

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

QUANTITATIVE WAYS OF MEASURING NATURAL

LANGUAGE CHANGE THROUGH TIME AND LOCATION

MUHAMMED ENES ALMAHDI

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

GEBZE

2020

T.R.

GEBZE TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

QUANTITATIVE WAYS OF MEASURING

NATURAL LANGUAGE CHANGE

THROUGH TIME AND LOCATION

MUHAMMED ENES ALMAHDI

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER ENGINEERING

THESIS SUPERVISOR

PROF. DR. YUSUF SINAN AKGÜL

GEBZE

2020

T.C.

GEBZE TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

DOĞAL DİLLERİN ZAMAN VE

KONUMA BAĞLI DEĞİŞİMLERİNİN

NİCEL OLARAK ÖLÇÜLMESİ

MUHAMMED ENES ALMAHDI

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

TEZ DANIŞMANI

PROF. DR. YUSUF SINAN AKGÜL

GEBZE

2020

v

SUMMARY

Over successive generations, languages have evolved, with new languages and

dialects branching out; new words emerge, pronunciations vary, and morphology

develops.

The process of finding substituted words in a language, as well as knowing how

similar languages are, is the cornerstone of studying the development of languages.

The challenge in studying Eastern languages occupies in the scarcity of parallel

corpora. Current approaches that study the development of languages are either based

on parallel corpora or are not of high quality.

The goal of this work is to build an effective system that automatically detects

word substitution and inter-language similarity using unsupervised learning, i.e.,

without parallel corpora. To discover word substitution, we employ an adversarial

training procedure to learn how to align between time-based word embeddings spaces

and time-independent global word embeddings space with a simple and effective

dictionary-based validation method. Furthermore, we estimate the inter-language

similarity based on the perplexity of n-gram models that trained on monolingual texts.

We apply our proposed models on Turkic languages and Arabic dialects. We

identify word substitutions, in addition to finding the most changed periods during the

last 100-years stage of Turkish language development. Moreover, we create fully

connected similarity graphs for Turkic languages and Arabic dialects. We visualize the

similarities in a heatmap, and we present a map showing the inter-language similarity

and the influence of the geographical distribution.

Keywords: Natural Language Processing, Word Embedding, Word Substitution,

Language Similarity, Language Modeling.

vi

ÖZET

Birbirini izleyen nesiller boyunca diller gelişmiştir, yeni diller ve lehçelere

dallanmıştır; yeni kelimeler ortaya çıkmış, telaffuzlar değişmiş ve morfoloji

gelişmiştir.

Bir dilde ikame edilmiş sözcükleri bulmak ve benzer dillerin benzerliklerini

bilmek, dillerin gelişimini incelemenin temel taşını oluşturmuştur. Doğu dillerinde

paralel korporanın azlığı bu dilleri incelemedeki zorluğu ortaya çıkarmıştır. Dillerin

gelişimini inceleyen mevcut yaklaşımlar ya paralel korporaya dayanmıştır ya da

yüksek başarım gösterememiştir.

Bu çalışmanın amacı gözetimsiz öğrenmeyle paralel korpora kullanmadan

kelime ikamesini ve diller arası benzerliği otomatik olarak tespit eden etkin bir sistem

oluşturmaktır. Kelime ikamesini keşfetmek ve zamana dayalı kelime vektör uzayları

ile zamandan bağımsız evrensel kelime vektör uzayının nasıl hizalanacağını öğretmek

için basit ve etkin sözlük tabanlı doğrulama yöntemi ile çekişmeli eğitim prosedürünü

kullandık. Ayrıca, tek dilli metinler üzerinde eğitilmiş n-gram modellere dayanarak

diller arası benzerliği kestirdik.

Önerilen modellerimizi Türk dilleri ve Arap lehçelerine uyguladık. Türk dil

gelişiminin son 100 yıllık döneminde en çok değişen dönemleri bulmanın yanı sıra

sözcük ikamelerini de belirledik. Ayrıca Türk dilleri ve Arap lehçeleri için tam

bağlantılı benzerlik çizgeleri oluşturduk. Bir ısı haritasında benzerlikleri

görselleştirdik ve bunu diller arası benzerliğe coğrafi dağılımın etkisini gösteren bir

harita sunduk.

Anahtar Kelimeler: Doğal Dil İşleme, Kelime Gömme, Kelime İkame Etme, Dil

Benzerliği, Dil Modelleme.

vii

ACKNOWLEDGMENTS

I am glad to express my very profound gratitude to my father and mother for

providing me with unlimited support and continuous encouragement throughout my

years of study.

To whom was the best supporter of my scientific and research journey, and

spared no effort in helping me, my dear wife. This accomplishment would not have

been possible without you.

I would also like to acknowledge Prof. Dr. Yusuf Sinan AKGÜL as my

supervisor of this work, and I am gratefully indebted to him for his valuable assistance

on this thesis.

I thank Rima ALMAHDI, Riad ALMAHDI, Abdullah BAKIRCI, and all my

friends for their love and support.

viii

TABLE OF CONTENTS

Page

SUMMARY v

ÖZET vi

ACKNOWLEDGMENTS vii

TABLE OF CONTENTS viii

LIST OF SYMBOLS AND ABBREVIATIONS xi

LIST OF FIGURES xii

LIST OF TABLES xiii

_

1. INTRODUCTION 1

2. WORD EMBEDDINGS 6

2.1. Word Embedding Applications 6

2.1.1. Sentiment Analysis 7

2.1.2. Text Generation 7

2.1.3. Translation Systems 8

2.1.4. Chatbox, or Question Answering Systems 8

2.2. Methods of Generating Embeddings 8

2.2.1. Word2Vec 9

2.2.2. GloVe 11

2.2.3. FastText 11

2.2.4. LexVec 12

2.2.5. PDC and HDC 12

2.2.6. Context2Vec 12

2.2.7. Universal Sentence Encoder (USE) 13

2.2.8. Embeddings from Language Models (ELMo) 13

2.2.8.1. Long Short-Term Memory (LSTM) 14

2.2.9. Bidirectional Encoder Representations from Transformers (BERT) 15

2.2.9.1. Transformer 16

3. INTER-LANGUAGE TECHNIQUES 18

3.1. Alignment 18

ix

3.2. Transfer 19

3.3. Similarities 20

4. LANGUAGE MODELING 21

4.1. Hidden Markov Model 21

4.2. Conditional Random Fields 23

4.3. N-gram Model 24

5. DATASETS 26

5.1. Turkish Grand National Assembly Dataset 26

5.2. Wikipedia Dumps Dataset 28

5.3. MADAR Dataset 30

6. METHODOLOGY 31

6.1. Time-based Model 32

6.1.1. Periods' and Global Embeddings 32

6.1.1.1. Subword Information 33

6.1.2. Period-Global Alignments 33

6.1.2.1. Discriminator Objective 34

6.1.2.2. Mapping objective 35

6.1.2.3. Learning algorithm 35

6.1.3. Energy Function 35

6.1.4. Dictionary-based Validation Metric 37

6.2. Location-based Model 38

6.2.1. N-gram Model 38

6.2.2. Language Models Evaluation 40

6.2.2.1. Perplexity 40

6.2.2.2. Word Error Rate 41

7. EXPERIMENTS 43

7.1. Time-based Experiments 43

7.2. Location-based Experiments 51

7.2.1. Turkic Languages 51

7.2.2. Arabic Dialects 61

8. CONCLUSION 65

_

x

REFERENCES 66

BIOGRAPHY 76

APPENDICES 77

xi

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols and

Abbreviations
Explanations

BERT : Bidirectional Encoder Representations from Transformers

CRF : Conditional Random Fields

CBOW : Continuous Bag of Words

CNN : Convolutional Neural Network

DAN : Deep Averaging Network

DTW : Dynamic Time Warping

ELMo : Embeddings from Language Models

GloVe : Global Vectors for Word Representation

HMM : Hidden Markov Model

KNN : K-Nearest Neighbors

LSTM : Long Short-Term Memory

MLP : Multi-Layer Perceptron

NLP : Natural Language Processing

RNN : Recurrent Neural Network

SVM : Support Vector Machine

TBMM : Türkiye Büyük Millet Meclisi (Turkish Grand National Assembly)

USE : Universal Sentence Encoder

xii

LIST OF FIGURES

Figure No: Page

2.1: CBOW and Skip-gram models. 9

2.2: Examples of word vectors in 2-dimensional space. 10

5.1: Figures that summarize several statistics about TBMM corpus. 26

5.2: No. of articles for each language in the Wikipedia dumps corpus. 28

6.1: Generative adversarial network architecture and training. 34

6.2: Similar words across periods detection algorithm. 36

6.3: The distance matrix creation algorithm. 38

7.1: Word embedding visualization. 43

7.2: “ekonomik” and “iktisadi” probability and energy score chart. 44

7.3: “oy” and “rey” probability and energy score chart. 45

7.4: “ecnebi” and “yabancı” probability and energy score chart. 45

7.5: “ecnebi” and “rey” probability and energy score chart. 46

7.6: “hakikaten” and “komisyon” probability and energy score chart. 46

7.7: “hüküm” and “dönem” probability and energy score chart. 47

7.8: Words switches histogram. 50

7.9: Turkic and English languages’ distance graph. 51

7.10: Turkic languages’ MST distance graph. 52

7.11: Heatmap showing similarities between Turkic languages. 55

7.12: Very low similar Turkic language map. 56

7.13: Low similar Turkic language map. 57

7.14: High similar Turkic language map. 58

7.15: Very high similar Turkic language map. 59

7.16: Arabic dialects and Persian language distance graph. 61

7.17: Arabic dialects’ MST distance graph. 62

7.18: Heatmap showing similarities between Arabic dialects. 62

7.19: Arabic dialects similarities map. 63

xiii

LIST OF TABLES

Table No: Page

1.1: Translation of a sentence in some Turkic languages. 2

1.2: Pronunciation of a sentence in some Arabic dialects. 3

5.1: TBMM corpus statistics. 27

5.2: Statistics about the Wikipedia dumps dataset. 29

5.3: Statistics about the MADAR dataset. 30

7.1: Examples of randomly selected words with their substitutes. 47

7.2: Examples of false detected word substitutions. 48

7.3: Distances between Turkic and English languages. 54

7.4: Turkic languages geographical distance. 60

7.5: Distances between Arabic dialects and Persian. 62

7.6: Arabic dialects geographical distance. 64

1

1. INTRODUCTION

Languages remain one of the greatest inventions of human creativity, whereas

primitive ancestors communicated through signs, despite the many differences

between the shapes of their letters, their pronunciation, and the appearance date since

the appearance of man on the face of the earth [Peterson, 2015].

Languages have evolved over successive generations in a way that makes it

difficult to define the boundary between one language and another. So, it is challenging

to determine the oldest language and decisiveness in the emergence of one language

over the ruins of another language.

For example, the word “selfie” was not present in a few years, but today it is a

word that we pronounce and know its meaning without finding linguistic meaning in

existing dictionaries, and there are new scientific terms that are invented periodically

in various fields, there are diseases, for example, that did not exist, and the names of

newly made inventions. Other things emerging in life that directly affect the

development of the language, and therefore, the dictionaries are regularly reviewed

and developed by adding new words or terms and removing - sometimes - existing

words.

Let us go back in time to the ancient era, when the world was less densely

populated. People shared one language and one culture, but it was divided into smaller,

dispersed tribes in their search for better living conditions. Due to their migration and

stability in new places, they became isolated from each other and developed in

different ways commensurate with the things around them, such as the climate and

animals. Centuries passed while they were eating different food and using new tools

that made that common dialect transform into different languages radically continuing

to divide with increasing population density. For this reason, linguists try to draw this

process by tracing multiple languages to their past as much as they can into their

primitive language, and through this process, we note that there are related languages

that constitute what is called the language family.

Take Turkic languages as an example. Turkic languages, as a set of languages,

divided into 40 different written languages, spoken by 180 million people as a mother

tongue and approximately 250 million people as a second language from Eastern

Europe to Siberia and west of China [Dybo, 2007].

2

An important feature that makes Turkic languages different from other language

families is that their speakers have lived as nomads for a long time and that these

languages are always influenced by each other. In addition to having common words

used in the same sense in a large number of Turkic languages, sentence structures

always remain the same. Therefore, it is common to see that Turkic languages are not

a language family, they are the dialects of a single language, and we can see that they

are called Turkic dialects [Tekin, 1978]. Table 1.1 shows how Turkic languages are

similar to each other.

Table 1.1: Translation of a sentence in some Turkic languages.

Language
Translation of “The mother teaches her son reading and

writing.”

Turkish Anne oğluna okuma ve yazma öğretir.

Azerbaijani Ana oğluna oxumağı və yazmağı öyrədir.

Uzbek Ona o'g'liga o'qish va yozishni o'rgatadi.

Kazakh Anasy ulyn oqýǵa jáne jazýǵa úıretedi.

Kyrgyz Apam anın uulu okup jana jazuuga üyrötöt.

Tatar Änise ulın uqırğa häm yazarğa öyrätä.

Turkish language, as one of the Turkic languages, spoken in Southeastern

Europe and West Asia, is an additive language belonging to the Turkic languages

language family. It forms the continuation of the Ottoman Turkish from the Oghuz

language group of the Turkic language family. Turkish is the 22nd most spoken

language in the world, with approximately 80 million people speaking [Web 1, 2019].

Turkish has grammatical features such as the affinity and vowel harmony that it

shares with many other Turkic languages. In terms of sentence structure, language

usually has a subject-object-verb order. Unlike other languages such as German and

Arabic, there is no grammatical gender (masculinity, femininity, gender

discrimination). Furthermore, Turkish speakers can understand other Oghuz languages

such as Azerbaijani, Gagauz, and Turkmen. The Turkish language was written in the

Latin alphabet since 1928. The Turkish Language Association controls the spelling

3

rules in Standard Turkish. The Istanbul dialect, also called Istanbul Turkish, is the

standard form of Turkish, and it is the base of the written Turkish language. However,

there are various Turkish dialects in Southeast Europe and the Middle East, and these

dialects have various silent differences with Istanbul Turkish [Campbell, 2003].

Table 1.2: Pronunciation of a sentence in some Arabic dialects.

Arabic dialect Pronunciation of “I only found this library.”

Modern Standard Arabic lam ʾaǧid siwā hāḏehi-əl-măktba

Algerian (Algiers) ma-lqīt ɣīr hādi-əl-măktaba

Egyptian (Cairo) ma-lʔet-ʃ ella el-maktaba di

Gulf (Kuwait) ma ligēt illa hal l-maktaba

Hejazi (Jeddah) ma ligīt ɣēr hādi al-maktaba

Jordanian (Amman) ma lagēt illa hal ʕal-mektebe

Lebanese (Beirut) ma lʔēt illa hal-i-ʕal-mektebe

Mesopotamian (Baghdad) ma ligēt ɣīr hāði-il-maktaba

Moroccan (Casablanca) ma-lqīt-ʃ mən-ɣīr hādi-lmăktaba

Northern Jordanian (Irbid) ma lagēteʃ illa hal ʕal-mektebe

Syrian (Damascus) ma lʔēt illa hal ʕal-maktebe

Arabic is another example of the diversity of languages and dialects. Pre-Islamic,

Arabic dialects were varied and different in vocabulary, styles, and structures.

However, there was a standardized dialect used to write poems, covenants, and

covenants. The standardized dialect continued after the emergence of Islam, which is

the language in which the Holy Quran was revealed [Kamusella, 2017].

Currently, Arabic has many different colloquial dialects, and colloquial dialects

do not have grammatical or morphological rules, dictionaries for their vocabulary and

words, or a method for writing them. Some colloquial dialects are closer to classical

than other dialects. Table 1.2 shows how Arabic dialects are similar to each other.

4

As a motivation from classical linguistics, historical linguistics is the scientific

study of language change over time [Bynon, 1977]. Principal concerns of historical

linguistics include describing and accounting for observed changes in particular

languages in addition to reconstructing the prehistory of languages and determining

their relatedness, grouping them into language families. Additionally, historical

linguistics tries to develop general theories about how and why language changes.

In the world of natural language processing, one of the fundamental problems in

eastern languages and dialects processing, Turkic languages and Arabic dialects, for

example, is the lack of labeled data, even some of them are almost spoken dialects

only. The main difficulty that the supervised method faces in dealing with these

languages is that there are few parallel-corpus. Therefore, it is not easy to analyze the

relationships between these languages, as is the case in machine translation systems.

Variation in the scripts is also one of the problems that we face when dealing

with languages since although the Turkic languages come from the same origin, i.e.,

some of them are written in Latin script, while the others are written in Cyrillic or

Arabic script.

In this work, we focus on overcome previously mentioned challenges. So, we try

to answer the following question: “Can we find quantitative ways to measure how

similar are two languages? Despite the different scripts, especially those for which we

do not have parallel corpora.”. This inquiry leads us to the sub-question: “Can we find

the word substitutions without parallel texts?”.

We try to answer the previous questions by studying language change according

to two factors; the time and the location factors. The main hypotheses of this work are

that the languages are more similar when the places in which these languages are

spoken are geographically close, in addition to the ability to detect word substitutions

without using any parallel corpus.

To evaluate the hypotheses, we suggest two quantitative methods to measure the

temporal and location change in languages by automatically detecting word

substitution and language similarity. In both methods, we use mono data only, i.e., we

do not need parallel texts.

When studying language change according to the time factor, we have texts

divided according to periods. After preprocessing, we train time-dependent word

embedding for each period in addition to time-independent global word embedding.

5

Then we align each period embedding to the global embedding. We find word

substitution by the proposed energy function, which uses the global and period

similarities to score the substitutions. To validate our results, we suggest a simple but

effective dictionary-based method.

When studying language change according to the location factor, we have texts

divided according to the region in which this language or dialect is spoken. We start

with data preprocessing, including transliteration to Latin script in the case of Turkic

languages. Then, we train an n-gram model for each language independently. We use

a perplexity-based scoring function to find out how similar two languages by testing

language data on another language model. To evaluate the results, we compare the

results of the proposed model to the geographic distance of where these languages are

spoken.

Through utilizing our work on the Turkish language, we find a list of word

substitutions during the last 100 years, without the use of dictionaries. We also defined

the word replacement date, as well as the periods in which most replacements

occurred. Furthermore, we created matrices of similarities between Turkic languages

and Arabic dialects. We also clarified and compared the similarities between languages

through a heatmap and through a geographical map showing the distance between

cities that speak these languages and the similarity level between them.

We organize this thesis as follows: we show many of the best-known word

embedding methods and their applications in section 2. Then, we show alignment,

transfer, and similarities, i.e., inter-language techniques in section 3. In section 4, we

explain the language modeling concept and some of its approaches. We show the used

datasets in section 5. The two proposed models detailed in section 6. Before we end

with a summary of the work, we show results and experiences and discuss them in

section 7.

6

2. WORD EMBEDDINGS

Word embedding is an approach of distributional semantics that represents

words as real number vectors. This representation has useful grouping properties. It

groups words that are semantically and syntactically similar. For example, we hope

that the words “hoopoes” and “nightingale” are close, but “Istanbul” and “hoopoes”

are not close because there is no strong relationship between them.

Therefore, words are represented as vectors of real values. Each value captures

a dimension of word meaning. So, semantically similar words should have similar

vectors. Simplified, each dimension of the vectors represents a meaning. The

numerical value in each dimension captures the closeness of the association of the

word to that meaning. Its objective is to quantify and categorize semantic similarities

between linguistic elements. This type of representation is dense. Hopefully,

synonyms and interchangeable words are nearby in that space.

Vector space models have been used in distributional semantics since the 1990s.

Since then, different models have been developed to estimate continuous

representations of words; an example is Latent Semantic Analysis (LSA) [Landauer et

al., 2013]. The word embedding was initially conceived by [Bengio et al., 2003], who

trained these types of vectors in a neuronal probabilistic model. However, [Collobert

and Weston, 2008] were possibly the first to demonstrate the power of word

embeddings, in which they pointed out word embeddings as a highly useful tool in

different NLP tasks. Also, they present a neural network architecture on which many

of the current approaches are based. Word embeddings were widely known, thanks to

the work of [Mikolov et al., 2013a] who published Word2Vec, a tool to train and use

word embeddings. A year later, [Pennington et al., 2014] introduced GloVe, a new tool

for the generation of word embeddings. GloVe unlike Word2Vec, is a counting based

model.

2.1. Word Embedding Applications

As of this moment, word embeddings have become one of the main concepts in

natural language processing. Word embeddings capture the meaning of words and

translate them into a vector representation that can be used as input for all types of

7

neural networks. This has caused its use has spread rapidly and is currently a

fundamental piece in the architecture of all types of models that perform NLP tasks.

Some of the most relevant applications are shown in the following subsections.

These are just some of the applications of word embeddings. Since they are capable of

encoding the meaning of words and the relationships between them, it is possible to

apply them to all kinds of tasks.

2.1.1. Sentiment Analysis

With the growth of the popularity of social networks, it is very interesting to

develop a system capable of, for example, analyzing whether the opinions of a product

are positive or negative.

A wide variety of technologies has been used to assess sentiment analysis tasks.

In the latter years, machine learning techniques proved to be very effective; in

particular, the systems based on deep learning techniques represent the state of the art.

Some modern systems make use of CNNs where the input is sequences of words

represented as word embeddings. An example of such systems is [Dos Santos and

Gatti, 2014]. In this field, word embeddings have been widely used as a way of

representing words in sentiment analysis tasks, and proved to be very effective

[Petrolito and Dell’Orletta, 2018].

2.1.2. Text Generation

Given a language model, we can generate text by an iterative process; we select

a word based on the sequence so far, add this word to the sequence, and repeat.

Therefore, we just need to know how to pick the next word.

Word embeddings are useful in capturing semantic meanings of words. Pre-

trained embeddings can improve the accuracy of neural language models [Verwimp

and Bellegarda, 2019]. Through the use of RNN-based language models, for example,

it is possible to generate text automatically. By combining these models with

convolutional networks, it is even possible to create systems that annotate or describe

images.

Sampling, greedy and beam search are some of text generation strategies. In

sampling, we sample from the conditional word probability distribution. While in the

8

greedy strategy, we always pick the word with the highest probability. The greedy

approach does not always result in the final sequence with the highest overall

probability. A beam search keeps track of several probable variants at each step to

avoid being led astray by local maxima.

2.1.3. Translation Systems

Generally, these systems are formed by a neural network that acts as an encoder

and a neural network that acts as a decoder [Cho et al., 2014]. Both the input and output

of these neural networks are sequences of words, and word embeddings represent these

words. One of the most famous examples of these types of systems is Google

Translate; this translator makes use of the seq2seq model [Britz et al., 2017]. These

systems make use of parallel corpus, that is, identical texts in different languages.

However, the development of models that do not need to use parallel corpus is

receiving significant attention. Some examples of such models are [Lample et al.,

2017] or [Artetxe et al., 2017].

2.1.4. Chatbox, or Question Answering Systems

These systems are gaining increasing popularity. Some examples are Google

Assistant that can be found in a large number of smartphones or Amazon Alexa. The

seq2seq [Britz et al., 2017] model, in addition to text translations, can also act as a

chatbox if small adjustments are made and trained for it.

2.2. Methods of Generating Embeddings

Since Word2Vec [Mikolov et al., 2013a] word embeddings began to become

popular, a lot of different methods have emerged to generate word embeddings. In this

section, we have chosen the best-known word embeddings, in addition to some that

have been interesting to us, either because of their performance or because they are

very different from the rest of the word embeddings generation methods. Pre-

calculated vectors usually accompany word embeddings methods.

As previously mentioned, many efforts have been made to obtain a vector

representation of the texts, which facilitates the calculation of the distance between

9

them in the representation space and, thus, the design of models for the treatment of

different tasks of NLP. While proposed techniques for obtaining word embeddings

constitute important steps in this regard, the need to capture the entire content of a text

in the text representation vector is necessary. For this reason, techniques have been

proposed to obtain embeddings at a higher level where their entire context is captured

[Perone et al., 2018].

2.2.1. Word2Vec

Word2Vec [Mikolov et al., 2013a] refers to a group of models for producing

Word Embeddings. They are flat, two-layer neural networks that are trained to

reconstruct linguistic contexts of words. Word2Vec takes a huge amount of text as

input and creates a few hundred dimensional vector space, with each word in the

corpus associated with a corresponding vector in space. Word vectors are positioned

in vector space so that words that share similar contexts in the corpus are close to each

other in space.

Word2Vec can use one of two architectures to create Word Embeddings:

Continuous Bag-of-Words (CBOW) or Skip-Gram. The CBOW model predicts the

current word based on the surrounding context words. The order of the context words

does not influence the prediction. In skip-gram architecture, the model uses the current

word to predict the surrounding window of context words. CBOW models aim to

assign a word to a context. On the other hand, Skip-gram is designed to create a context

for a word.

Figure 2.1: CBOW and Skip-gram models.

10

For example, the following sentence is given: “We went to Istanbul and Konya”.

For CBOW, the task results from the input “We went to x and Konya” to predict the

word “Istanbul” for x. Conversely, with Skip-gram for the word “Istanbul” the context

“We went to x and Konya” must be predicted. The implementation of the Skip-gram

and CBOW models is a feed-forward neural network.

In order to understand the learning process, we need some prior knowledge of

neural networks. The smallest unit in neural networks is the neuron. A neuron can

absorb, modify, and transmit information. Neurons are organized in layers. A network

consists of an input layer (encoder) that receives signals from the outside, any number

of hidden layers, and an output layer (decoder) that outputs the processed signals again.

Weights control the behavior of the neurons towards information. For a network to

solve a problem, the weights of the neurons in the hidden layers must take values that

give the correct result at the output layer's output, in relation to the signals input in the

input layer. The weights of the neurons are randomized, and after each iteration of one

packet of information (batch) through the network, the distance of the last layer's

output is compared to the target value. This distance (loss) is used to determine through

backpropagation which weights need to be changed to get closer to the target value.

This change of weights is the actual learning process within a neural network.

In the CBOW model, the input layer receives the input “We went to x and

Konya” and should pass the output “Istanbul” in the output layer. The network used

for Word2Vec has only one hidden layer. Its weights are thus optimized until the

desired result is calculated as accurately as possible for all sentences and target words.

The embeddings are generated by extracting the state of the hidden layer neurons for

each target word before it is decoded by the output layer.

Figure 2.2: Examples of word vectors in 2-dimensional space.

11

 The generated vectors can be used to perform arithmetic operations on semantic

relations. The best-known example is “glider” - “bicycle” + “motorcycle”, which leads

to the result “airplane”.

2.2.2. GloVe

GloVe [Pennington et al., 2014], unlike Word2Vec, is a counting based model.

GloVe generates a large matrix where the information of the concurrence between

words and contexts is stored. That is, for each word, we count how many times that

word appears in some context. The training objective of this matrix is to learn vectors

so that the scalar product between the words is equal to the logarithm of the probability

of co-occurrence between the words. The number of contexts is very high. Therefore,

a factorization of said matrix is performed to obtain one of the smaller dimensions.

Thus obtaining a vector that represents each of the words. The advantage of GloVe

over Word2Vec is that it is easier to parallelize the training. Therefore, it is possible

to use more information during training. Therefore, it is possible to use a higher

amount of data during training.

2.2.3. FastText

Fixed vocabulary is one of the core problems of using Word2Vec. A word that

is not contained in the data with which the Word Embedding was trained cannot be

assigned any vectors. Analogously, the representation of a rare word is less certain

than a frequent one. This is especially critical for languages where words are heavily

inflected or tend to form compounds. Even if the ideal case that every thinkable word

should be included in the training corpus occurs, a model that assigns each word its

own vector would hardly be processable because of its size. FastText [Bojanowski et

al., 2017] addresses these issues by not only calculating representations for words but

for its characters. Each word is treated as the sum of its character compositions called

n-grams. The vector for a word is composed of the sum of its n-grams. In addition, the

word as a whole is always included. In this way, it is expected to obtain better

representations for “rare” words, which have very few occurrences in texts corpus, and

thus be able to generate vectors for words that are not found in the vocabulary of word

embeddings.

12

2.2.4. LexVec

LexVec [Salle et al., 2016] is a model that seeks to obtain better results thanks

to the combination of GloVe and Word2Vec. There are different versions since the

model has been improved over time. For example, there is a version that uses context

vectors [Levy and Goldberg, 2014]. Context vectors seek to improve the performance

of word embeddings in analogy tasks. Generally in the models, we only take into

account the words found in the context of the main word, for example in the phrase

“The little boy left quickly” if the main word is “boy”, the context would be formed

by “(The, little, left, quickly)”. Context vectors also take into account the relative

position that words occupy around the target word. For example, in the previous

sentence, it will have a context “(The-2, little-1, left+1, quickly+2)”. Therefore, we

know that the “quickly+2” is two positions to the right of the objective word. We hope

that this information will help us obtain better word representations. The latest and

most recent version [Alexandre and Aline, 2018] incorporates the same as fastText n-

grams.

2.2.5. PDC and HDC

PDC and HDC [Sun et al., 2015] are extensions of the CBOW and Skip-gram

model, respectively. They seek to capture syntagmatic and paradigmatic relationships

at the same time during training. PDC is a model where an objective word is predicted

from its surrounding context, in addition to the document in which it appears. The

prediction of the word using its context captures the paradigmatic relationship of words

since words in similar contexts will tend to have similar representations. This model

also causes words that tend to appear in the same document to tend to have similar

representations, thus capturing syntagmatic relationships. HDC is similar to PDC, but

it applies to the Skip-gram model. In this case, the document is used to predict an

objective word, and from that word, its context is predicted.

2.2.6. Context2Vec

Context2Vec [Melamud et al., 2016] is an extension of the Word2Vec CBOW

model. The main difference between the two models is that CBOW represents the

context around a word as the average of the embeddings of the surrounding words.

13

Context2Vec proposes a more complex approach. The context to the left of the target

word and the context to the right of the target word are introduced into independent

neuronal models (Recurrent Neural Network LSTM [Hochreiter and Schmidhuber,

1997]). The results are then combined by a new neural network (Multilayer

Perceptron). In this way, it is expected to extract the most relevant information from

the context of the target word. Another fundamental difference is that while CBOW

takes a certain number of words around the target word, for example, two words are

taken on the left and two on the right, Context2Vec is able to use the complete phrase

where the target word is located.

2.2.7. Universal Sentence Encoder (USE)

USE [Cer et al., 2018] is a model proposed by Google to obtain sentence

embeddings. Given any text, with this model, a vector is obtained as representation. It

has been trained with a variety of sources and tasks, so it can be adjusted to model the

semantics of a sequence of words for a large number of purposes. This model has two

main versions. The first version is based on the Transformer model [Vaswani et al.,

2017], and the second version is based on a DAN model [Iyyer et al., 2015], which

takes the average of the word embeddings as input to a feed-forward deep neural

network. Although the first version is more computationally expensive, it is designed

to generate models with greater precision. On the other hand, the Transformer is a

model consisting of an encoder and a decoder. The encoder, which is the part of the

model on which USE is based, is made up of a stack of 6 identical layers.

Each layer has a special attention mechanism and a feed-forward neural network,

among which there are residual connections followed by normalization. Besides, the

model incorporates information about the position of each term in the sequence

(positional encodings) to control the order since there is no recurrence in the model.

2.2.8. Embeddings from Language Models (ELMo)

ELMo [Peters et al., 2018] distinguishes from word2vec and fastText by directly

following the concept of traditional language models. These language models compute

a fixed number of consecutive words of a text, the probability of the next word

[Seymore et al., 1999]. For the training of embeddings, not only the context before the

14

target word but also the following context is used. Although the task, i.e., the

prediction of a word based on its context, is similar to the CBOW model, it differs in

that the multitude of contexts in a word is not used to calculate a fixed vector for each

word but the vector of a word in dependency of its current context. Therefore, ELMo

is a context-sensitive embedding.

Given a segment of 𝑁 tokens (𝑡1, 𝑡2, . . 𝑡𝑁), a language model calculates the

probability for each token 𝑘 based on the previous tokens (𝑡1, 𝑡2, . . 𝑡𝑘−1). Conversely,

a returned language model calculates the probability based on (𝑡𝑘+1, 𝑡𝑘+2, . .). In order

to make the technical implementation of this concept understandable, a brief digression

into the functioning of LSTMs is needed.

2.2.8.1. Long Short-Term Memory (LSTM)

LSTMs [Hochreiter and Schmidhuber, 1997] are used in Recurrent Neural

Networks and allow the network architecture to obtain information about past

iterations. Feed-forward networks always adjust their weights based on the currently

processed batch, without the possibility that previously processed signals can influence

the treatment of the current training data. Therefore, they are not suitable for the

prediction of dependent sequences, such as evolution over time. Actually, an LSTM

layer is not a layer, but its network consisting of four neural layers. These are divided

into three sigmoid and one 𝑡𝑎𝑛ℎ layer.

In the LSTM cell, the first sigmoid layer is the forget gate. This regulates how

much and, above all, which information from the previous LSTM cell should be passed

on to the cell state. The next unit, consisting of the second sigmoid and the tanh layer,

forms the input gate, which determines what information from the current input will

be added. The last sigmoid layer, the output gate, calculates from the input and the cell

state which information is passed on to the next layer of the overall network as well as

to the next LSTM cell.

The architecture of the ELMo network includes two layers of LSTMs, which in

turn are divided into the forward and backward blocks. As already described, this

structure is trained according to the concept of language models. The model can be

used in other neural networks. The authors suggest to set up only one last layer on the

embedding, which filters the information relevant to the task. Tests suggest that the

15

first LSTM layer contains more information about the grammatical and syntactic

properties of speech because its vectors can achieve better results for tasks such as

POS tagging than the second layer [Peters et al., 2018]. This is more suitable for tasks

that require semantic information, such as disambiguation.

2.2.9. Bidirectional Encoder Representations from Transformers

(BERT)

Bert Embeddings [Devlin et al., 2018], like ELMo, is one of the context-sensitive

embeddings. Bert differs from ELMo in three key areas: tokenization, training of the

language model, and network architecture. Bert uses neither a classic 1: 1 relationship

between token and word, nor a generic n-gram method like fastText. Instead, the

WordPiece tokenization method introduced by [Wu et al., 2016] is used. Tokenization

is defined as an optimization problem: Given a number of character n-grams to use;

Which must be selected to represent a corpus fully? Bert uses 30,000 pieces. Although

the model seems questionable from a linguistic point of view, as it ignores

morphological structures, its use, for example in machine translations, leads to better

results.

A masked language model does the training of Bert Embeddings. The input for

the training consists of segments of 512 token. Of these tokens, 15% are selected for

masking, 80% are being replaced by a special masking word, 10% are being replaced

by a random word and 10% are being replaced by themselves. This division seems

arbitrary at first, but it can be explained by the fact that when the target word is masked

100%, the model does not learn its own representation for non-masked tokens, but

only uses them to contextualize the masking. If the remaining 20% is completely

replaced by random tokens, the model could not learn anymore, as any customization

due to the masked tokens would prove wrong. It is maintaining the target word as an

alternative to masking results a context-less prediction, only on token embedding. The

model is left in the dark about which token has been replaced, so each token must have

its own contextualized representation. It emerges from this task that the LSTMs

architecture would be extremely time-consuming, since in this way, for each token in

the segment, anticipatory and past information would have to be provided

simultaneously. That's why Bert does not use LSTMs, but Transformers.

16

2.2.9.1. Transformer

The Transformer layer introduced by [Vaswani et al., 2017] is based on the

concept of attention. Attention solves a problem that occurs in recurrent neural

networks in connection with far past inputs. LSTMs generate their output from the last

hidden state and the current input. The long-term memory, that is, the hidden state,

must provide all previous information needed for the processing of the current input

and without knowing the input in advance. As a result, LSTMs tend to forget about

long-lost information because it is impossible to predict if they will be needed.

Attention mechanisms accelerate this problem by allowing access to all past hidden

states while learning to filter the information in response to the input.

The hidden states of the recurrent layers are passed onto the next higher layer by

means of a filter taking into account the input and the available information from the

hidden states [Bahdanau et al., 2014]. However, this architecture still includes

recurring blocks that are dependent on all their predecessors. Therefore, this

architecture is not suitable for parallelization. The Transformer layer offers the

possibility to replace these recurring parts completely by attention. It consists of an

encoder and a decoder component. Each of these components is subdivided into

several layers; in the case of Bert 6 layers are used. The encoder layers consist of a

self-attention mechanism and a feed-forward network. The decoder layers have the

same structure, supplemented by a further attention mechanism between self-attention

and feed-forward network. Before a sequence of words passes the first encoder, it is

converted into a vector by an embedding. Then follows the first self-attention layer.

Self-attention differs from the attention discussed in the previous paragraph in that it

does not focus on whether a word is relevant to understanding a sentence or any other

task. Instead, it is determined which words of the sentence are relevant in relation to

the currently processed word.

This information is passed along with the embedding vector to the feed-forward

layer. This then creates a new representation and passes it to the next encoding block.

In [Vaswani et al., 2017], in addition to self-attention, multi-head attention is also used.

This form of attention divides the vector space of the embedding into subspaces and

then determines self-attention in each of these subspaces. In this way, a transformer

can recognize and process structures and aspects of language, such as dependency for

which parsers are otherwise used [Goldberg, 2019]. In addition to the language model,

17

a prediction of the next segment is trained. In this case, the network receives an

additional segment, which is 50% randomly selected from the corpus. Thus, the

recognition of semantic similarity is learned over a large context. To use Bert

Embeddings as a feature, each sequence of tokens is placed in the previously trained

network. The tokens are then represented by the attention values of each transformer

and its attention heads.

18

3. INTER-LANGUAGE TECHNIQUES

3.1. Alignment

Machine translation models provide a framework for modeling the mapping

between languages at the finest level: that of words, or even sub-phrased units. Unlike

machine translation, alignment is a probably ill-defined task, which makes it more

difficult. Calculating alignments in bilingual texts has various applications: lexicon

extraction [Emmanuel and Daille, 2012], cross-language information retrieval [Nie,

2010], automatic language documentation [Anastasopoulos and Chiang, 2017], [Adda

et al., 2016], and [Godard et al., 2016], language learning, etc. Alignment applies to

collections of translated texts (i.e., aligned corpora) and seeks to match in both

languages textual units of lesser grain than the text: paragraph, sentence sequence, and

phrase sequence, without linguistic characterization [Véronis, 2013].

Alignment is the key practical issue of learning different word embeddings for

different time periods. Specifically, most cost functions for training are invariant to

rotations, the learned embeddings across time may not be placed in the same latent

space. [Hamilton et al., 2016] imposes the transformation to be orthogonal, and solves

a d-dimensional Procrustes problem between every two adjacent time slices. Since

word embedding models are non-convex, training them twice on the same data will

lead to different results. Thus, embedding vectors at successive times can only be

approximately related to each other, and only if the embedding dimension is large.

Alignment work exploits other types of corpora than aligned corpora, including

comparable corpora [Zweigenbaum and Habert, 2006] and multimodal corpora as

audio and its transcript [Robert-Ribes and Mukhtar, 1997] or a text image and its

transcription [Toselli et al., 2011]. For comparable corpora, aligned segments are most

often words, simple terms, and complex terms. Alignment from comparable corpora

was mainly focused on simple words in the general language domain [Fung, 1998],

[Gaussier et al., 2004], [Mikolov et al., 2013b], and [Rapp, 1999], and on simple terms

[Chiao and Zweigenbaum, 2002] and [Morin et al., 2007], and Complexes [Emmanuel

and Daille, 2012] in a specialty domain. The most recent work in the field is part of

the trend of neural network-based approaches [Fung, 1998], [Jakubina and Langlais,

2017], and [Hazem and Morin, 2017] for simple words and terms.

19

Bilingual lexicons extracted from comparable corpora represent valuable data

because they allow access to the original vocabulary of a specialized or technical

domain without any bias induced by a translation mechanism. In particular, these

lexicons are of interest to professional translators during the revision stage of a text to

be translated, especially when the terms are illustrated by contexts allowing them to

understand their uses [Delpech, 2014].

One of the challenges ahead is terms alignment of different lengths (for example,

the alignment of a simple term with a complex term) from comparable corpora.

Concomitantly, the abundance of available resources (corpus as lexicons) is another

challenge in selecting the most relevant data to add to existing models.

Another challenge is to align multimodal corpora (e.g., word source and text

target). Pioneering work in this area has been done and seems particularly interesting

to develop [Duong et al., 2016] and [Anastasopoulos and Chiang, 2017]. The first

attempts at the direct alignment between source and target language text are the work

of [Godard et al., 2016]. The authors of [Antonios et al., 2016] also propose to use

Dynamic Time Warping (DTW) and IBM translation models together to align source

speech and target text.

3.2. Transfer

Most of the natural language processing systems are based on models trained on

large corpus for a given target language. Recently, transfer or projection approaches

have appeared. The common goal of these approaches is to find and explore

mechanisms that are not expensive to exploit annotated linguistic resources already

available for certain languages and parallel or comparable corpora to produce new

annotated resources for other weaker languages. Therefore, the transfer consists of

identifying morpho-syntactic equivalences [Yarowsky, 2001], [Wisniewski et al.,

2014], and [Zennaki et al., 2016], syntactical [Hwa et al., 2005], [Tiedemann, 2014],

and [Aufrant et al., 2016] or semantics [Padó and Lapata, 2009] and [Jabaian et al.,

2012] from a corpus of parallel or comparable texts. Such approaches seem

particularly interesting for building efficient systems in low-resource scenarios where

the amount of training data for a given language or group of languages is limited.

20

More recently, with the ramping up of the end-to-end learning model, we have

come closer to build truly multilingual systems (one system for all languages). For

example, neural network approaches (notably encoder-decoders) make it easy to

model several languages in a single system, provided that a multilingual representation

of inputs and outputs (e.g., based on characters, or sub-lexical units [Sennrich et al.,

2015]). Different approaches are currently considered. They share the goal of pooling

parts of the neural model so that multiple languages enrich the model and make it more

robust [He et al., 2016], [Johnson et al., 2017], and [Gu et al., 2018]. Therefore, one

of the main challenges is to define a common representation space for all languages.

This space could be likened to an interlingua, making it possible to obtain abstract

representations independent of the language.

3.3. Similarities

The transfer methods mentioned previously are based on representations of

words or sentences in a multilingual space learned from parallel corpora [Mikolov et

al., 2013b] from dictionaries or without any real resource available in advance

[Conneau et al., 2017] and [Alexis and Kiela, 2018]. These methods have largely

developed in recent years, thanks in particular to the massive deployment of neuronal

models. This interest is explained in particular by the ability of these models to learn

the data representation in a completely generic way, which opens the field to the

development of different techniques of pairing at the word level or even document.

Such work also finds applications in other areas such as translingual plagiarism

detection [Ferrero et al., 2017] and multilingual information retrieval [Balikas et al.,

2018]. The transfer between languages is favored by the proximity between languages

and is simpler when it comes to languages of the same linguistic family or even

variants of the same stemming language.

21

4. LANGUAGE MODELING

In general, when we model a natural language, we try to capture, describe, and

exploit the regularities and structures intrinsic to this language. At its simplest, a

language model can consist of a list of words and sentences allowed by the language.

In the context of language modeling, the sequential aspect is present at different levels

of granularity (sequence of characters, words, etc.).

In the case of such sequential data, each event depends, in most cases, on events

that precede it. Some approaches are more appropriate than others to exploit this type

of relationship.

Models such as SVMs, KNNs, and Decision Trees have shown their

effectiveness in various automatic classification applications. Indeed, these models

(called “classical methods” in the literature) learn to assign a label to a new data by

exploiting its characteristics that are expressed as a set of values. As a result, classical

methods generally take sequential data as a feature vector and often examine each

event independently of the others.

Other architectures (such as n-gram models, HMMs and CRFs) are specialized

in this type of data thanks to their ability to model sequential dependencies.

In addition, the last few years have witnessed the particular performance of

Recurrent Neural Networks (RNNs) in sequential data processing, which have become

state-of-the-art approaches in various application fields. Long Short-Term Memory

(LSTM) architectures, in particular, based on RNNs, are even more efficient because

they minimize the loss of information in the case of long sequences [Hochreiter and

Schmidhuber, 1997].

These architectures have had a significant interest in the classification of

sequences including word sequences [Sundermeyer et al., 2012], images [Vinyals et

al., 2015], etc.

4.1. Hidden Markov Model

Like the Naïve Bayes classification algorithm, Hidden Markov Model (HMM)

[Eddy, 1996] is a generative classification algorithm; that is, which defines a

22

probability distribution, for each class, according to the input sequence. HMMs are

based on Markov models.

We begin with an introduction of these before presenting the theoretical

framework of the HMM. In a Markov model, each observation in a data sequence

depends on the previous elements. Consider a system with a set of states 𝑆 =

{1, 2, . . . , 𝑁}. At each discrete time step 𝑡, the system advances from one state to

another according to a set of probabilities of transitions 𝑃. We denote by 𝑠𝑡 the state

of the system at a time 𝑡.

In several application contexts, the prediction of the next state depends only on

the current state. This means that the transition probabilities between states do not

depend on the entire history of the process.

This framework is referred to as the first-order Markov process. For example,

assuming the information on the number of students admitted for the current year is

sufficient to predict next year's success rate, then we are not required to take into

account the rates in previous years.

According to these properties, the probability of moving to the state 𝑠𝑘 is

formulated as follows:

 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋1, … , 𝑋𝑡) ≈ 𝑃(𝑋𝑡+1 = 𝑠𝑘|𝑋𝑡) . (4.1)

The transition matrix between the states is constituted by the cells:

 𝑎𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑠𝑗|𝑋𝑡 = 𝑠𝑖) . (4.2)

We note here that the sum of the exit probabilities of a state 𝑠𝑖 is equal to 1 as

formulated by the following constraint:

 ∑ 𝑎𝑖𝑗 = 1

𝑁

𝑗=1

 . (4.3)

Hidden Markov models represent an extension of the Markov model,

distinguished by better abstraction power. Contrary to Naïve Bayes classification,

which admits the independence of events, HMM models deal well with the sequential

23

dependencies. This generative model represents the probability law 𝑃(𝑥, 𝑦) according

to which the 𝑥 and 𝑦 sequences are generated.

It is composed of two main parameters: the transition probabilities 𝑃(𝑦𝑡|𝑦𝑡−1),

which define the degree of connection between two continuous latent variables of 𝑦,

and the prediction probabilities 𝑃(𝑥|𝑦), which define how the observed variables of 𝑥

are related to those of 𝑦. HMM admit that each event 𝑥𝑖 is generated independently

conditionally at 𝑦. This means that the probability of prediction can be considered as:

 𝑃(𝑥|𝑦) = ∏ 𝑃(𝑥𝑖|𝑦)

𝑁

𝑖=1

 . (4.4)

As regards the learning of the different parameters of the model, two algorithms

are commonly used, namely, the Viterbi algorithm [Viterbi, 1967] and the Baum-

Welch algorithm [Baum et al., 1970].

4.2. Conditional Random Fields

Conditional Random Fields (CRF) is the most commonly used variant in the

processing of sequential data. The CRFs are discriminative models that represent the

conditional probability law of a sequence 𝑦 of 𝑇 variables to estimate knowing a

sequence 𝑥 of 𝑇 observations. This law is defined as follows:

 𝑃(𝑦|𝑥) =
1

𝑍(𝑥)
∏ exp (∑ 𝜆𝑘𝑓𝑘(𝑦𝑡, 𝑦𝑡−1, 𝑥, 𝑡)

𝐾

𝑘=1

)

𝑇

𝑡=1

 , (4.5)

where 𝑍(𝑥) is a normalization function of the form:

 𝑍(𝑥) = ∑ ∏ exp (∑ 𝜆𝑘𝑓𝑘(𝑦𝑡
′, 𝑦𝑡−1

′ , 𝑥, 𝑡)

𝐾

𝑘=1

)

𝑇

𝑡=1𝑦′𝜖𝑌

 . (4.6)

In the two previous equations, {𝑓𝑘}𝑘=1
𝐾 is a set of characteristic functions

explicitly defined. These are usually boolean functions indicating the presence or

24

absence of a certain characteristic. Each 𝑓𝑘 is associated with a coefficient 𝜆𝑘,

estimated during the learning phase, which determines the weight of the function, if

activated, in the calculation of the probability of a sequence 𝑦. Finally, 𝑌 corresponds

to the set of possible sequences of variables to estimate. In order to learn these

coefficients, the most used approaches are the gradient and Quasi-Newton methods

[Dennis and Moré, 1977].

CRFs have been used in various tasks handling sequential data and, in particular,

for sequence tagging. In the field of natural language processing, this approach has

been applied, for example, in the context of morpho-syntactic tagging and named

entity recognition [Sha and Pereira, 2003], [McCallum and Li, 2003] and [Kudo et al.,

2004]. Due to its good performance, this approach is still used in sequential data

processing [Wang et al., 2016], [Tran et al., 2017] and [Goldman and Goldberger,

2017].

4.3. N-gram Model

Since its appearance in the 1970s [Jelinek F. , 1971], the n-gram model has been

considered for decades as one of the state-of-the-art language modeling approaches.

We will thus introduce, in what follows, the concept of n-grams through the statistical

language modeling.

N-gram is a subsequence of n elements of a sequence that, in our case, will be a

word sequence. The most common n-grams are those of size 1 (unigrams), those of

size 2 (bigrams), and those of size 3 (trigrams). In the literature, we can find systems

that successfully train models higher than trigrams. For example, Google has a large

corpus in German, Chinese, Spanish, French, Hebrew, English, and Russian of up to

5 grams, created from 8,116,746 books [Lin et al., 2012]. The Google n-gram corpus

is available online and has been widely used in various investigations [Divvala et al.,

2014].

However, we can go one step further, and instead of using words as a basic

element, we can use characters. It is a very common approach in the literature for some

problems. If we select the characters within the limits of the words, we are talking

about intra-word n-grams. On the other hand, if we use a sliding window, we will

25

obtain inter-word n-grams; the characters that form the n-grams can belong to more

than one word.

Despite the large size of the corpora usually used to learn n-gram models (as in

the case of textual data in language modeling), a significant number of n-grams may

not appear there. In this case, the model ends up attributing a zero probability to such

events.

Smoothing techniques provide a solution to this problem by ensuring non-zero

probabilities to absent events. The basic approach of smoothing consists of subtracting

a mass of probability from the relatively frequent observed events and then distributing

it to unknown or very infrequent events. Several smoothing methods have emerged

such as the Laplace methods [Lidstone, 1920], Good-Turing [Good, 1953] and Kneser-

Ney [Kneser and Ney, 1995]. These methods differ in the technique according to

which the probability masses are subtracted (discounting) and distributed (back-off).

The Kneser-Ney method is considered the state-of-the-art method and is,

therefore, the most widely used method. This method carries out the sampling and

distribution of the probability masses, taking into account the lower order distributions

(the (n-1)-gram model). The combination of the models of different orders is ensured

by an original approach, which consists of the use of the marginal distribution.

Natural Language Processing (NLP) is the main area in which the n-gram models

have excelled, particularly in the construction of language models. These models

served as bases of linguistic knowledge, learned on sequences of words, for systems

of automatic speech recognition [Bahl et al., 1983], automatic translation [Brown et

al., 1990], information retrieval [Cavnar and Trenkle, 1994], etc. N-gram models were

also used to model sequences of characters or graphemes in spelling tasks [Mays et

al., 1991], handwriting recognition [Hull and Srihari, 1982], or language identification

[Zissman, 1996].

26

5. DATASETS

5.1. Turkish Grand National Assembly Dataset

The first dataset we use in this work contains the minutes of the Turkish Grand

National Assembly (Türkiye Büyük Millet Meclisi, TBMM) sessions. In parliaments

around the world, parliamentary sessions reflect events in society.

In Turkey, the Parliamentary Council was elected every five years from 1920 to

2007, and elections were held every four years after 2007 [Onur Gungor and Sönmez,

2018].

Figure 5.1: Figures that summarize several statistics about TBMM

corpus. [Onur Gungor and Sönmez, 2018].

27

Table 5.1: TBMM corpus statistics. Statistics about periods with a 5-year

window split in TBMM corpus from 1920 to 1959 and from 1985 to

2014.

Period Range No. of Words Average Words Length

1920_1921_1922_1923_1924 7,870,694 6.37

1925_1926_1927_1928_1929 6,256,799 6.39

1930_1931_1932_1933_1934 5,731,165 6.45

1935_1936_1937_1938_1939 6,462,331 6.37

1940_1941_1942_1943_1944 6,219,993 6.44

1945_1946_1947_1948_1949 9,534,990 6.48

1950_1951_1952_1953_1954 13,749,346 6.5

1955_1956_1957_1958_1959 11,388,441 6.52

1985_1986_1987_1988_1989 19,964,619 6.71

1990_1991_1992_1993_1994 28,569,539 6.79

1995_1996_1997_1998_1999 34,109,740 6.78

2000_2001_2002_2003_2004 45,327,640 6.71

2005_2006_2007_2008_2009 53,371,126 6.86

2010_2011_2012_2013_2014 43,980,244 6.97

The dataset we have collected contains the minutes from 1920 to 2014. During

the election period, many sessions are held. Fortunately, minutes of these sessions are

publicly available in PDF format [Web 3, 2019]. We scrapped them and converted

them to text, and then we sorted them according to the chronology of the sessions.

While preparing this work, [Onur Gungor and Sönmez, 2018] crawled and processed

these documents and provided some statistics about them.

This dataset is valuable because the language spoken during the sessions reflects

the spoken language in that time, and thus represents an essential resource for studying

Turkish language change during these 95 years. Figure 5.1 (above) shows statistics

about the corpus. Note that the number of words increases as we progress in years.

To facilitate the work on the dataset, we have divided it into periods by a non-

overlapping 5-year window, starting from 1920. Due to the unbalanced word count

between years, we limited the number of words per session to a maximum of 10,000

words, in order to avoid the domination of one period over another. After applying the

limit, the dataset contains about 300 million words, distributed over 13,358 sessions.

28

Table 5.1 shows the start and end year for each period, as well as the words count and

the average number of word characters. We exclude the data of years from 1960 to

1984 from our study, due to the lack of data and the changing nature of the data

depending on the events occurring at that time. It is also noticeable that the length of

words increased as the years progressed, probably due to the nature of the new inserted

and removed words in the language.

5.2. Wikipedia Dumps Dataset

Wikipedia is an open-source, multilingual, and online encyclopedia. The content

was created through the voluntary collaboration of an editors’ community.

Fortunately, Wikipedia contains articles in most of the Turkic languages. Wikipedia

dump [Web 5, 2019] is a complete copy of Wikipedia content in the XML format. We

extracted the articles by the WikiExtractor tool [Web 4, 2019]. Figure 5.2 (below)

shows Wikipedia dumps we used and the number of articles extracted from each one.

We can see the imbalance between the number of articles in different dumps, so we

randomly selected 1000 articles from each of them.

Figure 5.2: No. of articles for each language in the Wikipedia dumps

corpus.

29

Table 5.2: Statistics about the Wikipedia dumps dataset.

Language

(with local name)
Code - Script No. of words

Avg. words

length

Azerbaijani

(Azərbaycanca)
az - Latin 49192 6.46

Bashkir

(башҡортса)
ba - Cyrillic 36147 6.33

Chuvash

(Чӑвашла)
cv - Latin 26233 6.12

Crimean Tatar

(Qırımtatarca)
crh - Latin 26070 6.51

Gagauz

(Gagauz)
gag - Latin 37912 6.23

Karachay-Balkar

(Къарачай-

малкъар)

krc - Cyrillic 47656 5.46

Karakalpak

(Qaraqalpaqsha)
kaa - Latin 53813 5.31

Kazakh

(Qazaq/Қазақша)
kk – Latin/Cyrillic 38400 6.56

Kyrgyz

(Кыргызча)
ky - Cyrillic 46973 6.53

Sakha

(Саха тыла)
sah - Cyrillic 39123 6.45

Tatar

(Татарча)
tt - Cyrillic 31108 6.05

Turkish

(Türkçe)
tr - Latin 50417 6.33

Turkmen

(Türkmençe)
tk - Latin 58076 6.51

Tuvan

(Тыва дыл)
tyv - Cyrillic 41894 5.98

Uzbek

(Oʻzbekcha/ўзбек

ча)

uz -Latin/Cyrillic 51592 5.93

30

The table shows statistics on the data selected from the dumps, the local names

of the selected languages, language codes used in Wikipedia sites, and the script in

which this language was written.

5.3. MADAR Dataset

In the Arab world, there are many spoken dialects. These dialects are mainly

used in social media. In [Bouamor et al., 2019], a dataset of 5 Arabic dialects and

Modern Standard Arabic (MSA) was created. These dialects belong to diverse cities

in the Arab world. Table 5.3 shows statistics about these dialects, cities to which they

belong, as well as the used dialect code.

Table 5.3: Statistics about the MADAR dataset.

City Country Dialect Code No. of words Avg. words length

- - msa 65590 4.15

Beirut Lebanon bei 52890 4.25

Cairo Egypt cai 58019 4.21

Doha Qatar doh 53168 4.15

Rabat Morocco rab 60040 4.41

Tunis Tunisia tun 54849 4.26

31

6. METHODOLOGY

To study language change, we should use quantitative methods to measure the

changes. In this work, we focused on studying language development in time as well

as geographic terms, and we proposed models for studying these changes

quantitatively.

We used the TBMM dataset in our proposed model to study the change of the

Turkish language during its last development stage. i.e., the last 100 years.

On the other hand, we used the Wikipedia Dump dataset and MADAR dataset

in our proposed models to study the change of Turkic languages and Arabic dialects

geographically.

In our proposed model, we try to find words that have been replaced during

successive time periods during the stage of language development, while we try to find

the distance between languages in the case of study changing languages

geographically.

Unlike other methods of finding the distance between languages or searching for

word substitution over time, our proposed methods do not depend on any parallel data.

All we need is monolingual data in the case of searching for the distance between

languages or data, which is not necessarily parallel, from every period of time in the

case of searching for word substitution.

In the rest of this section, we show the details of the proposed models for the

study of language change in quantitative terms.

32

6.1. Time-based Model

In this section, we describe the first proposed model’s steps. After splitting the

dataset into periods, we train local time-dependent (i.e., for each period data) and

global time-independent (i.e., all periods data together) word embeddings. After that,

we align each period embeddings space to global space. Then, for an input word, we

calculate the energy function, which is an overtime-similarity score for candidate

words. Finally, and as a validation metric, we use a simple dictionary-based procedure.

We detail the process in the following subsections.

6.1.1. Periods' and Global Embeddings

For each period, i.e., time-dependent spaces, we use fastText to train word

embeddings. Also, we train a global time-independent word embeddings on all

periods’ texts together.

In this section, we talk about fastText embeddings. As we deal with

morphologically-rich languages like Turkic and Arabic languages, we choose fastText

because it takes morphology information into account. This is done by representing

the word by the sum of its n-grams.

FastText is derived from the Skip-Gram model. In Skip-Gram, we train word

representation to be able to predict the appropriate context word based on its

surrounding words. For a given vocabulary of size 𝑀 and sequence of words

𝑤1, … , 𝑤𝑁, the objective function is to maximize the following log-likelihood:

 ∑ ∑ log (𝑃(𝑤𝑐, 𝑤𝑛))

𝑐∈𝐶𝑛

𝑁

𝑛=1

 , (6.1)

where 𝐶𝑛 is the indices list of context words surrounding the word 𝑤𝑛. 𝑃(𝑤𝑐, 𝑤𝑛) is

the probability of a context word occurrence 𝑤𝑐 given a word 𝑤𝑛 calculated as a

softmax function:

 𝑃(𝑤𝑐, 𝑤𝑛) =
𝑒𝑠(𝑤𝑛,𝑤𝑐)

∑ 𝑒𝑠(𝑤𝑛,𝑖)𝑀
𝑖=1

 , (6.2)

33

where 𝑠(𝑤𝑛, 𝑤𝑐) is the scalar product between context and word vectors.

 𝑠(𝑤𝑛, 𝑤𝑐) = 𝑥𝑤𝑛
⊤ . 𝑦𝑤𝑐

 . (6.3)

6.1.1.1. Subword Information

In the Skip-Gram model, we notice that we use one vector per word. Thus we

ignore the internal structure of the word. In fastText, we use a different scoring

function, so that we take into account the internal structure of the word.

In order to learn word representation, we create a set of character n-grams, in

addition to adding the word itself to the set.

For example, for 𝑛 = 3, the vector for the word “green” is composed of the sum

of the n-grams vectors “<gr, gre, ree, een, en>, <green>”. The characters “<” and “>”

are introduced to mark the beginning and the end of a word and thus to better recognize

prefixes and suffixes. In practice, we use 𝑛 greater or equal to 3 and smaller or equal

to 6. We can form various groups by choosing different values for 𝑛, e.g., taking all

prefixed and suffixes.

Given a word 𝑤, let 𝐺 is the set of n-grams, the new scoring function is:

 𝑠(𝑤, 𝑐) = ∑ 𝑧𝑔
⊤. 𝑦𝑐

𝑔∈𝐺

 , (6.4)

where 𝑧𝑔 is the vector representation for the n-gram 𝑔.

Using this scoring function, n-grams vectors are shared between words. Thus we

got a more realistic representation of rare words.

6.1.2. Period-Global Alignments

We need to align global and period spaces to ensure that the positions of common

words between each of the period spaces and global space as close as possible in order

to calculate the similarities over global and period spaces.

34

In this section, we focus on learning a mapping between global space 𝐺 and a

𝑖𝑡ℎ period space 𝑃𝑖. We adapt the method described in [Conneau et al., 2017], which

uses a domain-adversarial approach for learning a mapping 𝑊.

Let 𝑃𝑖 = {𝑝1
𝑖 , … , 𝑝𝑛

𝑖 } be the set of 𝑛 word embeddings of period space 𝑖 and 𝐺 =

{𝑔1, . . , 𝑔𝑚} be the set of 𝑚 word embeddings of global space. The discriminator model

has to discriminate between words sampled from 𝑊𝑖𝑃𝑖 = {𝑊𝑖𝑝1
𝑖 , . . . , 𝑊𝑖𝑝𝑛

𝑖 } and 𝐺.

𝑊𝑖 is trained to deceive the discriminator from making the correct decision. The

discriminator tries to maximize its capability to recognize the origin of an embedding,

and 𝑊𝑖 tries to prevent the discriminator from doing its job by making 𝑊𝑖𝑃𝑖 and 𝐺 as

similar as possible. Figure 6.1 shows the network architecture where the source is a

period space and the target is the global space.

Figure 6.1: Generative adversarial network architecture and training.

6.1.2.1. Discriminator Objective

Let 𝜃𝐷 refers to the discriminator parameters, and according to the discriminator,

we consider the probability 𝑃𝑟𝑜𝑏𝜃𝐷
 (𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝑧) where 𝑧 is the mapping vector of

the global space (as opposed to period 𝑖 space). We can write the discriminator loss

as:

35

ℒ(𝜃𝐷|𝑊𝑖) = −
1

𝑛
∑ log 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝐺𝑗)

𝑛

𝑗=1

−
1

𝑚
∑ log 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 0|𝑊𝑖𝑝𝑗
𝑖)

𝑚

𝑗=1

 .

(6.5)

6.1.2.2. Mapping objective

We train the discriminator and the mapping matrix 𝑊𝑖 using the deep adversarial

network procedure detailed in [Goodfellow et al., 2014]; by applying stochastic

gradient updates to minimize losses, respectively:

ℒ(𝑊𝑖|𝜃𝐷) = −
1

𝑛
∑ 𝑙𝑜𝑔 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 0|𝐺𝑗)

𝑛

𝑗=1

−
1

𝑚
∑ 𝑙𝑜𝑔 𝑃𝑟𝑜𝑏𝜃𝐷

(𝑔𝑙𝑜𝑏𝑎𝑙 = 1|𝑊𝑖𝑝𝑗
𝑖)

𝑚

𝑗=1

 .

(6.6)

6.1.2.3. Learning algorithm

We use the training procedure of deep adversarial networks described in

[Goodfellow et al., 2014]; the discriminator and the mapping matrix 𝑊𝑖 trained

successively with stochastic gradient updates to respectively minimize losses.

6.1.3. Energy Function

For an input word 𝑤, we apply an energy function to get the similarity score for

the candidate similar words for each period 𝑖 since the high value means a high

probability that the candidate word has replaced this word.

Let 𝑤𝑖 be the word vector in period space 𝑃𝑖, we obtain 𝐶 = {𝑐1, . . . , 𝑐𝑘} as the

most 𝑘 similar words of 𝑤𝑖 in 𝑃𝑖.

The energy function for the given word 𝑤 and a candidate similar word 𝑐𝑗 in

period 𝑖 is given as:

36

𝐸(𝑤, 𝑐𝑗 , 𝑖) = 𝛼. 𝑆𝑝(𝑤, 𝑐𝑗, 𝑖) + (1 − 𝛼). 𝑆𝑔(𝑤, 𝑐𝑗)

; 0 < 𝛼 < 1 ,
(6.7)

where 𝑆𝑝 is a time-dependent similarity function between given two words in a

specific period given as:

 𝑆𝑝(𝑤, 𝑐𝑗, 𝑖) = 𝐶𝑜𝑠(𝑒𝑖(𝑤), 𝑒𝑖(𝑐𝑗)) , (6.8)

where 𝑒𝑖(𝑤) is the lookup table of word embedding in period 𝑖, and Sg is a time-

independent similarity function between given two words given as:

 𝑆𝑔(𝑤, 𝑐𝑗) = 𝐶𝑜𝑠(𝑒𝑔(𝑤), 𝑒𝑔(𝑐𝑗)) , (6.9)

where 𝑒𝑔(𝑤) is the lookup table of word embedding in global space.

Figure 6.2: Similar words across periods detection algorithm.

Figure 6.2 shows the algorithm of detecting similar words across periods. We

loop over period spaces and find similar local words for a given word. After that, we

calculate the energy score for them and keep the words that are above a threshold. We

37

say about two words that they replace each other if there is only one similar word with

an acceptable energy score during the periods.

6.1.4. Dictionary-based Validation Metric

To make the validation process easy and automatically done, we propose a

simple but effective technique to validate the results. We use Turkish Dictionary of

Turkish Language Society (Türk Dil Kurumu) [Web 2, 2019] as a validation

dictionary. For an input word 𝑤𝑖, the system output a candidate word 𝑤𝑜 that replaced

the input word. We search for 𝑤𝑜 in the description of 𝑤𝑖 provided by the dictionary.

Using this technique helps in tuning the hyper-parameters while manual verification is

time-costly and needs experts in historical terminology.

38

6.2. Location-based Model

In this section, we describe the steps of the second proposed model, which means

studying the change of languages geographically. First, we train a language model for

each of the languages we have in the dataset. Then, we test the trained language models

on the texts of all languages one by one. We measure the distance between two

languages by calculating the perplexity when testing language models. Then we create

the distance matrix between each pair of languages. We describe the algorithm in

Figure 6.3. It takes the languages, the monolingual corpora, and the language model

parameter as inputs, and returns a language-pair distance matrix as an output. We use

the n-gram models as language models and perplexity value as a distance score

between two languages. We detail the process in the following subsections.

Figure 6.3: The distance matrix creation algorithm.

6.2.1. N-gram Model

In a language model, the probability of an event (or word) 𝑤𝑖 is determined from

the sequence ℎ𝑖 containing the history of all previous events. This probability is

expressed by:

 𝑃(𝑤𝑖, ℎ𝑖) = 𝑃(𝑤𝑖| 𝑤1
𝑖−1) = 𝑃(𝑤𝑖|𝑤1𝑤2 … 𝑤𝑖−1) . (6.10)

39

For example, taking ℎ as a sequence of history, the sequence of words “This

morning , he took his”. We then want to predict the word following this sequence.

Therefore, we must compare the probabilities of occurrence of each category of events

(i.e. each word of the lexicon) as in the examples:

𝑃(𝑐𝑎𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) ,

𝑃(𝑗𝑎𝑐𝑘𝑒𝑡|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) ,

𝑃(𝑠ℎ𝑜𝑤𝑒𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) .

(6.11)

and choose the one with the highest probability.

The intuition behind the n-gram models is that, instead of calculating the

probability of an event knowing its entire history, we can make an approximation that

consists in considering only the last few events. The tri-gram model, for example,

considers that the probability 𝑃(𝑤𝑖|𝑤1
𝑖−1) is equivalent to the probability conditioned

on the last 2 events of the sequence.

 𝑃(𝑤𝑖|𝑤1
𝑖−1) ≈ 𝑃(𝑤𝑖|𝑤𝑖−2

𝑖−1) = 𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1) . (6.12)

In the example of formula (6.11), we get the following approximation:

 𝑃(𝑐𝑎𝑟|𝑇ℎ𝑖𝑠 𝑚𝑜𝑟𝑛𝑖𝑛𝑔 , ℎ𝑒 𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) ≈ 𝑃(𝑐𝑎𝑟|𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) . (6.13)

This approximation according to which we consider that the probability of an

event depends only on the last 2 events is called the Markov hypothesis. By

generalizing the tri-grams, we get the concept of n-grams that look at 𝑛 − 1 events in

the past. The probability of a new event based on this assumption is therefore estimated

as follows:

 𝑃(𝑤𝑖|𝑤1
𝑖−1) ≈ 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1

𝑖−1) . (6.14)

The most commonly used method for estimating these n-grams probabilities is

the Maximum Likelihood Estimation (MLE). This estimate is obtained by counting

the number of occurrences, in a learning corpus, of the entire sequence 𝑤𝑖−𝑛+1
𝑖−1 𝑤𝑖 (i.e.,

40

𝑤𝑖−2𝑤𝑖−1𝑤𝑖 in the case of tri-grams) by normalizing it by the number of occurrences

of the history 𝑤𝑖−𝑛+1
𝑖−1 (i.e., 𝑤𝑖−2𝑤𝑖−1 in the case of tri-grams) in order to obtain a result

between 0 and 1. For example, to obtain the tri-gram probability of our example, we

are interested in the formula:

 𝑃(𝑐𝑎𝑟|𝑡𝑜𝑜𝑘 ℎ𝑖𝑠) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑜𝑜𝑘 ℎ𝑖𝑠 𝑐𝑎𝑟)

𝑐𝑜𝑢𝑛𝑡(𝑡𝑜𝑜𝑘 ℎ𝑖𝑠)
 . (6.15)

In the general case of n-grams, the estimation of the probability of an event by

MLE is formulated as follows:

 𝑃(𝑤𝑖|𝑤𝑖−𝑛+1
𝑖−1) =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−𝑛+1
𝑖−1 𝑤𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−𝑛+1
𝑖−1)

 . (6.16)

6.2.2. Language Models Evaluation

The evaluation of the language models is usually done using two main measures;

the perplexity and the error rate of the words. Perplexity, closely related to entropy,

gives us a clue to the ability of an LM to predict a (or a set of) corpora. The subsections

below introduce these essential concepts in a little more detail.

6.2.2.1. Perplexity

Perplexity is the most commonly used means for rapid assessment of language

models [Jelinek et al., 1977]. Perplexity, a measure based on cross-entropy, allows us

to measure the ability of the language model to predict a given test corpus. On the

other hand, the better its prediction ability (a high probability will be attributed), the

more the language model is considered good. Moreover, perplexity is often used as an

objective function when optimizing language models.

Formally, the perplexity, 𝑃𝑃(𝑇), of a language model on a test set is a function

of the probability that the language model will assign to the test set. For a test set 𝑇 =

𝑤1, … , 𝑤𝑁 of a length 𝑁:

41

 𝑃𝑃(𝑇) = 𝑃(𝑤1𝑤2 … 𝑤𝑁)−
1
𝑁 = √

1

𝑃(𝑤1𝑤2 … 𝑤𝑁)

𝑁

 . (6.17)

We can use the chain rule to expand the probability of 𝑇:

 𝑃𝑃(𝑇) = √∏
1

𝑃(𝑤𝑖|𝑤1 … 𝑤𝑖−1)

𝑁

𝑖=1

𝑁

 . (6.18)

Thus, if we are computing the perplexity of 𝑇 with a trigram language model,

we get:

 𝑃𝑃(𝑇) = √∏
1

𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1)

𝑁

𝑖=1

𝑁

 . (6.19)

An exciting property of perplexity is that by taking its logarithm, we obtain the

entropy of the language model, a property familiar to any practitioner of information

theory. Moreover, the reduction of entropy was the original goal of the Witten-Bell

smoothing, which was intended for text compression.

6.2.2.2. Word Error Rate

Word Error Rate (WER) is the application of Levenshtein distance to words: a

tool that allows us to measure the similarity between two strings [Klakow and Peters,

2002]. To do this, we try to align the two strings, and we calculate the minimum

number of characters (or words in other cases) that must be removed, inserted, or

replaced to move from a string to the other. On the other hand, unlike the Levenshtein

distance where we summon the errors, WER will count the number of deletions,

substitutions, and insertions such as:

 𝑊𝐸𝑅 =
𝑆 + 𝐼 + 𝐷

𝑁
 . (6.20)

42

where 𝑁 is the number of words in the reference sentence, 𝑆 is the number of

substitutions in relation to the sentence of reference, 𝐷 is the number of deletions

(omitted words) with respect to the reference sentence, and 𝐼 is the number of

insertions (words added) to the reference sentence.

43

7. EXPERIMENTS

In this section, we review the results that we obtained by applying the proposed

models in measuring language change in time and geography. We divided the

experiments into two parts; time-based and location-based experiments. We detail

them in the rest of this section.

7.1. Time-based Experiments

We use the TBMM dataset detailed in Section 5.1. We divided the data set into

5-year non-overlapping time periods starting from 1920 until 2015; each time period

contains texts belonging to five years. We use 200-dimensional fastText vectors as

global word embedding and for each period word embedding.

Figure 7.1: Word embedding visualization. Two-dimensional PCA

projection of the 200-dimensional fastText vectors that belong to two

different periods. Points that appear in blue belong to word vectors from

the first period (1920-1924), while red points represent word vectors

from the last period (2010-2014). Before we apply PCA to them, we

align both word vectors spaces with the global word vectors space.

“okul” and “medrese” mean “school”, “başbakanlık” and “başvekalet”

mean “premiership”, “devamlı” and “mütemadiyen” mean “continuous”.

44

During the alignment process, we did not provide any supervised information

about word meanings. The mapping 𝑊 has size 200x200. For the discriminator, we

use a multilayer perceptron with two hidden layers of size 2048, and Leaky-ReLU

activation functions. The input to the discriminator is corrupted with dropout noise

with a rate of 0.1. We use the energy score threshold 𝜃𝐸 = 0.4 and 𝛼 = 0.75 in the

energy function shown in formula (6.7) since high 𝛼 value means giving more

importance to the time-dependent similarity.

Figure 7.2, Figure 7.3, and Figure 7.4 provide examples of true predicted words

by our system, the usage probabilities of these Turkish words and how they change

across periods. Moreover, figures show the relatively high energy scores for these

substituted words. The words vary in the period in which they were replaced, and some

words were replaced more than once. Interestingly, some words were replaced by

another word, and then the original word reused again, then the replacement happened

again, as shown in Figure 7.3 and Figure 7.4.

Figure 7.2: “ekonomik” and “iktisadi” probability and energy score chart.

The figure shows an example of two substituted Turkish words. It shows

their usage probabilities and energy score across periods. Both words

mean “economic”.

45

Figure 7.3: “oy” and “rey” probability and energy score chart. The figure

shows an example of two substituted Turkish words. It shows their usage

probabilities and energy score across periods. Both words mean “vote”.

Figure 7.4: “ecnebi” and “yabancı” probability and energy score chart.

The figure shows an example of two substituted Turkish words. It shows

their usage probabilities and energy score across periods. Both words

mean “foreigner”.

Figure 7.5, Figure 7.6, and Figure 7.7 show the usage probabilities and energy

scores for non-substituted Turkish words. Although their usage probabilities switch

across periods, the energy scores keep at relatively low values.

46

Figure 7.5: “ecnebi” and “rey” probability and energy score chart. The

figure shows an example of two non-substituted Turkish words. It shows

their usage probabilities and energy score across periods. “ecnebi” means

“foreigner” and “rey” means “vote”.

Figure 7.6: “hakikaten” and “komisyon” probability and energy score

chart. The figure shows an example of two non-substituted Turkish

words. It shows their usage probabilities and energy score across periods.

“hakikaten” means “really” and “komisyon” means “committee”.

47

Figure 7.7: “hüküm” and “dönem” probability and energy score chart.

The figure shows an example of two non-substituted Turkish words. It

shows their usage probabilities and energy score across periods.

“hüküm” means “decision” and “dönem” means “period”.

Table 7.1: Examples of randomly selected words with their substitutes.

Examples of randomly selected words used in the last period with their

meaning from a Turkish dictionary, the best candidate word output from

our system, and its maximum energy value across periods.

Word
Meaning from the

dictionary

Replaced

word

Meaning in

English

Max.

Energy

Score

adına

. . . , bir şeyin veya bir

kimsenin namına, hesabına,

yerine, . . .

namına
in the name

of
47

başbakanlık

. . . , başbakanın yaptığı iş,

başvekâlet, başbakan ve

görevlilerinin çalıştığı daire.

başvekalet premiership 41

süre
. . . , zaman aralığı, zaman

bölümü, müddet.
müddet duration 55

özel
. . . , kişiye ait olan, hususi,

resmı̂ karşıtı.
hususi special 45

ödenek

. . . , bir iş için ayrılan belli

para, tahsisat, parlamento

üyelerine, . . .

tahsisat allowance 58

ekonomik

. . . , ekonomi ile ilgili olan,

iktisadi, az masraflı, hesaplı,

. . .

iktisadi economic 43

48

We achieve 54.76% accuracy on words with at least 0.01% probability using our

dictionary-based validation method.

Table 7.1 (above) shows examples of randomly selected words used in the last

period given to our system and the best candidate word to be the most similar word in

previous periods. It shows the similarity values based on the energy function and

illustrates the interest in using the dictionary-based validation metric. Although we

were able to capture many correct word substitutions, there are still some cases that

the system was unable to predict correctly. Table 7.2 shows some of these examples.

We can classify the wrong predictions into three groups. The first group contains

multi-word names of famous characters or events that appeared in a certain period,

such as “kemal=halim” and “cemil-koçak”. The second group includes different

meaning words used in the same context, such as “kısmen-tamamen” and “cenaze-

tedavi”. We can explain this because we generate word vectors based on their context.

The third group has misspelled words, especially during the first five periods, perhaps

because of the optical character recognition errors, such as the word “kati-katı” and

“köy-koy”.

Table 7.2: Examples of false detected word substitutions.

Word
Word Meaning in

English
Replaced word

Replaced Word

Meaning in English

kemal person name halim person last name

cemil person name koçak person last name

kısmen partially tamamen completely

cenaze funeral tedavi treatment

kati absolute katı solid

köy village koy bay

If we go toward more generalization, it leads to the ability to discover the

essential changing dates in the vocabulary within the language. Figure 7.8 shows the

number of words switches happened in each period for a random set of words

substitutions. “namına=adına (in the name of)”, “vazife=görev (job)”, and

“tahsisat=ödenek (grant)” are examples of switches in the fifth period.

49

“iktisadi=ekonomik (economic)”, “başvekâlet=başbakanlık (premiership)”, and

“vekalet=bakanlık (ministry)” are examples of switches in the eighth period.

50

F
ig

u
re

 7
.8

:
W

o
rd

s
sw

it
ch

es
 h

is
to

g
ra

m
.

T
h
e

h
is

to
g
ra

m
 s

h
o

w
s

th
e

co
u
n
t

o
f

w
o
rd

s
sw

it
ch

es
 t

h
at

 h
ap

p
en

ed
 i

n
 e

ac
h
 p

er
io

d

fo
r

a
ra

n
d
o
m

 s
et

 o
f

w
o
rd

s
su

b
st

it
u
ti

o
n
s.

51

7.2. Location-based Experiments

In this section, we show the results of the proposed model for measuring the

distance between languages and dialects geographically. We have made several

illustrations to enable us to analyze, compare, and evaluate results. In the rest of this

section, we present details of the experiments for both Turkish languages and Arabic

dialects.

7.2.1. Turkic Languages

We use Wikipedia dumps dataset to measure distances between Turkic

languages. As shown in Table 5.2, Turkic languages are written using various script

systems, so we first converted Cyrillic characters into Latin using ISO 9:1995

transliteration system, see Error! Reference source not found. for details. Then we t

rain the n-gram model where 𝑛 = 7. Table7.3 shows the perplexity-based rounded

distance values each pair of Turkic languages. Figure 7.11 shows the distances

heatmap of these distances.

Figure 7.9: Turkic and English languages’ distance graph. Edge length

represents the distance value between two languages on both sides.

52

In order to clarify the outputs of the work, we have created a fully connected

graph that expresses the distances between languages, where the length of the edge

represents the distance between the two languages associated with it on both sides, as

shown in Figure 7.9. To draw the graphs, we use NEATO utility following the

approach proposed by [Kamada and Kawai, 1989]. NEATO draws a graph by

constructing a virtual physical model and running an iterative solver to find a low-

energy configuration. An ideal spring is placed between every pair of nodes such that

its length is set to the shortest path distance between the endpoints. The springs push

the nodes so their geometric distance in the layout approximates their path distance in

the graph. This often yields reasonable layouts [Eades, 1984]. The error in drawing the

graph increases when it is fully-connected because of the high number of constraints,

while the error keeps low when there are few edges only such as the case of the graph

in Figure 7.10. We use NetworkX python library as an interface for NEATO tool.

Figure 7.10: Turkic languages’ MST distance graph. Edge length

represents the distance value between two languages on both sides. We

use Kruskal’s algorithm [Kruskal, 1956] to generate the minimum

spanning tree.

We added English language as a baseline. It is notable that the English, despite

its distance from many Turkic languages, is closer to some Turkic languages than

53

others. We can explain this with the widespread of English, in addition to the closeness

of cities where some Turkic languages are spoken to the European continent.

We notice from the graph that Turkish and Tatar languages are almost in the

middle of the graph, and therefore it is interesting to conclude that these two languages

are the center of the Turkic languages. To further clarify the previous point, we apply

the Minimum Spanning Tree (MST) algorithm on this graph and concluded the graph

shown in Figure 7.10.

To evaluate our results, we drew a map showing the location of the cities in

which Turkic languages are spoken, and thus easy to estimate the geographical

distance between these cities, as well as we created links showing the similarity value

between languages according to color and thickness. These maps are shown in Figure

7.12, Figure 7.13, Figure 7.14, and Figure 7.15. The distance in kilometers between

cities is shown in Table 7.4.

54

T
ab

le
7

.3
:

D
is

ta
n
ce

s
b

et
w

ee
n
 T

u
rk

ic
 a

n
d
 E

n
g
li

sh
 l

an
g
u
ag

es
.

u
z

3
2

6
2

3
1

4
8

9
5

3
7

7
2

6
2

6
0

6
6

8
0

5
3

3
4

5
2

8
1

1
7

ty
v

1
0
2

4
7

7
8

5
3

1
0
5

6
5

1
0
7

4
2

4
7

3
8

5
4

9
7

7
6

3
9

1
5

8
5

tt

5
3

2
8

3
6

3
5

8
4

3
6

5
7

3
1

3
5

3
2

5
8

5
9

3
9

1
4

3
8

4
8

tr

4
0

6
2

2
8

5
8

7
0

2
7

5
3

6
1

7
4

6
5

7
8

3
5

1
6

5
4

6
2

4
7

tk

4
9

6
4

5
1

8
1

7
6

5
5

4
2

6
0

7
7

8
6

1
1
5

1
5

4
2

5
9

9
4

5
9

sa
h

1
4
1

6
4

1
0
9

6
3

1
0
2

8
7

1
9
0

5
7

5
8

5
2

1
4

1
3
3

1
0
5

5
6

5
6

1
2
2

k
y

1
3
6

5
3

1
1
4

4
8

9
7

9
2

2
3
6

2
9

4
6

1
5

7
4

1
8
2

9
9

3
9

4
0

1
4
2

k
rc

9
0

4
7

6
8

5
1

1
1
7

6
6

1
0
1

4
0

1
4

3
8

5
7

9
6

7
0

3
8

5
5

8
0

k
k

1
1
8

4
0

9
8

7
6

1
0
3

8
7

1
6
8

1
6

5
0

3
6

5
1

1
4
6

9
7

3
8

5
6

1
2
0

k
a
a

5
1

8
1

4
4

7
6

8
8

4
7

1
5

9
4

8
4

6
3

1
0
7

4
6

5
1

7
4

1
1
7

5
0

g
a
g

4
8

8
5

2
9

6
3

7
2

1
5

1
0
2

8
2

7
4

7
4

8
7

6
2

3
1

7
2

7
7

6
1

en

8
7

2
0
8

1
2
3

3
6
2

2
3

1
1
1

6
8

1
4
6

8
7

2
1
1

1
3
9

8
3

5
7

7
3

9
1

8
1

cv

1
2
6

4
7

1
0
7

1
4

8
4

9
4

3
1
1

5
8

6
0

6
0

7
3

3
0
8

1
0
3

5
0

5
8

1
0
8

cr
h

4
1

6
9

1
4

5
8

6
9

2
7

8
5

7
1

6
7

6
6

7
5

6
4

3
0

5
4

6
7

4
5

b
a

6
9

1
5

6
6

3
9

1
0
4

5
6

1
6
0

3
1

4
0

3
6

5
6

1
6
0

7
0

2
6

4
6

7
0

a
z

1
6

7
1

2
8

6
1

8
6

2
8

6
4

6
7

6
8

6
9

7
8

5
0

2
8

6
2

7
8

3
9

a
z

b
a

cr
h

cv

en

g
a
g

k
a
a

K
k

k
rc

k
y

sa
h

tk

tr

tt

ty
v

u
z

55

F
ig

u
re

 7
.1

1
:

H
ea

tm
ap

 s
h

o
w

in
g
 s

im
il

ar
it

ie
s

b
et

w
ee

n
 T

u
rk

ic
 l

an
g
u

ag
es

.

56

F
ig

u
re

 7
.1

2
:

V
er

y
 l

o
w

 s
im

il
ar

 T
u
rk

ic
 l

an
g
u
ag

e
m

ap
.

M
ap

 s
h
o
w

in
g
 v

er
y
 l

o
w

 s
im

il
ar

 T
u
rk

ic
 l

an
g
u
ag

e
an

d

th
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
la

n
g
u
ag

es
 a

re
 s

p
o
k
en

.
Y

el
lo

w
 l

in
k
s

m
ea

n
 l

es
s

th
an

2
5
%

 s
im

il
ar

it
y
.

57

F
ig

u
re

 7
.1

3
:

L
o
w

 s
im

il
ar

 T
u
rk

ic
 l

an
g
u
ag

e
m

ap
.

M
ap

 s
h
o
w

in
g
 l

o
w

 s
im

il
ar

 T
u
rk

ic
 l

an
g
u
ag

e
an

d
 t

h
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
la

n
g
u
ag

es
 a

re
 s

p
o
k
en

.
G

re
en

 l
in

k
s

m
ea

n
 s

im
il

ar
it

y

b
et

w
ee

n
 2

5
%

 a
n
d
 5

0
%

.

58

F
ig

u
re

 7
.1

4
:

H
ig

h
 s

im
il

ar
 T

u
rk

ic
 l

an
g
u
ag

e
m

ap
.
M

ap
 s

h
o
w

in
g
 h

ig
h
 s

im
il

ar
 T

u
rk

ic
 l

an
g
u
ag

e
an

d
 t

h
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
la

n
g
u
ag

es
 a

re
 s

p
o
k
en

.
B

lu
e

li
n
k
s

m
ea

n
 s

im
il

ar
it

y

b
et

w
ee

n
 5

0
%

 a
n
d
 7

5
%

.

59

F
ig

u
re

 7
.1

5
:

V
er

y
 h

ig
h
 s

im
il

ar
 T

u
rk

ic
 l

an
g
u
ag

e
m

ap
.

M
ap

 s
h
o
w

in
g
 v

er
y
 h

ig
h
 s

im
il

ar
 T

u
rk

ic
 l

an
g
u
ag

e

an
d
 t

h
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
la

n
g
u
ag

es
 a

re
 s

p
o
k
en

.
R

ed
 l

in
k
s

m
ea

n
 m

o
re

 t
h
an

7
5
%

 s
im

il
ar

it
y

.

60

T
ab

le
 7

.4
:

T
u
rk

ic
 l

an
g
u

ag
es

 g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

.
T

h
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
T

u
rk

ic

la
n
g
u
ag

es
 a

re
 s

p
o
k
en

 g
iv

en
 b

y
 k

il
o
m

et
er

s.

u
z

1
4
4
0

1
5
6
0

2
4
6
3

2
0
3
5

2
9
1
7

4
1
8

7
6
1

1
7
4
1

8
5
3

4
5
4
3

5
0
5

2
5
0
2

1
8
4
0

2
6
2
1

0

ty
v

3
8
6
2

2
6
2
4

4
4
3
0

3
1
7
3

4
7
6
9

2
2
9
8

2
0
9
0

3
9
3
5

1
9
8
1

2
2
8
0

3
1
2
3

4
7
8
8

2
9
4
7

0

2
6
2
1

tt

1
6
8
8

3
6
6

1
5
8
5

2
4
4

1
8
4
8

2
0
7
0

1
3
7
1

1
4
0
9

2
3
4
7

3
9
1
0

1
9
1
9

2
1
4
2

0

2
9
4
7

1
8
4
0

tr

1
0
6
7

2
3
1
7

7
1
1

2
0
4
0

9
6
0

2
9
1
9

2
7
2
9

8
5
3

3
3
5
1

6
0
5
1

2
1
0
1

0

2
1
4
2

4
7
8
8

2
5
0
2

tk

1
0
3
7

1
7
1
6

2
1
7
8

2
0
7
0

2
6
4
1

8
9
2

1
1
6
8

1
4
2
6

1
3
1
9

4
9
9
2

0

2
1
0
1

1
9
1
9

3
1
2
3

5
0
5

sa
h

5
4
0
7

3
7
5
8

5
4
7
0

4
0
3
6

5
6
3
4

4
3
3
3

3
8
2
6

5
2
7
3

4
1
2
3

0

4
9
9
2

6
0
5
1

3
9
1
0

2
2
8
0

4
5
4
3

k
y

2
2
9
2

1
9
9
9

3
2
6
6

2
5
7
8

3
7
0
8

4
3
5

9
7
9

2
5
6
9

0

4
1
2
3

1
3
1
9

3
3
5
1

2
3
4
7

1
9
8
1

8
5
3

k
rc

4
9
2

1
5
1
5

7
5
4

1
3
7
5

1
2
1
8

2
1
4
7

1
8
8
2

0

2
5
6
9

5
2
7
3

1
4
2
6

8
5
3

1
4
0
9

3
9
3
5

1
7
4
1

k
k

1
7
7
2

1
0
2
0

2
4
8
0

1
6
0
6

2
8
8
6

7
7
5

0

1
8
8
2

9
7
9

3
8
2
6

1
1
6
8

2
7
2
9

1
3
7
1

2
0
9
0

7
6
1

k
a
a

1
8
5
8

1
7
4
7

2
8
5
7

2
2
8
7

3
3
0
5

0

7
7
5

2
1
4
7

4
3
5

4
3
3
3

8
9
2

2
9
1
9

2
0
7
0

2
2
9
8

4
1
8

g
a
g

1
6
7
2

2
1
4
7

4
6
4

1
6
5
5

0

3
3
0
5

2
8
8
6

1
2
1
8

3
7
0
8

5
6
3
4

2
6
4
1

9
6
0

1
8
4
8

4
7
6
9

2
9
1
7

cv

1
7
1
5

6
1
0

1
4
3
4

0

1
6
5
5

2
2
8
7

1
6
0
6

1
3
7
5

2
5
7
8

4
0
3
6

2
0
7
0

2
0
4
0

2
4
4

3
1
7
3

2
0
3
5

cr
h

1
2
1
5

1
8
3
5

0

1
4
3
4

4
6
4

2
8
5
7

2
4
8
0

7
5
4

3
2
6
6

5
4
7
0

2
1
7
8

7
1
1

1
5
8
5

4
4
3
0

2
4
6
3

b
a

1
6
9
3

0

1
8
3
5

6
1
0

2
1
4
7

1
7
4
7

1
0
2
0

1
5
1
5

1
9
9
9

3
7
5
8

1
7
1
6

2
3
1
7

3
6
6

2
6
2
4

1
5
6
0

a
z 0

1
6
9
3

1
2
1
5

1
7
1
5

1
6
7
2

1
8
5
8

1
7
7
2

4
9
2

2
2
9
2

5
4
0
7

1
0
3
7

1
0
6
7

1
6
8
8

3
8
6
2

1
4
4
0

a
z

b
a

cr
h

cv

g
a
g

k
a
a

k
k

k
rc

k
y

sa
h

tk

tr

tt

ty
v

u
z

61

7.2.2. Arabic Dialects

Using the same proposed model for Turkic languages, we use the MADAR

dataset to measure distances between Arabic dialects. We train the n-gram model

where n=5. Table 7.5 shows the perplexity-based rounded distance values each pair of

Arabic dialects. We added Persian language as a baseline. Figure 7.18 shows the

distances heatmap of these distances.

Figure 7.16: Arabic dialects and Persian language distance graph. Edge

length represents the distance value between two languages on both

sides.

62

Figure 7.17: Arabic dialects’ MST distance graph. Edge length represents

the distance value between two languages on both sides. We use

Kruskal’s algorithm to generate the minimum spanning tree.

Table 7.5: Distances between Arabic dialects and Persian.

 bei cai doh msa rab tun per

bei 26.67 32.36 37.5 52.92 32.27 46.58 228.36

cai 28.82 20.99 41.49 44.56 39.73 40.85 818.71

doh 28.16 27.29 24.36 39.18 29.65 36.45 152.14

msa 31.97 37.71 31.52 29.26 33.35 32.04 612.92

rab 36.57 31.62 40.15 43.51 20.83 38.53 1311.62

tun 27.81 34.21 33.12 34.13 31.87 22.11 874.31

per 175.57 166.35 199.76 239.64 131.39 215.5 51.13

Figure 7.18: Heatmap showing similarities between Arabic dialects.

63

F
ig

u
re

 7
.1

9
:

A
ra

b
ic

 d
ia

le
ct

s
si

m
il

ar
it

ie
s

m
ap

.
M

ap
 s

h
o
w

in
g
 s

im
il

ar
it

ie
s

b
et

w
ee

n
 A

ra
b
ic

 d
ia

le
ct

s
an

d
 t

h
e

g
eo

g
ra

p
h
ic

al
 d

is
ta

n
ce

 b
et

w
ee

n
 c

it
ie

s
w

h
er

e
th

e
d
ia

le
ct

s
ar

e
sp

o
k

en
.
T

h
e

th
ic

k
n
es

s
an

d
 c

o
lo

r
o
f

th
e

li
n
k

s

ex
p
re

ss
 h

o
w

 s
im

il
ar

 t
h
e

la
n
g
u
ag

e
is

.
B

lu
e

co
lo

r
m

ea
n
s

o
v
er

 5
0

%
 s

im
il

ar
it

y
,

w
h
il

e
g
re

en
 c

o
lo

r
m

ea
n
s

le
ss

 t
h
an

5
0
%

 s
im

il
ar

it
y
.

64

To evaluate our results, we drew a map showing the location of the cities in

which Arabic dialects are spoken, and thus easy to estimate the geographical distance

between these cities, as well as we created links showing the similarity value between

languages according to color and thickness. The map is shown in Figure 7.19. The

distance in kilometers between cities is shown in Table 7.6.

Table 7.6: Arabic dialects geographical distance. The geographical

distance between cities where the Arabic dialects are spoken given by

kilometers.

 bei cai doh rab tun

bei 0 587 1819 3887 2317

cai 587 0 2067 3604 2091

doh 1819 2067 0 5661 4113

rab 3887 3604 5661 0 1577

tun 2317 2091 4113 1577 0

65

8. CONCLUSION

This study examines the change of natural languages through time and location

by employing quantitative models using the techniques of natural language processing.

Through the two proposed models, we measure, in an unsupervised fashion, the

change of natural languages. We achieve that by measuring the inter-language

similarity, and by searching for word substitutions.

By utilizing word embeddings, adversarial training, and space alignment

techniques, we study the development of the Turkish language during the past 100

years. We extract a list of word replacements in addition to infer the periods in which

the language has changed significantly. By employing language modeling and its

evaluation methods, we create the similarity matrix for Turkic languages as well as the

Arabic dialects. We visualize the similarity matrices via heatmaps. Moreover, we draw

the similarities in geographical maps that show the distances between the cities where

these languages are spoken.

Our work confirms what linguists have inferred, where they mentioned about a

high degree of mutual intelligibility among the various Turkic languages. Although

linguistics methods of classification vary, the Turkic languages are usually considered

to be divided equally into two branches: Oghur, the only surviving member of which

is Chuvash and Common Turkic, which includes all other Turkic languages including

the Oghuz sub-branch.

This study helps linguistics in analyzing natural languages and their

relationships. As future work, we will utilize and develop the models proposed in this

study to improve machine translation models between under-resourced languages or

dialects.

66

REFERENCES

[1] Adda G., Stüker S., Adda-Decker M., Ambouroue O., Besacier L., Blachon D.,

Bonneau-Maynard H., Godard P., Hamlaoui F., Idiatov D., (2016), “Breaking

the unwritten language barrier: The BULB project”, Procedia Computer

Science, 81 (1), 8-14.

[2] Alexandre S., Aline V., (2018), “Incorporating subword information into

matrix factorization word embeddings”, arXiv e-prints, 1805.03710 (1), 1-6.

[3] Alexis C., Kiela D., (2018), “Senteval: An evaluation toolkit for universal

sentence representations”, arXiv e-prints, 1803.05449 (1), 1-6.

[4] Almahdi M. E., Akgül Y. S., (2019), “Automatic Detection of Word

Substitutions within a Language over Periods of Time”, 2019 4th International

Conference on Computer Science and Engineering (UBMK), 478-481,

Samsun, Turkey, 11-15, September.

[5] Anastasopoulos A., Chiang D., (2017), “A case study on using speech-to-

translation alignments for language documentation”, arXiv e-prints,

1702.04372 (1), 1-10.

[6] Antonios A., Chiang D., Duong L., (2016), “An unsupervised probability

model for speech-to-translation alignment of low-resource languages”, arXiv

e-prints, 1609.08139 (1), 1-10.

[7] Artetxe M., Labaka G., Agirre E., Cho K., (2017), “Unsupervised neural

machine translation”, arXiv e-prints, 1710.11041 (1), 1-12.

[8] Aufrant L., Wisniewski G., Yvon F., (2016), “Zero-resource dependency

parsing: Boosting delexicalized cross-lingual transfer with linguistic

knowledge”, Proceedings of COLING 2016, the 26th International Conference

on Computational Linguistics: Technical Papers, 119-130, Osaka, Japan,

December.

[9] Bahdanau D., Cho K., Bengio Y., (2014), “Neural machine translation by

jointly learning to align and translate”, arXiv e-prints, 1409.0473 (1), 1-15.

[10] Bahl L. R., Jelinek F., Mercer R. L., (1983), “A maximum likelihood approach

to continuous speech recognition”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1 (1), 179-190.

[11] Balikas G., Laclau C., Redko I., Amini M.-R., (2018), “Cross-lingual

document retrieval using regularized wasserstein distance”, European

67

Conference on Information Retrieval, 398-410, Grenoble, France, 26-29,

March.

[12] Baum L. E., Petrie T., Soules G., Weiss N., (1970), “A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov

chains”, The annals of mathematical statistics, 41 (1), 164-171.

[13] Bengio Y., Ducharme R., Vincent P., Jauvin C., (2003), “A neural probabilistic

language model”, Journal of machine learning research, 3 (1), 1137-1155.

[14] Bojanowski P., Grave E., Joulin A., Mikolov T., (2017), “Enriching word

vectors with subword information”, Transactions of the Association for

Computational Linguistics, 5 (1), 135-146.

[15] Bouamor H., Hassan S., Habash N., (2019), “The MADAR shared task on

Arabic fine-grained dialect identification”, Proceedings of the Fourth Arabic

Natural Language Processing Workshop, 199-207, Florence, Italy, 28-30, July.

[16] Britz D., Goldie A., Luong M.-T., Le Q., (2017), “Massive exploration of

neural machine translation architectures”, arXiv e-prints, 1703.03906 (1), 1-9.

[17] Brown P. F., Cocke J., Della Pietra S. A., Della Pietra V. J., Jelinek F., Lafferty

J. D., Mercer R. L., Roossin P. S., (1990), “A statistical approach to machine

translation”, Computational linguistics, 16 (2), 79-85.

[18] Bynon T., (1977), “Historical linguistics”, 1st Edition, Cambridge University

Press.

[19] Campbell G. L., (2003), “Concise compendium of the world's languages”, 1st

Edition, Routledge.

[20] Cavnar W. B., Trenkle J. M., (1994), “N-gram-based text categorization”,

SDAIR-94, 161175 (1), 1-14.

[21] Cer D., Yang Y., Kong S.-y., Hua N., Limtiaco N., John R. S., Constant N.,

Guajardo-Cespedes M., Yuan S., Tar C., (2018), “Universal sentence encoder”,

arXiv e-prints, 1803.11175 (1), 1-7.

[22] Chiao Y.-C., Zweigenbaum P., (2002), “Looking for candidate translational

equivalents in specialized, comparable corpora”, Proceedings of the 19th

international conference on Computational linguistics, 1-5, PA, United States,

August.

[23] Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F.,

Schwenk H., Bengio Y., (2014), “Learning phrase representations using RNN

68

encoder-decoder for statistical machine translation”, arXiv e-prints, 1406.1078

(1), 1-15.

[24] Collobert R., Weston J., (2008), “A unified architecture for natural language

processing: Deep neural networks with multitask learning”, Proceedings of the

25th international conference on Machine learning, 160-167, NY, United

States, July.

[25] Conneau A., Kiela D., Schwenk H., Barrault L., Bordes A., (2017),

“Supervised learning of universal sentence representations from natural

language inference data”, arXiv e-prints, 1705.02364 (1), 1-12.

[26] Conneau A., Lample G., Ranzato M., Denoyer L., Jégou H., (2017), “Word

Translation Without Parallel Data”, arXiv e-prints, 1710.04087 (1), 1-14.

[27] Delpech E. M., (2014), “Comparable corpora and computer-assisted

translation”, 1st Edition, John Wiley and Sons.

[28] Dennis J. E., Moré J. J., (1977), “Quasi-Newton methods, motivation and

theory”, SIAM review, 19 (1), 46-89.

[29] Devlin J., Chang M.-W., Lee K., Toutanova K., (2018), “Bert: Pre-training of

deep bidirectional transformers for language understanding”, arXiv preprint

arXiv:1810.04805, 1810.04805 (1), 1-16.

[30] Divvala S. K., Farhadi A., Guestrin C., (2014), “Learning everything about

anything: Webly-supervised visual concept learning”, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 3270-3277,

Columbus, OH, USA, 23-28, June.

[31] Dos Santos C., Gatti M., (2014), “Deep convolutional neural networks for

sentiment analysis of short texts”, Proceedings of COLING 2014, the 25th

International Conference on Computational Linguistics: Technical Papers, 69-

78, Dublin, Ireland, August.

[32] Duong L., Anastasopoulos A., Chiang D., Bird S., Cohn T., (2016), “An

attentional model for speech translation without transcription”, Proceedings of

the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 949-959, San

Diego, California, June.

[33] Dybo A. V., (2007), “Chronology of Türkic languages and linguistic contacts

of early Türks”, 1st Edition, Moscow.

[34] Eades P., (1984), “A heuristic for graph drawing”, Congressus numerantium,

42 (1), 149-160.

69

[35] Eddy S. R., (1996), “Hidden markov models”, Current opinion in structural

biology, 6 (3), 361-365.

[36] Emmanuel M., Daille B., (2012), “Revising the compositional method for

terminology acquisition from comparable corpora”, Proceedings of COLING

2012, 1797-1810, Mumbai, India, December.

[37] Ferrero J., Agnes F., Besacier L., Schwab D., (2017), “UsingWord Embedding

for Cross-Language Plagiarism Detection”, arXiv e-prints, 1702.03082 (1), 1-

7.

[38] Fung P., (1998), “A statistical view on bilingual lexicon extraction: from

parallel corpora to non-parallel corpora”, Conference of the Association for

Machine Translation in the Americas, 1-17, DC, USA, September.

[39] Gaussier E., Renders J.-M., Matveeva I., Goutte C., Déjean H., (2004), “A

geometric view on bilingual lexicon extraction from comparable corpora”,

Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04), 526-533, Barcelona, Spain, July.

[40] Godard P., Adda G., Adda-Decker M., Allauzen A., Besacier L., Bonneau-

Maynard H., Kouarata G.-N., Löser K., Rialland A., Yvon F., (2016),

“Preliminary experiments on unsupervised word discovery in mboshi”,

Interspeech 2016, 1-6, San-Francisco, United States, September.

[41] Goldberg Y., (2019), “Assessing BERT's Syntactic Abilities”, arXiv e-prints,

1901.05287 (1), 1-4.

[42] Goldman E., Goldberger J., (2017), “Structured image classification from

conditional random field with deep class embedding”, arXiv e-prints,

1705.07420 (1), 1-10.

[43] Good I. J., (1953), “The population frequencies of species and the estimation

of population parameters”, Biometrika, 40 (3), 237-264.

[44] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,

Courville A., Bengio Y., (2014), “Generative adversarial nets”, Advances in

neural information processing systems, 2672-2680, Montreal, Canada,

December.

[45] Gu J., Hassan H., Devlin J., Li V. O., (2018), “Universal neural machine

translation for extremely low resource languages”, arXiv e-prints, 1802.05368

(1), 1-11.

[46] Hamilton W. L., Leskovec J., Jurafsky D., (2016), “Diachronic word

embeddings reveal statistical laws of semantic change”, arXiv e-prints,

1605.09096 (1), 1-13.

70

[47] Hazem A., Morin E., (2017), “Bilingual word embeddings for bilingual

terminology extraction from specialized comparable corpora”, Proceedings of

the Eighth International Joint Conference on Natural Language Processing,

685-693, Taipei, Taiwan, November.

[48] He D., Xia Y., Qin T., Wang L., Yu N., Liu T.-Y., Ma W.-Y., (2016), “Dual

learning for machine translation”, Advances in Neural Information Processing

Systems, 820-828, Barcelona, Spain,December.

[49] Hochreiter S., Schmidhuber J., (1997), “Long short-term memory”, Neural

computation, 9 (8), 1735-1780.

[50] Hull J. J., Srihari S. N., (1982), “Experiments in text recognition with binary

n-gram and viterbi algorithms”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1 (1), 520-530.

[51] Hwa R., Resnik P., Weinberg A., Cabezas C., Kolak O., (2005),

“Bootstrapping parsers via syntactic projection across parallel texts”, Natural

language engineering, 11 (3), 311-325.

[52] Iyyer M., Manjunatha V., Boyd-Graber J., Daumé III H., (2015), “Deep

unordered composition rivals syntactic methods for text classification”,

Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), 1, 1681-1691, Beijing, China, July.

[53] Jabaian B., Besacier L., Lefevre F., (2012), “Comparison and combination of

lightly supervised approaches for language portability of a spoken language

understanding system”, IEEE Transactions on Audio, Speech, and Language

Processing, 21 (3), 636-648.

[54] Jakubina L., Langlais P., (2017), “Reranking translation candidates produced

by several bilingual word similarity sources”, Proceedings of the 15th

Conference of the European Chapter of the Association for Computational

Linguistics: Volume 2, Short Papers, 605-611, Valencia, Spain, April.

[55] Jelinek F., (1971), “Markov Models and Linguistic Theory: An Experimental

Study of a Model for Eng-lish”, Mouton De Gruyter, The Hague, 1 (1), 3.

[56] Jelinek F., Mercer R. L., Bahl L. R., Baker J. K., (1977), “Perplexity—a

measure of the difficulty of speech recognition tasks”, The Journal of the

Acoustical Society of America, 62 (1), 63-63.

[57] Johnson M., Schuster M., Le Q. V., Krikun M., Wu Y., Chen Z., Thorat N.,

Viégas F., Wattenberg M., Corrado G., (2017), “Google’s multilingual neural

machine translation system: Enabling zero-shot translation”, Transactions of

the Association for Computational Linguistics, 5 (1), 339-351.

71

[58] Kamada T., Kawai S., (1989), “An algorithm for drawing general undirected

graphs”, Information processing letters, 31 (1), 7-15.

[59] Kamusella T., (2017), “The Arabic language: a Latin of modernity?”, Journal

of Nationalism, Memory and Language Politics, 11 (2), 117-145.

[60] Klakow D., Peters J., (2002), “Testing the correlation of word error rate and

perplexity”, Speech Communication, 38 (1), 19-28.

[61] Kneser R., Ney H., (1995), “Improved backing-off for m-gram language

modeling”, 1995 International Conference on Acoustics, Speech, and Signal

Processing, 1, 181-184, Michigan, USA, 9-12, May.

[62] Kruskal J. B., (1956), “On the shortest spanning subtree of a graph and the

traveling salesman problem”, Proceedings of the American Mathematical

society, 7 (1), 48-50.

[63] Kudo T., Yamamoto K., Matsumoto Y., (2004), “Applying conditional random

fields to Japanese morphological analysis”, Proceedings of the 2004

conference on empirical methods in natural language processing, 230-237,

Barcelona, Spain, July.

[64] Lample G., Conneau A., Denoyer L., Ranzato M., (2017), “Unsupervised

machine translation using monolingual corpora only”, arXiv e-prints,

1711.00043 (1), 1-14.

[65] Landauer T. K., McNamara D. S., Dennis S., Kintsch W., (2013), “Handbook

of latent semantic analysis”, 1st Edition, Psychology Press.

[66] Levy O., Goldberg Y., (2014), “Linguistic regularities in sparse and explicit

word representations”, Proceedings of the eighteenth conference on

computational natural language learning, 171-180, Baltimore, Maryland, June.

[67] Lidstone G. J., (1920), “Note on the general case of the Bayes-Laplace formula

for inductive or a posteriori probabilities”, Transactions of the Faculty of

Actuaries, 8 (13), 182-192.

[68] Lin Y., Michel J.-B., Aiden E. L., Orwant J., Brockman W., Petrov S., (2012),

“Syntactic annotations for the google books ngram corpus”, Proceedings of the

ACL 2012 system demonstrations, 169-174, Jeju Island, Korea, july.

[69] Mays E., Damerau F. J., Mercer R. L., (1991), “Context based spelling

correction”, Information Processing and Management, 27 (5), 517-522.

[70] McCallum A., Li W., (2003), “Early results for named entity recognition with

conditional random fields, feature induction and web-enhanced lexicons”,

72

Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003, 188-191, PA, United States.

[71] Melamud O., Goldberger J., Dagan I., (2016), “context2vec: Learning generic

context embedding with bidirectional lstm”, Proceedings of the 20th SIGNLL

conference on computational natural language learning, 51-61, Berlin,

Germany, August.

[72] Mikolov T., Chen K., Corrado G., Dean J., (2013a), “Efficient estimation of

word representations in vector space”, arXiv e-prints, 1301.3781 (1), 1-12.

[73] Mikolov T., Sutskever I., Chen K., Corrado G. S., Dean J., (2013b),

“Distributed representations of words and phrases and their compositionality”,

Advances in neural information processing systems, 3111-3119, NV, United

States, December.

[74] Morin E., Daille B., Takeuchi K., Kageura K., (2007), “Bilingual terminology

mining-using brain, not brawn comparable corpora”, Proceedings of the 45th

Annual Meeting of the Association of Computational Linguistics, 664-671,

Prague, Czech Republic, June.

[75] Nie J.-Y., (2010), “Cross-language information retrieval”, Synthesis Lectures

on Human Language Technologies, 3 (1), 1-125.

[76] Onur Gungor M. T., Sönmez Ç., (2018, 5), “A Corpus of Grand National

Assembly of Turkish Parliament's Transcripts”, In Fišer D., Eskevich M., Jong

F. (Ed.), Proceedings of the Eleventh International Conference on Language

Resources and Evaluation (LREC 2018), 1-5, Miyazaki, Japan, 7-12, May.

[77] Padó S., Lapata M., (2009), “Cross-lingual annotation projection for semantic

roles”, Journal of Artificial Intelligence Research, 36 (1), 307-340.

[78] Pennington J., Socher R., Manning C., (2014), “Glove: Global vectors for word

representation”, Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), 1532-1543, Doha, Qatar, October.

[79] Perone C. S., Silveira R., Paula T. S., (2018), “Evaluation of sentence

embeddings in downstream and linguistic probing tasks”, arXiv e-prints,

1806.06259 (1), 1-15.

[80] Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K.,

Zettlemoyer L., (2018), “Deep contextualized word representations”, arXiv e-

prints, 1802.05365 (1), 1-15.

[81] Peterson D. J., (2015), “The art of language invention: From Horse-Lords to

Dark Elves, the words behind world-building”, 1st Edition, Penguin.

73

[82] Petrolito R., Dell’Orletta F., (2018), “Word Embeddings in Sentiment

Analysis”, In Proceedings of 5th Italian Conference on Computational

Linguistics, 330-334, Turin, Italy, 10-12, December.

[83] Rapp R., (1999), “Automatic identification of word translations from unrelated

English and German corpora”, Proceedings of the 37th annual meeting of the

Association for Computational Linguistics on Computational Linguistics, 519-

526, College Park, Maryland, USA, June.

[84] Robert-Ribes J., Mukhtar R. G., (1997), “Automatic generation of hyperlinks

between audio and transcript”, Fifth European Conference on Speech

Communication and Technology, 1-4, Rhodes, Greece, 22-25 September.

[85] Salle A., Idiart M., Aline V., (2016), “Matrix factorization using window

sampling and negative sampling for improved word representations”, arXiv e-

prints, 1606.00819 (1), 1-6.

[86] Sennrich R., Haddow B., Birch A., (2015), “Neural machine translation of rare

words with subword units”, arXiv e-prints, 1508.07909 (1), 1-11.

[87] Seymore K., McCallum A., Rosenfeld R., (1999), “Learning hidden Markov

model structure for information extraction”, AAAI-99 workshop on machine

learning for information extraction, 37-42, IL, United States, July.

[88] Sha F., Pereira F., (2003), “Shallow parsing with conditional random fields”,

Proceedings of the 2003 Conference of the North American Chapter of the

Association for Computational Linguistics on Human Language Technology-

Volume 1, 134-141, PA, United States.

[89] Sun F., Guo J., Lan Y., Xu J., Cheng X., (2015), “Learning word

representations by jointly modeling syntagmatic and paradigmatic relations”,

Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), 136-145, Beijing, China, July.

[90] Sundermeyer M., Schlüter R., Ney H., (2012), “LSTM neural networks for

language modeling”, Thirteenth annual conference of the international speech

communication association, 1-4, Portland, Oregon, 9-13, September.

[91] Tekin T., (1978), “Türk Dilleri Ailesi I”, Türk Dili, 37 (318), 173-183.

[92] Tiedemann J., (2014), “Rediscovering annotation projection for cross-lingual

parser induction”, Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics, 1854-1864, Dublin, Ireland,

August.

74

[93] Toselli A. H., Romero V., Vidal E., (2011), “Alignment between text images

and their transcripts for handwritten documents”, 1st Edition, Springer.

[94] Tran T., Phung D., Bui H., Venkatesh S., (2017), “Hierarchical semi-Markov

conditional random fields for deep recursive sequential data”, Artificial

Intelligence, 246 (1), 53-85.

[95] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N.,

Kaiser Ł., Polosukhin I., (2017), “Attention is all you need”, Advances in

neural information processing systems, 5998-6008, CA, United States,

December.

[96] Véronis J., (2013), “Parallel Text Processing: Alignment and use of translation

corpora”, 1st Edition, , Springer Science and Business Media.

[97] Verwimp L., Bellegarda J. R., (2019), “Reverse Transfer Learning: Can Word

Embeddings Trained for Different NLP Tasks Improve Neural Language

Models?”, arXiv e-prints, 1909.04130 (1), 1-5.

[98] Vinyals O., Toshev A., Bengio S., Erhan D., (2015), “Show and tell: A neural

image caption generator”, Proceedings of the IEEE conference on computer

vision and pattern recognition, 3156-3164, Boston, MA, USA, 7-12, June.

[99] Viterbi A., (1967), “Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm”, IEEE transactions on

Information Theory, 13 (2), 260-269.

[100] Wang W., Pan S. J., Dahlmeier D., Xiao X., (2016), “Recursive neural

conditional random fields for aspect-based sentiment analysis”, arXiv e-prints,

1603.06679 (1), 1-11.

[101] Web 1, (2019), https://www.ethnologue.com, (Retrieved 30/12/2019).

[102] Web 2, (2019), https://sozluk.gov.tr, (Retrieved 30/12/2019).

[103] Web 3, (2019), https://www.tbmm.gov.tr/develop/owa/tutanak_dergisi_

pdfler.meclis_donemleri?v_meclisdonem=0, (Retrieved 30/12/2019).

[104] Web 4, (2019), https://github.com/attardi/wikiextractor, (Retrieved

30/12/2019).

[105] Web 5, (2019), https://dumps.wikimedia.org, (Retrieved 30/12/2019).

[106] Wisniewski G., Pécheux N., Gahbiche-Braham S., Yvon F., (2014), “Cross-

lingual part-of-speech tagging through ambiguous learning”, Proceedings of

75

the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), 1779-1785, Doha, Qatar, October.

[107] Wu Y., Schuster M., Chen Z., Le Q. V., Norouzi M., Macherey W., Krikun M.,

Cao Y., Gao Q., Macherey K., (2016), “Google's neural machine translation

system: Bridging the gap between human and machine translation”, arXiv e-

prints, 1609.08144 (1), 1-23.

[108] Yarowsky D., (2001), “Induce, Multilingual POS Tagger and NP bracketer via

projection on aligned corpora”, Proceedings of NAACL-01, 2001, 104 (485),

31-36.

[109] Zennaki O., Semmar N., Besacier L., (2016), “Inducing multilingual text

analysis tools using bidirectional recurrent neural networks”, arXiv e-prints,

1609.09382 (1), 1-12.

[110] Zissman M. A., (1996), “Comparison of four approaches to automatic language

identification of telephone speech”, IEEE Transactions on speech and audio

processing, 4 (1), 31.

[111] Zweigenbaum P., Habert B., (2006), “Faire se rencontrer les parallèles: regards

croisés sur l’acquisition lexicale monolingue et multilingue”, Revue de

sociolinguistique en ligne GLOTTOPOL, 8 (1), 22-44.

76

BIOGRAPHY

Muhammed Enes ALMAHDI was born in Damascus, Syria in 1993. He

graduated from the Department of Artificial Intelligence and Natural Language

Processing, Faculty of Information Technology Engineering, Damascus University in

2015. He started his Master’s at the Department of Computer Engineering,

Engineering Faculty, Gebze Technical University at 2016. During his Master’s, he

worked on a project about social media analysis and anomaly detection. His research

interests include natural language processing, machine learning, and deep learning.

77

APPENDICES

Appendix A: Publications on the thesis

Almahdi M. E., Akgül Y. S., (2019), “Automatic Detection of Word

Substitutions within a Language over Periods of Time”, In 2019 4th International

Conference on Computer Science and Engineering (UBMK), 478-481.

Appendix B: Word Substitution List

Table B.1: List of word substitutions extracted by the proposed model.

Word Replaced Word Substitution Period(s)

ahkam hüküm 1985-1989

arzuhal dilekçe 1985-1989

aza üye
1945-1949, 1955-1959,

1985-1989

başvekalet başbakanlık
1945-1949, 1955-1959,

1985-1989

baytar veteriner 1940-1944

bilahare sonradan 1945-1949

bilhassa özellikle 1985-1989

cürüm suç 1930-1934

devamlı sürekli
1925-1929, 1945-1949,

1955-1959, 1985-1989

devre dönem 1985-1989

ecnebi yabancı
1945-1949, 1955-1959,

1985-1989

ehemmiyet önem 1985-1989

elbette bittabi 1930-1934

elbette muhakkak 1985-1989

encümen komisyon
1945-1949, 1955-1959,

1985-1989

78

Table B.1: continuation.

Word Replaced Word Substitution Period(s)

evvelki önceki 1985-1989

eylemek etmek 1925-1929

fayda yarar 1985-1989, 2010-2014

fena kötü 1945-1949

fikir düşünce
1945-1949, 1955-1959,

1985-1989

gayrimenkul taşınmaz
1985-1989, 1990-1994,

1995-1999

hadise olay 1985-1989

hakikaten gerçekten 1985-1989

halbuki oysa 1985-1989

harcırah yolluk
1945-1949, 1955-1959,

2010-2014

hasebiyle sebebiyle
1935-1939, 1940-1944,

1945-1949

hisse pay 1990-1994

hitam nihayet 1985-1989

hudut sınır 1985-1989

hükmi tüzel 1945-1949, 1955-1959, 9

icar kira 1940-1944

içtima toplantı
1945-1949, 1955-1959,

1985-1989

ihtiyat yedek 1940-1944

iktisadi ekonomik 1985-1989

ilim bilim 1985-1989

ilmi bilimsel 1985-1989

imkan olanak 1925-1929

inkişaf gelişme 1985-1989

inzibat disiplin
1945-1949, 1950-1954,

1955-1959

iştigal meşgul 1985-1989

79

Table B.1: continuation.

Word Replaced Word Substitution Period(s)

istihlak tüketim 1985-1989

istihsal üretim 1985-1989

istikraz borçlanma 1985-1989

istimlak kamulaştırma
1945-1949, 1950-1954,

1985-1989

istinaden göre 1940-1944

istinat dayalı 1985-1989

izah ifade 1925-1929

izahat cevap 1935-1939, 1940-1944

kabil mümkün 1935-1939, 1940-1944

kafi yeterli 1985-1989

kati kesin 1985-1989

mahsul müstahsil
1985-1989, 1995-1999,

2000-2004

malik sahip 1925-1929, 1945-1949

malumat bilgi 1985-1989

mani engel 1985-1989

marifetiyle tarafından 1985-1989

masarif masraf 1925-1929

matbuat basın 1945-1949

mecburi zorunlu 1985-1989

meccanen parasız 1935-1939

mektep okul 1935-1939

menfaat fayda 1930-1934, 1935-1939

mesele konu 1985-1989

mesul sorumlu 1985-1989

mesuliyet sorumluluk 1985-1989

misal örnek 1985-1989

modern çağdaş 1985-1989, 2010-2014

muallim öğretmen 1940-1944

80

Table B.1: continuation.

Word Replaced Word Substitution Period(s)

muamele işlem 1985-1989

muayyen belirli 1985-1989

mucibince gereğince 1945-1949

mugayir aykırı 1935-1939

muhakeme yargılama 1985-1989

muhalif aykırı 1985-1989

mühim önemli 1985-1989

muhtelit karma
1945-1949, 1955-1959,

1985-1989

muhtevi ihtiva 1985-1989

mukavele sözleşme
1945-1949,1955-1959,

1985-1989

mukayyet kayıtlı 1945-1949

münakale aktarma
1945-1949, 1955-1959,

1985-1989

münakaşa müzakere 1985-1989

münasip muvafık 1985-1989

müracaat başvuru 2000-2004

müspet olumlu 1985-1989

müstesna hariç 1935-1939

mutabakat uygunluk
1945-1949, 1950-1954,

1985-1989, 2005-2009

muteber geçerli 1985-1989

mütehassıs uzman 1945-1949

mütevellit dolayı 1985-1989

muvaffak başarılı 1985-1989

muvafık uygun
1935-1939, 1940-1944,

1945-1949

muvafık şayan 1985-1989

müzakere görüşme 1985-1989

nakliye taşıma 1945-1949

81

Table B.1: continuation.

Word Replaced Word Substitution Period(s)

namına adına 1945-1949

neşriyat yayın 1945-1949

netice sonuç 1985-1989

numaralı sayılı 1935-1939

politika siyaset 1945-1949, 1995-1999

reisicumhur cumhurbaşkanı
1945-1949, 1955-1959,

1985-1989

rey oy
1945-1949, 1955-1959,

1985-1989

rica istirham 1985-1989

şahıs kişi
1925-1929, 1945-1949,

1955-1959, 1985-1989

şahsi kişisel 1985-1989

salahiyet yetki
1945-1949, 1950-1954,

1985-1989

sarih açıkça
1945-1949, 1950-1954,

1985-1989

sebebiyle nedeniyle 1985-1989

şifahi tahriri
1940-1944, 1950-1954,

1985-1989

tahkikat soruşturma 1985-1989

tahsisat ödenek
1945-1949, 1955-1959,

1985-1989

takibat soruşturma
1945-1949, 1950-1954,

1985-1989

takrir önerge
1945-1949, 1950-1954,

1985-1989

talebe öğrenci
1945-1949,1955-1959,

1985-1989

tamir onarım 1985-1989

tasrih ifade 1985-1989

tatbikat uygulama 1985-1989

82

Table B.1: continuation.

Word Replaced Word Substitution Period(s)

tatbiki uygulama 1985-1989

tediye ödeme 1945-1949, 1985-1989

temettü kazanç 1925-1929

tenvir aydınlatma 1945-1949

teshin yakacak 1945-1949

tespit tayin 1985-1989

teşrii yasama 1985-1989

tetkikat inceleme
1945-1949, 1955-1959,

1985-1989

ücretli sözleşmeli 1985-1989

ulaştırma münakalat
1945-1949, 1955-1959,

1985-1989

ulvi eşref
1950-1954, 1955-1959,

1985-1989

umum genel
1945-1949, 1955-1959,

1985-1989

vazife görev 1945-1949

vaziyet durum 1955-1959

vekalet bakanlık
1945-1949, 1955-1959,

1985-1989, 2000-2004

vekil bakan
1935-1939, 1940-1944,

1945-1949, 1985-1989

vesaire benzeri 1945-1949

yakıt akaryakıt
1940-1944, 1950-1954,

1985-1989

yolsuzluk usulsüzlük 1985-1989

yürürlük meriyet
1945-1949, 1955-1959,

1985-1989

zabıt tutanak
1945-1949, 1955-1959,

1985-1989

zevat zat 1985-1989

zirai tarımsal 2000-2004

83

Appendix C: ISO 9:1995 Transliteration Table

Table C.1: ISO 9:1995 Transliteration table.

Cyrillic Latin Cyrillic cont. Latin cont.

А а A a П п P p

Б б B b Р р R r

В в V v С с S s

Г г G g Т т T t

Ґ ґ G̀ g̀ Ќ ќ Ḱ ḱ

Д д D d Ћ ћ Ć ć

Ѓ ѓ Ǵ ǵ У у U u

Ђ ђ Đ đ Ў ў Ŭ ŭ

Е е E e Ф ф F f

Ё ё Ë ë Х х H h

Є є Ê ê Ц ц C c

Ж ж Ž ž Ч ч Č č

З з Z z Џ џ D̂ d̂

Ѕ ѕ Ẑ ẑ Ш ш Š š

И и I i Щ щ Ŝ ŝ

I і Ì ì Ъ ъ ʺ

Ї ї Ï ï Ы ы Y y

Й й J j Ь ь ʹ

Ј ј J̌ ǰ Ѣ ѣ Ě ě

К к K k Э э È è

Л л L l Ю ю Û û

Љ љ L̂ l̂ Я я Â â

М м M m ’ ’

Н н N n Ѫ ѫ Ǎ ǎ

Њ њ N̂ n̂ Ѳ ѳ F̀ f ̀

О о O o Ѵ ѵ Ỳ ỳ

