
T.R. 

GEBZE TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

 

 

MOLECULAR EFFECTS OF PLANT-BASED DRUGS ON 

BREAST CANCER BY MAPPING TRANSCRIPTOME DATA ON 

PROTEIN-PROTEIN INTERACTIONS 

 

 

 

 

 

RONALD REGAN ODONGO 

A THESIS SUBMITTED FOR THE DEGREE OF  

MASTER OF SCIENCE 

DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS 

 

 

 

 

 

 

 

 

GEBZE 

2019



T.R. 

GEBZE TECHNICAL UNIVERSITY 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

 

 

MOLECULAR EFFECTS OF PLANT-BASED 

DRUGS ON BREAST CANCER BY MAPPING 

TRANSCRIPTOME DATA ON PROTEIN-

PROTEIN INTERACTIONS 

 

 

RONALD REGAN ODONGO 

A THESIS SUBMITTED FOR THE DEGREE OF  

MASTER OF SCIENCE 

DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS 

 

THESIS SUPERVISOR 

ASSOC. PROF. DR. ASUMAN D. ZERGEROĞLU 

II. THESIS SUPERVISOR 

ASSOC. PROF. DR. TUNAHAN ÇAKIR 

 

 

GEBZE 

2019



T.C. 

GEBZE TEKNİK ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

 

TRANSKRİPTOM VERİLERİNİN PROTEİN-

PROTEİN ETKİLEŞİM AĞLARINA 

HARİTALANMASIYLA BİTKİSEL İLAÇLARIN 

MEME KANSERİNE MOLEKÜLER 

ETKİLERİNİN ARAŞTIRILMASI 

 

RONALD REGAN ODONGO 

YÜKSEK LİSANS TEZİ 

MOLEKÜLER BİYOLOJİ VE GENETİK ANABİLİM DALI 

 

TEZ DANIŞMANI: 

DOÇ. DR. ASUMAN D. ZERGEROĞLU 

II. TEZ DANIŞMANI: 

DOÇ. DR. TUNAHAN ÇAKIR 

 

 

 

 

GEBZE 

2019





v 
 

SUMMARY 

Breast cancer is the second most commonly diagnosed cancer in females. 

Despite improvements in knowledge of molecular mechanisms of carcinogenesis and 

availability of treatment options, it’s still the major contributor of fatalities globally. 

Reductionism is the dominant drug design and evaluation approach, however, the 

molecular complexity in cancer requires robust and holistic approaches to account for 

all the molecular players. Thus, systems pharmacology is increasingly being preferred. 

Carcinogenesis overrides normal cellular growth control mechanisms through genetic 

and epigenetic dysregulations. Cell signaling pathways is one of the main targets of 

such deregulations. Exquisitely targeting single proteins in signaling networks has 

largely failed to improve disease prognosis and compounds with multiple targets in 

perceived oncogenic signaling pathways are preferred. Fortunately, plant-based drugs, 

known to simultaneously target multiple ligands, are increasingly gaining attention as 

anti-cancer alternatives. Here, a systems pharmacology approach was applied to 

extract drug-specific subnetworks. KeyPathwayMiner was used to map transcriptome 

data on PPIN. Subsequently, a set of bioinformatics tools were used to infer perturbed 

signal transduction pathways. Three breast cancer subtypes under actein, indole-3-

carbinol, compound kushen injection and Withaferin A plant-based drugs were 

studied. In line with multi-target approach, this work shows that, with the exception of 

MDA-MB-157 cell line, these compounds/formulations target multiple oncogenic 

signal transduction networks regulating various carcinogenesis processes. The novelty 

in subnetwork approach is the reliance on interconnected entities over differentially 

expressed genes to infer biological context. This holistic approach could inform 

smarter experimental designs and drug mechanism of action from enriched signaling 

pathways.  

 

 

 

Keywords: Breast cancer, bioinformatics, systems biology, plant-based drugs, 

signal transduction networks, network pharmacology, protein interactions, 

transcriptome. 



vi 
 

ÖZET 

Meme kanseri kadınlarda en sık rastlanan kanserdir. Moleküler karsinogenez 

bilgisindeki gelişmeler ve çeşitli tedavi seçenekleri bulunmasına rağmen hala dünya 

çapında ölümlerin önemli nedenleri arasında yer almaktadır. Redüksiyonizm, baskın 

ilaç tasarımı ve değerlendirme yaklaşımıdır, ancak bu tip kanserlerdeki moleküler 

karmaşıklık sistemdeki tüm moleküler bileşenler için sağlam ve bütünsel bir yaklaşımı 

gerektirmektedir. Bu kapsamda, sistem farmakolojisi global moleküler resmin 

belirlenmesinde tercih edilen bir yöntem haline gelmektedir. Karsinogenez, normal 

hücre büyüme kontrol mekanizmalarının genetik mutasyonlar ve epigenetik 

düzensizlikler aracılığıyla geçersiz sayılmasıyla ilişkilidir. Hücresel sinyal yolakları 

bu tür deregülasyonların temel hedeflerinden biridir. Sinyal ağındaki tek bir proteini 

hedeflemek hastalığın ilerleyişini iyileştirmede önemli ölçüde başarısız olmuştur ve 

onkogenik sinyal yollarındaki çoklu hedefleri olan ürünler tercih edilmektedir. Öte 

yandan, çoklu bileşenleri hedef aldığı bilinen bitkisel kaynaklı ilaçlar anti-kanser 

alternatifler olarak önem kazanmaktadır. Bu nedenle bu tezde, transkriptom ifade 

verilerinden ilaca spesifik protein-protein etkileşim modüllerini alt ağları oluşturmak 

için bir ağ farmakoloji yaklaşımı uygulanmış ve bunlar bozulan sinyal ileti yollarını 

açığa çıkarmak amacıyla kullanılmıştır. Bitkisel kaynaklı ilaçlar olan actein, indole-3-

carbinol, Kushen enjeksiyonu bileşiği ve Withaferin A ile muamele edilen üç tip meme 

kanserini incelemek amacıyla KeyPathwayMiner ve bir dizi biyoinformatik araç 

kullanılarak etkileşim modülleri elde edilmiştir. Çok hedefli yaklaşıma uygun olarak 

bu çalışma, MDA-MB-157 hücre hattı hariç, bu ilaçların çeşitli karsinogenez 

işlemlerini düzenleyen çoklu onkogenik sinyal ileti ağlarını hedeflediğini 

göstermektedir. Alt ağ analizi yaklaşımındaki yenilik, biyolojik önemi ortaya 

çıkarmak için alanlı değişen genlerin  tespit edilmesi yerine birbiriyle etkileşen ve 

alanlı değişen proteinler grubunun dikkate alınmasıdır. Bu kapsamlı analiz, daha akıllı 

deney dizaynları için öncü olabilir ve sinyal ileti yolaklarında ilaçların etki 

mekanizmasını detaylandırabilir.  

 

Anahtar kelimeler: meme kanser, biyoinformatik, system biyolojisi, bitkisel 

kaynaklı ilaçlar, sinyal transdüksiyon ağları, ağ farmakolojisi, protein etkileşimi, 

transkriptom. 
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1. INTRODUCTION 

 

1.1. Breast Cancer 

 

Of all cancers, breast cancer is the most debilitating cancers in women. It is the 

second most prevalent cancer in females and globally contributed over 2 million new 

cases and 600,000 fatalities in 2017 alone [1]. Many factors contribute to transition 

from normal to malignant cells including radiation, mutations, viruses, and 

epigenetics. Hence, cancers of this type are highly heterogenous complicating 

treatment approaches. Breast cancers are molecularly classified into three groups 

based on progesterone receptor (PR), human epidermal growth factor receptor (HER) 

and oestrogen receptor (ER) expression: luminal (ER+, PR+, HER-), HER2 positive 

(+) and triple negative (TNBC) (ER-, PR- and HER2-) [2]. Overall, the underlying 

pathogenesis in the different breast cancer (BC) subtypes involves the hijacking of the 

normal cellular processes and uncontrolled progression to malignancy.  

 

1.2. Breast Cancer Treatment Approaches 

 

Standard treatment approaches for breast cancer patients typically involve 

surgery to remove the tumor, radiation therapy, hormone therapy, chemotherapy and 

targeted therapy [3]. Thus, to date, a number of drugs have been introduced in the 

clinical management of BC which are broadly categorized into cytotoxic, hormonal 

and single molecule targeted therapies (mainly monoclonal antibodies). TNBC exhibit 

more aggressive clinical phenotype and is associated with metastasis to distant organs, 

resistance to chemotherapy and overall low 5-year survival [4]. On the other hand, the 

luminal and HER2+ harbouring patients largely respond to hormonal treatment and 

have better prognosis [3]. 

Signal transduction is the mechanistic transmission of extracellular or 

intracellular generated signals through a cell using a cascade of protein post-

translational modifications, with the net result being expression of targeted genes. 

Malignant cells seize these cascades through activating/deleterious mutations and 
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epigenetic control of the rate limiting proteins. In effect, this limits the ligand binding 

response regulation. These dysregulations have been used as drug targets for decades 

[5]. The activity and utility of any particular cascade is BC subtype specific occasioned 

by the underlying genetic phenotype. Hence, a new and effective drug should be able 

to target disease specific networks across multiple subtypes or within the various 

subtypes. Current approaches are increasingly being developed to target multiple 

targets on a disease specific signaling network [5], [6]. 
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2. LITERATURE REVIEW 

 

2.1. Signal Transduction Pathways in Breast Cancer 

Carcinogenesis for Targeted-Therapy 
 

Concerted efforts by different groups have greatly increased our understanding 

of signal transduction networks in breast cancer. The association of these networks to 

carcinogenesis processes has been useful in prioritization of drug targets in onco-

therapy. The main biological processes hijacked by malignant cancer cells to advance 

carcinogenesis are cell cycle (proliferation) and death, inflammation, metastasis and 

angiogenesis. Each of these processes are further driven by a network of signal 

transduction networks and promiscuity of these networks is common.  

Recently, a consortium of oncology researchers from the TCGA (The Cancer 

Genome Atlas) PanCancer Atlas Initiative classified oncogenic signaling pathways 

into 10 frequently altered canonical pathways based on a profiling analysis of over 

9000 samples from 33 tumors [6]. This novel template is useful while working with 

signaling pathways in cancer cells for precision medicine and oncology research. 

However, not factored in this classification are the primordial roles of tumor 

microenvironment and mechanisms regulating development of new blood vessels 

(angiogenesis). Below, we summarise current knowledge on dysregulated canonical 

signaling in breast cancer, including the two additional signaling pathways regulating 

the missing processes. 

 

2.1.1. Receptor Tyrosine Kinase/Ras/Mitogen Activated Protein 

Kinase (MAPK) 
 

The receptor tyrosine kinase (RTK) is an important pathway in breast cancer 

therapy and comprises a family of closely related receptors with an intracellular 

tyrosine kinase regulator domain. It plays very important roles in breast cancer 

carcinogenesis through regulation of cell proliferation, differentiation, death and 

survival processes. Over the years, a number of sub-family members have been 

discovered due to their importance in various cancers including HER-1, HER-2, HER-

3 and HER-4. These receptors are stimulated by ligand binding to the extracellular 

domain, resulting in receptor dimerization. The type of dimers formed determine the 
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type of downstream effectors induced. Dimerized receptors induce phosphorylation of 

the intracellular tyrosine kinases and consequently downstream kinases resulting in 

dysregulation of several cascades including MAPK and PI3K (Figure1.1). RTK has 

also been shown to crosstalk with TGF-ß [7], Notch [8], ER and insulin like growth 

factor signaling [9]. 

HER-2 (ErbB-2 or HER-2/neo) is the most dysregulated receptor in breast 

cancer and is associated with tumorigenesis progression. Furthermore, most of the 

HER receptors are understood to dimerize with HER-2 receptor to affect biological 

functions pointing to its importance in cell function. In this respect, a number of 

targeted therapeutic antibodies against pathway proteins have been successfully 

developed. For instance, Herceptin (trastuzumab) and Perjeta (pertuzumab) binds to 

the receptor preventing dimerization and canertinib, erlotinib and Iressa (gefitinib) are 

small molecule inhibitors that act as tyrosine kinase inhibitors [5], [7], [10]. 

The mitogen activated protein kinase network is composed mainly of three 

members: c-Jun N-terminal kinase (JNK), extracellular signal regulated kinase (ERK) 

and the p38 MAPK which mediate cell growth or cell death depending on the signal. 

While ERK is modulated by growth factors, JNK and p38 MAPK are activated by 

cellular stress, growth factor and cytokines.  A signalling molecular binding to a 

receptor at the cell surface triggers a phosphorylation cascade through MAP kinase 

kinase kinase (MKKK), which in turn phosphorylates and activates MAP kinase kinase 

(MKK) (Figure 1.1) [11]. Depending on the activating signal, MKK activates either 

ERK, JNK or p38. Activated ERK specifically drives cell growth while JNK and p38 

can either mediate cell growth or death by targeting genes involved in the respective 

networks for activation or destruction. In addition, JNK can target c-Jun and IkB-α and 

ERK can also activate the NF-kB thereby affecting cellular processes. 

The role of this network in breast cancer carcinogenesis has been studied by 

different groups and targeted therapies have since been developed. The most well 

understood mechanism is the regulation of the MAP kinase phosphatases (MKP) 

intrinsic regulator. MKP-1 is the most studied MKP subtype and has been reported to 

be controlled by p53. Hence, induction by p53 can directly regulate the G1 phase of 

the cell cycle. It is believed that developing drugs that can augment this inhibitor can 

override the pathological phenotype associated with this pathway [12].  
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Figure 2.1: The RTK-Ras-MAPK signaling pathway. 

 

2.1.2. The PI3K-Akt-mTOR Pathway 

 

Response to growth inducers, hormones and nutrients to regulate tumor cell 

proliferation and growth in breast cancer is chiefly mediated by signal transduction 

through phosphoinositide 3-kinase (PI3K)-Akt (PKB, protein kinase B)-mammalian 

target of rapamycin (mTOR). Upstream activation by receptor tyrosine kinase (RTK) 

of PI3K leads to homodimer formation and concomitant activation. PI3K 

phosphorylates and activates phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,4-triphosphate (PIP3), which in turn activates Akt through 

phosphorylation (Figure 1.2) [13]. The tumor suppressor, phosphatase and tensin 

homolog (PTEN) controls the PIP2-to-PIP3 activation and is thus mutated or deleted 

in most proliferating breast tumors. Akt performs important biological functions 

through regulation of cell cycle, survival and growth. Its overexpression is linked to 

poor disease outcomes in breast cancer. Finally, activated Akt activates mTOR by 



6 
 

phosphorylating and inhibiting tuberous sclerosis 1/2(TSC1/2); a tumor suppressor. 

An active mTOR mediates increased cell growth and metabolism, thus contributing to 

increased carcinogenesis (Figure 1.2). It is also known that Akt can directly activate 

NF-kB in tumors. 

Clinically, unregulated signaling through PI3K-Akt-mTOR has been linked to 

trastuzumab resistance in HER-2 over-expressing breast cancers and endocrine 

resistance in HR-positive breast cancers as it can directly activate ER, independent of 

oestrogen. Thus, gaining control of this network is an area under active research with 

different drug candidates targeting one or multiple signaling molecules [14]. 

 

Figure 2.2: The PI3K-Akt-mTOR signaling pathway 

 

2.1.3. The Transforming Growth Factor -beta (TGF-ß) Pathway 

 

TGF-ß is a cytokine with promiscuous cellular roles in breast cancer. It 

regulates cell cycle and induces apoptosis during early stages of tumorigenesis by 

targeting cyclin dependent kinases and checkpoint regulators while accelerating cell 

cycle progression, motility, invasion and metastasis in late tumors. TGF-ß has five 

members, and signaling through this circuit is orchestrated by ligand binding to the 

receptor (TßR-I, II and III). TßR-I and TßR-II are transmembrane receptors with 

serine-threonine kinase intracellular domains and are auto-phosphorylated and 

activated by ligand binding. The activated TßR-II then recruits TßR-I to the complex. 

The activation signal is relayed via the Smad family cascade. Phosphorylation and 
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activation of the R-Smads (Smad 2 and 3) is the first step followed by heterodimer 

formation through binding of Smad4 (co-Smad) to form a functional transcription 

factor which migrates to the nucleus to influence the expression of the responsive 

genes (Figure 1.3) [15]. Negative regulation of this cascade is achieved through I-

Smads (Smad 6 and 7), which form stable inhibitory complexes with TßRI. 

Additionally, the active complex has been shown to directly interact with MAPK and 

NF-kB. This forms the canonical signaling pathway. In non-canonical signaling, 

activated receptor complex can directly interact with ERK 1/2 and p38 MAPK, thus 

controlling cell migration and invasion [7], [16]. 

 

Figure 2.3: The TGF-beta pathway 

 

2.1.4. The Cell Cycle and P53 Pathway 

 

The cell cycle pathway controls cell proliferation through sequential regulation 

of the key events in the production of daughter cells. Through epigenetic and 

mutational dysregulation of the control points, normal cells can be transformed into 

malignant highly proliferative cells with reduced/no response to regulatory factors. 

The molecular control of the cycle through G1, S, G2, M and G0 has been well 

established (Figure 1.4)[17]. The dysregulations contributing to cancer involve 

overriding the checkpoint regulators that inhibit cyclin dependent kinases (p15, p16, 
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p18, p21, p27 and p57) and/or chromosomal deletion or functional mutation of the 

tumor suppressor genes: retinoblastoma (Rb) and p53 pathway (Figure 1.5) [18].  

Hence, regaining control of the cell cycle through up-regulating the checkpoint 

inhibitors and the tumor suppressor genes has been a highly lucrative approach in 

anticancer drug development [19], [20]. It is worth noting that the cell cycle regulatory 

genes are directly/indirectly controlled by PI3K/Akt/mTOR, TGF-ß and MAPK 

signaling pathways in the context of cancer. 

 

Figure 2.4: The cell cycle pathway 
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Figure 2.5: The P53 signaling pathway 
 

2.1.5. Wingless Integrated (Wnt)/ß-Catenin 

 

Owing to its pivotal roles in regulating cell proliferation, apoptotic cell death, 

migration and cell fate decisions, aberrant expression of Wnt associated genes is linked 

to several cancers including that of the breast [21]. Signaling through this pathway 

entails ligand binding of the cell surface receptors at the cysteine rich domain, inducing 

a structural change in the cytoplasmic domain. This activates the receptor, leading to 

the stabilization of the intracellular ß-catenin protein. Accumulation of cytosolic ß-

catenin translocates to the nucleus, forming complexes with TCF/LEF1 transcription 

factor families to induce the transcription of responsive genes. Intracellular levels of 

ß-catenin are controlled through ubiquitination by GSK3ß, Axin and APC (Figure 1.6) 

[22]. Dysregulation of the Wnt receptor, Wnt and the negative regulators of the ß-

catenin thus are attractive targets in breast cancer [21], [23].  
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Figure 2.6: The Wnt/Beta Catenin signaling pathway showing the active and inactive 

states. 
 

2.1.5. Notch Pathway 

 

Notch signaling is one of the most conserved pathways. Its role in regulating 

cell survival, angiogenesis, stemness and migration has made it an important target in 

anticancer drug research in breast cancer [24]. Signaling is initiated by receptor (four 

exists: Notch 1-4) interaction with the transmembrane ligands (five DSL ligands: 

Jagged 1,2 and Delta-like 1,3 and 4) from an adjacent cell. Proteolytic cleavage by 

ADAM 10 and 17 of the S2 site and subsequently by gamma-secretase releases the 

Notch intracellular domain (NICD) which translocates to the nucleus. NICD associates 

with DNA binding protein RBPj and further Mastermind-like (MAML) transcription 

coactivator to initiate the transcription of the Hes, Hey, Cyclin D1 and Slug target 

genes (Figure 1.7) [25]. In breast cancer, aberrant expression of the Notch receptors, 

NICD, target genes and the negative regulator, NUMB, have been reported and 

correlates with poor prognosis [26]. Specifically, overexpression of Notch1 is 

implicated in HER+ and TNBC while elevated Notch is observed following ER-α 

treatment. Activating mutations in the PEST domain of Notch 1, 2 and 3 have also 

been found in TNBC [24], [26]. 
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Figure 2.7: Notch signaling pathway 
 

2.1.6. Hippo Pathway 

 

The Hippo signaling pathway regulates mammary gland development and has 

been associated with carcinogenesis events in breast cancer. Specifically, it has been 

found to modulate cell proliferation, metastasis, stemness and drug resistance in 

established tumors. Several signals, including cell-cell contact, extracellular matrix, 

stress, the GPCR and PI3K can activate the pathway. Following activation, a cascade 

involving an activation through interaction and complex formation between the 

phosphorylated mammalian sterile 20-like kinase 1/2 (Mst 1/2) and Sav1 leads to the 

phosphorylation of the large tumor suppressor 1 and 2 (LATS 1/2) and MOBKL1 A/B. 

Subsequently, the activated proteins form another kinase complex which 

phosphorylates and inhibits the transcription coactivators: YAP and TAZ, preventing 

their translocation to the nucleus. The Hippo pathway, thus, controls cellular features 

through the interaction of the activated YAP and TAZ with TEAD1-4, p73 and Smads 

(Figure 1.8) [27]. An activated YAP/TAZ inhibits apoptosis and drives stemness and 

cell proliferation [28], [29]. 
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Figure 2.8: Hippo signaling pathway 
 

2.1.7. The Myc Pathway 

 

Aberrant expression of the Myc proto-oncogene is a normal phenomenon in 

many types of cancers. By acting as a transcription factor as dimer with another 

protein, MAX, the Myc proteins regulate transcription of cell fate decisions, including 

growth, proliferation and apoptosis. The positional role as a transcription factor imbues 

it as a target of many signaling pathways, which deregulate its cellular level to regulate 

pivotal cellular processes (Figure 1.9) [30]. Indeed, aggressive breast cancer subtypes 

(TNBC) overexpress Myc and are associated with a poor disease outcome. However, 

to date, finding a plausible drug target has remained a challenge due to its effector 

overlapping role in regulating normal cell functions [6], [31]. Since this pathway was 

not significantly affected by the compounds studied in this work, the interplay of the 

various molecular players involved have been intentionally not included. 
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Figure 2.9: The convergence of multiple signaling pathways on Myc signaling 

pathway 
 

2.1.8. The NRF2 Pathway 

 

Dynamic response to cellular oxidative stress is mainly regulated by signaling 

through nuclear factor erythroid 2-related factor (NRF2). Following activation, NRF2 

dissociates from its negative regulator, KEAP, and acts as a transcription factor by 

binding to the antioxidant response elements at the promoter region leading to the 

expression of the respective genes (Figure 1.10) [32]. Further, the biological effects of 

this pathway have been demonstrated to be enhanced through pathway crosstalk with 

the AMPK, MAPK, PI3K/Akt and mTOR pathways.  It has been observed that NRF2 

possesses promiscuous functions by both aiding progression to carcinogenesis as well 

as acting as tumor suppressor. Hence, developing drugs targeting this network has 

largely been unsuccessful [6], [33]. 
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Figure 2.10: The NRF2-KEAP1 pathway 

 

2.1.9. Vascular Endothelial Growth Factor (VEGF) and Platelet 

Derived Growth Factor (PDGF) Pathway 
 

Advanced primary tumors are characterized by increased demand for nutrients 

required for growth. Thus, angiogenesis (development of new blood vessels) plays a 

pivotal role in this response by regulating signaling through VEGFR and PDGF 

receptors. These receptors belong to the receptor tyrosine kinase group, and various 

family members (VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α and PDGFR-ß) have 

been reported to date. Upon activation by extracellular ligands (VEGF, PDGF-A, B, 

C, D, angiopoietin and ephrins), these receptors regulate important processes including 

migration, proliferation, survival and vascular permeability (Figure 1.11). It has been 

further determined that these processes are achieved through the regulation of PI3K-

Akt and p38 MAPK networks. Angiogenesis in breast cancer has been directly linked 

to over-expression of VEGFR-2, which mediates growth and permeability activities of 

VEGFR. PDGFR activation equally contributes to angiogenesis as well as regulating 

cell proliferation, migration, invasion and metastasis. Thus, anti-cancer drugs targeting 

the angiogenesis process have largely been targeted at these receptors and it has been 

appreciated that bifunctional drugs are more effective in targeting cancers [34], [35].  
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Figure 2.11: The VEGFR signaling pathway 

 

2.1.10. Immune Response Signaling 

 

The tumor micro-environment plays an important role in regulating 

carcinogenesis. Immune cells, largely regulating the inflammatory processes, play 

paradoxical roles in cancer, wherein they can contribute to the eradication of early 

neoplastic cells as well as to the proliferation and development of epithelial cancers. 

In this context, molecular crosstalk between innate and adaptive immunity at the 

network level has been associated with the regulation of neoplastic transformation and 

tumor progression. The intricate interplay of the various immune components is very 

important in cancer and the balance of which determines cancer prognosis. Pro-

inflammatory pathways lead to cancer progression while the anti-inflammatory 

pathways plays inhibitory roles. Thus, it has been suggested that immunity modulating 

drugs can synergise anti-tumor response and help in prognosis prediction. Central to 

the inflammatory response are NF-kB and STAT3 transcription factors and the 

inflammatory cytokines (IL-1ß, IL-6, IL-23 and TNF-α). Hence, in breast cancer, 

oncogenic signaling pathways converge at these components to promote tumorigenesis 

and targeting them has been pursued for treatment purposes [36]. 
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2.2. Plant-Derived Drugs in Breast Cancer Therapy 

 

The study and use of plant derived drugs, pharmacognosy, has been reported 

in a number of cancers [37], [38]. It is currently understood that the anti-cancer 

effectiveness of some drugs can match or even surpass conventional drugs. In fact, 

some of the current medications are formulations derived from plant sources. The use 

of these drugs in breast cancer has been a subject of intense investigation; subsequently 

leading to the clinical inclusion of synthetic chemical analogues[37]. The unique 

advantage of plant derived drugs/formulations is their pleiotropic nature in molecular 

targeting which is in line with the concept of poly-pharmacology as advanced in 

complex diseases like cancer. Perhaps the most widely studied tubulin inhibitor, taxol, 

from the yew tree discovered in the 1960s acted as an eye-opener to the immense 

potentials of plant derived drugs. Following this, vincristine from Vinca rosea and its 

isoforms were successfully adopted in the clinical management of breast cancer. 

Compounded by the large number of currently available plant-derived 

pharmacologic compounds, a new school of thought of drug-repurposing has been 

proposed. In this approach, effective dosages of such compounds are tested on cancer 

cell lines through high throughput screening. This approach has further accelerated the 

adoption of plant derived drugs as alternative anticancer treatments. However, still, 

since this approach is reductive it is one-sided and fails to report important 

pharmacodynamic properties of the drugs. In the context of this thesis, focus has been 

placed on four compounds based on the availability of corresponding high-quality 

transcriptomic data: indole 3-carbinol, actein, compound kushen injection and 

withaferin A. 

 

2.2.1. Indole 3-Carbinol 

 

Indole 3-carbinal (I3C) (Figure 1.12) [39] is a phytohormone derived from 

cruciferous vegetables and is a breakdown product of glucosinate 3-

ylmethylglucosinate compound. Previous studies have documented I3C’s good 

pharmacological profile in humans upon oral administration. It  has also been reviewed 

for the treatment of many human cancers [40].  
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Figure 2.12: 2D structure of I3C. 

 

2.2.2. Actein 

 

Actein (Figure 1.13) [41], a derivative of the Cimicifuga species roots (also 

known as black cohosh), is a natural triterpene glycoside that has been used by 

different civilizations in North America, Asia and Europe for centuries to treat 

different ailments [42]. Since its initial evaluation in breast cancer, separate studies 

have tried to decipher its mechanism of action using in vivo approaches [42]–[44]. 

 

Figure 2.13: 2D structure of actein. 

 
 

2.2.3. Compound Kushen Injection 

 

Compound kushen injection (CKI) is an ancient formulation in the Chinese 

pharmacopoeia and is derived from a mixture of Radix sophorae flavescentis and 

Rhizoma smilactis glabrae herbs. It has been extensively studied and applied in the 

treatment of several tumors and tumor associated pains. Molecular and genomic 

studies have established its roles in targeting cell cycle, apoptosis, energy metabolism, 

DNA repair and cytokine signaling [45]. A recent study revealed that the mixture 

consists of 22 distinct chemical constituents that mediate its biological roles [45]. 
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2.2.4. Withaferin A 

 

Withaferin A (Figure 1.14) [46] is a steroidal lactone belonging to the 

withanolide group of compounds; a plant-derived natural compound from Withania 

somnifera. It is a vital component of the Indian Ayurvedic medicine. It has been 

investigated in a large number of inflammatory diseases, and in vivo studies in cancer 

have established some of its target molecular networks [47]–[51].  

 

Figure 2.14: 2D Chemical structure of Withaferin A. 

 

2.3. Transcriptomics in Systems Biology 

 

Systems biology is a research approach focusing on the study of complex 

biological systems and processes as a whole under different states at the molecular 

level. The appreciation of the genetic complexity of different cancers, including breast 

cancer, means reductive molecular biology techniques are insufficient, as they only 

provide a partial explanation of the underlying biological processes. The introduction 

and increasing application of high-throughput techniques such as microarrays and 

next-generation sequencing through RNA-sequencing to generate transcriptomic 

profiles has led to the identification of novel drug targets [52]–[55]. Moreover, a 

number of biological mysteries has been uncovered. In this context, transcriptomics 

provides a picture of all the genes expressed at a given time. Over the past decade, 

there has been a number of studies that examined the global effects of candidate drugs 

on the gene expression pattern in cancer and other diseases to discover new therapeutic 

and diagnostic biomarkers. Transcriptomics provides the systemic view of RNA 
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transcripts expressed under a set of conditions at an instance, contributing to a holistic 

picture of the biological system at transcriptional level [56]. 

 

2.4. Systems Pharmacology/Network Pharmacology  

 

Network biology is a concept that originated from other scientific disciplines 

upon the appreciation of the fact that a pathological phenotype is not the result of an 

individual gene but rather a complex interaction of biological processes forming a 

network [52]. Hence, human diseases can today be studied using metabolic, protein-

protein interaction, genetic interaction and gene regulatory networks. This perspective 

in pathology has found its way into drug discovery research for complex diseases 

challenging the traditional highly selective approach to drug development and 

evaluation.  The concept of network/system pharmacology is increasingly being 

accepted. Poly-pharmacologic drugs possess superior therapeutic index [57], [58]. 

Through network pharmacology, synthetic lethality of multiple gene targets has 

demonstrated positive results in a number of studies with various cancers [59]. 

Coincidentally, plant-derived drugs and concoctions have shown multi-targeting in 

various diseases and cancer [38]. In fact, a number of groups have evaluated genome-

wide effects of these drugs using various omics strategies. Surprisingly, despite their 

appreciation of the demonstrated broad spectrum activity, no attempt has been made 

to apply the currently available robust computational systems biology methods to 

decipher their molecular effects. Therefore, network pharmacology hopes to identify 

drug targets, predict toxic effects and resistant subtypes, enabling decisive 

experimental plans and personalization of treatments. We can, thus, increase drug 

efficacy and clinical trial success rates, and reduce drug-associated side effects in 

patients. 

While predicting biological systems requires the integration of multiple 

biological data associated with a disease phenomenon, current methods are still 

incomplete at addressing such systems, and there is insufficient high-throughput data 

publicly available to date. In the context of this thesis, therefore, we focus on one level 

of omics to draw our biological conclusions on the systemic effects of the drugs under 

consideration. 
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2.5. Protein-Protein Interaction Networks (PPIN) 

 

Owing to their central roles in mediating all cellular functions and biological 

processes, the study of protein-protein interaction networks (PPIN) has been an 

important subject in systems biology, where proteins and their interactions are depicted 

as a network. PPINs enable visualization, depiction and quantification of the 

functioning and importance of individual proteins in a cell. Importantly, by taking 

systems view of the PPIN of a cell under a defined condition, it is possible to infer 

novel functions, quantify positional importance of proteins and enable prognostic 

evaluation of a cell perturbation [60]. By taking this approach, the pleiotropy of 

proteins in complex diseases can be addressed at the network level [61]–[63]. 

To date, a number of online curated organism-specific PPIN databases have 

been established. While they all hold important protein network information, they 

differ in terms of size, method used for network construction and organism coverage. 

The main methods for network construction are experimental (high-throughput and 

traditional methods) and computational techniques. For instance, the current release of 

BioGRID [64], HPRD [65], and STRING [66] contain differing number of proteins 

and interactions. Thus, the decision on which database to select is largely based on the 

user’s preference, the quality of the PPIN based on the bioinformatic method to be 

applied and the biological question. However, despite improvements in the knowledge 

of the human interactome, available networks still suffer from sparsity and biases 

introduced during curation. Still, emphasis should be placed on selecting high-

confidence PPIN, which are largely manually curated from experimental evidence. 

 

2.6. Protein-Protein Interaction Network Integration 

Methods  
 

A major hinderance to the complete adoption of network pharmacology has 

been the stochasticity of most network enrichment methods. The dynamic nature of 

biological systems, however, means that an individual node can interact with one or 

multiple other proteins creating an interconnected condition-specific network. To 

address this, concerted efforts in developing deterministic network integration 

methods based on node scoring algorithms have contributed to a number of 
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bioinformatic tools. The highly significant proteins based on the scores is then used to 

identify a condition specific active subnetwork within the web of all PPIN, by 

integrating curated PPIN with scored proteins from high-throughput data, mostly from 

transcriptome experiments.  

Network mapping techniques for condition-specific transcriptome datasets 

have been applied in different complex diseases like cancer and Parkinson’s disease 

with novel discoveries on mechanistic drug action, synergistic drug combinations and 

druggable targets [67]–[69]. This systems-level approach is superior over other gene 

set enrichment analyses as it does not only provide in-depth knowledge of the 

perturbed networks but also relies on efficient un-supervised and empirical inference-

directed algorithms to model perturbation networks from gene expression data [70]. 

Furthermore, pathway-pathway crosstalk and unearthing of previously un-

characterised pathways and sub-pathways is possible from protein-protein interaction 

networks [71].  

To date, a substantial number of tools are available. A recent benchmarking 

report by Batra et al. [71] evaluated the performance of various network integration 

methods currently available, including BioNet, COSINE, GiGA, KeyPathwayMiner, 

DEGAS and PinnacleZ. The advantage of these tools is the reliance on experimental 

data to derive condition specific subnetworks. Of the highly reliable and less stochastic 

tools, BioNet and KeyPathwayMiner (KPM) exhibited higher performance. However, 

despite being heuristic methods, they follow different approaches in subnetwork 

extraction. BioNet [72] models subnetwork identification as a prize collecting Steiner 

Tree problem and solves it using integer linear programming from a predefined false 

discovery rate cut-off and extracting the maximal scoring subgraph (Heinz algorithm) 

[72]. KPM [73], on the other hand, finds the subnetwork where all proteins but K 

exceptions are significantly changed using Greedy, exact branch and bound and Ant 

Colony Optimization (ACO) algorithms from a binarized expression dataset [73]. 

Considering these two approaches, the optimal graph solutions are intuitive and 

optimizations must be performed to comprehensively extract the systemic biological 

phenomenon under study [71]. Thus, to penalize and consider only highly significantly 

perturbed proteins, KPM is preferable even though it may suffer from node 

prioritization problem due to the binarized input experimental data. Furthermore, in 

our optimization studies, we observed that while repeatability of BioNet’s graph 

solution is low for small problems, KPM is largely consistent over all graph problems. 
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KPM has been successfully applied in a number of studies with important 

findings on underlying subnetworks. Recently, Frisch et al [74] integrated human 

PPIN with RNA-Seq data to delineate potential druggable targets in multiple sclerosis 

using KPM. The role of immune-modulation   networks during bacterial and fungal 

infection of human monocytes treated with vitamins A and D was discovered in 

another study. To identify the relevant genes targeted during oligodendrocyte 

differentiation, Cantone et al [75] integrated PPIN with RNA-Seq transcriptomics data 

using KPM to identify SOX10, OLIG2 and TCF7I2 as the main transcription factors 

in the extracted subnetwork. Another study to elucidate the molecular mechanisms of 

liver fibrosis applied KPM to identify the pathways and networks associated with 

chemically induced liver fibrosis by integrating PPIN with rat transcriptome data [76]. 

These studies demonstrate the reliability and robustness of KPM in integrating 

experimental omic transcriptome data with priori molecular interaction networks to 

identify conditionally perturbed subnetworks. 

 

2.7. Aim of the Thesis 

 

It is well appreciated that epigenetic and mutational modifications drive tumor 

progression in breast cancer by hijacking normal cell signal transduction pathways [5], 

[77]. The use of single drug targets has largely failed due to target mutations, target 

by-pass and utilisation of alternative signaling mechanisms [62], [78], [79]. It is 

understood that within a single tumor numerous genetic modifications are present at 

the same time. This diseasome network further complicates the exquisite ligand-

targeted single drug design paradigm [59]. However, by employing a multi-target 

strategy, several studies have registered better treatment outcomes and thus, drug 

combinations is a prevalent strategy today [3], [77]. Coincidentally, plant-derived 

drugs have been investigated in a number of anti-cancer drug research studies, and 

their pleiotropic effects were demonstrated [38].  

Despite technological advancements in drug research, reductionist molecular 

biology studies are still the preferred method of choice in prioritising new drug 

candidates. This has not only slowed drug research but also led to high attrition rates 

of drug candidates at the clinical trials stage [58], [59], [61], [68]. In the recent past, 

network pharmacology has emerged as a holistic approach to address this limitation 
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by considering all the molecular players following drug treatment. To identify 

perturbed networks, de novo network enrichment methods that integrate priori 

interaction networks with experimental data to extract condition-specific subnetworks 

have been used [71]. Interestingly, though, there is no standard method widely 

accepted by the scientific community on this subject, with different groups applying 

different methods. 

It is currently understood that an effective anti-cancer drug candidate should 

possess multiple targets and able to perturb multiple carcinogenesis signaling networks 

[69], [55]. Hence, in this thesis, a holistic method of subnetwork discovery is 

implemented by mapping breast cancer transcriptome treated with plant-derived drugs 

onto high-confidence human protein-protein interaction network and infer signal 

transduction pathway networks. This approach unravels novel perturbed signaling 

pathways unique to the drug and the treated cancer cell response. Through this 

approach, the pleiotropic effects of plant-derived drugs/compounds are demonstrated; 

a resistant cancer subtype protein network is analysed and the associated mechanisms 

and drug targets identified. Additionally, commonly targeted pathways by plant-

derived drug/compounds are determined. 
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3. METHODOLOGY 

A graphical summary of the computational analysis pipeline applied in this 

study is depicted in Figure 3.1. We provide detailed description of these steps in the 

subsequent sections below. 

 

Figure 3.1: Analysis pipeline summarising the steps followed in the data analysis. 

 
 

 

 



25 
 

3.1. Dataset Extraction and Outlier Analysis using Principal 

Component Analysis 
 

The Gene Expression Omnibus (GEO) database maintained by the NCBI is a 

public repository for high-throughput gene expression and genomics datasets, with 

advanced data search application interface [80] For this study, a structured query, 

below, was developed to filter the available datasets in the database: 

(breast cancer) AND (human[organism]) AND (plant*) 

Pre-processed transcriptome datasets (series matrix) meeting the search criteria 

were downloaded. Minimum sample size of 3 for both control and treatment were 

considered for subsequent analysis. Principal component analysis (PCA) is a widely 

used unsupervised high dimension data reduction method in statistical analysis [81]. 

Given the large number of data points in genomic analysis, PCA provides a global 

picture of the variations contributed by the samples in the dataset. To determine the 

grouping pattern of the control and treatment samples PCA was performed using 

princomp R base function and ggfortify package in RStudio [82]. The former 

calculates the eigenvalue and eigenvectors while the later makes a loadings plot, 

allowing for the identification of similarly behaving samples before subsequent 

analysis can proceed. 

 

3.2. Identification of Drug-Specific Differentially Expressed 

Genes 
 

Microarray derived gene expression data are coded by unique platform-specific 

identifiers called probes. Thus, for these datasets, the corresponding platform 

annotation files were downloaded, probes matched and the respective official gene 

names used in subsequent analyses. The multiple probe identifiers problem for some 

genes, common in array designs, was resolved by taking the maximally expressed 

ones. Next, for the RNA-Seq datasets, genes with zero expression values in at least 2 

samples were removed. For all the datasets, log2 transformation was used to make the 

expression values closer to normal and allow for cross-platform statistical analysis.  

Linear models for microarray (limma) [83] data analysis method has been 

extensively applied in microarray [84] and RNA-Seq [84], [85] data for differential 

gene expression analysis. Limma is available as an R package. Using this tool, the 
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annotated data was fitted to a linear model in limma, contrasts for the two conditions 

(control versus drug-treated) performed, Bayesian-based t-test significance testing 

carried out, and to reduce the number of false positives common in multiple testing, 

the p-values were adjusted using Benjamini-Hochberg method [85]. It is imperative to 

note that gene fold change was used in all decision tests.  

 

3.3. Protein-Protein Interaction Network (PPIN) 

 

The current release of undirected human PPIN from the Biological General 

Repository for Interaction Datasets (BioGRID, v3.5.173) [64], [86] was downloaded 

and used. The human PPIN in this release (March 2019) consists of 22435 proteins 

with 478529 interactions. The tab delimited file was pre-processed by removing 

unnecessary header lines that are not readable by the Cytoscape import function. 

 

3.4. Drug-perturbed subnetwork extraction from priori 

PPIN 
 

KeyPathwayMiner [73] is a heuristic enrichment tool that integrates PPIN with 

binarized input gene expression data and finds the maximal connected subnetworks 

using Greedy, Ant Colony Optimization and Exact optimization algorithms. Greedy 

algorithm treats the subnetwork extraction as an optimization problem, finding local 

best solutions with the hope of making the best global solution. To this end, it is worth 

noting that the choice of KPM in this study stems from a prior analysis on the 

reproducibility of graph-solutions in both KPM and BioNet using one of the datasets, 

where reproducibility was observed in the former. In this work, KPM, as a Cytoscape 

(v3.7.1)  app, was used [87]. 

The problem and solution to the subnetwork extraction in this work is 

described: with a labelled priori undirected PPIN (BioGRID) graph, 𝐺 = (𝑉, 𝐸, 𝑑), 

with V vertices (proteins), E edges (interactions) and a mapping function, 𝑑: 𝑉 →

{1, 0}𝑞, and a gene expression matrix (adjacency matrix) defined by: 

 

𝐶𝑝×𝑞 = {
1: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑

0: 𝑛𝑜𝑛 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑
             (3.1) 
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Here, the objective is to extract a maximally connected clique, 𝑆(𝑈), from an 

exception vertex set 𝐶(𝐺, 𝑙) derived from 𝐺, with 𝑘 vertices to get a (𝐾, 𝑙) component. 

Any vertex 𝑣 ∈ 𝑉 with 𝑑(𝑣) ≤ 𝑙 is an exception matrix. 

This presents an optimisation problem and amongst the previously proposed 

algorithms, here it is solved using Greedy algorithm. In this approach, a set 𝑊𝑢 is 

iteratively constructed from 𝑊𝑢 = {𝑢} for each vertex, 𝑢. A vertex 𝑣 from 𝐶(𝐺, 𝑙) 

which is adjacent (in 𝐶(𝐺, 𝑙)) to 𝑊𝑢 and maximizes |𝑆(𝑊𝑢 ∪ {𝑣})| is added to the set 

𝑊𝑢. At |𝑊𝑢| = 𝐾, the maximal solution for 𝑢, 𝑆(𝑊𝑢) found is returned as the optimal 

sub-graph [88].  

After simulations with different noise levels (𝐾 = 1, 2, 4, 5, 8, 10), 𝐾 = 5 was 

used as the optimal allowable insignificantly/non-differentially expressed, but highly 

connected, genes (noise) in the network and INES (Individual Node Exceptions) as the 

search strategy. Since only one case was considered, the default (𝑙 = 0) was used. 

Thus, 𝐾 𝑎𝑛𝑑 𝑙 are the defined constraints applied in this work. In addition to mapping 

all the significantly expressed genes (both up and down), the up- and down-regulated 

genes were also mapped separately. To include only highly significant genes in the 

subnetwork solutions, both gene fold change and FDR adjusted p-value were used to 

select condition-activated genes. With this approach, noise in the sub-graph solution 

is believed to be significantly curtailed. The unique advantage of this method in 

pathway analysis is that the resulting network consists of only the directly interacting 

biomolecules [73]. 

 

3.5. Centrality analysis of subnetworks and survival analysis 

 

To quantitatively identify the biologically essential genes enriched in the 

derived subnetworks, two main centrality measures were applied: betweenness and 

degree centralities. Betweenness centrality measures the number of short paths through 

a given node (gene) in a network and reflects the load on the gene. Degree centrality 

determines the number of nodes (genes) connected to a given node (gene) in a network 

[89]. For this, CytoNCA [90], a widely used network topology analysis tool available 

as an app in Cytoscape was used. Subsequently, to determine the biological 

significance of the identified genes in breast cancer carcinogenesis, the web-based 
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KM-Express bioinformatic tool was used. In this approach, the biological roles of the 

top 5 significant genes, based on centrality measures, on overall survival and 

phenotype association in breast cancer was analysed. The breast cancer specific patient 

RNA-Seq gene expression data from the TCGA database, that is categorized into high 

and low expression groups. In this work, classification into the two groups was based 

on the median gene expression cut-off [6], [91]. Kaplan-Meier and disease-phenotype 

association in box-plots were used to interpret the results. Statistical significance was 

evaluated based on hazard-ratio, which indicates the propensity of death between the 

high and low gene expression disease groups, and log-rank p-value. 

 

3.6. Signal transduction network inference 

 

Pathway enrichment is the statistical method to determine the existence of 

biological pathways in a gene list than would occur by chance [92]. To date, a number 

of tools have been developed, including g:Profiler, GSEA, WebGestalt [92], Enrichr 

and PANTHER for this type of analysis. However, the comprehensives, ease of use as 

an R package and great interactive visualization of EnrichR results sets it apart over 

other tools [93]. To infer perturbed signaling pathways from the subnetwork, the latest 

releases of KEGG (2019), Reactome (2016), WikiPathways (2019) and GO Biological 

processes (2018) databases were used. Only terms with “signal” or “pathway” or 

“apoptosis” or “cell cycle” were selected in this work. Further, the identified terms 

were considered to be significantly enriched if the FDR<0.05 and with at least 3 

overlapping genes. 
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4. RESULTS 

 

4.1. Datasets used in this study 

 

From the database search strategy described previously, six transcriptome 

datasets were identified from GEO database, all specific for breast cancer lines treated 

with plant-derived compounds. Subsequent analysis by PCA resulted in the 

elimination of 2 datasets and 3 groups in actein dataset, in which no clear separation 

of controls and treated groups could be observed. The PCA analysis results are 

electronically available as supplementary. As a result, 4 high quality datasets: 

GSE7848, GSE78512, GSE53049, and GSE55897 belonging to actein [94], compound 

kushen injection (CKI) [95], Withaferin A (WA) [96] and indole 3-carbinol (I3C) [97] 

plant-derived compounds and formulations respectively were used in subsequent 

analysis. These datasets represent 7 breast cancer cell lines (triple negative, human 

epidermal receptor-2-positive and luminal A), each harbouring a specific mutation. 

The triple negative subtype lacks the oestrogen, progesterone and human epidermal 

receptors; luminal A expresses only oestrogen and progesterone receptors; and HER2-

positive expresses only the HER2 receptor [2].  These characteristics are detailed in 

Table 4.1 below. Henceforth, LA, TN and HER2+ will be used to refer to luminal A, 

triple negative and human epidermal receptor-2-positive breast cancer subtypes. 
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Table 4.1: Summary of datasets used and the molecular profile of the cell lines 

included. The columns Controls and Treatments list the number of samples. 

(HER2+: human epidermal receptor 2 positive, LA: luminal A, and TN: triple 

negative, AC: adenocarcinoma, IDC: invasive ductal carcinoma, MC: medullary 

carcinoma, Wt: wild type, Mut: Mutant, Del: deleted). 
 

Drug Platform Cell line Subtype Pathology BRCA1 P53 Controls Treatments 

Actein Affymetrix 

Human 

Array 

MDA-MB-453 HER2+ AC Wt Del 4 3 

CKI Illumina 

HiSeq 

2500 

MCF-7 LA IDC Wt Wt 3 3 

I3C Illumina 

beadchip 

MCF-7 LA IDC Wt Wt 3 3 

T47D LA IDC Wt Mut 3 3 

ZR751 LA IDC Wt Wt 3 3 

MDA-MB-231 TN MC Wt Mut 3 3 

MDA-MB-157 TN AC Wt Mut 3 3 

MDA-MB-436 TN AC Mut Mut 3 3 

WA Illumina 

beadchip 

MDA-MB-231 TN MC Wt Mut 3 3 

MCF-7 LA IDC Wt Wt 3 3 

 

4.2. Plant-derived drugs affect differing number of genes 

from differential gene expression analysis  
 

Determining treatment responsive genetic features depends on the choice of, 

with high confidence, threshold in differential comparison of the transcriptomic 

datasets. In this study, limma package was used to both adjust the Bayesian t-test p-

values and determine the gene fold change. Different FDR cut-offs and a standard fold 

change cut-off of 2 was applied across all the datasets. However, in order to make the 

effect of a drug on different cell lines comparable, the same FDR was used for the 

datasets of the same drug Table 4.2, below, summarises the number of differentially 

expressed genes for the different drugs. The FDR cut-offs were chosen to represent at 

most 10% of all covered genes in the data. Actein and CKI induced differential 

expression of HER2+ (MDA-MB-453) and LA (MCF-7) genes respectively. 

Comparatively, under I3C treatment, more genes are regulated in luminal A cells 

(T47D, MCF-7 and ZR751) than triple negative cells (MDA-MB-231, MDA-MB-157 
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and MDA-MB-436) (Table 4.2). Conversely, triple negative (MDA-MB-231) genes 

under WA are more responsive that luminal A (MCF-7) genes (Table 4.2). CKI dataset 

includes treatment data for four different doses of the drug (1mg/24hr, 2mg/24hr, 

1mg/48hr and 2mg/48hr). Since the others led to extremely low numbers of 

differentially expressed genes, subsequent analyses focused on the 2mg/24hr dosage 

data.  

Table 4.2: Summary of differential expression analysis results. The number of 

differentially expressed genes under different dosages of the respective plant-derived 

drugs/compounds are given in the table. DEG: differentially expressed genes, FDR: 

false discovery rate, FC: fold change 
 

Drug/Compound Dosage  Cell Line DEGs FDR cut-

off 

FC 

Actein 40µg/ml MDA-MB-453 1008 0.05 2 

CKI 2mg MCF-7 1661 0.01 2 

I3C 200µM MCF-7 3115 0.005 2 

T47D 2462 0.005 2 

ZR751 2125 0.005 2 

MDA-MB-231 202 0.005 2 

MDA-MB-157 430 0.005 2 

MDA-MB-436 869 0.005 2 

WA 700nM MDA-MB-231 1247 0.001 2 

MCF-7 452 0.001 2 

  

4.3. PPIN mapping reveals drug-specific subnetwork 

enrichment for the different breast cancer subtypes 
 

The main aim of this study was to map transcriptome data from breast cancer 

cell lines treated with plant-derived drugs on PPIN to extract highly affected 

subnetworks. Among a number of de novo network enrichment methods available, 

KPM [73], [88] was used in this study. Thus, the FDR and FC were binarized, based 

on the set cut-offs (as illustrated in differential gene expression analysis Table 4.2 

above). In the resulting expression matrix, ‘1’ represents active gene while ‘0’ 

represents an inactive gene as described [88]. Next, the condition (drug)-specific 

subnetworks were extracted by solving the Greedy optimisation problem and 
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integrating the  high-confidence BioGRID [64] PPIN to extract the drug-perturbed 

subnetwork for the different cell lines.  

The Table 4.3 illustrates the number of genes and their interactions in the 

extracted subnetworks. To aid in the elucidation of the networks whose activity 

increased/decreased, the down/up-regulated genes were separately mapped to the 

PPIN using KPM, again using similar constraints and the results reported in Table 4.4. 

The subnetworks presented here represent the systemically targeted PPIN in the 

respective cells. It can be seen that same drug/compound (CKI and WA) affected 

subnetworks with different number of proteins and interactions in LA and TN subtypes 

and within LA subtypes for CKI (T47D, ZR751 and MCF-7) (Table 4.3). This 

demonstrates differential targeting of protein-protein interaction networks by the 

drug/compound on different breast cancer subtypes harbouring different genetic 

mutations. 

Table 4.3: The extracted drug-specific protein-protein interaction subnetworks. The 

proteins represent the network nodes while the interactions represent the network 

edges. 
 

Drugs Cell Lines Genes Interactions 

Actein MDA-MB-453 829 3858 

CKI MCF-7 1332 9331 

I3C MCF-7 1974 10684 

T47D 1681 7050 

ZR751 1403 5457 

MDA-MB-231 93 126 

MDA-MB-157 86 110 

MDA-MB-436 541 1275 

WA 

 

MCF-7 333 941 

MDA-MB-231 998 3277 
 

 

 

 

 

 

 



33 
 

Table 4.4: The extracted drug-specific protein-protein interaction subnetworks for 

up-/down-regulated proteins. The proteins represent the network nodes while the 

interactions represent the network edges. 
 

Drugs Cell Lines  Genes Interactions 

Actein MDA-MB-453 Up 327 687 

Down 455 2166 

CKI MCF-7 Up 933 2838 

Down 304 1676 

I3C MCF-7 Up 453 1162 

Down 1399 6816 

T47D Up 620 1324 

Down 959 3254 

ZR751 Up 545 1105 

Down 961 6323 

MDA-MB-231 Up 17 17 

Down 86 111 

MDA-MB-157 Up 18 19 

Down 75 106 

MDA-MB-436 Up 98 120 

Down 402 932 

WA MCF-7 Up 117 353 

Down 202 564 

MDA-MB-231 Up 456 1011 

Down 480 1208 
 

4.4. Subnetwork centrality analysis and in silico survival and 

disease phenotype association predictions 

 
Apart from predicting the mechanism of action of a drug, network 

pharmacology can be used to identify drug targets [58], [74], [98]. To achieve this, 

network centrality measures are frequently used to determine genes in a network 

whose elimination would destabilize the network topology. A number of network 

topology analysis tools are available as Cytoscape apps for this purpose and CytoNCA 

[90] offers both network centrality measures and a user-friendly visualization 

interface. In this approach, betweenness centrality measures the influence a gene has 

on the whole subnetwork while degree centrality measures the number of genes 

connected to a given gene. This app was used to determine degree and betweenness 

centrality measures of all the subnetworks. Table 4.5 provides the top 5 highly 

significant genes from this analysis based on degree and betweenness scores.  
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One of the main sources of predictive data is scientific literature reports and 

expert-curated biological databases. To determine the biological role of the identified 

genes in relation to overall cancer prognosis, an in-silico overall survival and 

phenotype association analysis was performed. Kaplan-Meier plot illustrates the 

fraction of surviving cases over a follow-up period. In this analysis, publicly available 

curated breast cancer gene expression data from TCGA (943 breast cancer samples) 

accessible through KM-Express tool was used. The tool generates several figures for 

each gene; two of them gives the Kaplan-Meier plot for overall survival together with 

the corresponding Cox hazard ratio and log-rank; and the gene-pathology association 

as boxplots derived from analyses of normal, metastatic and primary cases. The results 

from this analysis are as shown in Figure 4.3 A-D (p-value<0.05 for significance), 

presenting the two figures for each gene. Of all the identified 11 unique (HNRNPL, 

TRIM25, ESR2, CUL3, BAG3, ELAVL1, CDH1, APP, RNF4, EGLN3 and MCM2) 

genes based on centrality measures (Table 4.5), four genes were found to be 

significantly related to overall survival (CDH1, TRIM25, APP and ELAVL1) and a 

further two were associated with metastatic tumor phenotype (CDH1 and TRIM25). 

High expression of CDH1, APP and TRIM25 genes is associated with reduced overall 

survival (hazard-ratio: 0.7146, 0.6346 and 0.6054 respectively) and the reverse is true 

for ELAVL1 (hazard-ratio: 1.4731) (Figure 4.3 A-D). The enrichment of these genes 

in the various subnetworks is illustrated in Table 4.5 below. The plant-derived 

drugs/compounds display a differential targeting of these genes in the different breast 

cancer subtypes. For instance, CDH1 is only targeted by I3C in MDA-231 cell line 

and I3C has insignificant effect on TRIM25 in the same cell line. When the p-values 

and fold changes of these genes are checked, most are not differentially expressed and 

are rather introduced to the subnetworks as a result of the 𝐾 parameter. 
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Table 4.5: Degree and betweenness centrality scores of subnetworks and the GO 

annotation of the top 5 high scoring genes. The table has been truncated to show only 

the top 10 genes from the network centrality analysis. 
 

Cell line/Drug Gene Degree Betweenness Gene Annotation 

MDA-157/I3C HNRNPL 37 4424.167 heterogeneous nuclear ribonucleoprotein L 

 TRIM25 21 2166.897 tripartite motif containing 25 

 ESR2 18 2260.333 estrogen receptor 2 

 CUL3 13 1284.508 cullin 3 

 BAG3 6 827.1667 BCL2 associated athanogene 3 

MDA-231/I3C HNRNPL 47 5145.078 heterogeneous nuclear ribonucleoprotein L 

 ELAVL1 24 2545.711 ELAV like RNA binding protein 1 

 ESR2 22 2154.689 estrogen receptor 2 

 CUL3 14 1563.87 cullin 3 

 CDH1 10 1066.333 cadherin 1 

MDA-231/WA ELAVL1 213 204362.3 ELAV like RNA binding protein 1 

 TRIM25 199 212504.2 tripartite motif containing 25 

 ESR2 182 159988.9 estrogen receptor 2 

 APP 156 149501.2 amyloid beta precursor protein 

 RNF4 147 114686 ring finger protein 4 

MDA-453/Actein TRIM25 181 111875.336 tripartite motif containing 25 

 ESR2 171 94044.89 estrogen receptor 2 

 APP 168 114215.73 amyloid beta precursor protein 

 EGLN3 152 66460.44 egl-9 family hypoxia inducible factor 3 

 ELAVL1 148 98134.93 ELAV like RNA binding protein 1 

MCF-7/I3C ESR2 419 549778.8 estrogen receptor 2 

 TRIM25 416 666503.6 tripartite motif containing 25 

 ELAVL1 383 574226 ELAV like RNA binding protein 1 

 HNRNPL 319 476118.7 heterogeneous nuclear ribonucleoprotein L 

 APP 300 458041.3 amyloid beta precursor protein 

MCF-7/WA TRIM25 79 25750.4 tripartite motif containing 25 

 ESR2 74 20150.8 estrogen receptor 2 

 APP 69 23955.31 amyloid beta precursor protein 

 ELAVL1 67 19761.62 ELAV like RNA binding protein 1 

 MCM2 47 8673.256 minichromosome maintenance complex 

component 2 

MCF-7/CKI ELAVL1 235 450995 ELAV like RNA binding protein 1 

 APP 192 331986.8 amyloid beta precursor protein 

 HNRNPL 184 335120.6 heterogeneous nuclear ribonucleoprotein L 

 TRIM25 180 301207.5 tripartite motif containing 25 

 RNF4 127 189331.5 ring finger protein 4 

ZR751/I3C HNRNPL 268 385008.5 heterogeneous nuclear ribonucleoprotein L 

 TRIM25 267 369696.4 tripartite motif containing 25 

 ELAVL1 242 300361.7 ELAV like RNA binding protein 1 

 APP 198 268438.6 amyloid beta precursor protein 

 RNF4 157 160883.6 ring finger protein 4 

T47D/I3C TRIM25 338 481338.8 tripartite motif containing 25 

 HNRNPL 330 518969.9 heterogeneous nuclear ribonucleoprotein L 

 ELAVL1 311 449179.8 ELAV like RNA binding protein 1 

 ESR2 292 347761.2 estrogen receptor 2 

 APP 230 330949.3 amyloid beta precursor protein 
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Figure 4.1: Survival and phenotype association analysis of A) CDH1, B) ELAVL1, 

C) APP and D) TRIM25 genes: Kaplan Meier plot and the corresponding hazard 

ratio for the probability of fatality and log rank p value illustrating the significance of 

the difference in overall survival between the high and low gene expressors; and 

boxplot of gene-phenotype association for primary, normal and metastatic tumors (P 

< 0.05). 
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Continuation of Figure 4.1  
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4.5. Plant-derived drugs/compounds display pleiotropic 

effects by targeting multiple carcinogenesis related 

oncogenic signaling pathways in TNBC, LABC and HER2+ 

breast cancer 
 

To determine the enriched signal transduction pathways in order to provide a 

biological inference, the respective subnetwork genes were used to perform pathway 

enrichment analysis using EnrichR package [93] in RStudio.  
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Overall, significant enrichment (FDR<0.05) of signal transduction pathways 

perturbed by actein, CKI, I3C and WA in the different subnetworks were found. 

Supplementary Tables 1.1-1.27 details the pathway enrichment results from KEGG, 

Reactome, WikiPathways and GO Biological process [93]. The presented pathways 

belong to the main oncogenic signaling pathways [6] and both downstream effector 

and perceived cross-talk pathways [26], [99]–[101]. The pathways are arranged based 

on the FDR values. 

 

A. LA under I3C 

 

B. TN under I3C 

 

Figure 4.2: Venn diagrams showing the number of signal transduction terms enriched 

in the related subnetworks. A) LA under I3C, B) TN under I3C C) MCF-7 targeted 

pathways by WA, I3C and CKI, D) MDA-MB-231 under I3C and WA. 
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Continuation of Figure 4.1 

C. MCF-7 under CKI, I3C and WA 

 

D. MDA-MB-231 under WA and I3C 

 

More oncogenic signaling pathways are targeted in LA (Figure 4.4A) than in 

TN (Figure 4.4 B) under I3C. Comparatively, the greatest number of targeted unique 

pathways in LA are in MCF-7 (69) then T47D (39) and ZR751 (15) respectively. 

Additionally, more common targeted pathways are between MCF-7 and T47D (16), 

followed by T47D and ZR751 (11) and ZR751 and MCF-7 (6) (Figure 4.4A). MCF-7 

under I3C, CKI and WA shows that 1 pathway is targeted by such a combination and 

I3C targets the greatest number of unique pathways (91), followed by WA (46) and 

CKI (17). CKI and I3C targets the highest number of common pathways (4), followed 

68 0 1 

46 

17 91 

1 

4 
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by I3C and WA (3) and WA and CKI (2) (Figure 4.4C). On the other hand, no common 

signaling pathway is targeted by I3C and WA in MDA-MB-231, with each drug 

targeting unique pathways and WA targets the highest number (68 versus 1) (Figure 

4.4D).  

Intriguingly, no significant signal transduction term in MDA-MB-157 

subnetwork under I3C was found. TN subtype is one of the most clinically aggressive 

breast cancers and the observed  phenomenon is acceptable [77]. Clearly, therefore, 

I3C does not target genes coding for oncogenic signaling pathway related proteins in 

this cell line. 

To simplify the enrichment analysis results, the pathways were grouped based 

on the biological roles of the enriched genes in regulating a carcinogenesis process. 

Carcinogenesis is known to go through three main phases: initiation, promotion and 

finally progression [102]. These phases are occasioned by genetic and epigenetic 

dysregulations closely related to cell cycle (proliferation) and death, inflammation, 

metastasis and angiogenesis. These four groups represent the main biological 

processes associated with carcinogenesis and are directly/indirectly regulated by the 

main known oncogenic signaling related pathways. Furthermore, these are the main 

indicators of effectiveness in ascertaining the biological effect of a drug candidate.  To 

determine whether a pathway is activated or inactivated, the pathway enrichment 

results from the up-/down-regulated subnetwork genes was used. The Table 4.6 below 

details the oncogenic signaling pathways under the different carcinogenesis processes. 

It can be seen that cell proliferation and death has the highest number of perturbed 

pathways across all the drugs/compounds studied. Detailed information used to 

generate this table is available externally as supplementary Table 1.10-1.27. The most 

targeted carcinogenesis process across all the datasets is cell cycle/proliferation and 

apoptosis through regulation of related oncogenic signaling pathways (Figure 4.5). 
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Table 4.6: Oncogenic signaling pathway-carcinogenesis process grouping. This table 

illustrates the different carcinogenesis processes they are involved in based on the 

enriched genes as well as whether the genes are up-/down-regulated. U: up, D: down. 
 

Drug/ 

Compound 

Cell Line Carcinogenesis Process 

Actein  Cell 

cycle/Proliferation 

and Apoptosis 

Metastasis 

and invasion  

Inflammation Angiogenesis 

MDA-MB- 

453 

TGF-(D) 

Apoptosis(D) 

Cell cycle(D) 

INF(D) 

FasL(D) 

- - - 

PI3K-Akt-mTOR(U) 

NRF2(U) 

- - - 

CKI MCF-7 ATM(D) 

P53(D) 

Intrinsic apoptosis(D) 

- - - 

FoxO(U) 

PI3K-Akt-mTOR(U) 

ERBB/EGFR(U) 

NRF2(U) 

ATM(U) 

TGF-beta(U) BCR(U) 

TCR(U) 

FCR(U) 

VEGFA-

VEGFR2(U) 

WA MCF-7 ATM (D) 

P53 (D) 

AMPK (D) 

Rho GTPase 

(D) 

Cytokine (D) TGF-beta (D) 

NRF2 (U) 

MAPK (U) 

P53 (U) 

Intrinsic apoptosis 

(U) 

- - - 

MDA-MB-

231 

NRF2(D) 

FoxO (D) 

ATM (D) 

MAPK (D) 

AMPK (D) 

ErbB (D) 

P53 (D) 

TGF-beta (D) 

Notch (D) 

Wnt (D) IL-4, IL-17 (D) - 

PI3K-Akt-mTOR (U) 

 

- INF gamma (U) 

TNF (U) 

VEGF (U) 

Notch (U) 

TGF-beta (U) 

HIF-1 (U) 
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Continuation of Table 4.6 

 
I3C MCF-7 P53 (D) 

EGFR/ErbB4(D) 

Apoptosis(D) 

PI3K-Akt-

mTOR(D) 

MAPK(D) 

Wnt(D) 

TGF-beta(D) TCR(D) 

IFN(D) 

TNF-alpha(D) 

BCR(D) 

- 

Apoptosis(U) 

Cell cycle(U) 

- - - 

T47D Cell cycle, G2/M 

(D) 

ErbB4(D) 

PI3K-Akt-

mTOR(D) 

 

Notch1(D) 

Wnt(D) 

 

TGF-beta(D) 

 

Chemokine 

IFN-1, IL-7(D) 

Rho 

GTPase(D) 

VEGFA-

VEGFR2(D) 

PDGF(D) 

RIG-I like 

receptor(U) 

Genotoxicity(U) 

Apoptosis (U) 

ATM(U) 

MAPK(U) 

IFN(U) 

TGF-beta(U) 

- - - 

ZR751 ATM(D) 

EGF(D) 

FasL(D) 

Notch(D) 

TGF-beta(D) 

Apoptosis(D) 

RIG-I(D) 

Wnt(D) - VEGF(D) 

IFN(U) 

NRF2 

Apoptosis(U) 

MAPK(U) 

- - - 

MDA-MB-231 - Hippo (D) 

 

- VEGFA-

VEGFR2(D) 

NRF2 (U) - - - 

MDA-MB-157 - - - - 

- - - - 

MDA-MB-436 EGFR/ErbB (D) 

PI3K-Akt(D) 

MAPK(D) 

Rho GTPase(D) 

Wnt(D) 

Hippo(D) 

TCR(D) PDGF(D) 

TGF-beta(D) 

Apoptosis (U) 

TGF-beta(U) 

- TLR4(U) - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

A. CKI on MCF-7 

 
 
 

B. I3C on LA 

 
 
 
 

C. I3C on TN 

 
 

Figure 4.3: Pie charts illustrating the proportion of oncogenic signaling pathways 

involved in the regulation of angiogenesis, cell cycle/proliferation and apoptosis, 

inflammation and metastasis/invasion as determined from enrichment analysis of A) 

MCF-7 under CKI, B) LA under I3C, C) TN under I3C, D) MCF-7 under WA and E) 

MDA-MB-231 under WA. 
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Continuation of Figure 4.3 
 

D. WA on MCF-7 

 
 

 

E. WA on MDA-MB-231 

 

 

 

 

4.6. I3C targets metastasis/invasion regulating hippo 

signaling network in TN 
 

From the pathway enrichment, it was apparent that TN cell lines were 

comparatively less affected by I3C treatment at the subnetwork level (Table 4.3 and 

Supplementary Tables 1.6 and 1.7). The common targeted oncogenic signaling 

pathway between MDA-MB-231 and MDA-MB-436 was identified to be ‘hippo 

signaling pathway’ (Figure 4.2B). To understand the regulatory mechanism of this 

pathway in the two cell lines further, the gene expression fold changes of the enriched 

genes in the pathway were plotted (Figure 4.4). GNAQ, PRKCA and PRKCE genes 
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are commonly deregulated in the two cell lines. This observation illustrates a distinct 

cancer subtype-specific targeting of the metastasis/invasion regulating pathway by 

I3C. 

 

Figure 4.4: Bar chart plots illustrating differential gene regulation of Hippo signaling 

in MDA-MB-231 (A) and MDA-MB-236 (B) under I3C. 
 

4.7. Analysis of common pathways in MCF-7 under I3C, WA 

and CKI identifies TGF-beta pathway as the common 

oncogenic signaling pathway. 
 

Anti-cancer drug combinations to enhance therapeutic efficacy in drug 

resistant cancer types is a common clinical application. In this approach, drugs 

targeting different carcinogenesis pathways are used together to prevent tumor cell 

survival from alternate pathways [52], [59], [103]. Thus, to investigate a potential 

drug/compound combination that could synergistically/antagonistically target 

oncogenic signaling pathways in LA MCF-7 cell line, common pathways were 

identified. The Venn diagram (Figure 4.2C) indicates that combined, the three 

drugs/compounds target TGF-beta signaling pathway. Paradoxically, the enriched 

genes in this pathway under different drugs show differential deregulation of 
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metastasis and invasion (CKI and I3C) and angiogenesis (WA) carcinogenesis 

processes (Table 4.6). Conspicuously, there are unique pathways targeted by the 

different drugs/compounds in the same cancer subtypes (MCF-7) (Figure 4.4C). 
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5. DISCUSSION 

 

In the past decade, the gradual paradigm shift from reductionism to system 

pharmacology approaches in drug discovery, repurposing and evaluation has 

accelerated the elucidation of drug mechanism of action. This shift has been supported 

by the appreciation of the need to treat a disease pathology as a system rather than 

focusing on single genetic targets  driving disease-phenotype in multi-

factorial/complex diseases such as cancer [52], [53], [55]. Therefore, multi-targeting 

of oncogenic signaling pathways is a common strategy. Fortunately, the discovery of 

poly-pharmacologic effects of plant-derived drugs/compounds from separate 

reductionist experiments begs the question as to their systemic effects on oncogenic 

pathways in multifactorial diseases. To date, with the need to account for all the 

molecular players under a drug treatment, several data integration methods have been 

proposed. Thus, the reconstruction of drug perturbed subnetworks is possible and has 

been previously explored [55], [58], [104]. While separate studies have reported 

targeting of several genes in different signal transduction networks by plant derived 

drugs [59], [104], leveraging the current technological advances in protein-protein 

interaction network extraction methods from omics data is still less well explored. In 

light of this, a de novo network enrichment method and gene-pathway enrichment 

methods have been used to illuminate the pleiotropic effects of plant-derived drugs on 

signal transduction pathways in LA, TN and HER2+ breast cancers. The 

comprehensive analysis of the most frequently altered oncogenic signaling pathways 

as reported in TCGA have been used to guide this discussion [6].  

Drug/compound-specific perturbed subnetworks for LA, TN and HER2+ 

breast cancer subtypes were reconstructed by integrating the related transcriptome data 

with BioGRID [64] protein-protein interaction network. These subnetworks possess 

different topological features that are drug/compound and cell-type specific. This 

difference in the number of genes and interactions in the networks indicates differential 

targeting of these cells based on the underlying genetic and pathologic differences 

(Table 3.1). 

Network topology-based centrality analysis identified the most connected 

genes in the subnetworks for all the cell lines studied. These genes also represent the 

information transit nodes in the respective subnetworks (Table 3.5). Subsequent 
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survival analysis using Kaplan-Meier plot and phenotype association prediction from 

box-plots revealed biologically important genes: TRIM25 [105], CDH1 [106] and APP 

[107]. ELAVL1 gene is responsible for the expression of the RNA-binding HuR 

protein and has been shown to be involved in multiple processes associated with 

carcinogenesis [108]. Significant high expression of CDH1, APP and TRIM25 genes 

is associated with reduced overall survival. Conversely, significant low expression of 

ELAVL1 is associated with low overall survival (Figure 3.3 A-D). These findings are 

in agreement with previous observations on the biological role of these genes in cancer 

[111-114] and indicate that the studied drugs perturb the underlying diseasome 

network by targeting known oncogenesis specific genes and their interacting genes.  

Actein is one of the least comprehensively studied plant derived compounds, 

but has recently attracted attention in breast cancer due its effects on various biological 

processes in cancer [42]–[44], [94], [109]. In this work, actein is shown to target 48 

oncogenic signaling pathways in HER2+ (MDA-MB-453) subtype, of which 5 (Cell 

cycle, PI3K-Akt-mTOR, EGFR and TGF-beta) are canonical oncogenic pathways [6]. 

The enriched genes in these pathways mainly regulate cell proliferation and death 

(Table 3.6). Network analysis reveals that cell death and cell cycle arrest-related genes 

in TGF-beta, PI3K-Akt-mTOR and NRF2 pathways are up-regulated while cell cycle 

and proliferative genes in TGF-beta are down-regulated (Table 3.6). Additionally, the 

tumor microenvironment regulation through cytokine signaling represented by 

interferon signaling pathway is down-regulated (Table 3.6). In agreement with this 

explanation, in reports on breast and other cancers, actein has been shown to target 

apoptosis [43], [44], cell adhesion [109] and migration [43], [109]. Thus, from these 

findings, actein mainly targets cell proliferation and apoptosis, regulating signal 

transduction pathways in HER2+ breast cancer. 

CKI is a formulation with 22 chemical constituents [45]. The molecular effects 

of compound kushen injection on breast cancer has largely provided mixed results 

[110]. At the network level, CKI perturbs 24 pathways. P53 (down-regulated), 

RTK/RAS (EGFR, p38 and ErbB), PI3K-Akt-mTOR, NRF2 and TGF-beta (up-

regulated) (Table 3.6) are the defined canonical oncogenic signaling pathways [6] in 

MCF-7. Based on enriched genes, these pathways regulate cell proliferation and 

apoptosis (P53, RTK/RAS, PI3K-Akt-mTOR and NRF2) and metastasis/invasion 

(TGF-beta) (Table 3.6). Moreover, CKI also targets angiogenesis and tumor 

microenvironment regulating pathways through VEGFA/VEGFR2 and cytokine 
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signaling (B cell receptor, T cell receptor and FC-epsilon signaling) respectively 

(Table 3.6), which is consistent with a previous report [111]. The down-regulation of 

P53 pathway is in line with a previous observation of P53 independent apoptotic cell 

death [95]. Reports from other groups have shown that CKI directly regulates 

hepatocellular carcinoma (HCC) cell proliferation [45],  cell migration in  HCC, colon 

and breast cancer [45], [111]; and apoptosis in breast cancer [111]. The results in this 

work, therefore, extends the global effects of CKI on signal transduction pathways 

associated with MCF 7 cells, and defines cell cycle/proliferation and apoptosis, 

metastasis/invasion, inflammation and angiogenesis as targeted carcinogenesis 

processes (Table 3.6). 

Indole-3-carbinol is a widely studied plant phytohormone and its effectiveness 

is well defined in ER driven cancers [40], [97], [112], [113]. Thus, it is not surprising 

to see higher number of signal transduction terms in LA than TN subtypes. 

Importantly, in LA, TGF-beta, Notch, cell cycle and Wnt were identified as the 

commonly targeted oncogenic signaling pathways (Figure 3.4A). These pathways 

regulate cell proliferation and apoptosis (Wnt, cell cycle, Notch and TGF-beta) and 

invasion/metastasis (TGF-beta, Wnt and Notch) (Table 3.6). Taking into account the 

enriched genes in the different pathways, dramatic observations can be made on TGF-

beta, whose metastasis/invasion promoting genes are down-regulated in T47D and 

MCF-7 while cell death related genes are up-regulated in T47D and down-regulated 

in ZR751 (Table 3.6). Thus, I3C targets 8 signaling pathways to exert its anti-cancer 

activity across LA subtype. These pathways are spread across cell cycle/proliferation 

and apoptosis, metastasis/invasion, inflammation and angiogenesis as targeted 

carcinogenesis processes (Table 3.6). 

The role of I3C on TN is less well elaborated and was noted to be less effective 

[97]. Indeed, in this study no oncogenic signaling pathway was enriched in MDA-MB-

157 subnetwork; illustrating an I3C non-responsive subtype at the protein-protein 

interaction network level.  

An important finding in the responsive TN cells is the common targeting of 

invasion/metastasis processes through down-regulation of the hippo signaling pathway 

in MDA-MB-231 and MDA-MB-436 (Figure 3.4). Further, I3C perturbs this pathway 

through CDH1, GNAQ in MDA-MB-231, CDH11, CDH13, CDH2, EGFR, FGFR3 

and STK3 in MDA-MB-436 and commonly through GNAQ, PRKCA and PRKCE. 

The effect of I3C on cancer cell invasion has been reported for LA elsewhere [114]. 
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Overall, more MDA-MB-436 signaling pathways are targeted by I3C (Supplementary 

Table 3.7), and these pathways control carcinogenesis by regulating cell 

cycle/proliferation and apoptosis, metastasis/invasion, inflammation and angiogenesis 

processes (Table 3.6). 

The characteristic anti-cancer effects of Withaferin A are well anchored in 

scientific reports [48], [49], [79], [96], [115]–[122]. Multiple carcinogenesis processes 

have been proposed to be affected in breast cancer by WA [49], [51], [96], [115], [116]. 

Here, MAPK, TGF-beta, NRF2 and P53 oncogenic signaling pathways are targeted in 

both TN and LA (Table 3.6). Differential targeting of Wnt, Notch, VEGFA-VEGFR2 

and PI3K-Akt-mTOR in TN and cytokines in LA was identified (Table 3.6). 

Moreover, WA also targets cytokine mediated signaling in both cells (Table 3.6). The 

up-regulation of NRF2 pathway genes (Table 3.6) is consistent with in vivo findings 

of induction of oxidative stress in the two cell lines [49], [123]. These results illustrate 

multi-targeting of several carcinogenesis processes including cell proliferation and 

death, inflammation, metastasis/invasion and angiogenesis (Table 3.6) in both TNBC 

and LABC to produce the phenotypes anchored in in vitro studies. 

Drug combination in cancer is a novel and common approach in targeting 

multiple oncogenesis processes, especially in resistant cancer subtypes. This is 

currently highly pursued approach in network medicine [52], [69], [124], [125]. In this 

work, the common oncogenic signaling pathways targeted by CKI, I3C and WA in 

MCF-7 were determined to be TGF-beta (Figure 3.4C); while no common pathway 

was found for I3C and WA in MDA-MB-231 cell line (Figure 3.4D). Given the 

independent targeting of oncogenic pathways in MDA-MB-231, the two drugs could 

complement each other to regain control of multiple signaling pathways that are 

independently targeted. However, given the complex nature in pharmacodynamics and 

pharmacokinetics under multiple drug conditions, it can be hypothesized that different 

targeted pathways could be obtained from combination studies. 

Even though the current approach applied involves using one omic level data 

(gene expression) to make systemic inference, this study has laid the foundation for 

future studies in biological data integration and perturbed oncogenic signal 

transduction pathway inference from protein-protein interaction network 

reconstruction. The differential effects observed across the different tumor subtypes 

under different drugs and literature concurrence illustrate the robustness of the 

implemented method. Whether the demonstrated perturbations are as a result of direct 
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drug-protein(s) interaction or drug-rate-limiting protein (network hub protein) 

interaction cannot be clearly deduced from this work and demands future attention. 
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6. CONCLUSION 

 

In this thesis work, the network/systemic molecular effects of actein, indole-3-

carbinol, compound kushen injection and withaferin A, as plant derived drugs, on 

oncogenic signaling pathways in triple negative, luminal A and HER2-positive breast 

cancer have been reconstructed from transcriptome data and protein-protein 

interaction network. It has been established that these drugs/compounds have multiple 

oncogenic-related signaling pathway targets, and the enriched proteins in the pathways 

interact in a network. Also, the targeted signaling pathways are tumor subtype specific. 

Therefore, this method of network mapping could facilitate prioritisation of anti-

cancer drug/compounds based on the underlying perturbed oncogenic signaling 

pathway. Furthermore, the mechanism of action and molecular targets of a 

drug/compound can be elucidated using this approach. Across the datasets analysed, 

differential cell response was observed. This means that for every 

treatment/experimental approach, it is important to treat each sample as unique and 

avoid generalization bias. 
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7. RECOMMENDATIONS 

 

In this study PPIN has been used to infer perturbed signaling networks. 

However, signaling pathways do not only affect protein expression. Thus, given the 

complexity and interrelatedness of the different OMICs data, further integrative work 

is required to definitively ascertain the different observations on the role of the drugs 

studied in this work. Also, given the tissue specific differential gene expression 

patterns, a more accurate predictive study would employ a breast specific protein-

protein interaction network as well as considering their phosphorylation status since 

active/active signaling proteins are post-translationally modified. Such PPINs can be 

derived through text mining coupled with manual curation from experimental 

observations. Equally important is the delineation of a pathway activity under drug 

treatment, which was painstakingly manually done in this study. Towards this, the 

application of machine learning algorithms, as has been applied in other biological 

studies [70], [126], can be utilized to scientifically predict the pathway status by taking 

experimental evidence from perturbation experiments.  

Greedy algorithm is believed to be efficient in subnetwork extraction. Much 

more accurate algorithm in KPM is ACO, though it is computationally intensive and 

hence not preferable [71], [88]. Again, one limitation of the KPM approach is the fact 

that network scoring is based on binary matrix for gene expression. An alternative to 

this approach is the Heinz algorithm in BioNet which scores a network based on the 

false discovery of gene expression, effectively ignoring the direction of the gene 

expression. Therefore, a solution to this would be implementing a scoring algorithm 

which both factors in the magnitude of the false discovery rate and direction and 

magnitude of gene fold change. This would take into account the fact that some 

proteins contribute more to a drug-effect network phenotype than the rest.   

Given that this is the first attempt to systemically evaluate the role of plant-

derived drugs on oncogenic signaling pathways, future studies should strive to 

integrate drug-ligand binding and cell fate observations to authoritatively determine 

the mechanism of action of a drug. 

One of the main resources used in this work is the curated signaling pathway 

from KEGG, WikiPathways, Reactome and GO Biological Processes. While they are 

instrumental in pathway enrichment analysis in the determination of underlying 
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molecular process, their main problem is redundancy. Each of these databases classify 

proteins under pathway names which might be similar, different or subsets of major 

known biological pathways. It is thus imperative that future studies should seek to 

resolve cross-database pathway enrichment analysis.  
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Appendix B: Supplementary tables 

Tables of pathway enrichment analysis for the different extracted subnetwork genes  

Table B3.1: Actein targeted signal transduction pathways in the subnetwork for 

HER2+ MDA-MB-453 cell line. 

 
Signaling Pathways FDR 

regulation of G2/M transition of mitotic cell cycle (GO:0010389) 0.000164 

regulation of mitotic cell cycle (GO:0007346) 0.000214 

ATR Signaling WP3875 0.000249 

regulation of cell cycle (GO:0051726) 0.000404 

positive regulation of cell cycle arrest (GO:0071158) 0.001027 

ATM Signaling Network in Development and Disease  WP3878 0.001057 

apoptotic process (GO:0006915) 0.001057 

regulation of apoptotic process (GO:0042981) 0.002147 

miRNA regulation of p53 pathway in prostate cancer WP3982 0.003818 

APC/C-mediated degradation of cell cycle proteins_Homo sapiens_ 

R-HSA-174143 

0.004199 

Regulation of mitotic cell cycle_Homo sapiens_R-HSA-453276 0.004199 

positive regulation of apoptotic process (GO:0043065) 0.004567 

positive regulation of mitotic cell cycle phase transition (GO:1901992) 0.004940 

regulation of mitotic cell cycle spindle assembly checkpoint (GO:0090266) 0.005245 

positive regulation of mitotic cell cycle (GO:0045931) 0.006040 

regulation of metaphase/anaphase transition of cell cycle (GO:1902099) 0.006306 

Interferon Signaling_Homo sapiens_R-HSA-913531 0.007398 

TGF-beta Signaling Pathway WP366 0.010990 

EGF/EGFR Signaling Pathway WP437 0.010990 

PI3K-AKT-mTOR signaling pathway and therapeutic opportunities WP3844 0.011528 

mir-124 predicted interactions with cell cycle and differentiation  WP3595 0.011529 

negative regulation of pathway-restricted SMAD protein phosphorylation 

 (GO:0060394) 

0.012793 

intrinsic apoptotic signaling pathway in response to DNA damage  

(GO:0008630) 

0.013892 

Apoptosis WP254 0.018195 

Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling WP3612 0.018682 

Downregulation of TGF-beta receptor signaling_Homo sapiens_ 

R-HSA-2173788 

0.018719 

Target Of Rapamycin (TOR) Signaling WP1471 0.021716 

Notch Signaling Pathway WP61 0.022409 

extrinsic apoptotic signaling pathway (GO:0097191) 0.025832 

Genotoxicity pathway WP4286 0.025839 

regulation of cell cycle checkpoint (GO:1901976) 0.027681 

positive regulation of extrinsic apoptotic signaling pathway via death domain  

receptors (GO:1902043) 

0.027681 

regulation of G1/S transition of mitotic cell cycle (GO:2000045) 0.035702 

negative regulation of intracellular signal transduction (GO:1902532) 0.036064 

negative regulation of G1/S transition of mitotic cell cycle (GO:2000134) 0.037442 
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Continuation of Table B3.1 

negative regulation of B cell apoptotic process (GO:0002903) 0.038684 

regulation of intrinsic apoptotic signaling pathway (GO:2001242) 0.038727 

Fas Ligand (FasL) pathway and Stress induction of Heat Shock Proteins (HSP)  

regulation WP314 

0.041397 

TGF-beta receptor signaling activates SMADs_Homo sapiens_R-HSA-2173789 0.041659 

NRF2 pathway WP2884 0.042693 

Signaling by TGF-beta Receptor Complex_Homo sapiens_R-HSA-170834 0.045418 

positive regulation of G2/M transition of mitotic cell cycle (GO:0010971) 0.048516 

 

Table B3.2: CKI targeted signaling pathways in the subnetwork for LA MCF-7 cell 

line 

 
Signaling Pathways FDR 

ATM Signaling Pathway WP2516 0.000226 

EGF/EGFR Signaling Pathway WP437 0.0017 

EPHB-mediated forward signaling_Homo sapiens_R-HSA-3928662 0.00364 

PI3K-AKT-mTOR signaling pathway and therapeutic opportunities WP3844 0.009488 

Aryl Hydrocarbon Receptor Pathway WP2873 0.010227 

Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling WP3612 0.010227 

NRF2 pathway WP2884 0.01023 

ErbB Signaling Pathway WP673 0.011746 

VEGFA-VEGFR2 Signaling Pathway WP3888 0.012339 

TGF-beta Signaling Pathway WP366 0.012727 

EPH-Ephrin signaling_Homo sapiens_R-HSA-2682334 0.013565 

RAC1/PAK1/p38/MMP2 Pathway WP3303 0.016496 

Tie2 Signaling_Homo sapiens_R-HSA-210993 0.018594 

ERBB signaling pathway (GO:0038127) 0.02541 

transmembrane receptor protein tyrosine kinase signaling pathway (GO:0007169) 0.028166 

ephrin receptor signaling pathway (GO:0048013) 0.028166 

G13 Signaling Pathway WP524 0.031902 

Canonical and Non-Canonical TGF-B signaling WP3874 0.03503 

Constitutive Signaling by EGFRvIII_Homo sapiens_R-HSA-5637810 0.03531 

Signaling by EGFRvIII in Cancer_Homo sapiens_R-HSA-5637812 0.03531 

Signaling by ERBB2_Homo sapiens_R-HSA-1227986 0.03788 

Signaling by FGFR3 fusions in cancer_Homo sapiens_R-HSA-8853334 0.041502 

B cell receptor signaling pathway 0.044712 

p53 signaling pathway 0.048133 
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Table B3.3: I3C targeted signaling pathways in the subnetwork for LA MCF-7 cell 

line 

 
Signaling Pathways FDR 

TGF-beta Signaling Pathway WP366 0.000228 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.000235 

regulation of mitotic cell cycle (GO:0007346) 0.000258 

Apoptosis_Homo sapiens_R-HSA-109581 0.000367 

positive regulation of apoptotic signaling pathway (GO:2001235) 0.000386 

regulation of mitotic cell cycle phase transition (GO:1901990) 0.000422 

Signaling by the B Cell Receptor (BCR)_Homo sapiens_R-HSA-983705 0.000663 

Fas Ligand (FasL) pathway and Stress induction of Heat Shock Proteins (HSP) 

regulation WP314 

0.000904 

Apoptosis WP254 0.001253 

G2/M transition of mitotic cell cycle (GO:0000086) 0.001308 

intrinsic apoptotic signaling pathway (GO:0097193) 0.001334 

cell cycle G2/M phase transition (GO:0044839) 0.001349 

Signaling by EGFR_Homo sapiens_R-HSA-177929 0.001441 

Signaling by NOTCH_Homo sapiens_R-HSA-157118 0.001441 

Signaling by TGF-beta Receptor Complex_Homo sapiens_R-HSA-170834 0.001622 

DNA damage response, signal transduction by p53 class mediator resulting in cell 

cycle arrest (GO:0006977) 

0.001823 

Signaling by ERBB4_Homo sapiens_R-HSA-1236394 0.001895 

cell cycle G1/S phase transition (GO:0044843) 0.001904 

signal transduction involved in mitotic G1 DNA damage checkpoint 

(GO:0072431) 

0.002119 

negative regulation of apoptotic process (GO:0043066) 0.002356 

G1 to S cell cycle control WP45 0.002431 

DNA damage response, signal transduction by p53 class mediator (GO:0030330) 0.002559 

Downstream signaling events of B Cell Receptor (BCR)_Homo sapiens_R-HSA-

1168372 

0.002593 

Signaling by NOTCH1_Homo sapiens_R-HSA-1980143 0.003091 

Insulin Signaling WP481 0.003170 

Signaling by SCF-KIT_Homo sapiens_R-HSA-1433557 0.003289 

negative regulation of cell cycle (GO:0045786) 0.003462 

Cell Cycle Checkpoints_Homo sapiens_R-HSA-69620 0.003554 

Apoptosis Modulation by HSP70 WP384 0.003824 

T-Cell Receptor and Co-stimulatory Signaling WP2583 0.004260 

Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 0.005823 

Fc epsilon receptor (FCERI) signaling_Homo sapiens_R-HSA-2454202 0.006553 

positive regulation of cell cycle arrest (GO:0071158) 0.006592 

regulation of G2/M transition of mitotic cell cycle (GO:0010389) 0.006793 

IL-4 Signaling Pathway WP395 0.006958 

Signaling by FGFR3_Homo sapiens_R-HSA-5654741 0.007524 

Signaling by FGFR_Homo sapiens_R-HSA-190236 0.007820 
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Continuation of Table B3.3 

Notch Signaling Pathway WP61 0.0080173 

negative regulation of mitotic cell cycle (GO:0045930) 0.0091501 

Signaling by FGFR2_Homo sapiens_R-HSA-5654738 0.0092866 

G1/S transition of mitotic cell cycle (GO:0000082) 0.0105152 

Signaling by PDGF_Homo sapiens_R-HSA-186797 0.0110098 

G13 Signaling Pathway WP524 0.0112213 

Signaling by FGFR4_Homo sapiens_R-HSA-5654743 0.0113228 

regulation of canonical Wnt signaling pathway (GO:0060828) 0.0116853 

Apoptosis Modulation and Signaling WP1772 0.0132289 

Signaling by Wnt_Homo sapiens_R-HSA-195721 0.0134704 

Signaling by FGFR1_Homo sapiens_R-HSA-5654736 0.0137164 

H19 action Rb-E2F1 signaling and CDK-Beta-catenin activity WP3969 0.0137862 

Downstream signaling of activated FGFR2_Homo sapiens_R-HSA-5654696 0.013795 

epidermal growth factor receptor signaling pathway (GO:0007173) 0.0157379 

Downstream signaling of activated FGFR1_Homo sapiens_R-HSA-5654687 0.0159297 

PI3K-AKT-mTOR signaling pathway and therapeutic opportunities WP3844 0.0170538 

negative regulation of Wnt signaling pathway (GO:0030178) 0.0175333 

TCF dependent signaling in response to WNT_Homo sapiens_R-HSA-201681 0.0185266 

TCR signaling_Homo sapiens_R-HSA-202403 0.0216495 

TRIF-mediated TLR3/TLR4 signaling_Homo sapiens_R-HSA-937061 0.0223544 

Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants_Homo 

sapiens_R-HSA-2894862 

0.023179 

Signaling by Robo receptor_Homo sapiens_R-HSA-376176 0.0231794 

CD209 (DC-SIGN) signaling_Homo sapiens_R-HSA-5621575 0.0231794 

TP53 regulates transcription of additional cell cycle genes whose exact role in the 

p53 pathway remain uncertain_Homo sapiens_R-HSA-6804115 

0.0231794 

positive regulation of canonical Wnt signaling pathway (GO:0090263) 0.0238908 

Genotoxicity pathway WP4286 0.0238946 

APC/C-mediated degradation of cell cycle proteins_Homo sapiens_R-HSA-

174143 

0.0254569 

Regulation of mitotic cell cycle_Homo sapiens_R-HSA-453276 0.0254569 

Caspase activation via extrinsic apoptotic signalig pathway_Homo sapiens_R-

HSA-5357769 

0.0254569 

NIK/NF-kappaB signaling (GO:0038061) 0.0256562 

PI3K events in ERBB4 signaling_Homo sapiens_R-HSA-1250342 0.026443 

PIP3 activates AKT signaling_Homo sapiens_R-HSA-1257604 0.026443 

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways_Homo sapiens_R-

HSA-168928 

0.0269128 

TNF alpha Signaling Pathway WP231 0.0277115 

Bone Morphogenic Protein (BMP) Signalling and Regulation WP1425 0.0304220 

Canonical and Non-Canonical TGF-B signaling WP3874 0.0314138 

Kit receptor signaling pathway WP304 0.0314138 

Cytokine Signaling in Immune system_Homo sapiens_R-HSA-1280215 0.0332534 

regulation of cell cycle process (GO:0010564) 0.0346069 

positive regulation of Wnt signaling pathway (GO:0030177) 0.0354920 
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Continuation of Table B3.3 

Signaling by Insulin receptor_Homo sapiens_R-HSA-74752 0.0355391 

TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest_Homo 

sapiens_R-HSA-6804114 

0.0361099 

TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest_Homo 

sapiens_R-HSA-6804116 

0.0362023 

Myometrial Relaxation and Contraction Pathways WP289 0.0367856 

Activated TLR4 signalling_Homo sapiens_R-HSA-166054 0.0375829 

regulation of epidermal growth factor receptor signaling pathway (GO:0042058) 0.0396817 

Cell-type Dependent Selectivity of CCK2R Signaling WP3679 0.0401413 

positive regulation of mitotic cell cycle phase transition (GO:1901992) 0.0408936 

negative regulation of epidermal growth factor receptor signaling pathway 

(GO:0042059) 

0.0408936 

Beta-catenin independent WNT signaling_Homo sapiens_R-HSA-3858494 0.0415134 

TNF related weak inducer of apoptosis (TWEAK) Signaling Pathway WP2036 0.0421357 

AMP-activated Protein Kinase (AMPK) Signaling WP1403 0.0426044 

Structural Pathway of Interleukin 1 (IL-1) WP2637 0.0445468 

MAPK6/MAPK4 signaling_Homo sapiens_R-HSA-5687128 0.0448451 

MAPK family signaling cascades_Homo sapiens_R-HSA-5683057 0.0463484 

TP53 regulates transcription of several additional cell death genes whose specific 

roles in p53-dependent apoptosis remain uncertain_Homo sapiens_R-HSA-

6803205 

0.0465501 

Constitutive Signaling by AKT1 E17K in Cancer_Homo sapiens_R-HSA-

5674400 

0.0466047 

regulation of intrinsic apoptotic signaling pathway (GO:2001242) 0.0471004 

regulation of mitotic cell cycle spindle assembly checkpoint (GO:0090266) 0.0483295 

positive regulation of DNA damage response, signal transduction by p53 class 

mediator (GO:0043517) 

0.0483295 

ERBB signaling pathway (GO:0038127) 0.0483295 

PI3K/AKT Signaling in Cancer_Homo sapiens_R-HSA-2219528 0.0492115 

 

Table B3.4: I3C targeted signaling pathways in the subnetwork for LA T47D cell 

line 

 
Signaling Pathways FDR 

positive regulation of apoptotic process (GO:0043065) 0.00017 

Notch Signaling Pathway WP61 0.00020 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.00031 

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 0.00071 

MAPK Signaling Pathway WP382 0.00118 

Cell Cycle, Mitotic_Homo sapiens_R-HSA-69278 0.00130 

TGF-beta Signaling Pathway WP366 0.00229 

Genotoxicity pathway WP4286 0.00351 

Apoptosis WP254 0.00351 

VEGFA-VEGFR2 Signaling Pathway WP3888 0.00351 

NRF2 pathway WP2884 0.00358 
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Continuation of Table B3.4 

Cytokine Signaling in Immune system_Homo sapiens_R-HSA-1280215 0.00464 

regulation of cysteine-type endopeptidase activity involved in apoptotic  

process (GO:0043281) 

0.00497 

Signaling by TGF-beta Receptor Complex_Homo sapiens_R-HSA-170834 0.00521 

ATM Signaling Pathway WP2516 0.00563 

Interferon type I signaling pathways WP585 0.00593 

Signaling by ERBB4_Homo sapiens_R-HSA-1236394 0.00613 

Interferon alpha/beta signaling_Homo sapiens_R-HSA-909733 0.00613 

ErbB Signaling Pathway WP673 0.00634 

AMP-activated Protein Kinase (AMPK) Signaling WP1403 0.00634 

Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling WP3612 0.00641 

epidermal growth factor receptor signaling pathway (GO:0007173) 0.00851 

negative regulation of apoptotic process (GO:0043066) 0.00857 

type I interferon signaling pathway (GO:0060337) 0.00970 

PI3K-Akt Signaling Pathway WP4172 0.00975 

ATM Signaling Network in Development and Disease  WP3878 0.01036 

cytokine-mediated signaling pathway (GO:0019221) 0.01044 

regulation of small GTPase mediated signal transduction (GO:0051056) 0.01103 

G2/M transition of mitotic cell cycle (GO:0000086) 0.0118 

cell cycle G2/M phase transition (GO:0044839) 0.0124 

Fc epsilon receptor (FCERI) signaling_Homo sapiens_R-HSA-2454202 0.01442 

Interferon Signaling_Homo sapiens_R-HSA-913531 0.01442 

AXIN mutants destabilize the destruction complex, activating WNT signaling_ 

Homo sapiens_R-HSA-4839735 

0.01569 

TCF dependent signaling in response to WNT_Homo sapiens_R-HSA-201681 0.01589 

RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways_ 

Homo sapiens_R-HSA-168928 

0.01878 

Wnt Signaling Pathway and Pluripotency WP399 0.01885 

Signaling by Wnt_Homo sapiens_R-HSA-195721 0.01998 

Activated TLR4 signalling_Homo sapiens_R-HSA-166054 0.01998 

Signaling by Robo receptor_Homo sapiens_R-HSA-376176 0.01998 

miRNA regulation of p53 pathway in prostate cancer WP3982 0.02236 

B Cell Receptor Signaling Pathway WP23 0.02236 

Rho GTPase cycle_Homo sapiens_R-HSA-194840 0.02310 

Cell Cycle Checkpoints_Homo sapiens_R-HSA-69620 0.02406 

DNA damage response, signal transduction by p53 class mediator (GO:0030330) 0.02494 

Signaling by WNT in cancer_Homo sapiens_R-HSA-4791275 0.02653 

small GTPase mediated signal transduction (GO:0007264) 0.02772 

intrinsic apoptotic signaling pathway in response to DNA damage (GO:0008630) 0.02772 

regulation of cell cycle (GO:0051726) 0.02772 

regulation of protein kinase B signaling (GO:0051896) 0.02772 

regulation of cell cycle G2/M phase transition (GO:1902749) 0.02839 

Signaling by SCF-KIT_Homo sapiens_R-HSA-1433557 0.03003 

IGF1R signaling cascade_Homo sapiens_R-HSA-2428924 0.03003 
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Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R)_ 

Homo sapiens_R-HSA-2404192 

0.03003 

Signaling by the B Cell Receptor (BCR)_Homo sapiens_R-HSA-983705 0.03003 

PDGF Pathway WP2526 0.03051 

IL-4 Signaling Pathway WP395 0.03141 

Signaling by VEGF_Homo sapiens_R-HSA-194138 0.03246 

Signaling by NOTCH1_Homo sapiens_R-HSA-1980143 0.03246 

Cell Cycle WP179 0.03369 

Chemokine signaling pathway WP3929 0.03369 

VEGFA-VEGFR2 Pathway_Homo sapiens_R-HSA-4420097 0.03438 

TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle  

Arrest_Homo sapiens_R-HSA-6804114 

0.03505 

signal transduction in response to DNA damage (GO:0042770) 0.03896 

G alpha (12/13) signalling events_Homo sapiens_R-HSA-416482 0.04114 

IL-6 signaling pathway WP364 0.04772 

Nuclear signaling by ERBB4_Homo sapiens_R-HSA-1251985 0.04805 

Interferon gamma signaling_Homo sapiens_R-HSA-877300 0.04842 

positive regulation of transmembrane receptor protein  

serine/threonine kinase signaling pathway (GO:0090100) 

0.04931 

 

Table B3.5: I3C targeted signaling pathways in the subnetwork for LA ZR751 cell 

line 

 
Signaling Pathways FDR 

Cell Cycle WP179 0.000280 

Cell Cycle Checkpoints_Homo sapiens_R-HSA-69620 0.000587 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.000587 

regulation of cell cycle (GO:0051726) 0.000588 

Interferon alpha/beta signaling_Homo sapiens_R-HSA-909733 0.000709 

Interferon Signaling_Homo sapiens_R-HSA-913531 0.000780 

Integrated Cancer Pathway WP1971 0.000783 

cell cycle G1/S phase transition (GO:0044843) 0.000937 

ATM Signaling Network in Development and Disease  WP3878 0.000948 

G1/S transition of mitotic cell cycle (GO:0000082) 0.001691 

apoptotic process (GO:0006915) 0.004276 

Interferon gamma signaling_Homo sapiens_R-HSA-877300 0.005031 

ATM Signaling Pathway WP2516 0.005071 

EGF/EGFR Signaling Pathway WP437 0.005410 

NRF2 pathway WP2884 0.006950 

VEGFA-VEGFR2 Signaling Pathway WP3888 0.006950 

Apoptosis WP254 0.007677 

extrinsic apoptotic signaling pathway via death domain receptors (GO:0008625) 0.007962 

Notch Signaling Pathway WP61 0.009858 

intrinsic apoptotic signaling pathway in response to endoplasmic reticulum  

stress (GO:0070059) 

0.015662 
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regulation of mitotic cell cycle (GO:0007346) 0.016476 

TGF-beta Signaling Pathway WP366 0.017552 

positive regulation of apoptotic signaling pathway (GO:2001235) 0.017614 

negative regulation of apoptotic process (GO:0043066) 0.020292 

Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 0.025074 

Notch signaling pathway (GO:0007219) 0.025219 

MAPK Signaling Pathway WP382 0.028800 

DNA damage response, signal transduction by p53 class mediator (GO:0030330) 0.031929 

Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling WP3612 0.034676 

negative regulation of protein kinase B signaling (GO:0051898) 0.034757 

Wnt Signaling WP428 0.037622 

Leptin signaling pathway WP2034 0.037622 

extrinsic apoptotic signaling pathway (GO:0097191) 0.038232 

TCF dependent signaling in response to WNT_Homo sapiens_R-HSA-201681 0.039778 

miRNA regulation of prostate cancer signaling pathways WP3981 0.040011 

Bone Morphogenic Protein (BMP) Signalling and Regulation WP1425 0.042644 

Wnt/beta-catenin Signaling Pathway in Leukemia WP3658 0.043482 

Fas Ligand (FasL) pathway and Stress induction of Heat Shock Proteins  

(HSP) regulation WP314 

0.043482 

 

Table B3.6: I3C targeted signaling pathways in the subnetwork for TN MDA-MB-

231 cell line 

 
Signaling Pathways FDR 

Pathways Regulating Hippo Signaling WP4540 0.03004 

 

Table B3.7: I3C targeted signaling pathway in the subnetwork for TN MDA-MB-436 

cell line 

 
Signaling Pathways FDR 

MAPK Signaling Pathway WP382 0.00112 

Signaling by EGFR_Homo sapiens_R-HSA-177929 0.00212 

ErbB Signaling Pathway WP673 0.00234 

TGF-beta Signaling Pathway WP366 0.00267 

Rho GTPase cycle_Homo sapiens_R-HSA-194840 0.00299 

regulation of apoptotic process (GO:0042981) 0.00353 

G Protein Signaling Pathways WP35 0.00451 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.00608 

negative regulation of Ras protein signal transduction (GO:0046580) 0.00840 

regulation of cell cycle (GO:0051726) 0.00996 

Signaling by Robo receptor_Homo sapiens_R-HSA-376176 0.01208 

regulation of small GTPase mediated signal transduction (GO:0051056) 0.01235 

T-Cell Receptor and Co-stimulatory Signaling WP2583 0.01345 
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Pathways Regulating Hippo Signaling WP4540 0.01707 

regulation of ERBB signaling pathway (GO:1901184) 0.02067 

DAP12 signaling_Homo sapiens_R-HSA-2424491 0.0214 

PI3K/AKT Signaling in Cancer_Homo sapiens_R-HSA-2219528 0.02148 

Signaling by PDGF_Homo sapiens_R-HSA-186797 0.0227 

PI3K events in ERBB4 signaling_Homo sapiens_R-HSA-1250342 0.0288 

PIP3 activates AKT signaling_Homo sapiens_R-HSA-1257604 0.0288 

DAG and IP3 signaling_Homo sapiens_R-HSA-1489509 0.02880 

Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 0.02986 

regulation of mitotic cell cycle (GO:0007346) 0.03004 

negative regulation of cell cycle (GO:0045786) 0.03241 

positive regulation of apoptotic process (GO:0043065) 0.03241 

PLC-gamma1 signalling_Homo sapiens_R-HSA-167021 0.03272 

G13 Signaling Pathway WP524 0.03363 

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 0.03363 

regulation of epidermal growth factor receptor signaling pathway (GO:0042058) 0.03691 

negative regulation of ERBB signaling pathway (GO:1901185) 0.03923 

PI3K-Akt Signaling Pathway WP4172 0.04219 

PDGFR-beta pathway WP3972 0.04822 

Genotoxicity pathway WP4286 0.04822 

Signaling by SCF-KIT_Homo sapiens_R-HSA-1433557 0.04921 

 

Table B3.8: WA targeted pathways in the subnetwork for TN MDA-MB-231 cell 

line 

 
Signaling Pathways FDR 

TCF dependent signaling in response to WNT_Homo sapiens_ 

R-HSA-201681 

2.36E-05 

Genotoxicity pathway WP4286 2.80E-05 

Signaling by Wnt_Homo sapiens_R-HSA-195721 0.000275 

Notch Signaling Pathway WP61 0.000339 

FoxO signaling pathway_Homo sapiens_hsa04068 0.000709 

TGF-beta Signaling Pathway WP366 0.000947 

NRF2 pathway WP2884 0.001031 

Focal Adhesion-PI3K-Akt-mTOR-signaling pathway WP3932 0.001262 

Estrogen signaling pathway_Homo sapiens_hsa04915 0.001921 

Photodynamic therapy-induced NFE2L2 (NRF2) survival signaling WP3612 0.002317 

Signaling by NOTCH1_Homo sapiens_R-HSA-1980143 0.003185 

p75NTR recruits signalling complexes_Homo sapiens_R-HSA-209543 0.003971 

VEGFA-VEGFR2 Signaling Pathway WP3888 0.004773 

Notch signaling pathway (GO:0007219) 0.005049 

Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants_ 

Homo sapiens_R-HSA-2894862 

0.005778 
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Constitutive Signaling by NOTCH1 PEST Domain Mutants_ 

Homo sapiens_R-HSA-2644606 

0.005778 

Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer_ 

Homo sapiens_R-HSA-2894858 

0.005778 

Signaling by NOTCH1 in Cancer_Homo sapiens_R-HSA-2644603 0.005778 

Signaling by NOTCH1 PEST Domain Mutants in Cancer_Homo  

sapiens_R-HSA-2644602 

0.005778 

AMPK signaling pathway_Homo sapiens_hsa04152 0.005847 

Recruitment and ATM-mediated phosphorylation of repair and  

signaling proteins at DNA double strand breaks_Homo sapiens_R-HSA-5693565 

0.006396 

p53 signaling pathway_Homo sapiens_hsa04115 0.006858 

intrinsic apoptotic signaling pathway (GO:0097193) 0.007681 

Photodynamic therapy-induced AP-1 survival signaling. WP3611 0.008723 

p75NTR signals via NF-kB_Homo sapiens_R-HSA-193639 0.009535 

PI3K-Akt signaling pathway_Homo sapiens_hsa04151 0.010249 

regulation of I-kappaB kinase/NF-kappaB signaling (GO:0043122) 0.010298 

Alpha 6 Beta 4 signaling pathway WP244 0.011266 

TNF signaling pathway_Homo sapiens_hsa04668 0.011575 

HIF-1 signaling pathway_Homo sapiens_hsa04066 0.015133 

regulation of tumor necrosis factor-mediated signaling pathway  

(GO:0010803) 

0.016324 

insulin receptor signaling pathway (GO:0008286) 0.017294 

regulation of TOR signaling (GO:0032006) 0.017294 

Target Of Rapamycin (TOR) Signaling WP1471 0.017413 

Apoptosis Modulation and Signaling WP1772 0.017413 

ErbB Signaling Pathway WP673 0.017413 

PI3K-Akt Signaling Pathway WP4172 0.017413 

MAPK signaling pathway_Homo sapiens_hsa04010 0.017726 

positive regulation of I-kappaB kinase/NF-kappaB signaling (GO:0043123) 0.017871 

cytokine-mediated signaling pathway (GO:0019221) 0.017871 

Notch signaling pathway_Homo sapiens_hsa04330 0.018072 

AMP-activated Protein Kinase (AMPK) Signaling WP1403 0.018717 

mTOR signalling_Homo sapiens_R-HSA-165159 0.0251 

ATM Signaling Pathway WP2516 0.025625 

NF-kB is activated and signals survival_Homo sapiens_R-HSA-209560 0.026535 

Notch signaling involved in heart development (GO:0061314) 0.027859 

DNA damage response, signal transduction by p53 class mediator  

resulting in cell cycle arrest (GO:0006977) 

0.028238 

positive regulation of cytokine-mediated signaling pathway (GO:0001961) 0.030255 

negative regulation of intracellular signal transduction (GO:1902532) 0.030255 

signal transduction involved in mitotic G1 DNA damage checkpoint  

(GO:0072431) 

0.030255 

mTORC1-mediated signalling_Homo sapiens_R-HSA-166208 0.033523 

Notch Signaling WP268 0.040067 

extrinsic apoptotic signaling pathway (GO:0097191) 0.041324 

ID signaling pathway WP53 0.04199 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.042583 
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intrinsic apoptotic signaling pathway in response to oxidative stress  

(GO:0008631) 

0.043923 

extrinsic apoptotic signaling pathway via death domain receptors  

(GO:0008625) 

0.043923 

 

Table B3.9: WA targeted signaling pathways in the subnetwork for LA MCF-7 cell 

lines 

 
Signaling Pathways FDR 

DNA damage response, signal transduction by p53 class  

mediator (GO:0030330) 

1.18E-05 

p53 signaling pathway_Homo sapiens_hsa04115 1.19E-05 

Interferon Signaling_Homo sapiens_R-HSA-913531 7.39E-05 

ATM Signaling Pathway WP2516 9.68E-05 

Signaling by Rho GTPases_Homo sapiens_R-HSA-194315 0.000174 

Resolution of AP sites via the multiple-nucleotide patch  

replacement pathway_Homo sapiens_R-HSA-110373 

0.000306 

DNA damage response, signal transduction by p53  

class mediator resulting in cell cycle arrest (GO:0006977) 

0.0005 

signal transduction involved in mitotic G1 DNA damage  

checkpoint (GO:0072431) 

0.000518 

NRF2 pathway WP2884 0.000572 

ATM Signaling Network in Development and Disease  WP3878 0.001423 

Negative regulators of RIG-I/MDA5 signaling_Homo  

sapiens_R-HSA-936440 

0.001848 

Cytokine Signaling in Immune system_Homo sapiens_R-HSA-1280215 0.002372 

RIG-I/MDA5 mediated induction of IFN-alpha/beta  

pathways_Homo sapiens_R-HSA-168928 

0.002604 

regulation of signal transduction by p53 class  

mediator (GO:1901796) 

0.00335 

NF-kB activation through FADD/RIP-1 pathway mediated  

by caspase-8 and -10_Homo sapiens_R-HSA-933543 

0.005956 

Interferon alpha/beta signaling_Homo sapiens_R-HSA-909733 0.006138 

cytokine-mediated signaling pathway (GO:0019221) 0.00908 

AMP-activated Protein Kinase (AMPK) Signaling WP1403 0.010534 

negative regulation of extrinsic apoptotic signaling  

pathway in absence of ligand (GO:2001240) 

0.01196 

negative regulation of signal transduction in absence of  

ligand (GO:1901099) 

0.011956 

intrinsic apoptotic signaling pathway in response to endoplasmic  

reticulum stress (GO:0070059) 

0.013129 

type I interferon signaling pathway (GO:0060337) 0.013966 

regulation of extrinsic apoptotic signaling pathway in absence of  

ligand (GO:2001239) 

0.01708 

interferon-gamma-mediated signaling pathway (GO:0060333) 0.01751 

MAPK signaling pathway_Homo sapiens_hsa04010 0.018406 

FoxO signaling pathway_Homo sapiens_hsa04068 0.021969 

Interferon gamma signaling_Homo sapiens_R-HSA-877300 0.023853 

negative regulation of extrinsic apoptotic signaling pathway (GO:2001237) 0.024507 

 



78 
 

Continuation of Table B3.9 

MAPK Signaling Pathway WP382 0.02491 

Type II interferon signaling (IFNG) WP619 0.026935 

positive regulation of cytokine-mediated signaling  

pathway (GO:0001961) 

0.02935 

regulation of epidermal growth factor receptor signaling  

pathway (GO:0042058) 

0.035461 

Nucleotide-binding domain, leucine rich repeat containing  

receptor (NLR) signaling pathways_Homo sapiens_R-HSA-168643 

0.036926 

Longevity regulating pathway - multiple species_Homo sapiens_hsa04213 0.039072 

TGF-beta Signaling Pathway WP366 0.046347 

Photodynamic therapy-induced NFE2L2 (NRF2)  

survival signaling WP3612 

0.04827 

 

 


