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ABSTRACT

ON RELATION BETWEEN ZAGREB INDICES AND STRATIFIED
DOMINATION NUMBERS

MANGURI Abdalla Khdir Abdalla
M.Sc. Thesis, Mathematics Science
Supervisor: Assist. Prof. Dr. Mehmet Serif ALDERMIR
March 2018, 49, pages

This master thesis study, which is consists of four chapter, was presented some
last studies about the Zagreb indices and domination parameter numbers. Zagreb indices
are the most important things in a graph theory and used indices in mathematical
chemistry. The relations between Zagreb indices and the other graph invariants have been
studied for forty years. But the relationships between Zagreb indices and the domination
type parameters have been studied very recently. In this paper we characterize maximum
trees with a known as stratified domination number and we firstly compute the eccentric

connectivity indices for the generalized Petersen graphs.

Keywords: Domination number, Eccentric connectivity index, Generalized

Petersen Graphs, Stratified domination, Zagreb indices.






OZET

ZAGREB INDEKSLERI iLE PARCALANISLI BASKINLIK SAYILARI
ARASINDAKI ILISKILER

MANGURI, Abdalla Khdir Abdalla
Yiiksek Lisans Tezi, Matematik Anabilimdali
Tez Danigmani: Dr. Ogr. Uyesi. Mehmet Serif ALDEMIR
Mart 2018, 49, sayfa
D6rt boliimden olusan bu tez ¢alismasinda Zagreb Indeksleri ve Baskinlik sayilari
arasindaki baz iliskiler sunulmustur. Zagreb Indeksleri, matematiksel kimyada en 6nemli
olan ve en c¢cok kullanilan indekslerdir. Zagreb indeksleriyle, diger graf degismezleri
arasindaki ilgkiler kirk yildir ¢alisilmaktadir. Fakat Zagreb indekslerinin baskinlik sayilari
ile olan iligkisi son zamanlarda calisilmaya baslanmistir. Bu calisma da Zagreb
indekslerini, parcalanigli baskinlik sayilarina goére maksimum yapan aga¢ graflari
karakterize edilerek, en uzak baglantililik indekslerinin genellestirilmis Petersen graflari

icin degerleri hesaplanmistir.

Anahtar kelimeler: Baskmlik sayisi, En Uzak Baglintilihk Indeksi,
Genellestirilmis Petersen Graf, Parcalanish Baskinlik, Zagreb indeksleri.
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SYMBOLS AND ABBREVIATIONS

Some symbols and abbreviations used in this study are presented below, along
with descriptions.

Symbols Description

A =a;; Adjacency Matrices of a graph G
u,v Vertices of a graph G

e Edge of a graph G

E(G) The Set of edges of a graph G
M;(G) First Zagreb indices

M, (G) Second Zagreb indices

M, (G) First Zagreb co-index

M, (G) Second Zagreb co-index

d(u) Degree of vertex u

d(v) Degree of vertex v

Y(G) Domination number of a graph (G)
Yi Total Domination Number

Yr Restrained Domination Number
Yir Total Restrained Domination Number
Yk K-Domination Number

YE, Stratified Domination Number

T Tree

Diam (t) Diameter of tree (t)

xiii



Abbreviation Description

TDN Total Domination Number

TDS Total Domination Set

RDS Restrained Domination Set

TRDS Total Restrained Domination Set
QSPR Quantitive-Structure Property Relations
CDS Connected Dominating Set

ECI Eccentric Connectivity Index

CEl Connective Eccentric Index

GPG Generalized Petersen Graph

Xiv



1. INTRODUCTION

A graph is a ordered pair such that G = (V, E), the set of V is a limited arrangement
of vertices and the arrangement of E is a set component of elements. Set of E consists of the
two component subsets of V. In this examination we are researching just finite graphs
without directed and self-loops or several edges (Diestel, 2000). Let graph G = (V, E) be a
graph. The vertices of the graph G are denoting by n, and for each vertex of u and v, the
graph G has an edges denoted by uv, linking the vertices of u and v. The term d(u) denotes
the number of degree of edges which is incident to the vertex u. In chemistry many
molecules have been presented by it’s a graph. Numbers which are obtained from the
molecular graphs of molecules are called topological indices. Some topological indices
show an important role in chemistry and pharmacology, etc. topological indices may group
into two classes: degree version topological indices and distance version topological
indices. The First Zagreb Index M;(G), Second Zagreb Index M, (G) are illustrated as

follows:
Ml(G) :ZueV(G) d(u)z (11)
M, (G)=Xuverc) Ad(w)d(v) (1.2)

(Gutman and Trinajsti¢, 1972).

The two oldest of topological indices are famous as Zagreb indices, that defined by
Gutman and Trinajsti¢ in 1972. The authors observed the dependence of full m-electron
energy on some octanes. The graph G is known as a stratified graphs if V() is partitioned
in some subsets. The fixed partition V(G) with the graph G consist of only two subsets such
that the graph V(G) = {V;,V,}, then graph (G) is named as a 2-stratified graph. In a 2-
stratified graph, we accept that the one class is colored blue and the other class is colored
red. Let graph G = (V,E) be a simple graph with the edge set E and vertex set V, and let

S € V. The set S is named as a (DS) dominating set if each vertex in V — S is adjacent to at



least one vertex of S. The set S is known as the (TDS) Total dominating set if all vertex in
V is adjacent to at least one vertex of S, and S is called as (RDS) Restrained dominating set
if all vertex in V —S is adjacent to a vertex in S and to a vertex inV—S. If S is
simultaneously a (TDS) Total Domination Set and a (RDS) Restrained Domination Set,
then S is a (TRDS) Total Restrained Dominating Set of a graph G. The set is named S as a
k-dominating set if all vertex in V —S is adjacent at least k vertices in S. Number of his
domination of a graph G, represented by y(G), is equal to the smallest cardinality of the
dominating set. A dominating set of the graph G of cardinality y(G) is called a y(G) — set.
The (TDS) total domination number, (RDS) restrained domination number, (TRDS) total
restrained domination number and k-domination number of the graph G by
Y:(G), v, (G), v+ (G) and yi (G), respectively (Chartrand et al., 1995).

Domination Number of a graph G as vertex a recollection that a neighbor of v is a
vertex together to v in a graph G. Also, the district N(v) of v is the set of nationals of v a
vertex v in a graph G is said to dominate it self and every of it is national, that is, v
dominates the vertices in it is closed district N(v), then, v dominates 1 4+ deg v vertices of a
graph G, for example a set S of vertices of graph G is set of dominating of graph G if each

of G is dominated as vertex by specific vertex in S (Teresa et al., 2009).

vz 1 vz Uz vz vy
Q
Vs v, Vg vy Uz g vy
Vg Vs Vs
Graph G 8= {vi} 8= {vy., vs}

Figure 1.1. Two Dominating Sets in a Graph G.

The Domination number is definite for all graphs let G is an order graph n, then 1 <
Y(G) < n. A graph G is a graph of order n, has number of domination equal 1 if and only

if G holds a degree of vertex v is n—1, in which case of {v} as a minimum set of



dominating, while y(G) = nifandonly if y(G) = Knin which item v(G) is the single set

of dominating. For example:

Uy Uy

Ug

a. Complete graph

Figure 1.2. Complete and Empty graph.
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us 0 °u3

o
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b. Empty graph

v(G) = 1 for a complete graph. y (G) = n for an empty graph.
Defined by K¢ but for the figure (b) is empty graph there for define by ks. (Diestel, 2000).

1.1. Connection Dominating Set and Applications

A dominating set D for the graph G which was set with all vertex of G is also in D or

adjacent to some vertex in D. Domination number of the graph G denoted by the maximum

size of set of the dominating of vertices in G. The dominating set problem concerns result a

maximum dominating set. For example, figure 1.3, there are two red vertices b and c are

clearly memberships of a dominating set as all vertex that is not in the dominating set {b, c},

is adjacent b or c.



e f
Figure 1.3. Connected Dominating set.
For this example we can change to the dominating set by convert the vertex b to a vertex e.

After that we say that this graph is dominating set because all a summit in this graph is

dominated by the some vertex exactly ¢ and e. (Diestel, 2000).

ol'l.

Figure 1.4. Connected Dominating set.

1.2. Bipartite Graph and Set Covering Problem

The connected set of dominating problem is used to find a maximum connected set
of dominating, determining a maximum connected set of dominating to be known as NP-
complete problems, this essentially means that these problem class of s cannot be solved
quickly, some authors have suggested procedures for finding approximate maximal
connected dominating set the problem for calculating a maximum connected dominating set
was mapped in to a set covering problem, the set covering problem is basically a problem
regarding bipartite graphs that can be specified as follows suppose that H is a bipartite
graph, containing of two sets of vertex A and vertex B where edges only produce a
connection between set vertex A and set vertex B, also assume that for each vertex in B,

there is at least one edge connecting it to a vertex in A, the goal is to find maximal subset C



of set vertex of A such that every vertex in set B is covered by some vertex in C. (Diestel,
2000).

Example 1.2.1 graph (G) is a connected graph (v) is represented the vertex (or node) and
(e) is represented the edge (or element), let A and B are copies of vertices of E, construct a
bipartite graph H putting an edge between vertices v of A and vertex u of B is they are
adjacent to each other. All vertices (a,b,c,d,e and f) in a graph G are represented by A, and
is also all vertices (a,b,c,d,e and f) in G represented by B,

b c d
O

Figure 1.5. Bipartite Graph G = (V, E).

Now we put at between vertex from A and vertex from B and they are adjacent to each

other, for original graph, clearly.

Figure 1.6. Bipartite Graph.



1.3. Some Definitions

Definition 1.3.1: (Undirected graph): Graph (G) is a tuple (V, E), where finite set is
signed as V of nodes called vertices, and the set of E is a finite set of edges (or elements).
See figure 1.7 and undirected graph. In undirected graph edge e€E is an unordered match
(u,v) where u,v €V but in directed graph the edge e is a requested combine (u,v) an edge
(u,v) is outline from vertex u and is occurrence to vertex v. (Diestel, 2000). We show this

basic facts in the below example.

Example 1.3.1: The set of vertex v = {1,2,3,4,5} In Fig 1.7 the set of edges denote by
e = {(1,2),(1,3),(2,3),(2,4),(3,5), (45)}

L

Figure 1.7. Undirected Graph.

1
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Definition 1.3.2: (Vertex Adjacency). Let G = (V, E) as a simple graph. 2 vertices v; and v
are said will be adjoining if there exists an edge ee E so e = (v, Vo). A vertex v is self-
contiguous if e = {v} is a component of E (Diestel, 2000).

Definition 1.3.3: (Edge Adjacency): Let G = (V, E) be a graph. 2 edges e; and e, are said to
be adjoining if there exists a vertex v with the goal that v is a component of both e; and e;
(as sets). Graph can be spoken to by the nearness network or an edge (or vertex) list.
Adjacency matrices have a value a;;=1 if vertex i and vertex j share an edge and a;; = O if

vertex do not share an edge (Diestel, 2000). See Fig 1.8 for the explanation.



Figure 1.8. Undirected Graph Edge Adjacency.
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An undirected graph and it is adjacent matrix representation.

Example 1.3.2. Consider the set of vertices V = {1, 2, 3, 4}. The set of edges

E={(1,2), (2,3),(3,4), (4, 1)}

Then the graph of G = (V, E) has 4 edges and 4 vertices. It is typically easier denoted this
graphically. See Fig 1.9

Figure 1.9. The Graph G for the example 1.3.2.

Definition 1.3. (Biregular graph) A graph G is said to be biregular if its vertex degrees
accept precisely two distinct esteems. The edge E(G) of a diagram G is equivalent to the

aggregate of the supreme estimations of the eigenvalues of G.



Definition 1.3.5: (First Zagreb co-index) Let G a chance to be a basic associated graph, at
that point the First Zagreb co-index is characterized asM; (G) = ¥ (d(w) + d(v)).
Definition 1.3.6: (Second Zagreb co-index) Let G a chance to be a basic associated graph,
at that point the Second Zagreb co-index is characterized as M,(G) = Y.(d(w)d(v)).
(Ranjini et al., 2013)

Definition 1.3.7: (Eccentricity) Let G be a connected simple graph with the vertex set V and

the edge set E. The distance between two vertices u, v of G, written d(u, v), is the length of

a shortest u—v path in G. For any vertex v of G, the eccentricity of v, denoted by ¢, , is the

largest distance from v to other vertices in G. (Diestel, 2000).
Definition 1.3.8: (Eccentric connectivity and connective eccentric index ) The eccentric

connectivity index of a simple connected graph known as;

e (G)= ngdv.

veV

And the connective oddness index of a simple connected graph known as;

£*(G) =Zd—"

veV Y]

Definition 1.3.9: (Generalized Petersen Graph) The generalized Petersen graph of GP (n, k)
is the graph with set of vertex V=UUW, where U={u:0<i<n-1} and
W ={w :0<i<n-1}, and the edge set is the form of

E ={uu;,,uw;, Www,, :0<i<n-1, subscripts modulo n} (Diestel, 2000)

i+ M i+k



2. LITERATURE REVIEW

In today’s world from to basic sciences to social sciences, many problems can be
represented by graph theory especially in chemistry. The theory of chemical graphs has an
important place in theoretical chemistry. In the medicine and chemical experiments, the
researchers found that there is a potential connection between the properties of the
compounds and their sub-atomic structures. Thus, the researchers have a tendency to decide
the highlights of medications by ideals of mathematical method. This is done with the help
of topological indices. Topological indices have been expansively used to modeling some
chemical and physical properties of molecules in physics, chemistry and pharmacological
sciences. A numerical value obtained from the structure of graph is called a topological
index, Wiener, 1947 and Gutman 1972, showed that topological indices could be used
modeling chemical properties of octanes. (Wiener, 1947; Gutman et al., 1972).

Actually the story of topological indices has been started by Wiener and Platt in

1947. Both authors showed that the chemical properties of alkanes gave good correlation to
their indices value. (Platt, 1947; Wiener, 1947). The well-known degree based Zagreb
indices defined by Gutman and Trinajsti¢, to modeling m-electron energy of alternant
carbons (Gutman et al., 1972). Among the all topological indices, the Zagreb indices have
been used for QSPR researches more considerably than any other topological indices in
chemical and mathematical literature (Gutman et al., 1972).
Up to now, studies on the Zagreb indices have focused on the relationships of the Zagreb
indices to other graph invariants. The relations between Zagreb indices and domination
number parameter have been recently started. As of now, all educations have been focused
on the relations between domination number parameter and Zagreb indices (Das et al.,
2013) Studies on the total, restrained and stratified domination numbers of the Zagreb
indices have not been studied yet.

The aim of this study is to find new upper and lower bounds on Zagreb indices of
trees and unicyclic graphs in terms of total, restrained and stratified domination numbers.

Also, one of the aim of this study is to characterize extremal trees, chemical trees and
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unicyclic graphs in respect to total, restrained and stratified domination numbers (Chartrand
etal., 1995).

The mathematical possessions of Zagreb indices were been started to study for the
last fifteen years. Loud bounds for the first Zagreb index of a graph were obtained by (Das,
2003). Graphs with the smallest in relation to the first Zagreb index were characterized by
(Gutman, 2003). Graphs with the greatest in relation to the first Zagreb index were
characterized by (Das, 2004). Upper bounds for connected graphs in Zagreb indices of were
studied by (Liu and et al., 2006). Loud bounds for the unicyclic graphs of the Second
Zagreb index were characterized by (Yan et al., 2006). Deng was studied the extremal
bicyclic graph regarding Zagreb indices. (Deng, 2007). Hua was characterized the graphs in
relation to independence number, connectivity and the first Zagreb index (Hua, 2008). ,
Extraordinary estimations of the total of squares of degrees of bipartite graph were studied
by (Cheng et al., 2009). Sharp bounds for the bicyclic graphs in Zagreb indices with k-
pendent vertices were studied by (Zhao et al., 2011). Sharp upper bounds on bicyclic
graphs in Zagreb indices with a certain matching number were categorized by (Li et al.,
2011). Sharp bounds on Zagreb indices of cacti with k suspended vertices were deliberate
by (Li et al., 2012). Trees with permanent number of suspended vertices with minima lof
the first Zagreb index were considered by (Gutman et al., 2013). The Second Zagreb
Indices of the graphs of unicyclic with specified degree groupings, were studied by (Liu et
al., 2014). On the minimum and maximum Zagreb indices of trees with a specified many of
vertices of maximum degree were considered by (Borovicanin et al., 2015).

Results obtained in the theory of Zagreb indices are summarized in the reviews
(Nikoli¢ et al., 2003), (Gutman et al., 2004) and (Liu et al., 2011). Multiplicative versions
of Zagreb indices were defined and investigated in (Eliasi et al., 2012). Finding bounds
related to Zagreb indices see in (Liu et al, 2017) and references therein. Zagreb indices of
graph operations see in (De, 2017) and references therein.

The relations between topological indices and domination number parameter have
been recently started (Borovicanin et al., 2016) published a seminal study about Zagreb
indices and domination number. The authors characterized extremal trees of Zagreb indices

with respect to given domination number (Borovicanin et al., 2016). Also, Li et al
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investigated the relations between Harmonic index and domination number (Li et al, 2016).
Extreme values of the Zagreb index of bipartite graphs were studied by (Cheng et al, 2009)
For other indistinct documentation and wording from graph hypothesis the peruses are
indicated to (Cvetkovic et al., 1980).

The Zagreb indices are characterized by the accompanying equations:

M1(G) = ZuEV(G) dGZ(V) (2-1)
And
M,(G) = ZuEV(G) dg(w)dg(v) (2.2)

Both of this indices mirror the reach out of isolating of a sub-atomic structure that is
inevitably associated with those physical and chemical properties in view of the state of
sub-atomic (or molecular) (Balaban et al., 1983), the main properties of M;(G) and My(G)
where summarized in (Nikoli¢ et al., 2003) and the references there in, as of late, there
have played out various articles studding extremal graphs that limit Zagreb indices of
different diagrams (Feng et al., 2010; Wang et al., 2015; Xu et al., 2014, Liu, 2014) another
diagram invariant that will be pondered in the content in Harary. It was presented in 1992
by (Mihalic et al., 1992) and is illustrated as follows:

H(G) = 33m 30y —— (2.3)

=1 gup)
Where d(u,v) is the separation between vertex v and vertex u in a graph (G). The book
(Xu et al., 2014) and the references there in, as of late (Das et al., 2013) represented an
upper bound on Harary index is terms of n and the two Zagreb indices.

2 _
(2M, (G)+M1(G)2-;3n +11n-14) 2.4)

H(G) <
Domination number y(G) of a simple graph G is the base cardinality of a subset D of V(G)
to such an extent that every vertex of G that isn't contained in D is adjoining no less than
one vertex of D. A subset D is known minimum dominating set of G. The meaning of the
domination number proposes that a vertex with in excess of one pendent neighbor has a
place with each base commanding arrangement of a graph (Borovicanin et al., 2016).

Connection between a few topological indices and domination number of a graph G is in

the focal point of intrigue and this theme is essential these days also (Borovicanin et al.,
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2016). This paper is duration of these examinations. Specifically, we compute the single
tree who’s the First Zagreb indices and Second Zagreb indices accomplishes most extreme
between a few trees with a specific stratified domination number. As an outcome, we locate
the upper bound on index of Harary of trees with a specific domination number. Ultimately,
trees with number of control and certain request that have insignificant first Zagreb index
are considered. Number of Domination spoke to by T(n,y) an arrangement of n-vertex trees
whose number of control is y. We will ascertain the trees from T(n,y) whose first Zagreb
indices and Second Zagreb indices is most extreme. Clearly, y(T) =1 if and only if

T = Ky ,—1. Well-known result, that each graphs of order n without any isolated vertices
has number of domination at most % is given. (Fink et al., 1985). Verified that equality
holds only for C, and for any graphs of the form HokK; for some H. Denote by T;,,, the tree
found from the star of K; ,_, by assigning a pendant edge to it is y — 1 pendent vertices. If
A=n—y in a tree T of command n and domination number vy, then T = T,,,,. The First
Zagreb indices and tree of Second Zagreb indices a T,,,, can be easily be deliberate as

Mi(T,,) =(n=y)(n—y +1) +4(@y - 1), (2.5)
My(Tyy) =2(n—y+ Dy -1D+n—-y)n-2y-1). (2.6)



3. FIRST ZAGREB INDICES

The First Zagreb Index can be similarly determined as a total over the vertex of the
graph G. and the calculation for First Zagreb Indices by the below equation. (Gutman and
Trinajsti¢, 1972).

M;(G) = Yueve) d()? (3.1)
Example 3.1. Original Zagreb indices.

2 2 4 4

Figure 3.1. First Zagreb Indices.

M;(G) = Zuev(e)d(w)? 3.2)
M, (G) =18
d(u) (The degree of vertex u)

We saw that, this idea firstly in (Narumi et al., 1984) who invent what at now is called to as
the Narumi Katayama index,

[11(6) = [uev () d(W)? 3.3)
Gutman presented the multiplicative type of the Zagreb indices (Gutman, 2011) In
particular he invented that IT; = (NK)2. Extremal graphs with regarded to the first
multiplicative Zagreb Index where characterized in (Gutman et al., 2012). Eliasi et al.,
2012) proposed that in the light of the identity (1), another multiplicative type of
the M, (G), such as
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[11(G) = luwver@[d@W) + d(v)] (3.4)
It must be straightforwardly noticed that in the all-inclusive circumstance, the indices
I1:(G) and IT"1(G). Take different values (Eliasi et al., 2012). For example, consider the Ps,
its values are 1 and 2, separately. It is clear that informal to see that if the simple graph G is
fixed, then,

[1:(6) = I11(6) (3.5)
If the graph G does not have edge than the equation (2) is invalid. If the edge set E(G) = @,
then we may, conventionally, accept that both [[;(G) = 0 or better, [[7(G) = 1. For the
connected the graph such problems do not occurred (Eliasi et al, 2012). Eliasi et al show
that among the all connected graphs the path has the minimum value of [];(G). index, also
Eliasi et al investigated the second minimal [[;(G).value for the all trees with n > 7
vertices, have the second small []3(G) value. In the below figures which are took from the

article of Eliasi denote the minimal trees with respect to [[;(G).

L . . - . <> *— -—o—9

Figure 3.2. The Trees forming the class T"(9) = {T(9,3,3) (right), T(9,2,5) (left)}.
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3.1. Comparing First Zagreb Index and the Maximum Degree of Trees

In this section we give an important theorem which states the relationship between
The First Zagreb index and the maximum degree for trees.

Theorem 3.1: (Das et al, 2012). Let accept that T be a tree graph with n vertices and
maximum degree A. Then
M; (T) <n®—3n+2(A+1) (3.6)
With equality number (1) holds that if and only if T=Kj -1 0r T=P..
Proof: If T = Kyna, then My(T) = n® — 3n + 2(A + 1) = n(n — 1), the equality holds in
(1). If T =Py, then My(T) =4n - 6<n’—3n+2(A+ 1) forn>4and My(T) = 4n-6 =
n2—3n+2(A+1) for n = 4. Das et al, assume that T # Ky,n-1, P ,2that is, 3 < A < n —2. For this
situation we need to demonstrate that the imbalance in (1) is strict. Allow v; to be the most
extraordinary degree vertex of degree A in T. Also let vy be a vertex of degree one, nearby
vertex v;j of the degree djj# I in T . We change T into another tree T* by erasing the edge
viv; , and joining the vertices v; and vi by an edge. Let the new degree sequence be
< dj, d3, ... ,dp, >. Therefore df = d; fort#1i, jwhereas df = A+ landd; = dj —
1. Thus

M,y (T) = My (T) = A2 +d? — (A+ 12— (4= 1)" = —2(A—d; + 1) < -2
because A — dj > 0. Therefore we have M;(T) < M;(T*) — 2, with equality holding if
and only if A = .
By the above portrayed development we have expanded the estimation of My(T) . If T is
the star, then T= S,,-1, A = n—2 and hence My(Spn-1) = N> —3n+6 < n’> —n-2,,
as n >4 (T # Ky ,-1,P,). Otherwise, the construction is continued as follows. If one
pendent vertex was chosen, which is not adjacent to v;, from T*. Rehashing the above
system adequate number of times, touched base at a tree in which the vertex v; is of degree
n— 1,1 e, Ky nq. Thus
My (T) < M1(T*) — 2<My (T*)~4 < - - -< My(Kyp1)-2(n-A-1) = n*-3n+2(A+1)
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That is, My (T) < n® = 3n + 2(A+1). o.
3.2. Second Zagreb Indices
The Second Zagreb Index can similarly be characterized as a whole finished the

all edges of the graph (G) and the calculation for Second Zagreb Indices by the below

equation. (Gutman and Trinajsti¢, 1972).

1
3
3
6 6
2

Figure 3.3. Second Zagreb Indices.
Mz (G) = Xuver(s) d(w)d(v) 3.7)
M = M(G) = [luver d(u) d(v) (3.8)
M, (G) = Xuver(s) d(w)d(v) (3.9)

M,(G) = 19
d(u)d(v) € E(G) (the degree of edge)

3.3. Comparing the Second Zagreb Index and Co-index of Trees

The First Zagreb Index of (M;(G)) and the Second Zagreb Index of
(M,(G)), as well as First Zagreb co-index of M, (G), the Second Zagreb co-indices M, (G),

and the relation between this two type of Zagreb indices and co-index of trees are
observed. An upper bound on the M, (T) and the lower bound on the 2M,(T) + %Ml(T) of

trees acquired, in relations of the number of vertices (n) and maximum degree (A).
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Lemma 3.3.1. (Das et al., 2012) if G be a simple graph with edges denoted by m and
vertices denoted by n. Then,
M2(G) = 2m* = My(G) — 3 My (G) (3.10)
For the Path P,(n = 5),

M,(P,) = 2n? — 10n + 13 > 4n — 8 = M, (P,).

Note that A(P,) = 2. For trees with A-values greater than 2 we have.

Theorem 3.3.2. (Das et al., 2012) if the T be tree of command n with maximum degree A.
If

4. 228 L
A 21.5+\/5n 0 (3.11)

Then
M, (G) < M, (G).

Proof: From Lemma 3.3.1,

. 1
M2(G) = M,(G) = 2(n — 1)* = 2M(G) — =My (T)
5 15
<20’ —2n+2 - (G4 ——+10n - 14)

5 15
=2n2—14n—(zA2+7+16)SO

As

173

A21.5+\/in2—§n+—.
5 5 20

In the accompanying two outcomes, we give upper limits on the first and second Zagreb

files of trees in wording of n.
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3.4. On the Relation between the First Zagreb Index and Second Zagreb Index

The Zagreb indices of the simple connected graphs where defined as over forty years

ago by Gutman and Trinajsti¢, (Gutman et al., 1972). In mathematical and chemical
literature, the Zagreb indices and related parameters of graphs has been studied abundantly.
Liu and You, getting the several original inequalities established among the First Zagreb
Index and Second Zagreb Index. (Liu et al., 2011).
The M, (G), represented to as the summation of the degrees of all vertices power two, and
Second Zagreb index (or list) of the simple connected graph G, M, (G) is represented as the
summation of the multiplicative of the degrees of all edges. (Reti, 2012).

The difference between the First and Second Zagreb Index started by (Hansen et al.,

2007). Hansen and Vukicevi¢ conjectured that
M (3.12)

n m

And this inequality named as Zagreb indices inequality by Gutman et al. (Gutman et al.,
2011). Its shown that this inequality holds for sub division graphs, biregular graphs and

triregular graphs. The equality version of the Zagreb inequality

M; M,
n m

Has been investigated by (Hansen et al., 2007). They showed that this equality holds foe

(3.13)

regular graphs. Reti investigated some graph classes which are satisfying this equality
(Reti, 2012). Das and Gutman, has proved that there is no simple connected triregular graph
which are fulfill the Zagreb records balance. Additionally they displayed that if a graph G
with most extreme degree for achieves the Zagreb indices equality. For the case the graphs
with maximum degree five do not hold the Zagreb indices equality. (Das et al., 2004). In
the same article, the authors proved that,

M; + 2M, < 4m? (3.14)
With correspondence holds for if and only if G is the basic simple graph on number of n
vertices. Moreover some authors presented that for a graph G;

M, < 2m? — (n— 1)mé + (5 — )M, (3.15)

With equality if G is a star graph or regular graph. (Das et al., 2004).
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And now we give the below proposition which states that relationship between maximum

degree, size, My, M,.

Proposition 3.4.1. (Reti, 2012) Let G be is a connected graph then
M

With equality holds for if G is regular.

M, >

Proposition 3.4.2. (Reti, 2012) Let G be is a simple connected graph then

My <=2+ 6m (3.17)
And
My < =%+ Am (3.18)

In two cases, the equalities satisfies if and only if, G is a connected biregular graph or

regular graph.

Corollary 3.4.3. (Reti, 2012). Since § < [d] = 2% < A, from (3.16) we have

My _My m?
Similarly, from (3.17) we have

MZ _ TlMZ
M; < il +Am = —+ Am. (3.20)

It is clear that this equality satisfies for fixed graphs.

Corollary 3.4.4. (Reti, 2012). Using (3.16) and (3.17) one obtains directly,

My <M (F+3)+ma+6)} =225 +m) (3.21)

and

M, < \/ (%2 +om) (2 + am) (3.22)
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From the prior consideration it illustrated that equality satisfies in (3.16) and (3.17) not a
lone for the regular graphs but also for simple associated biregular graphs.
On the most extreme Zagreb indices of non-star trees with a Stratified Domination

number denote by 7 (n,yg) a set of n-vertex non-star trees whose (stratified) Fj-
domination number is yg,. We will decide trees from 7' (n,yg,) whose Zagreb indices are
maximum. Obviously, yg, (T) = 2 if and only if diameter (T) is tree (i.e T is a double star)

see the below Example:
o

/

o
Figure 3.4. Non-Star Trees with a Stratified Domination Number.

If the randomly chosen both leaves from different stars is colored blue, the F;-dominating
of the tree T is two. (Teresa et al., 2009). Showed that all connected graph (G % K; ,,) of
instruction n > 3, ¥, (G) < 2”/3 :

Let Ty, denotes the non-star tree acquired from the separate union of a star K, ,,_,,. ) and
sub divided star K*;,_,_; by connection a leaf of the star to the central vertex of the

sectioned star.
If A=n —ypg, in atree T of request n and domination number denoted by vy, at that point

T =T,p,.

The first indices of a tree Tnyp,CaN be calculated as (Fink et al., 1985).

Proposition 3.4.5:
My(Tpy) =2(n—y)2 +6(n—y) —2 (3.23)

For n=9, y=4, the tree T,, g,are illustrated below.
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Figure 3.5. Stratified Domination of T;, r, with the maximum the First Zagreb Index.

The degree of the T, yp, are classified by in table 3.1

Table 3.1. Show the degree for T, yr,

Degree Number
1 YE, — 2
2 n—y
n—Yg, 2

And now, we begin to compute M, (Tn, VF3)- From definition of the first Zagreb index;

Ml(Tn,yF3) = Z deg(v)? = (yF3 —2).12+(n—-p)4+(n— Ye,)% 2

UETn,)/F3
=y =-2+4n—-yY)+2n—-y)?>=2n—-py)?+4(n—-y)+y -2
Example 3.4.1:

Figure 3.6. Stratified Domination Graph Tjs 1.
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The T;s has the maximum First Zagreb Indices M;(G) among the all 15-vertex trees with
maximum g, .
For any non-star tree with n > 7 verticesn —y > 3.
Henning and Maritz proved the following facts. (Henning et al., 2004)
o If diameter (T) = 3 then yp, (T) = 2 thosen —y >3

e If diameter (T) = 4 then yp, (T) < nTH those n —y = nT_l z3
2

o If diameter (T) = 5 then yp (T) = ?n those yr, (T) = z?n if T =7 then

n—y>3forT=7, onn—-y>3 (T=7,, k=3) and yF3(T)<2?".
Thusn—y > g n —y = 3 since n and y must be integers.
o If diameter (T) = 6 then yx (T) < 2?" thosen —y > g >3
By the above facts (if T = 7" has order n, then diam (T) = 5 and y,(T) = 2?" Additional,

all vertex of T goes to same yp,-set of T).

Equality holds for the trees T = 7,

nYry®
/O
e @ O L

Figure 3.7. F3-domination in a Non-Star Tree.

In the above both equalities hold if and only if a pendent vertex of the sub divided star. Of
:7:;1;)/F3'

Theorem 3.4.6: Let tree T be a non-star tree with Stratified Domination Number v, then
M(T)<2n—y)2+4(n—y)+y -2 (3.24)
The equality holds ifand only if T =T,,,.

Before the proof we provide the below example about the theorem.
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Example 3.4.2: For n = 4,T = P,,yp, = 2 and M;(P,) = 6
6<2(4—-22+4.(4-2)+2-2
6 <16
The inequality in (3.24) is strict.
Forn =5,T = P5, T is isomorphic to a double star (As).
If T = P, then M;(Ps) = 14 and yr = 3
Then;
14<2(5-3)2+4.(5-3)+3-2
14 <17
The inequality in (3.24) is strict.
If T = As then M;(4s) = 16 and yr = 2. Then;
16<2(5-2)?+4.(5-2)+2-2
16 <30
The inequality in (3.24) is strict.
Forn = 6.
If T =P, or(T=T,)or
M;(Pg) = 18 and yp = 4.
Then;
18<2(6—4)>+4.(6—4)+4-2
18 <18
The equality in holds in (3.24).
If T = Pg, then these two possibilities of the choice of T. The first is T is double star. In this

case T must be the following trees T;, T,.

o T T o
Figure 3.8. An example of Stratified Domination of a Tree.
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For T;, M, (T;) = 22 and y(T,) = 2.
Then: From the inequality of (3.23) we can write that,
My (T) <2(n—y)*+4n—y)+y—2
22<2.4°4+44+0
22 <48
The inequality in (3.24) is strict
For T,, M,(T,) = 24, and y(T,) = 2.
Then; From the inequality of * we can write that,
Mi(T,) <2(n—y)* +4(n—y) +y—2
24 <2.4°4+44+0
24 <48
The inequality in (3.24) is strict.
The second choice of T is that T is isomorphic to a branch Ss,. For Ss,, Ml(SS’Z) = 20
and y(Ss,) = 3. Then from the inequality of star, we can write that
My(Ss2) <2(n—y)?+4(n—y)+y -2
20<2.32+43+1
20 <31
The inequality in (3.24) is strict.
And now, we give proof of the Theorem 3.4.6 for thatn > 7 and A> 3.
Proof of the theorem 3.4.6: Let P;,,:V,V, .......V; ., be a longest path in T, (d is a
diameter of T) and let A be a minimum F5stratified dominating set of T. Then |A| = y and
both vertices V; and V., are pendent.
Relucca proved that A< n — y. We can prove that theorem by introduction on n.
For every non-star tree with 4 < n < 6, this is trivial statement of the theorem holds.
Expect that, the theorem holds for a possible integer n and prove that the report holds for
true when n replace by n+1.
There are two possible cases.

Casel: yp, (T — {V1}) = yg, (T). From the induction hypothesis,
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My(T) = M(T = {V1}) + 2deg(V;) <2(n—y)* +4(n—y) +v — 2+ 2deg(V>)
=2n—-y+1?>+4(n—-y)+y—-2+2(deg(V,) —2(n—y) + 3)

Sincedeg(V,) <A<n—-y<2n—-y+1)?*+4(n—-y)+y-—2.

Case 2: Suppose next that v, (T — {V1}) = vy (T) — 1.

/N

Figure 3.9. Stratified Domination Number.

At that point, by the meaning of stratified domination number it must be d(v,) = 2,
d(v,) = A, d(v,) is diametrical path by the induction hypothesis,
My(T) = My(T —{(;}) + 2deg(V,) <2(n—y)* +4(n—y) +y =2+ 2deg(V,)
=2n—y+1D?+4(n—y+1)+y—-2+2deg(V,) —2(2n—2y + 1).

Proposition 3.4.7: Let T € T,,, be a tree then
My(T) =3(n—y)>+5(n—y) —2 (3.25)
Proof: Observe that from the Figure 3.10.

[ o —©

e <;I

L
Figure 3.10. Stratified Domination Graph T, 1.

o

Figure 3.10, there are three types of edge. The first type edges with its end vertices consist
of the degree 1 and the degree 2. And the number of the first type of edges is A — 1.
The second type of edges which it is end vertices consist of the degree 1 and degree A. And

the number of the second type of edges is A — 1. And the third type edges which its end
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vertices consist of the degree 2 and the degree A. And the number of the third type of is
A+ 2.

Hence M,(T)=(A—-1).21+ (A —-1)(A1)+ (A+2)2A
=(2A—2) + A2 — A+ 2A? + 4A=3A%> +5A -2
SinceA=n-—-y

We can rewrite the last equality as 3(n — y)%? + 5(n —y) — 2.
Theorem 3.4.8:

M,(T) <3(n—y)*+5(n—y)—2 (3.26)
the equality holds if T =T, ,, .
Proof: For A= 2, the equality is satisfied.
For A> 3, we illustrated the inequality by generation on n.
Let diametrical path of the T is P;,1:V;V, ...V, Of length d, d is a diameter of Tree T.
The vertex V, is adjacent to ;. We decate S(v,) the sum of neighboring vertices of V.
Then

S = ) dw-di) - Y dw <2 -1) - dl) - (n-1-d(1)

veV(T) v, €V (T)
=(n-1)
Notice that S(v,) = (n — 1) when all vertices not adjacent to V, are pendent. There are two
possible cases.
Casel: yx(T — (V,)) = y(T)

M,(T) = My(T){V;} + S(V,) + d(V,) — 1
<3n-y-1?+5n—-y—-1)—-2+n—-1+d(V,) -1
<3n—y)*+5(n—-y)—2

Since d(V,) < A< (n —y). Accordingly the inequality holds by mathematical induction.
The equality holds for if d(V,) —n — y the vertices not contiguous to V, are pendent i.e.
T =T,

Case2: yp(T — (V) =y(T) — 1

In this case d(V,) must be equal two. By the mathematical induction and faucet that
S(v,) =1+ d(V3). We have
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My(T) = My(T{V} +SV3) <3(n—y—1)245(n—y—1)—2+n—-1+d(Vs) +2
<3(n—y)*+5(n—y)—2

Since d(V3) < n < (n —y). Clearly the equality holds T = T, ,,.

Example 3.4.3:

=

Figure 3.11. Stratified Domination Graph T4 1.

The T,, has the maximum Second Zagreb Indices M,(G) among the all 24-vertex trees
with maximum yg,

Theorem 3.4.9: (Chartrand et al, 1997). If the G is a simple graph of connected order at
least 3 and then for i € {1,2,4,5}, the parameter y, (G) is illustrated in table 3.2:

Table 3.2. Parameter yp,(G)
[ 1 2 4 5
e, (G) ¥ (G) y(G) ¥-(G) ¥2(G)

Where y,(G) means the total number, y,.(G) denote the restrained domination number and

¥, (G) denote the 2-domination number.

Fy F; F3 Fy Fs

Figure 3.12. The five 2-stratified domination graphs.
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The parameter yp, (G) appears to be new. k-step domination is different from Fj;-
domination. For the set the SV is called that a k-step set of domination if for all
vertexu € V — S, there always exist a path graph of length k from the vertex u to some
other vertex in S. The minimum order of any k-step dominating setoff the graph G gives the
k-step domination number. The difference in F;-domination and 2-step domination is
explained as follows: in F5;-domination all the blue vertices must lie in a blue vertex-blue
vertex-red vertex path (of length two) to some the other red vertices. Because of this fact
we clearly state that all 2-step dominating set is a stratified dominating set, but the contrary
not need hold. For example let us look to star graph. The stratified domination number of a
star with un vertices is equal to n but the k-step domination star number equals two.
Henning and Maritz studied the F;-dominating number of trees and proved the following
fact.

Proposition 3.4.10: (Henning and Maritz, 2006). For n = yg,

k) =57+ 5] - [ (@27

3



4. ECCENTRIC CONNECTIVITY INDICES OF GENERALIZED PETERSEN
GRAPHS

Chemical graph theory has an important effect to develop new drugs in medicine
and pharmacology by using topological indices. For convenience we use the abbreviations
ECI and CEI for the Eccentric connectivity index and connective eccentricity index,
respectively ECI and CEI are among these classes of indices. Sharma et al. (1997)
introduced the ECI, for a graph, for the development of some new drugs. Sardana and
Madan (2001). GUPTA, (2002). Wang, (2015) Investigated extremal trees of the ECI.
Venkatakrishnan et al. (2015) computed the ECI of generalized thorn graphs.Das and Arani
and Das (2015). compared between the Szeged index and the ECI. Ashrafi et al. (2011)
computed the exact value of the ECI of nanotubes and nanotori. Morgan et al. (2014),
investigated the extremal regular graphs with respect to the ECI. Dosli¢ and Saheli. (2014)
studied the ECI of composite graphs. Zhang et al. (2014) characterized maximal graphs
respect to ECI. Dankelmann et al. (2014) studied the relation between Wiener index and
ECI. Eskender and Vumar (2013) computed the exact value of ECI and eccentric distance
sum of some graph operations. Hua and Das (2014) studied the relationship between
the ECI and Zagreb indices. Zhang et al. (2012) investigated the minimal ECI of graphs.
For more explanation discussion we refer the reader to Morgan et al. (2013) and references
therein.

Gupta et al. (2000) introduced connective eccentricity index when considering the
antihypertensive action of derivatives of N-benzyl imidazole. Yu and Feng (2013) derived
upper or lower bounds for the CEIl in terms of various graph invariants such as the
minimum degree, maximum degree, vertex connectivity, radius, independence number etc.
Moreover, the authors in Yu and Feng (2013) investigated the maximal and the minimal
values of CEI between all n-vertex graphs with stable number of pendent vertices,
characterized the extremal graphs and considered the cactus on vertices of n with k cycles
having the maximal CEI. Yu et al. (2014) considered the connective eccentricity index of
trees and unicyclic graphs with given asotti diameter. Xu et al. (2015) investigated some
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extremal results on connective eccentricity index. For more explanation discussion we
mention the interested reader to Li and Zhao (2016) and references therein.

Computing some graph invariants of generalized Petersen graphs have been well
studied in graph theory. For coloring of generalized Petersen graphs see in Zhu et al. (2016)
and references therein. For computing domination number of generalized Petersen graphs
see in Wang et al. (2015) and references therein. For computing labeling of generalized
Petersen graphs see in Benini and Pasotti. (2015) and references therein. For computing
decycling number of generalized Petersen graphs see in Gao et al. (2015) and references
therein. And for computing connectivity of generalized Petersen graphs see in Ferrero and
Hanusch (2014) and references therein.

There is not any study related to computing topological index of generalized
Petersen graphs in the literature for the time being. The aim of this chapter is to compute
the eccentric connectivity and the connective eccentricity indices of generalized Petersen
graphs.

Firstly we compute the eccentricities of the vertices U and W of GP(n,1) and
GP(n,2) and secondly, we compute the eccentric connectivity index and the connective
eccentricity index of GP(n,1) and GP(n,2).

Proposition 4.1. The eccentricity of a vertex u, of U in GP(n,1) is

g, = [%11 (4.1)

Proof. Notice that the generalized Petersen graph GP(n,1) consists of two n-vertex cycles

in which corresponding vertices of U and W say u, and W, are adjacent to each other.
And we know that the eccentricity of a vertex of a n-vertex cycle equals EJ . Therefore

from this point of view we can say that the eccentric vertex of a vertex from U lies in the

set W. Let u; €U . Then the path uww,_,w,,,..w w or uu, U ,..u u,  w
iJ{EJ—l i{fJ 'J{ J—l |+t J iJ{EJ

n n
2 2 2

is the eccentric path of u;. Thus &, :1{%:(”7“] From symmetry all the

eccentricities of the vertices of U equals the same value. Therefore the proof is completed.
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Proposition 4.2. The eccentricity of a vertex w, of W in GP(n,1) is

[n+1—‘
Ey =
| 2 (4.2)

Proof. Let w, eV . From the same arguments of the proof of the Proposition 4.1. we get

n S |n
— i+
2 2

the eccentric paths of w; , Wiuiumum...ui{ J7lul+{ J or W‘W‘“W‘*Z'"Wi{EJlei{” Ju' H Thus
2

&y, =1+EJ = [HTH] . From symmetry, all the eccentricities of the vertices of W equal the

same value. Therefore the proof is completed.

Proposition 4.3. Let n>3 be odd integer. The eccentricity of a vertex u, of U in GP(n,2)

is 2, {EJ 4.3)

2
:

eccentric paths of the vertex u, . Then the eccentricity of u, is EJ . From the symmetry all

Proof. Let u; be a vertex of U. Then the paths uu,,,...u J and uw,w,,,..w Ju_ t are the

i+1°, {n PN 2T tn
i+ — i+ =
2 2

the eccentricities of the vertices of U are EJ )

Proposition 4.4. Let n>6 be even integer. The eccentricity of a vertex u, of U in

GP(n,2) is &, = EJ

(4.4)

Proof. Let u, be a vertex of U. Then the paths uiu”l'”uHH and Uiy g W g W . W Hui+H
2

are the eccentric paths of the vertex u,. Then the eccentricity of u; is EJ . From the

I . n
symmetry all the eccentricities of the vertices of U are LEJ .
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Proposition 4.5. Let n>3 be odd integer. The eccentricity of a vertex w, of W in GP(n,2)
is z, =PJ (4.5)

Proof. Let w, eV . The path w.u,u,,,u;,,...u H u m is not the eccentric path of w; .
i+ - -1 i+

2

n

2

Because the path ww,,,..w { Ju_ F
2

J is shorter. Then the eccentricity of w; is EJ . From

the symmetry all the eccentricities of the vertices of W are E J :
Proposition 4.6. Let n>6 be even integer. The eccentricity of a vertex w, of W in
: n
GP(n2) is &, :{EJ (4.6)

Proof. Let w, eV . The path wu,u, ,u;,,..u { J_lu_ HW_ {n
+ i+ 3

is not the eccentric path of w, .
2] ]
Because the path w,u,u;,,u;,, W, ,..W m is shorter. Then the eccentricity of w, is EJ . From

2
the symmetry all the eccentricities of the vertices of W are E J .
Theorem 4.7. The eccentric connectivity index of GP (n, 1) is
n+1
& (GP(n,1))=6n| — |.
(6P(ny)-6n| "2
Proof. From the definition of the eccentric connectivity index, we can directly write;

£°(G)=¢°(GP(n,1))=> &,

veV

(4.7)

Since the all generalized Petersen graphs are 3-regular, then we get;

£°(GP(n1)=> g4, =3> ¢,

veV veV
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We know that gvz(nTﬂw for every vertex of veV from Proposition 4.1 and

Proposition 4.2. And we know that the generalized Petersen graphs have 2n vertices from

the definition of the generalized Petersen graphs. Then, we can get;

& (GP(n,1)) =3¢, =3. 2n[”;ﬂ_6n[”7+11.

veV

Theorem 4.8. The eccentric connectivity index of GP (n, 2) is
n
‘(GP(n,2))=6n| —|.
o (GP(n2))=on 3|

Proof. From the same facts stated in the proof of Theorem 4.7. We can write;

£°(GP(n,2))=>d,=3>¢,.

veV veV

(4.8)

We know that ¢, = EJ from the Proposition 4.3, Proposition 4.4, Proposition 4.5 and

Proposition 4.6. Then, we can get;

£°(GP(n,2))=3% ¢, —6nL J

veV
Theorem 4.9. The connective eccentricity index of GP (n,1) is

g°e(GP(n,1))[n6+11. (4.9)

2

Proof. We can directly write gce(GP(n,l)):Zd—V. From the above arguments in

veV gv

Theorem 4.5 and the definition of the connective eccentricity index, we get that;

d 1 6n
®(G)=&“(GP(n,1))=» —~=3.2n. = .
£"(@)=e"(CP(Y) =2, =3 ”[nﬂ {n+11
2 2
Theorem 4.10. The connective eccentricity index of GP(n,2) is
6n

g"e(GP(n,Z)):m. (4.10)
2
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Proof. We can directly write g°e(GP(n,1)):zd—V. From the above arguments in
veV 8\/

Theorem 4.6 and the definition of the connective eccentricity index, we get that;

£*(G) = £*(GP(n, 2)) = Zi _3on L - ON

S FRH]
2 2
Example 4.1: Consider the Eccentricity vertex u for the below Graph.

u

b
O O

0
0"

d o

Figure 4.1. Eccentricity graph.

Eccentricity for a vertex u € G the ecc (u) is denoted by g(u), ecc(u)=max {d(u,v) | veG}
Is the furthest distance between u and any vertex for example e.
diu,f) =1, dwa) =2, dub)=3, duc)=4 dud =3, due) =4,
ecc(u) =4
In the same way we get:
ecc(f) = 3,ecc(a) = 2,ecc(b) = 3,ecc(c) = 4,ecc(d) = 3 and ecc(e) = 4
For the above graph we can calculate the eccentricity connective index by below equation:
ECI(G) = Yy ey deg(u).ecc(u) (4.12)
ECl=14+23+33+14+23+24=37

And for calculating connective eccentricity index CEI, we can calculate by below equation:

CEI(G) = ¥ ey 228X (4.12)

ecc(u)
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Example 4.2: Draw the Generalized Petersen Graph, G(8, 2)
In the generalized Petersen graph we have two vertex sets for example U and W, U =
(uq, uy, ..., ug) and w = (wy,wy, ...,wg), every time the set U represent a cycle and

corresponding vertices between U and W are adjacent each other and the other edges of

consists of w;w; .,

Figure 4.2. Generalized Petersen Graph (8, 2).

Example 4.3: Draw the Generalized Petersen Graph, G (8, 3)

In the generalized Petersen graph we have two vertex sets for example U and W, U =
(uq,uy, ..., ug) and w = (wy,wy, ..., wg), every time the set U represent a cycle and
corresponding vertices between U and W are adjacent each other and the other edges of

consist of w;w;,5 .



Figure 4.3. Generalized Petersen Graph (8, 3).
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5. CONCLUSION

Graph theory has become an important discipline in its own right because of its
applications to computer science, communication networks, and combinatorial optimization
through the design of efficient algorithms. It has seen increasing interactions with other
areas of Mathematics. We know there are many interactions between the theories of a graph
and other branches of mathematics,

Firstly, a graph is an order pair of a non-empty set of objects called vertices along
with an unordered pair of distinct vertices (or peaks) called edges. In this thesis, we
investigate the relationship between Zagreb indices and stratified domination number of
trees.

We focused on the relationship between Zagreb indices and domination number
exactly stratified domination number. In chapter one, necessary definitions and theorems
related to graph theory are given. Basic facts and theorems about Zagreb indices are given
in chapter two.

Also we computed the eccentric connectivity indices for the generalized Petersen
Graphs in chapter three.

The literature review of the Zagreb indices and domination number are given in
chapter four. The relationship between Zagreb indices and stratified domination number of
trees are given.

We give two novel theorems which characterize maximum trees with a given
stratified domination number.

Finally the thesis includes some tables and some figures on the Zagreb indices and
stratified domination number of trees, and some equation for calculate the first and second
Zagreb indices.

And computed some theorems and propositions about eccentric connectivity
indices for the generalized Petersen Graphs.
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APPENDIX

EXTENDED TURKISH SUMMARY
(GENISLETILMIS TURKCE OZET)

AMAC

Uygulamali Matematigin bir dali olan graf teorisi, miihendislikte, farmakolojide,
kimyada ve sosyal bilimlerin bir ¢ogunda karsilasilan problemlerinin modellenmesinde ve
cozumlerinde gereklidir. Graf teorisinin i¢inde yer alan ve graf teorisinin bir alt dali olan
Kimyasal Graf Teorisi glinlimiizde popiilerligini giderek arttirmistir. Bunun bir nedeni de
topolojik indekslerin 6zellikle ilag dizaynlarinda kullanminin giderek artmasidir.

Topolojik indeksler fizikte, kimyada ve farmakolojide, molekiillerin baz1 fiziksel ve
kimyasal 6zelliklerini modellemede yaygin olarak kulanilagelmislerdir. Bir graf degismezi
olarak bir grafin resimsel goriintiisiinden bagimsiz olarak elde edilen bir topolojik indeks,
graf yapisindan elde edilen bir niimerik degerdir. Molekiillerin graflarindan elde edilen
topolojik indeksler bu molekillerin fiziko-kimyasal ve biyolojik bazi 6zellikleri arasinda
bir korelasyon olustururlar. Boylece toplojik indeksler, deney yapilmasmin ¢ok zor ve
miimkiin olmadig1 durumlarda tahmin i¢in 6nemli birer araglardir.

Literatiirde su ana kadar yaklasik binden fazla topolojik indeks hem kimyasal graf
teorisyenleri hem de graf teorisyenleri tarafindan tanimlanmistir. Bir topolojik indeksin
baska bir topolojik indeksinden daha buylik bir korelasyon vermesi onun kabul
edilebilirligini arttirmaktadir. Topolojik indeksler dort kisma ayrilirlar. Bunlar, derece
temelli topolojik indeksler, uzaklik temelli indeksler, derece ve uzaklik temelli indeksler ile
esleme teorisine dayali indekslerdir. Bu siniflandirmaya dayali olarak en ¢ok bilinen ve
pratikte uygulamasi olan indeksler, Wiener, Zagreb, Hosoya, Estrada, En uzak baglantililik
indeksleridir.

Topolojik indeksler iizerine yapilan ¢alismalar temelde tige ayrilirlar. Bunlardan birinci
tiir alimalar kimyasal dzellikleri topolojik indeksleri kullanarak tahmin etmedir. ikinci tiir
caligmalar matematiksel agidan bu indekslerin sinirlarimi  bularak diger graf

parametreleriyle olan iliskilerini ortaya cikarmaktir. Ugiincii tiir calismalar ise belli
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bilgisyar aglarinda ve molekiil modellerinde topolojik indekslerin degerlerini bulmaktir.
Dogal olarak kimyacilar birinci tiir ¢alismalar ve graf teorisyenleri de ikinci ve {liglinci tiir
caligmalara agirlik vermislerdir.

Derece temelli indekslerin en yaygin kullanilan1 Zagreb indeksleridir. Literatiirde
Zagreb indeksiyle ilgli yakalsik ikibin besyliz makale mevcutttur. Zagreb indekslerinin
baskinlik parametreleriyel olan ilskileri son iki yildir aragtirmacilarin dikkatini ¢ekmistir.
Su ana kadar Zagreb indekslerinin aga¢ graflarinda alt ve iist sinirlar1 adi baskinlik
parametresine gore ifade edilmistir.

Yine derece-uzaklik temelli topolojik indekslerin iginde en yaygin kullanilan1 en uzak
baglantililik indeksidir. Matematiksel ac¢idan su ana kadar yapilan calismalar en uzak
baglantililik indeksinin alt, iist sinirlari, diger graf degismezleriyle olan ilsikisi ve baz1 graf
siiflarindaki degerinin hesaplanmasi olarak icra edilmistir.

Genellestirilmis Petersen graflarinda derece temelli topolojik indekslerin degerinin
hesabinin, bu graf ii¢ diizgiin dereceli oldugundan bir 6nemi yokur. Fakat uzaklik ve 6z
deger temelindeki indekslerin genellestirilmis Petersen graflarindaki degerinin hesab1 hala
gizemini korumaktadir. Genellstirilmis Petersen graflarinda belli graf degismezlerinin
hesaplanmasi da yine arastirmacilar tarafindan ygun olarak yapilmaktadir.

Asagida verilen literatiir taramasinda goriilecegi ilizere Zagreb indeksleerinin
parcalanigh istiinliik sayilarina gore alt ve iist sinirlarinin ¢alisildigr  bir ¢alisma heniiz
yapilmamustir. Yine herhangi bir uzaklik temelli bir topolojik indeksin ve uzaklik-derece
temelli bir topolojik indeksin genellestirilmis Petersen graflarindaki degerlerini igeren bir
caligmada heniiz yapilmamistir.

Bu dogrultuda bu tez calismasinda iki amag giidiilmiistiir. Bunlardan birincisi, Zagreb
indekslerinin pargalanigh baskinlik sayilar1 kullanilarak var olan iliskilerini agag¢ graflarinda
alt sinirlar tiiriinden ortaya koymaktir. Ikincisi ise genellestirilmis Petersen graflarinda en

uzak baglantililik ve baglantili en uzaklik indekslerinin degerini hesaplamaktir.
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MATERYAL METOT

Bu calisma da konuyla direkt ilgili olan makaleler elde edilerek incelenmistir. Nitel
arastirma yontemlerinden olan dokiiman analizi yontemiyle mevcut literatiir iyice taranmis
ve ilgili literatiirde heniliz ¢alisilmamis yukaida bahsedildigi lizere iki yeni konu tespit
edilerek, elde edilen yeni teoremler matematiksel ispat yontemlerinden Timevarim

yontemiyle ispatlanmistir.

KAYNAK BILDIRISLERI

Ik uzaklik temeline dayali toplojik indeks Wiener tarafindan 1947 yilinda alkanlarin
baz1 kimyasal 6zelliklerini modellemek i¢in tanimlandi (Wiener, 1947). Wiener’den sonra
yiizlerce topolojik indeks matematik¢i ve kimyacilar tarafindan tanimlanarak bir ¢ok
kimyasal ve matematiksel 6zellikleri ¢alisildi. Ayn1 yil, ilk derece temelli topolojik indeks
Platt tarafindan Onerildi ve alkanlarin baz1 fiziko-kimyasal 6zelliklerini modellemede
kullanld: (Platt, 1947). Bu iki ¢alismadan yaklagik 25 yil sonra literatiirde iyi bilinen
Zagreb indeksleri, Gutman ve Trinajsti¢ tarafindan tanimlanarak karbonlarin elektron enerji
seviyelerini modellemede kullanildi (Gutman and Trinajsti¢, 1971). 1975 yilinda, Randi¢,
“Randic indeksi” tanimlayarak yine karbon atomlarinin molekiiler dallanmasini
modellemede kulland1 (Randi¢, 1975). Biitiin topolojik indeksler igerisinde yukarida
bahsedilen indeksler diger indekslere gore teorik yapi caligmalarinda kimya ve matematik
literatiiriinde daha ¢ok kullanilmislardir. Zagreb indekslerle ilgili yapilan ¢aligmalarin bir
Ozeti icin (Nikoli¢ et al, 2003), (Gutman and Das, 2004) ve (Liu and You, 2011)
calismalarina bakilabilir.

Topolojik indeksler ile baskinlik sayis1 arasindaki ilsikileri inceleyen ¢alismalar
literatiirde heniiz baglamistir. 2016 yilinda Borovic¢anin ve Furtula ufuk agict bir ¢aligma
yayimladilar. Yazarlar bu ¢aligmalarinda Zagreb indeksin baskinlik sayisi ile olan iliskisini
inceleyerek Zagreb indeksin ekstremum agag¢ graflarin1 karakterize ettiler (Borovi¢anin ve
Furtula, 2016). Ayn1 zamanda Liu ve ark. Harmonik indeksle baskinlik sayisi arasindaki

iligkiyi incelediler (Li et al, 2016).
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Graflarda uzaklik ve derece kavramlarini ilk kez bir araya getiren Sharma ve ark. 1997
yilinda en uzaklik baglantilik indeksini tanimlayip bazi ilaglarin dizayninda nasil
kullanildigin1 gosteren calismalarini yaymladilar. En uzak baglantillik indeksinin biyolojik
ve farmakolojik olaylart nasil modelledigine dair (Sardana ve Madan, 2011) ve (Gupta ve
ark., 2002) nin ¢alismalarina bakilabilir. Ashrafi ve ark. Nanaotipler icin en uzak
baglantililik indeksini hesapladilar (Ashrafi ve ark., 2011). Zhang ve Zhou graflarda
minimum en uzak baglantililik indeksini arastirdilar (Zhang ve Zhou, 2012). Morgan ve
ark., 2012 de en uzak baglantililik indeksinin alt sinirin1 karakterize eden calismlarini
yaptilar. Hua ve Das Zagreb indeksinin en uzak baglantililik indeksiyla olan iliskisini
incelediler (Hua ve Das, 2013). Eskender ve Vumar graf islemlerinde en uzak baglintililik
indeksinin nasil degistigini arastirdilar (Eskender ve Vumar, 2013). Dankelmann ve ark.,
2014 de Wiener indeksiyle en uzak baglantililik indeksini karsilagtirdilar. Doslic ve Saheli,
2014 te bileske graflarinda en uzak baglantililik indeksinin nasil bir degisim gosterdigi
iizerine ¢aligmalarini yaparak konulya ilgli olarak bir ¢ok esitsizlig ifade ederek ispatladilar.
Morgan ve ark., 2014 te yine en uzak baglantililik indeksinin maksimum degerlerini
agacgraflari, tek ¢evre igeren graflar , iki ¢evre igeren graflar ve {li¢ ¢evre igren graf siniflari
icin karakterize ederek bir ¢ok {ist sinirlart esitsizlikler halinde sundular. Wang, en uzak
baglantililik indeksine gore ekstremal aga¢ graflarimi karakterize etti (Wang, 2015).
Venkatakrishnan ve ark., 2015 te genelestirilmis diken graflarinda en uzak baglantilik
indeksini arastirdilar.

Baglantili en uzaklik indeksi Yu ve Feng, 2013 tarafindan tanimlanarak tek ¢evre iceren
graflardaki degisimleri analiz edilmistir. Yine Yu ve ark.,, 2014 te aga¢ graflarinda
baglantili en uzaklik indeksinin degerini arastirdilar. Xu ve ark., 2015 te baglantili en
uzaklik indeksinin ekstremal degerlerini incelediler. Li ve Zhao, 2016 da aga¢ graflarinda
verilen degisik uzaklik parametrelerine gore baglantili en uzaklik indeksinin degismini
formuluze ettiler.

Genellestirilmis Petersen graflar1 graf teorisinin bir alt dali olan ag teorisinde dnemli
uygulamalara sahip olan énemli bir graf siifim teskil ederler. Ilgili literatiir incelendiginde
son yillarda arastirmacilarin daha ¢ok genellestirilmis Petersen graflarinda baskinlik

parametrelerini arastirmaya odaklandigin1 gostermektedir. Ayrica yeni ortaya atilan graf
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parametreleride yine Petersen graflari i¢in hsaplanmaktadir. Ancak topolojik indekslerin
genellestirilmis Petersen graflarindaki degerlerinin ne olacagi ile ilgili hi¢bir ¢alisma heniiz

literatiirde yer almamustir.

SONUGC VE ONERILER

Bu c¢alismada aga¢ graflarinin Zagreb indekslerinin parcalanigh baskinlik sayialrina
gore degerlerini ifade eden iki Onemli teorem ifade edilerek ispat edilmistir. Ayrica
genellestirilmis Petersen graflarinda, en uzak baglantililhik ve baglantili en uzaklik
indekslerinin degerlerini ifade eden alt1 yeni teorem ifade edilerek ispatlanmistir.

Diger graf siniflar1 i¢in 6rnegin tek ¢evreli graflar, iki cevreli graflar, ii¢ cevreli graflar,
aglar, genellestirilmis diken graflar1, benzen graflar1 gibi graflar i¢cinde Zagreb indekslerinin
parcalanish baskinlik sayilarina gore alt ve iist sinirlarinin bulunmasi ileriki ¢aligmalar icin
yapilabilir. Ayrica direkt c¢arpim, karetzyen carpim, tensdr cerpimi gibi bazi graf
islemlerinde Zagreb indeksinin parcalanigh tstiinliik sayilarina gore degisiminin alt ve {ist
sinirlarint hesaplamak gibi daha ileri ¢aligmalar yapilabilir.

Genellestirilmis Petersen graflarinda topolojik indekslerin degerinin nasil degistigini
hesaplamak kimyasal graf teirinin yeni bir alt alani olarak diisiiniilebilir. Ozellikle
genellestirilmis Petersen graflarinda Estrada, Gutman, Wiener indekslerini hesaplamak
ileriki caligmalar i¢in 6nem arzedebilir. Yine graf enerjisi, laplasyen graf enerjisi, esleme
enerjisi gibi yeni graf parametrelerinin genellsetirilmis Petersen graflarindaki degisimini

incelemekte yine ileride arastirmacilarin dikatini ¢ekebilir.
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