T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ATOM NUMARASI 40≤Z≤50 ARASINDAKİ ELEMENTLERİN L TABAKASINA AİT X-IŞINLARI ÜZERİNE COSTER-KRONİG GEÇİŞLERİN ETKİSİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Turgay ÖZMEN DANIŞMANI: Doç. Dr. Rafet YILMAZ

VAN-2019

T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI

ATOM NUMARASI 40≤Z≤50 ARASINDAKİ ELEMENTLERİN L TABAKASINA AİT X-IŞINLARI ÜZERİNE COSTER-KRONİG GEÇİŞLERİN ETKİSİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Turgay ÖZMEN

VAN-2019

KABUL VE ONAY SAYFASI

Fen Bilimleri Enstitüsü Fizik Anabilim Dalı'nda, Doç. Dr. Rafet YILMAZ danışmanlığında, Turgay ÖZMEN tarafından hazırlanan "Atom Numarası $40 \le Z \le 50$ Arasındaki Elementlerin L Tabakasına Ait Coster-Kronig Geçişlerin Etkisi" isimli bu çalışma Lisansüstü Eğitim ve Öğretim Yönetmeliği'nin ilgili hükümleri gereğince 05/07/2019 tarihinde aşağıdaki jüri tarafından oy birliği ile başarılı bulunmuş ve yüksek lisans tezi olarak kabul edilmiştir.

Başkan: Doç. Dr. Rafet YILMAZ

İmza: İmza:

Üye: Doç. Dr. Kadir EJDERHA

İmz

İmza:

Üye: Dr. Öğr. Üyesi Abdullah ÖZKARTAL

rof. Dr. Suat SENSOY Enstitü Müdürü ENSOY not.Dr. Enstitü Müdürü

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

(İmza) Turgay ÖZMEN

ÖZET

ATOM NUMARASI 40 ≤ Z ≤50 ARASINDAKİ ELEMENTLERİN L TABAKASINA AİT X- IŞINLARI ÜZERİNE COSTER-KRONİG GEÇİŞLERİN ETKİSİ

ÖZMEN Turgay Yüksek Lisans Tezi, Fizik Ana Bilim Dalı Tez Danışmanı: Doç. Dr. Rafet YILMAZ Ağustos 2019, 54 Sayfa

Bu tez çalışmasında atom numarası $40 \le Z \le 50$ arasındaki elementlerin L tabakasına ait X-ışını Flüoresans tesir kesitleri farklı uyarılma enerjilerine göre hesaplandı. Coster-Kronig geçişler (f₁₂, f₂₃ ve f₁₃) ışımasız geçişlerdir. L X-ışını flüoresans tesir kesitlerine Coster-Kronig geçişlerin etkisinden dolayı Coster-Kronig şiddetlendirme faktörleri teorik olarak hesaplandı. Elde edilen değerler, diğer araştırmacıların teorik ve deneysel değerleri ile uyum içinde olduğu görüldü.

Anahtar kelimeler : Auger verim, Flüoresans verim, Tesir kesit, X-ışınları.

ABSTRACT

THE EFFECT OF COSTER-CHRONIG TRANSITIONS ON L SHELL X-RAYS OF ELEMENTS BETWEEN ATOM NUMBER $40 \le Z \le 50$

ÖZMEN Turgay M. Sc. Thesis, Department of Physics Supervisor: Assoc. Prof. Dr. Rafet YILMAZ August 2019, 54 Pages

L X-ray fluorescence cross-sections of elements in the atomic number range $40 \le Z \le 50$ have been calculated theoretically according to different excitation energies of elements. The Coster-Kronig transitions (f₁₂, f₂₃ and f₁₃) are non-radiative transitions. The Coster Kronig enhancement factorts due to the effect of Coster-Kronig transitions on L X-ray fluorescence cross sections have been calculated theoretically. The calculated values were found to be consistent with the previous experimental and theoretical values.

Keywords: Auger yield, Cross-Section, Fluorescence yield, X-Ray.

ÖN SÖZ

Bu tez çalışmasında; her türlü ilgi ve yardımlarını esirgemeyen danışmanım Sayın Doç. Dr. Rafet YILMAZ 'a ayrıca, Sayın Öğretim Üyesi Dr. Abdullah ÖZKARTAL'a ve yüksek lisans öğrenciliğim süresince, ders aldığım hocalarım nezdinde tüm YYÜ Fen Edebiyat Fakültesi Fizik Bölümü personeline, bu tezin yazımında yardımcı olan kardeşim Olcay ÖZMEN'e; minnet ve şükranlarımı sunarım.

2019 Turgay ÖZMEN

İÇİNDEKİLER

Sayfa

ÖZET i
ABSTRACT iii
ÖN SÖZv
İÇİNDEKİLER vii
ÇİZELGELER LİSTESİ ix
ŞEKİLLER LİSTESİ xi
SİMGELER VE KISALTMALAR xiii
1. GİRİŞ1
2. KAYNAK BİLDİRİŞLERİ5
3. MATERYAL VE YÖNTEM7
3.1. X-Işınları
3.1.1. X – İşınlarının genel özellikleri8
3.1.2. X – ışınlarının elde edilmesi9
3.1.3. X- ışınları tüplerinin genel özellikleri12
3.1.4. Kuantum sayıları ve karakteristik x-ışınları12
3.1.5 Karakteristik x-ışını yayımlanması ve enerji seviyeleri15
3.1.6. x-ışını spektrumu18
3.2. X ve Gama Işınlarının Madde ile Etkileşmesi19
3.2.1. Fotoelektrik olay
3.2.2. Compton saçılması
3.2.3. Çift oluşumu
3.3. Geçişler
3.3.1. Flüoresans verimler ve coster-kronig geçişler
3.3.2. Auger geçişleri
3.3.3. Coster- Kronig şiddetlendirme faktörlerinin teorik olarak hesaplanması28

Sayfa

3.3.4. Tesir Kesit	29
4. BULGULAR	33
4.1. L X-Işınlarının Tesir Kesitleri	33
4.2. Coster-Kronig Şiddetlendirme Faktörleri	33
5. TARTIŞMA VE SONUÇ	51
KAYNAKLAR	53
ÖZ GEÇMİŞ	55

ÇİZELGELER LİSTESİ

Sayfa

Çizelge

Çizelge 3.1. Atom numarası 40 ile 50 arasındaki elementler ve bu elementlerin L tabakasındaki enerji değerleri gösterimleri	7
Çizelge 3. 2. Kuantum sayıları ve geçiş kuralları	14
Çizelge 3. 3. X-ışını diyagram çizgilerinin Siegbahn ve IUPAC gösterimleri	17
Çizelge 4. 1. Sadece L_3 alt tabakası uyarıldığında elde edilen L X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom)	.34
Çizelge 4. 2. L_3 alt tabakasının, L_2 ve L1 alt tabakalarının uyarılma enerjilerine göre uyarıldığında elde edilen L_3 X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom)	.35
Çizelge 4. 3. L ₂ alt tabakası uyarıldığında elde edilen L X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom)	.36
Çizelge 4. 4. L_1 alt tabakası uyarıldığında elde edilen L X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom)	.37
Çizelge 4. 5. L_3 alt tabakasının, L_2 ve L1 alt tabakalarının uyarılma enerjilerine göre uyarıldığında elde edilen L_3 X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)	.38
Çizelge 4.6. L ₂ alt tabakası uyarıldığında elde edilen L X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)	.39
Çizelge 4. 7. L ₁ alt tabakası uyarıldığında elde edilen L X-ışını Flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)	.40
Çizelge 4.8. $\kappa_{\alpha 1} \kappa_{l1}$ and $\kappa_{\alpha 2} \kappa_{l2}$ - Coster–Kronig şiddetlendirme faktörleri, atom numarası 40≤Z≤50 için	.41
Çizelge 4. 9. $\kappa_{\beta 1}$ and $\kappa_{\beta 2}$ Coster–Kronig şiddetlendirme faktörleri, atom numarası 40 \leq Z \leq 50 için	.42

Çizelge

Çizelge 4.10	$K_{\alpha 1} - K_{l1} - and K_{\alpha 2} - K_{l2}$ Coster–Kronig şiddetlendirme faktörleri,	
	atom numarası 40 < Z < 50 için. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için	.43
Çizelge 4.11.	$\kappa_{\beta 1}$ and $\kappa_{\beta 2}$ Coster–Kronig şiddetlendirme faktörleri, atom	
	numarası 40≤Z≤50 için. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)	.44

ŞEKİLLER LİSTESİ

Şekii Sayla
Şekil 1.1. Atomlarda ana ve alt enerji kabukları1
Şekil 3.1. X-Işınlarının madde ile etkileşmesi
Şekil 3.2. Röntgen tüpü 11
Şekil 3.3. L tabakasındaki elektronların kuantum sayılarının gösterimi
Şekil 3.4. Karakteristik X-ışınlarının oluşumu15
Şekil 3.5. İdeal bir X-ışını spektrumu 18
Şekil 3.6. Fotoelektrik olay
Şekil 3.7. Compton saçılması
Şekil 3.8. Çift oluşum
Şekil 3.9. Auger olayı
Şekil 4. 1. $\kappa_{\alpha 1}$, $\kappa_{\alpha 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi
Şekil 4. 2. κ_{l1} , κ_{l2} Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi
Şekil 4. 3. $\kappa_{\beta 1}$ ve $\kappa_{\beta 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi
Şekil 4. 4. $\kappa_{\alpha 1}$, $\kappa_{\alpha 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)
Şekil 4. 5. κ_{l1} , κ_{l2} Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göredeğişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için) 49
Şekil 4. 6. $\kappa_{\beta 1}$ ve $\kappa_{\beta 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom
numarasına göre değişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
W	Flüoresans verim
a	Auger verimi
α	Alfa
β	Beta
σ^{p}	Fotoiyonizasyon tesir kesiti
Κα	K_{α} X-ışını flüoresans tesir kesiti
Κβ	K_{β} X-ışını flüoresans tesir kesiti
I ₀	X-ışını şiddeti
Z	Atom numarası
h	Planck sabiti
t	Numune kalınlığı
$N_i (i = \alpha, \beta)$	Pik alanı
$F_i(i=\alpha,\beta)$	α, β X-ışınlarının geçiş hızı ihtimali

Kısaltmalar	Açıklama
XRF	X-Işınları flüoresans tesir kesiti

1. GİRİŞ

Atom çekirdeği etrafında, n=1, n=2, n=3,... ya da K, L, M, N,...gibi sembollerle ifade edilen enerji kabukları ve K enerji kabuğu dışındaki diğer enerji kabuklarının birden fazla alt tabakalardan (s, p, d, f gibi Orbitallerden) oluşur. (Şekil 1.1).

Şekil 1. 1. Atomlarda ana ve alt enerji kabukları.

Atomların enerji kabuklarında herhangi bir nedenle elektron kaybında, daha dış yörüngedeki enerji kabuklarından elektronun boşalttığı boşluklara elektron geçişi olur. Aradaki enerji farkı ise, karakteristik x-ışını olarak salınır.

Ayrıca K tabakasının dışındaki alt tabakalara sahip olan diğer enerji kabuklarına ait alt tabakalarda (orbitallerde), dış katmandan iç katmana doğru elektron geçişleri olur. Böylece dış orbital de elektron boşluğu meydana gelir, buda x ışınının şiddetini arttırır. Buna Coster - Kronig Geçişler denir. Atomun uyarılması veya iyonizasyonu sonucu meydana gelen alt tabakalar arasındaki boşlukları Coster-Kronig geçişler ile en hızlı şekilde doldurulur. Bu geçişler ışımasız geçişlerdir, bir atomun alt tabakaları arasındaki elektronik geçişlerden meydana gelir ve bu geçiş f_{ij} ile gösterilir. f_{ij} atomun L ve daha üst tabakalarındaki bir x_j alt tabakasındaki bir elektronun x_i alt tabakasındaki boşluğu doldurma ihtimaliyetini belirtir. Bu geçişlerde primer boşluk dağılımının değişmesinden dolayı L, M, N,... çizgi şiddetleri de bu dağılımdan etkilenir

Atomların enerji seviyelerindeki elektron boşluklarına üst katmanlardan ışımalı elektron geçişleri ile oluşan karakteristik X ışınları (veya flüoresans ışınlar), 10⁻⁸ sn içerisinde oluşur.

Karakteristik X-ışını, o atoma ait bir özelliktir. Dolayısıyla madde analizlerinde oldukça önemlidir. İşte bu X-ışınlarının belli bir enerjide meydana gelme ihtimaliyetlerine bu ışınların flüoresans tesir kesitleri denir.

X-ışını flüoresans tesir kesiti, X-ışını üretim ihtimali ile orantılı olan bir büyüklüktür. Tesir kesitleri hem deneysel hem de teorik olarak ölçülebilen bir büyüklük olduğu için nükleer işlemlerin ayrıntılı olarak incelenmesine imkân sağlar. Atom molekül ile ilgili konularda oldukça önemlidir. Tesir kesitinin tam olarak bilinmesi, endüstriyel radyografi, reaktör zırhlama, tıp alanında, enerji taşıma ve depolama konularında ve radyasyon soğurma katsayılarının hesaplanmasında önemli bir faktördür.

X-ışını flüoresans verim tabaka veya alt tabakalarda herhangi bir yolla oluşturulan bir boşluğun ışımalı ya da ışımasız geçişle doldurulması ihtimalidir.

X-ışını flüoresans metodu kalite ve miktar analizlerinin tahribatsız olarak yapılmasını mümkün kıldığında geniş bir uygulama alanı vardır. Bu metotla yapılan jeolojik ve biyolojik numunelerin analizlerinde, eser elementin tayininde, kimyasal analizlerde ve tıbbi araştırmadaki analizler gibi daha birçok araştırma alanlarında flüoresans verim ile ışımalı ve ışımasız geçiş ihtimallerinin bilinmesi gereklidir.

Bu tez çalışmasının ilk aşamasında, X ışınları, tesir kesitleri, tabakalar arası geçişler hakkında genel bilgiler verildi. Daha sonra atom numarası $40 \le Z \le 50$ aralığında bulunan (Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In) elementlerin, *L* tabakasına ait *L*-X ışını flüoresans tesir kesitlerinin farklı uyarma enerjilerine bağlı olarak değişimi incelendi. Elde edilen sonuçlardan Coster-Kronig geçişlerin *L* X-ışını flüoresans tesir kesitleri üzerindeki etkisinden dolayı, *L*-X ışını şiddetlerinde meydana gelen artma teorik olarak hesaplandı. Elde edilen değerler çizelge ve grafikler halinde verilerek analiz edildi.

2. KAYNAK BİLDİRİŞLERİ

Atomların tabakalarına ait X-ışınları tesir kesitleri ve Flüoresans verimlerinin ölçülmesi ve ışımasız geçiş olarak bilinen Coster-Kronig geçiş ihtimalleri atom, molekül, radyasyon fiziği araştırmalarında, tahribatsız testlerde, elementel X-ışını flüoresans analizlerinde, tıbbi araştırmalarda oldukça önemlidir. Bundan dolayı bu çalışmalar, elementlerin hem *K* hem de L tabakalarında, X- ışınları üzerinde yıllardır çalışılan bir konudur. Birçok araştırmacı tarafından yapılan fotoelektrik tesir kesitlerinin teorik hesaplamalar ile ilgili Scofield'in nümerik değerleri, teorik olarak en doğru değerler olarak kabul edilir. Scofield, 1–1500 keV enerji aralığında atom numarası 1 ile 100 arasındaki elementler için fotoelektrik tesir kesitlerini hesapladı.(1)

Ertuğrul (2002), Hg ve Au elementleri için f_{12} Coster-Kronig geçişleri ve L alt tabaka üretim tesir kesitlerini tespit etti.

Ertuğrul (2001), Sm ve Tb elementlerinin K tabakasından L_i alt tabakalarına ışımalı ve ışımasız boşluk geçişlerini incelemiştir.

Öz ve ark. (2001), Atom numarası 59≤Z≤90 arasındaki bazı elementler için *L* tabakası Coster-Kronig verimleri ölçtü.

Öz ve ark. (2000), Atom numarası $59 \le Z \le 85$ arasındaki bazı flüoresans ve auger verimleri ölçtü.

Öz ve ark. (2003), Atom numarası $66 \le Z \le 72$. arasındaki bazı elementler için Coster-Kronig şiddetlendirme faktörlerini yarı deneysel olarak tespit etti.

Öz ve ark. (2004), Atom numarası 74≤Z≤90. arasındaki bazı elementler için Coster-Kronig şiddetlendirme faktörlerini yarı deneysel olarak tespit etti.

Puri ve Sing (2006), atom numarası 70≤Z≤92, elementler için Flüoresans ve Coster-Kronig verimleri tespit etti.

Yılmaz ve ark. (2009), Yb, Lu, Os and Pt Elementleri için Coster-Kronig şiddetlendirme faktörlerini deneysel ve teorik olarak tespit etti.

Yılmaz ve ark. (2010), Cs elementinin Coster- Kronig şiddetlendirme faktörlerini teorik olarak incelemişlerdir.

Yılmaz ve ark. (2011a), Nd ve Pm elementlerinin farklı uyarma enerjilerine göre Coster-Kronig şiddetlendirme faktörlerini teorik olarak incelemişlerdir.

Yılmaz ve ark. (2011b), Tm elementinin Coster-Kronig şiddetlendirme faktörlerini hem deneysel hem de teorik olarak incelemişlerdir.

Krause ve ark. (1978 a, b), K ve L X-ışınları floresans tesir kesitlerini teorik olarak hesaplamıştır.

Scofield (1973), X- ışınları spektroskopisinde önemli bir yer tutan kaynak eserinde birçok element için 1 keV'den 1500 keV'e kadar olan uyarma enerjilerinden K, L, M ve daha üst tabakalar için alt tabaka ve toplam fotoiyonizasyon tesir kesitleri ile ilgili yapılan teorik hesaplama sonuçları vermiştir.

Rao ve ark. (1995), atom numarası 78≤Z≤82 aralığındaki elementlerin 6.47 ve 7.57 keV'lik foton kaynaklarla uyarılması ile Flüoresans veriminin deneysel ve teorik hesaplama sonuçları mevcuttur.

Ertuğrul ve ark. (2001), atom numarası $22 \le Z \le 69$ arasındaki elementler için 59,5 keV uyarma enerjisinde K_β/K_a şiddet oranlarını incelemiştir.

Ertuğrul ve ark. (2007), 5,9, 59,5 ve 123,6 keV enerjili fotonlarla atom numarası 16 \leq Z \leq 92 arasındaki elementler için K_β/K_α x-ışınları şiddet oranları incelenmiştir.

Hubbel ve ark. (1994), bazı elementlerin K ve L tabakalarına ait X- ışınları flüoresans verimlerini yarı deneysel hesaplamıştır.

Bambynek ve arkadaşları (1972), flüoresans verim, auger verim ve coster-kronig geçiş ihtimalleri üzerine yarı deneysel olayları incelemiştir.

Kostroun ve ark. (1971), atomik ışımalı geçişler ihtimallerini ve teoriksel olarak K kabuğu flüoresans verimlerini hesaplamıştır.

Kumar ve ark. (2016), 62 Sm elementinin *L* X-ışını flüoresans tesir kesit ve Coster-Kronig şiddetlendirme faktörlerini farklı enerjilerde deneysel olarak incelemiştir.

3. MATERYAL VE YÖNTEM

Bu bölümde; elektromanyetik dalgaların madde ile etkileşmesi hakkında temel bilgiler verildi. Daha sonra materyal olarak kullanılan, atom numarası 40 ile 50 arasındaki 9 elementin (Çizelge 3.1), L tabakasındaki Coster Kronigi teorik hesaplama yöntemleri hakkında bilgi verildi.

Çizelge 3.1. Atom numarası 40 ile 50 arasındaki elementler ve bu elementlerin L tabakasındaki enerji değerleri gösterimleri

Atom Numarası	Adı	Simgesi	L Kabuğundaki	
			Enerji Değeri	
			$(E_n=13,6Z^2/n^2 n=2)$	
41	Niobvum	NIL	5715.4 eV	
		ND		
42	Molibden	Мо	5997.6 eV	
43	Tekhnetyum	Тс	6286.6 eV	
44	Rutenyum	Ru	6582.4 eV	
45	Rodyum	Rh	6885 eV	
46	Paladyum	Pd	7194.4 eV	
47	Gümüş	Ag	7510.6 eV	
48	Kadmiyum	Cd	7833.6 eV	
49	İndiyum		8163.4 eV	
		In		

3.1. X-Işınları

X-ışınları, Karakteristik ve Sürekli X-ışınları olmak üzere 2'ye ayrılır.

Herhangi bir nedenle, atomlarda oluşan elektron boşluklarının, üst enerji seviyelerinden gelen elektronlarla doldurulması sonucu, iki enerji düzeyi arasındaki enerji farkı foton olarak salınır, salınan bu foton olayına karakteristik X- ışını adı verilir.

Hızlandırılmış elektronun yavaşlatılması ya da bir hedefe çarptırılarak durdurulması sonucu, bu elektronun hızından dolayı kazanmış olduğu enerjiyi elektromanyetik ışıma olarak farklı dalga boylarında salması olayına sürekli X-ışıması denir.

X-ışınları, elektromanyetik spektrumda ultraviyole ışık ile gama ışınları arasında yer alır. X-ışınları dalga boylarına göre; dalga boyu $\lambda < 0,1 \text{ A}^0$ ise çok sert, $\lambda=0,1 \text{ A}^0$ ise sert, $\lambda=1-10 \text{ A}^0$ ise yumuşak, $\lambda>10 \text{ A}^0$ ise çok yumuşak olarak isimlendirilir. X-ışınlarının en genel kaynağı, bir metal atomu bombardımana tabi tutan yüksek enerjili elektronların yavaşlamasıdır.

3.1.1. X – Işınlarının genel özellikleri

X -Işınlarının önemli bazı özellikleri aşağıdaki gibi sıralanabilir:

Çok kısa dalga boylu elektromanyetik dalgalardan ibaret oldukları için yüklü bir tanecik değildirler ve bu nedenle elektrik ve manyetik alanda sapmazlar.

Fotoğraf filmlerine etkirler, çok şiddetli flüoresans ve fosforesans uyartırlar.

Çok kısa dalga boylu oldukları için her madde de kolaylıkla fotoelektrik olayını oluştururlar ve gazları iyonlaştırırlar.

Bir madde içinden geçme (girginlik) yetenekleri oldukça büyüktür. Belirli bir madde için girginlik yetenekleri dalga boyları küçüldükçe (frekansları arttıkça) artar.

Belirli dalga boyundaki X-ışınlarının girginlik yetenekleri ise maddenin atom numarası arttıkça azalır.

Bu nedenle atom numarası büyük olan maddeler X-ışınlarını daha çok soğururlar. Kısacası geçtikleri maddesel ortamlarda, atom numarasının artması ile orantılı olacak biçimde soğrulurlar.

Yüksüz olmaları sonucu elektrik ve manyetik alandan etkilenmeleri söz konusu değildir.

Canlı dokuları harap ederler ve hücrelerde mutasyon meydana getirirler.

Adi ışığın yansıma, kırınım ve kutuplanma gibi özelliklerini X-ışınları da gösterir. Bu sayılan özelliklerin birçoğu yüksek enerjili diğer ışınlarda ve taneciklerde de mevcuttur.

X-ışınları elektromanyetik spektrumda ultraviyole ışınları ile gama ışınları arasında yer alır. X-Işınlarının ve diğer ışınlarının madde ile etkileşmesi

Şekil 3.1'de verilmiştir.

Şekil 3.1. X-Işınlarının madde ile etkileşmesi.

3.1.2. X – ışınlarının elde edilmesi

Atomları uyararak (birbirleriyle çarpıştırarak, ısı vererek, elektron ve fotonlar göndererek) ya da elektronun atoma bağlanma enerjisine (eşik enerjisine) eşit veya büyük enerjiye sahip fotonlar göndererek; elektron koparıp elektron boşlukları oluşturmak (fotoelektrik olayı),

oluşan bu boşluklara atomun üst yörüngelerinden (dış yörüngelerinden) elektronların geçişini sağlamak, bu geçişler sonucu iki enerji düzeyi arasındaki enerji farkı, foton (karakteristik X-ışını) olarak açığa çıkar.

Işık, bir elektromanyetik dalga karakteri olduğundan, *foton* adı verilen dalga paketçiklerinin, belirli koşullarda maddeden elektron sökmesi suretiyle fotoelektrik olayı meydana gelir. Böylece fotoelektrik olay, ışığın foton enerjisinin elektrona devredilerek maddenin atomlarından elektron sökülebileceğini ve bunun da üstünde ışığın fotonlardan ibaret olduğunu ortaya koymuştur. X-ışınlarının oluşumu bir ters fotoelektrik olayı idi.

Hızlandırılmış bir elektronun negatif ivmelendirilmesi ya da bir hedefe çarptırılarak, hızından kaynaklanan kinetik enerjisini elektromanyetik ışıma enerjisine dönüştürerek elde edilen ve sürekli enerjisi değiştiğinden dolayı yayılan elektromanyetik dalganın frekansı da değişeceğinden farklı dalga boylarında ışımalar olacaktır. Elde edilen bu ışımalara sürekli X ışıması denir.

Yapılan incelemeler X-Işınlarının, yeter derecede hızlı elektronların bir maddeye çarparak frenlenmesi sonucunda oluşan çok yüksek frekanslı (veya çok kısa dalga boylu) elektromanyetik dalgalar olduklarını, görünür ışık gibi foton karakteri gösterdiklerini ortaya koymuştur. Çarpan elektronların kinetik enerjilerine bağlı olarak X-ışınlarının dalga boyları 0,1 A° ile 0,01 A° arasında değişmektedir.

Röntgen, X-ışınları elde etmek için (Şekil 3.2).'de görülen ve kendi ismi ile anılan röntgen tüplerini geliştirmiştir. Bu, içindeki gaz basıncı 10^{-3} (torr)'a düşürülmüş özel bir Katot ışını tüpünden başka bir şey değildir.

Anot - Katot arasına yeteri büyüklükte hızlandırıcı bir V gerilimi uygulandığında oluşan katot ışınları (yani hızlandırılmış elektronların) anot metaline çarparak frenlenmesi sonucunda anottan X-ışınları yayılır. Bu tüplere *Soğuk Katotlu X-ışını Tüpleri de* denir. Bir süre sonra gaz basıncının çok düşmesi ile tüpün çalışmaz hale gelmesi ve ışınların yalnız şiddeti değiştirilmek istendiğinde dalga boyunun da değişmesi bu tüpün başlıca kusurlarıdır.

Şekil 3.2. Röntgen tüpü.

X-ışınları bu gün soğuk katotlu röntgen tüpünün yerini alan sıcak katotlu *Coolidge tüpleri* ile elde edilmektedir. Bu tüpler yüksek vakumludur. Küçük bir batarya ile ısıtılan tungsten flamandan yayılan elektronlar, anot - katot arasına uygulanan V gerilimi altında hızlandırılarak anot'a çarptırılır. Coolidge tüpünün anot'u ile katot'u arasına 10 kV ile 1 MV arasında hızlandırıcı potansiyel farkları uygulamak suretiyle değişik dalga boyu sınırlarında X-ışınları oluşturmak mümkündür. Yayılan X-ışınlarının dalga boyları (yani kaynağın tayfı) aynı kalmak üzere yalnız şiddetini değiştirmek için flaman akımını değiştirmek gerekir. Katot'un ısıtılmasıyla katottan gelen elektronlar salınır. Bu elektronlar anot ve katot arasında uygulanan yüksek bir gerilim ile hızlandırılır.

Bu elektron demeti anot tarafından (hedef elementi) yavaşlatılır (ivmelendirilir) veya çarpmaları esnasında X- ışınları meydana gelir.

Bu ivmelenme veya çarpma sonucu oluşan X- ışınları sürekli spektrum olarak gözlenir. Burada bir çarpmada veya tamamen enerjisini kaybeden elektron için,

$$eV = \frac{1}{2}m_e v^2$$
 (3.1)

yazılır.

3.1.3. X- ışınları tüplerinin genel özellikleri

Elektron kaynağı (katot): Elektron kaynağı Tungsten yapılmış bir flamandır, sıcaklığı vaklasık 2000 ^OC' ve kadar ulasıp akkor hale gelir.

Yüksek gerilim kaynağı: Meydana gelen serbest elektronları hızlandırmak için yüksek gerilim kaynağı gereklidir.

Hedef (anot): X- ışınlarının elde edilmesi için hedef element

Tüp metal kılıfı ve X – ışını tüpü: Bu tüp içinin havası boşaltılmış kapalı bir cam kaptır. Cam tüp hem dışarıdan gelecek mekanik hasarlara karşı korunması hem de tüpten çıkan X- ışınlarından çevrenin korunması amacıyla kalın kurşun içine yerleştirilmiştir.

Kolimatör: Çıkan X – ışınlarının yönlendiren ve sınırlandıran kurşun veya demir demeti.

Filtreler: Kolimatör önüne takılan X – ışınlarının yumuşak olanlarının tutulması için kullanılan Alüminyum ve Bakır'dan yapılmış filtrelerdir.

3.1.4. Kuantum sayıları ve karakteristik x-ışınları

Schrödinger elektronun yerini belirlemek için üç kuantum sayısına ihtiyaç duymuştur. Dördüncü kuantum sayısı ise sonradan keşfedildi. Buna göre elektronun atom içindeki durumunu ve davranışını belirlemek için modern atom teorisinde kullanılan bu sayılara Kuantum Sayıları adı verilir. Elektronlar atomlarda rastgele değil Pauli İlkesine göre dizilir.

Pauli'ye göre bir atomda aynı kuantum sayılarına sahip ikinci bir elektron olamaz. Bir atomdaki herhangi iki elektronun en fazla 3 kuantum sayıları aynı olabilir. Bir elektronun atomdaki adresi 4 kuantum sayısı ile belirlenir. Kuantum Sayıları:

- 1. Baş Kuantum Sayısı (n) n=1,2,3...n (K,L,M,N....)
- 2. Orbital kuantum sayısı (l) (l =n-1) 0,1,2,3.... (s,p,d,f,g....)
- 3. Manyetik kuantum sayısı (m_l) (2 l+1) l, ..., 0, ..., + l
- 4. Spin manyetik kuantum sayısı(m_s) -1/2, +1/2

Atom çekirdeği etrafında, n=1, n=2, n=3,... ya da K, L, M, N,...gibi sembollerle ifade edilen enerji kabukları ve K enerji kabuğu dışındaki diğer enerji kabuklarının birden fazla alt tabakalardan (s, p, d, f gibi Orbitallerden) oluşur. (Bkz. Şekil 1.1)

Bu çalışmada L tabakasındaki ışımasız elektron geçişleri incelendiğinden, L tabakasındaki elektronların konumları ve kuantum sayıları aşağıdaki (şekil 3.3).'de temsili olarak gösterilmiştir.

Şekil 3.3. L tabakasındaki elektronların kuantum sayılarının gösterimi.

Aynı ana enerji kabuğundaki elektronların enerjileri eşit olduğundan, orbitallerdeki geçişler ışımasız geçişlerdir.

Ana enerji kabukları arasında enerji farkı sıfırdan büyük olduğundan dolayı bu tür geçişlerde, iki kabuk arasındaki enerji farkına eşit enerjide karakteristik x ışıması yaparlar.

Kabuklar arasındaki elektron geçişleri belli kurallara göre olur. Bunlar seçim kurallarıdır. (Çizelge 3.2).

Sembol	Adı	Alabileceği değerler ve Simgeler	Geçiş kuralları
n	Baş kuantum sayısı	1,2,,n K, L, M,	$\Delta n \neq 0$
l	Yörünge açısal momentum kuantum sayısı	0, 1,(n-1) s, p, d, f,	$\Delta l \ell = \pm 1$
m_l	Manyetik kuantum sayısı	- l ,0,+ l	_
m_s	Spin kuantum sayısı	±1/2	-
J	Toplam açısal momentum kuantum sayısı	$\ell \pm 1/2$, (j $\neq 0$ -1/2)	$\Delta j=\pm 1$, 0

Çizelge 3. 2. Kuantum sayıları ve geçiş kuralları

Karakteristik X - ışınlarının oluşması için;

- a. Hedefi, elektronlarla bombardıman etmek.
- b. Protonlar, alfa parçacıkları veya hızlandırıcılardan gelen diğer iyonlar ile bombardıman etmek.
- c. X-ışını tüplerinde oluşan birincil X-ışınları ile bombardıman etmek.
- d. Radyoizotoplardan yayınlanan alfa, beta, gama parçacıkları ile bombardıman etmek.
- e. Hedef elementten yayınlanan ikincil X-ışınları ile bombardıman etmek.
- f. Doğal (iç dönüşüm, K yakalama, β bozunumu) radyoaktif oluşum.
3.1.5 Karakteristik x-ışını yayımlanması ve enerji seviyeleri

Bir atomda, herhangi bir nedenle oluşan elektron boşlukları; üst katmanlardaki enerji seviyelerinde (n>1)bulunan elektronlar tarafından 10^{-8} saniyede doldurulur. Aradaki bu enerji farkı (ΔE) karakteristik x-ışını olarak salınır.

K tabakasındaki boşluk; L tabakası tarafından doldurulursa meydana gelen karakteristik X-ışını K_{α} olarak adlandırılır. M tabakası tarafından doldurulursa K_{β} Xışını meydana gelir. K_{α} ışınının şiddeti fazladır, K_{β} x-ışınının enerjisi fazladır.

Bu ışınlar, doğal ve suni olmak üzere iki şekilde meydana gelir. Doğal Xışınları, atom çekirdeği tarafından, K enerji seviyesindeki bir elektronun yakalanması, iç dönüşüm olaylarıyla meydana gelir. Suni olarak X- ışınları, herhangi bir yolla atomun uyarılması ile meydana gelir. Karakteristik X-ışını oluşumu (Şekil 3.4).'de gösterilmektedir.

Şekil 3.4. Karakteristik X-ışınlarının oluşumu.

X-ışını spektrumlarının sürekli oluşu ise, yüksek hızlı yüklü parçacıkların bir elektrik alanı içinde ivmeli olarak hareket ederlerken ani olarak yavaşlatılması veya durdurulması sonucu ışıma yaparlar. Burada ilk ve son hızları arasındaki enerji farkına eşit enerjide X-ışınları yayarlar. Bu ışımaya, frenleme ışıması manasına gelen

"Bremsstrahlung" denir. Aynı zamanda bu ışınlar, X-ışını spektrumlarında sürekli bir bölge oluştururlar, dolayısıyla sürekli X-ışınları olarak adlandırılırlar.

Bir X-ışını demetinin şiddeti, birim zamanda, birim alana düşen enerji olarak tarif edilir. Genellikle cm², ye saniyede gelen enerjidir. X-ışını spektrometrik analizinde ise sayım (count) /s olarak verilir.

Bir atomun K tabakasında meydana getirilen elektron boşluğu eğer *L* tabakasında bulunan bir elektron tarafından doldurulacak olursa, böyle bir elektron geçişi sonucunda yayımlanan fotonun frekansı, karakteristik X-ışını spektrumunun K_{α} çizgisine karşılık gelir. K tabakasındaki boşluk, M tabakasındaki bir elektron tarafından doldurulursa K β çizgisi, N tabakasındaki elektronlardan biri tarafından doldurulursa K γ çizgisine karşılık gelen fotonlar yayımlanır. Herhangi bir tabaka veya alt tabakadaki bir boşluk üst tabakalardan bir elektron ile doldurulduğu zaman yayımlanan X-ışınlarının Siegbahn ve IUPAC (International Union of Pure and Applied Chemistry) gösterimleri (Çizelge 3.3).'de

Eğer hedef metali üzerine çarpan elektronların enerjileri K tabakasından elektron sökecek kadar büyük değilse, L, M, N tabakalarından birinden bir elektron sökebilir ve bu kez K tabakasına benzer olarak L tabakasında meydana gelen boşluğun M, N, tabakalarındaki elektronlarla doldurulması esnasında L_t, L_α, L_β, L_γ karakteristik ışınları, yine aynı şekilde M tabakası için M_t, M_α, M_β ve N tabakası için N_t, N_α, N_β karakteristik X-ışını çizgileri oluşur.

Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC	Siegbahn	IUPAC
Κα1	K-L _{III}	Lα _I	L_{III} - M_V	$L_{\gamma 1}$	L _{II} -N _{IV}	$M_{\alpha 1}$	M _V -N _{VII}
$K\alpha_2$	K-L _{II}	$L\alpha_2$	L_{III} - M_{IV}	$L_{\gamma 2}$	$L_{I}-N_{II}$	$M_{\alpha 2}$	M_{V} - N_{VI}
$K\beta_1$	K-M _{III}	$L\beta_1$	L_{II} - M_{IV}	$L_{\gamma 3}$	L _I -N _{III}	M_{eta}	M_{IV} - N_{VI}
$K\beta_{2'}$	K-N _{III}	$L\beta_2$	L_{III} -N _V	$L_{\gamma4}$	L _I -O _{III}	\mathbf{M}_{γ}	M_{III} - N_V
$K\beta_{2''}$	K-N _{II}	$L\beta_3$	L _I -M _{III}	$L_{\gamma 4^\prime}$	L _I -O _{II}	$M_{\xi 1}$	$M_{V}\text{-}N_{III}$
K β ₃	K-M _{II}	$L\beta_4$	L _I -M _{II}	$L_{\gamma 5}$	L _{II} -N _I	$M_{\xi 2}$	$M_{IV}\text{-}N_{II}$
$K\beta_{4'}$	K-N _v	$L\beta_5$	L _{III} -O _{IV,V}	$L_{\gamma 6}$	L _{II} -O _{IV}		
$K\beta_{4''}$	K-N _{IV}	$L\beta_6$	L _{III} -N _I	$L_{\gamma 8}$	L _{II} -O _I		
Kβ _{5'}	K-M _V	$L\beta_7$	L _{III} -O _I	$L_{\gamma 8'}$	L _{II} -N _{IV}		
$K\beta_{5''}$	K-M ₄	$L\beta_9$	L_{I} - M_{V}	L_{η}	L _{II} -M _I		
		$L\beta_{10}$	L_{I} - M_{IV}	Lı	L_{III} - M_{I}		
		$L\beta_{15}$	L_{III} - N_{IV}	L _S	L_{III} - M_{III}		
		$L\beta_{17}$	L_{II} - M_{III}	L _t	L_{III} - M_{II}		
				L_U	L _{III} -N _{IV}		
				L _v	L _{II} -N _{IV}		

Çizelge 3.3. X-ışını diyagram çizgilerinin Siegbahn ve IUPAC gösterimleri

3.1.6. x-ışını spektrumu

Aşağıdaki (Şekil 3.5).'de tipik bir X-ışını spektrumu görülmektedir. Bu spektrumda, karakteristik X-ışını pikleri, koherent saçılma pikleri, inkoherent saçılma pikleri, kaçak pikler ve üst üste binme pikleri mevcuttur (Van Grieken ve Markowicz, 1993).

Şekil 3.5. İdeal bir X-ışını spektrumu.

a) Karakteristik X-ışını pikleri, incelenen numunedeki elementlerden gelen ve elementler hakkında bize bilgi veren K_{α} , K_{β} , L_{α} , L_{β} , ...gibi piklerdir.

b) Koherent saçılma pikleri; kaynaktan numuneye gelen primer gamma ışınlarının numune içerisindeki atomlardan enerjisini kaybetmeden saçılması sonucu oluşurlar.

3.2. X ve Gama Işınlarının Madde ile Etkileşmesi

X ve gama ışınlarının her ikisi de elektromanyetik dalga olup madde ile etkileşmesi birbirinin aynıdır. Bilinen radyo dalgaları ve ışık gibi diğer elektromanyetik radyasyonlardan farkları enerjilerinin yüksek ve dalga boylarının çok kısa olmasıdır. X ve gama ışınlarının orijinleri farklıdır. Gama ışınları kararsız atomun çekirdeğinden yayınlanırken, x- ışınları hızlandırılmış elektronların yüksek atom numaralı hedef atomlarının çekirdeklerine yaklaştıklarında frenlenmeleri ya da çekirdeğe çarpmalarıyla hâsıl olurlar.

Her iki ışınında elektrik yükü yoktur. Bununla beraber atomla etkileştiklerinde iyonlaşma hâsıl ederler. Elektrik yükleri olmadığından etkileştikleri madde içerisinde itilip çekilmezler ancak yolları üzerindeki parçacıklarla çarpışmalar yaparlar. X ve gama ışınları madde içinde başlıca üç çeşit etkileşme ile enerji kaybederler.

1. Atomun iç yörünge elektronlarla etkilenerek fotoelektrik olay meydana gelir.

2. Atomun dış yörünge elektronları ile Compton olayı meydana gelir.

3. Atomun çekirdeğine yakın bir yerde bir pozitron ve bir elektron meydana getirme olayına çift oluşumu oluşur.

Bu üç olayın olma ihtimali, x ve gama ışınlarının enerjileri ile etkileşen maddenin atom numarasına bağlı olarak değişir.

Elektromanyetik dalgalar madde ile etkileşmesi sonucu aşağıdaki olaylar meydana gelebilir.

a) Fotoelektrik olay

b) Compton saçılması

c) Çift oluşumu

Elektron vermeye meyilli bir atomun yörüngesindeki, elektronun bağlanma enerjisinden eşit veya büyük ($hv \ge E_B$) bir enerji yollandığında, elektron serbest kalır.

Enerjisi 0.001 – 0,5 MeV arasında olan fotonlar hedef maddenin atomları ile etkileştiklerinde foton soğurulurken yerine bir serbest elektron (Şekil 3.6).'de görülmektedir. Bu olaya fotoelektrik olay, dolayısıyla maddeden kopan elektrona da foto elektron denir. Fotonun enerjisinin tamamını soğuran elektronun kazandığı kinetik enerji;

$$E_{fe} = hv - E_B$$

(3.2)

ifadesine eşittir. Burada E_{fe} elektronun kazandığı kinetik enerji, hv gelen fotonun enerjisi, E_B ise elektronun bağlanma enerjisidir. Enerji ve momentum ikisi birden korunumlu olamayacağından, serbest bir elektronun bir foton soğurması imkânsızdır. Ancak bağlı elektron durumunda atom geri teper ve böylece momentumun korunması sağlanır. Atomun kütlesi çok büyük olduğundan geri tepme enerjisi çok küçüktür ve kinetik enerji ifadesi ihmal edilmiştir (Şahin,1998).

Fotoelektrik etkileşim ihtimaliyeti, gelen ışın demetinin enerjisi elektronun bağlanma enerjisine ne kadar yakın bir değerde ise o derecede artmaktadır. O halde bir elementin atomunun verilen bir seviyesinden bir elektronu sökebilmek için gerekli minimum foton enerjisi, o atomun soğurma kıyısı olarak adlandırılır.

Her bir atomun çeşitli soğurma kıyıları vardır. Bir atomun K kabuğu için bir, L kabuğu için üç, M kabuğu için beş, N kabuğu için yedi soğurma kıyısı vardır. Her atomun soğurma kıyısı enerjisi, dış yörüngeden iç yörüngeye doğru artmaktadır.

Şekil 3.6. Fotoelektrik olay.

3.2.2. Compton saçılması

Compton saçılması, bir fotonun atoma zayıf bağlı olan elektron ile çarpışmasıdır. Bu olay ışığın kuantum teorisini dolayısıyla ışığın tanecikli yapısını ortaya koyan önemli bir olaydır. Compton olayının meydana gelmesinde dış tabaka elektronları daha baskındır. Compton olayı öncesinde, gelen fotonun enerjisi, fotonun etkileştiği elektronun bağlanma enerjisinden daha büyüktür. Gelen foton, elektron ile etkileştikten sonra enerjisinin bir kısmını kaybetmiş olarak geliş doğrultusundan sapar. (Şekil 3.7).

Şekil 3.7. Compton saçılması.

3.2.3. Çift oluşumu

Çift oluşumu, çekirdeğin etki alanına giren bir fotonun bir elektron ile bir pozitrona dönüşmesi olayıdır. Bu olayın meydana gelebilmesi için eşik enerjisi $2m_0c^2$ yani 1,02 MeV'dir. Elektron ile pozitronun kütleleri birbirine eşit, yükleri ise eşit fakat zıt işaretlidir. Bu olay çekirdek etrafında oluştuğundan hiçbir korunum ilkesi bozulmuş olmaz. (Şekil 3.8).

Şekil 3.8. Çift oluşum.

3.3. Geçişler

Kararsız halde bulunan bir atomda değişik geçişler gözlenebilir. Bunlar;

- 1- Işımalı geçişler
- 2- Auger geçişleri
- 3- Coster-Kronig geçişler
- 4- Kendiliğinden geçişler

Herhangi bir olay sonucu atomda meydana gelen boşluk üst tabakadaki başka bir elektron tarafından ışımalı veya ışımasız olarak doldurulabilir. Bunlardan Auger, Coster-Kronig ve kendiliğinden geçişler ışımasız olaylardır. Işımasız geçişlerin her biri ayrı ayrı isimlendirilmiş olsa da, aslında hepsi Auger olayıdır (Ferreira, 1987).

Auger olay, atomda herhangi bir sebeple iç kabukta oluşan boşluk daha dış bir kabuktaki elektronla doldurulur. Salınan foton üst kabuktaki bir elektronu daha söker. Sökülen elektron a Auger elektron u denir.

Coster-Kronig geçişi auger geçişinin özel bir durumudur. Auger olayından farklı olarak boşluğun bulunduğu kabukla, bu boşluğu dolduran elektronun kabuk düzeyi aynıdır. Yani $\Delta n = 0$ 'dır.

Bir kabuğun alt kabukları arasındaki enerji seviyelerinin farkları oldukça düşük olacağından, elektron, ilgili atomun en düşük seviyesinden koparacaktır. Böylece Coster-Kronig elektronun enerjisi de auger elektronunun enerjisine göre daha düşük olacaktır. Kendiliğinden geçişler ise en üst seviyedeki iki elektron eş zamanlı olarak doldurulmamış daha yüksek bir seviyeye uyarılır. Elektronlar eski hallerine döndürüldüğünde diğer bir elektron sökülür. Bu işlemde ikiden fazla elektron da kullanılabilir.

Auger olayı daha ziyade düşük atom numaralı elementlerde yaygındır. Çünkü bu atomların değerlik elektronları daha gevşek bağlıdır ve karakteristik X -ışınların daha kolay soğururlar. Aynı nedenlerden dolayı, K serisinden çok L serisinde rastlanır (Ferreira, 1987).

3.3.1. Flüoresans verimler ve coster-kronig geçişler

Atomun tabaka veya alt tabaka flüoresans verimi, o tabaka veya alt tabakada herhangi bir yolla meydana getirilmiş bir boşluğun karakteristik X-ışını yayımlanarak doldurulması ihtimalidir. Atomda bir boşluk meydana getirilmiş ise o atomun uyarılmış halidir. Uyarılmış halin ortalama ömrü τ ise halin toplam seviye genişliği, belirsizlik ilkesine göre $\Gamma = \hbar/\tau$ ile verilir. Γ toplam seviye genişliği; Γ_R ışımalı seviye genişliği, Γ_A ışımasız seviye genişliği ve Γ_{CK} , Coster-Kronig seviye genişliğinin toplamıdır ($\Gamma = \Gamma_R + \Gamma_A + \Gamma_{CK}$). Bundan dolayı ω flüoresans verimi,

$$\omega = \frac{\Gamma_R}{\Gamma} \tag{3.3}$$

ile verilir.

Bir atomda K tabakasında meydana getirilen bir boşluğun karakteristik X-ışını yayımlayarak doldurulması ihtimaline K tabakasına ait flüoresans verim denir. Flüoresans verim,

$$\omega_{\kappa} = \frac{I_{\kappa}}{n_{\kappa}} \tag{3.4}$$

ile verilir. Bir atomda K tabakasında meydana getirilen bir boşluğun karakteristik Xışını yayımlayarak doldurulması ihtimaline K tabakasına ait flüoresans verim denir.

Burada I_{κ} numuneden yayımlanan karakteristik K X- ışınlarının sayısı; n_{κ} ise K tabakasında meydana getirilen boşlukların sayısıdır. Daha yüksek atomik tabakalar için flüoresans verim tanımı iki sebepten dolayı daha karışıktır.

Herhangi bir yol ile, x tabakasının (x=L, M, N, ...) x_i alt tabakasında meydana getirilmiş bir boşluğun, daha yüksek x_j alt tabakasına kayma ihtimali Coster-Kronig geçiş ihtimali olup f_{ij}^{x} ile gösterilir. Örneğin, L tabakası için f_{13} Coster-Kronig geçişi, L₃ alt tabakasından L₁ alt tabakasına bir elektronun geçiş ihtimalidir. Coster-Kronig geçişler ışımalı ve ışımasız olmak üzere iki kısımdan ibarettir. Bunlar ışımalı kısmı $f_{ij}^{x}(R)$ ile, ışımasız kısmı ise $f_{ij}^{x}(A)$ ile gösterilir. $f_{ij}^{x}(R) << f_{ij}^{x}(A)$ olup, x tabakasının i ve j alt tabakaları arasında Coster -Kronig geçişleri için;

$$f_{ij}^{x} = f_{ij}^{x}(R) + f_{ij}^{x}(A)$$
(3.5)

yazılabilir. $f_{ij}^{x}(R)$, $f_{ij}^{x}(A)$ nın yanında ihmal edilirse,

$$f_{ij}^{x} = \frac{\Gamma_{A}(L_{i}L_{j}X)}{\Gamma(L_{i})}; X=M, N, O \text{ ve } j>i$$
(3.6)

olur. Burada Γ_A Auger kısmi genişliğidir. (Auger geçiş hızlarının toplamı).

3.3.2. Auger geçişleri

Atomda herhangi bir yolla, meydana getirilen bir boşluk diğer üst tabaka elektronları tarafından, ışımalı olarak doldurulabildiği gibi ışımasız olarak da doldurulabilir. Auger olayında yayımlanan ışın, atomun üst tabaka elektronlarından birini daha söker ve böylece atom iki defa uyarılmış duruma geçer. Bu olay değişik adlarla ışımasız geçişler ve auger olayı olarak bilinmektedir. Bu olayda sökülen elektrona Auger elektronu denir. Bu olay (Şekil 3.9).' de gösterilmiştir.

Şekil 3.9. Auger olayı.

K tabakasında meydana gelen boşluğun L tabakası elektronlarca doldurulması sonucunda bir auger olayının meydana geldiğini göz önüne alırsak, bu olay iki şekilde izah edilir

a) Atomun L'den K'ya geçişinde fazla enerjisini bir L veya M elektronu yayımlaması ile serbest bıraktığı kabul edilir; ya da

b) L'den K' ya elektron geçişinde normal olarak bir Kα fotonu yayımlandığı kabul edilir. Ancak bu foton atomu terk etmeden, bir L veya M elektronu fırlatılmasına sebep olacak şekilde soğurulacaktır. Bu olay iç fotoelektrik soğurma olarak düşünülebilir. Bu her iki izaha göre de atom iki kere iyonlaşmış olmaktadır.

Auger olayı elektronları daha gevşek bağlı ve karakteristik fotonların daha kolay soğurulduğu küçük atom numaralı elementlerde daha yaygın görülür.

Aynı sebepten dolayı bu olay L serisi için K serisinden daha baskındır. Atomdan yayımlanan K α fotonunun enerjisi azalan atom numarası ile L tabakasının soğurulma kıyısına yaklaşır ve dolayısıyla soğurulma şansı artar. Auger olayı, flüoresans verimin ve satellite çizgilerinin temelini oluşturur.

K tabakası için auger olayının meydana gelme ihtimali a_K , ışımasız geçişlerin sayısı I_{KA} , meydana getirilen boşluk sayısı n_K olmak üzere

$$a_K = \frac{I_{KA}}{n_K} \tag{3.7}$$

ile verilir. Auger verimi ve Coster-Kronig verim arasında

$$\omega_i^x + a_i^x + \sum_{j=i+1}^k f_{ij}^x = 1$$
(3.8)

bağıntısı vardır. Bu bağıntıdan faydalanılarak L tabakası için aşağıdaki bağıntılar yazılabilir.

$$\omega_{1} + a_{1} + f_{12} + f_{13} = 1$$

$$\omega_{2} + a_{2} + f_{23} = 1$$

$$\omega_{3} + a_{3} = 1$$
(3.9)

3.3.3. Coster- Kronig şiddetlendirme faktörlerinin teorik olarak hesaplanması

Coster-Kronig geçişlerinden dolayı L X-ışını şiddetlerinde bir artma olduğu bilinmektedir. Bu olay Coster-Kronig şiddetlendirmesi ya da boşluk transferi şiddetlendirmesi olarak adlandırılır. Teorik olarak karakteristik L X-ışını tesir kesitleri, Coster-Kronig şiddetlendirmesi olmadığı zaman ($f_{ii}^{x} = 0$)

$$\sigma_{ll} = \sigma_3 \omega_3 F_{3l} \tag{3.10}$$

$$\sigma_{L\alpha} = \sigma_3 \omega_3 F_{3\alpha} \tag{3.11}$$

$$\sigma_{L\beta} = \sigma_1 \omega_1 F_{1\beta} + \sigma_2 \omega_2 F_{2\beta} + \sigma_3 \omega_3 F_{3\beta}$$
(3.12)

olur. Fakat gerçekte Coster-Kronig geçişleri vardır ve bu durumda tesir kesitleri

$$\sigma_{Ll} = [\sigma_{l}(f_{13} + f_{12}f_{23}) + \sigma_{2}f_{23} + \sigma_{3}]\omega_{3}F_{3l}$$

$$\sigma_{L\alpha} = [\sigma_{l}(f_{13} + f_{12}f_{23}) + \sigma_{2}f_{23} + \sigma_{3}]\omega_{3}F_{3\alpha}$$
(3.13)
(3.14)

$$\sigma_{L\beta} = \sigma_1 \omega_1 F_{1\beta} + (\sigma_1 f_{12} + \sigma_2) \omega_2 F_{2\beta} + [\sigma_3 + \sigma_2 f_{23} + \sigma_1 (f_{13} + f_{12} f_{23})] \omega_3 F_{3\beta}$$
(3.15)

şeklinde ifade edilir. Buradan Coster-Kronig şiddetlendirmelerini ise; aynı X-ışınlarını dikkate alarak verilen denklemlerin taraf tarafa bölünmesi sonucu Coster-Kronig şiddetlendirme faktörleri elde edilir. Dolayısıyla buradan Coster-Kronig şiddetlendirme faktörleri ise;

$$\kappa_{l,\alpha} = \frac{\sigma_l(f_{13} + f_{12}f_{23}) + \sigma_2 f_{23} + \sigma_3}{\sigma_3}$$
(3.16)

$$\kappa_{\beta} = \frac{\sigma_{1}\omega_{1}F_{1\beta} + (\sigma_{1}f_{12} + \sigma_{2})\omega_{2}F_{2\beta} + [\sigma_{3} + \sigma_{2}f_{23} + \sigma_{1}(f_{13} + f_{12}f_{23})]\omega_{3}F_{3\beta}}{\sigma_{1}\omega_{1}F_{1\beta} + \sigma_{2}\omega_{2}F_{2\beta} + \sigma_{3}\omega_{3}F_{3\beta}}$$
(3.17)

şeklinde ifade edilir.

3.3.4. Tesir Kesit

Mikroskobik fizik sahasında teoriler genellikle kesinlik ifade etmez. Yani meydana gelen herhangi bir olay belirli ihtimaliyetler ile açıklanır. Örneğin herhangi bir atomun herhangi bir t anında bozunması ihtimaliyeti ile verilir. Yine benzer olarak herhangi bir parçacığın herhangi bir t anındaki konumu, bir nükleer reaksiyonun meydana gelmesi vb. olaylar belirli ihtimaliyetler ile verilir.

Tesir kesiti, bir numune üzerine gelen parçacıkla hedef numunedeki her bir parçacığın ilgilenilen herhangi bir olayı meydana getirme ihtimalinin bir ölçüsüdür. Bu ölçü hedef parçacığı kuşatan hayali bir alanla karakterize edilir. Bir hedef parçacığın tesir kesiti, ilgili olayın tabiatına ve gelen parçacığın enerjisine bağlıdır ve parçacığın geometrik kesitinden daha büyük veya daha küçük olabilir.

A yüzeyine ve dt kalınlığına sahip ince bir levha üzerine I şiddetiyle düşürülen parçacıklar demeti düşünelim. Bu parçacıklar demeti ince levhadan geçerken, bir miktarının madde atomları tarafından azaltılma ihtimali vardır. Eğer σ , bir atomu kuşatan ve ilgilenilen herhangi bir olayın meydana gelmesi ile ilgili etkin alan ise, gelen parçacık bu alana düştüğü zaman ilgilenilen olay gerçekleşecektir. Levhanın birim hacmi başına n tane hedef atomu düştüğü ve bu levhanın (hiçbir atomunun diğer atomu üzerine binmeyecek şekilde) ince olduğu kabul edilirse, bu durumda her bir atom gelen parçacıklarla, ilgilenilen olayı gerçekleştirmede eşit şansa sahip olacaktır. Bu durumda ndt, birim yüzey başına düşen atom sayısı ve Andt, A alanındaki toplam atom sayısı olacaktır. Her bir atom ilgilenilen olaya σ etkin alanıyla katıldığından dolayı bu olayın meydana gelmesi için mümkün olan toplam etkin alan, $\sigma Andt$ olur. Bir ışın demetindeki parçacık sayısı ışının şiddetiyle orantılı olduğundan eğer bir bombardıman demetinde Nparçacık varsa ve dilimdeki atomlar ile etkileşen parçacık sayısı dN ise,

$$\frac{dN}{N} = \frac{Toplam \quad etkin \quad alan}{Hedef \quad alan}$$
(3.18)

ifadesi yazılabilir. Bu durumda

$$\frac{dN}{N} = n\sigma dt \tag{3.19}$$

elde edilir. Belirli bir kalınlıkta, bir dilimdeki atomlar ile gelen parçacıkların etkileşme oranını bulmak için dN/N'nin integralinin alınması gerekir. Gelen her parçacığın yalnız bir etkileşme oluşturduğu kabul edilirse, dilimin ilk dt kalınlığı içinden geçerken dN adet parçacığın demetten ayrılmış olduğu düşünülebilir. Böylece ifade (-) işareti alır.

$$-\frac{dN}{N} = n\sigma dt \tag{3.20}$$

"Eş (3.20)" ifadesinin integrali alınırsa,

$$N = N_o e^{-n\sigma t} \tag{3.21}$$

elde edilir. Burada N₀ ince levhaya gelen parçacıkların sayısı ve *N*, levhanın *t* kalınlığını geçen parçacıkların sayısıdır. Tesir kesiti σ ile gösterilir ve birimi barn'dır (1b=10⁻²⁴ cm²). $n\sigma t$ yeterince küçük olduğu zaman,

$$N = N_0 (1 - n\sigma t) \tag{3.22}$$

yazılabilir. Bu durumda t kalınlığını geçerken soğurulan parçacıkların sayısı

$$dN = N_0 n\sigma t \tag{3.23}$$

ifadesi ile verilir. Buradan tesir kesiti için

$$\sigma = \frac{dN}{N_o nt} \tag{3.24}$$

genel ifadesi elde edilir.

4. BULGULAR

4.1. L X-Işınlarının Tesir Kesitleri

Bu çalışmada, atom numarası $40 \le Z \le 50$ arasındaki bazı elementlerin Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd ve In için *L* alt tabakalarına ait *L* X-ışını tesir kesitleri ve Coster-Kronig şiddetlendirme faktörleri hesaplanmıştır. Coster-Kronig şiddetlendirme faktörlerini hesaplamak için önce *L* X-ışını tesir kesitleri "Eş (3.10)"– "Eş (3.15)" denklemleri kullanılarak teorik olarak hesaplandı. Elde edilen *L* X-ışını flüoresans tesir kesitlerine ait hesaplanan teorik değerler, uyarma enerjisi soğurma kıyı enerjisine yakın enerjiler için, (Çizelge 4.1). – (Çizelge 4.4). verilmektedir.

4.2. Coster-Kronig Şiddetlendirme Faktörleri

Işımasız geçişlerden dolayı *L* X-ışını şiddetlerinde bir artma olduğu bilinmektedir. Bu olay daha öncede belirtildiği gibi Coster-Kronig şiddetlendirmesi ya da boşluk transferi şiddetlendirmesi olarak adlandırılır. Coster-Kronig şiddetlendirme faktörleri "Eş (3. 16)" ve "Eş (3. 17)" denklemleri kullanılarak Coster-Kronig şiddetlendirme faktörleri teorik olarak hesaplanmıştır. Bu hesaplanan değerler uyarma enerjisi soğurma kıyı enerjilerine yakın enerjiler için, (Çizelge 4.8). ve (Çizelge 4.9). da verilmektedir.

Flement	F(keV)		G	~
Liement	L(KCV)	Ο _{Lα}	$O_{L\beta}$	O_{Ll}
⁴¹ Nb	2.386	7625.568	228.603	285.754
⁴² Mo	2.539	7631.860	239.010	288.461
⁴³ Tc	2.696	7594.797	364.020	281.288
⁴⁴ Ru	2.858	7592.429	463.154	281.201
⁴⁵ Rh	3.025	7406.914	543.777	271.888
⁴⁶ Pd	3.193	7179.044	630.591	266.788
⁴⁷ Ag	3.373	7143.136	706.196	252.413
⁴⁸ Cd	3.560	7152.512	769.280	269.992
⁴⁹ In	3.754	6961.347	812.827	257.528

Çizelge 4. 1. Sadece L_3 alt tabakası uyarıldığında elde edilen L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom)

Element	E(keV)	σ_{Llpha}	σ_{Leta}	σ_{Ll}
	2.674	5697.343	2839.378	213.497
⁴¹ Nb	3.000	4188.616	2456.635	157.044
10	2.648	6744.817	3342.646	254.933
⁴² Mo	3.000	5020.601	2827.232	187.736
13	2.818	6700.373	3683.536	248.159
⁴³ Tc	4.000	2640.682	1716.435	097.803
44	2.993	6690.843	3747.400	247.911
⁺⁻ Ru	4.000	3113.195	2058.982	115.303
45.5.1	3.174	6526.900	3714.000	239.585
⁺³ Rh	4.000	3570.090	2428.620	131.048
465.1	3.356	6429.333	3843.551	238.830
^{+o} Pd	4.000	4100.701	2888.952	152.389
47 .	3.553	6292.457	3954.592	222.353
Ag	4.000	4683.993	3396.644	165.516
48 0 1	3.757	6966.109	4052.371	236.747
Cd	4.022	5295.610	3918.681	200.637
49 1	3.970	6194.265	3941.396	229.152
¹ In	4.244	5265.774	3925.979	194.688

Çizelge 4. 2 L_3 alt tabakasının, L_2 ve L1 alt tabakalarının uyarılma enerjilerine göre uyarıldığında elde edilen L_3 X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom)

Element	E(keV)	σ_{Llpha}	σ_{Leta}	σ_{Ll}
⁴¹ Nb	2.674	6108.629	2851.708	228.886
⁴² Mo	2.648	7257.042	3388.869	274.294
⁴³ Tc	2.818	7220.373	3708.668	267.266
⁴⁴ Ru	2.993	7224.441	3779.950	267.495
⁴⁵ Rh	3.174	7053.793	3822.853	258.752
⁴⁶ Pd	3.356	6942.178	3885.831	257.212
⁴⁷ Ag	3.553	6809.397	4005.698	281.943
⁴⁸ Cd	3.757	6768.870	4108.506	256.397
⁴⁹ In	3.970	6706.630	4241.221	248.106

Çizelge 4. 3. L_2 alt tabakası uyarıldığında elde edilen L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom)

Element	E(keV)	σ_{Llpha}	σ_{Leta}	σ_{Ll}
⁴¹ Nb	3.000	5316.673	2607.498	199.289
⁴² Mo	3.000	6244.808	3021.255	233.355
⁴³ Tc	4.000	6223.393	3708.668	128.708
⁴⁴ Ru	4.000	4070.968	2222.024	150.701
⁴⁵ Rh	4.000	4620.362	2621.057	169.577
⁴⁶ Pd	4.000	5260.494	3117.180	195.211
⁴⁷ Ag	4.000	5940.055	3662.148	179.088
⁴⁸ Cd	4.022	6659.311	4060.067	252.200
⁴⁹ In	4.244	6653.893	4001.221	246.155

Çizelge 4. 4. L_1 alt tabakası uyarıldığında elde edilen L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom)

Soğurma kıyı enerjilerine uzak uyarma enerjisinde L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom) (Çizelge 4.5). – (Çizelge 4.7). ve Coster – Kronig şiddetlendirme faktörleri. (Çizelge 4.10). ve (Çizelge 4.11).de verilmektedir.

Element	E(keV)	σ_{Llpha}	$\sigma_{{\scriptscriptstyle L}{\scriptscriptstyle eta}}$	σ_{Ll}
	2.695	5583.339	2787.361	209.225
⁴¹ Nb	4.000	1894.626	1164.554	070.997
42 n a	2.844	5706.678	2796.619	215.695
Mo	4.000	2252.623	1273.443	085.142
⁴³ Te	3.000	5782.665	3126.733	214.172
10	5.000	1408.542	0965.655	052.168
⁴⁴ P 1	3.201	5708.729	3156.636	211.434
Ru	5.000	1663.671	1152.588	061.617
45.01	3.388	5586.511	3211.117	205.066
KII	5.000	1913.325	1359.586	070.233
⁴⁶ D4	3.605	5408.541	3392.380	201.222
Pu	5.000	2200.314	1613.727	081.768
47 A ~	3.780	5422.560	3407.000	197.184
Ag	5.000	2511.400	1921.502	091.270
4804	4.000	5370.237	3493.566	203.464
Ca	5.000	2919.386	2264.099	110.600
49 1	4.000	6082.060	3991.672	225.004
III	6.000	2019.948	1639.340	074.726

Çizelge 4. 5. L_3 alt tabakasının, L_2 ve L1 alt tabakalarının uyarılma enerjilerine göre uyarıldığında elde edilen L_3 X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

Element	E(keV)	σ_{Llpha}	σ_{Leta}	σ_{Ll}
⁴¹ Nb	2.695	5887.238	2799.469	224.289
⁴² Mo	2.844	6130.816	2809.902	232.519
⁴³ Tc	3.000	6223.393	3147.858	230.449
⁴⁴ Ru	3.201	6157.500	3184.012	228.137
⁴⁵ Rh	3.388	6032.992	3243.895	221.266
⁴⁶ Pd	3.605	5846.604	3430.553	217.010
⁴⁷ Ag	3.780	5867.911	3451.123	213.353
⁴⁸ Cd	4.000	5818.940	3542.788	220.351
⁴⁹ In	4.000	6598.061	4040.626	244.262

Çizelge 4. 6. L_2 alt tabakası uyarıldığında elde edilen L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

Element	E(keV)	σ_{Llpha}	σ_{Leta}	$\sigma_{_{Ll}}$
⁴¹ Nb	4.000	2533.348	1268.200	094.924
⁴² Mo	4.000	2985.482	1384.233	112.813
⁴³ Tc	5.000	1942.690	1054.580	071.940
⁴⁴ Ru	5.000	2273.575	1259.831	084.169
⁴⁵ Rh	5.000	2579.149	1485.808	094.604
⁴⁶ Pd	5.000	2940.096	1766.050	104.826
⁴⁷ Ag	5.000	3325.721	2098.281	120.842
⁴⁸ Cd	5.000	3838.101	2453.548	145.329
⁴⁹ In	6.000	2726.847	1813.878	100.877

Çizelge 4. 7. L_1 alt tabakası uyarıldığında elde edilen L X-ışını flüoresans tesir kesitlerine ait teorik değerler (barns/atom). (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

Flement	E(keV)	$\kappa_{\alpha l}$ - κ_{l1}	E(keV)	$\kappa_{\alpha 2}$ - $\kappa_{l 2}$
Liement	(L ₂ için)		(L ₁ için)	
⁴¹ Nb	2.674	1.072	3.000	1.269
⁴² Mo	2.648	1.075	3.000	1.243
⁴³ Tc	2.818	1.077	4.000	1.316
⁴⁴ Ru	2.993	1.079	4.000	1.307
⁴⁵ Rh	3.174	1.080	4.000	1.294
⁴⁶ Pd	3.356	1.079	4.000	1.282
⁴⁷ Ag	3.553	1.082	4.000	1.268
⁴⁸ Cd	3.757	1.083	4.022	1.257
⁴⁹ In	3.970	1.082	4.244	1.263

Çizelge 4. 8. $\kappa_{\alpha 1}$ - κ_{l1} - and $\kappa_{\alpha 2}$ - κ_{l2} - Coster–Kronig şiddetlendirme faktörleri, atom numarası 40 \leq Z \leq 50 için

	E(keV)	$\kappa_{\beta l}$	E(keV)	$\kappa_{\beta 2}$
Element	(L ₂ için)	Calculated	(L ₁ için)	Calculated
⁴¹ Nb	2.674	1.004	3.000	1.061
⁴² Mo	2.648	1.013	3.000	1.068
⁴³ Tc	2.818	1.007	4.000	1.080
⁴⁴ Ru	2.993	1.008	4.000	1.081
⁴⁵ Rh	3.174	1.020	4.000	1.079
⁴⁶ Pd	3.356	1.011	4.000	1.079
⁴⁷ Ag	3.553	1.012	4.000	1.078
⁴⁸ Cd	3.757	1.013	4.022	1.076
⁴⁹ In	3.970	1.019	4.244	1.076

Çizelge 4. 9. $\kappa_{\beta 1}$ and $\kappa_{\beta 2}$ Coster–Kronig şiddetlendirme faktörleri, atom numarası $40 \le Z \le 50$ için

Flomont	E(keV)	$\kappa_{\alpha l}$ - κ_{l1}	E(keV)	$\kappa_{\alpha 2}$ - $\kappa_{l 2}$
Element	(L ₂ için)		(L ₁ için)	
⁴¹ Nb	2.695	1.072	4.000	1.337
⁴² Mo	2.844	1.078	4.000	1.325
⁴³ Tc	3.000	1.076	5.000	1.379
⁴⁴ Ru	3.201	1.079	5.000	1.366
⁴⁵ Rh	3.388	1.079	5.000	1.347
⁴⁶ Pd	3.605	1.080	5.000	1.336
⁴⁷ Ag	3.780	1.082	5.000	1.324
⁴⁸ Cd	4.000	1.083	5.000	1.314
⁴⁹ In	4.000	1.085	6.000	1.349

Çizelge 4.10. $\kappa_{\alpha 1} - \kappa_{l1} - \text{ and } \kappa_{\alpha 2} - \kappa_{l2}$ Coster–Kronig şiddetlendirme faktörleri, atom numarası 40 \leq Z \leq 50 için. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

Element	E(keV)	$\kappa_{\beta l}$	E(keV)	κ _{β2}
Liement	$(L_2 i cin)$		(L ₁ için)	
⁴¹ Nb	2.695	1.004	4.000	1.132
⁴² Mo	2.844	1.005	4.000	1.087
⁴³ Tc	3.000	1.006	5.000	1.091
⁴⁴ Ru	3.201	1.008	5.000	1.093
⁴⁵ Rh	3.388	1.010	5.000	1.092
⁴⁶ Pd	3.605	1.011	5.000	1.094
⁴⁷ Ag	3.780	1.012	5.000	1.092
⁴⁸ Cd	4.000	1.014	5.000	1.084
⁴⁹ In	4.000	1.012	6.000	1.106

Çizelge 4.11. $\mathcal{K}_{\beta 1}$ and $\mathcal{K}_{\beta 2}$ Coster–Kronig şiddetlendirme faktörleri, atom numarası 40 \leq Z \leq 50 için. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için)

Bu çalışmada elde edilen Coster-Kronig Şiddetlendirme faktörlerine ait değerlerin atom numarasına göre değişimini veren grafikler (Şekil 4.1). – (Şekil 4.6). da verilmektedir.

Şekil 4. 1. $\kappa_{\alpha 1}$, $\kappa_{\alpha 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi.

Şekil 4. 2. κ_{l1} , κ_{l2} Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi.

Şekil 4.3. $\kappa_{\beta 1}$ ve $\kappa_{\beta 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi.

Şekil 4. 4. $\kappa_{\alpha 1}$, $\kappa_{\alpha 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için).

Şekil 4.5. κ_{l1} , κ_{l2} Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için).

Şekil 4. 6. $\kappa_{\beta 1}$ ve $\kappa_{\beta 2}$ Coster-Kronig şiddetlendirme faktörlerinin atom numarasına göre değişimi. (Uyarma enerjisi soğurma kıyı enerjisine uzak enerjiler için).
5. TARTIŞMA VE SONUÇ

Bu çalışmada, atom numarası $40 \le Z \le 50$ Aralığında bulunan Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In elementleri için farklı uyarma enerjilerinde L alt tabakalarına ait L X -ışını tesir kesitleri teorik olarak hesaplanmıştır. Daha sonra bu değerlerden yararlanarak incelenen elementlerin L tabakalarına ait Coster-Kronig şiddetlendirme faktörleri hesaplanmıştır.

Elde edilen L X- ışını tesir kesitlerine bakıldığında artan atom numarasına göre arttığı görülmekle beraber, elementlerin L alt tabakalarına ait tesir kesit ve Coster-Kronig şiddetlendirme faktörlerinin uyarma enerjileri bağlı olduğu ve değiştiği görülmektedir. Yapılan incelemelerde, uyarma enerjileri önce absorbsiyon kıyı enerjisine yakın durumda iken L alt tabakalarına ait X ışını flüoresans tesir kesitleri hesaplandı. Daha sonra uyarma enerjisi, absorbsiyon kıyı enerjisinden büyük enerji için L alt tabakası X ışını tesir kesitleri teorik olarak hesaplanmıştır. Absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi absorbsiyon kıyı enerjisi ile uyum içinde olduğu zaman beklenen olayın meydana gelmesi daha fazla olduğu görülmektedir. Fakat uyarma enerjisi absorbsiyon kıyı enerjisinden büyük olduğu zaman L-X ışını tesir kesit değerlerinin küçüldüğü görülmüştür.

Bir atomda alt tabakalar arasındaki geçişlerden meydana gelen Coster-Kronig geçişler, bir tabaka içerisindeki boşlukların düzenlenmesine neden olduğu için, yayımlanan X– ışını çizgilerinin şiddetini doğrudan etkiler. Yapılan çalışmada, incelenen elementler için Coster-Kronig şiddetlendirme faktörleri teorik olarak hesaplanmıştır. Absorbsiyon kıyı enerjisine yakın durumda iken şiddetlendirme faktörleri; $\kappa_{\alpha 1}$ 1.072 ile 1.083 arasında değerler alıp % 8,3'lere ; κ_{l1} % 8,3'lere arttığı görülmektedir. Aynı şekilde absorbsiyon kıyı enerjisine yakın durumda iken şiddetlendirme faktörleri; $\kappa_{\beta 1}$ 1.004 ile 1.019arasında değerler alıp % 2'lere kadar arttığı görülmektedir.

 L_1 uyarma enerjine göre yapılan değerlendirmelerde; $\kappa_{\alpha 2}$, κ_{l2} 1.243 ile 1.316 arasında değerler alıp % 31.6'lara kadar, Absorbsiyon kıyı enerjisine yakın durumda iken şiddetlendirme faktörleri; $\kappa_{\beta 2}$ 1.061 ile 1.081arasında değerler alıp % 8.1'lere kadar arttığı görülmektedir.

Absorbsiyon kıyı enerjisine uzak durumda iken L_2 uyarma enerjisine göre, şiddetlendirme faktörleri; $\kappa_{\alpha 1}$, κ_{l1} 1.072 ile 1.085 arasında değerler alıp % 8,5'lere kadar şiddetlendirme olduğu görüldü. $\kappa_{\beta 1}$ 1.004 ile 1.014 arasında değerler alıp % 1.4'lere, L1 uyarma enerjisine göre $\kappa_{\alpha 2}$, κ_{l2} 1.314 ile 1.379 arasında değerler alıp % 37.9'lara, $\kappa_{\beta 2}$ 1.084 ile 1.132 arasında değerler alıp % 13.2 'lere kadar arttığı görülmektedir.

Coster-Kronig geçişlerin sebep olduğu şiddetlendirme ile ilgili çalışmalarda; Öz ve ark. (2003, 2004), atom numarası 66 ve 90 arasındaki bazı elementler için $\kappa_{\alpha 1}$, $\kappa_{\ell 1}$ teoriksel değerleri % 8–9 ve deneysel değerleri %4–6 olarak tespit ettiler. Aynı zamanda $\kappa_{\alpha 2}$, $\kappa_{\ell 2}$ teoriksel değerleri % 20–30 deneysel değerleri % 14–24; teoriksel $\kappa_{\beta 1}$, %2; $\kappa_{\beta 2}$, % 9–11; deneysel $\kappa_{\beta 1}$,%1–2; $\kappa_{\beta 2}$, %8–11 olarak rapor ettiler. Yılmaz ve ark. (2009, 2010a-b, 2011) tarafından yapılan deneysel ve teorik çalışmaları sonucu elde edilen değerler κ_{α} , κ_{ℓ} lerde % 25, teorik hesaplamalarda %31' lere kadar, κ_{β} larda %11' lere kadar X-ışınlarında bir artış olduğunu rapor etmişlerdir. Dolayısıyla yapılan çalışmanın sonuçları ile bu sonuçlar iyi bir uyum içindedir.

Bu çalışmalar sonucunda hesaplanan değerler, absorbsiyon kıyı enerjisine uzak durumda iken X-ışını tesir kesitlerin tersine Coster- Kronig şiddetlendirme faktör değerleri, absorbsiyon kıyı enerjisine yakın iken ki durumdan daha büyük olduğu görülmüştür. Burada meydana gelen *L* X-ışını şiddetlerindeki artışın enerjiye göre değiştiği ve artışların, Coster-Kronig geçişlerin sebep olduğu teorik hesaplamalar sonucu görüldü. Elde sonuçlara göre en az şiddetlendirmenin L_{β}

X-ışını tesir kesit değerlerinde olduğu görüldü.

KAYNAKLAR

- Ertuğrul, M., 2002. Measurement of *L* subshell production cross-section and Coster-Kronig transition probability (f_{12}) for Hg and Au elements at the 59.5 keV. *J*. *Quantitative Spect. and Radiative Transfer*, **72**: 567–574.
- Ferreira, J.G., 1987. *X-ray Spectroscopy, In Atomic And Solid State Physics*.Plenum Press. New York. 423.
- Krause, M. O., Nestor, C. W., Sparks, C. J., Ricci, E., 1978. X-ray fluorescence cross sections for K and L rays of the elements, *Oak Ridge National Laboratory Report.* (ORNL)-5399.

Krause, M. O., Ricci, E., Sparks, C. J., Nestor, C. W., 1978. Calculation of X- ray fluorescence cross sections for K and L shells, *Adv. X-Ray Anal.* **21**:119–127.

- Öz, E., Ekinci, N., Ertuğrul, M. Şahin, Y., 2003. Measurements of Coster-Kronig enhancement factors of some elements in the atomic number range $66 \le Z \le 72$, *X-Ray Spectrum*, **32:**153-157.
- Öz, E., Sahin, Y., Ertuğrul, M., 2004. Measurement of Coster-Kronig enhancement factors of some elements in the atomic number range 74≤Z≤90, *Radiation Physics and Chemistry*.69: 17–21.
- Öz, E., Ekinci, N., Özdemir, Y., Ertuğrul, M., Şahin, Y., Erdoğan, H., 2001. Measurement of atomic L shell Coster-Kronig yields (f_{12} , f_{23} and f_{13}) for some elements in the atomic number range $59 \le Z \le 90$. J. Phys. B: At. Mol. Opt. Phys., 34: 631-638.
- Öz, E., Özdemir, Y., Ekinci, N., Ertuğrul, M., Şahin, Y. ve Erdoğan, H., 2000. Measurement of atomic L shell fluorescence (L_1, L_2, L_3) and Auger (a_1, a_2) and a_3 ,) yields for some elements in the atomic number range $59 \le Z \le 85$, *Spect. Acta Part B* 55: 1869–1877.
- Puri, S., Singh, N., 2006. Li (i= 1-3) subshell fluorescence and Coster-Kronig yields for elements with 70≤Z≤92, *Radiation Physics and Chemistry* 75: 2232–2238.
- Rao, P.V., Cesareo, R. and Gıgante, G. E., 1995. L X-Ray Fluorescence Cross- Section, Fluorescene Yield and Intensity Ratios For Au and Pb At Excitation Energies. 21.56, 31.64 and 34.17, *Rational Physics Chem.*, 46: 17-22.
- Scofield, J.H., 1973. Theoretical Photoionization Cross-Section From 1 keV to 1500 keV. Lawrence Livermore Laboratory, UCRL 51326 Livermore, California, 374.
- Şahin, M., 1998. Bazı Elementlerin M Tabakası X-Işınlarının Üretimi Tesir Kesiti ve Açısal Dağılımlarının Enerji Ayrımlı X-Işını Spektrometrisi ile Ölçülmesi. Yüksek Lisans Tezi, Atatürk Üniversitesi, 47.
- Van Grieken, R., Markowich, A., 1993. *Handbook of X-ray spectrometry*. Marcel Dekker, Inc., New York, **14:** 9-10.
- Yılmaz, R., Öz, E., Tan, M., Durak, M. R., Demirel, A. İ., Şahin, Y., 2009. Measurement of Coster-Kronig enhancement factors for Yb, Lu, Os and Pt Elernents. *Radiation Physics and Chemistry*, 78: 318–322.

Yılmaz, R. and Arıcı K., 2010. Measurements of Coster-Kronig enhancement factors and L Subshell X-Ray Fluorescence Cross-Sections for ⁵⁵Cs *Asian Journal of Chemistry*, Vol. 22, No 7: 5463–5467.

- Yılmaz, R., Taş, R., Babayiğit, R., Arıcı, K., 2011a. Calculation of Coster-Kronig Enhancement Factors for 60Nd and 61Pm at Different Excitation Energies *Asian Journal of Chemistry*, Vol. 23, No. 7: 3148-3150.
- Yılmaz, R., Arıcı K., Öz, E., Tan, M., 2011b. Measurement of Coster-Kronig enhancement factors for ₆₉Tm. *Journal of Electron Spectroscopy and Related Phenomena*, 184: 1-4.
- Bambynek, W., Craseman, N., Fink, R. W., Freund, H.U., Mark, H., Swift, C.D., Price, R.E., Rao, P.V., 1972. X-ray fluorescence yields, Auger and Coster- Kronig transition probabilities. *Rev. Mod. Phys*, 44: 716-813.
- Ertuğral, B., Apaydın, G., Çevik, U., Ertuğrul, M., Kobya, A.İ., 2007. K_{β}/K_{α} X-ray intensity ratios for elements in the range $16 \leqslant Z \leqslant 92$ excited by 5.9, 59.5 and 123.6 keV *photons. Radiation Physics and Chemistry*, **76:** 15- 22.
- Ertuğrul, M., Söğüt, Ö., Şimşek, Ö., Büyükkasap, E., 2001. Measurement of K_{β}/K_{α} for elements in the range $22 \leqslant Z \leqslant 69$ at 59.5 keV, *J. Ph.B*, 34: 909-914. intensity ratios
- Hubbell, J.H., Trehan, P.N., Singh, Nirmal, Chand. B., Mehta, D., Garg, M.L., Garg, R. R., Singh, Surinder, Puri, S., 1994. A review, bibliography, and tabulation of K, L, and higher atomic shell X-ray fluorescence yields. *J.Phys. Chem. Ref. Data*, 23: 339-364.
- Kostroun, V.O., Chen, M.H., Crasemana, B., 1971. Atomic radiation transition probabilities to the 1s state and theoretical K- shell fluorescence yields. *Phys. Rev. A*, 3: 533-545.

Kumar, R., Rani, A., Singh, R.M., Tiwari, M.K., Singh, A.K., 2016. Measurement of *L*-XRF cross-sections and Coster–Kronig enhancement factors for⁶²Sm at excitation energies 6.8, 7.4 and 8 KeV. *Journal of Electron Spectroscopy and Related Phenomena*, 209: 34-39.

ÖZ GEÇMİŞ

1998 yılında, Ankara Üniversitesi Fen Fakültesi Fizik Bölümü'nde Fizikçi unvanı ile mezun oldu. Daha sonra sırasıyla Anadolu Üniversitesi İktisat Fakültesi Çalışma Ekonomisi ve Endüstriyel İlişkiler (Lisans), Atatürk Üniversitesi Bilgisayar Programcılığı (Ön Lisans), Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü İktisat Anabilim Dalı'nda (Tezsiz Yüksek Lisans) ve Kıbrıs Doğu Akdeniz Üniversitesi Eğitim Fakültesi Formasyon Sertifika Programı bölümlerinden mezun oldu. MEB bünyesinde Van'da Fizik Öğretmeni olarak görev yapmaktadır. Eylül 2015'de Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı'nda başladığı Yüksek Lisans eğitimine devam etmektedir.

Stand VIL Building	VAN YÜZÜNCÜ Fen Bilimler	YIL ÜNİVERSİTESİ Enstitüsü	
	LİSANSÜSTÜ TEZ OR	İJİNALLİK RAPORU	
Tez Başlığı : Atom Nu	umarası 40≤Z≤50 Arasındaki Eler	nentlerin L Tabakasına Ait X-Işınları	27/06/2019 Üzerine Coster-
Yukarıda başlı	ğı/konusu belirlenen tez çalışmam	ın Kapak sayfası, Giriş, Ana bölümle	er ve Sonuç
bölümlerinden oluşan	n toplam 52 sayfalık kısmına iliş	skin, 27/06/2019 tarihinde şahsım/te	z
danışmanım tarafındar	n Turnitin intihal tespit programın	dan aşağıda belirtilen filtreleme uygu	ılanarak
alınmış olan orijinallik	k raporuna göre, tezimin benzerlik	t oranı % 3(yüzde üç) tür.	
Uygulanan Filtreler - Kabul ve onay sayfa - Teşekkür hariç, - İçindekiler hariç, - Simge ve kısaltmala	Aşağıda Verilmiştir: _{Sı} hariç, ır hariç,		
- Gereç ve yontemier - Kaynakça hariç,	nariç,		
- Alıntılar hariç,	lar haric.		
- 7 kelimeden daha az	z örtüşme içeren metin kısımları h	ariç (Limit match size to 7 words)	
Yönergeyi İnceledim intihal İçemediğini; kabul ettiğimi ve yuk Gereğini bilgilerinize	t ve bu yönergede belirtilen azam aksinin tespit edileceği muhteme arıda vermiş olduğum bilgilerin d e arz ederim.	i benzerlik oranlarına göre tez çalışı el durumda doğabilecek her türlü h oğru olduğunu beyan ederim.	namin nernangi on ukuki sorumluluğu 2a
Adı Soyadı : Turga	AY ÖZMEN		
Öğrenci No :14910	12023		
Programi : Yüks	ek Lisans		
Statūsū : Y. L	Lisans 🖾 🛛 Doktora 🗆	60	
DANIȘM Doç. Dr. Rafet	IAN t YILMAZ	ENSTAL OD AY	
Line			JENSO Mduru