## T.C. MANİSA CELAL BAYAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

## YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI GEOTEKNİK BİLİM DALI

## SEFERİHİSAR (İZMİR) BÖLGESİNDE SIVILAŞMA ANALİZİ VE HARİTALANDIRILMASI

Ezgi AKBUĞA

Danışman Dr. Öğr. Üyesi Seda DURUKAN



MANİSA-2019

| Ezgi<br>AKBUĞA                                                            |  |
|---------------------------------------------------------------------------|--|
| SEFERİHİSAR (İZMİR) BÖLGESİNDE SIVILAŞMA ANALİZİ VE<br>HARİTALANDIRILMASI |  |
| 2019                                                                      |  |

### **TEZ ONAYI**

Ezgi AKBUĞA tarafından hazırlanan "SEFERİHİSAR (İZMİR)BÖLGESİNDESIVILAŞMAANALİZİHARİTALANDIRILMASI" adlı tez çalışması 24/07/2019 tarihinde aşağıdakijüri üyeleri önünde Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü İnşaatMühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak başarı ilesavunulmuştur.

| Danışman   | Dr. Öğr. Üyesi Seda DURUKAN     |  |  |
|------------|---------------------------------|--|--|
|            | Manisa Celal Bayar Üniversitesi |  |  |
|            |                                 |  |  |
| Jüri Üyesi | Prof. Dr. Yeliz Yükselen AKSOY  |  |  |
|            | İzmir Dokuz Eylül Üniversitesi  |  |  |
| Iüri Üvesi | Dr. Öğr. Üvesi Ender BASARI     |  |  |
| Juir Oyesi | JI. Oğl. Üyesi Ender DAŞARI     |  |  |
|            | Manisa Celal Bayar Üniversitesi |  |  |



## ТААННÜТNАМЕ

Bu tezin Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Geoteknik Bilim Dalında, akademik ve etik kurallara uygun olarak yazıldığını ve kullanılan tüm literatür bilgilerinin referans gösterilerek tezde yer aldığını beyan ederim.

Ezgi AKBUĞA



# İÇİNDEKİLER

|                                                             | Savfa                 |
|-------------------------------------------------------------|-----------------------|
| İÇİNDEKİLER                                                 | Ĩ                     |
| ŚİMGELER VE KISALTMALAR DİZİNİ                              | II                    |
| SEKİLLER DİZİNİ                                             | Ш                     |
| TABLO DİZİNİ                                                | IV                    |
| TEŞEKKÜR                                                    | V                     |
| ÖZÉT                                                        | VI                    |
| ABSTRACT                                                    | VII                   |
| 1. GİRİS                                                    | 1                     |
| 2. GENEL BILGILER                                           | 3                     |
| 2.1. İnceleme Alanının Jeolojisi ve Depremselliği           | 4                     |
| 2.2. Sıvılasma Kavramı ve Tarihcesi                         | 8                     |
| 2.3. Sıvılaşma Türleri                                      | 9                     |
| 2.4. Sıyılaşmaya Potansiyeli Hesabında Kullanılan Yöntemler | 12                    |
| 2.4.1. SPT Verilerine Davalı Sıvılasma Analizi              | 13                    |
| 2.4.2 CPT've Davalı Sıvılasma Analizi                       | 23                    |
| 2.4.3 Kayma Dalgasi Hizina Göre Siyilasma Analizi           | 28                    |
| 3 MATERVAL VE VÖNTEMLER                                     | 31                    |
| 3.1 Sondai Lokasvonları ve Verileri                         | 31                    |
| 3.2 TBDV 2018'e Göre Sıyılaşma Potansiyeli Analizi Vöntemi  | 36                    |
| 3 3 TBDV 2018'e Göre Bir Sıyılaşma Analizi Örneği           | 42                    |
| A BUI GUI AR                                                | $\frac{12}{\sqrt{7}}$ |
| 4.1 TBDY've Göre Sıvılasma Analizlerinin Sığacık Bölgesine  | 77                    |
| Livoulanması                                                | 47                    |
| 1.2 TBDV Vönteminin NCEER ile Karsılaştırılmaşı             |                       |
| 4.3. Sivilasma Kavnaklı Oturma Analizleri                   | 50<br>57              |
| 5 SONLIC VE ÖNERİLER                                        | 57<br>64              |
| SONOÇ VE ONERILER                                           | 0 <del>4</del><br>66  |
|                                                             | 70                    |
| EKLER.                                                      | 70                    |
| EK B. 03 ada 11 parcele ait verilerin orijinal hali         | 70                    |
| EK D. 55 ada-11 paísele alt verilerin orijinal hali         | 74<br>70              |
| EK D. 1270 ada 1 parcele ait verilerin orijinal hali        | /0<br>07              |
| EK D. 12/9 ada-1 parsele alt verilerin orijinal hali        | 02<br>86              |
| EK E. 20 ada 140 parcele ait verilerin orijinal hali        | 80<br>00              |
| EK F. 89 ada-140 parsele alt verilerin orijinal hali        | 90                    |
| EK G. 55 ada-1 parsele alt veriferin orijinal nan           | 93                    |
| EK H. 55 ada-10 parsele alt verilerin orijinal halt         | 95                    |
| EK I. 97 ada-28 parsele ait verilerin orijinal hali         | 98                    |
| EK J. 1123 ada-8 parsele ait verilerin orijinal hali        | 100                   |
| EK K. 1163 ada-8 parsele alt verilerin orijinal hali        | 104                   |
| EK L. 3198 ada-13 parsele ait verilerin orijinal hali       | 105                   |
| OZGEÇMIŞ                                                    | 108                   |

## SİMGELER VE KISALTMALAR DİZİNİ

| SPT                       | Standart Penetrasyon Testi                                                                                                                                                                                                                                                                                   |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| СРТ                       | Koni Penetrasyon Testi                                                                                                                                                                                                                                                                                       |
| YASS                      | Yeraltı su seviyesi                                                                                                                                                                                                                                                                                          |
| CRR                       | Cycling Resistance Ratio (Döngüsel Dayanım Oranı)                                                                                                                                                                                                                                                            |
| CSR                       | Cycling Stress Ratio (Yaratılmış Döngüsel Direnç Oranı)                                                                                                                                                                                                                                                      |
| Ν                         | SPT Deneyi darbe sayısı                                                                                                                                                                                                                                                                                      |
| Nar                       | Arazide elde edilen SPT-N değeri                                                                                                                                                                                                                                                                             |
| FC                        | İnce dane oranı (Fines Content)                                                                                                                                                                                                                                                                              |
| $\mathbf{M}_{\mathbf{w}}$ | Deprem moment büyüklüğü                                                                                                                                                                                                                                                                                      |
| MSF                       | Deprem büyüklüğü düzeltme katsayısı                                                                                                                                                                                                                                                                          |
| rd                        | Zemin tabakası derinliği için düzeltme faktörü                                                                                                                                                                                                                                                               |
| CN                        | Jeolojik gerilme düzeltmesi                                                                                                                                                                                                                                                                                  |
| СА                        | Çakma başlığı düzeltme faktörü                                                                                                                                                                                                                                                                               |
| Св                        | Sondaj çapı düzeltme faktörü                                                                                                                                                                                                                                                                                 |
| Свғ                       | Tokmak düşürme frekansı düzeltme faktörü                                                                                                                                                                                                                                                                     |
| Сс                        | Tokmak yastığı düzeltme faktörü                                                                                                                                                                                                                                                                              |
| CE                        | Enerji düzeltme faktörü                                                                                                                                                                                                                                                                                      |
| Cs                        | Numune alıcıdaki düzeltme faktörü                                                                                                                                                                                                                                                                            |
| См                        | Deprem magnitüdü düzeltme faktörü                                                                                                                                                                                                                                                                            |
| Cu                        | Drenajsız kayma mukavemeti                                                                                                                                                                                                                                                                                   |
| Dr                        | Rölatif sıkılık                                                                                                                                                                                                                                                                                              |
| m <sub>v</sub>            | Hacimsel sıkışma katsayısı                                                                                                                                                                                                                                                                                   |
| <b>q</b> u                | Serbest basınç                                                                                                                                                                                                                                                                                               |
| φ                         | Kayma mukavemeti açısı                                                                                                                                                                                                                                                                                       |
| σv                        | Toplam düşey gerilme                                                                                                                                                                                                                                                                                         |
| σv                        | Efektif düşey gerilme                                                                                                                                                                                                                                                                                        |
| Vs                        | Kayma dalgası hızı                                                                                                                                                                                                                                                                                           |
| $	au_{s}$                 | Sıvılaşma için gerekli yatay kayma gerilmesi                                                                                                                                                                                                                                                                 |
| το                        | Ortalama kayma gerilmesi                                                                                                                                                                                                                                                                                     |
| (N1)60                    | Düzeltilmiş SPT-N değeri                                                                                                                                                                                                                                                                                     |
| (N1)60f                   | İnce malzeme miktarına göre düzeltilmiş SPT-N değeri                                                                                                                                                                                                                                                         |
|                           | SPT         CPT         YASS         CRR         CSR         N         Nar         FC         Mw         MSF         CA         CB         CbF         CC         CS         CM         cu         Dr         mv         qu         \$         Gv         Gv         Gv         Ts         To         (N1)60 |

| $\mathbf{F}_{\mathbf{s}}$ | Sıvılaşma güvenlik sayısı         |  |  |
|---------------------------|-----------------------------------|--|--|
| $	au_R$                   | Sıvılaşma direnci                 |  |  |
| $	au_{deprem}$            | Zeminde oluşan kayma direnci      |  |  |
| γdoy                      | Doygun birim hacim ağırlığı       |  |  |
| γn                        | Doğal birim hacim ağırlığı        |  |  |
| Ykuru                     | Kuru birim hacim ağırlığı         |  |  |
| <b>q</b> c                | Koni Penetrasyon Testi Uç direnci |  |  |
| qs                        | Sürtünme direnci                  |  |  |
| Rf                        | Sürtünme oranı                    |  |  |
| CQ                        | CPT derinlik düzeltme faktörü     |  |  |
| Sds                       | Spektral ivme katsayısı           |  |  |
| PGA                       | En büyük yer ivmesi               |  |  |
| DTS                       | Deprem tasarım sınıfı             |  |  |
| δ                         | Oturma                            |  |  |

# ŞEKİLLER DİZİNİ

|                                                                                        | Sayfa |
|----------------------------------------------------------------------------------------|-------|
| Şekil 2.1. İnceleme alanının lokasyonu                                                 | 3     |
| Şekil 2.2. İnceleme alanının sınırları                                                 | 4     |
| Şekil 2.3. Seferihisar bölgesine ait diri faylar haritası                              | 5     |
| Şekil 2.4. İzmir ve civarının jeolojik yapısını belirtir harita                        | 6     |
| Şekil 2.5. 1964 Niigata Depremi                                                        | 9     |
| Şekil 2.6. Merced Gölü, 1957 San Francisco Depremi                                     | 10    |
| Şekil 2.7. Van Depremi, 2011                                                           | 11    |
| Şekil 2.8. Guatemala Depremi, 1976                                                     | 11    |
| Şekil 2.9. Niigata Depremi, 1964                                                       | 12    |
| Şekil 2.10. SPT şeması ve SPT kaşığı                                                   | 17    |
| Şekil 2.11. Koni Penetrasyon deneyi                                                    | 24    |
| Şekil 2.12. CPT zemin sınıfı                                                           | 26    |
| Şekil 2.13. Akustik CPT ekipmanları                                                    | 27    |
| Şekil 2.14. Sıvılaşma direncinin Vs ile bulunması                                      | 29    |
| Şekil 2.15. Maksimum ivmesi ile deprem merkezine olan uzaklık ilişkisi                 | 30    |
| Şekil 3.1. Sondaj lokasyonları                                                         | 33    |
| Şekil 3.2. Sondaj lokasyonlarının ve ilgili noktalara ait SDS değerlerinin harita      |       |
| üzerinde gösterimi                                                                     | 35    |
| Şekil 3.3. Tasarım spektrumu tanımlayıcı parametreleri                                 | 38    |
| Şekil 3.4. Örnek analize ait idealize zemin profili                                    | 43    |
| Şekil 4.1. TBDY 2018'e göre sıvılaşma riski olan bölgeler                              | 49    |
| Şekil 4.2. Risksiz bölgelerin haritalandırılması                                       | 50    |
| Şekil 4.3. Tahmini verilere göre sıvılaşma analizinde riskli çıkan bölgeler            | 51    |
| Şekil 4.4. Tüm verilerden elde edilen sonuçların haritalandırılması                    | 52    |
| Şekil 4.5. İnceleme alanı verilerine ait 1.senaryoya (DD2 ve $M_w=7.5$ ) göre          |       |
| sıvılaşma riski haritası                                                               | 54    |
| Şekil 4.6. İnceleme alanı verilerine ait 2.senaryoya (DD3 ve M <sub>w</sub> =7.0) göre |       |
| sıvılaşma riski haritası                                                               | 55    |
| Şekil 4.7. İnceleme alanı verilerine ait 3.senaryoya (DD4 ve M <sub>w</sub> =6.5) göre |       |
| sıvılaşma riski haritası                                                               | 55    |
| Şekil 4.8. Ishihara ve Yoshimine, 1992 tarafından oluşturulan abak                     | 59    |
| Şekil 4.9. Çetin, 2009 tarafından oluşturulan abak                                     | 60    |
| Şekil 4.10. 51-6 Ada-Parsel örneğine ait idealize zemin profili                        | 61    |

## TABLO DİZİNİ

|                                                                                  | Sa |
|----------------------------------------------------------------------------------|----|
| Tablo 2.1. İzmir ve yakın çevresinde son yüzyılda gelişmiş büyük (M>5)           |    |
| depremler                                                                        | 7  |
| Tablo 2.2.SPT-N sayısına göre killi zeminlerin kıvam kumlu zeminlerin            |    |
| sıkılık derecesi                                                                 | 1  |
| Tablo 2.3. Granüler zeminlerde rölatif sıkılık ve SPT sayıları arasındaki        |    |
| Bağıntı                                                                          | 1  |
| Tablo 2.4. Kohezyonsuz zeminlerde bağıl yoğunluk ile diğer parametreler          |    |
| arasındaki ilişki                                                                | 2  |
| Tablo 2.5. SPT-N ile Dr arasında korelasyon                                      | 2  |
| Tablo 2.6. Kayma dalgası hızı ile SPT-N arasında korelasyon                      | 2  |
| Tablo 2.7. SPT-N 'e göre kohezyonlu zeminlerin kıvamı ile qc değerleri           |    |
| arasındaki ilişki                                                                | 2  |
| Tablo 2.8. Zemin cinslerine göre qu ile SPT-N arasındaki ilişki                  | 2  |
| Tablo 2.9. Kil zeminlerde kıvam-koni uç direnç bağlantısı                        |    |
| Tablo 2.10. Kohezyonsuz zeminlerde rölatif sıkılık-qc bağıntısı                  |    |
| Tablo 3.1. Seferihisar Belediyesi'nden elde edilen rapor verileri                |    |
| Tablo 3.2. Sondaj Koordinatları ve SDS değerleri                                 | 2  |
| Tablo 3.3. İnceleme alanı kapsamında kullanılacak raporların verileri            | 2  |
| Tablo 3.4. SPT düzeltme faktörleri                                               | 2  |
| Tablo 3.5. Örnek analiz için kabul edilen veriler                                | 2  |
| Tablo 4.1. Sıvılaşma analizi sonuç tablosu.                                      | 4  |
| Tablo 4.2. Sıvılaşma riski bulunmayan bölgelerden elde edilen veriler            |    |
| tablosu                                                                          | 2  |
| Tablo 4.3. Tahmini verilerle yapılan sıvılaşma analizi tablosu                   | 4  |
| Tablo 4.4. Farklı deprem senaryolarında gerçekleştirilen sıvılaşma analizine air | _  |
| güvenlik katsayıları (FS)                                                        | 4  |
| Tablo 4.5. TBDY 2018 ve NCEER yöntemlerinden hesaplanan güvenlik                 |    |
| katsayıları                                                                      | 4  |
| Tablo 4.6. 51-6 Ada-Parsel örneğine ait veriler ve oturma miktarları             | e  |
| Tablo 4.7. İnceleme alanı kapsamında yapılan oturma hesabı                       | e  |

## TEŞEKKÜR

Yüksek lisans eğitim hayatım boyunca her zorluğu göğüslememe yardım eden kıymetli bilgileri ile her daim bana ışık olan, yol gösteren, yardımını esirgemeyen kıymetli zamanını bana ayıran çok saygıdeğer danışman hocam Dr. Öğr. Üyesi Seda DURUKAN'a aynı zamanda eğitim hayatıma değerli bilgileri ile katkıda bulunan saygıdeğer hocam Dr. Öğr. Üyesi Ender BAŞARI'ya saygı, minnet ve teşekkürlerimi sunarım.

Bu yolda yürürken bana her daim destek olan, araştırmalarıma ve çalışmalarıma katkıda bulunan sevgili eşim Ahmet AKBUĞA'ya, tüm hayatım boyunca her zaman bana güç veren, destekleyen ve yanımda olan annem Çile AKATAŞ'a, babam Vahdi SARIKAYA'ya ve kardeşim Kardelen Mısra SARIKAYA'ya sonsuz sevgi ve teşekkürlerimi sunarım.

> Ezgi AKBUĞA Manisa, 2019

## ÖZET

#### Yüksek Lisans Tezi

## Seferihisar (İzmir) Bölgesinde Sıvılaşma Analizi ve Haritalandırılması

#### Ezgi AKBUĞA

### Manisa Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı

### Danışman: Dr. Öğr. Üyesi Seda DURUKAN

Bu çalışma, Seferihisar (İzmir) ilçesi sınırları içinde yer alan alüvyon özellikteki zeminlerin olabilecek deprem etkisi altında sıvılaşma potansiyelinin, arazi Standart Penetrasyon Deneyi (SPT) verileri kullanılarak Yeni Türkiye Bina Deprem yönetmeliğine (TBDY 2018) göre analiz edilerek incelenmesini içermektedir. Çalışma alanının altından Batı Anadolu Fay Hattı kollarından Seferihisar Yelki fay zonu geçmektedir. Bu olası bir depremde risk oluşturmaktadır. Bu riskin değerlendirilmesi amacıyla Seferihisar ilçesinin yer altı su seviyesi yüksek olan ve deniz kıyısında yer alan Sığacık mahallesindeki Seferihisar Belediyesi tarafından ruhsatlandırılmış yapılardan elde edilen zemin etüt raporları incelenmiştir. Seferihisar belediyesinden elde edilen 18 adet sondaj çalışmasına ait veriler kullanılmıştır. Bu kapsamda, önce TBDY 2018'de verilmiş olan sıvılaşma riski analiz yöntemi tanıtılmış ve örnek bir çözüm ayrıntıları ile sunulmuştur. Ardından, Sığacık mahallesindeki 18 sondaj noktasındaki veriler değerlendirilmiş ve sıvılaşma riskleri TBDY 2018'e göre hesaplanıp harita üzerinde sunulmuş ve tahmini oturma miktarları da hesaplanmıştır.

## Anahtar Kelimeler: <u>(TBDY 2018, Sıvılaşma, SPT)</u> 2019, 108 sayfa

#### ABSTRACT

### M.Sc. Thesis

#### Analysis and Mapping of Liquefaction in Seferihisar (İzmir) Province

### Ezgi AKBUĞA

#### Manisa Celal Bayar University Graduate School of Applied and Natural Sciences Department of Civil Engineering

#### Supervisor: Dr. Seda DURUKAN

This study covers the investigation of the liquefaction potential of Seferihisar (İzmir) district alluvial soil deposits under possible earthquakes according to Turkey Building Earthquake regulation (TBDY 2018) by using in-situ Standard Penetration Test (SPT) results. Seferihisar Yelki fault zone which is one of the branches of the Western Anatolian Fault Line lies under the study area. This situation poses a risk in a possible earthquake. In order to evaluate this risk, soil survey reports belonging to the buildings licensed by Seferihisar Municipality in Sığacık district which were located by seaside and had possibly high ground water levels, were obtained and investigated. In this context, initially the liquefaction risk analysis method given in TBDY 2018 was briefly introduced and a sample solution was presented in detail. Afterwards, data from 18 drilling points in Sığacık neighborhood were evaluated and liquefaction risks were calculated according to TBDY 2018 and presented on the map and possible postliquefaction settlements were also calculated.

#### Keywords: (TBDY 2018, Liquefaction, SPT)

2019, 108 pages

## 1. GİRİŞ

Deprem esnasında oluşan sismik tehlikelerin en önemli sonuçlarından birisi, zeminde meydana gelen sıvılaşmaya bağlı olarak yapılarda gözlemlenen ve genellikle yıkıcı olan hasarlardır. Tarihe baktığımızda deprem esnasında zeminlerde meydana gelen sıvılaşma olayı 1960'lı yılların sonuna kadar maalesef pek önemsenmemiştir. Zeminin sıvılaşma potansiyelinin ve baş etken olduğu hasarların anlaşılmasına yönelik çalışmalar, 1964 yılında Niigata – Japonya ve Büyük Alaska – ABD'de meydana gelen ve yıkıcı hasarlara sebep olanı depremlerin sonucunda hızlanmıştır. Ülkemizde ise zemin sıvılaşmasının önemi 17 Ağustos 1999 Adapazarı depreminden sonra daha çok anlaşılmış ve araştırılmaya başlanmıştır.

Sıvılaşmanın tanımı şu şekilde yapılabilir; suya doygun gevşek zeminlerin tekrar eden yükler altında sıkışmaya eğilim göstermesinin bir sonucu olarak boşluk suyu basıncının artması buna bağlı olarak kayma direncinin azalması veya ortadan kalkması ile ortaya çıkan ve oldukça büyük şekil değişikliklerinin meydana gelmesine sebep olan olaya zemin sıvılaşması denir. Zemin sıvılaşması sırasında zeminde çeşitli deformasyonlar meydana gelmektedir. Sıvılaşma eğimli arazide meydana gelirse akma türü göçme dediğimiz deformasyon şekli ile, eğimi az arazide meydana gelirse yanal yayılma olarak nitelendirilmektedir. Daneler arası geniş olan ve gevşek zemin olarak nitelendirilen zeminlerde meydana gelen sıvılaşma sırasında boşluk suyu basıncı birden arttığı için zeminde kum kaynamaları denilen olay meydana gelmektedir ve bunu sonucunda zeminde oturma gerçekleşmektedir [1].

Adapazarı (1999) depremi ve sonrasında saha araştırmaları sıvılaşma olgusunun önceden şüpheyle yaklaşılan bazı zeminlerde de görüldüğünü göstermiş ve sıvılaşma analizinde kullanılan yeni bağıntıların ortaya çıkmasına yol açmıştır [2].

Ülkemizde de 18 Mart 2018 tarihinde Resmî Gazete'de yayımlanan ve Ocak 2019 itibari ile de yürürlüğe girmiş olan Türkiye Bina Deprem Yönetmeliği'nde (TBDY 2018) sıvılaşma risk analizi yöntemi tanımlanmış ve ayrıntıları ile sunulmuştur. Bu çalışmada da Seferihisar Belediyesi ile yapılan bir protokol doğrultusunda Sığacık Mahallesinde ruhsatlandırılmış projelere ait sondaj ve arazi deney verileri elde edilmiş ve bu veriler ışığında TBDY 2018'de belirtilen sıvılaşma analizi yöntemine göre farklı deprem senaryoları gözetilerek değerlendirme yapılmış, karşılaştırılmış ve harita üzerinde gösterilmiştir. Buna ek olarak, büyüklüğü M<sub>w</sub>=7,5 olacak bir deprem sonucunda sıvılaşma etkisi ile oluşabilecek oturma miktarları da iki farklı yönteme göre hesaplanıp sunulmuştur.



## 2. GENEL BİLGİLER

İnceleme alanı Ege Bölgesinde, İzmir il sınırları içerisinde yer almaktadır. Seferihisar'ın İzmir merkezine uzaklığı 45 km'dir. Seferihisar ilçesinin batı sınırı ve güney sınırının Ege Denizi'ne kıyısı bulunmaktadır. Seferihisar ilçesinin denize uzaklığı ise 5 km'dir. Seferihisar ilçesinin yüzölçümü 386 m<sup>2</sup>'dir. İnceleme alanımızın merkezi olan Sığacık ise İzmir'in Seferihisar ilçesine bağlı olan bir mahallesidir. Sığacık Mahallesi, Sığacık Kalesi ile Teos Antik Kenti sınırları içinde yer almaktadır. Harita üzerindeki lokasyonu Şekil 2.1'de gösterilmiştir, yine inceleme alanının sınırları ise Şekil 2.2'de gösterilmiştir.



Şekil 2.1. İnceleme alanının lokasyonu [3]



Şekil 2.2. İnceleme alanının sınırları [4]

### 2.1 İnceleme Alanının Jeolojisi ve Depremselliği

Araştırmanın yapıldığı Seferihisar ilçesine bağlı Sığacık Mahallesi aktif fay hattının üstünde yer almaktadır. Bu fay hattı İzmir' in güneybatısında Güzelbahçe ile Seferihisar ilçesindeki Sığacık körfezi arasında yer alır. Su altında devam eden çalışmalar kapsamında elde edilen verilere dayanarak fay hattının güneye doğru devam ederek Ege Denizi tabanında ilerlediğini öne sürülmektedir [5, 6]. Önceki araştırmacılar tarafından yapılan çalışmalarda da Sığacık ile İzmir Körfezi arasında yer alan Seferihisar fayının dışında da fay hatlarının bulunduğu öne sürülmüştür. Seferihisar'dan geçen Seferihisar fayı sunulan çalışmalarda Yelki-Seferihisar fay hattına karşılık gelmektedir [7].

Drahor, Sarı ve Şalk (1999), yaptığı çalışmalarda pek çok jeotermal özelliği olan bölgelerde olduğu gibi Seferihisar bölgesinin de volkanizma kökenli bölgede oluştuğunu belirtmektedir. Aynı zamanda Alpin Orojenezi esnasında oluşmuş olan pek çok fay hattı ve kırıklık içerdiğini belirtmişlerdir. Yapılan çalışmalar sonucunda Seferihisar bölgesinde bulunan jeotermal alanın GB-KD yönünde uzanan faylar doğrultusunda yüzeye çıktığı ve kumtaşı ile kireçtaşlarından oluşmuş olduğu belirtilmektedir [8]. Yapılan bir başka çalışmada Erdoğan (1990), Batı Anadolu'da yer alan, İzmir bölgesinde üç tane tektonik kuşağın bulunduğunu ve bu kuşakları batıdan doğuya doğru, Karaburun kuşağı, Ankara-İzmir hattı ve Menderes masifi kuşağı olarak belirtmiştir [9].

Seferihisar fayının sadece karada yer alan uzunluğu Gülbahçe ile Seferihisar arasında olup uzunluğu 23 km'dir. Fayın su altında ilerleyen bölümü ile birlikte toplam uzunluğunun 30 km'ye ulaştığı sanılmaktadır [10].

Bu araştırmalar kapsamında Emre ve Özalp (2011) tarafından yapılan çalışmada inceleme alanına ait diri fay haritası Şekil 2.3'te gösterilmiştir [11]. İnceleme alanının jeolojik formasyonunu gösteren haritası ise Şekil 2.4'te gösterilmiştir.



Şekil 2.3. Seferihisar bölgesine ait diri faylar haritası [11]



Şekil 2.4. İzmir ve civarının jeolojik yapısını belirtir harita [12]

İnceleme alanında 1900 yılından günümüze kadar olan ve büyüklüğü Mw=5 olan depremler Tablo 2.1'de gösterilmiştir.

**Tablo 2.1.** İzmir ve yakın çevresinde son yüzyılda gelişmiş büyük (M>5) depremler [13]

| Tarih                                   | Saat<br>(UT)        | Enlem<br>(K) | Boylam<br>(D) | Derinlik<br>(km) | Büyüklük<br>(M) | şiddet<br>(I₀)   | Açıklama                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|---------------------|--------------|---------------|------------------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 Haziran 1966<br>Menemen Depremi      | 17:55               | 38.55        | 27.35         | 9                | 4.8             | VI               | İzmir ve çevresinde şiddetlice hissedilen bu depremde<br>Menemen'de 100 kadar evin duyarları catlamıştır                                                                                                                                                                                                                                                                                                                                      |
| 6 Nisan 1969                            | 03:49               | 38.47        | 26.41         | 16               | 5.9             | VIII             | Merkezi Karaburun açıkları olan bu deprem, Çeşme ve Sakız                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 Şubat 1974<br>İzmir Depremi           | 00:01               | 38.55        | 27.22         | 24               | 5.3             | VII              | adasında 443 yapıda hasara neden olmuştur.<br>Depremin merkezi İzmir'den 15 km uzaklıkta olup birçok yapıda<br>hasara neden olmuştur. İzmir'de 2 kişi ölmüş, 7 kişi yaralanmış,<br>47 evde ağır hasar görülmüştür. Şehir merkezi ve<br>Karşıyaka'nın bir kısmında ve Alsancak'ta çeşitli hasarlar<br>olmuştur.                                                                                                                                |
| 16 Aralık 1977<br>İzmir Depremi         | 07:37               | 38.41        | 27.19         | 24               | 5.5             | VIII             | İzmir'de bu deprem ile bazı evler yıkılmış, 20 kişide<br>yaralanmıştır. Özellikle Buca, Alsancak, Hatay, Karşıyaka,<br>Bornova, Gültepe ve Tepecik semtlerinde bazı evler hasar<br>görmüş, duvarlar çökmüş ve çatlaklar oluşmuştur.                                                                                                                                                                                                           |
| 14 Haziran 1979<br>Karaburun Depremi    | 11:44               | 38.79        | 26.57         | 15               | 5.7             | VII              | Depremin merkezi Ege denizindedir. İzmir ve çevresinde<br>kuvvetlice hissedilen bu depremde, Alsancak semtinde bazı<br>evlerde duvarlar derin biçimde çatlamıştır. Karaburun'da 2 ev<br>çökmüş, bir kişi yaralanmıştır. Deprem Ege adalarında da<br>hissedilmiştir.                                                                                                                                                                           |
| 6 Kasım 1992<br>Doğanbey Depremi        | 22:08               | 38.16        | 26.99         | 17               | 5.7             | VII              | Depremin merkezi Doğanbey civarında olup, 60 kadar yapıda<br>ciddi hasara sebebiyet vermiştir. Deprem İzmir'de kuvvetli<br>olarak hissedilmiştir.                                                                                                                                                                                                                                                                                             |
| 28 Ocak 1994<br>Manisa Depremi          | 18:45               | 38.69        | 27.49         | 5                | 5.2             | VII              | Manisa ve civarında 60 kadar yapıda hasar vardır.                                                                                                                                                                                                                                                                                                                                                                                             |
| 24 Mayıs 1994<br>Karaburun Depremi      | 05:05               | 38.66        | 26.54         | 17               | 5.0             | VII              | Karaburun ve civarında 10 kadar yapıda hasar vardır.                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 Nisan 2003<br>Urla Depremi           | 03:40               | 38.26        | 26.83         | 16               | 5.6             | VII              | Depremin merkezi Urla ile Seferihisar arasına düşmektedir.<br>Urla ve Seferihisar'da baz evlerin duvarlarında çatlaklar<br>oluşmuştur. Deprem İzmir'de şiddetli olarak hissedilmiştir.                                                                                                                                                                                                                                                        |
| Tarih                                   | Saat<br>(UT)        | Enlem<br>(K) | Boylam<br>(D) | Derinlik<br>(km) | Büyüklük<br>(M) | Şiddet<br>(I₀)   | Açıklama                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19 Ocak 1909<br>Foca Depremi            | 04:57               | 38.00        | 26.50         | 60               | 6.0             | IX               | Depremin merkezi Güzelhisar, Menemen ve Foça arasındadır.<br>700 ev yıkılmıs, 1000 ev hasar görmüş, 8 kisi ölmüstür                                                                                                                                                                                                                                                                                                                           |
| 31 Mart 1928<br>Torbalı Depremi         | 00:29               | 38.18        | 27.80         | 10               | 6.5             | VIII             | Depremin merkezi Torbalı'da Küçük Menderes ile İzmir K-G<br>çukurluklarının birleştiği yerdedir. Depremde 2000 ev<br>yıkılmıştır. Torbalı-Tepeköy yöresinde fazla hasara, İzmir,<br>Manisa, Alaşehir, Uşak, Bayındır, Tire ve Ödemiş'te hafif<br>hasara neden olmuştur. Deprem bütün Batı Anadolu'da<br>hissedilmiştir.                                                                                                                       |
| 22 Eylül 1939<br>Dikili Depremi         | 00:36               | 39.07        | 26.94         | 10               | 6.6             | VIII<br>IX       | Depremin merkezi Dikili'ye çok yakın olup, Dikili ile Midilli<br>arasındadır. 1000 ev yıkılmış, 41 kişi ölmüş, 68 kişi<br>yaralanmıştır. Depremden sonra termal kaynaklar oluşmuştur.<br>Dikili ile Bergama arasında yarıklar oluşmuştur.Deprem bütün<br>Batı Anadolu'da hissedilmiştir.                                                                                                                                                      |
| 23 Temmuz 1949<br>Karaburun Depremi     | 15:03               | 38.57        | 26.29         | 10               | 6.6             | VIII<br>VII<br>X | Deprem sonucunda Karaburun-Çeşme yarımadasının doğusu,<br>Mordoğan ile yarımadanın kuzey burnu arasında, Denize giren<br>çevresinde, Çeşme yarımadasında ve çevresindeki köylerde<br>oldukça ağır hasar meydana gelmiştir. Çeşme ılıcasının suları<br>çoğalmış, bazı akarsular da kesilmiştir. Sakız adasında da<br>hasar olmuştur ve denizde çok şiddetli hareketler gözlenmiştir.<br>7 kişi ölmüş, 2200 ev yıkılmış veya hasara uğramıştır. |
| 2 Mayıs 1953<br>Karaburun Depremi       | <mark>05:4</mark> 1 | 38.48        | 26.57         | 40               | 5.0             | VII<br>VIII      | Depremin merkezi Karaburun yarımadasının kuzeyi olup, Dikili,<br>Urla, Menemen, Çeşme, Bergama ve Foça'da şiddetlice<br>hissedilmiştir. Kötü zeminlerde hasara neden olmuştur.<br>Yaklaşık 300 ev hasar görmüştür.                                                                                                                                                                                                                            |
| 16 Temmuz 1955<br>Söke-Balat<br>Depremi | 07:07               | 37.65        | 27.26         | 40               | 6.8             | VIII             | Depremin merkezi Ege denizindedir. Deprem Ege adalarında,<br>İzmir ve ilçelerinde, Kuşadası ve yakın yerleşim birimlerinde<br>hissedilmiştir. İzmir'de birçok yapının duvarları çatlamış, bazı<br>camilerin minareleri hasar görmüştür. Deprem sırasında büyük<br>bir gürültü duyulmuş, Gediz ve Büyük Menderes nehirlerinde<br>taşmalar meydana gelmiştir. Deprem sırasında 300 ev yıkılmış,                                                 |

Bu durum inceleme alanımızda olası bir depremde risk oluşturmaktadır. Bu riskin değerlendirilmesi amacıyla Seferihisar ilçesinin yer altı su seviyesi yüksek olan ve deniz kıyısında yer alan Sığacık mahallesindeki yapı oturma alanlarında yapılan 18 adet sondaj çalışmasına ait olan Seferihisar Belediyesi tarafından ruhsatlandırılmış yapılara ait jeolojik raporlardan elde edilen SPT verileri TBDY 2018'e göre hesaplanmıştır.

#### 2.2. Sıvılaşmanın Kavramı ve Tarihçesi

Bilinen en eski zemin sıvılaşması, M.Ö. 373'te meydana geldiği bilinen deprem sonucunda tarihi şehir olan Helice'in (Yunanistan) sıvılaşma sonucunda denize doğru yayılması ile sonuçlanmıştır [14, 15]. Sıvılaşma ile ilgili ilk açıklamayı 1936 senesinde kritik boşluk oranı ile Arthur Casagrande yapmıştır [16]. Sıvılaşma isminin terimsel olarak tarihte ilk kullanılışı ise Mogami ve Kubo tarafından 1953 senesinde olmuştur [17]. Günümüzden örnek verecek olursak 1964 yılında meydana gelen Niigata (Japonya, Mw=7,5) ve Alaska (ABD, Mw=9,2) depremleri esnasında yapılarda zemin etkileşimi ile meydana gelen deformasyon türleri ile dikkat çekmiş ve zemin sıvılaşmasına olan ilgi artmıştır. Takip eden yıllarda 1989 Loma Prieta (ABD, M<sub>w</sub>=6,9), 1995 Kobe (Japonya, M<sub>w</sub>=6,8), 1999 Chi-Chi (Tayvan, M<sub>w</sub>=7,6) depremler meydana gelmiş ve yapılarda meydana gelen deformasyonların da sıvılaşma alt yapılı olduğu gözlemlenmiştir [18]. Bu deformasyonlar sonucunda yapılarda yan yatma, zemine batma ve devrilme gibi durumlar ortaya çıkmıştır. Takip eden yıllarda ülkemizde 1998 senesinde Ceyhan (Adana, M<sub>w</sub>=6,2) ve 1999 senesinde Adapazarı (M<sub>w</sub>=7,5) depremleri meydana gelmiştir. Sıvılaşama altyapılı hasarların en dikkat çeken örneklerinden biri de ülkemizde 17 Ağustos 1999 yılında Adapazarı'nda meydana gelen M<sub>w</sub>=7,5 büyüklüğündeki Marmara Depremi'nde gözlemlenmiştir. Bugüne kadar olan depremler göz önüne alınıp incelendiği zaman sonuçlarının vahameti bir kez daha görülmüştür ve zemin sıvılaşmasının önceden tahmin edilmesine büyük bir gereksinim vardır. Son 20 yılda ülkemizde meydana gelen bazı depremlerde de (27 Haziran 1998 Adana-Ceyhan ve 17 Ağustos 1999 Kocaeli) gözlendiği üzere zemin sıvılaşması önemli hasarlara neden olmuştur [19]. Son olarak ülkemizde 23 Ekim 2011'de Erciş (Van)'te meydana gelen ve Mw=7,2 olan depremde sıvılaşmanın yıkıcı etkisi bir kez daha gözlemlenmiştir. Ülkemizde yakın tarihte sıvılaşma olayını gözlemlediğimiz deprem ise 21 Temmuz 2017'de Bodrumda meydana gelen Mw=6,6 büyüklüğündeki depremdir.

Niigata depremi sonucunda meydana gelen sıvılaşmanın yapı üzerindeki etkisi Şekil 2.5'te gösterilmiştir.



Şekil 2.5. 1964 Niigata Depremi [20]

### 2.3 Sıvılaşma Türleri

Sebebiyet verdiği deformasyon türleri değerlendirildiğinde iki tip sıvılaşma türünden söz edilmektedir [21].

- Akma türü sıvılaşma
- Devirsel hareketlilik (mobilite)

#### 2.3.1 Akma Sıvılaşması

zeminin statik kayma gerilmesinin, sıvılaşmış haldeki kayma Bir dayanımından büyük olduğu durumlarda ortaya çıkan duruma akma sıvılaşması denmektedir [21]. Zemin üzerine inşa edilen yapının statik olarak dengede durabilmesi için gerekli olan gerilme statik kayma gerilmesi olarak tanımlanmaktadır. Statik kayma gerilmeleri zeminin kayma direncini öylesine aza indirger ki bunun sonucunda akma sıvılaşması meydana gelmektedir ve büyük şekil değişikliklerine sebep olmaktadır. Örneğin bir zemine yeni yapı inşa edilirken ek yük bindirmesi, deprem hareketleri, zemine kazık çakmak gibi fazladan tetikleyici dinamik yüklemeler zeminin taşıma gücü dengesinin bozulmasına sebep olmaktadır. Bu sebeple sıvılaşma türleri arasında en etkili sonuçlar akma sıvılaşmasının sebep olduğu sonuçlardır. Akma sıvılaşmasının karakteristik özellikleri arasında;

- Aniden ortaya çıkması,
- Hızlı ilerlemesi,
- Büyük mesafelerde şekil değişikliğine sebep olması

gösterilebilir [21].

Şekil 2.6'da akma sıvılaşmasına örnek olarak Merced Gölü civarından bir görüntü sunulmuştur.



Şekil 2.6. Merced Gölü, 1957 San Francisco [22]

#### 2.3.2 Devirsel Hareketlilik

Devirsel hareketlilik akma sıvılaşmasının tam tersi şartlar altında oluşan bir olaydır. Statik kayma gerilmesinin, sıvılaşan zeminin statik kayma dayanımından küçük olduğu durumlarda ortaya çıkan sıvılaşma sonucudur. Devirsel hareketliliğe sebep olan faktörler zeminde meydana gelen statik kayma gerilmesi ve devirsel gerilmelerdir. Bu deformasyonlar meyli az olan yamaçlarda ve su kitlelerine yakın olan zeminlerde meydana gelmektedir ve bu durum yanal yayılma olarak adlandırılmaktadır. Yanal yayılma yapıların bulunduğu bölgelerde meydana gelir ise büyük deformasyonlara sebep olabilmektedir. Devirsel hareketlilik ile ilgili örnekler Şekil 2.7, Şekil 2.8 ve Şekil 2.9'da gösterilmektedir.



Şekil 2.7. Van Depremi, 2011 [23]



Şekil 2.8. Guatemala Depremi, 1976 [24]

Devirsel hareketlilik türünün içerisinde incelenmekte olan bir sıvılaşma türü daha vardır. Bu sıvılaşma türü düz yüzey sıvılaşmaları olarak nitelendirilir. Yatayda meydana gelen deformasyonlara sebep olacak olan statik yatay kayma gerilmelerinin olmadığı durumlarda deprem sırasında zeminde oluşan dalgalanmalar olarak tanımlanan büyük, aynı zamanda düzensiz lakin kalıcı yatay yer değiştirmeleridir. Düz yüzey sıvılaşmalarına sebep olan faktör deprem esnasında aşırı boşluk suyu basıncının sönümlenmesi sırasında suyun aşağıdan yukarıya doğru akışı davranışıdır.

Bu tür zemin yenilmelerine sebep olan, depremin sebebiyet verdiği normalden fazla boşluk suyu basıncının sönümlenmesi esnasında zemin suyunun aşağıdan yukarıya doğru hareketidir. Düz yüzey sıvılaşmaları deprem hareketi bittikten uzun bir süre sonra da ortaya çıkabilmektedir. Bu durum hidrolik denge için gerekli olan sürenin uzunluğu veya kısalığı ile ilgilidir. Düşeyde meydana gelen aşırı oturma sonucunda kotu düşük olan zeminin akması ve kum kaynaması olayının meydana gelmesi, bu tür sıvılaşmanın karakteristik özelliğidir [25].



**Şekil 2.9.** Niigata Depremi, 1964 [26]

#### 2.4 Sıvılaşma Potansiyeli Hesabında Kullanılan Yöntemler

Literatürde, zeminin sıvılaşma potansiyelinin belirlenmesinde kullanılan pek çok arazi ve laboratuvar deneyleri vardır. Laboratuvarda kullanılan yöntem dinamik üç eksenli basınç yönetimidir. Bu yöntem hem çok uzun sürmekte hem de numune alımı esnasında örselenmemiş numune alma işlemi sırasında birçok sorun çıkabilmesinden dolayı pek tercih edilmemektedir. Bu sebepten dolayı araştırmacılar genel olarak arazi deneylerinden faydalanmayı tercih ederler. Arazide uygulanan deneyler içerisinde;

- Standart Penetrasyon Deneyi (SPT),
- Koni Penetrasyon Deneyi (CPT),
- Beker Penetrasyon Deneyi (BPT),
- Kayma Dalgası hızına (Vs) bağlı analiz yöntemleri yer almaktadır.

Bu yöntemler içerisinde ise en fazla Konik Penetrasyon Deneyi (CPT) ile Standart Penetrasyon Deneyi (SPT) tercih edilen deneylerdir. Bu çalışmada ise TBDY 2018'in öngördüğü şekilde SPT verilerine göre sıvılaşma analizi gerçekleştirilmiştir. Bununla beraber aşağıda SPT, CPT ve Vs'ye göre sıvılaşma analizleri sırası ile tanıtılmıştır.

#### 2.4.1 SPT Verilerine Dayalı Sıvılaşma Analizi

Standart penetrasyon deneyi geoteknik amaçlı araştırmalarda tüm dünyada yaygın olarak kullanılan bir arazi deneyi türüdür. SPT deneyinin amacı ince daneli zeminlerin kıvamı, kaba daneli zeminlerin yerleşimindeki sıkılığı ve zeminlerin mukavemetleri ile ilgili bilgi sahibi olmaktır. Aynı zamanda SPT; örselenmiş numuneler üzerinde laboratuvar deneyleri uygulayarak zemin parametrelerini tayin etmekte de kullanılır.

Deney standart bir numune alıcının zemine çakılması işlemidir. Deney Fletcher ve Hanry A. Mohr tarafından, 63,6 kg ağırlığı olan tokmağın numune alıcı kaşığı kullanılarak 76,2 cm'den serbest düşüşe bırakılarak zemine çakılmasıyla penetrasyon deneyini ilk kez standart hale getirmiştir [27]. İlk defa geliştirilmesi ise 1927 senesinde "Raymond Beton Kazık Şirketi" tarafından olmuştur. Terzaghi ve Peck ise deneyin halka tanıtılmasını yapmıştır [28]. Numune alıcının uzunluğu 81 cm olmak ile birlikte iç çapı 3,5 cm, dış çapı ise 5 cm'dir. Çakılma işlemi 63,5 kg ağırlığında olan tokmak ile uygulanmaktadır. Bu tokmak 76 cm yükseklikten serbest düşüşe bırakılarak zemine toplamda 45 cm çakılması ile sonuçlanır. Tokmak dakikada ortalama 30 defa düşürülmektedir. Tokmağın ilk 15 cm'lik girişi deneye

başlangıç seviyesindeki örselenmiş numuneyi temsil ettiği için dikkate alınmaz. Kalan 30 cm'lik giriş için gerekli olan düşüş sayılarının toplamı SPT arazi değeri olarak ifade edilmektedir. Bu değer 'N' harfi ile gösterilir.

Yapılan deneyler sonucunda yararlanılabilir sonuçların elde edilmesi, uygulama esnasında standartların tam olarak uygun olması ile birlikte mümkün olmaktadır. SPT tokmağının düşürülme yöntemi ile tokmağın düştüğü alt başlık, bu deneydeki en önemli değişkendir. Çekicin serbest düşmesi sonucu teoride meydana çıkan enerjinin çubuklara aktarıldıkları kısmını kontrol ederler. Çekicin alt başlığa çarpması, düşürülme sisteminin sürtünme ile enerjiyi sönümleyen özellikleri sonucunda varsayılan enerjinin bir kısmı kaybolur. Bu sebeple, serbest düşme sonucunda ortaya çıkan enerjinin tamamı standart olan ucun penetrasyonuna yansımamaktadır.

SPT sonuçlarını etkileyen pek çok önemli kıstas bulunmaktadır. Bu kıstaslar şunlardır;

- Sondaj yöntemleri,
- Sondajın çapı,
- Numune alıcının tabii zemine tam oturamaması,
- Numune alıcının hazne durumu,
- Numune alıcın kaplama içerisinde bulunduğu konumu,
- Tokmağın düşürülme yöntemi,
- Tokmağın düşürülme sıklığı,
- Tij uzunluğu,
- Operatörün deneyimidir.

Tüm bu kıstaslar SPT deneyi sonucunun yorumlanmasını zorlaştırmaktadır. Hatta bu kıstaslar sebebi ile eski verilerin kullanılmasında zorluklar çekilmektedir. Bu sebeple SPT deneyi sonuçlarını etkileyen bu kıstaslara araştırmacılar tarafından öngörülen birtakım düzeltme işlemleri uygulanmaktadır. Ölçülen vuruşlar C<sub>i</sub> gibi sabit olan bir sayıyla çarpılmaktadır. Düzeltme faktörleri;

- SPT deneyinin uygulanmasında kullanılan donanıma
- Yer altı su seviyesi (YASS) ve
- Zemin profiline göre belirlenir.

Düzeltme faktörleri şunlardır:

- Yass
- Tokmak düşürme frekansı (C<sub>BF</sub>)
- Jeolojik yük (C<sub>N</sub>)

Bu düzeltmeler sadece yeraltı su seviyesi altında olan suya doygun ince daneli kum veya siltli kumlarda uygulanır.

 $N_{arazi} > 15 \text{ için;}$  $N= 15 + \frac{Narazi-15}{2}$ 

(1)

ifadesi ile bulunmaktadır.

- Numune alıcıdaki kılıf (CS)
- Tij boyu ( $C_R$ )
- Sondaj çapı (C<sub>B</sub>)
- Enerji (C<sub>E)</sub>
- Çakma baslığı (C<sub>A</sub>)
- Çakma baslığındaki blok yastık (C<sub>C</sub>)

N<sub>ar</sub> : Arazide elde edilen SPT-N değeri N<sub>1.60</sub> : Düzeltilmiş SPT-N değeri

Gösterimde kullanılan (60) değeri normalize edilmiş enerji oranını, Denklem 1'de elde edilen değer ise, düzeltmelerin yapılmış olduğunu ifade etmektedir. Burada;  $N_{60}$ = Teorik olan serbest düşmeyi ifade etmektedir Standart tokmağın, standart yükseklikten serbest düşüşe bırakılması sonucunda ortaya çıkan enerjinin %60'ını ifade eden değerdir.

 $N_{1.60}$ = teorik olan serbest düşme sonucu ortaya çıkan enerjinin %60'ına ve efektif düşey basıncının ise 100 kPa değerine göre düzeltilmiş olan vuruş sayısını ifade etmektedir.

Bu durumda düzeltilmiş N;

 $N_{1.60} = (C_N * C_B * C_E * C_R * C_B * C_S * C_A * C_C) * N_{ar}$ 

- C<sub>N</sub>= jeolojik yük düzeltmesi,
- C<sub>E</sub> =enerji düzeltmesi,
- C<sub>R</sub>= tij uzunluğu düzeltmesi,
- C<sub>B</sub> =sondaj çapı düzeltmesi,
- C<sub>S</sub> =numune alıcı kılıf düzeltmesi,
- C<sub>A</sub> =çakma başlığı düzeltmesi,
- C<sub>BF</sub> =tokmak vuruş sıklığı düzeltmesi,
- C<sub>C</sub>=tokmak yastığı düzeltmesi Şeklindedir [29].

Uygulama esnasında genel olarak enerji düzeltmesi ( $C_E$ ) ve efektif düşey gerilme ( $C_N$ ) düzeltmesi yapılmakta, diğerlerinin etkisi oldukça az olduğundan ihmal edilir düzeyde olarak kabul edilir. Buna göre düzeltilmiş N değerleri şu şekilde ifade edilmektedir;

$$N_{60}=N*C_E$$
  
 $N_{1.60}=(N*C_E)*C_N$ 

Bütün uygulanması gereken düzeltmeler ayrık daneli zeminlerde uygulanmaktadır. Lakin tokmak düşürülüş sıklığı (CBF) ve jeolojik yüz düzeltmesi (C<sub>N</sub>) ince daneli zeminlerde uygulanmamaktadır [29]. Buna istinaden (Farrar, 2001)'de jeolojik yük düzeltmesi yapılmasının derinlik arttığı durumlarda yararlı olacağını ifade etmiştir [30]. SPT şeması ve SPT kaşığı Şekil 2.10'da gösterilmiştir.



Şekil 2.10. SPT Şeması ve SPT Kaşığı [31]

Yapılan araştırmalar sonucuna göre SPT-N düzeltme katsayıları belirli aralıklarda ifade edilmiştir. Genel olarak;

- Sonda çapları 65 mm ile 115 mm aralığında olduğu için,  $C_B = 1,00$  [32],
- Numune alıcının içi kılıfsız olduğu için,  $C_S = 1,20$  [32],
- Deney yapılırken odun blok yastık kullanılmadığı için, C<sub>C</sub> = 1,00 [33],

- Halkalı tokmak ile kedi başı 2 sarım bırakılma sistemine ait tokmaklar olduğu için, C<sub>E</sub> =0,75 [34],
- Numune alıcının içi kılıfsız olduğu için,  $C_S = 1,20[32]$ ,
- Halkalı tokmak ve küçük çakma başlığı kullanıldığı için, C<sub>A</sub> = 0,85 [35],
- Tij uzunluğunun değişkenliğine göre, C<sub>R</sub> = 0,75, 0,85, 0,95, 1,00 olarak kabul edilmiştir [32].

#### 2.4.1.1 SPT Deneyinden Elde Edilen Sonuçların İrdelenmesi

SPT deneyinden elde edilen sonuçlar kohezyon olmayan zeminlerde taşıma gücünün hesaplanmasında kullanılmaktadır. Aynı zamanda oturma hesabının yapılabilmesi için;

- Drenajsız kayma mukavemeti (c<sub>u</sub>)
- Rölatif sıkılık (Dr),
- Hacimsel sıkışma katsayısı (m<sub>v</sub>)
- Serbest basınç (q<sub>u</sub>) (Bkz. Tablo 2.2),
- Kayma mukavemeti açısı (φ),

Değerleri elde edilir. SPT  $N_{30}$  değeri numune alıcının zemine 30 cm girmesi için gerekli olan vuruş sayısını ifade eden değerdir.

$$Dr, f = f(N)$$

$$qu, cu, mv = f(SPT - N30)$$

Ayrıca SPT deneyi ile zeminin sıvılaşma potansiyeli, zemin büyütme değeri ve zeminin kayma dalgası hızı ile ilgili bilgiler elde edilmektedir. Daneli zeminlerde SPT deneyi ile rölatif sıkılık arasındaki bağıntı ise Tablo 2.2'de gösterilmiştir.

|         | KİL       |           |         | KUM         |            |
|---------|-----------|-----------|---------|-------------|------------|
| SPT-N   | qu (kPa)  | Kıvam     | Spt-N   | Dr          | Sıkılık    |
| <2      | <25       | çok       | <4      | 0.00 - 0.15 | çok gevşek |
|         |           | yumuşak   |         |             |            |
| 2-4     | 25 - 50   | yumuşak   | 4 - 10  | 0.15 - 0.35 | gevşek     |
| 4 - 8   | 50 - 100  | orta katı | 10 - 30 | 0.35 - 0.65 | orta sıkı  |
| 8 - 15  | 100 - 200 | katı      | 30 - 50 | 0.65 - 0.85 | sıkı       |
| 15 - 30 | 200 - 400 | çok katı  | >50     | 0.85 - 1.00 | çok sıkı   |
| >30     | >400      | sert      |         |             |            |

**Tablo 2.2.** SPT-N Sayısına Göre Killi Zeminlerin Kıvam ve Kumlu ZeminlerinSıkılık Derecesi [31]

**Tablo 2.3.** Granüler Zeminlerde Relatif Sıkılık ile Standart Penetrasyon SayılarıArasındaki Bağıntı [36]

| N Darbe Sayıları | Relatif Sıkılık |  |
|------------------|-----------------|--|
| 0-4              | Çok gevşek      |  |
| 4 - 10           | Gevşek          |  |
| 10 - 30          | Orta            |  |
| 30 - 50          | Sıkı            |  |
| 50               | Çok sıkı        |  |

Tablo 2.4'te araştırmacılar tarafından önerilen zemin kıvamına ile diğer parametreler arasındaki bağıntılar gösterilmiştir.

**Tablo 2.4.** Kohezyonsuz zeminlerde bağıl yoğunluk ile diğer parametreler arası ilişki[29]

|  | Zemin<br>Türü                              | Bağıl Yoğunluk (Dr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parametreler ve<br>Birimleri                                                                                                                                 | Referans                                          |
|--|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|  | Normal<br>konsolide<br>olmuş kum           | $Dr = \sqrt{\frac{N}{1.7 \cdot (10 + \sigma_{\nu}^{+})}}$ (bkz. Not)                                                                                                                                                                                                                                                                                                                                                                                                                              | σ <sub>v</sub> ' =efektif düşey<br>gerilim (psi)                                                                                                             | Gibbs ve<br>Holtz (1957)                          |
|  | Normal<br>konsolide<br>olmuş silis<br>kumu | $Dr = \left(\frac{N}{0.234\sigma_v + 16}\right)^{0.5} \text{ (bkz. Not)}$                                                                                                                                                                                                                                                                                                                                                                                                                         | N=30 cm için SPT<br>darbe sayısı<br>oç' = Deney<br>derinliğindeki<br>efektif düşey (örtü<br>yükü) gerilimi<br>(kN/m <sup>2</sup> )                           | Meyerhof<br>(1956)                                |
|  | Kaba kum                                   | $Dr = \left(\frac{N}{0.773 \cdot \sigma_{\psi}^{+} + 22}\right)^{0.5}  \sigma_{\psi}^{+} < 75kPa$ $Dr = \left(\frac{N}{0.193 \cdot \sigma_{\psi}^{+} + 66}\right)^{0.5}  \sigma_{\psi}^{+} \ge 75kPa$ $(bkz. Not)$                                                                                                                                                                                                                                                                                | σ,' = Deney<br>derinliğindeki<br>efektif düşey<br>gerilimi (kN/m²)                                                                                           | Peck ve<br>Bazaraa<br>(1969)                      |
|  | Normal<br>konsolide<br>olmuş kum           | $\begin{split} D_{F} &= \left(\frac{N_{ao}}{a \cdot \sigma_{u}^{'} + b}\right)^{as} \\ \text{Eğer kum aşırı konsolide olmuş ise, (b) katsayısı } \\ C_{r} \text{faktörü kadar artırılır:} \\ C_{r} &= \frac{1 + K}{1 + 2K_{exc}} \text{Burada;} \\ K_{o} &= aşırı konsolide olmuş kumlar için kullanılan efektif yatay gerilimin düşey gerilime oranı } \\ K_{onc} &= normal konsolide olmuş kumlar için efektif yatay gerilimin düşey gerilime oranı \approx 1 - \sin \varphi (bkz. Not)$        | N <sub>eo</sub> = Teorik en<br>büyük enerjinin %<br>60 değerinde<br>düzeltilmiş darbe<br>sayısı<br>a = 0.3 (ortalama<br>değer)<br>b = 30 (ortalama<br>değer) | Skempton<br>(1986)                                |
|  | Çakıllı<br>Zeminler                        | $\begin{array}{l} Dr = 25 (N)^{0.47} \cdot (\sigma_v^{-})^{-0.14} \; (\text{kum için}) \\ Dr = 18 (N)^{0.47} \cdot (\sigma_v^{-})^{-0.14} \; (\% \; 25 \; \text{oranında Çakıl} \\ \text{içeren kum-çakıl karışımı için} \\ Dr = 25 (N)^{0.44} \cdot (\sigma_v^{-})^{-0.12} (\% \; 50 \; \text{oranında Çakıl} \\ \text{içeren kum-çakıl karışımı için} \\ Dr = 25 (N)^{0.44} \cdot (\sigma_v^{-})^{-0.12} \; (\text{Tüm kumlar için} \\ \text{ortalama değer}) \\ (\text{bkz. Not)} \end{array}$ | σ,' = efektif düşey<br>gerilim (kPa)                                                                                                                         | Yoshida ve<br>Ikemi (1988)<br>(bkz. Şekil<br>3.4) |

Zeminin SPT-N değeri ile kayma mukavemeti arasındaki bağıntılardan bir başkası da şu şekilde ifade edilmektedir;

- Zemin profili içinde %5 oranından daha fazla ince malzeme bulunuyor ise;
   f = 25 + 0.15 Dr Olarak verilmiştir.
- Zeminde %5 oranından az ince malzeme bulunuyor ise;
  - f = 30 + 0.15 Dr Şeklindedir [37].

Ayrıca, Gibz ve Holtz (1957), Mayerhof (1956), Peck ve Bazaraa (1969) ve Yoshida ve İkemi (1988) tarafından kaba daneli zeminler için SPT-N ile izafi sıkılık aralarında verilen ilişkiler Tablo 2.5'te topluca gösterilmiştir [38]

| Zemin                             | Izafi sıkılık                                                                                                                                                                                                                                                                               | Parametreler                                                       | Referans                     |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|
| türü                              | (D <sub>r</sub> )                                                                                                                                                                                                                                                                           | ve Birimler                                                        |                              |
| Normal<br>konsolide<br>kumlar     | $D_r = \left(\frac{N_{60}}{1.7(10 + 0.15\sigma'_V)}\right)^{0.5}$                                                                                                                                                                                                                           | σ΄ν = Efektif<br>düşey gerilme<br>(kPa)                            | Gibbs ve<br>Holtz (1957)     |
| Normal<br>konsolide<br>silika kum | $D_r = \left(\frac{N_{60}}{16 + 0.234\sigma'_{\nu}}\right)^{0.5}$                                                                                                                                                                                                                           | σ΄ν = Deney<br>derinliğindeki<br>efektif jeolojik<br>gerilme (kPa) | Meyerhof<br>(1956)           |
| Kaba<br>kumlar                    | $D_{r} = \left(\frac{N_{60}}{22 + 0.773\sigma_{v}^{'}}\right)^{0.5} \sigma v < 75 kPa$ $D_{r} = \left(\frac{N_{60}}{66 + 0.193\sigma_{v}^{'}}\right)^{0.5} \sigma v \ge 75 kPa$                                                                                                             | σ', =Deney<br>derinliğindeki<br>efektifjeolojik<br>gerilme (kPa)   | Peck ve<br>Bazaraa<br>(1969) |
| Çakıllı<br>zeminler               | $D_{r} = (N_{60})^{0.57} \sigma_{\nu}^{, -0.14} $ (ince kum)<br>$D_{r} = 18(N_{60})^{0.57} \sigma_{\nu}^{, -0.14} $ (Çakıl oranı %25)<br>$D_{r} = 25(N_{60})^{0.44} \sigma_{\nu}^{, -0.13} $ (Çakıl oranı %50)<br>$D_{r} = 25(N_{60})^{0.46} \sigma_{\nu}^{, -0.12} $ (Ortalama tüm kumlar) | σ΄ν = Efektif<br>düşey gerilme<br>(kPa)                            | Yoshida ve<br>İkemi (1988)   |

Tablo 2.5. SPT Direnci ile Dr arasında korelasyon [38]

Yüzeye yakın tabakalarda oluşan kayma dalgası hızı (Vs) inşaat mühendisliği ve ilgili anabilim dallarında hesaplamalarda kullanılan önemli bir yöntemdir. Zeminlerin dinamik özellikleri arasında yer alan kayma dalgası hızı, zeminin sıvılaşma potansiyelinin tahminin edilmesinde ve zeminin ile ilgili bazı parametrelerin belirlenmesinde kullanılmaktadır.

Aynı zamanda birçok araştırmacı tarafından SPT direnci ile kayma dalgası hızı arasındaki bağıntılar Tablo 2.6'da topluca gösterilmiştir [39]. Burada  $\sigma_v$  = efektif düşey gerilme (kPa), D=derinlik (m), N=SPT-N'nin düzeltilmemiş değeri, r = korelasyon katsayısı, n = veri sayısıdır.

|  | Yapılan çalışmalar                                               | Zemin Cinti                                                            | V <sub>s</sub> (m/sn)                                                                                                                                                                                                                                    |
|--|------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | İmai və yoshinzura (1970)                                        | Tem                                                                    | 76 <i>N</i> <sup>0.33</sup>                                                                                                                                                                                                                              |
|  | Imai ve dig. (1976)                                              | Tim                                                                    | 89.8 <i>N</i> <sup>0.341</sup> , <i>n</i> = 756                                                                                                                                                                                                          |
|  | Imai (1977)                                                      | Halosen (H) Kil<br>Halosen (H) Kum<br>Plastosen (P) Kal                | 102N <sup>0.29</sup><br>81N <sup>0.33</sup><br>114N <sup>0.29</sup>                                                                                                                                                                                      |
|  | Olita ve Goto (1978)                                             | Finitosa (F) Kan<br>Kal<br>Orta kum<br>Kaba kum<br>Çakulı kum<br>Çakul | $69N^{0.17}D^{n.2}EFn = 300$ $F = 1.00, E = I(H)veya1.3(P)$ $F = 1.09, E = I(H)veya1.3(P)$ $F = 1.07, E = I(H)veya1.3(P)$ $F = 1.14, E = I(H)veya1.3(P)$ $F = 1.45, E = I(H)veya1.3(P)$                                                                  |
|  | İmai və Tonouchi (1962)                                          | Tom                                                                    | $97N^{0.114}, n = 1654, r = 0.868$                                                                                                                                                                                                                       |
|  | Okamoto ve diğ.(1989)                                            | Plastosan (P) Kum                                                      | 125N <sup>03</sup>                                                                                                                                                                                                                                       |
|  | İyisan (1966),<br>Aşağı ve karşıt kuyu<br>deneyleri yapılmıştır. | Tum<br>Tum<br>Kil (CL)<br>Kum (SM)<br>Çakıl (GP, GM)                   | $51.5N^{0.516}, n = 65, r = 0.81$<br>$61N^{0.267}(100_{ro})^{0.281}, n = 65, r = 0.83$<br>$47.3N^{0.324}(100_{ro})^{0.27}, n = 65, r = 0.90$<br>$54N^{0.33}(100_{ro})^{0.221}, n = 65, r = 0.64$<br>$205.7N^{0.034}(100_{ro})^{0.133}, n = 65, r = 0.53$ |

Tablo 2.6. Kayma dalgası hızı ile SPT-N arasında korelasyon [39]

Terzaghi ve Peck (1967) ve Bowles (1968) tarafından önerilen, SPT direnci ile serbest basınç mukavemeti arasında yer alan çeşitli bağıntılar Tablo 2.7'de gösterilmiştir [28, 40].

**Tablo 2.7.** SPT-N'e göre kohezyonlu zeminlerin kıvamı ile q<sub>u</sub> arasındaki değerler [28, 40]

|             | Terzaghi ve Peck (1967) |           | Bowles (1968)       |                      |
|-------------|-------------------------|-----------|---------------------|----------------------|
| Zemin       | SPT-N <sub>60</sub>     | qu (kPa)  | SPT-N <sub>60</sub> | q <sub>u</sub> (kPa) |
| Kıvamı      |                         |           |                     |                      |
| Çok yumuşak | <2                      | <25       | <2                  | 0 - 25               |
| Yumuşak     | 2 - 4                   | 25 - 50   | 2 - 4               | 25 - 50              |
| Orta Katı   | 4 - 8                   | 50 - 100  | 4 - 8               | 50 - 100             |
| Katı        | 8 - 15                  | 100 - 200 | 8 - 16              | 100 - 200            |
| Çok Katı    | 15 - 30                 | 200 - 400 | 16 - 32             | 200 - 400            |
| Sert        | >30                     | >400      | >32                 | >400                 |

Bazı araştırmacılar, zemin profiline bağlı olarak SPT direnci ve serbest basınç mukavemeti (q<sub>u</sub>) arasında bazı bağıntılar önermişlerdir. Bu bağıntılar Tablo 2.8'de toplu olarak gösterilmektedir [41].

Tablo 2.8. Zemin cinslerine göre qu ile SPT-Narasındaki ilişkiler [41]

| Yapılan Çalışmalar  | Zemin Cinsi             | qu (kPa)            |
|---------------------|-------------------------|---------------------|
| Sanglerat (1972) ve | Kil                     | 25N                 |
| Tomlinson (1986)    | Sildi Kil               | 20N                 |
|                     | Yüksek Plastisiteli Kil | 25N                 |
| Sowers (1979)       | Orta Plastisiteli Kil   | 15N                 |
|                     | Düşük Plastisiteli Kil  | 7.5N                |
| Nixon (1982)        | Kil                     | 24N                 |
| Kulhawy ve Mayne    | Kohezyonlu zemin        | 58N <sup>0.72</sup> |
| (1990)              |                         |                     |

#### 2.4.2 Konik Penetrasyon Deneyi (CPT)

CPT arazide uygulanan bir deneyidir. 1920 senelerinde Hollanda'da kum zeminlerde uygulanacak olan kazık ebatlarının hesaplanması amacı ile çalışmaya başlanmıştır CPT deneyi 60° bir silindir sonda ve 10 cm<sup>2</sup> kesit alanına sahip konik bir başlığın hidrostatik basınç eşliğinde 20 mm/s sabit bir hız ile zemine itilmesi işlemidir.

CPT deneyi genellikle yumuşak silt, yumuşak kil ve ince-orta kum zemin profillerinde uygulanan bir deneydir. Konik başlığın zemine itilme işlemi esnasında karşılaştığı toplam direnç ( $q_t$ ) ölçülür. Bu toplam direnç ( $q_t$ ), uç direnci ( $q_c$ ) ve çevre sürtünmesi ( $f_s/q_s$ ) bileşenlerinden oluşmaktadır. Ayrıca özel bir donanımla boşluk suyu basıncı da ölçülebilmektedir. CPT deneyi görseli Şekil 2.11'de gösterilmiştir.


Şekil 2.11. Koni Penetrasyon Deneyi [31]

Koni penetrasyon deneyi şunlar hakkında bilgi sahibi olmamızı sağlar;

- Tabaka profilleri, zemin cinsi ve tabaka kalınlıkları,
- Kayma mukavemeti açısı (Φ),
- Tabakaların rölatif sıkılığı (Dr),
- Drenajsız kayma mukavemeti (c<sub>u</sub>),
- Taşıma gücü,
- Sıvılaşma hesabı

Gibi birçok geoteknik konuda arazi incelemelerinde kullanılır ve bilgi sahibi olunmasını sağlar.

CPT deneyi hızlı uygulanabilir olmasının yanında kolay uygulanmaktadır. Araştırmacıya devamlı kaydedebilmeyi sunar. SPT deneyinde numune alınırken numunede oluşan örselenme CPT deneyi uygulamasında minimum düzeye inmektedir. CPT ekonomik bir deney olduğu için tekrarlanabilmesi daha kolaydır. Bu avantajlarının yanı sıra bazı dezavantajları vardır. Bunlar; deney esnasında numune alınamadığı için laboratuvar deneyleri yapılamamaktadır. Ayrıca her zemin profiline uygulanamıyor oluşu da başka bir dezavantajıdır.

CPT deneyi ilk zamanlarda sondanın zemine itilmesi ile karşılaşılan toplam direnci ölçmekteydi. Gelişen teknoloji ile 1960'lı yıllarda koni arkasına geçirilen sürtünme gömleği ile koninin geçtiği zemin katmanlarının sürtünme dirençleri ölçülür hale gelmiştir. Bu sayede zemin cinsleri CPT deneyi ile daha doğru olarak belirlenmeye başlamıştır. Yakın tarihlerde çalışmalar arttıkça koni içine trans düşer yerleştirilmesi ile koninin geçtiği tabakaların boşluk suyu basınçları ölçülmeye başlanmıştır. CPT deneyi ile ölçülebilen boşluk suyu basıncı CPT deneyi kısaltmasına ön ek olarak P alarak PCPT veya sonuna U eki alarak CPTU şeklinde ifade edilmektedir.

Koni penetrasyon deneyi uygulanırken, penetrometre etrafında boşluk suyu basıncının oluşması sebebi ile düzeltme uygulanmaktadır. Aynı zamanda, zemin katmanları arasında bulunan ince tabakaların mekanik özellikleri tam olarak ölçülmemesi sebebi ile katmanlaşma düzeltmesi uygulanmaktadır. SPT deneyinde uygulandığı gibi, CPT deneyi sonuçlarında da efektif düşey gerilme etkisi olduğu için derinlik (düşey yük) düzeltmesi uygulanmaktadır. CPT deneyinde kullanılan zemin sınıflamaları Şekil 2.12 gösterilmiştir.



Şekil 2.12. CPT zemin sınıfı

Bunun yanında koni penetrasyon deneyi uygulanırken aletin üzerine yerleştirilen çeşitli teçhizatlardan yararlanılarak zeminin elektrik iletkenliği ile kayma dalgası hızı ölçülürken kamera tabakalar içinde ilerledikçe gözlemlenen katmanların eş zamanlı olarak kaydedilmesi (vision cone penetrometer) mümkün olabilmektedir.

İlk yıllarda yüzeyden derinlere inildikçe ölçülen parametreler manometreler yardımı ile gözlemlenmekteydi. Teknoloji gelişip çalışmalar ilerledikçe kablosuz akustik sistemler kurulmuş ve mikroişlemci yardımı ile ses sinyaline çevrilip yüzeye hatasız aktarımı sağlanmıştır. Günümüzde ise radyo dalgaları ile çalışan sistemler kurulmuştur. Bu sistemler koni ucuna yerleştirilen belleklere verileri depolayabilmektedir. Bahsi geçen CPT deneyinde kullanılan donanımları ve uygulama şekli Şekil 2.13'te gösterilmiştir.



Şekil 2.13. Akustik CPT ekipmanları

CPT deneyinde killi zeminlerin kıvamı ile drenajsız kayma mukavemeti bulunabilmektedir. Bununla ilgili bağıntı Tablo 2.9'da verilmiştir.

| Kıl Zeminin Kıvamı | Koni Uç Direnci q <sub>c</sub> (MPa) |
|--------------------|--------------------------------------|
| Çok yumuşak        | 0.2 - 0.4                            |
| Yumuşak            | 0.4 - 0.6                            |
| Orta katı          | 0.6 - 1.0                            |
| Katı               | 1.0 - 2.0                            |
| Çok katı           | >2.0                                 |

Tablo 2.9. Kil Zeminlerde Kıvam – Koni Uç Direnci Bağıntısı [41]

Kohezyonu olmayan zeminlerde koni uç mukavemeti ve rölatif sıkılık arasındaki bağıntı Tablo 2.10'da verilmiştir [42].

| Relatif sıkılık | Koni uç direnci q <sub>c</sub> (MPa) |
|-----------------|--------------------------------------|
| Çok gevşek      | >2                                   |
| Gevşek          | 2 - 4                                |
| Orta sıkı       | 4 - 12                               |
| Sıkı            | 12 - 20                              |
| Çok sıkı        | >20                                  |

 Tablo 2.10. Kohezyonsuz Zeminlerde Rölatif Sıkılık - (qc) Bağıntısı [42]

Tablolardan anlaşıldığı üzere gevşek zeminlerde uç mukavemette meydana gelen artış derinliğin artmasından az etkilenirken, sıkı zeminlerde derinliğin artması ile uç mukavemette meydana gelen artışta da artma olduğu gözlemlenmektedir [41].

# 2.4.3. Kayma Dalgası Hızı Yöntemi (Vs)

Kayma dalgası hızı (Vs) yönteminden zeminlerin dinamik davranış özelliklerini belirlemekte faydalanılmaktadır [43]. Kayma dalgası hızı yönteminden, zeminlerin sıvılaşma potansiyeli, zemin büyütmesi, zemin hâkim periyodu, zeminde oluşan gerilmeler ve zeminin deprem özelliklerinin tahmin edilmesinde yararlanılmaktadır [43].

Arazide ölçülen kayma dalgası hızlarına göre Andrus ve Stoke (1991, 2000) sıvılaşma direnci kıstasları geliştirilmiştir [44]. Kayma dalgası hızı ve sıvılaşma direnci birçok faktörden etkilenmektedir. Bu faktörler; boşluk oranı, jeolojik yaş, efektif çevresel basınç ve gerilme tarihçesidir. CPT ve SPT deneylerinin uygulanmasını olası olmayan zemin tiplerinde kayma dalgası hızı yönteminden yararlanılmaktadır. Bu durum araştırmacılara avantaj sağlarken yumuşak kil içeriği fazla olan ve sıvılaşma riski olmayan zemin tiplerinin tanımlanamayışı ve boşluk suyu basıncının yüksek olması kayma dalgası hızı yöntemi ile ilgili dezavantajlı durum oluşturmaktadır. Bu sebep ile uygulama esnasında yeterli sayıda sondaj yapılması ve uygulama alanında arazi deneylerinin yapılması zeminlerin sıvılaşma potansiyelinin araştırılmasında SPT önerilmektedir. Sıvılaşma potansiyeli yüksek olan zeminler (kayma dalgası hızı yüksek çıkabilmektedir) SPT ve CPT deneyi yardımı ile anlaşılmaktadır. Düzeltilmiş kayma dalgası hızı;

$$Vs_1 = Vs \left(\frac{Pa}{\sigma' va}\right)^{0,25}$$
(2)

İle bulunur.

Bu değerlere göre zeminin sıvılaşma potansiyeli deprem büyüklüğü 7.5 olan bir deprem için Şekil 2.14'ten alınabilir [45].

Ayrıca maksimum ivme ile deprem noktasına uzaklık arasındaki ilişki Şekil 2.15'te gösterilmiştir.



Şekil 2.14. Sıvılaşma direncinin Vs ile bulunması [45]



Şekil 2.15. Maksimum ivmesi deprem merkezine olan uzaklık ilişkisi [46]

# **3.MATERYAL VE YÖNTEMLER**

### 3.1. Sondaj Lokasyonları ve Verileri

Çalışma kapsamında Seferihisar Belediyesi arşivinden alınan zemin etüdü raporlarından SPT analizi için gerekli olan veriler elde edilmeye çalışılmıştır. İncelemesi yapılan Seferihisar Belediyesi'nden alınmış olan verilerin orijinal raporları sırası ile EK1-18'de sunulmuştur. Elde edilen tüm veriler, raporların içerdiği o döneme ait sıvılaşma sonuçları ile beraber Tablo 3.1'de gösterilmiştir. Sondajların yapıldığı mevkilerin harita üzerinde gösterimi ise Şekil 3.1'de verilmiştir. Sondajlara ait koordinatlar Tablo 3.2'de ve harita üzerindeki 3 boyutlu gösterimi ise Şekil 3.2'de verilmiştir.

Tablo 3.1 ve Tablo 3.3'te gösterilen veriler DBYBHY esaslarına göre yapılmış analizleri kapsamaktadır. TBDY 2018'e göre analiz ve sonuçları Bölüm 4.2'de verilmiştir.

| Semt    | Ada-PARSEL | Sondaj Tipi | Derinlik (m) | Yass (m) | Doğal Su İçeriği<br>(Wn) | İnce Malzeme<br>Yüzdesi | Likit Limit (LL) | SPT N <sub>30</sub> (ort.) | Sıvılaşma Riski | FS Oranı* |
|---------|------------|-------------|--------------|----------|--------------------------|-------------------------|------------------|----------------------------|-----------------|-----------|
| Sığacık | 55-10      | SPT         | 1,95         | 3        | 20,5                     | 73,18                   | 32,2             | 19                         | YOK             |           |
| Sığacık | 1250-3     | SPT         | 6,45         | Yok      | 21,2                     | 66                      | 34               | -                          | YOK             |           |
| Sığacık | 97-28      | Karot       |              | Yok      |                          | -                       |                  | Karot                      | YOK             |           |
| Sığacık | 1161-1     | SPT         | 3            | 1        | 7,1                      | 2,70                    | NP               | 6                          | VAR             | 0,80      |
| Sığacık | 1123-8     | SPT         | 1,95         | 3        | 13,3                     | 19,72                   | 25,6             | 19                         | YOK             |           |
| Sığacık | 3198-13    | Karot       | 1,50         | Yok      | 19,9                     | 54,32                   | 40,3             | Karot                      | YOK             |           |
| Sığacık | 1163-8     | SPT         | 1,95         | 2,5      | 19,04                    | 19,42                   | NP               | 5                          | VAR             |           |
| Sığacık | 819-4      | Karot       | -            | Yok      | -                        | -                       | -                | Karot                      | YOK             |           |
| Sığacık | 1108-3     | Karot       | -            | Yok      | 24,7                     | 78,07                   | 42,2             | 30                         | YOK             |           |
| Sığacık | 1161-10    | SPT         | 1,95         | 2        | 19,8                     | 17,2                    | NP               | 20                         | YOK             |           |
| Sığacık | 91-65      | SPT         | 1,95         | 1,5      | 21,3                     | 47,8                    | 45               | 11                         | VAR             |           |
| Sığacık | 51-6       | SPT         | 1,95         | 0,8      | 11,8                     | 3,18                    | NP               | 17                         | YOK             | 2,46      |
| Sığacık | 1279-1     | SPT         | 1,95         | 1        | 12,9                     | 5,27                    | NP               | 14                         | VAR             | 0,82      |
| Sığacık | 55-1       | SPT         | 1,95         | Yok      | 17,33                    | 76,52                   | NP               | 9                          | YOK             |           |
| Sığacık | 1085-5     | Karot       | 6            | Yok      | -                        | -                       | -                | Karot                      | YOK             |           |
| Sığacık | 1163-1     | SPT         | 15           | 1,90     | 15,8                     | 37,08                   | 33,8             | 7                          | VAR             |           |
| Sığacık | 89-140     | SPT         | 15           | 1,90     | 12,2                     | 4,95                    | NP               | 2                          | VAR             |           |
| Sığacık | 93-11      | SPT         | 3,45         | 1,50     | 8,2                      | 1,54                    | NP               | 9                          | VAR             |           |

Tablo 3.1. Seferihisar Belediyesi'nden elde edilen rapor verileri

\*Mevcut raporlarda DBYBHY'e göre sıvılaşma analizi Tokimatsu ve Yoshimi (1983) kabulüne göre yapılarak Fs değeri hesaplanmıştır [47].



Şekil 3.1. Sondaj Lokasyonları [48]

| ADA-PARSEL | ENLEM          | BOYLAM  | SDS*  |
|------------|----------------|---------|-------|
| 55-10      | 38.1948        | 26.7864 | 1,160 |
| 1250-3     | 38.1904        | 26.8036 | 1,165 |
| 97-28      | 38.2027        | 26.7908 | 1,317 |
| 1161-1     | 38.1907        | 26.7866 | 1,159 |
| 1123-8     | 38.1988        | 26.7931 | 1,164 |
| 3198-13    | 38.1907        | 26.7814 | 1,305 |
| 1163-8     | 38.1901        | 26.7879 | 1,160 |
| 819-4      | 38.1957        | 26.7970 | 0,986 |
| 1108-3     | 38.1997        | 26.7805 | 1,293 |
| 1161-10    | 38.1903        | 26.7859 | 1,159 |
| 91-65      | 38.1925        | 26.7874 | 1,161 |
| 51-6       | 38.1939        | 26.7887 | 1,161 |
| 1279-1     | 38.1945        | 26.7868 | 1,163 |
| 55-1       | 38.1950        | 26.7862 | 1,161 |
| 1085-5     | 1085-5 38.2022 |         | 0,986 |
| 1163-1     | 1163-1 38.1902 |         | 1,160 |
| 89-140     | 38.1885        | 26.7856 | 1,159 |
| 93-11      | 38.1924        | 26.7859 | 1,159 |

# Tablo 3.2. Sondaj Koordinatları ve $S_{DS}$ Değerleri

\*SDS değerleri  $M_w$ =7.5 ve DD2 için hesaplanmıştır.



Şekil 3.2. Sondaj lokasyonlarının ve ilgili noktalara ait S<sub>DS</sub> değerlerinin harita üzerinde gösterimi

Tablo 3.1'de yer alan ada parsellere ait veriler raporlara uygun olarak işlenmiştir. Bir zeminin sıvılaşabilir olması için bazı şartların bir arada sağlanması gerekmektedir;

Zemin profillerinin sıvılaşabilir zemin profili tanımlamasına uyması gerekmektedir. TBDY 2018'e göre; sıvılaşabilir zeminler yeraltı su seviyesinin altında yer alan ve yüzeyden 20 m derinliğe kadar kohezyonsuz veya düşük kohezyonlu (PI<%12) zeminler olarak tabir edilen siltli kum, çakıllı kum, kum, plastik olmayan silt ve silt kum karışımları olan zeminlerdir [49].

Bu şartlara göre sıvılaşabilir zeminler için azami şartları sağlayan veriler seçilen derinlikler için TBDY 2018 analizlerinde kullanılacakları şekilde Tablo 3.3'te gösterilmiştir.

| Semt    | Ada-PARSEL | Sondaj Tipi | Derinlik (m) | Yass (m) | Doğal Su<br>İçeriği (w <sub>n</sub> ) | İnce Malzeme<br>Yüzdesi | Likit Limit (LL) | SPT N <sub>30</sub> (ort.) |
|---------|------------|-------------|--------------|----------|---------------------------------------|-------------------------|------------------|----------------------------|
| Sığacık | 55/10      | SPT         | 1,95         |          | 20,5                                  | 73,18                   | 32,2             | 19                         |
| Sığacık | 1161/1     | SPT         | 3            | 2        | 7,1                                   | 2,70                    | NP               | 6                          |
| Sığacık | 1123/8     | SPT         | 1,95         | 3        | 13,3                                  | 19,72                   | 25,6             | 19                         |
| Sığacık | 1163/8     | SPT         | 1,95         | 2,5      | 19,04                                 | 19,42                   | NP               | -                          |
| Sığacık | 1161/10    | SPT         | 1,95         | 2        | 19,8                                  | 17,2                    | NP               | 20                         |
| Sığacık | 91/65      | SPT         | 1,95         | 1,5      | 21,3                                  | 47,8                    | 45               |                            |
| Sığacık | 51/6       | SPT         | 1,95         | 0,8      | 11,8                                  | 3,18                    | NP               | 17                         |
| Sığacık | 1279/1     | SPT         | 1,95         | 1        | 12,9                                  | 5,27                    | NP               | 14                         |
| Sığacık | 1163/1     | SPT         | 15           | 1,90     | 15,8                                  | 37,08                   | 33,8             | 7                          |
| Sığacık | 89/140     | SPT         | 15           | 1,90     | 12,2                                  | 4,95                    | NP               | 2                          |
| Sığacık | 93/11      | SPT         | 3,45         | 1,50     | 8,2                                   | 1,54                    | NP               | 9                          |

Tablo 3.3. İnceleme alanı kapsamında kullanılacak raporların verileri

# 3.2. TBDY 2018'e Göre Sıvılaşma Potansiyeli Analizi Yöntemi

Bilindiği üzere 18 Mart 2018 tarihinde resmî gazetede yayımlanan ve 1 Ocak 2019 tarihi itibari ile yürürlüğe giren TBDY 2018'de, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmeliği (DBYBHY 2007) üzerine çeşitli eklemeler yapılmasının yanı sıra kayda değer değişiklikler de yapılmıştır. Bu değişikliklerden bir kısmı SPT deneyi ile sıvılaşma analizinde gerçekleştirilmiştir. TBDY 2018'de sıvılaşma için özellikle bir bölüm oluşturulmuş ve dikkat edilmesi gereken hususlar belirtilmiştir. Bu hususlardan bazıları aşağıda maddeler halinde sunulmuştur.

- "Deprem Tasarım Sınıfi DTS=1, DTS=1a, DTS=2 ve DTS=2a olan binalar için ZD, ZE veya ZF grubuna giren, sürekli bir tabaka veya kalın mercekler halinde bulunan ve 16.6.6'da tanımlanan durumlar dışındaki kumlu zeminlerde sıvılaşma potansiyelinin bulunup bulunmadığının, arazi ve laboratuvar deneylerine dayanan uygun analiz yöntemleri ile incelenmesi ve analiz sonuçlarının ayrıntılı olarak rapor edilmesi zorunludur [49].
- Zemin sıvılaşması, yeraltı su seviyesinin altında yer alan ve yüzeyden 20 m derinliğe kadar olan kohezyonsuz ya da düşük kohezyonlu (PI<%12) zeminlerin deprem sarsıntısı altında, boşluk suyu basıncındaki artışa paralel kayma mukavemeti ve rijitliğindeki önemli oranda azalış olarak tanımlanacaktır [49].
- Zemin sıvılaşmasının değerlendirilmesine yönelik olarak yapılacak zemin araştırma çalışmaları en az, standart penetrasyon deneyi (SPT) ve/veya koni penetrasyon deneyi (CPT)'nin yapımına ek olarak, ilgili zemin tabakalarındaki dane çapı dağılımı, su muhtevası ve Atterberg limit değerlerinin belirlenmesini içerecektir [49].
- Potansiyel olarak sıvılaşabilir zeminler, yeraltı su tablasının altında yer alan kum, çakıllı kum, siltli killi kum, plastik olmayan silt ve silt-kum karışımları olarak tanımlanacaktır [49].
- Temel altı zeminlerinin potansiyel olarak sıvılaşabilir zeminlerden oluştuğu ve bu zemin tabakalarında düzeltilmiş SPT vuruş sayısının, N1,60, 30 darbe / 30 cm değerinden küçük olduğu durumlarda zemin sıvılaşması tetiklenme değerlendirmesi yapılacaktır [49].
- Deprem Tasarım Sınıfi'nın DTS = 4 olduğu ve aynı zamanda aşağıdakilerden en az birinin sağlandığı durumlarda sıvılaşma tetiklenme analizi yapılmayabilir [49]:

(a) Kil içeriğinin %20'den fazla ve plastisite indisinin %10'dan yüksek olduğu kumlu zeminlerde;

(b) ince dane yüzdesinin %35'ten fazla ve düzeltilmiş SPT vuruş sayısının, N1,60, 20 vuruş /30 cm'den yüksek olduğu kumlu zeminlerde;

• Zemin sıvılaşması değerlendirmesinde sıvılaşma tetiklenmesi riski yanında, sıvılaşma sonrası zemin mukavemeti ve rijitlik kaybı ile temel zemininde oluşabilecek yer değiştirmelerin dikkate alınması gereklidir [49]." Zeminlerin sıvılaşma potansiyelini değerlendirmek için kullanılan en yaygın yöntem gerilme esaslı yöntemlerdir. Bu yöntemlerde deprem gibi tekrarlı kayma gerilmeleri ile zeminin sıvılaşmaya karşı tekrarlı kayma direnci kıyaslanmaktadır. Bu kıyaslamanın sonucunda zeminin sıvılaşmaya karşı direnci belirlenmektedir. Bu yaklaşım ilk olarak Seed ve Idriss (1971) tarafından önerilmiştir [50]. Takip eden yıllarda, özellikle 2000'li yılların başında yapılan çalışmalar ile büyük ölçüde gelişim sağlanmıştır [51]. Bu yöntem günümüzde dünyanın pek çok ülkesinde yaygın olarak kullanılmaktadır. Türkiye'de 2019 yılında yürürlüğe giren yeni Türkiye Bina Deprem Yönetmeliği'nde (TBDY) de sıvılaşma analizleri için önerilen bir yöntem olmuştur. TBDY 2018'de sıvılaşma analizinde kullanılan bazı değişikler aşağıda sırası ile bahsedilmektedir.

DBYBHY 2007'de deprem tehlikesini tanımlayan temel parametre olan Etkin Yer İvmesi iken TBDY 2018'de bu parametre yerine tasarım ivme spektrumu, kısa periyod ve 1,0 s periyod için AFAD'ın hazırlamış olduğu Deprem Tehlikesi Haritası'nda tanımlanan harita spektral ivme katsayıları ve yerel zemin etki katsayıları getirilmiştir. Bu tasarım spektrumları Şekil 3.3'te gösterilmiştir.



Şekil 3.3. Tasarım Spektrumu ve Tanımlayıcı Parametreleri

Seed ve Idriss (1971) tarafından hesap temelleri ortaya atılmış olan, zeminlerin gerilme esaslı sıvılaşma duyarlılığı zamanla çalışmaların artması ile daha da güncellenmiş ve kumların sıvılaşma duyarlılığı pek çok ülkede kabul görmüş ve TBDY 2018 yönetmeliğinde de yerini almıştır [47]. Pek çok ülke tarafından kabul görülen bu yöntemde zeminlerin sıvılaşmaya karşı güvenliği, zeminin tekrarlı direnç oranının (CRR), zeminde meydana gelen deprem kaynaklı tekrarlı gerilme oranı ile (CSR) karşılaştırılmasıdır. TBDY 2018'de ise bilinen bu yaklaşımda bazı ufak değişikliklere gidilmiştir. Sıvılaşmaya karşı güvenlik koşulu, sıvılaşma direncinin ( $\tau_R$ ) zeminde depremden kaynaklanan ortalama tekrarlı kayma gerilmesinin ( $\tau_{deprem}$ ) oranı olarak tanımlanmış ve bu oranın da 1,1 değerinden küçük olması halinde sıvılaşma riskinin olacağı belirtilmiştir. Denklem 3'te  $\tau_{deprem}$  için kullanılan eşitlik sunulmuştur.

$$\tau_{deprem} = 0.65\sigma_{\nu 0} 0.4S_{DS} r_d \tag{3}$$

Bu formülasyonda;  $\sigma_v$  sıvılaşma analizinin yapıldığı derinlikteki (z) toplam gerilmeyi; S<sub>DS</sub> AFAD'ın hazırlamış olduğu sismik tehlike haritasından inşaat alanının koordinatları girilerek ve tasarımda seçilen tekrar aralığına göre elde edilebilen kısa periyot tasarım spektral ivme katsayısını ve r<sub>d</sub> de gerilme azalım katsayısıdır. Bu katsayı da Denklem 3'te verilen derinliğe bağlı ifadelere bağlı olarak belirlenmektedir [52].

$$rd = \begin{cases} z \le 9,15 \ m & 1 - 0,00765z \\ 9,15 \ m \le 23 \ m & 1,174 - 0,0267z \\ 23 \ m \le 30 \ m & 0,744 - 0,008z \\ z \le 9,15 \ m & 0,50 \end{cases}$$
(4)

Örselenmemiş numuneler üzerinde uygulanan üç eksenli basınç deneyi, tekrarlı burulmalı kesme ile tekrarlı basit kesme gibi laboratuvar deneyleri ile zeminlerin tekrarlı direnç oranları (CRR) belirlenmektedir. Ancak bu deneyler maliyetli ve zaman açısından dezavantajlı olduğu için özel mühendislik yapıları dışında kalan yapılar için zeminlerdeki tekrarlı direnç oranı (CRR) arazi deneyleri sonucuna göre tahmin edilmeye çalışılmaktadır. Türkiye'de diğer yöntemlere göre SPT'ye dayalı sıvılaşma analizinin yapılması birçok açıdan kolaylık sağlamaktadır. Bu sebeple ülkemizde uygulanan yöntemler arasında ise SPT'ye dayalı sıvılaşma analizleri daha çok tercih edilmektedir.

SPT deneyinde arazide ölçülen vuruş sayısı (SPT-N) birçok faktöre bağlıdır. Bu faktörler; tij boyu, sondaj kuyusu çapı, enerji oranı, örtü basıncı ve numune alıcının türüdür. Bu faktörlerden dolayı SPT'ye dayalı hesaplamalarda kullanılacak olan SPT-N değeri düzeltilmelidir. %60 enerji verimliliği ve 100 kPa'lık örtü basıncı için düzeltilmiş SPT-N değeri;  $(N_1)_{60}$  olarak gösterilmekte ve formülasyonu Denklem 5'ten elde edilmektedir. TBDY 2018'de farklı SPT ekipmanları için önerilen düzeltme faktörleri Tablo 3.4'ten elde edilmektedir. Bununla beraber, C<sub>N</sub> katsayısı için de Denklem 6'daki formülün kullanılması önerilmiştir.

$$(N_1)_{60} = N.C_B.C_E.C_R.C_S.C_N$$
 (5)

$$C_N = 9,78 \sqrt{\frac{1}{\sigma_{\nu_0}'}} \le 1,7 \tag{6}$$

#### Düzeltme Katsayısı Değişken Değer 3m ile 4m aralığında 0.75 4m ile 6m aralığında 0.85 $C_{\mathbf{R}}$ 6m ile 10m aralığında 0.95 10m'den derin 1.00 Standart numune alıcı (iç tüpü olan) 1.00 $C_{\rm s}$ İç tüpü olmayan numune alıcı 1.10-1.30 Çap 65mm-115mm arasında 1.00 $C_{\rm B}$ Çap 150mm 1.05 Çap 200mm 1.15 Güvenli tokmak 0.60-1.17 $C_{\rm E}$ Halkalı tokmak 0.45-1.00 Otomatik darbeli tokmak 0.90-1.60

# Tablo 3.4. SPT düzeltme faktörleri [49]

Youd vd. (2001) tarafından ince dane oranı %5'ten az olan kumlar (FC  $\leq$  %5) ve M<sub>W</sub>=7,5 büyüklüğündeki deprem etkisi altında sıvılaşmanın gözlemlendiği ve gözlemlenmediği bölgeleri ayıran bir eğri oluşturulmuştur [51]. Bu eğri temiz kum eğrisi olarak tanımlanmaktadır. Bu durumda tekrarlı direnç oranı (CRR<sub>7.5</sub>) Denklem 7'de verilmektedir.

$$CRR_{7.5} = \frac{1}{34 - (N_{1})_{60,f}} + \frac{(N_{1})_{60,f}}{135} + \frac{50}{\left[10 \cdot (N_{1})_{60,f} + 45\right]^2} - \frac{1}{200}$$
(7)

Kum içerisindeki mevcut ince dane miktarı artış gösterdiği zaman zeminin tekrarlı kayma direnci de artmaktadır.  $M_W=7,5$  büyüklüğündeki deprem ve 100 kPa'lık örtü basıncı etkisi altındaki zemin için ince dane oranının %5'ten fazla olduğu durumlarda 100 kPa'lık ve %60 enerji verimliliği için düzeltilmiş SPT-N değerleri; (N<sub>1</sub>)<sub>60</sub>, Denklem 8'deki formülasyon ile eşdeğer temiz kum değerlerine (N<sub>1</sub>)<sub>60,f</sub> dönüştürülmektedir.

$$(N_1)_{60,f} = \alpha + \beta (N_1)_{60} \tag{8}$$

Denklem 8'de yer alan  $\alpha$  ve  $\beta$  değerleri ince dane oranına bağlı değişkenlerdir. Formülasyonları Denklem 9 ve 10'da verilmektedir.

$$\alpha = \begin{bmatrix} 0 & ; FC \le \%5 \\ exp[1.76 - (190/FC^2] & ; \%5 < FC < \%35 \\ 5 & ; FC \ge \%35 \end{bmatrix}$$
(9)

$$\beta = \begin{bmatrix} 1 & ; FC \le \%5 \\ 0.99 + (\frac{FC^{1.5}}{1000}) & ; \%5 < FC < \%35 \\ 1.2 & ; FC \ge \%35 \end{bmatrix}$$
(10)

TBDY 2018'de deprem büyüklüğünün Mw = 7,5'ten büyük veya küçük olması, kabul edilen örtü basıncının 100 kPa'dan fazla olması ve zeminin deprem yükünden önce başlangıç statik kayma gerilmelerine maruz kalması durumları için, sıvılaşma direnci ( $\tau_R$ ) Denklem 11'deki gibi tanımlanmıştır.

$$\tau_R = CRR_{M7,5}C_M\sigma'_{\nu 0} \tag{11}$$

Denklem 11'de kullanılan verilerden  $C_M$ , deprem magnitüdü ( $M_w$ )düzeltme faktörüdür ve Denklem 11'deki gibi formüle edilmektedir. CRR<sub>M7,5</sub> ise yukarıda

Denklem 7'de verilmiştir.  $\sigma'_{\nu 0}$  ise hesap yapılan derinlikteki zeminin efektif gerilmesidir.

$$C_M = \frac{10^{2.24}}{Mw^{2.56}} \tag{12}$$

Bu formülasyon sonucunda Denklem 3 ve Denklem 11'den elde edilen gerilme oranlarına bağlı olarak sıvılaşmaya karşı güvenlik sayısı elde edilir. TBDY 2018'de de bu şekilde yer almaktadır ve Denklem 13'teki gibi formüle edilmektedir. Bu oranın 1,1'den küçük olması durumunda sıvılaşma riski vardır denilmektedir.

$$FS = \frac{\tau_R}{\tau_{deprem}} \tag{13}$$

# 3.3. TBDY 2018'e Göre Bir Sıvılaşma Analizi Örneği

Hem bu çalışma kapsamında yapılan analizlere örnek teşkil etmesi hem de TBDY 2018'de belirtilen sıvılaşma analizinin bir uygulama ile tanıtılması amaçlanmış ve örnek bir analiz çözümü sunulmuştur. Analiz sırasında kullanılan veriler Seferihisar Belediyesi'nden elde edilen mevcut verilere yakın olacak şekilde seçilmiştir. Aşağıda analiz yöntemi adım adım anlatılmış ve sonucu sunulmuştur. Lokasyonu mevcut olmayan bu sanal örnekte AFAD haritaları kullanılarak elde edilen kısa periyot ivme azaltma katsayısı (S<sub>DS</sub>) bu örnek için 1 olarak kabul edilmiştir. Bu durumda, deprem tasarım sınıfı (DTS) da bina kullanım sınıfını mesken bina olarak düşündüğümüzde DTS = 1 olmaktadır. SPT değerinin de 15'ten küçük olduğu dikkate alındığında zemin sınıfı olarak ZE grubuna girmektedir. TBDY 2018 madde 16.6.1'e göre sıvılaşma analizinin yapılmasının zorunlu olduğu belirtilmektedir. Örnekte deprem büyüklüğü  $M_w = 7,5$  deprem düzeyi (DD) de DD2 olarak alınmıştır. Zemin profili Şekil 3.4'te, zemine ait diğer veriler ise aşağıda Tablo 3.5'te sunulmuştur. Örnek analiz için yeraltı su seviyesi 2,0 m., hesap derinliği ise A noktasında ve 3,3 m. olarak alınmıştır. SPT işlemi sırasında otomatik darbeli tokmak kullanıldığı kabul edilmiştir. TBDY 2018'e göre örnek bir sıvılaşma analizi aşağıdaki zemin profili ve veri tablosu kullanılarak adım adım çözülmüş ve sunulmuştur.

| <b>Fablo</b> 2 | 3.5. | Örnek | analiz | için  | kabul | edilen | verile |
|----------------|------|-------|--------|-------|-------|--------|--------|
| I abio         | J.J. | OTHER | ananz  | IÇIII | Kabul | eunen  | verne  |

| SPT-N | Derinlik (m) | Yass (m) | FC (%) | γ <sub>kuru</sub><br>(kN/m <sup>3</sup> ) | $\gamma_{doy} (kN/m^3)$ |
|-------|--------------|----------|--------|-------------------------------------------|-------------------------|
| 10    | 3,3          | 2        | 25     | 17                                        | 18                      |



Şekil 3.4. Örnek analiz için idealize zemin profili

# 1)Zemin Parametrelerinin Düzeltilmesi

Analizde Türkiye'de yaygın olarak kullanılan donanım türüne göre düzeltme katsayıları belirlenmiştir. TBDY 2018 tarafından otomatik darbeli tokmak için önerilen düzeltme faktörleri seçilmiştir [49];

 $C_E$  (enerji oranı düzeltme katsayısı) = 0.90

 $C_B$  (sondaj kuyusu çapı) = 1

 $C_R$  (tij boyu) = 0.75

 $C_{S}$  (numune alıcı düzeltme katsayısı) = 1

C<sub>N</sub> (derinlik düzeltme katsayısı) = 
$$\sqrt{95.76 * \frac{1}{\sigma'_v}} \le 1.7$$

C<sub>N</sub> hesabını yapabilmemiz için öncelikle efektif gerilmenin hesaplanması gerekmektedir. Efektif gerilme formülü Denklem 14'te gösterilmektedir. Denklemde yer alan ifadelerden;

σ toplam düşey gerilmeyi,

u boşluk suyu basıncını

 $\sigma$ ' ise efektif gerilmeyi ifade etmektedir.

$$\sigma' = \sigma - \mathbf{u}$$
  

$$\sigma = 17*2 + 18*1,3 = 57.4 \text{ kN/m}^2$$
  

$$u = 1,3*9,81 = 12.753 \text{ kN/m}^2$$
  

$$\sigma' = 44.647 \text{ kN/m}^2$$
  

$$C_N = 1.4645$$

### 2)SPT Değerlerinin Düzeltilmesi

Tüm düzeltme katsayılarının elde edilmesinin ardından araziden elde edilmiş olan SPT-N değeri düzeltme katsayıları ile çarpılarak  $(N_1)_{60}$  ifadesine düzeltilecektir.  $(N_1)_{60}$ 'ın hesabı için denklem 5'te verilmiş olan formül kullanılacaktır.

(14)

 $(N_1)_{60} = N * C_N * C_S * C_B * C_R * C_E$  $(N_1)_{60} = 10 * 1,4645 * 1 * 1 * 0,75 * 0,90 = 10$ 

Bu aşamada SPT verilerinin ince dane oranına göre düzeltilme uygulanması gerekiyor.

İnce dane oranına göre düzeltilen darbe sayısı olan  $(N_1)_{60,f}$  için TBDY 2018'de tanımlanmış olan formülasyon Bölüm 3'te bulunan Denklem 8'de verilmiştir. Denklem 8'de yer alan ince dane oranına bağlı olan değişkenler ise Bölüm 3'teki Denklem 9 ve 10'dan yararlanılarak bulunacaktır.

İnce dane oranımız %25 olarak seçilmiştir. Buna göre Denklem 9 ve 10'a göre sırası ile  $\alpha$  ve  $\beta$  değerleri hesaplanmıştır.

 $\%5 \le FC \le \%35$  için;<br/>  $\alpha = [1,76-(190/FC^2)]$  $\beta = 0,99+(FC^{1,5}/1000)$ <br/>  $\alpha = 1,456$  $\beta = 1,115$ 

Olarak hesaplanmıştır. Bu değerler ışığı altında ise Denklem 8'e göre  $(N_1)_{60,f}$  hesaplanmıştır.

$$(N_1)_{60,f} = \alpha + \beta * (N_1)_{60}$$
  
 $(N_1)_{60,f} = 13$ 

### 3)Sıvılaşma Direncinin ( $\tau_R$ ) Hesaplanması

Sıvılaşma direnci olan  $\tau_R$ , moment büyüklüğü 7,5 olan depreme karşı gelen çevrimsel dayanım oranının (CRR<sub>M7,5</sub>), tasarım depremi moment büyüklüğü düzeltme katsayısı (C<sub>M</sub>) ve efektif düşey gerilme ( $\sigma'_v$ ) ile çarpılması sonucunda elde edilecektir (TBDY, 2018). Sıvılaşma direncinin formülü yukarıda Denklem 7'de verilmiştir.

 $\tau_R = CRR_{M7,5} * C_M * \sigma'_V$ 

$$C_M = \frac{1}{M_W^{2,56}}$$

Denklem 7'ye göre;

CRR<sub>M7,5</sub>=0,1356

Denklem 12'ye göre; C<sub>M</sub>=0,9996

Denklem 11'e göre;  $\tau_R = 6,0273$ Olarak hesaplanmıştır.

## 4)Zeminde Oluşan Kayma Direncinin ( $\tau_{deprem}$ ) Hesaplanması

Zeminde oluşan kayma direnci formülü TBDY 2018'de tanımlanmış olup Denklem 3'te verilmiştir.

 $\tau_{deprem} = 0.65 * \sigma_{V0} * 0.4 * S_{DS} * r_d$ 

Burada  $\sigma_{V0}$  hesaplamanın yapıldığı derinlikteki toplam düşey gerilmeyi,  $r_d$  inceleme yapılan derinlikteki (z) gerilme azaltma katsayısını S<sub>DS</sub> ise kısa periyot ivme azaltma katsayısını ifade etmektedir. İlgili formüller Denklem 4'te ve Şekil 3.3'te verilmiştir. S<sub>DS</sub> İnceleme alanının koordinatları kullanılarak AFAD'ın hazırladığı deprem tehlike haritalarından elde edilen bir veridir. Bu örnekte 1 alınmıştır. Buna göre;

 $r_{d} = 1 - 0.00765 * z$   $z \le 9,15m$  $r_{d} = 0,9747$   $\sigma_{V0} = 57,4$ 

olarak hesaplanmıştır.

 $\tau_{deprem} = 14,5464$  sonucu elde edilmiştir.

TBDY 2018'de sıvılaşmaya karşı güvenlik koşulu (Fs);  $\frac{\tau_R}{\tau_{deprem}} \ge 1,10$  olarak tanımlanmıştır. Buna göre;

 $\frac{6,0273}{14,5464} = 0,4138$  elde edilmiştir.

Bu değer 1,10'dan küçük olduğu için sıvılaşma riskinin mevcut olduğu sonucu elde edilmiştir.

#### **4.BULGULAR**

# 4.1. TBDY'ye Göre Sıvılaşma Analizlerinin Sığacık Bölgesine Uygulanması

Bu çalışma, Seferihisar (İzmir) ilçesi yerleşim alanı içinde yer alan alüvyon zeminlerin olası bir deprem etkisi altındaki sıvılaşma potansiyelinin, arazi Standart Penetrasyon Deneyi verileri kullanılarak Yeni Türkiye Bina Deprem Yönetmeliğine göre analiz edilerek incelenmesini içermektedir. Çalışma alanının altından Batı Anadolu Fay Hattı kollarından Seferihisar Yelki fay zonu geçmektedir [7]. Bu olası bir depremde risk oluşturmaktadır. Bu riskin değerlendirilmesi amacıyla Seferihisar ilçesinin yer altı su seviyesi yüksek olan ve deniz kıyısında yer alan Sığacık mahallesindeki Seferihisar Belediyesi tarafından ruhsatlandırılmış yapılardan elde edilen jeolojik veriler incelenmiştir. 18 adet sondaj çalışmasından elde edilen SPT verileri TBDY 2018'e uygun olarak hesaplanmıştır. Bunun sonucunda da bir risk haritası oluşturmak amaçlanmıştır. İnceleme alanındaki tüm noktalar ilk etapta, bölüm 3'te anlatılan sıvılaşma analizinde dikkat edilmesi gereken hususlar gözetilip değerlendirilerek analize tabi tutulmuştur. Farklı deprem büyüklükleri için de analizler gerçekleştirilmiş ve karşılaştırılmıştır. Ardından, tahmini oturma miktarları da hesaplanarak sunulmuştur.

Sıvılaşma analizleri TBDY 2018'de verilen formülasyonlar dikkate alınarak uygulanmıştır. TBDY 2018'e göre SPT' ye dayalı arazi deneyinden elde edilen ve hesaplamalarda kullanılan veriler şu şekildedir;

SPT-N,
İnce dane oranı (FC),
Yass,
Derinlik,
Suya doygun olan birim hacim ağırlık (γ<sub>doy</sub>)
Kuru olan birim hacim ağırlık (γ<sub>kuru</sub>)

Belediyeden elde edilen 18 adet rapordan sadece 6 tanesinde TBDY 2018'e göre gerçekleştirilecek sıvılaşma analizi için gerekli olan verilerin tamamı bulunabilmiştir. Kalan 12 raporun 6 tanesinde inceleme derinliği içinde yer altı suyu bulunmadığı belirtildiği için sıvılaşma analizi yapılmamış olup sıvılaşma riski bulunmamaktadır şeklinde değerlendirilmiştir. Geriye kalan raporlardan ise analiz için gerekli olan verilerin tümü elde edilememiştir. Bu sebeple SPT verisi mevcut olan raporlar arasından zemin özellikleri için çevreye ve SPT değerlerine uyumlu olacak şekilde tahmini değerler kullanılarak bir değerlendirme yapılmış ve buna bağlı harita da elde edilmiştir.

Yukarıda belirtilen bu bilgiler ışığı altında Seferihisar Belediyesi'nden elde edilen raporlara göre gerekli verileri bulunan lokasyonlarda TBDY 2018'e göre sıvılaşma analizi yapılarak sonuçlar tablolaştırılmıştır ve Tablo 4.1'de gösterilmiştir. Bu tabloya ait harita gösterimi ise Şekil 4.1'de verilmiştir. Şekil 4.1'de harita üzerinde sıvılaşma analizi sonucunda elde edilen güvenlik faktörleri (FS) de belirtilmiştir. İnceleme derinliği (20 m) içinde tanımlı yer altı suyu bulunmayan risksiz bölgelerin verileri Tablo 4.2'de ve yine bu risksiz bölgelerin harita üzerinde gösterimi de Şekil 4.2'de sunulmuştur. Risk içermeyen noktalar için yer altı suyu olmaması sebebi ile analiz yapılmadığından FS'ler sayısal olarak harita üzerinde belirtilmemiştir. Harita üzerinde bu değerler, ilgili noktaların risk taşımadığının ifadesi olarak FS > 1,1 olarak gösterilmiştir.

| Tablo 4.1. Sivil | aşma analizi | sonuç tablosu |
|------------------|--------------|---------------|
|------------------|--------------|---------------|

| Semt    | Ada-<br>Parsel | γkuru<br>(gr/cm) | γ <sub>doy</sub><br>(gr/cm <sup>3</sup> ) | Fc<br>(%) | Yass<br>(m) | N30 | Derinlik*<br>(m) | FS   |
|---------|----------------|------------------|-------------------------------------------|-----------|-------------|-----|------------------|------|
| Sığacık | 1161-1         | 1,649            | 1,956                                     | 95,56     | 1,0         | 8   | 3                | 0,37 |
| Sığacık | 51-6           | 1,695            | 1,820                                     | 10,56     | 0,8         | 14  | 3                | 0,36 |
| Sığacık | 1279-1         | 1,704            | 1,899                                     | 8,83      | 1,0         | 16  | 3                | 0,48 |
| Sığacık | 1163-1         | 1,158            | 1,679                                     | 29,64     | 2,0         | 5   | 3                | 0,31 |
| Sığacık | 89-140         | 1,695            | 1,905                                     | 4,95      | 2,0         | 3   | 3                | 0,16 |
| Sığacık | 93-11          | 1,741            | 1,887                                     | 1,54      | 1,5         | 9   | 3                | 0,27 |

\*Hesaplar için kullanılan veriler ilgili derinliklere göre verilen değerlerdir.



Şekil 4.1. TBDY 2018'e göre sıvılaşma riski olan bölgeler

| Semt    | Ada-<br>Parsel | γ <sub>kuru</sub><br>(gr/cm) | γ <sub>doy</sub><br>(gr/cm <sup>3</sup> ) | Fc<br>(%) | Yass<br>(m) | N30 | Derinlik*<br>(m) | FS   |
|---------|----------------|------------------------------|-------------------------------------------|-----------|-------------|-----|------------------|------|
| Sığacık | 55-1           | 1,600                        | -                                         | 26,63     | Yok         | -   | 1,95             | >1,1 |
| Sığacık | 1250-3         | -                            | -                                         | 66,00     | Yok         | -   | 6,00             | >1,1 |
| Sığacık | 97-28          | -                            | -                                         | -         | Yok         | CR* | -                | >1,1 |
| Sığacık | 3198-13        | 1,603                        | 1,933                                     | 54,32     | Yok         | CR* | 1,50             | >1,1 |
| Sığacık | 819-4          | -                            | -                                         | -         | Yok         | CR* | 3,00             | >1,1 |
| Sığacık | 1108-3         | 1,571                        | 1,966                                     | 78,07     | Yok         | 30  | 1,50             | >1,1 |
| * Vanat |                |                              |                                           |           |             |     |                  |      |

\* Karot



Şekil 4.2. Risksiz bölgelerin haritalandırılması

Verilerinin tamamı TBDY 2018'e göre analiz için mevcut olmayan raporlarda SPT değerleri mevcut olanların arasından seçilip çevreye ve zemin türüne göre tahmini birim hacim ağırlık değerleri kullanılarak oluşturulan tahmini sıvılaşma analizi sonuçları ise Tablo 4.3'te ve buna bağlı olarak tahmini sıvılaşma haritası da Şekil 4.3'te gösterilmektedir. Bu harita üzerinde de yine hesap edilen her noktaya ait FS değerleri belirtilmiştir.

| Semt    | Ada-<br>Parsel | γ <sub>kuru</sub><br>(gr/cm) | γ <sub>doy</sub><br>(gr/cm <sup>3</sup> ) | Fc<br>(%) | Yass<br>(m) | N30 | Derinlik*<br>(m) | FS   |
|---------|----------------|------------------------------|-------------------------------------------|-----------|-------------|-----|------------------|------|
| Sığacık | 1163-8         | 1,780                        | 1,990                                     | 19,42     | 2,5         | 5   | 4,2              | 0,26 |
| Sığacık | 55-10          | 1,700                        | 1,810                                     | 50,00     | 3,0         | 22  | 4,5              | 0,97 |
| Sığacık | 1123-8         | 1,700                        | 1,810                                     | 15,00     | 3,0         | 20  | 4,5              | 0,61 |
| Sığacık | 1161-10        | 1,649                        | 1,956                                     | 15,00     | 2,0         | 21  | 3,0              | 0,83 |
| Sığacık | 91-65          | 1,740                        | 1,885                                     | 35,00     | 1,5         | 11  | 3,0              | 0,49 |

Tablo 4.3. Tahmini verilerle yapılan sıvılaşma analizi sonuç tablosu



Şekil 4.3. Tahmini verilere göre sıvılaşma analizinde riskli çıkan bölgeler

Değerlendirmelerin tümüne ait harita ise Şekil 4.4'te sunulmuştur. Bu haritada yeşil renkler risk bulunmayan bölgeyi (FS > 1,1) ifade ederken, kırmızı renkler riskli bölgeleri (FS < 1,1) ifade etmektedir. Bu haritaya (Şekil 4.4) bakıldığında birbirlerine çok yakın olmalarına rağmen birinde sıvılaşma riski bulunurken diğerinde bulunmayan noktalar olduğu görülmektedir. Sıvılaşma riski bulunmayan noktaların bu sonuca sadece ve sadece tespit edilmemiş yeraltı suyu seviyesi sebebi ile ulaştığı düşünüldüğünde, ilgili noktalarda gerçekleştirilmiş olan yeraltı suyu tespiti güvenirliğini yitirmektedir. Pratikte birbirine bu denli yakın noktaların yer altı su seviyelerinde, ilgili raporlarda bahsi geçen kadar fark olmaması beklenmektedir. Dolayısı ile, kontrollü yapılacak tekrar ölçümlerde bu noktalarda bir yeraltı su seviyesi saptanması durumunda buradaki bazı noktaların da sıvılaşabileceği göz önüne alınmalıdır.



Şekil 4.4. Tüm verilerden elde edilen sonuçların haritalandırılması

Bu çalışmada, yukarıda belirtilen çalışmalara ek olarak, farklı büyüklükteki depremlerin etkisi altında sıvılaşma analizleri de gerçekleştirilmiştir. İnceleme alanındaki jeolojik ve jeofizik değerlendirmeler sonucunda bölgede meydana gelmiş ve beklenen olası depremler bu tezin 2. bölümü olan genel bilgiler bölümünde anlatılmıştır. Bu ön bilgilere dayanarak, bölgede beklenen farklı depremlere göre deprem senaryoları düşünülmüş ve sıvılaşma analizleri bu farklı deprem senaryolarına göre çeşitlendirilmiştir. Bu senaryoların ilki yukarıda sunulan DD2 deprem düzeyinde ve 7,5 büyüklüğündeki deprem olasılığı içindir (1. Senaryo). Bu hesabı takiben, hem DD3 deprem düzeyi ve 7 büyüklüğündeki deprem (3. Senaryo) için

sıvılaşma analizleri gerçekleştirilmiştir. Aşağıda Tablo 4.4'te elde edilen verilere göre yapılan hesaplamalarda farklı deprem senaryoları için FS değerleri sunulmuştur.

| ADA -   | 1. Senaryo (FS)                | 2. Senaryo (FS)              | 3. Senaryo (FS)                |
|---------|--------------------------------|------------------------------|--------------------------------|
| PARSEL  | <b>DD2-M</b> <sub>W(7,5)</sub> | <b>DD3-M</b> <sub>W(7)</sub> | <b>DD4-M</b> <sub>W(6,5)</sub> |
| 1161/1  | 0,37                           | 1,18                         | 1,64                           |
| 51/6    | 0,36                           | 1,17                         | 1,62                           |
| 1279/1  | 0,48                           | 1,53                         | 2,13                           |
| 1163/1  | 0,31                           | 1,22                         | 1,70                           |
| 89/140  | 0,16                           | 0,73                         | 1,01                           |
| 93/11   | 0,27                           | 1,23                         | 1,71                           |
| 1163/8  | 0,26                           | 1,02                         | 1,41                           |
| 55/10   | 0,97                           | 3,93                         | 5,44                           |
| 1123/8  | 0,61                           | 2,48                         | 3,36                           |
| 1161/10 | 0,83                           | 3,62                         | 5,02                           |
| 91/65   | 0,49                           | 1,83                         | 2,53                           |

**Tablo 4.4.** Farklı deprem senaryolarında gerçekleştirilen sıvılaşma analizine aitgüvenlik katsayıları (FS)

Yukarıdaki hesaplamalardan elde edilen sonuçlardan her bir deprem senaryosuna göre riskli bölgeler tespit edilmiş ve uydu görüntüsü üzerine işlenmiştir. Bu haritalarda yeşil renkler riskiz bölgeleri (FS > 1,1), kırmızı renkler ise riskli bölgeleri (FS < 1,1) ifade etmektedir. 1. Senaryoya ait harita üzerinde gösterim Şekil 4.5'te; 2. Senaryoya ait harita üzerinde gösterim Şekil 4.6'da ve son olarak 3. Senaryoya ait harita üzerinde gösterim Şekil 4.7'de sunulmuştur.



**Şekil 4.5.** İnceleme alanı verilerine ait 1. Senaryoya (DD2 ve Mw=7,5) göre sıvılaşma risk haritası

Şekil 4.5'te sunulan 1. Senaryoya ait sonuçlarda sıvılaşma beklenmeyen risksiz bölgeler bir yeraltı su seviyesi tanımlanmamış olan noktalardan oluşmaktadır. Bir yeraltı su seviyesi bulunmadığı için hesap yapılmamış ve doğrudan risk yoktur mertebesinde değerlendirilmiştir. Bununla beraber, hesabın gerçekleştirildiği diğer tüm bölgelerde sıvılaşma riski tespit edilmiştir. Burada unutulmaması gereken husus, veriler değerlendirilirken ilgili belediyeden elde edildiği şekilde kullanıldığıdır. Birbirine bu kadar yakın noktalardaki yeraltı su seviyelerindeki farklılıklar verilerin güvenilirliğini sorgulatmaktadır. Bununla beraber, sonuç olarak çalışma bölgesindeki toplam 17 noktanın 11'inde sıvılaşma riski bulunmuş diğer 6'sında ise bulunmamıştır. Diğer bir deyişle, eldeki hesap noktalarının %65'i sıvılaşma için riskli olarak nitelendirilmiştir. Yeraltı su seviyelerindeki olası yanlış değerlendirmelerin de göz önünde bulundurulması ile bu oranın artması beklenmektedir.



**Şekil 4.6.** İnceleme alanı verilerine ait 2. Senaryoya (DD3 ve Mw=7) göre sıvılaşma risk haritası

Çalışma bölgesindeki 2. Senaryoya göre yapılan değerlendirmelere göre toplam 17 noktanın 2'sinde sıvılaşma riski tespit edilmiş diğer 15 nokta ise sıvılaşma açısından risksiz olarak değerlendirilmiştir. Diğer bir deyişle ilgili bölgede yapılan hesapların %12'sinde sıvılaşma riski bulunduğu tespit edilmiştir. Aynı bölgedeki 3. Senaryoya göre ise sadece 1 noktada sıvılaşma riski tespit edilmiş olup bölge 3. Senaryoya göre %94 oranında güvenli olarak belirlenmiştir. Deprem büyüklüğünün azalması ile sıvılaşma riskinin de azalması beklenen bir sonuçtur. Bununla beraber, çalışma alanının, yaşanabilecek olası bir 7,5 büyüklüğündeki deprem göz önüne alındığında oldukça büyük bir risk içerdiği görülmektedir.



**Şekil 4.7.** İnceleme alanı verilerine ait 3. Senaryoya (DD4 ve Mw=6,5) göre sıvılaşma risk haritası

#### 4.2.TBDY Yönteminin NCEER ile Karşılaştırılması

Dünya üzerinde sıvılaşma analizi için en çok tercih edilen yöntemlerden biri Seed ve Idriss'in (1971) basitleştirilmiş sıvılaşma analizi referans alınarak yıllar içinde geliştirilerek 1996'da bir çalışma grubu (NCEER) tarafından önerilen yöntemdir. Bu yöntem 1996'yı takiben 1998 çalıştayı ile şekillenmiş ve 2001 yılında da günümüzde kullanılan haline bürünmüştür [53]. TBDY 2018 de hesap aşamalarını tanımlarken NCEER grubunun yöntemini benimsemiş ve birkaç değişiklik ile sunmuştur. Bu çalışmadaki amaç da inceleme alanı kapsamında TBDY 2018'e göre sıvılaşma hesabı yapılan bölgelerin, dünya çapında yaygın olarak kullanılan ve NCEER çalışma grubu tarafından önerilen Youd ve Idriss (2001) tarafından tekrar özetlenen bağıntı ile tekrar hesaplanarak kıyaslanmasıdır [53]. Hesaplamalarda karşılaştırma için 1. Senaryo,  $M_w$ =7,5 ve DD2 kabul edilmiştir. Analizler sonucunda elde edilen güvenlik katsayıları ise Tablo 4.5'te gösterilmektedir.

| ADA-PARSEL | <b>TBDY 2018</b> | NCEER |
|------------|------------------|-------|
| 1161/1     | 0,37             | 0,38  |
| 51/6       | 0,36             | 0,39  |
| 1279/1     | 0,48             | 0,46  |
| 1163/1     | 0,31             | 0,33  |
| 89/140     | 0,16             | 0,17  |
| 93/11      | 0,27             | 0,28  |
| 1163/8     | 0,26             | 0,27  |
| 55/10      | 0,97             | 1,02  |
| 1123/8     | 0,61             | 0,63  |
| 1161/10    | 0,83             | 0,86  |
| 91/65      | 0,49             | 0,53  |

Tablo 4.5. TBDY 2018 ve NCEER yöntemlerinden hesaplanan güvenlik katsayıları

Hesap yapılan tüm noktalarda TBDY 2018 ile edilen güvenlik katsayılarının, NCEER yöntemi ile elde edilen güvenlik katsayılarından daha küçük olduğu görülmektedir. Elde edilen güvenlik katsayılarına göre TBDY 2018'de önerilen sıvılaşma analizi yönteminde daha küçük güvenlik katsayıları elde edilmesi sebebi ile TBDY 2018 yönteminin, NCEER yöntemine göre daha güvenli tarafta kaldığı görülmektedir.

### 4.3 Sıvılaşma Kaynaklı Oturma Analizleri

Yer altı su seviyesi altında yer alan;

- Plastik olmayan kum zeminlerde,
- Düşük plastisiteli silt zeminlerde

sıvılaşma olayı ile birlikte zeminde büyük deformasyonlar meydana gelmektedir. Bu deformasyonlar sıvılaşabilir zeminlerin üzerinde yer alan yapılara da yansıyıp yapılarda da büyük deformasyonlara yol açmaktadır.

Bu çalışmada inceleme alanı kapsamında sıvılaşmaya bağlı zemin oturmalarının belirlenmesi de amaçlanmıştır. Oturma hesabı için Ishihara ve Yoshimine (1992) [54] ve Çetin (2009) [55] olmak üzere iki yöntemden yararlanılmıştır. Ishihara ve Yoshimine (1992) yöntemi sıvılaşma kaynaklı oturmaların değerlendirilmesinde en çok bilinen ve kullanılan yöntemlerden biridir. Çetin (2009) yöntemi ise Ishihara ve Yoshimine (1992) yönteminden farklı olarak tabaka derinliklerine bağlı olarak derinliğe göre etkisi azalan bir "ağırlık faktörü" kavramı içermesi ile bilinmektedir. Bahsi geçen bu faktör, yüzey tabakalarının daha erken sıvılaşması ile derinlere iletilen kayma gerilmeleri ve çevrim sayılarındaki azalma ile ilişkilendirilmektedir [55]. Her iki yöntem de sıvılaşan tabaka kalınlıklarının bir abak vasıtası ile bulunacak bir hacim birim deformasyon katsayısı  $(\varepsilon_v)$  ile çarpımı ilkesine dayanmaktadır. Bu çalışma kapsamında Ishihara ve Yoshimine (1992) ve Çetin (2009)'a göre gerçekleştirilen hesaplamalar için yararlanılan abaklar sırası ile Şekil 4.8 ve Şekil 4.9'da sunulmuştur.

Ishihara ve Yoshimine (1992) yönteminde sıvılaşma analizi sonucunda elde edilen Fs güvenlik faktörünün SPT değerleri ile abak üzerinde çakıştırılıp hacimsel birim deformasyon değerlerine ulaşılması hedeflenmektedir. Bununla beraber Çetin (2009) yönteminde N<sub>1,60</sub> ve 1 atm efektif gerilme altında konsolide edilip, tek boyutlu olarak 20 çevrimin uygulandığı basit kesme deneyine ait tekrarlı gerilme oranı (CSR<sub>SS,20,1-D,1atm</sub>) değerleri abak üzerinde çakıştırılıp hacimsel birim deformasyon değerlerine ulaşılmaktadır. Arazi değerlerinden elde edilen tekrarlı kayma gerilme oranının (CSR<sub>saha</sub>), abakta kullanılacak CSR<sub>SS,20,1-D,1atm</sub> eşdeğerine çevrilmesi gerekmektedir [55]. Bu dönüşüm aşağıda Denklem 15-18'de sunulmuştur. Denklem 15'te önerilen düzeltmeler, saha koşullarındaki çok yönlü yükleme (*K<sub>md</sub>*), farklı deprem büyüklükleri (*K<sub>Mw</sub>*) ve farklı düşey efektif gerilme değerlerinin (*K*<sub>σ</sub>) etkilerini göz önünde bulundurmaktadır. Bu denklemlerde; D<sub>R</sub> rölatif sıkılığı, M<sub>w</sub> deprem magnitüdünü, P<sub>a</sub> da atmosfer basıncını temsil etmektedir.

$$CSR_{SS,20,1-D,1atm} = \frac{CSR_{saha}}{K_{md}K_{Mw}K_{\sigma}}$$
(15)

 $K_{md} = 0,361 \ln(D_R) - 0,579 \tag{16}$ 

$$K_{MW} = \frac{87.1}{M_W^{2,217}} \tag{17}$$



Şekil 4.8. Ishihara ve Yoshimine, 1992 tarafından oluşturulan abak [54]


Şekil 4.9. Çetin, 2009 tarafından oluşturulan abak [55]

Oturma hesabı yapılırken deprem etkisi altında sıvılaşan kohezyonsuz zeminlerde meydana gelen oturmalar için derinlik boyunca hesap yapılmalıdır. Hesaplamanın yapılması için kullanılacak olan formüllerde güvenlik katsayısı, rölatif sıkılık (D<sub>R</sub>) değerleri, efektif gerilme değerlerinin bilinmesi gerekmektedir. Rölatif sıkılık değerleri SPT ve CPT deneylerinden elde edilen sonuçlar yardımı ile tahmin edilebilmektedir. Bu çalışmada, inceleme alanı kapsamında yapılan hesaplarda SPT verilerinden yararlanılmış olup bu verilerden yola çıkarak elde edilen rölatif sıkılık

hesabında Tablo 2.4'te sunulmuş olan bağıntılardan biri olan Denklem 19'da verilen bağıntıdan yararlanılmıştır.

$$Dr = \sqrt{\frac{N_{60}}{a.\sigma_v'+b}} \qquad a = 0,3 \ ve \ b = 30 \ (ortalama \ degerler) \tag{19}$$

Bu çalışmadaki oturma hesapları yukarıdaki analizlerden 1. Senaryoya ait olan güvenlik katsayıları kullanılarak gerçekleştirilmiştir. Bu durum, en olumsuz koşulu kapsamaktadır. Hesapların gerçekleştirilmesi esnasında çeşitli engeller ile karşılaşılmıştır. Bu engeller Seferihisar Belediyesi'nden elde edilen ve eklerde de sunulan raporlardaki verilerin yetersizliğinden meydana gelmektedir. Bu sebeple inceleme alanı kapsamında sadece bazı noktalarda tüm tabakalar için oturma analizi yapılabilmiştir. Ada-parsel nosu 51-6 olan örneğe ait idealize zemin profili Şekil 4.10'da sunulmuştur. Yeraltı su seviyesi 0,8 m.'de olup sıvılaşmanın görüldüğü ve güvenlik faktörlerinin hesaplanmış olduğu 4 tabakası idealize edilmiş şekilde sunulmuştur. Altta ise örneğe ait veriler ve her iki oturma yöntemine göre oturma miktarları ( $\delta$ ) Tablo 4.6'da sunulmuştur.



Şekil 4.10. 51-6 Ada-Parsel örneğine ait idealize zemin profili

| SPT | Derinlik | YASS | FC    | Ykuru | ∛doy  | FS   | 8 <sub>ishihara</sub> | <b>S</b> çetin |
|-----|----------|------|-------|-------|-------|------|-----------------------|----------------|
| Ν   | (m)      | (m)  | (%)   |       |       |      | (cm)                  | (cm)           |
| 14  | 3        | 0.8  | 10,56 | 1,695 | 1,682 | 0,37 | 7,8                   | 6,6            |
| 17  | 6        | 0.8  | 7,36  | 1,647 | 1,843 | 0,34 | 7,8                   | 7,5            |
| 16  | 12       | 0.8  | 9,14  | 1,671 | 1,813 | 0,46 | 10,2                  | 9,6            |
| 22  | 15       | 0.8  | 9,36  | 1,665 | 1,865 | 0,53 | 6,15                  | 6,0            |
|     |          |      |       |       | Тој   | plam | 31,95                 | 29,7           |

Tablo 4.6. 51-6 Ada-Parsel örneğine ait veriler ve oturma miktarları

Tablo 4.6'daki sonuçlara göre 7,5 büyüklüğündeki bir deprem etkisi altında 51-6 ada-parsel örneğinde 15 m. derinlikte sunulan veriler kullanılarak tahmin edilen oturma miktarları ortalama 30 cm civarındadır. Çetin (2009) yönteminden elde edilen oturma miktarları teoride de sunulduğu gibi Ishihara ve Yoshimine (1992) yönteminden daha küçük bulunmuştur.

Tüm veriler kullanılarak elde edilen tahmini oturma sonuçları ise Tablo 4.7'de sunulmuştur. Tahmini oturma miktarları Ishihara ve Yoshimine (1992) yöntemi için her tabakada 6 ile 17,1 cm değerleri arasında değişmekte ve bir parsel için en çok 35,4 cm değerine ulaşmaktadır. Bununla beraber Çetin (2009) yönteminde ise her tabakada 4,5 ile 14,4 cm değerleri arasında değişmekte ve bir parsel için en çok 33,3 cm değerine ulaşmaktadır. Çalışma alanında gerçekleşecek olası bir 7,5 büyüklüğündeki deprem için hesaplanan tahmini oturma değerleri her iki yöntemde de parsel bazında değerlendirildiğinde, 30 cm değerlerini aşarak oldukça büyük oturmalara sebep olacağı sonucuna varmaktadır.

| ADA     | SPT | YASS         | DERİNLİK | FS   | <b>ð</b> ishihara | δçetin  |
|---------|-----|--------------|----------|------|-------------------|---------|
| PARSEL  |     | ( <b>m</b> ) | (m)      |      | (cm)              | (cm)    |
| 91-65   | 11  |              | 3        | 0,49 | 10,2              | 7,8     |
|         | 11  | 1,5          | 6        | 0,22 | 12                | 12      |
|         | 11  |              | 12       | 0,18 | 13,2              | 13,5    |
|         |     |              |          |      | ∑₀=35,4           | ∑₀=33,3 |
| 1279-1  | 16  | 1            | 3        | 0,48 | 7,8               | 7,2     |
| 1163-1  | 5   | 2            | 3        | 0,31 | 15                | 12,6    |
| 89-140  | 3   | 2            | 3        | 0,16 | 17,1              | 14,4    |
| 93-11   | 9   | 2            | 3        | 0,27 | 12                | 10,5    |
| 1163-8  | 5   | 2,5          | 4,2      | 0,26 | 16,5              | 13,8    |
| 55-10   | 22  | 3            | 4,5      | 0,97 | 6,9               | 5,4     |
| 1123-8  | 20  | 3            | 4,5      | 0,61 | 7,5               | 6       |
| 1161-10 | 21  | 2            | 3        | 0,83 | 6                 | 4,5     |
| 51-6    | 14  |              | 3        | 0,37 | 7,8               | 6,6     |
|         | 17  |              | 6        | 0,34 | 7,8               | 7,5     |
|         | 16  | 0,8          | 12       | 0,46 | 10,2              | 9,6     |
|         | 22  |              | 15       | 0,53 | 6,15              | 6       |
|         |     |              |          |      | ∑δ=31,95          | ∑δ=29,7 |

Tablo 4.7. İnceleme alanı kapsamında yapılan oturma hesabı

### **5. SONUÇ VE ÖNERİLER**

Deprem gibi büyük bir etki sonucunda zeminlerde meydana gelen ve oldukça tehlikeli ve istenmeyen bir durum olan sıvılaşma olayı bu çalışma kapsamında Sığacık bölgesinden elde edilen arazi deneyleri sonuna göre incelenmiş ve değerlendirilmiştir. Bu çalışmada kullanılan etüt verileri Seferihisar Belediyesi'nden elde edilmiştir. Çalışma kapsamında yer altı su seviyesinin yüksek olduğu zemin profilinin ince dane oranının yüksek olduğu ve aynı zamanda yapılan SPT deneyi sonuçlarına göre zemin profilinin gevşek olduğu anlaşılmıştır. Bu durum incelenen alanlar ve yakın çevresi için risk teşkil etmektedir.

Yeni yönetmelik ile yapılan değerlendirmelerde kullanılacak olan veriler, eski yönetmeliğe göre hazırlanan raporlarda nadiren tam olarak bulunmuştur. Zemin etüt raporlarının en kritik verilerinden olan birim hacim ağırlık, SPT gibi değerlerin mevcut raporlarda olmadığı ve/veya eksik halde sunulmuş olduğu anlaşılmıştır. Bazı raporlarda birim hacim ağırlık değerleri yok iken SPT değerlerinin mevcut olduğu görülmüştür. Bahsi geçen bu noktalarda yakın çevredeki benzer zeminler gözetilerek zemin özelliklerine uygun olacak şekilde kabuller yapılarak analize devam edilmiş ve ayrıca sunulmuştur. Sonuç olarak, ulaşılabilen verilerin değerlendirilmesi ile Seferihisar, Sığacık Mahallesinde oldukça büyük miktarda sıvılaşma riski olduğu belirlenmiştir. İncelenen noktalar arasında, bir yeraltı su seviyesi tespit edilmiş tüm noktalarda sıvılaşma riskinin de bulunduğu tespit edilmiştir. Seferihisar Belediyesi'nin imara esas yapılan ve yapılacak olan yapılar için bu durumu göz önünde bulundurarak gerekli önlemleri aldırması ivedilik ile şarttır.

Eski yönetmelik ile yeni yönetmeliğe göre yapılan sıvılaşma risk analizleri karşılaştırıldığında ise;

- Eski yönetmelikte tanımlanmış standart bir sıvılaşma risk analiz yönteminin olmadığı,
- Eski yönetmeliğe göre yapılan sıvılaşma risk analizlerinin çoğunlukla örneklerin likit limitlerine göre basitçe bir değerlendirmeden geçtiği ve bir güvenlik katsayısının hesaplanmadığı,
- Raporu hazırlayanlarca bir güvenlik katsayısı hesaplanmışsa da bunun çoğunlukla Tokimatsu ve Yoshimi (1983) yöntemine göre hesaplandığı [47].

- Yeni yönetmeliğe göre ilk olarak ince dane yüzdesi, plastisite, SPT gibi değerlere bakılarak sıvılaşma risk analizinin gerekliliğine karar verilip, yönetmelikte tanımlanan standartlaştırılmış sıvılaşma risk hesabının uygulandığı,
- Eski yönetmelikte sıvılaşmanın olmadığı yönünde rapora sahip olan bazı inceleme noktalarında yeni yönetmeliğe göre gerçekleştirilen analiz sonucunda sıvılaşma riskinin bulunduğu belirlenmiştir.

Farklı deprem senaryolarına göre de analizler gerçekleştirilmiş ve inceleme sahası içinde 1. Senaryo için hesap yapılan noktaların %65'i sıvılaşma için riskli olarak nitelendirilmiştir. 2. Senaryoda sıvılaşma riski azalmış ve %14'e kadar inmiştir. 3. Senaryoda ise, sadece 1 noktada sıvılaşma riski bulunmuş olup ilgili bölge %94 oranında güvenli olarak belirlenmiştir. Çalışma alanında gerçekleşebilecek 7,5 büyüklüğündeki bir deprem (1. Senaryo) için oldukça büyük bir sıvılaşma riski olduğu tespit edilmiştir.

TBDY 2018'de anlatılan sıvılaşma hesabı NCEER çalışma grubunun önerdiği sıvılaşma hesabı ile de karşılaştırılmıştır. Buna göre, elde edilen güvenlik katsayılarına göre TBDY 2018'de önerilen sıvılaşma analizi yönteminde daha küçük güvenlik katsayıları elde edilmesi sebebi ile TBDY 2018 yönteminin, NCEER yöntemine göre daha güvenli tarafta kaldığı görülmektedir.

Bununla beraber, 1. Senaryo için aynı zamanda tahmini oturma miktarları da iki yöntem kullanılarak hesaplanmış ve parsel bazında olası oturmaların her iki yöntemde de 30 cm'yi aştığı sonucuna ulaşılmıştır. Verilerin tüm derinlik boyunca oturma tahmini yapmaya yetmediği noktalarda ise tabaka başına hesap yapılmış ve 4,5-17,1 cm arasında değişen oturma miktarları hesaplanmıştır. İnceleme alanı için 1. Senaryoda oldukça büyük tahmini oturmalar hesaplanmıştır.

Verilerin eksikliği göz önüne alındığında daha geniş bir inceleme alanını kapsayacak daha ayrıntılı verilere ulaşılması gelecek çalışmalar için önerilmektedir.

### KAYNAKLAR

 Özaydın, K., Zeminlerde Sıvılaşma, 6. Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul.

[2] Cetin, K. O., Bilge, H. T. Zeminlerin sismik yükleme altında deformasyon ve mukavemet davranışlarına kritik bakış. Zemin Mekaniği ve Temel Mühendisliği On Üçüncü Ulusal Kongresi, 30 Eylül - 1 Ekim 2010, İstanbul Kültür Üniversitesi, İstanbul, Türkiye.

[3] <u>http://yerbilimleri.mta.gov.tr/anasayfa.aspx</u>, Yer Bilimleri Harita Görüntüleyici ve Çizim Editörü, Maden Tetkik ve Arama Genel Müdürlüğü, Haziran 2019.

[4] <u>https://parselsorgu.tkgm.gov.tr/</u>, Parsel Sorgulama Uygulaması, Tapu ve Kadastro Genel Müdürlüğü, Haziran 2019.

[5] Ocakoğlu, N., Demirbağ, E. ve Kuşçu, İ., 2004, Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strikeslip faulting in the Aegean extensional province. Tectonophysics, 391, 67-83.

[6] Ocakoğlu, N., Demirbağ, E. ve Kuşçu, İ., 2005, Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): Evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219, 155–171.

[7] İnci, U., Sözbilir, H., Sümer, Ö. ve Erkül, F., 2003, Urla-Balıkesir arası depremlerin nedeni fosil bir fay. Cumhuriyet Bilim ve Teknik Dergisi, 21 Haziran 2003, 7-8.

[8] Drahor, M.G., Sarı, C. ve Şalk, M., 1999, Seferihisar Jeotermal Alanında Doğal Gerilim (SP) ve Gravite Çalışmaları, 9 Eylül Ünv. Müh. Fak., Fen ve Müh. Derg., c. 1, s.3.

[9] Erdoğan, B., 1990, İzmir-Ankara Zonu ile Karaburun Kuşağının Tektonik İlişkisi, M.T.A. Derg, 110, 1-15.

[10] Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. ve Göktaş, F., 2005:İzmir yakın çevresinin diri fayları ve deprem potansiyelleri. MTA Rapor No: 10754 (yayınlanmamış)

[11] Emre, Ö., Duman T.Y., Özalp, S., Elmacı, H. (2011). 23 Ekim 2011 Van depremi saha gözlemleri ve kaynak faya ilişkin ön değerlendirmeler. MTA, Ankara.
[12] http://www.mta.gov.tr/v3.0/, MTA Genel Müdürlüğü. Haziran, 2019.

[13] Türkelli, N., Kalafat, D. ve İnce, Ş., 1990, 6 Kasım 1992 İzmir depremi ve artçı şokları. Deprem Araştırma Bülteni, 68, 58-95. [14] Seed, H.B. 1968. Landslides during earthquakes due to soil liquefaction. ASCE, Journal of soil Mekhanics and Foundations Division, vol. 94, 1055-1122.

[15] Baez, J.I. 1995. A design model for the reduction of soil liquefaction by vibrostone columns. PhD thesis, University of Southern California, Los Angeles, 207 pp, California, USA.

[16] Casagrande A (1936) "Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills", Journal of the Boston Society of Civil Engineers, v.23, n1, p13-32; Reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, P257-276.

[17] Mogami, H., Kubo, T. 1953. The Behavior of Soil During Vibration.Proceedings of the 3rd International Conference on Soil Mechanics and FoundationEngineering, Vol. 1, pp. 152-153.

[18] M. Mollamahmutoğlu ve F. Babuçcu, Zeminlerde Sıvılaşma Analiz ve İyileştirme Yöntemleri, Gazi Kitabevi, Ankara, 2006.

[19] Kasapoglu vd 1999, Aydan ve Ulusay 2000, Aydan vd 2000, Ulusay vd 2000,
Towhata vd 2001, Yasuda vd 2001, Cetin vd 2002, Sancio vd 2002, Ulusay vd 2002,
Mollamahmutoglu vd 2003, Cetin vd 2004a, Cetin vd 2004b, Rathje vd 2004, Ulusay
ve Kuru 2004, Yilmaz ve Yavuzer 2005, Kanıbir vd 2006, Sonmez vd 2008.

[20] Coduto, D. P., 1999. Geotechnical Engineering Principles and Practices. New Jersey: Prentice-Hall.)

[21] Kramer, S.L., 1996. Geotechnical Earthquake Engineering, Prentice Hall, 652 pp, USA

[22] Fotoğraf: M. Bonilla. USGS'nin izni ile.

[23] Topal T., Van Depreminde Jeolojik Özelliklerin Yıkımlar Üzerinde Etkisi, 2011, Ankara.

[24] Fotoğraf: G. Plafker. USGS'nin izniyle.

[25] Çetin, K.Ö. ve Unutmaz, B. 2004. Zemin sıvılaşması ve sismik zemin davranışı, Türkiye Mühendislik Haberleri, 430, 2004/2, 32-37 s.

[26] Fotoğraf: K. Steinbrugge. California Üniversitesi'nde Deprem Mühendisliği Araştırma Merkezi'nin izniyle.

[27] Sanglerat, G, The Penetrometer and Soil Exploration, Elsevier Publishing Co., Amsterdam, 1972.

[28] Terzaghi, K. and Peck, R.B., Soil Mechanics in Engineering Practice, John Wiley, New York, 1967.

[29] McGregor, J.A. and Duncan, J.M., "Performance and use of the standard penetration test in geotechnical engineering practice", A Report of a study performed by Virginia Tech Center for Geotechnical Practice and Research, Virginia Polytechnic Institute and State University, October 1998

[30] Farrar, Sohn H., C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler,B.R., A Review of Structural Health Monitoring Literature:1996-2001 Los AlamosNational Laboratory Report, LA-13976-MS, Los Alamos, NM, 2003.

[31] Uzuner, B.A., 2000. Temel Mühendisliğine Giriş, 2. Baskı, Derya Kitabevi, Trabzon.

[32] Skempton, A. W., (1986). Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Relative Density, Particle Size, Aging and Overconsolidation, Geotechnique, 36, 3, 425- 447.

[33] Decourt, L. (1990). The Standard Penetration Test: State-of-the-Art-Report, Norwegian Geotechnical Institute Publ., No. 179, Oslo.

[34] Clayton, C. R. I., (1990). SPT Energy Transmission: Theory, Measurement and Significance, Ground Engineering, 23, 10, 35-43.

[35] Tokimatsu, K., (1988). Penetration Tests for Dynamic Problems, Proceedings of 1st International Symposium on Penetration Testing, 117-136, Rotterdam

[36] Molay, M.M., 1993. SPT-CPT Korelasyonları, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.

[37] Önalp, A., 1982. İnşaat Mühendislerine Geoteknik Bilgisi, Cilt 1, K.T.Ü., Trabzon.

[38] Sivrikaya, O., 2003. Standart Penetrasyon Deneyi ile Zemin Özelliklerinin Belirlenmesi, Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.

[39] Castillo, A.J.A., 2007. Correlación entre el Valor N del Ensayo de Penetración Estándar y Velocidad de Ondas de Corte para Arcillas en Bogotá, Proceedings of 10th Revista Épsilon, Bogota, Junio, 8, p. 13-23. (in Colombia)

[40] Bowles, E.J., 1968. Fundation Analysis and Design, McGraww-Hill, NewYork.

[41] Sağlamer, A. 1996. Arazi deneylerinin Geoteknik Tasarımda Kullanılması, ZM6Zemin Mekaniği ve Temel Mühendisliği 6. Ulusal Kongresi, İzmir, 24- 25 Ekim.

[42] Schmertmann, J. H., 1978. Guidelines for Cone Penetration Test: Performance and Design, U.S. Dept. Of Transp., Fed.Highways Admin., Offices of 55 Research and Development, Washington (DC) Report FHWA-TS-78- 209.

[43] İyisan, R., 1996. Zeminlerde kayma dalga hızı ile penetrasyon deney sonuçları arasındaki bağıntılar, İMO Teknik Derg, 7(2), s. 1187-1199.

[44] Andrus R.D., Stokoe II KH., Liquefaction resistance of soils from shear wave velocity, Journal of Geotechnical and Geoenvironmental Eng., 126 (11), 1015–25, 2000.

[45] Yıldırım, S., 2002. Zemin İncelemesi ve Temel Tasarımı, Erdiz Masaüstü Yayıncılık, İstanbul.

[46] Tezcan, S.S. and Özdemir, Z., 2004. Liquefaction Risk Analysis, Higher Education Research Foundation, İstanbul.

[47] Tokimitsu, K., ve Yoshimi, Y. 1983. Empirical correlation of soil liquefaction based on SPT-N value and fines content: Soil Mechanics and Foundations,23-4, 56-74.

[48] <u>https://www.google.com.tr/intl/tr/earth/</u>, Google Earth. Haziran, 2019.

[49] TBDY (2018). "Türkiye Binalar için Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar", Türkiye Cumhuriyeti, Ankara.

[50] Seed, H. B. and Idriss, I. M., 1971. Simplified Procedure for Evaluating Soil Liquefaction Potential, Journal of Geotechnical Engineering, ASCE, September, 97, p. 1249-1273.

[51] Youd T. L., Idriss I. M. (2001): "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", J. Geotech. and Geoenvir. Engrg., ASCE, v:127 (4), s. 297-311.

[52] Liao, S. S. C. and Whitman, R. V., 1986. Overburden Correction Factors for SPT in Sand, Journal of Geotechnical Engineering, ASCE, March ,112(3), p. 373-377.

[53] Youd TL, Idriss I.M., et al. (2001), "Liquefaction Resistance of Soils", Summary Report from the NCEER and NSF Workshops, Journal of Geotechnical Geoenvironmental Engineering, 127 (10): 817-833.

[54] Ishiara K, Yoshmine M (1992) "Evaluation of settlements in sand deposits following liquefaction during earthquakes", Soils and Foundations, 32: 173-188.

[55] Cetin, K. O., Bilge, H. T., Wu, J., Kammerer, A. M., ve Seed, R. B. (2009),"Probabilistic models for cyclic straining of saturated clean sands" J. Geotech.Geoenviron. Eng., 135(3), 371-386.

EKLER

EK A.

1161 Ada-1 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK A 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.





İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1161 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BINA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

#### **3. LABORATUVAR DENEYLERİ VE ANALİZLER**

İnceleme alanında yapılan sondaj çalışmalarında alınan karot numuneler Jeolab Zemin laboratuarına gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini, kesme kutusu deneylerine tabii tutulmuştur. Bu deney Jeolab Zemin laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

### 4. DEĞERLENDİRME

### 4.1. Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinden SPT numuneler alınmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği, kesme kutusu deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre ufak taneli taşlaşmamış çökellerden silt ve kumdan oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.4.1' de verilmektedir.

| KUYU | NUMUNE | DERİNLİK | ÇAKIL | KUM   | SILT  | - KİL | DOGAL<br>SU<br>iCERIĞİ | AT   | TERBE<br>MITLE<br>(%) | RG<br>Rİ | SINIFLAMA             | ZEMİ<br>ÜÇ E<br>SIKIŞ | NDE<br>KS.<br>MA | ZEM<br>DİR<br>KE | ÍNDE<br>EKT<br>SME | ¥ <sub>n</sub> | Υ <sub>k</sub> |
|------|--------|----------|-------|-------|-------|-------|------------------------|------|-----------------------|----------|-----------------------|-----------------------|------------------|------------------|--------------------|----------------|----------------|
| NO   | NUMUNE | (m)      | (%)   | (%)   | (*    | %)    | Wn                     | 24   |                       |          |                       | C                     | ф                | С                | ф                  | (autom3)       | (anlow 3)      |
|      |        |          |       |       |       |       | (%)                    | LL   | PL                    | PI       | and the second second | kpa                   | 0                | kpa              | 0                  | (gr/cm)        | (gr/cm)        |
| SK-1 | SPT    | 1.50     | 61.42 | 35,88 | 2,    | ,70   | 7,1                    |      | NP                    |          | GP                    | 1200                  | 1.1.1.2.         | 1,38             | 31,25              | 1,786          | 1,665          |
| SK-1 | SPT    | 3.00     | 0.00  | 4.44  | 39,73 | 55,83 | 18,4                   | 34,0 | 15,8                  | 18,2     | CL                    | 64,31                 | 5,72             |                  |                    | 1,956          | 1,649          |
| SK-1 | SPT    | 15.00    | 0,00  | 7,92  | 43,30 | 48,78 | 19,7                   | 30,7 | 16,6                  | 14,1     | CL                    | 53,78                 | 7,42             |                  |                    | 1,935          | 1,614          |

Tablo-4.1. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise:

GP : Kötü derecelenmiş çakıllı, kumlar

CL : Orta Plastileri inorganik killer olarak sınıflanmaktadır.

İnceleme alanında yapılan SPT deneyi sonuçları ise aşağıda Tablo.4.4'de verilmektedir.

24

Şekil EK A.1



### İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1161 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BINA VE BINA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

| KUYU NO | ÖRNEK NO | DERİNLİK<br>(m) | 0 - 5<br>(cm) | 15 -30<br>(cm) | 30 -45<br>(cm) | N30 |
|---------|----------|-----------------|---------------|----------------|----------------|-----|
| SK-1    | SPT-1    | 1.50-1.95       | 6             | 5              | 7              | 12  |
| SK-1    | SPT-2    | 3.00-3.45       | 3             | 3              | 5              | 8   |
| SK-1    | SPT-3    | 4.50-4.95       | 3             | 3              | 3              | 6   |
| SK-1    | SPT-4    | 6.00-6.45       | 2             | 3              | 3              | 6   |
| SK-1    | SPT-5    | 7.50-7.95       | 1             | 1              | 1              | 2   |
| SK-1    | SPT-6    | 9.00-9.45       | 3             | 2              | 3              | 5   |
| SK-1    | SPT-7    | 10.50-10.95     | 4             | 4              | 3              | 7   |
| SK-1    | SPT-8    | 12.00-12.45     | 2             | 1              | 1              | 2   |
| SK-1    | SPT-9    | 13.50-13.95     | 3             | 1              | 2              | 3   |
| SK-1    | SPT-10   | 15.00-15.45     | 4             | 4              | 5              | 10  |
| SK-2    | SPT-1    | 1.50-1.95       | 3             | 4              | 5              | 9   |
| SK-2    | SPT-2    | 3.00-3.45       | 4             | 5              | 3              | 8   |
| SK-2    | SPT-3    | 4.50-4.95       | 2             | 2              | 2              | 4   |
| SK-2    | SPT-4    | 6.00-6.45       | 4             | 3              | 4              | 7   |

Tablo-4.2. SPT Deney Sonuçları

### Yapılan hesaplamalarda ortalama N<sub>30</sub> değeri kullanılmıştır.

Darbe sayısı  $N_{30} = 7$ 

İnceleme alanında gözlemlenen birimlerin genel olarak kohezyonsuz zeminlerden oluşması itibari ile <u>Terzaghi'nin</u> önerdiği formüllerinden hesaplamalar yapılmıştır.

| <br>   |        |               |        |          |           |          | , |
|--------|--------|---------------|--------|----------|-----------|----------|---|
| qd: K1 | x Cu x | $Nc + \gamma$ | 1 x Df | x Nq + F | K2 x Nγ 2 | x B x γ2 |   |
| <br>   |        |               |        |          |           |          |   |

| KI-Ka | Temel tahan geometrisine hağlı katsayı                       |
|-------|--------------------------------------------------------------|
| Cu    | Temel zemini kohezvonu                                       |
| Df    | Temel derinliği                                              |
| γ1    | Temel taban seviyesi üzerindeki zeminin birim hacim ağırlığı |
| γ2    | Temel taban seviyesi altındaki zeminin birim hacim ağırlığı  |
| B     | Temel genişliği                                              |
| Nc    | Taşıma gücü faktörleri                                       |
| Nq    | Taşıma gücü faktörleri                                       |
| Νγ    | Taşıma gücü faktörleri                                       |

Şekil EK A.2

25



İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1161 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

Yapılan jeoteknik hesaplamalar sonucunda;

| Zemin grubu                        | D                             |
|------------------------------------|-------------------------------|
| Yerel zemin sınıfı                 | 7                             |
| Etkin yer ivme katsayısı A(0)      | 0.40                          |
| Spektral ivme katsayısı A(T)       | 1,00                          |
| Bina önem katsayısı I              | 1,00                          |
| Spekturum katsayısı S(T)           | 2,50                          |
| Spektrum karakteristik periyotları | $T_{A=} 0.20$ ve $T_B = 0.90$ |
| Yatak Katsayısı                    | $2520 t / m^3$                |

Hesaplamalar ve sınıflamalar ile ilgili bilgiler Tablo.4.4 Tablo.4.5 Tablo.4.6 ve Tablo.4.7'de verilmektedir.

### 4.2. Sıvılaşma Riskinin Değerlendirilmesi

Deprem sırasında tekrarlı yükler gevşek kumlarda hacim azalmasına yola açar ve yükün kalkmasından sonra birim kısalmalar sıfıra dönmede yeniden yüklenir. Böylece suyun drene olmaması ve hacim azalması sonucunsa boşluk suyu basınçlarında artışlar meydana gelir. Boşluk suyu basıncı artarak toplam gerilmeye eşit ya da fazla olur bu durumda zemin kayma direncini yitirir. Bu olay sıvılaşma olarak adlandırılır.



Şekil EK A.3

# EK B.

93 Ada-11 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK B 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



| 9                                                       | 5                        |                                            | EO'                             | TE          | KN                                   | <b>İK</b>                   |                                         |                        |          |                 |                                          | ,        | ∖s J                                   | ЕОТ    | EKN      | lik s | SONI                                 | DAJ                                              | LOC                                        | 9U                                                   |                                     |                                                                                |
|---------------------------------------------------------|--------------------------|--------------------------------------------|---------------------------------|-------------|--------------------------------------|-----------------------------|-----------------------------------------|------------------------|----------|-----------------|------------------------------------------|----------|----------------------------------------|--------|----------|-------|--------------------------------------|--------------------------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
| PROJ                                                    | TE AD                    | I                                          | -                               |             | В                                    | ARIŞ                        | ÔZKA                                    | N                      |          | Kuyu            | Deri                                     | aligi    |                                        | :      |          | 13    | 3,00 me                              | tre                                              |                                            | SONDAJ NO                                            |                                     | : SK-1                                                                         |
| t.t                                                     |                          |                                            |                                 |             | tzmt                                 | R/SE                        | FERIF                                   | tisar.                 |          | YER             | ALTI                                     | 1.0      | numa                                   | :      |          | 1,    | ,50 met                              | Te                                               |                                            | SAYFA NO                                             |                                     | : 1                                                                            |
| YERI                                                    | t                        |                                            |                                 |             | 93 /                                 | ADA, I                      | 1 PAR                                   | SEL                    |          | SEVI            | U<br>YESÎ                                | 2. OI    | numa                                   | :      |          | 1,    | ,80 met                              | Te                                               |                                            | Too North                                            |                                     | EMRE (DISAL                                                                    |
| SONT                                                    | DAJ M                    | ETO                                        | DU:                             |             |                                      | ROT                         | ARY                                     |                        |          | Koon            | dinat                                    | - X      |                                        | :      |          |       | 481 24                               | 9                                                |                                            | Logu Haziriay:                                       | an                                  | Ender Origine                                                                  |
| Başla                                                   | ma Ta                    | rihi :                                     |                                 |             |                                      | 10.06                       | 5.2019                                  |                        |          | Koon            | dinat                                    | - Y      |                                        | :      |          | 4     | 227 18                               | 33                                               |                                            | Candler                                              |                                     | MEVI OT ARSI AN                                                                |
| Bitiş 1                                                 | Tarihi                   |                                            | - 1                             |             |                                      | 10.06                       | 5.2019                                  |                        |          | Koor            | dinat                                    | - Z      |                                        | :      |          |       |                                      |                                                  |                                            | Solidor                                              |                                     | ALCOLOT ALGUNA                                                                 |
| Ĵ.                                                      | <u> </u>                 |                                            | (fill)                          |             |                                      |                             |                                         | _                      | Zem      | in Dens         | ylari                                    |          |                                        |        |          | B     | Saya Os                              | ellikle<br>12                                    | ni                                         |                                                      |                                     |                                                                                |
| 1                                                       | 1                        |                                            | Ť                               | g           | 8                                    |                             | S                                       | PT                     |          | Sta             | ndart                                    | Penet    | rasyo                                  | n Gra  | fiği     | 681   |                                      | 2000                                             | -55                                        |                                                      |                                     |                                                                                |
| j Da                                                    | aDe                      | ne N                                       | Dari                            | Leu         | Bore                                 | 1                           | Darbe                                   | Sayılar                |          |                 |                                          |          |                                        |        |          | Yand  | *                                    | m D                                              | Skh                                        | Jeolojik Kesit                                       | -                                   | amin Tanimlamasi                                                               |
| conde                                                   | aba                      | - Automa                                   | m                               | - Mark      | 1                                    | 15                          | 30                                      | 45                     | N        | . I             | 0 2                                      | 0 3      | 0 4                                    |        | 0        | arot  | 8                                    | yns                                              | atlak                                      |                                                      |                                     |                                                                                |
| 90                                                      | 0.8                      | ×.                                         | ~                               | ~           | 1                                    |                             |                                         |                        |          |                 |                                          | Ĩ        | ļ                                      |        |          | ×     | ~                                    | ~                                                | 0                                          | 100 - 100 - 100 - 100 - 100<br>100 - 100 - 100 - 100 |                                     |                                                                                |
| -                                                       | 2 8                      |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            | and the last file and                                | в                                   | TKISEL TOPRAK                                                                  |
| 1.00                                                    |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | l        |                                        |        |          |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              |                                     |                                                                                |
| _                                                       |                          |                                            |                                 |             |                                      |                             |                                         |                        |          | <u> </u>        |                                          | <u> </u> |                                        |        |          |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              |                                     |                                                                                |
| 2.00                                                    |                          | 1                                          | 1,50                            | SPT         |                                      | 5                           | 7                                       | 7                      | 14       |                 | ····                                     | <u> </u> |                                        |        | <b></b>  |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              |                                     | UNTERNER VACUT                                                                 |
|                                                         | 8                        |                                            |                                 |             | 1                                    |                             |                                         |                        |          | ļ               | ļ                                        | ļ        |                                        |        |          |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              | RU                                  | KÖTÜ                                                                           |
| -                                                       |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | <u> </u> | <u> </u>                               |        | <u> </u> |       |                                      |                                                  |                                            | 0000000000                                           | DER                                 | ECELENDÍRÍLMÍS<br>KIL CAKIL KUM                                                |
| 3.00                                                    | \$                       |                                            | 3,00                            |             | {                                    |                             |                                         |                        |          | /               |                                          |          |                                        |        |          |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              | 1                                   | KARIŞIMINDAN                                                                   |
| -                                                       |                          | 2                                          | 3,45                            | SPT         | 4                                    | •                           | 3                                       | *                      | ×        |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            | 0000000000                                           | OI                                  | LUŞAN ALUVYON                                                                  |
| 4.00                                                    |                          |                                            |                                 |             |                                      |                             |                                         |                        |          | t:t             |                                          | <u> </u> | <u> </u>                               |        | <u> </u> |       |                                      |                                                  |                                            | 0000000000                                           |                                     |                                                                                |
|                                                         |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            | 000000000000000000000000000000000000000              |                                     |                                                                                |
| -                                                       |                          | 3                                          | 4,50                            | SPT         | 1                                    | 2                           | 2                                       | 2                      | 4        |                 |                                          | 1        | <u> </u>                               |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 5.00                                                    |                          |                                            | 4,95                            |             | {                                    |                             |                                         |                        | <u> </u> | ł-+             |                                          |          | }·                                     |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| -                                                       |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | <b> </b> |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 6.00                                                    |                          |                                            |                                 |             |                                      |                             |                                         |                        |          | 1               |                                          | <u> </u> |                                        |        | <u> </u> |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
|                                                         |                          | 4                                          | 6,00                            | SPT         |                                      | 2                           | 1                                       | 2                      | 3        | 4               |                                          |          | }·                                     |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| -                                                       |                          |                                            |                                 |             | 1                                    |                             |                                         |                        |          | 1               |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 7.00                                                    |                          |                                            |                                 |             |                                      |                             |                                         |                        |          | 11              |                                          |          | <b></b> -                              |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| -                                                       |                          |                                            | 7.50                            |             | {                                    |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 8.00                                                    |                          | 5                                          | 7,95                            | SPT         |                                      | 1                           | 1                                       | 1                      | 2        |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      | 1.11                                | UATEENEE VASLI                                                                 |
|                                                         | в                        |                                            |                                 |             |                                      |                             |                                         |                        |          | l-l             |                                          | <u> </u> |                                        |        |          |       |                                      |                                                  |                                            |                                                      | PLA                                 | STISTEST DOŞOK                                                                 |
| 0.00                                                    |                          |                                            |                                 |             |                                      |                             |                                         |                        |          | [- <del>]</del> |                                          | <b> </b> |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     | VEYA ORTA<br>NORGANIK KIL                                                      |
| 2.00                                                    | 3                        | 6                                          | 9,00                            | SPT         | 1                                    | 1                           | 1                                       | 2                      | 3        | 1.1.1           |                                          |          | <b></b>                                |        |          |       |                                      |                                                  |                                            |                                                      | 1                                   | CARIŞIMINDAN                                                                   |
| -                                                       |                          |                                            | 9,45                            |             | {                                    |                             |                                         |                        |          | ┟╍┾╍┥           |                                          |          | }·                                     |        |          |       |                                      |                                                  |                                            |                                                      | OI                                  | JUŞAN ALUVYON                                                                  |
| 10.00                                                   |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| _                                                       |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | <u> </u> | <u> </u>                               |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 11.00                                                   |                          | 7                                          | 10,50                           | SPT         |                                      | 2                           | 1                                       | 1                      | 2        |                 |                                          | <u></u>  | }·                                     |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
|                                                         |                          |                                            |                                 |             | 1                                    |                             |                                         |                        |          | FF              |                                          | <b> </b> | [                                      |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| E.                                                      |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | <u> </u> | <b> </b>                               |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 12.00                                                   |                          |                                            | 12,00                           |             | {                                    |                             |                                         |                        | -        | ┼╍┼╍┥           |                                          | <u> </u> | ·                                      |        | <b></b>  |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| -                                                       |                          | •                                          | 12,45                           | 3P1         | 4                                    | 3                           | - 2                                     | 3                      | 2        |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 13.00                                                   |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
|                                                         |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  | KUY                                        | U SONU: 13,00                                        | MET                                 | NE.                                                                            |
| 14.00                                                   |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | 1        |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 14.00                                                   |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | <u> </u> |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| <b> </b> -                                              |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| 15.00                                                   |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          | 1        | <u> </u>                               |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
|                                                         |                          |                                            |                                 |             |                                      |                             |                                         |                        |          |                 |                                          |          |                                        |        |          |       |                                      |                                                  |                                            |                                                      |                                     |                                                                                |
| Inc                                                     | e tane                   | Z<br>li (Ko                                | EMIN I<br>bezyoni               | DEĞE<br>hi) | RLEN                                 | lri tar                     | ESI - S<br>teli (Ka                     | PT<br>bezyo            | DSUZ)    |                 | K/                                       | AYAN     | ITEL                                   | GI - 3 | QD (     | %)    | AY                                   | RIŞM                                             | ADE                                        | RECEST(W)                                            | 9                                   | ATLAK SIKLIĞI                                                                  |
| N : 0-<br>N : 3-<br>N : 5-<br>N : 9-<br>N :14<br>N : 30 | 2<br>4<br>8<br>13<br>-30 | Çok Yum<br>Orta I<br>Katı<br>Çok I<br>Şert | Yunnişa<br>nşak<br>Katı<br>Katı | uk          | N:0-<br>N:5-<br>N:11<br>N:31<br>N:>5 | 4<br>10<br>-30<br>-50<br>50 | Çok (<br>Gevşe<br>Orta<br>Sala<br>Çok S | Georgaak<br>ak<br>iaka |          |                 | 0-25<br>25-50<br>50-75<br>75-90<br>90-10 | 0        | Çok i<br>Zayıf<br>Orta<br>İyi<br>Ç.İyi | Zayıf  |          |       | W1 2<br>W2 7<br>W3 (<br>W4 7<br>W5 2 | Faze ( .<br>Az Ayr<br>Drta D<br>Ayrışın<br>Faman | Ayrışa<br>ışanış<br>erəcəd<br>ış<br>sən Ay | илта;)<br>• Аут.<br>т.                               | < 1<br>1-3<br>3-10<br>10-50<br>> 50 | Manif<br>Az çatlaklı-Kırıklı<br>Kırıklı<br>Çok çatlaklı-Kırıklı<br>Parçalanmış |

Şekil EK B.1

| 9               | 5               | J          | EO'              |               | KN           | İK               |                      |                     |        |               |               | ,        | AS J         | ЕОТ      | EKN      | lik s          | SON          | DAJ               | LOG            | 9U                                      |              |                               |
|-----------------|-----------------|------------|------------------|---------------|--------------|------------------|----------------------|---------------------|--------|---------------|---------------|----------|--------------|----------|----------|----------------|--------------|-------------------|----------------|-----------------------------------------|--------------|-------------------------------|
| PRO             | TE AD           | I          |                  |               | В            | ARIŞ             | ÔZKA                 | N                   |        | Kuy           | u Deri        | nliği    |              | :        |          | 20             | ,00 me       | tre               |                | SONDAJ NO                               |              | : SK-3                        |
| t.t             |                 |            | -                |               | tzmt         | R/SE             | FERIF                | tisar.              |        | YER           | ALTI          | 1.0      | ruma         | :        |          | 1,             | ,50 met      | 10                |                | SAYFA NO                                |              | : 1                           |
| YER             | t               |            | -                |               | 93 /         | ADA, I           | 1 PAR                | SEL                 |        | SEV           | SU<br>TYESI   | 2.0      | numa         | :        |          | 1,             | 80 met       | 10                |                |                                         |              | EN OPE CONSIST                |
| SON             | DAJ M           | ŒТО        | DU:              |               |              | ROT              | ARY                  |                     |        | Koo           | rdinat        | - X      |              | :        |          | 4              | 481 24       | 6                 |                | Logu Hazriay:                           | 811          | ENDE ONSAL                    |
| Başla           | ma Ta           | urihi :    | - 1              |               |              | 10.06            | 5.2019               |                     |        | Koo           | rdinat        | - Y      |              | :        |          | 4              | 227 17       | 75                |                | C                                       |              | MENT OF ADOLAN                |
| Biúş            | Tsrihi          | i          |                  |               |              | 10.06            | 5.2019               |                     |        | Koo           | rdinat        | - Z      |              | :        |          |                |              |                   |                | Solidor                                 |              | MEYLOT AKSLAN                 |
| )               | (m)             |            | (i)              |               |              |                  |                      |                     | Zem    | in Der        | eyleri        |          |              |          |          | K              | Gaya Ös      | ellikie<br>19     | ni             | ļ                                       |              |                               |
| ondaj Derinli ĝ | abaka Derinli ĝ | Vumme No   | lum. Derinliği ( | fumune Turù   | fuh. Borusu  | 15               | Darbe<br>30          | PT<br>Sayılar<br>45 | N      | Sta           | andart        | Penet    | rasyo        | n Gra    | dīği     | arot Yündesi % | % ØD %       | yrışma Derece     | adak Sikh ĝi   | Jeolojik Kesit                          | 3            | Zamin Tanımlaması             |
| -               | 0.0<br>1        | ~          | ~                | ~             | ~            |                  |                      |                     |        |               |               |          |              |          |          | ×              | ×.           | V                 | 0              |                                         | Bİ           | TKISEL TOPRAK                 |
| 1.00            |                 | $\vdash$   |                  |               |              |                  |                      |                     |        | l             | <b>_</b>      |          | <br>         | <br>     | L        |                |              |                   |                | 0000000000                              |              |                               |
|                 |                 |            |                  |               |              |                  |                      |                     |        | }             | ÷             | ·        | <u> </u>     | <b></b>  |          |                |              |                   |                | 000000000000000000000000000000000000000 |              |                               |
| 2.00            |                 | 1          | 1,50             | SPT           | 1            | 5                | 7                    | 6                   | 13     | ļ             | ļ             |          |              |          |          |                |              |                   |                | 0000000000                              |              |                               |
| 2.00            |                 | $\vdash$   | 1,00             |               | 1            |                  |                      |                     |        | t             | <b>#</b>      | 1        |              | 1        |          |                |              |                   |                | 000000000000000000000000000000000000000 | ĸu           | VATERNER YAŞLI<br>KÖTÜ        |
| -               |                 |            |                  |               |              |                  |                      |                     |        | }             | ŧ             | ·{       | }            | <b></b>  |          |                |              |                   |                | 000000000000000000000000000000000000000 | DEF          | ECELENDIRILMIS                |
| 3.00            | 40              |            | 3.00             |               | -            |                  |                      |                     |        | ļ             | ļ             |          |              |          |          |                |              |                   |                | 000000000000000000000000000000000000000 | 1            | KARIŞIMINDAN                  |
| -               |                 | 2          | 3,45             | SPT           |              | 4                | 5                    | 5                   | 10     | <u> </u>      | t             | 1        | <u> </u>     | <u> </u> | <b>.</b> |                |              |                   |                | 000000000000000000000000000000000000000 | 01           | LUŞAN ALÜVYON                 |
| 4.00            |                 |            |                  |               |              |                  |                      |                     |        |               | <b>-</b>      |          |              |          |          |                |              |                   |                | 000000000000000000000000000000000000000 |              |                               |
|                 |                 |            |                  |               |              |                  |                      |                     |        |               | Į             | ·        |              | ļ        |          |                |              |                   |                | 000000000000000000000000000000000000000 |              |                               |
| -               |                 | 3          | 4,50             | SPT           | 1            | 2                | 2                    | 4                   | 6      | t:1           | <u> </u>      | 1        |              | 1        |          |                |              |                   |                |                                         | -            |                               |
| 3.00            |                 | $\vdash$   | 4,95             |               | 1            |                  |                      |                     |        | ł:†:          | <u>+</u>      |          |              |          |          |                |              |                   |                |                                         |              |                               |
| -               |                 |            |                  |               |              |                  |                      |                     |        | F.F           | <b></b>       |          |              | ļ        |          |                |              |                   |                |                                         |              |                               |
| 6.00            |                 |            |                  |               |              |                  |                      |                     |        | ļ†            | ‡             | 1        |              |          |          |                |              |                   |                |                                         |              |                               |
|                 |                 | 4          | 6,00             | SPT           |              | 1                | 1                    | 1                   | 2      | Ľ             | ±             |          |              |          | <u> </u> |                |              |                   |                |                                         |              |                               |
| 7.00            |                 |            |                  |               | ]            |                  |                      |                     |        | H             | <b></b>       |          |              |          |          |                |              |                   |                |                                         |              |                               |
| _               |                 |            |                  |               |              |                  |                      |                     |        | 11            | <b>†</b>      | 1        |              |          |          |                |              |                   |                |                                         |              |                               |
| -               |                 | 5          | 7,50             | SPT           | 1            | 2                | 1                    | 2                   | 3      | <u> </u>      | <u>+</u>      | <b>!</b> |              |          |          |                |              |                   |                |                                         |              |                               |
| 8.00            |                 | F          | 7,95             |               | {            | -                |                      | -                   | Ľ      | <u>-</u>      | ÷             | ·{       | }            | <b></b>  |          |                |              |                   |                |                                         |              |                               |
| -               |                 |            |                  |               |              |                  |                      |                     |        | 1             | <b>_</b>      |          |              |          |          |                |              |                   |                |                                         |              |                               |
| 9.00            |                 |            |                  |               |              |                  |                      |                     |        | ŀt:           | ±             | 1        |              | <u> </u> | <u> </u> |                |              |                   |                |                                         |              |                               |
|                 |                 | 6          | 9,00<br>9,45     | SPT           |              | 2                | 2                    | 1                   | 3      |               | +             |          |              |          |          |                |              |                   |                |                                         | ĸu           | VATERNER YAŞLI                |
| 10.00           | 8               |            |                  |               | 1            |                  |                      |                     |        | 1             | <b>†</b>      |          |              |          |          |                |              |                   |                |                                         | PL/          | ASTISITESI DÜŞÜK              |
| 10.00           | 8               |            |                  |               |              |                  |                      |                     |        | <u>t</u>      | <b>†</b>      | <b>!</b> | <b></b>      |          |          |                |              |                   |                |                                         | t            | NORGANIK KIL                  |
| -               | 21              | -          | 10,50            |               | {            |                  |                      |                     | -      | ┼╍┾╸          | ÷             | ·{       | }            | <b></b>  |          |                |              |                   |                |                                         | 01           | KARIŞIMINDAN<br>LUSAN ALÜVYON |
| <u>11.0</u> 0   |                 | -          | 10,95            | arr           | -            | •                | 2                    |                     | 3      | 11            | <b>_</b>      |          |              |          |          |                |              |                   |                |                                         |              |                               |
| _               |                 |            |                  |               |              |                  |                      |                     |        | ŀt:           | <u>+</u>      | 1        |              |          |          |                |              |                   |                |                                         |              |                               |
| 12.00           |                 |            |                  |               |              |                  |                      |                     |        | <u>-</u> +    | +             |          |              |          |          |                |              |                   |                |                                         |              |                               |
|                 |                 | 8          | 12,00            | SPT           | ]            | 1                | 1                    | 1                   | 2      | 14-           | <b></b>       |          |              | <b> </b> |          |                |              |                   |                |                                         |              |                               |
| -               |                 |            |                  |               | 1            |                  |                      |                     |        | <u>t:t:</u> : | <b>‡</b>      | 1        |              | 1        | <b>.</b> |                |              |                   |                |                                         |              |                               |
| 13.00           |                 |            |                  |               |              |                  |                      |                     |        | t-t-          | ±             |          |              |          |          |                |              |                   |                |                                         |              | •                             |
| -               |                 |            | 13.50            |               | {            |                  |                      |                     |        | ſŦ.           |               |          |              |          |          |                |              |                   |                |                                         |              |                               |
| <u>14.0</u> 0   |                 | 9          | 13.95            | SPT           |              | 2                | 3                    | 2                   | 5      | 1:1           | ‡             | 1        |              | 1        | <b>.</b> |                |              |                   |                |                                         |              |                               |
| L               |                 |            |                  |               |              |                  |                      |                     |        | ŀt-           | ±             |          |              |          |          |                |              |                   |                |                                         |              |                               |
| 15.00           |                 |            |                  |               |              |                  |                      |                     |        | F-F-          | <b>-</b>      |          |              |          |          |                |              |                   |                |                                         |              |                               |
|                 |                 | 10         | 15.00            | SPT           |              | 1                | 2                    | 2                   | 4      | <u>†:t:</u>   | <b>‡</b>      | 1        |              | 1        |          |                |              |                   |                |                                         |              |                               |
| te              | ce tano         | Z          | EMÍN I           | DEĞEI<br>ha ) | RLEN         | DIRMI<br>Ini ter | ESI - S<br>Jeli (16) | PT                  | 1502   | -             | K             | AYAN     | iteli        | GI - 1   | LQD (    | %)             | AY           | RIŞM              | A DEI          | ECESI(W)                                | (            | ÇATLAK SIKLIĞI                |
|                 |                 | - (150     |                  |               |              |                  |                      | - and yo            | ( 2010 |               |               |          |              |          | -        |                |              |                   |                |                                         | -            |                               |
| N:0-<br>N:3-    | 2<br>4          | Çok<br>Yum | Yuunqa<br>ngak   | uk            | N:0-<br>N:5- | 4<br>10          | Çok (<br>Gevşe       | ievşek<br>ik        |        |               | 0-25<br>25-50 | )        | Çok<br>Zayıf | Zayıf    |          |                | W1 1<br>W2 4 | Faze (.<br>Az Ayı | Aynşa<br>19009 | namić)                                  | <1<br>1-3    | Masif<br>Az çatlaklı-Kırıklı  |
| N : 5-          | 8               | Orta       | Kati             |               | N:11         | -30              | Orta                 |                     |        |               | 50-75         | 5        | Orta         |          |          |                | W3 (         | Orta D            | ereced         | е Аут.                                  | 3-10         | Krikh<br>Cab article Varia    |
| N :14           | -30             | Çok I      | Katu             |               | N:>3<br>N:>3 | -50<br>50        | çak S                | da                  |        |               | 90-10         | ,<br>00  | ıyı<br>Ç.İyi |          |          |                | W7 2<br>W5 1 | ayngm<br>Faman    | 49<br>aan Ay   | т.                                      | = 50<br>= 50 | Parçalanmış                   |
| N : 30          | )               | Sert       |                  |               |              |                  |                      |                     |        |               |               |          | -            |          |          |                |              |                   |                |                                         |              | -                             |

Şekil EK B.2

| M<br>Cu   | <mark>üşteri Ad</mark><br>stomer's Na | l<br>me            |                 | AS JE        | OTEK      | ιίκ Αι    | RAŞT      | IRM   | A SOI                  | NDA             | u inș                                   | S. SAN             | . тіс.             | LTD.                  | şтi.      |                      | Rapor I<br>Report no                   | No:                      |                                |                        | Bakanlı<br>Ministeria      | k Rapor  <br>Report no      | No :                                |                                    |                                     |                           |                              |                            |
|-----------|---------------------------------------|--------------------|-----------------|--------------|-----------|-----------|-----------|-------|------------------------|-----------------|-----------------------------------------|--------------------|--------------------|-----------------------|-----------|----------------------|----------------------------------------|--------------------------|--------------------------------|------------------------|----------------------------|-----------------------------|-------------------------------------|------------------------------------|-------------------------------------|---------------------------|------------------------------|----------------------------|
| Nu<br>Pro | um.Alındı<br>oject/Locatio            | ğı Yer             |                 | 93 ada       | 11 prs    | Sefe      | ihisa     | r/izM | ir - B                 | ARIŞ            | ÖZKA                                    | N                  |                    |                       |           |                      |                                        |                          |                                |                        | Rapor T<br>Date of Re      | arihi<br>port               |                                     | 14.06.2                            | 2019                                |                           |                              |                            |
|           | Sondaj<br>No                          | mune No<br>mple No | Derinlik<br>(m) | AKIL / Gavel | UM / Sand | siur / sæ | KlL / Chy | Atter | berg lin<br>erberg Lin | nitleri<br>nits | w,                                      | ¥.,                | ۲.                 | niflama<br>sification | olidasyon | Zem<br>Eks.<br>Triav | iinde Üç<br>Sıkışma<br>ial Comp.       | Zemir<br>Eks.S<br>Unconf | ndeTek<br>Ikişma<br>in. Stren. | Zemind<br>Ke<br>Direct | le Direkt<br>sme<br>Shears | Zemino<br>Ke<br>(Re:<br>ger | le Direkt<br>sme<br>zidüel<br>ilme) | Kaya<br>Eks.Si<br>Triaxial C<br>Ro | da Üç<br>ikişma<br>Jomp. for<br>ock | Şişme<br>Basıncı<br>Swell | Şişme<br>Yüzdesi<br>Swelling | ls <sub>50</sub><br>(Ort.) |
|           | Boring No                             | ₹ s                | Depth           | 5            | -         |           |           | LL    | PL                     | PI              |                                         |                    |                    | Clas                  | 5         | g c                  | ٥                                      | q.                       | c                              | c                      | ٥                          | c'                          | Φ'                                  | c                                  | Φ                                   | Pressure                  | Katio                        |                            |
|           |                                       |                    |                 | (%)          | (96)      | (%)       | (%)       | (96)  | (%)                    | (%)             | (%)                                     | gr/cm <sup>3</sup> | gr/cm <sup>3</sup> | 1                     |           | (kPa)                | (*)                                    | (kPa)                    | (kPa)                          | (kpa)                  | (*)                        | (kpa)                       | (*)                                 | (MPa)                              | (*)                                 | (kg/cm <sup>2</sup> )     | (96)                         | (MPa)                      |
| 1         | SK-1                                  |                    | 1,50-1,95       | 63,67        | 34,79     | 1         | ,54       |       | NP                     |                 | 8,2                                     | 1,887              | 1,741              | GP                    |           |                      |                                        |                          |                                | 6,23                   | 25,42                      |                             |                                     |                                    |                                     |                           |                              |                            |
| 2         | SK-1                                  |                    | 12,00-12,45     | 0,00         | 7,04      | 35,38     | 47,58     | 31,6  | 15,4                   | 16,2            | 16,5                                    | 1                  |                    | CL                    |           |                      |                                        |                          |                                |                        |                            |                             |                                     | 1                                  |                                     | 1                         |                              |                            |
| 3         | SK-2                                  |                    | 4,50-4,95       | 0,00         | 6,24      | 41,98     | 51,78     | 30,0  | 15,7                   | 14,3            | 17,5                                    | 1                  |                    | CL                    |           |                      |                                        |                          |                                |                        |                            |                             |                                     | 1                                  |                                     | 1                         |                              |                            |
| 4         | SK-2                                  |                    | 12,00-12,45     | 0,00         | 8,66      | 36,18     | 55,16     | 31,7  | 16,4                   | 15,3            | 16,9                                    | 1                  | 1                  | CL                    | 1         |                      |                                        |                          | 1                              | 1                      | 1                          | 1                           | 1                                   | 1                                  |                                     | 1                         | 1                            |                            |
| 5         | SK-3                                  | 1                  | 6,00-6,45       | 0,00         | 9,28      | 41,51     | 49,21     | 32,2  | 17,1                   | 15,1            | 19,8                                    | 1                  | 1                  | CL                    |           |                      |                                        |                          | 1                              | 1                      |                            | 1                           |                                     | 1                                  | 1                                   | 1                         | 1                            |                            |
| 6         | SK-3                                  | 1                  | 19,50-19,95     | 0,00         | 5,14      | 46,44     | 48,42     | 30,1  | 16,6                   | 13,5            | 18,8                                    | 1                  | 1                  | CL                    |           |                      |                                        |                          | [                              | 1                      |                            | 1                           |                                     | 1                                  | 1                                   | 1                         | 1                            |                            |
|           |                                       | +                  | 1               | t            |           |           |           | +     |                        |                 | (00000000000000000000000000000000000000 | 8                  | 1                  |                       |           |                      | ···· • ··· · • ··· · • · • · • · • · • |                          | ÷                              | 1                      | ÷                          | 1                           | · •                                 | 1                                  | ÷                                   | 1                         | 1                            | f                          |

Şekil EK B.3



# EK C.

51 Ada-6 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK C 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-1C PAFTA, 51 ADA, 6 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

# 3. LABORATUVAR DENEYLERİ VE ANALİZLER

İnceleme alanında yapılan sondaj çalışmalarında alınan karot numuneler Jeolab Zemin laboratuarına gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini deneylerine tabii tutulmuştur. Bu deney Jeolab Zemin laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

### 4. DEĞERLENDİRME

JEUIEKNIK

# 4.1. Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinden karotiyer yardımı ile karot numuneler alınmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği, ve kesme kutusu deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre ufak taneli taşlaşmamış çökellerden çakıl ve kumdan oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.4.1' de verilmektedir.

| Sondaj | Numune | Derinlik    | AKIL  | KUM   | SiLT | kiL | At<br>lii | terbe<br>mitler | rg<br>'i | Wn   | γn                 | γĸ                 | Zen<br>Di  | ninde<br>rekt | AMA   |
|--------|--------|-------------|-------|-------|------|-----|-----------|-----------------|----------|------|--------------------|--------------------|------------|---------------|-------|
| No     | No     | (m)         | 5     |       |      |     | LL        | PL              | PI       |      |                    |                    | Ke         | sme           | IFL   |
|        |        |             | (%)   | (%)   | (%)  | (%) | (%)       | (%)             | (%)      | (%)  | gr/cm <sup>3</sup> | gr/cm <sup>3</sup> | C<br>(kpa) | (")           | SIN   |
| SK-1   | SPT    | 1,50-1,95   | 25,56 | 71,26 | 3,   | 18  |           | NP              |          | 11,8 | 1,882              | 1,678              | 2,38       | 27,03         | SP    |
| SK-1   | SPT    | 3,00-3,45   | 32,02 | 57,42 | 10   | ,56 |           | NP              |          | 7,0  | 1,820              | 1,695              | 0,23       | 28,39         | SM-SP |
| SK-1   | SPT    | 6,00-6,45   | 27,47 | 65,17 | 7,   | 36  |           | NP              |          | 11,2 | 1,843              | 1,647              | 4,48       | 25,06         | SM-SP |
| SK-1   | SPT    | 12,00-12,45 | 18,31 | 72,55 | 9,   | 14  |           | NP              |          | 8,1  | 1,813              | 1,671              | 2,13       | 26,84         | SM-SP |
| SK-1   | SPT    | 15,00-15,45 | 22,26 | 69,38 | 8,   | 36  |           | NP              |          | 11,3 | 1,865              | 1,665              | 1,38       | 25,72         | SM-SP |

Tablo-4.1. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise;

SM: Siltli-kum kum – silt karışımı olarak sınıflanmaktadır.

24

Şekil EK C.1

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-1C PAFTA, 51 ADA, 6 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

İnceleme alanında yapılan SPT deneyi sonuçları ise aşağıda Tablo.4.4'de verilmektedir.

| KUYU NO | ÖRNEK NO | DERİNLİK<br>(m) | 0 - 5<br>(cm) | 15-30<br>(cm) | 30 -45<br>(cm) | N30 |
|---------|----------|-----------------|---------------|---------------|----------------|-----|
| SK-1    | SPT-1    | 1.50-1.95       | 7             | 7             | 8              | 15  |
| SK-1    | SPT-2    | 3.00-3.45       | 8             | 6             | 8              | 15  |
| SK-1    | SPT-3    | 4.50-4.95       | 10            | 6             | 6              | 14  |
| SK-1    | SPT-4    | 6.00-6.45       | 8             | 7             | 10             | 12  |
| SK-1    | SPT-5    | 7.50-7.95       | 10            | 8             | 10             | 1/  |
| SK-1    | SPT-6    | 9.00-9.45       | 11            | 10            | 12             | 20  |
| SK-1    | SPT-7    | 10.50-10.95     | 15            | 8             | 12             |     |
| SK-1    | SPT-8    | 12.00-12.45     | 14            | 8             | 0              | 18  |
| SK-1    | SPT-9    | 13.50-13.95     | 12            | 8             | 0              | 10  |
| SK-1    | SPT-10   | 15.00-15.45     | 15            | 7             | 12             | 20  |
| SK-2    | SPT-1    | 1.50-1.95       | 7             | 7             | 15             | 22  |
| SK-2    | SPT-2    | 3 00-3 45       | 9             | 6             | 1              | 14  |
| SK-2    | SPT-3    | 4 50-4 95       | 8             | 0             | 0              | 12  |
| SK-2    | SPT-4    | 6.00-6.45       | 0             | 0             | 6              | 12  |
|         |          | 0.00 0.45       | /             | 9             | 9              | 16  |

Tablo.4.4 SPT Deney Sonuçları

İnceleme alanında gözlemlenen birimlerin genel olarak kohezyonsuz zeminlerden oluşması itibari ile Terzaghi'nin önerdiği formüllerinden hesaplamalar yapılmıştır. Formüller aşağıda verilmektedir.

qd: K1 x Cu x Nc + γ1 x Df x Nq + K2 x Nγ x B x γ2

| VV                                            | Tomal taken accurate in a lexit let                          |
|-----------------------------------------------|--------------------------------------------------------------|
| <b>K</b> <sub>1</sub> - <b>K</b> <sub>2</sub> | i emei taban geometrisine bagli katsayı                      |
| Cu                                            | Temel zemini kohezyonu                                       |
| Df                                            | Temel derinliği                                              |
| γ1                                            | Temel taban seviyesi üzerindeki zeminin birim hacim ağırlığı |
| γ2                                            | Temel taban seviyesi altındaki zeminin birim hacim ağırlığı  |
| В                                             | Temel genişliği                                              |
| Nc                                            | Taşıma gücü faktörleri                                       |
| Nq                                            | Taşıma gücü faktörleri                                       |
| Nγ                                            | Taşıma gücü faktörleri                                       |

25

Şekil EK C.2



İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-1C PAFTA, 51 ADA, 6 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

İnceleme alanında yapılan arazi deney sonuçları ve laboratuvar sonuçlarına göre yapılan sıvılaşma analizlerinde saha için hesaplanan değerler <u>"Fs < 1 Sıvılaşma Riski</u> <u>Mevcut"</u> aralığında kalmaktadır.İnşaat aşamasında gerekli önlemlerin uzman mühendisler tarafından alınması gerekmektedir.



### 4.3.Oturma

Temel aracılığı ile zemine aktarılan yapı yükleri altında zeminde meydana gelen düşey deformasyonlara oturma denilir. Oturma, yapı yükünden dolayı temel tabanındaki zemin içinde bulunan havanın ve boşluklardaki suyun dışarı çıkması sonucu oluşur. İnce taneli (killi, siltli) zeminlerin permeabilitesi çok düşük olduğundan, yüklenen zeminden suyun dışarı çıkması yavaş olacak ve buna bağlı olarak zemin sıkışması zamana bağlı olarak değişecektir. İri taneli kumlu, çakıllı zeminlerin permeabilitesi yüksek olduğu için, yüklenen zeminden suyun dışarı çıkışı hızlı olacaktır. İnceleme alanında gözlemlenen birim çakıllar ve siltlerden oluştuğundan dolayı oturma beklenmemektedir.

28

### Şekil EK C.3

# EK D.

1279 Ada-1 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK D 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-2D PAFTA, 1279 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

# 3. LABORATUVAR DENEYLERİ VE ANALİZLER

İnceleme alanında yapılan sondaj çalışmalarında alınan karot numuneler Jeolab Zemin laboratuarına gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini deneylerine tabii tutulmuştur. Bu deney Jeolab Zemin laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

### 4. DEĞERLENDİRME

JEOTEKNIK

# 4.1. Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinden karotiyer yardımı ile karot numuneler alınmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği, kesme kutusu ve nokta yükleme deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre ufak taneli taşlaşmamış çökellerden çakıl ve kumdan oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.4.1' de verilmektedir.

| Sondaj | Numune     | Derinlik  | AKIL  | KUM   | siLT | kiL | At  | terbe<br>mitlei | rg<br>ri | Wn   | γn                 | Yk                 | Zen<br>Di  | ninde<br>rekt | MA    |
|--------|------------|-----------|-------|-------|------|-----|-----|-----------------|----------|------|--------------------|--------------------|------------|---------------|-------|
| No     | No         | (m)       | 0     | -     |      |     | LL  | PL              | PI       |      |                    |                    | Ke         | sme           | FLA   |
|        | and inter- |           | (%)   | (%)   | (%)  | (%) | (%) | (%)             | (%)      | (%)  | gr/cm <sup>3</sup> | gr/cm <sup>3</sup> | C<br>(kpa) | ෆ             | INIS  |
| SK-1   | SPT        | 1,50-1,95 | 35,10 | 59,63 | 5,2  | 27  |     | NP              |          | 12,9 | 1,875              | 1,555              | 3,30       | 26,23         | SP-SM |
| SK-1   | SPT        | 9,00-9,45 | 0,00  | 2,22  | 97,  | 78  |     | NP              |          | 38,2 |                    |                    | -          |               | MI    |
| SK-2   | SPT        | 3,00-3,45 | 27,52 | 63,65 | 8,8  | 33  |     | NP              |          | 11,0 | 1,899              | 1,704              | 2,48       | 24,24         | SP-SM |
| SK-3   | SPT        | 6,00-6,45 | 69,06 | 24,41 | 6,5  | 53  | 1   | NP              |          | 9,1  | 1,958              | 1,784              | 0,98       | 27,21         | GP-GM |

Tablo-4.1. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise;

SP : Kötü Derecelendirilmiş Çakıl Kum Karışımı,

SM : Siltli Kum,

Şekil EK D.1

29



İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-2D PAFTA, 1279 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

GM – GP : Siltli Çakıl,

MI : İnorganik silt, olarak sınıflanmaktadır.

### Kıvam Limitlerine Göre Sınıflama

İnce taneli zeminlerin kıvamlılık indeksine göre sınıflaması yapılacak olur ise; silt ve kil birimlerindeki değerler aşağıda verilmektedir.

### Ic = (LL-w) / PI

Ic: Kıvamlılık İndeksi

LL: Likit Limit

W : Su İçeriği

PI : Plastisite İndeksi

| SONDAJ KUYUSU | DERİNLİK<br>(m) | ZEMIN SIMGESI | KIVAMLILIK İNDEKSİ<br>(Ic) |
|---------------|-----------------|---------------|----------------------------|
| SK-1          | 9,00-9,45       | MI            | 0,64                       |

Tablo.4.2 İnceleme Alanındaki İnce Taneli Zeminlerin Derinliklere Göre Kıvamlılık İndeksi

| KINAMI II IK İNDEKSİ (İc) | TANIM                |
|---------------------------|----------------------|
|                           | Akışkan (Çamur)      |
| 0.025                     | Çok Yumuşak          |
| 0-0.25                    | Yumuşak              |
| 0.25 - 0.30               | Yarı Sert (Sıkı)     |
| 0.50 - 0.75               | Sert                 |
| 0.75 - 1.00               | Yarı Katı (Çok Sert) |
| >1.00                     |                      |

Tablo.4.3 İnce Taneli Zeminlerin Kıvamlılık İndeksine Göre Sınıflanması

Yapılan değerlendirmeler sonucunda ince taneli zeminlerin kıvamlılık indeksi için

kıvamlılık İndeksi Yarı Sert Katı olarak tanımlanmaktadır.

İnceleme alanında yapılan SPT deneyi sonuçları ise aşağıda Tablo.4.4'de

| erilmektedi | r.       | DERINLİK  | 0-5  | 15-30<br>(cm) | 30 -45<br>(cm)        | N30 |
|-------------|----------|-----------|------|---------------|-----------------------|-----|
| KUYU NO     | ORNEK NU | (m)       | (cm) | 5             | 6                     | 11  |
| OF 1        | SPT-1    | 1.50-1.95 | 0    | 7             | 7                     | 14  |
| SK-1        | SPT-2    | 3.00-3.45 | 5    | 0             | 12                    | 21  |
| SK-1        | SPT-3    | 4.50-4.95 | 7    | 9             | 14                    | 26  |
| SK-1        | SFT-5    | 6.00-6.45 | 10   | 12            | 3                     | 7   |
| SK-1        | SPI-4    | 7.50-7.95 | 5    | 4             | 3                     | 5   |
| SK-1        | SPI-5    | 9.00-9.45 | 2    | 2             | 6                     | 12  |
| SK-1        | SPT-6    | 1 50-1.95 | 5    | 6             | 0                     | 16  |
| SK-2        | SPT-1    | 3 00-3 45 | 7    | 8             | 0                     | 23  |
| SK-2        | SPT-2    | 4 50-4 95 | 10   | 12            | 11                    | 20  |
| SK-2        | SPT-3    | 4.00-4.5  | 8    | 14            | 15                    | 29  |
| SK-2        | SPT-4    | 0.00-0.45 |      |               | and the second second |     |

Şekil EK D.2

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-2D PAFTA, 1279 ADA, 1 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

Saha içerisinde çılan sondaj kuyularına ait arazi deney sonuçları ve laboratuvar sonuçlarına göre yapılan sıvılaşma analizlerinde bazı metrelerinde saha için hesaplanan değerler <u>"sıvılaşabilir"</u> aralığında kalmaktadır.İnşaat aşamasında uzman mühendisler tarafından gerekli önlemler alınması gerekmektedir.

|                                                        | -           |                                                                                               | Takin                                                  |               |             |                                |                                 |                               |                                           |             |                | 1000        | 1          |                      |       |           |       |
|--------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------|-------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------------------|-------------|----------------|-------------|------------|----------------------|-------|-----------|-------|
| 10000                                                  |             |                                                                                               | TOKIN                                                  | natsu ve      | Yoshim      | i (1983) Y                     | öntemine                        | Gore S                        | ivilaşma                                  | Analizi     | Hesabi Av      | rintilari   | va Conu    | alar                 |       |           |       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |             |                                                                                               |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| SK-1                                                   | 1.60        | 1 000                                                                                         | pa(groma)                                              | YASS          | a.(kglicm?) | a. (kgflom2)                   | FC                              | DNr                           | No                                        | N.          | N              | N           | 1          |                      | 1     | -         |       |
| SK.2                                                   | 2.00        | 1,88                                                                                          | 1,55                                                   | 1,00          | 0,27        | 0,22                           | 5,27                            | 0.3                           | 11                                        | 20          | 20             | Na          | Tg/Og      | 5)de                 | FS    | SIVILAŞMA | BİRİ  |
| SK-1                                                   | 5,00        | 1,90                                                                                          | 1,70                                                   | 1,00          | 0,53        | 0,33                           | 8,83                            | 3.8                           | 16                                        | 26          | 20             | 21          | 0,31       | 0,26                 | 0,82  | VAR       | SP    |
| CV I                                                   | 0,00        | 1.96                                                                                          | 1,78                                                   | 1,00          | 1,09        | 0,59                           | 6.53                            | 1.5                           | 27                                        | 36          | 20             | 30          | 0,40       | 1,19                 | 2,99  | YOK       | SP-SI |
| 3h-1                                                   | 9,00        | 1,38                                                                                          | 1,55                                                   | 1,00          | 1,43        | 0,63                           | 97.78                           | 13.8                          | 5                                         | 50          | 30             | 37          | 0,44       | 4,37                 | > 3.0 | VAR       | GP-G  |
|                                                        |             | -                                                                                             |                                                        |               |             |                                |                                 | 1000                          | -                                         | 0           | 6              | 20          | 0,51       | 0,24                 | 9,47  | VAR       | MI    |
| M =                                                    | 7,50        |                                                                                               |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| a =                                                    | 0.40        |                                                                                               |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
|                                                        |             | -                                                                                             |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| z (m)                                                  | :           | Sondai derinii                                                                                | *                                                      |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| palg/cm3)                                              |             | Nirim Harim A                                                                                 | Artic hara                                             |               |             | incetane                       | %'si, FC                        |                               | DNf                                       |             |                | FS          | <1 Swilasm | a Riski mey          | cut   | 1         |       |
| pa(g/cm3)                                              |             | firim Marin A                                                                                 | Bertit care                                            |               |             | 0-                             | 5                               |                               | 0                                         |             |                | F           | S>1 Smiths | ma Riski Yol         |       |           |       |
| Y.A.S.S.                                               |             | Yer all the cert                                                                              | Entra yaş                                              |               |             | 6~1                            | 0                               | int                           | erpolasyon                                | a           | 1 .            |             |            | and a constant of Co |       |           |       |
| c.(kgflom <sup>2</sup> )                               | 1           | Toniam antilm                                                                                 | Per l                                                  |               |             | >                              | 0                               |                               | 0,1*FC+4                                  |             |                |             |            |                      |       |           |       |
| o. (kgflom²)                                           |             | Fleit if another                                                                              |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| FC                                                     |             | lana tana tan                                                                                 |                                                        |               |             | rs = renn p                    | eriyodik gerik                  | ne direnci                    | Depremde                                  | in kaynakta | nan periyodik  | gerilme ora | TN .       |                      |       |           |       |
| AN                                                     |             | Ince tank star                                                                                |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| N                                                      |             | TOCE LANE GOINT                                                                               | tome katsaytsi                                         |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
|                                                        |             | Deservices                                                                                    | N30 deteri                                             |               |             | Depremden                      | kaynaklana                      | n gerilme o                   | ranı                                      |             | and the second |             |            |                      |       |           |       |
| Num                                                    |             | Dowletinity Mil                                                                               | o degera                                               |               |             |                                | Lic In                          | - 1.                          | [m.)"                                     | 1           |                | 1           | 7          |                      |       |           |       |
|                                                        |             | Dozartinas Ma                                                                                 | o deteri (0,81i)                                       | )/N1 lie ayn  |             | $\frac{\tau_1}{\tau} = a($     | 10VN                            | a 16                          | $\sqrt{N_a}$                              |             | $N_{\cdot} =$  |             | //         | v                    |       |           |       |
|                                                        |             |                                                                                               |                                                        |               |             | σ                              | 100                             |                               | C                                         |             | 1              | $\sigma' +$ | 07         |                      |       |           |       |
|                                                        |             | Depremden kay                                                                                 | mekianan peri                                          | vodik gerilme |             |                                | L                               | (                             | · , ,                                     |             |                | 0           | 0.1        |                      |       |           |       |
| tela:                                                  |             | Terin perlyodia                                                                               | gerilme dirend                                         | 8             |             |                                |                                 |                               |                                           | -           |                |             |            |                      |       |           |       |
| 10.                                                    | 1           |                                                                                               |                                                        |               |             |                                |                                 |                               |                                           |             |                |             |            |                      |       |           |       |
| tidas<br>tidas<br>FS                                   | ÷           | Sevelagma potar                                                                               | nsiyeli                                                |               |             |                                |                                 | in a state                    |                                           |             |                |             |            |                      |       |           |       |
| 3 3 F N                                                |             | Seviapna potar<br>SPT-N değeri                                                                | nsiyeli                                                |               |             | Devirse                        | i gerilme di                    | renci                         |                                           |             |                |             |            |                      |       |           |       |
| tia<br>tia<br>FS N<br>M                                |             | Sivilagma potar<br>SPT-N değeri<br>Deprem magnit                                              | udū (7,6 )                                             |               |             | Devirse<br>T_                  | l gerilme di                    | a                             | σ                                         |             |                |             |            |                      |       |           |       |
| tidas<br>tidas<br>PG<br>N<br>M<br>Amas                 |             | Seviapna potar<br>SPT-N değeri<br>Deprem magnit<br>Depremin Ame                               | udū ( 7,6 )<br>udū ( 7,6 )<br>uli(cm/sn <sup>3</sup> ) |               |             | $\frac{\tau_d}{\tau_d} = 0.$   | 1(M-1)                          | $(1) \frac{\alpha_{\max}}{2}$ | $\frac{\sigma_o}{1-1}$                    | 0.015:      | =)             | Γ           | 70         | 10                   | OTE   | KNIK      | 1     |
| tia is por N M and a                                   |             | Swilapna potar<br>SPT-N değeri<br>Deprem magnit<br>Depremin hme<br>0,45                       | sda (7,6)<br>sda (7,6)<br>si(cm/sn <sup>3</sup> )      |               |             | $\frac{\tau_d}{\sigma_o} = 0.$ | 1  gerilme di<br>1(M-1)         | $\frac{\alpha_{\max}}{g}$     | $\frac{\sigma_o}{\sigma_o}(1 - \sigma_o)$ | 0.015:      | =)             | [           | 46         | JE                   | OTE   | KNİK      |       |
| tigation PS N M and a Cr                               | * * * * * * | Seviagna potar<br>SPT-N değeri<br>Deprem magnit<br>Depremin hime<br>0,45<br>0,57              | sidū (7,6)<br>sidū (7,6)<br>sil(cm/sn <sup>3</sup> )   |               |             | $\frac{\tau_d}{\sigma_o} = 0.$ | 1 gerilme di<br>1( <i>M</i> — 1 | $\frac{\alpha_{\max}}{g}$     | $\frac{\sigma_o}{\sigma_o}(1-$            | 0.015:      | z)             |             | 95         | JE                   | OTE   | KNİK      |       |
| 1.3.5. F N H 1 - G G                                   |             | Sivilaşma potar<br>SPT-N değeri<br>Deprem magnit<br>Depremin hene<br>0,45<br>0,57<br>80       | udu (7,6)<br>udu (7,6)<br>si(cm/sn <sup>3</sup> )      |               |             | $\frac{\tau_d}{\sigma_o} = 0.$ | 1 gerilme di<br>1( <i>M</i> — 1 | $\frac{\alpha_{\max}}{g}$     | $\frac{\sigma_o}{\sigma_o}(1-$            | 0.015:      | z)             |             | Ð          | JE                   | OTE   | KNİK      |       |
| 2.2.5 N N N 1 - 2.5 -                                  |             | Sivilaşma potar<br>SPT-N değeri<br>Deprem magnit<br>Depremin kene<br>0,45<br>0,57<br>80<br>14 | sda (7,8)<br>sda (7,8)<br>si(cm/sn <sup>3</sup> )      |               |             | $\frac{\tau_d}{\sigma_o} = 0.$ | 1 gerilme di<br>1( <i>M</i> — 1 | $\frac{\alpha_{\max}}{g}$     | $\frac{\sigma_o}{\sigma_o}(1-$            | 0.015:      | =)             |             | Ð          | JEC                  | OTE   | KNİK      |       |

### 4.3.Oturma

JEOTEKNIK

Temel aracılığı ile zemine aktarılan yapı yükleri altında zeminde meydana gelen düşey deformasyonlara oturma denilir. Oturma, yapı yükünden dolayı temel tabanındaki zemin içinde bulunan havanın ve boşluklardaki suyun dışarı çıkması sonucu oluşur. İnce taneli (killi, siltli) zeminlerin permeabilitesi çok düşük olduğundan, yüklenen zeminden suyun dışarı çıkması yavaş olacak ve buna bağlı olarak zemin sıkışması zamana bağlı olarak değişecektir. İri taneli kumlu, çakıllı zeminlerin permeabilitesi yüksek olduğu için, yüklenen zeminden suyun dışarı çıkışı hızlı olacaktır. İnceleme alanında gözlemlenen birim çakıllar ve siltlerden oluştuğundan dolayı oturma beklenmemektedir.

| Temel        | Kil (mm) | Kum (mm) |
|--------------|----------|----------|
| Tekil Temel  | 60       | 40       |
| Radve Temel  | 100      | 60       |
| Viõma Temel  | 60       | 30       |
| Carcave Vani | 100      | 50       |
| Çerçeve Tapı | 250      | 100      |

Tablo.4.5 Yapılarda İzin Verilen Toplam Oturma Üst Sınırları

33

Şekil EK D.3

# EK E.

1163 Ada-1 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK E 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



| 9                                                       | 5                        | J                                                                                                                                                                                                                                                                                      | EO               | TE<br>BONDAJ | KN         | İK            |                    |                     |        |          |                                          |              | AS J                                 | EOT    | EKN  | lik s         | SON                                  | DAJ                                                | LOC                                        | 9U                       |                                    |                                                                                 |
|---------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|------------|---------------|--------------------|---------------------|--------|----------|------------------------------------------|--------------|--------------------------------------|--------|------|---------------|--------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------|------------------------------------|---------------------------------------------------------------------------------|
| PRO                                                     | E AD                     | a                                                                                                                                                                                                                                                                                      | :                |              | н          | ASAN          | DOĜ/               | N                   |        | Kuy      | u Deria                                  | nligi        |                                      | :      |      | 20            | ,00 ms                               | tre .                                              |                                            | SONDAJ NO                |                                    | : SK-1                                                                          |
| t.t                                                     |                          |                                                                                                                                                                                                                                                                                        | -                |              | tzmi       | R/SE          | FERIN              | <b>İ</b> SAR        |        | YES      | ALTI                                     | 1.0          | huma                                 | :      |      | 1             | 50 me                                | te                                                 |                                            | SAYFA NO                 |                                    | : 1                                                                             |
| VER                                                     | DAT N                    | (FTO                                                                                                                                                                                                                                                                                   | :<br>DU-         |              | 116        | 3 ADA,<br>ROT | 1 PAR              | SEL                 |        | SEV      | SU<br>IVESI<br>rdinat                    | 2. O         | iama                                 | :      |      | 2             | .00 me                               | tre<br>S                                           |                                            | Logu Hazırlayı           | 933                                | BAHAR ÖZOĞUL                                                                    |
| Basla                                                   | ma Te                    | urihi -                                                                                                                                                                                                                                                                                |                  |              |            | 16.04         | 2019               |                     |        | Koor     | dinat                                    | - x          |                                      |        |      | 4             | 226.9                                | 36                                                 |                                            |                          |                                    |                                                                                 |
| Bins                                                    | Tarihi                   |                                                                                                                                                                                                                                                                                        |                  |              |            | 16.04         | 2019               |                     |        | Koor     | dinat                                    | - Z          |                                      | -      |      |               |                                      |                                                    |                                            | Soudör                   |                                    | MEVLÜT ARSLAN                                                                   |
| î                                                       | î                        |                                                                                                                                                                                                                                                                                        |                  |              |            |               |                    |                     | Zemi   | in Den   | evleri                                   |              |                                      |        | L    | B             | Caya Ö.                              | rellikle                                           | ri                                         |                          |                                    |                                                                                 |
| ondaj Derinliĝi (                                       | hbaka Derinliği (        | lumune No                                                                                                                                                                                                                                                                              | łum. Deńnligi (m | hmune Türü   | uh. Borusu | 1             | S3<br>Darbe:<br>20 | PT<br>Sayılar<br>45 | n<br>N | Sta      | indart                                   | Pene         | trasyo                               | n Gra  | fiği | ant Yüzdesi % | X0 %                                 | yrışma Derecesi                                    | adak Sikhĝa                                | Jeolojik Kesit           | 3                                  | Zemin Tanımlaması                                                               |
| -                                                       | 0.00<br>0.00             | ~                                                                                                                                                                                                                                                                                      | ~                | ~            | ~          |               |                    |                     |        |          |                                          |              |                                      |        |      | ×             | R.                                   | ×                                                  | 0                                          |                          | Bİ                                 | TKISEL TOPRAK                                                                   |
| <u>1.00</u>                                             |                          |                                                                                                                                                                                                                                                                                        |                  |              |            |               |                    |                     |        |          |                                          |              |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -<br>2.00                                               |                          | 1                                                                                                                                                                                                                                                                                      | 1,50<br>1,95     | SPT          |            | 4             | 3                  | 3                   | 6      | 7        |                                          |              |                                      |        |      |               |                                      |                                                    |                                            |                          | KU<br>KI                           | VATERNER VAŞLI<br>UMLU SİLT. KUM                                                |
| -                                                       |                          |                                                                                                                                                                                                                                                                                        |                  |              |            |               |                    |                     |        |          |                                          |              |                                      |        |      |               |                                      |                                                    |                                            |                          | STL<br>OI                          | T KARIŞIMINDAN<br>LUŞAN ALÜVYON                                                 |
| -                                                       |                          | 2                                                                                                                                                                                                                                                                                      | 3,00<br>3,45     | SPT          |            | 3             | 3                  | 2                   | 5      | ļ.       | <u> </u>                                 | <u> </u>     |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| 4.00                                                    |                          |                                                                                                                                                                                                                                                                                        |                  |              |            |               |                    |                     |        | <b>‡</b> | <u> </u>                                 | <b> </b>     |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -<br>5.00                                               |                          | 3                                                                                                                                                                                                                                                                                      | 4,50             | SPT          |            | 2             | 1                  | 1                   | 2      | Į        | <u> </u>                                 |              |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -                                                       |                          |                                                                                                                                                                                                                                                                                        |                  |              | 1          |               |                    |                     |        |          |                                          | <b> </b>     |                                      |        |      |               |                                      |                                                    |                                            |                          | KU                                 | VATERNER VASLI                                                                  |
| <u>6.00</u>                                             |                          | 4                                                                                                                                                                                                                                                                                      | 6,00             | SPT          |            | 3             | 2                  | 1                   | 3      |          | <u></u>                                  |              |                                      |        |      |               |                                      |                                                    |                                            |                          | ÍN<br>ÇOK                          | ORGANIK SILT VE                                                                 |
| -<br>7.00                                               |                          |                                                                                                                                                                                                                                                                                        | 6,43             |              |            |               |                    |                     |        | #::      | <u></u>                                  |              |                                      |        |      |               |                                      |                                                    |                                            |                          | KU<br>Di                           | M, PLASTISITESI<br>OŞÜK KİLLİ SİLT                                              |
| -                                                       | 10                       | 5                                                                                                                                                                                                                                                                                      | 7,50             | SPT          |            | 4             | 3                  | 3                   | 6      |          | <u></u>                                  |              |                                      |        |      |               |                                      |                                                    |                                            |                          | o                                  | LUŞAN ALÜVYON                                                                   |
| -                                                       | 18.00 me                 |                                                                                                                                                                                                                                                                                        | 1,00             |              |            |               |                    |                     |        | t        | <u> </u>                                 |              |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| <u>9.00</u>                                             |                          | 6                                                                                                                                                                                                                                                                                      | 9,00             | SPT          |            | 2             | 1                  | 1                   | 2      | #        | <b></b>                                  | <b> </b>     |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -<br><u>10.0</u> 0                                      |                          |                                                                                                                                                                                                                                                                                        | 100              |              |            |               |                    |                     |        | 1        | <b></b> -                                | <b> </b> -   |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -                                                       |                          | 7                                                                                                                                                                                                                                                                                      | 10,50            | SPT          |            | 3             | 2                  | 3                   | 5      | ŧ        | <b></b> -                                | <b> </b> -   |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -                                                       |                          |                                                                                                                                                                                                                                                                                        | 10000            |              |            |               |                    |                     |        |          | <b></b>                                  | <b> </b> -   |                                      |        |      |               |                                      |                                                    |                                            |                          | KU<br>KI                           | VATERNER VAŞLI<br>UMLU SİLT, KUM                                                |
| 12.00                                                   |                          | 8                                                                                                                                                                                                                                                                                      | 12,00            | SPT          |            | 4             | 6                  | 7                   | 13     |          | 1                                        |              |                                      |        |      |               |                                      |                                                    |                                            |                          | OI                                 | UŞAN ALÜVYON                                                                    |
| -<br><u>13.</u> 00                                      |                          |                                                                                                                                                                                                                                                                                        | 12,45            |              |            |               |                    |                     |        |          |                                          |              |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    |                                                                                 |
| -<br><u>14.0</u> 0                                      |                          | 9                                                                                                                                                                                                                                                                                      | 13.50<br>13.95   | SPT          |            | 5             | 7                  | 5                   | 12     |          | <u> </u>                                 |              |                                      |        |      |               |                                      |                                                    |                                            |                          | KT.                                | VATERNER VASI I                                                                 |
| -<br><u>15.</u> 00                                      |                          |                                                                                                                                                                                                                                                                                        | 15.00            | 07-07        |            |               |                    |                     |        |          |                                          |              |                                      |        |      |               |                                      |                                                    |                                            |                          |                                    | LI KUM, KUM SİLT<br>KARIŞIMINDAN<br>LUŞAN ALÜVYON                               |
| L.                                                      | -                        | 10<br>Z                                                                                                                                                                                                                                                                                | 15.45<br>EMIN I  | DEGE         | RLEN       | DIRM          | est - s            | PT                  | 13     | <b></b>  | K                                        | AYAD         | dTEL1                                | G1 - 3 | QD ( | %)            | AY                                   | RIŞM                                               | A DE                                       | RECESI (W)               | (                                  | ÇATLAK SIKLIĞI                                                                  |
| Inc                                                     | e 1219                   | d (Ko                                                                                                                                                                                                                                                                                  | Derycol          | mi)          |            | in the        | en (Ko             | olezyo              | osuz ) |          |                                          |              |                                      |        |      | -             |                                      | -                                                  |                                            |                          |                                    |                                                                                 |
| N : 0-<br>N : 3-<br>N : 5-<br>N : 9-<br>N :14<br>N : 30 | 2<br>4<br>8<br>13<br>-30 | Çok Yunmışak         N:0-4         Çok Gevçek           Yunmışak         N:5-10         Gevçek           Orta Katı         N:11-30         Orta           Katı         N:31-50         Salı           Çok Katı         N:=50         Çok Sikı           Sert         Sert         Sert |                  |              |            |               |                    |                     |        |          | 0-25<br>25-50<br>50-75<br>75-90<br>90-10 | )<br>5<br>00 | Çok<br>Zayıf<br>Orta<br>İyi<br>Ç.İyi | Zayıf  |      |               | W1 2<br>W2 4<br>W3 0<br>W4 4<br>W5 2 | Taze ( /<br>Az Ayr<br>Orta De<br>Ayrışın<br>Tamanı | Ayrışı<br>ışınış<br>ereced<br>ış<br>xen Ay | патця )<br>le Аут.<br>т. | <1<br>1-3<br>3-10<br>10-50<br>> 50 | Masif<br>Az çətlaklı-Kırıklı<br>Kırıklı<br>Çok çətlaklı-Kırıklı<br>Parçalanınış |

Şekil EK E.1

| PROF AN         :         PASAN DOGAN         Kuyu Derinigi         :         14.5 march         SONDAJ NO         :           LI         :         IDACK / SEPERCHARK         VTSUT         1.0 march         1.0 march         SAVEA NO         :           VER         :         114 (AAAN 1998)         TSUT         1.0 march         2.0 march         KAVEA NO         :           SONDAJ MCTODIC         :         SAVEA NO         :         4226 777         Seafer         -         :         -         seafer         MOVAT         Seafer         -         :         -         seafer         MOVAT         Seafer         -         :         -         seafer         MOVAT         Seafer         -         :         -         seafer         MOVAT         Seafer         -         :         -         seafer         MOVAT         Seafer         -         :         -         seafer         MOVAT         :         Seafer         -         :         -         seafer         MOVAT         :         :         :         -         Seafer         MOVAT         :         :         :         :         :         :         :         :         :         :         :         :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 5                                                |                                           | RAST         | O                                    | BONE                                   |                                                            |                                |        | K      |                                          |       | A                                 | \s J         | ЕОТ       | EKN             | iik s                                | ON                                             | DAJ                                        | LOGU                    |                                   |                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|-------------------------------------------|--------------|--------------------------------------|----------------------------------------|------------------------------------------------------------|--------------------------------|--------|--------|------------------------------------------|-------|-----------------------------------|--------------|-----------|-----------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|
| LL         :         IDADA, I PASELITI, I Chama         :         1.90 mars         SANTA NO         :           VER         :         IDADA, I PASELITI, SCUTYCEJ, I Comm         :         2.00 mars         Lage Ramelya         BALAC           SOCMAM TEOMIC:         :         164 2019         Korefaust - X         :         441 121         Loge Ramelya         BALAC           Bejann Turhi:         :         164 2019         Korefaust - Z         :         -         .         MWULT           Sondart Turhi:         :         164 2019         Korefaust - Z         :         -         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <t< td=""><td>PRO</td><td>TE AD</td><td>I</td><td>:</td><td></td><td>н</td><td>ASAN</td><td>DOĞ</td><td>4N</td><td></td><td>Kuyu</td><td>Derin</td><td>digi</td><td></td><td>:</td><td></td><td>18</td><td>.50 ma</td><td>tre .</td><td></td><td>SONDAJ NO</td><td></td><td>: SK-1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TE AD                    | I                                                | :                                         |              | н                                    | ASAN                                   | DOĞ                                                        | 4N                             |        | Kuyu   | Derin                                    | digi  |                                   | :            |           | 18              | .50 ma                               | tre .                                          |                                            | SONDAJ NO               |                                   | : SK-1                                                                                           |
| YETE         :         143 ADA, 17 ASSE:         2.0 mas         :         2.0 mas         Log Harritym         8.414.0           SONDAJ METODC:         ROTARY         Koefinst - X.         :         441 216         491 216         Marking         8.414.0           Beigham Turkit:         1664 2019         Koefinst - Z.         :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tr.t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                  | :                                         |              | tzwi                                 | R/SE                                   | PERIN                                                      | tisar.                         |        | YER    | ALTI                                     | 1.0   | huma                              | :            |           | 1               | 90 met                               | 10                                             |                                            | SAYFA NO                |                                   | : 2                                                                                              |
| DODAL METODU:         3.07.8X*         Dominar - x         :         441 126         Light Huminya         BARACC           Bajaan Turki:         :         1664 2019         Koeniast - X         :         422 077         Sondar         MUNUT,           Big         Big         Big         Big         Big         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         MUNUT,         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar         Sondar </td <td>YER</td> <td>t</td> <td></td> <td></td> <td></td> <td>116</td> <td>ADA,</td> <td>1 PAR</td> <td>SEL</td> <td></td> <td>SEVI</td> <td>U<br/>VESI</td> <td>2.0</td> <td>numa</td> <td>:</td> <td></td> <td>2</td> <td>00 met</td> <td>10</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t                        |                                                  |                                           |              | 116                                  | ADA,                                   | 1 PAR                                                      | SEL                            |        | SEVI   | U<br>VESI                                | 2.0   | numa                              | :            |           | 2               | 00 met                               | 10                                             |                                            |                         |                                   |                                                                                                  |
| Buptom Tarbit         164 3019         Korefinist         V         1         4226 737         Souder         MNVLUT           Big Tarbit         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         :         : <td:< td="">         :         :&lt;:::::::::::</td:<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAJ M                    | (ETO                                             | DU:                                       |              |                                      | ROT                                    | ARY                                                        |                                |        | Koor   | dinat                                    | - X   |                                   | :            |           | 4               | 481 216                              | 6                                              |                                            | Logu Hazirlay           | 800                               | BAHAR OZOGUL                                                                                     |
| Bing Turbuk         :         16642019         Doedinati - Z          Nome         All of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se                                                                 | Başla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma Ta                    | urihi :                                          | :                                         |              |                                      | 16.04                                  | 2019                                                       |                                |        | Koor   | dinat                                    | - Y   |                                   | :            |           | 4               | 22675                                | 57                                             |                                            | Candler                 |                                   | MENT OT ADDI AN                                                                                  |
| Image: Constraint of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of | Bing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tarihi                   | i                                                | :                                         |              |                                      | 16.04                                  | 2019                                                       |                                |        | Koor   | dinat                                    | - Z   |                                   | :            |           |                 |                                      |                                                |                                            | 300001                  |                                   | MEVEUTARSLAN                                                                                     |
| and arr generation of the structure       Structure Peretrosyon Grafig arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       and arr generation of the structure       a                                                                                                                                                                                                                                                                                                                                                                       | (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i (m)                    |                                                  | Î                                         |              |                                      |                                        |                                                            |                                | Zemi   | in Den | eyleri                                   |       |                                   |              |           | E               | Caya Ös                              | ellikk<br>19                                   | ni                                         | -                       |                                   |                                                                                                  |
| 100         1         14.00         107         16         16         24         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         100         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sondaj Derinliĝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thbaka Derinlig          | Numune No                                        | Num. Dennigi                              | Numune Türü  | Muh. Borusu                          | 1                                      | Darbe:<br>30                                               | Fi<br>Sayılar<br>45            | n<br>N | Sta    | ndart                                    | Penet | rasyo<br>0 4                      | n Gra<br>0 5 | figi<br>0 | Kanot Yüzdesi % | RQD %                                | Ayrışma Derece                                 | Çadak Sıklığı                              | Jeolojik Kesit          | :                                 | Zemin Tanındaması                                                                                |
| Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image <th< td=""><td><br/>16,00<br/><br/>17,00</td><td>8.00 motre</td><td>11</td><td>16,50<br/>16,95</td><td>SPT</td><td></td><td>12</td><td>10</td><td>14</td><td>24</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>KU<br/>KII<br/>0</td><td>VATERNER VAŞLI<br/>Lİ KUM,KUM SİLT<br/>KARIŞIMINDAN<br/>LUŞAN ALÜVYON</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>16,00<br><br>17,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.00 motre               | 11                                               | 16,50<br>16,95                            | SPT          |                                      | 12                                     | 10                                                         | 14                             | 24     |        |                                          |       |                                   |              |           | 1               |                                      |                                                |                                            |                         | KU<br>KII<br>0                    | VATERNER VAŞLI<br>Lİ KUM,KUM SİLT<br>KARIŞIMINDAN<br>LUŞAN ALÜVYON                               |
| 1.00         XUVU SONU: 20,00 METKE           1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>18,00<br><br>19,00<br><br>20,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                        | 12                                               | 18,00<br>18,45<br>19,50<br>19,95          | SIPT<br>SIPT |                                      | 16                                     | 18                                                         | 20                             | 38     |        |                                          |       | /                                 |              |           |                 |                                      |                                                |                                            |                         | KU<br>PL<br>1<br>0                | VATERNER VAŞLI<br>ASTISITESI DÜŞÜK<br>VEYA ORTA<br>NORGANİK KİL<br>KARIŞİMINDAN<br>LUŞAN ALÜVYON |
| N: 0-2         Çok Yunanşak         N: 0-4         Çok Gevçek         0-25         Çok Zayıf         W1 Taze (Ayrışınamış)         <1         Matif           N: 3-4         Yunanşak         N: 5-10         Gevçek         25-50         Zayıf         W2 Az Ayrışınaşı         1-3         Az çatlaklı-           N: 5-8         Orta Kata         N: 11-30         Orta         50-75         Orta         W3         Orta Derecede Ayr.         3-10         Kırıklı           N: 9-13         Kata         N: 31-50         Sala         75-90         İyi         W4         Ayrışınaşı         10-50         Çok çatlaklı           N: 14: 30         Cek Veta         N: 31-50         Sala         75-90         İyi         W4         Ayrışınaşı         10-50         Çok çatlaklı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>21,00<br>-<br>22,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,00<br>-<br>25,0 |                          | Z                                                | EMENT                                     | DEGE         | RIEN                                 | DIRMG                                  | ESI - S<br>Biologia                                        | PT                             |        |        |                                          |       |                                   |              |           | 36)             | AY                                   | RIŞM                                           | ADE                                        | RECESI (W)              |                                   | çatlak sıklığı                                                                                   |
| nv.artav çon nana pv.:⇒av çon sanı sovino çiyi wa iamaman Ayr. ⇒av Parçaiaman<br>N:30 Sant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In<br>N : 0-<br>N : 3-<br>N : 5-<br>N : 9-<br>N : 14<br>N : 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>4<br>8<br>13<br>-30 | di (Kol<br>Yum<br>Orta)<br>Katı<br>Çok İ<br>Şert | heryon<br>Yummşak<br>Işak<br>Katı<br>Katı | h)<br>sk     | N:0-<br>N:5-<br>N:11<br>N:31<br>N:>! | Iri tan<br>4<br>10<br>-30<br>-50<br>50 | <u>soli (Kr</u><br>Çok C<br>Gevye<br>Orta<br>Sıkı<br>Çok S | oheryo<br>Sevyak<br>ak<br>Siki | osa )  |        | 0-25<br>25-50<br>50-75<br>75-90<br>90-10 | 0     | Çok Zayıf<br>Orta<br>İyi<br>Ç.İyi | Zayıf        |           |                 | W1 1<br>W2 J<br>W3 0<br>W4 J<br>W5 1 | Faze (<br>Az Ayr<br>Orta D<br>Ayrışız<br>Faman | Ayrışı<br>nşımış<br>ereced<br>1ş<br>xen Ay | namış)<br>le Ayr.<br>r. | <1<br>1-3<br>3-10<br>10-50<br>>50 | Masif<br>Az çətləklı-Kırıklı<br>Kırıklı<br>O Çok çatləklı-Kırıklı<br>Parçalanmış                 |

Şekil EK E.2

| Sondaj No<br>Boring No | mune No<br>reple No | Derinlik<br>(m) | KIL/Gawl | DM / Sand | slut / set | KlL/Cby | Atteri | oerg lin<br>rberg Lin | nitleri<br><sub>mits</sub> | w.   | ٧.                 | ٧.                 | niflama | colidasyon<br>olidations | Zemin<br>Eks.Sil<br>Triaxial | de Üç<br>kışma<br>Comp. | Zemin<br>Eks.Si<br>Unconfi | ideTek<br>kışma<br>in. Stren. | Zemind<br>Kes<br>Direct | e Direkt<br>me<br>Shears |
|------------------------|---------------------|-----------------|----------|-----------|------------|---------|--------|-----------------------|----------------------------|------|--------------------|--------------------|---------|--------------------------|------------------------------|-------------------------|----------------------------|-------------------------------|-------------------------|--------------------------|
|                        | 2 a                 | Depth           | 2        | *         |            |         | LL     | PL                    | PI                         |      |                    |                    | Clas    | Kore                     | c                            | ٥                       | q.,                        | c                             | c                       | Ø                        |
|                        |                     |                 | (96)     | (96)      | (96)       | (96)    | (96)   | (%)                   | (96)                       | (%)  | gr/cm <sup>3</sup> | gr/cm <sup>3</sup> |         |                          | (kPa)                        | (*)                     | (kPa)                      | (kPa)                         | (kpa)                   | (*)                      |
| SK-1                   | SPT                 | 15,00-15,45     | 15,26    | 47,66     | 37,08      |         | 33,8   | 16,2                  | 17,6                       | 15,8 |                    |                    | SC      |                          |                              |                         |                            |                               |                         |                          |
| SK-1                   | SPT                 | 18,00-18,45     | 0,00     | 22,83     | 77,17      |         | 42,9   | 22,1                  | 20,8                       | 25,5 |                    |                    | a       |                          |                              |                         |                            |                               |                         |                          |
| SK-2                   | SPT                 | 9,00-9,45       | 0,00     | 32,24     | 67         | 76      | 31,6   | 27,1                  | 4,5                        | 21,8 |                    |                    | ML      |                          |                              |                         |                            |                               |                         |                          |
| SK-2                   | UD                  | 9,50-10,00      | 0,00     | 60,41     | 39         | .59     | 30,7   | 26,6                  | 4,1                        | 45,7 | 1,679              | 1,158              | SM      |                          |                              |                         |                            |                               | 11,73                   | 12,61                    |
| SK-3                   | SPT                 | 3,00-3,45       | 0,00     | 70,36     | 29         | 64      | 32,0   | 27,7                  | 4,3                        | 24,3 |                    |                    | SM      |                          |                              |                         |                            |                               |                         |                          |
| SK-3                   | SPT                 | 6,00-6,45       | 0,00     | 45,22     | 54         | 78      | 41,4   | 30,8                  | 10,6                       | 26,0 |                    |                    | MI      | 111111111                |                              |                         |                            |                               |                         |                          |

Şekil EK E.3



# EK F.

89 Ada-140 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK F 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



| ₹                                    | 5                        | J.                                       | EO                             | TE         | KN                                   | İK.                         |                                         |                     |         |             |                                          |                   | AS J                                 | EOI         | EKN         | IK S            | SON                                  | DAJ                                           | LOC                                      | 3U                      |                                   |                                                                     |                  |
|--------------------------------------|--------------------------|------------------------------------------|--------------------------------|------------|--------------------------------------|-----------------------------|-----------------------------------------|---------------------|---------|-------------|------------------------------------------|-------------------|--------------------------------------|-------------|-------------|-----------------|--------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------|-----------------------------------|---------------------------------------------------------------------|------------------|
| PRO                                  | IE AD                    | I.                                       | :                              |            | EF                                   | EKAN                        | GÛN                                     | EY                  |         | Каут        | ı Deri                                   | nliği             |                                      | :           |             | 15              | .00 me                               | tre                                           |                                          | SONDAJ NO               |                                   | : 51                                                                | K-1              |
| ir.i                                 |                          |                                          | :                              |            | izmi                                 | R/SE                        | FERIH                                   | lİSAR               |         | YER         | ALTI                                     | 1.0               | kuma                                 | :           |             | 1               | 90 me                                | tre                                           |                                          | SAYFA NO                |                                   | :                                                                   | 1                |
| YER                                  | t                        |                                          | :                              |            | 89 A                                 | DA, I                       | 40 PAR                                  | ISEL                |         | SEV         | ivesi                                    | 2.0               | kuma                                 | :           |             | 2               | .00 me                               | tre                                           |                                          | Low Hearles             |                                   | EMBE (INS                                                           | TAL.             |
| SON                                  | DAJ M                    | IETO                                     | DU :                           |            |                                      | ROT                         | ARY                                     |                     |         | Koor        | dinat                                    | - X               |                                      | :           |             | 4               | 81 21                                | 2                                             |                                          |                         | -                                 | Long of the                                                         |                  |
| Başla                                | ma Ta                    | rihi :                                   | 4                              |            |                                      | 5.04                        | 2019                                    |                     |         | Koor        | dinat                                    | - Y               |                                      | :           |             | - 4             | 226 76                               | 60                                            |                                          | Sondör                  |                                   | MEVLÜT ARS                                                          | SLAN             |
| Bitiş                                | Tarihi                   |                                          | :                              |            |                                      | 5.04                        | 2019                                    |                     |         | Koor        | dinat                                    | - Z               |                                      | :           |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| Sondaj Denhigi (m                    | Tabaka Demiligi (a       | Numme No                                 | Num Dorinkgi (m)               | Numme Tank | Muh. Borusu                          | 15                          | Si<br>Darbe 3                           | PT<br>Sayılar<br>45 | Zem     | Sta         | eyleri<br>adart                          | Pene              | trasyc                               | a Gri       | afigi<br>10 | Karot Yüzdesi % | 800%                                 | Ay name Denoces                               | Contrack Sold Ingo                       | Jeolojik Kesit          | 3                                 | lemin Tanımlam                                                      | aasi             |
| -                                    | 070<br>100               |                                          |                                |            |                                      |                             |                                         |                     |         |             |                                          |                   |                                      |             |             |                 |                                      |                                               |                                          |                         | Bİ                                | TKİSEL TOPE                                                         | RAK              |
| 1.00                                 |                          |                                          |                                |            |                                      |                             |                                         |                     |         |             |                                          |                   |                                      |             |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| -                                    |                          |                                          | 1.50                           |            | {                                    |                             |                                         |                     |         | <u></u>     |                                          | <b> </b> -        |                                      | <b></b> -   |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 2.00                                 |                          | 1                                        | 1,95                           | SPT        |                                      | 2                           | 2                                       | 2                   | 4       | Ļŗ=         |                                          | <b> </b>          | <u> </u>                             | <b>;</b>    |             |                 |                                      |                                               |                                          |                         | KU                                | VATERNER V                                                          | ASTI             |
| _                                    |                          |                                          |                                |            |                                      |                             |                                         |                     |         | bb::        | <u> </u> :                               | <u> </u>          | <u>t:</u> :                          | <u> </u>    |             |                 |                                      |                                               |                                          |                         | KÖT                               | <b>Ü DERECELİ</b>                                                   | KUM              |
| 3.00                                 |                          |                                          |                                |            |                                      |                             |                                         |                     |         | Ħ-          | <b></b> -                                | <b>!</b> :        | <u>†</u>                             | <u>t</u>    |             |                 |                                      |                                               |                                          |                         | 1                                 | CARIŞIMINDA                                                         | n<br>N           |
|                                      |                          | 2                                        | 3,00<br>3,45                   | SPT        |                                      | 4                           | 2                                       | 1                   | 3       | H           | <b></b> -                                | <u> </u>          | <u>+</u>                             | <u>+</u>    |             |                 |                                      |                                               |                                          |                         | 01                                | UŞAN ALÛVI                                                          | YON              |
| 4.00                                 |                          |                                          |                                |            |                                      |                             |                                         |                     |         | H           |                                          | <b>+</b> -        | +                                    | +           |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          |                                          |                                |            |                                      |                             |                                         |                     |         | F           |                                          | <b> </b> -        | <b></b>                              | <b></b> -   |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 500                                  |                          | 3                                        | 4,50                           | SPT        | 1                                    | 0                           | 0                                       | 1                   | 1       | <b>t</b>    |                                          | <b>†</b> -        | <b>†</b>                             | <b>†</b>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          |                                          | -                              |            | 1                                    |                             |                                         |                     |         | t:::        |                                          | <b>†</b> -        | <b>†</b>                             | <b>†=</b> = |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| -                                    |                          |                                          |                                |            |                                      |                             |                                         |                     |         | <u> </u>    | <b></b> -                                | <b>†</b> :        | <u>†</u>                             | <b>t=</b> - |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 6.00                                 |                          | 4                                        | 6,00                           | SPT        | 1                                    |                             | 0                                       | 0                   | 0       | <u>t::</u>  | <u> </u>                                 | <u> </u>          | <u>+</u>                             | <u>t=</u> = | <u> </u>    |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| -                                    |                          | -                                        | 6,45                           |            | {                                    | -                           | ~                                       | ~                   | -       |             |                                          |                   |                                      |             |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 7.00                                 |                          |                                          |                                |            |                                      |                             |                                         |                     |         | F==         | F==:                                     | <b></b> -         | F                                    | F==         | F           |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          |                                          | 7.50                           |            |                                      |                             |                                         |                     |         | <b> </b>    |                                          | <b>†</b> -        | <b>†</b>                             | <b>†=</b> - |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 8.00                                 | 5                        | 5                                        | 7,95                           | SPT        |                                      | 0                           | 0                                       | 0                   | 0       | <u> </u>    |                                          | <b>;</b> :        | <b>†</b>                             | <u> </u>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| _                                    | 128                      |                                          |                                |            |                                      |                             |                                         |                     |         | <u> </u>    |                                          | <u> </u>          | <u> </u>                             | <u> </u>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 9.00                                 |                          |                                          |                                |            |                                      |                             |                                         |                     |         | <u> </u>    | <u> </u>                                 | <u> </u>          | <u>+</u>                             | <u>t</u>    | <u> </u>    |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          | 6                                        | 9,00<br>9,45                   | SPT        |                                      | 0                           | 0                                       | 1                   | 1       | F           | F=-:                                     | <b></b> -         | <b></b> -                            | F==         |             |                 |                                      |                                               |                                          |                         | 1NO                               | VATERNER Y<br>DRGANİK SİL                                           | AȘLI<br>T VE     |
| 10.00                                |                          |                                          |                                |            | 1                                    |                             |                                         |                     |         | <b>H</b>    |                                          | <b> </b> -        | <b>-</b>                             | <b>†</b>    |             |                 |                                      |                                               |                                          |                         | ÇOK<br>V                          | ÎNCE KUM, S<br>EVA KÎLLÎ ÎN                                         | İLTLİ<br>CE      |
|                                      |                          |                                          |                                |            |                                      |                             |                                         |                     |         | <b>#</b> == |                                          | <b>‡</b> ==:      | <b>†</b>                             | <b>‡=</b> = |             |                 |                                      |                                               |                                          |                         | KU                                | M, PLASTIS                                                          | TEST             |
| -                                    |                          | 7                                        | 10,50                          | SPT        | 1                                    | 0                           | 1                                       | 1                   | 2       | #==         |                                          | <u> </u>          | <u> </u>                             | <u> </u>    |             |                 |                                      |                                               |                                          |                         | 1                                 | KARIŞIMINDA                                                         | AN               |
| 11.00                                |                          | $\vdash$                                 | 10,95                          |            | 1                                    | <u> </u>                    |                                         |                     |         | <u> </u>    | <u></u>                                  | <u> </u>          | <u>+</u>                             | <u>+</u>    |             |                 |                                      |                                               |                                          |                         | 0                                 | UŞAN ALÛVY                                                          | YON              |
| -                                    |                          |                                          |                                |            |                                      |                             |                                         |                     |         | H           |                                          | <u>+</u>          | <u>+</u>                             | <u>+</u>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 12.00                                |                          | -                                        | 12,00                          |            | {                                    | -                           |                                         |                     | -       | ₽≕          |                                          | <b></b> -         | <b></b> -                            | Ŧ==         |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          | 8                                        | 12,45                          | SPT        |                                      | 0                           | •                                       | 1                   | 2       | <u>  </u>   |                                          | <b> </b> -        | <b></b>                              | <b></b> -   |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 13.00                                |                          |                                          |                                |            |                                      |                             |                                         |                     |         | <u>#</u> == |                                          | <b>;</b> ;        | <u> </u>                             | <b>;</b>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| _                                    |                          |                                          |                                |            |                                      |                             |                                         |                     |         | Lt:         | <u></u>                                  | <u> </u>          | <u>t</u>                             | <u>t</u>    | <u> </u>    |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 14.00                                |                          | 9                                        | 13.50<br>13.95                 | SPT        |                                      | 2                           | 2                                       | 2                   | 4       | 5           |                                          | <u>t==</u> :      | <u>t</u>                             | <u>t=</u> : |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
|                                      |                          |                                          |                                |            |                                      |                             |                                         |                     |         | F           |                                          | £                 | <b></b>                              | <b></b>     |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| 15.00                                |                          |                                          |                                |            |                                      |                             |                                         |                     |         | <b></b>     |                                          | $\sim$            | <del>.</del>                         |             |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| Γ                                    |                          | 10                                       | 15.00                          | SPT        |                                      | 17                          | 18                                      | 22                  | 40      | <b>F</b>    |                                          | <b> </b> -        | $\sim$                               | <b>t</b>    |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |
| te                                   | te fane                  | Z                                        | EMINI                          | DEĞEI      | RLEN                                 | DIRMS<br>In the             | ESI - S                                 | PT                  | 0.002.) |             | к                                        | AYA1              | VITEL                                | Ğ1 -1       | ROD (       | %)              | AY                                   | TRIŞM                                         | A DEI                                    | RECEST (W)              | (                                 | ATLAK SIKLI                                                         | ĞI               |
| N:0-<br>N:3-<br>N:5-<br>N:9-<br>N:14 | 2<br>4<br>8<br>13<br>-30 | Çok Yum<br>Yum<br>Ortal<br>Katı<br>Çok İ | Yumuşa<br>uşak<br>Katı<br>Katı | uk         | N:0-<br>N:5-<br>N:11<br>N:31<br>N:>5 | 4<br>10<br>-30<br>-50<br>50 | Cok C<br>Gevşe<br>Orta<br>Sıkı<br>Çok S | ievşek<br>ik<br>ik  |         |             | 0-25<br>25-50<br>50-75<br>75-90<br>90-10 | )<br>5<br>)<br>00 | Çok<br>Zayıf<br>Orta<br>İyi<br>Ç.İyi | Zayıf       |             |                 | W1 1<br>W2 /<br>W3 0<br>W4 /<br>W5 1 | Taze (<br>Az Ayr<br>Orta D<br>Aynşın<br>Taman | Aynşı<br>ışmış<br>ereced<br>ış<br>ien Ay | namuş)<br>le Ayr.<br>r. | <1<br>1-3<br>3-10<br>10-50<br>>50 | Masif<br>Az çatlaklı-Kı<br>Kırıklı<br>Çok çatlaklı-I<br>Parçalanmış | ınklı<br>Kırıklı |
| an : 30                              |                          | acit                                     |                                |            |                                      |                             |                                         |                     |         |             |                                          |                   |                                      |             |             |                 |                                      |                                               |                                          |                         |                                   |                                                                     |                  |

Şekil EK F.1

|     |                 |                             |                      |                                   |                |                                   |                            |                              |        |                      | PR                            | OJE                        | TOPL               | u so               | NUÇ                     | LAR                       | l / GL                         | OBAL R                       | ESULTS                   | OF PRO                         | JECT                         |                            |                               |                                         |                                  |                                     |                           |                                                  |                            |
|-----|-----------------|-----------------------------|----------------------|-----------------------------------|----------------|-----------------------------------|----------------------------|------------------------------|--------|----------------------|-------------------------------|----------------------------|--------------------|--------------------|-------------------------|---------------------------|--------------------------------|------------------------------|--------------------------|--------------------------------|------------------------------|----------------------------|-------------------------------|-----------------------------------------|----------------------------------|-------------------------------------|---------------------------|--------------------------------------------------|----------------------------|
|     |                 |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    |                         |                           |                                |                              |                          |                                |                              |                            |                               |                                         |                                  | Rev. no : 00                        | Form No: R                | FR-0023                                          |                            |
|     | Müşt<br>Luston  | <b>eri Adı</b><br>her's Nar | ne                   |                                   | AS JE          | OTEKN                             | İK AI                      | RAŞT                         | IRM/   | A SO                 | NDA                           | u inş                      | . SAN              | . тіс.             | LTD.                    | şтi.                      |                                | Rapor M<br>Report no         | No:                      |                                |                              | Bakanlı<br>Ministeria      | k Rapor I<br>Report no        | No :                                    |                                  |                                     |                           |                                                  |                            |
| F   | Vum.<br>Project | Alındı<br>/Locatio          | ğı Yei               | r                                 | 89 ada         | a 140 prs                         | . Sefe                     | erihisa                      | ır/izM | /iR -                | EFEK                          | AN Gİ                      | ĴNEY               |                    |                         |                           |                                |                              |                          |                                |                              | Rapor T<br>Date of Re      | <b>arihi</b><br>port          |                                         | 12,04,3                          | 2019                                |                           |                                                  |                            |
|     | s               | ondaj<br>No                 | umure No<br>amole No | Derinlik<br>(m)                   | AKIL / Gravel  | KUM / Sand                        | slut / sæ                  | KlL / clay                   | Atter  | berg lin<br>rberg Li | <b>nitleri</b><br>mits        | w,                         | ¥.                 | n                  | inflama<br>sification   | solidasyon<br>colidations | Zemi<br>Eks.S<br>Triaxi        | nde Üç<br>ıkışma<br>ıl Comp. | Zemir<br>Eks.S<br>Unconf | ndeTek<br>Ikışma<br>in. Stren. | Zemind<br>Ke<br>Direct       | le Direkt<br>sme<br>Shears | Zemind<br>Ke<br>( Rez<br>geri | le Direkt<br>sme<br>tidüel<br>ilme)     | Kaya<br>Eks.S<br>Triaxial C<br>R | da Üç<br>Ikışma<br>Comp. for<br>ock | Şişme<br>Basıncı<br>Swell | Şişme<br>Yüzdesi<br>Swelling<br>Ratio            | ls <sub>50</sub><br>(Ort.) |
|     | _               |                             | z ″                  | o cp c.                           | 5              |                                   |                            |                              | LL     | PL                   | PI                            |                            |                    | ļ                  | s 9                     | 2 8                       | c                              | ٥                            | q,                       | c                              | c                            | ٥                          | c'                            | Φ'                                      | c                                | Φ                                   |                           |                                                  |                            |
| -   | _               |                             |                      |                                   | (96)           | (%)                               | (%)                        | (%)                          | (%)    | (%)                  | (%)                           | (%)                        | gr/cm <sup>3</sup> | gr/cm <sup>3</sup> |                         |                           | (kPa)                          | (*)                          | (kPa)                    | (kPa)                          | (kpa)                        | (°)                        | (kpa)                         | (°)                                     | (MPa)                            | (°)                                 | (kg/cm <sup>2</sup> )     | (%)                                              | (MPa)                      |
| +   | 1 .             | SK-1                        | SPT                  | 1,50-1,95                         | 30,79          | 64,26                             | 4                          | ,95                          |        | NP                   |                               | 12,2                       | 1,905              | 1,695              | SP                      |                           | ļ                              |                              |                          |                                | 12,47                        | 21,46                      |                               |                                         |                                  | ļ                                   |                           | ļ                                                | ļ                          |
| +   | 2 .             | SK-1                        | SPT                  | 9,00-9,45                         | 0,00           | 22,24                             | 77                         | ,76                          | 43,9   | 33,2                 | 10,7                          | 21,7                       |                    | ļ                  | MI                      |                           | ļ                              |                              |                          | ļ                              |                              | ļ                          |                               | ļ                                       |                                  | ļ                                   |                           | ļ                                                | ļ                          |
| -   | 3               | SK-1                        | SPT                  | 15,00-15,45                       | 0,00           | 5,03                              | 94                         | 1,97                         | 46,9   | 34,6                 | 12,3                          | 20,6                       |                    | ļ                  | MI                      |                           |                                |                              |                          |                                |                              | ļ                          |                               |                                         |                                  | ļ                                   |                           |                                                  | ļ                          |
| _   | 4               | SK-2                        | SPT                  | 4,50-4,95                         | 0,00           | 6,36                              | 93                         | <b>,64</b>                   | 43,6   | 34,6                 | 9,0                           | 24,7                       |                    |                    | MI                      |                           |                                |                              |                          |                                |                              | ļ                          |                               |                                         |                                  | Į                                   |                           |                                                  | ļ                          |
|     | 5 5             | SK-2                        | SPT                  | 12,00-12,45                       | 0,00           | 25,32                             | 74                         | <b>1,68</b>                  | 47,0   | 35,2                 | 11,8                          | 23,5                       |                    |                    | MI                      |                           | L                              |                              |                          |                                |                              |                            |                               |                                         |                                  |                                     |                           |                                                  | L                          |
|     | 6               | SK-3                        | SPT                  | 6,00-6,45                         | 0,00           | 27,15                             | 72                         | 2,85                         | 44,0   | 33,8                 | 10,2                          | 22,6                       |                    |                    | MI                      |                           | l                              |                              |                          |                                |                              |                            |                               |                                         |                                  |                                     |                           |                                                  | <u> </u>                   |
|     | 7               | SK-3                        | SPT                  | 13,50-13,95                       | 24,14          | 22,42                             | 53                         | 1,44                         | 48,6   | 23,5                 | 25,1                          | 23,8                       |                    |                    | CI                      |                           |                                |                              |                          |                                |                              |                            |                               |                                         |                                  |                                     |                           |                                                  |                            |
| Т   | 8               |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    |                         |                           | Ι                              |                              |                          |                                |                              | I                          |                               | 1                                       |                                  | I                                   |                           |                                                  |                            |
|     | 9               |                             |                      |                                   |                |                                   |                            |                              |        |                      | 1                             |                            |                    |                    |                         |                           | 1                              |                              |                          | -                              |                              | 1                          |                               | 1                                       |                                  | 1                                   |                           |                                                  |                            |
| 1   | 0               |                             |                      |                                   | 1              |                                   |                            |                              |        |                      | 1                             |                            |                    |                    |                         |                           | 1                              |                              |                          |                                |                              |                            |                               | ·                                       |                                  |                                     |                           | 1                                                |                            |
| 1   | 1               |                             |                      |                                   | 1              |                                   |                            |                              |        |                      |                               |                            |                    | 1                  |                         |                           | 1                              |                              | -                        |                                | -                            |                            |                               | · • · · · · · · · · · · · · · · · · · · |                                  |                                     |                           |                                                  |                            |
|     | 2               |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    |                         |                           |                                | 1                            | -                        | 1                              |                              | 1                          |                               | 1                                       |                                  | 1                                   |                           |                                                  |                            |
|     | 3               |                             |                      |                                   |                |                                   |                            |                              |        |                      | 1                             |                            |                    |                    |                         |                           |                                |                              | -                        |                                |                              | ••••••                     |                               | +                                       |                                  |                                     |                           |                                                  |                            |
| -ti | 4               |                             |                      |                                   |                |                                   |                            |                              |        |                      | †                             |                            |                    |                    |                         |                           |                                |                              | -                        | 1                              |                              | 1                          |                               | · †                                     |                                  |                                     |                           |                                                  |                            |
|     | 5               |                             |                      |                                   | +              |                                   |                            |                              |        |                      | +                             |                            |                    | +                  |                         |                           | +                              |                              | -                        |                                |                              | İ                          |                               | ·                                       |                                  | İ                                   |                           | +                                                |                            |
|     | 8               |                             |                      | -                                 |                |                                   |                            |                              |        |                      |                               |                            |                    | +                  |                         |                           |                                |                              | -                        |                                |                              | ł                          |                               | +                                       |                                  |                                     |                           | +                                                |                            |
|     | 7               |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    | +                  |                         |                           | +                              |                              | +                        |                                |                              |                            |                               |                                         |                                  |                                     |                           | +                                                |                            |
|     |                 |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    |                         |                           |                                |                              | -                        |                                |                              |                            |                               |                                         |                                  |                                     |                           | +                                                |                            |
| -   | °               |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    | -                       | +                         |                                | ł                            |                          | +                              |                              | <u> </u>                   |                               |                                         |                                  |                                     |                           |                                                  |                            |
|     | 20              |                             |                      |                                   |                |                                   |                            |                              |        |                      |                               |                            |                    |                    | -                       |                           |                                |                              |                          | 1                              |                              |                            |                               | -                                       |                                  |                                     |                           |                                                  |                            |
|     |                 | LL=Likit I<br>LL-Liquid     | imit<br>Unit         | PL=Plastik<br>PL=Plastic          | Limit<br>Limit | Pi                                | =Plastisit<br>PI-Plasticit | t <b>e Indisi</b><br>y Index |        | Gs                   | :<br>=Özgül /<br>-fipecific ( | l <b>ğırlık</b><br>kavity  | Wn=<br>Wr          | Su Muhte           | vası<br>nt              | γn =Do<br>v               | oğal Birim H<br>• -Natural Uni | acim Ağırlık<br>Weight       | yk=Kur                   | u Birim Haci<br>k-Dıy Unit Wei | im Ağırlık<br><sub>aht</sub> | ⊕=iç:<br>⊕=ini             | el Sürtünm<br>and angle of 1  | e Açısı<br>Niction                      | c= Kol<br>c= Co                  | i<br>hezyon<br>halon                | qu=Sert<br>qu=Lincon      | best Basing I<br>fined compress<br>to kullandmal | Dayanımı<br>ive Strenght   |
|     | yka             | nax.=Ma<br>vima             | iks.Kur<br>«Max.D    | u Brm.Hcm.Ağrik.<br>y Unit Weight | W              | In opt. =Optim<br>Whitept.= Optim | num Su N                   | Auhtevas<br>Content.         | 1      |                      | Deney<br>Our                  | ferimiz TS<br>tests are be | 1900-1/2, A        | nting to the       | standarti<br>IS 1900-1/ | arına göre<br>2, ASTM ,IS | yapılmakta<br>RM standats.     | ar.                          | The logo of              | T.C.Ministry                   | of Environm                  | ent and Urba               | nisation is use               | ed by the righ                          | nt of 521 num<br>5.              | bered Licenc                        | e for Laborat             | ory Permissio                                    | in confirmed               |

Şekil EK F.2

# EK G.

55 Ada-1 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK G 1'de Seferihisar Belediyesi'nden elde edilen rapor sunulmuştur.



İzmir İli, Seferihisar İlçesi, 55 Ada, 1 Parsel Alanında Yapılacak Olan, Bina ve Bina Türü Yapılar için Zemin ve Temel Etüdü Raporu

# 3.LABORATUAR DENEYLERİ VE ANALİZLER 3.1.Kayanın Mekanik Özelliklerinin Belirlenmesi

İnceleme alanında yapılan sondajdan alınan numuneler üzerinde, zeminin mekanik özelliklerinin belirlenmesine yönelik deneyler yapılmıştır. Birimden alınan numune üzerinde yapılan laboratuvar deneyi ve sonuçları Ek' te verilmiştir.



### 4. MÜHENDİSLİK ANALİZLERİ VE DEĞERLENDİRME

İnceleme alanının yeterli derinlikte, stratigrafisinin çıkarılıp birimlerin jeolojik ve mühendislik jeolojisi özelliklerinin belirlenmesi için Etüt alanında Sk-1: 9,00 m ve Sk-2: 4,50 m olmak üzere iki adet temel sondaj kuyusu açılmıştır. İnceleme alanında yapılan sondajdan alınan numuneler üzerinde, zeminin fiziksel ve mekanik özelliklerinin belirlenmesine yönelik deneyler yapılmıştır.

# 4.1.Bina-Zemin İlişkisinin İrdelenmesi

nceleme alanında yapılan sondajda 1,50 - 1,95 metredeki SPT numunesi üzerinde yapılan direkt kesme deneyine göre taşıma gücü hesabı yapılmıştır.

Sekil EK G 1

# EK H.

55 Ada-10 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK H 1-2'de Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.


İZMIR İLI, SEFERIHISAR İLÇESLSIĞACIK MAHALLESI, L17C-06B-1B PAFTA , 55 ADA,10 PARSEL ALANINDA YAPILACAK OLAN BINA VE BINA TÜRÜ YAPILAR İÇIN ZEMIN VE TEMEL ETÜDÜ RAPORU

# **3.LABORATUAR DENEYLERİ VE ANALİZLER**

İnceleme alanında yapılan sondaj çalışmalarında alınan numuneler laboratuara gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini deneylerine tabii tutulmuştur. Bu deneyler Arter Mühendislik laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

# 4.MÜHENDİSLİK ANALİZLERİ VE DEĞERLENDİRME

# 4.1.Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinde SPT deneyleri yapılmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre üst seviyelerde ufak taneli taşlaşmamış çökellerden silt ve kil den oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.5 te verilmektedir.

| KUYU NO | ÖRNEK<br>NO | DERİNLİK<br>(m) | DOGAL<br>SU<br>İÇERİĞİ | ATTERBERG<br>LÍMÍTLERÍ<br>(%) |      | ELEK<br>ANALIZI<br>(%) |      | BİRLRŞTİRİLMİŞ<br>ZEMİN<br>SINIFLAMASINA GÖRE |         |
|---------|-------------|-----------------|------------------------|-------------------------------|------|------------------------|------|-----------------------------------------------|---------|
|         |             |                 | Wn(%)                  | LL                            | PL   | PI                     | #10  | #200                                          | SEMBOLÜ |
| SK-1    | SPT-1       | 1,50-1,95       | 20,5                   | 32,2                          | 15,1 | 17,1                   | 0,00 | 73,18                                         | CL      |

Tablo.5. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise;

CL: Düşük plastisiteli kil olarak sınıflanmaktadır.

#### Kıyam Limitlerine Göre Sınıflama

İnce taneli zeminlerin kıvamlılık indeksine göre sınıflaması yapılacak olur ise; silt ve kil birimlerindeki değerler aşağıda verilmektedir.

Ic = (LL-w) / PI: Kıvamlılık İndeksi Ic : Likit Limit LL

- : Su İçeriği
- W
- : Plastisite İndeksi PI

İZMIR İLI, SEFERIHISAR İLÇESI,SIĞACIK MAHALLESI, L17C-06B-1B PAFTA , 55 ADA,10 PARSEL ALANINDA YAPILACAK OLAN BINA VE BINA TÜRÜ YAPILAR İÇIN ZEMIN VE TEMEL ETÜDÜ RAPORU

|               | DEDING    |               | and the second second second second second second second second second second second second second second second |  |  |
|---------------|-----------|---------------|------------------------------------------------------------------------------------------------------------------|--|--|
| SONDAJ KUYUSU | (m)       | ZEMİN SİMGESİ | KIVAMLILIK İNDEKSİ                                                                                               |  |  |
| SK-1          | 1 50-1 95 | C'            | (lc)                                                                                                             |  |  |
|               | 1,001,00  | CL            | 0.68                                                                                                             |  |  |

Tablo.6. İnceleme Alanındaki İnce Taneli Zeminlerin Derinliklere Göre Kıvamlılık İndeksi

| KIVAMLILIK<br>ÌNDEKSİ<br>(Ic) | TANIM                    |  |  |  |  |
|-------------------------------|--------------------------|--|--|--|--|
| < 0                           | Alexander ( Dave a)      |  |  |  |  |
| 0-0.25                        | Anipkan ( Çamur )        |  |  |  |  |
| 0.25 - 0.50                   | Çok Yumuşak              |  |  |  |  |
| 0.25 0.50                     | Yumuşak                  |  |  |  |  |
| 0.50 - 0.75                   | Yarı Sert (Siki)         |  |  |  |  |
| 0.75 - 1.00                   | Sort (Sild )             |  |  |  |  |
| >1.00                         | Sell                     |  |  |  |  |
|                               | 1 Yari Kati ( Cok Sert ) |  |  |  |  |

Tablo.7. İnce Taneli Zeminlerin Kıvamlılık İndeksine Göre Sınıflanması

Yapılan değerlendirmeler sonucunda ince taneli zeminlerin kıvamlılık indeksi için kıvamlılık İndeksi alınan numuneler için Yarı Sert (Sıkı)olarak tanımlanmaktadır.

İnceleme alanında yapılan SPT deneyi sonuçları ise aşağıda Tablo.8. te verilmektedir.

| KUYU NO | ÖRNEK NO | DERİNLİK<br>(m) | 0 - 5<br>(cm) | 15 -30<br>(cm) | 30-45<br>(cm) | N30 |
|---------|----------|-----------------|---------------|----------------|---------------|-----|
| SK-1    | SPT-1    | 1.50-1.95       | 6             | 6              | 9             | 15  |
| SK-1    | SPT-2    | 3.00-3.45       | 8             | 8              | 8             | 16  |
| SK-1    | SPT-3    | 4,50-4,95       | 8             | 11             | 11            | 22  |
| SK-1    | SPT-4    | 6,00-6,45       | 9             | 12             | 12            | 24  |
| SK-2    | SPT-1    | 1.50-1.95       | 5             | 8              | 8             | 16  |
| SK-2    | SPT-2    | 3.00-3.45       | 7             | 8              | 9             | 17  |
| SK-2    | SPT-3    | 4,50-4,95       | 9             | 9              | 12            | 21  |
| SK-2    | SPT-4    | 6,00-6,45       | 11            | 10             | 15            | 25  |

Tablo.8. SPT Deney Sonuçları

Yapılan hesaplamalarda ortalama N30 değeri kullanılmıştır.

Darbe sayısı

 $N_{30} = 20$ 

İnceleme alanında gözlemlenen birimlerin genel olarak kohezyonlu zeminlerden oluşması itibari ile Kumbasar ve Skempton'nın kohezyonlu zeminler için önerdiği formüllerinden hesaplamalar yapılmıştır. Formüller aşağıda verilmektedir.

# EK I.

97 Ada-28 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK I 1'de Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.



İzmir İli, Seferihisar İlçesi, 31L-3D Pafta, 97 Ada, 28 Parsel Alanında Yapılacak Olan, Bina ve Bina Türü Yapılar için Zemin ve Temel Etüdü Raporu

# 3.LABORATUAR DENEYLERİ VE ANALİZLER

3.1.Kayanın Mekanik Özelliklerinin Belirlenmesi

İnceleme alanında yapılan sondajdan alınan numuneler üzerinde, zeminin mekanik özelliklerinin belirlenmesine yönelik deneyler yapılmıştır. Birimden alınan numune üzerinde yapılan laboratuvar deneyi ve sonuçları Ek' te verilmiştir.

# 4. MÜHENDİSLİK ANALİZLERİ VE DEĞERLENDİRME

İnceleme alanının yeterli derinlikte, stratigrafisinin çıkarılıp birimlerin jeolojik ve mühendislik jeolojisi özelliklerinin belirlenmesi için Etüt alanında Sk-1: 6,00 m ve Sk-2: 4,50 m olmak üzere iki adet temel sondaj kuyusu açılmıştır. İnceleme alanında yapılan sondajdan alınan numuneler üzerinde, zeminin fiziksel ve mekanik özelliklerinin belirlenmesine yönelik deneyler yapılmıştır.

# 4.1.Bina-Zemin İlişkisinin İrdelenmesi

Sk-1: 1,50-3,00 m, arasından alınan KAROT numunesi üzerinde yapılan deney sonucuna göre;

Arazide yapılan sondajda elde edilen numuneler üzerinde yapılan zemin sınıflaması deneylerine göre orta sıkı özellikli (Dr  $\sim 60$ ) olan etüt alanındaki temeli oluşturan Googla sınıfi zeminin mukavemet açısı (Ø) Tablo-2 den bakıldığında, en fazla (Ø) = 25-35 <sup>0</sup> derecedir. kayma mukavemet açısının ( $\emptyset$ ) = 35 <sup>0</sup> olarak alınması uygun olacaktır.

|                                         |                                       | The second second second second second second second second second second second second second second second se |
|-----------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Zemin Cinsi                             | Bırım Ağırlığı<br>(t/m <sup>3</sup> ) | İc Sürtünme Acısı (a°)                                                                                          |
|                                         |                                       | $A_{y} \sim a t a t a t a t A f ISI (\phi)$                                                                     |
| İnce kum ve çakıl                       | 1,8-1,9                               | 30-40                                                                                                           |
| (%5'ten az siltli)                      |                                       |                                                                                                                 |
| İri kum ve çakıl                        | 1,8-2,0                               | 35-40                                                                                                           |
| (%5'ten az siltli)                      |                                       | and the state of the second state of the second                                                                 |
| Siltle karışık kum                      | 1,8-2,0                               | 25-35                                                                                                           |
| yada çakıl                              |                                       |                                                                                                                 |
| Siltli kum, çok killi<br>kum yada çakıl | 1,8-2,0                               | 23-30                                                                                                           |
| Zen                                     | -Son Mühendislik Jeolojik Araştı      | ırma İnş.San.Tic.Ltd.Şti.                                                                                       |

Manavkuyu Mah. 240 Sokak Alperen Apt. No:5 Daire:1 Bayraklı/ İzmir

Manavkuyu Man. 240 45 03 – Gsm:0532 622 86 80 – E-mail: zem\_son@hotmail.com Tel: 0232 342 99 53 – Fax: 0232 342 45 03 – Gsm:0532 622 86 80 – E-mail: zem\_son@hotmail.com

## EK J.

1123 Ada-8 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK J 1-4'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.

# JEOTEKNIK İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1123 ADA, 8 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇIN TEMEL VE ZEMİN ETÜDÜ RAPORU Kıvam Limitlerine Göre Sınıflama İnce taneli zeminlerin kıvamlılık indeksine göre sınıflaması yapılacak olur ise; silt ve kil birimlerindeki değerler aşağıda verilmektedir. Ic = (LL-w) / PIIc: Kıvamlılık İndeksi

LL: Likit Limit

W : Su İçeriği

PI : Plastisite İndeksi

| SONDAJ KUYUSU | DERİNLİK<br>(m) | ZEMİN SİMGESİ | KIVAMLILIK İNDEKSİ |
|---------------|-----------------|---------------|--------------------|
| SK-1          | 1 50-1 05       |               | (10)               |
|               | 1,50-1,95       | SC            | 0.95               |

Tablo.4.2 İnceleme Alanındaki İnce Taneli Zeminlerin Derinliklere Göre Kıvamlılık Indeksi

| TANIM                  |
|------------------------|
| Akıskan ( Camur )      |
| Çok Yumusak            |
| Yumusak                |
| Yarı Sert (Sıkı)       |
| Sert                   |
| Yarı Katı ( Cok Sert ) |
|                        |

Tablo.4.3 İnce Taneli Zeminlerin Kıvamlılık İndeksine Göre Sınıflanması

Yapılan değerlendirmeler sonucunda ince taneli zeminlerin kıvamlılık indeksi için kıvamlılık İndeksi Yarı Katı (Çok Sert) olarak tanımlanmaktadır.

İnceleme alanında yapılan SPT deneyi sonuçları ise aşağıda Tablo.4.4'de verilmektedir.

| KUYU NO ÖRNEK NO |       | EK NO DERİNLİK<br>(m) |    | 15 -30<br>(cm) | 30 -45<br>(cm) | N30 |
|------------------|-------|-----------------------|----|----------------|----------------|-----|
| SK-1             | SPT-1 | 1.50-1.95             | 8  | 7              | 7              | 14  |
| SK-1             | SPT-2 | 3.00-3.45             | 10 | 7              | 10             | 17  |
| SK-1             | SPT-3 | 4.50-4.95             | 10 | 8              | 12             | 20  |
| SK-1             | SPT-4 | 6.00-6.45             | 18 | 12             | 13             | 25  |
| SK-2             | SPT-1 | 1.50-1.95             | 8  | 8              | 10             | 18  |
| SK-2             | SPT-2 | 3.00-3.45             | 12 | 8              | 9              | 17  |
| SK-2             | SPT-3 | 4.50-4.95             | 16 | 11             | 11             | 22  |
| SK-2             | SPT-4 | 6.00-6.45             | 20 | 13             | 15             | 28  |

Tablo.4.4 SPT Deney Sonuçları

Yapılan hesaplamalarda ortalama N<sub>30</sub> - Darbe sayısı N<sub>30</sub> =20 değeri kullanılmıştır.

JEOTEKNÍK ARAŞTIRMA SONDAJ MÜHENDÍSLIK

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1123 ADA, 8 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

#### Yapılan jeoteknik hesaplamalar sonucunda;

| Zemin grubu                        | С                               |
|------------------------------------|---------------------------------|
| Yerel zemin sınıfı                 | Z4                              |
| Etkin yer ivme katsayısı A(0)      | 0,40                            |
| Spektral ivme katsayısı A(T)       | 1,00                            |
| Bina önem katsayısı I              | 1,00                            |
| Spekturum katsayısı S(T)           | 2,50                            |
| Spektrum karakteristik periyotları | $T_{A=} 0.20$ ve $T_{B} = 0.90$ |
| Yatak Katsayısı                    | 2808 t/m <sup>3</sup>           |

Hesaplamalar ve sınıflamalar ile ilgili bilgiler Tablo.4.7 Tablo.4.8 Tablo.4.9 ve Tablo.4.10'da verilmektedir.

# 4.2. Sıvılaşma Riskinin Değerlendirilmesi

Deprem sırasında tekrarlı yükler gevşek kumlarda hacim azalmasına yola açar ve yükün kalkmasından sonra birim kısalmalar sıfıra dönmede yeniden yüklenir. Böylece suyun drene olmaması ve hacim azalması sonucunsa boşluk suyu basınçlarında artışlar meydana gelir. Boşluk suyu basıncı artarak toplam gerilmeye eşit ya da fazla olur bu durumda zemin kayma direncini yitirir. Bu olay sıvılaşma olarak adlandırılır.

Bray ve diğerlerinin 2004 yılında yaptığı çalışmalar ile gerçekleştirmiş olduğu kriterlere göre;

Ip = Wn / LL;

- Ip > 0.9 ( sıvılaşabilir )
- 0.8 < Ip < 0.9 (ara durum )
- Ip < 0.8 (sıvılaşmaz)

|   | Sondaj<br>No | Derinlik<br>(m) | Ір   | Durum      |  |  |
|---|--------------|-----------------|------|------------|--|--|
| F | SK-1         | 1,50-1,95       | 0.52 | Sıvılaşmaz |  |  |

#### 4.3.Oturma

Temel aracılığı ile zemine aktarılan yapı yükleri altında zeminde meydana gelen düşey deformasyonlara oturma denilir. Oturma, yapı yükünden dolayı temel tabanındaki zemin içinde bulunan havanın ve boşluklardaki suyun dışarı çıkması sonucu oluşur. İnce taneli

7) Parsel alanında 1 adet sismik kırılma çalışması yapılmıştır. Çalışmaya ait bilgiler, değerlendirmeler "2.4. Jeofizik Çalışmalar" başlığı altında ayrıntılı olarak verilmiştir. Etüt alanında yapılan Jeofizik yöntemlerden elde edilen arazi verileri bilgisayar yardımıyla değerlendirilip jeofizik modeller oluşturulmuştur. Çalışma alanında doğrultuları ekte verilen şekilde profil uzunluğu 26,0 m., jeofon aralıkları 2,0 m., ofset aralığı 2,00 m. olarak seçilen 1 adet sismik kırılma ölçüleri alınmıştır.

8) Sismik serim çalışması sonucunda;

JEOTEKNİK

•Birinci tabakanın ortalama kalınlığı yaklaşık 1,60 m. dir.

•Birinci tabakaya ait elde edilen Vp1 hızı 347.00 m/sn.,Vs1 hızı 121.00 m/sn.

•İkinci tabakaya ait elde edilen Vp2 hızı 1401,00 m/sn.,Vs2 hızı 278.00 m/sn.

9)Laboratuar sonuçlarına göre, çalışma alanında yapılan SK-1 nolu sondaj kuyusunda 1,50-1,95 metreler arasından alınan numune killi kumlardan oluşmaktadır. "SC" olarak sınıflanmaktadır.

**10)** Bina temel alt kotu -0,60 metre ve temel derinliği 0,60 metre için statik projeye esas zemin parametreleri aşağıda yer almaktadır.

| Zeminin emniyetli taşıma gücü                   | $q_{em} = 1.17 \text{ kg/cm}^2$ |
|-------------------------------------------------|---------------------------------|
| Zemin Grubu                                     | C                               |
| Yerel zemin sınıfı                              | Z4                              |
| Etkin yer ivme katsayısı                        | A0=0,40                         |
| Bina önem katsayısı                             | I=1,0 (konut)                   |
| Spektrum karakteristik periyotları              | Ta(S)=0,20 Tb(S)=0,90           |
| Zemin Hakim Titreşim Periyodu (T <sub>0</sub> ) | 75                              |
| Zemin Büyütmesi ( Midorikawa )                  | 2,336                           |
| Zemin Yatak Katsayısı                           | ks = $2808 \text{ t/m}^3$       |

11) Yapılan değerlendirmelerde inceleme alanında sıvılaşma tehlikesi beklenmemektedir.

12) Yapılan hesaplama sonucunda yapının yıllık oturma değeri S =1,72 cm'dir. İzin verilen oturma değerleri arasında kalmaktadır. İnceleme alanındaki zemin türü için şişme potansiyeli düşük seviyededir. Ancak temelin oturacağı alanda zeminde olası % 10 arasında hacim değişikliği (Tahmini şişme) meydana gelebilir. Şişme potansiyeli düşük olsa da, zemin bünyesinde su içeriğinden yapılması planlanan yapının temeline olası su girişinin engellenmesi temel emniyeti açısından gereklidir.

13) İnceleme alanında eğim gözlenmemektedir.

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 1123 ADA, 8 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

# 3. LABORATUVAR DENEYLERİ VE ANALİZLER

İnceleme alanında yapılan sondaj çalışmalarında alınan karot numuneler Jeolab Zemin laboratuarına gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini deneylerine tabii tutulmuştur. Bu deney Jeolab Zemin laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

# 4. DEĞERLENDİRME

JEOTEKNIK

# 4.1. Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinden karotiyer yardımı ile karot numuneler alınmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği, kesme kutusu ve nokta yükleme deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre ufak taneli taşlaşmamış çökellerden çakıl ve kumdan oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.4.1' de verilmektedir.

| KUYU<br>NO | NUMUNE     | NUMUNE DERİNLİK<br>(m) | ÇAKIL K<br>(%) ( | KUM<br>(%) | KUM<br>(%) SİLT-<br>KİL<br>(%) | DOGAL<br>SUİÇERİĞİ<br>Wn | ATTERBERG<br>LİMİTLERİ<br>(%) |      |      | SINIFLAMA |
|------------|------------|------------------------|------------------|------------|--------------------------------|--------------------------|-------------------------------|------|------|-----------|
|            | the second |                        |                  | and the    |                                | (%)                      | LL                            | PL   | PI   |           |
| SK-1       | SPT        | 1,50-1,95              | 31,61            | 48,67      | 19,72                          | 13,3                     | 25,6                          | 12,5 | 13,1 | SC        |

Tablo-4.1. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise;

SC : Killi kum karışımı olarak sınıflanmaktadır.

## EK K.

1163 Ada-8 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK K 1'de Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.

```
İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-4B PAFTA, 1163 ADA,
8 PARSEL ALANINDA YAPILACAK OLAN, BİNA VE BİNA TÜRÜ YAPILAR İÇİN ZEMİN
VE TEMEL ETÜDÜ RAPORU
```

# **3.LABORATUVAR DENEYLERİ VE ANALİZLER**

Parsel alanında 13.01.2016 tarihinde Sk-1: 15,50m olmak üzere bir adet temel sondaj kuyusundan açılmıştır. Birimlerden alınan numuneler üzerinde yapılan laboratuvar deneyi ve sonuçları Ek' te verilmiştir.

# 3.1. Zeminin İndeks/Fiziksel Özelliklerinin Belirlenmesi

Açılan sondajdan alınan numuneler üzerinde, zeminin indeks/fiziksel özelliklerinin belirlenmesine yönelik doğal su içeriği, doğal birim hacim ağırlık, elek analizi ve atterberg limitleri deneyleri yapılmıştır.

| Sondajın    | Numune                      | Doğal<br>Su | știnilmiș<br>cim<br>cm³) | Elek A                      | Atterberg Limitleri |                                    |    | Zemin<br>Sınıfı |        |                   |
|-------------|-----------------------------|-------------|--------------------------|-----------------------------|---------------------|------------------------------------|----|-----------------|--------|-------------------|
| Kuyu<br>No: | Derinlik (m) Numune<br>Türü |             | İçeriği<br>(%)           | Lab.Sıkış<br>B.Ha<br>Ağ.(g/ | #10<br>Kalan<br>(%) | #10 #200<br>Kalan Geçen<br>(%) (%) |    | PL<br>(%)       | PI (%) | USCS / TS<br>1500 |
| SK-1        | 1,50-1,95                   | SPT         | 19.04                    | 1.78                        | 28.03               | 19.42                              |    | NP              |        | SM                |
| SK-1        | 4,50-4,95                   | SPT         | 32.15                    |                             | 8.06                | 81.76                              | 54 | 22              | 32     | CH                |
| SK-1        | 9,00-9,45                   | SPT         | 30.71                    | ra la la                    | 2.63                | 90.98                              | 58 | 24              | 34     | СН                |

#### 3.2. Zeminin Mekanik Özelliklerinin Belirlenmesi

Açılan sondajdan alınan numunel<mark>er üzerinde, zeminin mekanik</mark> özelliklerinin belirlenmesine yönelik direkt kesme deneyleri yapılmıştır.

| Sandaiun    | Numun        | onin           | Direkt Kesme         |                            |  |  |  |
|-------------|--------------|----------------|----------------------|----------------------------|--|--|--|
| Sondajin    | Numun        | enin           | C                    | ф                          |  |  |  |
| Kuyu<br>No: | Derinlik (m) | Numune<br>Türü | Kohezyon<br>(kg/cm²) | içsel<br>sürtünme<br>açısı |  |  |  |
| SK-1        | 1,50-1,95    | SPT            | 0,09                 | 25                         |  |  |  |

#### 4. MÜHENDİSLİK ANALİZLERİ VE DEĞERLENDİRME

İnceleme alanının yeterli derinlikte, stratigrafisinin çıkarılıp birimlerin jeolojik ve mühendislik jeolojisi özelliklerinin belirlenmesi için parsel alanında 13.01.2016 tarihinde Sk-1: 15,50m olmak üzere bir adet temel sondaj kuyusundan açılmıştır. İnceleme alanı için açılan sondajdan alınan numuneler üzerinde, zeminin fiziksel ve mekanik özelliklerinin belirlenmesine yönelik deneyler yapılmıştır.

Zem-Son Mühendislik Jeolojik Araştırma İnş.San.Tic.Ltd.Şti. Manavkuyu-Mah. 240 Sokak Alperen Apt. No:5 Daire:1 Bayraklı / İzmir Tel: 0232 342 99 53 – Fax: 0232 342 45 03 – Gsm:0532 622 86 80 – E-mail: zem\_son@hotmail.com

30

# EK L.

3198 Ada-13 Parsel'e ait verilerin orijinal belgesi sunulmuştur. Şekil EK L 1-3'te Seferihisar Belediyesi'nden elde edilen raporlar sunulmuştur.

| LL: Likit Limit                          |                  |                      |                          |
|------------------------------------------|------------------|----------------------|--------------------------|
| W : Su İçeriği                           |                  |                      |                          |
| PI : Plastisite İnde                     | ksi              |                      |                          |
| SONDAJ KUYUSU                            | DERİNLİK<br>(m)  | ZEMİN SİMGESİ        | KIVAMLILIK İNDEKSİ       |
| SK-1                                     | 0,00-1,50        | CI                   | (lc)<br>0.85             |
| Tablo-4.2 Incelen                        | ne Alanındaki İn | ce Taneli Zeminlerin | Derinliklere Göre Kurent |
| ndeksi                                   |                  |                      | Contraction of the Kivam |
| ndeksi<br>KIVAMLILIK İI                  | NDEKSİ (Ic)      |                      | TANIM                    |
| Meksi<br>KIVAMLILIK II<br>< 0<br>0 - 0 2 | NDEKSİ (Ic)      | Ak                   | TANIM<br>Işkan ( Çamur ) |

Tablo-4.3 İnce Taneli Zeminlerin Kıvamlılık İndeksine Göre Sınıflanması

0.50 - 0.75

0.75 - 1.00 >1.00

Yapılan değerlendirmeler sonucunda ince taneli zeminlerin kıvamlılık indeksi için kıvamlılık İndeksi alınan numuneler için Sert olarak tanımlanmaktadır.

Yarı Sert (Sıkı)

Sert Yarı Katı (Çok Sert )

İnceleme alanında gözlemlenen birimlerin genel olarak kohezyonsuz zeminlerden oluşması itibari ile <u>Terzaghi'nin</u> önerdiği formüllerinden hesaplamalar yapılmıştır.

qd: K1 x Cu x Nc + γ1 x Df x Nq + K2 x Nγ x B x γ2

| qd                             | Sığ temellerin taşıma gücü                                   |
|--------------------------------|--------------------------------------------------------------|
| K <sub>1</sub> -K <sub>2</sub> | Temel taban geometrisine bağlı katsayı                       |
| Cu                             | Temel zemini kohezyonu                                       |
| Df                             | Temel derinliği                                              |
| γ1                             | Temel taban seviyesi üzerindeki zeminin birim hacim ağırlığı |
| γ2                             | Temel taban seviyesi altındaki zeminin birim hacim ağırlığı  |
| В                              | Temel genişliği                                              |
| Nc                             | Taşıma gücü faktörleri                                       |
| Ng                             | Taşıma gücü faktörleri                                       |
| Ny                             | Taşıma gücü faktörleri                                       |

JEOTEKNIK

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-4B PAFTA, 3198 ADA, 13 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

Yapılan jeoteknik hesaplamalar sonucunda; Zemin grubu С Yerel zemin sınıfı  $\mathbb{Z}_2$ Etkin yer ivme katsayısı A(0) 0,40 Spektral ivme katsayısı A(T) 1,00 Bina önem katsayısı I 1,00 Spekturum katsayısı S(T) 2,50 Spektrum karakteristik periyotları  $T_{A=} 0.15$  ve  $T_{B} = 0.40$ Yatak Katsayısı 3456 t / m<sup>3</sup>

Hesaplamalar ve sınıflamalar ile ilgili bilgiler Tablo.4.7 Tablo.4.8 Tablo.4.9 ve Tablo.4.10'da verilmektedir.

#### 4.2. Sıvılaşma Riskinin Değerlendirilmesi

Deprem sırasında tekrarlı yükler gevşek kumlarda hacim azalmasına yola açar ve yükün kalkmasından sonra birim kısalmalar sıfıra dönmede yeniden yüklenir. Böylece suyun drene olmaması ve hacim azalması sonucunsa boşluk suyu basınçlarında artışlar meydana gelir. Boşluk suyu basıncı artarak toplam gerilmeye eşit ya da fazla olur bu durumda zemin kayma direncini yitirir. Bu olay sıvılaşma olarak adlandırılır.

Bray ve diğerlerinin 2004 yılında yaptığı çalışmalar ile gerçekleştirmiş olduğu kriterlere göre;

Ip = Wn / LL;

- Ip > 0.9 ( sıvılaşabilir )
- 0.8 < Ip < 0.9 (ara durum )
- Ip < 0.8 (sıvılaşmaz)

| Sondaj<br>No | Derinlik<br>(m) | Ір   | Durum      |  |
|--------------|-----------------|------|------------|--|
| SK-1         | 0.00-1.50       | 0.49 | Sıvılaşmaz |  |

Şekil EK L.2

İZMİR İLİ, SEFERİHİSAR İLÇESİ, SIĞACIK MAHALLESİ, 30L-4B PAFTA, 3198 ADA, 13 PARSEL ALANINDA YAPILACAK OLAN BİNA VE BİNA TÜRÜ YAPILAR İÇİN TEMEL VE ZEMİN ETÜDÜ RAPORU

# 3. LABORATUVAR DENEYLERİ VE ANALİZLER

İnceleme alanında yapılan sondaj çalışmalarında alınan karot numuneler Jeolab Zemin laboratuarına gönderilmiş ve burada elek analizi, atterberg tayini, su muhtevası tayini deneylerine tabii tutulmuştur. Bu deney Jeolab Zemin laboratuarında gerçekleştirilmiştir. Laboratuar deneyleri ile ilgili kısımlar ekler kısmında verilmiştir.

# 4. DEĞERLENDİRME

# 4.1. Bina Zemin İlişkisinin Değerlendirilmesi

İnceleme alanında 2 adet sondaj kuyusu açılmıştır. Bu kuyulardan belirli derinliklerinden SPT ile numuneler alınmıştır. Bu derinliklerden alınan numuneler elek, atterberg tayini, su içeriği deneylerine tabi tutulmuştur.

Alınan numunelerin elek analizi sonuçları birleştirilmiş zemin sınıflamasına göre ufak taneli taşlaşmamış çökeller gözlenmektedir. Laboratuarda yapılan elek analizi sonuçlarına göre birimler ayırtlanmıştır. Buna göre ufak taneli taşlaşmamış çökellerden çakıl ve kumdan oluşan birimler tespit edilmiştir.

Laboratuara verilen numunelerden elde edilen elek analizi ve atterberg limitleri sonuçları aşağıda Tablo.4.1' de verilmektedir.

|   | KUYU<br>NO | NUMUNE | DERİNLİK<br>(m) | ÇAKIL<br>(%) | KUM<br>(%) | SİLT-<br>KİL<br>(%) | DOGAL<br>SU<br>İÇERİĞİ<br>Wn | ATTERBERG<br>LİMİTLERİ<br>(%) |      |      | SINIFLAMA | ZEMÍNDE<br>DÍREKT<br>KESME |       | Yn                    | Y <sub>k</sub>        | Is <sub>50</sub> |
|---|------------|--------|-----------------|--------------|------------|---------------------|------------------------------|-------------------------------|------|------|-----------|----------------------------|-------|-----------------------|-----------------------|------------------|
| ŀ |            |        |                 |              |            |                     | (%)                          | LL                            | PL   | PI   |           | C                          | •     |                       |                       | (ort.)           |
| L | SK-1       | karot  | 0,00-1,50       | 32,07        | 13,61      | 54.32               | 19.9                         | 40.3                          | 16.4 | 22.0 |           | kpa                        | 0     | (gr/cm <sup>3</sup> ) | (gr/cm <sup>3</sup> ) | (Mpa)            |
|   |            |        | Tablo-4.1       | . Labor      | atuar I    | Denev               | Sonuclar                     | 10,5                          | 10,4 | 23,9 | CI        | 52,82                      | 10,61 | 1,933                 | 1,603                 | 5,18             |

Tablo-4.1. Laboratuar Deney Sonuçları

İnceleme alanından alınan numunelerin birleştirilmiş zemin sınıflamasına göre tanımlanması ise;

CI : Orta Plastisiteli Kil olarak sınıflanmaktadır.

Kıvam Limitlerine Göre Sınıflama

İnce taneli zeminlerin kıvamlılık indeksine göre sınıflaması yapılacak olur ise; silt ve kil birimlerindeki değerler aşağıda verilmektedir.

Ic = (LL-w) / PIIc: Kıvamlılık İndeksi

# ÖZGEÇMİŞ

Adı Soyadı : Ezgi AKBUĞA

Doğum Yeri ve Yılı : Enez, 1991

Medeni Hali : Evli

Yabancı Dili : İngilizce

E-posta : sarikayaezgi@gmail.com

## **Eğitim Durumu**

Lise : Seferihisar Anadolu Lisesi, 2009

Lisans : Balıkesir Üniversitesi, İnşaat Mühendisliği Bölümü, 2014

Yüksek Lisans : Manisa Celal Bayar Üniversitesi, İnşaat Mühendisliği Anabilim dalı, Geoteknik Bilim Dalı, 2019

#### Yayınlar

Durukan S., Akbuğa E. Yeni Türkiye Bina Deprem Yönetmeliğine Göre Sığacık (Seferihisar / İzmir) Sıvılaşma Riskinin Araştırılması. ERASMUS International Academic Research Symposium on Science, Engineering and Architecture Sciences, 5-6 Nisan 2019, İzmir.

## Projeler

TÜBİTAK Projesi: 115Y065 nolu Alaşehir alt havzası (Gediz Havzası) yeraltı suyu besleniminin akifer bazlı izlenmesi, CBS tabanlı alansal yeraltı suyu beslenim haritasının oluşturulması isimli projede **bursiyer**.

#### Mesleki Deneyim

| Yapı Denetim-Kontrol Mühendisliği         | 2014-2015  |
|-------------------------------------------|------------|
| Kurucusu olduğu Aderans Mühendislik Ltd.Ş | ti.'nde    |
| Proje Müdürlüğü ve Proje Mühendisliği     | 2015-2017  |
| Ahmet Güney Mimarlık                      | 2018-Halen |