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SUMMARY 

 

Over successive generations, languages have evolved, with new languages and 

dialects branching out; new words emerge, pronunciations vary, and morphology 

develops. 

The process of finding substituted words in a language, as well as knowing how 

similar languages are, is the cornerstone of studying the development of languages. 

The challenge in studying Eastern languages occupies in the scarcity of parallel 

corpora. Current approaches that study the development of languages are either based 

on parallel corpora or are not of high quality. 

The goal of this work is to build an effective system that automatically detects 

word substitution and inter-language similarity using unsupervised learning, i.e., 

without parallel corpora. To discover word substitution, we employ an adversarial 

training procedure to learn how to align between time-based word embeddings spaces 

and time-independent global word embeddings space with a simple and effective 

dictionary-based validation method. Furthermore, we estimate the inter-language 

similarity based on the perplexity of n-gram models that trained on monolingual texts. 

We apply our proposed models on Turkic languages and Arabic dialects. We 

identify word substitutions, in addition to finding the most changed periods during the 

last 100-years stage of Turkish language development. Moreover, we create fully 

connected similarity graphs for Turkic languages and Arabic dialects. We visualize the 

similarities in a heatmap, and we present a map showing the inter-language similarity 

and the influence of the geographical distribution. 

 

 

 

 

 

 

 

 

Keywords: Natural Language Processing, Word Embedding, Word Substitution, 

Language Similarity, Language Modeling. 
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ÖZET 

 

Birbirini izleyen nesiller boyunca diller gelişmiştir, yeni diller ve lehçelere 

dallanmıştır; yeni kelimeler ortaya çıkmış, telaffuzlar değişmiş ve morfoloji 

gelişmiştir. 

Bir dilde ikame edilmiş sözcükleri bulmak ve benzer dillerin benzerliklerini 

bilmek, dillerin gelişimini incelemenin temel taşını oluşturmuştur. Doğu dillerinde 

paralel korporanın azlığı bu dilleri incelemedeki zorluğu ortaya çıkarmıştır. Dillerin 

gelişimini inceleyen mevcut yaklaşımlar ya paralel korporaya dayanmıştır ya da 

yüksek başarım gösterememiştir. 

Bu çalışmanın amacı gözetimsiz öğrenmeyle paralel korpora kullanmadan 

kelime ikamesini ve diller arası benzerliği otomatik olarak tespit eden etkin bir sistem 

oluşturmaktır. Kelime ikamesini keşfetmek ve zamana dayalı kelime vektör uzayları 

ile zamandan bağımsız evrensel kelime vektör uzayının nasıl hizalanacağını öğretmek 

için basit ve etkin sözlük tabanlı doğrulama yöntemi ile çekişmeli eğitim prosedürünü 

kullandık. Ayrıca, tek dilli metinler üzerinde eğitilmiş n-gram modellere dayanarak 

diller arası benzerliği kestirdik. 

Önerilen modellerimizi Türk dilleri ve Arap lehçelerine uyguladık. Türk dil 

gelişiminin son 100 yıllık döneminde en çok değişen dönemleri bulmanın yanı sıra 

sözcük ikamelerini de belirledik. Ayrıca Türk dilleri ve Arap lehçeleri için tam 

bağlantılı benzerlik çizgeleri oluşturduk. Bir ısı haritasında benzerlikleri 

görselleştirdik ve bunu diller arası benzerliğe coğrafi dağılımın etkisini gösteren bir 

harita sunduk. 

 

 

 

 

 

 

 

 

Anahtar Kelimeler: Doğal Dil İşleme, Kelime Gömme, Kelime İkame Etme, Dil 

Benzerliği, Dil Modelleme.  
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1. INTRODUCTION 

Languages remain one of the greatest inventions of human creativity, whereas 

primitive ancestors communicated through signs, despite the many differences 

between the shapes of their letters, their pronunciation, and the appearance date since 

the appearance of man on the face of the earth [Peterson, 2015]. 

Languages have evolved over successive generations in a way that makes it 

difficult to define the boundary between one language and another. So, it is challenging 

to determine the oldest language and decisiveness in the emergence of one language 

over the ruins of another language. 

For example, the word “selfie” was not present in a few years, but today it is a 

word that we pronounce and know its meaning without finding linguistic meaning in 

existing dictionaries, and there are new scientific terms that are invented periodically 

in various fields, there are diseases, for example, that did not exist, and the names of 

newly made inventions. Other things emerging in life that directly affect the 

development of the language, and therefore, the dictionaries are regularly reviewed 

and developed by adding new words or terms and removing - sometimes - existing 

words. 

Let us go back in time to the ancient era, when the world was less densely 

populated. People shared one language and one culture, but it was divided into smaller, 

dispersed tribes in their search for better living conditions. Due to their migration and 

stability in new places, they became isolated from each other and developed in 

different ways commensurate with the things around them, such as the climate and 

animals. Centuries passed while they were eating different food and using new tools 

that made that common dialect transform into different languages radically continuing 

to divide with increasing population density. For this reason, linguists try to draw this 

process by tracing multiple languages to their past as much as they can into their 

primitive language, and through this process, we note that there are related languages 

that constitute what is called the language family. 

Take Turkic languages as an example. Turkic languages, as a set of languages, 

divided into 40 different written languages, spoken by 180 million people as a mother 

tongue and approximately 250 million people as a second language from Eastern 

Europe to Siberia and west of China [Dybo, 2007]. 
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An important feature that makes Turkic languages different from other language 

families is that their speakers have lived as nomads for a long time and that these 

languages are always influenced by each other. In addition to having common words 

used in the same sense in a large number of Turkic languages, sentence structures 

always remain the same. Therefore, it is common to see that Turkic languages are not 

a language family, they are the dialects of a single language, and we can see that they 

are called Turkic dialects [Tekin, 1978]. Table 1.1 shows how Turkic languages are 

similar to each other. 

Table 1.1: Translation of a sentence in some Turkic languages. 

 

Language 
Translation of “The mother teaches her son reading and 

writing.” 

Turkish Anne oğluna okuma ve yazma öğretir. 

Azerbaijani Ana oğluna oxumağı və yazmağı öyrədir. 

Uzbek Ona o'g'liga o'qish va yozishni o'rgatadi. 

Kazakh Anasy ulyn oqýǵa jáne jazýǵa úıretedi. 

Kyrgyz Apam anın uulu okup jana jazuuga üyrötöt. 

Tatar Änise ulın uqırğa häm yazarğa öyrätä. 

 

Turkish language, as one of the Turkic languages, spoken in Southeastern 

Europe and West Asia, is an additive language belonging to the Turkic languages 

language family. It forms the continuation of the Ottoman Turkish from the Oghuz 

language group of the Turkic language family. Turkish is the 22nd most spoken 

language in the world, with approximately 80 million people speaking [Web 1, 2019]. 

Turkish has grammatical features such as the affinity and vowel harmony that it 

shares with many other Turkic languages. In terms of sentence structure, language 

usually has a subject-object-verb order. Unlike other languages such as German and 

Arabic, there is no grammatical gender (masculinity, femininity, gender 

discrimination). Furthermore, Turkish speakers can understand other Oghuz languages 

such as Azerbaijani, Gagauz, and Turkmen. The Turkish language was written in the 

Latin alphabet since 1928. The Turkish Language Association controls the spelling 
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rules in Standard Turkish. The Istanbul dialect, also called Istanbul Turkish, is the 

standard form of Turkish, and it is the base of the written Turkish language. However, 

there are various Turkish dialects in Southeast Europe and the Middle East, and these 

dialects have various silent differences with Istanbul Turkish [Campbell, 2003]. 

Table 1.2: Pronunciation of a sentence in some Arabic dialects. 

 

Arabic dialect Pronunciation of “I only found this library.” 

Modern Standard Arabic lam ʾaǧid siwā hāḏehi-əl-măktba 

Algerian (Algiers) ma-lqīt ɣīr hādi-əl-măktaba 

Egyptian (Cairo) ma-lʔet-ʃ ella el-maktaba di 

Gulf (Kuwait) ma ligēt illa hal l-maktaba 

Hejazi (Jeddah) ma ligīt ɣēr hādi al-maktaba 

Jordanian (Amman) ma lagēt illa hal ʕal-mektebe 

Lebanese (Beirut) ma lʔēt illa hal-i-ʕal-mektebe 

Mesopotamian (Baghdad) ma ligēt ɣīr hāði-il-maktaba 

Moroccan (Casablanca) ma-lqīt-ʃ mən-ɣīr hādi-lmăktaba 

Northern Jordanian (Irbid) ma lagēteʃ illa hal ʕal-mektebe 

Syrian (Damascus) ma lʔēt illa hal ʕal-maktebe 

 

Arabic is another example of the diversity of languages and dialects. Pre-Islamic, 

Arabic dialects were varied and different in vocabulary, styles, and structures. 

However, there was a standardized dialect used to write poems, covenants, and 

covenants. The standardized dialect continued after the emergence of Islam, which is 

the language in which the Holy Quran was revealed [Kamusella, 2017]. 

Currently, Arabic has many different colloquial dialects, and colloquial dialects 

do not have grammatical or morphological rules, dictionaries for their vocabulary and 

words, or a method for writing them. Some colloquial dialects are closer to classical 

than other dialects. Table 1.2 shows how Arabic dialects are similar to each other. 
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As a motivation from classical linguistics, historical linguistics is the scientific 

study of language change over time [Bynon, 1977]. Principal concerns of historical 

linguistics include describing and accounting for observed changes in particular 

languages in addition to reconstructing the prehistory of languages and determining 

their relatedness, grouping them into language families. Additionally, historical 

linguistics tries to develop general theories about how and why language changes. 

In the world of natural language processing, one of the fundamental problems in 

eastern languages and dialects processing, Turkic languages and Arabic dialects, for 

example, is the lack of labeled data, even some of them are almost spoken dialects 

only. The main difficulty that the supervised method faces in dealing with these 

languages is that there are few parallel-corpus. Therefore, it is not easy to analyze the 

relationships between these languages, as is the case in machine translation systems. 

Variation in the scripts is also one of the problems that we face when dealing 

with languages since although the Turkic languages come from the same origin, i.e., 

some of them are written in Latin script, while the others are written in Cyrillic or 

Arabic script. 

In this work, we focus on overcome previously mentioned challenges. So, we try 

to answer the following question: “Can we find quantitative ways to measure how 

similar are two languages? Despite the different scripts, especially those for which we 

do not have parallel corpora.”. This inquiry leads us to the sub-question: “Can we find 

the word substitutions without parallel texts?”. 

We try to answer the previous questions by studying language change according 

to two factors; the time and the location factors. The main hypotheses of this work are 

that the languages are more similar when the places in which these languages are 

spoken are geographically close, in addition to the ability to detect word substitutions 

without using any parallel corpus. 

To evaluate the hypotheses, we suggest two quantitative methods to measure the 

temporal and location change in languages by automatically detecting word 

substitution and language similarity. In both methods, we use mono data only, i.e., we 

do not need parallel texts. 

When studying language change according to the time factor, we have texts 

divided according to periods. After preprocessing, we train time-dependent word 

embedding for each period in addition to time-independent global word embedding. 
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Then we align each period embedding to the global embedding. We find word 

substitution by the proposed energy function, which uses the global and period 

similarities to score the substitutions. To validate our results, we suggest a simple but 

effective dictionary-based method. 

When studying language change according to the location factor, we have texts 

divided according to the region in which this language or dialect is spoken. We start 

with data preprocessing, including transliteration to Latin script in the case of Turkic 

languages. Then, we train an n-gram model for each language independently. We use 

a perplexity-based scoring function to find out how similar two languages by testing 

language data on another language model. To evaluate the results, we compare the 

results of the proposed model to the geographic distance of where these languages are 

spoken. 

Through utilizing our work on the Turkish language, we find a list of word 

substitutions during the last 100 years, without the use of dictionaries. We also defined 

the word replacement date, as well as the periods in which most replacements 

occurred. Furthermore, we created matrices of similarities between Turkic languages 

and Arabic dialects. We also clarified and compared the similarities between languages 

through a heatmap and through a geographical map showing the distance between 

cities that speak these languages and the similarity level between them. 

We organize this thesis as follows: we show many of the best-known word 

embedding methods and their applications in section 2. Then, we show alignment, 

transfer, and similarities, i.e., inter-language techniques in section 3. In section 4, we 

explain the language modeling concept and some of its approaches. We show the used 

datasets in section 5. The two proposed models detailed in section 6. Before we end 

with a summary of the work, we show results and experiences and discuss them in 

section 7. 
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2. WORD EMBEDDINGS 

Word embedding is an approach of distributional semantics that represents 

words as real number vectors. This representation has useful grouping properties. It 

groups words that are semantically and syntactically similar. For example, we hope 

that the words “hoopoes” and “nightingale” are close, but “Istanbul” and “hoopoes” 

are not close because there is no strong relationship between them. 

Therefore, words are represented as vectors of real values. Each value captures 

a dimension of word meaning. So, semantically similar words should have similar 

vectors. Simplified, each dimension of the vectors represents a meaning. The 

numerical value in each dimension captures the closeness of the association of the 

word to that meaning. Its objective is to quantify and categorize semantic similarities 

between linguistic elements. This type of representation is dense. Hopefully, 

synonyms and interchangeable words are nearby in that space. 

Vector space models have been used in distributional semantics since the 1990s. 

Since then, different models have been developed to estimate continuous 

representations of words; an example is Latent Semantic Analysis (LSA) [Landauer et 

al., 2013]. The word embedding was initially conceived by [Bengio et al., 2003], who 

trained these types of vectors in a neuronal probabilistic model. However, [Collobert 

and Weston, 2008] were possibly the first to demonstrate the power of word 

embeddings, in which they pointed out word embeddings as a highly useful tool in 

different NLP tasks. Also, they present a neural network architecture on which many 

of the current approaches are based. Word embeddings were widely known, thanks to 

the work of [Mikolov et al., 2013a] who published Word2Vec, a tool to train and use 

word embeddings. A year later, [Pennington et al., 2014] introduced GloVe, a new tool 

for the generation of word embeddings. GloVe unlike Word2Vec, is a counting based 

model. 

2.1. Word Embedding Applications 

As of this moment, word embeddings have become one of the main concepts in 

natural language processing. Word embeddings capture the meaning of words and 

translate them into a vector representation that can be used as input for all types of 
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neural networks. This has caused its use has spread rapidly and is currently a 

fundamental piece in the architecture of all types of models that perform NLP tasks.  

Some of the most relevant applications are shown in the following subsections. 

These are just some of the applications of word embeddings. Since they are capable of 

encoding the meaning of words and the relationships between them, it is possible to 

apply them to all kinds of tasks. 

2.1.1. Sentiment Analysis 

With the growth of the popularity of social networks, it is very interesting to 

develop a system capable of, for example, analyzing whether the opinions of a product 

are positive or negative. 

A wide variety of technologies has been used to assess sentiment analysis tasks. 

In the latter years, machine learning techniques proved to be very effective; in 

particular, the systems based on deep learning techniques represent the state of the art. 

Some modern systems make use of CNNs where the input is sequences of words 

represented as word embeddings. An example of such systems is [Dos Santos and 

Gatti, 2014]. In this field, word embeddings have been widely used as a way of 

representing words in sentiment analysis tasks, and proved to be very effective 

[Petrolito and Dell’Orletta, 2018]. 

2.1.2. Text Generation 

Given a language model, we can generate text by an iterative process; we select 

a word based on the sequence so far, add this word to the sequence, and repeat. 

Therefore, we just need to know how to pick the next word. 

Word embeddings are useful in capturing semantic meanings of words. Pre-

trained embeddings can improve the accuracy of neural language models [Verwimp 

and Bellegarda, 2019]. Through the use of RNN-based language models, for example, 

it is possible to generate text automatically. By combining these models with 

convolutional networks, it is even possible to create systems that annotate or describe 

images. 

Sampling, greedy and beam search are some of text generation strategies. In 

sampling, we sample from the conditional word probability distribution. While in the 
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greedy strategy, we always pick the word with the highest probability. The greedy 

approach does not always result in the final sequence with the highest overall 

probability. A beam search keeps track of several probable variants at each step to 

avoid being led astray by local maxima. 

2.1.3. Translation Systems 

Generally, these systems are formed by a neural network that acts as an encoder 

and a neural network that acts as a decoder [Cho et al., 2014]. Both the input and output 

of these neural networks are sequences of words, and word embeddings represent these 

words. One of the most famous examples of these types of systems is Google 

Translate; this translator makes use of the seq2seq model [Britz et al., 2017]. These 

systems make use of parallel corpus, that is, identical texts in different languages. 

However, the development of models that do not need to use parallel corpus is 

receiving significant attention. Some examples of such models are [Lample et al., 

2017] or [Artetxe et al., 2017]. 

2.1.4. Chatbox, or Question Answering Systems 

These systems are gaining increasing popularity. Some examples are Google 

Assistant that can be found in a large number of smartphones or Amazon Alexa. The 

seq2seq [Britz et al., 2017] model, in addition to text translations, can also act as a 

chatbox if small adjustments are made and trained for it. 

2.2. Methods of Generating Embeddings 

Since Word2Vec [Mikolov et al., 2013a] word embeddings began to become 

popular, a lot of different methods have emerged to generate word embeddings. In this 

section, we have chosen the best-known word embeddings, in addition to some that 

have been interesting to us, either because of their performance or because they are 

very different from the rest of the word embeddings generation methods. Pre-

calculated vectors usually accompany word embeddings methods. 

As previously mentioned, many efforts have been made to obtain a vector 

representation of the texts, which facilitates the calculation of the distance between 
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them in the representation space and, thus, the design of models for the treatment of 

different tasks of NLP. While proposed techniques for obtaining word embeddings 

constitute important steps in this regard, the need to capture the entire content of a text 

in the text representation vector is necessary. For this reason, techniques have been 

proposed to obtain embeddings at a higher level where their entire context is captured 

[Perone et al., 2018]. 

2.2.1. Word2Vec 

Word2Vec [Mikolov et al., 2013a] refers to a group of models for producing 

Word Embeddings. They are flat, two-layer neural networks that are trained to 

reconstruct linguistic contexts of words. Word2Vec takes a huge amount of text as 

input and creates a few hundred dimensional vector space, with each word in the 

corpus associated with a corresponding vector in space. Word vectors are positioned 

in vector space so that words that share similar contexts in the corpus are close to each 

other in space. 

Word2Vec can use one of two architectures to create Word Embeddings: 

Continuous Bag-of-Words (CBOW) or Skip-Gram. The CBOW model predicts the 

current word based on the surrounding context words. The order of the context words 

does not influence the prediction. In skip-gram architecture, the model uses the current 

word to predict the surrounding window of context words. CBOW models aim to 

assign a word to a context. On the other hand, Skip-gram is designed to create a context 

for a word. 

 

Figure 2.1: CBOW and Skip-gram models. 
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For example, the following sentence is given: “We went to Istanbul and Konya”. 

For CBOW, the task results from the input “We went to x and Konya” to predict the 

word “Istanbul” for x. Conversely, with Skip-gram for the word “Istanbul” the context 

“We went to x and Konya” must be predicted. The implementation of the Skip-gram 

and CBOW models is a feed-forward neural network. 

In order to understand the learning process, we need some prior knowledge of 

neural networks. The smallest unit in neural networks is the neuron. A neuron can 

absorb, modify, and transmit information. Neurons are organized in layers. A network 

consists of an input layer (encoder) that receives signals from the outside, any number 

of hidden layers, and an output layer (decoder) that outputs the processed signals again. 

Weights control the behavior of the neurons towards information. For a network to 

solve a problem, the weights of the neurons in the hidden layers must take values that 

give the correct result at the output layer's output, in relation to the signals input in the 

input layer. The weights of the neurons are randomized, and after each iteration of one 

packet of information (batch) through the network, the distance of the last layer's 

output is compared to the target value. This distance (loss) is used to determine through 

backpropagation which weights need to be changed to get closer to the target value. 

This change of weights is the actual learning process within a neural network.  

In the CBOW model, the input layer receives the input “We went to x and 

Konya” and should pass the output “Istanbul” in the output layer. The network used 

for Word2Vec has only one hidden layer. Its weights are thus optimized until the 

desired result is calculated as accurately as possible for all sentences and target words. 

The embeddings are generated by extracting the state of the hidden layer neurons for 

each target word before it is decoded by the output layer. 

 

Figure 2.2: Examples of word vectors in 2-dimensional space. 
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 The generated vectors can be used to perform arithmetic operations on semantic 

relations. The best-known example is “glider” - “bicycle” + “motorcycle”, which leads 

to the result “airplane”. 

2.2.2. GloVe 

GloVe [Pennington et al., 2014], unlike Word2Vec, is a counting based model. 

GloVe generates a large matrix where the information of the concurrence between 

words and contexts is stored. That is, for each word, we count how many times that 

word appears in some context. The training objective of this matrix is to learn vectors 

so that the scalar product between the words is equal to the logarithm of the probability 

of co-occurrence between the words. The number of contexts is very high. Therefore, 

a factorization of said matrix is performed to obtain one of the smaller dimensions. 

Thus obtaining a vector that represents each of the words. The advantage of GloVe 

over Word2Vec is that it is easier to parallelize the training. Therefore, it is possible 

to use more information during training. Therefore, it is possible to use a higher 

amount of data during training. 

2.2.3. FastText 

Fixed vocabulary is one of the core problems of using Word2Vec. A word that 

is not contained in the data with which the Word Embedding was trained cannot be 

assigned any vectors. Analogously, the representation of a rare word is less certain 

than a frequent one. This is especially critical for languages where words are heavily 

inflected or tend to form compounds. Even if the ideal case that every thinkable word 

should be included in the training corpus occurs, a model that assigns each word its 

own vector would hardly be processable because of its size. FastText [Bojanowski et 

al., 2017] addresses these issues by not only calculating representations for words but 

for its characters. Each word is treated as the sum of its character compositions called 

n-grams. The vector for a word is composed of the sum of its n-grams. In addition, the 

word as a whole is always included. In this way, it is expected to obtain better 

representations for “rare” words, which have very few occurrences in texts corpus, and 

thus be able to generate vectors for words that are not found in the vocabulary of word 

embeddings. 
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2.2.4. LexVec 

LexVec [Salle et al., 2016] is a model that seeks to obtain better results thanks 

to the combination of GloVe and Word2Vec. There are different versions since the 

model has been improved over time. For example, there is a version that uses context 

vectors [Levy and Goldberg, 2014]. Context vectors seek to improve the performance 

of word embeddings in analogy tasks. Generally in the models, we only take into 

account the words found in the context of the main word, for example in the phrase 

“The little boy left quickly” if the main word is “boy”, the context would be formed 

by “(The, little, left, quickly)”. Context vectors also take into account the relative 

position that words occupy around the target word. For example, in the previous 

sentence, it will have a context “(The-2, little-1, left+1, quickly+2)”. Therefore, we 

know that the “quickly+2” is two positions to the right of the objective word. We hope 

that this information will help us obtain better word representations. The latest and 

most recent version [Alexandre and Aline, 2018] incorporates the same as fastText n-

grams. 

2.2.5. PDC and HDC 

PDC and HDC [Sun et al., 2015] are extensions of the CBOW and Skip-gram 

model, respectively. They seek to capture syntagmatic and paradigmatic relationships 

at the same time during training. PDC is a model where an objective word is predicted 

from its surrounding context, in addition to the document in which it appears. The 

prediction of the word using its context captures the paradigmatic relationship of words 

since words in similar contexts will tend to have similar representations. This model 

also causes words that tend to appear in the same document to tend to have similar 

representations, thus capturing syntagmatic relationships. HDC is similar to PDC, but 

it applies to the Skip-gram model. In this case, the document is used to predict an 

objective word, and from that word, its context is predicted. 

2.2.6. Context2Vec 

Context2Vec [Melamud et al., 2016] is an extension of the Word2Vec CBOW 

model. The main difference between the two models is that CBOW represents the 

context around a word as the average of the embeddings of the surrounding words. 
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Context2Vec proposes a more complex approach. The context to the left of the target 

word and the context to the right of the target word are introduced into independent 

neuronal models (Recurrent Neural Network LSTM [Hochreiter and Schmidhuber, 

1997]). The results are then combined by a new neural network (Multilayer 

Perceptron). In this way, it is expected to extract the most relevant information from 

the context of the target word. Another fundamental difference is that while CBOW 

takes a certain number of words around the target word, for example, two words are 

taken on the left and two on the right, Context2Vec is able to use the complete phrase 

where the target word is located. 

2.2.7. Universal Sentence Encoder (USE) 

USE [Cer et al., 2018] is a model proposed by Google to obtain sentence 

embeddings. Given any text, with this model, a vector is obtained as representation. It 

has been trained with a variety of sources and tasks, so it can be adjusted to model the 

semantics of a sequence of words for a large number of purposes. This model has two 

main versions. The first version is based on the Transformer model [Vaswani et al., 

2017], and the second version is based on a DAN model [Iyyer et al., 2015], which 

takes the average of the word embeddings as input to a feed-forward deep neural 

network. Although the first version is more computationally expensive, it is designed 

to generate models with greater precision. On the other hand, the Transformer is a 

model consisting of an encoder and a decoder. The encoder, which is the part of the 

model on which USE is based, is made up of a stack of 6 identical layers. 

Each layer has a special attention mechanism and a feed-forward neural network, 

among which there are residual connections followed by normalization. Besides, the 

model incorporates information about the position of each term in the sequence 

(positional encodings) to control the order since there is no recurrence in the model. 

2.2.8. Embeddings from Language Models (ELMo) 

ELMo [Peters et al., 2018] distinguishes from word2vec and fastText by directly 

following the concept of traditional language models. These language models compute 

a fixed number of consecutive words of a text, the probability of the next word 

[Seymore et al., 1999]. For the training of embeddings, not only the context before the 
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target word but also the following context is used. Although the task, i.e., the 

prediction of a word based on its context, is similar to the CBOW model, it differs in 

that the multitude of contexts in a word is not used to calculate a fixed vector for each 

word but the vector of a word in dependency of its current context. Therefore, ELMo 

is a context-sensitive embedding. 

Given a segment of 𝑁 tokens (𝑡1, 𝑡2, . . 𝑡𝑁), a language model calculates the 

probability for each token 𝑘 based on the previous tokens (𝑡1, 𝑡2, . . 𝑡𝑘−1). Conversely, 

a returned language model calculates the probability based on (𝑡𝑘+1, 𝑡𝑘+2, . . ). In order 

to make the technical implementation of this concept understandable, a brief digression 

into the functioning of LSTMs is needed. 

2.2.8.1. Long Short-Term Memory (LSTM) 

LSTMs [Hochreiter and Schmidhuber, 1997] are used in Recurrent Neural 

Networks and allow the network architecture to obtain information about past 

iterations. Feed-forward networks always adjust their weights based on the currently 

processed batch, without the possibility that previously processed signals can influence 

the treatment of the current training data. Therefore, they are not suitable for the 

prediction of dependent sequences, such as evolution over time. Actually, an LSTM 

layer is not a layer, but its network consisting of four neural layers. These are divided 

into three sigmoid and one 𝑡𝑎𝑛ℎ layer. 

In the LSTM cell, the first sigmoid layer is the forget gate. This regulates how 

much and, above all, which information from the previous LSTM cell should be passed 

on to the cell state. The next unit, consisting of the second sigmoid and the tanh layer, 

forms the input gate, which determines what information from the current input will 

be added. The last sigmoid layer, the output gate, calculates from the input and the cell 

state which information is passed on to the next layer of the overall network as well as 

to the next LSTM cell. 

The architecture of the ELMo network includes two layers of LSTMs, which in 

turn are divided into the forward and backward blocks. As already described, this 

structure is trained according to the concept of language models. The model can be 

used in other neural networks. The authors suggest to set up only one last layer on the 

embedding, which filters the information relevant to the task. Tests suggest that the 
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first LSTM layer contains more information about the grammatical and syntactic 

properties of speech because its vectors can achieve better results for tasks such as 

POS tagging than the second layer [Peters et al., 2018]. This is more suitable for tasks 

that require semantic information, such as disambiguation. 

2.2.9. Bidirectional Encoder Representations from Transformers 

(BERT) 

Bert Embeddings [Devlin et al., 2018], like ELMo, is one of the context-sensitive 

embeddings. Bert differs from ELMo in three key areas: tokenization, training of the 

language model, and network architecture. Bert uses neither a classic 1: 1 relationship 

between token and word, nor a generic n-gram method like fastText. Instead, the 

WordPiece tokenization method introduced by [Wu et al., 2016] is used. Tokenization 

is defined as an optimization problem: Given a number of character n-grams to use; 

Which must be selected to represent a corpus fully? Bert uses 30,000 pieces. Although 

the model seems questionable from a linguistic point of view, as it ignores 

morphological structures, its use, for example in machine translations, leads to better 

results. 

A masked language model does the training of Bert Embeddings. The input for 

the training consists of segments of 512 token. Of these tokens, 15% are selected for 

masking, 80% are being replaced by a special masking word, 10% are being replaced 

by a random word and 10% are being replaced by themselves. This division seems 

arbitrary at first, but it can be explained by the fact that when the target word is masked 

100%, the model does not learn its own representation for non-masked tokens, but 

only uses them to contextualize the masking. If the remaining 20% is completely 

replaced by random tokens, the model could not learn anymore, as any customization 

due to the masked tokens would prove wrong. It is maintaining the target word as an 

alternative to masking results a context-less prediction, only on token embedding. The 

model is left in the dark about which token has been replaced, so each token must have 

its own contextualized representation. It emerges from this task that the LSTMs 

architecture would be extremely time-consuming, since in this way, for each token in 

the segment, anticipatory and past information would have to be provided 

simultaneously. That's why Bert does not use LSTMs, but Transformers. 
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2.2.9.1. Transformer 

The Transformer layer introduced by [Vaswani et al., 2017] is based on the 

concept of attention. Attention solves a problem that occurs in recurrent neural 

networks in connection with far past inputs. LSTMs generate their output from the last 

hidden state and the current input. The long-term memory, that is, the hidden state, 

must provide all previous information needed for the processing of the current input 

and without knowing the input in advance. As a result, LSTMs tend to forget about 

long-lost information because it is impossible to predict if they will be needed. 

Attention mechanisms accelerate this problem by allowing access to all past hidden 

states while learning to filter the information in response to the input. 

The hidden states of the recurrent layers are passed onto the next higher layer by 

means of a filter taking into account the input and the available information from the 

hidden states [Bahdanau et al., 2014]. However, this architecture still includes 

recurring blocks that are dependent on all their predecessors. Therefore, this 

architecture is not suitable for parallelization. The Transformer layer offers the 

possibility to replace these recurring parts completely by attention. It consists of an 

encoder and a decoder component. Each of these components is subdivided into 

several layers; in the case of Bert 6 layers are used. The encoder layers consist of a 

self-attention mechanism and a feed-forward network. The decoder layers have the 

same structure, supplemented by a further attention mechanism between self-attention 

and feed-forward network. Before a sequence of words passes the first encoder, it is 

converted into a vector by an embedding. Then follows the first self-attention layer. 

Self-attention differs from the attention discussed in the previous paragraph in that it 

does not focus on whether a word is relevant to understanding a sentence or any other 

task. Instead, it is determined which words of the sentence are relevant in relation to 

the currently processed word. 

This information is passed along with the embedding vector to the feed-forward 

layer. This then creates a new representation and passes it to the next encoding block. 

In [Vaswani et al., 2017], in addition to self-attention, multi-head attention is also used. 

This form of attention divides the vector space of the embedding into subspaces and 

then determines self-attention in each of these subspaces. In this way, a transformer 

can recognize and process structures and aspects of language, such as dependency for 

which parsers are otherwise used [Goldberg, 2019]. In addition to the language model, 
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a prediction of the next segment is trained. In this case, the network receives an 

additional segment, which is 50% randomly selected from the corpus. Thus, the 

recognition of semantic similarity is learned over a large context. To use Bert 

Embeddings as a feature, each sequence of tokens is placed in the previously trained 

network. The tokens are then represented by the attention values of each transformer 

and its attention heads. 
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3. INTER-LANGUAGE TECHNIQUES 

3.1. Alignment 

Machine translation models provide a framework for modeling the mapping 

between languages at the finest level: that of words, or even sub-phrased units. Unlike 

machine translation, alignment is a probably ill-defined task, which makes it more 

difficult. Calculating alignments in bilingual texts has various applications: lexicon 

extraction [Emmanuel and Daille, 2012], cross-language information retrieval [Nie, 

2010], automatic language documentation [Anastasopoulos and Chiang, 2017], [Adda 

et al., 2016], and [Godard et al., 2016], language learning, etc. Alignment applies to 

collections of translated texts (i.e., aligned corpora) and seeks to match in both 

languages textual units of lesser grain than the text: paragraph, sentence sequence, and 

phrase sequence, without linguistic characterization [Véronis, 2013]. 

Alignment is the key practical issue of learning different word embeddings for 

different time periods. Specifically, most cost functions for training are invariant to 

rotations, the learned embeddings across time may not be placed in the same latent 

space. [Hamilton et al., 2016] imposes the transformation to be orthogonal, and solves 

a d-dimensional Procrustes problem between every two adjacent time slices. Since 

word embedding models are non-convex, training them twice on the same data will 

lead to different results. Thus, embedding vectors at successive times can only be 

approximately related to each other, and only if the embedding dimension is large. 

Alignment work exploits other types of corpora than aligned corpora, including 

comparable corpora [Zweigenbaum and Habert, 2006] and multimodal corpora as 

audio and its transcript [Robert-Ribes and Mukhtar, 1997] or a text image and its 

transcription [Toselli et al., 2011]. For comparable corpora, aligned segments are most 

often words, simple terms, and complex terms. Alignment from comparable corpora 

was mainly focused on simple words in the general language domain [Fung, 1998], 

[Gaussier et al., 2004], [Mikolov et al., 2013b], and [Rapp, 1999], and on simple terms 

[Chiao and Zweigenbaum, 2002] and [Morin et al., 2007], and Complexes [Emmanuel 

and Daille, 2012] in a specialty domain. The most recent work in the field is part of 

the trend of neural network-based approaches [Fung, 1998], [Jakubina and Langlais, 

2017], and [Hazem and Morin, 2017] for simple words and terms. 
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Bilingual lexicons extracted from comparable corpora represent valuable data 

because they allow access to the original vocabulary of a specialized or technical 

domain without any bias induced by a translation mechanism. In particular, these 

lexicons are of interest to professional translators during the revision stage of a text to 

be translated, especially when the terms are illustrated by contexts allowing them to 

understand their uses [Delpech, 2014]. 

One of the challenges ahead is terms alignment of different lengths (for example, 

the alignment of a simple term with a complex term) from comparable corpora. 

Concomitantly, the abundance of available resources (corpus as lexicons) is another 

challenge in selecting the most relevant data to add to existing models. 

Another challenge is to align multimodal corpora (e.g., word source and text 

target). Pioneering work in this area has been done and seems particularly interesting 

to develop [Duong et al., 2016] and [Anastasopoulos and Chiang, 2017]. The first 

attempts at the direct alignment between source and target language text are the work 

of [Godard et al., 2016]. The authors of [Antonios et al., 2016] also propose to use 

Dynamic Time Warping (DTW) and IBM translation models together to align source 

speech and target text. 

3.2. Transfer 

Most of the natural language processing systems are based on models trained on 

large corpus for a given target language. Recently, transfer or projection approaches 

have appeared. The common goal of these approaches is to find and explore 

mechanisms that are not expensive to exploit annotated linguistic resources already 

available for certain languages and parallel or comparable corpora to produce new 

annotated resources for other weaker languages. Therefore, the transfer consists of 

identifying morpho-syntactic equivalences [Yarowsky, 2001], [Wisniewski et al., 

2014], and [Zennaki et al., 2016], syntactical [Hwa et al., 2005], [Tiedemann, 2014], 

and [Aufrant et al., 2016] or semantics [Padó and Lapata, 2009] and [Jabaian et al., 

2012] from a corpus of parallel or comparable texts. Such approaches seem 

particularly interesting for building efficient systems in low-resource scenarios where 

the amount of training data for a given language or group of languages is limited. 
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More recently, with the ramping up of the end-to-end learning model, we have 

come closer to build truly multilingual systems (one system for all languages). For 

example, neural network approaches (notably encoder-decoders) make it easy to 

model several languages in a single system, provided that a multilingual representation 

of inputs and outputs (e.g., based on characters, or sub-lexical units [Sennrich et al., 

2015]). Different approaches are currently considered. They share the goal of pooling 

parts of the neural model so that multiple languages enrich the model and make it more 

robust [He et al., 2016], [Johnson et al., 2017], and [Gu et al., 2018]. Therefore, one 

of the main challenges is to define a common representation space for all languages. 

This space could be likened to an interlingua, making it possible to obtain abstract 

representations independent of the language. 

3.3. Similarities 

The transfer methods mentioned previously are based on representations of 

words or sentences in a multilingual space learned from parallel corpora [Mikolov et 

al., 2013b] from dictionaries or without any real resource available in advance 

[Conneau et al., 2017] and [Alexis and Kiela, 2018]. These methods have largely 

developed in recent years, thanks in particular to the massive deployment of neuronal 

models. This interest is explained in particular by the ability of these models to learn 

the data representation in a completely generic way, which opens the field to the 

development of different techniques of pairing at the word level or even document. 

Such work also finds applications in other areas such as translingual plagiarism 

detection [Ferrero et al., 2017] and multilingual information retrieval [Balikas et al., 

2018]. The transfer between languages is favored by the proximity between languages 

and is simpler when it comes to languages of the same linguistic family or even 

variants of the same stemming language. 
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4. LANGUAGE MODELING 

In general, when we model a natural language, we try to capture, describe, and 

exploit the regularities and structures intrinsic to this language. At its simplest, a 

language model can consist of a list of words and sentences allowed by the language. 

In the context of language modeling, the sequential aspect is present at different levels 

of granularity (sequence of characters, words, etc.). 

In the case of such sequential data, each event depends, in most cases, on events 

that precede it. Some approaches are more appropriate than others to exploit this type 

of relationship. 

Models such as SVMs, KNNs, and Decision Trees have shown their 

effectiveness in various automatic classification applications. Indeed, these models 

(called “classical methods” in the literature) learn to assign a label to a new data by 

exploiting its characteristics that are expressed as a set of values. As a result, classical 

methods generally take sequential data as a feature vector and often examine each 

event independently of the others. 

Other architectures (such as n-gram models, HMMs and CRFs) are specialized 

in this type of data thanks to their ability to model sequential dependencies. 

In addition, the last few years have witnessed the particular performance of 

Recurrent Neural Networks (RNNs) in sequential data processing, which have become 

state-of-the-art approaches in various application fields. Long Short-Term Memory 

(LSTM) architectures, in particular, based on RNNs, are even more efficient because 

they minimize the loss of information in the case of long sequences [Hochreiter and 

Schmidhuber, 1997]. 

These architectures have had a significant interest in the classification of 

sequences including word sequences [Sundermeyer et al., 2012], images  [Vinyals et 

al., 2015], etc. 

4.1. Hidden Markov Model 

Like the Naïve Bayes classification algorithm, Hidden Markov Model (HMM) 

[Eddy, 1996] is a generative classification algorithm; that is, which defines a 
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probability distribution, for each class, according to the input sequence. HMMs are 

based on Markov models. 

We begin with an introduction of these before presenting the theoretical 

framework of the HMM. In a Markov model, each observation in a data sequence 

depends on the previous elements. Consider a system with a set of states 𝑆 =

{1, 2, . . . , 𝑁}. At each discrete time step 𝑡, the system advances from one state to 

another according to a set of probabilities of transitions 𝑃. We denote by 𝑠𝑡 the state 

of the system at a time 𝑡. 

In several application contexts, the prediction of the next state depends only on 

the current state. This means that the transition probabilities between states do not 

depend on the entire history of the process. 

This framework is referred to as the first-order Markov process. For example, 

assuming the information on the number of students admitted for the current year is 

sufficient to predict next year's success rate, then we are not required to take into 

account the rates in previous years. 

According to these properties, the probability of moving to the state 𝑠𝑘 is 

formulated as follows: 

 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋1, … , 𝑋𝑡) ≈ 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋𝑡) . (4.1) 

 

The transition matrix between the states is constituted by the cells: 

 𝑎𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖) . (4.2) 

 

We note here that the sum of the exit probabilities of a state 𝑠𝑖 is equal to 1 as 

formulated by the following constraint: 

 ∑ 𝑎𝑖𝑗 = 1

𝑁

𝑗=1

 . (4.3) 

 

Hidden Markov models represent an extension of the Markov model, 

distinguished by better abstraction power. Contrary to Naïve Bayes classification, 

which admits the independence of events, HMM models deal well with the sequential 
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dependencies. This generative model represents the probability law 𝑃(𝑥, 𝑦) according 

to which the 𝑥 and 𝑦 sequences are generated.  

It is composed of two main parameters: the transition probabilities 𝑃(𝑦𝑡|𝑦𝑡−1), 

which define the degree of connection between two continuous latent variables of 𝑦, 

and the prediction probabilities 𝑃(𝑥|𝑦), which define how the observed variables of 𝑥 

are related to those of 𝑦. HMM admit that each event 𝑥𝑖 is generated independently 

conditionally at 𝑦. This means that the probability of prediction can be considered as: 

 𝑃(𝑥|𝑦) = ∏ 𝑃(𝑥𝑖|𝑦)

𝑁

𝑖=1

 . (4.4) 

 

As regards the learning of the different parameters of the model, two algorithms 

are commonly used, namely, the Viterbi algorithm [Viterbi, 1967] and the Baum-

Welch algorithm [Baum et al., 1970]. 

4.2. Conditional Random Fields 

Conditional Random Fields (CRF) is the most commonly used variant in the 

processing of sequential data. The CRFs are discriminative models that represent the 

conditional probability law of a sequence 𝑦 of 𝑇 variables to estimate knowing a 

sequence 𝑥 of 𝑇 observations. This law is defined as follows: 

 𝑃(𝑦|𝑥) =
1

𝑍(𝑥)
∏ exp (∑ 𝜆𝑘𝑓𝑘(𝑦𝑡, 𝑦𝑡−1, 𝑥, 𝑡)

𝐾

𝑘=1

)

𝑇

𝑡=1

 , (4.5) 

 

where 𝑍(𝑥) is a normalization function of the form: 

 𝑍(𝑥) = ∑ ∏ exp (∑ 𝜆𝑘𝑓𝑘(𝑦𝑡
′, 𝑦𝑡−1

′ , 𝑥, 𝑡)

𝐾

𝑘=1

)

𝑇

𝑡=1𝑦′𝜖𝑌

 . (4.6) 

 

In the two previous equations, {𝑓𝑘}𝑘=1
𝐾  is a set of characteristic functions 

explicitly defined. These are usually boolean functions indicating the presence or 



24 

 

absence of a certain characteristic. Each 𝑓𝑘 is associated with a coefficient 𝜆𝑘, 

estimated during the learning phase, which determines the weight of the function, if 

activated, in the calculation of the probability of a sequence 𝑦. Finally, 𝑌 corresponds 

to the set of possible sequences of variables to estimate. In order to learn these 

coefficients, the most used approaches are the gradient and Quasi-Newton methods 

[Dennis and Moré, 1977]. 

CRFs have been used in various tasks handling sequential data and, in particular, 

for sequence tagging. In the field of natural language processing, this approach has 

been applied, for example, in the context of morpho-syntactic tagging and named 

entity recognition [Sha and Pereira, 2003], [McCallum and Li, 2003] and [Kudo et al., 

2004]. Due to its good performance, this approach is still used in sequential data 

processing [Wang et al., 2016], [Tran et al., 2017] and [Goldman and Goldberger, 

2017]. 

4.3. N-gram Model 

Since its appearance in the 1970s [Jelinek F. , 1971], the n-gram model has been 

considered for decades as one of the state-of-the-art language modeling approaches. 

We will thus introduce, in what follows, the concept of n-grams through the statistical 

language modeling. 

N-gram is a subsequence of n elements of a sequence that, in our case, will be a 

word sequence. The most common n-grams are those of size 1 (unigrams), those of 

size 2 (bigrams), and those of size 3 (trigrams). In the literature, we can find systems 

that successfully train models higher than trigrams. For example, Google has a large 

corpus in German, Chinese, Spanish, French, Hebrew, English, and Russian of up to 

5 grams, created from 8,116,746 books [Lin et al., 2012]. The Google n-gram corpus 

is available online and has been widely used in various investigations [Divvala et al., 

2014]. 

However, we can go one step further, and instead of using words as a basic 

element, we can use characters. It is a very common approach in the literature for some 

problems. If we select the characters within the limits of the words, we are talking 

about intra-word n-grams. On the other hand, if we use a sliding window, we will 
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obtain inter-word n-grams; the characters that form the n-grams can belong to more 

than one word. 

Despite the large size of the corpora usually used to learn n-gram models (as in 

the case of textual data in language modeling), a significant number of n-grams may 

not appear there. In this case, the model ends up attributing a zero probability to such 

events. 

Smoothing techniques provide a solution to this problem by ensuring non-zero 

probabilities to absent events. The basic approach of smoothing consists of subtracting 

a mass of probability from the relatively frequent observed events and then distributing 

it to unknown or very infrequent events. Several smoothing methods have emerged 

such as the Laplace methods [Lidstone, 1920], Good-Turing [Good, 1953] and Kneser-

Ney [Kneser and Ney, 1995]. These methods differ in the technique according to 

which the probability masses are subtracted (discounting) and distributed (back-off). 

The Kneser-Ney method is considered the state-of-the-art method and is, 

therefore, the most widely used method. This method carries out the sampling and 

distribution of the probability masses, taking into account the lower order distributions 

(the (n-1)-gram model). The combination of the models of different orders is ensured 

by an original approach, which consists of the use of the marginal distribution. 

Natural Language Processing (NLP) is the main area in which the n-gram models 

have excelled, particularly in the construction of language models. These models 

served as bases of linguistic knowledge, learned on sequences of words, for systems 

of automatic speech recognition [Bahl et al., 1983], automatic translation [Brown et 

al., 1990], information retrieval [Cavnar and Trenkle, 1994], etc. N-gram models were 

also used to model sequences of characters or graphemes in spelling tasks [Mays et 

al., 1991], handwriting recognition  [Hull and Srihari, 1982], or language identification 

[Zissman, 1996]. 
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5. DATASETS 

5.1. Turkish Grand National Assembly Dataset 

The first dataset we use in this work contains the minutes of the Turkish Grand 

National Assembly (Türkiye Büyük Millet Meclisi, TBMM) sessions. In parliaments 

around the world, parliamentary sessions reflect events in society. 

In Turkey, the Parliamentary Council was elected every five years from 1920 to 

2007, and elections were held every four years after 2007 [Onur Gungor and Sönmez, 

2018]. 

 

Figure 5.1: Figures that summarize several statistics about TBMM 

corpus. [Onur Gungor and Sönmez, 2018]. 
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Table 5.1: TBMM corpus statistics. Statistics about periods with a 5-year 

window split in TBMM corpus from 1920 to 1959 and from 1985 to 

2014.  

 

Period Range No. of Words Average Words Length 

1920_1921_1922_1923_1924 7,870,694 6.37 

1925_1926_1927_1928_1929 6,256,799 6.39 

1930_1931_1932_1933_1934 5,731,165 6.45 

1935_1936_1937_1938_1939 6,462,331 6.37 

1940_1941_1942_1943_1944 6,219,993 6.44 

1945_1946_1947_1948_1949 9,534,990 6.48 

1950_1951_1952_1953_1954 13,749,346 6.5 

1955_1956_1957_1958_1959 11,388,441 6.52 

1985_1986_1987_1988_1989 19,964,619 6.71 

1990_1991_1992_1993_1994 28,569,539 6.79 

1995_1996_1997_1998_1999 34,109,740 6.78 

2000_2001_2002_2003_2004 45,327,640 6.71 

2005_2006_2007_2008_2009 53,371,126 6.86 

2010_2011_2012_2013_2014 43,980,244 6.97 

 

The dataset we have collected contains the minutes from 1920 to 2014. During 

the election period, many sessions are held. Fortunately, minutes of these sessions are 

publicly available in PDF format [Web 3, 2019]. We scrapped them and converted 

them to text, and then we sorted them according to the chronology of the sessions. 

While preparing this work, [Onur Gungor and Sönmez, 2018] crawled and processed 

these documents and provided some statistics about them. 

This dataset is valuable because the language spoken during the sessions reflects 

the spoken language in that time, and thus represents an essential resource for studying 

Turkish language change during these 95 years. Figure 5.1 (above) shows statistics 

about the corpus. Note that the number of words increases as we progress in years. 

To facilitate the work on the dataset, we have divided it into periods by a non-

overlapping 5-year window, starting from 1920. Due to the unbalanced word count 

between years, we limited the number of words per session to a maximum of 10,000 

words, in order to avoid the domination of one period over another. After applying the 

limit, the dataset contains about 300 million words, distributed over 13,358 sessions. 
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Table 5.1 shows the start and end year for each period, as well as the words count and 

the average number of word characters. We exclude the data of years from 1960 to 

1984 from our study, due to the lack of data and the changing nature of the data 

depending on the events occurring at that time. It is also noticeable that the length of 

words increased as the years progressed, probably due to the nature of the new inserted 

and removed words in the language. 

5.2. Wikipedia Dumps Dataset 

Wikipedia is an open-source, multilingual, and online encyclopedia. The content 

was created through the voluntary collaboration of an editors’ community. 

Fortunately, Wikipedia contains articles in most of the Turkic languages. Wikipedia 

dump [Web 5, 2019] is a complete copy of Wikipedia content in the XML format. We 

extracted the articles by the WikiExtractor tool [Web 4, 2019]. Figure 5.2 (below) 

shows Wikipedia dumps we used and the number of articles extracted from each one. 

We can see the imbalance between the number of articles in different dumps, so we 

randomly selected 1000 articles from each of them. 

 

Figure 5.2: No. of articles for each language in the Wikipedia dumps 

corpus. 
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Table 5.2: Statistics about the Wikipedia dumps dataset.  

 

Language 

(with local name) 
Code - Script No. of words 

Avg. words 

length 

Azerbaijani 

(Azərbaycanca) 
az - Latin 49192 6.46 

Bashkir 

(башҡортса) 
ba - Cyrillic 36147 6.33 

Chuvash 

(Чӑвашла) 
cv - Latin 26233 6.12 

Crimean Tatar 

(Qırımtatarca) 
crh - Latin 26070 6.51 

Gagauz 

(Gagauz) 
gag - Latin 37912 6.23 

Karachay-Balkar 

(Къарачай-

малкъар) 

krc - Cyrillic 47656 5.46 

Karakalpak 

(Qaraqalpaqsha) 
kaa - Latin 53813 5.31 

Kazakh 

(Qazaq/Қазақша) 
kk – Latin/Cyrillic 38400 6.56 

Kyrgyz 

(Кыргызча) 
ky - Cyrillic 46973 6.53 

Sakha 

(Саха тыла) 
sah - Cyrillic 39123 6.45 

Tatar 

(Татарча) 
tt - Cyrillic 31108 6.05 

Turkish 

(Türkçe) 
tr - Latin 50417 6.33 

Turkmen 

(Türkmençe) 
tk - Latin 58076 6.51 

Tuvan 

(Тыва дыл) 
tyv - Cyrillic 41894 5.98 

Uzbek 

(Oʻzbekcha/ўзбек

ча) 

uz -Latin/Cyrillic 51592 5.93 
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The table shows statistics on the data selected from the dumps, the local names 

of the selected languages, language codes used in Wikipedia sites, and the script in 

which this language was written. 

5.3. MADAR Dataset 

In the Arab world, there are many spoken dialects. These dialects are mainly 

used in social media. In [Bouamor et al., 2019], a dataset of 5 Arabic dialects and 

Modern Standard Arabic (MSA) was created. These dialects belong to diverse cities 

in the Arab world. Table 5.3 shows statistics about these dialects, cities to which they 

belong, as well as the used dialect code. 

Table 5.3: Statistics about the MADAR dataset.  

 

City Country Dialect Code No. of words Avg. words length 

- - msa 65590 4.15 

Beirut Lebanon bei 52890 4.25 

Cairo Egypt cai 58019 4.21 

Doha Qatar doh 53168 4.15 

Rabat Morocco rab 60040 4.41 

Tunis Tunisia tun 54849 4.26 
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6. METHODOLOGY 

To study language change, we should use quantitative methods to measure the 

changes. In this work, we focused on studying language development in time as well 

as geographic terms, and we proposed models for studying these changes 

quantitatively. 

We used the TBMM dataset in our proposed model to study the change of the 

Turkish language during its last development stage. i.e., the last 100 years. 

On the other hand, we used the Wikipedia Dump dataset and MADAR dataset 

in our proposed models to study the change of Turkic languages and Arabic  dialects 

geographically. 

In our proposed model, we try to find words that have been replaced during 

successive time periods during the stage of language development, while we try to find 

the distance between languages in the case of study changing languages 

geographically. 

Unlike other methods of finding the distance between languages or searching for 

word substitution over time, our proposed methods do not depend on any parallel data. 

All we need is monolingual data in the case of searching for the distance between 

languages or data, which is not necessarily parallel, from every period of time in the 

case of searching for word substitution. 

In the rest of this section, we show the details of the proposed models for the 

study of language change in quantitative terms. 
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6.1. Time-based Model 

In this section, we describe the first proposed model’s steps. After splitting the 

dataset into periods, we train local time-dependent (i.e., for each period data) and 

global time-independent (i.e., all periods data together) word embeddings. After that, 

we align each period embeddings space to global space. Then, for an input word, we 

calculate the energy function, which is an overtime-similarity score for candidate 

words. Finally, and as a validation metric, we use a simple dictionary-based procedure. 

We detail the process in the following subsections. 

6.1.1. Periods' and Global Embeddings 

For each period, i.e., time-dependent spaces, we use fastText to train word 

embeddings. Also, we train a global time-independent word embeddings on all 

periods’ texts together. 

In this section, we talk about fastText embeddings. As we deal with 

morphologically-rich languages like Turkic and Arabic languages, we choose fastText 

because it takes morphology information into account. This is done by representing 

the word by the sum of its n-grams. 

FastText is derived from the Skip-Gram model. In Skip-Gram, we train word 

representation to be able to predict the appropriate context word based on its 

surrounding words. For a given vocabulary of size 𝑀 and sequence of words 

𝑤1, … , 𝑤𝑁, the objective function is to maximize the following log-likelihood: 

 ∑ ∑ log (𝑃(𝑤𝑐, 𝑤𝑛))

𝑐∈𝐶𝑛

𝑁

𝑛=1

 , (6.1) 

 

where 𝐶𝑛 is the indices list of context words surrounding the word 𝑤𝑛. 𝑃(𝑤𝑐, 𝑤𝑛) is 

the probability of a context word occurrence 𝑤𝑐 given a word 𝑤𝑛 calculated as a 

softmax function: 

 𝑃(𝑤𝑐, 𝑤𝑛) =
𝑒𝑠(𝑤𝑛,𝑤𝑐)

∑ 𝑒𝑠(𝑤𝑛,𝑖)𝑀
𝑖=1

 , (6.2) 
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where 𝑠(𝑤𝑛, 𝑤𝑐) is the scalar product between context and word vectors. 

 𝑠(𝑤𝑛, 𝑤𝑐) = 𝑥𝑤𝑛
⊤ . 𝑦𝑤𝑐

 . (6.3) 

 

6.1.1.1. Subword Information 

In the Skip-Gram model, we notice that we use one vector per word. Thus we 

ignore the internal structure of the word. In fastText, we use a different scoring 

function, so that we take into account the internal structure of the word. 

In order to learn word representation, we create a set of character n-grams, in 

addition to adding the word itself to the set. 

For example, for 𝑛 = 3, the vector for the word “green” is composed of the sum 

of the n-grams vectors “<gr, gre, ree, een, en>, <green>”. The characters “<” and “>” 

are introduced to mark the beginning and the end of a word and thus to better recognize 

prefixes and suffixes. In practice, we use 𝑛 greater or equal to 3 and smaller or equal 

to 6. We can form various groups by choosing different values for 𝑛, e.g., taking all 

prefixed and suffixes. 

Given a word 𝑤, let 𝐺 is the set of n-grams, the new scoring function is: 

 𝑠(𝑤, 𝑐) = ∑ 𝑧𝑔
⊤. 𝑦𝑐

𝑔∈𝐺

 , (6.4) 

 

where 𝑧𝑔 is the vector representation for the n-gram 𝑔. 

Using this scoring function, n-grams vectors are shared between words. Thus we 

got a more realistic representation of rare words. 

 

6.1.2. Period-Global Alignments 

We need to align global and period spaces to ensure that the positions of common 

words between each of the period spaces and global space as close as possible in order 

to calculate the similarities over global and period spaces. 
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In this section, we focus on learning a mapping between global space 𝐺 and a 

𝑖𝑡ℎ period space 𝑃𝑖. We adapt the method described in [Conneau et al., 2017], which 

uses a domain-adversarial approach for learning a mapping 𝑊. 

Let 𝑃𝑖 = {𝑝1
𝑖 , … , 𝑝𝑛

𝑖 } be the set of 𝑛 word embeddings of period space 𝑖 and 𝐺 =

{𝑔1, . . , 𝑔𝑚} be the set of 𝑚 word embeddings of global space. The discriminator model 

has to discriminate between words sampled from 𝑊𝑖𝑃𝑖 = {𝑊𝑖𝑝1
𝑖 , . . . , 𝑊𝑖𝑝𝑛

𝑖 } and 𝐺. 

𝑊𝑖 is trained to deceive the discriminator from making the correct decision. The 

discriminator tries to maximize its capability to recognize the origin of an embedding, 

and 𝑊𝑖 tries to prevent the discriminator from doing its job by making 𝑊𝑖𝑃𝑖 and 𝐺 as 

similar as possible. Figure 6.1 shows the network architecture where the source is a 

period space and the target is the global space. 

 

Figure 6.1: Generative adversarial network architecture and training. 

 

6.1.2.1. Discriminator Objective 

Let 𝜃𝐷 refers to the discriminator parameters, and according to the discriminator, 

we consider the probability 𝑃𝑟𝑜𝑏𝜃𝐷
  (𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝑧) where 𝑧 is the mapping vector of 

the global space (as opposed to period 𝑖 space). We can write the discriminator loss 

as: 
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ℒ(𝜃𝐷|𝑊𝑖) =    −
1

𝑛
∑ log 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝐺𝑗)

𝑛

𝑗=1

−
1

𝑚
∑ log 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 0|𝑊𝑖𝑝𝑗
𝑖)

𝑚

𝑗=1

 . 

(6.5) 

 

6.1.2.2. Mapping objective 

We train the discriminator and the mapping matrix 𝑊𝑖 using the deep adversarial 

network procedure detailed in [Goodfellow et al., 2014]; by applying stochastic 

gradient updates to minimize losses, respectively: 

 

ℒ(𝑊𝑖|𝜃𝐷) =    −
1

𝑛
∑ 𝑙𝑜𝑔 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 0|𝐺𝑗)

𝑛

𝑗=1

−
1

𝑚
∑ 𝑙𝑜𝑔 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝑊𝑖𝑝𝑗
𝑖)

𝑚

𝑗=1

 . 

(6.6) 

 

6.1.2.3. Learning algorithm 

We use the training procedure of deep adversarial networks described in 

[Goodfellow et al., 2014]; the discriminator and the mapping matrix 𝑊𝑖 trained 

successively with stochastic gradient updates to respectively minimize losses. 

6.1.3. Energy Function 

For an input word 𝑤, we apply an energy function to get the similarity score for 

the candidate similar words for each period 𝑖 since the high value means a high 

probability that the candidate word has replaced this word. 

Let 𝑤𝑖 be the word vector in period space 𝑃𝑖, we obtain 𝐶 = {𝑐1, . . . , 𝑐𝑘} as the 

most 𝑘 similar words of 𝑤𝑖 in 𝑃𝑖. 

The energy function for the given word 𝑤 and a candidate similar word 𝑐𝑗 in 

period 𝑖 is given as: 



36 

 

 
𝐸(𝑤, 𝑐𝑗 , 𝑖) =  𝛼. 𝑆𝑝(𝑤, 𝑐𝑗, 𝑖) + (1 − 𝛼). 𝑆𝑔(𝑤, 𝑐𝑗) 

;  0 <  𝛼 <  1 , 
(6.7) 

 

where 𝑆𝑝 is a time-dependent similarity function between given two words in a 

specific period given as: 

 𝑆𝑝(𝑤, 𝑐𝑗, 𝑖) = 𝐶𝑜𝑠(𝑒𝑖(𝑤), 𝑒𝑖(𝑐𝑗)) , (6.8) 

 

where 𝑒𝑖(𝑤) is the lookup table of word embedding in period 𝑖, and Sg is a time-

independent similarity function between given two words given as: 

 𝑆𝑔(𝑤, 𝑐𝑗) = 𝐶𝑜𝑠(𝑒𝑔(𝑤), 𝑒𝑔(𝑐𝑗)) , (6.9) 

 

where 𝑒𝑔(𝑤) is the lookup table of word embedding in global space. 

 

Figure 6.2: Similar words across periods detection algorithm. 

 

Figure 6.2 shows the algorithm of detecting similar words across periods. We 

loop over period spaces and find similar local words for a given word. After that, we 

calculate the energy score for them and keep the words that are above a threshold. We 
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say about two words that they replace each other if there is only one similar word with 

an acceptable energy score during the periods. 

6.1.4. Dictionary-based Validation Metric 

To make the validation process easy and automatically done, we propose a 

simple but effective technique to validate the results. We use Turkish Dictionary of 

Turkish Language Society (Türk Dil Kurumu) [Web 2, 2019] as a validation 

dictionary. For an input word 𝑤𝑖, the system output a candidate word 𝑤𝑜 that replaced 

the input word. We search for 𝑤𝑜 in the description of 𝑤𝑖 provided by the dictionary. 

Using this technique helps in tuning the hyper-parameters while manual verification is 

time-costly and needs experts in historical terminology. 
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6.2. Location-based Model 

In this section, we describe the steps of the second proposed model, which means 

studying the change of languages geographically. First, we train a language model for 

each of the languages we have in the dataset. Then, we test the trained language models 

on the texts of all languages one by one. We measure the distance between two 

languages by calculating the perplexity when testing language models. Then we create 

the distance matrix between each pair of languages. We describe the algorithm in 

Figure 6.3. It takes the languages, the monolingual corpora, and the language model 

parameter as inputs, and returns a language-pair distance matrix as an output. We use 

the n-gram models as language models and perplexity value as a distance score 

between two languages. We detail the process in the following subsections. 

 

Figure 6.3: The distance matrix creation algorithm. 

 

6.2.1. N-gram Model 

In a language model, the probability of an event (or word) 𝑤𝑖 is determined from 

the sequence ℎ𝑖 containing the history of all previous events. This probability is 

expressed by: 

 𝑃(𝑤𝑖, ℎ𝑖) = 𝑃(𝑤𝑖| 𝑤1
𝑖−1) = 𝑃(𝑤𝑖|𝑤1𝑤2 … 𝑤𝑖−1) . (6.10) 
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For example, taking ℎ as a sequence of history, the sequence of words “This 

morning , he took his”. We then want to predict the word following this sequence. 

Therefore, we must compare the probabilities of occurrence of each category of events 

(i.e. each word of the lexicon) as in the examples: 

 

𝑃(𝑐𝑎𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) , 

𝑃(𝑗𝑎𝑐𝑘𝑒𝑡|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) , 

𝑃(𝑠ℎ𝑜𝑤𝑒𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) . 

(6.11) 

 

and choose the one with the highest probability. 

The intuition behind the n-gram models is that, instead of calculating the 

probability of an event knowing its entire history, we can make an approximation that 

consists in considering only the last few events. The tri-gram model, for example, 

considers that the probability 𝑃(𝑤𝑖|𝑤1
𝑖−1) is equivalent to the probability conditioned 

on the last 2 events of the sequence. 

 𝑃(𝑤𝑖|𝑤1
𝑖−1)        ≈        𝑃(𝑤𝑖|𝑤𝑖−2

𝑖−1) = 𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1) .  (6.12) 

 

In the example of formula (6.11), we get the following approximation: 

 𝑃(𝑐𝑎𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) ≈ 𝑃(𝑐𝑎𝑟|𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) . (6.13) 

 

This approximation according to which we consider that the probability of an 

event depends only on the last 2 events is called the Markov hypothesis. By 

generalizing the tri-grams, we get the concept of n-grams that look at 𝑛 − 1 events in 

the past. The probability of a new event based on this assumption is therefore estimated 

as follows: 

 𝑃(𝑤𝑖|𝑤1
𝑖−1)        ≈        𝑃(𝑤𝑖|𝑤𝑖−𝑛+1

𝑖−1 ) . (6.14) 

 

The most commonly used method for estimating these n-grams probabilities is 

the Maximum Likelihood Estimation (MLE). This estimate is obtained by counting 

the number of occurrences, in a learning corpus, of the entire sequence 𝑤𝑖−𝑛+1
𝑖−1 𝑤𝑖 (i.e., 
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𝑤𝑖−2𝑤𝑖−1𝑤𝑖 in the case of tri-grams) by normalizing it by the number of occurrences 

of the history 𝑤𝑖−𝑛+1
𝑖−1  (i.e., 𝑤𝑖−2𝑤𝑖−1 in the case of tri-grams) in order to obtain a result 

between 0 and 1. For example, to obtain the tri-gram probability of our example, we 

are interested in the formula: 

 𝑃(𝑐𝑎𝑟|𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑜𝑜𝑘 ℎ𝑖𝑠 𝑐𝑎𝑟)

𝑐𝑜𝑢𝑛𝑡(𝑡𝑜𝑜𝑘 ℎ𝑖𝑠)
 . (6.15) 

 

In the general case of n-grams, the estimation of the probability of an event by 

MLE is formulated as follows: 

 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1
𝑖−1 ) =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−𝑛+1
𝑖−1 𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−𝑛+1
𝑖−1 )

 . (6.16) 

 

6.2.2. Language Models Evaluation 

The evaluation of the language models is usually done using two main measures; 

the perplexity and the error rate of the words. Perplexity, closely related to entropy, 

gives us a clue to the ability of an LM to predict a (or a set of) corpora. The subsections 

below introduce these essential concepts in a little more detail. 

6.2.2.1. Perplexity 

Perplexity is the most commonly used means for rapid assessment of language 

models [Jelinek et al., 1977]. Perplexity, a measure based on cross-entropy, allows us 

to measure the ability of the language model to predict a given test corpus. On the 

other hand, the better its prediction ability (a high probability will be attributed), the 

more the language model is considered good. Moreover, perplexity is often used as an 

objective function when optimizing language models. 

Formally, the perplexity, 𝑃𝑃(𝑇), of a language model on a test set is a function 

of the probability that the language model will assign to the test set. For a test set 𝑇 =

𝑤1, … , 𝑤𝑁 of a length 𝑁: 
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 𝑃𝑃(𝑇) = 𝑃(𝑤1𝑤2 … 𝑤𝑁)−
1
𝑁 = √

1

𝑃(𝑤1𝑤2 … 𝑤𝑁 )

𝑁

 . (6.17) 

 

We can use the chain rule to expand the probability of 𝑇: 

 𝑃𝑃(𝑇) = √∏
1

𝑃(𝑤𝑖|𝑤1 … 𝑤𝑖−1 )

𝑁

𝑖=1

𝑁

 . (6.18) 

 

Thus, if we are computing the perplexity of 𝑇 with a trigram language model, 

we get: 

 𝑃𝑃(𝑇) = √∏
1

𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1 )

𝑁

𝑖=1

𝑁

 . (6.19) 

 

An exciting property of perplexity is that by taking its logarithm, we obtain the 

entropy of the language model, a property familiar to any practitioner of information 

theory. Moreover, the reduction of entropy was the original goal of the Witten-Bell 

smoothing, which was intended for text compression. 

6.2.2.2. Word Error Rate 

Word Error Rate (WER) is the application of Levenshtein distance to words: a 

tool that allows us to measure the similarity between two strings [Klakow and Peters, 

2002]. To do this, we try to align the two strings, and we calculate the minimum 

number of characters (or words in other cases) that must be removed, inserted, or 

replaced to move from a string to the other. On the other hand, unlike the Levenshtein 

distance where we summon the errors, WER will count the number of deletions, 

substitutions, and insertions such as: 

 𝑊𝐸𝑅 =
𝑆 + 𝐼 + 𝐷

𝑁
 . (6.20) 
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where 𝑁 is the number of words in the reference sentence, 𝑆 is the number of 

substitutions in relation to the sentence of reference, 𝐷 is the number of deletions 

(omitted words) with respect to the reference sentence, and 𝐼 is the number of 

insertions (words added) to the reference sentence. 
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7. EXPERIMENTS 

In this section, we review the results that we obtained by applying the proposed 

models in measuring language change in time and geography. We divided the 

experiments into two parts; time-based and location-based experiments. We detail 

them in the rest of this section. 

7.1. Time-based Experiments 

We use the TBMM dataset detailed in Section 5.1. We divided the data set into 

5-year non-overlapping time periods starting from 1920 until 2015; each time period 

contains texts belonging to five years. We use 200-dimensional fastText vectors as 

global word embedding and for each period word embedding. 

 

Figure 7.1: Word embedding visualization. Two-dimensional PCA 

projection of the 200-dimensional fastText vectors that belong to two 

different periods. Points that appear in blue belong to word vectors from 

the first period (1920-1924), while red points represent word vectors 

from the last period (2010-2014). Before we apply PCA to them, we 

align both word vectors spaces with the global word vectors space. 

“okul” and “medrese” mean “school”, “başbakanlık” and “başvekalet” 

mean “premiership”, “devamlı” and “mütemadiyen” mean “continuous”. 
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During the alignment process, we did not provide any supervised information 

about word meanings.  The mapping 𝑊 has size 200x200. For the discriminator, we 

use a multilayer perceptron with two hidden layers of size 2048, and Leaky-ReLU 

activation functions. The input to the discriminator is corrupted with dropout noise 

with a rate of 0.1. We use the energy score threshold 𝜃𝐸 = 0.4 and 𝛼 = 0.75 in the 

energy function shown in formula (6.7) since high 𝛼 value means giving more 

importance to the time-dependent similarity.  

Figure 7.2, Figure 7.3, and Figure 7.4 provide examples of true predicted words 

by our system, the usage probabilities of these Turkish words and how they change 

across periods. Moreover, figures show the relatively high energy scores for these 

substituted words. The words vary in the period in which they were replaced, and some 

words were replaced more than once. Interestingly, some words were replaced by 

another word, and then the original word reused again, then the replacement happened 

again, as shown in Figure 7.3 and Figure 7.4. 

 

Figure 7.2: “ekonomik” and “iktisadi” probability and energy score chart. 

The figure shows an example of two substituted Turkish words. It shows 

their usage probabilities and energy score across periods. Both words 

mean “economic”. 
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Figure 7.3: “oy” and “rey” probability and energy score chart. The figure 

shows an example of two substituted Turkish words. It shows their usage 

probabilities and energy score across periods. Both words mean “vote”. 

 

 

Figure 7.4: “ecnebi” and “yabancı” probability and energy score chart. 

The figure shows an example of two substituted Turkish words. It shows 

their usage probabilities and energy score across periods. Both words 

mean “foreigner”. 

 

Figure 7.5, Figure 7.6, and Figure 7.7 show the usage probabilities and energy 

scores for non-substituted Turkish words. Although their usage probabilities switch 

across periods, the energy scores keep at relatively low values. 
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Figure 7.5: “ecnebi” and “rey” probability and energy score chart. The 

figure shows an example of two non-substituted Turkish words. It shows 

their usage probabilities and energy score across periods. “ecnebi” means 

“foreigner” and “rey” means “vote”. 

 

 

Figure 7.6: “hakikaten” and “komisyon” probability and energy score 

chart. The figure shows an example of two non-substituted Turkish 

words. It shows their usage probabilities and energy score across periods. 

“hakikaten” means “really” and “komisyon” means “committee”. 
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Figure 7.7: “hüküm” and “dönem” probability and energy score chart. 

The figure shows an example of two non-substituted Turkish words. It 

shows their usage probabilities and energy score across periods. 

“hüküm” means “decision” and “dönem” means “period”. 

 

Table 7.1: Examples of randomly selected words with their substitutes. 

Examples of randomly selected words used in the last period with their 

meaning from a Turkish dictionary, the best candidate word output from 

our system, and its maximum energy value across periods.  

 

Word 
Meaning from the 

dictionary 

Replaced 

word 

Meaning in 

English 

Max. 

Energy 

Score 

adına 

. . . , bir şeyin veya bir 

kimsenin namına, hesabına, 

yerine, . . . 

namına 
in the name 

of 
47 

başbakanlık 

. . . , başbakanın yaptığı iş, 

başvekâlet, başbakan ve 

görevlilerinin çalıştığı daire. 

başvekalet premiership 41 

süre 
. . . , zaman aralığı, zaman 

bölümü, müddet. 
müddet duration 55 

özel 
. . . , kişiye ait olan, hususi, 

resmı̂ karşıtı. 
hususi special 45 

ödenek 

. . . , bir iş için ayrılan belli 

para, tahsisat, parlamento 

üyelerine, . . . 

tahsisat allowance 58 

ekonomik 

. . . , ekonomi ile ilgili olan, 

iktisadi, az masraflı, hesaplı, 

. . . 

iktisadi economic 43 
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We achieve 54.76% accuracy on words with at least 0.01% probability using our 

dictionary-based validation method. 

Table 7.1 (above) shows examples of randomly selected words used in the last 

period given to our system and the best candidate word to be the most similar word in 

previous periods. It shows the similarity values based on the energy function and 

illustrates the interest in using the dictionary-based validation metric. Although we 

were able to capture many correct word substitutions, there are still some cases that 

the system was unable to predict correctly. Table 7.2 shows some of these examples. 

We can classify the wrong predictions into three groups. The first group contains 

multi-word names of famous characters or events that appeared in a certain period, 

such as “kemal=halim” and “cemil-koçak”. The second group includes different 

meaning words used in the same context, such as “kısmen-tamamen” and “cenaze-

tedavi”.  We can explain this because we generate word vectors based on their context. 

The third group has misspelled words, especially during the first five periods, perhaps 

because of the optical character recognition errors, such as the word “kati-katı” and 

“köy-koy”.  

Table 7.2: Examples of false detected word substitutions.  

 

Word 
Word Meaning in 

English 
Replaced word 

Replaced Word 

Meaning in English 

kemal person name halim person last name 

cemil person name koçak person last name 

kısmen partially tamamen completely 

cenaze funeral tedavi treatment 

kati absolute katı solid 

köy village koy bay 

 

If we go toward more generalization, it leads to the ability to discover the 

essential changing dates in the vocabulary within the language. Figure 7.8 shows the 

number of words switches happened in each period for a random set of words 

substitutions. “namına=adına (in the name of)”, “vazife=görev (job)”, and 

“tahsisat=ödenek (grant)” are examples of switches in the fifth period. 
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“iktisadi=ekonomik (economic)”, “başvekâlet=başbakanlık (premiership)”, and 

“vekalet=bakanlık (ministry)” are examples of switches in the eighth period. 
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7.2. Location-based Experiments 

In this section, we show the results of the proposed model for measuring the 

distance between languages and dialects geographically. We have made several 

illustrations to enable us to analyze, compare, and evaluate results. In the rest of this 

section, we present details of the experiments for both Turkish languages and Arabic 

dialects. 

7.2.1. Turkic Languages 

We use Wikipedia dumps dataset to measure distances between Turkic 

languages. As shown in Table 5.2, Turkic languages are written using various script 

systems, so we first converted Cyrillic characters into Latin using ISO 9:1995 

transliteration system, see Error! Reference source not found. for details. Then we t

rain the n-gram model where 𝑛 = 7. Table7.3 shows the perplexity-based rounded 

distance values each pair of Turkic languages. Figure 7.11 shows the distances 

heatmap of these distances. 

 

Figure 7.9: Turkic and English languages’ distance graph. Edge length 

represents the distance value between two languages on both sides. 
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In order to clarify the outputs of the work, we have created a fully connected 

graph that expresses the distances between languages, where the length of the edge 

represents the distance between the two languages associated with it on both sides, as 

shown in Figure 7.9. To draw the graphs, we use NEATO utility following the 

approach proposed by [Kamada and Kawai, 1989]. NEATO draws a graph by 

constructing a virtual physical model and running an iterative solver to find a low-

energy configuration. An ideal spring is placed between every pair of nodes such that 

its length is set to the shortest path distance between the endpoints. The springs push 

the nodes so their geometric distance in the layout approximates their path distance in 

the graph. This often yields reasonable layouts [Eades, 1984]. The error in drawing the 

graph increases when it is fully-connected because of the high number of constraints, 

while the error keeps low when there are few edges only such as the case of the graph 

in Figure 7.10. We use NetworkX python library as an interface for NEATO tool. 

 

Figure 7.10: Turkic languages’ MST distance graph. Edge length 

represents the distance value between two languages on both sides. We 

use Kruskal’s algorithm [Kruskal, 1956] to generate the minimum 

spanning tree. 

 

We added English language as a baseline. It is notable that the English, despite 

its distance from many Turkic languages, is closer to some Turkic languages than 
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others. We can explain this with the widespread of English, in addition to the closeness 

of cities where some Turkic languages are spoken to the European continent. 

We notice from the graph that Turkish and Tatar languages are almost in the 

middle of the graph, and therefore it is interesting to conclude that these two languages 

are the center of the Turkic languages. To further clarify the previous point, we apply 

the Minimum Spanning Tree (MST) algorithm on this graph and concluded the graph 

shown in Figure 7.10. 

To evaluate our results, we drew a map showing the location of the cities in 

which Turkic languages are spoken, and thus easy to estimate the geographical 

distance between these cities, as well as we created links showing the similarity value 

between languages according to color and thickness. These maps are shown in Figure 

7.12, Figure 7.13, Figure 7.14, and Figure 7.15. The distance in kilometers between 

cities is shown in Table 7.4. 
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7.2.2. Arabic Dialects 

Using the same proposed model for Turkic languages, we use the MADAR 

dataset to measure distances between Arabic dialects. We train the n-gram model 

where n=5. Table 7.5 shows the perplexity-based rounded distance values each pair of 

Arabic dialects. We added Persian language as a baseline. Figure 7.18 shows the 

distances heatmap of these distances. 

 

Figure 7.16: Arabic dialects and Persian language distance graph. Edge 

length represents the distance value between two languages on both 

sides. 
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Figure 7.17: Arabic dialects’ MST distance graph. Edge length represents 

the distance value between two languages on both sides. We use 

Kruskal’s algorithm to generate the minimum spanning tree. 

 

Table 7.5: Distances between Arabic dialects and Persian.  

 

 bei cai doh msa rab tun per 

bei 26.67 32.36 37.5 52.92 32.27 46.58 228.36 

cai 28.82 20.99 41.49 44.56 39.73 40.85 818.71 

doh 28.16 27.29 24.36 39.18 29.65 36.45 152.14 

msa 31.97 37.71 31.52 29.26 33.35 32.04 612.92 

rab 36.57 31.62 40.15 43.51 20.83 38.53 1311.62 

tun 27.81 34.21 33.12 34.13 31.87 22.11 874.31 

per 175.57 166.35 199.76 239.64 131.39 215.5 51.13 

 

 

Figure 7.18: Heatmap showing similarities between Arabic dialects. 
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To evaluate our results, we drew a map showing the location of the cities in 

which Arabic dialects are spoken, and thus easy to estimate the geographical distance 

between these cities, as well as we created links showing the similarity value between 

languages according to color and thickness. The map is shown in Figure 7.19. The 

distance in kilometers between cities is shown in Table 7.6. 

 

Table 7.6: Arabic dialects geographical distance. The geographical 

distance between cities where the Arabic dialects are spoken given by 

kilometers.  

 

 bei cai doh rab tun 

bei 0 587 1819 3887 2317 

cai 587 0 2067 3604 2091 

doh 1819 2067 0 5661 4113 

rab 3887 3604 5661 0 1577 

tun 2317 2091 4113 1577 0 
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8. CONCLUSION 

This study examines the change of natural languages through time and location 

by employing quantitative models using the techniques of natural language processing. 

Through the two proposed models, we measure, in an unsupervised fashion, the 

change of natural languages. We achieve that by measuring the inter-language 

similarity, and by searching for word substitutions. 

By utilizing word embeddings, adversarial training, and space alignment 

techniques, we study the development of the Turkish language during the past 100 

years. We extract a list of word replacements in addition to infer the periods in which 

the language has changed significantly. By employing language modeling and its 

evaluation methods, we create the similarity matrix for Turkic languages as well as the 

Arabic dialects. We visualize the similarity matrices via heatmaps. Moreover, we draw 

the similarities in geographical maps that show the distances between the cities where 

these languages are spoken. 

Our work confirms what linguists have inferred, where they mentioned about a 

high degree of mutual intelligibility among the various Turkic languages. Although 

linguistics methods of classification vary, the Turkic languages are usually considered 

to be divided equally into two branches: Oghur, the only surviving member of which 

is Chuvash and Common Turkic, which includes all other Turkic languages including 

the Oghuz sub-branch. 

This study helps linguistics in analyzing natural languages and their 

relationships. As future work, we will utilize and develop the models proposed in this 

study to improve machine translation models between under-resourced languages or 

dialects. 
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Appendix A: Publications on the thesis 
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Appendix B: Word Substitution List 

Table B.1: List of word substitutions extracted by the proposed model.  

 

Word Replaced Word Substitution Period(s) 

ahkam hüküm 1985-1989 

arzuhal dilekçe 1985-1989 

aza üye 
1945-1949, 1955-1959, 

1985-1989 

başvekalet başbakanlık 
1945-1949, 1955-1959, 

1985-1989 

baytar veteriner 1940-1944 

bilahare sonradan 1945-1949 

bilhassa özellikle 1985-1989 

cürüm suç 1930-1934 

devamlı sürekli 
1925-1929, 1945-1949, 

1955-1959,  1985-1989 

devre dönem 1985-1989 

ecnebi yabancı 
1945-1949, 1955-1959, 

1985-1989 

ehemmiyet önem 1985-1989 

elbette bittabi 1930-1934 

elbette muhakkak 1985-1989 

encümen komisyon 
1945-1949, 1955-1959, 

1985-1989 
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Table B.1: continuation. 

 

Word Replaced Word Substitution Period(s) 

evvelki önceki 1985-1989 

eylemek etmek 1925-1929 

fayda yarar 1985-1989, 2010-2014 

fena kötü 1945-1949 

fikir düşünce 
1945-1949, 1955-1959, 

1985-1989 

gayrimenkul taşınmaz 
1985-1989, 1990-1994, 

1995-1999 

hadise olay 1985-1989 

hakikaten gerçekten 1985-1989 

halbuki oysa 1985-1989 

harcırah yolluk 
1945-1949, 1955-1959, 

2010-2014 

hasebiyle sebebiyle 
1935-1939, 1940-1944, 

1945-1949 

hisse pay 1990-1994 

hitam nihayet 1985-1989 

hudut sınır 1985-1989 

hükmi tüzel 1945-1949, 1955-1959, 9 

icar kira 1940-1944 

içtima toplantı 
1945-1949, 1955-1959, 

1985-1989 

ihtiyat yedek 1940-1944 

iktisadi ekonomik 1985-1989 

ilim bilim 1985-1989 

ilmi bilimsel 1985-1989 

imkan olanak 1925-1929 

inkişaf gelişme 1985-1989 

inzibat disiplin 
1945-1949, 1950-1954, 

1955-1959 

iştigal meşgul 1985-1989 
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Table B.1: continuation. 

 

Word Replaced Word Substitution Period(s) 

istihlak tüketim 1985-1989 

istihsal üretim 1985-1989 

istikraz borçlanma 1985-1989 

istimlak kamulaştırma 
1945-1949, 1950-1954, 

1985-1989 

istinaden göre 1940-1944 

istinat dayalı 1985-1989 

izah ifade 1925-1929 

izahat cevap 1935-1939, 1940-1944 

kabil mümkün 1935-1939, 1940-1944 

kafi yeterli 1985-1989 

kati kesin 1985-1989 

mahsul müstahsil 
1985-1989, 1995-1999, 

2000-2004 

malik sahip 1925-1929, 1945-1949 

malumat bilgi 1985-1989 

mani engel 1985-1989 

marifetiyle tarafından 1985-1989 

masarif masraf 1925-1929 

matbuat basın 1945-1949 

mecburi zorunlu 1985-1989 

meccanen parasız 1935-1939 

mektep okul 1935-1939 

menfaat fayda 1930-1934, 1935-1939 

mesele konu 1985-1989 

mesul sorumlu 1985-1989 

mesuliyet sorumluluk 1985-1989 

misal örnek 1985-1989 

modern çağdaş 1985-1989, 2010-2014 

muallim öğretmen 1940-1944 
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Table B.1: continuation. 

 

Word Replaced Word Substitution Period(s) 

muamele işlem 1985-1989 

muayyen belirli 1985-1989 

mucibince gereğince 1945-1949 

mugayir aykırı 1935-1939 

muhakeme yargılama 1985-1989 

muhalif aykırı 1985-1989 

mühim önemli 1985-1989 

muhtelit karma 
1945-1949, 1955-1959, 

1985-1989 

muhtevi ihtiva 1985-1989 

mukavele sözleşme 
1945-1949,1955-1959, 

1985-1989 

mukayyet kayıtlı 1945-1949 

münakale aktarma 
1945-1949, 1955-1959, 

1985-1989 

münakaşa müzakere 1985-1989 

münasip muvafık 1985-1989 

müracaat başvuru 2000-2004 

müspet olumlu 1985-1989 

müstesna hariç 1935-1939 

mutabakat uygunluk 
1945-1949, 1950-1954, 

1985-1989, 2005-2009 

muteber geçerli 1985-1989 

mütehassıs uzman 1945-1949 

mütevellit dolayı 1985-1989 

muvaffak başarılı 1985-1989 

muvafık uygun 
1935-1939, 1940-1944, 

1945-1949 

muvafık şayan 1985-1989 

müzakere görüşme 1985-1989 

nakliye taşıma 1945-1949 
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Table B.1: continuation. 

 

Word Replaced Word Substitution Period(s) 

namına adına 1945-1949 

neşriyat yayın 1945-1949 

netice sonuç 1985-1989 

numaralı sayılı 1935-1939 

politika siyaset 1945-1949, 1995-1999 

reisicumhur cumhurbaşkanı 
1945-1949, 1955-1959, 

1985-1989 

rey oy 
1945-1949, 1955-1959, 

1985-1989 

rica istirham 1985-1989 

şahıs kişi 
1925-1929, 1945-1949, 

1955-1959,  1985-1989 

şahsi kişisel 1985-1989 

salahiyet yetki 
1945-1949, 1950-1954, 

1985-1989 

sarih açıkça 
1945-1949, 1950-1954, 

1985-1989 

sebebiyle nedeniyle 1985-1989 

şifahi tahriri 
1940-1944, 1950-1954,  

1985-1989 

tahkikat soruşturma 1985-1989 

tahsisat ödenek 
1945-1949, 1955-1959, 

1985-1989 

takibat soruşturma 
1945-1949, 1950-1954, 

1985-1989 

takrir önerge 
1945-1949, 1950-1954, 

1985-1989 

talebe öğrenci 
1945-1949,1955-1959, 

1985-1989 

tamir onarım 1985-1989 

tasrih ifade 1985-1989 

tatbikat uygulama 1985-1989 
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Table B.1: continuation. 

 

Word Replaced Word Substitution Period(s) 

tatbiki uygulama 1985-1989 

tediye ödeme 1945-1949, 1985-1989 

temettü kazanç 1925-1929 

tenvir aydınlatma 1945-1949 

teshin yakacak 1945-1949 

tespit tayin 1985-1989 

teşrii yasama 1985-1989 

tetkikat inceleme 
1945-1949, 1955-1959, 

1985-1989 

ücretli sözleşmeli 1985-1989 

ulaştırma münakalat 
1945-1949, 1955-1959, 

1985-1989 

ulvi eşref 
1950-1954, 1955-1959,  

1985-1989 

umum genel 
1945-1949, 1955-1959, 

1985-1989 

vazife görev 1945-1949 

vaziyet durum 1955-1959 

vekalet bakanlık 
1945-1949, 1955-1959, 

1985-1989, 2000-2004 

vekil bakan 
1935-1939, 1940-1944, 

1945-1949, 1985-1989 

vesaire benzeri 1945-1949 

yakıt akaryakıt 
1940-1944, 1950-1954,  

1985-1989 

yolsuzluk usulsüzlük 1985-1989 

yürürlük meriyet 
1945-1949, 1955-1959, 

1985-1989 

zabıt tutanak 
1945-1949, 1955-1959, 

1985-1989 

zevat zat 1985-1989 

zirai tarımsal 2000-2004 
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Appendix C: ISO 9:1995 Transliteration Table 

Table C.1: ISO 9:1995 Transliteration table.  

 

Cyrillic Latin Cyrillic cont. Latin cont. 

А а A a П п P p 

Б б B b Р р R r 

В в V v С с S s 

Г г G g Т т T t 

Ґ ґ G̀ g̀ Ќ ќ Ḱ ḱ 

Д д D d Ћ ћ Ć ć 

Ѓ ѓ Ǵ ǵ У у U u 

Ђ ђ Đ đ Ў ў Ŭ ŭ 

Е е E e Ф ф F f 

Ё ё Ë ë Х х H h 

Є є Ê ê Ц ц C c 

Ж ж Ž ž Ч ч Č č 

З з Z z Џ џ D̂ d̂ 

Ѕ ѕ Ẑ ẑ Ш ш Š š 

И и I i Щ щ Ŝ ŝ 

I і Ì ì Ъ ъ ʺ 

Ї ї Ï ï Ы ы Y y 

Й й J j Ь ь ʹ 

Ј ј J̌ ǰ Ѣ ѣ Ě ě 

К к K k Э э È è 

Л л L l Ю ю Û û 

Љ љ L̂ l̂ Я я Â â 

М м M m ’ ’ 

Н н N n Ѫ ѫ Ǎ ǎ 

Њ њ N̂ n̂ Ѳ ѳ F̀ f ̀

О о O o Ѵ ѵ Ỳ ỳ 

 


