

T.C. NİĞDE ÖMER HALİSDEMİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

FONKSİYONEL DERECELENDİRİLMİŞ MALZEMELİ, DEĞİŞKEN KESİTLİ VE ÇATLAKLI KİRİŞLERİN SERBEST TİTREŞİMİNİN İNCELENMESİ

SHKELZEN SHABANI

OCAK 2020

T.C. NİĞDE ÖMER HALİSDEMİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

FONKSİYONEL DERECELENDİRİLMİŞ MALZEMELİ, DEĞİŞKEN KESİTLİ VE ÇATLAKLI KİRİŞLERİN SERBEST TİTREŞİMİNİN İNCELENMESİ

SHKELZEN SHABANI

Doktora Tezi

Danışman

Prof. Dr. Yusuf CUNEDİOĞLU

OCAK 2020

Shkelzen SHABANI tarafından Prof. Dr. Yusuf CUNEDİOĞLU danışmanlığında hazırlanan "Fonksiyonel Derecelendirilmiş Malzemeli, Değişken Kesitli ve Çatlaklı Kirişlerin Serbest Titreşiminin İncelenmesi" adlı bu çalışma jürimiz tarafından Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Ana Bilim Dalı'nda Doktora tezi olarak kabul edilmiştir.

Başkan : Prof. Dr. Ahmet YAPICI, İskenderun Teknik Üniversitesi
Üye : Prof. Dr. Yusuf CUNEDİOĞLU, Niğde Ömer Halisdemir Üniversitesi
Üye : Doç. Dr. Hamza Kemal AKYILDIZ, Yozgat Bozok Üniversitesi
Üye : Doç. Dr. Serkan TOROS, Niğde Ömer Halisdemir Üniversitesi
Üye : Dr. Öğretim Üyesi İlyas KACAR, Niğde Ömer Halisdemir Üniversitesi

ONAY:

...../...../20....

Prof. Dr. Murat BARUT MÜDÜR

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin bilimsel ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

Shkelzen SHABANI

ÖZET

FONKSİYONEL DERECELENDİRİLMİŞ MALZEMELİ, DEĞİŞKEN KESİTLİ VE ÇATLAKLI KİRİŞLERİN SERBEST TİTREŞİMİNİN İNCELENMESİ

SHABANI, Shkelzen Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği AnaBilim Dalı

Danışman

: Prof. Dr. Yusuf CUNEDİOĞLU

Ocak 2020, 211 sayfa

Bu tez çalışmasında, simetrik sandviç yapılı fonksiyonel derecelendirilmiş malzemeli (FDM) içinde çatlak bululunduran kirişlerin serbest titreşimi incelenmiştir. Çalışmada FDM kiriş seramik (Al_2O_3) ve alüminyumdan (Al) oluştuğu kabul edilmiştir. FDM kirişin malzeme özellikleri olan yoğunluk ve Young modülü kalınlık boyunca exponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Çalışmada Timoshenko kiriş ve lineer elastik kırılma mekaniği teorileri kullanılarak sonlu elemanlar modellemesi yapılmıştır. Çatlak, bir düğüm vasıtasıyla boyutsuz ve kütlesiz bir yay elemanı ile temsil edilmiştir. Analizlerde uzunluk boyunca sabit kesitli kiriş, kademeli (stepped) ve uzunluk boyunca genişliği üstel değişen ve konik (tapered) değişen kirişler ele alınmıştır. Konsol kirislerin tüm tiplerinin doğal frekansları, geliştirilen bir MATLAB kodu ile hesaplanmakta olup, literatürdeki verilerle iyi bir uyum sağladığı görülmüştür. Ayrıca, MATLAB sonuçlarının doğrulanması ANSYS yazılımı kullanılarak ta yapılmıştır. Çalışmada çatlak yeri, çatlak derinliği, polinom derecesi (n), farklı malzeme dağılımı, farklı kadame (step) uzunlukları ve farklı kesit geometrilerin doğal frekanslar üzerindeki etkileri incelenmiştir.

Anahtar Sözcükler: fonksiyonel derecelendirilmiş malzeme, çatlaklı düz kiriş, çatlaklı kademeli kiriş, çatlaklı üstel değişen kiriş, çatlaklı doğrusal değişen kiriş, serbest titreşim, sonlu elamanlar metodu

SUMMARY

INVESTIGATION OF FREE VIBRATIONS FOR FUNCTIONALLY GRADED MATERIALS WITH EDGE CRACKED AND VARIABLE CROSS SECTION BEAMS

SHABANI, Shkelzen

Niğde Ömer Halisdemir University Graduate School of Natural and Applied Sciences Department of Mechanical Engineering

Supervisor

: Prof. Dr. Yusuf CUNEDİOĞLU

January 2020, 211 pages

In this thesis, free vibration of beams with cracks in a functional graded material (FGM) with symmetrical sandwich structure was investigated. In the study, it was assumed that FGM beam is composed of ceramic (Al_2O_3) and aluminum (Al). The density and Young's modulus, which are the material properties of the FGM beam, are defined by exponential and polynomial functions along the thickness. In this study, Timoshenko beam and linear elastic fracture mechanics theories are used for finite element modeling. The crack is represented by a node with a dimensionless and massless spring element. In the analyzes, beams with fixed cross-section along the length, stepped and beams with varying exponential width and tapered along the length were examined. The natural frequencies of all types of cantilever beams are calculated with a developed MATLAB code, which is found to be in good agreement with the data in the literature. In addition, the MATLAB results were verified using ANSYS software. In this study, the effects of crack location, crack depth, polynomial degree (*n*), different material distribution, different step lengths and different cross-sectional geometries on natural frequencies were investigated.

Keywords: functionally graded materials, cracked uniform beam, cracked stepped beam, cracked non-uniform exponential beam, cracked non-uniform linear beam, free vibration, FEM

ÖN SÖZ

Bu doktora tez çalışmasında simetrik sandviç yapılı fonksiyonel derecelendirilmiş malzemeli (FDM) içinde çatlak bululunduran değişken kesitli kirişlerin serbest titreşimi incelenmiştir. FDM kirişin malzeme özellikleri olan yoğunluk ve Young modülü kalınlık boyunca exponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Çalışmada Timoshenko kiriş ve lineer elastik kırılma mekaniği teorileri kullanılarak sonlu elemanlar modellemesi yapılmıştır. Tez çalışmasında çatlak, bir düğüm vasıtasıyla boyutsuz ve kütlesiz bir yay elemanı ile temsil edilmiştir. Kirişlere ait doğal frekansların hesaplanması MATLAB'ta sonlu elemanlar koduyla gerçekleştirilmiştir.

Doktora tezi çalışması süresince, çalışmalarıma yön veren ve yardımlarını esirgemeyen doktora tez danışmanım sayın Prof. Dr. Yusuf CUNEDİOĞLU'na en içten teşekkürlerimi sunarım. Ayrıca Doktora tez izleme komitesi üyeleri Prof. Dr. Ahmet YAPICI ile Doç. Dr. Serkan TOROS'a ve Niğde Ömer Halisdemir Üniversitesi Makine Mühendisliği Bölüm Öğretim Üyelerine ve aileme teşekkür ederim.

İÇİNDEKİLER

ÖZETiv	V
SUMMARY	V
ÖN SÖZ v	i
İÇİNDEKİLERvi	i
ÇİZELGELER DİZİNİix	K
ŞEKİLLER DİZİNİ	K
SİMGE VE KISALTMALARxvii	i
BÖLÜM I GİRİŞ1	1
BÖLÜM II LİTERATÜR ÖZETİ	3
BÖLÜM III TEZİN AMACI12	2
BÖLÜM IV TİMOSHENKO KİRİŞ TEORİSİ VE RİJİTLİK MATRİSİ14	1
4.1 Timoshenko Kirişin Rijitlik Matrisi	1
4.2 Timoshenko Kirişin Kütle Matrisi	5
4.3 Çubuk Elemanın Rijitlik ve Kütle Matrislerinin Belirlenmesi)
4.4 Çatlak Elemanın Rijitliğinin Belirlenmesi	3
BÖLÜM V FONKSİYONEL DERECELENDİRİLMİŞ ÇATLAKLI SABİT	
KESİTLİ KİRİŞ41	1
5.1 Fonksiyonel Derecelendirilmiş Malzemeli Kirişin Modellenmesi ve Efektif	
Malzeme Özelliklerinin Belirlenmesi41	1
5.2 Çatlaklı Kiriş Modelin Doğrulanması	3
5.3 Fonksiyonel Derecelendirilmiş (FD) Kirişin Doğrulanması	1
5.4 Problemin Tanımlanması ve İrdelenmesi	5
BÖLÜM VI FONKSİYONEL DERECELENDİRİLMİŞ KADEMELİ ÇATLAKLI	
KİRİŞLER	1
6.1 Tek Çatlaklı Kiriş Modelin Doğrulanması	1
6.2 Tek Çatlaklı Kademeli Kirişin Doğrulanması ve Analizi	5
6.3 Çift Çatlaklı Kademeli Kirişin Doğrulanması ve Analizi)
BÖLÜM VII LİNEER OLMAYAN DEĞİŞKEN KESİTLİ ÇATLAKLI	
FONKSİYONEL DERECELENDİRİLMİŞ KİRİŞLER	7

7.1 Exponansiyel Değişken Kesitli FDM Kiriş	87
7.1.1 Çatlaksız kiriş modelin doğrulanması	87
7.1.2 Tek çatlaklı kirişin doğrulanması ve analizi	88
7.1.3 Çift çatlaklı kirişin doğrulanması ve analizi	98
7.2 Doğrusal (lineer) Değişken Kesitli FDM Kiriş	. 108
7.2.1 Tek çatlaklı kirişin doğrulanması ve analizi	. 108
7.2.2 Çift çatlaklı kirişin doğrulanması ve analizi	. 117
BÖLÜM VIII SONUÇLAR	. 127
KAYNAKLAR	. 131
EKLER	. 141
ÖZ GEÇMİŞ	. 210

ÇİZELGELER DİZİNİ

Çizelge 5.1. İki çatlaklı kirişe ait ilk üç doğal frekans değeri	44
Çizelge 5.2. FD malzemeyi oluşturan malzemelerin malzeme sabitleri	45
Çizelge 5.3. FD basit mesnetli Timoshenko kirişin ilk dört doğal frekansı	45
Çizelge 6.1. Çatlaklı homojen izotrop ankastre kirişte 1. doğal frekans değerleri	54
Çizelge 7.1. Eksponansiyel değişken kesitli FD malzemeli sandviç kirişin	
$\beta = -1/L$ için yakınsama analizi	88
Cizelge 7.2. Basit mesnetli FD sandvic kirisin ilk üç doğal frekansları	88

ŞEKİLLER DİZİNİ

Şekil 4.1. Kayma deformasyonuna sahip Timoshenko kirişi (Logan, 2007)	. 14
Şekil 4.2. Diferansiyel kiriş elemanı	. 15
Şekil 4.3. Basit eğilmeye maruz kiriş eleman	. 16
Şekil 4.4. Kiriş elemanda pozitif düğüm yerdeğiştirmesi, dönme, kuvvet ve	
momentler (Logan, 2007)	. 24
Şekil 4.5. Kiriş elemanda kesme kuvvetleri ve eğilme momentleri için işaret kabulü	. 24
Şekil 4.6. İki düğümlü tek serbestlik dereceli kiriş eleman	. 29
Şekil 5.1. FD simetrik sandviç kiriş	.41
Şekil 5.2. Elastisite modülünün kalınlık boyunca değişimi (a) ve yoğunluğun	
boyunca değişimi (b)	. 42
Şekil 5.3. İki çatlaklı ankastre kiriş modeli	. 44
Şekil 5.4. Basit mesnetli FD simetrik kiriş	. 45
Şekil 5.5. İkinci çatlak konumunun ($Lc2/L$) ve ikinci çatlak derinliği oranının (a2/b)	
1. doğal frekanslara etkisi	. 47
Şekil 5.6. İkinci çatlak konumunun ($Lc2/L$) ve ikinci çatlak derinliği oranının (a2/b)	
2. doğal frekanslara etkisi	. 47
Şekil 5.7. İkinci çatlak konumunun ($Lc2/L$) ve ikinci çatlak derinliği oranının (a2/b)	
3. doğal frekanslara etkisi	. 48
Şekil 5.8. İkinci çatlak konumunun (<i>Lc2/L</i>) ve ikinci çatlak derinliği oranının (a2/b)	
4. doğal frekanslara etkisi	. 48
Şekil 5.9. Birinci çatlak derinliği $(a1/b)$ ve ikinci çatlak derinliği oranının $(a2/b)$	
doğal frekanslara etkisi	. 50
Şekil 5.10. Polinom derecesinin (<i>n</i>) ve ikinci çatlak derinliği oranının ($a2/b$) doğal	
frekanslara etkisi	. 51
Şekil 5.11. Polinom derecesinin (n) ve birinci çatlak derinliği oranının $(a1/b)$ doğal	
frekanslara etkisi	. 52
Şekil 5.12. Polinom derecesinin (<i>n</i>) ve ikinci çatlak konumunun ($Lc2/L$) doğal	
frekanslara etkisi	. 53
Şekil 6.1. Ankastre kirişe ait kesit geometrileri	. 55

Şekil 6.2. <i>Ls/L</i> =0.25 için eksponansiyel fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 1. doğal	
frekanslara etkisi	. 56
Şekil 6.3. <i>Ls/L</i> =0.25, <i>n</i> =5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 1. doğal	
frekanslara etkisi	. 56
Şekil 6.4. Ls/L=0.25 için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 2. doğal	
frekanslara etkisi	. 57
Şekil 6.5. <i>Ls/L</i> =0.25, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 2. doğal	
frekanslara etkisi	. 57
Şekil 6.6. <i>Ls/L</i> =0.25 için eksponansiyel fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 3. doğal	
frekanslara etkisi	. 58
Şekil 6.7. <i>Ls/L</i> =0.25, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 3. doğal	
frekanslara etkisi	. 58
Şekil 6.8. <i>Ls/L</i> =0.25 için eksponansiyel fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 4. doğal	
frekanslara etkisi	. 59
Şekil 6.9. <i>Ls/L</i> =0.25, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 4. doğal	
frekanslara etkisi	. 59
Şekil 6.10. <i>Lc/L</i> =0.2 için eksponansiyel fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 1. doğal	
frekanslara etkisi	. 60
Şekil 6.11. <i>Lc/L</i> =0.2, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 1. doğal	
frekanslara etkisi	. 60
Şekil 6.12. <i>Lc/L</i> =0.2 için eksponansiyel fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin	
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 2. doğal	
frekanslara etkisi	61

Şekil 6.13. <i>Lc/L</i> =0.2, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 2. doğal
frekanslara etkisi61
Şekil 6.14. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 3. doğal
frekanslara etkisi
Şekil 6.15. <i>Lc/L</i> =0.2, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 3. doğal
frekanslara etkisi
Şekil 6.16. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 4. doğal
frekanslara etkisi
Şekil 6.17. <i>Lc/L</i> =0.2, n=5 için polinom fonksiyonla tanımlı <i>A</i> , <i>B</i> , <i>C</i> kesitli kirişlerin
kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 4. doğal
frekanslara etkisi
Şekil 6.18. <i>Ls/L</i> =0.25 ve <i>Lc/L</i> =0.2 için polinom derecesinin farklı kesit ve farklı
çatlak derinlikleriyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi 64
Şekil 6.19. <i>Ls/L</i> =0.25 ve <i>Lc/L</i> =0.2 için polinom derecesinin farklı kesit ve farklı
çatlak derinlikleriyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi 64
Şekil 6.20. <i>Ls/L</i> =0.25 ve <i>Lc/L</i> =0.2 için polinom derecesinin farklı kesit ve farklı
çatlak derinlikleriyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi 65
Şekil 6.21. <i>Ls/L</i> =0.25 ve <i>Lc/L</i> =0.2 için polinom derecesinin farklı kesit ve farklı
çatlak derinlikleriyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi 65
Şekil 6.22. <i>Ls/L</i> =0.25 ve <i>a</i> =2 mm için çatlak konumunun farklı kesit ve farklı
polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi 66
Şekil 6.23. <i>Ls/L</i> =0.25 ve <i>a</i> =2 mm için çatlak konumunun farklı kesit ve farklı
polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi 66
Şekil 6.24. <i>Ls/L</i> =0.25 ve <i>a</i> =2 mm için çatlak konumunun farklı kesit ve farklı
polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi 67
Şekil 6.25. <i>Ls/L</i> =0.25 ve <i>a</i> =2 mm için çatlak konumunun farklı kesit ve farklı
polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi 67
Şekil 6.26. $Lc/L=0.2$ ve $a=2$ mm için kademe konumunun farklı kesit ve farklı
polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi 68

Şekil 6.27.	Lc/L=0.2 ve $a=2$ mm için kademe konumunun farklı kesit ve farklı	
	polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi	. 68
Şekil 6.28.	Lc/L=0.2 ve $a=2$ mm için kademe konumunun farklı kesit ve farklı	
	polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi	. 70
Şekil 6.29.	Lc/L=0.2 ve $a=2$ mm için kademe konumunun farklı kesit ve farklı	
	polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi	. 70
Şekil 6.30.	Ankastre kirişe ait kesit geometrileri	. 70
Şekil 6.31.	<i>Lc1/L, Ls/L</i> =0.25 ve $a1=0.5$ için eksponansiyel fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci	
	çatlak derinliği (a2) için 1. doğal frekanslara etkisi	.71
Şekil 6.32.	<i>Lc1/L, Ls/L</i> =0.25, <i>a</i> 1=0.5 ve $n=5$ için polinom fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun $(Lc2/L)$ ve farklı ikinci	
	çatlak derinliği (a2) için 1. doğal frekanslara etkisi	. 72
Şekil 6.33.	<i>Lc1/L, Ls/L</i> =0.25 ve $a1=0.5$ için eksponansiyel fonksiyonla tanımlı A,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun $(Lc2/L)$ ve farklı ikinci	
	çatlak derinliği (a2) için 2. doğal frekanslara etkisi	. 72
Şekil 6.34.	<i>Lc1/L</i> , <i>Ls/L</i> =0.25, <i>a</i> 1=0.5 ve $n=5$ için polinom fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun $(Lc2/L)$ ve farklı ikinci	
	çatlak derinliği (a2) için 2. doğal frekanslara etkisi	.73
Şekil 6.35.	<i>Lc1/L</i> , <i>Ls/L</i> =0.25 ve $a1=0.5$ için eksponansiyel fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci	
	çatlak derinliği (a2) için 3. doğal frekanslara etkisi	. 73
Şekil 6.36.	<i>Lc1/L</i> , <i>Ls/L</i> =0.25, <i>a</i> 1=0.5 ve $n=5$ için polinom fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci	
	çatlak derinliği (a2) için 3. doğal frekanslara etkisi	.74
Şekil 6.37.	<i>Lc1/L</i> , <i>Ls/L</i> =0.25 ve $a1=0.5$ için eksponansiyel fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci	
	çatlak derinliği (a2) için 4. doğal frekanslara etkisi	.74
Şekil 6.38.	<i>Lc1/L</i> , <i>Ls/L</i> =0.25, <i>a</i> 1=0.5 ve <i>n</i> =5 için polinom fonksiyonla tanımlı <i>A</i> ,	
	<i>B</i> , <i>C</i> kesitli kirişlerin ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci	
	çatlak derinliği (a2) için 4. doğal frekanslara etkisi	.75
Şekil 6.39.	<i>Lc1/L, Ls/L</i> =0.25, $a1$ =0.5 mm ve <i>Lc2/L</i> =0.4 için polinom derecesinin	
	farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 1.doğal	
	frekanslar üzerindeki etkisi	.76

Şekil 6.40.	Lc1/L, $Ls/L=0.25$, $a1=0.5$ mm ve $Lc2/L=0.4$ için polinom derecesinin	
	farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 2.doğal	
	frekanslar üzerindeki etkisi	76
Şekil 6.41.	Lc1/L, $Ls/L=0.25$, $a1=0.5$ mm ve $Lc2/L=0.4$ için polinom derecesinin	
	farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 3.doğal	
	frekanslar üzerindeki etkisi	. 77
Şekil 6.42.	Lc1/L, $Ls/L=0.25$, $a1=0.5$ mm ve $Lc2/L=0.4$ için polinom derecesinin	
	farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 4.doğal	
	frekanslar üzerindeki etkisi	. 77
Şekil 6.43.	Lc1/L=0.2, $Ls/L=0.25$, $a1=0.5$ mm ve $a=2$ mm için ikinci çatlak	
	konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin	
	1.doğal frekanslar üzerindeki etkisi	. 78
Şekil 6.44.	Lc1/L=0.2, $Ls/L=0.25$, $a1=0.5$ mm ve $a=2$ mm için ikinci çatlak	
	konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin	
	2.doğal frekanslar üzerindeki etkisi	. 78
Şekil 6.45.	Lc1/L=0.2, $Ls/L=0.25$, $a1=0.5$ mm ve $a=2$ mm için ikinci çatlak	
	konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin	
	3.doğal frekanslar üzerindeki etkisi	. 79
Şekil 6.46.	Lc1/L=0.2, $Ls/L=0.25$, $a1=0.5$ mm ve $a=2$ mm için ikinci çatlak	
	konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin	
	4.doğal frekanslar üzerindeki etkisi	. 79
Şekil 6.47.	Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm için eksponansiyel fonksiyonla	
	tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı	
	ikinci çatlak derinliği (a) için 1. doğal frekanslara etkisi	. 80
Şekil 6.48.	<i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve n=5 için polinom fonksiyonla	
	tanımlı A, B, C kesitli kirişlerin kademe konumunun (<i>Ls/L</i>) ve farklı	
	ikinci çatlak derinliği (a) için 1. doğal frekanslara etkisi	. 80
Şekil 6.49.	Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm için eksponansiyel fonksiyonla	
	tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı	
	ikinci çatlak derinliği (a) için 2. doğal frekanslara etkisi	. 81
Şekil 6.50.	<i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve n=5 için polinom fonksiyonla	
	tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı	
	ikinci çatlak derinliği (a) için 2. doğal frekanslara etkisi	. 81

Şekil 6.51. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm için eksponansiyel fonksiyonla
tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı
ikinci çatlak derinliği (a) için 3. doğal frekanslara etkisi
Şekil 6.52. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve n=5 için polinom fonksiyonla
tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı
ikinci çatlak derinliği (a) için 3. doğal frekanslara etkisi
Şekil 6.53. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm için eksponansiyel fonksiyonla
tanımlı A, B, C kesitli kirişlerin kademe konumunun (<i>Ls/L</i>) ve farklı
ikinci çatlak derinliği (a) için 4. doğal frekanslara etkisi
Şekil 6.54. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve n=5 için polinom fonksiyonla
tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı
ikinci çatlak derinliği (a) için 4. doğal frekanslara etkisi
Şekil 6.55. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve <i>a</i> 2=2 mm için kademe konumunun
farklı kesit ve farklı polinom derecesiyle değişimlerinin 1.doğal
frekanslar üzerindeki etkisi
Şekil 6.56. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve <i>a</i> 2=2 mm için kademe konumunun
farklı kesit ve farklı polinom derecesiyle değişimlerinin 2.doğal
frekanslar üzerindeki etkisi
Şekil 6.57. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve <i>a</i> 2=2 mm için kademe konumunun
farklı kesit ve farklı polinom derecesiyle değişimlerinin 3.doğal
frekanslar üzerindeki etkisi
Şekil 6.58. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/L=0.4, <i>a</i> 1=0.5 mm ve <i>a</i> 2=2 mm için kademe konumunun
farklı kesit ve farklı polinom derecesiyle değişimlerinin 4.doğal
frekanslar üzerindeki etkisi
Şekil 7.1. Tek çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü
Şekil 7.2. Eksponansiyal değişken kesitli tek çatlaklı kirişe ait ilk 4 mod şekilleri 90
Şekil 7.3. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu $Lc/L=0.2$ ve
<i>n</i> =5 için geometrik indeks (β) ve farkı çatlak derinliği oranının (<i>a</i> / <i>b</i>) ilk
dört doğal frekanslara etkisi92
Şekil 7.4. Eksponansiyel ve polinom fonksiyonlar için $\beta = -1/L$ ve $n=5$ için çatlak
konumunun (Lc/L) ve farklı çatlak derinliği oranının (a/b) ilk dört doğal
frekanslara etkisi94
Şekil 7.5. Polinom fonksiyonlar için $a/b=0.2$ ve $\beta = -1/L$ için çatlak konumunun
(Lc/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi95

Şekil 7.6. $Lc/L=0.2$ ve $\beta = -1/L$ için polinom derecesinin (<i>n</i>) farklı çatlak derinliği
oranının (<i>a/b</i>) ilk dört doğal frekanslara etkisi9
Şekil 7.7. $Lc/L=0.2$ ve $a/b=0.2$ için geometrik indeks (β) ve polinom derecesinin
(n) ilk dört doğal frekanslara etkisi97
Şekil 7.8. $Lc/L=0.2$ ve $\beta = -1/L$ için çatlak derinliği oranının (a/b) ve farklı
polinom derecelerinin (n) ilk dört doğal frekanslara etkisi
Şekil 7.9. Çift çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü99
Şekil 7.10. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu $Lc1/L=0.2$,
<i>Lc2/L</i> =0.4, $a1/b=0.2$ ve $n=5$ için geometrik indeks (β) ve farkı ikinci
çatlak derinliği oranının $(a2/b)$ ilk dört doğal frekanslara etkisi 10
Şekil 7.11. $Lc1/L=0.2$, $Lc2/L=0.4$, $a1/b=0.2$ ve $a2/b=0.2$ için geometrik indeks (β)
ve polinom derecesinin (n) ilk dört doğal frekanslara etkisi10
Şekil 7.12. $Lc1/L=0.2$, $Lc2/L=0.4$, $a1/b=0.2$ ve $\beta = -1/L$ için polinom derecesinin
(n) farklı ikinci çatlak derinliği oranının $(a2/b)$ ilk dört doğal
frekanslara etkisi102
Şekil 7.13. Eksponansiyel ve polinom fonksiyonlar için <i>Lc</i> 1/ <i>L</i> =0.2, <i>a</i> 1/ <i>b</i> =0.2,
$\beta = -1/L$ ve <i>n</i> =5 için ikinci çatlak konumunun (<i>Lc</i> 2/ <i>L</i>) ve farklı ikinci
çatlak derinliği oranının $(a2/b)$ ilk dört doğal frekanslara etkisi 104
Şekil 7.14. Polinom fonksiyonlar için <i>Lc</i> 1/ <i>L</i> =0.2, <i>a</i> 1/ <i>b</i> =0.2, <i>a</i> 2/ <i>b</i> =0.2 ve $\beta = -1/L$
için ikinci çatlak konumunun ($Lc2/L$) ve farklı polinom derecesinin (n)
ilk dört doğal frekanslara etkisi10
Şekil 7.15. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/ <i>L</i> =0.4, <i>a</i> 2/ <i>b</i> =0.2 ve $\beta = -1/L$ için birinci çatlak derinliği
oranının $(a1/b)$ ve farklı polinom derecelerinin (n) ilk dört doğal
frekanslara etkisi10
Şekil 7.16. <i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/ <i>L</i> =0.4, $\beta = -1/L$ ve <i>n</i> =5 için birinci çatlak derinliği
oranının $(a1/b)$ farklı $(a2/b)$ çatlak derinliği oranlarıyla değişimlerinin
ilk dört doğal frekanslara etkisi10
Şekil 7.17. Tek çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü 109
Şekil 7.18. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu $Lc/L=0.2$
ve $n=5$ için koniklik oranı ($b2/b1$) ve farkı çatlak derinliği oranlarının
(<i>a/b</i>) ilk dört doğal frekanslara etkisi

Şekil 7.19.	Eksponansiyel ve polinom fonksiyonlar için $b2/b1=0.2$ ve $n=5$ için
	çatlak konumunun (Lc/L) ve farklı çatlak derinliği oranının (a/b) ilk
	dört doğal frekanslara etkisi113
Şekil 7.20.	Polinom fonksiyonlar için $a/b=0.2$ ve $b2/b1=0.2$ için çatlak konumunun
	(Lc/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi. 114
Şekil 7.21.	Lc/L=0.2 ve $b2/b1=0.2$ için polinom derecesinin (<i>n</i>) farklı çatlak
	derinliği oranının (a/b) ilk dört doğal frekanslara etkisi 115
Şekil 7.22.	Lc/L= 0.2 ve $a/b=0.2$ için koniklik oranı ($b2/b1$) ve polinom derecesinin
	(n) ilk dört doğal frekanslara etkisi116
Şekil 7.23.	Lc/L=0.2 ve $b2/b1=0.2$ için çatlak derinliği oranının (a/b) ve farklı
	polinom derecelerinin (n) ilk dört doğal frekanslara etkisi 116
Şekil 7.24.	Çift çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü 117
Şekil 7.25.	Eksponansiyel ve polinom fonksiyonlar için çatlak konumu Lc1/L=0.2,
	Lc2/L=0.4, $a1/b=0.2$ ve $n=5$ için koniklik oranı ($b2/b1$) ve farkı ikinci
	çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi 119
Şekil 7.26.	<i>Lc</i> 1/ <i>L</i> =0.2, <i>Lc</i> 2/ <i>L</i> =0.4, <i>a</i> 1/ <i>b</i> =0.2 ve <i>a</i> 2/ <i>b</i> =0.2 için koniklik oranı (<i>b</i> 2/ <i>b</i> 1)
	ve polinom derecesinin (n) ilk dört doğal frekanslara etkisi 120
Şekil 7.27.	Lc1/L=0.2, $Lc2/L=0.4$, $a1/b=0.2$ ve $b2/b1=0.2$ için polinom derecesinin
	(n) farklı ikinci çatlak derinliği oranının $(a2/b)$ ilk dört doğal
	frekanslara etkisi
Şekil 7.28.	Eksponansiyel ve polinom fonksiyonlar için Lc1/L=0.2, a1/b=0.2,
	b2/b1=0.2 ve $n=5$ için ikinci çatlak konumunun ($Lc2/L$) ve farklı ikinci
	çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi 123
Şekil 7.29.	Polinom fonksiyonlar için <i>Lc</i> 1/ <i>L</i> =0.2, <i>a</i> 1/ <i>b</i> =0.2, <i>a</i> 2/ <i>b</i> =0.2 ve <i>b</i> 2/ <i>b</i> 1=0.2
	için ikinci çatlak konumunun ($Lc2/L$) ve farklı polinom derecesinin (n)
	ilk dört doğal frekanslara etkisi124
Şekil 7.30.	Lc1/L=0.2, $Lc2/L=0.4$, $a2/b=0.2$ ve $b2/b1=0.2$ için birinci çatlak derinliği
	oranının $(a1/b)$ ve farklı polinom derecelerinin (n) ilk dört doğal
	frekanslara etkisi
Şekil 7.31.	Lc1/L=0.2, $Lc2/L=0.4$, $b2/b1=0.2$ ve $n=5$ için birinci çatlak derinliği
	oranının farklı (a2/b) çatlak derinliği oranlarıyla değişimlerinin ilk dört
	doğal frekanslara etkisi

SİMGE VE KISALTMALAR

Simgeler	Açıklama
М	Eğilme momenti
Ε	Elastiklik modülü
Ec	Seramiğin elastisite modulünü
Em	Metalin elastisite modulünü
ρ	Malzeme yoğunluğu
$ ho_c$	Seramiğin yoğunluğu
$ ho_m$	Metalin yoğunluğunu
Ι	Alan atalet momenti
G	Kayma rijitlik modülü
Α	En kesit alanını
V	Shear Force
ks	Kayma faktörünü
γ	Kayma düzeltme faktörünü
$\phi(x)$	Eğilme momentinden dolayı oluşan dönmeyi
$\beta(x)$	Kesme kuvvetten dolayı oluşan dönmeyi ifade etmektedir
и	Axial displacement
Е	Şekil değiştirme
σ	Gerilme
V	Poisson oranı
κ	Şekil düzeltme faktürü
$\left\{ d ight\}$	Düğüm serbestlik derecelerini
Ν	Şekil fonksiyonlarını
k	Rijitlik matrisi
$[M_T]$	Kütle matrisi öteleme
$[M_R]$	Dönme kütle matrisi
[M]	Mass matrix

K_{el}	Elaman rijitlik matrisi
M_{el}	Elaman kütle matrisi
J	Şekil değiştirme enerjisi salıverinim oranlarını
U	Strain energy of a cracked structure
<i>U</i> _i	Displacement caused by the crack
C _{ij}	Esneklik katsayı
С	Compliance matrix
Kcr	Çatlak rijitlik matrisi
у	koordinat ekseni
n	polinom derecesi
Ν	Tabaka sayısı
L	Uzunluk
d	Genişlik
b	Kalınlığı
Lc1	Birinci çatlak konumu
Lc2	İkinci çatlak konumu
<i>a</i> 1	Birinci çatlak derinliği
a2	İkinci çatlak derinliği
n	Polinom derecesini
Ls	Kademe konumu
<i>b</i> 1	Kademeli kısmın kalınlığı
<i>d</i> 1	Kademeli kısmın genişliği
(β)	Geometrik indeks

Kısaltmalar Açıklama

FDMFonksiyonel Derecelendirilmiş MalzemeFEASonlu elamanlar analiziFEMSonlu elamanlar metodu

BÖLÜM I

GİRİŞ

Farklı malzeme özelliklerinin bir araya getirilerek oluşturulan malzemelere kompozit malzemeler adı verilmektedir. Kompozit malzemelerin hafifliği ve yüksek mukavemetli olmaları nedeniyle endüstriyel alanlarda çok yaygın bir şekilde kullanılmaktadır. Özellikle tabakalı kompozit malzemelerden yapılmış yapısal elemanlarda tabaka malzeme özelliklerinin farklı olmasından kaynaklanan tabakalar arasında yüksek gerilmeler oluşmaktadır. Oluşan bu yüksek gerilmelerden dolayı tabakalar arası çatlak ve ayrışmalar (delaminasyon) oluşabilmektedir. Örneğin yüksek sıcaklığa maruz bir metal yapı elamanı seramik malzemeyle kaplandığında seramiğin yüksek sıcaklık direncinden dolayı bu metal yapı sıcaklığa karşı korunabilmektedir. Oluşan bu kompozit yapının malzeme özelliklerinin birbirlerinden çok farklı olması nedeniyle sıcaklıkla birlikte malzeme birleşme yüzeylerinde gerilme yığılmaları ve bu durumun bir sonucu olarak çatlak ve ayrışmalar oluşmaktadır. Böyle bir problemi ortadan kaldırmanın yolu fonksiyonel derecelendirilmiş malzemeli bir tasarımdır. Fonksiyonel derecelendirilmiş malzeme fikri ilk kez 1984 yılında bir grup Japon bilim adamlarının termal bariyer tasarımı sırasında ortaya çıkmıştır. Fonksiyonel derecelendirilmiş malzeme tasarımı seramik ve metal malzeme karışımı fonksiyonel olarak bir doğrultu boyunca malzeme özellikleri sürekli olarak değiştirilmektedir. Dolayısıyla böyle bir tasarımda tabakalar arası malzeme özellikleri bir birine çok yakın olması nedeniyle yukarıda bahsedilen sakıncalı durumun önüne geçilmektedir. Yeni bir malzeme olarak ortaya çıkan FDM birçok araştırmacının ilgisini çekmektedir. Haliyle tasarımda yaygın olarak kullanılan bu malzemenin dinamik davranışının bilinmesi önem arz etmektedir.

Günümüzde özelikle makine, inşaat ve uzay teknolojilerinde yaygın bir şekilde kiriş elemanlar kullanılmaktadır. Bu yapı elemanlarının gerek imalatında gerekse çalışma ve çevre şartlarından kaynaklı yüzey çatlaklı hasar durumlarıyla karşılaşılmaktadır. Yapıdaki çatlak mevcudiyeti yapının rijitlik düşüşlerine sebep olmaktadır. Yapıdak rijitlik düşüşü sistemin serbest titreşim karakteristiğini etkilemektedir. Bu nedenle tasarım esnasında bu durumun göz ardı edilmemesi gerekir. Yukarıda yapılan tüm bu açıklamalardan anlaşılacağı üzere, homojen izotrop ve FD malzemeli çatlaklı kirişlerin dinamik davranışıyla ilgili pek çok çalışma yapılmış ancak FD malzemeli kedemeli, uzunluk boyunca doğrusal değişken ve eksponansiyel değişken kesitli çatlaklı kirişlerin klasik laminasyon teorisi yaklaşımıyla serbest titreşim konusunun incelendiği görülmemiştir. Bu nedenle tez çalışmamızda, bahsedilen çatlaklı kirişlere ait serbest titreşim konusu incelenmiştir. Bu çalışmanın gelecekte de, farklı tipte değişken kesitli birden fazla çok çatlak ihtiva eden kirişlerin incelenmesine ışık tutacağı beklenmektedir.

Bu tez çalışmasında kalınlığı sabit, değişken kesitli ve kademeli, fonksiyonel derecelendirilmiş malzemeli çatlaklı kirişlerin serbest titreşim durumu incelenmiştir. Tez çalışmasında FDM seramik (Al_2O_3) ve alüminyumdan (Al) oluştuğu kabul edilmiştir. FDM'nin malzeme özellikleri olan yoğunluk ve Young modülünün kalınlık boyunca eksponansiyel ve üstel bir (n) kuvvet parametreli fonksiyonlarla tanımlanmıştır. Analizlerde simetrik sandviç yapıda FDM kirişler kullanılmıştır. Bu yapılara ait efektif yoğunluk ve elastisite modülü tabakalı kompozit kiriş teorisi kullanılarak belirlenmiştir. Çatlak bir düğüm vasıtasıyla boyutsuz ve kütlesiz bir yay elemanla temsil edilmiştir. Tezde Timoshenko kiriş teorisi kullanılarak sonlu elemanlar metoduyla çözüm yapılmıştır. Problemin simülasyonu için MATLAB'ta sonlu elemanlar kodu yazılarak yapılara ait doğal frekanslar hesaplanmıştır. Ayrıca bu sonuçlar ANSYS paket programıyla doğrulanmıştır.

BÖLÜM II

LİTERATÜR ÖZETİ

Literatürde çatlak ihtiva eden homojen ve izotrop malzemeli kirişlerin serbest titreşimiyle ilgili birçok çalışma mevcut olup bunlardan bazı referanslar şöyledir;

Kısa vd. (1998) çatlak içeren Timoshenko kirişinin titreşim karakteristiklerini Bileşen Mod Sentezi (Component Mode Synthesis) metodunu sonlu elamanlar yöntemiyle birleştirerek analiz etmişlerdir. Bu çalışmada çatlak lineer bir elastik yayla modellenmiştir. Kısa ve Brandon (2000), çatlaklı kirişlerin özdeğer probleminin çözümü için bir sonlu eleman modeli geliştirmişlerdir. Çalışmalarında, çatlaklı yapının modellenmesinde Sonlu Elemanlar Metodu, Bileşen Mod Sentezi ve Lineer Elastik Kırılma Mekaniği Teorilerinden yararlanmışlardır. Yan vd. (2016) kapalı çözüm yoluyla simetrik olmayan sınır koşulları için Euler-Benoulli kiriş teorisi kullanarak çoklu enine çatlaklarla homojen kirişlerin serbest titreşimlerini incelemiştir. Zeng vd. (2017) çatlak konsol kirişlerinin dinamik karakteristiklerini farklı çatlak türleri kullanarak analiz etmiştir. Çatlak seviyelerinin değerlendirilmesi için alan hasar faktörü sunularak çatlaklı kirişlerin sonlu eleman modellerini kurmak için Ansys yazılımı kullanılmıştır. Liu vd. (2017) bir eğik kenar çatlağıyla konsol kirişin serbest titreşimlerini Euler-Bernoulli kiriş teorisini kullanarak analiz etmiştir. Kütlesiz yay elemanın eşdeğer rijitlik modeli kirişin genişliği boyunca çok sayıda düzgün ince parçalara ayrılması oluşturulmuştur. Attar vd. (2017) elastik zemine oturan çatlaklı kirişlerin hareketli harmonik yük altında dinamik tepkileri Timoshenko kiriş teorisi kullanılarak çalışılmışlardır. Bu çalışma, bir lineer moment rotasyonuyla kütlesiz burulma yayı ile temsil edilmiştir. Yokoyama ve Chen (1998) bir yay modeli (line spring model) ile kenar çatlaklı kirişlerin titreşimlerini analiz etmişlerdir. Farklı pozisyonlardaki farklı derinlikteki kenar çatlakları için Düzgün Euler-Bernolu modeli kullanılmıştır. Shen ve Pierre (1994) tek kenar çatlaklı kirişlerin serbest titreşimlerini Euler-Bernoulli kiriş teorisi ile basit mesnetli ve konsol kirişler için analiz etmişlerdir. Zheng and Kessissoglou (2004) tam eklemeli esneklik matrisi kullanımıyla yeni bir rijitlik matrisi elde ederek sonlu elemanlar yöntemi ile bir çatlaklı kirişin serbest titreşimlerini analiz etmişlerdir. Kısa (2004) sonlu eleman ve bileşen mod sentezi yöntemi kullanarak çok çatlaklı bir konsol kompozit kirişin serbest titreşimlerini çalışmıştır. Çalışmada kompozit kiriş bileşenleri lineer yaylar tarafından bağlanmıştır. Loya vd. (2006) basit mesnetli Timoshenko çatlaklı kirişlerin eğilme titreşimleri için doğal frekans analizlerini incelemişlerdir. Bu çalışma, uzamalı ve dönel iki kütlesiz yay ile temsil edilmistir. Shin vd. (2006) elastik teori tabanlı açık çatlaklı Euler Bernoulli kirişinin doğal frekanslarını çalışmışlardır. Çatlak kütlesiz bir yayla temsil edilmiştir. Aydın (2007) dört klasik sınır koşulu ve keyfi sayıdaki çatlaklar ile eksensel yüklü Timoshenko kirişinin frekanslarını analiz etmiştir. Çatlak, bir kütlesiz dönel yay ile temsil edilmiştir. Viola vd. (2007) dinamik rijitlik yöntemini kullanarak eksensel yüklü çatlaklı Timoshenko kirişin serbest titreşimlerini çalışmıştır. Çatlak, dinamik rijitlik matrisi ve düz bir yay (line-spring) elemanı ile temsil edilmiştir. Zamorska vd. (2015) sonlu elemanlar metodu ve Catia yazılımı kullanarak değişken kesit alanı için çatlak parametrelerinin Bernoulli-Eular kirisinin serbest titresimleri üzerindeki etkilerini analiz etmiştir. Bojangiu vd. (2014) transfer matris metodunu kullanarak değişken kesit alanlı Euler-Bernoulli kirişlerinin serbest titreşimlerini analiz etmişlerdir. Torabi vd. (2012) diferansiyel dönüşüm metodu kullanarak çatlaklı kirişlerin serbest titreşim eşitlikleri için çözümler sunmuşlardır. Simetrik olmayan sınır koşulları için frekans faktörü incelenmesinde Euler-Bernoulli kiriş teorisi kullanılmıştır. Çatlak kesitlerinde dönel yaylar kullanılmıştır.

Öte yandan, FDM kirişlerinin dinamik ve serbest titreşim karakteristiklerini araştıran birçok çalışma bulunmaktadır.

Alshorbagy vd. (2011) fonksiyonel derecelendirilmiş kirişin dinamik karakteristiklerini incelemişler. Bu çalışmada, malzeme özelliklerinin dağılımı uzunluk veya kalınlık boyunca üstel bir (n) kuvvet parametreli fonksiyonlarla tanımlanmıştır. Euler Bernoulli kiriş teorisi kabulüne dayanarak virtüel iş prensibiyle çalışmanın formülasyunu yapılmıştır. Şimşek vd. (2012) eksenel olarak fonksiyonel derecelendirilmiş basit mesnetli bir kirişin hareketli harmonik yük etkisi altında dinamik davranışını incelemişlerdir. Bu çalışmada kirişin dinamik cevabı Newmark metoduyla elde edilmiştir. Çalışmada hareketli yük hızı, malzeme dağılımı ve uyarıcı frekans paremetreleri araştırılmıştır. Li (2008) fonksiyonel derecelendirilmiş kirişin statik ve dinamik analizleri için yeni bir metodoloji ileri sürmüştür. Çalışmada kirişin kayma deformasyon ve dönme atalet etkileri dikkate alınmıştır. Li vd. (2013) eksenel ve kalınlık boyunca fonksiyonel derecelendirilmiş değişken kesitli kirişlerin statik ve

serbest titreşim analizleri için yeni bir sonlu elaman metodu ileri sürmüştür. Pradhan ve Chakraverty (2013) FDM kirişin serbest titreşim durumunu farklı sınır şartları için araştırmıştır. Elishakoff ve Candan (2001) elastiklik modülü ve malzeme yoğunluğu kiriş ekseni boyunca değişen üniform olmayan FDM kirişin serbest titreşimini incelemişlerdir. Çalışmada farklı sınır şartları için analizler gerçekleştirilmiştir. Aydoğdu ve Taşkın (2007) basit mesnetli FDM kirişin serbest titreşim durumunu incelemişlerdir. Çalışmada elastiklik modülü malzeme kalınlığı boyunca exponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Su ve Banerjee (2015) FDM Timoshenko kirişlerin serbest titreşimlerini dinamik rijitlik metoduyla incelemişlerdir. Çalışmada malzeme özelliklerinin kalınlık boyunca değiştiği farz edilmiştir. Atmane vd. (2011) farklı sınır koşulları için üstel dağılıma göre değişen kesitli FDM'nin serbest titreşimlerini incelemişlerdir. Yılmaz ve Evran (2016) kısa kirişlerin serbest titreşim davranışlarını araştırmışlardır. Analizler deneysel ve sonlu eleman yöntemi ile yapılmıştır. Timoshenko kiriş teorisi, Ansys'te kirişlerin modellenmesinde kullanılmıştır. Lee W. ve Lee Y. (2016) bir konik Benoulli-Euler kirişinin serbest titreşimleri için transfer matris yöntemini geliştirmişlerdir. Shahba vd. (2011a) Euler-Bernoulli kiriş teorisini kullanarak eksensel FDM konik kirişin farklı elastisite ve yoğunluk dağılımları için serbest titreşim ve stabilite (kararlılık) analizlerini incelemişlerdir. Shahba vd. (2011b) sonlu eleman yöntemi yoluyla eksensel FGM konik kirişinin serbest titreşimleri ve stabilite analizlerini Timoshenko kiriş elemanları kullanarak yapmışlardır. Demir vd. (2013a) simetrik FD sandviç kirişin serbest titreşimlerini, basit mesnetli sınır koşulları için Timoshenko ve Euler-Bernoulli kiriş teorisi kullanarak çalışmışlardır. Malzeme özellikleri, üstel ve polinom fonksiyonlar olarak tanımlanmıştır. Yousefi ve Rastgoo (2011) FD uzaysal eğri kirişlerin serbest titreșimini birinci mertebe kayma deformasyon teorisi ve Ritz yöntemi tabanlı çalışmışlardır. Malzeme dağılımı kiriş eğriliğine göre yapılmışken, eğrilik silindirik helisel yayın formunda verilmiştir. Thai ve Vo (2012) FD kirişin eğilme ve serbest titreşim analizleri için yüksek mertebe kayma deformasyon kiriş teorisi çalışmış ve geliştirmişlerdir. Hareket ve sınır koşullarının denklemlerinin elde edilmesinde Hamilton prensibi kullanılırken, FD kirişin malzeme özelliklerinin kuvvet yasası (polinom fonksiyon) dağılımına göre değiştiği varsayılmıştır. Demir vd. (2013b) değişken Winkler elastik zemin tabanlı değişen kesitli FD sandviç kirişlerin serbest titreşimlerini incelemişlerdir. Kiriş genişliği üstel fonksiyona göre kiriş uzunluğu boyunca değişirken, malzeme özellikleri kalınlık boyunca karışım kuralı ve laminat

teorisine göre değiştiği kabul edilmiştir. Chen ve Chang (2017) FD Euler-Bernoulli kirişlerin serbest titreşimlerini dönüştürülmüş kesit yöntemi kullanarak çalışmışlar ve polinom fonksiyona göre kalınlık boyunca malzeme özellikleri değişiyorken klasik sınır koşulları için kapalı formda çözümler sunmuşlardır. Huang ve Li (2010) düzgün olmayan kesitli eksensel FD kirişin farklı sınır koşulları altında serbest titreşimlerini çözmek için özgün ve basit bir yaklaşım ileri sürmüşler ve değişken katsayılarla korunum denklemleri Fredholm integral denklemlerine dönüştürülmüştür. Lee W. ve Lee Y. (2017) FD Bernoulli-Euler bir kirişin serbest titreşimlerini analiz etmek için transfer matris yöntemini geliştirmişlerdir. Wang vd. (2016) iki yönlü FD kirişlerin serbest titreşimlerini araştırmışlardır. Malzeme özellikleri polinom fonksiyona göre uzunluk boyunca değişirken ve kalınlık boyunca değişim üstel fonksiyona (exponansiyel) göre gerçekleşmektedir. Yang vd. (2014) iki boyutlu elastisite teorisi tabanlı ağsız sınır etkili integral denklem yöntemiyle FG sandviç kirişin serbest titreşimini çalışmışlardır. Yang vd. (2015) farklı sınır koşulları için dikdörtgen kesitli çatlaklı FGM kirişlerinin serbest titreşimini Euler-Bernoulli kiriş teorisi ve sürekli rijitlik modeli kullanarak çalışmışlardır. Akbaş (2014) eksensel yük altında kenar çatlaklı FDM kirişinin burkulma sonrası davranışını Lagrange Timoshenko kiriş eleman yaklaşımı kullanarak çalışmıştır. Bu çalışmada, çatlaksız kütle elastik bir dönel yay ile temsil edilmiştir. Burkulma sonrasında oluşan leneer olmayan problemin çözümü için sonlu eleman metodu ile birlikte Newton-Raphson metodu kullanılmıştır. Yan vd. (2011a) Timoshenko kiriş teorisi ve lineer dönel yay modeli kullanarak eksensel sarsıntılı ikaz altındaki açık kenar çatlaklı FDM'nin parametrik kararsızlığını incelemiştir. Malzeme dağılımı kalınlık yönü boyunca üstel (exponansiyel) fonksiyonu ile tanımlanmıştır. Serbest titreşimler farklı sınır şartları için bulunmuştur. Yang ve Yan (2010) çatlak dönel yay modeli ile temsil edilirken, Timoshenko kayma deformasyon kiriş teorisi ve von Karman tipi geometrik doğrusal olmayan tabanlı FDM'nin lineer olmayan dinamik frekans cevabını incelemiştir. Yan vd. (2012) Timoşenko kiriş teorisine, von Karman tipi geometri ve döner yay modeline dayanılarak, hem statik basma hem de bir harmonik uyarılma kuvvetini birleştiren bir parametrik uyarılma altında bir kenar çatlağı olan FDM Timoşenko kirişinin doğrusal olmayan dinamik cevabını araştırmışlardır. Ke vd. (2012) FDM'li kenar çatlaklı kirişin doğrusal olmayan titreşimini Timoshenko kiriş teorisi kullanarak araştırmışlardır. Çatlak, kütlesiz elastik dönel bir yay elamanla temsil edilmiştir. Lineer olmayan titreşim frekansları, farklı sınır koşulları için diferansiyel quadratör metot kullanılarak bulunmuştur. Panigrahi ve Pohit (2016) açık çatlaklı FDM kirişin lineer olmayan serbest titreşimlerini Timoshenko kiriş teorisi temellinde Ritz yaklaşımı ile ankastre-ankastre ve ankastre–serbest sınır şartları için incelemişlerdir.

Literatürde içinde çatlak ihtiva eden FDM kirişlerin serbest titreşimiyle ilgili birçok çalışma mevcuttur. Bunlardan bazıları ise aşağıda verilmiştir;

Wei vd. (2012) eksenel yüklü çatlaklı FDM kirişlerin serbest titreşimi için analitik bir çözüm önermişlerdir. Çalışmada kirişin kayma deformasyon ve dönme atalet etkileri dikkate alınmış olup çatlak dönel bir yay elamanla temsil edilmiştir. Yang ve Chen (2008) çatlaklı FDM kirişlerin serbest titreşim ve burkulma analizlerini Euler -Bernoulli kiriş kuramıyla teorik olarak incelemişlerdir. Çatlak dönel bir yay elamanla temsil edilmiştir. Aydın (2013) birden fazla çatlak içeren FDM kirişlerin serbest titreşimlerini Euler - Bernoulli kiriş teorisiyle araştırmıştır. Çalışmada çatlak kütlesiz dönel bir yayla temsil edilmiştir. Malzeme dağılımı kalınlık boyunca exponansiyel fonksiyonla tanımlanmıştır. Yan ve Yang (2011) FDM çatlaklı kirişlerin eksenel basma kuvvetleri ve kiriş boyunca hareketli yük etkisindeki zorlanmış titreşimlerini analitik olarak ele almışlardır. Çatlak dönel bir yay elamanla temsil edilmiş olup yay esneklikleri kırılma mekaniği ile hesaplanmıştır. Kitipornchai vd. (2009) FDM çatlaklı kirişlerin lineer olmayan titreşimlerini Timoshenko kiriş kuramıyla araştırmışlardır. Çalışmada çatlak kütlesiz dönel bir yay elamanla temsil edilmiştir. Matbuly vd. (2009) elastik desteklenmiş çatlaklı kirişlerin serbest titreşim durumunu diferansiyel quadratör metoduyla incelemişlerdir. Yan vd. (2011b) elastik zemine oturan FDM çatlaklı kirişlerin sabit hızlı hareketli yük etkisi altında dinamik davranışı incelenmiştir. Kirişin kayma deformasyon etkilerini hesaba katmak için Timoshenko kiriş teorisi kullanılmıştır. Ferezqi vd. (2010) FDM çatlaklı Timoshenko kirişlerin serbest titreşimi için analitik bir metot ileri sürmüşlerdir. Akbaş (2013) FDM çatlaklı ankastre bir kirişin serbest titreşimini incelenmiştir. Çalışmada hareketin diferansiyel denklemi Hamilton prensibiyle türetilmiştir. Problemin araştırılması Euler - Bernoulli kiriş teorisi temelinde sonlu elamanlar yöntemiyle gerçekleştirilmiştir. Çalışmada çatlak kütlesiz elastik dönel bir yay elamanla temsil edilmiştir. Wattanasakulpong vd. (2013) tabakalı FDM kirişlerin serbest titreşim frekans değerlerinin tahmini için üçüncü mertebeden kayma deformasyon teorisiyle bir formülizasyon geliştirmişlerdir. Farklı sınır şartları için hareket denklemlerinin çözümünde Ritz motodu kullanılmıştır. Cunedioğlu (2015) simetrik sandviç yapılı FDM çatlaklı kirişlerin serbest titreşim durumunu Timoshenko kiriş teorisine dayalı sonlu elemanlar metoduyla incelemiştir. Malzeme özellikleri kalınlık boyunca dağılımı exponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Yapıdaki çatlak durumu kütlesiz ve boyutsuz bir yay elamanla temsil edilmiştir. Çalışmada çatlak konumunun, çatlak derinliğinin, malzeme dağılım parametresi (n) ve kiriş kalınlık boy oranının doğal frekanslar üzerindeki etkileri araştırılmıştır. Literatür taramasından görüleceği gibi FDM çatlaklı kirişlerin serbest titreşim durumlarıyla ilgili pek çok yaklaşımlar mevcut olup simetrik sandviç yapılı FDM çatlaklı kirişlerle ilgili sınırlı sayıda çalışma mevcuttur.

Kademeli kirişler ile ilgili literatürde birçok çalışma mevcuttur. Çatlak bulunan ve çatlak bulunmayan kademeli kirişlerin titreşim problemlerini incelemek için çeşitli malzemeler ve yöntemler kullanılmıştır;

Jang ve Bert (1989a) farklı sınır koşullarında kademeli kirişin iki farklı kesiti için kirişin doğal frekans değerlerini sonlu elemanlar metodu (FEM) ile kesin çözümler ve sayısal sonuçlar elde etmişlerdir. Jang ve Bert (1989b) farklı sınır koşulları için iki farklı kesitli kademeli bir kirişin daha yüksek mod frekansları için çalışmalarını genişletmişlerdir. Çalışmada ayrıca kademe oranının kiriş frekansı üzerindeki etkilerini de göstermişlerdir. Ju vd. (1994) birinci dereceden kayma deformasyon kiriş teorisi kullanarak kademeli kirişin serbest titreşim analizlerini sonlu elemanlar yöntemi ile sunmuşlardır. Çalışmada kayma deformasyonun etkisi, kademe eksantrikliği, kalınlık değişimi, dinamik sertleşme ve çok kademeli kesitleri detaylı olarak incelenmiştir. Nandwana ve Maiti (1997) kademeli bir ankastre kirişte çatlağın yerini ve boyutunun tespiti için doğal frekansların ölçülmesine dayanan bir yöntem sunmuşlardır. Çatlağı temsil etmek için dönel yay elemanı kullanmışlardır. Li (2001) farklı kesitlere sahip çok kademeli çatlak bulunduran kirişlerin serbest titreşimini analiz etmek için analatik bir çözüm sunmuştur. Kirişin her kadamesi üniform olmayan rastgele sayıda çatlak ve konsantre (concentrated) kütleye sahip olarak dikkate alınmıştır. Naguleswaran (2002a) studied the natural frequencies, sensitivity and mode shape of the three types of stepped beams with ends on classical supports, expressing frequency equations as second-order determinants equated to zero, and presenting the first three frequency parameters. Naguleswaran (2002b) uçları elastik olarak desteklenen üç farklı kesite sahip olan Euler Bernoulli kirişinin frekanslarını elde etmek için dördüncü mertebeden frekans

denklemini sıfıra eşitleyerek analitik bir metot sunmuştur. Yöntem çoğunlukla mühendislik uygulamalarında en sık görülen üç çeşit kademeli kirişe odaklanmıştır. Kısa ve Arif Gürel (2007) düzgün ve kademeli dairesel kesitli çatlaklı kirişin serbest titreşimlerini sonlu eleman ve bileşen mod sentezi yöntemlerini birleştirerek yeni bir yaklaşımla analiz etmişlerdir. Al-Said (2008) konsantre kütleleri taşıyan kademeli ankastre Euler-Bernoulli kirişteki çatlak konumunu ve derinliği belirlemek için matematiksel bir model algoritması kullanan basit teknikler önermiştir. Çatlakların yerinin ve derinliğinin belirlenmesi, sistemin tek bir doğal frekansını izleyerek elde etmiştir. Suddoung vd. (2013) diferansiyel dönüşüm yöntemini (DTM) kullanarak elastik olarak kısıtlanmış uçlara sahip kademeli kirişlerin doğal frekanslarını ve mod şekillerini incelemişlerdir. Çalışmada sınır şartları, kademeli kiriş tipleri, kademe konumu, kademe oranı, yay sabiti gibi frekans ve mod sekillerini etkileyen tüm parametreler ele alınmıştır. Vaz ve de Lima Junior (2016) çok kademeli ve farklı kesitli kirişlerin doğal frekans ve mod şekillerini teorik ve deneysel olarak araştırmışlardır. Çalışmada klasik Bernoulli kiriş teorisi kullanılmışlardır. El-Sayed ve Farghaly (2017) Normalize edilmiş Transfer Matris Yöntemi kullanarak çok kademeli bir Timoshenko kirişinin serbest titreşimini analiz etmek için kesin bir çözüm sunmuşlardır. Çalışmada sonucu doğrulamak için deneysel ve sonlu elemanlar yöntemini kullanılmıştır. Khiem vd. (2017) transfer matrisi metodu ve modal test tekniği kullanarak çatlak bulunan çok kademeli kirişin modal analizini incelemişlerdir. Çalışmada çatlak konumu ve çatlak derinliğinin etkileri ve kiriş kademelerinin ve çatlak konumu etkisi ayrıntılı olarak gösterilmiştir. Su vd. (2018) Timoshenko kiriş teorisini kullanarak, çoklu kademeli FG kirişlerinin genel sınır koşullarında dinamik karakteristiklerini analiz etmek için etkili bir formalizasyon önermişlerdir. Çalışmada malzeme özellikleri, sınır koşulları ve geometrik parametreler gibi frekansları etkileyen parametreleri sunmuşlardır. Khiem vd. (2018) çalışmalarında Timoshenko teorisi ile farklı sınır koşullarında çatlak bulunan çok kademeli bir FG kirişinin serbest titreşim problemini incelemişlerdir. Çatlak, çift yaylı (ötelemeli ve dönel) bir eleman olarak modellenmiştir.

Kiriş uzunluğu boyunca kesiti doğrusal ve eksponansiyel değişen farklı koniklik oranlarına sahip kirişlerin serbest titreşim karakteristikleriyle ilgili bazı çalışmalar aşağıda sunulmuştur;

Khiem vd. (2018) aşağıdaki gibi çatlak bulunan ve bulunmayan uniform olmayan kirişleri geçerli sivrilme oranı (koniklik) ile titreşim karakteristiklerini incelemişlerdir. Wang (1967) Frobenius yöntemini kullanarak farklı koniklik ankastre kirişler için doğal frekans değerlerini genellestirilmiş hipergeometrik fonksiyon çözümlerini sağlamıştır. Kiriş aynı anda eşit oranda değişen genişlikte ve kalınlıkta kabul edilmiştir. Mabie ve Rogers (1974) Bernoulli-Euler teorisini kullanarak uç desteği ve uç kütlesi olan çift koniklik doğrusal olmayan ankastre bir kirişin serbest titreşimini incelemişlerdir. Konik oran hem yatay hem de dikey düzlemlerde eşit olarak kabul edilmiştir. Downs (1977) Euler-Bernoulli ve Timoshenko kiriş teorilerini kullanarak yeni bir dinamik ayrıklaştırma tekniğini uygulayarak çift koniklik izotropik ankastre bir kirişin doğal frekans değerlerini hesaplamıştır. Çalışmada lineer değişken derinlik ve konik genisliğinin 36 farklı kombinasyonunu sunmustur. Naguleswaran (1992) tam ve kesilmiş (truncated) bir Euler-Bernoulli kirişin enine titreşimini incelemiştir. Düşünülen kiriş sabit bir derinliğe ve doğrusal olarak değişen bir genişliğe sahiptir. Farklı sınır koşulları şu şekilde değerlendirilmiştir; sabitlenmiş, kaymalı ve serbest olan. Chaudhari ve Maiti (1999) bir çatlağa sahip farklı kesitli ankastre kirişlerin enine titreşimlerini incelemek için analitik yöntem kullanmışlardır. Kiriş sabit kalınlığa ve doğrusal olarak çeşitli derinliğe sahip olarak kabul edilmiştir. Çatlak bir yay elemanı ile temsil edilmiştir. Mazanoğlu vd. (2009), Rayleigh-Ritz metodunu kullanılarak Euler-Bernoulli kiriş teorisi ile içinde birden çok çatlaklı üniform olmayan kirişlerin titreşim analizini sunmuşlardır. Çalışmada, çeşitli kesme (truncation) parametreleri olan bir ankastre kirisin farklı örnekleri ele alınmışlardır. Çatlak pozisyonlarının ve kesme (truncation) parametrelerinin doğal frekanslar üzerindeki etkileri grafiksel olarak sunmuşlardır. Huang ve Li (2010), farklı uç sınır şartları altında değişken eğilme rijitliği ve kütle yoğunluğu ile eksenel olarak FGM'den yapılan değişken kesitli kirişlerin doğal frekanslarının çözülmesinde yeni bir yaklaşım sunmuşlardır. Shahba ve Rajasekaran (2012) eksenel yönde malzeme özellikleri değişen FGM'den yapılan doğrusal değişken kesitli kirişlerin serbest titreşimleri ve stabilite karakteristiklerini Euler-Bernoulli kiriş teorisi ile çalışmışlardır. Araştırmada hareketin diferansiyel denklemlerini çözmek için iki sayısal yöntem kullanılmıştır: Diferansiyel dönüşüm elemanı metodu (DTEM) ve Diferansiyel quadratör eleman metodu (DQEL). Çallıoğlu vd. (2013), değişken kesitli fonksiyonel derecelendirilmiş sandviç kirişin titreşim analizini incelemişlerdir. Çalışmada, genişlik kiriş uzunluğu boyunca exponansiyel değişirken, FD çok katmanlı kiriş malzeme özellikleri üstel ve polinom fonksiyonlara göre kiriş kalınlığı boyunca değişir. Wang (2013), sabit bir kalınlık ve doğrusal olarak değişen bir genişlik göz önünde bulundurularak uç kütleli ve zemini yayla destekli, konikli bir anizotropik ankastre kirişin doğal frekans değerlerini elde etmek için kesin ve etkili bir yeni başlangıç değer yöntemi sunmuştur. Kumar vd. (2015), çeşitli sınır koşulları ve farklı koniklik parametreleri için eksenel olarak FDM'den yapılan konik (tapered) bir kirişin büyük genlikli serbest titreşim problemini çalışmışlardır. Çalışmada problem statik ve dinamik bir problem olarak incelenmişlerdir. Malzeme özelliklerinin değişimini belirlemek için farklı fonksiyonlar göz önünde bulundurulmuştur. Lohar vd. (2016), çeşitli sınır koşullarında elastik destekli eksenel olarak FDM'den yapılan üniform olmayan kirişlerde doğrusal olmayan titreşim analizini sunmuşlardır. Kiriş uzunluğu boyunca malzeme özelliklerinin değişimini belirlemek için farklı fonksiyonlar kullanılmıştır. Analizler farklı konik parametreleri, konik profil ve temel rijitliği için gerçekleştirilmiştir. Lee W. ve Lee Y. (2016), Euler-Bernoulli kiriş teorisi kullanarak, farklı sınır koşulları için konik (tapered) kirişlerin eğilme titreşim karakteristiklerini daha kesin çözümler sunmak için bir transfer-matris yöntemi geliştirmişlerdir. Diferansiyel denklemin köklerini belirlemek için Frobenius yöntemini kullanmışlardır. Yüksekliğin kirişin uzunluğu boyunca doğrusal olarak azaldığı farklı koniklik oranları göz önünde bulundurmuşlardır. Ebrahimi ve Hashemi (2017), farklı termal ortamlarda FD gözenekli malzemeden yapılmış sabit yüksekliğe ve değişken genişliğe sahip lineer konik (tapered) kirişin titreşim karakteristiklerini analiz etmişlerdir. Rajasekaran ve Khaniki (2018), yerel olmayan gerilme gradyan teorisi altında üniform olmayan nano kirişlerin eğilme, burulma ve titreşimi üzerine bir çalışma başlatmışlardır. Kalınlık boyunca malzeme değişimini modellemek için, Üstel, sigmoid ve polinom gibi üç fonksiyon kullanılmıştır. Ayrıca, üstel ve polinom fonksiyonlar göre, farklı kesitler göz önünde bulundurulmuştur. Keshmiri vd. (2018), klasik Euler-Bernoulli teorisini kullanan Adomian ayrıştırma yöntemine (ADM) dayanarak, doğrusal olmayan eksenel FDM yapılan üniform olmayan kirişlerin serbest titreşimini analiz etmişlerdir. Çalışmada, ilk üç doğal frekans değeri ve üssel ve trigonometrik olarak değişen konik (tapered) ankastre kirişlerin mod şekillerini, farklı geometriler ve farklı koniklik oranları için sunmuştur. Cao ve Gao (2019), farklı sınır koşulları altında, eksenel olarak FGM'den yapılan farklı konik (tapered) kirişlerin serbest titreşiminin analizinde asimptotik geliştirme yöntemini kullanmışlardır. Young modülü ve kütle yoğunluğu gibi malzeme özellikleri için bir polinom dağılım fonksiyonu varsayılmıştır. Farklı sınır koşulları altında farklı koniklik oranları için doğal frekanslar bulunmuştur.

BÖLÜM III

TEZİN AMACI

Doğada çoğu zaman bir halden diğer bir hale direkt geçişler bulunmamaktadır. Bunun yerine, haller arası kademeli bir geçiş görülmektedir. Malzeme alanında da teknolojinin gelişimiyle birlikte homojen malzemeden farklı olan kademeli veya devamlı değişen malzeme türleri geliştirilmiştir. Bu malzemelerden biri FDM'lerdir (Fonksiyonel Derecelendirilmiş Malzemeler). FDM'lerde iki ayrı homojen malzemenin özellikleri değerlendirilmeye çalışılır. Mesela seramik ısıya çok dayanıklı bir malzeme türüdür ama aynı anda çok kırılgandır. Buna karşılık metaller esnek ve sünektir ama yüksek sıcaklıklara dayanıklı değillerdir. Bazı sektörlerde hem yüksek sıcaklıklara dayanıklı değillerdir. Bazı sektörlerde hem yüksek sıcaklıklara dayanıklı değillerdir. Mesela uzay araçlarında 1500 °C'ye varan sıcaklıklara maruz kalan parçalar bulunmaktadır. Ancak iki madde arasında farklı ısıl genleşme katsayılarından dolayı oluşan ısıl gerilmelerinden dolayı tabakalar arası ayrışmalar (delaminasyon) oluşmaktadır. Bu ayrışmaları önlemenin yolu malzemenin geçişini kademeli bir şekilde gerçekleştirmektir, yani fonksiyonel derecelendirilmiş malzemeli bir tasarımdır.

Fonksiyonel derecelendirilmiş malzeme fikri ilk kez 1984 yılında bir grup Japon bilim adamlarının uzay aracı için termal bariyer tasarımı sırasında ortaya çıkmıştır. 1990 yılında Japonya'nın Sendai şehrinde FDM konusunda ilk uluslararası konferans düzenlenmiştir ve sonrasında 1992 yılında FDM'in 10 ileri teknolojiden biri olarak kabul edilmesiyle FDM teknolojisi küresel seviyeye ulaşmış, önemli bir teknoloji niteliği kazanmıştır.

Fonksiyonel derecelendirilmiş malzeme tasarımı seramik ve metal malzeme karışımı fonksiyonel olarak bir doğrultu boyunca malzeme özellikleri sürekli olarak değiştirilmektedir. Dolayısıyla böyle bir tasarımda tabakalar arası malzeme özellikleri birbirine çok yakın olması nedeniyle yukarıda bahsedilen sakıncalı durumun önüne geçilmektedir. Ancak çalışma koşulları ve çevresel faktörlerden dolayı yapı elemanlarının yüzeylerinde çatlaklar oluşmaktadır. Bu durum sistemin dinamik davranışını etkilemektedir. Bilindiği üzere her yapının doğal frekansları vardır ve rezonansa yakalanmamak için kullanım esnasında bu yapı doğal frekansları ile tahrik edilmemesi gerekmektedir. Rezonansa yakalanan yapı büyük zarar görür veya tamamen yok olur. Haliyle tasarım esnasında bu yapının dinamik davranışının bilinmesi önem arz ettiğinden FDM birçok araştırmacının ilgisini çekmektedir. Bu nedenle tez çalışmasında kalınlığı sabit, değişken kesitli ve kademeli, fonksiyonel derecelendirilmiş malzemeli çatlaklı kirişlerin serbest titreşim durumunun incelenmesi amaçlanmıştır.

BÖLÜM IV

TİMOSHENKO KİRİŞ TEORİSİ VE RİJİTLİK MATRİSİ

4.1 Timoshenko Kirişin Rijitlik Matrisi

Timoshenko kiriş teorisi kayma deformasyon etkilerini ve dönme atalet etkilerine hesaba kattığı için Euler-Bernoulli kirişi ile kıyaslandığında daha yüksek mertebeli bir kiriştir. Timoshenko kirişlerinde, kesme kuvveti kiriş en kesitinde döndürme etkisi oluşturduğundan enine kesitler, tarafsız eksen çizgisine dikey olarak kalmayacaktır.

Şekil 4.1. Kayma deformasyonuna sahip Timoshenko kirişi (Logan, 2007)

Her hangi bir *x* noktasındaki kiriş yer değiştirmesi, iki kısımdan oluşmaktadır. Oluşan bu yer değiştirmenin bir kısmı eğilmeden oluşurken diğer kısmı kesme kuvvetinden oluşmaktadır. Eğrinin *x* noktasındaki eğimi (Logan, 2007);

$$\frac{dv}{dx} = \phi(x) + \beta(x) \tag{4.1}$$

denklemi ile verilmektedir. Burada, $\phi(x)$ - eğilme momentinden dolayı oluşan dönmeyi, $\beta(x)$ - kesme kuvvetten dolayı oluşan dönmeyi ifade etmektedir. Eğilme momenti ile eğilme deformasyonu (eğriliği) arasındaki ilişki (Logan, 2007):

$$M = EI \frac{d\phi(x)}{dx} \tag{4.2}$$

bağıntısıyla verilmektedir. Kesme kuvvetli ve kayma deformasyonu arasındaki bağıntı (Logan, 2007):

$$V(x) = k_s A G \beta(x) \tag{4.3}$$

eşitliği ile belirtilmiştir. Burada; G - kayma rijitlik modülü, A - en kesit alanını, k_s - kayma faktörünü ve γ - kayma düzeltme faktörünü belirtmektedir.

Kayma şekil değiştirmesi γ_{yz} (= β) olmak üzere (Logan, 2007),

$$\gamma_{yz} = \frac{dv}{dx} - \phi \tag{4.4}$$

şeklinde belirtilmektedir. Kiriş diferansiyel elemanı Şekil 4.2'de verilmektedir;

Şekil 4.2. Diferansiyel kiriş elemanı

Diferansiyel kiriş elemanın düşey doğrultudaki kuvvet dengesi $\sum F_y = 0$ yazılırsa yayılı yük ile kesme kuvveti arasındaki bağıntı elde edilir;

$$V - V - dV = w(x)dx \tag{4.5}$$

$$w(x) = -\frac{dV}{dx} \tag{4.6}$$
Diferansiyel kiriş elemanın 2 noktasına göre moment dengesi $\sum M_2 = 0$ yazılırsa kesme kuvveti ile moment arasındaki ilişki kurulmuş olur.

$$-Vdx - M + M + dM + w(x)dx \left(\frac{dx}{2}\right) = 0$$

$$V = \frac{dM}{dx}$$
(4.7)
(4.8)

Basit eğilmeye maruz kiriş elemanın deformasyonu Şekil 4.3'te verilmiştir

Şekil 4.3. Basit eğilmeye maruz kiriş eleman

Deformasyona uğramış kiriş eleman geometrisinden aşağıdaki ifadeler yazılabilir (Timoshenko, 1948; Hibbeler, 2011);

$$\kappa = \frac{1}{\rho} \tag{4.9}$$

burada κ - eğrilik, ρ - eğrilik yarıçapıdır.

$$dx = \rho d\theta \tag{4.10}$$

$$\kappa = \frac{1}{\rho} = \frac{dx}{d\theta} \tag{4.11}$$

$$\left(\rho - y\right)d\theta = dx - \frac{y}{\rho}dx \tag{4.12}$$

Normal birim uzama şekil değiştirmesi;

$$\varepsilon = \frac{\delta}{L} \tag{4.13}$$

Birim şekil değiştirme eğrilik ilişkisi;

$$\varepsilon = \frac{-\frac{y}{\rho}dx}{dx} = -\frac{y}{\rho} = -\kappa y$$
(4.14)

Hooke kanunu (gerilme şekil değiştirme ilişkisi);

$$\sigma = E\varepsilon = -\kappa Ey \tag{4.15}$$

V için Eşitlik (4.3)'ü ve *M* için eşitlik (4.2)'yi, eşitlik (4.6) ve eşitlik (4.8) içine eşitlik (4.1)'den β 'yı içine alacak şekilde yerleştirilirse aşağıdaki diferansiyel denklemler elde edelir;

$$\frac{d}{dx}\left[k_{s}AG\left(\frac{dv}{dx}-\phi\right)\right] = -w \tag{4.16}$$

$$\frac{d}{dx}\left(EI\frac{d\phi}{dx}\right) + k_s AG\left(\frac{dv}{dx} - \phi\right) = 0$$
(4.17)

Kayma deformasyonu etkilerine içerecek şekilde düşey yer değiştirme fonksiyonu kübik bir fonksiyonla temsil edildiği farz edilmiştir. Her bir düğümümde düşey yer değiştirme ve dönme serbestlik derecesine sahip olduğundan kiriş eleman dört serbestlik derecelidir. Bu nedenle düşey yer değiştirme fonksiyonu dört adet bilinmeyeni içerir.

$$v(x) = a_1 x^3 + a_2 x^2 + a_3 x + a_4$$
(4.18)

(4.4) nolu denklem aşağıdaki ifadeyle tekrar ifade edilirse

$$\psi = \phi + \gamma = \frac{dv}{dx} \tag{4.19}$$

denklemi elde edilir. Eğilme momenti $M = EI \frac{d\phi}{dx}$, kesme kuvveti $V = EI \frac{d^2\phi}{dx^2}$ ve $V = GAk_s\gamma$ ifadesinden kayma şekil değiştirmesi çekilir M ve V ifadeleri yerlerine koyulacak olursa;

$$\gamma = \frac{V}{GAk_s} = \frac{EI}{GAk_s} \cdot \frac{d^2\phi}{dx^2}$$
(4.20)

$$\gamma = \frac{EI}{GAk} \cdot \frac{d^3 v}{dx^3} \tag{4.21}$$

$$\gamma = \frac{EI}{GAk_s} \cdot 6a_1 = 6a_1g \tag{4.22}$$

İfadesi elde edilir. Burada; $\frac{d^3v}{dx^3} = 6a_1$ ve $\frac{EI}{GAk_s} = g$ ile tanımlanırsa ϕ ve ψ ifadeleri aşağıdaki gibi yazılabilir;

$$\phi = \frac{dv}{dx} = 3a_1x^2 + 2a_2x + a_3 \tag{4.23}$$

$$\psi = \phi + \gamma = 3a_1x^2 + 2a_2x + a_3 + 6a_1g \tag{4.24}$$

 ψ ifadesi düzenlenecek olursa

$$\psi = (3x^2 + 6g)a_1 + a_3 + 2a_2x \tag{4.25}$$

denklemi elde edilir. $\psi = \frac{dv}{dx}$ ifadesinde yer değiştirme fonksiyonu çekilirse $v = \int \psi dx$ ifadesi elde edilir. (4.25) nolu denklem integral içerisinde yerine yazılırsa düşey yer değiştirme fonksiyonu

$$v = a_1 x^3 + a_2 x^2 + (a_3 + 6ga_1)x + a_4$$
(4.26)

şeklinde bulunur. Yukarıdaki eşitliklerin kullanımıyla x=0 ve x=L için sınır koşulları uygulanarak düğümsel yer değişme ve dönüşler açısından a_1 'den a_4 'e kadar olan sabitler bulunabilir;

$$v(0) = a_4 = d_1 \tag{4.27}$$

$$\psi(0) = a_3 + 6ga_1 = \phi_1 \tag{4.28}$$

x = L;

$$v(L) = a_1 L^3 + a_2 L^2 + a_3 L + a_4 = d_2$$
(4.29)

$$\psi(L) = 3a_1L^2 + 2a_2L + a_3 + 6ga_1 = (3L^2 + 6g)a_1 + 2a_2L + a_3 = \phi_2$$
(4.30)

(4.28) nolu denklemde a_3 çekilirse

$$a_3 = \phi_1 - 6ga_1 \tag{4.31}$$

denklemi elde edilir. a_3 ifadesi (4.30) denkleminde yerine konmasıyla:

$$(3L^{2} + 6g)a_{1} + 2a_{2}L + \phi_{1} - 6ga_{1} = \phi_{2}$$

$$(4.32)$$

ifadesi elde edilir. Bu ifadeden a_2 çekilirse

$$a_2 = \frac{\phi_2 - \phi_1 - 3L^2 a_1}{2L} \tag{4.33}$$

denklemi elde edilir.

(4.31) ve (4.33) denklemlerinin (4.29)'te yerine konmasıyla a_1 ifadesi bulunur;

$$a_{1}L^{3} + \frac{\phi_{2} - \phi_{1} - 3L^{2}a_{1}}{2L}L^{2} + (\phi_{1} - 6ga_{1}L) + d_{1} = d_{2} |\cdot 2$$

$$2L$$

$$2a_1L^3 + \phi_2 L - \phi_1 L - 3L^3 a_1 + 2\phi_1 - 12ga_1 L + 2d_1 = 2d_2$$

$$-a_1L^3 - 12ga_1L = 2d_2 - 2d_1 - \phi_2L - \phi_1L$$

$$-a_1L(L^2+12g) = 2d_2 - 2d_1 - \phi_2L - \phi_1L$$

$$a_{1} = \frac{2d_{1} + L\phi_{1} - 2d_{2} + L\phi_{2}}{L(L^{2} + 12g)}$$
(4.34)

(4.31) denklemi (4.34)'de yerine yazılmak suretiyle aşağıdaki gibi a_3 sabiti bulunur.

$$a_{3} = \phi_{1} - 6g \frac{2d_{1} + \phi_{1}L - 2d_{2} + \phi_{2}L}{L(L^{2} + 12g)}$$

$$a_{3} = \frac{\phi_{1}L^{3} + \phi_{1}12gL - 12gd_{1} - 6g\phi_{1}L + 12gd_{2} - 6g\phi_{2}L}{L(L^{2} + 12g)}$$

$$a_{3} = \frac{-12gd_{1} + (L^{3} + 6gL)\phi_{1} + 12gd_{2} - 6gL\phi_{2}}{L(L^{2} + 12g)}$$
(4.35)

(4.33) denklemi (4.34)'de yerine koyulmak suretiyle a_2 sabiti aşağıdaki gibi elde edilir.

$$a_{2} = \frac{\phi_{2} - \phi_{1} - 3L^{2} \frac{2d_{1} + \phi_{1}L - 2d_{2} + \phi_{2}L}{L(L^{2} + 12g)}}{2L}$$

$$a_{2} = \frac{\frac{\phi_{2}(L^{2} + 12g) - \phi_{1}(L^{2} + 12g) - 6Ld_{1} + 6Ld_{2} - 3L^{2}\phi_{1} - 3L^{2}\phi_{2}}{(L^{2} + 12g)}}{2L}$$

$$a_{2} = \frac{\phi_{2}(L^{2} + 12g - 3L_{2}) - \phi_{1}(L^{2} + 12g + 3L^{2}) - 6Ld_{1} + 6Ld_{2}}{2L(L^{2} + 12g)}$$

$$a_{2} = \frac{\phi_{2}(-2L^{2}+12g) - \phi_{1}(4L^{2}+12g) - 6Ld_{1} + 6Ld_{2}}{2L(L^{2}+12g)}$$

$$a_{2} = \frac{-3Ld_{1} - (2L^{2} + 6g)\phi_{1} + 3Ld_{2} + (-L^{2} + 6g)\phi_{2}}{L(L^{2} + 12g)}$$
(4.36)

Bulunan a_1, a_2, a_3, a_4 değerleri yer değiştirme fonksiyonunda yerlerine yazılacak olursa;

$$v = \frac{2d_1 + L\phi_1 - 2d_2 + L\phi_2}{L(L^2 + 12g)} x^3 + \frac{-3Ld_1 - (2L^2 + 6g)\phi_1 + 3Ld_2 + (-L^2 + 6g)\phi_2}{L(L^2 + 12g)} x^2 + \frac{-12gd_1 + (L^3 + 6gL)\phi_1 + 12gd_2 - 6gL\phi_2}{L(L^2 + 12g)} x + d_1$$
(4.37)

denklemi elde edilir. (4.37) denklemi matris formda,

$$v = [N]\{d\} \tag{4.38}$$

şeklinde yazılabilir. Burada $\{d\}$ vektörü düğüm serbestlik derecelerini, [N]ise şekil fonksiyonlarını ifade etmektedir.

$$\left\{d\right\} = \begin{cases} d_{1y} \\ \phi_1 \\ d_{2y} \\ \phi_2 \end{cases}$$

$$(4.39)$$

ve

$$\begin{bmatrix} N \end{bmatrix} = \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \end{bmatrix}$$
(4.40)

Burada $N_{11}, N_{12}, N_{13}, N_{14}$ eğilmeden kaynaklı şekil fonksiyonlarıdır. (4.37) denkleminden dolayı N_{11} şekil fonksiyonu

$$N_{11} = \frac{2x^{3}}{L(L^{2} + 12g)} - \frac{3Lx^{2}}{L(L^{2} + 12g)} - \frac{12gx}{L(L^{2} + 12g)} + 1 = \frac{2x^{3}}{L^{3}(1 + \frac{12g}{L^{2}})} - \frac{3x^{2}}{L^{2}(1 + \frac{12g}{L^{2}})} - \frac{12gx}{L \cdot L^{2}(1 + \frac{12g}{L^{2}})} + 1$$
(4.41)

 $\eta = \frac{x}{L}, \tau = \frac{12g}{L^2}$ olmak üzere tanımlamaları yapılırsa N_{11} ifadesi aşağıdaki gibi olur;

$$N_{11} = \frac{2\eta^3}{1+\tau} - \frac{3\eta^3}{1+\tau} - \frac{\tau \cdot \eta}{1+\tau} + 1 = \frac{1}{1+\tau} \left(2\eta^3 - 3\eta^2 + \tau \left(1 - \eta \right) + 1 \right)$$
(4.42)

Benzer şekilde bu tanımlamalar N_{12}, N_{13}, N_{14} için yapılırsa

$$N_{12} = \frac{L}{1+\tau} \left(\eta^3 - 2\eta^2 + \frac{\tau}{2} \left(\eta - \eta^2 \right) + \eta \right)$$
(4.43)

$$N_{13} = \frac{1}{1+\tau} \left(-2\eta^3 + 3\eta^2 + \tau\eta \right)$$
(4.44)

$$N_{14} = \frac{L}{1+\tau} \left(\eta^3 - \eta^2 + \frac{\tau}{2} \left(\eta^2 - \eta \right) \right)$$
(4.45)

ifadeleri elde edilir.

Eşitlik (4.25)'daki a_1, a_2, a_3, a_4 değerlerini yerine koyulduğunda dönmeden dolayı şekil fonksiyonları bulunur:

$$N_{21} = \frac{3x^2 \cdot 2}{L(L^2 + 12g)} + \frac{6g \cdot 2}{L(L^2 + 12g)} + \frac{2 \cdot (-3Lx)}{L(L^2 + 12g)} - \frac{12g}{L(L^2 + 12g)} = \frac{6x^2}{L(L^2 + 12g)} - \frac{6x}{L^2\left(1 + \frac{12g}{L^2}\right)} = \frac{6\eta^2}{L(1 + \tau)} - \frac{6\eta}{L(1 + \tau)} = \frac{6(\eta^2 - \eta)}{L(1 + \tau)}$$
(4.46)

$$N_{22} = \frac{\left(3\eta^2 - 4\eta + \tau(1-\eta) + 1\right)}{1+\tau}$$
(4.47)

$$N_{23} = \frac{6(\eta - \eta^2)}{L(1 + \tau)}$$
(4.48)

$$N_{22} = \frac{\left(3\eta^2 - 2\eta + \tau\eta\right)}{1 + \tau}$$
(4.49)

Kayma açısından dolayı şekil fonksiyonları, $\gamma = \psi - \frac{dv}{dx}$ eşitliğinden elde edilir

$$N_{31} = \frac{1}{1+\tau} \left(\frac{1}{L} \left(6\eta^2 - 6\eta \right) - \left(6\eta^2 - 6\eta - \tau \right) \right)$$
(4.50)

$$N_{32} = \frac{1}{1+\tau} \left(\left(3\eta^2 - 4\eta + \tau \left(1 - \eta \right) + 1 \right) - L \left(3\eta^2 - 4\eta + \frac{\tau}{2} \left(1 - 2\eta \right) + 1 \right) \right)$$
(4.51)

$$N_{33} = \frac{1}{1+\tau} \left(\frac{1}{L} \left(6\eta - 6\eta^2 \right) - \left(6\eta - 6\eta^2 + \tau \right) \right)$$
(4.52)

$$N_{34} = \frac{1}{1+\tau} \left(\left(3\eta^2 - 2\eta + \tau\eta \right) - L \left(3\eta^2 - 2\eta + \frac{\tau}{2} \left(2\eta - 1 \right) \right) \right)$$
(4.53)

Kiriş teorisi uygulanırsa;

$$V(x) = \frac{d^{3}v(x)}{dx^{3}} EI$$
(4.54)

$$m(x) = \frac{d^2 v(x)}{dx^2} EI \tag{4.55}$$

Şekil 4.4. Kiriş elemanda pozitif düğüm yerdeğiştirmesi, dönme, kuvvet ve momentler (Logan, 2007)

Şekil 4.5. Kiriş elemanda kesme kuvvetleri ve eğilme momentleri için işaret kabulü

$$f_{1y} = V(0) = 6EIa_1 = \frac{EI(12d_1 + 6L\phi_1 - 12d_2 + 6L\phi_2)}{L(L^2 + 12g)}$$
(4.56)

$$m_{1} = -m(0) = -2EIa_{2} = \frac{EI(6Ld_{1} + (4L^{2} + 12g)\phi_{1} - 6Ld_{2} + (2L^{2} + 12g)\phi_{2})}{L(L^{2} + 12g)}$$
(4.57)

$$f_{1y} = -V(L) = -6EIa_1 = \frac{EI(-12d_1 - 6L\phi_1 + 12d_2 - 6L\phi_2)}{L(L^2 + 12g)}$$
(4.58)

$$m_{2} = m(L) = 6La_{1}EI + 2a_{2}EI =$$

$$\frac{EI(6Ld_{1} + (2L^{2} - 12g)\phi_{1} - 6Ld_{2} + (4L^{2} + 12g)\phi_{2})}{L(L^{2} + 12g)}$$
(4.59)

matrisi formda rijitlik ifadesi aşağıdaki gibi elde edilir;

$$\begin{cases} f_{1y} \\ m_1 \\ f_{2y} \\ m_2 \end{cases} = \frac{EI}{L(L^2 + 12g)} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & (4L^2 + 12g) & -6L & (2L^2 - 12g) \\ -12 & -6L & 12 & -6L \\ 6L & (2L^2 - 12g) & -6L & (4L^2 + 12g) \end{bmatrix} \begin{bmatrix} d_1 \\ \phi_1 \\ d_2 \\ \phi_2 \end{bmatrix}$$
(4.60)

$$\underline{k} = \frac{EI}{L(L^2 + 12g)} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & (4L^2 + 12g) & -6L & (2L^2 - 12g) \\ -12 & -6L & 12 & -6L \\ 6L & (2L^2 - 12g) & -6L & (4L^2 + 12g) \end{bmatrix}$$
(4.61)

4.2 Timoshenko Kirişin Kütle Matrisi

Timoshenko kirişin kütle matrisi öteleme $[M_T]$ ve dönme $[M_R]$ kütle matrislerinin toplamından ibarettir. Deformasyona maruz kalan kirişin kinetik enerjisinden hareketle toplam kütle matrisi [M] elde edilmektedir (Petyt, 1990).

$$\begin{bmatrix} M_{T} \end{bmatrix} = \iiint_{V} \rho \begin{bmatrix} N \end{bmatrix}^{T} \cdot \begin{bmatrix} N \end{bmatrix} dV = \int_{0}^{L} \iiint_{A} \begin{bmatrix} N_{11} \\ N_{12} \\ N_{13} \\ N_{14} \end{bmatrix} \cdot \begin{bmatrix} N_{11} & N_{12} & N_{13} \end{bmatrix} dAdx =$$

$$\rho \cdot A \cdot \int_{0}^{L} \begin{bmatrix} N_{11} \\ N_{12} \\ N_{13} \\ N_{14} \end{bmatrix} \cdot \begin{bmatrix} N_{11} & N_{12} & N_{13} & N_{14} \end{bmatrix} dx$$

$$(4.62)$$

ve N_{11} N_{12} N_{13} N_{14} ifadeleri yukarıdaki integral eşitliğinde yerine yazılıp MATHCAD yazılımını vasıtasıyla 0 ile 1 aralığında integrali alınmak suretiyle $[M_T]$ matrisine ait aşağıdaki eşitlikler elde edilir;

$$\begin{bmatrix} \frac{2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1}{1 + \tau} \\ \frac{L \cdot \left[\eta^{3} - 2\eta^{2} + \frac{\tau}{2} (\eta - \eta^{2}) + \eta \right]}{1 + \tau} \\ \frac{\frac{(-2\eta^{3} + 3\eta^{2} + \tau\eta)}{1 + \tau} \\ \frac{L \cdot \left[\eta^{3} - \eta^{2} + \frac{\tau}{2} (\eta^{2} - \eta) \right]}{1 + \tau} \end{bmatrix}$$

$$(4.63)$$

$$\left[\frac{\left[2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1 \right]}{1 + \tau} \quad \frac{L \cdot \left[\eta^{3} - 2\eta^{2} + \frac{\tau}{2} (\eta - \eta^{2}) + \eta \right]}{1 + \tau} \quad \frac{(-2\eta^{3} + 3\eta^{2} + \tau\eta)}{1 + \tau} \quad \frac{L \cdot \left[\eta^{3} - \eta^{2} + \frac{\tau}{2} (\eta^{2} - \eta) \right]}{1 + \tau} \right]$$

$$m_{1} = \int_{0}^{1} \frac{\left[2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1\right]^{2}}{(1 + \tau)^{2}} d\eta = \frac{78 + 147\tau + 70\tau^{2}}{210(1 + \tau)^{2}} = \frac{1}{420(1 + \tau)^{2}} \left(156 + 294\tau + 140\tau^{2}\right)$$
(4.64)

$$m_{2} = \int_{0}^{1} \frac{\left[2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1\right] \cdot L \cdot \left[\eta^{3} - 2\eta^{2} + \frac{\tau}{2}(\eta - \eta^{2}) + \eta\right]}{(1 + \tau)^{2}} d\eta =$$

$$\frac{L\left(44 + 77\tau + 35\tau^{2}\right)}{840(1 + \tau)^{2}} = \frac{1}{420(1 + \tau)^{2}} \left(22 + 38.5\tau + 17.5\tau^{2}\right)$$
(4.65)

$$m_{3} = \int_{0}^{1} \frac{\left[2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1\right] \cdot \left(-2\eta^{3} + 3\eta^{2} + \tau\eta\right)}{\left(1 + \tau\right)^{2}} d\eta = \frac{27 + 63\tau + 35\tau^{2}}{210\left(1 + \tau\right)^{2}} = \frac{1}{420\left(1 + \tau\right)^{2}} \left(54 + 126\tau + 70\tau^{2}\right)$$

$$(4.66)$$

$$m_{4} = \int_{0}^{1} \frac{\left[2\eta^{3} - 3\eta^{2} + \tau(1 - \eta) + 1\right] \cdot L \cdot \left[\eta^{3} - \eta^{2} + \frac{\tau}{2}(\eta^{2} - \eta)\right]}{(1 + \tau)^{2}} d\eta =$$

$$\frac{-L\left(26 + 63\tau + 35\tau^{2}\right)}{840(1 + \tau)^{2}} = \frac{-L}{420(1 + \tau)^{2}} \left(13 + 31.5\tau + 17.5\tau^{2}\right)$$
(4.67)

$$m_{5} = \int_{0}^{1} \frac{L^{2} \left[\eta^{3} - 2\eta^{2} + \frac{\tau}{2} (\eta - \eta^{2}) + \eta \right]^{2}}{(1 + \tau)^{2}} d\eta = \frac{L^{2} \left(8 + 14\tau + 7\tau^{2} \right)}{840 (1 + \tau)^{2}} = \frac{L^{2}}{420 (1 + \tau)^{2}} \left(4 + 7\tau + 3.5\tau^{2} \right)$$

$$(4.68)$$

$$m_{6} = \int_{0}^{1} \frac{L^{2} \left[\eta^{3} - 2\eta^{2} + \frac{\tau}{2} (\eta - \eta^{2}) + \eta \right] \cdot \left[\eta^{3} - \eta^{2} + \frac{\tau}{2} (\eta^{2} - \eta) \right]}{(1 + \tau)^{2}} d\eta =$$

$$\frac{-L^{2} \left(6 + 14\tau + 7\tau^{2} \right)}{840 (1 + \tau)^{2}} = \frac{-L^{2}}{420 (1 + \tau)^{2}} \left(3 + 7\tau + 3.5\tau^{2} \right)$$

$$(4.69)$$

$$\begin{bmatrix} M_T \end{bmatrix} = \frac{\rho AL}{420(1+\eta)^2} \begin{bmatrix} m_1 & Lm_2^2 & m_3 & -Lm_4 \\ Lm_2^2 & Lm_5^2 & Lm_4 & -Lm_6^2 \\ m_3 & Lm_4 & m_1 & -Lm_2^2 \\ -Lm_4 & -lm_6^2 & -Lm_2^2 & Lm_5^2 \end{bmatrix}$$
(4.70)

$$\begin{bmatrix} M_{R} \end{bmatrix} = \rho \cdot I \cdot \int_{0}^{L} \begin{bmatrix} N_{21} \\ N_{22} \\ N_{23} \\ N_{24} \end{bmatrix} \cdot \begin{bmatrix} N_{21} & N_{22} & N_{23} & N_{24} \end{bmatrix} dx$$
(4.71)

ve N_{21} N_{22} N_{23} N_{24} ifadeleri yukarıdaki integral eşitliğinde yerine yazılıp MATHCAD yazılımını vasıtasıyla 0 ile 1 aralığında integrali alınmak suretiyle $[M_R]$ matrisine ait aşağıdaki eşitlikler elde edilir;

$$\begin{pmatrix}
\frac{6(\eta^{2} - \eta)}{L(1 + \tau)} \\
\frac{[3\eta^{2} - 4\eta + \tau(1 - \eta) + 1]}{1 + \tau} \\
\frac{6(\eta - \eta^{2})}{L(1 + \tau)} \\
\frac{(3\eta^{2} - 2\eta + \tau\eta)}{1 + \tau}
\end{pmatrix}.$$
(4.72)

$$m_{7} = \int_{0}^{1} \frac{\left(6\eta^{2} - 6\eta\right)^{2}}{L^{2}\left(\tau + 1\right)^{2}} d\eta = \frac{6}{5L^{2}\left(\tau + 1\right)^{2}} = \frac{36}{30L^{2}\left(\tau + 1\right)^{2}}$$
(4.73)

$$m_8 = \int_0^1 \frac{(6\eta - 6\eta^2) \left[4\eta + \tau (\eta - 1) - 3\eta^2 - 1 \right]}{L(\tau + 1)^2} d\eta = \frac{1 - 5\tau}{10L(\tau + 1)^2} = \frac{3 - 15\tau}{30L(\tau + 1)^2}$$
(4.74)

$$m_{9} = \int_{0}^{1} \frac{\left[4\eta + \tau(\eta - 1) - 3\eta^{2} - 1\right]^{2}}{\left(\tau + 1\right)^{2}} d\eta = \frac{4 + 5\tau + 10\tau^{2}}{30\left(\tau + 1\right)^{2}}$$
(4.75)

$$m_{10} = \int_{0}^{1} \frac{\left(3\eta^{2} - 2\eta + \tau\eta\right) \cdot \left[3\eta^{2} - 4\eta + \tau\left(1 - \eta\right) + 1\right]}{\left(\tau + 1\right)^{2}} d\eta = -\frac{1 + 5\tau - 5\tau^{2}}{30\left(\tau + 1\right)^{2}}$$
(4.76)

$$\begin{bmatrix} M_{R} \end{bmatrix} = \frac{\rho I}{30L(1+\eta)^{2}} \begin{bmatrix} m_{7} & Lm_{8} & -m_{7} & Lm_{8} \\ Lm_{8} & L^{2}m_{9} & -Lm_{8} & -L^{2}m_{10} \\ -m_{7} & -Lm_{8} & m_{7} & -Lm_{8} \\ Lm_{8} & -L^{2}m_{10} & -Lm_{8} & L^{2}m_{8} \end{bmatrix}$$
(4.77)

Toplam Kütle Matrisi $[M] = [M_T] + [M_R]$ şeklinde elde edilir.

4.3 Çubuk Elemanın Rijitlik ve Kütle Matrislerinin Belirlenmesi

Tek serbestlik derecesine $\{u\}$ sahip iki düğümlü bir kiriş eleman Şekil 4.6'de gösterilmektedir.

Şekil 4.6. İki düğümlü tek serbestlik dereceli kiriş eleman

Kiriş elemanın rijitlik ve kütle matrislerini oluşturmak için, *x* ekseni yönünde yerel yer değiştirmeyi lineer olarak aşağıdaki fonksiyonla tanımlanır;

$$u = a_1 + a_2 x \tag{4.78}$$

Denklem (4.78) matris şeklinde yazılırsa:

$$u = \begin{bmatrix} 1 & x \end{bmatrix} \begin{cases} a_1 \\ a_2 \end{cases}$$
(4.79)

Burada yer değiştirme fonksiyonu u'yu d_{1x} ve d_{2x} düğüm yer değiştirmelerinin fonksiyonu olarak yazılırsa;

x = 0 için:

$$u(0) = a_1 = d_{1x} \tag{4.80}$$

x = L için

$$u(L) = a_1 + a_2 L = d_{2x} \tag{4.81}$$

ve (4.81) denkleminden a_2 çekilirse a_2 bulunur;

$$a_2 = \frac{d_{2x} - d_{1x}}{L} \tag{4.82}$$

(4.82) ve (4.80) denklemleri, (4.78) denklemine yerleştirilirse u fonksiyonu aşağıdaki gibi olur;

$$u = d_{1x} + \left(\frac{d_{2x} - d_{1x}}{L}\right) \cdot x = d_{1x} + \frac{d_{2x}}{L} \cdot x - \frac{d_{1x}}{L} \cdot x = \left(1 - \frac{x}{L}\right) \cdot d_{1x} + \frac{x}{L} \cdot d_{2x}$$
(4.83)

(4.83) denklemi matris şeklinde yazılırsa

$$u = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \begin{cases} d_{1x} \\ d_{2x} \end{cases}$$
(4.84)

veya

$$u = \begin{bmatrix} N_1 & N_2 \end{bmatrix} \begin{cases} d_{1x} \\ d_{2x} \end{cases}$$
(4.85)

eldeedilir. Burada N_1 ve N_2 şekil fonksiyonlarını belirtmektedir.

$$N_1 = 1 - \frac{x}{L}, \ N_2 = \frac{x}{L}$$
 (4.86)

Çubuk elemandaki yer değiştirme ve birim şekil değiştirme sırasıyla aşağıdaki denklemlerle hesaplanır (Logan, 2007);

$$\delta = d_{2x} - d_{1x} \tag{4.87}$$

$$\varepsilon = \frac{\delta}{dx} = \frac{d_{2x} - d_{1x}}{L} \tag{4.88}$$

Çubuktaki çekme kuvveti sabit olup aşağıdaki denklemle hesaplanır (Logan, 2007);

$$T = EA\varepsilon = \frac{EA}{L} \left(d_{2x} - d_{1x} \right) \tag{4.89}$$

burada $\frac{EA}{L} = k$ ile tanımlanırsa;

Düğüm kuvvetleri Şekil 4.6'deki işaret düzenine göre

$$f_{1x} = -T \text{ ve } f_{2x} = T \tag{4.90}$$

olur. (4.89) ve (4.90) denklemleri kullanarak düğüm kuvvetleri yazılırsa

$$f_{1x} = -\frac{EA}{L} (d_{2x} - d_{1x}) = \frac{EA}{L} (d_{1x} - d_{2x})$$

$$f_{2x} = \frac{EA}{L} (d_{2x} - d_{1x}) = \frac{EA}{L} (-d_{1x} + d_{2x})$$
(4.91)

denklemi elde edilir. (4.91) denklemi matris formda yazılırsa;

$$\begin{cases} f_{1x} \\ f_{2x} \end{cases} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} d_{1x} \\ d_{2x} \end{cases}$$
(4.92)

ifadesi elde edilir.

$$\begin{bmatrix} K_2 \end{bmatrix} = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
(4.93)

Burada K_2 tek serbestlik derecesine sahip iki düğümlü bir kiriş elemanı için, rijitlik matrisidir.

Kütle matrisi ise aşağıdaki denklemler kullanılarak elde edilir (Petyt, 1990);

$$\begin{bmatrix} M_2 \end{bmatrix} = \iiint_V \rho \begin{bmatrix} N \end{bmatrix}^T \cdot \begin{bmatrix} N \end{bmatrix} dV = \iiint_V \rho \begin{bmatrix} N_1 \\ N_2 \end{bmatrix} \cdot \begin{bmatrix} N_1 & N_2 \end{bmatrix} dV =$$

$$\rho \cdot A \cdot \int_0^L \begin{bmatrix} N_1 \\ N_2 \end{bmatrix} \cdot \begin{bmatrix} N_1 & N_2 \end{bmatrix} dx$$
(4.94)

 N_1 ve N_2 (4.86) denkleminden alınır ve yerine yazılırsa;

$$\begin{bmatrix} M_2 \end{bmatrix} = \rho \cdot A \cdot \int_0^L \begin{bmatrix} 1 - \frac{x}{L} \\ \frac{x}{L} \end{bmatrix} \cdot \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} dx = \rho \cdot A \cdot \int_0^L \begin{bmatrix} \left(1 - \frac{x}{L}\right)^2 & \left(1 - \frac{x}{L}\right) \cdot \frac{x}{L} \\ \left(1 - \frac{x}{L}\right) \cdot \frac{x}{L} & \left(\frac{x}{L}\right)^2 \end{bmatrix} dx$$
(4.95)

(4.97) denklemini entegrali alınırsa, tek serbestlik derecesine $\{u\}$ sahip iki düğümlü bir kiriş elemanı için kütle matrisi bulunmuş olur;

$$\int_{0}^{L} \begin{bmatrix} \left(\frac{x}{L}-1\right)^{2} & -\frac{x \cdot \left(\frac{x}{L}-1\right)}{L} \\ -\frac{x \cdot \left(\frac{x}{L}-1\right)}{L} & \frac{x^{2}}{L^{2}} \end{bmatrix} dx \rightarrow \begin{pmatrix} \frac{L}{3} & \frac{L}{6} \\ \frac{L}{6} & \frac{L}{3} \end{pmatrix}$$
(4.96)

$$\begin{bmatrix} M_2 \end{bmatrix} = \frac{\rho \cdot A \cdot L}{6} \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$$
(4.97)

İki düğümlü üç serbestlik derecesine sahip kirişin rijitlik ve kütle matrisleri aşağıdaki denklemlerle ifade edilir (Cunedioğlu, 2015).

$$K_{el} = \begin{bmatrix} K_2 11 & K_2 12 \\ K_1 11 & K_1 12 & K_1 13 & K_1 14 \\ K_1 21 & K_1 22 & K_1 23 & K_1 24 \\ K_2 21 & K_2 22 & \\ K_1 31 & K_1 32 & K_1 33 & K_1 34 \\ K_1 41 & K_1 42 & K_1 43 & K_1 44 \end{bmatrix}_{(6\times 6)}$$
(4.98)

Ve

$$M_{el} = \begin{bmatrix} M_2 11 & M_2 12 \\ M_1 11 & M_1 12 & M_1 13 & M_1 14 \\ M_1 21 & M_1 22 & M_1 23 & M_1 24 \\ M_2 21 & M_2 22 & \\ M_1 31 & M_1 32 & M_1 33 & M_1 34 \\ M_1 41 & M_1 42 & M_1 43 & M_1 44 \end{bmatrix}_{(6\times 6)}$$
(4.99)

4.4 Çatlak Elemanın Rijitliğinin Belirlenmesi

Şekil değiştirme enerjisi salıverinim oranlarını *J* aşağıdaki şekilde ifade edilir (Kısa ve Brandon, 2000):

$$J = \frac{1 - v^2}{E} K_I^2 + \frac{1 - v^2}{E} K_{II}^2 + \frac{1 + v}{E} K_{III}^2$$
(4.100)

Burada, v Poisson oranı, E elastisite modülü, K_I , K_{II} , K_{II} gerilme yoğunluğu faktörlerini ifade etmektedir. K_{III} faktörü burulma moduna karşılık geldiği için bu çalışmada ihmal edilmiştir. Bundan ötürü şekil değiştirme enerjisi aşağıdaki şekilde ifade edilir;

$$J = \frac{1}{E^*} \left\{ \left[\left(K_I(F) \right) + \left(K_I(M) \right) \right]^2 + K_{II}(Q)^2 \right\}$$
(4.101)

Burada; *F* eksenel kuvveti, *M* eğilme momentini, *Q* kesme kuvvetini, $E^* = E$ düzlem gerilmeyi ve $E^* = \frac{E}{1-v^2}$ düzlem şekil değiştirmeyi belirtmektedir.

Eksenel kuvvet ve eğilme momenti I. moda katkı sağlarken, kesme kuvveti II. moda katkı sağlamaktadır.

 $K_{I}(F)$, $K_{I}(M)$ ve $K_{II}(Q)$ ifadeleri aşağıdaki denklemlerle verilmiştir (Kısa ve Brandon, 2000):

$$K_1(F) = \frac{F}{bd} \sqrt{\pi a} F_1\left(\frac{a}{b}\right) \tag{4.102}$$

$$F_1\left(\frac{a}{b}\right) = \sqrt{\frac{2b}{\pi a}} \tan\left(\frac{\pi a}{2b}\right) \frac{0.752 + 2.02\left(\frac{a}{b}\right) + 0.37\left(1 - \sin\frac{\pi a}{2b}\right)^3}{\cos\left(\frac{\pi a}{2b}\right)}$$
(4.103)

$$K_1(M) = \frac{6M}{b^2 d} \sqrt{\pi a} F_2\left(\frac{a}{b}\right)$$
(4.104)

$$F_2\left(\frac{a}{b}\right) = \sqrt{\frac{2b}{\pi a}} \tan\left(\frac{\pi a}{2b}\right) \frac{0.923 + 0.199\left(1 - \sin\frac{\pi a}{2b}\right)^4}{\cos\left(\frac{\pi a}{2b}\right)}$$
(4.105)

$$K_2(Q) = \frac{\kappa Q}{bd} \sqrt{\pi a} F_3\left(\frac{a}{b}\right)$$
(4.106)

$$F_{3}\left(\frac{a}{b}\right) = \frac{1.122 - 0.561\left(\frac{a}{b}\right) + 0.085\left(\frac{a}{b}\right)^{2} + 0.180\left(\frac{a}{b}\right)^{3}}{\sqrt{1 - \frac{a}{b}}}$$
(4.107)

burada κ şekil düzeltme faktörü, açatlak derinliğini, *b* kiriş yüksekliğini belirtmektedir. (4.102) ile (4.107) arasındaki ifadeleri (4.101) nolu denklemde yerlerine yazılırsa;

$$J(a) = \frac{1}{E^*} \left\{ \left[\frac{F}{bd} \sqrt{\pi a} F_1\left(\frac{a}{b}\right) + \frac{6M}{b^2 d} \sqrt{\pi a} F_2\left(\frac{a}{b}\right) \right]^2 + \left[\frac{\kappa Q}{bd} \sqrt{\pi a} F_3\left(\frac{a}{b}\right) \right]^2 \right\} = \frac{1}{E^*} \left[\frac{F^2}{b^2 d^2} \pi a F_1^2\left(\frac{a}{b}\right) + 2\frac{F}{bd} \sqrt{\pi a} F_1\left(\frac{a}{b}\right) \frac{6M}{b^2 d} \sqrt{\pi a} F_2\left(\frac{a}{b}\right) + \frac{36M^2}{b^4 d^2} \pi a F_2^2\left(\frac{a}{b}\right) + \frac{1}{E^*} \left[\frac{\kappa^2 Q^2}{b^2 d^2} \pi a F_3^2\left(\frac{a}{b}\right) \right] = (4.108)$$
$$\frac{1}{E^*} \pi a \left[\frac{F^2}{b^2 d^2} F_1^2\left(\frac{a}{b}\right) + \frac{12FM}{b^3 d^2} F_1\left(\frac{a}{b}\right) F_2\left(\frac{a}{b}\right) + \frac{36M^2}{b^4 d^2} F_2^2\left(\frac{a}{b}\right) + \frac{\kappa^2 Q^2}{b^2 d^2} F_3^2\left(\frac{a}{b}\right) \right]$$

Denklemi elde edilir. P_i kuvvetinden dolayı çatlak alanı A olan bir yapının şekil değiştirme enerjisi U ile şekil değiştirme enerjisi salıverinim oranı J arasındaki bağıntı (Kısa ve Brandon, 2000):

$$J = \frac{\partial U(P_i, A)}{\partial A} \tag{4.109}$$

Castagliano teorisini göre, çatlaktan dolayı P_i yönünde ek deplasman şöyle ifade edilir;

$$u_i = \frac{\partial U(P_i, A)}{\partial P_i} \tag{4.110}$$

(4.109) denklemi yüzey alanı A üzerine entegre edilirse aşağıdaki denklem elde edilir;

$$\int_{A} J(P_i, A) dA = \int_{A} \frac{\partial U(P_i, A)}{\partial A} = U(P_i, A)$$
(4.111)

(4.111) denklemi (4.110)'de yerine yazılırsa;

$$u_i = \frac{\partial}{\partial P_i} \int_A J(P_i, A) dA$$
(4.112)

denklemi elde edilir. Esneklik katsayıları aşağıdaki şekilde ifade edilir (Kısa and Brandon, 2000; Kısa ve Arif Gürel, 2007):

$$c_{ij} = \frac{\partial u_i}{\partial P_j} = \frac{\partial^2}{\partial P_i \partial P_j} \int_A J(P_i, A) dA, \ i, j = 1, \dots, 3, \ P_1 = F, \ P_2 = Q, \ P_3 = M$$
(4.113)

$$c_{ij} = \frac{\partial}{\partial P_i} \cdot \frac{\partial}{\partial P_j} \int_A J(P_i, A) dA = \frac{\partial}{\partial P_i} \int_A \frac{\partial}{\partial P_j} (J(P_i, A) dA) = \int_{-\frac{d}{2}}^{\frac{d}{2}} \int_{0}^{a_i} \frac{\partial}{\partial P_i} (J(a)) dadz$$
(4.114)

i = 1 ve j = 1 için

$$\frac{\partial}{\partial P_{1}}\left(\frac{\partial}{\partial P_{1}}\left(J\left(a\right)\right)\right) = \frac{\partial}{\partial F}\left(\frac{1}{E^{*}}\pi a\left[\frac{F^{2}}{b^{2}d^{2}}F_{1}^{2}\left(\frac{a}{b}\right) + \frac{12FM}{b^{3}d^{2}}F_{1}\left(\frac{a}{b}\right)F_{2}\left(\frac{a}{b}\right) + \frac{36M^{2}}{b^{4}d^{2}}F_{2}^{2}\left(\frac{a}{b}\right) + \right]\right)\right) = (4.115)$$

$$\frac{1}{E^{*}}\pi a \cdot \frac{\partial}{\partial F}\left(\frac{2F}{b^{2}d^{2}}F_{1}^{2}\left(\frac{a}{b}\right) + \frac{12M}{b^{3}d^{2}}F_{1}\left(\frac{a}{b}\right)F_{2}\left(\frac{a}{b}\right)\right) = \frac{1}{E^{*}}\pi a \cdot \frac{2}{b^{2}d^{2}}F_{1}^{2}\left(\frac{a}{b}\right)$$

i = 1 ve j = 2 için

$$\frac{\partial}{\partial P_1} \left(\frac{\partial}{\partial P_2} \left(J(a) \right) \right) = \frac{\partial}{\partial F} \left(\frac{\partial}{\partial Q} \left(J(a) \right) \right) = \frac{1}{E^*} \pi a \cdot \frac{\partial}{\partial F} \left(\frac{2\kappa^2 Q}{b^2 d^2} F_3^2 \left(\frac{a}{b} \right) \right) = \frac{1}{E^*} \pi a \cdot 0 = 0 \quad (4.116)$$

i = 1 ve j = 3 için

$$\frac{\partial}{\partial P_{1}} \left(\frac{\partial}{\partial P_{3}} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial F} \left(\frac{\partial}{\partial M} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^{*}} \pi a \cdot \frac{\partial}{\partial F} \left(\frac{12F}{b^{3}d^{2}} F_{1} \left(\frac{a}{b} \right) F_{2} \left(\frac{a}{b} \right) + \frac{72M}{b^{4}d^{2}} F_{2}^{2} \left(\frac{a}{b} \right) \right) = \frac{1}{E^{*}} \pi a \cdot \frac{12}{b^{3}d^{2}} F_{1} \left(\frac{a}{b} \right) F_{2} \left(\frac{a}{b} \right)$$

$$(4.117)$$

i = 2 ve j = 1 için

$$\frac{\partial}{\partial P_2} \left(\frac{\partial}{\partial P_1} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial Q} \left(\frac{\partial}{\partial F} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^*} \pi a \cdot \frac{\partial}{\partial Q} \left(\frac{2F}{b^2 d^2} F_1^2 \left(\frac{a}{b} \right) + \frac{12M}{b^3 d^2} F_1 \left(\frac{a}{b} \right) F_2 \left(\frac{a}{b} \right) \right) = \frac{1}{E^*} \pi a \cdot 0 = 0$$
(4.118)

i = 2 ve j = 2 için

$$\frac{\partial}{\partial P_2} \left(\frac{\partial}{\partial P_2} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial Q} \left(\frac{\partial}{\partial Q} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^*} \pi a \cdot \frac{\partial}{\partial Q} \left(\frac{2\kappa^2 Q}{b^2 d^2} F_3^2 \left(\frac{a}{b} \right) \right) = \frac{1}{E^*} \pi a \cdot \frac{2\kappa^2}{b^2 d^2} F_3^2 \left(\frac{a}{b} \right)$$
(4.119)

i = 2 ve j = 3 için

$$\frac{\partial}{\partial P_2} \left(\frac{\partial}{\partial P_3} \left(J\left(a \right) \right) \right) = \frac{\partial}{\partial Q} \left(\frac{\partial}{\partial M} \left(J\left(a \right) \right) \right) =$$

$$\frac{1}{E^*} \pi a \cdot \frac{\partial}{\partial Q} \left(\frac{12F}{b^3 d^2} F_1 \left(\frac{a}{b} \right) F_2 \left(\frac{a}{b} \right) + \frac{72M}{b^4 d^2} F_2^2 \left(\frac{a}{b} \right) \right) = \frac{1}{E^*} \pi a \cdot 0 = 0$$
(4.120)

i = 3 ve j = 1 için

$$\frac{\partial}{\partial P_{3}} \left(\frac{\partial}{\partial P_{1}} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial M} \left(\frac{\partial}{\partial F} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^{*}} \pi a \cdot \frac{\partial}{\partial M} \left(\frac{2F}{b^{2}d^{2}} F_{1}^{2} \left(\frac{a}{b} \right) + \frac{12M}{b^{3}d^{2}} F_{1} \left(\frac{a}{b} \right) F_{2} \left(\frac{a}{b} \right) \right) = \frac{1}{E^{*}} \pi a \cdot \frac{12}{b^{3}d^{2}} F_{1} \left(\frac{a}{b} \right) F_{2} \left(\frac{a}{b} \right)$$

$$(4.121)$$

i = 3 ve j = 1 için

$$\frac{\partial}{\partial P_{1}} \left(\frac{\partial}{\partial P_{1}} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial F} \left(\frac{\partial}{\partial F} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^{*}} \pi a \cdot \frac{\partial}{\partial F} \left(\frac{2F}{b^{2}d^{2}} F_{1}^{2} \left(\frac{a}{b} \right) + \frac{12M}{b^{3}d^{2}} F_{1} \left(\frac{a}{b} \right) F_{2} \left(\frac{a}{b} \right) \right) = \frac{1}{E^{*}} \pi a \cdot \frac{2}{b^{2}d^{2}} F_{1}^{2} \left(\frac{a}{b} \right)$$

$$(4.122)$$

i = 3 ve j = 2 için

$$\frac{\partial}{\partial P_3} \left(\frac{\partial}{\partial P_2} \left(J\left(a \right) \right) \right) = \frac{\partial}{\partial M} \left(\frac{\partial}{\partial Q} \left(J\left(a \right) \right) \right) = \frac{1}{E^*} \pi a \cdot \frac{\partial}{\partial M} \left(\frac{2\kappa^2 Q}{b^2 d^2} F_3^2 \left(\frac{a}{b} \right) \right) = \frac{1}{E^*} \pi a \cdot 0 = 0$$

$$(4.123)$$

i = 3 ve j = 3 için

$$\frac{\partial}{\partial P_{3}} \left(\frac{\partial}{\partial P_{3}} \left(J\left(a\right) \right) \right) = \frac{\partial}{\partial M} \left(\frac{\partial}{\partial M} \left(J\left(a\right) \right) \right) =$$

$$\frac{1}{E^{*}} \pi a \cdot \frac{\partial}{\partial F} \left(\frac{12F}{b^{3}d^{2}} F_{1}\left(\frac{a}{b}\right) F_{2}\left(\frac{a}{b}\right) + \frac{72M}{b^{4}d^{2}} F_{2}^{2}\left(\frac{a}{b}\right) \right) = \frac{1}{E^{*}} \pi a \cdot \frac{72}{b^{4}d^{2}} F_{2}^{2}\left(\frac{a}{b}\right)$$

$$(4.124)$$

Şimdi (4.115)'dan (4.124)'e kadar bulunan denklemleri (4.114) denkleminde yerlerine koyulursa;

$$c_{11} = \frac{2\pi}{b^2 d^2 E} \int_{-\frac{d}{2}}^{\frac{d}{2}} \int_{0}^{a_1} a \cdot F_1^2 \left(\frac{a}{b}\right) dadz = \frac{2d\pi}{b^2 d^2 E} \int_{0}^{a_1} a \cdot F_1^2 \left(\frac{a}{b}\right) da = \frac{2\pi}{b^2 dE} \int_{0}^{a_1} a \cdot F_1^2 \left(\frac{a}{b}\right) da \qquad (4.125)$$

$$c_{12} = 0;$$
 (4.126)

$$c_{13} = \frac{12\pi d}{Eb^3 d^2} \int_0^a aF_1\left(\frac{a}{b}\right) F_2\left(\frac{a}{b}\right) dadz = \frac{12\pi}{Eb^3 d} \int_0^{a_1} aF_1\left(\frac{a}{b}\right) F_2\left(\frac{a}{b}\right) da$$
(4.127)

$$c_{21} = 0;$$
 (4.128)

$$c_{22} = \frac{2\pi\kappa^2}{Eb^2d} \int_{0}^{a_1} aF_3^2\left(\frac{a}{b}\right) da$$
(4.129)

$$c_{23} = 0;$$
 (4.130)

$$c_{13} = \frac{12\pi}{Eb^3 d} \int_{0}^{a_1} aF_1\left(\frac{a}{b}\right) F_2\left(\frac{a}{b}\right) da = c_{31}$$
(4.131)

$$c_{32} = 0;$$
 (4.132)

$$c_{33} = \frac{72\pi}{E^* b^4 d} \int_0^{a_1} a F_2^2 \left(\frac{a}{b}\right) da$$
(4.133)

gibi esneklik katsayıları bulunmuş olur. Burada, b kiriş yüksekliğini, a1 yerel çatlak derinliğini belirtmektedir.

Esneklik katsayılarını kullanarak yer değiştirme vektörü $\delta(u, v, \theta)$ 'ya bağlı uygunluk matrisi (Compliance matrix) bulunur (Cunedioğlu, 2015):

$$C = \begin{bmatrix} c_{11} & 0 & c_{13} \\ 0 & c_{22} & 0 \\ c_{31} & 0 & c_{33} \end{bmatrix}_{(3\times3)}$$
(4.134)

Esneklik matrisinin tersi C^{-1} alınmak suretiyle düğümle temsil edilen çatlağın rijitliği bulunur (Kısa ve Brandon, 2000):

$$K_{cr} = \begin{bmatrix} [C]^{-1} & -[C]^{-1} \\ -[C]^{-1} & [C]^{-1} \end{bmatrix}_{(6\times 6)}$$
(4.135)

Serbest titreşim yapan çatlaksız ve çatlaklı (Cunedioğlu, 2015) bir kirişe ait öz değer ifadeleri sırasıyla aşağıdaki gibidir;

$$\left(\left[K\right] - \omega^{2}\left[M\right]\right)\left\{\overline{d}\right\} = 0 \tag{4.136}$$

$$\left(\left(\left[K\right] + \left[K_{cr}\right]\right) - \omega^{2}\left[M\right]\right)\left\{\overline{d}\right\} = 0$$
(4.137)

burada [K], [M], ω , ve $\{\overline{d}\}$ sırasıyla global halde kirişin rijitlik matrisi, kütle matrisi, açısal hız ve mod şeklini temsil etmektedir.

BÖLÜM V

FONKSİYONEL DERECELENDİRİLMİŞ ÇATLAKLI SABİT KESİTLİ KİRİŞ

5.1 Fonksiyonel Derecelendirilmiş Malzemeli Kirişin Modellenmesi ve Efektif Malzeme Özelliklerinin Belirlenmesi

Kalınlık boyunca malzeme özellikleri değişen, tarafsız eksene göre simetrik fonksiyonel derecelendirilmiş (*FD*) malzemeli kirişi gerçeğe yakın bir şekilde temsil etmek için kiriş elemanın 50 tabakadan oluştuğu farz edilmiştir. Bu tabakalar *Al* ve seramik (Al_2O_3) malzemelerin belirli oranlarda karışımlar kuralı gereğince oluşturulmaktadır. Modellemede her tabaka homojen ve izotrop kabul edilmiştir. Şekil 5.1'de tarafsız eksene göre simetrik FD kiriş gösterilmektedir. Kirişe ait geometrik boyutlar *L* uzunluğu, *b* kalınlığı, *d* genişliği ve *N* tabaka sayısını temsil etmektedir.

Şekil 5.1. FD simetrik sandviç kiriş

Modellemede tarafsız eksen yüzeyinin tamamen Al malzemeden ve kirişin alt ve üst yüzeylerinin tamamen Al_2O_3 malzemeden oluşturulmuştur. Kalınlık boyunca elastisite modülünün ve yoğunluğun eksponensiyel ve polinom fonksiyonlarla değişimi Şekil 5.2'de verilmiştir.

Şekil 5.2. Elastisite modülünün kalınlık boyunca değişimi (a) ve yoğunluğun kalınlık boyunca değişimi (b)

Kirişin tarafsız eksenden üst yüzeyine kadar olan her bir tabakanın elastiklik modülünün hesaplanmasında eksponansiyel ve polinom denklemler kullanılmaktadır (Demir vd., 2013a; Cunedioğlu, 2015).

$$E(y) = E_c e^{(-\delta(1-2y))}, \delta = \frac{1}{2} \ln\left(\frac{E_c}{E_m}\right)$$
(5.1)

$$E(y) = \left(E_{c} - E_{m}\right)\left(y + \frac{1}{2}\right)^{n} + E_{m}$$
(5.2)

Burada E_c seramiğin (Al_2O_3) elastisite modulünü, E_m metalin (Al) elastisite modulünü, y koordinat eksenini ve *n* polinom derecesini göstermektedir.

Kirişin tarafsız eksenden üst yüzeyine kadar olan her bir tabakanın yoğunluğunun hesaplanmasında eksponansiyel ve polinom denklemler kullanılmaktadır (Demir vd., 2013a; Cunedioğlu, 2015).

$$\rho(y) = \rho_c e^{(-\delta(1-2y))}, \delta = \frac{1}{2} \ln\left(\frac{\rho_c}{\rho_m}\right)$$
(5.3)

$$\rho(\mathbf{y}) = \left(\rho_c - \rho_m\right) \left(\mathbf{y} + \frac{1}{2}\right)^n + \rho_m \tag{5.4}$$

Burada, ρ_c seramiğin yoğunluğu, ρ_m metalin yoğunluğunu ve denklemdeki y değişkeni aşağıdaki ifadeyle belirtilmiştir.

$$y = -\frac{1}{2}, -\frac{1}{2} + \frac{1}{\eta}, -\frac{1}{2} + \frac{2}{\eta}, ..., \frac{1}{2}$$

Burada η (N/2)-1'e eşittir.

Kiriş kalınlığı boyunca yoğunluğu ve elastiklik modülünü elde etmek için klasik laminasyon teorisine dayalı efektif elastisite ve yoğunluk yaklaşımı kullanılmıştır (Gibson, 1994).

Efektif elastisite modulü ve yoğunluğu aşağıdaki denklemlerle hesaplanmaktadır;

$$E_{ef} = \frac{8}{b^3} \sum_{i=1}^{N/2} \left(E_y \right)_i \left(y_i^3 - y_{i-1}^3 \right)$$
(5.5)

$$\rho_{ef} = \frac{8}{b^3} \sum_{i=1}^{N/2} \left(\rho_y \right)_i \left(y_i^3 - y_{i-1}^3 \right)$$
(5.6)

5.2 Çatlaklı Kiriş Modelin Doğrulanması

Ankastre sınır şartına sahip çatlaklı kiriş modelin doğrulanması için MATLAB'ta sonlu elamanlar kodu yazılmıştır. Doğal frekansların hesaplanmasında kullanılan sonlu elamanlar kodunun test edilmesi için literatürde var olan bir örnek ele alınmıştır. Kirişe ait geometrik boyutlar Şekil 5.3'de belirtilmiş olup uzunluk *L*=0.8 m, genişlik *d*=0.02 m, yükseklik *b*=0.02 m, birinci çatlak konumu *Lc*1=0.12 m, birinci çatlak derinliği *a*1=2 mm, ikinci çatlak konumu *Lc*2=0.4 m ve ikinci çatlak derinliği *a*2=3 mm olarak verilmiştir. Kirişe ait malzeme özellikleri ise elastiklik modülü *E*=210 Gpa ve malzeme yoğunluğu ρ =7800 kg/m³ olarak verilmiştir. Bu çalışmada Timoshenko kiriş teorisi kullanılmıştır. Ayrıca literatürde belirtilmediği için kayma rijitlik modülu *G*=3/8*E*, Poisson oranı *v*=0.28 ve şekil düzeltme faktürü κ =5/6 olarak alınmıştır.

Şekil 5.3. İki çatlaklı ankastre kiriş modeli

Doğal frekans	<i>Lc</i> 1 (m)	<i>a</i> 1 (mm)	<i>Lc</i> 2 (m)	a2 (mm)	Shifrin ve Ruotolo (1999) (Hz)	Bu çalışma
1	0.12	2	0.4	3	26.0954	26.04356
2	0.12	2	0.4	3	163.3221	162.4123
3	0.12	2	0.4	3	459.6011	455.8614

Çizelge 5.1. İki çatlaklı kirişe ait ilk üç doğal frekans değeri

Çizelge 5.1'den görüleceği üzere bu çalışmada elde edilen sonuçların literatürle uyumlu oldukları görülmektedir.

5.3 Fonksiyonel Derecelendirilmiş (FD) Kirişin Doğrulanması

Malzeme özellikleri kalınlık boyunca polinom ve eksponansiyel fonksiyonla tanımlı tarafsız eksene göre simetrik olan *FD* kirişin 50 tabakadan oluştuğu farz edilmiştir. Doğal frekansların hesaplanmasında kayma deformasyon ve dönme atalet etkisi dikkate alınarak Timoshenko kiriş teorisi kullanılmıştır. FD kiriş modelin doğrulanması için literatürde var olan Şekil 5.4'de gösterilen basit mesnetli kiriş ele alınmıştır (Cunedioğlu, 2015). Kirişe ait geometrik boyutlar L=200 mm, kalınlık b=5 mm ve genişlik d=20 mm olarak verilmiştir.

FD malzemeyi oluşturan alüminyum (*Al*) ve seramiğin (Al_2O_3) mekanik özellikleri Çizelge 5.2'de verilmiştir (Demir vd., 2013a).

Şekil 5.4. Basit mesnetli FD simetrik kiriş

Çizelge 5.2. FD malzemeyi oluşturan malzemelerin malzeme sabitleri

Malzeme	E (Gpa)	ho (kg/m ³)	V
Al	70	2700	0.3
Al_2O_3	380	3950	0.3

Timoshenko kiriş teorisine göre MATLAB'ta yazılan sonlu elamanlar kodunda elaman sayısı 100 olarak alınmış olup bu elaman sayısında yakınsama sağlanmıştır. Analizler eksponansiyel ve polinom fonksiyon için yapılmıştır. Elde edilen ilk dört doğal frekans değerleri Çizelge 5.3'te verilmiştir (Cunedioğlu, 2015).

Çizelge 5.3. FD basit mesnetli Timoshenko kirişin ilk dört doğal frekansı

Fonksyon			Mode 1	Mode 2	Mode 3	Mode 4
akanonanaiwal	Demir vd. (2013a)		486.52	1939.6	4341.8	7663.15
eksponansiyei	Present		486.422	1939.445	4340.726	7660.899
polinomyal	<i>n</i> =0.1	Demir vd. (2013a)	550.91	2196.89	4917.36	8679.65
		Present	550.944	2196.707	4916.511	8677.095
	<i>n</i> =0.5	Demir vd. (2013a)	534.98	2133.31	4775.06	8428.46
		Present	534.999	2133.135	4774.228	8425.982
	<i>n</i> =1	Demir vd. (2013a)	518.2	2065.88	4624.09	8162
		Present	518.086	2065.695	4623.289	8159.592
	<i>n</i> =5	Demir vd. (2013a)	443.06	1766.61	3954.27	6979.69
		Present	443.038	1766.469	3953.582	6977.634
	<i>n</i> =10	Demir vd. (2013a)	404.67	1613.63	3611.82	6375.24
		Present	404.671	1613.492	3611.200	6373.368

Çizelge 5.3'ten görüleceği gibi MATLAB koduyla hesaplanan doğal frekans değerlerinin literatürle iyi bir uygunluk sağladığı görülmektedir.

5.4 Problemin Tanımlanması ve İrdelenmesi

Bu tez çalışmasında FD kiriş tarafsız eksene göre simetrik Şekil 5.3'de gösterilen ankastre mesnetli bir kiriş ele alınarak analizler gerçekleştirilmiştir. FD kirişi temsil etmek için kiriş elemanın 50 tabakadan oluştuğu kabul edilmiştir. Yazılan sonlu elemanlar kodunda eleman sayısı 100 olarak alınmış ve yakınsama sağlanmıştır. Polinom derecesinin (n=0) olması FD kirin izotrop tek bir malzemeden oluştuğu anlamına gelmektedir. Bu nedenle çatlak modele ait doğrulama burada geçerli olmaktadır. Çalışmada FD kirişin doğrulanmasında kullanılan geometrik boyutlar ele alınmıştır.

Tez çalışmasında çatlak konumlarının, çatlak derinliklerinin, polinom derecesinin (n) ve farklı malzeme dağılımlarının doğal frekanslar üzerindeki etkisinin incelenmesi için MATLAB ve ANSYS paket programlarında analizler gerçekleştirilmiştir. Ancak tez çalışmasında polinom derecesi n=5 için analiz sonuçları EK-A'da verilmiştir.

Tezde malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen çatlaklı ankastre bir kirişte ikinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliği oranının (a2/b) doğal frekanslar üzerindeki etkisini incelemek açısından analizler gerçekleştirilmiştir. Bu analizlerde birinci çatlak konumu Lc1/L = 0.2 ve birinci çatlak derinliği oranı a1/b=0.2 sabit alınmıştır. Polinom fonksiyon için grafikler sadece polinom derecesi n=5 için verilmiştir.

Şekil 5.5 a ve b'den görüleceği üzere Lc2/L konumunun ankastre uçtan serbest uca doğru giderken 1.doğal frekans değerlerinde bir artış gözlemlenirken a2/b oranının artmasıyla birlikte doğal frekanslarda bir düşüş görülmüştür.

Şekil 5.5. İkinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliği oranının (a2/b) 1. doğal frekanslara etkisi

Şekil 5.6 *a* ve *b*, Şekil 5.7 *a* ve *b*'den görüleceği üzere 2.doğal frekans Lc2/L=0.6 konumunda minimum değerini alırken 3. doğal frekans değerleri bu konumda maksimum almaktadır. Ancak her iki şekilden de görüleceği gibi a2/b oranının artmasıyla birlikte doğal frekans değerlerinde düşüşler gözlemlenmiştir.

Şekil 5.6. İkinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliği oranının (a2/b) 2. doğal frekanslara etkisi

Şekil 5.7. İkinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliği oranının (a2/b) 3. doğal frekanslara etkisi

Şekil 5.8 *a*, *b*'den görüldüğü gibi ikinci çatlak derinliği oranının (a2/b) artmasıyla ve ikinci çatlak (Lc2/L) konumunun serbest uca doğru gitmesiyle birlikte 4. doğal frekans değerlerinde düşüşler gerçekleşmiştir.

Şekil 5.8. İkinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliği oranının (a2/b) 4. doğal frekanslara etkisi

Birinci çatlak derinliği (a1/b) ve ikinci çatlak derinliği (a2/b) oranlarındaki değişimlerin doğal frekans değerleri üzerindeki etkisini görmek için analizler gerçekleştirilmiştir. Şekil 5.9 *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*'den görüleceği gibi her iki çatlak oranlarının artmasıyla birlikte bütün doğal frekans değerlerinde azalmalar görülmüştür. Ancak 2. doğal frekans değerlerinin 1. ve 2. çatlak derinliği oranlarındaki değişimlerden daha az etkilendikleri görülmüştür.

Şekil 5.9. Birinci çatlak derinliği (a1/b) ve ikinci çatlak derinliği oranının (a2/b) doğal frekanslara etkisi

Polinom fonksiyon derecesinin (*n*) ve ikinci çatlak derinliği oranının (a2/b) doğal frekanslar üzerindeki etkilerini araştırmak açısından Lc1/L=0.2, a1/b=0.2 ve Lc2/L=0.4 değerleri sabit alınarak analizler gerçekleştirilmiştir. Şekil 5.10 *a*, *b*, *c*, *d*'den görüldüğü üzere polinom derecesinin ve ikinci çatlak derinliği oranının artmasıyla birlikte bütün doğal frekans değerlerinin düştüğü tespit edilmiştir.

Şekil 5.10. Polinom derecesinin (*n*) ve ikinci çatlak derinliği oranının (*a*2/*b*) doğal frekanslara etkisi

Birinci çatlak derinliği oranının (a1/b) ve polinom derecesinin (n) doğal frekanslar üzerindeki etkilerini incelemek için Lc1/L=0.2, Lc2/L=0.4 ve a2/b =0.2 değerleri sabit alınarak analizler yapılmıştır. Elde edilen sonuçlar Şekil 5.11 a, b, c ve d'de gösterilmiştir. Şekil 5.11 a, b, c, d'den görüleceği üzere birinci çatlak derinliği oranının (a1/b) ve polinom derecesinin (n) artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler görülürken ikinci doğal frekans değerlerinin (a1/b) değişiminden daha az etkilendikleri anlaşılmaktadır.

Şekil 5.11. Polinom derecesinin (*n*) ve birinci çatlak derinliği oranının (*a*1/*b*) doğal frekanslara etkisi

Polinom derecesinin (*n*) ve ikinci çatlak konumunun(Lc2/L) doğal frekanslar üzerindeki etkilerini incelemek için Lc1/L=0.2, a1/b=0.2 ve a2/b =0.2 değerleri sabit alınarak analizler yapılmıştır. Elde edilen sonuçlar Şekil 5.12 *a*, *b*, *c* ve *d*'de gösterilmiştir. Şekil 5.12 *a* ve *d*'den görüleceği üzere ikinci çatlak konumu serbest uca doğru giderken 1. doğal frekans değerlerinde hafif bir artış gözlemlenirken 4. doğal frekans değerlerinde hafif bir düşüş görülmüştür. Şekil 5.12 *b* ve *c*'den görüleceği üzere Lc2/L=0.6konumunda 2. doğal frekans değeri minimum olurken, 3. Doğal frekans değerleri bu konumda maksimum olmaktadır. Bütün doğal frekans değerlerinin polinom derecesinin (*n*) artmasıyla birlikte azaldığı görülmüştür.

Şekil 5.12. Polinom derecesinin (n) ve ikinci çatlak konumunun (Lc2/L) doğal frekanslara etkisi

BÖLÜM VI

FONKSİYONEL DERECELENDİRİLMİŞ KADEMELİ ÇATLAKLI KİRİŞLER

6.1 Tek Çatlaklı Kiriş Modelin Doğrulanması

Tek çatlaklı Timoshenko ankastre kiriş modelin doğrulanması için literatürde var olan homojen izotrop malzemeli bir problem ele alınmıştır. Kirişe ait uzunluk *L*=0.2 m, yükseklik *b*=0.0078 m, genişlik *d*=0.025 m, elastisite modülü *E*=216 Gpa, rijitlik modülü *G*=3*E*/8, malzeme yoğunluğu ρ =7850 kg/m³, Poisson oranı *v*=0.28, κ =5/6 ve çatlak derinliğ oranı *a/b*=0.2 olarak verilmiştir (Akbaş, 2013). Matlab'ta yazılan sonlu elemanlar koduyla farklı çatlak konumları (*Lc/L*) için elde edilen doğal frekans sonuçları Çizelge 6.1'de verilmiştir.

Çizelge 6.1. Çatlaklı homojen izotrop ankastre kirişte 1. doğal frekans değerleri

Lc/L	0.2	0.4	0.6	Çatlaksız kiriş
Bu çalışma	1020.046	1030.004	1035.196	1036.932
Kısa vd. (1998)	1020.0137	1030.095	1035.284	1037.0189
Ke vd. (2009)	1020.098	1029.853	1034.932	1037.0106
Akbaş (2013)	1021.6	1031.2	1036.2	1037.09

6.2 Tek Çatlaklı Kademeli Kirişin Doğrulanması ve Analizi

Bu tez çalışmasında FD kiriş tarafsız eksene göre simetrik kademeli farklı kesitlere sahip ankastre mesnetli kiriş ele alınmıştır. Kirişe ait kesit geometrileri Şekil 6.1'de gösterilmiştir. Çalışmada *FD* kirişi temsil etmek için kiriş elemanın 50 tabakadan oluştuğu kabul edilmiştir. Kirişin ikinci kademesi tıraşlanarak oluşturulduğu farz edilmiştir. Böylece kiriş kademeleri arasında malzeme sürekliliği sağlanmıştır. Kiriş geometrisine ait boyutlar ise L=200 mm, d=20 mm, d1=15 mm, b=5 mm, b1=4 mm olarak alınmıştır. Kademeli kirişte Ls/L=1 ve polinom derecesi n=0 olması halinde kiriş tek çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 6.1 başlığı altında ispatlanmıştır.

Şekil 6.1. Ankastre kirişe ait kesit geometrileri

Tez çalışmasında çatlak konumlarının, çatlak derinliklerinin, polinom derecesinin (*n*) ve farklı malzeme dağılımlarının, farklı kademe uzunluklarının ve farklı kesit geometrilerinin doğal frekanslar üzerindeki etkisinin incelenmesi için MATLAB ve ANSYS paket programlarında analizler yapılmıştır. Ancak tez çalışmasında polinom derecesi n=5 için analiz sonuçları EK-B, EK-C ve EK-D'de verilmiştir.

Tezde malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen çatlaklı ankastre bir kirişte çatlak konumunun (Lc/L) ve çatlak derinliğinin (*a*) doğal frekanslar üzerindeki etkisini incelemek açısından farklı kiriş kesitleri için analizler gerçekleştirilmiştir. Bu analizlerde kiriş kademe konumu Ls/L=0.25 sabit alınmıştır. Polinom fonksiyon için grafikler sadece polinom derecesi n=5 için verilmiştir.

Şekil 6.2'den görüleceği gibi malzeme özellikleri eksponansiyel fonksiyonla tanımlı A ve C kesit geometrilerinde minimum doğal frekans Lc/L=0.4 konumunda gerçekleşirken bu konumdan sonra 1.doğal frekans değerlerinde artış gözlemlenmiştir. Buna karşın B

kesit geometrisinde çatlak konumunun ankastre uçtan serbest uca doğru giderken 1.doğal frekans değerlerinde bir artış görülmüştür. Her üç kesit geometrisi için çatlak derinliğinin artmasıyla birlikte doğal frekans değerlerinde bir düşüş gerçekleşmiştir. Şekil 6.2'den görüleceği üzere en büyük doğal frekans değerleri *B* kesit geometrisinde, en küçük doğal frekans değerleri ise *A* kesitli kiriş geometrisinde oluşmuştur.

Şekil 6.2. Ls/L=0.25 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 1. doğal frekanslara etkisi

Malzeme özellikleri polinom fonksiyonla tanımlı A, B ve C kiriş kesitlerine ait 1. doğal frekans değerleri n=5 için Şekil 6.3'te verilmiştir. Doğal frekanslardaki değişim Şekil 6.2 ile aynı trendi sergilemektedir. Ancak n=5 için doğal frekans değerleri eksponansiyel fonksiyon değerlerinden daha düşüktür.

Şekil 6.3. Ls/L=0.25, n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 1. doğal frekanslara etkisi

Şekil 6.4 ve Şekil 6.5'ten görüleceği gibi malzeme özellikleri eksponansiyel ve polinom fonksiyonla tanımlı *A*, *B* ve *C* kesit geometrilerinde minimum 2.doğal frekans değerleri Lc/L= 0.6 konumunda gerçekleşmiştir. En büyük ve en küçük frekans değerleri sırasıyla *B* ve *A* kesitli kirişlerde elde edilmiştir.

Şekil 6.4. Ls/L=0.25 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (a) için 2. doğal frekanslara etkisi

Şekil 6.5. Ls/L=0.25, n=5 için polinom fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 2. doğal frekanslara etkisi

Şekil 6.6 ve Şekil 6.7'den görüleceği gibi malzeme özellikleri eksponansiyel ve polinom fonksiyonla tanımlı *A* ve *C* kesit geometrilerinde 3.doğal frekans değerlerinde düşüş ve artışlar gözlemlenirken, *B* kesitli geometride çatlak konumunun serbest uca doğru giderken doğal frekans değerlerinde sürekli bir düşüş görülmüştür.

Şekil 6.6. Ls/L=0.25 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 3. doğal frekanslara etkisi

Şekil 6.7. Ls/L=0.25, n=5 için polinom fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 3. doğal frekanslara etkisi

Şekil 6.8 ve Şekil 6.9'dan görüleceği gibi malzeme özellikleri eksponansiyel ve polinom fonksiyonla tanımlı A ve C kesit geometrilerinde maksimum 4.doğal frekans değerleri Lc/L=0.4 konumunda gerçekleşirken bu konumdan sonra doğal frekans değerlerinde düşüşler görülürken, B kesitli geometride ise çatlak konumunun Lc/L=0.6'ya kadarki konumlarda doğal frekanslarda bir artış oluşurken bu konumdan sonra düşüş görülmüştür.

Şekil 6.8. Ls/L=0.25 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 4. doğal frekanslara etkisi

Şekil 6.9. Ls/L=0.25, n=5 için polinom fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin çatlak konumunun (Lc/L) ve farklı çatlak derinliği (*a*) için 4. doğal frekanslara etkisi

Kademe konumunun farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler gerçekleştirilmiştir. Analizler Lc/L=0.2 çatlak konumu ve n=5 için yapılmıştır. Şekil 6.10'dan görüleceği üzere eksponansiyel fonksiyonla tanımlı kiriş için A, B ve C kesitlerinde maksimum 1.doğal frekans Ls/L=0.5 kademe konumunda gerçekleşirken bu kademe konumundan sonra doğal frekanslarda düşüşler görülmüştür. Ancak C kesitindeki düşüşlerin A kesitine nazaran daha büyük olmuştur. Buna karşın Şekil 6.11'de polinom fonksiyonla tanımlı A kesitli kirişte en büyük 1.doğal frekans Ls/L=0.75, B ve C kesitli kirişlerde Ls/L=0.5 kademe konumunda gerçekleştikten sonra düşüşler gözlemlenmiştir. Şekil 6.10 ve Şekil

6.11'deki *A* kesitli kirişteki maksimum 1.doğal frekans kademe konum farklılığı Şekil 6.26'dan görüleceği gibi polinom derecesinden (*n*) kaynaklanmaktadır. Ayrıca her iki fonksiyonla tanımlı kiriş kesitleri için çatlak derinliğinin (*a*) artmasıyla birlikte 1.doğal frekans değerlerinde azalmalar görülmüştür.

Şekil 6.10. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (*a*) için 1. doğal frekanslara etkisi

Şekil 6.11. Lc/L=0.2, n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 1. doğal frekanslara etkisi

Şekil 6.12 ve Şekil 6.13'ten görüleceği gibi A kesitli kiriş 2.doğal frekans değerlerinde *Ls/L*=0.75 kademe konumuna kadar bir artış bu kademe konumdan sonra düşüş gözlemlenirken B ve C kesitli kirişlerde 2.doğal frekans değerlerinde düşüş ve artışlar görülmüştür. Ayrıca şekillerden görüleceği gibi her üç kiriş kesiti için çatlak derinliğinin (a) 2.doğal frekans değerleri üzerinde pek bir etkisinin olmadığı görülmüştür.

Şekil 6.12. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (*a*) için 2. doğal frekanslara etkisi

Şekil 6.13. Lc/L=0.2, n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 2. doğal frekanslara etkisi

Şekil 6.14 ve Şekil 6.15'ten her iki fonksiyonla tanımlı A ve C kesitli kirişlerde kademe konumunun artmasıyla birlikte 3. Doğal frekans değerlerinde bir artış gözlemlenirken çatlak derinliğinin (*a*) 3.doğal frekans değerleri üzerinde etkisinin çok az olduğu görülmüştür. Buna karşın B kesitli kirişte kademe konumunun artmasıyla birlikte 3. doğal frekans değerlerinde düşüş ve artışlar gerçekleşirken, çatlak derinliğinin (*a*) artmasıyla 3.doğal frekans değerlerinde önemli oranda azalmalar görülmüştür.

Şekil 6.14. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (*a*) için 3. doğal frekanslara etkisi

Şekil 6.15. Lc/L=0.2, n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 3. doğal frekanslara etkisi

Şekil 6.16 ve Şekil 6.17'ten her iki fonksiyonla tanımlı *A* ve *C* kesitli kirişlerde kademe konumunun artmasıyla birlikte 4. Doğal frekans değerlerinde bir artış gözlemlenmiştir. Buna karşın *B* kesitli kirişte kademe konumunun artmasıyla birlikte 4. doğal frekans değerlerinde düşüş ve artışlar gerçekleşmiştir. Ayrıca, bütün kesitlerde çatlak derinliğinin (*a*) artmasıyla birlikte 4.doğal frekans değerlerinde önemli azalmalar görülmüştür.

Şekil 6.16. Lc/L=0.2 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (*a*) için 4. doğal frekanslara etkisi

Şekil 6.17. Lc/L=0.2, n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı çatlak derinliği (a) için 4. doğal frekanslara etkisi

Polinom derecesinin farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler gerçekleştirilmiştir. Analizler Lc/L=0.2 çatlak konumu ve Ls/L=0.25 kademe konumu için yapılmıştır.

Şekil 6.18'den görüleceği gibi her üç kesit için polinom derecesinin ve çatlak derinliğinin artmasıyla birlikte 1.doğal frekans değerlerinde azalmalar gözlemlenmiştir.

Şekil 6.18. *Ls/L*=0.25 ve *Lc/L*=0.2 için polinom derecesinin farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.19, Şekil 6.20 ve Şekil 6.21'den her üç kesit için 2., 3. ve 4.doğal frekans değerleri çatlak derinliğinden pek etkilenmezken, sadece *B* kesitli kirişin 4.doğal frekans değerlerinde düşüşler görülmüştür.

Şekil 6.19. *Ls/L*=0.25 ve *Lc/L*=0.2 için polinom derecesinin farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.20. *Ls/L*=0.25 ve *Lc/L*=0.2 için polinom derecesinin farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.21. *Ls/L*=0.25 ve *Lc/L*=0.2 için polinom derecesinin farklı kesit ve farklı çatlak derinlikleriyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

Çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler yapılmıştır. Analizler Ls/L=0.25 kademe konumu ve a=2 mm çatlak derinliği için yapılmıştır. Şekil 6.22'de A ve C kiriş kesitlerine ait minimum 1.doğal frekans Lc/L=0.4 konumunda gerçekleşirken bu konumdan sonra doğal frekans değerlerinde artış görülmüştür. B kesitinde ise çatlak konumunun artmasıyla birlikte 1.doğal frekans değerlerinde sürekli artışlar vuku bulmuştur.

Şekil 6.22. *Ls/L*=0.25 ve *a*=2 mm için çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.23'te her üç kesit için *Lc/L*=0.6 konumuna kadar 2.doğal frekans değerlerinde bir düşüş gözlemlenirken bu konumdan sonra bir artış olmuştur.

Şekil 6.23. *Ls/L*=0.25 ve *a*=2 mm için çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.24'te A ve C kesitli kirişlerde 3.doğal frekans değerlerinde düşüş ve artışlar görülürken, B kesitli kirişte doğal frekans değerlerinde düşüşler gözlemlenmiştir. Şekil 6.25'te ise A ve C kesitli kirişlerde maksimum 4.doğal frekans Lc/L=0.4 konumunda oluşurken bu konumdan sonra doğal frekanslarda azalmalar görülmüştür. Buna karşın Bkesitli kirişte maksimum 4.doğal frekans Lc/L=0.6 konumunda oluşurken bu konumdan sonra doğal frekanslarda düşüşler görülmüştür. Şekil 6.22'den Şekil 6.25'e kadarki grafiklere bakıldığında her üç kesit için polinom derecesinin artmasıyla birlikte doğal frekans değerlerinde azalmaların olduğu görülmektedir.

Şekil 6.24. *Ls/L*=0.25 ve *a*=2 mm için çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.25. *Ls/L*=0.25 ve *a*=2 mm için çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

Kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler yapılmıştır. Analizler Lc/L=0.2 çatlak konumu ve a=2 mm çatlak derinliği için yapılmıştır.

Şekil 6.26'dan görüleceği üzere *B* ve *C* kesitli kirişlerde maksimum 1.doğal frekans Ls/L=0.5 konumunda gerçekleşirken bu konumdan sonra düşüşler yaşanmıştır. *A* kesitinde ise n=0.1, 0.5 ve 1 parametrelerinde maksimum 1.doğal frekans Ls/L=0.5

konumunda oluşurken, n=5 ve 10 parametrelerinde maksimum 1.doğal frekans *Ls/L*=0.75 konumunda gerçekleşmiştir.

Şekil 6.26. *Lc/L*=0.2 ve *a*=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.27'de ise *B* ve *C* kesitli kirişlerde 2.doğal frekans değerlerinde düşüş ve artışlar yaşanırken maksimum doğal frekans Ls/L=0.75 konumunda oluşmuştur. Buna karşın *A* kesitli kirişte maksimum 2.doğal frekans Ls/L=0.75 konumunda oluşurken bu konumdan sonra n=10 hariç 2.doğal frekans değerlerinde düşüşler gözlemlenmiştir.

Şekil 6.27. *Lc/L*=0.2 ve *a*=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.28 ve Şekil 6.29'da *A* ve *C* kiriş kesitleri için 3. ve 4.doğal frekans değerleri kademe konumunun artmasıyla birlikte doğal frekans değerlerinde bir artış

gözlemlenirken, *B* kesitli kirişte 3. ve 4.doğal frekans değerlerinin kademe konumundan pek fazla etkilenmediği görülmüştür. Şekil 6.26'dan Şekil 6.29'a kadarki grafiklere bakıldığında her üç kesit için polinom derecesinin artmasıyla birlikte doğal frekans değerlerinde azalmaların olduğu görülmektedir

Şekil 6.28. *Lc/L*=0.2 ve *a*=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.29. *Lc/L*=0.2 ve *a*=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

6.3 Çift Çatlaklı Kademeli Kirişin Doğrulanması ve Analizi

Bu tez çalışmasında FD kiriş tarafsız eksene göre simetrik kademeli farklı kesitlere sahip iki çatlaklı ankastre mesnetli kiriş ele alınmıştır. Kirişe ait kesit geometrileri Şekil 6.30'da gösterilmiştir. Çalışmada *FD* kirişi temsil etmek için kiriş elemanın 50 tabakadan oluştuğu kabul edilmiştir. Kirişin ikinci kademesi tıraşlanarak oluşturulduğu farz edilmiştir. Böylece kiriş kademeleri arasında malzeme sürekliliği sağlanmıştır. Kiriş geometrisine ait boyutlar ise L=200 mm, d=20 mm, d1=15 mm, b=5 mm, b1=4 mm olarak alınmıştır. Kademeli kirişte Ls/L=1 ve polinom derecesi n=0 olması halinde kiriş çift çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 5.2 başlığı altında ispatlanmıştır.

Şekil 6.30. Ankastre kirişe ait kesit geometrileri

Tez çalışmasında çatlak konumlarının, çatlak derinliklerinin, polinom derecesinin (*n*) ve farklı malzeme dağılımlarının, farklı kademe uzunluklarının ve farklı kesit geometrilerinin doğal frekanslar üzerindeki etkisinin incelenmesi için MATLAB ve ANSYS paket programlarında analizler yapılmıştır. Tez çalışmasında sadece kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için analiz sonuçları EK-E, EK-F ve EK-G'de verilmiştir.

Tezde malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen çatlaklı ankastre bir kirişte ikinci çatlak konumunun (Lc2/L) ve ikinci çatlak derinliğinin (a2) doğal frekanslar üzerindeki etkisini incelemek açısından farklı kiriş kesitleri için analizler gerçekleştirilmiştir.

Analizlerde birinci çatlak konumu (Lc1/L=0.2), birinci çatlak derinliği (a1=0.5 mm) ve kademe konumu (Ls/L=0.25) sabit alınarak ikinci çatlak konumunun ve ikinci çatlak derinliğinin ilk dört doğal frekans üzerindeki etkileri araştırılmıştır.

Şekil 6.31 ve Şekil 6.32'den görüleceği üzere Lc2/L konumunun ankastre uçtan serbest uca doğru giderken 1.doğal frekans değerlerinde bir artış gözlemlenirken *a*2 çatlak derinliğinin artmasıyla birlikte doğal frekanslarda bir düşüş görülmüştür.

Şekil 6.31. *Lc*1/*L*, *Ls*/*L*=0.25 ve *a*1=0.5 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 1. doğal frekanslara etkisi

Şekil 6.32. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 ve *n*=5 için polinom fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 1. doğal frekanslara etkisi

Şekil 6.33' ve Şekil 6.34'den görüleceği üzere 2 doğal frekans Lc2/L=0.6 konumunda minimum değerdedir. Ancak her iki şekilden de görüleceği gibi a2 çatlak derinliğinin artmasıyla birlikte doğal frekans değerlerinde düşüşler gözlemlenmiştir.

Şekil 6.33. *Lc*1/*L*, *Ls*/*L*=0.25 ve *a*1=0.5 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 2. doğal frekanslara etkisi

Şekil 6.34. Lc1/L, Ls/L=0.25, a1=0.5 ve n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin ikinci çatlak konumunun (Lc2/L) ve farklı ikinci çatlak derinliği (a2) için 2. doğal frekanslara etkisi

Şekil 6.35 ve Şekil 6.36'dan görüleceği gibi A ve C kesitli kirişlerde maksimum 3.doğal frekans (Lc2/L=0.6) konumunda gerçekleşirken, B kesitli kirişte ikinci çatlak konumunun artmasıyla birlikte sürekli bir düşüş olmuştur. Şekil 6.37 ve Şekil 6.38 incelendiğinde A ve C kesitli kirişlerde ikinci çatlak konumunun artmasıyla birlikte 4. doğal frekans değerlerinde sürekli bir azalma gerçekleşirken, B kesitli kirişte maksimum 4. doğal frekans (Lc2/L=0.6) konumunda oluşmaktadır. Şekillerden anlaşılacağı üzere a2 çatlak derinliğinin artmasıyla birlikte 3. ve 4. doğal frekans değerlerinde düşüşler yaşanmıştır.

Şekil 6.35. *Lc*1/*L*, *Ls*/*L*=0.25 ve *a*1=0.5 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 3. doğal frekanslara etkisi

Şekil 6.36. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 ve *n*=5 için polinom fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 3. doğal frekanslara etkisi

Şekil 6.37. *Lc*1/*L*, *Ls*/*L*=0.25 ve *a*1=0.5 için eksponansiyel fonksiyonla tanımlı *A*, *B*, *C* kesitli kirişlerin ikinci çatlak konumunun (*Lc*2/*L*) ve farklı ikinci çatlak derinliği (*a*2) için 4. doğal frekanslara etkisi

Şekil 6.38. *Lc1/L, Ls/L=*0.25, *a*1=0.5 ve *n*=5 için polinom fonksiyonla tanımlı *A, B, C* kesitli kirişlerin ikinci çatlak konumunun (*Lc2/L*) ve farklı ikinci çatlak derinliği (*a*2) için 4. doğal frekanslara etkisi

Polinom derecesinin farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler gerçekleştirilmiştir. Analizler birinci çatlak konumu (Lc1/L=0.2), kademe konumu (Ls/L=0.25), birinci çatlak derinliği (a1=0.5 mm) ve ikinci çatlak konumu (Lc2/L=0.4) sabit parametreleri için yapılmıştır.

Şekil 6.39'dan Şekil 6.42'ye kadar bakıldığında, polinom derecesinin ve ikinci çatlak derinliğinin artmasıyla birlikte doğal frekans değerlerinin düştüğü gözlemlenmiştir. Ancak A ve C kesitli kirişlerin 4. doğal frekans değerleri ikinci çatlak derinliğindeki artıştan etkilenmediği görülmüştür.

Şekil 6.39. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 mm ve *Lc*2/*L*=0.4 için polinom derecesinin farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.40. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 mm ve *Lc*2/*L*=0.4 için polinom derecesinin farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.41. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 mm ve *Lc*2/*L*=0.4 için polinom derecesinin farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.42. *Lc*1/*L*, *Ls*/*L*=0.25, *a*1=0.5 mm ve *Lc*2/*L*=0.4 için polinom derecesinin farklı kesit ve farklı ikinci çatlak derinlikleriyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

Ikinci çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler yapılmıştır. Analizler birinci çatlak konumu (Lc1/L=0.2), kademe konumu (Ls/L=0.25), birinci çatlak derinliği (a1=0.5 mm) ve ikinci çatlak derinliği (a2=2 mm) sabit parametreleri için yapılmıştır.

Şekil 6.43 ve Şekil 6.46'dan görüleceği üzere ikinci çatlak konumu serbest uca doğru giderken 1. doğal frekans değerlerinde bir artış gözlemlenirken 4. doğal frekans değerlerinde bir düşüş görülmüştür. Şekil 6.44 ve Şekil 6.45'den görüleceği üzere

*Lc*2/L=0.6 konumunda 2. doğal frekans değeri minimum olurken, 3. Doğal frekans değerleri bu konumda A ve C kesitli kirişlerde maksimum olmaktadır. Ayrıc bütün doğal frekans değerlerinin polinom derecesinin (n) artmasıyla birlikte azaldığı görülmüştür.

Şekil 6.43. *Lc*1/*L*=0.2, *Ls*/*L*=0.25, *a*1=0.5 mm ve *a*=2 mm için ikinci çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.44. *Lc*1/*L*=0.2, *Ls*/*L*=0.25, *a*1=0.5 mm ve *a*=2 mm için ikinci çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.45. *Lc*1/*L*=0.2, *Ls*/*L*=0.25, *a*1=0.5 mm ve *a*=2 mm için ikinci çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.46. *Lc*1/*L*=0.2, *Ls*/*L*=0.25, *a*1=0.5 mm ve *a*=2 mm için ikinci çatlak konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

Kademe konumunun farklı kiriş kesitleri ve farklı ikinci çatlak derinlikleriyle değişimlerinin doğal frekanslar üzerindeki etkisinin incelenmesi için analizler yapılmıştır. Analizler birinci çatlak konumu (Lc1/L=0.2), ikinci çatlak konumu (Lc2/L=0.4), birinci çatlak derinliği (a1=0.5 mm) ve n=5 sabit değerleriri için yapılmıştır.

Şekil 6.47 ve Şekil 6.48'den exponansiyel ve polinom fonksiyonla tanımlı kirişlerde kademe konumunun ve ikinci çatlak derinliğinin (a2) artmasıyla birlikte 1.doğal frekans

değerlerinde azalmalar yaşanırken, polinom fonksiyonla tanımlı A kesitli kirişte maksimum 1.doğal frekans (*Ls/L*=0.75) konumunda olmuştur. Bu durumun sebebi ise Şekil 6.55'den görüleceği üzere polinom derecesinden kaynaklanmaktadır.

Şekil 6.47. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı ikinci çatlak derinliği (a) için 1. doğal frekanslara etkisi

Şekil 6.48. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı ikinci çatlak derinliği (a) için 1. doğal frekanslara etkisi

Şekil 6.49 ve Şekil 6.50'den her iki fonksiyonla tanımlı kirişlerde maksimum 2.doğal frekans (*Ls/L*=0.75) konumunda oluşmuştur. İkinci çatlak derinliğinin (*a*2) artmasıyla 2.doğal frekans değerlerinin düştüğü görülmüştür. Ancak, B kesitli kirişin 2.doğal

frekans değerlerindeki düşüşün diğer kesitlere nazaran daha fazla olduğu gözlemlenmiştir.

Şekil 6.49. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (*Ls/L*) ve farklı ikinci çatlak derinliği (*a*) için 2. doğal frekanslara etkisi

Şekil 6.50. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı ikinci çatlak derinliği (a) için 2. doğal frekanslara etkisi

Şekil 6.51 ve Şekil 6.52'den her iki fonksiyonla tanımlı kirişlerde kademe konumunun artmasıyla beraber A ve C kesitli kirişlerde 3.doğal frekans değerlerinde sürekli bir artış oluşurken, B kesitli kirişte maksimum 3.doğal frekans (Ls/L=0.75) konumunda oluşmuştur. İkinci çatlak derinliğinin (a2) artmasıyla 3.doğal frekans değerlerinin

düştüğü görülmüştür. Ayrıca, B kesitli kirişin 3.doğal frekans değerlerindeki düşüşün diğer kesitlere nazaran daha fazla olduğu görülmüştür.

Şekil 6.51. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (*Ls/L*) ve farklı ikinci çatlak derinliği (*a*) için 3. doğal frekanslara etkisi

Şekil 6.52. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı ikinci çatlak derinliği (a) için 3. doğal frekanslara etkisi

Şekil 6.53 ve Şekil 6.54'ten her iki fonksiyonla tanımlı kirişlerde kademe konumunun artmasıyla beraber A ve C kesitli kirişlerde 4.doğal frekans değerlerinde sürekli bir artış oluşurken, İkinci çatlak derinliğinin (*a*2) artışından 4.doğal frekans değerlerinin çok etkilenmediği görülmüştür. B kesitli kirişte maksimum 4.doğal frekans (*Ls/L*=0.75) konumunda oluşmuştur. İkinci çatlak derinliğinin (*a*2) artmasıyla 4.doğal frekans

değerlerinin düştüğü görülmüştür. Ayrıca, B kesitli kirişin 4.doğal frekans değerlerindeki düşüşün diğer kesitlere nazaran daha fazla olduğu görülmüştür.

Şekil 6.53. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm için eksponansiyel fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (*Ls/L*) ve farklı ikinci çatlak derinliği (*a*) için 4. doğal frekanslara etkisi

Şekil 6.54. Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve n=5 için polinom fonksiyonla tanımlı A, B, C kesitli kirişlerin kademe konumunun (Ls/L) ve farklı ikinci çatlak derinliği (a) için 4. doğal frekanslara etkisi

Kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin doğal frekanslar üzerindeki etkisini görmek açısından analizler yapılmıştır. Analizler birinci catlak konumu (Lc1/L=0.2), ikinci çatlak konumu (Lc2/L=0.4), birinci çatlak derinliği (a1=2 mm) ve ikinci çatlak derinliği (a2=2 mm) sabit değerleri için analizler yapılmıştır.

Şekil 6.55'ten görüleceği üzere *B* ve *C* kesitli kirişlerde maksimum 1.doğal frekans Ls/L=0.5 konumunda gerçekleşirken bu konumdan sonra düşüşler yaşanmıştır. *A* kesitinde ise n=0.1, 0.5 ve 1 parametrelerinde maksimum 1.doğal frekans Ls/L=0.5 konumunda oluşurken, n=5 ve 10 değerlerinde maksimum 1.doğal frekans Ls/L=0.75 konumunda gerçekleşmiştir.

Şekil 6.55. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm ve *a*2=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 1.doğal frekanslar üzerindeki etkisi

Şekil 6.56'dan polinom fonksiyonla tanımlı kirişte maksimum 2.doğal frekans (Ls/L=0.75) konumunda oluşmuştur. Bununla birlikte n parametresinin artmasıyla birlikte 2. doğal frekans değerlerinde azalmalar görülmüştür.

Şekil 6.57 ve Şekil 6.58'den polinom fonksiyonla tanımlı kirişlerde kademe konumunun artmasıyla beraber A ve C kesitli kirişlerde 3. ve 4. doğal frekans değerlerinde sürekli bir artış oluşurken, B kesitli kirişte maksimum 3. ve 4. doğal frekans (*Ls/L*=0.75) konumunda oluşmuştur. n parametresinin artmasıyla 3. ve 4. doğal frekans değerlerinin düştüğü görülmüştür. Ayrıca, B kesitli kirişin 3. ve 4. doğal frekans değerlerinin kiriş kademe konumundan pek etkilenmediği görülmüştür.

Şekil 6.56. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm ve *a*2=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 2.doğal frekanslar üzerindeki etkisi

Şekil 6.57. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm ve *a*2=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 3.doğal frekanslar üzerindeki etkisi

Şekil 6.58. *Lc*1/*L*=0.2, *Lc*2/L=0.4, *a*1=0.5 mm ve *a*2=2 mm için kademe konumunun farklı kesit ve farklı polinom derecesiyle değişimlerinin 4.doğal frekanslar üzerindeki etkisi

BÖLÜM VII

LİNEER OLMAYAN DEĞİŞKEN KESİTLİ ÇATLAKLI FONKSİYONEL DERECELENDİRİLMİŞ KİRİŞLER

7.1 Exponansiyel Değişken Kesitli FDM Kiriş

7.1.1 Çatlaksız kiriş modelin doğrulanması

Çatlaksız halde genişliği kiriş uzunluğu boyunca değişen değişken kesitli sandviç kirişin sonlu elemanlar modellemesi MATLAB'ta yapılmıştır. Sandviç kirişin doğal frekanslarının hesaplanması için MATLAB'ta bir sonlu elemanlar kodu yazılmıştır. Yazılan sonlu elemanlar kodunun doğrulanması için literatürde var olan basit mesnetli bir kiriş (Demir vd., 2013b) referans alınmıştır. Şekil 7.1'de verilen kirişin basit mesnetli sınır şartı için çatlaksız haline ait geometrik boyutlar ise L=200 mm, $d_0=20$ mm ve b=5 mm olarak alınmıştır. Çalışmada kiriş genişliği kiriş uzunluğu boyunca eksponansiyel değişen bir denklemle tanımlanmıştır.

$$d(x) = d_o e^{\beta x} \tag{7.1}$$

burada d_o kiriş genişliğinin yarısıdır. Kiriş malzemesine ait malzeme özellikleri Çizelge 5.2'de verilmiştir.

Doğrulama için ele alınan örnekte malzeme özellikleri polinom fonksiyonla tanımlı olup (5.2) ve (5.4) denklemleriyle verilmiştir. Ele alınan örnekte yakınsama çalışması eksponansiyel fonksiyon, polinom derecesi n=10 ve geometrik indeks $\beta = -1/L$ için analizler yapılmıştır. Elde edilen sonuçlar Çizelge 7.1'de verilmiştir.

Çalışmada geometrik indeks $\beta = -1/L$, polinom derecesi n=0, 1 ve 10 için analizler gerçekleştirilmiştir. Literatürdeki bu çalışma Euler Bernoulli kiriş teorisine göre hesaplanmıştır. Doğrulama çalışması Euler Bernoulli ve Timoshenko kiriş teorisine göre hesaplanmıştır. Analizlerde sonlu eleman modellemesi 40 elemanla yapılmıştır. Elde edilen sonuçlar Çizelge 7.2'de Hertz cinsinden verilmiştir.
Fonksiyon	Doğal	40	50	60	70	80	90	100
tipi	frekans	eleman	eleman	eleman	eleman	eleman	eleman	eleman
	Hz							
	1.	233.417	233.434	233.443	233.448	233.452	233.454	233.456
Eksp.	2.	1189.622	1189.701	1189.746	1189.773	1189.792	1189.804	1189.814
	3.	3124.121	3124.259	3124.344	3124.400	3124.440	3124.468	3124.489
	4.	5980.530	5980.534	5980.572	5980.614	5980.650	5980.679	5980.703
	1.	194.188	194.201	194.209	194.214	194.217	194.219	194.220
Polinom	2.	989.688	989.754	989.791	989.814	989.829	989.840	989.847
(n=10)	3.	2599.065	2599.179	2599.250	2599.297	2599.329	2599.353	2599.370
	4.	4975.410	4975.414	4975.445	4975.480	4975.510	4975.534	4975.554

Çizelge 7.1. Eksponansiyel değişken kesitli FD malzemeli sandviç kirişin $\beta = -1/L$ için yakınsama analizi

Çizelge 7.1'den görüleceği üzere yakınsama çalışması gerçekleştirilmiş olup analizlerde eleman sayısı 100 olarak alınmıştır.

Çizelge 7.2. Basit mesnetli FD sandviç kirişin ilk üç doğal frekansları

$\beta = -1/L$												
<i>n</i> =0			<i>n</i> =1			<i>n</i> =10						
Demir	Bu çalışma		Demir	Bu çalışma		Demir	Bu çalışma					
va. (2013b)	Euler	Timos.	va. (2013b)	Euler	Timos.	va. (2013b)	Euler	Timos.				
550.5	550.484	549.875	513.6	513.549	512.981	401.1	401.127	400.684				
2229.0	2228.905	2219.384	2079.4	2079.355	2070.472	1624.2	1624.161	1617.223				
5011.6	5011.509	4964.063	4675.4	4675.257	4630.994	3651.9	3651.792	3617.219				

Çizelge 7.2'den görüleceği gibi sonuçların birbirleriyle uyumlu olduğu görüldüğünden MATLAB'ta yazılan sonlu elemanlar kodunun doğruluğu sağlanmış oldu.

7.1.2 Tek çatlaklı kirişin doğrulanması ve analizi

Bu tezde ele alınan ankastre kiriş ve üstten görünüşü Şekil 7.1'de gösterilmiştir. Çalışmada *FD* sandviç kiriş tarafsız eksene göre simetrik olup malzeme özellikleri kalınlık boyunca eksponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Çalışmada FD sandviç kirişi temsil etmek için kiriş elemanın 50 tabakadan oluştuğu kabul edilmiştir. Literatürde değişken kesitli türde birçok çalışmalar yapılmış olmasına rağmen genişliği uzunluk boyunca eksponansiyel değişen değişken kesitli kiriş çalışmaları pek az sayıdadır. Ayrıca literatürde *FD* malzemeli bu geometriye ait çatlak durumunu ele alan çalışmaya rastlanmamıştır. Bu nedenle çalışmada bu geometri ele alınmıştır. Geometrik indeks β =0 ve polinom derecesi *n*=0 olması halinde kiriş tek çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 6.1 başlığı altında ispatlanmıştır.

Şekil 7.1. Tek çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü.

Tezde genişliği uzunluk boyunca eksponansiyel değişen değişken kesitli kirişin farklı (*a/b*) çatlak derinliği oranlarının, farklı (*Lc/L*) çatlak konumlarının, farklı (β) geometrik indekslerinin, polinom derecesinin (*n*) ve farklı malzeme dağılımlarının doğal frekanslar üzerindeki etkisi incelenmiştir. Analizler MATLAB'ta yazılan sonlu elemanlar kodu ve ANSYS paket programıyla yapılmış olup sonuçlar n=5 için EK-H, EK-I, EK-İ ve EK-J'de verilmiştir. Ancak tez çalışmasında tek çatlaklı kirişe ait mod şekilleri ANSYS paket programında $\beta = -1/L$, *Lc/L*=0.2, *a/b*=0.8 ve *n*=10 parametreleri için eldeedilmiş olup Şekil 7.2'de verilmiştir. Şekil 7.2'den çatlak derinliği ve çatlak konumu kirişin mod şekillerini etkilediği görülmüştür.

Şekil 7.2. Eksponansiyal değişken kesitli tek çatlaklı kirişe ait ilk 4 mod şekilleri

Çalışmada malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen çatlaklı değişken kesitli ankastre bir kirişte geometrik indeksin (β) ve farklı çatlak derinliği oranlarının (a/b) doğal frekanslar üzerindeki etkisini araştırmak açısından analizler gerçekleştirilmiştir. Analizlerde polinom fonksiyon için grafikler sadece polinom derecesi n=5 için verilmiştir.

Şekil 7.3'den görüleceği üzere geometrik indeksin azalmasıyla birlikte doğal frekans değerlerinde bir artış gözlemlenirken, çatlak derinliği oranının artmasıyla birlikte doğal frekans değerlerinde bir düşüş görülmüştür. Ancak çatlak derinliği oranının 2. doğal frekanslar üzerindeki etkisi diğerlerine nazaran daha az olduğu görülmüştür.

Şekil 7.3. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu Lc/L=0.2 ve n=5 için geometrik indeks (β) ve farkı çatlak derinliği oranının (a/b) ilk dört doğal frekanslara etkisi

Çatlak konumunun ve çatlak derinliği oranının doğal frekanslar üzerindeki etkisini görmek açısından $\beta = -1/L$ için analizler gerçekleştirilmiştir. Şekil 7.4 *a* ve *b*'den görüleceği gibi çatlak konumu serbest uca doğru ilerlerken 1.doğal frekans değerlerinde artışa neden olmuştur. Şekil 7.4 *c* ve *d*'den görüleceği üzere çatlak konumunun *Lc/L*=0.6'ya kadar olan kısmında 2. doğal frekans değerlerinde azalma görülürken bu konumdan sonra doğal frekans değerlerinde artış gözlemlenmiştir. Şekil 7.4 *e* ve *f*'den görüldüğü üzere çatlak konumunun değişimiyle beraber 3.doğal frekans değerlerinde düşüş ve artışlar yaşanmıştır. Şekil 7.4 *g* ve *h*'den görüleceği üzere maksimum 4. doğal frekans değeri *Lc/L*=0.4 konumunda gerçekleşirken bu konumdan sonra frekans değerlerinde düşüşler görülmüştür. Şekil 7.4'ten görüleceği gibi *a/b* oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler yaşanmıştır. Ancak *a/b*=0.6 ve *a/b*=0.8 oranlarında doğal frekans değerlerinde büyük oranda düşüşler görülmüştür.

Şekil 7.4. Eksponansiyel ve polinom fonksiyonlar için $\beta = -1/L$ ve n=5 için çatlak konumunun (*Lc/L*) ve farklı çatlak derinliği oranının (*a/b*) ilk dört doğal frekanslara etkisi

Çatlak konumunun ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından a/b=0.2 ve $\beta = -1/L$ için analizler gerçekleştirilmiştir. Şekil 7.5'ten görüldüğü gibi çatlak konumunun doğal frekanslar üzerindeki etkisinin çok az olduğu görülmüştür. Buna karşın polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde azalmalar görülmüştür.

Şekil 7.5. Polinom fonksiyonlar için a/b=0.2 ve $\beta = -1/L$ için çatlak konumunun (Lc/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Polinom derecesinin ve farklı çatlak derinliği oranlarının doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve $\beta = -1/L$ için analizler yapılmıştır. Şekil 7.6'ten anlaşılacağı üzere polinom derecesinin ve a/b oranın artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler görülmüştür. Ancak a/b oranının artmasıyla birlikte 2. doğal frekans değerlerindeki değişim çok az olmuştur.

Şekil 7.6. Lc/L=0.2 ve $\beta = -1/L$ için polinom derecesinin (*n*) farklı çatlak derinliği oranının (*a/b*) ilk dört doğal frekanslara etkisi

Geometrik indeks ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve a/b=0.2 için analizler yapılmıştır.

Şekil 7.7'dan görüldüğü gibi polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Geometrik indeksin azalmasıyla birlikte bütün doğal frekans değerlerinde bir artış gözlemlenmiştir. Ancak geometrik indeksteki bu azalış 1. Doğal frekans değerlerinde çok etkili olmuştur.

Şekil 7.7. Lc/L=0.2 ve a/b=0.2 için geometrik indeks (β) ve polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Çatlak derinliği oranının ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve $\beta = -1/L$ için analizler yapılmıştır. Şekil 7.8'den görüldüğü gibi polinom derecesinin ve a/b oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Buna karşın 2. doğal frekans değerlerinin çatlak derinliği oranından çok fazla etkilenmediği gözlemlenmiştir.

Şekil 7.8. Lc/L= 0.2 ve $\beta = -1/L$ için çatlak derinliği oranının (a/b) ve farklı polinom derecelerinin (n) ilk dört doğal frekanslara etkisi

7.1.3 Çift çatlaklı kirişin doğrulanması ve analizi

Çalışmada malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen, iki çatlaklı değişken kesitli ankastre bir kirişte geometrik indeksin (β) ve farklı ikinci çatlak derinliği oranlarının (a2/b) doğal frekanslar üzerindeki etkisini araştırmak açısından analizler gerçekleştirilmiştir. Analizler Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve n=5 değerleri için gerçekleştirilmiştir. Geometrik indeks $\beta=0$ ve polinom derecesi n=0 olması halinde kiriş çift çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 5.2 başlığı altında ispatlanmıştır.

Şekil 7.9. Çift çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü

Tezde genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin birinci çatlak konumu (Lc1/L=0.2) için farklı geometrik indekslerde (β) doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinci çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimlerinin analizi MATLAB ve ANSYS paket programında yapılmıştır. Analiz sonuçları n=5 için EK-K, EK-L, EK-M ve EK-N'de verilmiştir.

Şekil 7.10'dan görüleceği üzere geometrik indeksin azalmasıyla birlikte doğal frekans değerlerinde bir artış gözlemlenirken, ikinci çatlak derinliği oranının (a2/b) artmasıyla birlikte doğal frekans değerlerinde bir düşüş görülmüştür.

Şekil 7.10. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve n=5 için geometrik indeks (β) ve farkı ikinci çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi

Geometrik indeks ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve a2/b=0.2 için analizler yapılmıştır. Şekil 7.11'dan görüldüğü gibi polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Geometrik indeksin azalmasıyla birlikte bütün doğal frekans değerlerinde bir artış gözlemlenmiştir. Ancak geometrik indeksteki bu azalış 1. doğal frekans değerlerinde çok etkili olmuştur.

Şekil 7.11. Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve a2/b=0.2 için geometrik indeks (β) ve polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Polinom derecesinin ve farklı ikinci çatlak derinliği oranlarının (*a*2/*b*) doğal frekanslar üzerindeki etkisini araştırmak açısından *Lc*1/*L*=0.2, *Lc*2/*L*=0.4, *a*1/*b*=0.2 ve $\beta = -1/L$ için analizler yapılmıştır.

Şekil 7.12'den anlaşılacağı üzere polinom derecesinin ve *a*2/*b* oranın artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler görülmüştür.

Şekil 7.12. Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve $\beta = -1/L$ için polinom derecesinin (*n*) farklı ikinci çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi

İkinci çatlak konumunun ve ikinci çatlak derinliği oranının doğal frekanslar üzerindeki etkisini görmek açısından Lc1/L=0.2, a1/b=0.2 ve $\beta = -1/L$ için analizler gerçekleştirilmiştir. Şekil 7.13 *a* ve *b*'den görüleceği gibi ikinci çatlak konumu serbest uca doğru ilerlerken 1. doğal frekans değerlerinde artışa neden olmuştur. Şekil 7.13 *c* ve *d*'den görüleceği üzere çatlak konumunun Lc2/L=0.6'da 2. doğal frekans değerlerinin minimum olduğu görülürken bu konumdan sonra doğal frekans değerlerinde artış gözlemlenmiştir. Şekil 7.13 *e* ve *f*'den görüldüğü üzere 3.doğal frekans değerleri Lc2/L=0.6 konumunda maksimumken bu konumdan sonra düşüş yaşanmıştır. Şekil 7.13 g ve h'den görüleceği üzere maksimum 4. doğal frekans değeri a2/b=0.2, a2/b=0.4, a2/b=0.6 çatlak oranlarında Lc/L=0.4 konumunda gerçekleşirken, a2/b=0.8 çatlak oranı için maksimum 4. doğal frekans değeri Lc/L=0.6 konumda gerçekleşmiştir. Bu konumlardan sonra frekans değerlerinde düşüşler görülmüştür. Şekil 7.13'den görüleceği gibi a2/b oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler yaşanmıştır. Ancak a/b=0.6 ve a/b=0.8 oranlarında doğal frekans değerlerinde büyük oranda düşüşler görülmüştür.

Şekil 7.13. Eksponansiyel ve polinom fonksiyonlar için Lc1/L=0.2, a1/b=0.2, $\beta = -1/L$ ve n=5 için ikinci çatlak konumunun (Lc2/L) ve farklı ikinci çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi

İkinci çatlak konumunun ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, a1/b=0.2, a2/b=0.2 ve $\beta = -1/L$ için analizler gerçekleştirilmiştir.

Şekil 7.14'ten görüldüğü gibi ikinci çatlak konumunun doğal frekanslar üzerindeki etkisinin çok az olduğu görülmüştür. Buna karşın polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde azalmalar görülmüştür.

Şekil 7.14. Polinom fonksiyonlar için Lc1/L=0.2, a1/b=0.2, a2/b=0.2 ve $\beta = -1/L$ için ikinci çatlak konumunun (Lc2/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Birinci çatlak derinliği oranının ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, a2/b=0.2 ve $\beta = -1/L$ için analizler yapılmıştır. Şekil 7.15'ten görüldüğü gibi polinom derecesinin ve a1/boranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Buna karşın 2. doğal frekans değerlerinin birinci çatlak derinliği oranından çok fazla etkilenmediği gözlemlenmiştir.

Şekil 7.15. Lc1/L=0.2, Lc2/L=0.4, a2/b=0.2 ve $\beta = -1/L$ için birinci çatlak derinliği oranının (*a1/b*) ve farklı polinom derecelerinin (*n*) ilk dört doğal frekanslara etkisi

Birinci çatlak derinliği oranının (a1/b) ve farklı ikinci çatlak derinliği oranı (a2/b) ile değişimlerinin her iki malzeme dağılımı için doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, $\beta = -1/L$ ve n=5 için analizler yapılmıştır. Şekil 7.16'ten görüldüğü gibi her iki çatlak derinliği oranlarının artmasıyla birlikte doğal frekans değerlerinde azalmalar görülmüştür. Ancak Şekil 7.16 c ve d'de 2. doğal frekans değerleri açısından birinci çatlak derinliği (a1/b) oranındaki artışın ikinci çatlak derinliği a2/b=0.8 oranı üzerindeki etkisinin diğer çatlak oranlarına nazaran daha etkili olduğu görülmüştür. Bu karşın Şekil 7.16 e ve f'den 3. doğal frekans değerleri açısından birinci çatlak derinliği (a1/b) oranındaki artışın ikinci çatlak derinliği a2/b=0.8 oranı üzerindeki etkisinin diğer çatlak oranlarına nazaran daha az olduğu görülmüştür.

Şekil 7.16. Lc1/L=0.2, Lc2/L=0.4, $\beta = -1/L$ ve n=5 için birinci çatlak derinliği oranının (a1/b) farklı (a2/b) çatlak derinliği oranlarıyla değişimlerinin ilk dört doğal frekanslara etkisi

7.2 Doğrusal (lineer) Değişken Kesitli FDM Kiriş

7.2.1 Tek çatlaklı kirişin doğrulanması ve analizi

Bu çalışmada kiriş yüksekliği sabit, genişliği uzunluk boyunca doğrusal değişen değişken kesitli ankastre kiriş ve üstten görünüşü Şekil 7.17'de gösterilmiştir. Çalışmada FD sandviç kiriş tarafsız eksene göre simetrik olup malzeme özellikleri kalınlık boyunca eksponansiyel ve polinom fonksiyonlarla tanımlanmıştır. Çalışmada FD sandviç kirişi temsil etmek için kiriş elemanın 50 tabakadan oluştuğu kabul edilmiştir. Literatürde değişken kesitli türde birçok çalışmalar yapılmış olmasına rağmen genişliği uzunluk boyunca doğrusal değişen değişken kesitli kiriş çalışmaları pek az sayıdadır. Ayrıca literatürde FD malzemeli bu geometriye ait çatlak durumunu ele alan çalışmaya rastlanmamıştır. Bu nedenle çalışmada bu geometri ele alınmıştır. Kirişe ait geometrik boyutlar L= 0.2 m, kiriş yüksekliği b= 0.005 m, ankastre uçta kiriş genişliği b1=0.02 m ve serbest uçtaki kiriş genişliği b2 olmak üzere değişken tanımlanmıştır. b2/b1 oranına koniklik oranı denmektedir. b2/b1=1, 0.8, 0.6, 0.4, 0.2 oranları için analizler gerçekleştirilmiştir. Çalışmada b2/b1=1 oranı ve polinom derecesi n=0 olması halinde kiriş tek çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 6.1 başlığı altında ispatlanmıştır.

Şekil 7.17. Tek çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü

Tezde genişliği uzunluk boyunca doğrusal değişen değişken kesitli kirişin farklı (a/b) çatlak derinliği oranlarının, farklı (Lc/L) çatlak konumlarının, farklı (b2/b1) koniklik oranının, polinom derecesinin (n) ve farklı malzeme dağılımlarının doğal frekanslar üzerindeki etkisi incelenmiştir. Analizler MATLAB'ta yazılan sonlu elemanlar kodu ve ANSYS paket programıyla yapılmış olup sonuçlar n=5 için EK-O, EK-Ö, EK-P ve EK-R'de verilmiştir.

Bu çalışmada genişliği uzunluk boyunca doğrusal değişen değişken kesitli kirişin farklı (a/b) çatlak derinliği oranlarının, farklı (Lc/L) çatlak konumlarının, farklı (b2/b1) koniklik oranlarının, polinom derecesinin (n) ve farklı malzeme dağılımlarının doğal frekanslar üzerindeki etkisi incelenmiştir

Çalışmada malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen çatlaklı değişken doğrusal kesitli ankastre bir kirişte koniklik oranın (b2/b1) ve farklı çatlak derinliği oranlarının (a/b) doğal frekanslar üzerindeki etkisini araştırmak açısından analizler gerçekleştirilmiştir. Analizlerde polinom fonksiyon için grafikler sadece polinom derecesi n=5 için verilmiştir.

Şekil 7.18'den görüleceği üzere koniklik oranın azalmasıyla birlikte doğal frekans değerlerinde bir artış gözlemlenirken, çatlak derinliği oranının artmasıyla birlikte doğal frekans değerlerinde bir düşüş görülmüştür. Ancak çatlak derinliği oranının 2. doğal frekanslar üzerindeki etkisi diğerlerine nazaran daha az olduğu görülmüştür.

Şekil 7.18. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu Lc/L=0.2 ve n=5 için koniklik oranı (b2/b1) ve farkı çatlak derinliği oranlarının (a/b) ilk dört doğal frekanslara etkisi

Çatlak konumunun ve çatlak derinliği oranının doğal frekanslar üzerindeki etkisini görmek açısından b2/b1=0.2 için analizler gerçekleştirilmiştir. Şekil 7.19 *a* ve *b*'den görüleceği gibi çatlak konumu serbest uca doğru ilerlerken 1. doğal frekans değerlerinde artışa neden olmuştur. Şekil 7.19 *c* ve *d*'den görüleceği üzere çatlak konumunun Lc/L=0.6'ya kadar olan kısmında 2. doğal frekans değerlerinde azalma görülürken bu konumdan sonra doğal frekans değerlerinde artış gözlemlenmiştir. Şekil 7.19 *e* ve *f*'den görüleceği üzere çatlak konumu ankastre uçtan serbest uca doğru kaydırılırken 3. doğal frekans değerlerinin düştüğü ve Lc/L=0.6 dan sonra *a/b* oranının artmasıyla birlikte düşüşün keskinleştiği görülmüştür. Şekil 7.19 *g* ve *h*'den görüleceği üzere maksimum 4. doğal frekans değeri Lc/L=0.6 konumunda gerçekleşirken bu konumdan sonra frekans değerlerinde düşüşler görülmüştür. Yine Şekil 7.19 *g* ve *h*'den görüleceği gibi *a/b* oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler yaşanmıştır.

Şekil 7.19. Eksponansiyel ve polinom fonksiyonlar için b2/b1=0.2 ve n=5 için çatlak konumunun (Lc/L) ve farklı çatlak derinliği oranının (a/b) ilk dört doğal frekanslara etkisi

Çatlak konumunun ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından a/b=0.2 ve b2/b1=0.2 için analizler gerçekleştirilmiştir. Şekil 7.20'ten görüldüğü gibi çatlak konumunun değişmesiyle birlikte doğal frekanslar değerlerindeki artış ve düşüşler üzerindeki etkisinin çok az olduğu görülmüştür. Buna karşın polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde azalmalar görülmüştür.

Polinom derecesinin ve farklı çatlak derinliği oranlarının doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve b2/b1=0.2 için analizler yapılmıştır. Şekil 7.21'ten anlaşılacağı üzere polinom derecesinin ve a/b oranın artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler görülmüştür. Ancak a/b oranının artmasıyla birlikte 2. doğal frekans değerlerindeki değişim çok az olmuştur.

Şekil 7.20. Polinom fonksiyonlar için a/b=0.2 ve b2/b1=0.2 için çatlak konumunun (Lc/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Şekil 7.21. Lc/L=0.2 ve b2/b1=0.2 için polinom derecesinin (*n*) farklı çatlak derinliği oranının (*a/b*) ilk dört doğal frekanslara etkisi

Koniklik oranı ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve a/b=0.2 için analizler yapılmıştır. Şekil 7.22'dan görüldüğü gibi polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Koniklik oranın azalmasıyla birlikte bütün doğal frekans değerlerinde bir artış gözlemlenmiştir.

Çatlak derinliği oranının ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc/L=0.2 ve b2/b1=0.2 için analizler yapılmıştır. Şekil 7.23'den görüldüğü gibi polinom derecesinin ve a/b oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Buna karşın 2. doğal frekans değerlerinin çatlak derinliği oranından çok fazla etkilenmediği gözlemlenmiştir.

Şekil 7.22. Lc/L= 0.2 ve a/b=0.2 için koniklik oranı (b2/b1) ve polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Şekil 7.23. Lc/L=0.2 ve b2/b1=0.2 için çatlak derinliği oranının (a/b) ve farklı polinom derecelerinin (n) ilk dört doğal frekanslara etkisi

7.2.2 Çift çatlaklı kirişin doğrulanması ve analizi

Çalışmada malzeme özellikleri kalınlık boyunca exponansiyel ve polinom fonksiyon şeklinde değişen, iki çatlaklı değişken doğrusal kesitli ankastre bir kirişte koniklik oranı (b2/b1) ve farklı ikinci çatlak derinliği oranlarının (a2/b) doğal frekanslar üzerindeki etkisini araştırmak açısından analizler gerçekleştirilmiştir. Analizler Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve n=5 değerleri için gerçekleştirilmiştir. Çalışmada b2/b1=1 oranı ve polinom derecesi n=0 olması halinde kiriş çift çatlaklı homojen izotrop malzemeli kirişe dönüşmektedir. Bu durum 5.2 başlığı altında ispatlanmıştır.

Şekil 7.24. Çift çatlaklı FD malzemeli ankastre kiriş ve üstten görünüşü

Tezde genişliği uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin birinci çatlak konumu (Lc1/L=0.2) için farklı (b2/b1) koniklik oranının doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinci çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimlerinin analizi MATLAB ve ANSYS paket programında yapılmıştır. Analiz sonuçları n=5 için EK-S, EK-Ş, EK-T ve EK-U'da verilmiştir.

Şekil 7.25'dan görüleceği üzere koniklik oranın azalmasıyla birlikte doğal frekans değerlerinde bir artış gözlemlenirken, ikinci çatlak derinliği oranının (a2/b) artmasıyla birlikte doğal frekans değerlerinde düşüşler görülmüştür.

Şekil 7.25. Eksponansiyel ve polinom fonksiyonlar için çatlak konumu Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve n=5 için koniklik oranı (b2/b1) ve farkı ikinci çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi

Koniklik oranı ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve a2/b=0.2 için analizler yapılmıştır. Şekil 7.26'dan görüldüğü gibi polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Koniklik oranın azalmasıyla birlikte bütün doğal frekans değerlerinde artışlar gözlemlenmiştir.

Şekil 7.26. *Lc*1/*L*=0.2, *Lc*2/*L*=0.4, *a*1/*b*=0.2 ve *a*2/*b*=0.2 için koniklik oranı (*b*2/*b*1) ve polinom derecesinin (*n*) ilk dört doğal frekanslara etkisi

Polinom derecesinin ve farklı ikinci çatlak derinliği oranlarının (a2/b) doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, a1/b=0.2 ve b2/b1=0.2için analizler yapılmıştır. Şekil 7.27'den anlaşılacağı üzere polinom derecesinin ve a2/boranın artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler görülmüştür.

Şekil 7.27. *Lc*1/*L*=0.2, *Lc*2/*L*=0.4, *a*1/*b*=0.2 ve *b*2/*b*1=0.2 için polinom derecesinin (*n*) farklı ikinci çatlak derinliği oranının (*a*2/*b*) ilk dört doğal frekanslara etkisi

İkinci çatlak konumunun ve ikinci çatlak derinliği oranının doğal frekanslar üzerindeki etkisini görmek açısından Lc1/L=0.2, a1/b=0.2 ve b2/b1=0.2 için analizler gerçekleştirilmiştir. Şekil 7.28 a ve b'den görüleceği gibi ikinci çatlak konumu serbest uca doğru ilerlerken 1. doğal frekans değerlerinde artışa neden olmuştur. Şekil 7.28 c ve d'den görüleceği üzere çatlak konumunun Lc2/L= 0.6'da 2. doğal frekans değerlerinin minimum olduğu görülürken bu konumdan sonra doğal frekans değerlerinde artış gözlemlenmiştir. Şekil 7.28 e ve f'den görüleceği gibi ikinci çatlak konumunun serbest doğru kaydırılmasıyla birlikte 3. doğal frekans değerlerinde uca düsüsler gözlemlenirken, Lc/L=0.6 dan sonra a2/b oranının artmasıyla birlikte düşüşün keskinleştiği görülmüştür. Şekil 7.28 g ve h'den 4.doğal frekans değerinin Lc/L=0.6 konumunda maksimum olurken bu konumdan sonra a2/b oranının artmasıyla birlikte düşüşün keskinleştiği görülmüştür. Yine Şekil 7.28'den görüleceği gibi a2/b oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler yaşanmıştır. Ancak a/b=0.6ve *a/b*=0.8 oranlarında doğal frekans değerlerinde büyük oranda düşüşler görülmüştür.

Şekil 7.28. Eksponansiyel ve polinom fonksiyonlar için Lc1/L=0.2, a1/b=0.2, b2/b1=0.2 ve n=5 için ikinci çatlak konumunun (Lc2/L) ve farklı ikinci çatlak derinliği oranının (a2/b) ilk dört doğal frekanslara etkisi

İkinci çatlak konumunun ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, a1/b=0.2, a2/b=0.2 ve b2/b1=0.2 için analizler gerçekleştirilmiştir. Şekil 7.29'ten görüldüğü gibi ikinci çatlak konumunun doğal frekanslardaki artış ve düşüşler üzerindeki etkisinin çok az olduğu görülmüştür. Buna karşın polinom derecesinin artmasıyla birlikte bütün doğal frekans değerlerinde azalmalar görülmüştür.

Şekil 7.29. Polinom fonksiyonlar için Lc1/L=0.2, a1/b=0.2, a2/b=0.2 ve b2/b1=0.2 için ikinci çatlak konumunun (Lc2/L) ve farklı polinom derecesinin (n) ilk dört doğal frekanslara etkisi

Birinci çatlak derinliği oranının ve farklı polinom derecelerinin doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, a2/b=0.2 ve b2/b1=0.2için analizler yapılmıştır. Şekil 7.30'ten görüldüğü gibi polinom derecesinin ve a1/boranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşmiştir. Buna karşın 2. doğal frekans değerlerinin birinci çatlak derinliği oranından çok fazla etkilenmediği gözlemlenmiştir.

Şekil 7.30. Lc1/L=0.2, Lc2/L=0.4, a2/b=0.2 ve b2/b1=0.2 için birinci çatlak derinliği oranının (a1/b) ve farklı polinom derecelerinin (n) ilk dört doğal frekanslara etkisi

Birinci çatlak derinliği oranının (a1/b) ve farklı ikinci çatlak derinliği oranı (a2/b) ile değişimlerinin her iki malzeme dağılımı için doğal frekanslar üzerindeki etkisini araştırmak açısından Lc1/L=0.2, Lc2/L=0.4, b2/b1=0.2 ve n=5 için analizler yapılmıştır. Şekil 7.31'ten görüldüğü gibi her iki çatlak derinliği oranlarının artmasıyla birlikte doğal frekans değerlerinde azalmalar görülmüştür. Ancak Şekil 7.31 c ve d'de 2. doğal frekans değerleri açısından birinci çatlak derinliği (a1/b) oranındaki artışın ikinci çatlak derinliği a2/b=0.8 oranı üzerindeki etkisinin diğer çatlak oranlarına nazaran daha etkili olduğu görülmüştür. Bu karşın Şekil 7.31 e ve f'den 3. doğal frekans değerleri açısından birinci çatlak derinliği (a1/b) oranındaki artışın ikinci çatlak derinliği a2/b=0.8 oranı üzerindeki etkisinin diğer çatlak oranlarına nazaran daha az olduğu görülmüştür.

Şekil 7.31. *Lc*1/*L*=0.2, *Lc*2/*L*=0.4, *b*2/*b*1=0.2 ve *n*=5 için birinci çatlak derinliği oranının farklı (*a*2/*b*) çatlak derinliği oranlarıyla değişimlerinin ilk dört doğal frekanslara etkisi

BÖLÜM VIII

SONUÇLAR

Bu tez kapsamında uygulamada pek çok kullanım alanı olan kademeli ve uzunluk boyunca exponansiyel ve doğrusal (lineer) değişen değişken kesitli fonksiyonel derecelendirilmiş kirişlerde çatlak durumunun doğal frekanslar üzerindeki etkisi incelenmiştir. Tez çalışmasında tarafsız eksene göre malzeme özellikleri kalınlık boyunca eksponansiyel ve polinom fonksiyonla değişen simetrik yapıda kirişler ele alınmıştır. Çzalışmada çatlak konumlarının, çatlak derinliklerinin, polinom derecesinin (*n*) ve farklı malzeme dağılımlarının, farklı kademe uzunluklarının, farklı kesit geometrilerinin, farklı geometrik indeks ve farklı koniklik oranlarının doğal frekanslar üzerindeki etkisi incelenmiştir. İncelenen kirişler için elde edilen bazı sonuçlar aşağıda maddeler halinde verilmiştir;

Sabit kesitli düz kiriş için elde edilen sonuçlar;

- ✓ Çatlak konumlarının doğal frekans değerlerinde değişimlere neden olduğu görülmüş.
- ✓ Çatlak derinliklerinin artmasıyla birlikte doğal frekans değerlerinde azalmalar tespit edilmiş.
- ✓ Polinom derecesinin artmasıyla birlikte doğal frekans değerlerinde düşüşler gözlemlenmiş.
- Polinom derecesinin artmasıyla birlikte doğal frekans değerleri düşerken ikinci çatlak konumundaki değişimin doğal frekans değerleri özerindeki etkisi çok az olmuştur.
- Polinom derecesinin artmasıyla birlikte doğal frekans değerleri düşerken birinci çatlak derinliğindeki değişimin 2. doğal frekans değerleri özerindeki etkisi çok az olmuştur.

Kademeli kirişler için elde edilen sonuçlar;

- ✓ Ls/L=0.25 ve n=5 parametreleri sabit alındığında çatlak konumunun değişmesiyle birlikte doğal frekans değerlerinin değiştiği ayrıca çatlak derinlinin (a) artmasıyla birlikte doğal frekans değerlerinin düştüğü görülmüştür.
- ✓ Ls/L=0.25 ve n=5 parametreleri sabit alındığında maksimum ve minimum doğal frekans değerleri sırasıyla B ve A kesitli kirişlerde oluşmuştur. Bu durumun nedeni kesit geometrisindeki atalet momentinin değişiminden kaynaklanmaktadır.
- ✓ Lc/L=0.2 ve n=5 parametreleri sabit alındığında kademe konumunun değişmesiyle doğal frekans değerlerinin değiştiği görülmüştür. Çatlak derinliğinin (a) artmasıyla birlikte doğal frekans değerlerinde düşüşler yaşanırken, 2. doğal frekans değerlerinin çatlak derinliğinden pek etkilenmediği gözlemlenmiştir.
- ✓ Lc/L=0.2 ve Ls/L=0.25 parametreleri sabit alındığında polinom derecesinin (n) artması sonucu doğal frekanslarda azalmalar görülmüştür. Çatlak derinliğinin artmasıyla birlikte 1. doğal frekans değerlerinde düşüşler gerçekleşmiştir. Çatlak derinliğinin her üç kesit geometrisinde 2., 3., ve 4. doğal frekans değerleri üzerinde pek bir etkisinin olmadığı gözlemlenirken, sadece B kesitli kirişin 4. doğal frekans değerlerinde düşüşler görülmüştür.
- ✓ Lc1/L=0.2, Ls/L=0.25, a1=0.5 mm ve n=5 parametreleri sabit alındığında ikinci çatlak konumunun ve ikinci çatlak derinliğindeki değişim kirişin doğal frekans değerlerini etkilediği görülmüştür.
- ✓ Lc1/L=0.2, Ls/L=0.25, a1=0.5 mm ve Lc2/L=0.4 parametreleri sabit alındığında polinom derecesinin ve ikinci çatlak derinliğinin artmasıyla birlikte doğal frekans değerlerinin düştüğü gözlemlenmiştir. Ancak A ve C kesitli kirişlerin 4. doğal frekansları ikinci çatlak derinliğindeki artıştan etkilenmediği görülmüştür.

- ✓ Lc1/L=0.2, Ls/L=0.25, a1=0.5 ve a2=2 mm parametreleri sabit alındığında ikinci çatlak konumundaki ve polinom derecesindeki değişimin kirişin doğal frekans değerlerini etkilediği görülmüştür.
- ✓ İkinci çatlak konumunda, ikinci çatlak derinliğinde ve polinom derecesindeki değişimlerde maksimum frekans değerleri *B* kiriş kesitinde, minimum frekans değerleri *A* kesitli kirişte gerçekleşmiştir. Bu durum kiriş kesitinin atalet momentinden kaynaklanmaktadır.
- ✓ Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve n=5 parametreleri sabit alındığında kademe konumunun değişimiyle kirişin doğal frekans değerlerinin değiştiği görülmüştür. Ayrıca ikinci çarlak derinliğindeki artışın kirişin bütün doğal frekans değerlerini düşürürken A ve C kesitlerine ait kirişlerin 4. doğal frekans değerlerinin bu durumdan pek fazla etkilenmediği görülmüştür.
- ✓ Lc1/L=0.2, Lc2/L=0.4, a1=0.5 mm ve a2=2 mm parametreleri sabit alındığında polinom derecesinde ve kademe konumundaki değişimin kirişin bütün doğal frekans değerlerini etkilediği görülürken, B kesitli kirişin 3. ve 4. doğal frekans değerlerinin kadame konumundaki değişimden çok az etkilendiği gözlemlenmiştir.

Exponansiyel değişken kesitli kiriş için elde edilen sonuçlar;

- ✓ Geometrik indeksin azalmasıyla birlikte tek ve çift çatlaklı kirişlerde doğal frekans değerlerinin arttığı ancak tek çatlaklı kirişlerde çatlak derinliği oranının (*a/b*) 2. doğal frekans değerleri üzerinde etkisinin diğer frekanslara nazaran daha az olduğu görülmüştür.
- ✓ Çatlak konumu ve çatlak derinlikleri oranlarının değişimi doğal frekans değerlerinde değişime neden olmaktadır.
- ✓ Polinom derecesinin artmasıyla doğal frekans değerlerinin düştüğü görülmüştür.

- ✓ *Lc*1/*L*=0.2, *a*1/*b*=0.2, *a*2/*b*=0.2 ve β =-1/*L* parametrelerinde ikinci çatlak konumunun (*Lc*2/*L*) doğal frekanslar üzerindeki etkisinin çok az olduğu görülmüştür.
- ✓ *Lc*1/*L*=0.2, *Lc*2/*L*=0.4, *a*2/*b*=0.2 ve β =-1/*L* parametrelerinde birinci çatlak derinliği oranının (*a*1/*b*) ikinci doğal frekans değerleri üzerindeki etkisinin çok az olduğu gözlemlenmiştir.

Doğrusal değişken kesitli kirişler için elde edilen sonuçlar;

- Koniklik oranının azalmasıyla birlikte tek ve çift çatlaklı kirişlerde doğal frekans değerlerinin arttığı ancak tek çatlaklı kirişlerde çatlak derinliği oranının (*a/b*) 2. doğal frekans değerleri üzerinde etkisinin diğer frekanslara nazaran daha az olduğu görülmüştür.
- Kirişlerde çatlak konumunun değişimi doğal frekanslarda artış ve düşüşlere neden olurken, çatlak derinliği oranının artması doğal frekans değerlerinde düşüşlere neden olmaktadır.
- ✓ Polinom derecesinin artmasıyla doğal frekans değerlerinin düştüğü görülmüştür.
- ✓ Lc/L=0.2 ve b2/b1=0.2 parametreleri için polinom derecesinin ve a/b çatlak derinliği oranının artmasıyla birlikte doğal frekans değerlerinde düşüşler yaşanırken, a/b çatlak derinliği oranındaki artışın 2. doğal frekans üzerindeki etkisi pek az olmuştur.
- ✓ Lc1/L=0.2, Lc2/L=0.4, a2/b=0.2 ve b2/b1=0.2 parametreleri için çift çatlaklı kirişlerde a1/b oranının artmasıyla birlikte bütün doğal frekans değerlerinde düşüşler gerçekleşirken, 2. doğal frekanslardaki bu düşüş önemsenmeyecek kadar az olmuştur.

KAYNAKLAR

Akbaş, Ş.D., "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", *Int. J. Eng. Trends Technol.* 4(10), 4590–4597, 2013.

Akbaş, Ş.D., "On Post-Buckling Behavior of Edge Cracked Functionally Graded Beams Under Axial Loads", *Int. J. Struct. Stab. Dyn.* 15(04), 1450065, 2014.

Al-Said, S.M., "Crack detection in stepped beam carrying slowly moving mass", *J. Vib. Control* 14(12), 1903–1920, 2008.

Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F., "Free vibration characteristics of a functionally graded beam by finite element method", *Appl. Math. Model.* 35(1), 412–425, 2011.

Atmane, H.A., Tounsi, A., Meftah, S.A. and Belhadj, H.A., "Free vibration behavior of exponential functionally graded beams with varying cross-section", *J. Vib. Control* 17(2), 311–318, 2011.

Attar, M., Karrech, A. and Regenauer-Lieb, K., "Dynamic response of cracked Timoshenko beams on elastic foundations under moving harmonic loads", *J. Vib. Control* 23(3), 432–457, 2017.

Aydın, K., "Vibratory Characteristics of Axially-Loaded Timoshenko Beams With Arbitrary Number of Cracks", *J. Vib. Acoust.* 129(3), 341-354, 2007.

Aydın, K., "Free vibration of functionally graded beams with arbitrary number of surface cracks", *Eur. J. Mech. A/Solids* 42, 112–124, 2013.

Aydoğdu, M. and Taşkın, V., "Free vibration analysis of functionally graded beams with simply supported edges", *Mater. Des.* 28(5), 1651–1656, 2007.

Boiangiu, M., Ceausu, V. and Untaroiu, C.D., "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", *J. Vib. Control* 22(11), 2591–2602, 2014.

Çallıoğlu, H., Demir, E., Yılmaz, Y. and Sayer, M., "Vibration Analysis of Functionally Graded Sandwich Beam with Variable Cross-Section", *Math. Comput. Appl.* 18(3), 351–360, 2013.

Cao, D. and Gao, Y., "Free vibration of non-uniform axially functionally graded beams using the asymptotic development method", *Appl. Math. Mech.* 40(1), 85–96, 2019.

Chaudhari, T.D. and Maiti, S.K., "Modelling of transverse vibration of beam of linearly variable depth with edge crack", *Eng. Fract. Mech.* 63(4), 425–445, 1999.

Chen, W.R. and Chang, H., "Closed-Form Solutions for Free Vibration Frequencies of Functionally Graded Euler-Bernoulli Beams", *Mech. Compos. Mater.* 53(1), 79–98, 2017.

Cunedioğlu, Y., "Free vibration analysis of edge cracked symmetric functionally graded sandwich beams", *Struct. Eng. Mech.* 56(6), 1003–1020, 2015.

Vaz, J. da C. and de Lima Junior, J.J., "Vibration analysis of Euler-Bernoulli beams in multiple steps and different shapes of cross section", *J. Vib. Control* 22(1), 193–204, 2016.

Demir, E., Çallioğlu, H. and Sayer, M., "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edges", *Indian J. Eng. Mater. Sci.* 20(6), 515–521, 2013a.

Demir, E., Çallioğlu, H. and Sayer, M., "Vibration analysis of sandwich beams with variable cross section on variable Winkler elastic foundation", *Sci. Eng. Compos. Mater.* 20(4), 359–370, 2013b.

Downs, B., "Transverse Vibrations of Cantilever Beams Having Unequal Breadth and Depth Tapers", *J. Appl. Mech.* 44(4), 737–742, 1977.

Ebrahimi, F. and Hashemi, M., "Vibration Analysis of Non-Uniform Imperfect Functionally Graded Beams with Porosities in Thermal Environment", *J. Mech.* 33(6), 739–757, 2017.

El-Sayed, T.A. and Farghaly, S.H., "A Normalized Transfer Matrix Method for the Free Vibration of Stepped Beams: Comparison with Experimental and FE(3D) Methods", *Shock Vib.* 2017, 1–23, 2017.

Elishakoff, I. and Candan, S., "Apparently first closed-form solution for vibrating: inhomogeneous beams", *Int. J. Solids Struct.* 38(19), 3411–3441, 2001.

Ferezqi, H.Z., Tahani, M. and Toussi, H.E., "Analytical approach to free vibrations of cracked timoshenko beams made of functionally graded materials", *Mech. Adv. Mater. Struct.* 17(5), 353–365, 2010.

Gibson, R.F., Principles of Composite Materials, McGraw-Hill, New York, 1994.

Hibbeler, R.C., Mechanics of Materials, 8th ed., Prentice Hall, Boston, 2011.

Huang, Y. and Li, X.F., "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", *J. Sound Vib.* 329(11), 2291–2303, 2010.

Jang, S.K. and Bert, C.W., "Free-Vibration of Stepped Beams - Exact and Numerical-Solutions", *J. Sound Vib.* 130(2), 342–346, 1989a.

Jang, S.K. and Bert, C.W., "Free-Vibration of Stepped Beams - Higher Mode Frequencies and Effects of Steps on Frequency", *J. Sound Vib.* 132(1), 164–168, 1989b.

Ju, F., Lee, H.P. and Lee, K.H., "On the free vibration of stepped beams", *Int. J. Solids Struct.* 31(22), 3125–3137, 1994.

Ke, L., Wang, Y., Yang, J., Kitipornchai, S. and Alam, F., "Nonlinear vibration of edged cracked FGM beams using differential quadrature method", *Sci. China Physics, Mech. Astron.* 55(11), 2114–2121, 2012.

Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y., "Flexural vibration and elastic buckling of a cracked timoshenko beam made of functionally graded materials", *Mech. Adv. Mater. Struct.* 16(6), 488–502, 2009.

Keshmiri, A., Wu, N. and Wang, Q., "Vibration analysis of non-uniform tapered beams with nonlinear FGM properties", *J. Mech. Sci. Technol.* 32(11), 5325–5337, 2018.

Khiem, N.T., Ninh, V.T.A. and Hai, T.T., "The transfer matrix method for modal analysis of cracked multistep beam", *Vietnam J. Sci. Technol.* 55(5), 598, 2017.

Khiem, N.T., Lien, T. V. and Ninh, V.T.A., "Natural Frequencies of Multistep Functionally Graded Beam with Cracks", *Iran. J. Sci. Technol. Trans. Mech. Eng.* 43, 881-916, 2018.

Kısa, M., "Free vibration analysis of a cantilever composite beam with multiple cracks", *Compos. Sci. Technol.* 64(9), 1391–1402, 2004.

Kısa, M. and Brandon, J., "Free vibration analysis of multiple open-edge cracked beams by component mode synthesis", *J. Sound Vib.* 238(1), 1–18, 2000.

Kısa, M. and Arif Gürel, M., "Free vibration analysis of uniform and stepped cracked beams with circular cross sections", *Int. J. Eng. Sci.* 45(2), 364–380, 2007.

Kısa, M., Brandon, J. and Topçu, M., "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", *Comput. Struct.* 67(4), 215–223, 1998.

Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y., "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", *J. Sound Vib.* 324(3–5), 962–982, 2009.

Kumar, S., Mitra, A. and Roy, H., "Geometrically nonlinear free vibration analysis of axially functionally graded taper beams", *Eng. Sci. Technol. an Int. J.* 18(4), 579–593, 2015.

Lee, J.W. and Lee, J.Y., "Free vibration analysis using the transfer-matrix method on a tapered beam", *Comput. Struct.* 164, 75–82, 2016.

Lee, J.W. and Lee, J.Y., "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", *Int. J. Mech. Sci.* 122, 1–17, 2017.

Li, Q.S., "Dynamic behavior of multistep cracked beams with varying cross section", *J. Acoust. Soc. Am.* 109(6), 3072–3075, 2001.

Li, S., Hu, J., Zhai, C. and Xie, L., "A Unified Method for Modeling of Axially and/or Transversally Functionally Graded Beams with Variable Cross-Section Profile", *Mech. Based Des. Struct. Mach.* 41(2), 168–188, 2013.

Li, X.F., "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", *J. Sound Vib.* 318(4–5), 1210–1229, 2008.

Liu, J., Shao, Y.M. and Zhu, W.D., "Free vibration analysis of a cantilever beam with a slant edge crack", *Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.* 231(5), 823–843, 2017.

Logan, D.L., A First Course in the Finite Element Method, 4th ed., *Thomson*, Toronto, 2007.

Lohar, H., Mitra, A. and Sahoo, S., "Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation", *Curved Layer. Struct.* 3(1), 223–239, 2016.

Loya, J.A., Rubio, L. and Fernández-Sáez, J., "Natural frequencies for bending vibrations of Timoshenko cracked beams", *J. Sound Vib.* 290(3–5), 640–653, 2006.

Mabie, H.H. and Rogers, C.B., "Transverse vibrations of double-tapered cantilever beams with end support and with end mass", *J. Acoust. Soc. Am.* 55(5), 986–991, 1974.

Matbuly, M.S., Ragb, O. and Nassar, M., "Natural frequencies of a functionally graded cracked beam using the differential quadrature method", *Appl. Math. Comput.* 215(6), 2307–2316, 2009.

Mazanoğlu, K., Yeşilyurt, I. and Sabuncu, M., "Vibration analysis of multiple-cracked non-uniform beams", *J. Sound Vib.* 320(4–5), 977–989, 2009.

Naguleswaran, S., "Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth", *J. Sound Vib.* 153(3), 509–522, 1992.

Naguleswaran, S., "Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports", *J. Sound Vib.* 252(4), 751–767, 2002a.

Naguleswaran, S., "Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section", *Int. J. Mech. Sci.* 44(12), 2541–2555, 2002b.

Nandwana, B.P. and Maiti, S.K., "Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies", *J. Sound Vib.* 203(3), 435–446, 1997.

Panigrahi, B. and Pohit, G., "Nonlinear modelling and dynamic analysis of cracked Timoshenko functionally graded beams based on neutral surface approach", *Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.* 230(9), 1486–1497, 2016.

Petyt, M., Introduction to Finite Element Vibration Analysis, First Edit. *Cambridge University Press*, Cambridge, 1990.

Pradhan, K.K. and Chakraverty, S., "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", *Compos. Part B Eng.* 51, 175–184, 2013.

Rajasekaran, S. and Khaniki, H.B., "Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method", *J. Brazilian Soc. Mech. Sci. Eng.* 40(11), 2018.

Shahba, A. and Rajasekaran, S., "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", *Appl. Math. Model.* 36(7), 3094–3111, 2012.

Shahba, A., Attarnejad, R. and Hajilar, S., "Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams Title", *Shock Vib.* 18(5), 683–696, 2011a.

Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S., "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", *Compos. Part B Eng.* 42(4), 801–808, 2011b.

Shen, M.H.H. and Pierre, C., "Free Vibrations of Beams With a Single-Edge Crack", *J. Sound Vib.* 170(2), 237–259, 1994.

Shifrin, E.I. and Ruotolo, R., "Natural frequencies of a beam with an arbitrary number of cracks", *J. Sound Vib.* 222(3), 409–423, 1999.

Shin, Y., Yun, J., Seong, K., Kim, J. and Kang, S., "Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations", *J. Mech. Sci. Technol.* 20(4), 467–472, 2006.

Şimşek, M., Kocatürk, T. and Akbaş, Ş.D., "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", *Compos. Struct.* 94(8), 2358–2364, 2012.

Su, H. and Banerjee, J.R., "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", *Comput. Struct.* 147, 107–116, 2015.

Su, Z., Jin, G. and Ye, T., "Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions", *Compos. Struct.* 186, 315–323, 2018.

Suddoung, K., Charoensuk, J. and Wattanasakulpong, N., "Application of the differential transformation method to vibration analysis of stepped beams with elastically constrained ends", *J. Vib. Control* 19(16), 2387–2400, 2013.

Thai, H.T. and Vo, T.P., "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", *Int. J. Mech. Sci.* 62(1), 57–66, 2012.

Timoshenko, S., Strength of Materials. Part 1: Elementary Theory and Problems, Second edi. *D. Van Nostrand*, Toronto, 1948.

Torabi, K., Dastgerdi, J.N. and Marzban, S., "Solution of free vibration equations of Euler-Bernoulli cracked beams by using differential transform method", *Appl. Mech. Mater.* 110, 4532–4536, 2012.

Viola, E., Ricci, P. and Aliabadi, M.H., "Free vibration analysis of axially loaded cracked Timoshenko beam structures using the dynamic stiffness method", *J. Sound Vib.* 304(2), 124–153, 2007.

Wang, C.Y., "Vibration of a tapered cantilever of constant thickness and linearly tapered width", *Arch. Appl. Mech.* 83(1), 171–176, 2013.

Wang, H.C., "Generalized Hypergeometric Function Solutions on the Transverse Vibration of a Class of Nonuniform Beams", *J. Appl. Mech.* 34(3), 702–708, 1967.

Wang, Z. hai, Wang, X. hong, Xu, G. dong, Cheng, S. and Zeng, T., "Free vibration of two-directional functionally graded beams", *Compos. Struct.* 135, 191–198, 2016.

Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W., "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", *J. Sandw. Struct. Mater.* 15(5), 583–606, 2013.

Wei, D., Liu, Y. and Xiang, Z., "An analytical method for free vibration analysis of functionally graded beams with edge cracks", *J. Sound Vib.* 331(7), 1686–1700, 2012.

Yan, T. and Yang, J., "Forced vibration of edge-cracked functionally graded beams due to a transverse moving load", *Procedia Eng.* 14, 3293–3300, 2011.

Yan, T., Kitipornchai, S. and Yang, J., "Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation", *Compos. Struct.* 93(7), 1801–1808, 2011a.

Yan, T., Yang, J. and Kitipornchai, S., "Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation", *Nonlinear Dyn.* 67(1), 527–540, 2012.

Yan, T., Kitipornchai, S., Yang, J. and He, X.Q., "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", *Compos. Struct.* 93(11), 2992–3001, 2011b.

Yan, Y., Ren, Q.W., Xia, N. and Zhang, L.F., "A close-form solution applied to the free vibration of the Euler-Bernoulli beam with edge cracks", *Arch. Appl. Mech.* 86(9), 1633–1646, 2016.

Yang, E.C., Zhao, X. and Li, Y.H., "Free Vibration Analysis for Cracked FGM Beams by Means of a Continuous Beam Model", *Shock Vib.* 2015.

Yang, J. and Chen, Y., "Free vibration and buckling analyses of functionally graded beams with edge cracks", *Compos. Struct.* 83(1), 48–60, 2008.

Yang, J. and Yan, T., "Nonlinear frequency response of parametrically excited functionally graded Timoshenko beams with a crack", *IOP Conf. Ser. Mater. Sci. Eng.* 10(1), 12061, 2010.

Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P., "Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method", *Compos. Struct.* 117(1), 32–39, 2014.

Yılmaz, Y. and Evran, S., "Free vibration analysis of axially layered functionally graded short beams using experimental and finite element methods", *Sci. Eng. Compos. Mater.* 23(4), 453–460, 2016.

Yokoyama, T. and Chen, M. C., "VIBRATION ANALYSIS OF EDGE-CRACKED BEAMS USING A LINE-SPRING MODEL", *Eng. Fract. Mech.* 59(3), 403–409, 1998.

Yousefi, A. and Rastgoo, A., "Free vibration of functionally graded spatial curved beams", *Compos. Struct.* 93(11), 3048–3056, 2011.

Zamorska, I., Cekus, D. and Miara, M., "Effect of crack parameters on free vibrations of the Bernoulli-Euler beam", *J. Appl. Math. Comput. Mech.* 14(4), 167–174, 2015.

Zeng, J., Ma, H., Zhang, W. and Wen, B., "Dynamic characteristic analysis of cracked cantilever beams under different crack types", *Eng. Fail. Anal.* 74, 80–94, 2017.

Zheng, D.Y. and Kessissoglou, N.J., "Free vibration analysis of a cracked beam by finite element method", *J. Sound Vib.* 273(3), 457–475, 2004.

EKLER

Doğal	I = 1/I		1-2/1	İkinc	i çatlak deri	nliği oranı ([a2/b]	Due energy
Frekans	LC1/L	<i>a1/b</i>	LC2/L	0.2	0.4	0.6	0.8	Program
1	0.2	0.2	0.4	155.598	153.355	146.886	121.414	Matlab
1	0.2	0.2	0.4	159.246	155.387	146.902	122.668	Ansys
2	0.2	0.2	0.4	979.732	957.484	901.783	761.246	Matlab
2	0.2	0.2	0.4	1009.97	971.708	902.295	776.142	Ansys
2	0.2	0.2	0.4	2729.336	2693.158	2610.343	2441.939	Matlab
3	0.2	0.2	0.4	2804.73	2750.26	2661.18	2526.81	Ansys
4	0.2	0.2	0.4	5295.116	5255.038	5156.509	4914.510	Matlab
4	0.2	0.2	0.4	5387.05	5308.81	5169.07	4921.88	Ansys
1	0.2	0.2	0.6	156.092	155.520	153.755	144.716	Matlab
1	0.2	0.2	0.6	160.379	159.371	156.984	147.885	Ansys
2	0.2	0.2	0.6	977.368	947.048	868.349	648.724	Matlab
2	0.2	0.2	0.6	1004.58	952.449	853.207	654.193	Ansys
2	0.2	0.2	0.6	2725.884	2679.273	2575.101	2376.473	Matlab
3	0.2	0.2	0.0	2794.12	2717.8	2621.52	2434.09	Ansys
4	0.2	0.2	0.6	5298.425	5269.196	5199.517	5039.694	Matlab
4	0.2	0.2	0.0	5403.91	5365.65	5298.48	5176.84	Ansys
1	0.2	0.2	0.9	156.243	156.199	156.060	155.287	Matlab
1	0.2	0.2	0.8	160.728	160.649	160.517	159.647	Ansys
2	0.2	0.2	0.9	984.772	978.403	958.422	852.638	Matlab
Z	0.2	0.2	0.8	1021.98	1010.27	981.213	871.789	Ansys
2	0.2	0.2	0.9	2721.020	2653.134	2461.395	1901.011	Matlab
3	0.2	0.2	0.8	2783.52	2665.95	2420.3	1925.89	Ansys
4	0.2	0.2	0.9	5249.402	5069.153	4688.378	4132.333	Matlab
4	0.2	0.2	0.8	5289.13	5008.47	4612	4191.12	Ansys

Ek-A İki çatlaklı sabit kesitli düz FD kirişin polinom derecesi n=5 için farklı çatlak konumları ve farklı çatlak derinliklerindeki doğal frekans değerleri

Doğal	I = 1/I	-1/L	a1/b $Lc2/L$	İkinc	i çatlak deri	nliği oranı ((a2/b)	Due energy
Frekans	LC1/L	<i>a1/b</i>	LC2/L	0.2	0.4	0.6	0.8	Program
1	0.2	0.4	0.4	150.227	148.207	142.347	118.832	Matlab
1	0.2	0.4	0.4	150.194	147.08	139.758	118.91	Ansys
2	0.2	0.4	0.4	979.358	956.859	900.225	755.226	Matlab
2	0.2	0.4	0.4	1009.29	970.734	898.658	767.509	Ansys
2	0.2	0.4	0.4	2702.887	2670.546	2595.255	2437.157	Matlab
3	0.2	0.4	0.4	2759.95	2715.69	2638.65	2519.46	Ansys
4	0.2	0.4	0.4	5158.594	5109.321	4991.403	4721.181	Matlab
4	0.2	0.4	0.4	5157.7	5065.84	4900.100	4641.64	Ansys
1	0.2	0.4	0.0	150.672	150.158	148.571	140.398	Matlab
1	0.2	0.4	0.6	151.14	150.414	148.351	140.89	Ansys
	0.0	0.1	0.0	977.018	946.548	867.355	645.521	Matlab
2	0.2	0.4	0.6	1004	952.058	851.101	651.844	Ansys
2	0.0	0.1	0.6	2698.230	2651.993	2548.938	2353.308	Matlab
3	0.2	0.4	0.6	2745.3	2671.87	2597.25	2396.95	Ansys
4	0.2	0.4	0.6	5167.628	5146.930	5097.642	4980.651	Matlab
4	0.2	0.4	0.0	5192.07	5176.32	5143.21	5082	Ansys
1	0.2	0.4	0.8	150.808	150.768	150.643	149.950	Matlab
1	0.2	0.4	0.8	151.431	151.475	151.31	150.674	Ansys
2	0.2	0.4	0.8	984.457	978.068	958.023	851.886	Matlab
2	0.2	0.4	0.8	1021.52	1009.9	980.56	873.217	Ansys
2	0.2	0.4	0.8	2694.250	2629.535	2445.177	1896.178	Matlab
5	0.2	0.4	0.8	2737.95	2631.01	2397.7	1925.06	Ansys
4	0.2	0.4	0.8	5118.604	4945.578	4576.390	4032.193	Matlab
4	0.2	0.4	0.8	5076.69	4815.48	4429.741	4027.7	Ansys
1	0.2	0.6	0.4	136.431	134.914	130.456	111.692	Matlab
	0.2	0.0	0.4	133.077	130.817	125.591	109.866	Ansys
2	0.2	0.6	0.4	978.451	955.336	896.389	739.900	Matlab
	0.2	0.0	0.4	1008.36	968.167	892.032	747.554	Ansys

Ek-A (Devam) İki çatlaklı sabit kesitli düz FD kirişin polinom derecesi n=5 için farklı çatlak konumları ve farklı çatlak derinliklerindeki doğal frekans değerleri

Doğal	I .1/I	1/1	1.0/1	İkinc	i çatlak deri	nliği oranı ((a2/b)	Durante
Frekans	LC1/L	<i>a1/b</i>	LC2/L	0.2	0.4	0.6	0.8	Program
2	0.2	0.6	0.4	2636.115	2612.450	2554.887	2423.139	Matlab
5	0.2	0.0	0.4	2677.23	2647.19	2592.4	2499	Ansys
4	0.2	0.6	0.4	4851.029	4781.903	4624.343	4301.988	Matlab
4	0.2	0.0	0.4	4797.14	4675.51	4474.27	4184.3	Ansys
1	0.2	0.6	0.6	136.763	136.380	135.194	129.005	Matlab
1	0.2	0.0	0.0	133.722	133.145	131.717	126.472	Ansys
2	0.2	0.6	0.6	976.169	945.337	864.949	637.786	Matlab
2	0.2	0.0	0.0	1003.3	950.27	847.377	642.189	Ansys
3	0.2	0.6	0.6	2628.934	2584.021	2484.530	2297.423	Matlab
5	0.2	0.0	0.0	2657.31	2586.35	2571.12	2327.09	Ansys
4	0.2	0.6	0.6	4871.120	4864.047	4848.077	4810.270	Matlab
4	0.2	0.0	0.0	4850.68	4848.31	4844.36	4838.28	Ansys
1	0.2	0.6	0.8	136.865	136.835	136.742	136.228	Matlab
1	0.2	0.6	0.8	133.92	133.875	133.763	133.327	Ansys
2	0.2	0.6	0.8	983.693	977.256	957.056	850.077	Matlab
2	0.2	0.0	0.8	1020.75	1008.97	979.387	871.112	Ansys
3	0.2	0.6	0.8	2626.942	2569.941	2403.969	1884.191	Matlab
5	0.2	0.0	0.8	2655.1	2590.79	2355.01	1910.18	Ansys
4	0.2	0.6	0.8	4823.124	4664.467	4318.165	3796.934	Matlab
4	0.2	0.0	0.8	4742.11	4497.68	4132.85	3747.59	Ansys
1	0.2	0.8	0.4	97.204	96.653	94.981	87.021	Matlab
1	0.2	0.8	0.4	97.5389	96.7888	95.033	87.0753	Ansys
2	0.2	0.8	0.4	976.282	951.661	886.916	698.944	Matlab
2	0.2	0.8	0.4	1005.88	963.201	880.259	706.447	Ansys
3	0.2	0.8	0.4	2466.194	2458.206	2436.312	2371.482	Matlab
5	0.2	0.0	0.4	2525.09	2514.81	2493.89	2444.98	Ansys
4	0.2	0.8	04	4285.999	4185.251	3964.430	3547.732	Matlab
	0.2	0.0	0.7	4330.88	4178.72	3935.97	3578.13	Ansys

Ek-A (Devam) İki çatlaklı sabit kesitli düz FD kirişin polinom derecesi n=5 için farklı çatlak konumları ve farklı çatlak derinliklerindeki doğal frekans değerleri

Doğal	L_{o1}/L	a1/h	1.2/1	İkinc	i çatlak deri	nliği oranı (a2/b)	Duo ano m
Frekans	LC1/L	<i>a1/0</i>	LC2/L	0.2	0.4	0.6	0.8	Program
1	0.2	0.0	0.6	97.324	97.187	96.761	94.469	Matlab
1	0.2	0.8	0.0	97.7982	97.7283	97.5983	94.8484	Ansys
2	0.2	0.8	0.6	974.143	942.453	859.254	619.701	Matlab
2	0.2	0.8	0.0	1001	946.591	841.14	622.449	Ansys
3	0.2	0.8	0.6	2455.504	2415.520	2327.886	2165.572	Matlab
5	0.2	0.8	0.0	2499.68	2437	2341.03	2207.21	Ansys
4	0.2	0.8	0.6	4319.346	4318.896	4317.138	4309.416	Matlab
4	0.2	0.0	0.0	4400.62	4397.87	4392.71	4365.71	Ansys
1	0.2	0.0	0.8	97.361	97.350	97.317	97.136	Matlab
1	0.2	0.8	0.8	97.8765	98.0164	98.413	97.6434	Ansys
2	0.2	0.8	0.8	981.870	975.319	954.759	845.859	Matlab
Z	0.2	0.8	0.8	1019.21	1007.23	977.416	864.89	Ansys
2	0.2	0.0	0.8	2457.139	2417.274	2295.038	1853.224	Matlab
5	0.2	0.8	0.8	2503.9	2436.01	2274.95	1876.23	Ansys
4	0.2	0.0	0.8	4276.291	4137.247	3819.344	3317.175	Matlab
4	0.2	0.8	0.8	4301.68	4077.76	3732.95	3343.76	Ansys

Ek-A (Devam) İki çatlaklı sabit kesitli düz FD kirişin polinom derecesi n=5 için farklı çatlak konumları ve farklı çatlak derinliklerindeki doğal frekans değerleri

Doğal	I_{a}/I	I_{o}/I		Çatlak derin	nliği (a)		Ducanom
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program
1	0.25	0.2	140.373	139.757	138.686	136.946	Matlab
1	0.25	0.2	141.719	140.320	138.283	135.526	Ansys
2	0.25	0.2	767.131	766.052	764.199	761.245	Matlab
2	0.25	0.2	775.823	773.453	770.087	765.668	Ansys
2	0.05	0.2	1958.836	1958.737	1958.565	1958.290	Matlab
3	0.25	0.2	1986.585	1986.329	1985.946	1985.428	Ansys
4	0.05	0.2	3764.726	3757.157	3743.996	3722.559	Matlab
4	0.25	0.2	3819.748	3802.584	3777.475	3743.261	Ansys
-	0.25	0.4	140.199	139.068	136.948	133.047	Matlab
1	0.25	0.4	141.643	140.118	137.596	133.332	Ansys
2	0.25	0.4	766.755	764.587	760.594	753.499	Matlab
2	0.23	0.4	775.522	772.515	767.657	759.762	Ansys
3	0.25	0.4	1954.662	1942.836	1921.691	1885.991	Matlab
3	0.25	0.4	1980.56	1964.71	1939.99	1902	Ansys
1	0.25	0.4	3767.220	3766.666	3765.659	3763.910	Matlab
	0.25	0.4	3825.53	3824.6	3823.08	3820.63	Ansys
1	0.25	0.6	140.490	140.192	139.618	138.507	Matlab
-	0.25	0.0	142.065	141.662	140.971	139.735	Ansys
2	0.25	0.6	765.049	758.001	744.954	721.542	Matlab
2	0.25	0.0	773.055	763.504	747.964	722.433	Ansys
3	0.25	0.6	1956.616	1950.250	1938.763	1919.080	Matlab
	0.25	0.0	1983.321	1974.564	1960.759	1939.218	Ansys
4	0.25	0.6	3762.323	3747.949	3722.002	3677.500	Matlab
•	0.25	0.0	3818.421	3798.992	3768.313	3720.284	Ansys
1	0.25	0.8	140.584	140.560	140.513	140.422	Matlab
	0.25	0.0	142.202	142.169	142.113	142.011	Ansys
2	0.25	0.8	766.903	765.111	761.630	754.794	Matlab
2	0.25	0.0	775.767	773.324	769.103	761.429	Ansys
3	0.25	0.8	1953.743	1938.899	1910.699	1857.917	Matlab
5	0.25	0.8	1979.13	1958.8	1924.66	1866.04	Ansys
1	0.25	0.8	3752.716	3711.610	3639.062	3520.528	Matlab
4	0.23	0.0	3804.26	3748.76	3663.75	3538.25	Ansys
1	0.5	0.2	174.129	172.927	170.861	167.559	Matlab
	0.3	0.2	175.855	173.130	169.274	164.190	Ansys

Ek-B Tek çatlaklı A kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal	T _/T			Çatlak derin	nliği (a)		Due energy
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program
2	0.5	0.2	773.657	773.097	772.145	770.655	Matlab
2	0.5	0.2	789.965	788.710	786.974	784.756	Ansys
2	0.5	0.2	2226.606	2223.890	2219.236	2211.841	Matlab
5	0.5	0.2	2277.021	2270.705	2261.817	2250.189	Ansys
4	0.5	0.2	4115.102	4096.456	4064.965	4016.108	Matlab
4	0.5	0.2	4186.996	4144.636	4086.754	4014.087	Ansys
1	0.5	0.4	174.385	173.898	173.045	171.642	Matlab
1	0.5	0.4	176.416	175.291	173.642	171.364	Ansys
2	0.5	0.4	773.467	772.367	770.454	767.344	Matlab
Z	0.5	0.4	789.547	787.074	783.495	778.643	Ansys
3	0.5	0.4	2223.479	2212.066	2192.653	2162.180	Matlab
	0.5	0.4	2270.14	2244.43	2208.78	2163.17	Ansys
1	0.5	0.4	4121.590	4120.933	4119.815	4118.056	Matlab
+	0.5	0.4	4201.47	4199.85	4197.55	4194.51	Ansys
1	0.5	0.6	174.369	173.821	172.767	170.737	Matlab
1	0.5	0.0	176.525	175.777	174.501	172.231	Ansys
2	0.5	0.6	770.607	761.410	744.733	715.869	Matlab
2	0.5	0.0	785.609	773.089	753.225	721.863	Ansys
2	0.5	0.6	2226.919	2225.063	2221.733	2216.071	Matlab
5	0.5	0.0	2278.272	2275.797	2271.910	2265.876	Ansys
4	0.5	0.6	4112.918	4088.044	4044.101	3971.411	Matlab
4	0.5	0.0	4188.872	4155.158	4103.262	4025.044	Ansys
1	0.5	0.8	174.543	174.499	174.413	174.244	Matlab
1	0.5	0.8	176.779	176.719	176.614	176.424	Ansys
2	0.5	0.9	773.123	770.979	766.831	758.748	Matlab
2	0.5	0.8	789.304	786.302	781.143	771.846	Ansys
2	0.5	0.0	2220.560	2200.320	2162.173	2091.926	Matlab
5	0.5	0.8	2268.74	2240.64	2193.98	2115.39	Ansys
4	0.5	0.0	4105.945	4061.966	3985.835	3865.321	Matlab
4	0.5	0.8	4178.69	4119.62	4031.32	3905.48	Ansys
1	0.75	0.2	175.631	174.261	171.913	168.183	Matlab
	0.75	0.2	179.066	175.936	171.540	165.802	Ansys
	0.75	0.2	989.630	989.568	989.462	989.297	Matlab
2	0.75	0.2	1017.988	1017.855	1017.664	1017.413	Ansys

Ek-B (**Devam**) Tek çatlaklı *A* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (Ls/L), farklı çatlak konumları (Lc/L) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal	Doğal _{I s/I}			Çatlak derinliği (a)					
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program		
2	0.75	0.2	2423.800	2420.373	2414.507	2405.200	Matlab		
3	0.75	0.2	2485.370	2477.282	2465.930	2451.124	Ansys		
4	1 0.75	0.75 0.2	4652.306	4627.849	4586.654	4522.976	Matlab		
4	0.75	0.2	4756.098	4700.127	4623.850	4528.472	Ansys		
1	0.75	0.4	175.934	175.404	174.477	172.954	Matlab		
1	0.75	0.4	179.735	178.492	176.675	174.171	Ansys		
2	0.75	0.4	988.007	983.407	975.521	962.981	Matlab		
Δ	0.75	0.4	1014.38	1003.88	989.137	969.899	Ansys		
2	0.75	0.4	2421.633	2412.264	2396.595	2372.654	Matlab		
5	0.75	0.4	2480.65	2459.59	2431.38	2396.81	Ansys		
4	0.75	0.4	4660.653	4659.309	4657.030	4653.467	Matlab		
4	0.75	0.4	4774.83	4771.53	4766.86	4760.73	Ansys		
1	0.75	0.6	176.080	175.960	175.748	175.395	Matlab		
1	0.75	0.0	180.061	179.772	179.341	178.730	Ansys		
2	0.75	0.6	987.456	981.303	970.701	953.707	Matlab		
2	0.75	0.0	1013.104	998.908	978.759	952.119	Ansys		
2	0.75	0.6	2423.968	2421.012	2415.960	2407.972	Matlab		
5	0.75	0.0	2485.968	2479.631	2470.755	2459.249	Ansys		
4	0.75	0.6	4652.683	4629.235	4589.654	4528.356	Matlab		
4	0.75	0.0	4756.987	4703.360	4630.197	4538.725	Ansys		
1	0.75	0.8	176.109	176.071	175.998	175.853	Matlab		
1	0.75	0.8	180.138	180.084	179.99	179.819	Ansys		
2	0.75	0.9	987.830	982.518	972.248	952.305	Matlab		
2	0.75	0.8	1015.28	1007.79	994.932	971.896	Ansys		
2	0.75	0.0	2411.979	2375.290	2309.765	2200.262	Matlab		
3	0.75	0.8	2468.89	2419.01	2341.54	2224.37	Ansys		
А	0.75	0.9	4645.596	4603.820	4535.539	4436.489	Matlab		
4	0.75	0.8	4753.55	4698.94	4622.56	4522.8	Ansys		

Ek-B (**Devam**) Tek çatlaklı *A* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal	L s/L			Çatlak der	inliği (a)		Drogram
Frekans	LS/L		0.5	1	1.5	2	Plogram
1	0.25	0.2	173.236	172.012	169.909	166.551	Matlab
1	0.23	0.2	179.140	176.322	172.340	167.098	Ansys
2	0.25	0.2	1022.696	1022.432	1021.982	1021.273	Matlab
2	0.23	0.2	1063.514	1062.969	1062.204	1061.211	Ansys
2	0.25	0.2	2768.974	2764.055	2755.617	2742.182	Matlab
3	0.25	0.2	2727.290	2724.286	2720.737	2716.931	Ansys
4	0.25	0.2	5338.998	5308.997	5258.431	5180.197	Matlab
4	0.25	0.2	5461.006	5395.085	5304.938	5191.687	Ansys
1	0.25	0.4	173.435	172.765	171.596	169.689	Matlab
1	0.25	0.4	179.589	178.028	175.757	172.658	Ansys
2	0.25	0.4	1021.124	1016.479	1008.557	996.069	Matlab
2	0.25	0.4	1059.86	1048.91	1033.67	1014.07	Ansys
2	0.25	0.1	2767.346	2757.989	2742.307	2718.261	Matlab
5	0.25	0.4	2724.63	2715.24	2705.03	2694.68	Ansys
4	0.25	0.4	5347.014	5339.201	5325.964	5305.261	Matlab
4	0.25	0.4	5477.11	5456.13	5426.79	5388.83	Ansys
1	0.25	0.6	173.613	173.444	173.145	172.646	Matlab
1	0.25	0.0	179.989	179.591	178.998	178.158	Ansys
2	0.25	0.6	1020.273	1013.229	1001.134	981.857	Matlab
2	0.25	0.6	1057.987	1041.540	1018.345	987.960	Ansys
2	0.25	0.6	2766.900	2756.317	2738.608	2711.538	Matlab
5	0.25	0.6	2720.546	2701.053	2679.880	2658.421	Ansys
4	0.25	0.6	5347.171	5339.800	5327.349	5307.995	Matlab
4	0.25	0.6	5479.341	5464.712	5444.476	5418.604	Ansys
1	0.25	0.9	173.669	173.655	173.632	173.593	Matlab
1	0.25	0.8	180.113	180.082	180.036	179.969	Ansys

Ek-C Tek çatlaklı *B* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal Çatlak derinliği (*a*) Ls/LLc/LProgram Frekans 0.5 1.5 2 1 1022.280 1020.830 1018.262 1013.956 Matlab 2 0.25 0.8 1062.55 1059.1 1053.93 1046.53 Ansys 2765.473 2750.614 2724.602 2681.889 Matlab 0.25 3 0.8 2726.58 2721.91 2716.67 2696.22 Ansys 5334.143 5290.833 5218.474 5108.683 Matlab 4 0.25 0.8 5449.84 5353.01 5224.05 5069.34 Ansys 177.489 175.141 178.859 171.407 Matlab 0.2 0.5 1 185.590 182.410 177.937 172.091 Ansys 998.482 998.759 998.656 998.210 Matlab 0.2 2 0.5 1032.900 1032.700 1032.370 1031.967 Ansys 2741.994 2730.861 2748.513 2713.267 Matlab 3 0.5 0.2 2741.300 2739.700 2737.782 2735.637 Ansys 5327.246 5295.727 5243.054 5162.643 Matlab 4 0.5 0.25375.000 5446.400 5278.970 5161.316 Ansys 179.155 178.607 177.650 176.078 Matlab 1 0.5 0.4 186.257 184.967 183.08 180.479 Ansys 997.187 992.695 984.998 972.776 Matlab 2 0.5 0.4 1029.37 1019.04 1004.56 985.698 Ansys 2747.355 2737.680 2721.402 2696.294 Matlab 3 0.5 0.4 2731.67 2739.08 2723.12 2714.04 Ansys 5328.471 5315.714 5295.675 5335.976 Matlab 0.5 4 0.4 5465.94 5448.48 5424.06 5392.29 Ansys 179.285 179.103 178.782 178.247 Matlab 1 0.5 0.6 186.552 186.119 185.474 184.561 Ansys 988.794 996.159 976.180 956.160 Matlab 2 0.5 0.6 1027.123 1010.310 986.703 955.950 Ansys

Ek-C (**Devam**) Tek çatlaklı *B* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Çatlak derinliği (*a*) Doğal Ls/LLc/LProgram Frekans 0.5 2 1 1.5 2737.146 Matlab 2747.203 2720.358 2694.791 0.5 3 0.6 2732.065 2707.767 2681.601 2655.303 Ansys 5335.729 5327.577 5313.854 5292.649 Matlab 4 0.5 0.6 5466.533 5450.721 5428.998 5401.455 Ansys 179.344 179.330 179.305 179.263 Matlab 1 0.5 0.8 186.686 186.652 186.602 186.529 Ansys 998.299 996.888 994.392 990.208 Matlab 2 0.5 0.8 1023.69 1016.66 1031.88 1028.6 Ansys 2745.616 2730.832 2704.961 2662.500 Matlab 3 0.5 0.8 2739.8 2734.4 2728.34 2683.2 Ansys 5207.979 5323.067 5279.975 5098.729 Matlab 4 0.5 0.8 5437.92 5342.48 5215.42 5063.06 Ansys 173.189 171.834 169.513 165.826 Matlab 0.75 0.2 1 179.950 176.790 172.360 166.580 Ansys 1022.654 1022.612 1022.540 1022.427 Matlab 2 0.75 0.2 1061.100 1061.000 1060.900 1060.700 Ansys 2768.091 2761.725 2750.852 2733.664 Matlab 0.75 0.2 3 2831.700 2810.700 2783.400 2846.800 Ansys 5308.530 5339.850 5256.117 5175.892 Matlab 4 0.75 0.2 5469.800 5398.200 5301.600 5182.300 Ansys 173.487 172.958 172.035 170.518 Matlab 1 0.75 0.4 180.624 179.375 177.547 175.028 Ansys 1005.928 991.207 1020.712 1015.251 Matlab 2 0.75 0.4 1056.68 1043.99 1026.32 1003.51 Ansys 2767.280 2758.731 2744.392 2722.379 Matlab 0.4 3 0.75 2845.28 2826.23 2800.55 2768.8 Ansys

Ek-C (**Devam**) Tek çatlaklı *B* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Çatlak derinliği (*a*) Doğal Ls/L Lc/LProgram Frekans 2 0.5 1.5 1 5339.568 Matlab 5348.120 5325.061 5302.346 0.75 4 0.4 5488.02 5467.17 5438.12 5400.52 Ansys 173.631 173.510 173.296 172.939 Matlab 1 0.75 0.6 180.953 180.664 180.233 179.621 Ansys 1020.223 1013.370 1001.574 982.698 Matlab 2 0.75 0.6 1055.61 1039.73 1017.23 987.551 Ansys 2737.042 2708.825 2766.405 2755.437 Matlab 3 0.75 0.6 2843.43 2819.19 2786.53 2746.247 Ansys 5348.285 5340.202 5326.537 5305.288 Matlab 4 0.75 0.6 5488.81 5470.3 5444.73 5412.125 Ansys 173.658 Matlab 173.670 173.637 173.603 1 0.75 0.8 181.040 181.010 180.970 180.91 Ansys Matlab 1022.091 1020.448 1017.540 1012.663 2 0.75 0.8 1041.7 1059.800 1055.900 1050.100 Ansys 2747.177 2764.300 2717.333 2668.701 Matlab 3 0.75 0.8 2799.500 2838.700 2742.800 2666.2 Ansys 5334.823 5289.828 5215.374 5104.117 Matlab 4 0.75 0.8 5460.400 5363.700 5236.900 5087.8 Ansys

Ek-C (**Devam**) Tek çatlaklı *B* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal Ls/L		Lc/I		Çatlak derinliği (a)					
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program		
1	0.25	0.2	147.648	147.112	146.177	144.650	Matlab		
1	0.23	0.2	148.468	147.261	145.495	143.081	Ansys		
2	0.25	0.2	805.985	804.690	802.459	798.882	Matlab		
2	0.25	0.2	814.063	811.242	807.207	801.856	Ansys		
2	0.25	0.2	1988.502	1988.493	1988.476	1988.450	Matlab		
5	0.23	0.2	2015.167	2015.133	2015.076	2014.990	Ansys		
4	0.25	0.2	3738.924	3732.529	3721.386	3703.175	Matlab		
4	0.23	0.2	3778.623	3764.516	3743.859	3715.610	Ansys		
1	0.25	0.4	147.379	146.062	143.602	139.107	Matlab		
1	0.25	0.4	148.233	146.478	143.587	138.736	Ansys		
2	0.25	0.4	805.860	804.187	801.112	795.660	Matlab		
2	0.25	0.4	814.161	811.793	807.97	801.77	Ansys		
2	0.25	0.4	1984.294	1972.459	1951.283	1915.487	Matlab		
3	0.23	0.4	2009.08	1993.29	1968.63	1930.66	Ansys		
4	0.25	0.4	3740.960	3740.299	3739.101	3737.022	Matlab		
4	0.23	0.4	3783.18	3782	3780.06	3776.93	Ansys		
1	0.25	0.6	147.718	147.367	146.692	145.389	Matlab		
1	0.23	0.0	148.719	148.249	147.446	146.013	Ansys		
2	0.25	0.6	803.818	796.313	782.448	757.655	Matlab		
2	0.23	0.0	811.203	801.005	784.450	757.366	Ansys		
2	0.25	0.6	1986.465	1980.708	1970.333	1952.585	Matlab		
5	0.23	0.0	2012.139	2004.235	1991.786	1972.399	Ansys		
4	0.25	0.6	3736.416	3722.925	3698.545	3656.648	Matlab		
4	0.23	0.0	3776.824	3759.097	3731.037	3686.968	Ansys		
1	0.25	0.8	147.828	147.800	147.745	147.636	Matlab		
	0.23	0.25 0.8	148.878	148.839	148.773	148.653	Ansys		

Ek-D Tek çatlaklı *C* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal Ls/L		L_c/I		Çatlak derinliği (a)					
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program		
2	0.25	0.9	805.749	803.708	799.746	791.967	Matlab		
2	0.25	0.8	814.04	811.256	806.447	797.708	Ansys		
2	0.25	0.9	1983.459	1968.847	1941.065	1889.007	Matlab		
3	0.25	0.8	2007.77	1987.79	1954.22	1896.48	Ansys		
4	0.25	0.8	3726.769	3686.432	3615.230	3498.903	Matlab		
4	0.25	0.8	3762.63	3708.7	3626.04	3503.98	Ansys		
	0.5	0.2	194.298	193.021	190.822	187.298	Matlab		
1	0.5	0.2	195.864	192.986	188.899	183.489	Ansys		
2	0.5	0.2	770.553	769.835	768.615	766.702	Matlab		
2	0.5	0.2	785.245	783.598	781.313	778.392	Ansys		
2	0.5	0.2	2241.801	2239.101	2234.468	2227.090	Matlab		
3	0.5	0.2	2283.776	2277.718	2269.161	2257.923	Ansys		
4	0.5	0.2	4101.494	4081.510	4047.846	3995.844	Matlab		
4	0.5	0.2	4164.609	4118.975	4056.980	3979.787	Ansys		
1	0.5	0.4	194.574	194.067	193.179	191.717	Matlab		
1	0.5	0.4	196.478	195.299	193.589	191.221	Ansys		
2	0.5	0.4	770.515	769.684	768.235	765.870	Matlab		
2	0.5	0.4	781.171	783.374	780.727	777.117	Ansys		
2	0.5	0.4	2238.777	2227.648	2208.643	2178.623	Matlab		
3	0.5	0.4	2285.14	2252.62	2218.21	2173.68	Ansys		
4	0.5	0.4	4108.323	4107.252	4105.425	4102.540	Matlab		
4	0.5	0.4	4168.77	4177.13	4173.19	4168.02	Ansys		
1	0.5	0.6	194.492	193.73	192.269	189.47	Matlab		
	0.5	0.0	196.478	195.441	193.679	190.562	Ansys		
2	0.5	0.6	767.615	758.593	742.306	714.338	Matlab		
	0.5	0.0	781.171	769.064	749.943	719.984	Ansys		

Ek-D (**Devam**) Tek çatlaklı *C* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal Ls/L		L_c/I		Çatlak derir	nliği (a)		Ducanom
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program
2	0.5	0.6	2242.28	2240.91	2238.46	2234.31	Matlab
5	0.5	0.0	2285.14	2283.2	2280.16	2275.44	Ansys
4	0.5	0.6	4100.33	4076.94	4035.62	3967.27	Matlab
4	0.5	0.0	4168.77	4137.79	4090.01	4017.8	Ansys
1	0.5	0.8	194.732	194.670	194.549	194.311	Matlab
1	0.5	0.8	196.83	196.745	196.598	196.33	Ansys
2	0.5	0.8	770.108	768.058	764.092	756.362	Matlab
2	0.5	0.8	784.778	781.943	777.068	768.278	Ansys
2	0.5	0.8	2235.401	2214.176	2174.244	2100.964	Matlab
3	0.5	0.8	2274.86	2245.38	2196.55	2114.69	Ansys
4	0.5	0.8	4093.750	4052.333	3980.643	3867.179	Matlab
4	0.5	0.8	4159.16	4104.23	4022.06	3904.82	Ansys
1	0.75	0.2	190.874	189.378	186.815	182.745	Matlab
1	0.75	0.2	194.961	191.540	186.737	180.469	Ansys
2	0.75	0.2	1022.151	1022.114	1022.050	1021.951	Matlab
2	0.75	0.2	1046.329	1046.246	1046.121	1045.951	Ansys
2	0.75	0.2	2396.812	2393.553	2387.975	2379.131	Matlab
5	0.75	0.2	2443.615	2436.044	2425.414	2411.564	Ansys
4	0.75	0.2	4667.899	4642.640	4600.136	4534.563	Matlab
4	0.75	0.2	4769.348	4711.588	4633.108	4535.351	Ansys
1	0.75	0.4	191.215	190.667	189.707	188.128	Matlab
	0.75	0.4	195.715	194.426	192.539	189.931	Ansys
2	0.75	0.4	1020.433	1015.591	1007.280	994.046	Matlab
	0.75	0.4	1042.59	1031.76	1016.5	996.524	Ansys
2	0.75	0.4	2394.549	2385.087	2369.277	2345.165	Matlab
3	0.75	0.4	2438.53	2416.97	2388.15	2352.93	Ansys

Ek-D (**Devam**) Tek çatlaklı *C* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Doğal	al _{Le/L} L			Çatlak derir	nliği (a)		
Frekans	LS/L	LC/L	0.5	1	1.5	2	Program
4	0.75	0.4	4676.481	4674.968	4672.405	4668.407	Matlab
4	0.75	0.4	4788.62	4784.94	4779.76	4773.01	Ansys
1	0.75	0.6	191.370	191.259	191.061	190.731	Matlab
1	0.75	0.0	196.063	195.792	195.388	194.813	Ansys
2	0.75	0.6	1019.996	1013.915	1003.420	986.548	Matlab
2	0.75	0.0	1041.548	1027.662	1007.884	981.608	Ansys
2	0.75	0.6	2397.148	2394.825	2390.846	2384.525	Matlab
3	0.75	0.0	2444.683	2440.140	2433.736	2425.362	Ansys
4	0.75	0.6	4668.063	4643.169	4601.024	4535.475	Matlab
4	0.75	0.6	4769.645	4712.257	4633.532	4534.467	Ansys
1	0.75	0.9	191.395	191.352	191.269	191.104	Matlab
1	0.75	0.8	196.131	196.069	195.96	195.763	Ansys
2	0.75	0.9	1019.933	1013.427	1000.872	976.595	Matlab
2	0.75	0.8	1042.98	1033.85	1018.22	990.4	Ansys
2	0.75	0.8	2384.276	2346.012	2278.624	2168.645	Matlab
5	0.75	0.8	2426.61	2376.39	2299.58	2186.04	Ansys
4	0.75	0.8	4662.946	4625.255	4564.111	4476.310	Matlab
4	0.75	0.8	4769.89	4721.39	4653.8	4565.82	Ansys

Ek-D (**Devam**) Tek çatlaklı *C* kesitli FD kademeli kirişin polinom derecesi n=5 için farklı kademe (*Ls/L*), farklı çatlak konumları (*Lc/L*) ve farklı çatlak derinliklerindeki (*a*) doğal frekans değerleri

Ek-E Çift çatlaklı *A* kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal Frekans	Lc2/L	Ls/L	İkinci çatlak derinliği (a2)				Drogram
			0.5	1	1.5	2	FIOGRAFII
1	40	25	139.982	138.856	136.746	132.862	Matlab
			141.304	139.960	137.711	133.9682	Ansys
2	40	25	766.366	764.187	760.176	753.046	Matlab
			775.218	772.530	768.112	761.0213	Ansys
2	40	25	1954.629	1942.810	1921.674	1885.985	Matlab
3			1980.48	1966.400	1943.99	1909.77	Ansys
4	40	25	3764.523	3763.947	3762.903	3761.088	Matlab
4	40		3815.24	3814.400	3813.14	3811.012	Ansys
1	60	25	140.271	139.975	139.404	138.298	Matlab
1		25	141.64	141.286	140.674	139.6048	Ansys
2	(0)	25	764.663	757.613	744.562	721.143	Matlab
2	00		773.237	764.732	750.676	727.9013	Ansys
2	60	25	1956.581	1950.216	1938.731	1919.052	Matlab
3	00		1982.69	1974.91	1962.41	1943.074	Ansys
4	60	60 25	3759.669	3745.394	3719.622	3675.406	Matlab
4			3809.63	3792.66	3765.35	3722.889	Ansys
1	80	80 25	140.365	140.341	140.295	140.204	Matlab
			141.749	141.72	141.671	141.5825	Ansys
2	80	25	766.517	764.726	761.248	754.416	Matlab
) 23	775.422	773.262	769.496	762.8178	Ansys
2	80	80 25	1953.709	1938.871	1910.678	1857.907	Matlab
5	80		1979.34	1961.36	1930.79	1879.161	Ansys
4	80	30 25	3750.062	3709.055	3636.668	3518.372	Matlab
			3798.23	3748.91	3671.64	3557.633	Ansys
1	40	10 50	173.957	173.473	172.627	171.234	Matlab
	40	50	175.475	174.369	174.369	174.369	Ansys

Ek-E (**Devam**) Çift çatlaklı *A* kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal Frekans	Lc2/L	Ls/L	İkinci çatlak derinliği (a2)				Dreaman
			0.5	1	1.5	2	Program
2	40	50	773.264	772.160	770.240	767.118	Matlab
			789.101	786.607	786.607	786.607	Ansys
3	40	50	2222.522	2211.152	2191.809	2161.439	Matlab
			2268.006	2242.497	2242.497	2242.497	Ansys
4	40	50	4114.886	4114.280	4113.247	4111.622	Matlab
			4186.523	4185.153	4185.153	4185.153	Ansys
1	40	75	175.445	174.919	174.000	172.489	Matlab
1			178.650	177.430	175.650	173.180	Ansys
2	40) 75	987.983	983.380	975.488	962.936	Matlab
			1014.300	1003.800	989.040	969.750	Ansys
3	40	75	2420.427	2411.113	2395.532	2371.720	Matlab
			2477.900	2457.100	2429.200	2395.000	Ansys
4	40	40 75	4651.794	4650.371	4647.959	4644.189	Matlab
			4754.800	4751.100	4746.000	4739.200	Ansys

Ek-F Çift çatlaklı *B* kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal Frekans	Lc2/L	Ls/L	İkinci çatlak derinliği (a2)				Ducanom
			0.5	1	1.5	2	Fiograin
1	40	25	173.000	172.334	171.174	169.281	Matlab
			179.530	166.260	164.530	162.160	Ansys
2	40	25	1021.027	1016.375	1008.440	995.931	Matlab
			1061.600	1025.000	1009.500	989.590	Ansys
2	40	25	2765.613	2756.325	2740.755	2716.873	Matlab
5			2861.400	2843.000	2817.100	2785.100	Ansys
4	40	25	5336.120	5328.131	5314.602	5293.456	Matlab
4	40	25	5484.700	5504.800	5477.800	5442.700	Ansys
1	60	25	173.176	173.008	172.711	172.217	Matlab
1		25	167.671	167.382	166.935	166.3092	Ansys
2	60	0 25	1020.176	1013.128	1001.026	981.738	Matlab
2			1034.43	1019.64	997.966	969.7044	Ansys
2	60	25	2765.143	2754.567	2736.870	2709.819	Matlab
3	00		2859.85	2836.69	2804.33	2764.78	Ansys
4	60	25	5336.404	5329.211	5317.060	5298.173	Matlab
4		23	5524.64	5510.13	5489.31	5462.815	Ansys
1	80	25	173.231	173.218	173.195	173.156	Matlab
		23	167.752	167.729	167.694	167.645	Ansys
2	80	25	1022.185	1020.734	1018.166	1013.858	Matlab
2		0 23	1038.097	1035.099	1030.446	1023.869	Ansys
3	80	80 25	2763.732	2748.924	2723.001	2680.424	Matlab
			2857.491	2825.436	2776.851	2710.814	Ansys
4	00	80 25	5323.383	5280.262	5208.200	5098.824	Matlab
	00		5500.587	5410.478	5285.429	5135.516	Ansys
1	40	40 50	178.666	178.123	177.173	175.614	Matlab
	40		185.156	183.889	182.035	179.480	Ansys

Ek-F (**Devam**) Çift çatlaklı *B* kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal Frekans	Lc2/L	Ls/L	İkinci çatlak derinliği (a2)				Due anom
			0.5	1	1.5	2	Program
2	40	50	997.149	992.653	984.948	972.712	Matlab
			1029.285	1018.939	1004.423	985.510	Ansys
3	40	50	2745.050	2735.461	2719.324	2694.423	Matlab
			2738.488	2731.050	2722.482	2752.600	Ansys
4	40	50	5324.478	5316.780	5303.699	5283.162	Matlab
			5440.043	5421.745	5396.234	5363.100	Ansys
1	40	75	173.003	172.479	171.563	170.059	Matlab
1			179.530	178.300	176.510	174.030	Ansys
2	40	75	1020.695	1015.231	1005.903	991.170	Matlab
			1056.600	1043.900	1026.200	1003.400	Ansys
3	40	75	2765.029	2756.562	2742.355	2720.538	Matlab
			2840.100	2821.500	2796.300	2765.100	Ansys
4	40	40 75	5336.700	5327.949	5313.113	5289.896	Matlab
			5462.200	5440.500	5410.400	5371.500	Ansys
Ek-G Çift çatlaklı *C* kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal	1-2/1	I_{a}/I		İkinci çatlak derinliği (a2)				
Frekans	LC2/L	LS/L	0.5	1	1.5	2	Program	
1	40	25	147.191	145.879	143.428	138.949	Matlab	
1	40	25	148.706	147.130	144.495	140.151	Ansys	
2	40	25	805.394	803.712	800.619	795.134	Matlab	
2	40	25	814.763	812.665	809.221	803.710	Ansys	
2	40	25	1984.291	1972.457	1951.282	1915.482	Matlab	
3	40	25	2011.719	1997.470	1974.781	1940.152	Ansys	
4	10	10	25	3738.684	3738.003	3736.771	3734.633	Matlab
4	40	25	3792.011	3791.122	3789.652	3787.276	Ansys	
1	(0)	25	147.528	147.179	146.507	145.208	Matlab	
1	1 00	25	149.1	148.679	147.953	146.6866	Ansys	
2 (0	25	803.356	795.850	781.984	757.188	Matlab		
2	2 00	23	812.378	803.274	788.257	764.0382	Ansys	
2	3 60	25	1986.462	1980.705	1970.330	1952.583	Matlab	
3			2014.22	2007.16	1995.82	1978.31	Ansys	
4	60	25	3734.176	3720.767	3696.533	3654.875	Matlab	
4	00	23	3786.75	3770.64	3744.68	3704.298	Ansys	
1	80	25	147.638	147.610	147.555	147.447	Matlab	
1	00	23	149.229	149.194	149.135	149.029	Ansys	
2	80	25	805.287	803.249	799.290	791.518	Matlab	
2	80	23	814.662	812.190	807.877	800.238	Ansys	
2	80	25	1983.456	1968.845	1941.063	1889.004	Matlab	
5	80	23	2010.684	1992.834	1962.447	1911.126	Ansys	
4	80	25	3724.532	3684.284	3613.230	3497.121	Matlab	
4	00	23	3775.300	3726.632	3650.383	3538.090	Ansys	
1	40	50	194.120	193.616	192.735	191.283	Matlab	
1	40	40 50	195.471	194.325	192.640	190.307	Ansys	

Ek-G (Devam) Çift çatlaklı C kesitli FD kademeli kirişin Lc1/L=20, a1=0.5 mm sabit parametrelerinde polinom derecesi n=5 için farklı kademe (Ls/L), farklı ikinci çatlak konumları (Lc2/L) ve farklı ikinci çatlak derinliklerindeki (a2) doğal frekans değerleri

Doğal La2/L		I_{a}/I)	Dreamon		
Frekans	LC2/L	LS/L	0.5	1	1.5	2	Program
2	40	50	770.256	769.421	767.965	765.590	Matlab
2 40	50	784.609	782.767	780.095	776.445	Ansys	
2	40	50	2237.825	2226.735	2207.795	2177.870	Matlab
5	40	30	2275.177	2250.740	2216.569	2172.320	Ansys
4 40	50	4101.134	4100.130	4098.416	4095.709	Matlab	
4	40	50	4163.768	4161.324	4157.855	4153.267	Ansys
1 40	40	75	190.681	190.137	189.186	187.620	Matlab
1	40	15	194.529	193.264	191.410	188.848	Ansys
2	40	75	1020.419	1015.574	1007.258	994.013	Matlab
2	40		1042.554	1031.709	1016.425	996.410	Ansys
3	40	75	2393.402	2383.994	2368.272	2344.284	Matlab
5	40	15	2435.962	2414.664	2386.171	2351.318	Ansys
4	40	0 75	4667.325	4665.728	4663.024	4658.806	Matlab
4	40		4767.926	4763.841	4758.125	4750.700	Ansys

Ek-H Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-0.25/L	Ģ	Catlak derinl	iği oranı (<i>a/b</i>)	Drogram
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	168.598	162.718	147.640	104.968	Matlab
1	0.2	173.397	163.320	144.381	105.502	Ansys
2	0.2	1010.000	1009.506	1008.311	1005.470	Matlab
2	0.2	1050.343	1049.630	1048.403	1046.175	Ansys
2	0.2	2763.910	2737.252	2670.329	2502.343	Matlab
5	0.2	2852.089	2804.428	2718.138	2563.618	Ansys
1	0.2	5330.240	5196.820	4897.457	4349.610	Matlab
4	0.2	5439.058	5220.227	4879.210	4436.954	Ansys
1	0.4	169.637	167.047	159.608	130.7865	Matlab
1	0.4	175.8445	171.202	161.05867	133.0301	Ansys
2	0.4	1003.381	981.417	926.490	788.6376	Matlab
2	0.4	1034.455	996.758	928.94265	807.018	Ansys
2	0.4	2759.568	2720.351	2631.324	2453.603	Matlab
5	0.4	2844.412	2782.85	2684.4815	2540.006	Ansys
4	0.4	5362.108	5327.003	5240.638	5027.067	Matlab
4	0.4	5510.88	5445.08	5324.7383	5110.019	Ansys
1	0.6	170.203	169.520	167.419	156.7142	Matlab
1	0.0	177.207	175.951	172.941	161.841	Ansys
2	0.6	1000.649	969.434	888.698	665.7177	Matlab
Ζ	0.0	1028.133	974.503	873.343	672.791	Ansys
2	0.6	2757.434	2711.778	2609.789	2415.585	Matlab
5	0.0	2837.651	2762.415	2645.493	2483.693	Ansys
<u>л</u>	0.6	5362.501	5329.015	5249.633	5072.406	Matlab
4	0.0	5516.308	5464.696	5375.283	5226.614	Ansys
1	0.8	170.383	170.329	170.158	169.2118	Matlab
1	0.8	177.6456	177.545	177.33495	176.2935	Ansys

Ek-H (**Devam**) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-0.25/L	Ģ	Dreaman			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
2	2 0.8	1008.246	1001.558	980.570	869.6848	Matlab
2	0.8	1046.059	1033.73	1003.2443	888.8073	Ansys
2	0.8	2751.709	2682.024	2486.123	1921.682	Matlab
5	0.8	2824.041	2700.98	2447.6304	1948.536	Ansys
	0.8	5313.761	5130.771	4746.577	4189.918	Matlab
4	0.8	5402.647	5115.23	4713.6178	4291.997	Ansys

Ek-I Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-0.5/L	Ģ	Due energ			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	181.714	175.366	159.092	113.064	Matlab
1	0.2	186.877	175.997	155.609	113.629	Ansys
2	0.2	1033.899	1033.175	1031.426	1027.288	Matlab
2	0.2	1074.866	1073.810	1071.966	1068.745	Ansys
2	0.2	2787.876	2762.311	2698.132	2537.023	Matlab
5	0.2	2876.177	2830.337	2747.281	2598.770	Ansys
4	0.2	5353.906	5220.497	4922.063	4378.706	Matlab
4	0.2	5460.382	5242.832	4905.588	4469.683	Ansys
1	0.4	182.807	179.914	171.629	139.8532	Matlab
1	0.4	189.4389	184.256	173.00348	142.1476	Ansys
2	0.4	1027.426	1005.694	951.318	814.9414	Matlab
Z		1059.26	1021.91	954.73301	834.1508	Ansys
2	0.4	2782.597	2741.550	2648.645	2464.671	Matlab
5		2866.305	2801.93	2699.3981	2550.478	Ansys
4	0.4	5386.356	5353.130	5271.942	5074.285	Matlab
4	0.4	5533.358	5471.32	5359.3879	5162.816	Ansys
1	0.6	183.432	182.646	180.229	167.9659	Matlab
1	0.0	190.934	189.487	186.003	173.318	Ansys
2	0.6	1024.321	992.161	909.235	682.307	Matlab
Z	0.0	1052.081	996.833	893.178	689.569	Ansys
2	0.6	2781.387	2736.760	2637.193	2448.095	Matlab
5	0.0	2861.676	2788.083	2674.070	2516.656	Ansys
Λ	0.6	5385.772	5351.015	5268.915	5087.974	Matlab
4	0.0	5536.562	5483.183	5391.530	5241.901	Ansys
1	0.8	183.639	183.575	183.374	182.2557	Matlab
	0.8	191.4293	191.31	191.00326	189.8302	Ansys

Ek-I (**Devam**) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	$\beta = -0.5/L$	Ç))	Drogram			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Tiogram	
2	0.8	1032.121	1025.096	1003.043	886.7728	Matlab	
2	0.8	1070.475	1057.5	1025.4184	905.5184	Ansys	
2	0.0	2775.080	2704.554	2506.697	1941.609	Matlab	
5	0.8	2846.773	2722.12	2684.5712	1968.572	Ansys	
4	0.8	5337.286	5154.013	4770.330	4217.035	Matlab	
4	0.8	5423.702	5136.01	4735.8904	4318.29	Ansys	

Ek-İ Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-0.75/L	Ģ	Çatlak derinliği oranı (a/b)				
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program	
1	0.2	195.632	188.791	171.256	121.674	Matlab	
1	0.2	201.157	189.432	167.461	122.260	Ansys	
2	0.2	1058.316	1057.316	1054.902	1049.224	Matlab	
2	0.2	1099.850	1098.375	1095.784	1091.366	Ansys	
2	0.2	2812.778	2788.305	2726.863	2572.582	Matlab	
5	0.2	2901.231	2857.198	2777.383	2634.739	Ansys	
4	0.2	5378.649	5245.254	4947.428	4407.191	Matlab	
4	0.2	5482.992	5266.328	4932.119	4500.596	Ansys	
	0.4	196.778	193.555	184.351	149.3976	Matlab	
1	0.4	203.8456	198.071	185.58973	151.718	Ansys	
2	0.4	1052.011	1030.538	976.776	842.0225	Matlab	
2		1084.617	1047.65	981.18749	862.1133	Ansys	
2	0.4	2806.557	2763.659	2666.832	2476.517	Matlab	
5		2889.215	2821.97	2715.3796	2561.783	Ansys	
4	0.4	5411.647	5380.233	5303.923	5120.669	Matlab	
4	0.4	5557.246	5498.66	5394.2018	5213.288	Ansys	
1	0.6	197.468	196.566	193.794	179.7887	Matlab	
1	0.0	205.495	203.831	199.832	185.348	Ansys	
2	0.6	1048.525	1015.416	930.303	699.5262	Matlab	
Δ	0.0	1076.528	1019.622	913.419	706.965	Ansys	
2	0.6	2806.272	2762.657	2665.462	2481.311	Matlab	
5	0.0	2886.663	2814.634	2703.373	2550.283	Ansys	
Λ	0.6	5410.095	5374.034	5289.126	5104.158	Matlab	
4	0.0	5558.222	5502.997	5408.989	5257.845	Ansys	
1	0.8	197.705	197.630	197.393	196.0763	Matlab	
	0.8	199.810	199.752	199.601	197.124	Ansys	

Ek-İ (**Devam**) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-0.75/L	Ģ	Çatlak derinliği oranı (a/b)				
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program	
2	0.8	1056.525	1049.151	1025.992	904.1616	Matlab	
	0.8	1075.230	1059.213	1040.845	915.12	Ansys	
2	0.8	2799.380	2727.986	2528.109	1962.309	Matlab	
5		2825.123	2755.885	2551.137	1991.125	Ansys	
4	0.8	5361.862	5178.282	4795.052	4245.051	Matlab	
4		5420.120	5201.312	4761.214	4290.541	Ansys	

Ek-J Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-1/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-1/L	Ģ	Çatlak derinl	iği oranı (<i>a/b</i>)	Dreamana
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	210.381	203.022	184.158	130.819	Matlab
1	0.2	216.232	203.620	179.990	131.387	Ansys
2	0.2	1083.282	1081.958	1078.768	1071.310	Matlab
2	0.2	1125.378	1123.408	1119.969	1114.129	Ansys
2	0.2	2838.618	2815.233	2756.519	2609.023	Matlab
5	0.2	2927.435	2885.186	2808.613	2671.683	Ansys
4	0.2	5404.468	5271.100	4973.650	4435.431	Matlab
4	0.2	5507.210	5291.111	4959.009	4530.577	Ansys
1	0.4	211.579	207.998	197.798	159.4337	Matlab
1	0.4	219.0382	212.62	198.81149	161.7242	Ansys
2	0.4	1077.168	1055.977	1002.890	869.898	Matlab
2		1110.551	1074	1008.2942	890.8322	Ansys
2	0.4	2831.448	2786.680	2685.888	2489.149	Matlab
5		2913.27	2843.13	2732.4516	2574.161	Ansys
4	0.4	5437.981	5408.313	5336.622	5166.512	Matlab
4	0.4	5582.708	5527.27	5183.1601	5120.963	Ansys
1	0.6	212.338	211.307	208.137	192.191	Matlab
	0.0	220.853	218.944	214.368	197.892	Ansys
2	0.6	1073.290	1039.229	951.930	717.4066	Matlab
Δ	0.0	1101.525	1042.913	934.148	724.998	Ansys
2	0.6	2832.091	2789.473	2694.601	2515.246	Matlab
5	0.0	2912.756	2842.167	2733.503	2584.544	Ansys
A	0.6	5435.466	5398.071	5310.271	5121.005	Matlab
4	0.0	5581.530	5524.400	5237.171	5200.483	Ansys
1	0.8	212.609	212.521	212.243	210.6976	Matlab
	0.8	221.5094	221.344	220.93387	219.2934	Ansys

Ek-J (**Devam**) Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli tek çatlaklı ankastre kirişin geometrik indeks (β =-1/L) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	β =-1/L	Ç))	Drogram		
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
2	2	1081.489	1073.753	1049.446	921.8736	Matlab
2	0.8	1120.901	1106.49	1070.9888	939.6148	Ansys
2	0.8	2824.610	2752.321	2550.359	1983.792	Matlab
5	0.8	2895.014	2766.51	2506.1762	2010.5	Ansys
4	0.8	5387.489	5203.576	4820.748	4273.976	Matlab
4	0.8	5469.175	5280.24	4782.4941	4373.06	Ansys

Ek-K Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.2	β =-0.25/L		İkinci çatlak derinliği oranı (a2/b)				
Frekans	a_1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.2	0.4	167.859	165.342	158.103	129.909	Matlab	
1	0.2	0.4	171.7226	167.4046	157.9254	131.2273	Ansys	
2	0.2	0.4	1003.186	981.076	925.720	786.332	Matlab	
2	0.2	0.4	1034.132	996.0933	927.0847	801.9381	Ansys	
2	0.2	0.4	2751.743	2713.666	2626.850	2452.150	Matlab	
5	0.2	0.4	2826.44	2769.191	2676.188	2536.906	Ansys	
4	0.2	0.4	5318.258	5280.030	5186.780	4961.859	Matlab	
4	0.2	0.4	5407.824	5333.064	5201.717	4972.688	Ansys	
1	0.2	0.6	168.408	167.745	165.705	155.294	Matlab	
1 0.2	0.2	0.0	172.9912	171.8267	169.0628	158.6278	Ansys	
2	2 0.2	0.6	1000.455	969.111	888.041	664.138	Matlab	
2 0.2	0.0	1027.886	974.1121	872.2134	669.9259	Ansys		
2	0.2	0.6	2749.207	2703.542	2601.695	2408.343	Matlab	
5	0.2	0.0	2817.818	2743.181	2627.367	2466.977	Ansys	
1	0.2	0.6	5320.601	5290.090	5217.678	5054.267	Matlab	
4	0.2	0.0	5422.533	5382.447	5312.894	5189.896	Ansys	
1	0.2	0.8	168.583	168.530	168.365	167.447	Matlab	
1	0.2	0.8	173.3984	173.305	173.1401	172.1198	Ansys	
2	0.2	0.8	1008.085	1001.372	980.307	869.046	Matlab	
2	0.2	0.8	1045.793	1033.46	1002.856	888.0999	Ansys	
3	0.2	0.8	2743.748	2674.867	2480.790	1919.399	Matlab	
3 0.	0.2	0.8	2805.855	2686.793	2438.894	1945.501	Ansys	
Δ	0.2	0.8	5271.726	5090.919	4710.407	4158.371	Matlab	
4	0.2	0.8	5308.57	5028.361	4634.137	4217.366	Ansys	

Ek-K (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β =-0.25/L		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	162.053	159.787	153.230	127.189	Matlab	
1	0.4	0.4	161.9428	158.4339	150.2745	127.2572	Ansys	
2	0.4	0.4	1002.611	980.198	923.772	779.572	Matlab	
2	0.4		1033.123	994.6543	922.7055	792.0152	Ansys	
2	0.4	0.4	2726.390	2692.143	2612.755	2447.931	Matlab	
3	0.4	0.4	2783.514	2736.579	2655.28	2530.869	Ansys	
4	4 0.4 0.4	0.4	5181.724	5134.132	5020.913	4765.549	Matlab	
4		0.4	5179.766	5089.784	4929.42	4683.697	Ansys	
1	0.4	0.4	0.6	162.547	161.953	160.119	150.707	Matlab
1	0.4	0.6	163.0039	162.1513	159.773	151.2047	Ansys	
2	2 0.1	0.6	999.910	968.381	886.731	660.385	Matlab	
2 0.4	0.4	0.0	1026.99	973.3247	869.5366	666.6627	Ansys	
2	0.4	0.6	2722.644	2677.341	2576.580	2386.154	Matlab	
5	0.4	0.0	2770.799	2698.927	2584.78	2431.22	Ansys	
4	0.4	0.6	5189.865	5167.979	5116.006	4994.700	Matlab	
4	0.4	0.0	5212.618	5194.93	5158.609	5093.437	Ansys	
1	0.4	0.8	162.704	162.657	162.509	161.687	Matlab	
1	0.4	0.8	163.3433	163.3805	163.1864	162.4326	Ansys	
2	0.4	0.8	1007.584	1000.846	979.702	868.035	Matlab	
2	0.4	0.8	1045.057	1032.817	1001.885	889.182	Ansys	
2	0.4	0.8	2718.062	2652.318	2465.487	1915.087	Matlab	
3	0.4	0.8	2762.074	2653.478	2417.63	1945.282	Ansys	
1	0.4	0.8	5141.029	4967.678	4599.164	4059.488	Matlab	
4	0.4	0.8	5098.17	4837.553	4454.348	4056.678	Ansys	

Ek-K (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.2	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	147.144	145.443	140.457	119.649	Matlab	
1	0.0	0.4	143.4361	140.9112	135.0895	117.697	Ansys	
2	0.6	0.4	1001.220	978.058	918.979	762.378	Matlab	
2	0.0	0.4	1031.629	991.2503	914.7377	769.759	Ansys	
2	0.6	0.4	2662.392	2636.871	2575.101	2435.625	Matlab	
5	0.0	0.4	2704.377	2671.693	2612.488	2512.852	Ansys	
4	0.6	0.4	4875.362	4807.258	4652.571	4340.591	Matlab	
4	0.0	0.4	4824.087	4701.925	4502.097	4219.603	Ansys	
1	0.6	0.6	147.513	147.071	145.702	138.577	Matlab	
1	0.0	0.0	144.1766	143.511	141.8679	135.847	Ansys	
2	0.6	0.6	998.590	966.616	883.566	651.346	Matlab	
2	0.6	0.6	1025.76	970.8347	864.8211	655.452	Ansys	
2	0.6	0.6 0.6	2656.082	2612.057	2514.746	2332.607	Matlab	
3	0.0	0.0	2686.085	2616.561	2508.414	2364.013	Ansys	
4	0.6	0.6	4894.824	4886.851	4868.687	4825.901	Matlab	
4	0.0	0.0	4877.565	4874.228	4868.559	4859.391	Ansys	
1	0.6	0.8	147.630	147.595	147.486	146.877	Matlab	
1	0.0	0.8	144.4089	144.3561	144.2235	143.709	Ansys	
2	0.6	0.8	1006.371	999.573	978.240	865.611	Matlab	
2	0.0	0.8	1043.823	1031.383	1000.153	886.382	Ansys	
2	0.6	0.9	2653.487	2595.386	2426.625	1904.411	Matlab	
5	0.0	0.8	2682.519	2588.082	2377.521	1931.935	Ansys	
4	0.6	0.9	4846.972	4688.203	4343.076	3827.335	Matlab	
4	0.0	0.8	4769.089	4524.674	4161.953	3781.181	Ansys	

Ek-K (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.25/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.2	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.9	0.4	104.789	104.172	102.304	93.449	Matlab	
1	0.8	0.4	105.1174	104.2671	102.2764	93.49961	Ansys	
2	0.8	0.4	997.903	972.918	907.194	716.599	Matlab	
2	0.8	0.4	1028.131	984.834	900.65	724.407	Ansys	
2	0.8	0.4	2499.583	2490.209	2464.734	2390.802	Matlab	
5	0.8	0.4	2558.517	2546.249	2521.499	2465.371	Ansys	
4	0.9	0.4	4315.953	4214.336	3992.305	3580.613	Matlab	
4	0.8	0.4	4364.079	4208.5	3963.221	3609.345	Ansys	
1	0.9	0.6	104.922	104.765	104.274	101.640	Matlab	
1	0.8	0.0	105.4088	105.3143	105.126	102.0273	Ansys	
2	0.9	0.6	995.454	962.432	876.121	630.356	Matlab	
2	0.8	0.0	1022.54	965.9705	856.9682	633.1993	Ansys	
2	0.8	0.8 0.6	2489.542	2450.278	2364.449	2206.380	Matlab	
5	0.8	0.0	2534.404	2472.866	2378.98	2248.927	Ansys	
4	0.8	0.6	4349.559	4349.315	4348.357	4343.906	Matlab	
4	0.8	0.0	4436.242	4434.834	4432.442	4412.163	Ansys	
1	0.8	0.8	104.964	104.952	104.913	104.699	Matlab	
1	0.8	0.8	105.5013	105.6463	106.0616	105.2277	Ansys	
2	0.8	0.8	1003.490	996.552	974.782	859.991	Matlab	
2	0.8	0.8	1041.452	1028.779	997.2539	878.9497	Ansys	
2	0.8	0.8	2490.625	2449.614	2324.078	1876.978	Matlab	
5	0.8	0.8	2537.39	2467.544	2302.528	1901.134	Ansys	
A	0.8	0.8	4306.126	4166.438	3849.125	3353.773	Matlab	
4	0.8	0.8	4335.76	4110.666	3766.984	3382.995	Ansys	

Ek-L Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)					
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program		
1	0.2	0.4	180.885	178.068	169.989	138.854	Matlab		
1	0.2	0.4	185.0171	180.1959	169.6848	140.2583	Ansys		
2	0.2	0.4	1027.137	1005.194	950.251	812.168	Matlab		
2 0.2	0.4	1058.76	1021.008	952.5462	828.5141	Ansys			
2	0.2	0.4	2775.076	2735.068	2644.190	2463.105	Matlab		
3	0.2	0.4	2849.031	2788.932	2691.619	2547.705	Ansys		
4	0.2	0.4	5342.468	5306.043	5217.793	5008.294	Matlab		
4	0.2	0.4	5430.042	5358.592	5234.759	5021.519	Ansys		
1	0.2	0.6	181.494	180.730	178.377	166.425	Matlab		
1	0.2	0.0	186.4022	185.0606	181.8891	169.9312	Ansys		
2	0.2	0.2 0.6	1024.027	991.650	908.205	680.126	Matlab		
2	0.2	0.0	1051.684	996.2534	891.7746	686.2668	Ansys		
2	0.2	0.2 0.6	2773.463	2728.732	2629.164	2440.921	Matlab		
5	0.2		2842.567	2769.558	2656.6	2500.581	Ansys		
4	0.2	0.6	5343.844	5312.020	5236.787	5069.466	Matlab		
4	0.2	0.0	5442.695	5400.761	5328.622	5203.875	Ansys		
1	0.2	0.8	181.696	181.633	181.438	180.351	Matlab		
1	0.2	0.8	186.8573	186.7469	186.5461	185.3488	Ansys		
2	0.2	0.8	1031.882	1024.812	1002.619	885.690	Matlab		
2	0.2	0.8	1070.056	1057.07	1024.872	904.6041	Ansys		
2	0.2	0.8	2767.402	2697.496	2501.008	1938.562	Matlab		
3	0.2	0.0	2829.225	2708.546	2681.695	1965.851	Ansys		
Δ	0.2	0.0	5295.117	5113.719	4733.407	4185.299	Matlab		
4	0.2	0.8	5329.456	5049.336	4657.089	4244.485	Ansys		

Ek-L (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	174.621	172.085	164.767	135.993	Matlab	
1	0.4	0.4	174.4683	170.5799	161.503	136.1316	Ansys	
2	0.4	0.4	1026.316	1004.015	947.863	804.617	Matlab	
2	2 0.4	0.4	1057.346	1019.023	947.3404	817.3231	Ansys	
2	0.4	0.4	2750.816	2714.623	2631.059	2459.410	Matlab	
5	0.4	0.4	2807.939	2758.015	2672.281	2542.406	Ansys	
4	0.4	0.4	5205.925	5160.026	5051.402	4809.759	Matlab	
4	0.4	0.4	5202.833	5114.864	4959.854	4725.793	Ansys	
1	0.4	0.6	175.169	174.483	172.370	161.564	Matlab	
1	0.4	0.0	175.6247	174.6481	171.9135	162.1012	Ansys	
2	0.4	0.6	1023.241	990.645	906.532	675.772	Matlab	
2	0.4		1050.404	995.0409	888.4453	682.0931	Ansys	
2	0.4	0.6	2747.992	2703.614	2605.106	2419.719	Matlab	
5	0.4	0.0	2797.35	2727.047	2615.672	2466.353	Ansys	
4	0.4	0.6	5213.163	5190.073	5135.382	5009.608	Matlab	
4	0.4	0.0	5234.138	5214.548	5175.183	5106.193	Ansys	
1	0.4	0.8	175.350	175.294	175.119	174.146	Matlab	
1	0.4	0.8	176.0028	176.0369	175.8078	174.9177	Ansys	
2	0.4	0.8	1031.150	1024.050	1001.764	884.383	Matlab	
2	0.4	0.8	1068.97	1056.074	1023.501	905.3578	Ansys	
2	0.4	0.8	2742.801	2675.995	2486.613	1934.756	Matlab	
5	0.4	0.8	2787.237	2692.373	2676.16	1966.419	Ansys	
Λ	0.4	0.0	5164.507	4990.794	4622.878	4087.637	Matlab	
4	0.4	0.8	5120.536	4860.287	4479.442	4086.099	Ansys	

Ek-L (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	158.537	156.635	151.070	128.046	Matlab	
1	0.0	0.4	154.5401	151.7228	145.2453	126.0387	Ansys	
2	0.6	0.4	1024.330	1001.148	941.997	785.429	Matlab	
2	0.0	0.4	1055.135	1014.644	937.8891	792.6129	Ansys	
2	0.6	0.4	2689.581	2662.140	2596.036	2448.686	Matlab	
3	0.0	0.4	2732.155	2696.672	2632.802	2526.654	Ansys	
4	0.6	0.4	4900.366	4833.437	4681.907	4380.100	Matlab	
4	0.0	0.4	4850.512	4728.561	4530.986	4256.042	Ansys	
1	0.6	0.6	158.946	158.437	156.862	148.684	Matlab	
1	0.0	0.0	155.3261	154.5612	152.6747	145.7819	Ansys	
2	0.6	06 06	1021.341	988.215	902.499	665.308	Matlab	
2	0.0	0.0	1048.546	991.7142	882.6025	669.1797	Ansys	
2	0.6	0.6	2684.162	2641.021	2545.859	2368.532	Matlab	
5	0.0	0.0	2715.962	2647.879	2542.306	2401.882	Ansys	
4	0.6	0.6	4919.154	4910.283	4889.938	4842.296	Matlab	
4	0.0	0.0	4903.695	4899.317	4891.789	4879.326	Ansys	
1	0.6	0.8	159.080	159.039	158.910	158.192	Matlab	
1	0.0	0.8	155.5742	155.512	155.3559	154.7502	Ansys	
2	0.6	0.8	1029.380	1022.208	999.699	881.254	Matlab	
2	0.0	0.8	1067.124	1053.997	1021.071	901.7465	Ansys	
2	0.6	0.8	2680.954	2621.718	2450.083	1925.351	Matlab	
5	0.0	0.8	2711.057	2685.471	2401.023	1954.604	Ansys	
	0.6	0.8	4871.456	4712.588	4368.644	3858.399	Matlab	
4	0.0	0.8	4795.49	4551.199	4190.779	3814.746	Ansys	

Ek-L (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.5/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-0.	5/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.9	0.4	112.865	112.176	110.092	100.260	Matlab	
1	0.8	0.4	113.2024	112.2545	110.0434	100.3175	Ansys	
2	0.9	0.4	1019.620	994.293	927.643	734.533	Matlab	
2	0.8	0.4	1050.45	1006.567	921.2504	742.668	Ansys	
2	0.9	0.4	2533.807	2522.932	2493.601	2410.083	Matlab	
- 3	0.8	0.4	2592.656	2578.157	2549.055	2485.537	Ansys	
4	0.0	0.1	4344.955	4242.888	4020.565	3615.026	Matlab	
4	0.8	0.4	4395.365	4237.328	3990.84	3642.097	Ansys	
1	0.9	0.0	113.012	112.832	112.269	109.250	Matlab	
1	0.8	0.6	113.5176	113.399	113.1604	109.6499	Ansys	
2	0.9	0.8 0.6	1016.850	982.491	893.072	641.180	Matlab	
2	0.8		1044.142	985.4133	872.9317	644.1336	Ansys	
2	0.9	0.6	2524.453	2485.921	2401.896	2247.938	Matlab	
3	0.8	0.0	2570.036	2509.699	2418.039	2291.433	Ansys	
4	0.9	0.6	4378.667	4378.524	4378.033	4375.674	Matlab	
4	0.8	0.0	4469.163	4468.651	4468.132	4452.676	Ansys	
1	0.8	0.8	113.060	113.046	113.000	112.749	Matlab	
1	0.8	0.8	113.6171	113.7723	114.2187	113.2964	Ansys	
2	0.8	0.8	1025.194	1017.858	994.842	874.050	Matlab	
Z	0.8	0.8	1063.728	1050.323	1017.024	892.88	Ansys	
2	0.8	0.8	2524.970	2482.779	2353.844	1901.320	Matlab	
3	0.8	0.8	2571.778	2499.945	2331.073	1926.656	Ansys	
4	0.8	0.8	4334.964	4194.854	3878.529	3390.431	Matlab	
4	0.8	0.8	4367.629	4141.702	3799.74	3421.6	Ansys	

Ek-M Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) ve birinci çatlak konumu (*Lc1/L*=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a2/b*), birinçi çatlak derinliği oranı (*a1/b*) ile farklı ikinci çatlak konumlarıyla (*Lc2/L*) değişimi

Da čal Fralzana	β=-0	.75/L	İkinc	Due energy			
Dogal Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.2	0.4	194.706	191.560	182.565	148.261	Matlab
1	0.2	0.4	199.0758	193.7054	182.0343	149.7328	Ansys
2	0.2	0.4	1051.615	1029.865	975.400	838.772	Matlab
2	0.2	0.4	1083.898	1046.467	978.5943	855.8641	Ansys
2	0.2	0.4	2799.334	2757.363	2662.367	2474.813	Matlab
3	0.2	0.4	2872.728	2809.731	2708.236	2559.37	Ansys
4	0.2	0.4	5367.744	5333.077	5249.584	5054.147	Matlab
4	0.2	0.4	5453.864	5385.53	5268.469	5069.119	Ansys
1	0.2	0.6	195.379	194.500	191.796	178.116	Matlab
1	0.2	0.0	200.6076	199.0653	195.413	181.7758	Ansys
2	0.2	0.6	1048.114	1014.696	928.871	696.719	Matlab
2	0.2	0.0	1075.915	1018.785	911.6648	703.1637	Ansys
2	0.2	0.6	2798.653	2754.844	2657.512	2474.219	Matlab
5	0.2	0.0	2868.297	2796.833	2686.567	2534.884	Ansys
4	0.2	0.6	5368.154	5334.983	5256.844	5085.338	Matlab
4	0.2	0.0	5464.422	5420.612	5345.865	5218.935	Ansys
1	0.2	0.8	195.611	195.537	195.307	194.024	Matlab
1	0.2	0.8	200.701	200.010	196.100	194.901	Ansys
2	0.2	0.8	1056.194	1048.753	1025.385	902.592	Matlab
2	0.2	0.8	1084.220	1059.120	1011.120	896.01	Ansys
3	0.2	0.8	2791.982	2721.018	2522.048	1958.508	Matlab
5	0.2	0.8	2864.900	2751.120	2551.310	1975.12	Ansys
Λ	0.2	0.8	5319.574	5137.555	4757.386	4213.134	Matlab
4	0.2	0.0	5421.120	5181.160	4791.510	4241.71	Ansys

Ek-M (**Devam**) Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Da žal Faslana	β =-0.75/L		İkinc	i çatlak deri	nliği oranı ([a2/b]	Due cuero
Dogal Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.4	0.4	187.959	185.127	176.980	145.258	Matlab
1	0.4	0.4	187.7212	183.3768	173.3065	145.4149	Ansys
2	0.4	0.4	1050.501	1028.338	972.524	830.379	Matlab
2	0.4	0.4	1082.001	1043.849	972.4831	843.245	Ansys
2	0.4	0.4	2776.163	2737.983	2650.171	2471.605	Matlab
c	0.4	0.4	2833.454	2780.609	2690.398	2555.045	Ansys
1	0.4	0.4	5231.208	5187.005	5082.875	4854.007	Matlab
4	0.4	0.4	5227.207	5141.471	4991.596	4768.083	Ansys
1	0.4	0.6	188.565	187.777	185.349	172.981	Matlab
1	0.4	0.0	189.0001	187.8627	184.7269	173.5227	Ansys
2	0.4	0.6	1047.041	1013.368	926.787	691.709	Matlab
Z	0.4		1074.174	1017.024	907.6074	697.9178	Ansys
2	0.4	0.4 0.6	2774.271	2730.808	2634.513	2454.009	Matlab
5	0.4	0.0	2824.862	2755.993	2647.284	2502.066	Ansys
4	0.4	0.6	5237.534	5213.221	5155.767	5025.381	Matlab
4	0.4	0.0	5256.824	5235.44	5193.165	5120.523	Ansys
1	0.4	0.8	188.772	188.707	188.501	187.354	Matlab
1	0.4	0.8	189.210	189.010	186.210	185.91	Ansys
2	0.4	0.8	1055.184	1047.708	1024.234	900.950	Matlab
2	0.4	0.8	1083.120	1061.220	1011.310	885.12	Ansys
2	0.4	0.8	2768.464	2700.563	2508.554	1955.189	Matlab
5	0.4	0.8	2812.120	2730.140	2525.340	1974.312	Ansys
Λ	0.4	0.8	5189.053	5014.940	4647.555	4116.670	Matlab
4	0.4	0.8	5210.110	5035.170	4672.110	4195.12	Ansys

Ek-M (**Devam**) Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Do čel Engligence	β =-0.75/L		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Dogal Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	170.635	168.513	162.317	136.895	Matlab	
1	0.0	0.4	166.2652	163.1291	155.9398	134.7829	Ansys	
2	0.6	0.4	1047.809	1024.630	965.467	809.069	Matlab	
2	0.0	0.4	1078.949	1038.364	961.4129	815.9398	Ansys	
2	0.6	0.4	2717.679	2688.254	2617.693	2462.336	Matlab	
3	0.0	0.4	2761.089	2722.718	2654.072	2541.353	Ansys	
1	0.6	0.4	4926.162	4860.528	4712.371	4420.537	Matlab	
4	0.0	0.4	4877.285	4756.04	4561.224	4293.762	Ansys	
1	0.6	0.6	171.088	170.503	168.696	159.337	Matlab	
1	0.0	0.0	167.1369	166.2599	164.0994	156.2294	Ansys	
2	0.6	0.6 0.6	1044.450	1010.164	921.775	679.697	Matlab	
2	0.0		1071.519	1012.737	900.514	683.1651	Ansys	
2	0.6	0.6	2713.169	2670.907	2577.863	2405.196	Matlab	
5	0.0	0.0	2746.674	2679.967	2576.88	2440.305	Ansys	
4	0.6	0.6	4944.241	4934.468	4911.943	4859.522	Matlab	
4	0.0	0.0	4929.769	4924.317	4914.885	4899.1	Ansys	
1	0.6	0.8	171.242	171.193	171.041	170.197	Matlab	
1	0.0	0.8	171.900	169.240	168.950	167.15	Ansys	
2	0.6	0.8	1052.746	1045.187	1021.459	897.031	Matlab	
2	0.0	0.8	1079.125	1040.120	998.980	887.12	Ansys	
2	0.6	0.9	2709.338	2648.929	2474.334	1947.007	Matlab	
5	0.0	0.8	2726.120	2659.130	2491.120	1975.12	Ansys	
Λ	0.6	0.8	4896.703	4737.738	4394.971	3890.205	Matlab	
4	0.0	0.8	4869.120	4750.120	4431.120	3935.12	Ansys	

Ek-M (**Devam**) Genişliğ uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-0.75/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Da čal Fralzana	β =-0.75/L		İkinc	i çatlak deri	nliği oranı ([a2/b]	Due cuero
Dogal Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.8	0.4	121.453	120.685	118.365	107.469	Matlab
1	0.8	0.4	121.7839	120.7233	118.2471	107.519	Ansys
2	0.8	0.4	1041.461	1015.814	948.286	752.759	Matlab
2	0.8	0.4	1072.86	1028.42	942.0093	761.2054	Ansys
2	0.9	0.4	2568.874	2556.385	2522.923	2429.374	Matlab
3	0.8	0.4	2627.687	2610.813	2577.197	2505.722	Ansys
1	0.8	0.4	4373.447	4271.277	4049.429	3650.975	Matlab
4	0.8	0.4	4425.377	4265.789	4019.307	3676.484	Ansys
1	0.9	0.6	121.615	121.409	120.765	117.315	Matlab
1	0.8	0.0	122.1324	121.9852	121.6766	117.7183	Ansys
2	0.9	0.6	1038.362	1002.660	910.137	652.194	Matlab
2	0.8	0.0	1065.784	1004.844	888.8474	655.1816	Ansys
2	0.8	0.6	2560.246	2522.453	2440.219	2290.232	Matlab
5	0.8	0.0	2606.526	2547.305	2457.678	2334.642	Ansys
1	0.9	0.6	4407.143	4407.017	4406.738	4405.589	Matlab
4	0.8	0.0	4500.31	4359.201	4343.082	4319.502	Ansys
1	0.8	0.8	121.670	121.653	121.600	121.306	Matlab
1	0.8	0.8	122.145	122.012	122.001	120.51	Ansys
2	0.8	0.8	1047.013	1039.267	1014.972	888.069	Matlab
2	0.8	0.8	1073.150	1051.130	1001.120	879.125	Ansys
2	0.9	0.9	2560.183	2516.769	2384.322	1926.224	Matlab
3	0.8	0.8	2589.130	2531.120	2411.220	1961.12	Ansys
Α	0.9	0.9	4363.255	4222.894	3907.868	3427.360	Matlab
4	0.8	0.8	4420.150	4240.150	3950.150	3450.12	Ansys

Ek-N Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-1/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-1	/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.2	0.4	209.349	205.844	195.854	158.145	Matlab	
1	0.2	0.4	213.915	207.9467	195.0291	159.6457	Ansys	
2	0.2	0.4	1076.649	1055.118	1001.192	866.162	Matlab	
2	0.2	0.4	1109.587	1072.5	1005.278	883.9414	Ansys	
2	0.2	0.4	2824.519	2780.555	2681.383	2487.282	Matlab	
3	0.2	0.4	2897.545	2831.607	2725.87	2572.06	Ansys	
4	0.2	0.4	5394.085	5361.129	5282.181	5099.670	Matlab	
4	0.2	0.4	5479.261	5413.856	5302.955	5115.86	Ansys	
1	0.2	0.6	210.091	209.083	205.985	190.374	Matlab	
1	0.2	0.6	215.6003	213.8323	209.6484	194.1403	Ansys	
2	0.2	0.2 0.6	1072.747	1038.279	950.068	713.950	Matlab	
2	0.2		1100.68	1041.803	932.0394	720.6646	Ansys	
2	0.2	0.2 0.6	2824.776	2781.878	2686.742	2508.250	Matlab	
5	0.2	0.0	2895.146	2825.108	2717.411	2569.832	Ansys	
4	0.2	0.6	5393.529	5358.976	5277.847	5101.918	Matlab	
4	0.2	0.0	5487.781	5442.084	5364.713	5235.419	Ansys	
1	0.2	0.8	210.356	210.270	209.999	208.490	Matlab	
1	0.2	0.8	216.2063	216.053	215.759	214.124	Ansys	
2	0.2	0.8	1081.050	1073.222	1048.634	919.775	Matlab	
2	0.2	0.8	1120.068	1105.64	1069.969	938.1902	Ansys	
2	0.2	0.8	2817.490	2745.436	2543.912	1979.243	Matlab	
5	3 0.2	0.8	2878.965	2754.346	2498.965	2008.5	Ansys	
4	0.2	0.9	5345.097	5162.426	4782.351	4241.890	Matlab	
4	0.2	0.8	5375.351	5248.051	5241.988	4301.3	Ansys	

Ek-N (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-1/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β=-1	/L	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	202.095	198.941	189.891	154.997	Matlab	
1	0.4	0.4	201.7151	196.8829	185.7354	155.1422	Ansys	
2	0.4	0.4	1075.195	1053.194	997.777	856.873	Matlab	
Δ	0.4	0.4	1107.132	1069.178	998.1774	869.8252	Ansys	
2	0.4	0.4	2802.430	2762.226	2670.093	2484.523	Matlab	
3	0.4	0.4	2860.05	2804.211	2709.459	2568.599	Ansys	
4	0.4	0.4	5257.581	5215.067	5115.332	4898.441	Matlab	
4	0.4	0.4	5252.912	5169.423	5024.491	4810.686	Ansys	
1	0.4	0.4 0.6	202.763	201.860	199.079	184.965	Matlab	
1	0.4		203.1221	201.81	198.2247	185.474	Ansys	
2	0.4	0.6	1071.338	1036.579	947.525	708.227	Matlab	
2	0.4		1098.403	1039.433	927.1724	714.2715	Ansys	
3	0.4	0.4 0.6	2801.482	2758.923	2664.802	2489.032	Matlab	
5	0.4	0.0	2853.476	2785.961	2679.782	2538.492	Ansys	
4	0.4	0.6	5262.987	5237.428	5177.160	5042.022	Matlab	
4	0.4	0.0	5280.84	5257.719	5153.452	5120.828	Ansys	
1	0.4	0.8	203.000	202.923	202.681	201.333	Matlab	
1	0.4	0.8	203.6255	203.6459	203.3296	202.1025	Ansys	
2	0.4	0.8	1079.715	1071.848	1047.139	917.761	Matlab	
2	2 0.4	0.8	1118.059	1103.723	1067.591	938.0754	Ansys	
2	0.4	0.8	2795.051	2726.019	2531.308	1976.390	Matlab	
5	0.4	0.0	2840.499	2726.063	2481.722	2010.4	Ansys	

Ek-N (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-1/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β =-1/L		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
4	0.4	0.9	5214.678	5040.130	4673.214	4146.611	Matlab	
4	0.4	0.8	5195.01	5191.326	4531.114	4147.153	Ansys	
1	0.6	0.4	183.467	181.104	174.220	146.211	Matlab	
1	0.0		178.6608	175.1772	167.2149	143.9606	Ansys	
2	0.6	0.4	1071.685	1048.533	989.412	833.314	Matlab	
2	0.0	0.4	1103.118	1062.455	985.3458	839.7698	Ansys	
2	3 0.6	0.1	2746.680	2715.212	2640.076	2476.589	Matlab	
3 0.6	0.4	2791.015	2749.66	2676.122	2556.777	Ansys		
4	0.6	0.4	4952.840	4888.594	4743.974	4461.919	Matlab	
4	0.0	0.4	4904.55	4784.335	4592.607	4332.537	Ansys	
1	0.0	0.6 0.6	183.966	183.297	181.229	170.550	Matlab	
1	0.6		179.6196	178.6167	176.1498	167.1932	Ansys	
2	0.6	0.6	1067.945	1032.489	941.422	694.540	Matlab	
2	0.0	0.0	1094.841	1034.055	918.6969	697.5319	Ansys	
2	0.6	0.6	2743.099	2701.708	2610.751	2442.599	Matlab	
3	0.0	0.0	2778.484	2713.064	2612.351	2479.466	Ansys	
4	0.6	0.6	4970.182	4959.498	4934.784	4877.622	Matlab	
4	0.0	0.0	4956.2	4949.674	4938.352	4919.394	Ansys	
1	0.6	0.8	184.142	184.085	183.907	182.916	Matlab	
1	0.0	0.8	179.9586	179.8729	179.6587	178.8284	Ansys	
2	0.6	0.8	1076.498	1068.538	1043.547	912.964	Matlab	
Δ	0.0	0.8	1114.633	1099.999	1063.417	932.5705	Ansys	
2	0.6	0.8	2738.634	2677.015	2499.370	1969.374	Matlab	
3	0.6	0.6 0.8	2770.804	2670.088	2449.339	2001.4	Ansys	

Ek-N (Devam) Genişliği uzunluk boyunca exponansiyel değişen değişken kesitli çift çatlaklı ankastre kirişin geometrik indeks (β =-1/L) ve birinci çatlak konumu (*Lc*1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (*a*2/b), birinçi çatlak derinliği oranı (*a*1/b) ile farklı ikinci çatlak konumlarıyla (*Lc*2/L) değişimi

Doğal	β =-1/L		İkinc	i çatlak deri	nliği oranı (a2/b)	Duo ono no
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
4	0.6	0.9	4922.808	4763.740	4422.136	3922.818	Matlab
4	0.0	0.8	4848.416	4603.824	4248.263	3882.872	Ansys
1	0.8	0.4	130.573	129.719	127.142	115.092	Matlab
1	0.8	0.4	130.8598	129.6762	126.9139	115.1017	Ansys
2	0.8	0.4	1063.459	1037.511	969.148	771.293	Matlab
2	0.8	0.4	1095.413	1050.432	962.959	779.9919	Ansys
2	2	0.1	2604.788	2590.571	2552.706	2448.722	Matlab
3 0.8	0.8	0.4	2663.586	2644.179	2605.769	2526.081	Ansys
4	4 0.8	0.4	4401.779	4299.792	4079.066	3688.457	Matlab
4		0.0 0.4	4454.774	4294.279	4048.64	3712.391	Ansys
1	0.8	0.6	130.752	130.516	129.783	125.851	Matlab
1			131.2423	131.0625	130.6758	126.2216	Ansys
2	0.8	0.8 0.6	1060.020	1022.971	927.348	663.419	Matlab
2	0.8		1087.554	1024.362	904.8498	666.4058	Ansys
2	0.8	0.0	2596.923	2559.870	2479.408	2333.254	Matlab
5	0.8	0.0	2643.97	2585.835	2498.212	2378.506	Ansys
4	0.8	0.6	4435.357	4435.182	4434.916	4434.309	Matlab
4	0.8	0.0	4530.432	4530.894	4532.444	4522.478	Ansys
1	0.8	0.8	130.814	130.794	130.732	130.390	Matlab
1	0.8	0.8	131.3751	131.552	132.059	130.9394	Ansys
2	0.8	0.8	1068.979	1060.812	1035.202	902.081	Matlab
2	0.8	0.8	1108.553	1093.575	1056.542	920.4428	Ansys
2	0.8	0.8	2596.264	2551.581	2415.496	1951.665	Matlab
5	0.8	0.8 0.8	2643.098	2566.713	2389.192	1979.1	Ansys
A	0.8	0.8	4391.349	4250.873	3937.398	3464.737	Matlab
4	0.8	0.0	4427.411	4200.226	3862.959	3498.266	Ansys

Ek-O Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.8	Ça	Drogram			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	167.218	161.390	146.444	104.131	Matlab
1	0.2	171.992	162.004	143.272	104.672	Ansys
2	0.0	1007.468	1007.012	1005.908	1003.281	Matlab
2	0.2	1047.773	1047.115	1045.937	1043.917	Ansys
2	0.2	2761.402	2734.498	2666.960	2497.478	Matlab
3	0.2	2849.653	2801.580	2714.399	2558.753	Ansys
4	0.2	5327.817	5194.354	4894.863	4346.738	Matlab
4	0.2	5437.373	5218.297	4876.280	4433.948	Ansys
1	1 0.4	168.253	165.702	158.372	129.9128	Matlab
1		174.4242	169.852	159.87445	132.164	Ansys
2	0.4	1000.813	978.767	923.640	785.2642	Matlab
2		1031.79	993.967	925.92959	803.5307	Ansys
2	0.4	2757.236	2718.324	2629.947	2453.306	Matlab
3	0.4	2842.307	2781.21	2683.3459	2539.818	Ansys
4	0.4	5359.585	5324.098	5236.732	5020.464	Matlab
4	0.4	5508.742	5442.22	5320.3277	5102.843	Ansys
1	0.6	168.810	168.142	166.082	155.5803	Matlab
1	0.0	175.757	174.527	171.560	160.687	Ansys
2	0.6	998.143	967.046	886.565	663.9258	Matlab
2	0.0	1025.632	972.199	871.370	670.987	Ansys
2	0.6	2754.936	2709.069	2606.595	2411.428	Matlab
5	0.0	2835.224	2759.655	2642.240	2479.555	Ansys
Α	0.6	5360.167	5326.909	5248.034	5071.677	Matlab
4	0.0	5514.661	5463.354	5374.317	5226.113	Ansys
1	0.9	168.987	168.934	168.768	167.8432	Matlab
	0.8	176.1841	176.086	175.84102	174.8634	Ansys

Ek-O (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.8	Ça	Drogram			
	Lc/L	0.2	0.4	0.6	0.8	Program
2	0.8	1005.715	999.074	978.229	868.0306	Matlab
Z	0.8	1043.498	1031.25	1001.0002	887.2309	Ansys
3	0.0	2749.312	2679.736	2484.065	1919.511	Matlab
	0.8	2821.937	2699.05	2446.0129	1946.425	Ansys
4	0.8	5311.368	5128.383	4744.035	4186.818	Matlab
		5401.179	5113.67	4711.4877	4289.418	Ansys

Ek-Ö Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.6	Ça	Due enour			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	182.056	175.706	159.421	113.331	Matlab
1	0.2	187.228	176.344	155.936	113.902	Ansys
2	0.0	1035.018	1034.386	1032.856	1029.228	Matlab
2	0.2	1076.089	1075.171	1073.540	1070.747	Ansys
2	0.2	2789.355	2763.172	2697.448	2532.697	Matlab
3	0.2	2770.132	2765.023	2745.832	2594.344	Ansys
4	0.2	5355.785	5222.120	4923.600	4381.729	Matlab
4	0.2	5462.784	5245.063	4908.127	4473.641	Ansys
1	1 0.4	183.161	180.306	172.117	140.5577	Matlab
1		189.8229	184.706	173.57416	142.9009	Ansys
	0.4	1028.418	1006.366	951.190	812.7831	Matlab
2		1060.204	1022.32	954.17751	831.8039	Ansys
2	0.4	2784.438	2743.913	2652.133	2470.158	Matlab
3	0.4	2758.716	2735.97	2703.7503	2556.397	Ansys
4	0.4	5388.078	5353.995	5270.755	5068.92	Matlab
4	0.4	5535.29	5471.82	5357.4905	5157.668	Ansys
1	0.6	183.780	183.012	180.645	168.6045	Matlab
1	0.0	191.302	189.886	186.476	174.015	Ansys
2	0.6	1025.430	993.311	910.381	682.7053	Matlab
2	0.0	1053.297	998.106	894.366	689.928	Ansys
2	0.6	2782.887	2737.732	2636.991	2445.785	Matlab
5	0.0	2742.653	2696.180	2642.914	2514.382	Ansys
4	0.6	5387.917	5353.652	5272.721	5094.367	Matlab
4	0.0	5539.454	5486.832	5396.494	5249.004	Ansys
1	0.9	183.983	183.920	183.724	182.6323	Matlab
	0.8	191.7915	191.675	191.38573	190.2309	Ansys

Ek-Ö (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.6	Ça	Drogram			
	Lc/L	0.2	0.4	0.6	0.8	Program
2	0.8	1033.226	1026.250	1004.339	888.5522	Matlab
	0.0	1071.695	1058.81	1026.9512	907.4581	Ansys
3	0.9	2776.782	2706.337	2508.522	1942.232	Matlab
	0.8	2764.335	2724.23	2468.7226	1969.219	Ansys
4	0.8	5339.239	5155.792	4771.499	4217.09	Matlab
		5426.171	5138.17	4737.341	4318.836	Ansys

Ek-P Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.4	Ça	Dragman			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	203.742	196.631	178.395	126.790	Matlab
1	0.2	209.481	197.295	174.447	127.399	Ansys
2	0.2	1075.322	1074.511	1072.548	1067.911	Matlab
2	0.2	1117.575	1116.393	1114.304	1110.730	Ansys
2	0.2	2832.756	2806.916	2742.061	2579.840	Matlab
3	0.2	2921.349	2875.004	2791.108	2641.848	Ansys
4	0.2	5400.712	5266.383	4968.115	4432.768	Matlab
4	0.2	5505.454	5288.333	4955.798	4529.765	Ansys
1	1 0.4	204.960	201.697	192.350	156.5001	Matlab
1		212.3389	206.491	193.79644	159.0014	Ansys
2	0.4	1068.653	1046.188	989.951	849.115	Matlab
2	0.4	1101.489	1062.85	993.36085	868.948	Ansys
2	0.4	2827.213	2785.107	2690.031	2503.164	Matlab
3	0.4	2910.944	2845.02	2740.4562	2589.757	Ansys
4	0.4	5433.494	5400.182	5319.571	5129.221	Matlab
4	0.4	5578.956	5517.33	5408.4444	5223.394	Ansys
1	0.6	205.663	204.767	202.006	187.9489	Matlab
1	0.0	214.017	212.364	208.381	193.829	Ansys
2	0.6	1065.367	1031.873	945.515	709.8847	Matlab
2	0.0	1093.874	1036.254	928.313	717.241	Ansys
2	0.6	2826.209	2781.171	2680.899	2491.648	Matlab
3	0.0	2906.712	2832.429	2717.864	2560.805	Ansys
4	0.6	5432.910	5398.024	5315.996	5138	Matlab
4	0.6	5582.157	5528.843	5438.382	5293.640	Ansys
1	0.9	205.898	205.824	205.589	204.2819	Matlab
1	0.8	214.5871	214.447	214.10159	212.7159	Ansys

Ek-P (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.4	Ça	Drogram			
	Lc/L	0.2	0.4	0.6	0.8	Program
2 0.8	0.8	1073.477	1066.113	1042.946	920.1246	Matlab
	0.0	1113.02	1099.34	1065.5241	938.7099	Ansys
2	0.9	2819.764	2748.242	2547.441	1976.301	Matlab
5	0.8	2891.381	2764.41	2514.3234	2489.636	Ansys
4	0.8	5384.064	5199.564	4813.916	4260.753	Matlab
		5468.151	5178.03	4777.094	4699.064	Ansys

Ek-R Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.2	Ça	Duo onom			
Frekans	Lc/L	0.2	0.4	0.6	0.8	Program
1	0.2	239.799	231.399	209.869	149.026	Matlab
1	0.2	246.447	232.063	205.113	149.690	Ansys
2	0.2	1148.339	1147.473	1145.382	1140.452	Matlab
Z	0.2	1192.949	1191.699	1189.494	1185.725	Ansys
2	0.2	2920.863	2894.008	2826.635	2659.029	Matlab
3	0.2	3010.464	2962.272	2875.222	2721.352	Ansys
4	0.2	5497.988	5361.407	5060.930	4532.037	Matlab
4	0.2	5601.127	5382.397	5052.371	4635.737	Ansys
1	1 0.4	241.245	237.411	226.407	184.051	Matlab
1		249.836	242.957	227.997	186.890	Ansys
2	0.4	1141.086	1116.679	1055.665	903.954	Matlab
2		1175.441	1133.440	1058.158	924.506	Ansys
2	0.4	2915.388	2872.567	2776.189	2588.640	Matlab
3	0.4	3000.383	2933.548	2828.153	2677.780	Ansys
4	0.4	5530.971	5495.722	5411.401	5219.870	Matlab
4	0.4	5674.732	5610.177	5145.933	5061.627	Ansys
1	0.6	242.075	241.040	237.841	221.351	Matlab
1	0.0	251.818	249.900	245.264	228.153	Ansys
2	0.6	1137.745	1102.056	1009.782	757.518	Matlab
Z	0.0	1167.663	1106.006	990.418	764.773	Ansys
2	0.6	2913.702	2865.871	2759.905	2562.720	Matlab
3	0.0	2994.374	2915.457	2794.954	2632.372	Ansys
4	0.6	5531.622	5498.657	5421.493	5256.208	Matlab
4	0.6	5680.897	5630.930	5310.358	5302.483	Ansys
1	0.0	242.347	242.262	241.995	240.498	Matlab
1	0.8	252.478	252.317	251.919	250.327	Ansys

Ek-R (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli tek çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) için doğal frekans değerlerinin çatlak derinliği oranı (a/b) ile farklı çatlak konumlarıyla (Lc/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.2	Ça	Dragman			
	Lc/L	0.2	0.4	0.6	0.8	Program
2 0.8	0.8	1146.436	1138.800	1114.642	984.007	Matlab
	0.0	1188.200	1173.820	1138.125	1002.525	Ansys
3	0.9	2907.950	2835.416	2630.231	2041.598	Matlab
	0.8	2980.322	2849.733	2582.231	2240.601	Ansys
4	0.8	5481.239	5293.357	4899.376	4336.519	Matlab
		5562.241	5263.925	4854.814	4436.509	Ansys

Ek-S Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.8		İkinc	İkinci çatlak derinliği oranı (a2/b)			
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.2	0.4	166.490	164.013	156.882	129.048	Matlab
1	0.2	0.4	170.315	166.098	156.774	130.370	Ansys
2	0.2	0.4	1000.632	978.451	922.915	783.028	Matlab
2	0.2	0.4	1031.393	993.339	924.135	798.548	Ansys
2	0.2	0.4	2749.340	2711.584	2625.446	2451.855	Matlab
5	0.2	0.2 0.4	2823.825	2767.312	2674.871	2536.626	Ansys
4	4 0.2	0.4	5315.720	5277.115	5182.875	4955.311	Matlab
4		0.4	5404.736	5330.081	5197.358	4965.877	Ansys
1	0.2	0.6	167.031	166.383	164.383	154.172	Matlab
1 0.2	0.2	0.0	171.561	170.448	167.745	157.497	Ansys
	0.2	0.6	997.964	966.745	885.950	662.413	Matlab
2	0.2	0.0	1025.280	971.841	870.264	668.194	Ansys
2	0.2	0.6	2746.635	2700.769	2598.450	2404.135	Matlab
5	0.2		2814.858	2740.194	2623.848	2462.635	Ansys
4	0.2	0.6	5318.251	5287.968	5216.065	5053.541	Matlab
4	0.2	0.0	5420.038	5380.892	5311.765	5189.401	Ansys
1	0.2	0.8	167.203	167.151	167.151	166.093	Matlab
1	0.2	0.8	171.958	171.892	171.733	170.734	Ansys
2	0.2	0.8	1005.566	998.901	998.901	867.423	Matlab
2	0.2	0.8	1043.213	1030.997	1000.618	886.553	Ansys
2	0.2	0.8	2741.278	2672.518	2672.518	1917.238	Matlab
5	0.2	0.8	2803.061	2684.597	2623.800	1943.276	Ansys
Δ	0.2	0.8	5269.318	5088.523	5088.523	4155.214	Matlab
4	0.2	0.2 0.8	5305.269	5026.278	5311.800	4214.314	Ansys

Ek-S (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	al <i>b2/b1=</i> 0.8		İkinc	İkinci çatlak derinliği oranı (a2/b)			
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.4	0.4	160.735	158.504	152.045	126.339	Matlab
1	0.4	0.4	160.655	157.220	149.175	126.439	Ansys
	0.4	0.4	1000.098	977.623	921.041	776.399	Matlab
2	0.4		1030.544	991.985	919.895	788.889	Ansys
2	0.4	0.4	2723.743	2689.826	2611.149	2447.528	Matlab
5		0.4	2780.761	2734.213	2653.647	2530.147	Ansys
4	0.4	0.4	5179.139	5131.168	5016.979	4759.153	Matlab
4	0.4	0.4	5177.289	5086.713	4925.275	4677.581	Ansys
1	0.4	0.6	161.222	160.640	158.843	149.610	Matlab
1 0.4	0.4	0.0	161.689	160.861	158.529	150.122	Ansys
2	0.4	0.6	997.458	966.062	884.700	658.756	Matlab
2	0.4		1024.573	971.144	867.693	665.123	Ansys
2	0.4	0.6	2719.826	2674.323	2573.095	2381.719	Matlab
5	0.4		2767.738	2695.566	2580.893	2426.558	Ansys
4	0.4	0.6	5187.463	5165.781	5114.282	4993.895	Matlab
4	0.4	0.0	5210.528	5193.089	5157.248	5092.766	Ansys
1	0.4	0.9	161.376	161.330	161.185	160.382	Matlab
1	0.4	0.8	162.018	162.058	161.868	161.131	Ansys
2	0.4	0.8	1005.104	998.414	977.419	866.461	Matlab
2	0.4	0.8	1042.560	1030.411	999.708	887.730	Ansys
2	0.4	0.8	2715.349	2649.738	2463.205	1912.820	Matlab
5	0.4	0.8	2759.272	2650.957	2415.474	1942.962	Ansys
Λ	0.4	0.0	5138.566	4965.194	4596.459	4056.074	Matlab
4	0.4	0.4 0.8	5095.945	4835.197	4451.516	4053.066	Ansys
Ek-S (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	b2/b	1=0.8	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	145.955	144.280	139.368	118.832	Matlab	
1	0.0	0.4	142.324	139.836	134.095	116.920	Ansys	
	0.6	0.4	998.805	975.606	916.430	759.534	Matlab	
2	0.0	0.4	1029.147	988.743	912.175	767.035	Ansys	
2	0.6	0.4	2659.130	2633.946	2572.943	2434.897	Matlab	
5	0.0	0.4	2700.796	2668.591	2610.190	2511.684	Ansys	
4	0.6	0.4	4872.659	4804.215	4648.686	4334.596	Matlab	
4	0.0	0.4	4821.163	4698.699	4498.114	4214.014	Ansys	
1	0.6	0.6	146.319	145.885	144.544	137.555	Matlab	
1	1 0.6	0.6	143.030	142.377	140.766	134.858	Ansys	
2	0.6	0.6	996.234	964.406	881.680	649.945	Matlab	
2	0.6		1023.460	968.790	863.161	654.181	Ansys	
2	0.6	0.6	2652.651	2608.432	2510.670	2327.621	Matlab	
3	0.0	0.0	2682.318	2612.506	2503.863	2358.732	Ansys	
4	0.6	0.6	4892.274	4884.442	4866.620	4824.639	Matlab	
4	0.0	0.0	4874.888	4871.684	4866.250	4857.505	Ansys	
1	0.6	0.9	146.434	146.400	146.292	145.698	Matlab	
1	0.0	0.8	143.252	143.201	143.071	142.568	Ansys	
2	0.6	0.8	1003.983	997.235	976.056	864.152	Matlab	
2	0.0	0.8	1041.416	1029.074	998.082	885.055	Ansys	
2	0.6	0.9	2650.165	2592.222	2423.844	1901.877	Matlab	
3 0.6	0.0	0.8	2679.035	2584.902	2374.833	1929.311	Ansys	
А	0.6	0.9	4844.368	4685.526	4340.059	3823.364	Matlab	
4	0.0	0.8	4766.366	4521.835	4158.593	3776.896	Ansys	

Ek-S (**Devam**) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.8) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	1 b2/b1=0.8		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.9	0.4	103.955	103.347	101.506	92.772	Matlab	
1	0.8	0.4	104.292	103.461	101.517	92.830	Ansys	
2	0.9	0.4	995.721	970.755	905.083	714.594	Matlab	
2	0.8	0.4	1025.876	982.614	898.515	722.380	Ansys	
2	0.9	0.4	2494.800	2485.698	2460.928	2388.788	Matlab	
3	0.8	0.4	2553.742	2541.835	2517.759	2463.174	Ansys	
4	0.8	0.4	4313.036	4211.286	3988.829	3575.343	Matlab	
4	0.8	0.4	4360.995	4205.367	3959.674	3604.402	Ansys	
1	0.8	0.6	104.087	103.932	103.451	100.866	Matlab	
1	0.8	0.0	104.576	104.487	104.313	101.257	Ansys	
2	0.9	0.6	993.323	960.480	874.564	629.457	Matlab	
2	0.8	0.0	1020.414	964.143	855.605	632.329	Ansys	
2	0.9	0.6	2484.623	2445.189	2358.967	2200.108	Matlab	
5	0.8	0.0	2529.381	2467.593	2373.313	2242.533	Ansys	
1	0.8	0.6	4346.683	4346.418	4345.373	4340.569	Matlab	
4	0.8	0.0	4433.012	4431.435	4428.712	4407.785	Ansys	
1	0.8	0.8	104.128	104.115	104.078	103.868	Matlab	
1	0.8	0.8	104.665	104.812	105.230	104.397	Ansys	
2	0.8	0.8	1001.317	994.433	972.829	858.793	Matlab	
2	0.8	0.8	1039.221	1026.644	995.358	877.817	Ansys	
2	0.8	0.8	2485.812	2444.983	2319.968	1873.728	Matlab	
5	0.8	0.8	2532.620	2463.106	2298.815	1897.822	Ansys	
Λ	0.8	0.0	4303.251	4163.501	3845.772	3348.935	Matlab	
4	0.8	0.8	4332.664	4107.463	3763.213	3378.043	Ansys	

Ek-Ş Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i>	<i>b</i> 2/ <i>b</i> 1=0.6		İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.2	0.4	181.239	178.459	170.474	139.557	Matlab	
1	0.2	0.4	185.349	180.628	170.224	140.989	Ansys	
2	0.2	0.4	1028.161	1005.907	950.182	810.097	Matlab	
2	0.2	0.4	1059.672	1021.505	952.095	826.329	Ansys	
2	0.2	0.4	2776.734	2737.273	2647.571	2468.554	Matlab	
3	0.2	0.4	2850.660	2791.706	2695.736	2553.488	Ansys	
4	0.2	0.4	5344.068	5306.752	5216.379	5002.639	Matlab	
4	0.2	0.4	5430.998	5358.774	5232.405	5015.838	Ansys	
1	0.2	0.6	181.841	181.094	178.790	167.051	Matlab	
1	0.2	0.0	186.732	185.449	182.339	170.601	Ansys	
2	0.2	0.6	1025.163	992.822	909.362	680.529	Matlab	
2	0.2	0.0	1052.816	997.588	893.029	686.746	Ansys	
2	0.2	0.6	2774.768	2729.496	2628.736	2438.397	Matlab	
3	0.2	0.0	2843.350	2769.808	2639.732	2497.879	Ansys	
4	0.2	0.6	5345.871	5314.515	5240.407	5075.637	Matlab	
4	0.2	0.0	5444.738	5404.104	5333.170	5210.484	Ansys	
1	0.2	0.8	182.039	181.978	181.787	180.724	Matlab	
1	0.2	0.8	187.187	187.106	186.912	185.741	Ansys	
2	0.2	0.8	1033.014	1025.987	1003.918	887.382	Matlab	
2	0.2	0.8	1071.293	1058.430	1026.436	906.608	Ansys	
2	0.2	0.8	2768.898	2699.026	2502.466	1938.775	Matlab	
3	0.2	0.8	2830.402	2747.806	2460.117	1966.327	Ansys	
Λ	0.2	0.8	5296.904	5115.182	4734.072	4184.940	Matlab	
4	0.2	0.8	5330.417	5051.249	4658.211	4244.604	Ansys	

Ek-Ş (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	oğal b2/b1=0.6		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	174.971	172.467	165.235	136.667	Matlab	
1	0.4	0.4	174.831	170.985	162.008	136.807	Ansys	
2	0.4	0.4	1027.437	1004.842	947.951	802.781	Matlab	
2	0.4	0.4	1058.512	1019.723	947.179	815.537	Ansys	
2	0.4	0.4	2751.868	2716.263	2633.984	2464.634	Matlab	
5	0.4	0.4	2808.845	2759.908	2675.690	2547.800	Ansys	
4	0.4	0.4	5207.236	5160.347	5049.402	4803.326	Matlab	
4	0.4	0.4	5204.308	5114.693	4956.910	4719.248	Ansys	
1	0.4	0.6	175.513	174.842	172.772	162.160	Matlab	
1	0.4	0.0	175.979	175.020	172.343	162.709	Ansys	
2	0.4	4 0.6	1024.471	991.921	907.817	676.349	Matlab	
2	0.4		1051.819	996.537	889.925	682.862	Ansys	
2	0.4	0.6	2748.678	2703.760	2604.069	2416.616	Matlab	
3	0.4	0.0	2797.396	2726.270	2613.622	2462.675	Ansys	
4	0.4	0.6	5214.914	5192.232	5138.528	5015.120	Matlab	
4	0.4	0.0	5236.555	5217.436	5178.939	5111.577	Ansys	
1	0.4	0.8	175.690	175.635	175.464	174.514	Matlab	
1	0.4	0.8	176.356	176.393	176.169	175.300	Ansys	
2	0.4	0.8	1032.373	1025.318	1003.159	886.175	Matlab	
2	0.4	0.8	1070.378	1057.577	1025.217	907.526	Ansys	
2	0.4	0.9	2743.690	2676.960	2487.618	1934.744	Matlab	
3	0.4	0.8	2787.799	2742.866	2439.524	1966.534	Ansys	
4	0.4	0.8	5166.027	4991.954	4623.145	4086.671	Matlab	
4	0.4	0.8	5122.589	4861.888	4480.024	4085.392	Ansys	

Ek-Ş (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i>	1=0.6	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	158.873	156.995	151.494	128.646	Matlab	
1	0.0	0.4	154.875	152.093	145.687	126.622	Ansys	
2	0.6	0.4	1025.684	1002.252	942.466	784.178	Matlab	
Z	0.0	0.4	1056.573	1015.710	938.243	791.551	Ansys	
2	0.6	0.4	2689.107	2662.325	2597.722	2453.244	Matlab	
5	0.0	0.4	2731.258	2696.827	2634.724	2531.109	Ansys	
4	0.6	0.4	4901.544	4833.481	4679.330	4372.622	Matlab	
4	0.0	0.4	4852.295	4728.545	4527.960	4248.902	Ansys	
1	0.6	0.6	159.278	158.779	157.236	149.205	Matlab	
1	0.0	0.0	155.659	154.910	153.062	146.295	Ansys	
2	0.6	0.6	1022.798	989.743	904.089	666.295	Matlab	
2	0.6		1050.205	993.523	884.469	670.444	Ansys	
2	0.6	0.6	2683.307	2639.639	2543.329	2364.030	Matlab	
3	0.0	0.0	2714.151	2645.282	2538.489	2396.533	Ansys	
4	0.6	0.6	4920.771	4912.146	4892.393	4846.263	Matlab	
4	0.0	0.0	4906.313	4902.107	4894.879	4882.970	Ansys	
1	0.6	0.8	159.409	159.369	159.243	158.540	Matlab	
1	0.0	0.8	155.913	155.853	155.700	155.108	Ansys	
2	0.6	0.8	1030.823	1023.699	1001.324	883.285	Matlab	
2	0.0	0.8	1068.776	1055.752	1023.052	904.190	Ansys	
2	0.6	0.9	2680.323	2621.252	2449.921	1924.767	Matlab	
3	0.0	0.8	2709.802	2613.881	2400.714	1953.997	Ansys	
4	0.6	0.9	4872.855	4713.519	4368.399	3856.288	Matlab	
4	0.6	0.8	4797.792	4552.831	4190.962	3812.986	Ansys	

Ek-Ş (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.6) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i>	<i>b</i> 2/ <i>b</i> 1=0.6		İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.9	0.4	113.135	112.454	110.393	100.650	Matlab	
1	0.8	0.4	113.479	112.544	110.360	100.714	Ansys	
2 0.8	0.9	0.4	1021.516	996.045	929.014	734.747	Matlab	
	0.8	0.4	1052.363	1008.253	922.479	742.893	Ansys	
2	0.8	0.4	2529.663	2519.392	2491.630	2412.069	Matlab	
5	0.8	0.4	2588.643	2575.063	2547.767	2487.432	Ansys	
4	0.8	0.4	4347.634	4244.460	4019.439	3607.917	Matlab	
4	0.8	0.4	4398.595	4238.879	3989.400	3635.750	Ansys	
1	0.8	0.6	113.281	113.103	112.552	109.588	Matlab	
1	0.8	0.0	113.793	113.680	113.455	109.997	Ansys	
2	0.9	0.8 0.6	1018.835	984.599	895.351	643.061	Matlab	
2	0.8		1046.265	987.751	875.416	646.168	Ansys	
2	0.8	3 0.6	2519.973	2480.965	2395.910	2240.245	Matlab	
5	0.8		2565.267	2504.185	2411.386	2283.453	Ansys	
4	0.8	0.6	4381.689	4381.533	4380.985	4378.401	Matlab	
4	0.8	0.0	4473.080	4472.460	4471.744	4455.966	Ansys	
1	0.8	0.8	113.327	113.313	113.269	113.023	Matlab	
1	0.8	0.8	113.894	114.051	114.502	113.580	Ansys	
2	0.8	0.8	1027.149	1019.865	996.997	876.613	Matlab	
2	0.8	0.8	1065.787	1052.492	1019.436	895.751	Ansys	
2	0.8	0.8	2520.725	2478.808	2350.621	1899.207	Matlab	
5	0.8	0.8	2567.551	2496.210	2328.316	1924.699	Ansys	
A	0.8	0.8	4337.794	4197.025	3878.918	3387.163	Matlab	
4	0.8	0.8	4371.274	4144.446	3800.445	3419.100	Ansys	

Ek-T Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	oğal b2/b1=0.4		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.2	0.4	202.805	199.619	190.480	155.291	Matlab	
1	0.2	0.4	207.334	201.940	190.072	156.900	Ansys	
2	0.2	0.4	1068.313	1045.565	988.610	845.895	Matlab	
2	0.2	0.4	1100.820	1061.841	990.981	862.932	Ansys	
2	0.2	0.4	2819.579	2778.430	2685.257	2501.304	Matlab	
5	0.2	0.4	2893.251	2831.978	2732.742	2587.036	Ansys	
4	0.2	0.4	5389.159	5352.452	5264.367	5061.516	Matlab	
4	0.2	0.4	5473.966	5402.916	5280.788	5076.374	Ansys	
1	0.2	0.6	203.491	202.616	199.918	186.164	Matlab	
1	0.2	0.0	208.903	207.405	203.770	190.071	Ansys	
2	0.2	2 0.6	1064.997	1031.135	943.941	706.804	Matlab	
2	0.2		1093.261	1035.577	926.735	713.632	Ansys	
2	0.2	0.6	2818.139	2772.825	2672.306	2483.967	Matlab	
3	0.2	0.0	2887.073	2813.659	2700.120	2544.503	Ansys	
4	0.2	0.6	5390.556	5358.472	5283.043	5118.363	Matlab	
4	0.2	0.0	5486.951	5445.417	5373.815	5252.797	Ansys	
1	0.2	0.9	203.721	203.648	203.419	202.140	Matlab	
1	0.2	0.8	209.433	209.334	209.096	207.700	Ansys	
2	0.2	0.8	1073.196	1065.735	1042.263	918.012	Matlab	
2	0.2	0.8	1112.501	1098.848	1064.872	937.680	Ansys	
2	0.2	0.9	2811.870	2740.526	2540.029	1970.818	Matlab	
5	0.2	0.8	2873.251	2750.721	2510.010	2000.400	Ansys	
4	0.2	0.9	5341.155	5157.581	4774.253	4227.445	Matlab	
4	0.2	0.8	5372.208	5091.304	4698.413	4288.100	Ansys	

Ek-T (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i>	<i>b</i> 2/ <i>b</i> 1=0.4		İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	195.789	192.920	184.643	152.117	Matlab	
1	0.4	0.4	195.566	191.170	180.931	152.320	Ansys	
2 0.4	0.4	0.4	1067.396	1044.261	986.013	837.821	Matlab	
	0.4	• 0.4	1099.348	1059.637	985.367	850.924	Ansys	
2	0.4	0.4	2795.078	2757.843	2672.131	2497.661	Matlab	
3	0.4	0.4	2852.059	2800.944	2713.462	2581.885	Ansys	
4	0.4	0.4	5251.580	5204.990	5095.529	4858.209	Matlab	
4	0.4	0.4	5247.214	5157.202	5000.895	4770.653	Ansys	
1	0.4	0.6	196.406	195.621	193.199	180.770	Matlab	
1	0.4	0.0	196.868	195.744	192.621	181.382	Ansys	
2	0.1	.4 0.6	1064.116	1030.014	942.092	702.049	Matlab	
2	0.4		1091.972	1034.174	923.080	708.898	Ansys	
2	0.4	0.6	2792.393	2747.436	2647.990	2462.542	Matlab	
5	0.4	0.6	2841.633	2770.607	2658.659	2509.705	Ansys	
4	0.4	0.6	5258.960	5235.591	5180.484	5056.246	Matlab	
4	0.4	0.0	5279.275	5258.923	5218.669	5150.220	Ansys	
1	0.4	0.9	196.612	196.547	196.341	195.198	Matlab	
1	0.4	0.8	197.306	197.341	197.074	196.035	Ansys	
2	0.4	0.9	1072.374	1064.880	1041.304	916.552	Matlab	
2	0.4	0.8	1111.318	1097.724	1063.339	938.367	Ansys	
2	0.4	0.9	2787.017	2718.848	2525.604	1967.090	Matlab	
5	0.4	0.8	2831.212	2718.869	2502.812	2001.000	Ansys	
А	0.4	0.9	5209.709	5034.064	4663.458	4129.667	Matlab	
4	0.4	0.8	5165.207	4903.140	4624.899	4130.300	Ansys	

Ek-T (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	oğal b2/b1=0.4		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.6	0.4	177.767	175.616	169.322	143.288	Matlab	
1	0.0	0.4	173.237	170.060	162.755	141.090	Ansys	
2	0.6	0.4	1065.177	1041.093	979.632	817.303	Matlab	
2	0.0	0.4	1096.871	1054.851	975.179	824.597	Ansys	
2	0.6	0.4	2733.250	2705.000	2637.132	2487.129	Matlab	
5	0.0	0.4	2775.697	2739.354	2674.121	2566.391	Ansys	
4	0.6	0.4	4945.897	4877.246	4722.373	4419.791	Matlab	
4	0.0	0.4	4898.560	4771.988	4569.087	4292.401	Ansys	
1	0.6	0.6	178.228	177.645	175.842	166.449	Matlab	
1	0.0	0.0	174.125	173.254	171.102	163.221	Ansys	
2	0.6	0.6	1061.988	1027.306	937.637	690.639	Matlab	
2	0.6		1089.857	1030.492	916.675	694.882	Ansys	
2	0.6	0.6	2727.892	2684.183	2588.109	2410.786	Matlab	
3	0.0	0.0	2759.411	2690.595	2584.438	2444.401	Ansys	
4	0.6	0.6	4965.109	4955.886	4934.674	4885.792	Matlab	
4	0.0	0.0	4953.596	4948.456	4939.549	4924.800	Ansys	
1	0.6	0.9	178.381	178.333	178.181	177.339	Matlab	
1	0.0	0.8	174.421	174.348	174.167	173.461	Ansys	
2	0.6	0.8	1070.388	1062.814	1038.988	913.060	Matlab	
2	0.0	0.8	1109.253	1095.404	1060.624	934.352	Ansys	
2	0.6	0.9	2724.550	2664.123	2488.978	1957.863	Matlab	
5	0.0	0.8	2754.328	2656.206	2494.196	1989.300	Ansys	
4	0.6	0.9	4916.874	4756.248	4409.803	3900.880	Matlab	
4	0.6	0.8	4844.613	4597.939	4567.895	3860.973	Ansys	

Ek-T (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.4) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.4		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.9	0.4	126.565	125.786	123.431	112.314	Matlab	
1	0.8	0.4	126.917	125.848	123.349	112.387	Ansys	
2 0.8	0.9	0.4	1059.921	1033.527	964.038	762.944	Matlab	
	0.8	0.4	1091.717	1046.062	957.265	771.527	Ansys	
2	0.9	0.4	2576.498	2565.229	2534.944	2449.368	Matlab	
3	0.8	0.4	2635.584	2620.643	2590.772	2525.963	Ansys	
4	0.9	0.4	4397.929	4292.214	4062.218	3648.919	Matlab	
4	0.8	0.4	4451.864	4286.390	4030.686	3675.781	Ansys	
1	0.8	0.6	126.731	126.525	125.883	122.430	Matlab	
1	0.8	0.0	127.273	127.136	126.854	122.869	Ansys	
2	0.9	.8 0.6	1056.964	1020.935	927.249	664.465	Matlab	
2	0.8		1085.013	1023.583	906.101	667.989	Ansys	
2	0.9	0.6	2567.083	2528.008	2443.117	2289.223	Matlab	
5	0.8	0.0	2612.707	2551.580	2459.262	2353.015	Ansys	
4	0.8	0.6	4432.726	4432.600	4432.283	4430.978	Matlab	
4	0.8	0.0	4505.599	4495.351	4481.948	4462.031	Ansys	
1	0.8	0.8	126.785	126.768	126.715	126.422	Matlab	
1	0.8	0.8	127.389	127.564	128.065	127.017	Ansys	
2	0.8	0.8	1065.698	1057.940	1033.549	905.045	Matlab	
2	0.8	0.8	1105.462	1091.304	1056.106	924.653	Ansys	
2	0.8	0.8	2567.546	2524.464	2392.702	1934.298	Matlab	
5	0.8	0.8	2614.371	2541.008	2483.758	1961.600	Ansys	
А	0.9	0.9	4388.143	4245.565	3925.242	3436.356	Matlab	
4	0.8	0.8	4425.886	4196.118	3850.601	3471.684	Ansys	

Ek-U Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i>	1=0.2	İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.2	0.4	238.695	234.937	224.143	182.477	Matlab	
1	0.2	0.4	243.927	237.584	223.604	184.426	Ansys	
2	0.2	0.4	1140.692	1115.889	1053.925	900.062	Matlab	
2	0.2	0.4	1174.729	1132.363	1055.578	917.956	Ansys	
2	0.2	0.4	2907.408	2865.449	2770.845	2586.322	Matlab	
5	0.2	0.4	2981.991	2920.002	2820.131	2674.894	Ansys	
4	0.2	0.4	5485.684	5446.698	5354.246	5149.545	Matlab	
4	0.2	0.4	5567.650	5492.706	5366.681	5163.535	Ansys	
1	0.2	0.6	239.507	238.490	235.347	219.131	Matlab	
1	0.2	0.0	245.780	244.043	239.819	223.730	Ansys	
2	0.2	0.2 0.6	1137.284	1100.997	1007.398	753.084	Matlab	
2	0.2		1167.012	1105.279	988.708	760.816	Ansys	
2	0.2	0.6	2905.228	2856.867	2750.318	2554.238	Matlab	
3	0.2	0.0	2973.970	2896.014	2776.647	2615.655	Ansys	
4	0.2	0.6	5488.360	5457.990	5387.021	5234.685	Matlab	
4	0.2	0.0	5583.833	5545.143	5479.323	5369.904	Ansys	
1	0.2	0.9	239.775	239.691	239.427	237.947	Matlab	
1	0.2	0.8	246.392	246.280	246.010	244.403	Ansys	
2	0.2	0.8	1146.113	1138.290	1113.541	980.049	Matlab	
2	0.2	0.8	1187.652	1173.294	1137.429	1001.411	Ansys	
2	0.2	0.9	2899.524	2826.426	2619.723	2031.860	Matlab	
3	0.2	0.8	2961.469	2835.533	2573.641	2064.100	Ansys	
4	0.2	0.9	5436.885	5248.317	4854.870	4300.458	Matlab	
4	0.2	0.8	5464.999	5176.525	5090.148	4362.600	Ansys	

Ek-U (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal	<i>b</i> 2/ <i>b</i> 1=0.2		İkinc	İkinci çatlak derinliği oranı (a2/b)				
Frekans	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program	
1	0.4	0.4	230.408	227.026	217.256	178.759	Matlab	
1	0.4	0.4	230.036	224.873	212.824	179.058	Ansys	
2	0.4	0.4	1139.712	1114.487	1051.104	891.242	Matlab	
2	0.4	0.4	1173.168	1130.003	1049.496	904.852	Ansys	
2	0.4	0.4	2881.954	2844.080	2757.237	2582.480	Matlab	
5	0.4	0.4	2939.165	2887.739	2800.072	2669.326	Ansys	
4	0.4	0.4	5345.645	5296.102	5180.830	4939.361	Matlab	
4	0.4	0.4	5338.353	5242.430	5078.995	4845.815	Ansys	
1	0.4	0.6	231.138	230.227	227.409	212.782	Matlab	
1	0.4	0.0	231.573	230.276	226.653	213.495	Ansys	
2	0.4	0.4 0.6	1136.343	1099.792	1005.393	747.864	Matlab	
2	0.4		1165.644	1103.775	984.753	755.561	Ansys	
2	0.4	0.6	2878.489	2830.554	2725.237	2532.347	Matlab	
5	0.4	0.0	2926.780	2851.433	2733.877	2579.972	Ansys	
4	0.4	0.6	5354.455	5332.584	5281.307	5167.876	Matlab	
4	0.4	0.0	5374.085	5355.427	5318.628	5257.779	Ansys	
1	0.4	0.8	231.378	231.303	231.067	229.746	Matlab	
1	0.4	0.8	232.078	232.123	231.817	230.629	Ansys	
2	0.4	0.8	1145.236	1137.377	1112.512	978.464	Matlab	
2	0.4	0.8	1186.401	1172.102	1135.793	1002.150	Ansys	
2	0.4	0.8	2873.703	2803.932	2604.854	2028.158	Matlab	
5	0.4	0.8	2917.750	2802.473	2553.060	2064.800	Ansys	
A	0.4	0.0	5303.348	5123.176	4743.114	4202.024	Matlab	
4	0.4	0.8	5256.847	5171.534	5085.657	4204.632	Ansys	

Ek-U (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.2		İkinci çatlak derinliği oranı (a2/b)				Duranua
	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.6	0.4	209.130	206.598	199.181	168.406	Matlab
			203.696	199.971	191.391	165.867	Ansys
2	0.6	0.4	1137.342	1111.082	1044.180	868.844	Matlab
			1170.545	1124.872	1038.475	876.241	Ansys
3	0.6	0.4	2817.733	2789.222	2720.926	2571.401	Matlab
			2859.898	2823.772	2759.104	2652.935	Ansys
4	0.6	0.4	5037.317	4964.280	4800.518	4488.976	Matlab
			4990.983	4855.629	4641.572	4357.015	Ansys
1	0.6	0.6	209.676	209.002	206.910	195.906	Matlab
			204.743	203.738	201.253	192.079	Ansys
2	0.6	0.6	1134.071	1096.885	1000.570	735.386	Matlab
			1163.404	1099.835	977.842	740.322	Ansys
3	0.6	0.6	2811.530	2765.030	2663.502	2479.461	Matlab
			2841.584	2768.737	2657.492	2513.140	Ansys
4	0.6	0.6	5058.213	5049.848	5030.658	4987.392	Matlab
			5050.388	5045.656	5037.403	5023.990	Ansys
1	0.6	0.8	209.853	209.798	209.624	208.657	Matlab
			205.083	205.000	204.793	203.991	Ansys
2	0.6	0.8	1143.120	1135.172	1110.032	974.682	Matlab
			1184.218	1169.642	1132.898	997.829	Ansys
3	0.6	0.8	2808.818	2747.137	2567.058	2018.973	Matlab
			2837.938	2737.517	2514.299	2053.023	Ansys
4	0.6	0.8	5008.476	4843.874	4488.722	3972.545	Matlab
			4938.798	4685.319	4315.161	3936.031	Ansys

Ek-U (Devam) Uzunluk boyunca doğrusal değişen değişken kesitli çift çatlaklı ankastre kirişin koniklik oranı (b2/b1=0.2) ve birinci çatlak konumu (Lc1/L=0.2) için doğal frekans değerlerinin ikinci çatlak derinliği oranının (a2/b), birinçi çatlak derinliği oranı (a1/b) ile farklı ikinci çatlak konumlarıyla (Lc2/L) değişimi

Doğal Frekans	<i>b</i> 2/ <i>b</i> 1=0.2		İkinci çatlak derinliği oranı (a2/b)				Dura
	a1/b	Lc2/L	0.2	0.4	0.6	0.8	Program
1	0.8	0.4	148.762	147.850	145.087	132.005	Matlab
			149.129	147.882	144.963	132.100	Ansys
2	0.8	0.4	1131.742	1102.972	1027.316	809.739	Matlab
			1165.071	1115.464	1019.160	818.834	Ansys
3	0.8	0.4	2655.738	2644.668	2615.009	2531.655	Matlab
			2715.317	2700.964	2672.347	2610.149	Ansys
4	0.8	0.4	4495.189	4383.066	4139.915	3711.354	Matlab
			4552.313	4375.431	4105.163	3738.533	Ansys
1	0.8	0.6	148.958	148.722	147.984	143.990	Matlab
			149.546	149.396	149.091	144.483	Ansys
2	0.8	0.6	1128.721	1090.067	989.379	707.066	Matlab
			1158.268	1092.457	966.494	711.409	Ansys
3	0.8	0.6	2645.507	2604.147	2514.844	2355.843	Matlab
			2690.520	2625.984	2529.499	2399.956	Ansys
4	0.8	0.6	4531.995	4531.852	4531.467	4530.067	Matlab
			4635.398	4635.329	4635.878	4624.479	Ansys
1	0.8	0.8	149.021	149.001	148.942	148.609	Matlab
			149.679	149.887	150.480	149.260	Ansys
2	0.8	0.8	1138.133	1129.983	1104.223	966.050	Matlab
			1180.217	1165.305	1128.093	987.418	Ansys
3	0.8	0.8	2646.587	2602.829	2467.908	1995.506	Matlab
			2693.570	2618.701	2442.392	2025.064	Ansys
4	0.8	0.8	4486.054	4339.132	4008.954	3509.913	Matlab
			4528.882	4291.194	3935.294	3549.496	Ansys

ÖZ GEÇMİŞ

Shkelzen SHABANI 11.02.1981 tarihinde Prishtina'da doğdu. 1999 yılında girdiği Prishtina Üniversitesi Makine Mühendisliği Bölümü'nden 2005'te mezun oldu. 2010 yılında yine Prishtina Üniversitesi Makine Mühendisliği Bölümü'nden Yüksek Lisans derecesini aldı. 2007 yılından itibaren Araştırma Görevlisi olarak Prishtina Üniversitesi Makine Mühendisliği Bölümü'nde göreve devam etmektedir. 2014 yılından bu yana Niğde Ömer Halisdemir Üniversitesi Fen Bilimleri Enstitüsünde Doktora çalışmalarını sürdürmektedir. Shkelzen evli olup bir çocuk sahibidir.

TEZ ÇALIŞMASINDAN ÜRETİLEN ESERLER

Bu tez çalışmasından, 2 (iki) adet uluslararası makale üretilmiştir. Bu üretilen çalışmalar aşağıda sunulmuştur.

Shabani, S. and Cunedioğlu, Y., "Free Vibration Analysis of Functionally Graded Beams with Cracks", *J. Appl. Comput. Mech.* 10.22055/JACM.2019.30065.1672, 2020

Shabani, S. and Cunedioğlu, Y., "Free vibration analysis of cracked functionally graded non-uniform beams", *Mater. Res. Express* 10.1088/2053-1591/ab6ad1, 2020

