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ABSTRACT

ON THE MODULAR CURVE X(6) AND SURFACES ADMITTING GENUS

2 FIBRATIONS

Karadogan, Gulay
M. Sc., Department of Mathematics

Supervisor: Prof. Dr. Hursgit ()nsiper

SEPTEMBER 2001, 16 pages

In this thesis, we study the moduli spaces of surfaces admitting nonsmooth genus
2 fibrations with slope A = 6, (necessarily) over curves of genus > 1. We determine
the dimension and the structure of each connected component of these moduli
spaces. Our results fill the gap of earlier work in the literature to complete the
picture of the moduli spaces of genus 2 fibrations over curves of genus > 2 except

for the caseof A =4 .
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Oz

MODULER EGRI X(6) VE GENUS 2 LiF UZAYI OLAN YUZEYLER

Karadogan, Giilay
Yiksek Lisans, Matematik Boluimi

Tez Yoneticisi: Prof. Dr. Hursit énsiper

EYLUL 2001, 16 sayfa

Bu tezde, egimi A = 6 olan, dizgin olmayan ve genusu 1’den biiyiik ya da
egit olan egriler lizerine genus 2 lif uzay: olan yiizeylerin moduli uzaylarini in-
celedik. Bu moduli uzaylarin her bir baglantil: bilegeninin boyutunu ve yapisint
belirledik. Ulagtigimiz sonuclar, A = 4 durumu diginda, genusu 1’den biiyiik olan
egriler tizerine genus 2 lif uzayi olan yiizeylerin moduli uzaylar: hakkinda yapilan

caligmalardaki eksikleri doldurmaktadir.

Anabtar Kelimeler: Lif uzaylan, moduli uzaylar
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CHAPTER 1

INTRODUCTION

The aim of this thesis is to work out the (slope) A = 6 case of the moduli spaces
of surfaces of general type admitting genus 2 fibrations. The case of albanese
fibrations was studied extensively by Seiler ([5],[6]) and nonalbanese fibrations
with A # 6 and base genus g > 2 have been subject of ([3],[4]) by Onsiper and
Tekinel. General methods developed in the latter work apply for A = 6 case,
too. However, since A = 6 case is related to the modular curve X(6) (as will be
explained in Chapter 3) which is of genus 1, we need some modifications in the

arguments of ([4]).

In Chapter 2 we recall the definition and basic properties of the modular
curve X (6). We also discuss basic existence and moduli questions for nonconstant

holomorphic maps C — X(6) from curves C of genus > 1.

In Chapter 3, results of Chapter 2 will be combined with techniques of ([4])
to prove our main results. More precisely, we determine the values of K2,y
for surfaces admitting genus 2 fibrations with A = 6 and for each possible pair

(K2, %) we determine the connected components of the moduli space of surfaces

1



of general type, parametrizing these fibred surfaces. We also include nontrivial

concrete examples.

We work over the complex numbers C and use the following standard notation:

I'6) = {A€ SLyZ): A~ 1 mod 6}

‘H = upper half plane in C

K(X),x(X) are the canonical class and the holomorphic Euler characteristic

of X.

c1(X), e2(X) denote the first and the second chern classes of X, respectively.

Mp: . is the moduli space of surfaces of general type with invariants K2, x.

J(E) is the j-invariant of the elliptic curve E.

All surfaces, considered in this thesis, are minimal surfaces.



CHAPTER 2

THE MODULAR CURVE X (6)

We consider the action of the modular group SL,;(Z) on H via holomorphic

automorphisms

Hx SLy(Z) — H

a b az+b
(z,A—[c d]) — d

H/SLy(Z) ~ C is a noncompact Riemann surface which can be compactified
to get P¢ by adjoining the cusps of SLy(Z). It is well known that there exists a
single cusp which is the orbit of Q U {oo} under the action of SLy(Z) ([7],p.14).
Since I'(6) is a subgroup of SLy(Z) of finite index ([7], p.22), the modular curve
X(6) = H*/T(6), where H* = HUQU {00}, is a finite covering of H*/SLy(Z).
Therefore, it is compact and the cusps arise simply as the orbits obtained from

QU {oo} under the action of I'(6).

In the following lemma, we collect some well-known facts about X(6).

Lemma 2.1. X(6) has 12 cusps and genus g(X(6))=1. The j-invariant j(X(6))=0.

3



Proof. We know by ([7], p.22-23) that I'( V) has exactly pnx /N inequivalent cusps,

where
3
ILNZNT (1-p*) for N>2
pIN
and has genus . : .
_ 14 kn(N —6)
gX(N) =1+ ON for N > 1.

Taking N = 6, we get the first two assertions.
To calculate the j-invariant , we observe that

(i) oo is a cusp for I'(6), and

(i1) since I'(6) <t SL2(Z), SLo(Z)/T(6) ~ SLy(Z[6Z) acts on Y(6) = H/T'(6)

via automorphisms and hence on X(6). Under this action, the cusp at oo is left

1 1

fixed by the cyclic subgroup ( [ 0 1

] ) of SLy(Z/6Z). Therefore making X (6)
into an elliptic curve by taking the cusp at 0o as the 0 element for the group law,

we see that X (6) has a cyclic subgroup of automorphisms (as an elliptic curve)

of order 6. Hence, j(X(6)) = 0. O

Next we consider covers of X(6) by Riemann surfaces C. Equivalently we are

interested in nonconstant holomorphic maps C — X (6).

Given a surjective holomorphic map ¢ : C — X(6), we know by Riemann-
Hurwitz formula that 2g(C) — 2 = R(¢) where R(yp) is the ramification degree
of ¢. In particular, ¢ is unramified if and only if g(C') = 1. In this case the
given cover is necessarily Galois ( because 7;(X(6)) = Z @ Z being an abelian
group, m1(C) < 71{X(6)) ) and the covering group G is either cyclic or an abelian
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group with two generators (since m(X(6)) has two generators). In fact (up to
translation on X(6)), ¢ is an isogeny of degree n. Recall that an isogeny between

two elliptic curves E, E’is a surjective morphism
p: E— FE'

which respects the natural group structures on E, E'. In particular, £’ is com-

pletely determined by the kernel Ker(y) of ¢ via the identification

E' = E/Ker(y).

Using this observation together with Lemma 2.1 we can calculate the number
of distinct cyclic unramified covers of X (6) of degree n, for n > 1. Thus we obtain

a lower bound for the number N(n) of distinct unramified covers of degree n.

Lemma 2.2. Modulo the action of Aut(X(6)), X(6) has

n 1 2
N > — 14— —
=50+ 5+ 5

distinct unramified covers of degree n, where

0 if 9n
V3 = H(l + (—73)) otherwise.

pln

Proof. Using dual isogenies, each cyclic isogeny X(6) — E of degree n will give
an isogeny F — X(6) of degree n. Therefore, the number of cyclic isogenies
X(6) — E will give a lower bound for N(n). To calculate this lower bound
we use the modular curve Xo(n). Recall that Yo(n) = H/To(n) classifies pairs
(E,G) of elliptic curves E and cyclic subgroups G of order n; therefore, by the
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construction explained above, Yp(n) classifies pairs of elliptic curves and cyclic
isogenies of degree n. Letting Xo(n) be the compactification of Yp(n), we have a

natural map

@ : Xo(n) — X(1) = H U {o0}/SLy(Z)

which simply maps the pair (E,G) to [E] € X(1). Therefore, the number of
points over [E] is precisely the number of cyclic isogenies E — E’ of degree
n. In particular, taking [X(6)] € X(1) and applying the recipe in ([7],p.23), we
obtain the lower bound given in the lemma. To see this, we just observe that
since j(X(6)) = 0, X(6) corresponds to the image of T = ¢*™/3 in X(1) and over
this point we have exactly

ol

p=By 2
~ 373”3

1
points where 4 = n H(l + —) and v3 is as given in the statement of the Lemma.
pln

(]

Remark: The case of ramified covers ¢ : ¢ — X(6) (which correspond
precisely to covers with g(C) > 1) is more subtle. Restricting ourselves to Galois
covers, we know by a classical construction (cf.[2]) that X(6) has a Galois cover
with group G for any finite group G. However, as the ramification degree R(¢)
depends on the possibilities for subgroups of G, it is impossible to give a general
formula for g(C). The case G = Z/pZ, for some prime p, is obviously an exception

for which we can work out g(C) using Riemann-Hurwitz formula, to get

29(C) —2=R(p) =k(p—1)
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k(p—1)+2

where £ = number of ramification points. Therefore, g(C) = 5

, for
such covers. For example, taking p = 2 and writing k = 2£ we see that X(6) has
degree 2 covers by curves of genus g(C) = £+ 1 for all £ > 1. More generally,

the same calculation works for covers of arbitrary degree n which totally ramify

k(n—1)+2
e

However, when one considers general covers of a given degree, the only method

over each point of ramification and for such covers we get g(C) =

to classify these covers and to calculate the genera of the covering curves is to

exploit the relation between covers and monodromy.



CHAPTER 3

GENUS 2 FIBRATIONS WITH SLOPE A =6

In this chapter, we will apply the results obtained in chapter 2 to the study of

moduli spaces of surfaces X admitting nonsmooth genus 2 fibrations X — C.

We assume that the irregularity ¢(X) = ¢g(C) + 1, so that the fibration is
not of albanese type. Furthermore, we take the slope of the fibrations A = 6.

We recall that the slope of a genus 2 fibrations over a curve C is defined by

K? = Ax + (8 = N(g(C) - 1).

We first note that by Xiao’s work ([8]) on genus 2 fibrations, for each elliptic
curve E there exists a fibration S(E,6) — X(6) on the modular curve X(6)
which is universal in the following sense: any genus 2 fibration a : X — C
with A = 6 and F as the fixed part of the jacobian fibration corresponding to
a, is the minimal desingularization of the pull-back f*(S(E,6)) via a surjective

holomorphic map f : C — X(6).

We need to determine the singularities of f*(S(E,6)). Clearly, f*(S(E,6))

has singularities only if f ramifies over some points in the singular locus of



S(E,6) - X(6). We take such a point p € X(6) and welet k;, i =1,...,] be
the ramification index at ¢; € f~'(p). The surface f*(S(E,6)) — C has exactly
one singular point on the fiber over ¢; , which is of type Ag,_1; this follows from
the fact that a singular fiber of S(E,6) — X(6) is either an elliptic curve with
a single node or two smooth elliptic curves intersecting transversally at a single
point ([8], Lemme 3.11, Theoreme 3.16). This observation has two important

consequences :

1) we can apply simultaneous desingularization to any given family of surfaces

obtained via a family of holomorphic maps into X(6), and

2) we can calculate the second Chern classes of minimal resolutions to prove

([4], Lemma 1)

Lemma 3.1. Let f; : C; — X(6), ¢ = 1,2 , be surjective holomorphic maps
with g(C;) = g(Cz) > 1. Then the induced fibrations X; — C; have the same

invariants K2,y if and only if deg (f1) = deg(f2)-

The proof of ([4], Lemma 1) gives the value of ¢;(X) for a fibration X over a

curve C of genus g, obtained from a map C — X(6) of degree n:
c2(X) = ney(S(E,6)) +4(g — 1).
Combining this with Noether’s formula
12x(X) = H(X) + o X)

and the slope formula
ci(X) = 6x(X) +2(¢ - 1),
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we get

(X)) =ney(S(E,6)+8(g—1) (1).

We note that since X is minimal and ¢?(X) > 0, c;(X) > 0, all of these surfaces

are of general type.

Lemma 3.2. Given a deformation # : X — B over a connected base B of X

which admits a genus 2 fibration X — C with A = 6 and g(C) >2. Then

(1) Each fiber X, of m admits a fibration X, — C, of the same type, with

9(Cy) = g(C) and this fibration is unique.

(ii) The degree of the map C;, — X(6) inducing the fibration X, — C} is

constant on B.

If g(C) =1, uniqueness in part (i) and (ii) hold, provided that one knows the

existence of the fibration Xy — C,.

Proof. This is a special case of Lemma 2 in ([4]), except for the uniqueness state-

ment for elliptic base C. But for this case, since A = 6 we have

K*(X) = 36n forsomen >1

> 4

and uniqueness follows from ([8], Proposition 6.4). O

We recall that for the surface S(E, 6), we have K*(S(FE,6)) = 36, x(S(E,6)) =6
and ¢(S(E,6)) = 36 ([8], p.53). Therefore, a fibration X — C obtained from
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an unramified map C — X(6) of degree n, has K*(X) = 36n , x(X) = 6n. By
Lemma 2.2, we have N(n) distinct unramified covers of degree n of X(6). With

this notation, we have

Theorem 3.3. The moduli space of surfaces X admitting genus 2 fibrations with
A = 6 and with K%(X) = 36n , x(X) = 6n consists of N(n) disjoint copies of
the line A!, which parameterize precisely the fibrations arising from isogenies

C — X(6) of degree n.

Proof. Given ¢ : C —» X(6) unramified of degree n, for each elliptic curve
E we obtain Xz — C  where Xg = ¢*(S(E,6)). Therefore, by uniqueness
of fibrations (Lemma 3.2(i)), for a fixed cover ¢; : C — X(6), the modulus
of surfaces X admitting fibration over C' corresponds to the modulus of elliptic
curves via the correspondence Xg — j(E). By the argument in the proof of
Theorem 3.5, we know that we can deform S(E1, 6) to S(E;, 6) for any two elliptic
curves F, F2. Hence it follows that for each ¢;, we have a single component in

Mg, 6, which is Al.

As K?(S(E,6)) = 36 and c(S(E,6)) = 36, if we have a curve C of genus

g > 2 and a fibration X — C with slope A = 6, then such a fibration will have

¢z = 36m+4(g—1)

& = 36m+8(g—1)

for some m > 2, and hence ¢? # c;. This shows that in the moduli space M3, 6n
we have only fibrations over elliptic curves. O

11



Remark: Since fibrations over an elliptic curve need not be preserved under
deformation, the components in Theorem 3.3 need not correspond to components

of Mgz2 ,, contrary to the case of components in Theorem 3.5 .

We observe that in case of fibered surfaces with given K2, x and arising from
ramified covers of X(6), the number and the dimension of connected components

in Mgz2 ,, parametrizing these fibred surfaces, depend on:

(a) the base genus g(C) of the fibrations,
(b) the degree of the covers C —» X(6),

(c) for a fixed base genus g and degree m, on the connected components of
Hol,(g, X (6)) which is the complex space parameterizing holomorphic maps

of degree n from curves of genus g onto X(6) (modulo Aut(X(6))).

To state our result in this case, we let M be the moduli space of all genus
2 fibrations with A = 6 and with given K?,x. We write M = | | M(g,6) as a
disjoint union, where M(g, 6) parameterizes surfaces X in M fibered over curves
of genus g > 2. We note that, by formula (1), we have only finitely many, if
any, g > 2 for which M(g,6) # 0 and once g is fixed, the degree n of the maps

C — X(6) is determined. With this notation, we have

Lemma 3.4. Given a fixed elliptic curve E, the map ¢ : Hol,(g,X(6)) —
M(g,6) defined by sending the class of f : C — X(6) to the fibration of type

(E,6) induced by f is holomorphic.

12



Proof. This is a special case of ([4], Lemma 4). |

Now we can state our main result which describes the components of M(g, 6)
and which is a special case of Proposition 5 in [4]; for the sake of completeness,

we include the proof given in [4].

Theorem 3.5. Suppose M(g,6) is nonempty. Then the set of connected com-
ponents {M(g,i)} of M(g,6) is in one-to-one correspondence with the set
{Hol,;} of components of Hol,(g,X(6)), for some n > 1 and each M(g,%) is

a fiber space over ¢(Hol,,;) with A' as fiber.

Proof. In the construction of the universal fibration S(F,6) — X(6) given in
1

([6], p-42), letting wu1(z) = (21,0), us(2) = —J(zl,l) vary, we obtain a family

S§(6) — X(6) x A' where for a € A', §(6)|x(6)xa = S(E.,6), E, being the

elliptic curve with j-invariant j(FE,) = a.

Now for f: C — X(6), (f x ida,)*(S(6)) gives a deformation of f*(S(FE;,6))
to f*(S(FE,6)) and hence by simultaneous desingularization we get a deformation
of the surface X(E1,6) to X(E,6). Therefore, for [X] € M(g,1), we may deform
the surface X to a surface of type (E, 6) corresponding to a point ¢( f) as described
in Lemma 3.4, where we take n to be the degree of the maps inducing the surfaces
in M(g,1) (Lemma 3.2 (ii)). This shows in particular that in each component of
M(g,6) lies image under ¢ of some component of Hol,. The proposition will
follow once we show that no two components of Hol, are mapped to the same
component of M(g,6).

13



To check this final point, let [X;], [X2] € M(g,1) correspond to ¢(fi), »(f2)
for f; : X; = X(d). Then since a deformation of a surface admitting a fibration
¥ : X — X(d) as in this paper, is locally induced from a deformation of the
fibering 1, using any deformation of [X;] to [X;] we obtain a deformation of f,
to some f, which induces a fibration on X, necessarily over Cs, by uniqueness of
fibrations (Lemma 3.2 (i)). Furthermore, again by uniqueness of fibrations, we
have g € Aut(C;), h € Aut(X(6)) such that f,0g=ho f,. Therefore, f; and

f, and hence fi, f lie in the same component of Hol,(g,6) ([4], Lemma 3). O

Remark : We note that M(g,6) # @ in Mg2, only if K* = 36n + 8(g — 1),
x = 6n + (g — 1) for some n > 2. However, to see if M(g,6) # 0 for a possible

value of g, one needs to work out the related monodromy.

Example: We consider surfaces X with

c2(X)

2¢2(S(6))+4 = 76  and

¢(X)

2¢2(5(6)) +8 = 80.
From the formula,
e2(X) = ncy(5(6)) +4(9 - 1),

we see that ¢ = 2, n = 2 is the only set of possible values for g and n > 1. Hence
among surfaces X with these values of ¢2, ¢;, those which admit genus 2 fibrations
with A = 6 all arise from degree 2 covers of X(6) by genus 2 curves . Such a
cover Y — X(6) can be constructed explicitly by taking two distinct points
P;, P, € X(6) and completing the unramified degree 2 cover of X(6) — {P, P}

14



over Py, P;. Since X(6) is an elliptic curve , we can permute any pair {P;, P} of
points on X (6) via a translation. Therefore, we can fix one of P, P», say we take

P=0

Furthermore, applying inversion, we see that {0, P} and {0, —P} give rise to
the same covering curve. Hence the moduli of all degree 2 covers of X(6) by
genus 2 curves corresponds to (X (6)- {0 })/< —1 >=P'— {a point} ~ A'. Thus

M(2,6) is an A! fiber space over Al.
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