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ABSTRACT 

 

 

ON RELATION BETWEEN ZAGREB INDICES AND STRATIFIED 

DOMINATION NUMBERS 

 

 

MANGURI Abdalla Khdir Abdalla 

M.Sc. Thesis, Mathematics Science 

Supervisor: Assist. Prof. Dr. Mehmet Şerif ALDERMİR 

March 2018, 49, pages 

  

This master thesis study, which is consists of four chapter, was presented some 

last studies about the Zagreb indices and domination parameter numbers. Zagreb indices 

are the most important things in a graph theory and used indices in mathematical 

chemistry. The relations between Zagreb indices and the other graph invariants have been 

studied for forty years. But the relationships between Zagreb indices and the domination 

type parameters have been studied very recently. In this paper we characterize maximum 

trees with a known as stratified domination number and we firstly compute the eccentric 

connectivity indices for the generalized Petersen graphs. 

 

Keywords: Domination number, Eccentric connectivity index, Generalized 

Petersen Graphs, Stratified domination, Zagreb indices. 
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ÖZET 

 

 

ZAGREB İNDEKSLERI İLE PARÇALANIŞLI BASKINLIK SAYILARI 

ARASINDAKI İLIŞKILER 

 

MANGURI, Abdalla Khdir Abdalla 

Yüksek Lisans Tezi, Matematik Anabilimdalı 

Tez Danışmanı: Dr. Öğr. Üyesi. Mehmet Şerif ALDEMİR 

Mart 2018, 49, sayfa 

 

Dört bölümden oluşan bu tez çalışmasında Zagreb İndeksleri ve Baskınlık sayıları 

arasındaki  bazı ilişkiler sunulmuştur. Zagreb İndeksleri, matematiksel kimyada en önemli 

olan ve en çok kullanılan indekslerdir. Zagreb indeksleriyle, diğer graf değişmezleri 

arasındaki ilşkiler kırk yıldır çalışılmaktadır. Fakat Zagreb indekslerinin baskınlık sayıları 

ile olan ilişkisi son zamanlarda çalışılmaya başlanmıştır. Bu çalışma da Zagreb 

indekslerini, parçalanışlı baskınlık sayılarına göre maksimum yapan ağaç grafları 

karakterize edilerek, en uzak bağlantılılık indekslerinin genelleştırilmis Petersen grafları 

için değerleri hesaplanmıştır. 

 

Anahtar kelimeler: Baskınlık sayısı, En Uzak Bağlıntılılık İndeksi, 

Genelleştirilmiş Petersen Graf, Parçalanışlı Baskınlık, Zagreb İndeksleri. 
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SYMBOLS AND ABBREVIATIONS 

 

Some symbols and abbreviations used in this study are presented below, along 

with descriptions. 

 

Symbols     Description 

 

           Adjacency Matrices of a graph G 

         Vertices of a graph G 

       Edge of a graph G 

          The Set of edges of a graph G 

           First Zagreb indices 

           Second Zagreb indices 

                                     First Zagreb co-index 

           Second Zagreb co-index  

          Degree of vertex u  

          Degree of vertex v  

          Domination number of a graph (G) 

        Total Domination Number  

        Restrained Domination Number 

         Total Restrained Domination Number 

         K-Domination Number 

          Stratified Domination Number 

T       Tree  

Diam (t)      Diameter of tree (t) 
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Abbreviation                 Description 

 

TDN        Total Domination Number 

TDS       Total Domination Set 

RDS       Restrained Domination Set 

TRDS       Total Restrained Domination Set 

QSPR                 Quantitive-Structure Property Relations 

CDS    Connected Dominating Set 

ECI       Eccentric Connectivity Index 

CEI    Connective Eccentric Index 

GPG    Generalized Petersen Graph  



 
 

 

1. INTRODUCTION 

 

 

A graph is a ordered pair such that G = (V, E), the set of V is a limited arrangement 

of vertices and the arrangement of E is a set component of elements. Set of E consists of the 

two component subsets of V. In this examination we are researching just finite graphs 

without directed and self-loops or several edges (Diestel, 2000). Let graph G = (V, E) be a 

graph. The vertices of the graph G are denoting by n, and for each vertex of u and v, the 

graph G has an edges denoted by uv, linking the vertices of u and v. The term d(u) denotes 

the number of degree of edges which is incident to the vertex u. In chemistry many 

molecules have been presented by it’s a graph. Numbers which are obtained from the 

molecular graphs of molecules are called topological indices. Some topological indices 

show an important role in chemistry and pharmacology, etc. topological indices may group 

into two classes: degree version topological indices and distance version topological 

indices. The First Zagreb Index M1(G), Second Zagreb Index M2 (G) are illustrated as 

follows:  

 

      =∑                                                                                                                  (1.1) 

 

     =∑                                                                                                                (1.2) 

 

 (Gutman and Trinajstić, 1972). 

The two oldest of topological indices are famous as Zagreb indices, that defined by 

Gutman and Trinajstić in 1972. The authors observed the dependence of full π-electron 

energy on some octanes. The graph G is known as a stratified graphs if      is partitioned 

in some subsets. The fixed partition      with the graph G consist of only two subsets such 

that the graph             , then graph (G) is named as a 2-stratified graph. In a 2-

stratified graph, we accept that the one class is colored blue and the other class is colored 

red. Let graph         be a simple graph with the edge set   and vertex set V, and let 

   . The set   is named as a (DS) dominating set if each vertex in     is adjacent to at 
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least one vertex of   . The set    is known as the (TDS) Total dominating set if all vertex in 

  is adjacent to at least one vertex of  , and   is called as (RDS) Restrained dominating set 

if all vertex in     is adjacent to a vertex in   and to a vertex in    . If S is 

simultaneously a (TDS) Total Domination Set and a (RDS) Restrained Domination Set, 

then S is a (TRDS) Total Restrained Dominating Set of a graph  . The set is named S as a 

k-dominating set if all vertex in     is adjacent at least k vertices in  . Number of his 

domination of a graph  , represented by     , is equal to the smallest cardinality of the 

dominating set. A dominating set of the graph   of cardinality      is called a         . 

The (TDS) total domination number, (RDS) restrained domination number, (TRDS) total 

restrained domination number and k-domination number of the graph   by 

                   and      , respectively (Chartrand et al., 1995).  

 Domination Number of a graph   as vertex a recollection that a neighbor of   is a 

vertex together to v in a graph  . Also, the district      of v is the set of nationals of   a 

vertex   in a graph   is said to dominate it self and every of it is national, that is,   

dominates the vertices in it is closed district       then, v dominates         vertices of a 

graph  , for example a set   of vertices of graph G is set of dominating of graph   if each 

of   is dominated as vertex by specific vertex in   (Teresa et al., 2009). 

 

  

Figure 1.1. Two Dominating Sets in a Graph G. 

 

The Domination number is definite for all graphs let   is an order graph  , then   

         . A graph   is a graph of order n, has  number of domination equal 1 if and only 

if   holds a        of vertex v is       , in which case of     as a minimum set of 
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dominating, while          if and only if             in which item      is the single set 

of dominating. For example: 

 

Figure 1.2. Complete and Empty graph. 

 

       for a complete graph.          for an empty graph. 

Defined by     but for the figure (b) is empty graph there for define by  ̅5. (Diestel,  2000).    

 

1.1. Connection Dominating Set and Applications 

 

A dominating set   for the graph   which was set with all vertex of   is also in   or 

adjacent to some vertex in  . Domination number of the graph   denoted by the maximum 

size of set of the dominating of vertices in  . The dominating set problem concerns result a 

maximum dominating set. For example, figure 1.3, there are two red vertices b and c are 

clearly memberships of a dominating set as all vertex that is not in the dominating set        

is adjacent   or  .  
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Figure 1.3. Connected Dominating set. 

 

For this example we can change to the dominating set by convert the vertex   to a vertex  . 

After that we say that this graph is dominating set because all a summit in this graph is 

dominated by the some vertex exactly c and e. (Diestel, 2000). 

 

 

Figure 1.4. Connected Dominating set. 

 

1.2. Bipartite Graph and Set Covering Problem 

 

The connected set of dominating problem is used to find a maximum connected set 

of dominating, determining a maximum connected set of dominating to be known as NP-

complete problems, this essentially means that these problem class of s cannot be solved 

quickly, some authors have suggested procedures for finding approximate maximal 

connected dominating set the problem for calculating a maximum connected dominating set 

was mapped in to a set covering problem, the set covering problem is basically a problem 

regarding bipartite graphs that can be specified as follows suppose that H is a bipartite 

graph, containing of two sets of vertex A and vertex  B where edges only produce a 

connection between  set vertex A and set vertex  B, also assume that for each vertex in B, 

there is at least one edge connecting it to a vertex in A, the goal is to find maximal subset C 
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of set vertex of A such that every vertex in set B is covered by some vertex in C. (Diestel, 

2000). 

 

Example 1.2.1   graph (G) is a connected graph (v) is represented the vertex (or node)  and 

(e) is represented the edge (or element), let A and B are copies of vertices of E, construct a 

bipartite graph H putting an edge between vertices v of A and vertex u of B is they are 

adjacent to each other. All vertices (a,b,c,d,e and f) in a graph G are represented by A, and 

is also all vertices (a,b,c,d,e and f) in G represented by B, 

 

         Figure 1.5.  Bipartite Graph          
 

Now we put at between vertex from A and vertex from B and they are adjacent to each 

other, for original graph, clearly. 

 

Figure 1.6. Bipartite Graph. 
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1.3. Some Definitions 

 

Definition 1.3.1: (Undirected graph): Graph (G) is a tuple (V, E), where finite set is 

signed as V of nodes called vertices, and the set of E is a finite set of edges (or elements). 

See figure 1.7 and undirected graph. In undirected graph edge e E is an unordered match 

(u,v) where u,v  V but in directed graph the edge e is a requested combine (u,v) an edge 

(u,v) is outline from vertex u and is occurrence to vertex v. (Diestel, 2000). We show this 

basic facts in the below example.                                                     

 

Example 1.3.1: The set of vertex                In Fig 1.7 the set of edges denote by 

                                          

 

   Figure 1.7. Undirected Graph. 

 

Definition 1.3.2: (Vertex Adjacency). Let G = (V, E) as a simple graph. 2 vertices v1 and v2 

are said will be adjoining if there exists an edge e  E so e = (v1, v2). A vertex v is self-

contiguous if e = {v} is a component of E (Diestel, 2000). 

Definition 1.3.3: (Edge Adjacency): Let G = (V, E) be a graph. 2 edges e1 and e2 are said to 

be adjoining if there exists a vertex v with the goal that v is a component of both e1 and e2 

(as sets). Graph can be spoken to by the nearness network or an edge (or vertex) list. 

Adjacency matrices have a value ai,j=1 if vertex i and vertex j share an edge and ai,j = 0 if 

vertex do not share an edge (Diestel, 2000). See Fig 1.8 for the explanation. 
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  Figure 1.8. Undirected Graph Edge Adjacency. 

 

  

 
 
 
 
 [
 
 
 
 
 
                                   
                                   
                                  
                                   
                                   
                                   ]

 
 
 
 
 

 

An undirected graph and it is adjacent matrix representation. 

 

Example 1.3.2. Consider the set of vertices V = {1, 2, 3, 4}. The set of edges 

E = {(1, 2), (2, 3), (3, 4), (4, 1)}. 

Then the graph of G = (V, E) has 4 edges and 4 vertices. It is typically easier denoted this 

graphically. See Fig 1.9 

 

Figure 1.9. The Graph G for the example 1.3.2. 

 

Definition 1.3. (Biregular graph) A graph G is said to be biregular if its vertex degrees 

accept precisely two distinct esteems. The edge      of a diagram G is equivalent to the 

aggregate of the supreme estimations of the eigenvalues of G. 
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Definition 1.3.5: (First Zagreb co-index) Let G a chance to be a basic associated graph, at 

that point the First Zagreb co-index is characterized as      ∑           . 

Definition 1.3.6: (Second Zagreb co-index) Let G a chance to be a basic associated graph, 

at that point the Second Zagreb co-index is characterized as       ∑          . 

(Ranjini et al., 2013) 

Definition 1.3.7: (Eccentricity) Let G be a connected simple graph with the vertex set V and 

the edge set E. The distance between two vertices u, v of G, written d(u, v), is the length of 

a shortest u–v path in G. For any vertex v of G, the eccentricity of v, denoted by v , is the 

largest distance from v  to other vertices in G.  (Diestel, 2000). 

Definition 1.3.8: (Eccentric connectivity and connective eccentric index ) The eccentric 

connectivity index of a simple connected graph  known as;  

( ) .c

v v

v V

G d 


  

And the connective oddness index of a simple connected graph known as;  

       ( )ce v

v V v

d
G



 . 

Definition 1.3.9: (Generalized Petersen Graph) The generalized Petersen graph of GP (n, k) 

is the graph with set of vertex V U W  , where  : 0 1iU u i n     and 

 : 0 1iW w i n    , and the edge set is the form of 

 1, , : 0 1,  subscripts modulo i i i i i i kE u u u w w w i n n     (Diestel, 2000) 
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2. LITERATURE REVIEW 

 

 

    In today’s world from to basic sciences to social sciences, many problems can be 

represented by graph theory especially in chemistry.  The theory of chemical graphs has an 

important place in theoretical chemistry. In the medicine and chemical experiments, the 

researchers found that there is a potential connection between the properties of the 

compounds and their sub-atomic structures. Thus, the researchers have a tendency to decide 

the highlights of medications by ideals of mathematical method. This is done with the help 

of topological indices. Topological indices have been expansively used to modeling some 

chemical and physical properties of molecules in physics, chemistry and pharmacological 

sciences. A numerical value obtained from the structure of graph is called a topological 

index, Wiener, 1947 and Gutman 1972, showed that topological indices could be used 

modeling chemical properties of octanes. (Wiener, 1947; Gutman et al., 1972). 

Actually the story of topological indices has been started by Wiener and Platt in 

1947. Both authors showed that the chemical properties of alkanes gave good correlation to 

their indices value. (Platt, 1947; Wiener, 1947). The well-known degree based Zagreb 

indices defined by Gutman and Trinajstić, to modeling π-electron energy of alternant 

carbons (Gutman et al., 1972). Among the all topological indices, the Zagreb indices have 

been used for QSPR researches more considerably than any other topological indices in 

chemical and mathematical literature (Gutman et al., 1972).  

Up to now, studies on the Zagreb indices have focused on the relationships  of the Zagreb 

indices  to other graph invariants.  The relations between Zagreb indices and domination 

number parameter have been recently started. As of now, all educations have been focused 

on the relations between domination number parameter and Zagreb indices (Das et al., 

2013) Studies on the total, restrained and stratified domination numbers of the Zagreb 

indices have not been studied yet. 

The aim of this study is to find new upper and lower bounds on Zagreb indices of 

trees and unicyclic graphs in terms of total, restrained and stratified domination numbers. 

Also, one of the aim of this study is to characterize extremal trees, chemical trees and 
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unicyclic graphs in respect to total, restrained and stratified domination numbers (Chartrand 

et al., 1995).  

The mathematical possessions of Zagreb indices were been started to study for the 

last fifteen years. Loud bounds for the first Zagreb index of a graph were obtained by (Das, 

2003). Graphs with the smallest in relation to the first Zagreb index were characterized by 

(Gutman, 2003). Graphs with the greatest in relation to the first Zagreb index were 

characterized by (Das, 2004). Upper bounds for connected graphs in Zagreb indices of were 

studied by (Liu and et al., 2006). Loud bounds for the unicyclic graphs of the Second 

Zagreb index were characterized by (Yan et al., 2006). Deng was studied the extremal 

bicyclic graph regarding Zagreb indices. (Deng, 2007). Hua was characterized the graphs in 

relation to independence number, connectivity and the first Zagreb index (Hua, 2008). , 

Extraordinary estimations of the total of squares of degrees of bipartite graph were studied 

by (Cheng et al., 2009). Sharp bounds for the bicyclic graphs in Zagreb indices with k-

pendent vertices were studied by (Zhao et al., 2011). Sharp upper bounds on bicyclic 

graphs in Zagreb indices with a certain matching number were categorized by (Li et al., 

2011). Sharp bounds on Zagreb indices of cacti with k suspended vertices were deliberate 

by (Li et al., 2012). Trees with permanent number of suspended vertices with minima lof 

the first Zagreb index were considered by (Gutman et al., 2013). The Second Zagreb 

Indices of the graphs of unicyclic with specified degree groupings, were studied by (Liu et 

al., 2014). On the minimum and maximum Zagreb indices of trees with a specified many of 

vertices of maximum degree were considered by (Borovicanin et al., 2015). 

Results obtained in the theory of Zagreb indices are summarized in the reviews 

(Nikolić et al., 2003), (Gutman et al., 2004) and (Liu et al., 2011). Multiplicative versions 

of Zagreb indices were defined and investigated in (Eliasi et al., 2012). Finding bounds 

related to Zagreb indices see in (Liu et al, 2017) and references therein. Zagreb indices of 

graph operations see in (De, 2017) and references therein.  

The relations between topological indices and domination number parameter have 

been recently started (Borovićanin et al., 2016) published a seminal study about Zagreb 

indices and domination number. The authors characterized extremal trees of Zagreb indices 

with respect to given domination number (Borovićanin et al., 2016). Also, Li et al 
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investigated the relations between Harmonic index and domination number (Li et al, 2016). 

Extreme values of the Zagreb index of bipartite graphs were studied by (Cheng et al, 2009) 

For other indistinct documentation and wording from graph hypothesis the peruses are 

indicated to (Cvetkovic et al., 1980). 

The Zagreb indices are characterized by the accompanying equations:      

       ∑   
                                                                                                          (2.1) 

And                                            

       ∑                                                                                                         (2.2) 

 

Both of this indices mirror the reach out of isolating of a sub-atomic structure that is 

inevitably associated with those physical and chemical properties in view of the state of 

sub-atomic (or molecular) (Balaban et al., 1983), the main properties of M1(G) and M2(G) 

where summarized  in (Nikolić et al., 2003) and the references there in, as of late, there 

have played out various articles studding extremal graphs that limit Zagreb indices of 

different diagrams (Feng et al., 2010; Wang et al., 2015; Xu et al., 2014; Liu, 2014) another 

diagram invariant that will be pondered in the content in Harary. It was presented in 1992 

by (Mihalic et al., 1992) and is illustrated as follows: 

     
 

 
∑ ∑

 

      

 
   

 
                                                                                                               (2.3) 

Where        is the separation between vertex v and vertex u in a graph (G). The book 

(Xu et al., 2014) and the references there in, as of late (Das et al., 2013) represented an 

upper bound on Harary index is terms of n and the two Zagreb indices. 

     
                

           

  
                          (2.4)                                                          

Domination number γ(G) of a simple graph G is the base cardinality of a subset D of V(G) 

to such an extent that every vertex of G that isn't contained in D is adjoining no less than 

one vertex of D. A subset D is known minimum dominating set of G. The meaning of the 

domination number proposes that a vertex with in excess of one pendent neighbor has a 

place with each base commanding arrangement of a graph (Borovicanin et al., 2016).  

Connection between a few topological indices and domination number of a graph G is in 

the focal point of intrigue and this theme is essential these days also (Borovicanin et al., 
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2016). This paper is duration of these examinations. Specifically, we compute the single 

tree who’s the First Zagreb indices and Second Zagreb indices accomplishes most extreme 

between a few trees with a specific stratified domination number. As an outcome, we locate 

the upper bound on index of Harary of trees with a specific domination number. Ultimately, 

trees with number of control and certain request that have insignificant first Zagreb index 

are considered. Number of Domination spoke to by T(n,γ) an arrangement of n-vertex trees 

whose number of control is γ. We will ascertain the trees from T(n,γ) whose first Zagreb 

indices and Second Zagreb indices is most extreme. Clearly,        if and only if 

        . Well-known result, that each graphs of order n without any isolated vertices 

has number of domination at most 
 

 
 is given. (Fink et al., 1985).  Verified that equality 

holds only for    and for any graphs of the form      for some H. Denote by      the tree 

found from the star of        by assigning a pendant edge to it is     pendent vertices. If 

      in a tree T of command n and domination number γ, then       . The First 

Zagreb indices and tree of Second Zagreb indices a       can be easily be deliberate as  

  (    )                                  (2.5) 

  (    )                                         (2.6) 
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3. FIRST ZAGREB INDICES 

 

 

The First Zagreb Index can be similarly determined as a total over the vertex of the 

graph G. and the calculation for First Zagreb Indices by the below equation. (Gutman and 

Trinajstić, 1972).                                       

       ∑                                           (3.1) 

Example 3.1. Original Zagreb indices. 

         

           1                                                          1 

 

            3                                                          9 

 

 

2                 2                                    4                        4 

Figure 3.1. First Zagreb Indices. 

 

        ∑                           (3.2) 

𝑀  𝐺   8    

     (The degree of vertex u) 

          

We saw that, this idea firstly in (Narumi et al., 1984) who invent what at now is called to as 

the Narumi Katayama index, 

∏        ∏                              (3.3) 

Gutman presented the multiplicative type of the Zagreb indices (Gutman, 2011) In 

particular he invented that Π1 = (NK)
2
. Extremal graphs with regarded to the first 

multiplicative Zagreb Index where characterized in (Gutman et al., 2012). Eliasi et al., 

2012) proposed that in the light of the identity (1), another multiplicative type of 

the      , such as  
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∏     
  ∏                                  (3.4) 

It must be straightforwardly noticed that in the all-inclusive circumstance, the indices 

Π1(G) and Π
*
1(G). Take different values (Eliasi et al., 2012). For example, consider the P3, 

its values are 1 and 2, separately. It is clear that informal to see that if the simple graph G is 

fixed, then,      

∏      ∏     
                            (3.5) 

If the graph G does not have edge than the equation (2) is invalid. If the edge set E(G) = ∅, 

then we may, conventionally, accept that both ∏     
    or better, ∏     

   . For the 

connected the graph such problems do not occurred (Eliasi et al, 2012). Eliasi et al show 

that among the all connected graphs the path has the minimum value of ∏     
   index, also 

Eliasi et al investigated the second minimal ∏     
  value for the all trees with n ≥ 7 

vertices, have the second  small  ∏     
  value. In the below figures which are took from the 

article of Eliasi denote the minimal trees with respect to ∏     
   

 

        Figure 3.2. The Trees forming the class T
*
(9) = {T(9,3,3) (right), T(9,2,5) (left)}. 
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3.1. Comparing First Zagreb Index and the Maximum Degree of Trees 

 

In this section we give an important theorem which states the relationship between 

The First Zagreb index and the maximum degree for trees. 

  

Theorem 3.1: (Das et al, 2012). Let accept that T be a tree graph with n vertices and 

maximum degree Δ. Then 

M1 (T) ≤ n
2
 − 3n + 2(Δ+1)                     (3.6) 

With equality number (1) holds that if and only if T≌K1, n−1 or T≌P4.    

Proof:   If T = K1,n−1 , then M1(T) = n
2
 − 3n + 2(Δ + 1) = n(n − 1) , the equality holds in 

(1). If T = Pn, then M1(T) = 4n − 6 < n
2
 − 3n + 2(Δ + 1) for n > 4 and   M1(T) = 4n−6 = 

n
2
−3n+2(Δ+1) for n = 4. Das et al, assume that T ≠ K1,n−1, Pn ,that is, 3 ≤ Δ ≤ n −2. For this 

situation we need to demonstrate that the imbalance in (1) is strict. Allow vi to be the most 

extraordinary degree vertex of degree Δ in T. Also let vk be a vertex of degree one, nearby 

vertex vj of the degree dj,j ≠ I in T . We change T into another tree T* by erasing the edge 

vkvj , and joining the vertices vi and vk by an edge.  Let the new degree sequence be 

   
    

       
  . Therefore   

      for t ≠ i, j where as    
              

        

  . Thus 

          
         

         (    )
 
   (      )     

because Δ − dj ≥ 0. Therefore we have             
      , with equality holding  if 

and only if Δ = dj . 

By the above portrayed development we have expanded the estimation of M1(T) . If T
*
 is 

the star, then T≌ Sn,n−1, Δ = n−2 and hence M1(Sn,n−1) = n
2
 −3n+6 < n

2
 −n−2 , 

as                   . Otherwise, the construction is continued as follows. If one 

pendent vertex was chosen, which is not adjacent to vi, from T*. Rehashing the above 

system adequate number of times, touched base at a tree in which the vertex vi is of degree 

n − 1, i. e., K1, n−1. Thus 

M1 (T) ≤         <M1 (T*)−4 < · · ·< M1(K1,n−1)−2(n−Δ−1) = n
2
−3n+2(Δ+1) 
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 That is, M1 (T) < n
2
 − 3n + 2(Δ+1).        □. 

                             

3.2. Second Zagreb Indices 

 

The Second Zagreb Index can similarly be characterized as a whole finished the 

all edges of the graph (G) and the calculation for Second Zagreb Indices by the below 

equation. (Gutman and Trinajstić, 1972). 

 

   1         

                               3 

    3       

                     6                6                                   

 

2             2                                              4                                                     

 Figure 3.3. Second Zagreb Indices. 

 

       ∑                               (3.7)            

             ∏                                (3.8) 

       ∑                               (3.9) 

              

                 (the degree of edge) 

 

3.3. Comparing the Second Zagreb Index and Co-index of Trees 

 

 The First Zagreb Index of (     ) and the Second Zagreb Index of 

       , as well as First Zagreb co-index of      , the Second  Zagreb co-indices      , 

and the relation between this two type of Zagreb indices and co-index of trees  are 

observed. An upper bound on the       and the lower bound on the        
 

 
      of 

trees acquired, in relations of the number of vertices (n) and maximum degree (Δ). 
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Lemma 3.3.1. (Das et al., 2012) if G be a simple graph with edges denoted by m and 

vertices denoted by n. Then, 

        
        

 

 
                 (3.10) 

For the Path         ,  

         
            8        . 

Note that Δ(     . For trees with Δ-values greater than 2 we have. 

 

Theorem 3.3.2. (Das et al., 2012) if the T be tree of command n with maximum degree Δ. 

If 

       √
 

 
   

  

 
  

   

  
            (3.11) 

Then 

              

Proof: From Lemma 3.3.1, 

                  
         

 

 
      

           
 

 
   

  

 
         

          
 

 
   

  

 
       

As     

 Δ ≥ 1.5+√
 

 
   

  

 
  

   

  
 .       

In the accompanying two outcomes, we give upper limits on the first and second Zagreb 

files of trees in wording of n. 
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3.4. On the Relation between the First Zagreb Index and Second Zagreb Index 

 

The Zagreb indices of the simple connected graphs where defined as over forty years 

ago by Gutman and Trinajstić, (Gutman et al., 1972). In mathematical and chemical 

literature, the Zagreb indices and related parameters of graphs has been studied abundantly.   

Liu and You, getting the several original inequalities established among the First Zagreb 

Index and Second Zagreb Index. (Liu et al., 2011). 

The      , represented to as the summation of the degrees of all vertices power two, and 

Second Zagreb index (or list) of the simple connected graph G,       is represented as the 

summation of the multiplicative of the degrees of all edges. (Reti, 2012). 

The difference between the First and Second Zagreb Index started by (Hansen et al., 

2007). Hansen and Vukičević conjectured that  

  

 
 
  

 
                                                          (3.12) 

And this inequality named as Zagreb indices inequality by Gutman et al. (Gutman et al., 

2011). Its shown that this inequality holds for sub division graphs, biregular graphs and 

triregular graphs. The equality version of the Zagreb inequality     

  

 
 
  

 
                                  (3.13) 

Has been investigated by (Hansen et al., 2007). They showed that this equality holds foe 

regular graphs. Reti investigated some graph classes which are satisfying this equality 

(Reti, 2012). Das and Gutman, has proved that there is no simple connected triregular graph 

which are fulfill the Zagreb records balance. Additionally they displayed that if a graph G 

with most extreme degree for achieves the Zagreb indices equality. For the case the graphs 

with maximum degree five do not hold the Zagreb indices equality. (Das et al., 2004). In 

the same article, the authors proved that, 

         
               (3.14) 

With correspondence holds for if and only if G is the basic simple graph on number of n 

vertices. Moreover some authors presented that for a graph G;  

     
          

 

 
                  (3.15) 

With equality if G is a star graph or regular graph. (Das et al., 2004). 
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And now we give the below proposition which states that relationship between maximum 

degree, size,   ,    . 

 

Proposition 3.4.1. (Reti, 2012) Let G be is a connected graph then  

   
  

 
                   (3.16) 

With equality holds for if G is regular. 

 

Proposition 3.4.2. (Reti, 2012) Let G be is a simple connected graph then  

   
  

 
                   (3.17) 

 

And 

   
  

 
                   (3.18) 

 

In two cases, the equalities satisfies if and only if, G is a connected biregular graph or  

regular graph. 

 

Corollary 3.4.3. (Reti, 2012).  Since        
 

 
  , from (3.16) we have 

   
  

 
      

  

 
 
  

 
             (3.19) 

Similarly, from (3.17) we have  

   
  

   
    

   

  
                 (3.20) 

It is clear that this equality satisfies for fixed graphs. 

 

Corollary 3.4.4. (Reti, 2012). Using (3.16) and (3.17) one obtains directly, 

   
 

 
{  (

 

 
 
 

 
)        }  

   

 
 
  

  
                               (3.21) 

and 

   √(
  

 
   )(

  

 
   )                           (3.22) 
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From the prior consideration it illustrated that equality satisfies in (3.16) and (3.17) not a 

lone for the regular graphs but also for simple associated biregular graphs. 

 On the most extreme Zagreb indices of non-star trees with a Stratified Domination 

number denote by           a set of n-vertex non-star trees whose (stratified)   -

domination number is    . We will decide trees from           whose Zagreb indices are 

maximum. Obviously,          if and only if diameter (T) is tree (i.e T is a double star) 

see the below Example: 

 

 

 

         

 

Figure 3.4. Non-Star Trees with a Stratified Domination Number. 

 

If the randomly chosen both leaves from different stars is colored blue, the   -dominating 

of the tree T is two. (Teresa et al., 2009). Showed that all connected graph (      ) of 

instruction    ,        
  
 ⁄  . 

Let       denotes the non-star tree acquired from the separate union of a star         ) and 

sub divided star           by connection a leaf of the star to the central vertex of the 

sectioned star.  

If         in a tree T of request n and domination number denoted by γ, at that point 

       . 

The first indices of a tree       can be calculated as (Fink et al., 1985). 

 

Proposition 3.4.5:  

  (    )        
                     (3.23) 

For n=9, γ=4, the tree      are illustrated below. 
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Figure 3.5. Stratified Domination of       with the maximum the First Zagreb Index. 

 

 The degree of the         are classified by in table 3.1 

 

     Table 3.1. Show the degree for         

Degree                                     Number 

   1                                                       

   2                                                  

                                                    2 

 

And now, we begin to compute   (      )   From definition of the first Zagreb index; 

  (      )  ∑         

        

 (     )  
                 

    

=                                                                        □ 

Example 3.4.1: 

   

 

 

 

 

 

             Figure 3.6. Stratified Domination Graph          
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The     has the maximum First Zagreb Indices       among the all 15-vertex trees with 

maximum    .  

For any non-star tree with     vertices      . 

Henning and Maritz proved the following facts. (Henning et al., 2004) 

 If diameter (T) = 3 then           those       

 If diameter (T) = 4 then        
   

 
  those     

   

 
   

 If diameter (T) = 5 then        
  

 
   those        

  

 
 if     then 

      for      on       (            ) and        
  

 
. 

Thus     
 

 
       since         must be integers. 

 If diameter         then        
  

 
.  those     

 

 
   

By the above facts (if     has order  , then            and        
  

 
  Additional, 

all vertex of   goes to same    -set of  ). 

Equality holds for the trees           

 

  

 

 

            Figure 3.7.   -domination in a Non-Star Tree. 

 

In the above both equalities hold if and only if a pendent vertex of the sub divided star. Of  

          

 

Theorem 3.4.6: Let tree T be a non-star tree with Stratified Domination Number γ, then 

            
                       (3.24) 

The equality holds if and only if         . 

Before the proof we provide the below example about the theorem. 
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Example 3.4.2: For                 and          

                      

     

The inequality in (3.24) is strict. 

For           T is isomorphic to a double star (Δs). 

If     , then           and      

Then; 

                       

      

The inequality in (3.24) is strict. 

If      then           and     . Then;  

                       

      

The inequality in (3.24) is strict. 

For      

If        or (    ) or  

        8 and     .  

Then; 

 8                      

 8   8 

The equality in holds in (3.24). 

If       then these two possibilities of the choice of T. The first is T is double star. In this 

case T must be the following trees       . 

 

 

       

 

T1      T2 

                          Figure 3.8. An example of Stratified Domination of a Tree. 
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For              and        . 

Then: From the inequality of (3.23) we can write that, 

             
             

              

    8 

The inequality in (3.24) is strict  

For               and         . 

Then; From the inequality of * we can write that, 

             
             

              

    8 

The inequality in (3.24) is strict. 

The second choice of T is that T is isomorphic to a branch     . For         (    )     

and  (    )   . Then from the inequality of star, we can write that 

  (    )        
             

              

      

The inequality in (3.24) is strict. 

And now, we give proof of the Theorem 3.4.6 for that     and    . 

Proof of the theorem 3.4.6: Let                   be a longest path in T, (d is a 

diameter of T) and let Δ be a minimum   stratified dominating set of T. Then | |     and 

both vertices    and      are pendent. 

Relucca proved that       . We can prove that theorem by introduction on n. 

For every non-star tree with      , this is trivial statement of the theorem holds. 

Expect that, the theorem holds for a possible integer n and prove that the report holds for 

true when n replace by n+1. 

There are two possible cases. 

Case1:                    . From the induction hypothesis, 
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Since                       
            . 

Case 2: Suppose next that                     .     

 

 

 

   

                        Figure 3.9. Stratified Domination Number. 

 

At that point, by the meaning of stratified domination number it must be        , 

       ,       is diametrical path by the induction hypothesis, 

                                                       

                                           . 

 

Proposition 3.4.7: Let        be a tree then 

             
                                (3.25) 

Proof: Observe that from the Figure 3.10. 

   

 

 

 

 

 

Figure 3.10. Stratified Domination Graph          
 

Figure 3.10, there are three types of edge. The first type edges with its end vertices consist 

of the degree 1 and the degree 2. And the number of the first type of edges is      

The second type of edges which it is end vertices consist of the degree 1 and degree  . And 

the number of the second type of edges is    . And the third type edges which its end 
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vertices consist of the degree 2 and the degree  . And the number of the third type of is 

   . 

Hence                                                        

=                            

Since       

We can rewrite the last equality as                          

Theorem 3.4.8: 

              
                      (3.26) 

the equality holds if         . 

Proof:  For    , the equality is satisfied.  

For     , we illustrated the inequality by generation on n. 

Let diametrical path of the T is                of length d, d is a diameter of Tree T. 

The vertex    is adjacent to     We decate       the sum of neighboring vertices of   . 

Then       

      ∑            ∑     

              

              (         ) 

       

Notice that             when all vertices not adjacent to    are pendent. There are two 

possible cases. 

Case1:   (      )       

                             

                                 

                  

Since                 Accordingly the inequality holds by mathematical induction. 

The equality holds for if           the vertices not contiguous to    are pendent i.e. 

        

Case2:   (      )         

In this case       must be equal two. By the mathematical induction and faucet that 

             . We have   
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Since              . Clearly the equality holds         

Example 3.4.3: 

 

 

 

 

 

 

 

Figure 3.11. Stratified Domination Graph        . 
 

The     has the maximum Second Zagreb Indices       among the all 24-vertex trees 

with maximum     

Theorem 3.4.9: (Chartrand et al, 1997). If the G is a simple graph of connected order at 

least 3 and then for              the parameter        is illustrated in table 3.2: 

 

Table 3.2. Parameter        

     i                     1                      2                           4                                   5 

                                                                                                                                        

 

Where       means the total number,       denote the restrained domination number and 

      denote the 2-domination number. 

 

  

  

     

                                                                                                 

Figure 3.12. The five 2-stratified domination graphs. 
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The parameter        appears to be new. k-step domination is different from    -

domination. For the set the     is called that a k-step set of domination if for all 

vertex      , there always exist a path graph of length k from the vertex u to some 

other vertex in  . The minimum order of any k-step dominating setoff the graph G gives the 

k-step domination number. The difference in   -domination and 2-step domination is 

explained as follows: in   -domination all the blue vertices must lie in a blue vertex-blue 

vertex-red vertex path (of length two) to some the other red vertices. Because of this fact 

we clearly state that all 2-step dominating set is a stratified dominating set, but the contrary 

not need hold. For example let us look to star graph. The stratified domination number of a 

star with un vertices is equal to n but the k-step domination star number equals two. 

Henning and Maritz studied the   -dominating number of trees and proved the following 

fact.   

Proposition 3.4.10: (Henning and Maritz, 2006). For       

     ⌊
   

 
⌋  ⌊

 

 
⌋  ⌈

 

 
⌉             (3.27) 
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4. ECCENTRIC CONNECTIVITY INDICES OF GENERALIZED PETERSEN   

GRAPHS 

 

 

Chemical graph theory has an important effect to develop new drugs in medicine 

and pharmacology by using topological indices. For convenience we use the abbreviations 

ECI and CEI for the Eccentric connectivity index and connective eccentricity index, 

respectively ECI and CEI are among these classes of indices. Sharma et al. (1997) 

introduced the ECI, for a graph, for the development of some new drugs. Sardana and 

Madan (2001). GUPTA, (2002). Wang, (2015) Investigated extremal trees of the ECI. 

Venkatakrishnan et al. (2015) computed the ECI of generalized thorn graphs.Das and Arani 

and Das (2015). compared between the Szeged index and   the ECI. Ashrafi et al. (2011) 

computed the exact value of the ECI of nanotubes and nanotori. Morgan et al. (2014), 

investigated the extremal regular graphs with respect to  the ECI. Doslić and Saheli. (2014) 

studied the ECI of composite graphs. Zhang et al. (2014) characterized maximal graphs 

respect to ECI. Dankelmann et al. (2014) studied the relation between Wiener index and 

ECI. Eskender and  Vumar (2013) computed the exact value of ECI and eccentric distance 

sum of some graph operations. Hua and Das (2014) studied the relationship between 

the ECI and Zagreb indices.   Zhang et al. (2012) investigated the minimal ECI of graphs. 

For more explanation discussion we refer the reader to Morgan et al. (2013) and references 

therein. 

Gupta et al. (2000) introduced connective eccentricity index when considering the 

antihypertensive action of derivatives of N-benzyl imidazole. Yu and Feng (2013) derived 

upper or lower bounds for the CEI in terms of various graph invariants such as the 

minimum degree, maximum degree, vertex connectivity, radius, independence number etc. 

Moreover, the authors in Yu and Feng (2013) investigated the maximal and the minimal 

values of CEI between all n-vertex graphs with stable number of pendent vertices, 

characterized the extremal graphs and considered the cactus on vertices of n with k cycles 

having the maximal CEI. Yu et al. (2014) considered the connective eccentricity index of 

trees and unicyclic graphs with given asotti diameter. Xu et al. (2015) investigated some 
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extremal results on connective eccentricity index. For more explanation discussion we 

mention the interested  reader to Li and Zhao (2016) and references therein. 

Computing some graph invariants of generalized Petersen graphs have been well 

studied in graph theory. For coloring of generalized Petersen graphs see in Zhu et al. (2016) 

and references therein. For computing domination number of generalized Petersen graphs 

see in Wang et al. (2015) and references therein. For computing labeling  of generalized 

Petersen graphs see in Benini and Pasotti. (2015) and references therein. For computing 

decycling number of generalized Petersen graphs see in Gao et al. (2015) and references 

therein. And for computing connectivity of generalized Petersen graphs see in Ferrero and 

Hanusch (2014) and references therein. 

There is not any study related to computing topological index of  generalized 

Petersen graphs in the literature for the time being. The aim of  this chapter is to compute 

the eccentric connectivity and the connective eccentricity indices of generalized Petersen 

graphs. 

Firstly we compute the eccentricities of  the vertices U and W  of  GP(n,1) and 

GP(n,2) and secondly, we compute the eccentric connectivity index and the connective 

eccentricity index of GP(n,1) and GP(n,2).   

Proposition 4.1. The eccentricity of a vertex iu of  U in GP(n,1)  is 

 
1

2iu

n


 
  
 

                (4.1) 

Proof.  Notice that the generalized Petersen graph GP(n,1) consists of  two n-vertex cycles 

in which corresponding vertices of U and W say  iu and   iw are adjacent to each other. 

And we know that the eccentricity of a vertex of a n-vertex cycle equals 
2

n 
 
 

. Therefore 

from this point of view we can say that the eccentric vertex of a vertex from U   lies in the 

set W. Let iu U . Then the path 1 2
1

2 2

...i i i i n n
i i

u w w w w w     
     
   

  or 1 2
1

2 2 2

...i i i n n n
i i i

u u u u u w       
        
     

 

is the eccentric path of iu . Thus 
1

1
2 2iu

n n


   
     

   
. From symmetry all the 

eccentricities of the vertices of U equals the same value. Therefore the proof is completed. 
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Proposition 4.2. The eccentricity of a vertex iw of W in GP(n,1)  is 

 
1

2iw

n


 
  
                                        (4.2) 

Proof. Let iw V .  From the same arguments of the proof of the Proposition 4.1.  we get 

the eccentric paths of iw  ,   1 2
1

2 2

...i i i i n n
i i

w u u u u u     
     
   

 or 1 2
1

2 2 2

...i i i n n n
i i i

w w w w w u       
        
     

. Thus 

1
1

2 2iw

n n


   
     

   
.  From symmetry, all the eccentricities of the vertices of W equal the 

same value. Therefore the proof is completed. 

 

Proposition 4.3. Let 3n   be odd integer. The eccentricity of a vertex iu of  U in GP(n,2)  

is 
2iu

n


 
  
 

                 (4.3) 

Proof. Let iu be a vertex of U. Then the paths 
1

2

...i i n
i

u u u  
 
 

 and 
2

2 2

...i i i n n
i i

u w w w u    
    
   

 are the 

eccentric paths of the vertex iu . Then the eccentricity of iu is 
2

n 
 
 

. From the symmetry all 

the eccentricities of the vertices of U are 
2

n 
 
 

.  

Proposition 4.4. Let 6n   be even integer. The eccentricity of a vertex iu of   in 

         is 
2iu

n


 
  
 

                 

(4.4) 

Proof.  Let iu be a vertex of U. Then the paths 
1

2

...i i n
i

u u u  
 
 

 and 
1 1 3

2 2

...i i i i n n
i i

u u w w w u      
    
   

 

are the eccentric paths of the vertex iu . Then the eccentricity of iu is 
2

n 
 
 

. From the 

symmetry all the eccentricities of the vertices of U are 
2

n 
 
 

.  
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Proposition 4.5.  Let 3n   be odd integer. The eccentricity of a vertex iw of W in GP(n,2)  

is 
2iw

n


 
  
 

               (4.5) 

Proof. Let iw V .  The path 1 2
1

2 2

...i i i i n n
i i

w u u u u u     
     
   

 is not the eccentric path of iw . 

Because the path 2

2 2

...i i n n
i i

w w w u    
    
   

 is shorter. Then the eccentricity of iw
 
is 

2

n 
 
 

. From 

the symmetry all the eccentricities of the vertices of W are 
2

n 
 
 

.  

Proposition 4.6.  Let 6n   be even integer. The eccentricity of a vertex iw of W in 

GP(n,2)  is 
2iw

n


 
  
 

               (4.6) 

Proof. Let iw V .  The path 1 2
1

2 2 2

...i i i i n n n
i i i

w u u u u u w       
        
     

 is not the eccentric path of iw . 

Because the path 1 2 2

2

...i i i i i n
i

w u u u w w    
 
 

 is shorter. Then the eccentricity of iw is 
2

n 
 
 

. From 

the symmetry all the eccentricities of the vertices of W are 
2

n 
 
 

.  

Theorem 4.7. The eccentric connectivity index of GP (n, 1) is  

  
1

,1 6 .
2

c n
GP n n

 
  

                 (4.7)

 

Proof. From the definition of the eccentric connectivity index, we can directly write;  

  ( ) ,1 .c c

v v

v V

G GP n d  


   

Since the all generalized Petersen graphs are 3-regular, then we get;  

  ,1 3 .c

v v v

v V v V

GP n d  
 

    
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We know that 
1

2
v

n


 
  
 

 for every vertex of v V from Proposition 4.1 and 

Proposition 4.2. And we know that the generalized Petersen graphs have 2n vertices from 

the definition of the generalized Petersen graphs. Then, we can get;  

  
1 1

,1 3 3.2 6
2 2

c

v

v V

n n
GP n n n 



    
     

   
 . 

Theorem 4.8. The eccentric connectivity index of GP (n, 2) is  

  , 2 6 .
2

c n
GP n n

 
  

                 (4.8)

 

Proof. From the same facts stated in the proof of Theorem 4.7. We can write; 

  ,2 3c

v v v

v V v V

GP n d  
 

   . 

We know that 
2

v

n


 
  
 

 from the Proposition 4.3, Proposition 4.4, Proposition 4.5 and 

Proposition 4.6. Then, we can get;  

  , 2 3 6 .
2

c

v

v V

n
GP n n 



 
   

 
  

Theorem 4.9. The connective eccentricity index of GP (n,1) is 

   
6

,1
1

2

ce n
GP n

n
 

 
 
 

.               (4.9) 

Proof.  We can directly write   ,1ce v

v V v

d
GP n



 . From the above arguments in 

Theorem 4.5 and the definition of the connective eccentricity index, we get that;  

1 6
( ) ( ( ,1)) 3.2 .

1 1

2 2

ce ce v

v V v

d n
G GP n n

n n
 



   
    

   
   

 . 

Theorem 4.10. The connective eccentricity index of GP(n,2) is  

  
6

, 2

2

ce n
GP n

n
 

 
 
 

.             (4.10) 
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Proof. We can directly write   ,1ce v

v V v

d
GP n



 . From the above arguments in 

Theorem 4.6 and the definition of the connective eccentricity index, we get that;  

1 6
( ) ( ( , 2)) 3.2 .

2 2

ce ce v

v V v

d n
G GP n n

n n
 



   
   
   
   

 . 

 

Example 4.1: Consider the Eccentricity vertex u for the below Graph. 

 

Figure 4.1. Eccentricity graph. 

 

Eccentricity for a vertex     the ecc (u) is denoted by ε(u), ecc(u)=max{d(u,v)│v G}    

Is the furthest distance between   and any vertex for example e. 

                                                                               

         

In the same way we get  

                                                           

For the above graph we can calculate the eccentricity connective index by below equation: 

       ∑                             (4.11) 

                               

And for calculating connective eccentricity index CEI, we can calculate by below equation:   

       ∑
      

                      (4.12) 

      ⁄    ⁄    ⁄    ⁄    ⁄    ⁄     ⁄  
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Example 4.2: Draw the Generalized Petersen Graph, G(8, 2) 

In the generalized Petersen graph we have two vertex sets for example U and W,   

             and               , every time the set U represent a cycle and 

corresponding vertices between U and W are adjacent each other and the other edges of 

consists of        

 

 

Figure 4.2. Generalized Petersen Graph (8, 2). 

 

Example 4.3: Draw the Generalized Petersen Graph, G (8, 3) 

In the generalized Petersen graph we have two vertex sets for example U and W,   

             and               , every time the set U represent a cycle and 

corresponding vertices between U and W are adjacent each other and the other edges of 

consist of         .  
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Figure 4.3. Generalized Petersen Graph (8, 3). 
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5. CONCLUSION 

 

 

Graph theory has become an important discipline in its own right because of its 

applications to computer science, communication networks, and combinatorial optimization 

through the design of efficient algorithms. It has seen increasing interactions with other 

areas of Mathematics. We know there are many interactions between the theories of a graph 

and other branches of mathematics,  

Firstly, a graph is an order pair of a non-empty set of objects called vertices along 

with an unordered pair of distinct vertices (or peaks) called edges. In this thesis, we 

investigate the relationship between Zagreb indices and stratified domination number of 

trees.  

We focused on the relationship between Zagreb indices and domination number 

exactly stratified domination number. In chapter one, necessary definitions and theorems 

related to graph theory are given. Basic facts and theorems about Zagreb indices are given 

in chapter two.  

Also we computed the eccentric connectivity indices for the generalized Petersen 

Graphs in chapter three.  

The literature review of the Zagreb indices and domination number are given in 

chapter four. The relationship between Zagreb indices and stratified domination number of 

trees are given.  

We give two novel theorems which characterize maximum trees with a given 

stratified domination number.  

Finally the thesis includes some tables and some figures on the Zagreb indices and 

stratified domination number of trees, and some equation for calculate the first and second 

Zagreb indices.  

And computed some theorems and propositions about eccentric connectivity 

indices for the generalized Petersen Graphs.  
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APPENDIX 

EXTENDED TURKISH SUMMARY 

(GENİŞLETİLMİŞ TÜRKÇE ÖZET) 

 

 

AMAÇ 

Uygulamalı Matematiğin bir dalı olan graf teorisi, mühendislikte, farmakolojide, 

kimyada ve sosyal bilimlerin bir çoğunda karşılaşılan problemlerinin modellenmesinde ve 

çözümlerinde gereklidir. Graf teorisinin içinde yer alan ve graf teorisinin bir alt dalı olan 

Kimyasal Graf Teorisi günümüzde popülerliğini giderek arttırmıştır. Bunun bir nedeni de 

topolojik indekslerin özellikle ilaç dizaynlarında kullanmının giderek artmasıdır. 

Topolojik indeksler fizikte, kimyada ve farmakolojide, moleküllerin bazı fiziksel ve 

kimyasal özelliklerini modellemede yaygın olarak kulanılagelmişlerdir. Bir graf değişmezi 

olarak bir grafın resimsel görüntüsünden bağımsız olarak elde edilen bir topolojik indeks,  

graf yapısından elde edilen bir nümerik değerdir. Moleküllerin graflarından elde edilen 

topolojik indeksler bu moleküllerin fiziko-kimyasal ve biyolojik bazı özellikleri arasında 

bir korelasyon oluştururlar. Böylece toplojik indeksler, deney yapılmasının çok zor ve 

mümkün olmadığı durumlarda tahmin için önemli birer araçlardır.  

Literatürde şu ana kadar yaklaşık binden fazla topolojik indeks hem  kimyasal graf 

teorisyenleri hem de graf teorisyenleri tarafından tanımlanmıştır. Bir topolojik indeksin 

başka bir topolojik indeksinden daha büyük bir korelasyon vermesi onun kabul 

edilebilirliğini arttırmaktadır. Topolojik indeksler dört kısma ayrılırlar. Bunlar, derece 

temelli topolojik indeksler, uzaklık temelli indeksler, derece ve uzaklık temelli indeksler ile 

eşleme teorisine dayalı indekslerdir.  Bu sınıflandırmaya dayalı olarak en çok bilinen ve 

pratikte uygulaması olan indeksler, Wiener, Zagreb, Hosoya, Estrada, En uzak bağlantılılık 

indeksleridir.  

Topolojik indeksler üzerine yapılan çalışmalar temelde üçe ayrılırlar. Bunlardan birinci 

tür çalımalar kimyasal özellikleri topolojik indeksleri kullanarak tahmin etmedir. İkinci tür 

çalışmalar  matematiksel açıdan bu indekslerin sınırlarını bularak diğer graf 

parametreleriyle olan ilişkilerini ortaya çıkarmaktır. Üçüncü tür çalışmalar ise belli 
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bilgisyar ağlarında ve molekül modellerinde topolojik indekslerin değerlerini bulmaktır. 

Doğal olarak kimyacılar birinci tür çalışmalar ve graf teorisyenleri de ikinci ve üçüncü tür 

çalışmalara ağırlık vermişlerdir.  

Derece temelli indekslerin en yaygın kullanılanı Zagreb indeksleridir.  Literatürde 

Zagreb indeksiyle ilgli yakalşık ikibin beşyüz makale mevcutttur. Zagreb indekslerinin 

baskınlık parametreleriyel olan ilşkileri son iki yıldır araştırmacıların dikkatini çekmiştir. 

Şu ana kadar Zagreb indekslerinin ağaç graflarında alt ve üst sınırları adi baskınlık 

parametresine göre ifade edilmiştir.  

Yine derece-uzaklık temelli topolojik indekslerin içinde en yaygın kullanılanı en uzak 

bağlantılılık indeksidir. Matematiksel  açıdan şu ana kadar yapılan çalışmalar en uzak 

bağlantılılık indeksinin alt, üst sınırları, diğer graf değişmezleriyle olan ilşikisi ve bazı graf 

sınıflarındaki değerinin hesaplanması olarak icra edilmiştir.  

Genelleştirilmiş Petersen graflarında derece temelli topolojik indekslerin değerinin 

hesabının, bu graf üç düzgün dereceli olduğundan bir önemi yokur. Fakat uzaklık ve öz 

değer  temelindeki indekslerin genelleştirilmiş Petersen graflarındaki değerinin hesabı hala 

gizemini korumaktadır. Genellştirilmiş Petersen graflarında belli graf değişmezlerinin 

hesaplanması da yine araştırmacılar tarafından yğun olarak yapılmaktadır.  

Aşağıda verilen literatür taramasında görüleceği üzere Zagreb indeksleerinin 

parçalanışlı üstünlük sayılarına göre alt ve üst sınırlarının çalışıldığı  bir çalışma henüz 

yapılmamıştır. Yine herhangi bir uzaklık temelli bir topolojik indeksin ve uzaklık-derece 

temelli bir topolojik indeksin  genelleştirilmiş Petersen graflarındaki değerlerini içeren bir 

çalışmada henüz yapılmamıştır.  

Bu doğrultuda bu tez çalışmasında iki amaç güdülmüştür. Bunlardan birincisi, Zagreb 

indekslerinin parçalanışlı baskınlık sayıları kullanılarak var olan ilişkilerini ağaç graflarında 

alt sınırlar türünden ortaya koymaktır. İkincisi ise genelleştirilmiş Petersen graflarında en 

uzak bağlantılılık ve bağlantılı en uzaklık indekslerinin değerini hesaplamaktır.  
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MATERYAL METOT 

 

Bu çalışma da konuyla direkt ilgili olan makaleler elde edilerek incelenmiştir. Nitel 

araştırma yöntemlerinden olan döküman analizi yöntemiyle mevcut literatür iyice taranmış 

ve ilgili literatürde henüz çalışılmamış  yukaıda bahsedildiği üzere iki yeni konu tespit 

edilerek, elde edilen yeni teoremler matematiksel ispat yöntemlerinden Tümevarım 

yöntemiyle ispatlanmıştır.  

 

KAYNAK BILDIRIŞLERI 

İlk uzaklık temeline dayalı toplojik indeks Wiener tarafından 1947 yılında alkanların 

bazı kimyasal özelliklerini modellemek için tanımlandı (Wiener, 1947). Wiener’den sonra 

yüzlerce topolojik indeks matematikçi ve kimyacılar tarafından tanımlanarak bir çok 

kimyasal ve matematiksel özellikleri çalışıldı. Aynı yıl, ilk derece temelli topolojik indeks 

Platt tarafından önerildi ve alkanların bazı fiziko-kimyasal özelliklerini modellemede 

kullanldı (Platt, 1947). Bu iki çalışmadan yaklaşık 25 yıl sonra literatürde iyi bilinen 

Zagreb indeksleri, Gutman ve Trinajstić tarafından tanımlanarak karbonların elektron enerji 

seviyelerini modellemede kullanıldı (Gutman and Trinajstić, 1971). 1975 yılında, Randić, 

“Randic indeksi” tanımlayarak yine karbon atomlarının moleküler dallanmasını 

modellemede kullandı (Randić, 1975). Bütün topolojik indeksler içerisinde yukarıda 

bahsedilen indeksler diğer indekslere göre teorik yapı çalışmalarında kimya ve matematik 

literatüründe daha çok kullanılmışlardır. Zagreb indekslerle ilgili yapılan çalışmaların bir 

özeti için (Nikolić et al, 2003), (Gutman and Das, 2004) ve (Liu and You, 2011) 

çalışmalarına bakılabilir.  

Topolojik indeksler ile baskınlık sayısı arasındaki ilşikileri inceleyen çalışmalar 

literatürde henüz başlamıştır. 2016 yılında Borovićanin ve Furtula ufuk açıcı bir çalışma 

yayımladılar. Yazarlar bu çalışmalarında Zagreb indeksin baskınlık sayısı ile olan ilişkisini 

inceleyerek Zagreb indeksin ekstremum ağaç graflarını karakterize ettiler (Borovićanin ve 

Furtula, 2016). Aynı zamanda Liu ve ark. Harmonik indeksle baskınlık sayısı arasındaki 

ilişkiyi incelediler (Li et al, 2016). 
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Graflarda uzaklık ve derece kavramlarını ilk kez bir araya getiren Sharma ve ark. 1997 

yılında en uzaklık bağlantılık indeksini tanımlayıp bazı ilaçların dizaynında nasıl 

kullanıldığını gösteren çalışmalarını yayınladılar.  En uzak bağlantıllık indeksinin biyolojik 

ve farmakolojik olayları nasıl modellediğine dair (Sardana ve Madan, 2011) ve (Gupta ve 

ark., 2002) nin çalışmalarına bakılabilir. Ashrafi ve ark. Nanaotüpler için en uzak 

bağlantılılık indeksini hesapladılar (Ashrafi ve ark., 2011).  Zhang ve Zhou graflarda 

minimum en uzak bağlantılılık indeksini araştırdılar (Zhang ve Zhou, 2012). Morgan ve 

ark., 2012 de en uzak bağlantılılık indeksinin alt sınırını karakterize eden çalışmlarını 

yaptılar. Hua ve Das Zagreb indeksinin en uzak bağlantılılık indeksiyla olan ilişkisini 

incelediler (Hua ve Das, 2013). Eskender ve Vumar graf işlemlerinde en uzak bağlıntılılık 

indeksinin nasıl değiştiğini araştırdılar (Eskender ve Vumar, 2013).  Dankelmann ve ark., 

2014 de Wiener indeksiyle en uzak bağlantılılık indeksini karşılaştırdılar. Doslic ve Saheli, 

2014  te bileşke graflarında en uzak bağlantılılık indeksinin nasıl bir değişim gösterdiği 

üzerine çalışmalarını yaparak konulya ilgli olarak bir çok eşitsizliğ ifade ederek ispatladılar.  

Morgan ve ark., 2014 te yine en uzak bağlantılılık indeksinin maksimum değerlerini 

ağaçgrafları, tek çevre içeren graflar , iki çevre içeren graflar ve üç çevre içren graf sınıfları 

için karakterize ederek bir çok üst sınırları eşitsizlikler halinde sundular.  Wang, en uzak 

bağlantılılık indeksine göre ekstremal ağaç graflarını karakterize etti (Wang, 2015).  

Venkatakrishnan ve ark., 2015 te geneleştirilmiş diken graflarında en uzak bağlantılık 

indeksini araştırdılar.  

Bağlantılı en uzaklık indeksi Yu ve Feng, 2013 tarafından tanımlanarak tek çevre içeren 

graflardaki değişimleri analiz edilmiştir. Yine Yu ve ark., 2014 te ağaç graflarında 

bağlantılı en uzaklık indeksinin değerini araştırdılar. Xu ve ark., 2015 te bağlantılı en 

uzaklık indeksinin ekstremal değerlerini incelediler. Li ve Zhao, 2016 da ağaç graflarında 

verilen değişik uzaklık parametrelerine göre bağlantılı en uzaklık indeksinin değişmini 

formülüze ettiler.  

Genelleştirilmiş Petersen grafları graf teorisinin bir alt dalı olan ağ teorisinde önemli 

uygulamalara sahip olan önemli bir graf sınıfını teşkil ederler. İlgili literatür incelendiğinde 

son yıllarda araştırmacıların daha çok genelleştirilmiş Petersen graflarında baskınlık 

parametrelerini araştırmaya odaklandığını göstermektedir. Ayrıca yeni ortaya atılan graf 
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parametreleride yine Petersen grafları için hsaplanmaktadır. Ancak topolojik indekslerin 

genelleştirilmiş Petersen graflarındaki değerlerinin ne olacağı ile ilgili hiçbir çalışma henüz 

literatürde yer almamıştır.  

 

SONUÇ VE ÖNERILER 

 

Bu çalışmada ağaç graflarının Zagreb indekslerinin parçalanışlı baskınlık sayıalrına 

göre değerlerini ifade eden iki önemli teorem ifade edilerek ispat edilmiştir. Ayrıca 

genelleştirilmiş Petersen graflarında, en uzak bağlantılılık ve bağlantılı en uzaklık 

indekslerinin değerlerini ifade eden altı yeni teorem ifade edilerek ispatlanmıştır.  

Diğer graf sınıfları için örneğin tek çevreli graflar, iki çevreli graflar, üç çevreli graflar, 

ağlar, genelleştirilmiş diken grafları, benzen grafları gibi graflar içinde Zagreb indekslerinin 

parçalanışlı baskınlık sayılarına göre alt ve üst sınırlarının bulunması ileriki çalışmalar için 

yapılabilir. Ayrıca direkt çarpım, karetzyen çarpım, tensör çerpımı gibi bazı graf 

işlemlerinde Zagreb indeksinin parçalanışlı üstünlük sayılarına göre değişiminin alt ve üst 

sınırlarını hesaplamak gibi daha ileri çalışmalar yapılabilir. 

Genelleştirilmiş Petersen graflarında topolojik indekslerin değerinin nasıl değiştiğini 

hesaplamak kimyasal graf teırinin yeni bir alt alanı olarak düşünülebilir. Özellikle 

genelleştirilmiş Petersen graflarında Estrada, Gutman, Wiener indekslerini hesaplamak 

ileriki çalışmalar için önem arzedebilir. Yine graf enerjisi, laplasyen graf enerjisi, eşleme 

enerjisi gibi yeni graf parametrelerinin genellşetirilmiş Petersen graflarındaki değişimini 

incelemekte yine ileride araştırmacıların dikatini çekebilir.  
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