, C.D., Floudas, C.A., 1995. αBB: A global optimiza-
tion method for general constrained nonconvex problems. Journal of Global
Optimization, 7(4), 337–363.

Ao, L., Yibing, L., Xiaodong, Y., Yue, L., 2013. Image restoration with dual-prior
constraint models based on Split Bregman. Optical Review, 20(6), 491–495.

Bagirov, A.M., Rubinov, A.M., Zhang, J., 2009. A multidimensional descent method
for global optimization. Optimization, 58(5), 611–625.

Basso, P., 1982. Iterative methods for the localization of the global maximum. SIAM
Journal on Numerical Analysis, 19(4), 781–792.

Beck, A., Teboulle, M., 2009. Fast gradient-based algorithms for constrained total
variation image denoising and deblurring problems. IEEE transactions on image
processing, 18(11), 2419–2434.

Bertsekas, D.P., 1975. Nondifferentiable optimization via approximation. Nondifferen-
tiable optimization, Springer. (pp. 1–25).

Bruckstein, A.M., Donoho, D.L., Elad, M., 2009. From sparse solutions of systems
of equations to sparse modeling of signals and images. SIAM review, 51(1),
34–81.

Cetin, B., Barhen, J., Burdick, J., 1993. Terminal repeller unconstrained subenergy
tunneling (TRUST) for fast global optimization. Journal of Optimization Theory
and Applications, 77(1), 97–126.

Chambolle, A., 2004. An algorithm for total variation minimization and applications.
Journal of Mathematical imaging and vision, 20(1-2), 89–97.

Chambolle, A., 2005. Total variation minimization and a class of binary MRF models.
International Workshop on Energy Minimization Methods in Computer Vision
and Pattern Recognition. Springer, (pp. 136–152).

68

Chan, R.H., Tao, M., Yuan, X., 2013. Constrained total variation deblurring models
and fast algorithms based on alternating direction method of multipliers. SIAM
Journal on imaging Sciences, 6(1), 680–697.

Chan, T.F., Esedoglu, S., Nikolova, M., 2006. Algorithms for finding global minimiz-
ers of image segmentation and denoising models. SIAM journal on applied
mathematics, 66(5), 1632–1648.

Chan, T.F., Golub, G.H., Mulet, P., 1999. A nonlinear primal-dual method for total
variation-based image restoration. SIAM journal on scientific computing, 20(6),
1964–1977.

Chen, Y., Wan, Z., 2015. A locally smoothing method for mathematical programs with
complementarity constraints. The ANZIAM Journal, 56(3), 299–315.

Chowdhury, P.R., Singh, Y.P., Chansarkar, R., 2000. Hybridization of gradient descent
algorithms with dynamic tunneling methods for global optimization. IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
30(3), 384–390.

Da Cunha, A.L., Zhou, J., Do, M.N., 2006. The nonsubsampled contourlet transform:
theory, design, and applications. IEEE transactions on image processing, 15(10),
3089–3101.

Ekren, O., Ekren, B.Y., 2010. Size optimization of a PV/wind hybrid energy conversion
system with battery storage using simulated annealing. Applied energy, 87(2),
592–598.

Floudas, C.A., Visweswaran, V., 1990. A global optimization algorithm (GOP) for cer-
tain classes of nonconvex NLPs-I. Theory. Computers & chemical engineering,
14(12), 1397–1417.

Floudas, C.A., Visweswaran, V., 1993. Primal-relaxed dual global optimization ap-
proach. Journal of Optimization Theory and Applications, 78(2), 187–225.

Foi, A., Katkovnik, V., Egiazarian, K., 2007. Pointwise shape-adaptive DCT for
high-quality denoising and deblocking of grayscale and color images. IEEE
transactions on image processing, 16(5), 1395–1411.

Garg, H., 2016. A hybrid PSO-GA algorithm for constrained optimization problems.
Applied Mathematics and Computation, 274, 292–305.

Ge, R., Qin, Y., 1987. A class of filled functions for finding global minimizers of a
function of several variables. Journal of Optimization Theory and Applications,
54(2), 241–252.

Grimstad, B., Sandnes, A., 2016. Global optimization with spline constraints: a new
branch-and-bound method based on B-splines. Journal of Global Optimization,
65(3), 401–439.

69

Griva, I., Nash, S.G., Sofer, A., 2009. Linear and nonlinear optimization, Volume 108.
Siam.

Groenen, P.J., Heiser, W.J., 1996. The tunneling method for global optimization in
multidimensional scaling. Psychometrika, 61(3), 529–550.

Guo, X., Li, F., Ng, M.K., 2009. A fast 1-TV algorithm for image restoration. SIAM
Journal on Scientific Computing, 31(3), 2322–2341.

Hansen, E., Walster, G.W., 2003. Global optimization using interval analysis: revised
and expanded, Volume 264. CRC Press.

He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G., 2012. A new fuzzy c-means
method with total variation regularization for segmentation of images with noisy
and incomplete data. Pattern Recognition, 45(9), 3463–3471.

Huyer, W., Neumaier, A., 1999. Global optimization by multilevel coordinate search.
Journal of Global Optimization, 14(4), 331–355.

Jones, D.R., Perttunen, C.D., Stuckman, B.E., 1993. Lipschitzian optimization without
the Lipschitz constant. Journal of optimization Theory and Applications, 79(1),
157–181.

Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of global
optimization, 39(3), 459–471.

Kennedy, J., 2010. Particle swarm optimization. Encyclopedia of machine learning,
760–766.

Lera, D., Sergeyev, Y.D., 2015. Deterministic global optimization using space-filling
curves and multiple estimates of Lipschitz and Hölder constants. Communica-
tions in Nonlinear Science and Numerical Simulation, 23(1-3), 328–342.

Levy, A.V., Montalvo, A., 1985. The tunneling algorithm for the global minimization of
functions. SIAM Journal on Scientific and Statistical Computing, 6(1), 15–29.

Lin, H., Gao, Y., Wang, Y., 2014. A continuously differentiable filled function method
for global optimization. Numerical Algorithms, 66(3), 511–523.

Lin, H., Wang, Y., Gao, Y., Wang, X., 2018. A filled function method for global opti-
mization with inequality constraints. Computational and Applied Mathematics,
37(2), 1524–1536.

Liu, H., Wang, Y., Guan, S., Liu, X., 2017. A new filled function method for uncon-
strained global optimization. International Journal of Computer Mathematics,
94(12), 2283–2296.

Liu, J., Zhang, S., Wu, C., Liang, J., Wang, X., Teo, K.L., 2016. A hybrid approach to
constrained global optimization. Applied Soft Computing, 47, 281–294.

70

Liu, X., 2001. Finding global minima with a computable filled function. Journal of
Global Optimization, 19(2), 151–161.

Mahi, M., Baykan, Ö.K., Kodaz, H., 2015. A new hybrid method based on particle
swarm optimization, ant colony optimization and 3-opt algorithms for traveling
salesman problem. Applied Soft Computing, 30, 484–490.

Marquina, A., Osher, S., 2000. Explicit algorithms for a new time dependent model
based on level set motion for nonlinear deblurring and noise removal. SIAM
Journal on Scientific Computing, 22(2), 387–405.

Niknam, T., Amiri, B., Olamaei, J., Arefi, A., 2009. An efficient hybrid evolutionary
optimization algorithm based on PSO and SA for clustering. Journal of Zhejiang
University-SCIENCE A, 10(4), 512–519.

Phillips, D.L., 1962. A technique for the numerical solution of certain integral equations
of the first kind. Journal of the ACM (JACM), 9(1), 84–97.

Poli, R., Kennedy, J., Blackwell, T., 2007. Particle swarm optimization. Swarm
intelligence, 1(1), 33–57.

Ralph, D., Xu, H., 2005. Implicit smoothing and its application to optimization with
piecewise smooth equality constraints. Journal of optimization theory and
applications, 124(3), 673–699.

Renpu, G., 1990. A filled function method for finding a global minimizer of a function
of several variables. Mathematical programming, 46(1-3), 191–204.

Rudin, L.I., Osher, S., 1994. Total variation based image restoration with free local
constraints. Proceedings of 1st International Conference on Image Processing.
IEEE, Volume 1, (pp. 31–35).

Sahiner, A., Gokkaya, H., Yigit, T., 2012. A new filled function for nonsmooth global
optimization. AIP Conference Proceedings. AIP, Volume 1479, (pp. 972–974).

Sahiner, A., Ibrahem, S.A., 2019. A new global optimization technique by auxiliary
function method in a directional search. Optimization Letters, 13(2), 309–323.

Sahiner, A., Yilmaz, N., Ibrahem, S.A., 2018. Smoothing Approximations to Non-
smooth Functions. Journal of Multidisciplinary Modeling and Optimization.

Sahiner, A., Yilmaz, N., Kapusuz, G., 2017. A descent global optimization method based
on smoothing techniques via Bezier curves. Carpathian Journal of Mathematics,
33(3), 373–380.

Sahiner, A., Yilmaz, N., Kapusuz, G., 2019. A novel modeling and smoothing technique
in global optimization. Journal of Industrial & Management Optimization, 15(1),
113–130.

Samora, I., Franca, M.J., Schleiss, A.J., Ramos, H.M., 2016. Simulated annealing in

71

optimization of energy production in a water supply network. Water resources
management, 30(4), 1533–1547.

Schäffler, S., 2012. Global optimization: a stochastic approach. Springer Science &
Business Media.

Shang, Y.l., Pu, D.g., Jiang, A.p., 2007. Finding global minimizer with one-parameter
filled function on unconstrained global optimization. Applied Mathematics and
Computation, 191(1), 176–182.

Storti, G.L., Paschero, M., Rizzi, A., Mascioli, F.M.F., 2015. Comparison between time-
constrained and time-unconstrained optimization for power losses minimization
in smart grids using genetic algorithms. Neurocomputing, 170, 353–367.

Suman, B., Kumar, P., 2006. A survey of simulated annealing as a tool for single and
multiobjective optimization. Journal of the operational research society, 57(10),
1143–1160.

Wang, W., Zhang, X., Li, M., et al., 2015. A filled function method dominated by filter
for nonlinearly global optimization. Journal of Applied Mathematics, 2015.

Wang, Y., Fan, L., 2010. A smoothing evolutionary algorithm with circle search for
global optimization. 2010 Fourth International Conference on Network and
System Security. IEEE, (pp. 412–418).

Wei, F., Wang, Y., 2013. A new filled function method with one parameter for global
optimization. Mathematical Problems in Engineering, 2013.

Wei, F., Wang, Y., Lin, H., 2014. A new filled function method with two parameters for
global optimization. Journal of Optimization Theory and Applications, 163(2),
510–527.

Wu, H., Zhang, P., Lin, G.H., 2015. Smoothing approximations for some piecewise
smooth functions. Journal of the Operations Research Society of China, 3(3),
317–329.

Wu, Q., Li, Y., Lin, Y., 2017. The application of nonlocal total variation in image
denoising for mobile transmission. Multimedia Tools and Applications, 76(16),
17179–17191.

Wu, Z., Zhang, L., Teo, K., Bai, F., 2005. New modified function method for global
optimization. Journal of Optimization Theory and Applications, 125(1), 181–
203.

Wu, Z.Y., Bai, F., Lee, H.J., Yang, Y., 2007. A filled function method for constrained
global optimization. Journal of Global Optimization, 39(4), 495–507.

Wu, Z.Y., Lee, H.J., Zhang, L.S., Yang, X., 2006. A novel filled function method and
quasi-filled function method for global optimization. Computational Optimiza-
tion and Applications, 34(2), 249–272.

72

Wu, Z.Y., Li, D., Zhang, L.S., 2011. Global descent methods for unconstrained global
optimization. Journal of Global Optimization, 50(3), 379–396.

Xavier, A.E., 2010. The hyperbolic smoothing clustering method. Pattern Recognition,
43(3), 731–737.

Xiao, Y., Yu, B., 2010. A truncated aggregate smoothing Newton method for minimax
problems. Applied Mathematics and Computation, 216(6), 1868–1879.

Xu, S., 2001. Smoothing method for minimax problems. Computational Optimization
and Applications, 20(3), 267–279.

Xu, Y.T., Zhang, Y., Wang, S.G., 2015. A modified tunneling function method for
non-smooth global optimization and its application in artificial neural network.
Applied Mathematical Modelling, 39(21), 6438–6450.

Xu, Z., Huang, H.X., Pardalos, P.M., Xu, C.X., 2001. Filled functions for unconstrained
global optimization. Journal of Global Optimization, 20(1), 49–65.

Yang, J., Yin, W., Zhang, Y., Wang, Y., 2009. A fast algorithm for edge-preserving
variational multichannel image restoration. SIAM Journal on Imaging Sciences,
2(2), 569–592.

Yang, Y., Pang, L., Ma, X., Shen, J., 2014. Constrained nonconvex nonsmooth op-
timization via proximal bundle method. Journal of Optimization Theory and
Applications, 163(3), 900–925.

Yilmaz, N., Sahiner, A., 2017. New global optimization method for non-smooth
unconstrained continuous optimization. AIP Conference Proceedings. AIP
Publishing, Volume 1863, (s. 250002).

Yilmaz, N., Sahiner, A., 2019. New Smoothing Approximations to Piecewise Smooth
Functions and Applications. Numerical Functional Analysis and Optimization,
40(5), 513–534.

Yuan, L., Wan, Z., Tang, Q., 2016a. A criterion for an approximation global optimal
solution based on the filled functions. Journal of Industrial & Management
Optimization, 12(1), 375–387.

Yuan, L.y., Wan, Z.p., Tang, Q.h., Zheng, Y., 2016b. A class of parameter-free filled
functions for box-constrained system of nonlinear equations. Acta Mathematicae
Applicatae Sinica, English Series, 32(2), 355–364.

Zang, I., 1980. A smoothing-out technique for min—max optimization. Mathematical
Programming, 19(1), 61–77.

Zhang, Y., Zhang, L., Xu, Y., 2009. New filled functions for nonsmooth global
optimization. Applied Mathematical Modelling, 33(7), 3114–3129.

Zheng, Y.J., Xu, X.L., Ling, H.F., Chen, S.Y., 2015. A hybrid fireworks optimization

73

method with differential evolution operators. Neurocomputing, 148, 75–82.

Zhigljavsky, A., Zilinskas, A., 2007. Stochastic global optimization, Volume 9. Springer
Science & Business Media.

Ziadi, R., Bencherif-Madani, A., Ellaia, R., 2016. Continuous global optimization
through the generation of parametric curves. Applied Mathematics and Compu-
tation, 282, 65–83.

74

CURRICULUM VITAE

Name Surname : Shehab A. IBRAHEM

Place and Date of Birth : Iraq, Kirkuk, 1979

Marital Status : Married

Foreign Language : English, Turkish

Nationality : Iraqi

E-mail : mullaiq@gmail.com

Education

High School : Al-Hawija High School, 1997

B.Sc. : University of Musel, Department of Mathematics, 2001

M.Sc. : University of Tikrit, Department of Mathematics, 2008

Employment Experiences

Teaching Assistant, Department of Mathematics, Kirkuk University : 2003-2014

Publications

Sahiner, A., Ibrahem, S.A., 2019. A new global optimization technique by auxiliary
function method in a directional search. Optimization Letters, 13(2), pp. 309-
323.

Sahiner, A., Ibrahem, S.A., Yilmaz, N., Increasing the Effects of Auxiliary Function by
Multiple Extrema in Global Optimization. In Numerical Solutions of Realistic
Nonlinear Phenomena, pp. 125-143. Springer, Cham, 2020.

Sahiner, A., Yilmaz, N., Ibrahem, S.A., 2018. Smoothing Approximations to Non-
smooth Functions. Journal of Multidisciplinary Modeling and Optimization,
1(2), pp. 69-74.

Sahiner, A., Abdulhamid, I.A.M., Ibrahem, S.A., 2019. A new filled function method
with two parameters in a directional search. Journal of Multidisciplinary Model-
ing and Optimization, 2(1), pp. 34-42.

Sahiner, A., Ibrahem, S.A., A new single-strand smoothing technique and its usage
in global optimization. on Mathematics and Mathematics Education (ICMME

75

2019), p. 129.

Sahiner, A., Abdulhamid, I.A., Ibrahem, S.A., New multimodal auxiliary function and
directional search for global optimization. on Mathematics and Mathematics
Education (ICMME 2019), p. 337.

Ibrahem, S.A., Sahiner, A., Ibrahim, A.A., 2018. Fuzzy Logic Modeling for Prediction
of the Nuclear Tracks. Journal of Multidisciplinary Modeling and Optimization,
1(1), pp. 33-40.

76

ÖZGEÇMİŞ

Adı Soyadı : Shehab A. IBRAHEM

Doğum Yeri ve Yılı : Irak, Kirkuk, 1979

Medeni Hali : Evli

Yabancı Dili : İngilizce, Turkce

Uyruğu : Irak

E-posta : mllaiq@gmail.com

Eğitim Durumu

Lise : Al-Hawija Lisesi, 1997

Lisans : Musel Üniversitesi, Matematik Bölümü, 2001

Mesleki Deneyim

Kirkuk Üniversitesi, Matematik Bölümü, Araştırma Görevlisi : 2003-2014

Yayınlar

Şahiner, A., Ibrahem, S.A., 2019. A new global optimization technique by auxiliary
function method in a directional search. Optimization Letters, 13(2), pp. 309-
323.

Şahiner, A., Ibrahem, S.A., Yilmaz, N., Increasing the Effects of Auxiliary Function by
Multiple Extrema in Global Optimization. In Numerical Solutions of Realistic
Nonlinear Phenomena, pp. 125-143. Springer, Cham, 2020.

Şahiner, A., Yilmaz, N., Ibrahem, S.A., 2018. Smoothing Approximations to Non-
smooth Functions. Journal of Multidisciplinary Modeling and Optimization,
1(2), pp. 69-74.

Şahiner, A., Abdulhamid, I.A.M., Ibrahem, S.A., 2019. A new filled function method
with two parameters in a directional search. Journal of Multidisciplinary Model-
ing and Optimization, 2(1), pp. 34-42.

Şahiner, A., Ibrahem, S.A., A new single-strand smoothing technique and its usage
in global optimization. on Mathematics and Mathematics Education (ICMME
2019), p. 129.

77

Şahiner, A., Abdulhamid, I.A., Ibrahem, S.A., New multimodal auxiliary function and
directional search for global optimization. on Mathematics and Mathematics
Education (ICMME 2019), p. 337.

Ibrahem, S.A., Şahiner, A., Ibrahim, A.A., 2018. Fuzzy Logic Modeling for Prediction
of the Nuclear Tracks. Journal of Multidisciplinary Modeling and Optimization,
1(1), pp. 33-40.

78

	TABLE OF CONTENTS
	ABSTRACT
	ÖZET
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS AND ABBREVIATION
	INTRODUCTION
	Global Optimization Formula
	Global Optimization Classification
	Objective Function Form
	Various Methods for Solving Global Optimization Problems
	Stochastic methods
	Heuristic methods
	Deterministic methods

	Thesis Overview

	PRELIMINARIES AND TERMINOLOGIES
	NEW SMOOTHING TECHNIQUE WITH APPLICATION IN GLOBAL OPTIMIZATION
	Global Smoothing Technique
	Global Optimization Technique
	Algorithm

	GLOBAL OPTIMIZATION TECHNIQUE IN A DIRECTIONAL SEARCH
	Auxiliary Function Method in Global Optimization
	One-dimensional Minimization Problem
	Algorithm

	INCREASING THE EFFECTS OF FILLED FUNCTION IN GLOBAL OPTIMIZATION
	Overview of the Filled Function Method
	Filled Function Methods with Two-parameter
	Filled Function Methods with One-parameter

	New Filled Function and Its Properties
	Algorithm

	APPLICATION FOR GLOBAL OPTIMIZATION ALGORITHMS
	Test Problems
	Applications on Test problems

	TOTAL VARIATION APPLICATION IN IMAGE DENOISING
	Theoretical part
	Smoothed TV-function for Denoising
	Algorithm

	Conclusion
	REFERENCES
	CURRICULUM VITAE
	ÖZGEÇMIS

