T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

FARKLI KAYALARDA TAZE VE BOZUNMUŞ YÜZEYLER ÜZERİNDE TEMEL SÜRTÜNME AÇISI DEĞİŞİMİNİN BELİRLENMESİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Ercan YALÇIN I.DANIŞMAN : Doç. Dr. Ali ÖZVAN II. DANIŞMAN: Doç. Dr. Mücip TAPAN

VAN-2018

T.C.

VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

FARKLI KAYALARDA TAZE VE BOZUNMUŞ YÜZEYLER ÜZERİNDE TEMEL SÜRTÜNME AÇISI DEĞİŞİMİNİN BELİRLENMESİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Ercan YALÇIN

Bu çalışma YYÜ Bilimsel Araştırma Projeleri Başkanlığı tarafından **FYL-2017-6464** No'lu proje olarak desteklenmiştir.

VAN-2018

KABUL VE ONAY SAYFASI

Jeoloji Mühendisliği Anabilim Dalı'nda Doç.Dr. Ali ÖZVAN danışmanlığında Erean YALÇIN tarafından sunulan **"Farklı Kayalarda Taze ve Bozunmuş Yüzeyler Üzerinde Temel Sürtünme Açısı Değişiminin Belirlenmesi"** isimli bu çalışma Lisansüstü Eğitim ve Öğretim Yönetmeliği'nin ilgili hükümleri gereğince 12/11/2018 tarihinde aşağıdaki jüri tarafından oy birliği ile başarılı bulunmuş ve yüksek lisans tezi olarak kabul edilmiştir.

Fen Bilimleri Enstitüsü Yönetim Kurulu'nun/..... tarih ve Sayılı kararı ile onaylanmıştır.

İmza

Enstitü Müdürü

1

÷

i i i

TEZ BÌLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

İmza Ercan YALÇIN

ÖZET

FARKLI KAYALARDA TAZE VE BOZUNMUŞ YÜZEYLER ÜZERİNDE TEMEL SÜRTÜNME AÇISI DEĞİŞİMİNİN BELİRLENMESİ

YALÇIN, Ercan Yüksek Lisans Tezi, Jeoloji Mühendisliği Anabilim Dalı I. Danışman: Doç. Dr. Ali ÖZVAN II. Danışman: Doç. Dr. Mücip TAPAN Aralık 2018,59 sayfa

Bu tez çalışmasında, farklı kayaçların bozunmamış ve yapay bozunma deneyleri sonrasında bozunmuş numuneler üzerinde temel sürtünme açısının (ϕ_b) belirlenmesi amacıyla Tilt testleri yapılmıştır. Bu testler, testere ile kesilmiş düz yüzeylerde, kuru, doygun-ıslak ve doygun-batık koşullarda ve iki farklı şekle sahip prizmatik numuneler üzerinde yapılmıştır. Temel sürtünme acılarının (ϕ_b) sonucları, kendi arasında ve bu çalışmada kullanılan kayaların bazı fiziksel, mekanik ve kimyasal özellikleri ile karşılaştırılmıştır. Bu testler sonucunda, şekilsel olarak 7x7x7cm'lik (uzun) numuneler yerine 7x7x3.5cm'lik (kısa) numunelerin kullanımının daha uygun olacağı belirlenmiştir. Genel olarak kısa numunelerin temel sürtünme açısının bozunma ile arttığı, doygun numunclerin temel sürtünme açısının ağırlığa bağlı olarak kuru numunelerden daha yüksek çıktığı, ıslak ve batık koşullarda adezyon kuvvetinden dolayı bazı numunelerde temel sürtünme açısının beklenenden daha yüksek çıktığı belirlenmiştir. Sonuç olarak; temel sürtünme açısının belirlenmesinde numune seklinin, yüzeyin ıslaklığının ve bozunma derecesinin etkili olduğu ortaya konmuş olup, laboratuvarda yapılacak testlerde kısa(7x7x3.5cm), kuru numunelerin kullanılması önerilmektedir.

Anahtar kelimeler: Bozunma, Kaya, Süreksizlik, Temel sürtünme açısı, Tilt testi.

ABSTRACT

DETERMINATION OF THE BASIC FRICTION ANGLE ON UNDETERIORATED AND DETERIORATED SURFACES IN DIFFERENT ROCKS

YALÇIN, Ercan M.Sc.Thesis, Department of Geological Engineering 1st Supervisor: Assoc. Prof. Dr. Ali ÖZVAN 2nd Supervisor: Assoc. Prof. Dr. Mücip TAPAN December, 2018, 59 pages

In this thesis, Tilt tests were carried out to determine the basic friction angle (ϕ_b) of the undeteriorated and deteriorated samples after the accelerated weathering tests. These tests were performedon saw-cut flat surfaces, in dry, saturated-wet and saturated-submerged conditions and on prismatic samples with two different shapes. The results of the basic friction angles were compared with the physical, mechanical and chemical values of the rocks used in this study. As a result of these tests, it was determined that the use of 7x7x3.5cm (short) samples rather than 7x7x7cm (long) samples would be more appropriate. In general, it was determined that the basic friction angle of the shorter samples increased with deterioration, also the basic friction angle of the saturated samples was higher than the dry samples due to weight, and the basic friction angle conditions. As a result; it was determined that the sample shape, the wetness on surface and the degree of deterioration are effective in determining the basic friction angle. In the laboratory tests, it is recommended to use short and dry samples to determine the basic friction angle.

Keywords: Deterioration, Rock, Discontinuity, Basic friction angle, Tilt test.

iv

ÖN SÖZ

Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği AnaBilim Dalı'nda hazırlanan bu yüksek lisans tez çalışması Van YYÜ Bilimsel Araştırma Projeleri Başkanlığı tarafından FYL-2017-6464 no'lu araştırma projesi ile desteklenmiştir.

Bu tez çalışmasını kapsayan sürecin başından sonuna kadar, maddi ve manevi her türlü destek ve yardımlarını esirgemeyen çok değerli danışman hocam Sayın Doç. Dr. Ali ÖZVAN'ateşekkür ederim. Bilgi ve deneyimlerinden yararlandığım İnsaat Mühendisliği Bölümündenikinci danışman hocam sayın Doc. Dr. Mücip TAPAN'a, Nevşehir Hacı Bektaş Veli Üniversitesi Jeoloji Mühendisliği Bölümü öğretim üyesi Sayın Doç. Dr. Mutluhan AKIN'a, Van Yüzüncü Yıl Üniversitesi Jeoloji Mühendisliği Bölümü öğretim üyesi Doç. Dr. Levent SELÇUK ve Doç. Dr. Azad SAĞLAM SELÇUK'a, Van Yüzüncü Yıl Üniversitesi Jeofizik Mühendisliği Bölümü Öğretim Üyesi Doç. Dr. İsmail AKKAYA' ya ve Dr. Öğr. Üyesi Çetin YEŞİLOVA'ya teşekkür ederim. Laboratuvarından, deneyim ve tecrübelerinden yararlandığım Dr. Öğr.Üyesi Mehmet TÜRKMENOĞLU'na teşekkür ederim. Ayrıca tez çalışmam sırasında deneysel ve kurgusal aşamalarda yardımlarını esirgemeyen Jeoloji Yüksek Mühendisi Mesut BOR'a, Jeoloji Yüksek Mühendisi Uğur ÖVÜN'e, Jeoloji Mühendisi Deniz GÖKMEN'e, Jeoloji Mühendisi Şakir GÖNGÜR'e, Jeoloji Mühendisi Engin TURGUT'a, Jeoloji Yüksek Mühendisi Elif KORKMAZ OYAN'a teşekkürlerimi sunarım. Laboratuvar çalışmalarımda hiç bir şekilde yardımlarını esirgemeyen tekniker arkadaşlarım Kemal GEZİCİ ve Miraç AĞAÇKAYA'ya teşekkürü borç bilirim. Eğitim hayatım boyunca desteklerini esirgemeyen çok değerli aile üyelerine, göstermiş oldukları sabır ve destekten dolayı çok değerli eşim Özlem YALÇIN ve çocuklarım Zeynep, Muhammed Can ve Merve'ye çok teşekkür ederim.

> 2018 Ercan YALÇIN

vi

İÇİNDEKİLER

S	a	v	f	a
		•		

-

ÖZET	i
ABSTRACT	iii
ÖN SÖZ	v
İÇİNDEKİLER LİSTESİ	vii
ÇİZELGELER LİSTESİ	ix
ŞEKİLLER LİSTESİ	xi
SİMGELER ve KISALTMALAR	xiii
1. GİRİŞ	1
1.1. Çalışmanın Amacı ve Önemi	1
2. KAYNAK BİLDİRİŞLERİ	7
3. MATERYAL ve YÖNTEM	15
3.1. Materyal	15
3.2. Yöntem	16
3.2.1. Literatür taraması	16
3.2.2. Laboratuvar çalışmaları	16
3.2.2.1. Fiziksel özellik deneyleri	18
3.2.2.1.1. Kuru ve doygun hacim ağırlığının belirlenmesi	18
3.2.2.1.2. Porozitenin (gözeneklilik) belirlenmesi	18
3.2.2.1.3. Ağırlıkça su emme oranının belirlenmesi	19
3.2.2.2. Mekanik özellik deneyleri	19
3.2.2.3. Yapay bozunma deneyleri	21
3.2.2.3.1. Donma-çözülme deneyi	21
3.2.2.3.2. Tuz kristallenmesi deneyi	23
3.2.2.4. Tilt Yöntemi ile çalışmada kullanılan numunelerin temel	
sürtünme açısının belirlenmesi	23
4. BULGULAR	31
4.1. Test Edilen Kaya Türlerinin Mineralojik ve Kimyasal Özellikleri	31
4.2. Seçilen Numunelerin Fiziksel ve Mekanik özellikleri	33
5. SONUÇLAR ve ÖNERİLER	53
KAYNAKLAR	55
ÖZGEÇMİŞ	59

ÇİZELGELER LİSTESİ

Çizelge

Sayfa

-

Çizelge 1.1. Farklı bozunmamış kayaların düz ve kalıntı – yüzeylerinden elde edilen temel sürtünme açıları (Barton ve Choubey,1977)	4
Çizelge 3.1. Deneylerde kullanılan numune şekilleri ve standartları	17
Çizelge 3.2. Schmidt çekici geri sıçrama değerlerinin farklı ortamlardaki değişimi	20
Çizelge 4.1. Bu çalışmada kullanılan numunelere ait XRF Sonuçları	33
Çizelge 4.2. Yapay bozunmaya tabi tutulmamış(bozunmamış) numunelere ait ortalama fiziksel ve mekanik değerler	34
Çizelge 4.3. Yapay bozunmaya tabi tutulmuş örneklere ait ortalama fiziksel ve mekanik değerler	35
Çizelge 4.4. Kısa numunelerin kuru koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri	39
Çizelge 4.5. Kısa numunelerin doygun koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri	40
Çizelge 4.6. Kısa numunelerin doygun ve batık koşullardaki ortalama kayma açısı ve sürtünme katsayı değerleri	41
Çizelge 4.7. Uzun numunelerin kuru koşullardaki ortalama kayma açısı ve sürtünme katsayı değerleri	42
Çizelge 4.8. Uzun numunelerin doygun koşullardaki ortalama kayma açısı ve sürtünme katsayı değerleri	43
Çizelge 4.9. Uzun numunelerin doygun ve batık koşullardaki ortalama kayma açısı ve sürtünme katsayı değerleri	44

х

ŞEKİLLER LİSTESİ

Sayfa

Şekil

Şekil 1.1. Yüzey pürüzlülüğünün ve normal gerilmenin süreksizlik yüzeyinin içsel sürtünme açısına etkisi (Patton(1996) ve Wyllie(1992)' den değiştirilerek	2
Şekil 1.2. İki cisim arasındaki zıt yüzeylerde eğim testini gösteren çizim	5
Şekil 2.1. Barton(1973) tarafından önerilen tipik JRC değerlerini gösteren pürüzlülük profilleri	8
Şekil 2.2. Stimpson(1981) tarafından ϕ_b' yi tahmin etmek için önerilen teste ait görüntüler	10
Şekil 2.3. ϕ_b ' yi tahmin etmek için önerilen yöntemlere ait görüntüler	12
Şekil 3.1. Çalışmada kullanılan bazı numunelere ait bir görüntü	15
Şekil 3.2. Deney öncesi numunelere ait bir görüntü	17
Şekil 3.3. Schmidt çekici tipleri(a) ve üç farklı ortamda yapılan testlere ait bir görüntü	20
Şekil 3.4. Donma-çözülme deneyi çalışmalarına ait bir görüntü	21
Şekil 3.5. Donma-çözülmede parçalanan İgnimbritlere ait bir görüntü	22
Şekil 3.6. Tuz kristallenmesi deneyine ait kurutma ve çözeltide bekletme çalışmalarına ait görüntüler	23
Şekil 3.7. Tuz kristallenmesi deneyi öncesinde ve sonrasında killi kireçtaşında değişen pürüzlülüğe ait bir görüntü	24
Şekil 3.8. Deneylerde kullanılan uzun ve kısa boyutlu numunelere ait bir çizim	26
Şekil 3.9. Testerede numune kesme işlemine ait bir görüntü	27
Şekil 3.10. Tilt deneyinde kayma açısının belirlenmesine ait bir görüntü	28
Şekil 3.11. Temel sürtünme açısını tahmin etmek için Stimpson'un yaklaşımının yeniden değerlendirilmesi	28
Şekil 3.12. Su içerisinde (a) ve dışında (b) kaydırma işlemine ait bir görüntü	29
Şekil 4.1. Çalışmada kullanılan 25 farklı kayaç çeşidine ait bir görüntü	31
Şekil 4.2. Çalışmada kullanılan numunelerin ince kesit görüntüsü	32
Şekil 4.3. SHR değerlerinin bozunmamış ve bozunmuş örneklerdeki değişimi	36
Şekil 4.4. Çalışmada kullanılan numunelere ait KBHA ve DBHA arasındaki ilişki	37
Şekil 4.5. Porozite değerlerinin bozunmamış ve bozunmuş örneklerdeki değişimi	38

Şekil

Sayfa

Şekil 4.7. Kısa ve uzun numunclerde kuru yüzeye ait ob açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları	47
Şekil 4.8. Kısa ve uzun numunelerde doygun numuneye ait ϕ_b açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları	49
Şekil 4.9. Kısa ve uzun numunelerde doygun ve batık numuneye ait ϕ_b açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları	50
Şekil 4.10. Kısa numunelerin bozunmamış ve bozunmuş hallerinin kuru, doygun-ıslak ve doygun-batık koşullardaki qb açısının değişimini gösteren bar diyagramları	51
Şekil 4.11. Kısa numunelerin SRH değeri ile φ _b açısının arasındaki ilişkiye ait korelasyon eğrisi	52

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama		
σn	Süreksizlik Yüzeyindeki Normal Gerilme		
τ	Kayma Gerilmesi		
c	Kohezyon		
ф	İçsel Sürtünme Açısı		
фь	Temel Sürtünme Açısı		
фr	Rezidüel Sürtünme Açısı		
β	Kayma Yüzey Eğim Açısı		
i	Pürüzlülük Açısı		
W	Ağırlık		
Α	Yüzey Alanı		
g	Yoğunluk		
V	Hacim		
L	Numune Boyu		
σε	Sağlam Kaya Parçalarının Tek Eksenli		
γк	Kuru birim hacim ağırlık		
γa	Doygun birim hacim ağırlık		
Vp	Sıkışma dalga hızı		
n	Porozite		
cm	Santimetre		
g	Gram		
XRF	X-ray fluorescence		
KSE	Kütlece su emme		

Ξ

Kısaltmalar	Açıklama		
JRC	Eklem Pürüzlülük Katsayısı		
JCS	Eklem DuvarıBasınç Dayanımı		
UCS	Tek Eksenli Basma Dayanımı		

1. GİRİŞ

Türkiye'nin çeşitli bölgelerinden alınan farklı kayaların temel sürtünme açıları ilebazı fiziksel ve mekanik özellikleri arasındaki ilişkilerin belirlenmesinin araştırıldığı bu tezçalışmasının kapsamı, amacı ve önemi bu bölüm altında sunulmuştur.

1.1. Çalışmanın Amacı ve Önemi

Kaya kütleleri, sağlam kaya parçasının dışında makaslama zonları, tabakalanma düzlemleri, fay gibi süreksiz düzlemlerden oluşmaktadır. Bu süreksizlik düzlemleri kaya kütlesi içerisinde açılacak tünel, şev gibi mühendislik tasarımlarında tasarımın güvenliğini kontrol eden en önemli unsurdur ve kaya mekaniğinin en önemli araştırma konularından biridir. Süreksizlik, kaya kütlesindeki mekanik bir bozukluktur ve bu düzlemlerde oluşabilecek en büyük problem ise bu düzlem boyunca gerçekleşebilecek yenilmelerdir. Düz süreksizlik düzlemlerinin kesme dayanımı lineer bir ölçüt olan Mohr-Coulomb yenilme ölçütü ile hesaplanabilmektedir. Fakat düz olmayan doğal süreksizlik düzlemleri kendi içerisinde düzensizlikler göstermekte ve bu düzensizlikler kesme dayanımlarını etkilemektedir. Doğal ve dolgusuz, pürüzlü süreksizliklerin pik (doruk) kesme dayanımı lineer olmayan yenilme ölçütleri direk kesme testi tarafından hesap edilmektedir ve bu ölçütlerin ana verileri direk kesme testi ve Tilt testi aracılığıyla belirlenen temel sürtünme açısıdır (ϕ_{b}^{o}). Direk kesme deneyi ve Tilt testi ile dolgusuz.düzlemsel veya pürüzlü ve bozunmuş veya bozunmamış kaya süreksizliklerinin sürtünme açıları laboratuvarda elde edilmektedir. Süreksizlik düzlemlerinde kesme dayanımını etkileyen en önemli iki faktör düzlemdeki ayrısma ve pürüzlülüktür. Pürüzlü yüzeylerin kesme dayanımı üzerine ilk çalışmalar 1960'lı yıllarda yapılmaya başlanmıştır (Ripley ve Lee, 1961;Patton, 1966, Goldstein ve ark., 1966). Kaya süreksizlikleri için en basit pik kesme dayanımı modeli 1966'da Patton tarafından önerilen modeldir ve bu model Goldstein ve arkadaşlarının önerdiği modele benzerdir. Patton (1966) düşük normal gerilme aralığında ve bozunmanın ihmal edildiği durum için testere dişi gibi süreksizliklerin kesme dayanımının incelediği çalışmasında aşağıdaki eşitliği önermiştir (Eş. 1.1).

$$\tau = \sigma_n \times \tan(\phi_n + i) \tag{1.1}$$

Burada; t:kesme dayanımı (kPa), σ_n : efektif normal gerilme (kPa), ϕ_b :süreksizlik yüzeyinin temel sürtünme açısı (derece) ve *i* testere dişinin yatayla yapmış olduğu açıdır (derece). Bu denklem, açıklıkların kırılmadığı ve kayma yer değiştirmesinin eğimli yüzeyler boyunca olduğu düşük gerilme koşullarında geçerlidir. Eşitlik 1.1 incelendiğinde normal gerilmeler ile birlikte pürüzlülüğünde artması sonucunda kesme dayanımının (τ) arttığı görülmektedir. Şekil 1.1'in ikinci kısmında gösterildiği gibi artan normal gerilme ve yer değiştirme ile birlikte pürüzlü dişler kırılacak ve buna bağlı olarak temel sürtünme açısı *i* değerinin etkisinden kurtularak azalacaktır (Şekil1.1).

Normal Gerilme, o

Şekil 1.1.Yüzey pürüzlülüğünün ve normal gerilmenin süreksizlik yüzeyinin içsel sürtünme açısına etkisi (Patton (1966) ve Wyllie (1992)'dan değiştirilerek).

Barton ve ark. (Barton 1973, 1976; Barton ve Choubey 1977; Barton ve Bandis 1980, 1990) düz yüzeylerin kesme dayanımının doğayı yansıtmadığı düşüncesinden yola çıkarak pürüzlü doğal süreksizliklerin kesme davranışını çalışmışlardır ve ilk kez Barton (1973) pürüzlü ve dolgusuz kaya süreksizlikleri için aşağıdaki eşitliği önermiştir (Eş. 1.2).

$$\tau = \sigma_n \times tan \left[\phi_b + JRC \times \log_{10} \left(\frac{JCS}{\sigma_n} \right) \right]$$
(1.2)

Burada,

 τ = Kesme dayanımı (düzlemde kaya-kaya teması).

 σ_n = Efektif normal gerilme,

JRC= Eklem pürüzlülük katsayısı,

JCS= Kayanın süreksizlik yüzey dayanımı

 ϕ_b = Temel sürtünme açısıdır(kuru ve doymuş süreksizlikler için kuru ve ıslak kesilmiş yüzeylerde).

Daha sonra, doğadaki süreksizlik düzlemlerinin her zaman kuru, düz ve bozunmamış yüzeylere sahip olmadığını fark eden Barton ve Choubey(1977) yapmış oldukları çalışmayla bozunmuş ve bozunmamış süreksizliklerin değişen durumu için aşağıdaki eşitliği önermişlerdir(Eş. 1.3).

$$\tau = \sigma_n \times tan \left[\phi_r + JRC \times \log_{10} \left(\frac{JCS}{\sigma_n} \right) \right]$$
(1.3)

Buradaki; ϕ_r =Süreksizliklerin rezidüel (artık) sürtünme açısıdır. Aşınmış yüzeylerin düzlemsel bir yapıya sahip olduğu kabulü ile JRC=0 alınabilir. Bu eşitlikteki diğer parametreler Eş.1.2'deki parametreler ile aynıdır. Barton ve Choubey (1977)'e göre rezidüel (artık) sürtünme açısı aşağıdaki eşitlik ilehesaplanmaktadır(Eş. 1.4).

$$\phi_r = (\phi_b - 20^\circ) + 20\frac{r}{R} \tag{1.4}$$

Buradaki; r: ıslak ve ayrışmış yüzeyin Schmidt geri sıçrama değeri, R: kuru ayrışmamış yüzeyin Schmidt geri sıçrama değeri, ϕ_b , ise bozunmamış ve ıslak olmayan taze yüzeylere ait temel sürtünme açısı değeridir. Ayrışmamış (taze) bir eklemde r=R ise, $\phi_r = \phi_b$ olur.

Yukarıda da görüldüğü gibi denklemleri verilen, temel sürtünme açısı pürüzlü süreksizlik yüzeylerinin kesme dayanımının tahmininde önemli bir veri sunmaktadır.Temel sürtünme açısı üzerine yapılan bir çok çalışmada kuru ve ıslak düz yüzeyler için farklı türden kayalar için farklı değer aralıkları önerilmiştir (Çizelge 1.1). Bu çalışmaların sonuçlarına bakıldığında genelde ıslak koşullarda temel sürtünme açısı kuru koşullarda elde edilen değerlerden daha düşük çıkarken, magmatik kayaların ϕ_b açısının diğer kayalarda elde edilenden yüksek olduğu görülmektedir.

	,		,
Kaya Türü	lslaklık	Temel Sürtünme Açısı (φ _b)	Referans
A. Sedimanter Kayalar			
Kumtaşı	Kuru	26 - 35	Patton, 1966
Kumtaşı	Islak	25 - 33	Patton, 1966
Kumtaşı	Islak	29	Ripley& Lee, 1962
Kumtaşı	Kuru	31 - 33	Krsmanovic, 1967
Kumtaşı	Kuru	32 - 34	Coulson, 1972
Kumtaşı	Islak	31 - 34	Coulson, 1972
Kumtaşı	Islak	33	Richards, 1975
Şist	Islak	27	Ripley& Lee, 1962
Silttaşı	Islak	31	Ripley& Lee, 1962
Silttaşı	Kuru	31 - 33	Coulson, 1972
Silttaşı	Islak	27 - 31	Coulson, 1972
Konglomera	Kuru	35	Krsmanovic, 1967
Tebeşir	Islak	30	Hutchinson, 1972
Kireçtaşı	Kuru	31 - 37	Coulson, 1972
Kireçtaşı	Islak	27 - 35	Coulson, 1972
B. Magmatik Kayalar			
Bazalt	Kuru	35 - 38	Coulson, 1972
Bazalt	Islak	31 - 36	Coulson, 1972
Înce taneli granit	Kuru	31 - 35	Coulson, 1972
Ince taneli granit	Islak	29 - 31	Coulson, 1972
İri taneli granit	Kuru	31 - 35	Coulson, 1972
İri taneli granit	Islak	31 - 33	Coulson, 1972
Porfir	Kuru	31	Barton, 1971b
Porfir	Islak	31	Barton, 1971b
Dolerit	Kuru	36	Richards, 1975
Dolerit	Islak	32	Richards, 1975
C. Metamorfik Kayalar			
Amfibolit	Kuru	32	Wallace et al., 1970
Gnays	Kuru	26 - 29	Coulson, 1972
Gnays	Islak	23 - 26	Coulson, 1972
Sleyt (Arduvaz)	Kuru	25 - 30	Barton, 1971b
Sleyt (Arduvaz)	Kuru	30	Richards, 1975
Sleyt (Arduvaz)	Islak	21	Richards, 1975
- ` '			,

Çizelge 1.1. Farklı bozunmamış kayaların düz ve kalıntı yüzeylerinden elde edilen temel sürtünme açıları (Barton ve Choubey, 1977)

Tilt testi, iki cisim arasındaki temel sürtünme açısını belirlemek için kullanılan basit bir yöntemdir (Şekil 1.2). Son deneysel çalışmalar (Alejano ve ark. 2012a;b) bu testlerin fazla sayıda gerçekleştirilmesi durumunda, sonuçların belirli çevresel koşullara göre geniş değişkenlikler ve değişken eğilimleri sunabileceğini ortaya koymuştur. Genelde aynı numune üzerinde yapılan eğim testlerinin sonuçları birbirine yakın değerler vermektedir. Fakat González ve ark. (2014) eğim testlerinde aynı yüzeylerde testin üç kere tekrarlanması durumunda dahi temel sürtünme açısı sonuçlarının yüksek değişkenlik gösterdiğini vurgulamışlardır. Bunun en büyük nedeni olarak, temel sürtünme açısının aşınma, bozunma, kaya tozu veya kırıntı parçalar gibi yüzey koşullarından etkilenme eğilimi olduğunu belirtmişlerdir. Ayrıca bazı araştırmacılar (Hencher ve Richards 1989; Hencher 1995, 2012), yapay olarak düzleştirilmiş yüzeyler ve testere ile kesilmiş yüzeylerin Tilt testinden belirlenen değerlerin genellikle doğal eklemler üzerindeki direkt kesme deneylerinden ölçülen ϕ_b değerinden daha düşük olduğunu ifade etmiştir.

Şekil 1.2. İki cisim arasındaki zıt yüzeylerde eğim(Tilt) testini gösteren bir çizim.

Tilt testi ile ilgili sınırlı sayıda çalışmanın varlığına ve Tilt testinden temel sürtünme açısı için güvenilir bir değeri tahmin etmek için bir standart veya önerilen bir yöntem geliştirilmesine ihtiyaç duyulması nedeniyle, son zamanlarda bu testin farklı yönleri üzerinde bazı araştırmalar da yapılmaktadır (Crudenve Hu 1988; Bruce ve ark.1989; Hu ve Cruden 1992; Alejano ve ark. 2012a; Gonza'lezve ark. 2014; Ruiz ve Li 2014; Pe'rez-Rey ve ark. 2015). Bu çalışmalara katkı olması amacıyla, farklı bölgelerden elde edilmiş, farklı dokulara sahip, farklı kaya türleri üzerinde temel sürtünme açısı bu çalışmada da farklı bir bakış açısı ile incelenmiştir. Bu çalışmada test edilen kayaçların 13 adeti sedimanter karbonatlı kayaçlardan (farklı kireçtaşı ve travertenler), 9 adeti volkanik kayaçlardan (andezit, bazalt, ignimbiritler) ve 3 adeti magmatik kayaçlardan (granit) seçilmiştir. Çalışmanın temel amacı, temel sürtünme açısının test koşullarına (kuru, doygun-ıslak ve doygun-batık) bağımlılığının yanı sıra yapay bozunma testlerine tabi tutulmuş numunelerin (donma-çözülme ve MgSO4 tuz kristallenmesi) yapay bozunma öncesindeki kayma açıları ile yapay bozunma sonrasındaki farkları incelemektir. Böylece aynı numunenin

taze olarak adlandırılan yüzeyi ile bozunmuş (rezidüel) yüzeyi üzerinde elde edilen ϕ_b açıları karşılaştırılmıştır. Ayrıca Tilt testinde farklı iki boyuta sahip prizmatik numuneler kullanılarak boyutun kayma testine olan etkisi de incelenmiştir. Tilt testi sonrasında elde edilen kayma açısı değerleri temel sürtünme açısı değerlerine dönüştürülmüş ve bu sonuçlar kayaların bazı fiziksel, mekanik ve kimyasal özellikleriyle ilişkilendirilmeye çalışılmıştır.

2. KAYNAK BİLDİRİŞLERİ

Doğal süreksizlik düzlemlerinin kesme dayanımının belirlenmesinde kullanılan temel sürtünme açısının belirlenmesine yönelik yapılan çalışmaların bazılarına ait özetler aşağıda verilmiştir.

Horn ve Deere (1962), tarafından yapılan çalışmada, minerallerin sürtünme katsayısında etkili olduğu ve kuvars, feldspat ve kalsit gibi minerallerin sürtünme katsayılarının ıslak koşullar altında arttığı, mika mineralleri (muskovit, biyotit) ve talk için aynı koşullar altında azaldığı belirtilmiştir.

Patton (1966), doğal bir eklem yüzeyindeki pürüzlülüklerin, kesme dayanımı üzerinde önemli bir etkiye sahip olduğunu belirtmiş ve bu etkiyi "testere dişi"olarak tanımladığı numuneler üzerinde yaptığı kesme deneyleri ile göstermiştir. Bu örneklerde kayma hareketinin, yukarı doğru hareket eden yüzeylerin bir sonucu olarak meydana geldiğini belirtmiştir. Patton (1966) düşük normal gerilme aralığında ve bozunmanın ihmal edildiği durum için testere dişi gibi süreksizliklerin kesme dayanımın incelediği çalışmasında aşağıdaki denklemi önermiştir (Eş. 2.1). Burada ϕ_b : temel sürtünme açısı (derece) ve *i*: testere dişlerinin açısını (derece) vermektedir.

$$\tau = \sigma_n \times \tan(\phi_b + i) \tag{2.1}$$

Coulson (1971), Tilt testinden eklemlerin temel sürtünme açısının hesabı için ilk girişimleri başlatmıştır.

Barton (1973; 1976), kaya kütlesi üzerindeki süreksizlik yüzeyinin pürüzlülüğünü ilk kez tanımlamış ve deneye dayalı olarak sayısal bir değer elde edilebileceğini ifade etmiştir. Süreksizlik yüzeylerini 10 cm'lik bir profil boyunca pürüzsüz yüzeyden pürüzlü yüzeye doğru 0 ile 20 arasında değişen değerler ile tanımlamıştır (Şekil 2.1). Ayrıca, Patton'un yaklaşımının basit olduğu ve normal stresi artırarak kayma mukavemetindeki değişimlerin aniden değil kademeli olduğunu belirtmiştir. Barton (1973, 1976) doğal kaya eklemlerinin davranışını incelemiş ve Eş.2.1'in şu şekilde yeniden yazılabileceğini öne sürmüştür (Eş.2.2).

$$\tau = \sigma_n tan\left(\phi_b + JRClog_{10}\left(\frac{JCS}{\sigma_n}\right)\right)$$
(2.2)

8

Burada, JRC: eklem pürüzlülük katsayısı ve JCS: eklem süreksizlik yüzey dayanımıdır.

Şekil 2.1. Barton (1973) tarafından önerilen tipik JRC değerlerini gösteren pürüzlülük profilleri.

Hencher (1977), testere kesim yüzeylerinden elde edilen temel sürtünme açısının, cilalı yüzeylerle karşılaştırıldığında, aralarında her zaman büyük bir farkın

olduğunu belirlemiş ve her zaman testere kesim yüzeylerinin daha büyük temel sürtünme açısına sahip olduğunu belirtmiştir.

Barton ve Choubey (1977), literatürde bildirilen eklem dayanımı verilerinin analizinden kaya eklemleri (temel sürtünme açısını ϕ_b kullanarak) için ilk lineer olmayan kuvvet ölçütünü geliştirerek değişken ve bozunmuş kaya dolgularının doğrudan kayma testi sonuçlarına dayanarak Eş. 2.3'ü önermişlerdir. Bu çalışma, kaya eklemleri için hem kaya kesme dayanım verilerini elde etmek hem de tahmin etmek üzere bir sürtünme kanununu açıklamaktadır. Denklem üç indeks parametresine dayanmaktadır; 1)eklem pürüzlülük katsayısı JRC, 2) eklem duvarı basınç dayanımı JCS ve 3) artık (rezidüel) sürtünme açısı ϕ_r .

$$\tau = \sigma_n tan\left(\phi_r + JRClog_{10}\left(\frac{JCS}{\sigma_n}\right)\right)$$
(2.3)

Barton ve Choubey ϕ_r 'nin tahmini için de Eş. 2.4'ü önermişlerdir.

$$\phi_r = (\phi_b - 20) + 20\frac{r}{R}$$
(2.4)

Burada; r:ıslak ve ayrışmış yüzeyin Schmidt geri sıçrama değeri, R:kuru ayrışmamış (taze) yüzeyin Schmidt geri sıçrama değeridir.Eş. 2.3 ve Eş.2.4, kaya eklemi dayanımı ve deforme olabilirlik için Barton-Bandis kriterinin bir parçası olmuştur (Barton ve Bandis, 1990).

Stimpson (1981), üç silindirik numune (UCS testi için tavsiye edildiği gibi hazırlanmış) kullanarak ϕ_b 'yi elde etmeye çalışmıştır (Şekil 2.2). Bu yöntemde biri diğer ikisi üzerine yerleştirilerek kayma gerçekleştirilmiş ve kayma açısı (β) belirlenerek Eş. 2.5 önerilmiştir.

$$\tan\phi_b = \frac{2}{\sqrt{3}} \tan\beta \tag{2.5}$$

10

Şekil 2.2. Stimpson (1981) tarafından ϕ_b 'yi tahmin etmek için önerilen teste ait görüntüler (fotoğraflar Alejano ve ark., 2012'den alınmıştır).

Barton ve Bandis (1982), JRC için aşağıdaki ilişkiyle tanımlanan ölçek düzeltmelerini önermiştir (Eş.2.6).

$$JRC_n = JRC_o \left(\frac{L_n}{L_o}\right)^{-0.02 \ JRC_o}$$
(2.6)

Burada; JRC₀ ve L₀ (uzunluk) 100 mm ölçekli laboratuvar numunelerine, JRC_n'ye ve L_n yerinde blok boyutlarına karşılık gelir. Ayrıca, büyük bir yüzeydeki daha fazla zayıflık olasılığı nedeniyle, ortalama eklem duvarının basınç dayanımının (JCS) artan ölçek ile azalmasınında muhtemel olduğu belirtilmiştir. Barton ve Bandis (1982), JCS için de aşağıdaki ilişkiyle tanımlanan ölçek düzeltmelerini önermişlerdir (Eş. 2.7).

$$JCS_n = JCS_o \left(\frac{L_n}{L_o}\right)^{-0.03 \ JRC_o}$$
(2.7)

Burada; JCS₀ ve L₀ (uzunluk) 100 mm ölçekli laboratuvar numunelerine, JCS_n' ye ve L_n yerinde blok boyutlarına karşılık gelmektedir.

Cruden ve Hu (1988), portatif bir eğim masası kullanarak ϕ_b hesabı için bazı girişimlerde bulunmuşlardır. Kanada'dan seçilen dolomitik karbonat kayaçlarının temel sürtünme açısını Tilt testi ile elde eden bu araştırmacılar, temel sürtünme açısının mineraloji ve tane boyutları tarafından kontrol edildiğini bildirmiştir. Saf karbonat kayaları için artmış dolomit içeriğinin temel sürtünme açısını azalttığını, büyük tanecik boyutlarının ise temel sürtünme açısını artırdığını gözlemlemişlerdir.

Hencher ve Richards (1989), yapay olarak düzleştirilmiş yüzeyler veya testere ile kesilmiş düz yüzeylerin Tilt testinden belirlenen değerlerinin genellikle doğal eklemler üzerindeki direkt kesme deneylerinden ölçülen ϕ_b 'den daha düşük olduğunu belirtmişlerdir.

Aydan ve ark. (1995), kuru ve ıslak koşullar altında belirlenen temel sürtünme açılarını karşılaştırmış ve kesme alanı üzerinde bulunan efektif normal gerilmenin belli olmadığı durumlarda ıslak ϕ_b değerlerinin kuru ϕ_b değerlerinden daha küçük olduğunu belirtmiştir.

Aydan (1998), suya batık şartlar altında dört kaya tipi üzerinde eğim testleri gerçekleştirmiş, batık şartlar altında belirlenen temel sürtünme açısının su yüksekliği varyasyonundan etkilenmediğini ve maksimum varyasyonun sadece %2-3 olduğunu gözlemlemiştir.

Morrow ve ark. (2000), doygunluğun derecesine bağlı olarak, kalsit, kil mineralleri, muskovit, talk, klorit ve lizardit gibi bazı mineralleri içeren kayaçların temel sürtünme açılarında farklı derecelerde (% 5 ila % 70 arasında) azalmalar bildirmiştir.

Moore ve Lockner (2004), kayaç içerisinde kil minerallerinin yüksek miktarda bulunmasının, genel olarak ıslaklığa bağlı olarak sürtünme açısının azalmasına neden olduğunu ve ayrıca kayaç içerisinde bulunan kuvarsın kuru, ıslak ya da doymuş olması durumlarının kayacın temel sürtünme açısı üzerinde bir etkisinin olmadığını belirlemişlerdir.

Zandarin (2010), yapay olarak hazırlanan kiltaşının farklı pürüz profillerine sahip olan ek yerlerinde emme etkisini araştırmıştır. Araştırmacı, buhar denge tekniği kullanarak numuneler üzerinde bir ıslatma döngüsü kullanmış ve emme kontrolü ile direk kesme testleri gerçekleştirmiş ve eklemlerin kesilme direncinin emme artışıyla birlikte arttığını gözlemlemiştir.

Alejano ve ark. (2012a), Tilt testi için Stimpson'ın metodunda verilen temel sürtünme açısı eşitliğinde bir hata olduğunu rapor ederek Tilt deneylerinin güvenilir temel sürtünme açısı elde etmek için ana doğru üzerinde yapılmaması gerektiğini belirtmişlerdir. Ayrıca, literatürde önerilen sonuçlarla karşılaştırıldığında buldukları değerlere göre ϕ_b 'nin literatürde abartılı olduğunu ve temel sürtünme açısı için önemli ölçüde daha düşük değerlerin elde edildiğini vurgulamışlardır (Stimpson test sonuçlarından 10 derece daha düşük). Araştırmacılar,Stimpson metodunda ϕ_b 'nin abartılmış değerler olduğunu göstermiş ve Eş.2.8'i önermişlerdir. Bu araştırmacılar aynı zamanda eğim testinde şekilsiz küçük numuneleri ve uzunlamasına kesilen silindirik karot numunelerini kullanmaktan kaçınılması gerektiğini önermişlerdir (Şekil 2.3a). Ayrıca kaya levhaların en az 50 cm² bir yüzey alanında kullanılması gerektiğini önermişlerdir. Bu çalışmada, ayrıca, çok sayıda levha örnekleri üzerinde yapılan eğim testlerine dayanarak, Tilt testinde üç yinelemenin yeterli olduğu da önerilmiştir. Fakat sonuçlardan biri ve orta değer arasındaki maksimum sapma 3°'den daha büyük olması durumunda dördüncü bir takım yinelemenin yapılması önerisinde bulunmuşlardır.

Şekil 2.3. ϕ_b 'yi tahmin etmek için önerilen yöntemlere ait görüntüler (fotoğraflar Alejano ve ark., 2012'den alınmıştır).

Gonza'lez ve ark. (2014), Alejano ve arkadaşlarının önerdiği boyutları destekler çalışmalarda bulunmuşlardır.\overlinethetabelir ve yaklaşık bir değerle belirlenmesi için yalnızca karot tabanlı metotlarınkullanılması gerektiği sonucuna varmışlardır (Şekil

2.3d). Testere ile kesilmiş benzer ölçülerdeki numuneler üzerinde yapılan ilk ardışık beş eğim testinin ortalama değerinin Barton ölçütündeki temel sürtünme açısı gibi kullanılabileceği deönerilmiştir. Ancak, ilk olarak Hencher (1976, 2012) ve daha sonra Gonza'lez ve ark. (2014) ve Pe'rez-Rey ve ark. (2015) testere ile kesilmiş ve kaya kaydırıcılarının tekrarlanan eğim testinin temel sürtünme açısını etkilediğini bildirmiş,ve bu yüzden Tilt testlerinden elde edilen kayma açısı üzerindeki aşınma etkisinin de dikkate alınması gerektiğini vurgulamışlardır.

Pe'rez-Rey ve ark. (2015), bazı kesme numune çiftlerinde birkaç metreye (yani 5m) kadar bir dizi eğim testi gerçekleştirmiştir ve temel sürtünme açısını hesaplamak için geçici bir yaklaşım önermiştir.

Ulusay ve Karakul (2016), farklı kaya türleri üzerinde laboratuardayapmış oldukları Tilt testiyle önceki çalışmalara katkıda bulunmayı hedeflemişlerdir. Bu çalışmada, geniş bir yelpazedeki kaya türleri üzerinde deneysel bir program yardımıyla Tilt testleri yapılmıştır. Örnekler kuru, ıslak ve batık haldekikoşullarda yapılmış ve suyun temel sürtünme açısına etkisi belirlenmiştir. Tilt testinde temel sürtünme açısının su seviyesinden etkilenmediğini ve sınırlı sayıdaki kayaç türlerine dayanan daha önceki bir çalışmanın sonuçlarını doğruladığını göstermişlerdir. Ayrıca feldspat dışındaki minerallerin ıslaklığa bağlı olarak temel sürtünme açısının değişimi üzerinde artan veya azalan herhangi bir belirgin etkisinin olmadığını belirleyerek kayaların mineral içeriğinin temel sürtünme açısındaki düşüşün tahmin edilmesine yardımcı olacağını vurgulamışlardır.

3. MATERYAL ve YÖNTEM

Çalışmanın bu kısmında, deneysel analizlerde kullanılan malzemenin özellikleri ile çalışma sırasında uygulanan yöntem, aşamalar halinde açıklanmıştır.

3.1. Materyal

Bu çalışmada, Türkiye'nin farklı bölgelerinde yapılan arazi çalışmaları sonucunda toplanan ve mineralojik, kimyasal, fiziksel ve mekanik özellikleri bulgular kısmında verilen ve ayrışma sonucunda farklı pürüzlü yüzeylere sahip olabilen granit, traverten, kireçtaşı, kalkarenit, bazalt, andezit, ignimbirit ve alçıtaşı gibi farklı kaya numuneleri kullanılmıştır (Şekil 3.1). Laboratuvar çalışmalarında; ince kesit malzemeleri, boy ve çapın belirlenmesi için kumpas aleti,numunelerin doygun hale getirilmesi için saf su, kurutulması için de 105°C'ye ayarlı etüv kullanılmıştır. Tuz kristallenmesi için MgSO4 tuzu ve geniş hacimli kaplar, donma çözülme deneyi için -18 dereceye ayarlı derin dondurucu kullanılmıştır. Numunelerin temel sürtünme açılarının bulunabilmesi için Tilt (eğdirme) masası ve eğim değerini ölçmek için açıölçer, ayrıca malzemelerin dayanımını bulmak için Schmidt çekici, pres ve sismik hız(Vp) değerlerini belirlemek için de Pundit kullanılmıştır. Büro çalışmalarında ise bilgisayar ve yazılım programları kullanılmıştır.

Şekil 3.1. Çalışmada kullanılan bazı numunelere ait bir görüntü.

3.2. Yöntem

Bu çalışma genel olarak, literatür taraması, laboratuvar analizleri ve büro çalışmaları olmak üzere üç aşamada tamamlanmıştır.

3.2.1. Literatür taraması

Çalışmanın aşamaları için konu ile ilgili önceki çalışmalar incelenmiştir. Çalışmada kullanılacak malzemenin seçimi için jeolojik ve deneysel bilgiler elde edilmiş ve konu ile ilgili yapılan diğer çalışmalara ait ilgili literatür taraması, internet ortamında araştırılmıştır.

3.2.2. Laboratuvar çalışmaları

Laboratuvar çalışmaları tez çalışmasının önemli bir kısmını oluşturmaktadır. Farklı kayalarda temel sürtünme açısıyla bazı fiziksel ve mekanik özelliklerinin karşılaştırılması amacıyla yapılan deneylerde TSE standartları ve ISRM ölçütünden yararlanılmıştır (Çizelge 3.1).

Ön arazi çalışmaları sırasında belirlenen sahalardan alınan numuneler üzerinde bazı fiziksel ve mekanik analizler yapmak amacıyla küp numuneler hazırlanmıştır. Kuru ve doygun birim hacim ağırlık, ağırlıkça ve hacimce su emme değeri ve porozite gibi fiziksel özelliklerini belirlemeye yönelik yapılan çalışmalar ISRM (2007) ölçütlerine uygun yapılmıştır. Bu deneyler, düzenli şekilli, 7x7x7cm (±1.5mm) boyutlarındaki küp numuneler üzerinde yapılmıştır. Daha sonra yapay bozunma deneyleri sonucunda elde edilen veriler ve yapısal değişiklikler taze küp numunelerindeki fiziksel özelliklerle karşılaştırmak üzere tekrardan bu küp numuneler fiziksel özellik deneylerine tabi tutulmuşlardır. Kaya numunelerinin homojen olmaması nedeniyle deneyler öncesinde hazırlanan numuneler ve deneylerde kullanılacak yüzeyler titizlikle seçilmiş ve her bir yüzey numaralandırılmış ve kodlanmıştır (Şekil 3.2). Alınan numuneler üzerinde yapılan deneyler, uygun standartlar kullanılarak yapılmış ve yorumlanmıştır. Deneysel çalışmalar, Van Yüzüncü Yıl Üniversitesi Jeoloji Mühendisliği Bölümü Zemin-Kaya Mekaniği laboratuvarında yürütülmüştür.

Deney Türü	Uygulanan Deneyler	Numune Tipi	Deney Standardı/Ölçütü
Fiziksel Özellik	* Birim hacim ağırlık deneyi		
Deneyleri	* Porozite		ISPM(2007)
	* Ağırlıkça ve hacimce su emme		13KM(2007)
Mekanik Özellik Deneyleri	 * Tek Eksenli Basınç Dayanımı * Sahmidt Cakini Torti 	7x7x7cm`lik	
	* Ultrasonik hız	küp numuneler	ISRM (2007; 2015)
Yapay Bozunma Deneyleri	* Donma-Çözülme		TS12371 (2010)
	* Tuz Kristallenmesi (MgSO4 ile)		RILEM (1980)
Temel Sürtünme Açısının Belirlenmesi	*Tilt Testi	7x7x7cm ve 7x7x3.5cm'lik küp numuneler	USBR 6258-09 (2009)

Çizelge 3.1. Deneylerde kullanılan numune şekilleri ve standartları

Şekil 3.2. Deney öncesi numunelere ait bir görüntü.

Fiziksel, mekanik ve Tilt testi öncesinde ilk olarak numunelerin tanımı yapılmıştır. Bu amaçla numunelerden bir miktar alınarak X-lşını Flüoresans (XRF) için kullanılmıştır. Bu numuneler analiz için İstanbul Teknik Üniversitesi Jeokimya Araştırmaları Laboratuvarına gönderilmiştir ve numunelerin majöroksit yüzdeleri belirlenmiştir. Ayrıca numunelerden ince kesitler hazırlanmış ve Polarizan mikroskop altında tek ve çapraz nikolde mineral tanımlaması yapılarak kaya adlandırılmıştır. Ayrıca numunelerde gözle görülmeyen bozunmalar ve mikro çatlaklarda belirlenmiştir.

3.2.2.1. Fiziksel özellik deneyleri

3.2.2.1.1. Kuru ve doygun birim hacim ağırlığının belirlenmesi

Deneysel çalışmalarda kullanılan küp şeklindeki numuneler üzerinde kuru birim hacim ağırlığı belirlemek için laboratuvar ortamında küp numuneler 24 saat 105 °C'de etüvde kuruması için bekletilmiştir ve etüvden çıkarılan numuneler soğuması için bekletilip ve daha sonra 0.01 g hassas terazide tartılarakkuru birim hacim ağırlık (KBHA) değerleri belirlenmiştir. Doygun birim hacim ağırlığı (DBHA) belirlemek için numuneler öncelikle yarısına kadar suya batırılmış ve 24 saat geçtikten sonra tamamı suya batırılarak 24 saat dahadoyurulmuş ve çıkarılan numuneler nemli bez ile üzerlerindeki su alındıktan hemen sonra tartılmıştır. Böylecenumunelerin kuru ve doygun birim hacim ağırlıklarıEş. 3.1 ve Eş. 3.2'deki bağıntılar yardımıyla hesaplanmıştır.

$$\gamma_k = \frac{w_{kuru}}{v_T}$$
(3.1)
$$\gamma_d = \frac{w_{doygun}}{v_T}$$
(3.2)

3.2.2.1.2. Porozitenin (gözeneklilik) belirlenmesi

Kayaç içerisinde bulunan boşluk hacminin, kayacın tüm hacmine oranı porozite değerini vermektedir. Kuru ve doygun ağırlıkları tartılan numunelerin Eş. 3.3'de verilen bağıntı yardımıyla porozite (n) değerleri hesaplanmıştır.

$$n = \frac{W_{doygun} - W_{kuru}}{V_T} x100 \tag{3.3}$$

3.2.2.3. Ağırlıkça su emme oranının belirlenmesi

Kuru ve doygun ağırlıkları belirlenen kayacın farkının kuru ağırlığa oranı ağırlıkça (S_a)su emme oranını vermektedir (Eş. 3.4).

$$S_a = \frac{W_{doygun} - W_{kuru}}{W_{kuru}} x100 \tag{3.4}$$

3.2.2.2. Mekanik özellik deneyleri

Mekanik deneylerin ilk asamasında, her bir örneğin taze ve bozunmuş halleri üzerinde L (0.735Nm=0.075kgm) ve N (2.207Nm=0.225kgm) tipi Schmidt çekici ile Schmidt çekici geri tepme değerleri ISRM (2015)'ye göre ölçülmüştür. Yüzey dayanımının temel sürtünme açısı ile ilişkisinin olabileceği düşüncesiyle bu ölçümler alınmıştır. N tipi çekiç, yüzey düzensizliklerine daha az duyarlıdır ve saha uygulamalarında tercih edilirken; L tipi çekiç zayıf, gözenekli ve yıpranmış kayaları test etmede daha iyi sonuçlar vermektedir (ISRM, 2015). L tipi çekiç için silindirik karot numuneler en az NX boyutunda (\geq 54.7 mm) ve N tipi için ise T2 boyutu (\geq 84 mm) olmalıdır (ISRM, 2015). Blok numuneler ise, çarpma noktasında en az 100 mm kalınlığında olmalıdır. Ölçümler her bir küp örneğin 6 yüzeyinden 5 adetolmak üzere toplamda 30 adet ölçüm alınarak değerlendirilmiştir. Tüm yüzeylerden ölçülen değerlerin son aşamada ortalama geri tepme değerleri (ISRM 2015'e göre) hesaplanmıştır. Ölçümler yerinde numunelere uygulanmadığından doğru sonuç alabilmek için, yerde, pres ve mengene altında sabitlenerek ayrı ortamlarda denenmiştir. Pres altında numuneler 15kN, 30kN ve 45kN'luk yükler ile sıkıştırılarak denenmiştir. Pres altında numunelere yatay olarak Schmidt çekici uygulanmıştır. Düşey yük artıkça Schmidt çekici geri sıçrama değerlerinde de artışların olduğu gözlenmiştir. Yerde ve mengenede alınan ölçümlerin sonuçları ise genelde birbirine yakın çıkmıştır (Çizelge 3.1). Tüm verilere bakıldığında en doğruya yakın sonuçların mengenede sıkıştırılan örneklerde alındığı gözlenmiştir (Şekil 3.3). Bu nedenle tüm ölçümlerin hassas olmasticin küp numuneler mengenede sıkıştırılarak oynamayacak şekilde sabitlenmiştir.

Tüm numuneler için ölçümler eşit koşullarda alınmıştır. Tez çalışmasında karşılaştırmalar L tipi çekiç sonuçlarına göre yapılmıştır.

Şekil 3.3. Schmidt çekici tipleri (a) ve üç farklı ortamda yapılan testlere ait bir görüntü (b, c, d).

	~	~	~						~ •					 <u> </u>		
•	linalaa 2	1	Schmudt.	004101	0001 014	orona c	10708	AP1 11	s torl	~ I 1	ortom	lo ra	ートレ	 יהה	0.1 m	A 1
۰.			эслинси (сскист	PEU NI	станна с	ICACH	CLUU	1 1211		ULIANT	1416	146.	 5 M I S	SHE	
- 1	Y 12 Y 15 Y 2		Owninge.	Y VILL VI	Der Dr		8							 'D''	¥	

		Ν	tipi	(2.2	07Ni	m)	ORT N	L	tipi	(0,7	35N	m)	ORT L	Uygulama Yönü
	15 kN	56	58	52	55	48	53.8	63	58	58	62	63	60.8	Yatay
Pres	30 kN	60	60	58	58	60	59.2	77	75	74	72	78	75.2	Yatay
	45 kN	60	60	62	60	62	60.8	78	78	74	80	78	77.6	Yatay
Mengene		55	50	51	49	50	51.0	45	45	45	46	47	45.6	Düşey
Yer		45	43	43	42	40	42.6	40	45	44	43	42	42.8	Düşey

Ayrıca, küp numunelerin mekanik özelliklerinin belirlenmesinde tahribatsız bir diğer yöntem olan ultrasonik hız yöntemi uygulanmıştır. Doğrudan yöntem ile P dalgası hızları ISRM (2015)'de önerildiği şekilde ölçülmüştür. P dalga hızlarının ölçülmesi aşamasında küp numunelerin her üç yüzeyinden de ölçüm alınmış ve bu ölçümlerin ortalamaları hesaplanmıştır. P dalga hızı, kayaç numuneleri içerisinden geçirilen sıkışma (P) dalgalarının yayılma hızlarından yararlanılarak, kayacın fiziksel ve mekanik özelliklerinin tahmin edilmesi amacıyla kullanılmıştır. Ölçümler Pundit Plus test cihazı kullanılarak gerçekleştirilmiştir ve deneyler 7x7x7cm (±1.5mm)boyutlarındaki küp numunelerde kuru ve suya doygun durumlarda gerçekleştirilmiştir. Numunelerin ölçüm frekansı P için 54kHz alınmıştır. Ultrasonik hızın rahat iletilebilmesi için P hızı ölçümlerinde örneğin alt ve üst kısmına ince bir katman halinde ultrason jeli sürülerek

dalgaların kayaç içerisindeki hızın rahat iletilmesi ve ölçümün doğru yapılması sağlanmıştır. Cihazın göstergesinden okunan dalgaların yayılma süreleri numunenin boyuna bölünerek her bir kayaç için yayılma hızları hesaplanmıştır.

3.2.2.3. Yapay bozunma deneyleri

3.2.2.3.1. Donma-çözülme deneyi

Donma-çözülmedeneyleri (TS EN 12371, 2010) için seçilen numuneler TS EN 1926 (2007)'da belirtilen boyutlara göre kesilmiştir. Çalışmada 75 adet7x7x7cm (±1.5mm) boyutlarındaki küp numunelerbirbirine temas etmeyecek şekilde (1.5cm aralıkla) kap içerisine yerleştirilmiştir. Daha sonra numune yüksekliğinin yarısına kadar musluk suyu doldurulmuş ve 60±5 dakikaya erişildiğinde numunelerin ¾'ü su içerisinde kalacak şekilde tekrardan kap içerisine musluk suyu ilave edilmiştir. Başlangıçtan itibaren geçen süre 120±5 dakikaya eriştiğinde numuneler tamamen suya batırılmış ve 48±2 saat suda bekletilmiştir (Şekil 3.4). Buradaki amaç numunelerin suya tam doygun hale gelmesini sağlamaktır. Bu işlem sonrasında donma-çözülme periyoduna geçilmiştir. Her bir döngü, dondurucuda16 saatlik donma periyodu ve bunu takiben numunelerin suya daldırılmış durumdabulunduğu 8 saatlik çözülme periyodundan ibarettir.

Şekil 3.4. Donma-çözülme deneyi çalışmalarına ait görüntüler.

İzin verilen sıcaklık aralığı, deneye tâbi tutulan kayanın görünür yoğunluğu, gözenekliliği ve su emmesiyle ilişkili olan farklı soğutma, donma ve çözülme hızlarının

sonucudur. Döngüler, numuneler bozuluncaya veya verilmiş enbüyük döngü sayısına erişilinceye kadar tekrar edilmiştir. Deneyde kullanılan numunelerin donma sonucu gözeneklerinde gerilme koşulları oluşturularak kayaçların gözenek suyu basıncı etkisi altında kalması sağlanmıştır.

Kayaların bulunduğu bölgenin iklimsel özellikleri donma-çözülme deneylerinde uygulanacak çevrim sayısının belirlenmesinde önemlidir. Doğu Anadolu Bölgesinin iklim özelliklerine bakıldığında çevrim sayısının 30 olarak alınması uygun görülmüştür (Binal ve ark., 1997). Donma-çözülme çevrimleri sonucunda kayaç numuneleri fiziksel ve mekanik özelliklerindeki değişimlerin belirlenmesi amacıyla tekrardan, kuru ve doygun birim hacim ağırlık, gözeneklilik ve tek eksenli basınç dayanımı,Schmidt çekici ve ultrasonik hız gibi ölçümlere tabi tutulmuşlardır. Donma çözülme deneyine tabi tutulmadan önce belirlenen fiziksel ve mekanik özellikleriyle karşılaştırma yapılarak ne gibi değişimlerin olduğu belirlenmeye çalışılmıştır. Donma çözülmede 20. çevrim sonucunda ignimbiritlerde bozunmanın ve çatlamaların olduğu gözlenmiştir (Şekil 3.5).

Şekil 3.5. Donma-çözülmede parçalanan ignimbiritlere ait bir görüntü.

3.2.2.3.2. Tuz kristallenmesi deneyi

Gözenek yapılarının fazla olduğu traverten ve ignimbirit gibi kayalarda kristalleşme başınçları, kayaçta bozunma hızını artırmakta ve kayanın duraylılığını kaybetmesine neden olmaktadır (Akın, 2008; Akın ve ark., 2016). Tilt testi öncesinde ayrışmış yüzeylerin test sonuçlarına etkisini görebilmek amacıyla donma-çözülme deneyinin dışında MgSO4 tuz çözeltisi içerisinde tuz kristallenmesi deneyi yapılmıştır. Çalışma bölgelerinden alınan $7x7x7cm(\pm 1.5mm)$ boyutlarında ve farklı bileşimde olan 75 adet küp numunesi tuz kristallenmesi deneyine tabi tutulmuştur. Tuz kristallenmesi deneyi RILEM (1980) standartlarına göre yapılmıştır. Yapılan bu deneyde, numuneler %15 magnezyum sülfat çözeltisi içerisine batırılmış ve 2 saat bekletilerek gözeneklerin tuz çözeltisi ile doygun hale gelmesi sağlanmıştır (Şekil 3.6). Çözeltiden alınan numuneler su ile yıkandıktan sonra 105±5°C'lik etüvde 22 saat kurumaya bırakılmıştır (Sekil 3.6). 2 saat suda bekletilme ve 22 saat etüvde kurutma işlemi bir çevrime karşılık gelmekte olup, bu şekilde 30 adet çevrim uygulanmıştır. Son döngüden sonra numuneler tuzunda etkisinin gözlenmesi amacıyla yıkanmadan Tilt testine tabi tutulmustur. Tuz kristallenmesi işleminde dayanımı az olan kayaçların bazı kısımlarında çözülmeler olduğu gözlenmiştir. Dayanımı düşük ve gözenekli yapısından dolayı killi kireçtaşı ve ignimbirit gibi bazı kayaların çözünmeye başladığı gözlenmiştir (Şekil 3.7).

Şekil 3.6. Tuz kristallenmesi deneyine ait kurutma ve çözeltide bekletme çalışmalarına ait görüntüler.

3.2.2.4.Tilt yöntemiile çalışmada kullanılan numunelerin temelsürtünmeaçısının belirlenmesi

Literatürde Tilt testi için Stimpson (1981) ve USBR-6258 (2009)'da belirtilen metotlara ulaşılabilmektedir. Burada uluslararası standart kurumları tarafından önerilen

veya kaya mekaniği için uluslararası toplum tarafından desteklenen standart bir metot yoktur (Ulusay ve Karakul, 2016). Temel sürtünme açısının belirlenmesinde en çok kullanılan yöntem olan Stimpson (1981) yöntemi üzerinde Alejano ve ark. (2012a), Gonza'lez ve ark. (2014) ve Ruiz ve Li (2014) tarafından bazı hatalar belirlenmiş ve Tilt testi yapmak için kullanılan kaya karotları bir silindir şekilli karot numune ile diğer iki silindir şekilli karot numunelerinin üzerine yerleştirildiği Stimpson'un metodunda verilen temel sürtünme açısı eşitliğinde bir hata olduğu belirlenmiştir. Alejano ve ark. (2012a), Stimpson'un metodunda ϕ_b 'nin abartılmış değerler olduğunu belirtmişlerdir. Bu araştırmacılar aynı zamanda eğim testinde küçük numuneleri (Şekil2.3b) ve uzunlamasına kesilen silindirik karot numunelerini (Şekil2.3c) kullanmaktan kaçınılması gerektiğini önermişlerdir.Temel sürtünme açısının (ϕ_b) hızlı ve yaklaşık bir değerle belirlenmesi için karotlardan elde edilmiş diskler (Şekil 2.3d) üzerinde tilt testi yapılmaması gerektiğini vurgulamışlardır.

Şekil 3.7. Tuz kristallenmesi deneyi öncesinde ve sonrasında killi kireçtaşında değişen pürüzlülüğe ait bir görüntü.

Tilt testi için son dönemlerde farklı numune şekilleri üzerinde öneriler bulunmaktadır. Bu çalışmaya Şubat 2015'de başlanırken genelde kullanılan kare tabanlı numunelerin üzerinde testler yapılmıştır.Büyük bir eğilme yüzeyi kullanarak ve sürtünme oluştuğunda temas gerilmelerinin sıkıştırılacağından emin olmak için, tüm levhaların alanları Alejano ve ark. (2012a) tarafından tavsiye edilen şekliyle en az 50 cm²olacak şekilde hazırlanmıştır. Bu temas alanı USBR-6258 (2009)'da üst ve alt örneklerin ara yüzündeki temas alanı en az 1775 mm² olarak önerilmiştir.

Bu çalışmanın deneylerinde taban alanı aynı, fakat boyları farklı iki tip şekle sahip numune ağırlığın ve kayma sırasındaki rotasyonun etkisini görmek amacıyla kullanılmış (Sekil 3.8) ve aynı zamanda boyut farkından kaynaklı olası sorunlar ortaya çıkarılmaya çalışılmıştır. Bu amaçla, 7x7x7cm (uzun) ve 7x7x3.5cm (kısa) boyutlarındaki kare tabanlı plakalar laboratuvarda elmas uçlu ve su ile yağlanan bir testere ile kesilmistir (Sekil 3.9). Bilindiği gibi testere kesim yüzeylerinden oluşabilecek pürüzlülüklerden dolayı temel sürtünme açısı, parlatılmış yüzeylerdeki temel sürtünme açılarından büyük çıkabilmektedir (Hencher 1977; Ohta ve Aydan, 2010). Bu nedenle mümkün olduğunca hassas bir kesim yapılmış ve yüzeyler üzerinde kesmeden kaynaklı pürüzlerin olduğu numunelerin test sırasında kullanılmamasına dikkat edilmiştir. Deneyde genellikle parlatılmış yüzeylerin kullanımından ve ani pürüzlülük değişimlerinin olduğu yüzeylerden de kaçınılmıştır. Bundan dolayı, tez çalışmasında kare plakaların yüzeyleri parlatılmamıştır ve testere ile kesilen yüzeylere sahip numuneler kullanılmıştır. Düzlemsel kayalarda bulunan yüzeylerin sürtünme direnci dokusal pürüzlülüğe (Coulson, 1971) göre değişmektedir ve testere kesimli yüzeylerde gözle görülemeyecek (mikroskobik) pürüzler bulunabilmektedir. Kaya yüzeylerinde bulunan bu mikroskobik yüzeylerin pürüzlülüğün belirlenmesi için çok hassas profilmetrelere ihtiyaç duyulmaktadır (Shimizu ve ark., 1996). Test yüzeylerinin kesme işlemi ve mikroskobik pürüzlülüğünün tahmini ile ilgili herhangi bir yöntem, yaklaşım veya yorum önceki çalışmalarda bulunmamaktadır (Ulusay ve Karakul, 2016). Bu nedenle bu çalışmada mikro ölçekli pürüzlülükler göz ardı edilmiştir.

Şekil 3.8. Deneylerde kullanılan uzun ve kısa boyutlu numunelere ait bir çizim.

Deneye başlamadan önce testere ile kesilen numunelerin yüzeylerindeki düzensizlikler, küp numunelerin genişliği, uzunluğu ve yüksekliği, birbirine dik iki yönde kumpas ile ölçülerek olası düzensizlikler belirlenmiştir. Kaydırma işleminde yüzeylerde oluşabilecek farklılıkları gözlemleyebilmek için numunelerin kaydırıldığı yüzeyler 90° döndürülerek tekrar denenmiş ve varsa büyük farklılıklar kaydedilerek diğer yüzeylerde elde edilenler ile karşılaştırılmıştır. Bu çalışmada, Şekil 3.10'da gösterilen basit portatif elle çalıştırılabilen ve yaklaşık 12 kg ağırlığında bir eğim sehpası kullanılmıştır. Sağlam ve sert bir zemin üzerine oturtulan Tilt masası, tablayı 0° ile 80° arasında eğimde hareket ettirebilen bir vidalı besleme kolundan oluşmaktadır. El ile döndürülmesi bir dezavantajdır. Fakat numune kaydırma işlemi başlangıçta farklı hızlarda denenmiş ve tablanın eğilme hızının en makul değeri belirlenerek döndürme hızı sabit tutulmaya çalışılmıştır. Tabla eğme hızı 7x7x7cm boyutlu numunelerde hızlı olduğunda numunelerde rotasyonun meydana geldiği ve bununda sonuçları etkilediği belirlenmiştir. Bu nedenle bu boyuttaki numunelerde test 7x7x3.5cm'lik numunelere göre daha yavaş bir hızda yapılmıştır. Alejano ve ark. (2012a)'na göre, üst numunenin yer değiştirmesi numune uzunluğunun en az yaklaşık % 10'u ise, test geçerli kabul edilmektedir koşuluna uygun olarak deneyler yapılmıştır. Her bir test aynı yüzeyde üç kez tekrarlanmıştır. Test edilen numune yüzeyinde oluşan tozdan kaçınmak için her testten sonra kuru bir bezle yüzey silinmiştir ve alt ve üst numunelerin her ikisi de başlangıçtaki aynı pozisyona göre tekrar yerleştirilmiştir. Uzun örneklerde ise 6 yüzey üzerinde 3 adet kaydırma yapılmış ve bu kayma açılarının ortalaması alınmıştır. Alt numunenin kayma esnasında hareketini önlemek için daha ağır bir numune ile arkasından destek verilmiş ve tutucunun yüksekliği, alt numunenin yüksekliğinden düşük bir şekilde ayarlanmıştır.Tablanın yataylığı bir eğim ölçer (inklinometre) kullanılarak \pm 0.1 doğrulukla ölçülmüştür. Deneylerde süreksizlikle birbirinden ayrı olan alt ve üst tabakaların belli bir açıya gelecek şekilde tablanın hareket ettirilmesi ile üst bloğun kayması sağlanmıştır(Şekil 3.10). Üst bloğun kayma anındaki açısı (β) derece olarak not edilerek ve eğim sabitlenerek deney tamamlanmıştır. Kaydırma için alt bloğun zemin üzerine iyice oturmuş olmasına dikkat edilmiştir. USBR-6258 (2009)'da β açısının ϕ açısına eşit olduğu belirtilmiştir. Bu çalışmada eğimölçer yardımı ile kayma eğim açısı (β) belirlendikten sonra Şekil 3.11'de verilen Stimpson eşitliği yerine Alejano ve ark. (2012)'de verilen Eş. 3.5'ikullanarak temel sürtünme açısı (ϕ_b^o) belirlenmiştir. Her kaya numunesi için Tilt testi dokuz kere tekrarlanarak kayma eğim açısının ortalaması alınıp temel sürtünme açısı ve ayrıcayüzeylere ait sürtünme katsayısı (μ) değeri de Eş. 3.6'ya göre hesaplanmıştır.

$$\phi_b = \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)\tan\beta \tag{3.5}$$

 $tan\phi_b = \mu$

Şekil 3.9. Testerede numune kesme işlemine ait bir görüntü.

Şekil 3.10. Tilt deneyinde kayma açısının belirlenmesine ait bir görüntü.

Şekil 3.11.Temel sürtünme açısını tahmin etmek için Stimpson'un yaklaşımının yeniden değerlendirilmesi (Gonzalez ve ark., 2014).

Barton ve Choubey(1977) eşitliğinde, temel sürtünme açısı bozunmamış ve kuru yüzeyler için ifade edilmektedir. Temel sürtünme açısı ile ilgili önemli bir nokta da Tilt testi sonuçlarında suyun (ıslak ve batırılmış koşullar) kılcallık ve yağlama etkisinin

olmasıdır (Ulusay ve Karakul, 2016). Bu nedenle ϕ_b değeri sadece bozunmamış kuru yüzeylerde değil, batık ve ıslak yüzeyler için de belirlenmelidir (Ulusay ve Karakul, 2016). Batırılmış şartlar altında dört kaya tipi üzerinde eğim testleri gerçekleştiren Aydan (1998), batık şartlar altında belirlenen temel sürtünme açısının su yüksekliği varyasyonundan etkilenmediği ve maksimum varyasyonun sadece %2-3 olduğunu gözlemlemiştir. Ulusay ve Karakul (2016) tarafından 22 farklı kaya türü üzerinde farklı derinliklerde batık koşullarda yapılan Tilt testinde temel sürtünme açısının su seviyesinden etkilenmediği belirlenmiştir. Bu çalışmada da Şekil 3.12'de görüldüğü gibi temel sürtünme açısını su altındaki koşullar altında hesaplamak için eğilme masasının üzerine plastik bir su kabı sabit bir şekilde monte edilmiş ve ϕ_b değeri bu koşulda da belirlenmiştir. Bu deney sırasında su yüksekliği numunenin üzerini 1cm geçecek şekilde doldurulmuştur. Suyun numune yüzeylerindeki kaydırıcı etkisinden dolayı özellikle düşük gözenekli kayalarda aşırı rotasyon gözlenmiştir. Bu durum ile karşılaşıldığında deney tekrarlanmıştır.

Şekil 3.12. Su içerisinde (a) ve dışında (b) kaydırma işlemine ait bir görüntü.

30

Bu çalışma kapsamında yöntemi yukarıda anlatılan tüm deneyler farklı koşul, şekil ve bozunma derecelerine sahip kaya numunelerde gerçekleştirilmiş ve bu farklılıkların kendi aralarındaki sonuçlara etkileri değerlendirilmiştir.

- Birinci değerlendirme;numunelerin araziden alındığı koşullar olan bozunmamış (taze) ve donma-çözülme ile tuz kristallenmesi sonrasında bozunmuş yüzey koşullarındaki sonuçlar arasında yapılmıştır. Burada kısa ve uzun örnekler ayrı ayrı değerlendirilmiştir.
- İkinci değerlendirme;kısa ve uzun numunelerin farklı bozunma durumlarında kuru, doygun-ıslak ve doygun-batık olmak üzere 3 farklı ortam koşulu için yapılmıştır.
- Üçüncü değerlendirme; 7x7x3.5cm boyutlu kısa numunelerin farklı yüzey ve bozunma derecesindeki numuneleri üzerinde yapılmıştır.

Çalışmanın son aşamasında tüm veriler Excel programında istatistiksel olarak değerlendirilmiş ve sonuçlar yorumlanmıştır.

4. BULGULAR

4.1. Test Edilen Kaya Türlerinin Mineralojik ve Kimyasal Özellikleri

Bu çalışmada, farklı özelliklere sahip sedimanter, volkanik ve magmatik kökenli toplam 25 kaya türünden numune seçilmiştir (Şekil4.1). Bu kayaçların 13 adeti sedimanter (farklı kireçtaşı ve travertenler), 9 adeti magmatik yüzey kayacı (andezit, bazalt, ignimbiritler) ve 3 adeti de magmatik derinlik (granit) kaya sınıfından seçilmiştir.

Şekil 4.1.Çalışmada kullanılan 25 farklı kayaç çeşidine ait bir görüntü.

Tez çalışmasının ilk adımında,seçilen her kaya numunesinin mineralojik ve petrografik özellikleri ile kimyasal bileşimi belirlenmiştir. İnce kesit görüntülerine bakıldığında (Şekil 4.2), bazı bazaltlarda iddingsitleşmenin olduğu görülmüştür. Özellikle 15 nolu bazalt örneğinde olivinlerde ileri derecede iddingsitleşme gözlenmektedir.Traverten numunelerinin ise farklı şekil ve boyutlarda boşluk yapısına sahip olduğu belirlenmiştir. 6 ve 8 nolu kireçtaşı numunelerinde makroskopik boyutlarda elips şekilli fosil yapısı gözlenmektedir. Granit numunelerde de ayrışmış minerallere rastlanmakta olup, en belirgin ayrışma 5 nolunumunedeki biyotitlerde gözlenmiştir. Kireçtaşlarında kalsit minerali hakim olup, sadece 24 nolu numunede kil minerali yüksek oranda gözlenmiştir.

Kaşa Adı	Kayanın ince kesit görünlüsü	Petrografik ranno	Kaya Adi	Kayanın İnce Keslt görüntüsü	Petrografik tawım	Kaşa Adı	Kasonin ince kesit görüntüsü	Petrugrafik tanım
111242411		Intersental dokolu plapyoklas, olivin, purdven opi moneralleri Olivim kromen uklingsitlesmis	(1) 1865 1 41		Kalsii mmerafleri se yatlakkada mikrokrostalin kalsii e syya doloan dolgusu gözleninekte	141 1841 FMLE /		Kalsu mineralleri ve boşluk yapısı gözlennekte
(2) Å 11 Å (12) MF		Bol foranumler fösilleri ve ytizde 50 den fazta kum böyntu (0.0525 da 2 mm çapında) karbonat tanelere gözlenmekte	(1) FR (1 E#7EN	••	Kalso noneralleri ve bol hoyluk vapisi gözlenniekte	1744 LIRE (T 151		Kalsıt minerlaleri gözletimekte
131 TR 41 FR 12		Mikrokristalin kachonar marriksinde kalisenisi kermizinisi renklij bol mikrarda boshuk se midri sildkat mineralleri gozleninekte	(15) TR (1 ERTEN		Mikrokristalin kaibonar matriksinde kabsemis kirmisinsi renkli, bol miktarla boşluk se nadır sılıkat minerafleri gözlenmekte	17779112	9 .10	Plajtyoklas, Olivin, prinksen opt mineralleri Dhvinlerde den derecede kalivensis tenkle hakim aldingstilesine
117 DE 211	j.	Plajiyoklas, ortoklas, biyotit, kuvarsh Holokristal-granitler atkah feldispat granit Feldispatlarila magnu kanyan ifade eden perittleyme var.	114 TR41 ERTEN		Mikrakristalin karbonai matriksende grinisi renkli, bol mikrarda boşluk ve nadır silikar mueratleri gözleninekte	THAT STORES	1	Matriks jejinde kaya veya kalisti parçıkli taneler gövlenmekte
1910		Plapyukias ortoklas biyotit, kuvars, hornbleud sten Hotokristal-graniler granit. Diyotitlerde ileri derecede kloritlesme var	17524860	in the second	Intersertal dokulu, plagyoklas, olisin, proksen-ojit mineralleri Olivinde ileri derecede uklingsuleşine gözlenmekte	2)) GR (MT	9. mm	Planyoklas, ortoklas, hiyotit, kuvars Holokristaf grantiler granti Biyotitleoile azderecede ktoritleoine var
(4) T KEC 1 (2)		ž osti ve kalsti mnetali gözleninekte	114 2 42 47 1	•••	Intersertal dokulu plajnyoklas, olisin, piroksen-opt mineralleri Olivinde az derecesle iddingottesme gözlennekte	130 KINFCT451		Kalsn ve kil mineralleri gözlenmekte
A) 618EC 7 USI		Eusii ve kalsit minetali gözlenmekte	11230VF C.11		Hij aloplitik porfirik dokula antio planjveklas, kremen veja tamarnen opasitlejmijs antibol, piroksen- klinepiroksen minoralleri gözlermiskte Volkanik hamur planklas, antibol i olkanik vamdur oluşmakla	LIZIZKI VOI 152		Poniza ve kaya paryalari ile plajiyoklas, sanidin ve piroksen mineralleri gözlenmekte. Volkanik hamur feldişpiri ve volkanik camdan ölüşmakta
res kinec rasi		Eosil ve kalsit minerali gözletimekte	1112, 4 V D & Z ¹ T		Hiy alophrish portrak dokulo routis sharli piayy oldas a transm seya tanuaren opusutesini armbisi pindisen sharopirio ken meneratken sösteremekte Verkanik komu planjalas artisbol - velkanik canden olaşmakta	its is vivelat	. 	Cuk az pontsza ve kaya patyalari ile plajiyoklas, kanidin ve proskem mineralleri gözlenmekte Volkanik kamur icidiopat ve volkanik camdan oluşmakta
IN GRINT	S. A.Y	Plajisoklas, ortoklas, biyoti, kusars, borobled sfen Hiolokisotal-granuler grant Hiyotiferde az derecede klonitleşme vai		<u> </u>				

Şekil 4.2. Çalışmada kullanılan numunelerin ince kesit görüntüleri.

Ayrıca, XRF(X-ray fluorescence)yöntemi ile kaya numunelerin majör oksit yüzdeleri belirlenmiştir (Çizelge 4.1). Bu incelemeler sonucunda, test edilen kayaçların kimyasal bileşimleri ortaya konmuş ve kireçtaşı ve travertenlerin % 45'den fazla CaO, magmatik kayaçların ise % 45'den fazla SiO₂ bileşimine sahip olduğu belirlenmiştir.

				%		
Numune	Kava Adı	SiO ₂	AbO	Fe ₂ O ₃	MgO	CaO
No		0.01				
1	Bazalt	47.12	18.63	10.25	5.24	11.82
2	Kalkarenit	1.77	0.52	0.56	0.86	53.41
3	Traverten	9.06	2.83	3.69	0.55	45.87
4	Andezit	71.18	13.34	3.37	0.55	1.51
5	Granit	60.95	17.43	3.06	1.45	4.67
6	Kireçtaşı	1.22	0.38	0.14	2.96	51.70
8	Kireçtaşı	1.02	0.25	0.09	6.61	47.71
9	Kireçtaşı	0.22	0.07	0.01	0.23	57.14
10	Granit	69.39	14.05	2.50	1.35	3.62
11	Kireçtaşı	0.36	0.13	0.86	0.24	55.05
12	Traverten	0.05	0.02	0.06	0.17	55.96
13	Traverten	0.03	0.0	0.79	0.33	55.41
14	Traverten	0.23	0.07	0.07	0.52	54.71
15	Bazalt	46.63	17.42	12.95	4.47	9.35
16	Bazalt	53.45	1.12	0.63	0.41	13.04
17	Andezit	60.08	13.11	4.35	1.28	10.52
18	Andezit	64.68	15.38	4.54	1.46	6.09
19	Traverten	0.35	0.13	0.19	0.61	54.58
20	Kireçtaşı	0.69	0.18	0.09	0.48	55.32
21	Bazalt	46.25	18.55	10.13	5.46	12.57
22	Konglomere	27.77	0.09	6.63	29.21	16.23
23	Granit	70.34	14.41	2.72	0.67	2,79
24	Killi Kireçtaşı	0.44	0.14	0.04	0.31	54.69
25	Ignimbirit	66.43	14.19	4.50	0.19	1.66
26	İgnimbirit	66.76	14.16	4.71	0.15	1.61

Çizelge 4.1. Bu çalışmada kullanılan numunelere ait XRF sonuçları

4.2. Seçilen Numunelerin Fiziksel ve MekanikÖzellikleri

Seçilen 25 farklı kayanın bozunma testleri öncesi fiziksel özellikleri 225 adet numune üzerinde incelenmiştir. Bu numunelerden her bir kaya örneğinden 5 adet olacak şekilde numune seçilmiş ve bu numuneler başlangıç tek eksenli basma dayanımı değerinin belirlenmesi için kullanılmıştır.Bu numunelere ait fiziksel özelliklerin ortalama değerleri Çizelge4.2'de verilmiştir. Seçilen numunelerin ortalama fiziksel özelliklerinde belirgin farklılıklar olduğu belirlenmiştir. Seçilen 25 farklı numunenin ortalama kuru birim hacim ağırlıkları (KBHA)üçü hariç (killi kireçtaşı ve ignimbiritler) 21.0kN/m³'ün üstündeyken, ortalama doygun birim hacim ağırlıklarının (DBHA) büyük bir bölümü 22.0kN/m³'ün üzerindedir. Numunelere ait ortalama kuru birim hacim ağırlık (γ_k) değerlerine bakıldığında 13.14 kN/m³ ile 26.48 kN/m³ arasında ortalama doygun birim hacim ağırlık (γ_k) değerlerine bakıldığında 16.88 kN/m³ ile 26.51 kN/m³ arasında değiştiği görülmektedir. En düşük kuru ve doygun birim hacim ağırlık değeri ignimbirit ve killi kireçtaşı numunelerine aitken, en yüksek kuru ve doygun birim hacim ağırlık değerinin kireçtaşı numunelerine ait olduğu belirlenmiştir.

Numune	Kava Adı	KBHA	DBHA	n		UCS	Vp _(kuru)
No	Kaya Aui	(kN/m³)	(kN/m ³)	(%)	Sa	(MPa)	(km/s)
1	Bazalt	25.92	26.29	2.58	1.42	103.38	5797
2	Kalkarenit	25.29	25.33	0.27	0.15	74.69	6163
3	Traverten	25.31	25.63	2.40	1.26	71.11	5320
4	Andezit	23.39	23.95	4.67	2.38	91.97	4736
5	Granit	25.52	25.67	1.10	0.59	159.11	5140
6	Kireçtaşı	25.57	25.85	1.91	1.07	127.41	6057
8	Kireçtaşı	25.03	25.70	4.95	2.69	134.0	5099
9	Kireçtaşı	26.48	26.51	0.15	0.08	140.40	6722
10	Granit	26.10	26.16	0.40	0.22	184.09	4570
11	Kireçtaşı	26.27	26.29	0.20	0.10	154.98	6926
12	Traverten	23.74	24.00	2.02	1.10	60.97	5550
13	Traverten	24.25	24.65	3.03	1.63	62.54	5369
14	Traverten	24.14	24.44	2.26	1.25	99.01	5950
15	Bazalt	26.16	26.28	0.81	0.47	139.46	5174
16	Bazalt	25.83	26.16	2.33	1.28	89.70	5397
17	Andezit	23.08	23.61	4.69	2.26	91.87	4623
18	Andezit	22.80	23.46	5.28	2.91	74.87	4164
19	Traverten	21.79	21.98	1.75	0.92	27.45	4445
20	Kireçtaşı	25.54	25.63	0.67	0.38	126.19	6088
21	Bazalt	25.87	26.16	1.91	1.10	101.14	5201
22	Konglomere	24.14	24.46	2.35	1.34	52.64	5183
23	Granit	25.33	25.38	0.38	0.21	159.63	4724
24	Killi Kireçtaşı	19.60	21.10	14.29	7.68	10.08	3512
25	İgnimbrit	13.14	16.88	41.91	28.49	10.50	1868
26	İgnimbrit	14.49	17.73	33.71	22.41	11.65	2346

Çizelge 4.2.Yapay bozunma deneylerine tabi tutulmamış (bozunmamış) numunelere ait ortalama fiziksel ve mekanik değerler

Yine aynı numunelerin porozite (n) değerlerine bakıldığında en düşük birim hacim ağırlık değerine sahip olan ignimbirit ve killi kireçtaşı numunelerinin en yüksekağırlıkça su emme (S_a) ve porozite değerlerine sahip olduğu ve en düşük porozite değerlerinin granit ve kireçtaşı numunelerine ait olduğu tespit edilmiştir.

Bozunmamış(taze) numunelerde belirlenen fiziksel özellik değerleri donmaçözülme ve tuz kristallenmesi sonrasında değişmiş olsa da yine en düşük kuru ve doygun birim hacim ağırlık değeri ignimbirit ve killi kireçtaşı numunelerinden, en düşük porozite değerleri ise granit ve kireçtaşı numunelerinden elde edilmiştir (Çizelge 4.3). Ayrıca, küçük ve elipse yakın gözenekliliğe sahip travertenlerde bu gözeneklerin bozunma üzerinde etkili olduğu ve bu durumun kayanın hız değerlerini ve tek eksenli basma dayanımı (UCS) değerlerini doğrudan etkilediği de belirlenmiştir.

		¥	Donma	- Çözül	me		M	gSO4 Tuz	Krista	llenme	si
Numune		КВПА	DBHA	.0.()	Sa	Vp _(kara)	КВНА	DBHA		Sa	Vp _(kuru)
No	кауа Лаг	(kN/m ³)	(kN/m ³)	n (%)		(km/s)	(kN/m ³)	(kN/m ³)	п (%)		(km/s)
I	Bazalt	25.32	25.79	4.30	1.86	5437	25.24	25.59	3.26	1.37	5786
2	Kalkarenit	25.43	25.50	0.61	0.27	6107	24.50	24.54	0,36	0,16	5739
3	Traverten	24.56	25.23	5.80	2.71	4605	24.75	25.28	4.41	2.13	4649
4	Andezit	23.24	23.78	4.60	2.32	4847	22.78	23.39	5.31	2.67	4965
5	Granit	25.48	25.64	1.39	0.63	4860	25.37	25.53	1.42	0.64	5118
6	Kireçtaşı	25.30	25.66	3.17	1.42	5087	25.54	25.80	2.30	1.01	5752
8	Kireçtaşı	24.60	25.23	5.59	2.56	4720	24.91	25.48	5.04	2.31	5041
9	Kireçtaşı	26.02	26.05	0.30	0.13	6465	26.38	26.41	0.25	0.11	5062
10	Granit	25.95	26.03	0.77	0.34	4270	25.84	25.89	0.46	0.20	4576
11	Kireçtaşı	26.27	26.31	0.41	0.18	6648	26.24	26.27	0.28	0.12	6546
12	Traverten	23.08	23.40	3.26	1.41	5043	23.51	23.85	3.00	1.43	4332
13	Traverten	22.35	22.72	3.45	1.66	4464	24.17	24.49	2.72	1.31	4034
14	Traverten	23.88	24.12	2.09	1,00	5872	24.32	24.57	2.52	1.03	6076
15	Bazalt	26.05	26.25	1.84	0.79	4940	26.10	26.27	1.59	0.66	5092
16	Bazalt	25.60	26.06	4.01	1.81	5434	25.30	25.75	3.65	1.76	5677
17	Andezit	22.72	23.24	4.58	2.28	4796	21.27	21.68	4.71	1.96	4895
18	Andezit	22.40	23.17	6.80	3.41	4161	22.79	23.34	5.06	2.45	4792
19	Traverten	21.74	22.05	2.90	1.43	4770	21.56	21.90	3.23	1.61	3733
20	Kireçtaşı	24.48	24.72	2.24	1.00	5527	25.44	25.57	1.14	0.50	6079
21	Bazalt	25.63	25.98	3.13	1.40	5392	25.79	26.11	2.77	1.23	5482
22	Konglomere	23.99	24.37	3.58	1.58	3788	23,98	24.31	2.92	1.37	3790
23	Granit	25.38	25.43	0,40	0.18	4616	25.23	25.28	0,44	0.20	4676
24	Killi Kireçtaşı	19.41	20.51	10.99	5.68	3759	20.32	21.86	15.13	7.58	3622
25	İgnimbrit	-	-	-	-	-	-	-	-	-	-
26	İgnimbrit	-	-	-	-	-	-	-	-	-	-

Çizelge 4.3. Yapay bozunma deneylerine tabi tutulmuş örneklere ait ortalama fiziksel ve mekanik değerler

Numuneler üzerinde temel sürtünme açısının (ϕ_b) belirlenmesinden önce numunelerin bozunma testlerinden etkilenip etkilenmediğinin belirlenmesi amacıyla bazı fiziksel ve mekanik özelliklerine bakılmıştır. Yapay bozunma sonrasında L tipi Schmidt çekici geri sıçrama (SHR) değerlerine bakıldığında genelde yapay bozunma sonrasında az da olsa SHR değerlerinde bir azalmanın olduğu gözlenmiştir (Şekil 4.3). SHR sonuçlarına bakıldığındaçalışma kapsamında incelenen kayalardan bazaltlar hariç diğer kayaların bozunmadan etkilendiği ve en fazla etkilenen kayanında gri renkli andezit olduğu belirlenmiştir (Şekil 4.3).

Çalışma kapsamında kullanılan kaya numuneler kuru ve doygun koşullarda tilt testine tabi tutulmuştur. Tilt testi öncesinde numunelerin tam doygun olduğunun belirlenmesi amacıyla DBHA ile KBHA arasındaki ilişkiye bakılmış ve iki değer arasındaki belirleme katsayısının yüksek olduğu ($R^2=0.98$) belirlenmiştir (Şekil 4.4). Bu sonuç boşluklardaki doyurma işleminin tam olarak sağlandığını göstermiştir.

Şekil 4.3. SHR değerlerinin bozunmamış ve bozunmuş örneklerdeki değişimi.

Şekil 4.4. Çalışmada kullanılan numunelere ait KBHA ve DBHA arasındaki ilişki.

Numunelerin hesaplanan porozite değerlerine bakıldığında ise bozunmamış (taze) numunelerden bozunmuş numunelere doğru porozite değerlerinde genelde bir artışın olduğu gözlenmektedir (Şekil 4.5) ve birim hacim ağırlıklarda genelde azalışların olduğu da ayrıca görülmektedir.Tüm bu fiziksel ve mekanik durumlara bakıldığında yapay bozunmanın seçilen kaya numuneleri üzerinde etkili olduğu ve dolayısıyla tezin amacı olan bozunmuş ve bozunmamış yüzeylerdeki temel sürtünme açısı arasındaki farkların belirlenmesi için istenen bozunmuş yüzey şartlarının sağlandığını göstermiştir. Bu aşamadan sonra kayma açılarının belirlenmesi için Tilt testine geçilmiştir.

Şekil 4.5. Porozite değerlerinin bozunmamış ve bozunmuş örneklerdeki değişimi.

Tilt testi ile belirlenen kayma açıları (β), Alejano ve ark. (2012a) ve Stipmson (1981) tarafından önerilen bağıntılar yardımıyla temel sürtünme açısına (ϕ_b) dönüştürülmüştür. Elde edilen sonuçlara bakıldığında, kuru, doygun-ıslak ve doygun-batık koşuldaki durumlarda ϕ_b (Muralha'dan hesaplanan) < β < ϕ_b (Stipmson'dan hesaplanan)ilişkisi elde edilmiştir (Çizelge 4.4 – 4.9).

Ölçülen kayma açılarının (β) ilişkilerine Alejano ve ark. (2012a) tarafından önerilen bağıntı ile hesaplanan değerler üzerinden bakılmıştır. Bozunmamış (taze) numunelerin kuru yüzeylerinde Alejano ve ark. (2012a)'den hesaplanan ϕ_b değerleri farklı boyutlu numuneler kısa (7x7x3.5cm) ve uzun (7x7x7cm)) için hesaplanmıştır. Bu hesap neticesinde numunenin boyutuna bağlı ağırlığının kayma açısı üzerinde bir etkisinin olduğu görülmektedir. Bozunmamış numunelerin kuru yüzeylerinin tamamında uzun boyutlu numunelerin temel sürtünme açıları kısa boyutlu numunelerden daha yüksek çıkmıştır (Şekil 4.6). 1, 4, 6, 8, 12, 13, 15, 18, 19, 20, 21 nolu numunelerde ϕ_b değerleri arasındaki fark 4°'den büyüktür(Şekil 4.6). Özellikle bazaltlarda ve kırmızı renkli traverten örneğinde fark yüksek çıkmıştır. Bazaltlarda bu duruma neden olan unsur yoğunlukken, travertende boşlukların bazı durumlarda pürüzlülüğü ve buna bağlı olarak da kayma açısını arttırdığı düşünülmektedir. Kısa boyutlu ignimbirit numunelerinin bazıları bozunma testleri sonrasında dağıldığından her koşul için ϕ_b değerleri belirlenememiştir. Bozunma sonrasında yüzey koşullarının kısmen pürüzlü hale gelmesi sebebiyle, ölçülen temel sürtünme açıları, ϕ_b+i olarak değerlendirilmiştir.

		Taze Y	üzey			[Donma-C Soni	(`özülı rası	me		MgSC)4 Tuz K Son	ristall rası	enmesi	
Numune No		¢bAlejano ve ark.'dan	\$bStipmson [†] dan	Wk (g)	μ	ß	🏟 + iAlejano ve ark.'dan	約+ iStipmson'dan	Wk (g)	μ	ß	🏟 + <i>i</i> Alejano ve ark.'dan	🏟+ iStipmson'dan	Wk (g)	μ
1	17	15	19	420	0.31	19	17	22	441	0.34	24	21	27	453	0,45
2	20	17	23	470	0.36	20	17	23	431	0,36	27	24	30	480	0.51
3	22	19	25	367	0.40	23	20	26	404	0.42	26	23	29	368	0,49
4	20	17	23	320	0.36	22	19	25	363	0.40	22	19	25	316	0.40
5	18	16	21	340	0.32	20	17	23	419	0.36	19	17	22	400	0.34
6	17	15	19	453	0.31	18	16	21	379	0.32	22	19	25	465	0.40
8	21	18	24	386	0.38	20	17	23	388	0.36	23	20	26	397	0.42
9	20	17	23	330	0.36	18	16	21	467	0.32	34	30	38	407	0.67
10	19	17	22	382	0.34	18	16	21	417	0.32	28	25	32	418	0.53
11	17	15	19	490	0.31	15	13	17	482	0.27	22	19	25	443	0.40
12	21	18	24	392	0.38	17	15	19	410	0.31	31	27	35	423	0.60
13	20	17	23	381	0.36	20	17	23	435	0.36	26	23	29	381	0.49
14	19	17	22	396	0.34	18	16	21	406	0.32	33	29	37	456	0.65
15	23	20	26	523	0.42	20	17	23	538	0.36	25	22	28	563	0.47
16	24	21	27	418	0.45	21	18	24	428	0.38	24	21	27	465	0.45
17	24	21	27	390	0.45	22	19	25	384	0.40	28	25	32	365	0.53
18	22	19	25	351	0,40	24	21	27	373	0.45	26	23	29	390	0,49
19	20	17	23	390	0.36	20	17	23	331	0.36	32	28	36	369	0.62
20	17	15	19	367	0.31	17	15	19	289	0.31	20	17	23	336	0.36
21	22	19	25	423	0.40	19	17	22	466	0.34	22	19	25	442	0,40
22	23	20	26	411	0.42	20	17	23	333	0.36					
23	18	16	21	424	0.32	19	17	22	391	0.34	22	19	25	362	0,40
24	32	28	36	273	0.62	30	27	34	348	0.58	31	27	35	341	0.60
25			Nur	nune h	azırlan	na sira	sında nı	umun	e dağıld	iğından	ölçün	n alınam	adı.		
26			Nur	nune h	azırlan	na sira	sında ni	umun	e dağıld	iğından	ölçün	n alınam	adı.		

Çizelge 4.4. Kısa numunelerin kuru koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

		,	Taze '	Yüzey			Donma-	Çözüln	ne Sonr	251		M Kristall	gSO4 enmes	Tuz si Sonr:	ası
Numune No	β	∳hAlejano ve ark.'dan	∳₅Stipmson'dan	Wk (g)	μ	β	🏟 + i Alejano ve ark.'dan	🍌+ /Stipmson'dan	Wk (g)	μ	β	🏟 + iAlejano ve ark.'dan	🍻 + <i>i</i> Stipmson'dan	Wk (g)	μ
1	24	21	27	425	0.45	28	25	32	449	0.53	29	26	33	459	0.55
2	33	29	37	472	0.65	32	28	36	432	0.62	35	31	39	484	0.70
3	30	27	34	375	0.58	25	22	28	412	0.47	25	22	28	380	0.47
4	26	23	29	332	0.49	25	22	28	370	0.47	27	24	30	326	0.51
5	29	26	33	343	0.55	23	20	26	422	0.42	26	23	29	402	0,49
6	35	31	39	457	0.70	26	23	29	385	0.49	25	22	28	469	0.47
8	36	32	40	395	0.73	25	22	28	399	0,47	31	27	35	406	0.60
9	27	24	30	330	0.51	28	25	32	467	0.53	36	32	40	407	0.73
10	24	21	27	383	0.45	27	24	30	418	0.51	33	29	37	419	0.65
11	26	23	29	491	0.49	28	25	32	482	0.53	27	24	30	443	0.51
12	34	30	38	395	0.67	33	29	37	415	0.65	30	27	34	431	0.58
13	35	31	39	385	0.70	32	28	36	439	0.62	32	28	36	386	0.62
14	33	29	37	400	0.65	29	26	33	411	0.55	32	28	36	461	0.62
15	27	24	30	530	0.51	24	21	27	546	0.45	30	27	34	570	0.58
16	26	23	29	426	0.49	26	23	29	436	0.49	29	26	33	473	0.55
17	26	23	29	399	0.49	28	25	32	393	0.53	30	27	34	375	0.58
18	24	21	27	362	0.45	29	26	33	387	0.55	<i>32</i>	28	36	403	0.62
19	30	27	34	395	0.58	29	26	33	235	0.55	37	33	41	375	0.75
20	24	21	27	370	0.45	24	21	27	292	0.45	24	21	27	339	0.45
21	25	22	28	430	0.47	22	19	25	473	0.40	25	22	28	447	0.47
22	20	17	23	415	0.36	20	17	23	339	0.36					
23	25	22	28	425	0.47	21	18	24	392	0.38	26	23	29	362	0.49
24	34	30	38	309	0.67	33	29	37	370	0.65	36	32	40	369	0.73
25			1	Numun	e hazırlar	na sira	sında ni	ımune	dağıldığ	undan i	ölçün	ı alınamı	adı.		
26			/	Numun	e hazırlar	na sira	sında nı	ımune	dağıldığ	undan ö	ilçün	ı alınam	adı.		

Çizelge 4.5. Kısa numunelerin doygun koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

		Та	ze Yü	zey			Donma-Q	`özülm	e Sonra	S1	М	gSO₄ T	'uz Kr Sonra	istallen Ist	mesi
Numune No	ß	¢bAlejano ve ark.'dan	bsStipmson'dan	Wk (g)	μ	ß	🍌 + iAlejano ve ark.'dan	∳+tStipmson'dan	Wk (g)	μ	ß	🏟 + i Alejano ve ark.'dan	約+ iStipmson'dan	Wk (g)	μ
1	25	22	28	425	0.47	28	25	32	449	0.53	30	27	34	459	0.58
2	34	30	38	472	0.67	37	33	41	432	0.75	32	28	36	484	0.62
3	22	19	25	375	0.40	30	27	34	412	0.58	26	23	29	380	0.49
4	25	22	28	332	0.47	28	25	32	370	0.53	25	22	28	326	0.47
5	26	23	29	343	0,49	24	21	27	422	0.45	27	24	30	402	0.51
6	24	21	27	457	0.45	18	16	21	385	0.32	20	17	23	469	0.36
8	28	25	32	395	0.53	20	17	23	399	0.36	29	26	33	406	0.55
9	25	22	28	330	0.47	21	18	24	467	0.38	30	27	34	407	0.58
10	24	21	27	383	0.45	23	20	26	418	0.42	22	19	25	419	0.40
11	21	18	24	491	0.38	26	23	29	482	0.49	21	18	24	443	0.38
12	32	28	36	395	0.62	28	25	32	415	0.53	35	31	39	431	0.70
13	27	24	30	385	0.51	31	27	35	439	0.60	27	24	30	386	0.51
14	32	28	36	400	0.62	34	30	38	411	0.67	34	30	38	461	0.67
15	28	25	32	530	0.53	27	24	30	546	0.51	29	26	33	570	0.55
16	29	26	33	426	0.55	27	24	30	436	0.51	28	25	32	473	0.53
17	30	27	34	399	0.58	28	25	32	393	0.53	29	26	33	375	0.55
18	28	25	32	362	0.53	29	26	33	387	0.55	30	27	34	403	0.58
19	34	30	38	395	0.67	32	28	36	235	0.62	38	34	42	375	0.78
20	32	28	36	370	0.62	29	26	33	292	0.55	20	17	23	339	0.36
21	26	23	29	430	0.49	24	21	27	473	0.45	28	25	32	447	0.53
22	22	19	25	415	0.40	18	16	21	339	0.32					
23	26	23	29	425	0.49	20	17	23	392	0.36	22	19	25	362	0.40
24	36	32	40	309	0.73	37	33	4]	370	0.75	40	36	4 4	369	0,84
25			Nu	mune	hazırla	ma si	rasında n	umune	dağıldığ	ğından	ölçün	n alınaı	nadı.		
26			Nu	mune	hazırla	ma si	rasında n	umune	dağıldığ	ğından	ölçün	n alınaı	nadı.		

-

Çizelge 4.6. Kısa numunelerin doygunve batık koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

		Та	ze Yüz	ey.			Donma-(Çözülme	Sonra	\$1	M	IgSO₄ T	uz Krista Sonrası	allenm	esi
Numune No	ß	¢bAlejano ve ark.'dan	∳₀Stipmson'dan	Wk (g)	μ	ļi	🏟 + iAlejano ve ark.'dan	, ∳++ <i>i</i> Stipmson'dan	Wk (g)	μ	ß	🍻 + i Alejano ve ark.'dan	¢s+ <i>i</i> Stipmson'dan	Wk (g)	μ
1	24	21	27	932	0.45	24	21	27	952	0.45	24	21	27	938	0,45
2	23	20	26	996	0.42	27	24	30	1023	0.51	26	23	29	989	0.49
3	25	22	28	873	0.47	28	25	32	900	0.53	27	24	30	867	0.51
4	25	22	28	777	0.47	28	25	32	770	0.53	23	20	26	799	0.42
5	22	19	25	887	0.40	22	19	25	887	0.40	21	18	24	891	0.38
6	22	19	25	907	0.40	27	24	30	924	0.51	28	25	32	902	0.53
8	26	23	29	919	0.49	28	25	32	940	0.53	27	24	30	923	0.51
9	20	17	23	943	0.36	25	22	28	943	0.47	25	22	28	931	0,47
10	23	20	26	904	0.42	20	17	23	951	0.36	27	24	30	889	0.51
11	21	18	24	951	0.38	26	23	29	957	0.49	25	22	28	959	0.47
12	25	22	28	891	0.47	32	28	36	894	0.62	23	20	26	885	0.42
13	27	24	30	859	0.51	26	23	29	869	0.49	24	21	27	857	0.45
14	22	19	25	914	0.40	27	24	30	924	0.51	26	23	29	914	0,49
15	27	24	30	1071	0.51	28	25	32	1105	0.53	27	24	30	1055	0.51
16	25	22	28	898	0.47	25	22	28	885	0.47	24	21	27	921	0.45
17	27	24	30	778	0.51	27	24	30	759	0.51	25	22	28	806	0.47
18	26	23	29	798	0.49	26	23	29	835	0.49	25	22	28	787	0.47
19	24	21	27	725	0.45	22	19	25	712	0.40	28	25	32	727	0.53
20	23	20	26	869	0.42	20	17	23	901	0.36	21	18	24	857	0.38
21	27	24	30	973	0.51	31	27	35	981	0.60	28	25	32	974	0.53
22	24	21	27	773	0.45	24	21	27	764	0.45	24	21	27	0	
23	22	19	25	828	0.40	25	22	28	835	0.47	25	22	28	833	0.47
24	34	30	38	721	0.67	26	23	29	802	0.49	28	25	32	749	0.53
25	30	27	34	517	0.58				582					542	
26	30	27	34	525	0.58				546					523	

Çizelge 4.7. Uzun numunelerin kuru koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

		ĩ	`aze Yü	zey		1	Donma-(Çözülı	ne Sonr	asi	N	lgSO₄ Tu S	z Krist ionrası	allenmo	csi
Numune No	ß	∳bAlejano ve ark.'dan	∳₀Stipmson'dan	Wk (g)	μ	ß	🍻 + iAlejano ve ark.'dan	🍻+ iStipmson'dan	Wk (g)	μ	ß	🏟 + <i>i</i> Alejano ve ark.'dan	🍻 + iStipmson'dan	Wk (g)	ţı
1	26	23	29	952	0.49	25	22	28	963	0.47	28	25	32	955	0.53
2	30	27	34	999	0.58	29	26	33	1048	0.55	31	27	35	992	0,60
3	34	30	38	895	0.67	31	27	35	919	0.60	29	26	33	891	0.55
4	28	25	32	799	0.53	27	24	30	778	0.51	27	24	30	816	0.51
5	26	23	29	893	0.49	27	24	30	891	0.51	29	26	33	896	0,55
6	31	27	35	918	0,60	32	28	36	932	0.62	35	31	39	915	0,70
8	32	28	36	945	0.62	32	28	36	960	0.62	30	27	34	946	0,58
9	32	28	36	944	0.62	33	29	37	944	0.65	35	31	39	932	0.70
10	29	26	33	940	0.55	26	23	29	953	0,49	28	25	32	892	0.53
11	32	28	36	951	0.62	35	31	39	958	0,70	32	28	36	961	0.62
12	34	30	38	902	0.67	34	30	38	907	0.67	31	27	35	898	0.60
13	33	29	37	870	0.65	35	31	39	879	0,70	34	30	38	871	0.67
14	30	27	34	926	0.58	32	28	36	930	0.62	35	31	39	923	0.70
15	30	27	34	1086	0.58	29	26	33	1112	0.55	31	27	35	1075	0.60
16	31	27	35	922	0.60	28	25	32	900	0.53	29	26	33	940	0.55
17	36	32	40	804	0.73	29	26	33	776	0.55	29	26	33	825	0.55
18	28	25	32	830	0.53	27	24	30	856	0.51	32	28	36	814	0.62
19	32	28	36	737	0.62	33	29	37	723	0.65	35	31	39	737	0.70
20	28	25	32	877	0.53	27	24	30	905	0.51	28	25	32	867	0,53
21	28	25	32	994	0.53	28	25	32	993	0.53	32	28	36	988	0.62
22	26	23	29	784	0.49	22	19	25	775	0.40	22	19	25	0	
23	31	27	35	831	0.60	27	24	30	837	0.51	28	25	32	835	0.53
24	38	34	42	797	0.78	35	31	39	856	0.70	36	32	40	795	0.73
25	32	28	36	637	0.62				645					626	
26	33	29	37	646	0.65				609					644	

-

Çizelge 4.8. Uzun numunelerin doygun koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

Taze Yüzey							Donma-Çözülme Sonrası				MgSO4 Tuz Kristallenmesi Sonrası				
Numunc No	β	øbAlejano ve ark.'dan	∳₀Stipmson'dan	Wk (g)	μ	ß	∳++i Alejano ve ark.'dan	¢h+ <i>i</i> Stipmson'dan	Wk (g)	μ	ß	🍌 + <i>i</i> Alejano ve ark.'dan	🍌+iStipmson'dan	Wk (g)	μ
]	24	21	27	952	0.45	24	21	27	963	0.45	27	24	30	955	0.51
2	30	27	34	999	0.58	33	29	37	1048	0.65	30	27	34	992	0.58
3	30	27	34	895	0.58	29	26	33	919	0.55	30	27	34	891	0.58
4	27	24	30	799	0.51	27	24	30	778	0.51	26	23	29	816	0.49
5	26	23	29	893	0.49	24	21	27	891	0.45	26	23	29	896	0.49
6	27	24	30	918	0.51	32	28	36	932	0.62	34	30	38	915	0.67
8	29	26	33	945	0.55	30	27	34	960	0.58	29	26	33	946	0.55
9	30	27	34	944	0.58	31	27	35	944	0,60	28	25	32	932	0.53
10	26	23	29	940	0.49	27	24	30	953	0.51	26	23	29	892	0.49
11	28	25	32	951	0.53	31	27	35	958	0.60	30	27	34	961	0.58
12	30	27	34	902	0.58	33	29	37	907	0.65	30	27	34	898	0.58
13	32	28	36	870	0.62	30	27	34	879	0.58	32	28	36	871	0.62
14	31	27	35	926	0.60	31	27	35	930	0.60	35	31	39	923	0.70
15	32	28	36	1086	0.62	28	25	32	1112	0.53	30	27	34	1075	0.58
16	29	26	33	922	0.55	27	24	30	900	0.51	27	24	30	940	0.51
17	34	30	38	804	0.67	31	27	35	776	0.60	26	23	29	825	0.49
18	30	27	34	830	0.58	30	27	34	856	0.58	29	26	33	814	0.55
19	30	27	34	737	0.58	34	30	38	723	0.67	32	28	36	737	0.62
20	26	23	29	877	0.49	26	23	29	905	0.49	24	21	27	867	0.45
21	30	27	34	994	0.58	33	29	37	993	0.65	30	27	34	988	0.58
22	24	21	27	784	0.45	20	17	23	775	0.36	20	17	23		
23	29	26	33	831	0.55	25	22	28	837	0,47	24	21	27	835	0.45
24	36	32	40	797	0.73	34	30	38	856	0.67	37	33	41	795	0.75
25				637					645					626	
26				646					609					644	

Çizelge 4.9. Uzun numunelerin doygun ve batık koşullardaki ortalama kayma açısı ve sürtünme katsayısı değerleri

Kısa ve uzun numunelerin doygun-ıslak ve doygun-batık haldeki taze yüzeylerinde ise, kalkarenit, 5 nolu granit, bazı traverten ve kireçtaşlarında uzun numunelerin kısa numunelerden daha düşük ϕ_b değerine sahip olduğu gözlenmiştir (bkz. Şekil 4.6). Bu durumun adezyon kuvvet etkisinden kaynaklandığı düşünülmektedir. Numunelerin Tilt testi sonuçlarına bakıldığında bozunmanın artmasıyla artan görsel pürüzlülük sonrasında ϕ_b değerlerinde azda olsa artmanın olduğu belirlenmiştir (Şekil 4.7). Bu durum kısa (7x7x3.5cm) numunelerde daha belirgin şekilde gözlenmektedir. Tilt testi sonrasında bozunma ile pürüzlü yüzeylerin en belirgin arttığı ignimbiritlerde (bkz. Şekil 3.5) ve killi kireçtaşında (bkz. Şekil 3.7) en yüksek ϕ_b değeri elde edilirken, en düşük ϕ_b değeri 1nolu bazalt numunesinden elde edilmiştir. Kısa ve uzun örnekler birlikte değerlendirildiğinde, granitlerde genelde 16-20°, bazaltlarda 13-24°, kireçtaşlarında 15-23°, andezitlerde 17-24°, travertenlerde ise 17-24° arasında ϕ_b açılarının değiştiği gözlenmiştir (Şekil 4.7). İgnimbiritlerde kısa ve bozunmuş numuneler üzerinde çalışma kayanın dağılmasından dolayı sürdürülememiştir.

Çalışma kapsamında teste tabi tutulan uzun numunelerde devrilme ve dönme gibi moment etkisine bağlı durumlar oluşması nedeniyle bu numunelerde testler birkaç defa tekrarlanmak zorunda kalınmıştır. Kısa numunelerde ise boyut etkisinin test üzerinde olumsuz bir etkisi görülmemiştir. Bu çalışmanın tüm sonuçları değerlendirildiğinde kayma açısının (β) belirlenmesinde kısa olarak tanımlanan numunelerin kullanılması önerilmektedir.

Bozunmaya tabi tutulmuş (donma-çözülme ve tuz kristallenmesi) ve taze numune yüzeylerinin kuru haldeki ϕ_b açılarına bakıldığında, ϕ_b değerinin bozunmadan etkilendiği ve ϕ_b + *i* değerine dönüştüğü bu değerin de taze yüzeydeki ϕ_b değerlerinden yüksek çıktığı gözlenmiştir. Bu çalışmadan elde edilen sonuçlara bakıldığında;

 ϕ_b (taze yüzey) $\leq \phi_b$ (donma-çözülme sonrası yüzey) $\leq \phi_b$ (tüz kristallenmesi sonrası yüzey)

ilişkisi elde edilmiştir. Kısa numunelerin tamamında bu duruma rastlanırken uzun numunelerin bazılarında tersi durumlar oluşmuştur (bkz. Şekil 4.7). Bazı kireçtaşı ve travertenler ile ignimbiritler bozunmadan en çok etkilenen kayalar olmuş ve bu numunelerde yüksek ϕ_b açıları elde edilmiştir. Bu nedenle özellikle saha çalışmalarında kayaların bozunma derecelerine dikkat edilmesi gerekmektedir. Özellikle bozunma ile dağılan kaya parçalarının gözeneklere dolması veya bozunmayla ortamdan kolay kopan parçalar sonrasında kayada daha duraylı olan minerallerin oluşturduğu pürüzlü yüzeyler kayma açısını beklenenin aksine arttırmaktadır. Granit gibi farklı minerallerden oluşan kayalarda bu durum net olarak gözlenebilmektedir (Özvan ve ark., 2014).

Şekil 4.6. Kısa ve uzun bozunmamış numunelerde ϕ_b açısının deney koşullarına göre değişimini gösteren bar diyagramları.

Şekil 4.7. Kısa ve uzun numunelerde kuru yüzeye ait ϕ_b açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları.

Bozunmaya tabi tutulmuş ve taze numune yüzeylerinin doygun haldeki ϕ_b açılarına bakıldığında, doygun numunelerin ϕ_b değerleri kuru numunelerinkinden yüksek çıkmıştır. Fakat ϕ_b değerinin bazı numunelerde kuru haldeki gibi mantıklı sonuçlar vermediği gözlenmiştir (Şekil4.8). Bu durumun özellikle kireçtaşı ve travertenlerde daha belirgin olarak gözlenen adezyon kuvveti etkisinden kaynaklandığı düşünülmektedir. Numunelerin test öncesi nemli bir bez ile dış yüzeyindeki sular alınmış olsa bile yapışma etkisi tam olarak giderilememektedir.

Kısa şekilli, bozunmaya tabi tutulmuş ve taze numune yüzeylerinin doygunbatık haldeki ϕ_b değişimlerine bakıldığında, testere ile kesildiğinde daha pürüzsüz ve parlak yüzeylere sahip olan kireçtaşı ve granit gibi numunelerin bozunmamış olanlarının (taze) daha yüksek ϕ_b açısına sahip olduğu gözlenmiştir (Şekil 4.9). Bu durumunda adezyon kuvvetinden kaynaklandığı düşünülmektedir. Uzun şekilli numunelerin su içerisinde ölçümü numunelerde sıkça rotasyon olmasından dolayı oldukça güç olmuştur. Parlak yüzeyli numunelerde kısa şekilli numunelerde olduğu gibi adezyon kuvveti bazı örneklerin ϕ_b açısını etkilemiştir ve taze yüzeyli numunelerin ϕ_b açısının bozunmuş yüzeyli bazı numunelerden yüksek çıkmasına neden olmuştur.

Doğal arazi koşullarında kayalar kuru veya suya doygun olabilmektedir. Bu durumun test edilmesi amacıyla kuru ve doygun koşullarda kısa numuneler test edilmiştir. Kısa numunelerin kuru, doygun-ıslak ve doygun-batık koşullardaki temel sürtünme açısı değerlerine bakıldığında; kuru koşullardaki ϕ_b değerlerinin doygun-ıslak ve doygun-batık koşullardaki ϕ_b değerlerinden daha düşük çıktığı belirlenmiştir (Şekil 4.10). Bu durum bozunmamış, donma-çözülme ve tuz kristallenmesi sonrası numunelerinin tamamında bu şekilde gözlenmiştir. Ulusay ve Karakul (2016) tarafından yapılan çalışmada karbonat kökenli kayaçların çoğunun ıslak koşullarda kuru koşullara göre daha küçük temel sürtünme açılarına sahip olduğu belirtilmiş ve durumun yağlanma etkisinden kaynaklandığı vurgulanmıştır. Fakat bu çalışmada özellikle karbonatlı kayaçlarda kuru yüzeylerin doygun ve ıslak yüzeyli numunelerden daha düşük ϕ_b değerlerine sahip olduğu belirlenmiştir. Bunun en büyük sebebi olarak kesildiğinde daha parlak yüzeylere sahip olan bu kayaların adezyon etkisiyle yapışmasından kaynaklandığı düşünülmektedir.

Doygun numunelerin genelde daha yüksek ϕ_b değerlerine sahip olmasının en temel nedeni ise bu numunelerin kuru numunelerden daha ağır olmasından kaynaklanmaktadır.

Şekil 4.8. Kısa ve uzun numunelerde doygun numuneye ait ϕ_b açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları.

Şekil 4.9. Kısa ve uzun numunelerde doygun ve batık numuneye ait ϕ_b açısının bozunmamış ve bozunmuş numunelerdeki değişimini gösteren bar diyagramları.

Şekil 4.10. Kısa numunelerin bozunmamış ve bozunmuş hallerinin kuru, doygun-ıslak ve doygun-batık koşullardaki
\$\phi_b\$ açısının değişimini gösteren bar diyagramları.

Temel sürtünme açısı ile kayaların bazı fiziksel, mekanik ve kimyasal özellikleri arasındaki ilişkilerin incelendiği bu tez çalışmasında ϕ_b ile bazı fiziksel ve mekanik özellikler arasında yüksek belirleme katsayısına sahip ilişkiler elde edilememiştir. Bu ilişkilerden en yüksek belirleme katsayısınınkısa şekilli ve kuru yüzeye sahip numunelerin ϕ_b açısı ileL tipi çekiç ile elde edilen SRH değeri (R²=0.62) arasında olduğu (Şekil 4.11) diğer özellikler ile ϕ_b açısı arasında ise bir ilişkinin olmadığı belirlenmiştir. Kullanılan veri aralığı içerisinde SRH değeri ile ϕ_b açısı arasındaki bağıntının belirleme katsayısının çok güçlü olmaması nedeniyle kullanımı önerilmemektedir.

Şekil 4.11. Kısa numunelerin SRH değeri ile ϕ_b açısının arasındaki ilişkiye ait korelasyon eğrisi.

52

5. SONUÇ ve ÖNERİLER

Bu çalışmada farklı özelliklere sahip sedimanter (13 adet), volkanik (9 adet) ve magmatik (3 adet) kökenli toplam 25 kaya türünden alınan numuneler kullanılmıştır.

Seçilen 25 farklı numunenin ortalama kuru birim hacim ağırlıkları (KBHA) üçü hariç (killi kireçtaşı ve ignimbiritler) 21.0kN/m³'ün üstündeyken, ortalama doygun birim hacim ağırlıklarının (DBHA) büyük bir bölümü 22.0kN/m³'ün üzerindedir.

Bu çalışmada Alejano ve ark. (2012a)'ye göre hesaplanan en düşük ϕ_b açısı değerleri kısa ve kuru yüzey şartlarında elde edilmiştir. Kısa ve uzun örnekler birlikte değerlendirildiğinde, granitlerde genelde 16-20°, bazaltlarda 13-24°, kireçtaşlarında 15-23°, andezitlerde 17-24°, travertenlerde ise 17-24° arasında ϕ_b açılarının değiştiği gözlenmiştir. Bu çalışmada elde edilen ϕ_b açısı değerlerinin süreksizlik düzlemlerinde rastlanabilecek en düşük değerler olduğu unutulmamalıdır. Seçilen numuneler üzerinde yapılan yapay bozunma testleri sonucunda bozunmaya bağlı olarak temel sürtünme açısının değişen pürüzlülüğe (*i* açısı) bağlı olarak killi kireçtaşı ve ignimbiritlerde arttığı, bazaltlarda ise değişimin çok az olduğu belirlenmiştir.

Ölçülen kayma açıları (β), Alejano ve ark. (2012a) ve Stipmson (1981) tarafından önerilen bağıntılar yardımıyla temel sürtünme açısına (ϕ_b) dönüştürülmüştür. Elde edilen sonuçlara bakıldığında, kuru, doygun-ıslak ve doygun-batık koşuldaki durumlarda $\phi_{b(Muralha'dan hesaplanan)} < \beta < \phi_{b(Stipmson'dan hesaplanan)}$ ilişkisi elde edilmiştir.

Bozunmamış numunelerin kuru yüzeylerinin tamamında, uzun numunelerin kayma açıları, ağırlıktan dolayı kısa numunelerden daha yüksek çıkmıştır. Bu nedenle laboratuvar ortamında yapılan Tilt testlerinde boyut etkisine dikkat etmek gerekmektedir.

Doygun-ıslak ve doygun-batık koşullarda bazı numunelerin uzun şekillilerinde ϕ_b değeri kısa şekillilerden daha düşük çıkmıştır. Adezyon etkisinden kaynaklanan bu durumdan dolayı laboratuvarda ıslak ve batık koşullarda yapılan deneylerin yanlış sonuçlar verebileceği belirlenmiştir.

Numunelerin Tilt testi sonuçlarına bakıldığında bozunmanın artmasıyla ϕ_b `ninoluşan pürüzlülüğe bağlı olarak az da olsa arttığı ve bu durumun kısa (7x7x3.5cm) numunelerde daha belirgin şekilde olduğu gözlenmiştir.

Genelde kısa (7x7x3.5cm) numunelerde $\phi_{b (taze yuzey)} < \phi_{b(donma-cozulme sonrast yuzey)}$ $<\phi_{b(tuz kristallenmesi sonrast yüzey)}$ ilişkisi elde edilmiştir. Bozunma sonrası oluşan pürüzlülük ve tuz kristallerinin sürtünme katsayısını arttırdığı gözlenmiştir. Ayrıca bozunma ile birlikte gözenekli kayalarda kopan parçaların gözenekleri doldurduğu ve daha pürüzlü bir yüzey oluşturduğu da gözlenmiştir.

Bu çalışmanın tüm sonuçları birlikte değerlendirildiğinde uzun numunelerde devrilme ve dönme moment etkisine bağlı durumlar oluştuğundan, kayaçların kayma açısının (β) belirlenmesinde kısa olarak tanımlanan numunelerin kullanılması önerilmektedir.

Çalışma kapsamında incelenen numunelerin bazı fiziksel, mekanik ve kimyasal özellikleri ile ϕ_b açısı arasında anlamlı bir ilişkinin olmadığı belirlenmiştir.

Temel sürtünme açısının belirlenmesinde numune şeklinin, yüzeyin ıslaklığının ve bozunma derecesinin etkili olduğu ve laboratuvarda yapılacak testlerde kısa, kuru numunelerin kullanılması gerektiği ve bozunma faktörünün göz önüne alınarak temel sürtünme açısının arazideki mevcut bozunma koşuluna göre belirlenmesi gerektiği belirlenmiştir.

KAYNAKLAR

- Akın, M., 2008. Eskipazar Karabük Travertenlerinin Bozunmasının Araştırılması (doktora tezi). Ankara Üniversitesi Fen Bil. Enst., Ankara.
- Akın, M., Dinçer, İ., Özvan, A., Oyan, V., Tapan, M., 2016. İgnimbiritlerdeki Kılcal Su Emme Özelliğinin Ahlat Selçuklu Mezar Taşlarının Bozunmasındaki Rolü. Jeoloji Mühendisliği Dergisi, 40 (2): 149-165.
- Alejano, L.R., Gonza'lez, J., Muralha, J., 2012a. Comparison of different techniques of tilt testing and basic friction angle variability assessment. *Rock Mech. Rock Eng.*45:1023–1035
- Alejano, L. R., Veiga, M., Go'mez-Ma'rquez I., Taboada, J., 2012b. Stability of granite dry stone mason ryretaining walls (II): relevant parametersand analytical and numerical studies of real walls. *Ge'otechnique*, 62 (11):1027–1040.
- Aydan, Ö., 1998. Simple tests on the validation of the effective stress law for rock discontinuities. In: Thimus, JF., Abousleiman, Y., Cheng, AHD., Coussy, O., Detournay (eds). Proceedings of poromechanics, Belgium. 539–544.
- Aydan, Ö., Shimizu, Y., Kawamoto, T., 1995. A portable system for insitu characterization of surface morphology and friction al properties of rock discontinuities. In: Proceedings of 4thinternational symposium field measurements in geomechanics, pp 463–470.
- Barton, N., 1973. Review of a new shear-strength criterion for rock joints. *Enginering Geology. Elscvier*, 17:287–332.
- Barton, N., 1976. The shear strength of rock and rock joints. Int. J. Rock Mechanics and Min. Sci., 13: 255-279.
- Barton, N., Choubey, V., 1977. The shear strength of rock joints in theory an practice. *Rock Mech.*:10:1–54.
- Barton, N., Bandis, S., 1980. Some effects of scale on the shear strength of joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17: 69–73.
- Barton, N., Bandis, S., 1990. Review of predictive capabilities of JRC-JCS model in engineering practice. *In:Proc. Int. Conf. on Rock Joints*, pp 603-610.
- Binal, A., Kasapoğlu, K.E., Gökçeoğlu, C., 1997. The surficial physical deterioration behaviour of Neogene volcano-sedimentary rocks of Eskişehir-Yazılıkaya. NW Turkey. Proc. Int. Symp. on Engineering Geology and Environment. Athens. Greece. A.A. Balkema,Rotterdam. V3. pp. 3065-3069.
- Bruce, I. G., Cruden, D. M., Eaton, T. M., 1989. Use of a tilting able to determine the basic friction angle of hard rock samples. Canadian Geotech. J. 26: 474–479.
- Coulson, J. H., 1971. Shear strength of flat surfaces in rock stability of rock slopes. In:
- E. J. Cording,(Ed.). *Proc. of the 13th Symp. on Rock Mech., Am. Soc. Civ. Eng*.1971 ASCE New York, ASCE pp 77-105
- Cruden, D. M., Hu, X. Q., 1988. Basic friction angles of carbonate rocks from Kananaskis country, Canada. *Bull of the Int. Association of Eng. Geol.* 38:55-59.
- Goldstein, M.,Goosev, B., Pyrogovsky, N., Tulinov, N., Turovskaya, A., 1966. *Investigation of mechanical properties of cracked rock. In: Proc. of the 1st Int. ISRM Congress, Lisbon vol.* 1: 1–18.

- Gonza'lez, J., Gonza'lez-Pastoriza, N., Castro, U., Alejano, L. R., Muralha J., 2014. Considerations on the laboratory estimate of the basic friction angle of rock joints. In: Alejano L.R, Perucho A, Olalla C, Jimenez R (eds), *Rock Mechanics and Rock Engineering: Structures on and in Rock Masses*, EUROCK 2014, Vigo, Rotterdam, Balkema. 98-99 (*on CD*).
- Hencher, S. R., 1976. A simple sliding apparatus for the measurement of rock friction. Discussion. Geotechnique **26**(4):641–644
- Hencher, S. R., 1977. *The effect of vibration on the friction between planar rock surface.* Unpublished Ph. D Thesis, Imperial College of Science and Technology, LondonUniversity.
- Hencher, S. R., 1995. *Interpretation of direct shear tests on rock joints*. In: Proceedings of the 35th US symposium on rock mechanics, Lake Tahoe. 99-106.
- Hencher, S. R., 2012. Discussion of the Paper "Comparison of Different Techniques of Tilt Testing and Basic Friction Angle Variability Assessment". *Rock Mech. Rock Eng.*45:1141–1143.
- Hencher, S.R., Richards, L.R., 1989. *Laboratory direct shea rtesting of rock discontinuities*. Ground Eng. 22 (2):24-31.
- Horn, H. M., Deere, D. U.; 1962. Frictional characteristics of minerals. Geotechnique, 12:319–335.
- Hu, X.Q., Cruden, D.M., 1992. A portable tilting table for on-site tests of the friction angles of discontinuities in rock masses. *Bull. Int. Ass. Eng. Geol.* 46:59-62.
- ISRM, 2007. The complete ISRM suggested methods, for Rock Characterization, Testing and Monitoring: 1974-2006. (Eds. R. Ulusay, J. A. Hudson). ISRM Turkish National Group, Ankara. 628.
- ISRM, 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. (Eds. R. Ulusay). Suggested Methods Preparedby the Commission on Testing Methods, International Society for Rock Mechanics, Springer, p. 293
- Moore, D. E., Lockner, D. A., 2004. Crystallographic controls on the frictional behaviour of dry and water-saturated sheet structure minerals. J. Geophys Res.109:1-16
- Morrow, C. A., Moore, D. E., Lockner, D. A., 2000. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys Res Lett 27:815--818.
- Ohta, Y., Aydan, Ö., 2010. The dynamic response of geo-materials during fracturing and slippage. *Rock Mech Rock Eng* 43:727--740.
- Özvan, A., Dinçer, İ., Acar, A., Özvan, B., 2014. *The effects of discontinuity surfacer oughness on the shear strength of weathered granite joints*. Bulletin of Engineering Geology and the Environment, **73**:801–813.
- Patton, F. D., 1966. *Multiple modes of shear failure in rock and related materials* Ph. D. Thesis, University of Illinois, Urbana.
- Pe'rez-Rey, I., Alejano, L. R., Gonza'lez-Pastoriza, N., Gonza'lez, J., Arzu'a, J., 2015. Effect of time and wear on the basic friction angle of rock discontinuities. In: Schubert W (ed) EUROCK 2015 & 64th Geomechanics Colloquium, Salzburg, Austria.

- RILEM, 1980. Recommended Tests To Measure The Deterioration Of Stone and To Assess The Effectiveness Of Treatment Methods. Commission 25-PEM. Materialand Structures. Vol. 13. pp. 175-253.
- Ripley, C. F., Lee, K. L., 1961. *Sliding friction tests on sedimentary rocks examples*. Trans. 7th Int. Congress on Large Dams, Rome, Italy, vol. 4: 657–671.
- Ruiz, J.,Li, C., 2014. Measurement of the basic friction angle of rock by three different tilt test methods. In: Alejano L, Perucho A, Olalla C, Jimenez R (eds). EUROCK2014:*Rock Mechanics and Rock Engineering*: Stuctures on and in Rock Masses, Vigo Spain,Rotterdam: Balkema (on CD).
- Shimizu, Y., Aydan, Ö., Kawamoto, T., 1996. The effect of measuring methods on surface morphology characteristics. Korea-Japan Joint Symposium on Rock Engineering, 231–236.
- Stimpson, B., 1981. A suggested technique for determinin the basic friction angle of rock surfaces using core. Int J Rock Mech Min .Sci. Geomech Abstr 18: 63–65
- TS EN 1926, 2007. Doğal Taşlar Deney Yöntemleri Tek Eksenli Basınç Dayanımı Tayini. Türk Standartları Enstitüsü, Ankara.
- TS 699, 2009. Doğal Yapı Taşları İnceleme Ve Deney Metotları. Türk Standartları Enstitüsü. ICS 91.100.01; 91.100.15. Ankara.
- TS 12371, 2010. *Doğal Taşlar Deney Metotları Dona Dayanım Tayini*. Türk Standartları Enstitüsü, Ankara.
- Ulusay, R., Karakul, H., 2016. Assessment of basic friction angles of various rock types fromTurkey under dry, wet and submerged conditions and some considerations on tilt testing. *Bull. Eng. Geol .Environ* (2016) 75:1683–1699.
- USBR-6258 (2009). Procedure for determining the angle of basic friction (static) using a tilting table test (Designation USBR 6258-09). *http://www.usbr.gov*
- Wyllie, D.C., 1992. Foundations on Rock. Chapman&Hall, London.
- Zandarin, M. T., 2010. Thermo-hydro-mechanical analysis of joints theoretical and experimental study. Ph. D. Thesis, Department of Geotechnical Engineering and Geosciences, Universitat Polite'c-nica de Catalunya, Barcelona.

ÖZ GEÇMİŞ

1973 yılında Muş'un Malazgirt ilçesinde dünyaya geldi. İlkokulu Malazgirt ilçesi Hasretpınar Köyünde, ortaokulu Tatvan Yatılı Bölge Okulun'da tamamladı. Lise eğitimini Kahramanmaraş'ta tamamladı 1993-1995 yılları arasında Trakya Üniversitesi Tekirdağ M.Y.O. Endüstriyel Elektronik Programında ön lisans eğitimi aldı. Daha sonra 2009-2013 yılları arasında Van Yüzüncü Yıl Üniversitesi, Mühendislik-Mimarlık Fakültesi, Jeoloji Mühendisliği Bölümün'de lisans eğitimini tamamladı. 2014 yılında Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalın'da Yüksek Lisans Eğitimine başladı. 10.10.1999 yılında evlendi. 2001 yılında Van Yüzüncü Yıl Üniversitesine, Koruma ve Güvenlik Görevlisi olarak atandı. 2008 yılında görevde yükselme ve unvan değişikliği sınavını kazanarak teknisyen olarak Yapı İşleri Teknik Daire Başkanlığında göreve başladı. Evli ve üç çocuk babasıdır. Çalışma ve eğitim hayatını bir arada sürdürüp, halen Isı Merkezi İşletme Müdürlüğünde Teknisyen olarak görev yapmaktadır.

• / 4	LAC Navements and tended defined	5 ř
VA	FEN RÍLÍMLERÍ ENSTÍTÜSŰ	51
LİSAN	SÜSTÜ TEZ ORİJİNALLİK RAP	ORU
		Tarih: 14 / 12 /201
Tez Bachăi / Komisu:		
Farklı Kayalarda Taze ve Bozunmuş	Yüzeyler Üzerinde Temel Sürtünme	Açısı Değişiminin Belirlenmesi
Yukarıda başlığı/konusu bel bölümlerinden oluşan toplam 59 sı tarafından TURNITIN intihal tespit orijinallik raporuna göre, tezimin be Uygulanan filtreler aşağıda v - Kabul ve onay sayfası hariç, - Teşekkür hariç, - Içindekiler hariç, - Simge ve kısaltmalar hariç, - Gereç ve yöntemler hariç, - Gereç ve yöntemler hariç, - Kaynakça hariç, - Alıntılar hariç, - Tezden çıkan yayınlar hariç, - 7 kelimeden daha az örtüşme içerel	irlenen tez çalışmamın Kapak sayfa ayfalık kısmına ilişkin, 14/12/2018 programından aşağıda belirtilen fil nzerlik oranı % 3 (yüzde üç)'dür. rerilmiştir:	sı, Giriş, Ana bölümler ve Sonu tarihinde şahsım/tez danışmanı treleme uygulanarak alınmış ola
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal icermediğini: aksinin tespit e	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b reek her türlü bukuki sorumluluğ
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş olu	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b ccek her türlü hukuki sorumluluğ van ederim.
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim.	si Lisansüstü Tez Orijinallik Raporu / le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim.
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim.	si Lisansüstü Tez Orijinallik Raporu / le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b :cek her türlü hukuki sorumluluğ 'an ederim. Tarin yejimz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim.	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarih ye İmz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b ceek her türlü hukuki sorumluluğ van ederim. Tarih ye İmz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b :cek her türlü hukuki sorumluluğ 'an ederim. Tarin ye imz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarih ye İmz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit er kabul ettiğimi ve yukarıda vermiş ol Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b :cek her türlü hukuki sorumluluğ van ederim. Tarih yejmz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarh ye İmz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans 🎘	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora 🛙	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarih yezimz
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans 🕱	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora El	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarih ye İmz Muri ye İmz ENSTİTÜ
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e- kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans A DANIŞMAN ONAYI	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora El	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b seek her türlü hukuki sorumluluğ van ederim. Tarh ye İmz Tarh ye İmz ENSTİTÜ
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit ek kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans A OANIŞMAN ONAYI ONAYI UYGUNDUR	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora El	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ ran ederim. Tarih ye İmz Muriya ENSTİTÜ UYGUNDUR
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit e- kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans X DANIŞMAN ONAYI UYGUNDUR Doç.Dr. Ali ÖZVAN	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora 🗆	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarh yejmz Tarh yejmz ENSTİTÜ UYGUNDUR
Van Yüzüncü Yıl Üniversites Yönergeyi inceledim ve bu yönerged intihal içermediğini; aksinin tespit ek kabul ettiğimi ve yukarıda vermiş olu Gereğini bilgilerinize arz ederim. Adı Soyadı: Ercan YALÇIN Öğrenci No: 149101046 Anabilim Dalı: Jeoloji Mühen Programı: Yüksek Lisans Statüsü: Y. Lisans A DANIŞMAN ONAYI DANIŞMAN ONAYI DANIŞMAN ONAYI DOQ.Dr. Ali ÖZVAN	si Lisansüstü Tez Orijinallik Raporu A le belirtilen azami benzerlik oranların dileceği muhtemel durumda doğabile duğum bilgilerin doğru olduğunu bey disliği Bölümü Doktora El	Alınması ve Kullanılmasına İlişki a göre tez çalışmamın herhangi b cek her türlü hukuki sorumluluğ van ederim. Tarih ye İmz Müriye ENSTİTÜ UYGUNDUR