> T.R
> VAN YUZUNCU YIL UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES LANDSCAPE ARCHITECTURE

ACCESSIBILITY OF GREEN AREAS BY USING NETWORK ANALYSIS IN GIS ENVIRONMENT CASE OF ERBIL CITY

M. Sc. THESIS

PREPARED BY: Salar Hassan ABDALKARIM SUPERVISOR : Assoc. Prof. Dr. Serkan KEMEÇ

> T.R
> VAN YUZUNCU YIL UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES LANDSCAPE ARCHITECTURE

ACCESSIBILITY OF GREEN AREAS BY USING NETWORK ANALYSIS IN GIS ENVIRONMENT CASE OF ERBIL CITY

M. Sc. THESIS

PREPARED BY: Salar Hassan ABDALKARIM

ACCEPTANCE and APPROVAL PAGE

This thesis entitled "ACCESSIBILITY OF GREEN AREAS BY USING NETWORK ANALYSIS IN GIS ENVIRONMENT CASE OF ERBIL CITY" and prepared by Salar Hassan ABDALKARIM under consultation of Assos. Prof. Dr. Serkan KEMEC in Department of Landscape Architecture, on date of 04/7/2019 it has been successful with a unanimous vote by the following jury and it has been recognized as a Master's Thesis, in accordance with Postgraduate Education and training regulation with the relevant provisions.

Supervisor: Assos. Prof. Dr. Serkan KEMEC

Member: Assist. Prof. Dr. Pinar BOSTAN
Signature:

Signature:

Member: Assist. Prof. Dr. Mahmut CAVUR
Signature:

This thesis has been approved by the committee of The Institute of Natural and Applied Science on.0.8.10.8./2...9.9with decision number 2019...143-I

THESIS STATEMENT

All information presented in the thesis obtained in the frame of ethical behavior and academic rules. In addition all kinds of information that does not belong to me have been cited appropriately in the thesis prepared by the thesis writing rules.

Signature
Salar Hassan ABDALKARIM

ABSTRACT
 ACCESSIBILITY OF GREEN AREAS BY USING NETWORK ANALYSIS IN GIS ENVIRONMENT CASE OF ERBIL CITY

ABDALKARIM Salar Hassan
M. Sc. Thesis, Landscape Architecture Department
Supervisor: Assoc. Prof. Dr. Serkan KEMEÇ August 2019, 123 pages.

This study was carried out in 2017 and 2019 to measuring the accessibility of green spaces by using network analysis in GIS environment case of Erbil city. Firstly, all green spaces digitized in AutoCAD program after that all green areas classified and all roads classified according to speed limitation which include $15 \mathrm{~km} / \mathrm{hour}, 25 \mathrm{~km} / \mathrm{hour}$, $45 \mathrm{~km} /$ hour and $70 \mathrm{~km} /$ hour. The quarters border with quarter's population digitized to calculate the number of residents which green area service reach. After that all datasets converted to GIS network analysis to measuring the accessibility of green areas for populations within $300 \mathrm{~m}, 600 \mathrm{~m}$ and 900 m distance or 5 minute, 10 minute and 15 minute walking for Mini parks and Neighborhood parks and 5 minute, 10 minute and 15 minute driving for Community parks and District parks, green spaces created by polygons and point, all roads by line, by using tabulate intersection tool within network analysis calculated. Results show that for community parks for 5 minutes driving the \%68 of population have accessibility, for 10 minutes of driving there are accessibility for $\% 99$ of population and for 15 minutes driving there is accessibility for $\% 100$ of population. For District parks with 5 minutes driving $\% 70$ of population have accessibility. For 10 minutes driving there is accessibility for $\% 96$ of residents and for 15 minutes driving there is $\% 100$ accessibility. For the Mini parks with 5 minutes walking $\% 22$ of population have accessibility, for 10 minutes walking there is accessibility for $\% 52$ of population. For 15 minutes walking $\% 70$ of population have accessibility. For neighborhood parks the results show that for 5 minutes walking \%43 of population have accessibility, for 10 minutes walking there is accessibility for $\% 71$ of residents to District parks. For 15 minutes walking \%80 of Erbil city have accessibility.

Keywords: Accessıbılity, Erbil green areas, Netork analysis.

ÖZET

CBS AĞ ANALİZi̇ KULLANILARAK YEŞİL ALANLARDA ERİŞILEBİLİRLİK: ERBİL ŞEHRİ ÖRNEĞİ

ABDALKARIM Salar Hassan
Yüksek Lisans Tezi, Peyzaj Mimarligi Anabilim Dalı
Tez Danışmanı: Doç. Dr. Serkan KEMEÇ Ağustos 2019, 123 sayfa

Bu çalışma 2017 ile 2019 yılları arasında, Erbil Şehri’nin CBS ortamındaki ağ analizlerini kullanılarak yeşil alanların erişilebilirliğinin ölçülmesi amacıyla yapılmıştır. Öncelikle, AutoCAD yazılımı ile şehirdeki tüm yeşil alanlar manuel olarak sayısallaştırılmıştır. Öte yandan, ağ analizlerinde kullanılacak çalışma alanının tüm yolları ortalama hızları $15 \mathrm{~km} / \mathrm{saat}$, $25 \mathrm{~km} / \mathrm{saat}$, $45 \mathrm{~km} /$ saat ve $70 \mathrm{~km} / \mathrm{saat}$ olmak üzere dört tipte sınıflandırılmıştır. Analizler sonucunda elde edilen Mini parklar ve Mahalle parkları için 5 dakikalık, 10 dakikalık ve 15 dakikalık yürüme mesafesi ve Topluluk parkları ve Bölge parkları için ise 5 dakikalık, 10 dakikalık ve 15 dakikalık sürüş mesafesi çokgenleri ve mahalle alan objelerinin kesiştirilmesi ile ilgili servisi alan insan sayıları hesaplanmıştır. Sonuçlar, Erbil Şehrinde, Topluluk parkları için 5 dakikalık sürüş süresinde nüfusun \% 68'inin erişilebilirliğinin olduğunu, 10 dakikalık bir sürüş süresinde nüfusun \% 99'unun erişilebilirliğe sahip olup, son olarak 15 dakikalık sürüş süresi içinde halkın \% 100'ünün topluluk parklarına erişiminin bulunduğunu. Diğer taraftan yürüyüş sürelerinin dikkate alındığı Mini park ve Mahalle parkları için ise sonuçlar, 5 dakikalık yürüyüş süresinde Mini parklar için Erbil Şehir nüfusunun \% 22 'sinin erişilebilirliğe sahip olduğu ve 10 dakikalık yürüme süresinde ise Erbil sakinlerinin\% 52'sinin mini parklara erişimi bulunmaktadır. 15 dakika yürüyüşle Erbil şehrinin \% 70'i Mini parklara erişebilir. Mahalle parklarındaki sonuçlar ise; Erbil şehir nüfusunun\% 43'ünün 5 dakikalık yürüyüş erişilebilir alanı içinde olduğunu ve 10 dakikalık bir yürüyüş için Erbil sakinlerinin\% 71'inin bölge parklarına erişimi bulunmaktadır, 15 dakika yürüyüşle Erbil şehrinin\% 80'i Mahalle parklarına erişebilir olduğu şeklindedir.

Anahtar Kelimeler: Ağ analizi, erişilebilirlik, Erbil yeşil alanları.

iv

ACKNOWLEDGEMENT

To begin with I would like to thank "Allah" (Praise be to him) for implanting the soul of endurance and faith in myself to complete this study and showing me the way to through. My deepest gratitude and sincere thanks to my supervisor Asos. Prof. Dr. Serkan KEMEÇ for his guidance and support throughout the research. I highly appreciate his high scientific supervision and infinite patience in following up the research. Finally, words cannot express my thanks and gratitude to my great father, mother, my wife, my brothers and sisters for their endless assistance, kindness and pray throughout the study.

Abdalkarim Salar Hassan

TABLE OF CONTENTS

Pages
ABSTRACT i
ÖZET iii
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF MAPS xiii
SYMBOLS AND ABBREVIATIONS xv

1. INTRODUCTION 1
1.1. Urban Green Areas 2
1.1.1. Access to green spaces 4
1.1.2. Green area accessibility limits 6
1.1.3. Green area per capita 6
1.1.4. Importance of green areas 8
1.1.4.1. Ecological benefits 8
1.1.4.2. Physical benefits 8
1.1.4.3. Economical benefits 9
1.2. Accessibility of Green Area 9
1.2.1. Accessibility 10
1.2.2. Accessibility and mobility 17
1.2.3. Accessibility and equity 19
1.3. GIS and Green Area 21
1.4. Hierarchy and typology of green areas 22
2. LITERATURE REVIEW 27
3. MATERIALS AND METHODS 31
3.1. Materials 31
3.1.1. Study area 31
3.1.2. Geographical location of the study area 33
3.1.3. Erbil climate properties 33
3.2. Methods 34
3.2.1. Data management 35
3.2.1.1. Data acquisition 35
3.2.2. Classification of Erbil green areas 36
3.2.2.1 Active green areas 36
3.2.3. Prossesing of data 54
3.3. Network Analysis 55
4. RESULTS 57
4.1. Analysis of Results 57
4.1.1. Community parks 58
4.1.2. District parks 58
4.1.3. Neighborhood parks 58
4.1.4. Mini parks 58
5. DISCUSSION AND CONCLUSION 99
REFERENCES 103
EXTEND TURKISH SUMMARY (GENİ̦LETİLMİ̦ TÜRKÇE ÖZET) 111
CURRICULUM VITAE 123

LIST OF TABLES

Tables Pages
Table 1. 1 Standards for distance from green areas 6
Table 1. 2 Cities that have a higher range green areas per capita 7
Table 1. 3 Cities that have lower range of green areas per capita 7
Table 1. 4 NRPA Standards 24
Table 1.5 Typology of green areas 25
Table 3. 1 Data used in this study 35
Table 3. 2 Community parks of Erbil city with areas and quarters located 45
Table 3. 3 District parks of Erbil city with areas and quarters located 46
Table 3. 4 Neighborhood parks of Erbil city with areas and quarters located 46
Table 3. 5 Mini green areas of Erbil city with their area and quarters located 52
Table 3. 6 Forest of Erbil city with areas and quarters located 53
Table 3. 7 Green belts of Erbil city with areas and quarters located (continued) 54
Table 4. 1 Accessibility results of community parks for 5 minutes driving 60
Table 4. 2 Accessibility results of community parks for 10 minutes driving 63
Table 4. 3 Accessibility results of community parks for 15 minutes driving. 66
Table 4. 4 Accessibility results of district parks for 5 minutes driving 70
Table 4. 5 Accessibility results of district parks for 10 minutes driving 73
Table 4. 6 Accessibility results of district parks for 15 minutes driving 76
Table 4.7 Accessibility results of neighborhood parks for 5 minutes walking 80
Table 4. 8 Accessibility results of neighborhood parks for 10 minutes walking 83
Table 4. 9 Accessibility results of neighborhood parks for 15 minutes walking 86
Table 4. 10 Accessibility results of mini parks for 5 minutes walking 90
Table 4. 11 Accessibility results of mini parks for 10 minutes walking 92
Table 4. 12 Accessibility results of mini parks for 15 minutes walking 95

$$
\mathrm{x}
$$

LIST OF FIGURES

Figures Pages
Figure 1. 1Relationships between components of accessibility (Geurs and Wee 2004). 16
Figure 1. 2 Equity against equality 20
Figure 3. 1 Erbil city 32
Figure 3. 2 Methods for analyzing in GIS network analysis tool 34
Figure 3. 3 Methods of calculating area and population covered by services 34
Figure 3.4 Classification of green areas 36
Figure 3.5 Sami Abdulrahman park 37
Figure 3. 6 Sami Abdulrahman park. 38
Figure 3. 7 Sami Abdulrahman park 38
Figure 3. 8 Minara park. 38
Figure 3. 9 Minara park 39
Figure 3.10 Community parks polygon 40
Figure 3. 11 Kanyaw park 41
Figure 3. 12 Shar park. 41
Figure 3. 13 District parks polygon 42
Figure 3. 14 Pashew park. 43
Figure 3. 15 Kurdistan park 43
Figure 3. 16 Neighborhood parks polygon 44
Figure 3.17 Avrest park 44
Figure 3. 18 Mini parks polygon. 45
Figure 4. 1 Community parks accessibility for 5, 10 and 15 minutes 69
Figure 4. 2 District parks accessibility for 5, 10 and 15 minutes 79
Figure 4. 3 Accessibility of neighborhood parks for 5, 10 and 15 minutes 89
Figure 4. 4 Accessibility to mini parks for 5, 10 and 15 minutes 98

LIST OF MAPS

Maps

Pages

Map 3. 1 Study area. The U.S. Agency for international development (USAID).......... 32

SYMBOLS AND ABBREVIATIONS

Some abbreviations used in this study are presented below, along with descriptions.

Symbols	Description
${ }^{\circ} \mathbf{C}$	Degree Celsius
$\mathbf{C m}$	Centimeter
$\mathbf{k m}$	Kilometer
\mathbf{m}	Meter
$\mathbf{m m}$	Millimeter
$\mathbf{k c l}$	Kilocalories
\mathbf{N}	North
\mathbf{E}	East
$\mathbf{S V G}$	The State Government of Victoria
$\mathbf{h a}$	Hectare
$\mathbf{W H O}$	

1. INTRODUCTION

Urban green areas are places which provide people opportunities for a wide range of leisure, sport and recreational activities. As such, public green areas and recreational facilities are important for the social economic and health of cities and towns (Sallis et al., 2004). Therefore, there was a greater desire for creation of organized public green areas such as public parks and open sport facilities in the residential areas of the towns and cities. These urban green areas have become one of the essence urban functions and land uses in the urban development plan. Although, a number of such public green areas and recreational facilities have been developed in the Erbil city urban areas, it has been noticed that except for a small numbers of major parks and organized ones, the others are not utilized because of many reasons. The main reason of underutilization of the urban green areas are refers to many factors that include lack of accessibility, lack of attractiveness, inappropriate location, behavioral issues like lack of time and life style, social issues, the success of urban green areas and open recreational spaces depends greatly on accessibility, (Project for Public Spaces, 2011). Physical accessibility such as quality and availability of access facilities cost of accessibility; time distance, the link from the residential areas as well as parking and safety is considered as one of the most significant characteristics influencing successful using of these urban green areas. In a similar way, visual accessibility variables like sight distance, visibility of the parks are argued to influence utilization of the urban green areas.

Accessibility of urban green areas in the city in general affected due to the reduction of an efficient and enough public transportation system; increase of commercial and related activities engulfing their space; unavailability of good types of physical communication facilities such as roads, pedestrian facilities, safety, parking and measures and also the growing in traffic volumes resulting in traffic congestion and elongated travel time. In a similar way, the accessibility to urban green areas is measured by characteristics like continuity, nearness, connectedness, walkability, convenience as well as pedestrian and vehicle access infrastructure and visual accessibility parameters. So, it is crucial to evaluate the most significant determinants,
which influence accessibility of public green areas in the residential areas of a city and then develop planning and design guidelines to improve accessibility so that the urban green areas will be more vibrant and optimally used.

Therefore, the objective of this study is to identify the most significant accessibility factors that deter the using of public urban green areas, and examine their level of influence on the using of green areas in the residential areas of Erbil city. Studies explained that the ratio between road networks to pedestrian facilities (paved pathway) network, number of access streets to the green areas, size in area of green areas, which influence the using of the urban green areas to varied extent. An optimal level of number of access streets to the green areas, proportionate pavement facilities on the roads providing access to urban green areas will enable significant improvement in the using of green areas in the residential areas of Erbil city. (Das and Honiball, 2016).

1.1. Urban Green Areas

Urban green areas are open spaces in urban areas that are mainly covered by vegetation which can be public or private (Baycan-Leven et al., 2002) urban green area can involve parks, community gardens, forests and natural reserves. In this study, only public urban green spaces are being studied because these public green spaces are free of charge and most populations are not able to access private green spaces.

Green areas as a concept is generally used to refer to a tract of land that is covered wholly or partially with living vegetation grass or trees and openly accessible by the public free of charge and has the ecological, social and economic benefits (Henderson and Wall, 1979). Frederick Law Olmsted used the word "park" in his address in 1870 " A Consideration of the Justifying Value of a Public Park" to mean a large tract of land set apart by the public for the enjoyment of rural landscape (Czerniak, 2007). The State Government of Victoria (SGV) has defined green space as an area that publicly owned, protected land, that is set aside primarily for nature conservation recreation, public gatherings and passive outdoor enjoyment (SGV, 2008). The State Government of Victoria determined that the public green space (involving publicly owned parks, gardens, squares, waterways, forecourts and green space on universities campuses and schools, nature strips along streets, major sporting areas that are managed
by the government) should face to the city residents freely. Green spaces usually contain great numbers of trees and large areas with grass cover. Their environmental contributions are important. urban green areas improve the goodness of urban environment by arranging urban air temperature and moisture, prevent water pollution and urban air purifying, and sustaining biodiversity (Hirokawa, 2011; Sun and Chen, 2013; Watmough and Atkinson, 2013). Green spaces have activity in helping store and process storm water and cooling air temperature in the urban center, and provide habitat for a rich community of animal, plant, bird, aquatic and microbial species.

Air pollution in urban areas is a great problem for human health as it can cause heart disease, headaches, coughing, lung disease, respiratory, throat, eye irritation and cancer (Bedimo-Rung et al., 2005). urban green spaces duty as "green lung cells" in refreshing, cleaning and enriching the urban areas view, improving residents living standards and raising human health for urban residents by providing accessible public green space for them to conduct free time activities and social interactions (Tannier and Vuidel, 2012; Moseley and Marzano, 2013). Advantageous effects of physical activity on diabetes, cardio vascular disease, osteoporosis, colorectal cancer, depression and fallrelated injuries (Lee and Maheswaran, 2011), and on length of human live (Takano and Nakamura, 2002) are well documented. Urban Green areas participate to improved human mental health as the provision of natural space enable people to properly relax rest and thus reduce stresses (Tannier and Vuidel, 2012).

Urban green spaces can be the main places for social interactions because green spaces provide opportunities for individuals to interact with other people, gathering of friends and the neighborhood acquaintance (Moseley and Marzano, 2013). Increased levels of physical activity and recreation and social activities participation in sport, due to easy access to and frequent use of green space can promote health, reduce illness, enhance concentration on study and work, increase effectiveness in study and productivity in workplace, and well-being, at both individual and community levels. Otherwise, green spaces can protect residents from unnecessary or dispensable spending on the medicines by reducing illness and green space enhance study performance or working outcome because of protection community mental health.

Green spaces raise the health condition and then productivity of the urban residents, and elevate the aesthetic and economic position of the urban system (Elkin and McLaren, 1991; Givoni, 1991; Tzoulas, 2007; Jun and Li, 2012). Green spaces can cause decrease the negative contributions of pollution, noise and extreme temperatures and increase the positive impacts of fresh oxygen and biomass produced through photosynthesis from the environmental processes. Various studies have found that a nearness to green spaces had the positive effect on the property value. In other hand, urban green spaces can attract tourists from elsewhere which can lead to considerable economic and social benefits (Knetsch, 1964; Hammer and Coughlin, 1974; Eom and Lee, 2009).

1.1.1. Access to green spaces

One of the important subjects which have been emphasized in literature relating to the public green areas and public recreational facilities is the access, which basically influence their success (PPS, 2013). The access to public green areas is related with improved physical and mental health of individuals (Sugiyama et al., 2008; Payne et al., 2005; Potwarka et al., 2008). green areas users are more likely to realize good levels of health and physical activity compared with non-users (Deshpande et al., 2005) because there is a proof that lack of accessibility of green areas and distance from green areas are inversely related with utilize and physical activity behavior (Kaczynski and Henderson, 2008).

The essential green areas access for residential inhabitants of a city is built on the number of green areas, spatial configuration of green areas and their spatial distribution over neighborhood areas or local regions. Therefore, it is a popular practice to base spatial accessibility on the location, proximity and size of the green areas, which participate to the use of the green areas (Zhang et al., 2014). Accessibility of a location is judged by its relations to its surroundings. A successful public green area needs to be without difficulty accessed and commuted through and it can be seen from both an up close and distance. Generally, availability of local public green areas within walking distance is positively related with green areas use, whereas the need of driving to reach a park often restricts its use (Wilbur et al., 2002). Also, other green areas attributes such as location and safety may also affect the use of public green areas. Some scholars
explained that walking time or distance from home has appeared to be the most important condition for access and use of green spaces (Herzele and Wiedeman, 2003). short distance and easy access to green areas increase the number of visits to green areas, inhabitants in close proximity to a green areas access and use it more frequently (Atiqul Haq, 2011; Herzele and Wiedeman, 2003). For example, a research in Helsinki city capital of Finland found that inhabitants living close less than $(0.50 \mathrm{~km})$ visited the green areas more frequently more than 4 times per week (Neuvonen et al., 2007; Atiqul Haq, 2011). Researchers also explain that public green areas must be at the neighbourhoods centre and not more than five minutes' walk for residents (Etzioni, 1998).

Accessibility can have a wide meaning. However, in green area literature, accessibility refers to the walking distance between the residential areas and the access points of the green spaces. The United Kingdom prepared a set of guidelines called Accessible Natural Greenspace Standards (ANGSt) for evaluating the access to green areas (Comber et al., 2008). The standards are listed below:

1. No one have to live more than 300 m from the nearest green area of at least 2 hectare in size.
2. There should be at least one accessible 20 hectare in size site within 2 km from urban residential area.
3. There should be one accessible 100 hectare size site within 5 km .
4. There should be one accessible 500 hectare size site within 10 km .

Despite the fact that the ANGSt model gives a detailed set of guidelines, it is not suitable for every city or country. Some countries might not have as many green spaces as in the UK, and not all green spaces are accessible. A quarter mile has become the standard distance threshold that people are willing to walk to reach a park or recreation area (Boone et al., 2009). In order to measure the distance of walking from the nearest green area to residential areas to, GIS is a useful tool to calculate the time required, as well as distance. Accessible green areas are defined as areas that free of cost for the public and at most used by users living in the surrounding area (Natural England, 2010). Usability has been studied by researchers by following the main idea that people's perception of green areas is effected by specific factors connected to the presence of man-made and natural elements.

1.1.2. Green area accessibility limits

Green spaces differ in size and attributes for this reason have different level of influences. Some studies indicate that people visit neighborhood green space more frequently than district or regional green space (VDSE, 2002). Neighborhoods have been considered as a meaningful territorial element of urban life for more people and a planning ideal in many parts of the world (Lee, 1968; Pacione, 1982; Martin, 1998). A neighborhood should provide a number of green areas that serves for an extend of uses; to ensure all inhabitants have accessibility to neighborhood green area within a specific distance $(800 \mathrm{~m}, 1200 \mathrm{~m}$, or 1600 m etc); and to ensure the walking network links the green area to the broader green area network - as the network of green area may form a main component of a voyage through a neighborhood (Lee, 1968; Pacione, 1982 and Martin, 1998).

Table 1. 1 Standards for distance from green areas

Source	Green space area	Maximum distance to residence
Natural England (2010)	$2-20 \mathrm{ha}$	300 m
	$20-100 \mathrm{ha}$	2000 m
	$100-500 \mathrm{ha}$	5000 m
Van Herzele and	$>500 \mathrm{ha}$	10000 m
Wiedemann (2003)	$<1 \mathrm{ha}$	150 m
	$1-10 \mathrm{ha}$	400 m
	$10-30 \mathrm{ha}$	800 m
	$30-60 \mathrm{ha}$	1600 m
	$60-300 \mathrm{ha}$	3200 m
Oh and Jeong (2007)	$>300 \mathrm{ha}$	5000 m
	$0.15-1 \mathrm{ha}$	250 m
	$1-3 \mathrm{ha}$	500 m
	$3-10 \mathrm{ha}$	1000 m
	$>10 \mathrm{ha}$	No limit specified

1.1.3. Green area per capita

The World Health Organization (WHO) proposes providing a $9.0 \mathrm{~m}^{2}$ minimum of green areas per capita (World Health Organization, 2010), this amount in size of
green areas is only appropriate if the greenery is reachable (Takano et al., 2002), safe (Frumkin, 2003) and usable (Singh et al., 2010). According to the World Health Organization (WHO) the typical amount, would be $50 \mathrm{~m}^{2}$. Erbil city has nearly $6 \mathrm{~m}^{2}$ of green spaces per person.

Table 1.2 Cities that have a higher range green areas per capita

City	Green area /capita $\left(\mathrm{m}^{2}\right)$
Rennes	25.27
Ljubljana	25.97
Rotterdam	28.30
Bern	30.51
Montpellier	33.00
Berlin	37.84
Dublin	40.00
Genoa	49.39
Curitiba (Brazil)	52.00
Nantes	57.00
Budapest	61.80
Krakow	65.45
Warsaw	68.49
Leipzig	93.65
Helsinki	102.86
Zurich	111.91
Marseilles	118.22
Vienna	125.44
Edinburgh	144.59
Sare:	

[^0]Table 1. 3 Cities that have lower range of green areas per capita

City	Green area $/$ capita $\left(\mathrm{m}^{2}\right)$
Buenos Aires	1.90
Tokyo	3.00
Istanbul	5.00
Barcelona	5.60
Malaga	7.79
Santiago (Chile)	10.00
Sarajevo	11.00
Toronto	12.60
Salzburg	13.44
Madrid	14.00
Turin	19.44
Birmingham	20.00
New York	23.10

[^1]
1.1.4. Importance of green areas

Urban Green areas are crucial for making cities sustainable, healthy and energy efficient. However, for Urban Green areas to participate to the ideal level, they should be planned, developed, designed, managed and maintained suitably so that they are accessible both in terms of population coverage and area. The Urban Green areas produce a various set of ecosystems of fundamental importance for well-being of human and their dynamics are shaped by activities of human. Many green areas in cities that have got separated from the wider environment tend to lose characteristics of biodiversity because of continuous construction activities. For this reason, protecting green areas in isolation will oftentimes fail to sustain the ability of urban ecosystems to produce value and they should be well integrated in the overall city landscape (Oh and Jeong, 2007 and Brook, 2010).

1.1.4.1. Ecological benefits

1. Trees of green areas absorb pollutants and control the effect of human, activities by such as releasing oxygen and absorbing pollutants.
2. Green areas by Providing clean air, water and soil contribute to the maintenance of a healthy urban environment.
3. Green vegetation of green areas decreases the surface temperatures, which led to reduce air conditioning load by an average of 50%.
4. The green areas make the urban micro climate better and protect the balance of the city's urban environment.
5. The green areas maintain the local cultural and natural heritage by providing habitats for a variety of wildlife and keep a variety of urban resources (Rowntree, 1988 and Hirokawa, 2011).

1.1.4.2. Physical benefits

1. Green areas provide a refreshing contrast to the harsh shape, texture and color of urban area buildings, and activate the senses with their harmony color.
2. Specific types of green area may provide a bigger variety of land uses and opportunities for a broad range of activities can be of real benefit to health and help to develop lifestyle.
3. Green areas take part in social interaction by creating opportunities for inhabitances of all ages to interact with each other.
4. Urban green areas emphasize the variety of urban areas by reflecting the different communities they serve.
5. They develop cultural life by providing spaces for, civic celebrations, festivals and theatrical performances.
6. Urban green areas provide safe children play area and causing children's mental, physical and social growth and play a significant role in the basic education of school children with related to the nature and environment. (Lee and Maheswaran, 2011)

1.1.4.3. Economical benefits

1. Proximity to green areas and view of green spaces increases the real estate prices, property owner's value urban areas by the premium they pay to live in the neighborhood of urban green areas. Plots adjoin green areas add to value. In densely populated quarters this effect is even more noticeable.
2. Effect of neighborhood parks on the dealing price of multi-storied residential units in cities explains the fact that neighborhood parks could raise price.
3. Shady trees of urban areas offer considerable benefits in reducing building airconditioning load and increase level of improving urban air quality by reducing smog. The savings related with these benefits vary widely according to climatic region (Elkin et al., 1991 and Jun et al., 2012).

1.2. Accessibility of Green Area

Accessibility, walkability and mobility are terms usually used in studies that concerning to urban green area studies. Generally the term accessibility is usually used to refer to the easiness for a specific agent to get to a specific destination through a specific network system by specific mode of travelling (Talen and Anselin, 1998).

Walkability is often used to imply the perceived easiness of getting around a specific neighborhood on feet by a specific travelling agent (Inani and Abdul, 2012). And Mobility is often used to indicate a specific agent's ability for moving around a specific network system considering all modes of travelling feasible to that agent (Litman, 2003).

1.2.1. Accessibility

One of the characteristic features of human behavior is the ambition and ability to move across the all over the world to exchange merchandise and information over distance (Hodgart, 1978). Commuting, migrating, shopping, collecting, distributing, communicating and vacationing commonly occur over some distance. Thus, accessibility is obliged to require special shapes of public social behavior-spatial interaction.

There are various definitions for the term accessibility. One of the best definitions is that accessibility is the simplicity with which activities in the society can be reached, containing needs of people, trade and industries and public services. Distance measures are the most straightforward accessibility measures, counting the distance from one place to different opportunities. It can be measured as average distance, weighted area distance or distance to the nearest opportunity. The estimation of these distances can be done in many ways, from simple straight-line distances to more complicated impedance formulations (Makri and Folkesson, 1999).

One type of accessibility is spatial accessibility which is based distance measurements. Accessibility refers to people's ability to reach goods, services and activities, which is the ultimate goal of most transport activity (Hansen, 1959 and Huisman, 2005) speaks of it as 'a significant concept employed to understand patterns in the location of facilities and to indicate broad features of the behavior of people, as well as evaluating the ability of services to meet people's needs', whereas El-Geneidy and Levinson (2006) think that it is 'a measure or indicator of the performance of transportation systems in serving individuals living in a community. The term "accessibility" is defined as "easily approached or entered" (Pickett, 2004), "the quality
of being accessible, or of admitting approach" (Oxford, 2002), or for the planning context as "the potential for interaction" (Hansen, 1959).

In most situations, measures of accessibility involve both an impedance factor, reflecting the cost or time of reaching a purpose and an attractiveness factor, reflecting the qualities of the potential aim point. Researchers have utilized different forms of accessibility measures and have elevated many important issues concerning with these measures (Handy and Niemeier, 1997). Simple "cumulative-opportunities" measures count the number of important destinations within a selected distance or time from the selected point, with more options in both destinations and modes of travel mean greater accessibility by most definitions. (Hansen, 1959) said that the accessibility is (a potential of opportunities for interaction) or considered accessibility as a measure of (the intensity of the possibility of interaction) and (the spatial distribution of activities about a point, adjusted for the ability and the desire of people or firms to overcome spatial separation) (Hansen, 1959).

Ingram (1971) showed that accessibility means having the ability of being reached, so, implying a measure of the nearness between two points and that accessibility (is related to the ability of a transportation system to provide a low cost and/or quick method of control the distance between different places). He announced that accessibility ((may loosely be defined as the inherent characteristic (or advantage) of a place with consideration to controlling some form of spatially operating source of friction such as, time and distance (Ingram, 1971). He made a difference between the relative accessibility between two points and the total accessibility at a point. The integral accessibility is defined, for a given location as the degree of interconnection with all other locations on the same surface and the relative accessibility is defined as the degree to which two locations on the same surface are connected which is generally asymmetric He noted that the distance separating two locations affects the degree of relative accessibility between the locations and proposed the normal or Gaussian curve as the most satisfying distance function for measuring the degree of relative accessibility between two locations. Focusing on the use of physical accessibility of population groups to a various activities and opportunities to measure regional performance in health, education, income, and the like, (Wachs and Kumagai, 1973)
defined accessibility in terms of the ease with which citizens may reach a variety of opportunities for employment and services.
(Wachs and Kumagai, 1973) pointed out that:

1. The accessibility of a space to social activity and economic centers limits its value, the intensity of development which will happen on it and the social and economic uses to which it will be put.
2. There are major spatial and demographic variance in the accessibility of specific urban population groups to a variety of cultural opportunities and economic.
3. Accessibility difference has an effect on living conditions within an urban area.
4. Accessibility could help to preparation planning and policy to the equalization.
5. Current information of the extent to which physical accessibility variety within the urban area exist and influence the relative standards of living condition of specific groups is completely restricted by the availability of pertinent knowledge.
(Wachs and Kumagai, 1973) argued that 'a useful program to the measurement of physical accessibility is the account of the number or density of travel opportunities of specific types within selected time distances or travel-cost variations from the residential locations. (Wachs and Kumagai, 1973). One of accessibility implications is the chances available to companies and individuals to reach those places in which they do their activities. In the wide sense of the word, the concept of accessibility has social, economic, technological role. Accessibility is maybe the most important concept in explaining and describing regional functions and forms because the accessibility of a location to social, cultural, and economic resources can set the value of this place, thus, influence the inclination of distribution of populations. The accessibility is one of the elements to show the quality of life in urban area. There is a relationship between the spatial distribution and intensity of development, and the quality and quantity of travel within an urban area through accessibility, (Wachs and Kumagai, 1973 and Burns, 1976) used accessibility to indicate the easiness with which any area activity can be reached from a location using a specific transportation system, and used accessibility reflect the size of service provided by transportation systems to different locations (Burns and Golob, 1976). They argued that measures of accessibility based onto a priori assumptions about factors effecting travel demand, like opportunities weighted by a reducing impedance function of the interaction costs of reaching those opportunities, or
cumulative functions of the opportunities reachable within a specific travel time, lack strong underlying theory from which causality in transportation decision making can be inferred. As a result, they suggested combining a utility-maximizing theory of travel decision-making behavior into measures of accessibility to opportunities. (Kwan, 1998) argued that the concept of accessibility was frequently operationalized and defined in various ways depending on the matter and context of its application (Ingram, 1971; Morris et al., 1979; Handy and Niemeier, 1997). For examples, accessibility can be considered as an attribute of locations, indicating how easily particular positions can be reached (Dalvi and Martin, 1976 and Song, 1996), or as a property of people describes how easily an individual can reach places of activity (Guy, 1983 and Hanson and Schwab, 1987). Accessibility measures can be utilized to indicate either the existing of physical connections or the level of physical separation between two places (Muraco, 1971 and Edward, 1996) or to be accessibility more comprehensively determined by both the person-specific space-time autonomy of individuals and the urban environment e.g. (Burns, 1979; Villoria, 1989 and Miller, 1991). (Kwan, 1998) explained that measures of accessibility of place ascribe the same level of accessibility to different individuals in the same area, pay no attention to the different space-time restrictions experienced, and consequently accessibility to opportunities enjoyed by all individuals (Pirie, 1979; Landau et al., 1982; Richardson and Young, 1982). pay particular attention to evaluating individual accessibility as compared to place accessibility, (Kwan, 1998) conceptualized accessibility based on the construct of a prism-constrained feasible opportunity set, and explained that the operationalized space-time measures are more qualified for reducing interpersonal differences, especially the effect of spatiotemporal constraints, and therefore are more beneficial for unraveling gender / ethnic differences in accessibility.

Concentrate on passenger transport, (Geurs and Wee, 2004) define accessibility as the range to which land-use and transport systems enable individuals to reach activities by a combination of transport modes methods. They also made a difference between access and accessibility. They specified four elements of accessibility: land use, transportation, temporal and people.

1. The land-use element reflects the quality, amount and spatial division opportunities supplied at each destination, the demand for these opportunities at locations of origin,
and the facing of provision of with demand for opportunities, which may consequence competition for activities.
2. The transportation element describes the travel impedance a people need to overcome due to the length between an origin and a destination using a particular transport mode, such as the amount of time of travel, waiting and parking costs and effort including level of comfort, accident risk and reliability. This impedance product from the facing between the supplying of infrastructure involves its location and characteristics such as number of lanes, maximum travel speed, public transport timetables, travel costs and the demand connected to both freight travel and passenger travel.
3. The time element reflects the availability of opportunities at various times of the day, and the time available for individuals to take part in specific activities.
4. Depending on people's physical condition, availability of travel modes. And opportunities which depending on people's The inhabitance element reflects the needs which based on educational level, income, educational level, age household situation, abilities which income, travel budget, educational level of individuals. These features affect a person's level of access to transport modes and spatially divided opportunities, and may highly impact the total aggregate accessibility result (Cervero and Landis, 1997; Shen, 1998 and Geurs and Ritsema, 2003).

Figure (1.1) explains the connections between these elements of accessibility for example, the distribution of activities is a great factor on travel demand and may introduce time restrictions and has an effect on individual's opportunities. A people's abilities and needs influence the valuation of cost, time and effort of movement, kinds of relevant activities and the times in which one participates in particular activities. Accessibility as a factor of location for firms and inhabitant's influences travel demand, individual's social and economic opportunities and the time needed to do activities. (Geurs and Wee, 2004) argued that an accessibility measure has to take all four elements ideally into account', noted that utilized accessibility measures concentrate on one or more elements of accessibility, depending on the perspective taken, and specified four basic perspectives on measuring accessibility: infrastructure, location, person and utility. The infrastructure measures analyses the observed or simulated performance or service level of transport infrastructure (Linneker and Spence, 1992 and Ewing, 1993).

1. The location element that measures analyze the level of accessibility to spatially distributed activities from origin points, with or without incorporating capacity limitations of supplied activity (Hansen, 1959; Ingram, 1971 and Dalvi and Martin, 1976).
2. The utility element that measures analyze the economic advantages that people get from access to the activities which spatially distributed (Koenig, 1980; Handy and Niemeier, 1997 and Dong et al., 2006).

Geurs and Wee (2004) recorded five criteria of accessibility, involving operationalization, interpretability and communicability, theoretical basis, and ease of use in economic and social evaluations figure (1.1).

Geurs and Wee (2004) explained that an accessibility measure, in theory, must 1. Be responsive to changes in the system of transportation, i.e. the difficulty or ease for people to cover the distance between an origin point and a destination point with a specific transport mode, including the amount of costs, time and effort.
2. Be responsive to changes in the system of land-use, i.e. the quality, amount and spatial distribution of provided opportunities, and the spatial division of the demand for those opportunities, and the confrontation between provision and demand.
3. Sensitive to temporal limitations of opportunities.
4. Take individual opportunities, abilities and needs into account.

Figure 1. 1 Relationships between components of accessibility. (Geurs and Wee 2004).

Hence, saving all other conditions unchanging, an accessibility measure must behave as follows (Geurs and Van, 2004):

1. If the service level such as travel costs, time and effort of any transport mode in an area decreases or increases, accessibility must decrease or increase to any activity from any point within that area.
2. If the number of opportunities for an activity decreases or increases in any place, accessibility to that activity should decrease or increase from the same place.
3. If the request for opportunities for an activity with specific capacity restrictions decreases or increases, accessibility to that activity have to decrease or increase.
4. An enlargement of the number of opportunities for an activity at any place must not change the accessibility to that activity for people do not able to take part in that activity

Growing in one transport mode or growing in the number of opportunities for an activity must not change the accessibility to people with capacities or insufficient abilities.

1.2.2. Accessibility and mobility

The scholars defined the term mobility as the quality or situation of being mobile and the term mobile is defined as the ability of moving or of being moved readily from site to site (Pickett, 2004), or in the transportation planning context, as the movement potential, the capability to get from place to place (Hansen, 1959 and Handy, 1993). For example, the level-of-service measures used in transportation planning are measures of mobility; higher volume-to-capacity ratios mean slower travel times, less ease of movement, and thus lower mobility.

Mobility is associated to the impedance component of accessibility and good mobility is neither a necessary nor a sufficient condition for good accessibility. May be for a society to have good level of mobility but in the same time has low accessibility, for example a community with broad roads, low levels of crowding but comparatively few destinations for activities, or inadequate or undesirable destinations. It may be also for a society to have high level of accessibility with low level of mobility, for example a community with severe crowding but within a desired destinations and short distance of needed.

Efforts that concentrate on elevating mobility purpose at harmonize with growing level of travel, improving the systems efficiency and increasing the movement's potential, efforts that concentrate on enhancing accessibility goal at the passenger rather than the system and concern if inhabitance has access to the activities that they want or need to take part in.

Transportation planning concentrate on mobility has over time encouraging sprawling patterns of evolution that limit options. In the suburban areas of metropolitans, transportation service is comparatively sparse and destinations are commonly further away walking distance, leaving inhabitances with no choice but drive. For those who travel by transportation modes other than the personal automobile and those whose desires and needs are not met by the types of facilities, shopping and
other services found in the suburb areas, the outcome is a decline in accessibility. So for those inhabitances that prefer to drive, accessibility will finally decline in suburban areas (Handy, 2002). Transportation planning concentrates on accessibility and creates advantages by expanding options. for instance, the need to drive can be reduced by arrange policies to encourage small-scale partition development in urban areas, thereby bringing shopping centers within walking distance, operating a bus route that connects commercial areas to residential areas, or providing access to services by the Internet and remove the need for driving completely. Inhabitants get to do the things they want to do and need while reducing the cost and time devoted to driving, and the society as a whole gets potentially lower costs for maintaining roads as well as less negative effects on the environment, many studies connect the mobility with the capability of human being's movement, or regard mobility as a physical ability to perform the movement freely and stably, no matter where the purpose place is. An integrated modeling framework was used in recent years, to examine the factors that have an impact on urban home shopping activities (Hamed and Easa, 1998). To model residents, post work activity and to trace the movements of travellers through time and space (Hamed and Mannering, 1993). Therefore, the feasibility of public transportation, pedestrian walk, or automobile ownership determines different 'weights' of mobility (Dawkins et al., 2005). Some studies have explained that car ownership increases movement from residences to facilities (Lovett et al., 2002; Pasaogullari, 2004 and Lotfi and Koohsari, 2009).

Mobility, take into account walking as the only mode of transportation. Walkability is oftentimes used to measure the city or town livability. At first, the walkability concept may be regarded to be accurately associated to pedestrians. Walkability of neighborhood demands for mixed-land uses that create shorter distances between destinations and residences. Elements such as the variety of routes and directness to purpose places and of the interconnecting street patterns are synergistically determining distances between activities, and can be evaluated objectively using geographical information systems (GIS) software. demographic and social and attributes must be considered when examining how environments might be associated to walking, as such factors may act to temperate the relationship between walking behavior and walkability. For Australian adults, walking is the most common form of moderate activity reported in population surveys (ABS, 2000). (Owen, 2007) explained that those
who live in workable environments in Australia have a tendency to make more frequent travels to nearby destinations for example, the neighborhood green area, which might reduce motor vehicle travels (Owen et al., 2007).

1.2.3. Accessibility and equity

Equity means the services allocation fairness and concerns primarily who gets what (Wicks and Crompton, 1986). Equity shows a practically impossible situation where all inhabitances have come to a pact that they are equally treated and reallocation of public services is no necessary yet (Talen, 1998), because social equity occasionally doesn't coincide with regional justice (Pinch, 1985), and equity in social goods like public services is in conflict with hazard distribution of environment (Humphreys, 1988). There prevail very different and often competing explanations of equity. Regarding with the equity of services location decisions, (Wicks and Crompton, 1986) suggested three basic principles: identifying equal opportunity as the starting point, supporting deviations from this point of departure if the deviations serve the least advantaged, and establishing a minimum threshold below which quality or quantity should not fall. Based on the efforts of categorizing the definition of equity (Lucy, 1981; Crompton and Wicks, 1988 and Marsh and Schilling, 1994). (Talen, 1998) set a scheme of four categories of the definition of equity:

1. equality-based equity.
2. demand-based equity.
3. Market criteria-based equity.
4. Compensatory equity.

The word equality explained a situation in which inhabitances have the same rights, advantages, and the term equity explains a status in which all inhabitances are treated equally and no one has an unjust advantage (Figure 2.1).

Figure 1. 2 Equity against equality.

Among these definitions, the equality-based definition is more generally used in studies that related with accessibility (Ikporukpo, 1987), because it is more adjustable to accurate measurement. It is less stringent in data requirements than other methods, and the Achieving of equity in terms of need, or market criteria may be in need of information that may not be easily available (Cho, 2003). Good accessibility to urban public facilities and resources is one of the most significant elements of quality of life for urban inhabitants (Pacione, 1989). proximity to public services participate to residents' well-being by increasing their opportunity, elevating the value of a residential property, and leading to the savings on travel costs that can be expended on other consumptions (Pacione, 1989). Reduce travel costs to reach facilities and services may result in substantial redistribution of income between urban dwellers (Pahl, 1971). Accessibility is measured in terms of spatial relationship between places and equity is described by equitable opportunity in services distribution. Accessibility is deal with efficiency and trying to distribute public facilities as uniformly as possible to maximum access, while equity is more dealing with the impact of distribution of public facilities or resources to people who may utilize them (Nicholls and Shafer, 1999). Equity is not
every times in accordance with efficiency because equity takes a meaning only on the basis of the user's demographic or socio-economic characteristics. many studies have shown the matters that related to equity and accessibility in services delivery (Ottsmann, 1994; Talen, 1998; Talen and Anselin. 1998; Nicholls and Shafer, 1999 and Lindsey et al., 2001), and accessibility has been utilized as a social indicator used to find that the equity in allocation of services has been achieved or not. In the use of services, it is not at all times beneficial to measure accessibility merely by means of simple distance. Just having close to a public resource may not mean it is accessible because the cost of utilizing the facility may not be within the level of the financial capabilities or social standing of the individual's (Cho, 2003).

1.3. GIS and Green Area

GIS plays a significant role in environmental justice and analyzing green areas accessibility. The GIS and network analysis within it can compute time of travel from one place to another place. Studies use network analysis within GIS and to explain how different religious groups, ethnic groups, socio-economic groups and access urban green space (Comber et al., 2008 and Kuta et al., 2014). The reason that many studies utilize GIS to carry out analysis of environmental justice is because to solve different social problems after recognize the possible issues. Importance of equal access to the green space must pay attention by planners, because all inhabitants living inside a city deserve same equal accessibility to public green areas. Studies can raise the awareness of utilizing GIS so that scholars can utilize it to address different kinds of environmental or social issues. This research will participate to scientific knowledge because it is the first to utilize GIS network analysis to study the accessibility of public urban green areas, in the city of Erbil. Network analysis within GIS lets landscape architects, urban planners to understand how environmental justice have an effects on cities and to help societies have more equitable accessibility to environments that healthier such as public green spaces (Sister et al., 2010). In other hand, GIS network analysis can use as a methodology for architects and urban planners to analyze the neighborhoods that are in need of renovation.

There are two popular measurement methods that are utilized to study accessibility: Network analysis and Euclidean. Urban planner mostly uses Euclidean technique which is called straight line distance for measuring accessibility (Coutts et al., 2010; Coutts et al., 2013 and Moseleya et al., 2013), but the Euclidean technique is simplifies the real world because it does not account for impediments to movement across city. In other hand, network analysis is depending on the actual roads and their related speeds and is much more correct in an accessibility studies (Ghanbari and Ghanbari, 2013 and Steadman, 2004).

1.4. Hierarchy and Typology of Green Areas

There are many approaches to classify and sequence green areas and this issue is normal because laws and regulations differ in each country from the other country. The lifestyle and climate are varying according to different places; hot areas need more green areas than cold areas. Generally, a land use plan is formulated to indicate broad land uses and networks of services depended on the population expected. The land use distribution norms are based on limitations of work force and population density. Green areas are generally considered as recreational use in the Master Plan. according to Urban development plans formulation and implementation (UDPFI) Guidelines, 1996 of Ministry of Urban development of India, the proportion of recreational areas to the total urban area should be between $20-25 \%$ in metropolitan cities, $18-20 \%$ in medium towns and large cities and $12-14 \%$ in small towns, the ratio of green areas of Erbil city consist of $\% 12.3$ to the total urban areas. The types of urban greens in settlements according to (UDPFI) are as follows:

1. National Park is an area which is set aside for the conservation and protection of outstanding natural, flora, fauna, natural scenic areas and geological formations. the park prevents hunting, capturing or killing of fauna or deprivation of any animal of its habitat, And prevent using weapons for saving wildlife therein, and on condition that these issues are under the control of the park authorities.
2. District Park is a designated term according to the hierarchy of green areas in a city. District Park is an important recreation use with a large area and is developed to provide vital spaces should contain many recreation facilities.
3. Neighborhood Park: Neighborhood Park: is built up and developed at the neighborhood level is planned on an area of $2.000-4.000 \mathrm{~m}^{2}$. For a population of 10,000 The Park is within easy reach of and located within the developed residential areas at walking distance.
4. Mini parks: in the hierarchy of green areas is the lowest level, developed and planned an area more than $125 \mathrm{~m}^{2}$ for a population of 2,500 like play-areas for children with.
5. Playgrounds are provided at the neighborhood level for a population of 5,000 . They are also provided usually in the educational institutions for the use of the college and school students.
6. Green Belts Include park belt, green girdle, rural belt, rural zone, agriculture belt, country belt, they may or may not be in ownership of the city, town, local body.
7. Green strip is developed along the arterial roads or for separating urban areas from other uses. It is also developed on a vacant land for example land under high tension power supply lines.

The hierarchy approach introduced by the Institute the Institute of Leisure and Amenity Management (ILAM)

1. Principal/City/Metropolitan green areas is built up and developed at the metropolitan level is planned on an area that more than 8.0 hectares, with a Town/City wide catchment, a wide range of facilities and a varied physical resource, which would usually be recognized as a visitor attraction in its own right
2. District green areas developed at the district level is planned on an area up to 8.0 hectares in extent with a catchment area from 1500 to 2000 meters, with a variety of facilities such as sports field, playing fields, play areas and a mixture of landscape features
3. Neighborhood green areas developed at the district level is planned on an area up to 4.0 hectares in extent serving a catchment area of between 1000 to 1500 meters with both a variety of facilities and landscape features
4. Local green areas is planned on an area up to 1.2 hectares in extent serving a catchment area of between 500 and 1000 meters, usually consisting of landscape features, informal green area and a play area but lacking other facilities that a available other parks.

National Recreation and Park Association (NRPA) of USA introduced an approach for parks area per population (Parks Acreage per 1,000 populations). There are another aproach by (Nigel Dunnett et al., 2002). Department of Landscape, University of Sheffield and Department for Transport, Local Government and the Regions: London.

Table 1.4 National Recreation and Park Association (NRPA) of USA Standards

Park category	Standard park size	NRPAStandard (Acres/1000residents)
Neighborhood park	$1-15$ Acres	$1-2$ Acres $/ 1000$ population
Community parks	$16-99$ Acres	$5-8$ Acres $/ 1000$ population
Special use parks	Variable	3 Acres $/ 1000$ population
Linear parks	Variable	5 Acres $/ 1000$ population

Table 1.5 Typology of green areas

A Typology of urban green space		
Main types of Green Space		
	Recreation Green Space	Parks and gardens Informal recreational areas Outdoor sport areas Play areas Housing green areas Other incidental areas
	Private Green Space	Domestic gardens
	Productive Green Space	City farms Allotments Remnant farmland
	Burial Grounds	Cemeteries Churchyards
	Institutional Grounds	School grounds Other institutional grounds
	Wetland	Open / running water
	Woodland	Deciduous woodland Coniferous woodland Mixed woodland
	Other Habitats	Grass land Disturbed ground
	Linear Green Space	River and canal banks Transport corridors Other linear features.

2. LITERATURE REVIEW

Increasingly, researchers and urban analyst have started to concentrate on the distribution of green areas accessibility in urban settings

Ann (1991) utilized GIS to measure accessibility as straight line distance from open green spaces including rivers, green belts and water bodies to residential areas (Ann, 1991). Some research results explained that spaces within a linear distance of 700 m from open areas composed 98.6% of the all areas ciity of Seoul, and so the provision of open areas was judged to get more than adequate (Eom et al., 2008 and Eom and Lee, 2009). (Gobster, 1995) In exploring issues related to access and use of green space and recreation facilities by poor and minorities found that sections of the Chicago River Corridor adjacent to lower-income minority neighborhoods tended to have lower vegetation quality, poorer maintenance, and low accessibility as compared to sections adjacent to higher-income 'white' neighborhoods and he hypothesized that lower-income minority neighborhoods may not have access to quality open space environments like those available to upper-income majority neighborhoods. (Talen, 1998) utilized an equity mapping method and a need based measure of equity derived from professional standards of green areas planning and documents of planning policy to explore accessibility to green areas in Pueblo, Colorado. She found that areas of Hispanic populations had low accessibility. (Nicholls, 2001) studied distributional equity within a system of public green areas in Bryan County, Texas and accessibility, using GIS and the Mann-Whitney U test procedure in SPSS and the results show that no inequality was present. (Lindsay and Maraj, 2001) explored the nature of green ways as public spaces in Indianapolis, Indiana. Their research study used simple GIS analysis of census and proximity as a measure of accessibility and other datas to determine equality of accessibility. The results show that minorities and low income majorities have unequal accessibility to open spaces. Recently, the Gaussian-based 2SFCA approach was utilized to estimate green areas accessibility in Georgia (Dai, 2011) and the results show that many of the census tracts are beyond walkable distance to the nearest green area.
(Massey, 2004) argues that the income levels, environmental quality, and health care access can involve human health. So the minority groups should have a similar living environment and facilities as the high income groups have. Chemical or toxic wastes lead to human health problems, such as cancer. Inhabitants who live neighboring these areas many a time have health problems because the poor level of the environment and quality of live. Good Access to urban green areas can help less these health problems, but the high quality of the living environment should not be controlled to the high income groups. (Bolin et al., 2005) argued that the historical development of sociospatial effect produced unequal and unsafe environmental burdens in low-income and minority communities in Southern Phoenix. Therefore, environmental hazards and understanding the current and historical distribution of different racial groups are necessary to search environmental injustice. In the same way, (Bolin et al., 2005) studied how racial categories and companion social relations were constructed by the White majorities to produce a stigmatized area of economic and marginality racial exclusion in South Phoenix at the end of 19th centuries. (Wolch et al., 2005) argue that some minority groups don't have good accessibility to green areas and parks in Los Angeles as the city has become increasingly dense and grown. Minority and low income groups usually live in the inner city, areas generally without good-planning behind their built environment. asa result, inhabitants who live in those areas frequently lack recreation facilities like green areas the demand for urban green areas is increasing because people can socialize with friends, get fresh air, play with children or socialize with friends. However, most of the research studies have shown that low incomes and minority groups have less access to these green areas. (Pearce et al., 2006) used network analysis approach in New Zealand to measure community resource accessibility. Number of researches prefers the network analysis approach is because it has an advantage over the covering approach as it reflects the actual travel and avoids all the barriers that make routes inaccessible by pedestrians. (Grineski et al., 2007) found that in the city of Phoenix the environmental injustices are not equally distributed. Scholars have examined environmental justice in the Phoenix urban area and the socio-spatial distribution of different types of facilities in the Phoenix metropolitan area in relation to the demographics of nearby neighborhoods and they found that ethnicity and socialclass are direct related to the distribution of air pollution immigrants, low-income and
latinos inhabitants have the higher exposure to pollutants than the high incomes and White residents. (Comber et al., 2008) studied green areas access for different ethnic groups and religious in Leicester, UK, and they explained that Sikh, Hindu and Indian groups, which are the ethnic minorities in Leicester, have limited access to green areas. (Comber et al., 2008) utilized network analysis to determine the green areas access for different religious and ethnic groups in the UK. (Boone et al., 2009) found that more African Americans in Baltimore, Maryland have access to green areas within 400 meters walking distance while White people have access to more green spaces in less than 400 meters' distance. Many research studies have explained that the distribution of parks frequently disproportionately service mostly more affluent groups and White; the unequal distribution of green areas has become a serious environmental justice concern. Regardless of the fact that it is impossible to alter an existing neighborhood, it is important to study where injustice exists and ways that this injustice can be overcome. (Coombes and others, 2010) found that residents living in high accessibility area to the green areas were more likely to realize the physical activity recommendation and less likely to be obese or overweight. Coombes suggests that the provision of good access to green areas in metropolitan areas may lead to promote physical activity of population (Coombes et al., 2010) (Sotoudehnia and Comber, 2011) studied perceived and physical accessibility to urban green areas in the UK, and they explained that only 15% of the Leicesters population meets the physical access up to 300m. (Zhang and others, 2011) explained that the the developed states in the western and Midwestern US have higher neighborhood green area accessibility, while developing states have lower accessibility (Dai, 2011) More recently, the Gaussian-based 2SFCA approach was utilized to determine green areas accessibility in Georgia and the results show that Georgia still faces the challenge that many of the census tracts are beyond walkable distance to the nearest green area. (Bennet et al., 2012) used network analysis approach to measure the walking distance to the nearest playground and to dtermine the number of users of a playground using the playground's service area. (Wendel, 2012) studied the unproportional distribution of larger and more desirable green areas throughout Santa Cruz, Bolivia, and found that not all urban inhabitants are experiencing the same benefits (Wright et al., 2012). (Kuta et al., 2014) studied urban green area accessibility for different socio-economic groups in the UK as well and they found that socio-
economically deprived group lack access to green space within 300 m from the residence. (Kuta et al., 2014) applied network analysis approach to estimate the accessibility to green area for socio-economically deprived groups.

3. MATERIALS AND METHODS

3.1. Materials

3.1.1. Study area

This work was carried out in 2016-2019 in the Erbil city it has nearly 1000,000 population accordıng to KRG statistıcs office, because Erbıl city has hot weather in the summer it is necessary to provide a green areas in terms of number and properties in other hand should has a good accessibility for green areas and residents can easily access to public green areas. There are many urban green areas in Erbıl city, for this study all public green areas were selected accordıng to Erbıl cıty municipality and directorate of green areas, which include many types of green areas according to their areas and facilities.

A study area should contain many criteria because better measure map and comprehend the value and practical importance of accessibility to green area such as:

1. Availability of required datasets that and accessible for the study area to allow the study to focus on matters related to the mapping, measuring and analysis of green areas accessibility.
2. The study area must have a higher level of accessibility to allow verifications and workable field based observations when necessary.
3. The study area should be a great significance metropolitan area with green areas provision and development to allow the assessment of space and time changes in relationships between demand and availability of urban green areas.

For that reasons mentioned above, the Erbil city has been selected as a study area where concentrated researches about the accessibility to green space are deserved.

Map 3. 1 Study area. (The U.S. Agency for International Development (USAID).

Figure 3. 1 Erbil city.

3.1.2. Geographical location of the study area

This work was carried out in 2016-2019 in the Erbil city which is located in the north of Iraq with Latitude: $36^{\circ} 11^{\prime} 33.25^{\prime \prime} \mathrm{N}$ and longitude: $44^{\circ} 0^{\prime} 38.23^{\prime \prime} \mathrm{E}$ and Elevation of Erbil city from sea level 429.00 m .

3.1.3. Erbil climate properties

The climate of the Erbil city has been recognized concurring to Koppen classification as bone-dry and semi-arid climate (steppe -BSh and Mediterranean - Csa). It is cold and damp in winter and hot and dry in summer, with short autumn and spring seasons compared to winter and summer. In winter, this locale falls beneath the impact of Mediterranean cyclones that moves east to northeast over the locale. The Arabian Sea winds move northward passing over the Arabian Gulf carrying extraordinary sums of dampness causing huge sums of precipitation over the locale. In summer, the locale falls beneath the impact of sub-tropical tall weight belts and Mediterranean anticyclones. The sub-tropical tall weight centers that moves from west to northeast and north it passing over the Middle Eastern Landmass carrying sand to the region. The highest every day temperature may reach as tall as $50^{\circ} \mathrm{C}$ in hot summer periods, while the low every day temperature can drop to $0^{\circ} \mathrm{C}$ in cold winters. (Anonymous, 2016) therefore it is necessary to Erbil city to provide green areas in terms of number and properties for inhabitants because more of days in year are hot.

3.2. Methods

The method used in this study is the selection of public green areas and then classification according to activity in to passive which consist of two groups and active which consist of four groups according to the area size and facilities provided, all quarters of Erbil city were selected with their population, in other hand all roads and streets were classified according to speed limitations, all of this data sets prepared by AutoCAD tool then converted to GIS to analyze and calculate time cost to access green areas and the area that covered by public green space services and number of residents to whom the service reaches as explained in diagrams (3.1) and (3.2) (Kemec et al., 2015).

Figure 3. 2 Methods for analyzing in GIS Network analysis tool.

Figure 3. 3 Methods of calculating area and population covered by services.

3.2.1. Data anagement

All datasets for this study were generally obtained from three sources as explained in table (3.1)

1. Erbıl city municipality
2. Directorate of green area engineering
3. KRG statistics office

3.2.1.1. Data acquisition

1. All green areas boundary as generated manually with polygons with (AutoCAD) there are 297 green areas are existing in this study area classified in to two categories active green areas and passive green areas, active green areas include 10 Community parks table (3.3), 10 District park (3.4), 189 Neighborhood parks table (3.5) and 55 Mini parks with areas are less than 2000 m 2 table (3.6). And passive green areas include 14 Forested area table (3.7) and 19 Green belts table (3.8), these 297 green spaces distributed around different areas of Erbil city.
2. Road network and Streets classified manually to main roads and sub roads separated in to four layers according to speed limitation generated manually with (AutoCAD line DWG file) as shown in figure (3.2).
3. Demographic population data according to quarters of Erbil city by KRG statistics office as explained in table (3.9).
4. Quarters border selected by Erbil municipality (Polygon DWG AutoCAD file) as shown in figure (3.3), (Sayin et al. 2017).

Table 3. 1 Data used in this study

No.	Datasets	Purpose of data sets	Sources of datasets
1.	Green areas polygons	to determıne the green areas	Directorate of green area
2.	Road networks	to calculate dıstance with tıme	Erbıl city municipality
3.	Populatıon	access to green areas	To calculate population
4.	Quarters border	Combine with population data	Erbıl city municipality

3.2.2. Classification of Erbil green areas

There six types of green area in Erbil city which classified in to two categories according to green areas usability as explained in diagram (3.3).

Figure 3. 4 Classification of green areas.

3.2.2.1. Active green areas

1. Community parks

Community parks are considered as a largest green area in size and well known amongst all residents. Community green areas contain all facilities and serve all age groups and provide a wide variety of chances to a broad cross section of residents.

Figure 3.5 Sami Abdulrahman Park.

Figure 3.6 Sami Abdulrahman Park.

Figure 3. 7 Sami Abdulrahman.Park

Figure 3. 8 Minara Park.

Figure 3.9 Minara Park.

Figure 3.10 Community parks polygon.
2. District parks.

A District park is a mid-sized green area providing space for recreation or sport and facilities. These types of green areas serve large groups in the city and are attractive to a range of users. They serve several communities or suburbs and are quite well known for this residents living in their catchment.

Figure 3. 11 Kanyaw Park.

Figure 3. 12 Shar Park.

Figure 3.13 District Parks polygon.

3. Neighborhood parks

Neighborhood Parks are planned to serve a small population area, a convenient standard size and population for this kind of green space is 1hectare per 1000 person and usually range in size from 0.5 hectare to 4hectare, Provide facilities for a range of age groups. Neighborhood Park considered one of the most significant features of green areas system. Is deemed one of the major elements in neighborhood design its essential role is the provision of recreational area for the neighborhoods that surrounds it. These types of green areas location should be at the Centre of the neighborhoods and have a service area of about 800 meters convenient and safe pedestrian access ranging in size from over 0.25 hectare up to 5hactares.

Figure 3. 14 Pashew Park.

Figure 3. 15 Kurdistan Park.

Figure 3. 16 Neighborhood parks polygon.

4. Mini green area

Local green areas are small green areas planned to be use by a very small population, this green areas normally serve a population between 500 to 1000 persons usually used as a playground for children or as an aesthetic purpose and in relation to size they are generally less than 0.25 hectare

Figure 3.17 Avrest park.

Figure 3. 2. Mini Parks polygon.
3.2.3.1. Passive areas which were not used daily or continuously consist of

1. Green belts

2. Forested area

Table 3. 2 Community parks of Erbil city with areas and quarters located

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
1.	Sami abdulrahman	$2,068,955$	Sami abdulrahman
2.	Shanadar 1	114,293	Zanyari
3.	Peshmarga	131,116	Salahaddin2
4.	Minara	93,856	Minara
5.	Runaki	54,895	Runaki
6.	Kanyaw	58,500	Gulan
7.	Shanadar 2	67,776	Zanyari
8.	Shanadar 3	53,340	Zanyari
9.	Glkand	73,000	Taajeel
10.	Xanzad	46,000	Tayrawa

Table 3. 3 District parks of Erbil city with areas and quarters located

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
1.	Rangin	14,169	Nishtiman
2.	Kurdistan	10,314	Kurdistan
3.	Azadi	7,832	Azadi
4.	Qutabyan	26,762	Zanko
5.	Shar	8,557	Khanaqa
6.	Aquapark	8,482	Zanyari
7.	Dlopa	30,460	Hawleri new
8.	Kochurawakan	13,465	Azadi
9.	Karezan	37,000	Karezan
10.	Papula	11257	Zanyari

Table 3. 4 Neighborhood parks of Erbil city with areas and quarters located

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
1	khabat	2293	Saydawa
2	Brusk	6357	Saydawa
3	Shadan	4056	Mstawfi
4	Kurd u arab	2623	Tayrawa
5	Gashaw	5418	Tayrawa
6	Sema	10871	Tayrawa
7	Baghishar	5912	Khanaqa
8	Mediya	5887	Zanyari
9	Kara	4072	Zanyari
10	Choli	3997	Zanyari
11	Tangabar	5988	Setaqan
12	Mand	2623	Setaqan
13	Pashew	4438	Setaqan
14	Goran	2622	Minara
15	Harvin	4021	Minara
16	Gizng	4761	Bakhtyari
17	Zhilamo	7000	Bakhtyari
18	Rebin	3012	Bakhtyari
19	Kaziwa	3280	Bakhtyari
20	Dastan	4040	Bakhtyari
21	Zhyar	3290	Bakhtyari
22	Didan	3000	Bakhtyari
23	Shapol	2831	Bakhtyari
24	Judi	9376	Bakhtyari
25	Analinda	3904	Shorsh
26	Aynda	10210	Shorsh

Table 3.4. Neighborhood parks of Erbil city with areas and quarters located (continued)

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
27	Baran	3,622	Shorsh
28	Shiraz	6604	Shorsh
29	Ranj	3993	Shorsh
30	Ashti	6100	Salahaddin
29	Ranj	3993	Shorsh
30	Ashti	6100	Salahaddin
31	Peshawa	5317	Salahaddin
32	Salahaddin	3510	Salahaddin
33	Kani	2385	Kani
34	Zanayan1	3090	Kani
35	Zanayan2	2451	Kani
36	Nyan	5070	Kwestan
37	Arkhawan	3020	Kwestan
38	Kwestan	2116	Kwestan
39	Namam	2599	Kwestan
40	Shanel	4050	Kwestan
41	Nisar	2582	Kwestan
42	Soz	12281	Naz
43	Gona	2270	Naz
44	Darin	2529	Nwsaran
45	Shawnm	3777	Nwsaran
46	Shanya	13577	Waziran
47	Sonya	17527	Waziran
48	Waziran	5487	Waziran
49	Wezha	11866	Waziran
50	Kosar	4400	Ari
51	Hazhin	2516	Ari
52	Glarya	4872	Brayati
53	Brayati	4140	Brayati
54	Kavin	4030	Brayati
55	xanda	8870	Brayati
56	Avar	9528	Brayati
57	Bina	3090	Brayati
58	Zikhan	2133	khanzad
59	Aylul	8255	khanzad
60	Niga	2386	khanzad
61	Kawani	3614	khanzad
62	Sarkand	21974	khanzad
63	Fedrali	khanzad	

Table 3.4. Neighborhood parks of Erbil city with areas and quarters located (continued)

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
64	Narin	5544	khanzad
65	Marjan	2823	Raparin
66	Amad	3369	Raparin
67	Bala1	2736	Raparin
68	Bala2	4669	Raparin
69	Zhivan	2021	Raparin
70	Baxan	5390	Raparin
71	Shalaw	2905	Raparin
72	Sardam	2793	Raparin
73	Razaw	3355	Raparin
74	Kamyar	2170	Raparin
75	Chaman	2089	Raparin
76	Aso	4247	Raparin
77	khak	25626	Safeen
78	Maf	7425	Safeen
79	Safeen1	5951	Safeen
80	Saffen2	4400	Safeen
81	Darya	7139	Gulan
82	Kayhan	3253	Gulan
83	Renas	2275	Gulan
84	Hazha	5078	Gulan
85	Betwata	7853	Hawleri new
86	Lezanin	7858	Hamreen
87	Rezband	2253	Zanayan
88	Ashna	3315	Zanayan
89	Lawlaw	4048	Zanayan
90	Grtk	3036	Zanayan
88	Ashna	3315	Zanayan
89	Lawlaw	4048	Zanayan
90	Grtk	3036	Zanayan
91	Avin1	7474	Sarwaran
92	Avin2	4544	Sarwaran
93	Avin3	6412	Sarwaran
94	Avin4	16620	Sarwaran
95	Avin5	8451	Sarwaran
96	Govar	5544	Sharawani
97	Parwa	4426	Sharawani
98	Aras	5500	Sharawani
99	Golchin	8398	Sharawani
100	Avrin1	Sharawani	

Table 3.4. Neighborhood parks of Erbil city with areas and quarters located (continued)

No.	Name	Area (m2)	Location quarter
101	Avrin2	8425	Sharawani
102	Chnar	3920	Chnar
103	Peshraw	4995	Chnar
104	Krewa	6531	Chwarchra
105	Lana2	3593	Chwarchra
106	Lana3	4092	Chwarchra
107	Dyarbakir	3200	Chwarchra
108	Chrakhan	4208	Chwarchra
109	Nashmil	7455	Khebat
110	Xawar	4527	Khebat
111	Sarbaxoyee	2270	Khebat
112	Shahidan	4968	Khebat
113	Galarezan	5280	Khebat
114	Zhila	3038	Khebat
115	Gulan	14945	Khebat
116	Varin	12112	Karezan
117	Zhilya	9439	Mamostayan
118	Nawzhin	5493	Mamostayan
119	Tarza	3727	Mamostayan
120	Taman	4069	Mamostayan
118	Nawzhin	5493	Mamostayan
119	Tarza	3727	Mamostayan
120	Taman	4069	Mamostayan
121	Shokhan2	2762	Mamostayan
122	Zhin	2175	Mamostayan
123	Nahri	9717	Mamostayan
124	Hiwa	3722	Mamostayan
125	Kazhik	2400	Mufti
126	Dahen	2440	Mufti
127	Zaza	2752	Mufti
128	Yadi namran	3140	Mufti
129	Jgar goshakan	3289	Mufti
130	Korek	2190	Mufti
131	Kazea	7423	Mufti
132	Pers	2330	Mufti
133	Halgurd	4372	Mufti
134	Hana	2100	Hana city
135	Raz	3847	Havalan
136	Shko	4769	Havalan
137	Razha	2506	Havalan

Table 3.4. Neighborhood parks of Erbil city with areas and quarters located (continued)

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
138	Laveen	7782	Havalan
139	Kayxusraw	2433	Rasti
140	Baram	3378	Rasti
141	Nawcha	4944	Rasti
142	Bestan	3761	Rasti
143	Komari	3330	Runaki
144	Hezha	5413	Runaki
145	Shovan	3000	Runaki
146	Sina	3170	Runaki
147	Sitak	3966	Runaki
148	Zhala	4172	Runaki
149	Ramtan	21611	Majidawa
150	Kukhti	2613	Mantikawa
151	Jihan	6867	Mantikawa
152	Hedi	2861	Azadi
153	Mamzan	5342	Azadi
154	Yana	2060	Azadi
155	Bawari	4177	Azadi
156	Niza	4816	Azadi
157	Xoshi	7647	Azadi
158	Rwan	9280	Azadi
159	Bezhan	4047	Azadi
160	Ravist	2033	Azadi
161	Hataw	5771	Azadi
162	Wafayee1	3142	Andazyaran
163	Wafayee2	5342	Andazyaran
164	Andazyaran	7816	Andazyaran
165	Karokh	7409	Zanko1
166	Lava	3989	Zanko1
167	Shayan	3483	Zanko1
168	Babus	2034	Zanko2
169	Hazho	3847	Rzgari2
170	Shkir fatah	4251	Rzgari2
171	Heshw	7000	Shadi
172	Gew	4022	Shadi
173	Mukryani	11761	Shadi
174	Rzgari	3408	Rzgari1
175	Zaytun	3674	Rzgari1
176	Haryad3	3792	Sarbasti
177	Sarkarez	7070	Sarkarez

Table 3.4. Neighborhood parks of Erbil city with areas and quarters located (continued)

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
178	Fenk	7299	Shadi
179	Bahari new	8487	Shadi
180	Bandaw	11112	Shadi
178	Fenk	7299	Shadi
179	Bahari new	8487	Shadi
180	Bandaw	11112	Shadi
181	Kawna	4283	Shadi
182	Shapal	3757	Kurdistan
183	Kurdayati	7556	Bahar
184	Mergaswr	7350	Nawroz
185	Brwa	2051	Nawroz
186	Marina	10000	Nawroz
187	Hayat	3961	Nawroz
188	Garmyan	23174	Nishtiman
189	Qandil	2063	Eskan

Table 3. 5 Mini green areas of Erbil city with their area and quarters located

No.	Name	Area (m2)	Location quarter
1	Bazyan	892	Mstawfi
2	Dalan	405	Tayrawa
3	Kner	1619	Tayrawa
4	Hunar	1538	Taajeel
5	Shaveen	844	Zanyari
6	Chra	1695	Zanyari
7	Avrast	1626	Zanyari
8	Kawyar	1434	Setaqan
9	Otism	562	Setaqan
10	Tomar	1983	Arab
11	Derin	1383	Arab
12	Peshang	1226	Arab
13	Arisha	519	Minara
14	Mazi	900	Minara
15	Kotri Salam	754	Bazar
16	Gazino antar	1158	Bazar
17	Parezga	1386	Bazar
18	Kani askakan	714	Bazar
19	Rondik	1600	Bakhtyari
20	Hardi	1340	Shorsh
21	Nalee	1166	Shorsh
22	Havin	1732	Kwestan
23	Astar	1965	Raparin
24	Raparin	1771	Raparin
25	Saya	1695	Raparin
26	Vinus	1782	Raparin
27	Pari	1520	Safin
28	Lanya	1200	Gulan
29	Graw	1796	Gulan
27	Pari	1520	Safin
28	Lanya	1200	Gulan
29	Graw	1796	Gulan
30	Razhan	1949	Gulan
31	Lana1	1239	Chwarchra
32	Ala	1055	Khebat
33	Shawbo	1468	Mamostayan
34	Shanaz	1469	Mamostayan
35	Shokhan1	1894	Mamostayan
35	Lanja	Mufti	
36	Xuncha	Mufti	
	1810		

Table 3.5. Mini green areas of Erbil city with their area and quarters located (continued)

No.	Name	Area $(\mathrm{m} 2)$	Location quarter
37	Chwarchra	807	Havalan
38	Jezhwan	1315	Eskan
39	Hazhan	1777	Eskan
40	Halo	1760	Eskan
41	Qashqa	1230	Mantikawa`
42	Mzgawt	1247	Azadi
43	Nazan	1434	Andazyaran
44	Ronyar	1303	Zanko1
45	Parlin	1417	Zanko2
46	Rebwar	1380	Rzgari
47	Lawzha	1468	Sarbasti
48	Haryad2	1735	Sarbasti
49	Kaywan	1815	Kurdistan
50	Berivan1	929	Kurdistan
51	Zharo	972	Kurdistan
52	Dyako	1330	Kurdistan
53	Berivan2	1373	Bahar
54	Sivar	1294	Nawroz
55	Nawroz	1836	Nawroz
54	Sivar	1294	Nawroz
55	Nawroz	1836	Nawroz

Table 3. 6 Forest of Erbil city with areas and quarters located

No.	Name	Area (m2)	Location quarter
1	Mukhtar	159436	Hasarok 5
2	Kaliptos	68629	Hasarok 5
3	159 Gulan	136357	Gulan
4	Darstani bakur	1239000	Kwestan
5	Darstan kuran	81824	Zanyari
6	Alar	17433	Zanko2
7	Mashxal1	13124	Zanko2
8	Mashxal2	5000	Zanko2
9	Mashxal3	29202	Zanko2
10	Mashxal6	38000	Zanko2
11	Haryad1	5559	Sarbasti
12	Halsho	29497	Shadi
13	Shwenawar	5280	Shadi
14	Shalyar	7939	Shadi

Table 3. 7 Green belts of Erbil city with areas and quarters located.

No.	Name	Area (m2)	Location quarter
1	Dalya	14445	Nwsaran
2	Gala	7350	Waziran
3	Rwdaw	12455	UN office
4	Kazhaw	1124	Raparin
5	Zagros	12259	Safin
6	Tarin	4911	Safin
7	Pirmam	7820	Safin
8	Banaz	2899	Rasti
9	Aland	57902	Sarbasti
10	Sartka1	4791	Sarbasti
11	Sartka2	4249	Sarbasti
12	Sartka3	3780	Sarbasti
13	Honyar	9080	Shadi
14	Tasaw	38947	Shadi
15	Rawen	9,000	kwran
16	Mawlawi	44186	Karezan
17	Sartka2	4249	Sarbasti
18	Sanaw1	15281	Sharawani
19	Sanaw1	3360	Sharawani

3.2.3. Processing of data

1. Digitize all access (roads and streets) which classified according to speed limitation to the public green areas manually which created with AutoCAD polygons and then converted to GIS Network Analyst tool.
2. Integrate the demographic population layer and quarter's border of Erbil city by utilizing tabulate intersection in Network analyst tool.
3. Create green areas of Erbil city polygons by AutoCAD tool and then converted to GIS.

3.3. Network Analysis

We have to calculate cost, this cost could be in different units it could be time, money or land this study used time cost that means temporal needs to pass each line segments.

In this study quarters border layer in GIS Environment by using quarter's border layer in Auto CAD then by using joint tool of equipped software we can integrate tabular population data with polygons quarters border layer.

In this study green areas border (line) generated then lines converted to polygons then converted to the point which is the format of needed data form in network analysts too.

4. RESULTS

This study analyzes green areas of the Erbil city and measures the accessıbılity of green spaces with environmental justice in Erbil city with regard to public green areas. The study shows the relationship between different quarters of Erbil city and public green areas accessibility. The idea of this research study derived from (So-ShukWai, 2013 and Comber et al., 2008), and the methodology is originating from (Sister et al., 2007 and Hass, 2009). In this study AutoCAD tools like polygon, line and layer were used and then converted to Network Analyst within GIS were utilized the main tool in this research. This study utilizes this methodology mentioned above to answer questions

1. How accessible are public green areas for different populations within $300 \mathrm{~m}, 600 \mathrm{~m}$ and 900 m distance or 5 minute, 10 minute and 15 minute walking for mini parks and neighborhood parks and driving for community parks and district parks?
2. Which areas of Erbil city need to have new public green areas and increased accessibility to public green areas?

By two main steps

1. Identify and classify all green areas of Erbil city by polygons and classify all roads with speed limitations to the green areas.
2. integrating the demographic data of the city of Erbil and the city's quarters to obtain the population accounts for which the services of the green areas reach.

4.1. Analysis and Results

Measuring the accessibility of public urban green areas for different quarters of Erbil city and calculating of the population. Select the areas that do not have enough green areas and need new green areas.

4.1.1. Community parks

There are 10 community parks accessibility measured by GIS Network analysis for 5,10 and 15 minutes for driving as shown in table (4.1), (4.2) and (4.3), the results show that for 5 minutes driving the $\% 68$ of population have accessibility to green areas and $\% 32$ of population don't have accessibility to green areas, for 10 minutes of driving there are accessibility for $\% 99$ of population, $\% 1$ of population don't have accessibility to green areas. For 15 minutes driving there is accessibility for $\% 100$ of population to public Community parks.

4.1.2. District parks

There are 10 District parks accessibility measured by GIS Network analysis for 5, 10 and 15 minutes for driving as shown in table (4.4), (4.5) and (4.6), the results show that for 5 minutes driving $\% 70$ of Erbil city population have accessibility and $\% 30$ of population don't have easy access to District parks. For 10minutes driving there is accessibility for \%96 of Erbil residents to District parks. For 15 minutes driving there is $\% 100$ accessibility to district parks.

4.1.3. Neighborhood parks

There are 189 Neighborhood parks, accessibility measured by GIS Network analysis for 5,10 and 15 minutes walking as explained in table (4.7), (4.8) and (4.9), the results show that for 5 minutes walking $\% 43$ of Erbil city population have accessibility and $\% 57$ of population don't have easy access to Neighborhood parks. For 10minutes walking there is accessibility for \%71 of Erbil residents to District parks. For 15 minutes walking \%80 of Erbil city have accessibility to Neighborhood parks.

4.1.4. Mini parks

There are 55 Mini parks in Erbil city which their areas less than $2000 \mathrm{~m}^{2}$, accessibility measured by GIS Network analysis for 5, 10 and 15 minutes walking as
explained in table (4.10), (4.11) and (4.12), the results show that for 5 minutes walking $\% 22$ of Erbil city population have accessibility and \%78 of population don't have easy access to Mini parks. For 10minutes walking there is accessibility for \%52 of Erbil residents to Mini parks. For 15 minutes walking $\% 70$ of Erbil city have accessibility to Mini parks.

Table 4. 1 Accessibility results of community parks for 5 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Ainkawa	34	0	66	0	0
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadi1	69	15127	31	10435	4692
Azadi2	100	4490	0	4490	0
Badawa	54	16526	46	8880	7646
Bahar	58	18753	42	10878	7875
Bahrka	74	17987	26	13395	4592
Bakhtyari1	42	6789	58	2822	3967
Bakhtyari2	27	17404	73	4769	12635
Bazar	100	2659	0	2659	0
Berkot	100	750	0	750	0
Betwatae nwe	9	3456	91	295	3161
Brayati	100	25865	0	25794	71
Chinar	34	14717	66	4998	9719
Chwarchra	8	28707	92	2170	26537
Darstani bakur	65	0	35	0	0
Drem city	6	8450	94	549	7901
Empire	44	0	56	0	0
English village	48	4350	52	2090	2260
Eskan	100	7936	0	7936	0
Ganjan city	46	4567	54	2122	2445
Gorstani bakur	41	300	59	122	178

Table 4.1. Accessibility results of community parks for 5 minutes driving (Continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Gulan	83	16157	17	13442	2715
Hamrin	79	11198	21	8897	2301
Havalan	98	16930	2	16553	377
Italian village	51	21896	49	11261	10635
Kani	100	23762	0	23762	0
Karezan	5	24603	95	1259	23344
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	99	25424	1	25142	282
Komari	100	3893	0	3893	0
kurani aynkawa	100	14376	0	14359	17
Kurdistan	27	35172	73	9547	25625
Kwestan	100	13502	0	13502	0
Mahabad	67	11428	33	7602	3826
Majidawa	42	2180	58	905	1275
Mamostayan1	95	13402	5	12677	725
Mamostayan2	96	9820	4	9404	416
Mantikawa	93	8525	7	7946	579
Minara	100	6960	0	6960	0
Mstawfi	100	8147	0	8147	0
Mufti	100	13645	0	13645	0
Nawroz	12	39105	88	4593	34512
Naz	4	3000	96	132	2868
Nishtiman	94	14269	6	13387	882

Table 4.1. Accessibility results of community parks for 5 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Nwsaran	94	17700	6	16593	1107
Peeshasazi bashur	1	1290	99	16	1274
Qalat	54	0	46	0	0
Raparin	99	12096	1	12029	67
Rastee	3	9863	97	288	9575
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen 2 \& pishasazi bashur	37	939	63	351	588
Safin1	100	3621	0	3621	0
Safin3	10	1513	90	158	1355
Salahaddin1	100	24056	0	24056	0
Salahaddin2	100	7057	0	7057	0
Sami abdulrahman	99	579	1	572	7
Sarwaran	89	5542	11	4936	606
Saydawa	100	14360	0	14360	0
Setaqan	100	12809	0	12809	0
Shadi	1	17695	99	212	17483
Sharawani	6	5942	94	339	5603
Shorsh	100	15595	0	15595	0
Taajeel	98	3859	2	3781	78
Tayrawa	95	19159	5	18191	968
Waziran	53	4700	47	2473	2227
Zanko1	51	16777	49	8613	8164
Zanko2	1	4519	99	51	4468
Zanyari	100	5470	0	5470	0
Zilan	2	3231	98	77	3154

Table 4. 2 Accessibility results of community parks for 10 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadil	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	99	16526	1	16412	114
Bahar	100	18753	0	18753	0
Bahrka	100	17987	0	17987	0
Bakhtyari1	98	6789	2	6672	117
Bakhtyari2	100	17404	0	17404	0
Bazar	100	2659	0	2659	0
Berkot	100	750	0	750	0
Betwatae new	100	3456	0	3456	0
Brayati	100	25865	0	25828	37
Chinar	100	14717	0	14717	0
Chwarchra	86	28707	14	24747	3960
Darstani bakur	100	0	0	0	0
Drem city	100	8450	0	8450	0
Empire	100	0	0	0	0
English village	100	4350	0	4350	0
Eskan	100	7936	0	7936	0
Ganjan city	100	4567	0	4567	0
Gorstani bakur	100	300	0	300	0
Gulan	100	16157	0	16109	48
Hamrin	100	11198	0	11198	0
Hana city	45	4567	55	2059	2508

Table 4. 2 Accessibility results of community parks for 10 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Havalan	100	16930	0	0	16930
Hawleri new	73	21896	27	16017	5879
Italian village	99	3570	1	3530	40
Kani	100	23762	0	23762	0
Karezan	98	24603	2	24081	522
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	3893
Komari	100	3893	0	14376	0
Kurani aynkawa	100	14376	0	35172	13502
Kurdistan	100	35172	0	11428	0
Kwestan	100	13502	0	2180	0
Mahabad	100	11428	0	13121	0
Majidawa	100	2180	0	9820	0
Mamostayan1	98	13402	2	8525	0
Mamostayan2	100	9820	0	6960	0
Mantikawa	100	8525	0	8147	0
Minara	100	6960	0	13645	0
Mstawfi	100	8147	0	39058	0
Mufti	100	13645	0	3000	0
Nawroz	100	39105	0	14269	0
Naz	100	3000	0	17700	0
Nishtiman	100	14269	0	1290	0
Nwsaran	100	17700	0	0	0
Peeshasazi bashur	100	1290	0	0	0
Qalat	98			0	0
		0	0	0	

Table 4. 2 Accessibility results of community parks for 10 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Raparin	100	12096	0	12096	0
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\&pishasazi bakur	100	939	0	939	0
Safin1	100	3621	0	3621	0
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	7056	0
Salahaddin2	100	7057	0	576	0
Sami abdurahman	99	579	1	25629	0
Sarbasti	100	25670	0	5542	14360
Sarwaran	100	5542	0	12809	17651
Saydawa	100	14360	0	5942	0
Setaqan	100	12809	0	15595	0
Shadi	100	17695	0	3818	0
Sharawani	100	5942	0	18554	0
Shorsh	100	15595	0	5870	44
Taajeel	99	3859	1	4700	0
Tayrawa	97	19159	3	0	0
Twraq	100	5870	0	41	
Waziran	100	4700	0	605	
Zanayan	0	17670	100	0	0
Zanko1	100	16777	0	46777	0
Zanko2	100	4519	0	4513	0
Zanyari	100	5470	0	5470	0
Zilan	99	3231	1	3198	0

Table 4. 3 Accessibility results of community parks for 15 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadi1	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	100	16526	0	16514	12
Bahar	100	18753	0	18753	0
Bahrka	100	17987	0	17987	0
Bakhtyari1	99	6789	1	6747	42
Bakhtyari2	100	17404	0	17404	0 の
Bazar	100	2659	0	2659	0
Berkot	100	750	0	750	0
Betwatae new	100	3456	0	3456	0
Brayati	100	25865	0	25854	11
Chinar	100	14717	0	14717	0
Chwarchra	100	28707	0	28687	20
Darstani bakur	100	0	0	0	0
Drem city	100	8450	0	8450	0
Empire	100	0	0	0	0
English village	100	4350	0	4350	0
Eskan	100	7936	0	7936	0
Ganjan city	100	4567	0	4567	0
Gorstani bakur	100	300	0	300	0
Gulan	100	16157	0	16140	17
Hamrin	100	11198	0	11198	0
Hana city	100	4567	0	4550	17

Table 4. 3 Accessibility results of community parks for 15 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Havalan	100	16930	0	16930	0
Hawleri new	100	21896	0	21896	0
Italian village	100	3570	0	3555	15
Kani	100	23762	0	23762	0
Karezan	100	24603	0	24598	5
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	0
Komari	100	3893	0	3893	0
Kurani aynkawa	100	14376	0	14376	0 9
Kurdistan	100	35172	0	35172	0
Kwestan	100	13502	0	13502	0
Mahabad	100	11428	0	11428	0
Majidawa	100	2180	0	2180	0
Mamostayan1	99	13402	1	13322	80
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	100	6960	0	6960	0
Mstawfi	100	8147	0	8147	0
Mufti	100	13645	0	13645	0
Nawroz	100	39105	0	39087	18
Naz	100	3000	0	3000	0
Nishtiman	100	14269	0	14269	0
Nwsaran	100	17700	0	17700	0
Peeshasazi bashur	100	1290	0	1290	0
Qalat	99	0	1	0	0

Table 4. 3 Accessibility results of community parks for 15 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Raparin	100	12096	0	12096	0
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\& pishasazi bashur	100	939	0	939	0
Safin1	100	3621	0	3621	0
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	24056	0
Salahaddin2	100	7057	0	7057	0
Sami abdulrahman	100	579	0	578	1
Sarbasti	100	25670	0	25666	4
Sarwaran	100	5542	0	5542	0
Saydawa	100	14360	0	14360	0
Setaqan	100	12809	0	12809	0
Shadi	100	17695	0	17670	25
Sharawani	100	5942	0	5942	0
Shorsh	100	15595	0	15595	0
Taajeel	100	3859	0	3847	12
Tayrawa	98	19159	2	18849	310
Twraq	100	5870	0	5870	0
Waziran	100	4700	0	4700	0
Zanayan	0	17670	100	0	17670
Zanko1	100	16777	0	16777	0
Zanko2	100	4519	0	4517	2
Zanyari	100	5470	0	5470	0
Zilan	100	3231	0	3231	0

Figure 4. 1 Community parks accessibility for 5, 10 and 15 minutes.

Table 4. 4 Accessibility results of district parks for 5 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Azadi1	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	99	16526	1	16392	134
Bahar	100	18753	0	18753	0
Bakhtyari1	33	6789	67	2260	4529
Bakhtyari2	0	17404	100	20	17384
Bazar	100	2659	0	2659	0
Betwatae nwe	100	3456	0	3456	0
Brayati	41	25865	59	10680	15185
Chinar	100	14717	0	14717	0
Chwarchra	6	28707	94	1800	26907
Drem city	4	8450	96	303	8147
Empire	21	0	79	0	0
English village	24	4350	76	1047	3303
Eskan	100	7936	0	7936	0
Gorstani bakur	7	300	93	22	278
Gulan	25	16157	75	4093	12064
Hamrin	100	11198	0	11198	0
Hana city	28	4567	72	1277	3290
Havalan	89	16930	11	15018	1912
Hawleri new	34	21896	66	7448	14448
Italian village	76	3570	24	2707	863
Karezan	88	24603	12	21570	3033
Khanaqa	100	6673	0	6673	0

Table 4.4. Accessibility results of district parks for 5 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Khanzad	4	19517	96	840	18677
Khebat	97	25424	3	24745	679
Komari	100	3893	0	3893	0
Kurdistan	100	35172	0	35172	0
Mahabad	100	11428	0	11428	0
Majidawa	100	2180	0	2180	0
Mamostayan1	96	13402	4	12848	554
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	100	6960	0	6944	16
Mstawfi	100	8147	0	8134	13
Mufti	100	13645	0	13645	0
Nawroz	85	39105	15	33353	5752
Nishtiman	100	14269	0	14266	3
Nwsaran	1	17700	99	200	17500
Peeshasazi bashur	51	1290	49	661	629
Qalat	97	0	3	0	0
Rastee	88	9863	12	8713	1150
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\& pishasazi bashur	0	939	100	3	936
Salahaddin1	13	24056	87	3208	20848
Sami abdulrahman	65	579	35	377	202
Sarbasti	7	25670	93	1704	23966
Sarwaran	26	5542	74	1448	4094
Saydawa	100	14360	0	14360	0

Table 4.4. Accessibility results of district parks for 5 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Setaqan	96	12809	4	12344	465
Shadi	40	17695	60	7031	10664
Sharawani	75	5942	25	4447	1495
Shorsh	5	15595	95	765	14830
Taajeel	98	3859	2	3792	67
Tayrawa	57	19159	43	10879	8280
Twraq	28	5870	72	1635	4235
Waziran	63	4700	37	2938	1762
Zanko1	100	17670	0	17586	84
Zanko2	89	16777	11	15013	1764
Zanyari	100	5470	0	5470	0
Zilan	93	3231	7	2993	2

Table 4. 5 Accessibility results of district parks for 10 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadi1	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	100	16526	0	16480	46
Bahar	100	18753	0	18753	0
Bahrka	48	17987	52	8575	9412
Bakhtyari1	98	6789	2	6677	112
Bakhtyari2	100	17404	0	17404	0
Bazar	100	2659	0	2659	0
Berkot	100	750	0	750	0
Betwatae new	100	3456	0	3456	0
Brayati	100	25865	0	25770	95
Chinar	100	14717	0	14717	0
Chwarchra	89	28707	11	25634	3073
Darstani bakur	46	0	54	0	0
Drem city	100	8450	0	8450	0
Empire	100	0	0	0	0
English village	100	4350	0	4350	0
Eskan	100	7936	0	7936	0
Ganjan city	88	4567	12	3999	568
Gorstani bakur	100	300	0	300	0
Gulan	100	16157	0	16104	53
Hamrin	100	11198	0	11198	0
Hana city	99	4567	1	4543	24

Table 4.5. Accessibility results of district parks for 10 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Havalan	100	16930	0	16930	0
Hawleri new	96	21896	4	21114	782
Italian village	99	3570	1	3531	39
Kani	100	23762	0	23762	0
Karezan	99	24603	1	24389	214
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	0
Komari	100	3893	0	3893	0
kurani aynkawa	100	14376	0	14376	0
Kurdistan	100	35172	0	35172	0
Kwestan	100	13502	0	13502	0
Mahabad	100	11428	0	11428	0
Majidawa	100	2180	0	2180	0
Mamostayan1	98	13402	2	13127	275
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	100	6960	0	6955	5
Mstawfi	100	8147	0	8147	0
Mufti	100	13645	0	13645	0
Nawroz	100	39105	0	39068	37
Naz	85	3000	15	2553	447
Nishtiman	100	14269	0	14269	0
Nwsaran	100	17700	0	17700	0
Peeshasazi bakur	100	1290	0	1290	0
Qalat	98	0	2	0	0

Table 4.5. Accessibility results of district parks for 10 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Raparin	100	12096	0	12096	0
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\& pishasazi bashur	99	939	1	934	5
Safin1	100	3621	0	3621	0
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	24056	0
Salahaddin2	85	7057	15	5971	1086
Sami abdulrahman	99	579	1	575	4
Sarbasti	100	25670	0	25661	9
Sarwaran	100	5542	0	5542	0
Saydawa	100	14360	0	14360	0
Setaqan	100	12809	0	12809	0
Shadi	100	17695	0	17667	28
Sharawani	100	5942	0	5942	0
Shorsh	100	15595	0	15595	0
Taajeel	99	3859	1	3823	36
Tayrawa	96	19159	4	18478	681
Twraq	100	5870	0	5870	0
Waziran	100	4700	0	4700	0
Zanayan	0	17670	100	0	17670
Zanko1	100	16777	0	16760	17
Zanko2	100	4519	0	4514	5
Zanyari	100	5470	0	5470	0
Zilan	100	3231	0	3231	0

Table 4. 6 Accessibility results of district parks for 15 minutes driving

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Ainkawa	100	0	0	0	0
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadi1	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	100	16526	0	16522	4
Bahar	100	18753	0	18753	0
Bahrka	100	17987	0	17987	0
Bakhtyaril	99	6789	1	6749	40 ふ
Bakhtyari2	100	17404	0	17404	0
Bazar	100	2659	0	2659	0
Berkot	100	750	0	750	0
Betwatae new	100	3456	0	3456	0
Brayati	100	25865	0	25832	33
Chinar	100	14717	0	14717	0
Chwarchra	100	28707	0	28707	0
Darstani bakur	100	0	0	0	0
Drem city	100	8450	0	8450	0
Empire	100	0	0	0	0
English village	100	4350	0	4350	0
Eskan	100	7936	0	7936	0
Ganjan city	100	4567	0	4567	0
Gorstani bakur	100	300	0	300	0
Gulan	100	16157	0	16138	19
Hamrin	100	11198	0	11198	0

Table 4.6. Accessibility results of district parks for 15 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Hana city	100	4567	0	4555	12
Havalan	100	16930	0	16930	0
Hawleri new	100	21896	0	21896	0
Italian village	100	3570	0	3556	14
Kani	100	23762	0	23762	0
Karezan	100	24603	0	24599	4
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	0
Komari	100	3893	0	3893	0
kurani aynkawa	100	14376	0	14376	0
Kurdistan	100	35172	0	35172	0
Kwestan	100	13502	0	13502	0
Mahabad	100	11428	0	11428	0
Majidawa	100	2180	0	2180	0
Mamostayan1	99	13402	1	13323	79
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	100	6960	0	6960	0
Mstawfi	100	8147	0	8147	0
Mufti	100	13645	0	13645	0
Nawroz	100	39105	0	39092	13
Naz	100	3000	0	3000	0
Nishtiman	100	14269	0	14269	0
Nwsaran	100	17700	0	17700	0
Peeshasazi bashur	100	1290	0	1290	0

Table 4.6. Accessibility results of district parks for 15 minutes driving (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Qalat	99	0	1	0	0
Raparin	100	12096	0	12096	0
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\& pishasazi bashur	100	939	0	939	0
Safin1	100	3621	0	3621	0
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	24056	0
Salahaddin2	100	7057	0	7057	0
Sami abdulrahman	100	579	0	578	1
Sarbasti	100	25670	0	25666	4
Sarwaran	100	5542	0	5542	0
Saydawa	100	14360	0	14360	0
Setaqan	100	12809	0	12809	0
Shadi	100	17695	0	17670	25
Sharawani	100	5942	0	5942	0
Shorsh	100	15595	0	15595	0
Taajeel	100	3859	0	3848	11
Tayrawa	98	19159	2	18825	334
Twraq	100	5870	0	5870	0
Waziran	100	4700	0	4700	0
Anayan	0	17670	100	0	17670
Zanko1	100	16777	0	16777	0
Zanko2	100	4519	0	4518	1
Zanyari	100	5470	0	5470	0
Zilan	100	3231	0	3231	0

Figure 4. 2 District parks accessibility for 5, 10 and 15 minutes.

Table 4.7 Accessibility results of neighborhood parks for 5 minutes walking

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	67	18376	33	12321	6055
Arab	22	115	78	26	89
Ari	72	17976	28	12856	5120
Azadi1	51	15127	49	7747	7380
Azadi2	37	4490	63	1640	2850
Badawa	18	16526	82	2971	13555
Bahar	28	18753	72	5202	13551
Bahrka	0	17987	100	50	17937
Bakhtyari1	79	6789	21	5388	1401
Bakhtyari2	5	17404	95	818	16586
Bazar	38	2659	62	1024	1635
Berkot	3	750	97	22	728
Brayati	74	25865	26	19097	6768
Chinar	49	14717	51	7193	7524
Chwarchra	23	28707	77	6517	22190
Darstani bakur	2	0	98	0	0
Drem city	9	8450	91	778	7672
Eskan	63	7936	37	5009	2927
Gorstani bakur	8	300	92	5487	275
Gulan	34	16157	66	4718	10670
Hamrin	42	11198	58	14999	6480
Havalan	89	16930	11	1141	1931
Hawleri new	5	21896	95	23762	20755
Kani	100	23762	0	715	0
Karezan	3	24603	97	1725	23888
Khanaqa	26	6673	74	4948	

Table 4.7. Accessibility results of neighborhood parks for 5 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Khanzad	73	19517	27	14199	5318
Khebat	73	25424	27	18571	6853
Komari	9	3893	91	356	3537
Kurdistan	16	35172	84	5575	29597
Kwestan	68	13502	32	9204	4298
Mahabad	54	11428	46	6157	5271
Majidawa	39	2180	61	854	1326
Mamostayan1	87	13402	13	11667	1735
Mamostayan2	63	9820	37	6234	3586
Mantikawa	74	8525	26	6294	2231
Minara	43	6960	57	3017	3943
Mstawfi	38	8147	62	3104	5043
Mufti	93	13645	7	12721	924
Nawroz	30	39105	70	11638	27467
Naz	1	3000	99	40	2960
Nishtiman	21	14269	79	3015	11254
Nwsaran	32	17700	68	5709	11991
Peeshasazi bashur	9	1290	91	111	1179
Qalat	5	0	95	0	0
Raparin	94	12096	6	11423	673
Rastee	83	9863	17	8191	1672
Runaki	91	4867	9	4414	453
Rzgari	56	30146	44	16936	13210
Safeen2\& pishasazi bakur	8	939	92	72	867
Safin3	91	1513	9	1372	141
Salahaddin1	56	24056	44	13353	10703
Sami abdulrahman	0	579	100	1	578

Table 4.7. Accessibility results of neighborhood parks for 5 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Sarbasti	7	25670	93	1875	23795
Sarwaran	81	5542	19	4474	1068
Saydawa	50	14360	50	7232	7128
Setaqan	73	12809	27	9386	
Shadi	31	17695	69	5515	3423
Sharawani	32	5942	68	1889	12180
Shorsh	89	15595	11	13876	4053
Taajeel	36	3859	64	1376	1719
Tayrawa	54	19159	46	10256	2483
Twraq	1	5870	99	63	8903
Waziran	54	4700	46	2535	5807
Zanko1	45	16777	55	7536	2165
Zanko2	17	4519	83	964	9241
Zanyari	43	5470	57	2345	3755

Table 4. 8 Accessibility results of neighborhood parks for 10 minutes walking

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	97	115	3	112	3
Ari	100	17976	0	17976	0
Azadi1	96	15127	4	44959	668
Azadi2	100	4490	0	13036	0
Badawa	79	16526	21	18307	3490
Bahar	98	18753	2	2033	446
Bahrka	11	17987	89	6557	15954
Bakhtyari1	97	6789	3	5402	232
Bakhtyari2	31	17404	69	2659	162
Bazar	100	2659	0	132	0
Berkot	22	750	78	25805	588
Betwatae new	4	3456	96	13580	14081
Brayati	100	25865	0	0	3324
Chinar	92	14717	8	3216	60
Chwarchra	49	28707	51	0	1137
Darstani bakur	8	0	92	7936	0
Drem city	38	8450	62	847	0
Empire	0	0	100	71	5234
Eskan	100	7936	0	0	0
Ganjan city	19	4567	81	0	
Gorstani bakur	24	300	76	12616	3720
Gulan	78	16157	22	11198	229
Hamrin	100	11198	0	16328	3541
Havalan	96	16930	4	3892	0
Hawleri new	18	21896	82		602

Table 4.8. Accessibility results of neighborhood parks for 10 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Italian village	3	3570	97	106	3464
Kani	100	23762	0	23762	0
Karezan	16	24603	84	3970	20633
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	0
Komari	95	3893	5	3693	200
Kurdistan	74	35172	26	25881	9291
Kwestan	97	13502	3	13075	427
Mahabad	100	11428	0	11428	$0 \times$
Majidawa	100	2180	0	2180	0
Mamostayan1	98	13402	2	13169	233
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	90	6960	10	6266	694
Mstawfi	95	8147	5	7712	435
Mufti	100	13645	0	13645	0
Nawroz	72	39105	28	28193	10912
Naz	10	3000	90	290	2710
Nishtiman	59	14269	41	8429	5840
Nwsaran	89	17700	11	15718	1982
Peeshasazi bashur	35	1290	65	448	842
Qalat	75	0	25	0	0
Raparin	100	12096	0	12096	0
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0

Table 4.8. Accessibility results of neighborhood parks for 10 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Rzgari	100	30146	0	30000	146
Safeen2\& pishasazi bakur	26	939	74	242	697
Safin1	30	3621	70	1098	2523
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	24010	46
Salahaddin2	4	7057	96	252	6805
Sami abdulrahman	13	579	87	74	505
Sarbasti	23	25670	77	5869	19801
Sarwaran	100	5542	0	5538	4
Saydawa	100	14360	0	14315	45
Setaqan	100	12809	0	12809	0
Shadi	79	17695	21	14011	3684
Sharawani	40	5942	60	2406	3536
Shorsh	99	15595	1	15504	91
Taajeel	99	3859	1	3805	54
Tayrawa	96	19159	4	18329	830
Twraq	10	5870	90	601	5269
Waziran	99	4700	1	4670	30
Zanko1	99	16777	1	16628	149
Zanko2	58	4519	42	2630	1889
Zanyari	93	5470	7	5081	389
Zilan	1	3231	99	28	3203

Table 4. 9 Accessibility results of neighborhood parks for 15 minutes walking

Name	\%Area covered	Population	$\%$ Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	100	17976	0	17976	0
Azadi1	100	15127	0	15127	0
Azadi2	100	4490	0	4490	0
Badawa	100	16526	0	16502	18753
Bahar	100	18753	0	4541	24
Bahrka	25	17987	75	6759	0
Bakhtyari1	100	6789	0	10819	13446
Bakhtyari2	62	17404	38	2659	30
Bazar	100	2659	0	524	6585
Berkot	70	750	30	659	0
Betwatae new	19	3456	81	25840	14717
Brayati	100	25865	0	20157	226
Chinar	100	14717	0	0	2797
Chwarchra	70	28707	30	6660	05
Darstani bakur	16	0	84	0	0
Drem city	79	8450	21	88	0550
Empire	12	0	88	7936	0
English village	2	4350	98	2816	1790
Eskan	100	7936	0	127	0
Ganjan city	62	4567	38	15841	4262
Gorstani bakur	42	300	58	0	1198
Gulan	98	16157	2	16702	1751
Hamrin	100	11198	0		316
Havalan	99	16930	1	0	0

Table 4.9. Accessibility results of neighborhood parks for 15 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Hawleri new	39	21896	61	8482	13414
Italian village	15	3570	85	553	3017
Kani	100	23762	0	23762	0
Karezan	41	24603	59	10201	14402
Khanaqa	100	6673	0	6673	0
Khanzad	100	19517	0	19517	0
Khebat	100	25424	0	25424	0
Komari	100	3893	0	3893	0
kurani aynkawa	20	14376	80	2873	11503
Kurdistan	99	35172	1	34877	$295 \sim$
Kwestan	100	13502	0	13502	0
Mahabad	100	11428	0	11428	0
Majidawa	100	2180	0	2180	0
Mamostayan1	99	13402	1	13333	69
Mamostayan2	100	9820	0	9820	0
Mantikawa	100	8525	0	8525	0
Minara	99	6960	1	6923	37
Mstawfi	100	8147	0	8147	0
Mufti	100	13645	0	13645	0
Nawroz	94	39105	6	36835	2270
Naz	27	3000	73	808	2192
Nishtiman	86	14269	14	12203	2066
Nwsaran	100	17700	0	17700	0
Peeshasazi bashur	67	1290	33	862	428
Qalat	99	0	1	0	0
Raparin	100	12096	0	12096	0

Table 4.9. Accessibility results of neighborhood parks for 15 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Rastee	100	9863	0	9863	0
Runaki	100	4867	0	4867	0
Rzgari	100	30146	0	30146	0
Safeen2\& pishasazi bashur	53	939	47	501	438
Safin1	100	3621	0	3621	0
Safin3	100	1513	0	1513	0
Salahaddin1	100	24056	0	24056	0
Salahaddin2	38	7057	62	2648	4409
Sami abdulrahman	46	579	54	268	311∞
Sarbasti	37	25670	63	9545	16125∞
Sarwaran	100	5542	0	5542	0
Saydawa	100	14360	0	14354	6
Setaqan	100	12809	0	12809	0
Shadi	96	17695	4	16958	737
Sharawani	52	5942	48	3069	2873
Shorsh	100	15595	0	15575	20
Taajeel	100	3859	0	3842	17
Tayrawa	98	19159	2	18791	368
Twraq	31	5870	69	1824	4046
Waziran	100	4700	0	4700	0
Zanko1	100	16777	0	16777	0
Zanko2	78	4519	22	3544	975
Zanyari	100	5470	0	5470	0
Zilan	6	3231	94	187	3044

Figure 4. 3 Accessibility of neighborhood parks for 5, 10 and 15 minutes.

Table 4. 10 Accessibility results of mini parks for 5 minutes walking

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	49	18376	51	9034	9342
Arab	76	115	24	88	
Ari	22	17976	78	3942	27
Azadi1	8	15127	92	1144	14034
Azadi2	17	4490	83	783	13983
Bahar	20	18753	80	3707	
Bakhtyari1	8	6789	92	541	14942
Bakhtyari2	0	17404	100	21	6248
Bazar	1	2659	99	23	17383
Berkot	3	750	97	2636	
Brayati	12	25865	88	727	
Chinar	0	14717	100	3093	11
Chwarchra	1	28707	99	387	1472
English village	3	4350	97	142	28320
Eskan	68	7936	32	5383	4208
Gorstani bakur	1	300	99	2553	
Gulan	23	16157	77	3684	102
Hamrin	1	11198	99	1680	12473
Havalan	10	16930	90	122	11096
Italian village	3	3570	97	19250	
Kani	8	23762	92	3498	
Khanaqa	8	6673	92	21813	
Khanzad	12	19517	88	6143	
Khebat	10	25424	90	17269	
Komari	34	3893	66	2248	22846
Kurdistan	48	35172	52	2578	1321

Table 4.10. Accessibility results of mini parks for 5 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Kwestan	18	13502	82	2386	11116
Mahabad	36	11428	64	4095	7333
Mamostayan1	72	13402	28	9708	3694
Mamostayan2	37	9820	63	3600	6220
Mantikawa	44	8525	56	3789	4736
Minara	39	6960	61	2726	4234
Mstawfi	50	8147	50	4050	4097
Mufti	38	13645	62	5200	8445
Nawroz	19	39105	81	7478	31627
Nishtiman	4	14269	96	600	13669
Qalat	4	0	96	0	0
Raparin	44	12096	56	5337	6759
Runaki	9	4867	91	418	4449
Rzgari	14	30146	86	4159	25987
Safeen2\& pishasazi bakur	2	939	98	19	920
Salahaddin1	0	24056	100	3	24053
Sarbasti	11	25670	89	2946	22724
Sarwaran	15	5542	85	857	4685
Saydawa	3	14360	97	378	13982
Setaqan	52	12809	48	6720	6089
Shorsh	38	15595	62	5893	9702
Taajeel	21	3859	79	830	3029
Tayrawa	33	19159	67	6356	12803
Zanko1	17	16777	83	2823	13954
Zanko2	11	4519	89	504	4015
Zanyari	59	5470	41	3214	2256

Table 4. 11 Accessibility results of mini parks for 10 minutes walking

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18376	0	18376	0
Arab	100	115	0	115	0
Ari	77	17976	23	13847	4129
Azadi1	34	15127	66	5168	9959
Azadi2	89	4490	11	3996	494
Badawa	36	16526	64	5890	10636
Bahar	60	18753	40	11223	7530
Bahrka	0	17987	100	0	17987
Bakhtyari1	48	6789	52	3258	3531
Bakhtyari2	0	17404	100	84	17320
Bazar	100	2659	0	2659	0
Berkot	34	750	66	251	499
Betwatae new	3	3456	97	87	3369
Brayati	60	25865	40	15615	10250
Chinar	15	14717	85	2208	12509
Chwarchra	8	28707	92	2271	26436
Darstani bakur	0	0	100	0	0
English village	15	4350	85	667	3683
Eskan	100	7936	0	7936	0
Gorstani bakur	15	300	85	44	256
Gulan	63	16157	37	10225	5932
Hamrin	23	11198	77	2533	8665
Havalan	43	16930	57	7350	9580
Italian village	23	3570	77	835	2735
Kani	70	23762	30	16654	173
Karezan	1	24603	99	24430	

Table 4.11. Accessibility results of mini parks for 10 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Khanaqa	56	6673	44	3719	2954
Khanzad	73	19517	27	14314	5203
Khebat	47	25424	53	12063	13361
Komari	100	3893	0	3893	0
Kurdistan	97	35172	3	34068	1104
Kwestan	73	13502	27	9831	3671
Mahabad	91	11428	9	10398	1030
Mamostayan1	98	13402	2	13163	239
Mamostayan2	95	9820	5	9367	453
Mantikawa	99	8525	1	8478	47
Minara	88	6960	12	6153	807
Mstawfi	94	8147	6	7675	472
Mufti	99	13645	1	13527	118
Nawroz	53	39105	47	20764	18341
Nishtiman	48	14269	52	6872	7397
Nwsaran	1	17700	99	139	17561
Qalat	28	0	72	0	0
Raparin	95	12096	5	11477	619
Rastee	10	9863	90	1006	8857
Runaki	64	4867	36	3110	1757
Rzgari	77	30146	23	23272	6874
Safeen2\& pishasazi bakur	13	939	87	125	814
Safin1	8	3621	92	283	3338
Salahaddin1	25	24056	75	6000	18056
Salahaddin2	7	7057	93	484	6573
Sarbasti	35	25670	65	8992	16678

Table 4.11. Accessibility results of mini parks for 10 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Sarwaran	89	5542	11	4911	631
Saydawa	62	14360	38	8927	5433
Setaqan	98	12809	2	12514	295
Shadi	2	17695	98	435	17260
Shorsh	98	15595	2	15345	250
Taajeel	88	3859	12	3384	475
Tayrawa	78	19159	22	14936	4223
Twraq	3	5870	97	173	5697
Waziran	2	4700	98	9726	4599
Zanko1	58	16777	42	1139	7051
Zanko2	25	4519	75	5402	3380
Zanyari	99	5470	1	19	68
Zilan	1	3231	99		

Table 4. 12 Accessibility results of mini parks for 15 minutes walking

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Andazyaran	100	18,376	0	18,376	0
Arab	100	115	0	115	0
Ari	100	17,976	0	17,976	0
Azadi1	65	15,127	35	9,770	5,357
Azadi2	100	4,490	0	4,490	0
Badawa	90	16,526	10	14,838	1,688
Bahar	95	18,753	5	17,859	894
Bahrka	2	17,987	98	419	17,568
Bakhtyari1	87	6,789	13	5,928	861
Bakhtyari2	5	17,404	95	954	16,450 i
Bazar	100	2,659	0	2,659	0
Berkot	73	750	27	550	200
Betwatae new	15	3,456	85	526	2,930
Brayati	97	25,865	3	25,000	865
Chinar	61	14,717	39	8,975	5,742
Chwarchra	25	28,707	75	7,192	21,515
Darstani bakur	3	0	97	0	0
Drem city	5	8,450	95	459	7,991
Empire	4	0	96	0	0
English village	30	4,350	70	1,308	3,042
Eskan	100	7,936	0	7,936	0
Gorstani bakur	32	300	68	95	205
Gulan	94	16,157	6	15,201	956
Hamrin	61	11,198	39	6,854	4,344
Havalan	94	16,930	6	15,872	1,058
Hawleri new	0	21,896	100	3	21,893

Table 4.12. Accessibility results of mini parks for 15 minutes walking (continued)

Name	\%Area covered	Population	\%Area not covered	People get service	People not get service
Italian village	54	3,570	46	1,913	1,657
Kani	100	23,762	0	23,762	0
Karezan	6	24,603	94	1,530	23,073
Khanaqa	100	6,673	0	6,673	0
Khanzad	100	19,517	0	19,517	0
Khebat	90	25,424	10	22,959	2,465
Komari	100	3,893	0	3,893	0
Kurdistan	100	35,172	0	35,172	0
Kwestan	100	13,502	0	13,501	11,428
Mahabad	100	11,428	0	13,332	9,820
Mamostayan1	99	13,402	1	8,525	0
Mamostayan2	100	9,820	0	6,930	70
Mantikawa	100	8,525	0	8,147	0
Minara	100	6,960	0	1,645	0
Mstawfi	100	8,147	0	31,066	30
Mufti	100	13,645	0	11,781	0
Nawroz	79	39,105	21	3,136	0
Nishtiman	83	14,269	17	0	8,039
Nwsaran	18	17,700	82	12,096	2,488
Qalat	89	0	11	5,789	0
Raparin	100	12,096	0	4,564	
Rastee	59	9,863	41	0	
Runaki	100	4,867	0	0,147	0
Rzgari	100	0,146	0	264	4,074
Safeen2\& pishasazi bashur	28	939	72	3,621	0
Safin1	100	3,621	0		0

Table 4.12. Accessibility results of mini parks for 15 minutes walking (continued)

Name	\%Area covered	Population	$\%$ Area not covered	People get service	People not get service
Salahaddin1	80	24,056	20	19,311	4,745
Salahaddin2	25	7,057	75	1,756	5,301
Sami abdulrahman	5	579	95	28	551
Sarbasti	60	25,670	40	15,386	10,284
Sarwaran	100	5,542	0	5,528	14
Saydawa	98	14,360	2	14,141	219
Setaqan	100	12,809	0	12,809	0
Shadi	12	17,695	88	2,041	15,654
Shorsh	100	15,595	0	15,595	0
Taajeel	99	3,859	1	3,839	20
Tayrawa	98	19,159	2	18,703	952
Twraq	16	5,870	84	1,749	456
Waziran	37	4,700	63	14,584	4,918
Zanko1	87	16,777	13	1,936	2,951
Zanko2	43	4,519	57	5,470	2,193
Zanyari	100	5,470	0	2,583	0
Zilan	5	3,231	95	3,054	

Figure 4.4 Accessibility to Mini parks for 5, 10 and 15 minutes.

5. DISCUSSION AND CONCLUSION

The goal of this study in the Erbil city in Iraq is to determine the general status of public green areas and measuring the accessibility of green areas in the Erbil city, the cost of time access to the green areas and compare the city's public green spaces access with international standards, and to know which places of city need new parks.

There are many green areas in Erbil city distributed around the city which classified in in to active and passive according to their daily using by people this study focused only on the active types because they represent the most important part of the public green spaces in the metropolitan area in other hand roads classified in to four groups according to speed limitation.

There is no known work about accessibility of green area in order to evaluate general situation of Erbil city public green areas. The study that carried out in this context is the first known study in the sense of accessibility of public green areas in the Erbil city.

Network analysts tool within environmental GIS were used to determine time cost access to public green areas, green areas divided in to two groups small parks and large parks small parks include Neighborhood parks and Mini parks counted time cost for walking $300 \mathrm{~m}, 600 \mathrm{~m}$ and 900 m means 5 minutes, 10 minutes and 15 minutes, results for Neighborhood parks access show $\% 43$ of population have access, for 10 minutes \%71of population have accessibility and for 15 minutes walking $\% 80$ of population have accessibility. Access to Mini parks for 5minutes walking \%22 of population have services, for 10 minutes walking $\% 52$ of residents have access and for 15 miutes walking there is $\% 70$ of populations has access to Mini parks. And access to large parks Community parks and District parks counted for 5minutes, 10minutes and 15 minutes driving, community parks with 5 minutes driving $\% 68$ of population have access, for 10 minutes driving $\% 99$ of residents have access and for 15 minutes driving $\% 100$ of population have access to Community parks. Network analysts counted for District parks with 5 minutes with driving $\% 70$ of residents have access, for 10 minutes driving \%96 of population have access and for 15minutes driving \%100 of residents of Erbil city have access to District parks.

A United Kingdom provides a set of regulations called accessible natural green space standards to control the provision of and access to green areas. Everyone should have access to neighborhood parks and mini parks with 300 m or 5 minutes walking. Everyone should have access to District parks with 2000m. Everyone should have access to District parks with 5000 m . This standard not suitable for all cities in Iraq because there are no green areas as in United Kingdom and some of green areas not accessible, in USA each city has its special regulations and standards 400 m distance that residents are desire to walk to reach a public green area, (Kuta et al., 2014) studied urban green area accessibility for different socio-economic groups in the UK as well and they found that socio-economically deprived group lack access to green space within 300 m from the residence but in Erbil city most of population didn't have access within 300 m to green areas. (Sotoudehnia and Comber, 2011) studied perceived and physical accessibility to urban green areas in the UK, and they explained that only 15% of the Leicester's population meets the physical access up to 300 m if we compare the results we can find that the Erbil city has higher range of accessibility than Leicester city. (Eom et al., 2008 and Eom and Lee, 2009) explained that spaces within a linear distance of 700 m from green areas composed 98.6% of the all areas city of Seoul, and so the provision of open green areas was judged to get more than adequate but this ratio of accessibility compare with erbil city is very high therefore Erbil city need more new green areas to raise the ratio of accessibility. (Boone et al., 2009) found that more African Americans in Baltimore, Maryland have access to green areas within 400 meters walking distance while White people have access to more green spaces in less than 400 meters' distance, given the results of this study, we can see that there are no such problems among the society in Erbil. a research in Helsinki city capital of Finland found that inhabitants living close less than 500 m visited the green areas more frequently more than 4 times per week (Neuvonen et al., 2007). (Etzioni, 1998) also explained that public green areas must be at the neighborhoods center and not more than 5 minutes' walk for residents but in the case of Erbil city access to Mini parks for 5minutes walking $\% 22$ of population have services, for neighborhood parks $\% 43$ of population of Erbil city have accessibility and for big parks such as community parks with 5minute driving there are accessibility for $\% 70$ of population, for District park \%68 of population have accessibility.

There is no standard for Erbil city, in this study small parks like Mini parks and Neighborhood parks should be in a distance which accessible in a 5minute walking. Other green areas like community and district parks should be in a distance which accessible in 5, 10 and 15 minutes driving. This time costs are defined by using international standards and literatures.

There are many obstacles to this study, including the difficulty of obtaining data sets from government agencies because of Security concerns they couldn't give data sets easily. And all data sets are primary data manually generated to use in this study, there is a problem of data projection by using reference points we convert the position of the Auto CAD data to the correct UTM position.

Data is ready to for other studies, other urban facilities like Hospitals, schools and other government services could be conducted by using this infrastructures data.

About the future directions that kind of study should conduct for other critical urban facilities, services like health, firefighting, police station, and average speeds for this accessibility analysis real time speed data can improve the accuracy of the results.

That kind of study is not static changes on green areas quality and quantities and although changes about road networks could update or differentiate the accessibility results, so the data used for the analysis should be updated in the future studies.

REFERENCE

Abdullahi, K., Odumosu, J., Ajayi, O., Zitta, N., Samail-Ija, H., Adesina, E., 2014. Using a gis-based network analysis to determine urban greenspace accessibility for different socio-economic groups, specifically related to deprivation in leicester, UK. Civil and Environmental Research, 6(9): 12-20.
ABS., 2000. Participation in Sport and Physical Activities. Australian bureau of statistics, Canberra.
Ann, T. M., 1991. A study on the method of measuring accessibility to urban open spaces. Landscape Architect, 18(4): 17-28.
Atefeh, G., Ghanbari, M., 2013. Assessing spatial distribution of tabriz parks by GIS (Compared network analysis and buffering). Geography and Environmental Planning Journal, 50(2): 57-60.
Atiqul, Haq., Shah, M. d., 2011. Urban green spaces and an integrative approach to sustainable environment, Journal of Environmental Protection, 2: 601-608. doi:10.4236/iep.2011.25069 (http://www.scirp.org/iournal/iep).
Baycan-Levent, T., Eveline, L., Caroline, R., Peter, N., 2002. Development and Management of Green Spaces in European Cities: A Comparative Analysis. Paper presented at the 38th international planning congress on the pulsar effect planning with peaks, glifada, athens, Greece.
Bedimo-Rung, A. L., Mowen, A. J., Cohen, D. A., 2005 The significance of parks to physical activity and public health. American Journal of Preventive Medicine, 28(2): 159-168.
Bennet, Scott, Nikolaos Yiannakoulias, Allison Williams, and Peter Kitchen. 2012. Playground accessibility and neighbourhood social interaction among parents. Social Indicators Research, 108: 199-213.
Bolin, B., Sara, G., Timothy, C., 2005. The geography of despair: environmental racism and the making of south phoenix, Arizona, USA. Human Ecology Review 12(2): 156-168.
Boone, C., Geoffrey B., Morgan G., Chona, S., 2009. Parks and people: An environmental justice inquiry in baltimore, Maryland. Annals of The Association of American Geographers, 99(4): 767-787.
Boone, C., Geoffrey, B., Morgan, G., Chona, S., 2009. Parks and people: An environmental justice inquiry in baltimore, Maryland. Annals of The Association of American Geographers, 99(4): 767-787.
Brook, I., 2010. The importance of nature, green spaces, and gardens in human wellbeing. ethics, Place and Environment, 13(3): 295-312.
Burns, L. D., 1979.'Transportation, temporal and spatial components of accessibility. Transportation Research Part A: General, 14(3): 223-224.
Burns, L. D., Golob, T. F., 1976. The role of accessibility in basic transportation choice behavior. Transportation, 5(2): 175-198.
Cervero, R., Landis, J., 1997. Twenty years of the bay area rapid transit system: Land use and development impacts. Transportation Research Part A: Policy and Practice, 31(4 PART A): 309-333.

Cho, C. M., 2003. Study on Effects of Resident-Perceived Neighborhood Boundaries on Public Services Accessibility and Its Relation To Utilization: Using Geographic Information System. Doctor dissertation, Texas A and M university, Texas.
Chona, S., Wolch, J., Wilson, J., 2010. Got green? addressing environmental justice in park provision. Geo Journal, 75(3): 229-248.
Comber, A., Chris, B., Edmund, G.. 2008. Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups. Landscape and Urban Planning, 86: 103-114.
Coombes, E., Jones, A. P., Hillsdon, M., 2010. The relationship of physical activity and overweight to objectively measured green space accessibility and use. Social Science and Medicine, 70(6): 816-822.
Coutts, C., Mark, H., Timothy, C., 2010. Using GIS to model the effects of green space accessibility on mortality in Florida. Geocarto International, 25(6): 471
Coutts, C., Timothy, C., Mark, H., Crystal, T., 2013. County-level effects of green space access on physical activity. Journal of Physical Activity and Health, 10(2): 232-240.
Czerniak, J., 2007. Large Parks. Princeton Architectual Press, New York.
Dai, D., 2011. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landscape and Urban Planning, 102(4): 234-244.
Dalvi, M. Q., Martin, K. M., 1976. The measurement of accessibility: Some preliminary results. Transportation, 5(1): 17-42.
Das, D., Honiball, J., 2016. Evaluation of accessibility challenges of public parks in residential areas of south african cities-a case study of bloemfontein city. 35TH Annual Southern African Transport Conference.
Dawkins, C. J., Shen, Q., Sanchez, T. W., 2005. Race, space, and unemployment duration. Journal of Urban Economics, 58(1): 91-113.
Deshpande, A. D., Baker, E. A., Lovegreen, S. L., Brownson, R. C., 2005. Environmental correlates of physical activity among individuals with diabetes in the rural Midwest, Diabetes Care, 28: 1012-1018.
Dong, X., Ben-Akiva, M. E., Bowman, J. L., Walker, J. L., 2006. Moving from tripbased to activity-based measures of accessibility. Transportation Research Part A: Policy and Practice, 40(2): 163-180.
Edward, J., 1996. Geography of Transportation. Prentice hall press, new jersey.
El-Geneidy, A., Levinson, D., 2006. Access to Destinations: Development of Accessibility Measures. 2006. Minnesota department of transportation: Minnesota, 124.
Elkin, T., McLaren, D., Hillman, M., 1991. Reviving The City: Towards Sustainable Urban Development. Friends of the earth, in association with policy studies institute, London.
Eom, S., Cho, C., Choi, Y., 2008. The study of estimating total greenspace on the seoul metropolitan by the location-allocation model. The Korea Spatial Planning Review, 56(3): 61-78.
Eom, S., Lee, S., 2009. Application of The Urban Green Assessment Model For The Korean Newtowns. International conference on computational science and its applications, Seoul.

Etzioni, A., 1998. The Essential Communitarian Reader, Rowman and littlefield, Lanham.
Ewing, R., 1993. Transportation service standards as if people matter. Transportation Research Record, 1400(10): 10-17.
Frumkin, H., 2003. 'Healthy places: Exploring the evidence. American Journal of Public Health, l(9): 1451-1456.
Geurs, K. T., Ritsema, J. R., 2003. Evaluation of accessibility impacts of land-use scenarios: The implications of job competition, land-use, and infrastructure developments for the Netherlands. Environment and Planning B: Planning and Design, 30(1): 69-87.
Geurs, K. T., Van, W. B., 2004. Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2): 127-140.
Givoni, B., 1991. Impact of planted areas on urban environmental quality: A review. Atmospheric Environment - Part B Urban Atmosphere, 25(3): 289-299.
Gobster, P. H., 1995. Perception and Use of A Metropolitan Greenway System For Recreation. University of Massachusetts, Boston.
Guy, C. M., 1983. The assessment of access to local shopping opportunities: a comparison of accessibility measures (Reading, UK). Environment and Planning B, 10(2): 219-237.
Hamed, M. K., Mannering, F., 1993. Modelling travellers post-work activity involvement: toward a new methodology. Transportation Science, 27(4): 381394.

Hamed, M. M., Easa, S. M., 1998. Integrated modeling of urban shopping activities. Journal of Urban Planning and Development, 124(3): 115-131.
Hammer, T., Coughlin, R., 1974. The effect of a large urban park on real estate value. Journal of the American Institute of Planners, 40(9): 274-277.
Handy, S. L., Niemeier, D. A., 1997. Measuring accessibility: An exploration of issues and alternatives. Environment and Planning A, 29(7): 1175-1194.
Handy, S., 1993. Regional versus local accessibility implications for non-work travel. Transportation Research Record, 1400(1993): 58-66.
Handy, S., 2002. Accessibility vs Mobility-Enhancing Strategies For Addressing Automobile Dependence in The Us. European conference of ministers of transport, Europe.
Hansen, W. G., 1959. How accessibility shapes land use. Journal of the American Institute of Planners, 25(2): 73-76.
Haq, S., 2011. Urban green spaces and an integrative approach to sustainable environment. Journal of Environmental Prote ction, 2(5): 601-608.
Henderson, H., Wall, G., 1979 Accessibility to Urban Open Space. University of waterloo press, Ontario, Canada.
Herzele, V., Wiedeman, T., 2003. A monitoring tool for the provision for accessible and attractive green spaces, Landscape and Urban Planning, 63(2): 109-126. doi:10.1016/S0169-2046(02)00192-5.
Hirokawa, K. H., 2011. Sustainability and the urban forest: An ecosystem services perspectiv. Natural Resources Journal, 51(2): 233-259.
Hodgart, R. L., 1978. Optimizing access to public services: A review of problems, models and methods of locating central facilities. Progress in Human Geography, 2(1): 17-48.

Huisman, O., 2005. A Conceptual and Operational Definition of Accessibility: Report for Objective 3 Milestone 2- Reduced CO2 from Sustainable Household Travel. On: Centre for Social and Health Outcomes Research and Evaluation (SHORE) and Te Ropu Whariki, Massey university, Auckland.
Humphreys, J. S., 1988. Social provision and service delivery: problems of equity, health, and health care in rural Australia. Geoforum, 19(3): 323-338.
Ikporukpo, C. O., 1987. An analysis of the accessibility of public facilities in Nigeria. Socio-Economic Planning Sciences, 21(1): 61-69.
Inani, A. D., Abdul, K. H., 2012. Implications of walkability towards promoting sustainable urban neighbourhood. Procedia - Social and Behavioral Sciences, 50(1): 204-213.
Ingram, D. R., 1971. The concept of accessibility: A search for an operational form. Regional Studies, 5(2): 101-107.
Jamie, P., Witten, K., Bartie, P., 2006. Neighbourhoods and health: a GIS approach to measuring community resource accessibility. Journal of Epidemiology and Community Health, 60(5): 389-395.
Jennifer, W., Wilson, J., Fehrenbach, J., 2005. Parks and Park Funding in Los Angeles: An Equity Mapping Analysis. Los Angeles: GIS Research laboratory university of southern California.
Jun, H. Y., Li, P., Wu, Z., 2012. A Brief Analysis of Planning Approaches To The Reduction of Urban Carbon Emissions. International conference on civil, architectural and hydraulic engineering, Zhangjiajie, China.
Kaczynski, A. T., Potwarka, L. R., Saelens, B. E., 2008. Association of park size, distance, and features with physical activity in neighborhood parks, American Journal of Public Health, 98: 1451-1456.
Kemec, S., A. O., Ok, E., Kamacı., 2015. The Effects of October 23 and November 9, 2011 Earthquakes on Spatial Transformation of the Van City, Geodinamica Acta.
Knetsch, J., 1964. The influence of reservoir projects on land values. J Farm Economic Geography, 43(6): 231-243.
Koenig, J. G., 1980. Indicators of urban accessibility: Theory and application. Transportation, 9(2): 145-172.
Kwan, M. P., 1998. Space-time and integral measures of individual accessibility: a comparative analysis using a point-based framework. Geographical Analysis, 30(3): 191-216.
Landau, U., Prashker, J. N., Alpern, B., 1982. Evaluation of activity constrained choice sets to shopping destination choice modelling. Transportation Research Part A: General, 16(3): 199-207.
Lee, A. C. K., Maheswaran, R., 2011. The health benefits of urban green spaces: A review of the evidence. Journal of Public Health, 33(2): 212-222.
Lee, T., 1968. Urban neighborhood as a socio-spatial schema. Human Relationships, 21(3): 241-267.
Lindsey, G., Maraj, M., Kuan, S., 2001. Access, equity and urban greenways: An exploratory investigation. Professional Geographer, 53(3): 332-346.
Linneker, B. J., Spence, N. A., 1992. An accessibility analysis of the impact of the M25 London orbital motorway on Britain. Regional Studies, 26(1): 31-47.
Litman, T., 2003. Measuring transportation traffic, mobility and accessibility. Institute of Transportation Engineers, 73(10): 28-32.

Lotfi, S., Koohsari, M. J., 2009. Analyzing accessibility dimension of urban quality of life: Where urban designers face duality between subjective and objective reading of place. Social Indicators Research, 94(3): 417-435.
Lovett, A., Haynes, R., Sünnenberg, G., Gale, S., 2002. Car travel time and accessibility by bus to general practitioner services: A study using patient registers and GIS. Social Science and Medicine, 55(1): 97-111.
Lucy, W., 1981. Equity and planning for local services. Journal of American Planning Association, 47(4): 447-457.
Makri, M. C., Folkesson, C., 1999. Accessibility Measures for Analyses of Land Use and Travelling With Geographical Information Systems. Department of technology and society, lund institute of technology, lund university and department of spatial planning, university of karlskrona/ronneby, Sweden.
Marsh, T., Schilling, D. A., 1994. Equity measurement in facility location analysis: A review and framework. European Journal of Operational Research, 74(1): 117.

Martin, D., 1998. Automatic neighborhood identification from population surfaces. Computer, Environment and Urban Systems, 22(2): 107-120.
Massey, R., 2004. Environmental Justice: Income, Race, and Health. Medford: global development end environment institute, Tufts university.
Miller, H. J., 1991. Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems, 5(3): 287-301.
Morris, J. M., Dumble, P. L., Wigan, M. R., 1979. Accessibility indicators for transport planning. Transportation Research Part A: General, 13(2): 91-109.
Moseley, D., Marzano, M., Chetcuti, J., Watts, K., 2013. Green networks for people: Application of a functional approach to support the planning and management of greenspace. Landscape and Urban Planning, 116: 1-12.
Muraco, W. A., 1971. Transport Accessibility as A Contemporary Factor of Industrial Location: A Comparative Analysis of The Indianapolis and Columbus Standard Metropolitan Statistical Areas. Compilation Dissertation, Ohio state university, Ohio.
Neuvonen, M., Sievanen, T., Susan T., Terhi, K., 2007. Access to green areas and the frequency of visits: a case study in helsinki, Elsevier: Urban Forestry and Urban Greening, 6(4): 235-247.
Nicholls, S., Shafer, C. S., 1999. Measuring The Accessibility and Equity of Public Parks: A Case Study Using Gis. Thesis. Texas A and M university, Texas.
Oh, K., Jeong, S., 2007. Assessing the spatial distribution of urban parks using GIS. Landscape and Urban Planning, 82(1-2): 25-32.
Ottsmann, R., 1994. Evaluating equity in service delivery in library branches. Journal of Urban Affairs, 16(2): 109-123.
Owen, N., Cerin, E., Leslie, E., 2007. Neighborhood walkability and the walking behavior of australian adults. American Journal of Preventive Medicine, 33(5): 387-395.
Oxford., 2002. 'The Oxford English Dictionary. Oxford university press, London.
Pacione, M., 1982. Neighborhoods and public service boundaries in the city: \boldsymbol{A} Geographical Analysis. Geoforum, 13(3): 237-244.

Pahl, R., 1971. Poverty and The Urban System. In Spatial Policy Problems of The British Economy, Edited by M. Chrisholm and G. Manners., London: Cambridge university press.
Pasaogullari, N., 2004. Measuring accessibility and utilization of public spaces in famagusta cities. GEO Graph, 21(3): 225-232.
Payne, L., Orsega-Smith, E., Roy, M., Godbey, G., 2005. Local park use and personal health among older adults: an exploratory study, Journal of Park and Recreation Administration, 23: 1-20.
Pickett, S., 2004. Resilient cities: meaning, models, and metaphor for integrating the ecological, socio-economic, and planning realm. Landscape and Urban Planning, 69(4): 369-384.
Pinch, S., 1985. Cities and Services. Routledge kegan paul publishers, London.
Pirie, G. H., 1979. Measuring accessibility: A review and proposal. Environment and Planning A, 11(3): 299-312.
Potwarka, L. R., Kaczynski, A. T., Flack, A. L., 2008. Places to play: association of park space and facilities with healthy weight status among children, Journal of Community Health, 33: 344-350.
Richardson, A. J., Young, W., 1982. A measure of linked- trip accessibility. Transportation Planning and Technology, 7(2): 73-82.
Rowntree, R. A., 1988. Ecology of urban forest - part III. Values. Urban Ecology, 15(1-2): 1-10.
Sallis, J. F., Frank, L. D., Saelens, B. E., Kraft, M. K., 2004. Active transportation and physical activity: opportunities for collaboration on transportation and public health research, Transportation Research Part A: Policy and Practice, 38(4): 249-268. doi:10.1016/j.tra.2003.11.003.
Sara, G., Bolin, B., Boone, C., 2007. Criteria air pollution and marginalized populations: Environmental inequity in metropolitan phoenix, Arizona. Social Science Quarterly, 88: 535-554.
Sayin, H., Aydin, E., Kemec, S., 2017. Determination of Public Transportation Accessibility Level for Van Metropolitan Area, International symposium on GIS applications in geography and geosciences, Çanakkale, Türkiye.
SGV., 2008. Melbourne 2030: Planning Update-Melbourne @ 5 Million. State government of victoria, Melbourne.
Shen, Q., 1998. Spatial technologies, accessibility, and the social construction of urban space. Computers, Environment and Urban Systems, 22(5): 447-464.
Song, S., 1996. Some tests of alternative accessibility measures: A population density approach. Land Economics, 72(4): 474-482.
Steadman, P., 2004. Guest editorial: Developments in space syntax. Environment and Planning B: Planning and Design, 31: 483-486.
Sugiyama, T., Leslie, E., Giles-Corti, B., Owen, N., 2008. Associations of neighbourhood greenness with physical and mental health: do walking, social coherence and local social interaction explain the relationships?, Journal of Epidemiology and Community Health, 62-69.
Sun, R., Chen, A., Li, F., Wang, D., Xu, Z., Chen, L., 2013. Guidelines and evaluation indicators of urban ecological landscape construction. Acta Ecologica Sinica, 33(8): 2322-2329.

Takano, T., Nakamura, K., Watanabe, M., 2002. Urban residential environments and senior citizens' longevity in megacity areas: the importance of walkable green spaces. Journal of Epidemiology and Community Health, 56(12): 913-918.
Talen, E., 1998. 'Visualizing fairness: Equity maps for planners. Journal of the American Planning Association, 64(1): 22-38.
Talen, E., Anselin, L., 1998. Assessing spatial equity: An evaluation of measures of accessibility to public playgrounds. Environment and Planning A, 30(4): 595613.

Tannier, C., Vuidel, G., Houot, H., Frankhauser, P., 2012. Spatial accessibility to amenities in fractal and nonfractal urban patterns. Environment and Planning B: Planning and Design, 39(5): 801-819.
Tannier, C., Vuidel, G., Houot, H., Frankhauser, P., 2012. Spatial accessibility to amenities in fractal and nonfractal urban patterns. Environment and Planning B: Planning and Design, 39(5): 801-819.
Tzoulas, K., 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: a literature review. Landscape and Urban Planning, 81: 167178.

Vázquez, M., 2011. Cuántos metros cuadrados de área verde por habitante tenemos en ColimaZ,[Online]availableathttp://imaginacolima.blogspot.ro/2011/03/cuantos metros- cuadrados-de-area-verde.html.
VDSE., 2002. Melbourne 2030 Planning For Sustainable Growth. Victorian department of sustainability and environment.
Villoria, G., 1989. An Operational Measure of Individual Accessibility for Use in the Study of Travel-Activity Patterns. Ph.D. Dissertation, graduate school of the Ohio state university, Columbus, Ohio.
Watmough, G. R., Atkinson, P. M., Hutton, C. W., 2013. Exploring the links between census and environment using remotely sensed satellite sensor imagery. Journal of Land Use Science, 8(3): 284-303.
White, M., 1987. American Neighborhoods and Residential Differentiation. Russell sage foundation, New York.
Wicks, B. E., Crompton, J. L., 1986. Citizen and administrator perspective of equity in the delivery of park services. Leisure Science, 8(1): 341-365.
Wilbur, J., Chandler, P., Dancy, B., Choi, J., Plonczynski, D., 2002. Environmental, policy, and cultural factors related to physical activity in urban, AfricanAmerican Women. Women and Health, 36: 17-28.
Wright, W., Heather, E., Zarger, R. K., Mihelcic, J. R., 2012. Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landscape and Urban Planning, 107(3): 272282.

Zhang, X., Lu, H., Holt, J. B., 2011. Modeling spatial accessibility to parks: A national study. International Journal of Health Geographics, 10(31): 1-25.

EXTENDED TURKISH SUMMARY
 (GENİŞLETİLMİŞ TÜRKÇE ÖZET)

CBS AĞ ANALİZİ KULLANILARAK YEŞİL ALANLARDA ERİŞİLEBİLİRLİK: ERBİL ŞEHRİ ÖRNEĞİ

ABDAKARIM, Salar Hassan
Yüksek Lisans Tezi, Peyzaj Mimarlığı Anabilim Dalı
Tez Danışmanı: Doç. Dr. Serkan KEMEÇ
Ağustos 2019, 123 sayfa

ÖZ

Bu çalışma, 2017- 2019 yıllarında, Erbil kentinde CBS ortamında, ağ analizleri kullanılarak yeşil alanların erişilebilirliğinin ölçülmesi amacıyla yapılmıştır. İlk olarak, Auto CAD yazılımı ile elle sayısallaştırılan tüm yeşil alan poligonları, aktif ve pasif yeşil alanlar olarak iki kategoride sınıflandırılmıştır. Pasif yeşil alanlar: orman alanları ve yeşil kuşaklar olarak iki alt gruba; Aktif yeşil alanlar ise alan büyüklükleri ve fonksiyonlarına göre 10 topluluk parkı, 10 bölge parkı, 189 mahalle parkı ve 55 mini park olmak üzere dört alt gruba ayrılmıştır. Bunun yanı sıra, çalı̧̧ma alandaki tüm yollar, $15 \mathrm{~km} /$ saat, $25 \mathrm{~km} /$ saat, $45 \mathrm{~km} /$ saat ve $70 \mathrm{~km} /$ saat olmak üzere ortalam hız bilCBSine göre dört kategoride incelenmiştir. Mahallenin nüfusu ve sınırları, yeşil alan hizmetinin ulaştığı sakin sayısını hesaplamak için sayısallaştırıldı. Sonra, tüm veri kümeleri farklı popülasyonlarda, yeşil alanların erişilebilirliğini ve ne kadar erişilebilir olduklarını ölçmek üzere 300,600 ve 900 metre mesafedeki veya 5,10 ve 15 dakika mesafedeki mini parklar ve Mahalle parkları ile 5, 10 ve 15 dakikalık sürüşle topluluk ve bölge parkları polygon ve noktalar olarak; yollar ise çizgi olarak bileşke tablolaştırma (tabulate intersection) aracıyla CBS ağ analizi formatına dönüştürüldü. Sonuçlar, topluluk parklarına 5 dakika sürüş mesafesinde nüfusun $\% 68$ 'inin erişebildiğini, \% 32'sinin ise erişemediğini; buna karşın, nüfusun \% 99'unun 10 dk . sürüş mesafesinde erişebildiğini, \% 1inin ise erişemediğini; 15 dk sürüş mesafesinde ise nüfusun tamamının topluluk parklarına erişebildiğini göstermiştir. Bölge parklarında ise; 5 dk . lık sürüş mesafesinde nüfusun $\%$ 70'i parka erişebilirken $\%$ 30'u erişememektedir. 10 dk sürüş mesafesindeki erişilebilirlik $\% ~ 96,15 \mathrm{dk}$ sürüş mesafesindeki erişilebilirlik ise $\% 100$ olarak sonuç vermiştir. Sonuçlarda yürüme
mesafelerine bakıldığında ise; Erbil nüfusunun \% 22 'si küçük parklara 5 dk yürüme mesafesinde erişebilmektedir. Nüfusun \% 78 i ise kolay erişim sağlayamamaktadır. 10 dk yürüme mesafesinde nüfusun $\% 52$ 'si; 15 dk yürüme mesafesinde ise nüfusun \% 70'1 küçük parklara erişebilmektedir. Komşuluk ünitesi parklarına erişime baktığımızda, nüfusun \% 43 5dk yürüme mesafesiyle, \% 71'i 10 dk yürüyüş mesafesiyle, \% 80'i ise 15 dk yürüyüş mesafesiyle erişimini sağlayabilmektedir.

1. GİRİS

Kentsel yeşil alanlar, insanlara çeşitli boş zaman aktiviteleri, eğlence, spor ve rekreasyonel aktiviteler sunan yerlerdir. Kamusal yeşil alanlar ve dinlenme tesisleri şehirlerin, kasabaların sağlığı ve sosyo-konomik yapıları için önemlidir (Sallis, 2004). Bu nedenle, kasaba ve şehirlerin yerleşim alanlarında halka açık parklar ve açık spor tesisleri gibi kamusal yeşil alanların yaratılması için büyük bir eğilim vardır ve bu kentsel yeşil alanlar, kentsel gelişim planında önemli bir kullanım-fonksiyon haline gelmişlerdir.

Erişim olanaklarının kalitesi ve mevcudiyeti gibi fiziksel erişilebilirlik olanakları, erişilebilirlik maliyeti, zamansal mesafe, yerleşim yerleriyle olan bağlantı, park etme ve güvenlik gibi faktörler kentsel yeşil alanların başarılı bir şekilde kullanılmasını etkileyen en önemli özelliklerden bazıları olarak kabul edilir. Benzer bir şekilde, görüş mesafesi, parkların görünürlüğü gibi görsel erişilebilirlik değişkenlerinin kentsel yeşil alanların kullanımını etkilediği iddia edilmektedir.

Genel olarak kentteki kentsel yeşil alanların erişilebilirliği, verimli ve yeterli toplu taşıma sisteminin olmamasından etkilenmektedir; ayrıca, bu alanlardaki ticari ve ilgili faaliyetlerin artması; yollar, yaya fonksiyonları, güvenlik, otopark ve trafik yavaşlatma gibi fiziksel iletişim türlerinin kullanılamaması trafik sıkışıklığına ve uzun seyahat süresine yol açan trafik hacimlerinde artmaya sebep olmaktadır. Benzer şekilde, kentsel yeşil alanlara erişilebilirlik; süreklilik, yakınlık, bağlanabilirlik, yürünebilirlik, kolaylık, yaya ve araç erişim altyapısı ve görsel erişilebilirlik parametreleri gibi özelliklerle ölçülmektedir. Bu nedenle, kentin yerleşim alanlarındaki kamusal yeşil alanların erişilebilirliğini etkileyen en önemli belirleyicileri değerlendirmek ve daha
sonra kentsel yeşil alanların daha canlı ve uygun şekilde kullanılması için planlama ve tasarım kılavuzları geliştirmek çok önemlidir.

Çalışmanın amacı, Erbil şehrinin yerleşim bölgelerinde yeşil alanların kullanımına etki eden ve alanlarının kullanımını engelleyen en önemli erişilebilirlik faktörlerini tespit etmek ve etki düzeylerini incelemektir. Çalışmalar, yol ağları ve yaya fonksiyon ağları arasındaki ilişkinin, yeşil alanlara erişilebilen sokakların sayısının, yeşil alanların büyüklüğünün, kentsel yeşil alanların kullanımını çeşitli boyutlarda etkilediğini açıkladı. Yeşil alanlara en uygun erişim, kentsel yeşil alanlara erişim sağlayan yollardaki orantılı kaldırımlarla mümkün olacaktır ve Erbil ilinin yerleşim bölgelerinde yeşil alanların kullanımında önemli iyileşmeler sağlayacaktır. (Das, ve Honiball, 2016).

1.1. Kentsel Yeşil Alanlar

Kentsel yeşil alanlar, genel olarak kamusal veya özel olabilen, bitki örtüsü ile kaplı kentsel alanlardaki açık alanlardır (Baycan-Leven ve ark, 2002) Kentsel yeşil alan, parkları, topluluk bahçelerini, ormanları ve doğal rezervleri içerebilir. Bu çalışmada, yalnızca kamusal yeşil alanlar üzerinde çalışılmaktadır çünkü kamusal yeşil alanlar ücretsizdir ve çoğu nüfus özel yeşil alanlara erişememektedir.

Kavram olarak yeşil alanlar, genel olarak tamamen veya kısmen canlı bitki örtüsü veya ağaçlarıyla kaplı ve halkın ücretsiz olarak erişebileceği; ekolojik, sosyal ve ekonomik yararları olan toprakla kaplı bir alanı ifade eder. (Henderson ve Wall, 1979).

1.2. Yeşil Alanlara Erişim

Kamusal yeşil alanlara ve kamusal rekreasyon olanaklarına ilişkin literatürde vurgulanan önemli konulardan biri erişimdir (PPS, 2013). Kamusal yeşil alanlara erişim, bireylerin fiziksel ve zihinsel sağlı̆ının iyileştirilmesiyle ilişkilidir (Sugiyama ve ark., 2008; Payne ve ark., 2005; Potwarka ve ark., 2008).Yeşil alan kullanıcıları daha sağlıklı ve fiziksel aktivite açısından daha güçlü olmaktadırlar. Çünkü yeşil alan kullanımından yoksunluk ve bu alanlara uzaklık, fiziksel aktivite davranışları ve kamusal yararla ters orantılıdır.

Başarılı bir kamusal yeşil alana erişilebilirlik zor olmamalıdır ve işleyen bir sisteminin olması, hem uzaktan hem de yakından görülebilir olması gerekmektedir. Genel olarak, yürüme mesafesindeki yerel halka açık yeşil alanların mevcudiyeti, yeşil alanların kullanımıyla olumlu yönde ilişkiliyken, parka ulaşmak için araç kullanma ihtiyacı genellikle kullanımını sınırlamaktadır (Wilbur ark., 2002). Ayrıca, yer ve güvenlik gibi konular kamusal yeşil alanların kullanımını etkileyebilir. Bazı araştırmacılar, yeşil alanların erişim ve kullanımının en önemli koşulu olarak evden yürüme süresi veya evden uzaklığı olduğunu açıklamıştır (Herzele ve Wiedeman, 2003). Kısa mesafeli ve yeşil alanlara kolay erişim, yeşil alanlara yapılan ziyaret sayısını arttırmakta ve yakın olan sakinler de bu alanları daha sık kullanmaktadır (Atiqul Haq 2011; Herzele ve Wiedeman, 2003). Örneğin, Finlandiya'nın Helsinki şehir başkentinde yapılan bir araştırma ($0,50 \mathrm{~km}$ 'den daha az) yaşayanların haftada 4 kereden daha fazla yeşil alanları ziyaret ettiğini tespit etti (Neuvonen ve ark., 2007, Atiqul Haq, 2011). Araştırmacılar ayrıca, halka açık yeşil alanların mahallelerin merkezinde olması gerektiğini ve yürüyerek 5 dakikadan fazla sürmemesi gerektiğini açıklıyor (Etzioni, 1998).

1.3 Yeşil Alanlara Erişilebilirlik

Genel olarak erişilebilirlik terimi, belirli bir aracının belirli bir seyahat sistemi ile belirli bir ağ sistemi üzerinden belirli bir varış noktasına ulaşmadaki kolaylığını belirtmek için kullanılır. (Talen ve Anselin, 1998). Yürünebilirlik, genellikle belirli bir seyahat acentesi tarafından belli bir yerleşimde dolaşmanın kolaylığını ifade etmek için kullanılır (Inani ve Abdul, 2012). Ayrıca hareketlilik, belirli bir aracının, söz konusu araca uygulanabilir tüm seyahat modlarını göz önünde bulundurarak belirli bir ağ sisteminde hareket etme kabiliyetini göstermek için kullanılır (Litman, 2003).

Erişilebilirlik teriminin çeşitli tanımları vardır. En iyi tanımlardan biri, "insanların, ticaretin, endüstrilerin ve kamu hizmetlerinin ihtiyaçlarını içeren toplumdaki faaliyetlere ulaşmanın en kolay yolu" olarak verilebilir. Uzaklık ölçütleri en açık erişilebilirlik kıstasıdır. Ortalama mesafe, ağırlıklı alan mesafesi ya da en yakın imkânlara uzaklık olarak ölçülebilir.

1.4 Cbs Ve Yeşil Alanlar

CBS, çevre adaletinde ve yeşil alanların erişilebilirliğini analiz etmede önemli bir rol oynamaktadır. CBS ağ analizi bir yerden başka bir yere seyahat zamanını hesaplayabilmektedir. CBS ağ analizini kullanarak farklı dini grupların, etnik grupların, sosyo-ekonomik grupların kentsel yeşil alana nasıl erişildiğini açıklamak için kullanılır (Comber ve ark. 2008; Kuta ve ark. 2014). Birçok araştırmanın çevresel adalet analizini yürütmek için CBS'yi kullanmasının nedeni, olası sorunları tanıdıktan sonra farklı sosyal problemleri çözmede yardımcı olmasıdır. Yeşil alana eşit erişimin önemi, planlamacılar tarafından dikkate alınmalıdır, çünkü şehir içinde yaşayan tüm halk, halka açık yeşil alanlara eşit erişilebilirliği hak eder.

2. KAYNAK BİLDİRİŞLERİ

Giderek artan bir şekilde, araştırmacılar ve kentsel analistler, kentsel ortamlardaki yeşil alanların erişilebilirliğinin dağıımına odaklanmaya başlamıştır. Ann (1991), erişilebilirliği nehirler, yeşil bantlar ve su kütleleri de dâhil olmak üzere açık yeşil alanlardan yerleşim alanlarına düz hat mesafesi olarak ölçmek için CBS'yi kullanmıştır (Ann, 1991).

Talen (1998), Pueblo, Colorado'daki yeşil alanlara erişilebilirliği araştırmak için yeşil alan planlama standartlarından ve planlama politikası dokümanlarından elde edilen özkaynak haritalama yönteminden ve ihtiyaç temelli bir ölçümden faydalanmıştır ve İspanyol nüfusunun bölgelerinin erişilebilirliğinin düşük olduğunu bulmuştur. Nicholls (2001), Bryan County, Texas'taki halka açık yeşil alanların dağılım eşitliği ve SPSS'deki CBS ve Mann-Whitney U test prosedürünü kullanarak erişilebilirliği incelemiştir ve sonuçlar eşitsizliğin bulunmadığını göstermektedir. Lindsay ve Maraj (2001), Indianapolis, Indiana'da araştırma çalışmaları yaptı; erişilebilirliğin eşitliğini belirlemek için nüfus sayımı ve yakınlığın basit bir CBS analizi ve erişilebilirliğin bir ölçütü olarak kullanıldı. Sonuçlar, azınlıklar ve düşük gelirli çoğunlukların açık alanlara erişiminin kısıtlı olduğunu gösterdi. Gaussian merkezli 2SFCA yaklaşımı, Gürcistan'daki yeşil alanların erişilebilirliğini tahmin etmek için kullanıldı (Dai, 2011) ve sonuçlar, sayım yollarının çoğunun, en yakın yeşil alana yürünebilecek mesafenin ötesinde olduğunu
gösterdi. Kuta ve ark. (2014), Birleşik Krallık'taki farklı sosyo-ekonomik grupların kentsel yeşil alan erişilebilirliğini de inceledi ve sosyoekonomik açıdan mahrum olan grubun, ikamet yerinden 300 metre uzaklıktaki yeşil alana erişimi olmadığını buldu. Kuta ve ark. (2014) sosyo-ekonomik açıdan mahrum gruplar için yeşil alana erişilebilirliği tahmin etmek için ağ analizi yaklaşımını uyguladı.

3. MATERYAL VE YÖNTEM

3.1 Materyal

Bu çalışma Kuzey Irak'ın Erbil Vilayeti 2017-2019 yıllarında yürütülmüştür.

3.2 Çalışma Alanının Coğrafi Karakteristiği

Bu çalışma 2016-2019 yılları arasında Irak'ın kuzeyinde bulunan Erbil kentinde yapılmıştır. Kentin coğrafi koordinatları: Enlem: $36^{\circ} 11^{\prime} 33.25$ "K ve boylam: $44{ }^{\circ}$ 0'38.23" E. Erbil şehrinin deniz seviyesinden yüksekliği 429,00 m.'dir.

3.3 YÖNTEM

Bu çalışmadaki yöntem, yeşil alanların seçilerek aktif ve pasif olarak olarak sınıflandırılmasıdır. Büyüklük ve fonksiyonlarına gore aktif yeşil alanlar 4, pasif yeşil alanlar 2 gruba ayrılmıştır. Erbil şehrinin tüm bölgeleri, nüfuslarıyla beraber seçilmiştir. Bunun yanısıra, tüm yollar ve caddeler hiz sınırlamalarına göre sınıflandırıldı, daha sonra Auto CAD ortamında hazırlanan tüm bu veri kümeleri daha sonra yeşil alanlara ve kamusal yeşil alanın kapsadığı alana erişim zamanını analiz etmek ve hesaplamak için CBS'e çevrildi. Hizmetler ve hizmetin ulaştığı bölge sakinlerinin sayısı (3.1) ve (3.2) numaralı şemalarda açıklandığı gibidir (Kemec ve ark., 2015).

Diyagram 3.1 CBS Ağı analiz aracında analiz yöntemleri

Diyagram 3. 1 Hizmetlerin kapsadığı alan ve nüfus hesaplama yöntemleri.

ERBIL YEŞIL ALANLARININ SINIFLANDIRILMASI

Şema (3.3) 'de açıklandığı gibi, Erbil kentinde, yeşil alanların kullanılabilirliğine göre iki kategoriye ayrılan altı tür yeşil alan bulunmaktadır.

Diyagram 3. 2 Yeşil alanların sınıflandırılması.

3.3.1 Verilerin İşlenmesi

1. Hız sınırına gore sınıflandırılan tüm yol ve sokaklar ile Autocad ortamında oluşturulan poligonlarından CBS Ağ Analist aracına dönüştürülen tüm yeşil alanlar sayısallaştırıldı.
2. Ağ analisti aracındaki tablo kesişimini kullanarak mahalle nüfus katmanı ve Erbil şehrinin sınırı birleştirildi.
3. Auto CAD aracıyla Erbil şehri çokgenlerinin yeşil alanları oluşturuldu ve daha sonra CBS'e dönüştürüldü.

3.3.2 Ağ Analizi

1. Maliyet hesaplanmalıdır ve bu maliyet zamansal, mekansal ya da parasal maliyet olabilir. Çalışmada zamansal maliyet hesaplaması yapılmıştır.
2. Bu çalışmada Auto CAD bölge sınırları kullanılarak CBS bölge sınır katmanları oluşturulmuştur daha sonra yazılımın ortak aracını kullanarak çizelge popülasyonu verileri polygon bölge sınırları katmanlarıyla birleştirilmiştir.
3. Çalı̧̧mada yeşil alanlar sınır (çizgi) oluşturulmuş, daha sonra çizgiler çokgenlere dönüştürülmüş, daha sonra ağ analistlerinde de gerekli veri biçiminin olduğu noktaya dönüştürülmüştür.

4. BULGULAR

Bu çalışma Erbil ilinin yeşil alanlarını analiz etmekte ve Erbil kentindeki yeşil alanların erişilebilirliğini çevre adaleti ve kamu yararını gözetmek amacıyla ölçmektedir. Çalışma Erbil ilçesinin farklı mahalleleri ile yeşil alanların erişilebilirliği arasındaki ilişkiyi göstermektedir. Bu araştırma çalışmasının fikri, So-Shuk-Wai (2013), Comber ve ark. (2008) den ve yöntem Sister ve ark. (2007), Hass (2009) dan derlenmiştir. Çalışmada çokgen, çizgi ve tabaka gibi Auto CAD araçları kullanılmış ve daha sonra bu araştırmada ana araç CBS ortamındaki ağ analistine çevrilmiştir. Çalışma yöntemi aşağıdaki soruları cevaplayabilmek adına uygulanmıştır:

1. $300 \mathrm{~m}, 600 \mathrm{~m}$ ve 900 m mesafedeki ya da 5,10 ve 15 dk yürüme mesafesindeki mini parklar ve komşuluk üniteleri parkları ile 5,10 ve 15 dk sürüş mesafesindeki topluluk ve bölge parkları farklı topluluklar için ne kadar erişilebilirdir?
2. Erbil şehrinin hangi alanlarının yeni kamusal yeşil alanlaraihtiyacı vardır ve ortak yeşil alanlara daha fazla erişime ihtiyacı var?

İki ana adımda

1. Erbil şehrinin tüm yeşil alanları poligonlar ile belirlendi ve sınıflandırın ve tüm yolları yeşil alanlara sınırlandırıldı.
2. Yeşil alanların hizmetlerinin ulaştığı nüfus hesaplarını elde etmek için Erbil şehri ve kent merkezinin demografik verileri büüüleştirildi.

4.1. Analiz Ve Sonuçlar

Kentsel yeşil alanların, Erbil ilinin farklı mahallelerinde erişilebilirliğinin ölçülmesi ve nüfusun hesaplanması. Yeterince yeşil alana sahip olmayan ve yeni yeşil alanlara ihtiyaç duyan alanların analiz edilmesi.

4.1.1. Topluluk Parkı

10 Topluluk parkının erişilebilirliği CBS Ağ analizi ile ölçülmüştür. Sonuçlar, topluluk parklarına 5 dakika sürüş mesafesinde nüfusun $\% 68$ 'inin erişebildiğini, \%32'sinin ise erişemediğini; buna karşın, nüfusun $\% 99$ 'unun 10 dk sürüş mesafesinde erişebildiğini, \%1'inin ise erişemediğini; 15 dk sürüş mesafesinde ise nüfusun tamamının topluluk parklarına erişebildiğini göstermiştir.

4.1.2. Bölge Parkları

10 bölge parkının erişilebilirliği CBS Ağ analizi ile ölçülmüştür. Bölge parklarında, 5 dk lık sürüş mesafesinde nüfusun $\% 70$ 'i parka erişebilirken $\% 30$ 'u erişememektedir. 10 dk sürüş mesafesindeki erişilebilirlik $\% 96$, 15 dk sürüş mesafesindeki erişilebilirlik ise $\% 100$ olarak sonuç vermiştir.

4.1.3. KOMŞULUK ÜNITESİ PARKLARI

189 komşuluk ünitesi(mahalle)'nin yürüme mesafesindeki erişilebilirliği CBS Ağ analizi ile ölçülmüştür. Komşuluk ünitesi parklarına erişime baktığımızda, nüfusun $\% 435 \mathrm{dk}$ yürüme mesafesiyle, $\% 71$ 'i 10 dk yürüyüş mesafesiyle, $\% 80$ 'i ise 15 dk yürüyüş mesafesiyle erişimini sağlayabilmektedir.

4.1.4. MİNí PARKLAR

2000m2'den küçük olan 55 mini parkın yürüme mesafesindeki erişilebilirliği CBS Ağ analizi ile ölçülmüştür. Erbil nüfusunun \%22'si Küçük parklara 5 dk yürüme mesafesinde erişebilmektedir. Nüfusun $\% 78$ i ise kolay erişim sağlayamamaktadır. 10
dk yürüme mesafesinde nüfusun $\% 52$ 'si; 15 dk yürüme mesafesinde ise nüfusun $\% 7{ }^{\prime} \mathrm{i}$ küçük parklara erişebilmektedir.

5. TARTIŞMA VE SONUÇ

Irak'ıni Erbil kenti için yapılan bu çalışmanın amacı, Erbil kentinde yeşil alanların genel durumunu belirlemek ve yeşil alanların erişilebilirliğini, yeşil alanlara erişim zamanının maliyetini ölçmek, uluslararası standartlara göre kentin yeşil alanlarına erişimini karşılaştırmak ve nerelerin yeni parklara ihtiyacı olduğunu saptamaktır.

Erbil'de, şehir çevresinde dağılmış birçok yeşil alan bulunmaktadır. İnsanların günlük kullanımlarına göre aktif ve pasif olarak sınıflandırılmışlardır. Çalışmada sadece aktif türlere odaklanmıştır, çünkü kentde halka açık yeşil alanların en önemli bölümünü aktif yeşil alanlar temsil etmektedir.

Erbil ilinin halka açık yeşil alanlarının genel durumunu değerlendirmek için yeşil alanın erişilebilirliği konusunda bilinen bir çalışma yoktur. Bu bağlamda yapılan çalışma Erbil kentinde halka açık yeşil alanların erişilebilirliği anlamında bilinen ilk çalışmadır.

CBS Ağ analiz aracıyla yeşil alanların zaman maliyetli erişimi analiz edilmiştir ve yeşil alanlar küçük ve büyük parklar olmak üzere değerlendirilmiştir. Mahalle parkları ve mini parkların zaman maliyeti yürüme mesafesine gore değerlendirilmiştir. Nüfusunun $\% 22$ 'si Küçük parklara 5 dk yürüme mesafesinde erişebilmektedir. Nüfusun $\% 78$ i ise kolay erişim sağlayamamaktadır. 10 dk yürüme mesafesinde nüfusun $\% 52$ 'si; 15 dk yürüme mesafesinde ise nüfusun $\% 70$ 'i küçük parklara erişebilmektedir. Komşuluk ünitesi parklarına erişime baktığımızda, nüfusun \%43 5dk yürüme mesafesiyle, \%71’i 10 dk yürüyüş mesafesiyle, $\% 80$ 'i ise 15 dk yürüyüş mesafesiyle erişimini sağlayabilmektedir. Bölge topluluk parklarına erişim ise sürüş mesafesine gore değerlendirilmiştir. Bölge parklarında, 5 dk lık sürüş mesafesinde nüfusun $\% 70$ 'i parka erişebilirken $\% 30$ 'u erişememektedir. 10 dk sürüş mesafesindeki erişilebilirlik \%96, 15 dk sürüş mesafesindeki erişilebilirlik ise $\% 100$ olarak sonuç vermiştir. Topluluk parklarında ise 5 dakika sürüş mesafesinde nüfusun $\% 68$ 'inin erişebildiğini, $\% 32$ 'sinin ise erișemediğini; buna karşın, nüfusun $\% 99$ 'unun 10 dk sürüş mesafesinde
erişebildiğini, $\% 1$ inin ise erişemediğini; 15 dk sürüş mesafesinde ise nüfusun tamamının topluluk parklarına erişebildiğini göstermiştir.
Birleşik krallık, yeşil alanların teminini ve erişimini kontrol etmek için erişilebilir doğal yeşil alan standartları olarak adlandırılan bir dizi düzenleme sağlamaktadır (Combers ark., 2008) Herkes, 300 m veya 5 dakikalık yürüme mesafesindeki mahalle parklarına ve mini parklara ve 2000 m ile bölge parklarına erişebilmelidir. Bu standart Irak'taki tüm şehirler için uygun değildir, çünkü Birleşik Krallık'taki kadar fazla ve büyük ölçekli yeşil alanlar bulunmamaktadır. Aynı şekilde, ABD'nin her bir şehir sakininin açık yeşil bir alana ulaşmak için yürüdüğü 400m mesafedeki özel düzenlemeleri ve standartları vardır. Erbil şehri için bir standart düzenleme yoktur, bu çalışa mini parklar ve mahalle parkları gibi küçük parklara 5 dakikalık bir yürüyüşle ulaşılabilecek mesafeyi önermektedir. Topluluk ve semt parkları gibi diğer yeşil alanlarda ise arabayla 5,10 ve 15 dakika içinde ulaşılabilecek mesafede olmalıdır. Bu süre, uluslararası standartlar ve konuya ilişkin akademik yazın kullanılarak belirlenmiştir.

Bu çalışma, devlet kurumlarından veri setleri elde etmenin zorluğu, güvenlik nedeniyle veri setlerini kolaylıkla veremedikleri endişesi dâhil olmak üzere pek çok engel altında hazırlanmıştır. Tüm veri kümeleri bu çalş̧mada kullanılmak üzere manuel olarak oluşturulan birincil verilerdir, referans noktalarını kullanarak Auto CAD verilerinin konumunu UTM konumuna dönüştürdüğümüzde veri projeksiyonuyla ilgili problemler oluşmuştur.

Veriler diğer çalışmalara hazırdır, bu verileri kullanılarak hastaneler, okullar ve diğer devlet hizmetleri gibi diğer kentsel tesisler projelendirilmesinde kullanılabilir.
Bu tür bir çalışma yeşil alanların niteliği ve miktarlarındaki statik değişiklikler değildir ve yol ağlarındaki değişiklikler erişilebilirlik sonuçlarını güncelleyebilmekte veya farklılaştırabilmesine rağmen, analiz için kullanılan veriler gelecekteki çalışmalarda güncellenmelidir.

CURRICULUM VITAE

Salar hassan ABDALKARIM, was born in 1987 in Chamchamal-Iraq, and started to his education in Bestuni Mala Omar Primary School, then finished the Secondary School in Runaki secondary school, after that he entered to his higher education and completed his degree of Bachelor of Science (B.Sc.) for engineering in the College of Engineering Department of Architecture at Salahaddin University/ErbilIraq in 2011. Then he started a degree of Master of Science (M.Sc.) for Landscape Architecture currently a M.Sc. student under the supervision of Assoc. Prof. Dr. Serkan KEMEÇ. in the Department of Landscape Architecture at the Institute of Natural and Applied Science, in Van Yuzuncu Yil University. Van Turkey.

[^0]: Source: Haq, 2011; Vázquez, 2011

[^1]: Source: Haq, 2011; Vázquez, 2011

