T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

SÜPER ALAŞIMLARDAN INCOLOY 901 VE RENE 41'İN TORNALANMASINDA KESME KUVVETLERİ VE YÜZEY PÜRÜZLÜLÜĞÜNÜN TAGUCHI DENEYSEL TASARIMI İLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Recep AKIN DANIŞMAN: Doç. Dr. Abdullah ALTIN

VAN-2019

T.C. VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

SÜPER ALAŞIMLARDAN INCOLOY 901 VE RENE 41'İN TORNALANMASINDA KESME KUVVETLERİ VE YÜZEY PÜRÜZLÜLÜĞÜNÜN TAGUCHI DENEYSEL TASARIMI İLE İNCELENMESİ

YÜKSEK LİSANS TEZİ

HAZIRLAYAN: Recep AKIN DANIŞMAN: Doç. Dr. Abdullah ALTIN

Bu çalışma YYÜ Bilimsel Araştırma Projeleri Başkanlığı tarafından VAN-MYO-BAP 2093 No'lu proje olarak desteklenmiştir

VAN-2019

KABUL VE ONAY SAYFASI

Makine Mühendisliği Anabilim Dalı'nda Doç. Dr. Abdullah ALTIN danışmanlığında, Recep AKIN tarafından sunulan "Süper Alaşımlardan İncoloy 901 ve Rene 41'in Tornalanmasında Kesme Kuvvetleri ve Yüzey Pürüzlülüğünün Taguchi Deneysel tasarımı İle İncelenmesi" isimli bu çalışma Lisansüstü Eğitim–Öğretim Yönetmeliği'nin ilgili hükümleri gereğince $\Omega \mathcal{F} / \mathbb{1}$... / 2019 tarihinde aşağıdaki jüri tarafından oy birliği/ oy çokluğu ile başarılı bulunmuş ve Yüksek Lisans/ Doktora Tezi olarak kabul edilmiştir.

Başkan	:Prof. Dr. Muammer NALBANT	Imza: An leilly
Üye	:Doç. Dr. Abdullah ALTIN	İmza:
Üye	: Dr. Öğr. Üy. Altuğ KARABEY	İmza:
Üye	:	İmza:
Üye	······	İmza:

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

Recep AKIN

ÖZET

SÜPER ALAŞIMLARDAN INCOLOY 901 VE RENE 41'İN TORNALANMASINDA KESME KUVVETLERİ VE YÜZEY PÜRÜZLÜLÜĞÜNÜN TAGUCHI DENEYSEL TASARIMI İLE İNCELENMESİ

AKIN, Recep Yüksek Lisans Tezi, Makine Mühendisliği Anabilim Dalı Tez Danışmanı: Doç. Dr. Abdullah ALTIN Aralık 2019, 116 sayfa

Bu çalışmada süper alaşımlar malzemelerinden İncoloy 901 ve Rene 41'in farklı kesici, ilerleme ve kesme hızlarıyla kuru şartlarda tornalanmasında, parametrelerin kesme kuvvetlerine ve ortalama yüzey pürüzlülüğüne etkileri araştırılmıştır. Deneylerde, İncoloy 901 ve Rene 41'in KY4300, KYS30 ve KYS25 kesici takımları ile 200, 230 ve 260 m/min kesme hızların ve 0.100, 0.125 ve 0.105 mm/dev ilerleme hızları kullanılmıştır. Kesme kuvvetine etkili parametrelerin ilerleme hızı ve kesme hızının olduğu ve ortalama yüzey pürüzlülüğüne etkili parametrelerin ilerleme hızı ve kesici takım olduğu görülmüştür. En küçük kesme kuvveti İncoloy 901'de 0.100 mm/dev ilerleme hızında 260 m/dak kesme hızında ve KYS30 kesici takımı işleme parametreleriyle ve en küçük ortalama yüzey pürüzlülüğü İncoloy 901'de 0.100 mm/dev ilerleme hızında 200 m/dak kesme hızında ve KY4300 kesici takımı ile Rene 41'de 0.150 mm/dev ilerleme hızında 260 m/dak KYS25 kesici takımı işleme parametreleriyle elde edilmiştir.

Anahtar kelimeler: Incoloy 901, Rene 41, Optimum parametreler, Taguchi

ABSTRACT

SUPER ALLOYS FROM INCOLOY 901 AND RENE 41 IN CUTTING FORCES AND SURFACE ROUGHNESS OF INVERTIGATION TAGUCHI EXPERIMENTAL DESIGN FOR TURNING

AKIN, Recep M. Sc. Thesis, Mechanic Engineering Supervisor : Assoc. Prof. Dr. Abdullah ALTIN December 2019, 116 pages

In this study, the effects of parameters on cutting forces and average surface roughness were investigated in the turning of super alloy materials Incoloy 901 and Rene 41 with different cutting, feed and cutting speeds in dry conditions. In the experiments, cutting tools KY4300, KYS30 and KYS25 of Incoloy 901 and Rene 41 were used with cutting speeds of 200, 230 and 260 m / min and feed rates of 0.100, 0.125 and 0.105 mm / rev. It has been found that the parameters affecting the cutting force have the feedrate and cutting speed and the parameters affecting the average surface roughness are the feedrate and cutting tool. The smallest cutting force Incoloy 901 with a feedrate of 0.100 mm / rev at 260 m / min and with KY4300 cutting tool at Rene 41 with a feedrate of 0.100 mm / rev at 260 m / min and with KY830 cutting tool at machining parameters and the smallest The average surface roughness was obtained with the cutting parameters 260 m / min KYS25 cutting tool at Incoloy 901 at a feed rate of 0.100 mm / rev at a cutting speed of 200 m / min, and KY4300 cutting tool and Rene 41 at a feed rate of 0.150 mm / rev.

Keywords: Incoloy 901, Rene 41, Optimum parameters, Taguchi

ÖN SÖZ

Bu tez çalışmasında, her türlü ilgi ve yardımlarını esirgemeyen danışmanım Sayın Doç. Dr. Abdullah ALTIN'a teşekkür ederim. Ayrıca bu araştırmada yardımcı olan Gazi Üniversitesi Teknoloji Fakültesi İmalat Mühendisliği Öğretim Üyesi Prof. Dr. Ulvi ŞEKER'e ve Arş. Gör. Gültekin UZUN'a teşekkürlerimi sunarım.

İÇİNDEKİLER

ÖZET		i
ABSTRACT		iii
ÖN SÖZ		v
İÇİNDEKİLER	<u>.</u>	vii
ÇİZELGELER	LİSTESİ	ix
SİMGELER VI	E KISALTMALAR	xiii
1. GİRİŞ		1
1.1. Süper A	laşımlar	2
1.1.1.	Süper alaşımların gelişim süreci	
1.1.2.	Süper alaşımların metalürjisi	7
1.2. Süperala	aşımların Sınıflandırılması	7
1.2.1. D	emir esaslı süper alaşımlar	
1.2.2.	Kobalt esaslı süper alaşımlar	9
1.2.3. N	ikel esaslı süper alaşımlar	
1.3. Süper A	laşımların Uygulama Alanları	
1.3.1.	İşlenebilirlikte esas alınan kriterler	
1.3.2.	İşlenebilirliği etkileyen faktörler	
1.3.3.	Mikroyapı'nın etkisi	
1.3.4.	Işıl-işlem	
1.3.5.	Alaşım elementlerinin etkisi	
1.3.6.	Malzemelerin mekanik özelliklerinin etkisi	
1.3.7.	Nikel esaslı süper alaşımların işlenebilirliği	
2. KAYNAK E	BİLDİRİŞLERİ	
3. MATERYA	L VE YÖNTEM	
3.1. Materya	1	
3.1.1.	Incoloy 901	
3.1.2.	Rene 41	
3.2. Metod		27
3.2.1.	Taguchi metodu	

			Sayfa
	3.2.2.	Taguchi deney tasarımı aşamaları	
	3.2.3.	Taguchi performans karakteristikleri	
	3.2.4.	Yöntem	
	3.2.5.	Kesme şartları	
	3.2.6.	S/N oranı analizi	
	3.2.7.	Deneysel kurulum (ortognal tasarım L27)	
	3.2.8.	Kesici takımlar	
4.	BULGULA	R VE TARTIŞMA	
	4.1. Deney	Sonuçları	
	4.1.1	İncoloy 901 kesici takım deneyleri	
	4.1.2.	Rene 41 kesici takım deneyleri	
	4.2. S/N Ora	anları	
	4.2.1.	Kesici takım deneyleri S/N oranları (Incoloy 901)	
	4.2.2.	Kesici takım deneyleri S/N oranları (Rene 41)	
	4.3. Annova	a Analizleri	
	4.3.1. İ	ncoloy 901 (Ra ve Fz) kesici takım analizleri	40
	4.3.2. F	Rene 41 (Ra ve Fz) kesici takım analizleri	
	4.4. Analizl	er ve Etki Parametreleri	
	4.4.1. İ	ncoloy 901 (Ra ve Fz) kesici takım etkileri	
	4.4.2. F	Rene 41 (Ra ve Fz) seramik kesici takım etkileri	
	4.5. Deney	Grafikleri	
	4.5.1.	İncoloy 901 kesici takım grafikleri	
	4.5.2.	Rene 41 seramik kesici takım grafikleri	50
5.	SONUÇLA	R	
	5.1. Deney S	Sonuçları	
	5.2. Analiz	Sonuçları	
	5.3. İncoloy	901 Kesici Takım Uç Aşınmaları	
	5.4. Rene 4	1 Kesici Takım Uç Aşınmaları	
KA	YNAKLAI	۶	59
EK	LER		61
ÖZ	Z GEÇMİŞ		117

ÇİZELGELER LİSTESİ

Çizelge	Sayfa
Çizelge 3. 1. İncoloy 901 bileşenleri	25
Çizelge 3. 2. Rene 41 bileşenleri	
Çizelge 3. 3. Kesme parametreleri	
Çizelge 3. 4. Kesme parametreleri	
Çizelge 3. 5. Kesici takımlar ve özellikleri	
Çizelge 4. 1. İncoloy 901 deney sonuçları	
Çizelge 4. 2. Rene 41 deney sonuçları	
Çizelge 4. 3. İncoloy 901'e ait kesme kuvvetleri (Fz), ortalama yüzey pürüzlülüğü (Ra) ve S/N oranları	
Çizelge 4. 4. Rene 41'e ait kesme kuvvetleri (Fz), ortalama yüzey pürüzlülüğü (Ra) ve S/N Oranları	
Çizelge 4. 5. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç ve doğrulama deneyi	
Çizelge 4. 6. İncoloy 901 ortalama yüzey pürüzlülüğü (ra) taguchi optimizasyonu sonuç ve doğrulama deneyi	42
Çizelge 4. 7. Rene 41 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç ve doğrulama deneyi	43
Çizelge 4. 8. Rene 41 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç ve doğrulama deneyi	44
Çizelge 4. 9. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) anova analizleri etki parametreleri	44
Çizelge 4. 10. İncoloy 901 kesme kuvvetleri (Fz) anova analizleri etki parametreleri	45
Çizelge 4. 11. Rene 41 ortalama yüzey pürüzlülüğü (Ra) anova analizleri etki parametreleri	
Çizelge 4. 12. Rene 41 kesme kuvvetleri (Fz) anova analizleri etki parametre	leri46

ŞEKİLLER LİSTESİ

Şekil Sayı	fa
Şekil 1. 1. Süper alaşımların gelişimi ve sıcaklık dayanımları (Bartlay, 1988)	.6
Şekil 1. 2. Nikel esaslı süper alaşımların etkin olarak kullanıldığı gaz türbin motoru (Loria, 1992).	13
Şekil 1. 3. Bilgisayarla simule edilmiş bir uçak motoru ve önemli bölümleri (www.EJ200.com).	14
Şekil 1. 4. Bir parçanın işleme maliyetine etki eden faktörler. (Şahin, 2000)	15
Şekil 1. 5. Tornalama işleminde işlenebilirlik ve giriş- çıkış parametreleri (Chouldhury, 1997)	16
Şekil 3. 1. Dinamometre birimi	27
Şekil 3. 2. Deney aşamaları	29
Şekil 3. 3. Performans karakteristikleri	30
Şekil 3. 4. Ölçüm tezgahı dinamometre birimi	31
Şekil 3. 5. CNC tezgahı	31
Şekil 4. 1. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç grafiği	40
Şekil 4. 2. İncoloy 901 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç grafiği4	41
Şekil 4. 3. Rene 41 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç grafiği	42
Şekil 4. 4. Rene 41 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç grafiği	43
Şekil 4. 5. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.100 mm/dev'de.	46
Şekil 4. 6. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.125 mm/dev'de.	47
Şekil 4. 7. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.150 mm/dev'de.	48
Şekil 4. 8. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.100 mm/dev'de.	48

Şekil

Sayfa

Şekil 4. 9. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.125 mm/dev'de.	49
Şekil 4. 10. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.150 mm/dev'de.	50
Şekil 4. 11. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.100 mm/dev'de.	50
Şekil 4. 12. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.125 mm/dev'de.	51
Şekil 4. 13. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.150 mm/dev'de.	52
Şekil 4. 14. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.100 mm/dev'de.	52
Şekil 4. 15. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.125 mm/dev'de.	53
Şekil 4. 16. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.150 mm/dev'de	54

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklama
	÷
a	Ilerleme hızı, (mm/dev)
V	Kesme hızı, (m/dak)
Ra	Ortalama Yüzey Pürüzlülüğü, (µm)
Fz	Kesme Kuvveti, (N)
S/N	Sinyal Gürültü Oranı
Р	Parametre
Df	Serbestlik Derecesi
Ν	Newton
μm	Mikrometre
m	Metre
mm	Milimetre
dak	Dakika
dev / rev	Devir
Α	İlerleme adımı (mm/dev)
В	Kesme hızı (m/dak)
С	Kesici takım

EKLER DİZİNİ

Ek	Sayfa
Ek 1. İncoloy 901 Deney 1 Kesici Uç Aşınması	62
Ek 2. İncoloy 901 Deney 2 Kesici Uç Aşınması	63
Ek 3. İncoloy 901 Deney 3 Kesici Uç Aşınması	64
Ek 4. İncoloy 901 Deney 4 Kesici Uç Aşınması	65
Ek 5. İncoloy 901 Deney 5 Kesici Uç Aşınması	66
Ek 6. İncoloy 901 Deney 6 Kesici Uç Aşınması	67
Ek 7. İncoloy 901 Deney 7 Kesici Uç Aşınması	68
Ek 8. İncoloy 901 Deney 8 Kesici Uç Aşınması	69
Ek 9. İncoloy 901 Deney 9 Kesici Uç Aşınması	70
Ek 10. İncoloy 901 Deney 10 Kesici Uç Aşınması	71
Ek 11. İncoloy 901 Deney 11 Kesici Uç Aşınması	72
Ek 12. İncoloy 901 Deney 12 Kesici Uç Aşınması	73
Ek 13. İncoloy 901 Deney 13 Kesici Uç Aşınması	74
Ek 14. İncoloy 901 Deney 14 Kesici Uç Aşınması	75
Ek 15. İncoloy 901 Deney 15 Kesici Uç Aşınması	76
Ek 16. İncoloy 901 Deney 16 Kesici Uç Aşınması	77
Ek 17. İncoloy 901 Deney 17 Kesici Uç Aşınması	78
Ek 18. İncoloy 901 Deney 18 Kesici Uç Aşınması	79
Ek 19. İncoloy 901 Deney 19 Kesici Uç Aşınması	80
Ek 20. İncoloy 901 Deney 20 Kesici Uç Aşınması	81
Ek 21. İncoloy 901 Deney 21 Kesici Uç Aşınması	82
Ek 22. İncoloy 901 Deney 22 Kesici Uç Aşınması	83

Ek 29 Rene 41 Denev 29 Kesici Uc Asınması

Ek 29. Rene 41 Deney 29 Kesici Uç Aşınması	90
Ek 30. Rene 41 Deney 230 Kesici Uç Aşınması	91
Ek 31. Rene 41 Deney 31 Kesici Uç Aşınması	
Ek 32. Rene 41 Deney 32 Kesici Uç Aşınması	
Ek 33. Rene 41 Deney 33 Kesici Uç Aşınması	94
Ek 34. Rene 41 Deney 34 Kesici Uç Aşınması	95
Ek 35. Rene 41 Deney 35 Kesici Uç Aşınması	96
Ek 36. Rene 41 Deney 36 Kesici Uç Aşınması	97
Ek 37. Rene 41 Deney 37 Kesici Uç Aşınması	
Ek 38. Rene 38 Deney 38 Kesici Uç Aşınması	
Ek 39. Rene 41 Deney 39 Kesici Uç Aşınması	100
Ek 40. Rene 41 Deney 40 Kesici Uç Aşınması	101
Ek 41. Rene 41 Deney 41 Kesici Uç Aşınması	102
Ek 42. Rene 41 Deney 42 Kesici Uç Aşınması	103
Ek 43. Rene 41 Deney 43 Kesici Uç Aşınması	104
Ek 44. Rene 41 Deney 44 Kesici Uç Aşınması	105
Ek 45. Rene 41 Deney 45 Kesici Uç Aşınması	106

Ek

EK	Sayla
Ek 46. Rene 41 Deney 46 Kesici Uç Aşınması	
Ek 47. Rene 41 Deney 47 Kesici Uç Aşınması	
Ek 48. Rene 41 Deney 48 Kesici Uç Aşınması	
Ek 49. Rene 41 Deney 49 Kesici Uç Aşınması	
Ek 50. Rene 41 Deney 50 Kesici Uç Aşınması	
Ek 51. Rene 41 Deney 51 Kesici Uç Aşınması	
Ek 52. Rene 41 Deney 52 Kesici Uç Aşınması	
Ek 53. Rene 41 Deney 53 Kesici Uç Aşınması	114
Ek 54. Rene 41 Deney 54 Kesici Uç Aşınması	

1. GİRİŞ

Süper alaşımlar, kullanım alanlarına göre yüksek sıcaklığa karşı metalürjik yapısını koruyabilen, mekanik gerilmelere dayanabilen, yüksek oksidasyon direncine sahip ve gerekli mukavemet şartlarını taşıyabilen, demir, nikel veya kobalt esaslı alaşımlardır. İncoloy 901 ve Rene 41 malzemelerinin tornalanmasında en küçük kesme kuvveti ve en küçük yüzey pürüzlülüğün değeri araştırılması gereken bir konu olarak görülmüştür.

Ancak bu özelliklere sahip olmakla beraber, içerdiği nikel-krom yoğunluğu beraberinde işlenebilirlik sorunları ortaya çıkarmaktadır.

Nikel esaslı süper alaşımlar, kaliteli bir yüzey elde etmede, işlenebilirliği en zor olarak bilinen malzemelerdendir (Ezugwu ve ark., 1998; Field, 1968).

Bu alaşımlar; uçak motorlarında, endüstriyel gaz türbinlerinde, uzay araçlarında, roket motorlarında, nükleer reaktörlerde, deniz altılarda, buhar üretme tesislerinde, petrokimyasal cihazlarda ve diğer ısıya dayanıklı uygulamalarda kullanılmaktadır (Warbuton, 1967; Chouldhury ve ark., 1996).

Süper alaşımlar, yüzey dengesinin gerektiği ve yüksek gerilmelerin olduğu 650 °C ve üstü sıcaklıklarda kullanılmaktadır. "Süper alaşım" ifadesi demir, nikel, kobalt ve krom kombinasyonları veya demir, nikel ve kobalt esaslı malzeme alaşımları için kullanılabilir. Bu alaşımlar daha düşük miktarlarda tungsten, molibden, tantal, niyobyum ve alüminyum olmak üzere çeşitli demir, nikel, kobalt ve krom elementleri içerirler (Ezugwu ve ark., 2003).

Oksidasyon direnci ve yüksek sıcaklık korozyonu açısından en önemli alaşım elementi kromdur. Bu yüzden korozyon dirençli çelikler, paslanmaz çelikler, Ni-Cr alaşımları ve süper alaşım gibi malzemeler yeterli miktarda krom elementi içerir. Yüksek sıcaklık uygulamalarında da yüksek bir oranda krom elementi kullanılmaktadır (Betteridge ve ark., 1974).

Süper alaşımlar; yüksek sıcaklıklarda kullanılmak için genellikle VIII-A grubu elementlerden geliştirilen alaşım türleridir. Yüksek sıcaklıklarda kullanılacak malzemelerde, yüzey kararlılığı ve nispeten yüksek mekanik gerilim özellikleri istenilmektedir (Bradley, 1979).

Süperalaşım, yüksek sıcaklıklarda yüksek performans göstermesi gereken uçak türbin motorları ve süper turbo yükleyicilerin üretiminde kullanılmak için geliştirilen alaşımlardır (Betteridge ve diğ., 1974). Bu alaşımlar genellikle demir, nikel, kobalt ve krom'un farklı kombinasyonlarda bir araya getirilmesiyle üretilmektedir. Ayrıca düşük miktarda tungsten, molibden, tantalyum, niyobyum, titanyum ve alüminyum da kullanılmaktadır. Süperalaşımların en önemli özellikleri,

- a. 650 °C nin üzerindeki sıcaklıklarda mukavemetlerini korumaları,
- b. Isı korozyonu ve erozyon dirençlerinin yüksek olmasıdır.

Genellikle demir esaslı alaşımların, kompleks demir-nikel-krom-kobalt alaşımların ve nikel esaslı katı çözelti olarak mukavetlendirilmiş alaşımların dirençleri 650°C üzerindeki sıcaklıklarda, kobalt esaslı ve nikel esaslı (ikinci fazla güçlendirilmiş) alaşımların mukavemetlerinden daha düşüktür. Ergime noktalarına bağlı olarak, kobalt esaslı alaşımların 1100 °C üzerindeki sıcaklıklardaki mukavemeti, nikelli alaşımlara oranla daha yüksektir. Kobalt esaslı döküm alaşımlar, yüzey merkezli kübik kristal yapıya sahiptir ve matrisleri içersinde kompleks karbürler oluşur (Loria, 1992). Bu malzemeler gaz türbini motorlarındaki hava üfleyicileri için kullanılmaktadır (Bradley, 1979).

Bu çalışmada İncoloy 901 ve Rene 41 malzemelerinin tornalanmasında en küçük kesme kuvveti ve en küçük yüzey pürüzlülüğün değeri üzerine çalışılmış ve bu değerler için gereken işleme parametreleri elde edimiştir.

1.1. Süper Alaşımlar

Süper alaşım, şiddetli mekanik gerilmelerin ve yüzey dengesinin sıklıkla gerekli olduğu genellikle Grup VIII B elementlerine dayalı yüksek sıcaklıklarda hizmet vermesi için geliştirilmiş bir alaşımdır. Süper alaşım, yüksek sıcaklıklarda yüksek performans gerektiren uçak türbin motorlarında ve turbo şarjlarda kullanım için geliştirilmiş ve II. Dünya savaşından kısa bir süre sonra kullanılmıştır (Bartlay, 1988). Bugün kullanılan süper alaşımların temeli, % 80 nikel ile % 20 krom alaşım olan ve 50 yıldan beri elektrikte direnç teli olarak kullanılan malzemeden esinlenerek geliştirilmiştir. Süper alaşım, ilk olarak 1940' larda dikkate değer oksidasyon dayanımı ile sürünme ve kırılma geriliminden (creep rupture strength) ötürü (düşük miktarda titanyum ve alüminyum

katılarak) kullanılmaya başlanmıştır (White, 1986). İlk üretilen süper alaşım, Nimonic 80' dir. Kısa bir süre sonra bu alaşım geliştirilerek Nimonic 80 A üretildi. Daha sonra bu da geliştirilerek % 20 kobalt ilavesi ile 50 °C' lik bir avantaj sağlayan ve Nimonic 80 A' ya nazaran daha fazla talebi olan ve de türbin motor tasarımcılarının gereksinim duydukları, yüksek sıcaklıklarda hizmet verecek Nimonic 90 üretildi. Taleplerin artmasıyla titanyum ve alüminyuma ilaveten molibden katılarak Nimonic 105 ve 115' in geliştirilmesiyle katı solüsyon gerilimine sahip alaşımlar elde edildi. 1940' ların sonunda Pratt and Whitney Aircraft ve General Electric Company şirketleri tarafından, Waspalloy ve M 252 adında 2 önemli dövme süper alaşım geliştirildi (Sims ve ark., 1972). Dövme alaşımlar uçak motorlarında önemli yer tutmaktadır. Bu alaşımları takiben molibdenin katılımıyla katı solüsyon ve karbür formu daha da güçlendirildi. Geliştirilen Rene 45 ve 95 yüksek çökeltme takviyeli olup bu alaşımlar sık sık kaynak uygulamalarında kullanıldı (Ezugwu ve ark., 1998).

Nikel esaslı ve demir kapsamlı Inconel 718 süper alaşımı, yüksek ısıl gerilim sağlamakta ve kaynak işlemlerinde çatlamalara iyi dayanım göstermektedir. Incoloy 901 ise bir başka dayanıklı ve rağbet gören süper alaşımdır. Waspalloy ve Astroloy gibi talep edilen bu alaşımların en büyük uygulama alanları türbin diskleridir. Nikel esaslı süper alaşımlardaki programlı ilerleme, sadece bileşimdeki kompozisyonun bir fonksiyonu olarak değil, aynı zamanda eritme metodu, sıcak iş durumu ve ısıl işlemlerin optimizasyonu sonucunda elde edildi.

Süper alaşımlar; genellikle demir, nikel, kobalt ve daha az miktarlarda tungsten, molibden, tantal, niyobyum, titanyum ve alüminyum alaşımlarla yapılan çeşitli formülleri içerirler (Ezugwu ve ark., 1998).

Süper alaşımların en önemli özellikleri; 650 °C' nin üstündeki sıcaklıklara uzun süre dayanmaları ve sıcaklığa bağlı korozyon ve erozyona dayanıklılıklarıdır. Nikel ve kobalt esaslı süper alaşımlar, yüksek sıcaklıklarda (1500-1650 °C) yüksek dayanıma sahiptirler. Nikel esaslı süper alaşımlardan Rene 95, 760 °C' de 1100 Mpa ve Udimet 700, 870 °C' de 635 Mpa akma dayanımına ayrıca sırasıyla % 15 ve % 27 uzama oranına sahiptirler. Kobalt esaslı S-816 süper alaşıml ise 870 °C' de 240 Mpa akma dayanımına ve %16 uzama oranına sahiptir. Bundan dolayı süper alaşımlar bir çok alaşım çeşidinin yerine geçmiştir. Bunların arasında krom ve nikel içeren demir esaslı

alaşımlar, demir, nikel, krom, kobalt bileşikleri, karbür takviyeli kobalt esaslı alaşımlar, katı solüsyon takviyeli bazı alaşımlar, çökeltme ve dağılım takviyeli nikel esaslı alaşımlar bulunmaktadır. Süper alaşımlar, işleyerek veya döküm yöntemiyle şekillendirilerek kullanılabilir. Genellikle demir esaslı alaşımların, demir, nikel, krom, kobalt bileşiklerin ve nikel esaslı katı solüsyon takviyeli alaşımların 650 C' nin üstündeki sıcaklıklardaki dayanımları, nikel esaslı ikinci safha takviyeli ve kobalt esaslı alaşımlardan önemli derecede daha düşüktür. %16 Cr, %25 Ni ve % 6 Mo içeren 16-25-6 alaşımı gibi ilk demir esaslı süper alaşımlar ve küçük miktarlarda tungsten ile molibden içeren demir, nikel, krom, kobalt alaşımları (Fe -20Ni -20Cr -20Co) esasen katı solüsyon takviyelidir. Düşük miktarlarda (%2 ile %3) alüminyum ve titanyum içeren demir esaslı alaşımlar, bir alüminyum-titanyum mukavemet kazandırma safhasının çökeltilmesi yoluyla yüksek sıcaklıklara daha fazla dayanım gösterirler. Ergime noktası üstünlüğünden ötürü kobalt alaşımlar genellikle 1100 $^{\circ}$ C' den yüksek sıcaklıklarda nikel esaslı alaşımlardan daha fazla dayanım gösterirler. Karbür bileşikleri içeren ve bir yüzey merkezli kübik (fcc) katı solüsyon matris ile nitelendirilen döküm kobalt esaslı alaşımlar, gaz türbin motorlarında hava folyoları olarak kullanılmaktadır. Dağılımla kuvvetlendirilmiş nikel esaslı alaşımlar, yüksek sıcaklıklarda, yüksek davanıma sahiptirler. Fakat orta sıcaklıklarda orta davanım gösterirler. ikinci safha, ergime gerçekleşinceye kadar katı bir sertleştirme mekanizması görevinde bu alaşımların yapısında bulunur. Aksine, çökeltme ile kuvvetlendirilmiş alaşımlar, ergime noktasının altındaki sıcaklıklarda katı solüsyon olarak dayanım kaybederler. Dağılımla kuvvetlendirilmiş alaşımlar bazı gaz türbinli motorların yanma uygulamalarında kullanılmaya başlanmıştır (Bartlay, 1998).

İkinci çökeltme aşaması ile kuvvetlendirilen nikel esaslı süper alaşımlar en karışık ve bütün süper alaşımlar içerisinde en çok dikkati çekenidir. Bu alaşımların fiziksel metalürjisinin çözümü zor ve karışık olmasına rağmen iyi anlaşılmıştır. Yapı ilk mukavemet kazandırma aşamasında bir çökeltilmiş nikel-alüminyum-titanyum bileşiği ile bir yüzey merkezli kübik (fcc) austenitik matristen oluşur (Ezugwu, 1998). Alaşım bileşiğine ve sıcaklık işlemine bağlı olarak çeşitli karbürler ikinci çökeltme aşamasında ortaya çıkarlar. Bu alaşımlar gaz türbinli motorlardaki gerilme ve sıcaklığa ilişkin yerlerde kullanılmaktadır (Bartlay, 1998).

1.1.1. Süper alaşımların gelişim süreci

İlk süper alaşım Nimonic' ten sonra geliştirilen Nimonic 80 A, 1940' lı yıllarda yüksek frekanslı eritme kullanılarak havada eritildi (Ezugwu ve ark., 2003). O yıllarda, sertleştirme elementlerinin ergitmede katılmasıyla üretilen alaşıma bir güçlendirme sağlanıyordu. Fakat bu, hava ortamındaki eritmede pek yeterli değildi. 1950' lerde nikel esaslı süper alaşımların gelişiminde önemli bir ilerleme oldu ve vakum altında eritme ve inceltme yöntemi kullanılmaya başlandı. Bu yöntemle reaktif sert elementlerin oksidasyonu engelleniyordu, böylece daha çok titanyum ve alüminyum katılmasına olanak tanınıyordu. Üretim işlemlerinde çökeltme işlemi için vakum ile inceltme yöntemi aynı zamanda uçucu olan diğer elementlerin uzaklaşmasını sağlıyordu (bizmut, teleryum gibi). Ham metallerde bulunan ve sürünme gerilimini ters etkileyen ve nikel esaslı süper alaşımların dövülme işlemini kolaylaştıran katkı elementlerinin miktarının azalmasının bir faydası da, sıcak işlenebilirlikte önemli ilerleme kaydedilmesidir. Böylece vakum ile eritme yöntemiyle incelme sağlandı ve daha iyi dövülebilen güçlü süper alaşımlar, Nimonic 115 ve Udimet 700 gibi malzemeler geliştirildi (Sims ve ark., 1972).

1950' lerin sonlarından beri, türbin sıcak işleme bıçakları, dövme alaşımlardan büyük zorluklarla dövülerek elde ediliyordu. Bunlar o zamanlar rağbet gören alaşımlardı ancak var olan metotlarla dövme işlemi çok zordu (Ezugwu ve ark., 2003). Başlangıçta döküm süper alaşımlar, 1950' lerin sonunda döküm teknikleri gelişip vakum ile eritme işlemi bulununcaya kadar genişçe bir kabul görmedi. ilk vakum ile eritilen alaşım Inco 713 C idi. Bu alaşım yüksek karbonlu içeriği ile aşırı derecede karbür oluşturuyordu ve düşük sıcaklıklarda zayıf akışa sebep oluyordu. Bu da disk bıçaklarının dökülmesine bir problem oluşturuyordu. Düşük karbon versiyonu ile bu problem aşıldı ve malzeme türbin bıçaklarında kullanılmaya başlandı (Sims ve ark., 1972).

Dövme alaşımlar gibi daha güçlü döküm alaşımlara talep, başlangıçta titanyum ve alüminyum miktarının arttırılması ile karşılandı ve IN 100 geliştirildi. 1960' ların ortalarında General Electric Rene 77' yi üretti. Daha sonra benzer titanyum ve alüminyum miktarları ile Rene 77' den daha yüksek sürünme gerilimi ve korozyon dayanımına sahip Rene 80' i geliştirdi. Gelişmeler sonucunda titanyum ve

alüminyumun miktar olarak arttırılması ile malzeme geriliminde bir artış sağladığı görüşü, 1960' ların sonunda ifade edilen bir yaklaşımdı (Ezugwu ve ark., 2003). Titanyumun azlığı, döküm olayını elverişli kılıyordu. Bu da B-1900 gibi döküm olan süper alaşımı doğurdu. Titanyum ve alüminyum miktarları düşük tutularak daha büyük miktarda molibden ve tantalyum katılarak katı solüsyon gerilimi arttırıldı. Martin Metals firması, Mar-M 200 süper alaşımında molibden yerine tungsten kullanarak piyasaya sürdü, ancak sıcak sürünme ve dökülme işlemlerinde bir problem ortaya çıktı. 1969' larda Martin Metals firması bu problemi aşan bir metot ile patent aldı. Bu gelişme % 2 hafniyumun metal kompozisyonuna katılımından oluşuyordu ve bütün bir döküm boyunca hafniyumun belirgin bir etkisi görülmekteydi. Inco 713 LC, B1900, IN 792 ve Mar-M 432 alaşımları, güçlerini, mükemmel sıcak korozyonu ile Udimet 500' deki yüksek krom kapsamında değişiklik yapılarak titanyum ve alüminyum oranının yükseltilmesi ile refraktör metallerin kullanımı sonucunda mükemmel olan IN100 süper alaşımında birleştirdi (Sims ve ark., 1972).

Süper alaşımların gelişimi ve sıcaklık yönünden dayanımları Şekil 2.1.' de gösterilmiştir.

YAKLAŞIK YILLAR 1940 42 44 46 48 1950 52 54 56 58 1960 62 64 66 68 1970

Şekil 1.1. Süper alaşımların gelişimi ve sıcaklık dayanımları (Bartlay, 1988).

1.1.2. Süper alaşımların metalürjisi

Süper alaşımlar, yüzey dengesinin gerektiği ve yüksek gerilmelerin olduğu 650 ^oC ve üstü sıcaklıklarda kullanılmaktadır. "Süper alaşım" ifadesi demir, nikel, kobalt ve krom kombinasyonları veya demir, nikel ve kobalt esaslı malzeme alaşımları için kullanılabilir. Bu alaşımlar daha düşük miktarlarda tungsten, molibden, tantal, niyobyum ve alüminyum olmak üzere çeşitli demir, nikel, kobalt ve krom oluşumları içerirler (Ezugwu ve ark., 2003). Nikel esaslı süper alaşımlar, sürünme-kırılma ömrünü arttırmak için küçük miktarlarda bor, zirkonyum ve hafniyum içerebilir. Karbon bütün alaşımlarda, genellikle nikel ve demir esaslı süper alaşımlarda yaklaşık % 0,03' e kadar bulunur (Ezugwu ve ark., 1988). Fakat karbür safhasının kuvvetlendirilmesine neden olmak için kobalt esaslı alaşımlarda daha yüksek miktarlarda bulunabilir. Çeşitli süper alaşım tipleri arasında demir esaslı krom ve nikel içeren, demir-nikel-krom-kobalt bileşikleri, katı solüsyon takviyeli kobalt esaslı alaşımlar, kobalt esaslı karbür takviyeli alaşımlar, nikel esaslı çökeltme takviyeli alaşımlar ve nikel esaslı oksit dağılım takviyeli alaşımlar bulunmaktadır (Ezugwu ve ark., 1988).

1.2. Süperalaşımların Sınıflandırılması

Nikel esaslı çökelme-sertleşmeli süper alaşımlar, önemli bir süper alaşım grubudur. Yüksek sıcaklıklarda, oksijen yayılımlı mukavemetlenen alaşımlar ve hatta bazı kobalt alaşımları, nikel esaslı alaşımlar kadar dayanıklıdır. Süper alaşımlar içerisinde demir esaslı olanlar ve katı-eriyik ile mukavemetlenen alaşımlar, yüksek sıcaklıklarda, mukavemeti en düşük olanlarıdır. Bu yüzden, nikel esaslı INCO 718 alaşımı dışında, demir esaslı süper alaşımlar uygulamalarda az kullanılmaktadır. INCO 718, geniş bir kullanım alanına sahiptir (Hagel ve ark., 1972).

Kobalt esaslı süper alaşımların kullanımı, kartel işlevi gören metallerden dolayı büyük bir oranda azalmıştır. MAR-M509 gibi kobalt alaşımları geniş çapta uçak türbin kanatçıkları dökümünde kullanılır ve Haynes 188 kobalt alaşımı ise uçak motorlarında kullanılan tutuşma malzemesidir (Bradley, 1979).

Süper alaşımlar genel olarak üç ana gruba ayrılır:

3.1. Demir Esaslı Süper alaşımlar

- 3.2. Kobalt Esaslı Süper alaşımlar
- 3.3. Nikel Esaslı Süper alaşımlar

1.2.1. Demir esaslı süper alaşımlar

Demir esaslı alaşımlar, ana element olarak demir ihtiva edip, ilaveten önemli miktarda krom, nikel ve çok az miktarda da molibden veya tungsten içermektedir. Bu grup karbür, intermetalik çökelme ve/veya katı-eriyik tarafından mukavemetlendirilir. İntermetalik çökelti genellikle Ni₃(Al,Ti) γ ' tipindedir. Bu grubun nikel-krom oranları ve mukavemetlendirme mekanizmaları, paslanmaz çeliklerden farklıdır. Paslanmaz çelikler %12-25 Cr ve %0-20Ni içermekte, demir esaslı süper alaşımlar ise %20 den daha fazla Ni içermektedir (%25-35) (Çay ve ark., 2005).

Yüksek miktarda demir içeren birçok süper alaşım olmasına rağmen, bunların hepsi demir esaslı süper alaşım değildir. Çünkü bu süper alaşımlar demir, nikel, krom, kobalt, az miktarda molibden, tungsten ve niobiyum gibi elementlerin kompleks kombinasyonlarıdır. Bu duruma örnek olarak; katı-eriyik dayanımlı %16Fe ve %49Ni içeren Hastelloy X ile γ " mukavemetlenen %18.5Fe ve %52.5Ni içeren INCO 718 alaşımları verilebilir. Bu alaşımlar, Fe ihtiva eden nikel esaslı süper alaşımlardır. γ '- mukavemetlenen INCO 901 süper alaşımı %42.5Ni ve %36Fe içeren nikel esaslı veya kompleks demir-nikel-krom esaslı bir süper alaşımdır. Bu alaşım yüksek dayanımına ek olarak, sürekli düşük termal genleşme katsayısına sahiptir. Kompleks bileşimli katıeriyik dayanımlı alaşıma örnek olarak Multimet (N-155) alaşımı da verilebilir. Bu alaşım %21Cr, %20Ni, %20Co, %32.5Fe, %3Mo,%2.5W ve %1Nb içermektedir. (Çay ve ark., 2005)

Süper alaşımların özelliklerini geliştirmek için, alaşımlara değişik elementler eklenmektedir. KYM'li matrisli alaşımlar için en etkili mukavemetlendirme nikel, alüminyum, tantalyum ve niobiyumla yapılır. Molibden ve tungsten gibi bazı elementler mukavemetlendirme aşamalarında katı-eriyik içine eklenir (Bradley, 1979).

KYM alaşımlar, karbon ilavesiyle sertleştirilmektedir. Nitrojen ve fosfor eklenerek bu sertleştirme tesiri artırılabilmektedir. Karbon, aynı zamanda tane sınırlarında tane sınırı karbürü oluşturarak, da-yanımı artırmaktadır. Karbür çökelmesi için, karbür oranı yaklaşık %0.5 olmalıdır. (Çay ve ark., 2005)

Oksidasyon direnci genel olarak krom elementiyle sağlanır. Bununla birlikte nikel ve mangan da oksidasyon direncini artırır. Küçük bir miktarda bor ilavesiyle yüksek sıcaklık özellikleri de artırılır. Demir esaslı alaşımların 504^oC üzeri sıcaklık uygulamaları için en önemli özellikleri KYM olmalarıdır. Çünkü bir kapalı paketli kafes, daha dirençlidir. İntermetalik bileşik çökelti tarafından mukavemetlenen demir esaslı süper alaşımların ilk kullanım alanları, gaz türbin motorlarında bıçaklar, diskler ve bağlayıcılardır. A-28 alaşımı; bazı gaz türbin motorları, türbin diskleri ve jantları için kullanılır. A-286 aynı zamanda türbin kutuları için de kullanılmaktadır (Çay ve ark., 2005).

1.2.2. Kobalt esaslı süper alaşımlar

Kobalt esaslı süper alaşımlar, ana element olarak kobalt içerir. Ayrıca önemli miktarda nikel, krom, tungsten az miktarda molibden, niobiyum, tantal, titanyum ve bazen demir gibi elementler de içermektedir (Çay ve ark., 2005).

Kobalt esaslı süper alaşımlar, katı-eriyik ve karbür fazları tarafından mukavemetlendirilir.

Kobalt katı-eriyik alaşımları üç gruba ayrılır:

- a) 650°C den 1150°C kadar sıcaklıklarda kullanılan Haynes 188, UMCo-50 ve S-816 alaşımları,
- b) Yaklaşık 650° C'de kullanılan bağlayıcı (fastener) alaşımlar MP-35N ve MP-159,
- c) Aşınma dirençli Stellite6B.

Kobalt esaslı süper alaşımların hiçbiri tam katı - eriyik alaşımı değildir. Çünkü hepsi ikincil karbür fazları veya intermetalik bileşikleri içerir. Bu durum yaşlanmaya ayrıca oda sıcaklığında süneklik kaybına da neden olur (Çay ve ark., 2005).

Genellikle bütün kobalt esaslı süper alaşımlar ısıl işlem ve yumuşatma sırasında KYM kristal yapıya sahiptir. Ancak MP-35N ve MP-159 alaşımlarında, kullanım öncesi, önerilen termo-mekanik işlem süresince kapalı paket hegzagonal yapının miktarı kontrollü şekilde artırılır. 650°C ve 1050°C arasında ısıl işlem uygulanan Stellite 6B ve 650°C civarında ısıl işleme tabi tutulan Haynes 25 alaşımları, kısmen kapalı paket hegzagonal (cph) yapıya dönüşebilir (Çay ve ark., 2005)

Haynes 25 yaygın olarak kullanılan kobalt esaslı bir süper alaşımdır. Bu alaşım gaz türbinlerinin yüksek sıcaklığa maruz kalan kısımlarında, nükleer reaktör parçalarında, cerrahi implantlarda ve soğuk çalışma şartlarında kullanılmaktadır (Çay ve ark., 2005).

Haynes 188 birçok mükemmel bir özelliğe sahip olup tutuşturucularda, geçiş kanalları ve gaz türbinlerinin iç tasarımında kullanılır. Bileşimlerinde lantan, silikon, alüminyum ve magnezyum vardır. Bu alaşımın, 1100 ⁰C de oksidasyon direnci ve sürünme direnci yüksektir. Oda sıcaklığında şekillendirilebilmekte ve uzun süreli yaşlanmadan sonra çalışma sıcaklığında sünekliğini korumaktadır (Çay ve ark., 2005).

%21 Fe içeren UMCo-50 alaşımı, Haynes 25 veya Haynes 188 kadar sert değildir. UMCo-50 firin parçaları ve karıştırıcılar için kullanılmaktadır. (Çay ve ark., 2005)

MP-35N ve MP-159 alaşımları, işlem sertleşebilirliği istenilen yerlerde kullanılır. Her iki alaşım da yüksek dayanım ve sünekliğe sahiptir. Bu alaşımlardaki yüksek dayanım ve süneklik kombinasyonunun nedeni, işleme sonucu sertleşen KYM matriste kapalı paket hegzagonal yapının small platalet dönüşümüdür. (Çay ve ark., 2005)

Kobalt katı-eriyik alaşımlarının son grubu Stellite 6B dir. Bu alaşım yüksek sıcaklık sertliği ve oksidasyon direncine sahiptir. Bu özelliği ise yüksek krom içeriğinden (yaklaşık %30) kaynaklanmaktadır. Stellite 6B, genellikle buhar türbinlerinde kullanılmaktadır. (Çay ve ark., 2005)

Karbür faz dayanımlı kobalt esaslı süper alaşımlar X-40, WI-52, MAR-M302 ve MAR-M509 yaygın olarak uçak yakıt motor türbinlerinde ve statik kanat uygulamalarında kullanılır. Bu alaşımlar, yüksek sıcaklık dayanımına ve oksidasyon direncine ayrıca kaynak ile onarılabilme özelliğine sahiptir (Bradley, 1989).

1.2.3. Nikel esaslı süper alaşımlar

Nikel esaslı süper alaşımlar ana element olarak %30 ile 70Ni ve önemli miktarda, %30 ile üstü Cr, içermektedir. Demir elementi Inconeller, Nimonicler ve Hastelloy gibi nikel esaslı süper alaşımlar içinde az miktarda, Incoloy 901 ve Inconel 706 gibi alaşımlarda ise yaklaşık %35 oranında bulunur. Bazı nikel esaslı alaşımlar,
dayanım direnci ve korozyon direnci için az miktarda alüminyum, titanyum, niobiyum, molibden ve tungsten de ihtiva etmektedir (Çay ve ark., 2005).

Nikel esaslı süper alaşımlar katı-eriyik ve ikincil-faz intermetalik çökelti tarafından mukavemetlendirilmektedir. İntermetalik şekillendirici olarak kullanılan elemenler alüminyum, titanyum ve niobiyumdur (Çay ve ark., 2005).

Ni esaslı süper alaşımlardaki nikel ve krom kombinasyonu, bu alaşımların oksidasyon direncini artırır. Nikel esaslı süper alaşımlar, özellikle 650 ⁰C üstü sıcaklıklarda, mekanik dayanım açısından paslanmaz çeliklerden daha üstündür (Çay ve ark., 2005).

Inconel 600, Inconel 601 ve RA 333 gibi katı-eriyik alaşımları, yaygın olarak ısıl işlem ekipmanları ve firin parçalarında kullanılmaktadır. Bunun nedeni bu alanlarda yüksek oksidasyon (Çay ve ark., 2005) korozyon direnci ve yüksek dayanıma sahip malzemelere ihtiyaç duyulmasıdır (Çay ve ark., 2005).

Ni esaslı süper alaşımların diğer bir kullanım alanı da enerji jeneratörleridir. Nükleer enerji fabrikalarında (buhar üretici tüpler ve reaktör karotların yapısal bileşenleri) ayrıca fosil yakıt fabrikalarında (ısıtıcı tüpler, kül alıcı sistemler ve ısı korozyon ihtiyacı duyulan parçalar) da yaygın olarak kullanılırlar (Çay ve ark., 2005).

Katı-Eriyik Nikel Alaşımlar

Katı-eriyik nikel alaşımlar, tavlama sıcaklığında ve tavlama temperlenmesinde kullanılır. 870-980^oC'lik düşük tavlama sıcaklığı, en yüksek süneklik ve yorulma dayanımı sağlanır. 1120-1200 ^oC'lik bir yüksek sıcaklık tavlaması ise optimum yorulma direnci ve 600^oC'den büyük çalışma sıcaklığında ise sürünme kopma özelliklerini sağlar. Hastelloy X, Inconel 601, Inconel 625 önemli bazı katı-eriyik nikel alaşımlarıdır. Bu alaşımlar genellikle uzay uygulamalarında kullanılır (Çay ve ark., 2005).

<u>Çökelme-Dayanımlı Nikel Alaşımlar</u>

Çökelme dayanımlı nikel alaşımlar, ikinci bir fazın çökelmesi ile elde edilir. Çökelen faz, (genellikle γ' veya γ'') alaşımın sertliğini ve dayanımını önemli derecede artırır. Bu alaşımların çoğunda, γ' intermetalik Ni₃(Al,Ti) fazın şekillenerek çökeltisertleşmesini sağlamak amacıyla alüminyum, titanyum kullanılır. Bazı alaşımlarda alüminyum ve titanyumun yanında niobiyum kullanılır. Bunun sonucunda ise γ'' Ni₃Nb oluşur. Niobiyum dayanımlı alaşımlar (Inconel 718), çökelme sertleşmesi sıcaklığını geciktirir. Kaynak sıcaklığının sertleşmeye neden olmaması ve ön kaynak çatlaması görülmemesi nedeniyle bu alaşımların kaynak kabiliyeti yüksektir (Şekil 2.1 ve 2.2). (Dye, ve ark., 2001; Huang, ve ark., 1996).

Inconel 750, Inconel 600'ün bir çökelme çeşididir ve 540 ^oC'de Inconel 600'den yaklaşık üç kat daha fazla akma mukavemetine sahiptir. Çökelme dayanımlı alaşımlar için ısıl işlemler, 600-815 ^oC'de, bir veya daha fazla çökelme işlemi takip eden 970-1175 ^oC'da bir çözelti işleminden ibarettir (Çay ve ark., 2005).

Çökelme-dayanımlı süperalaşımların en önemli kullanım alanı uzay endüstrisidir. Ayrıca bu süperalaşımlar roket motorlarında, gibi uçak türbin parçalarında (disk, şaft, halka, pervane kanadı), değişik kompresörlerde ve nükleer reaktörlerde (cıvata, yay) kullanılır (Bradley, 1989).

1.3. Süper Alaşımların Uygulama Alanları

Süper alaşımlar yüksek sıcaklık dayanımları nedeniyle genellikle uçak parçaları, kimyasal ekipmanlar ve petrokimya ekipmanları olarak kullanılır. Süper alaşımların yaygın olarak kullanıldığı uygulama alanları;

Uçaklar ve endüstriyel gaz türbinleri

- Diskler,
- Civatalar,
- Şaftlar,
- Muhafaza kapları,
- Pervane kanatçıkları,
- Vanalar,
- Yanma odaları (Mattingly, 1996).

Gaz türbini santralleri;

- Civatalar,
- Pervane kanatçıkları,
- Gaz ısıtıcıların bacaları.

Motorlar (Şekil 4.2);

- Turbo yükleyiciler,
- Eksoz valfleri,
- Isıtma elemanları,
- Valflerde ve contalar.

<u>Metal işçiliği;</u>

- Sıcak işleme takımları ve kalıplar,
- Döküm kalıplar.

<u>Tıbbi uygulamalar;</u>

- Dişçilik,
- Protezcilik ekipmanları.

Şekil 1.2. Nikel esaslı süper alaşımların etkin olarak kullanıldığı gaz türbin motoru (Loria, 1992).

<u>Isıl işlem ekipmanları;</u>

- Tepsiler,
- Karıştırıcılar,
- Konvenyör bantları.

Nükleer güç sistemleri;

- Hareket mekanizmaları için kontrol çubukları,
- Akış valfleri,
- Yaylar

Uzay araçları;

- Aerodinamik araç zırhları,
- Roket motor parçaları

Kimyasal ve petro-kimya sanayisi;

- Civatalar,
- Valfler,
- Reaksiyon kapları,
- Borular,
- Pompalar.

Şekil 1.3. Bilgisayarla simule edilmiş bir uçak motoru ve önemli bölümleri (www.EJ200.com).

1.3.1. İşlenebilirlikte esas alınan kriterler

Bir malzemenin işlenebilirliği, aşağıdaki kriterlerden biri veya birden fazlasına göre değerlendirilir. Bu kriterler (a) takım ömrü, (b) kesme hızı, (c) talaş kaldırma miktarı, (d) kesme kuvveti ve gücü, (e) yüzey kalitesi ve talaş şeklidir. Bu kriterlerden, örneğin kesme hızının veya takım ömrünün büyük olması, kesme kuvvetinin veya gücün düşük olması, iyi işlenebilirliğin mevcut olduğunu gösterir. Ancak, malzemenin işlenebilirliği, kesme şartları sabit kalmak şartıyla, genellikle, belirli bir takım ömrü için malzemelerin kesme hızlarını karşılaştırmak suretiyle ölçülür (21). Bir iş parçasının işlenebilirliği, her zaman saat başına üretilen parça sayısı, her parça için işleme maliyeti veya üretilen parçanın son yüzey kalitesi olarak ifade edilebilir. Bir parçanın işleme maliyetine etki eden faktörler Şekil 3.3.' te, tornalama işleminde işlenebilirlik ile ilgili parametreler Şekil 3.4.' te gösterilmiştir (Altın, 2005).

Şekil 1.4. Bir parçanın işleme maliyetine etki eden faktörler. (Şahin, 2000).

Şekil 1.5. Tornalama işleminde işlenebilirlik ve giriş- çıkış parametreleri (Chouldhury, 1997).

1.3.2. İşlenebilirliği etkileyen faktörler

Aşağıdaki faktörlerin işlenebilme özelliği üzerine olumlu veya olumsuz etkileri bulunmaktadır. Bu faktörler (Şahin, 2001);

1-Mikroyapı'nın etkisi 2-Isıl işlemin etkisi 3-Alaşım elementlerinin etkisi 4-Mekanik özelliklerin etkisidir.

1.3.3. Mikroyapı'nın etkisi

Bir metalin işlenebilirliği, onun mikro-yapısı ile ilgili olup, yapıda sert parçacıkların mevcut olması, kesici takım ömrünü düşürürken yapıdaki kristaller irileştikçe takım ömrü artmaktadır. (Şahin, 2001).

1.3.4. Işıl-işlem

Metal veya alaşım, tavlanırsa mikroyapı değişecektir. Metalin kayma dayanımı; tavlama, normalleştirme, gerilim giderme gibi işlemlerle oldukça değişebilir (Şahin,

2001).

1.3.5. Alaşım elementlerinin etkisi

Alaşım elementlerinin takım ömrüne etkisi vardır. Örneğin, karbon miktarı azaldıkça işlenebilme özelliği düşer. Çünkü süneklik arttığında, sünek malzeme kesici takıma yapışarak körlenmeyi hızlandırmaktadır (Şahin, 2001).

Karbon oranı arttırıldıkça malzemenin sertliği artar, artan sertlik takım aşınmasını arttırır. Malzemenin işlenebilirliğini iyileştirmede amaç:

- a) Takım ömrünün arttırılması,
- b) Daha iyi yüzey kalitesi elde edilmesi,
- c) Talaş kaldırma işlemi için daha düşük güç sarfiyatının elde edilmesidir.

1.3.6. Malzemelerin mekanik özelliklerinin etkisi

Genelde malzemelerde sertlik ve kopma dayanımı arasında ilişki mevcuttur. Bir malzemenin sertliği ve kopma dayanımı arttıkça o malzemenin işlenebilme özelliği derece azalmaktadır. Örneğin; yüksek alaşımlı ve paslanmaz çeliklerin işlenebilme özelliği çok düşüktür. Bu durum malzemenin bünyesinde mevcut bulunan Ni, W ve Mn gibi alaşım elementlerinin etkisinden ileri gelmektedir (Şahin, 2001).

1.3.7. Nikel esaslı süper alaşımların işlenebilirliği

İşlenebilirlikte işleme operasyonlarını etkileyen pek çok değişken vardır. Bunların arasında kullanılacak kesici takımın küçük boyutlu ve nispeten pahalı olmaması en önemli kriterlerdendir. Nikel esaslı süper alaşımların işlenmesinde kullanılacak kesici takım malzemelerinde genelde şu özellikler aranır (Sims, 1972).

1) iyi aşınma dayanımı,

- 2) yüksek dayanım ve sertlik,
- 3) yüksek ısıl sertliği,
- 4) iyi termal şok özellikleri,
- 5) yüksek sıcaklıklara uygun kimyasal kararlılık.

Sementit karbür takımlar ile yüksek hız çelikleri (HSS), nikel esaslı süper alaşımların işlenmesinde yaygın olarak kullanılmaktadır. Yüksek hız çelikleri, genelde aralıklı talaş kaldırma işlemlerine uygunken (frezeleme, delik büyütme gibi), sementit karbür takımlar ise sürekli talaş kaldırma işlemlerinde daha çok kullanılmaktadırlar (tornalama, delme gibi). Günümüzde ise, bazı seramik takım malzemeleri (Al2O3 -TiC), Si3N4 silikon nitrit esaslı seramikler ve en son geliştirilen whisker takviyeli alüminyum oksit seramikler (%25 SiCw whisker kapsarlar), nikel esaslı süper alaşımların işlenmesinde gittikçe artan bir şekilde kullanılmaktadırlar (Richards ve ark., 1989). Çok katlı kaplamalı karbür takımlar (TiN+TiCN ve TiN)' da nikel esaslı süper alaşımların işlenmesinde dikkate değer bir gelişme göstermişlerdir (Ezugwu ve ark., 1996; Wang ve ark., 1997). Bu kesici takımlar PVD ya da CVD kaplama metodu ile kaplanmaktadırlar. Kübik bor nitrit takımlar ise bütün kesici takımlar içerisinde, nikel esaslı süper alaşımların işlenmesinde en iyi performansı göstermişlerdir (Shintani ve ark., 1992). Esas kullanım alanları demir cinsi metaller olmasına rağmen kübik bor nitritler, nikel esaslı süper alaşımların işlenmesinde üstün performansa sahiptirler. Ancak çok yüksek bir maliyete sahip olmaları bu takımların kullanımlarını sınırlandırmaktadır. (Altın, 2005)

2. KAYNAK BİLDİRİŞLERİ

Bu bölümde tez çalışması için yapılan araştırmalar sonucu elde edilen bulgulara değinilmiştir. İncoloy 901 ve Rene 41 malzemeleriyle ilgili olarak yapılan çalışmalar ülkemizde son derece azdır. Tez içeriğine uygun olarak yapılan çalışmalar genel olarak süper alaşımların işlenmesi sırasında oluşan kesme kuvvetleri ve malzemenin yüzey pürüzlülüğü ile ilgili çalışmalar araştırılmıştır. Bu nedenle bu bölüm diğer süper alaşımlar üzerinde yapılan çalışmalar ile desteklenmiştir.

Nimonic C-263 alaşımının işlenebilirliğini deneysel olarak analiz etmiştir. Deneyler için Taguchi deney tasarımından faydalanılmıştır. Nikel bazlı süper alaşımların işlenmesi için sementit karbür ve SiA1ON seramik takımların daha uygun olduğundan bu çalışmada güçlendirilmiş seramik takımlar kullanılmıştır. Çalışma kapsamında, kesme kuvvetlerinin, serbest yüzey aşınmasının ve yüzey bütünlüğü değerlerinin üzerinde farklı parametrelerin etkisi incelenmiştir. Sonuç olarak, ilerleme miktarının, kesme kuvvetleri ve yüzey pürüzlülüğü değerlerinde, kesme hızı ve kesme derinliğinden daha önemli olduğu belirtilmiştir. Ayrıca, seramik takımlar kullanılarak, yüksek ilerleme ve düşük kesme hızında yapılan deneylerin yüzey pürüzlülüğü ve aşınma değerleri SEM'de incelenmiştir. Kesme kuvvetlerini, serbest yüzey aşınması ve yüzey pürüzlülüğünü baz alarak en uygun işlenebilirlik değerleri; kesme hızı 210 m/dak, ilerleme miktarı 0.05 mm/dev, kesme derinliği 0.50 mm olarak tavsiye edilmiştir (Ezilarasan ve ark., 2013).

Kobalt bazlı süper alaşımların işlenmesinde kesme hızının, ilerlemenin ve kesme derinliğinin; takım aşınması, talaş morfolojisi ve kesme kuvvetlerine etkilerini incelemişlerdir. İşleme parametrelerinin belirlenmesi için genel tam faktöriyel tasarım yöntemi kullanılmıştır. Talaş morfolojisi, kesme kuvveti ve takım aşınması, PVD ile kaplanmış ve kaplamasız takımlarla kıyaslanarak değerlendirilmiştir. Bu araştırmalar Stellite 6 süper alaşımı ve TiN, TiCN ve TiAlC kaplamalı karbür matkaplar kullanılarak yapılmıştır. Sonuç olarak, süper alaşımların kaba frezelenmesinde düşük ilerleme ve kesme hızı tercih edilmiştir. İlerleme ve kesme derinliği arttıkça kesme kuvvetleri de artmıştır, simetrik yüzey frezelemede kesme hızının etkisi görülmemiştir. Kesme kuvvetlerinin artışında kesme hızının etkisi görülmemiştir ancak kesme hızının artması takım aşınmasını arttırmıştır. Ayrıca deney sonuçlarına göre Stellite 6 süper alaşımının akma dayanımın yüksek olduğu yorumlanmıştır (Aykut S. Ve ark., 2007).

Waspaloy süper alaşımı kaplamalı ve kaplamasız karbür matkaplar kullanılarak işlemiştir. Bu kapsamda kesme kuvvetlerinin, matkap uç açısının (A) ve yüzey pürüzlülüğü değerlerine etkisi incelenmiştir. Deneysel parametreler Taguchi yönteminin Ortagonal serisi L18 dizisi kullanılarak belirlenmiştir. Deneylerde kullanılan parametrelerin yüzey pürüzlülüğünün üzerindeki etkileri sırasıyla; uç açısı %49.44, ilerleme miktarı %15, kesme hızı %14.45 ve kesici takım tipi %13.47 şeklinde sıralanmıştır. Takım aşınmasıyla birlikte yüzey pürüzlülüğünün de arttığı görülmüştür. Bu çalışma sonucunda, genel olarak ortalama yüzey pürüzlülüğü (Ra) değeri 0.99 bulunmuştur. TiN kaplı karbür matkaplar kaplamasız matkaplara göre daha düşük yüzey pürüzlülüğü sağlamıştır. Kesme hızı ve matkap uç açısı arttıkça yüzey pürüzlülüğü artmıştır. Ayrıca, spiral talaş, dize talaş ve kısa talaş şeklinde üç tip talaş oluşumu yorumlanmıştır (Motorcu, A.R. ve ark., 2014).

Bilgisayar destekli bir sistemle yüzey profili ve yüzey pürüzlülüğünün proses öncesi tahmin edilmesi üzerine bir çalışma yapmıştır. Bilgisayar ve takım tutucusuna bağlanmış bir dinamometre yardımı ile tezgâhın çalışma anındaki verileri toplamıştır. Çalışmanın hedefi kesme hızı, kesme derinliği, ilerleme parametrelerini değiştirerek ve dinamometre yardımı ile temel radyal kuvvetleri değiştirerek optimum yüzey profili ve yüzey pürüzlülüğü tahmini yapmaktır. Soğutma sıvısı kullanılmamış, CNMG kesici uç ile çalışılmıştır. Deneyde yatay CNC torna ve malzeme olarak da paslanmaz çelik kullanılmıştır. Deneyin başlangıcında radyal kuvvetleri değiştirerek optimum yayılma seviyesini tespit etmiş ve bu tespitten sonra hedefi kesme hızı, kesme derinliği, ilerleme parametreleriyle teorik ve pratik sonuçları karşılaştırmıştır. Sonuç olarak temel radyal kuvvetlerin optimum yayılma seviyesi belirlenebilirse gerçeğe yakın tahminler yapılabileceğini belirtmiş, farklılıkların ise titreşim, talaş oluşumu, vb. gibi nedenlerden dolayı olabileceğini belirtmiştir (Lu, 2008).

Inconel 718'in işlenebilirliğini incelemişlerdir. Çalışmada Inconel 718'in işlenebilirliğinin zorluğunu iki baslık altında toplamışlardır. Bunlar takım ömrünün azlığı ve yüksek kesim hızlarının malzemeye verdiği hasarlardır. Ayrıca yüksek kesim hızlarının malzemenin sertleşmesine, yüzey yırtıklarına ve yüzey bozukluklarına sebep olduğu belirtilmiştir. Yaptıkları literatür araştırması sonucunda takım aşınmasında talaş

derinliğinin ilerleme ve kesme hızına göre etkisinin daha az olduğunu belirtmişlerdir. Takım aşınmasını arttırmasına rağmen kesme hızının yüzey pürüzlülüğünü olumlu yönde etkilediği de belirtilmiştir.

Yapılan deney çalışmasında dört değişik parametreden yararlanılmıştır. Bunlar, talaş derinliği, kesme hızı, ilerleme ve kesici takımın yaklaşma acısıdır. Bu parametrelerle üç farklı düzeyde çalışılmış ve her çalışma için farklı takım tutucu kullanılmıştır. Bu üç farklı deneme için talaş derinliği sabit tutulmuş ve diğer üç parametre değişkenlik göstermiştir. Deney için CNC torna tezgahı kullanılmıştır. Deneyde kesici uç olarak iki farklı kaplamalı karbür uç kullanılmıştır.

Deney sonucunda takım ömrünün yaklaşma acısı -5°'den +45°'ye doğru gidildikçe arttığı gözlemlenmiştir. Kesme hızı arttıkça takım ömrü azalmaktadır. Yüksek kesme hızlarında sürtünmenin artmasıyla sıcaklığın da arttığı gözlemlenmiştir. Ana sonuç olarak Inconel 718 malzemesinin düşük kesme hızı ve ilerlemelerde kullanılması tavsiye edilmiştir. Kesme hızı ve ilerlemeler arttıkça kesici uç aşınması artmakta ve sıcaklığın da etkisiyle malzeme üzerinde oluşan gerilmeler de artmaktadır (Rahman, ve ark., 1997).

İşleme parametrelerinden kesme hızının Inconel 718 malzemesinin işlenebilirliğine olan etkilerini araştırmışlardır. Deney kaplamasız sementit karbür takımla ve bilgisayar sayısal denetimli torna tezgahında kesme sıvısı kullanılmadan gerçekleştirilmiştir. Kesme parametrelerinden ilerleme ve kesme derinliği sabit alınmış, kesme hızı ise beş farklı değer ile değişken tutulmuştur.

Deneyde üç ortogonal kesme kuvvetinin (fc, ff, fp) ölçümü için Kistler tipi dinamometre kullanılmıştır. Deney malzemesi olarak 50x500mm ebatlarında Inconel 718 kullanılmıştır. Deney sonucunda kesme hızının arttırılmasıyla kesme kuvvetlerinin azaldığı görülmüştür. Yüzey pürüzlülüğü ise kesme hızı arttıkça önce azalmış, 45 m/dak değerinden sonra tekrar artmıştır. Bu deneyde en iyi yüzey kalitesi 45 m/dak kesme hızında sağlanmıştır. Yüzey pürüzlülüğün belirli bir kesme hızından sonra artmasının nedeni olarak Inconel 718 malzemesine bağlı olarak kesme bölgesinde oluşan yüksek sıcaklıkların kesici takım üzerinde oluşturduğu yanak ve plastik deformasyon iddia edilmiştir. Elde edilen talaş bicimi genel olarak sürekli ve dar adımlı olarak tespit edilmiştir. 45 m/dak kesme hızındaki talaş bicimi ise sürekli ve geniş adımlıdır. Gözlemlenen talaş biçimleri literatürle benzerlik arz etmektedir (Altın ve ark., 2006).

Whisker takviyeli alüminyum oksit seramik takım ile nikel esaslı süper alaşımlardan Inconel 718 ve Incoloy 901 malzemesi kullanılarak pek çok kesme deneyi gerçekleştirilmiştir. Çalışmaları sonucunda takım ömrü ve aşınma değerleri değerlendirmeye tabi tutulmuştur. Sonuçta bazı nikel esaslı alaşımların whisker takviyeli silikon karbür takım ile 750 m/min.' lik kesme hızına ulaşılabildiği görülmüştür. Nikel esaslı süper alaşımlar, kaplamasız tungsten karbür takımlar ile genelde (10-30 m/min.)'lik kesme hızlarında işlenmiştir. Bu kesme hızlarında talaş kontrolü zayıftır ve testere dişlere sahip sürekli talaşlar elde edilmiştir. Yüksek ısı, yüksek iş parçası sertliği kombinasyonu ve abrasiv talaşlar, talaş derinliğinde çentik oluşturmuştur. Özellikle titanyum ve alüminyum kapsayan süper alaşımların işlenmeleri zor olmuştur. Bu alaşımlar Ni3 (Ti,Al) tipi y' fazının çökeltme işlemine tabi tutulmasıyla sertleştirilmiştir. Titanyum ve alüminyum interaktif (karşılıklı yer değiştirebilen) elementlerdir. Genelde γ ' fazı, titanyum ve alüminyum miktarının artmasıyla arttığı, bu durumunda takım aşınmasını hızlandırdığı şeklinde ifade edilmiştir. Çalışmalarında Baker' e atıfta bulunarak "Incoloy 901'in 230 m/min.' lik kesme hızlarında oluşan çentiğin, silikon nitrit esaslı seramikler de, karışık alüminyum oksitli seramiklerden % 70 daha az olduğu ayrıca yaptıkları deneyler ile V=150 m/min.'lik kesme hızının ve f=0.125 mm/rev. ilerleme hızının üzerindeki hızlarda Inconel 718'in karışık oksitli seramikler ile işlemesine elverişli olmadığı bildirilmiştir. Incoloy 901 için tavsiye edilen parametreler (Kennametal KYON 2000), kesme hızı 120-145 m/min., ilerleme hızı 0.2 mm/rev. ve talaş derinliği 2 mm dir". Ancak 0.30 mm/rev.'in üzerindeki ilerleme hızlarının siyalon (Kennametal KYON 2000) takımlar için mümkün olduğu, Inconel 718 için V=210 m/min.'lik kesme hızı ve f=0.25 mm/rev.'de oluşan çentiğin, f=0,175 mm/rev.'de oluşan çentik'ten daha az olduğu bildirilmiştir. ifadelerinde 30 m/min.'lik kesme hızlarının üzerindeki hızlarda kobalt fazındaki termal yumuşamadan dolayı karbür takımların bozulduğu, kesici uç geometrisine göre, uç'ta oluşan ısıların farklı geliştiği bildirilmiştir. Dikkat çekilen bir diğer ifade, V=10 m/min.'lik kesme hızında aynı şartlarda dökme demir ile işlemede, kesici uç'ta oluşan sıcaklık 320 °C iken, bu durum Nimonic 75 için 820 °C 'ye kadar yükseldiği görülmüştür. Inconel 718'in işlenmesinde kullanımı önerilen güncel whiskher takviyeli kesici takım malzemelerinin bir kısmı şunlardır. Carboloy (Cer Max 490); Greenleaf (WG300); GTE Valenite (Quantum10); Hertel (MC-3) Kennametal (KYON 2500) ve Sandvik (CC670).

1996' da Liao ve Shiue tarafından yapılan çalışma (115) ile iki farklı sementit karbür (K20 ve P20) takım ile Inconel 718'in tornalanması esnasında oluşan aşınma mekanizmaları analiz edilmiştir. Yaptıkları çalışma ile (f=0.1 mm/rev. ilerleme, d=1.5 mm talaş derinliği ve kesme hızı V=35 m/min.) sementit karbür takımın aşınan yüzeyi üzerinde kesici kenarın çok yakınında yapışmış bir BUE tabakası ve kesici kenar üzerinde çıtlamalar olduğu gözlenmiştir. Aynı kesme şartları P20 kalitesindeki karbür takım için uygulanıldığında benzer durum ile karşılaşılmıştır. iki kesici takım arasında yapılan karşılaştırma sonucu P20 kalitesindeki kesici takımda oluşan aşınma daha düzensiz, yan kenar aşınma boyu daha büyük ve krater daha derin görülmüştür. Elektron mikro analiz EPMA (elektron probe micro analyser) cihazını kullanarak kesici takımın talaş yüzeyi üzerinde oluşan tabakadaki elementler, analiz edilmiş ve 35 m/min.'lik kesme hızında takım elementlerinde bir farklılık görülmemistir. Fakat is malzemesinden, nikel ve demir, her iki kesici takım yüzeyine diffüzyon aracılığıyla yayılmıştır. Bunun sebebi de kesici takımın ucunda 1000 °C 'lik sıcaklığın üzerinde oluşan ısı olduğu düşünülmüştür (Richards ve Aspinwall, 1989).

Inconel 718'in işlenebilirliği üzerine kesme deneyleri yapılmıştır. Yapılan talaş kaldırma deneylerinde a=2 mm talaş derinliği ve f=0,20 mm/rev ilerleme hızı sabit tutulmuştur. Kesme hızı, karbür takımlarda V=15, 30, 45, 60, 75 m/min., seramik takımlarda V=150, 200 250, 300 m/min esas alınmıştır. Hem karbür hem de seramik takımlarda iki farklı geometri (kare ve yuvarlak) kullanılmıştır. Takım aşınması, kesme kuvvetleri ve yüzey pürüzlülüğü yönünden yapılan değerlendirmede aşağıdaki sonuçlar elde edilmiştir. Takım ömrü ve yüzey kalitesi yönünden, dört farklı sementit karbür kesici takım içerisinde, V=45 m/min'lık kesme hızında kaplamasız karbür SECO 883, VBB =0,08 mm, Fc =1149 N, Ra =0.45 um ile Tc =15.24 dakika'lık talaş kaldırma süresi ve 57 273 cm3 'lük talaş kaldırma hacmi ile inconel 718'in islenmesinde en uygun kombinasyon olarak bulunmuştur.

Inconel 718'in islenmesi ile kaplamalı karbürlerde yanak aşınması, çentik ve plastik deformasyon, kaplamasız karbürlerde ise yanak aşınması ve çıtlama daha hâkim görülmüştür. Dört farklı kesici takım içerisinde SECO 883 en düşük yüzey pürüzlülüğü ile V=45 m/min'de daha uygun olduğu görülmüştür. Kesme hızı, karbür kesiciler ile yapılan deneylerde baslangıç değeri 15 m/min'den 75 m/min'e arttırıldığında, asıl kesme kuvveti Fc, her dört kesici takımda azalmıştır. Yuvarlak şekilli karbür kesici takımlar ile yapılan talaş kaldırma işlemlerinde, kare şekilli karbür kesici takımlara göre daha kaliteli yüzey elde edilmiştir. Deneylerde talaş kırıcılı kesici takımlar kullanılmasına rağmen, talaşlar uzun ve sürekli çıkmıştır. Talas, oldukça zor kopan bir talaş olup, kesicilerdeki talaş kırıcılar, talaşı koparmada yetersiz kalmışlardır. Dört farklı seramik kesici takım içerisinde en düşük ortalama yan kenar aşınma alanı genişliği, V=150 m/min'de whisker takviyeli alüminyum oksit (A12O3+SiCW) KYON 4300 SNGN ile VBB=0.13 mm, en düşük yüzey pürüzlülük değeri, V=150 m/min.'lık kesme hızında, whisker takviyeli alüminyum oksit (A12O3+SiCW) KYON 4300 SNGN ile Ra=1,22 µm, en düşük asıl kesme kuvveti, Fc, V=250 m/min'lik kesme hızında KYON 2000 RNGN ile 577 N elde edilmiştir. Seramik uçlu takımlarda genelde yan kenar, krater, çentik ve plastik deformasyon aşınmaları oluşmuştur (Altın A., 2005).

Bu çalışmada, Rene 41 süper alaşımının farklı torna parametreleriyle işlenebilirliği incelenmiştir. Deneylerde talaş derinliği (2,00 mm), kesici takım ve geometrisi (RPGN-4V), kesici takım radyüsü (6,35 mm), kesme sıvısı (Mevag Sentra 300 H) ve Rene 41 malzeme sabit olarak kabul edilmiştir. Değişken olarak üç farklı ilerleme (0,15 - 0,20 - 0,25 mm/dev), iki farklı kesme hızı (180 - 240 m/dak) ve iki farklı kesici takım markası (A - B) kullanılmıştır. İşleme prosesinin çıktılarından takım aşınması ve yüzey pürüzlülüğü incelenmiştir. Takım aşınmasına etken olarak ilerleme ve kesme hızı bulunmuştur, ilerlemenin etkisi daha fazladır. İncelenen kesici takım markalarının takım aşınmasına etkisi yoktur. Yüzey pürüzlülüğü incelendiğinde ise ilerlemenin etkisi görülmüştür. Kesme hızı ve incelenen kesici takım markalarının yüzey pürüzlülüğüne etkileri görülmemiştir. Rene 41 ve Inconel 718 malzemeleri birbirleri ile kıyaslanmıştır ve Rene 41 malzemesinin işlenebilirliğinin daha zor olduğu görülmüştür. Kesici takımlarda en az aşınma değerleri 0,15 mm/dev ilerleme ve 180 m/dak kesme hızı ile çalışıldığında görülmüştür. Bu çalışmada, Rene 41 malzeme için bu kesme parametreleri, kullanılan takım ve takım geometrisi için optimum olarak kabul edilebilir (Tali D., 2016).

3. MATERYAL VE YÖNTEM

3.1. Materyal

3.1.1. Incoloy 901

Incoloy 901 ideal gaz türbini ve uçak uygulamaları için uygun olan bir nikeldemir - krom alaşımıdır. Titanyum ve alüminyum içeren ve katı çözelti kuvvetlendirmesi için molibden içeren bir nikel-demir-krom alaşımıdır (High Temp Metal Inc., 2008).

Bileşenleri

Çizelge 3.1. İncoloy 901 bileşenleri

Bileşenler	Oran
Nikel+ Cobalt	% 40.0-45.0
Cromium	% 11.0-14.0
Silikon	% 0.40
Sülfür	% 0.03
Kobalt	% 1.00
Aliminyum	% 0.35
Karbon	% 0.10
Manganez	% 0.50
Molibden	% 5.00-6.50
Titanyum	% 2.80-3.10
Bakır	% 0.50

Alaşım, yaklaşık 1110 ° F (600 ° C) sıcaklıklarda yüksek akma dayanımına ve sürünme direncine sahiptir. Demir içeriği, alaşımın yüksek dayanımı ve iyi dövme özellikleriyle birleştirmesini sağlar. Gaz türbinlerinde, disklerde ve şaftlarda kullanılır. Standart ürün formu yuvarlaktır. (High Temp Metal Inc., 2008).

Rene 41 1200/1800 °F (649/982 °C) sıcaklık aralığında yüksek mukavemetli, sertleşen, nikel bazlı, yüksek sıcaklıkta kullanılabilen bir alaşımdır. Bu alaşım yüksek gerilimli yüksek sıcaklık uygulamalarında kullanılmak üzere tasarlanmıştır (High Temp Metal Inc., 2008.)

Uygulama Alanları

Jet motoru ve parçaları

- Füze bileşenleri
- Cıvata ve bileşenleri
- Yay bileşenleri

(High Temp Metal Inc., 2008). Bileşenleri

Çizelge 3.2. Rene 41 bileşenleri

Bileşenler	Oran	
Karbon	% 0.06-0.12	
Manganez	% 0.10	
Silikon	% 0.20	
Kromium	% 18.0-20.0	
Boron	% 0.003-0.010	
Demir	% 5.00	
Kobalt	% 10.0-12.0	
Titanyum	% 3.0-3.3	
Alüminyum	% 1.4-1.6	
Molibden	% 9.0-10.5	
Nikel	Geri Kalanı	

3.2. Metod

Talaş kaldırma işlemine tabi tutulacak Incoloy 901, ve Rene 41 malzemelerinden hazırlanacak olan Φ 5cm x 125cm'' ölçülerindeki malzemelerden her seferinde bir tanesi ayna- punta arasına bağlanacak ve kullanılacak kesici takım için, kesici kataloğunda belirtilen kesme parametrelerinde işlemek suretiyle her seferinde kesme hızı, ilerleme ve talaş derinliğinden birisini sabit tutarak, diğer iki parametrede değişiklik yapmak suretiyle soğutma sıvısı kullanılmadan talaş kaldırılacaktır. Bu esnada oluşan kesme kuvvetleri ölçülecek ve talaş kaldırma esnasında uçlarda 0,30 mm'lik bir asınma alanı genişliği gerçekleşinceye kadar geçen süre tespit edilecektir. 5 dakikalık takım ömrü için oluşan aşınma değeri ölçülecek, malzemenin sıvanma eğilimi tespit dilecek ve bunun nasıl engelleneceği konusunda çalışma yapılacaktır. Hem kesici takımlarda oluşan aşınmalar hem de malzemelerin ve kesici uçların EDS analizleri SEM elektron mikroskobu altında yapılacaktır. Farklı kesme hızlarında en düşük BUE'yi ve aşınmayı veren parametreler tespit edilecektir. İşlenen her bir parçanın yüzey pürüzlülüğü ölçüm cihazı ile ölçülecek ve bilgisayara kaydedilecektir. Toplanan bilgiler grafikler oluşturmak suretiyle karşılaştırma yapılacak ve optimum işleme şartları Taguchi tasarım metodu kullanılarak belirlenmeye çalışılacaktır. Kullanılacak kesici takımlar kare, üçgen ve yuvarlak formda olup talaş kırıcısız olacaktır.

Şekil 3.1. Dinamometre birimi.

Taguchi, sayısal sonuçları analiz etmek ve değerlendirmek için; Ortogonal deneysel tasarım, S/N (sinyal/gürültü) oranı ve ANOVA (varyans analizi) gibi üç aracı birleştirerek sonuca ulaşır.

3.2.1. Taguchi metodu

Deneyler ve testler ürünlerin kalitesini belirlemek için uygulanır. Ancak bu deney ve testlerin artması demek maliyet artışı, uygulama zorluğu ve zaman kaybı demektir. Bir başka deyişle kaliteyi etkiyen faktörler arttıkça yapılacak test sayılarının artması ve dolayısıyla maliyet artışı anlamına gelecektir.

Genichi Taguchi, kendi adıyla anılan yaklaşımı ile deneylerin gerçekleştirilmesi ve değerlendirilmesindeki verimliliği arttıracak bir çözüm getirmiştir (Ross, 1996).

Böyleyce sonuca ulaşmak için yapılacak deney sayısında azalma meydana gelmiştir.

Taguchi yönteminin esas amacı; ortogonal dizinleri kullanarak, hedef değere ulaşmak için yapılan deney sayısını azaltmak ve az deneyle kontrol edilemeyen faktörlerin etkisini de en küçükleyen bir deney tasarlamaktır. Uygulamada yapılan deney sayısının azalması zaman ve maliyet kazancı sağlamaktadır.

Diğer önemli bir nokta ise deney tasarımının dengeli olmasıdır, yani faktörlerin birbirinden bağımsız olarak değerlendirebilmesinin sağlaması ve bunun içinde tasarımda faktörlerin farklı seviyeleri için her test edilen şart altında eşit sayıda örnekleme yapılmasıdır. Taguchi'nin standart tasarımları bu sistem üzerine kurulmuştur (Ross, 1996).

Taguchi yöntemi; sistem tasarımı, parametre tasarımı ve tolerans tasarımıdır. Sistem tasarımı aşamasında, mühendislik ve bilimsel prensipler kullanılarak ürünün beklenen performansı sağlamasına yönelik prototip üretim yapılır. Parametre tasarım aşaması, üründe çıkabilecek değişkenliklerin en aza indirilerek imalat ve sonraki kullanım aşamalarında maliyetleri azaltmaya yönelik faaliyetleri içermektedir. Burada amaç farklılık yaratan faktör ve seviyelerin ürün üzerindeki etkisini en aza indirecek tedbirleri almak ve parametreler için en uygun değerlerin seçilmesini sağlamaktır. Tolerans tasarımı aşamasında amaç ürün için belirlenen kalite hedefine ulaşma yönünde seçilen her bir parametrenin nominal değer etrafındaki tolerans değerlerini belirlemektir. Ürünün hedef değerden farklı bir sonuç vermesi durumunda kayıplar tespit edilerek sapmalar hesaplanır. Taguchi kayıp fonksiyonu, beklenen hedef değerle deneysel değer arasındaki sapmadır ve sinyal/gürültü (S/N) oranına dönüştürülerek hesaplanmaktadır (Montgomery, 1997; Savaşkan ve ark., 2004; Nalbant ve ark., 2007).

3.2.2. Taguchi deney tasarımı aşamaları

Taguchi'nin deneysel tasarım adımları;

- 1. Değerlendirilecek faktör ve etkileşimlerin seçilmesi,
- 2. Faktör düzeylerinin seçilmesi
- 3. Uygun ortogonal düzenin seçilmesi
- 4. Faktör veya etkileşimlerin kolonlara atanması,
- 5. Testlerin yapılması,
- 6. Sonuçların analiz edilmesi,
- 7. Doğrulama deneylerinin yapılması (Anagün, 2000).

Bu adımların izlenmesi sonucunda proses veya ürün için en iyi performansın elde edileceği deney parametreleri belirlenecek, deneyde ele alınan faktörlerin kalite değeri üzerindeki etkisi tahmin edilebilecek ve en iyi deney parametreleri sonucunda elde edilebilecek kalite değeri öngörülebilecektir (Taylan, 2009).

Şekil 3.2. Deney aşamaları.

3.2.3. Taguchi performans karakteristikleri

Taguchi yöntemi, **Sinyal/Gürültü (S/N)** oranına bağlı olan üç temel performans karakteristiğini kullanır. Deneylerimizde kullandığımız sinyal gürültü oranı en küçük olan en iyidir karakteristiğini kullanacağız.

S/N_{cR}
$$\eta = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right]$$
En küçük, en iyisiS/N_{iR} $\eta = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right]$ En büyük, en iyisiS/N_{MR} $\eta = 10 \log \left(\frac{y}{s^2 y} \right)$ Nominal, en iyisi

Şekil 3.3. Performans karakteristikleri.

3.2.4. Yöntem

Deneylerimizi JOHNFORD T35 marka endüstriyel tip CNC torna tezgâhında kuru kesme şartlarında gerçekleştirilmiştir. Kesme kuvvetleri ölçümünde üç elemanlı piezo elektrik dinamometre olan Kistler 9257 B model dinamometre kullanılmıştır. Yüzey pürüzlülüğü ölçümünde ise Surtrasonic 3-P ölçüm cihazı kullanılmıştır. İlerleme adımları 0.100mm/rev, 0.125mm/rev ve 0.150mm/rev olarak seçilmiştir. Talaş derinliği kesici takım üretici firmanın (KENNEMETAL) kataloglarındaki önerileri doğrultusunda üzerine 1,6 mm olarak seçilmiştir. Kesme hızları sementit kesici takımlarında 60, 75, 90 mm/min, seramik kesici takımlarda ise 200, 230, 260 mm/min olarak seçilmiştir.

Şekil 3.4. Ölçüm tezgahı dinamometre birimi.

Şekil 3.5. CNC tezgahı.

3.2.5. Kesme şartları

Deneyimizde kullanacağımız kesme parametreleri aşağıda (Çizelge 3.3) verilmiştir. Kesme Parametrelerinde 3 temel unsurumuz bulunmaktadır. İlk unsurumuz malzemeyi işlerken ilerleme adımımızdır. İlerleme adımı olarak 3 değer kullanıldı ve her iki değerde ölçümler yapıldı. İkinci unsurumuz kesme hızıdır. Kesme hızı olarak 3 kesme hızı kullanıldı ve her 3 kesme hızında ölçümler yapıldı ve sonuçlar kaydedildi. Üçüncü unsurumuz kesici takım seçimidir. Her kesici takımla testler yapıldı ve sonuçlar kaydedildi.

Kesme parametrelerinde;

A değişkeni ilerleme adımını

B değişkeni kesme hızını

C değişkeni kesici takım tipini ifade etmektedir.

Çizelge 3.3. Kesme parametreleri

_	Kesme Parametreleri										
	Sıra No	İlerleme Adımı (mm/rev) (A)	Kesme Hızı (m/min) (B)	Kesici Takım (C)							
-	1	0.100	200	KY4300							
	2	0.125	230	KYS30							
	3	0.150	260	KYS25							

3.2.6. S/N oranı analizi

Yapılan deneyler sırasında ölçülen kesme kuvvetleri (Fz) ve ortalama yüzey pürüzlülüğü (Ra) değerleri yerine yazıldı. Ölçülen değerler ile ortalama yüzey pürüzlülüğü ve kesme kuvvetleri için ayrı ayrı sinyal gürültü oranları hesaplanarak tabloda yerlerine yazılmıştır. S/N oranları aşağıdaki formüle göre en küçük en iyidir yaklaşımıyla hesaplanmıştır.

$$S/N = -10 \log \left\{ \sum_{i=1}^{n} y_i^2 \right\}_0$$

Deneysel tasarım olarak Taguchi'nin L27 ortognal tasarımı seçildi. Bu tasarımda 3 değişken ve bu değişkenlerle yapılacak olan testler aşağıdaki (Çizelge 3.4) gibi sıralandı.

İlerleme F Kesici Takım Kesme Hızı V Sıra No (mm/rev) (A) (m/min) (B) (C)

Çizelge 3.4. Kesme parametreleri

3.2.8. Kesici takımlar

Deneylerimizde kullanılan kesici takımlar (Çizelge 8.3) seramik kesicilerden oluşmaktadır. Bu kesicilerle yapılan deney sonuçları ayrı ayrı kayıt altına alınmıştır.

Üretici Firma ve Kesici Takım Kodu	Kaplama Cinsi ve Katmanlar	Kaplama Metodu
Kennametal KY4300	Al2O3+SİCW.	Whisker takviyeli seramik
Kennametal KYS25	TiCN	SIALON CVD kaplama
Kennametal KYS30	Saf	SIALON

Çizelge 3.5. Kesici takımlar ve özellikleri

4. BULGULAR

4.1. Deney Sonuçları

4.1.1 İncoloy 901 kesici takım deneyleri

Seramik kesici takımlar ile İncoloy 901 üzerinde yapılan deneyler sonucunda elde edilen veriler aşağıda (Çizelge 4.1) verilmiştir.

	KY4300 kesici takım ile İncoloy 901										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (μm)	R_{a3} (μ m)	R _{aort} (μm)		
D1	0.100	200	403.39	290.49	555.96	0.661	0.67	0.681	0.671		
D2	0.125	200	382.78	263.01	625.82	1.369	1.328	1.472	1.390		
D3	0.150	200	417.63	285.89	710.18	1.325	1.198	1.092	1.205		
D4	0.100	230	357.4	221.81	542.04	0.538	0.881	0.602	0.674		
D5	0.125	230	387.15	254.84	622.92	1.005	0.969	1.15	1.041		
D6	0.150	230	393.31	263.94	687.08	1.221	1.473	1.166	1.287		
D7	0.100	260	330.97	219.12	526.48	1.257	1.505	1.434	1.399		
D8	0.125	260	356.85	260.56	609.9	2.239	2.261	2.134	2.211		
D9	0.150	260	412.16	276.29	693.68	1.524	1.679	1.678	1.627		
			KYS30) kesici takı	m ile Incol	oy 901					
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	$\begin{array}{c} R_{a1} \\ (\mu m) \end{array}$	$\begin{array}{c} R_{a2} \\ (\mu m) \end{array}$	$\begin{array}{c} R_{a3} \ (\mu m) \end{array}$	R _{aort} (μm)		
D10	0.100	200	495.26	291.14	598.09	0.921	0.876	0.958	0.918		
D11	0.125	200	405.17	279.23	640.23	0.737	0.726	0.722	0.728		
D12	0.150	200	395.68	273.38	711.82	1.446	1.421	1.409	1.425		
D13	0.100	230	420	272.3	548.39	0.77	0.833	0.818	0.807		
D14	0.125	230	414.32	279.4	623.59	1.154	1.237	1.14	1.177		
D15	0.150	230	470.43	319.79	714.1	2.039	2.253	2.053	2.115		
D16	0.100	260	403.35	260.91	548.8	0.813	0.734	0.863	0.803		
D17	0.125	260	347.85	252.69	604.13	1.292	1.335	1.283	1.303		
D18	0.150	260	397.05	293.71	695.56	1.489	1.432	1.449	1.457		

Çizelge 4.1. İncoloy 901 deney sonuçları

	KYS25 kesici takım ile Incoloy 901										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	$\begin{array}{c} R_{a1} \ (\mu m) \end{array}$	R_{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D19	0.100	200	486.73	288.29	608.12	1.23	1.034	1.062	1.109		
D20	0.125	200	492.66	301.55	680.81	1.318	1.31	1.232	1.287		
D21	0.150	200	499.13	346.59	757.01	1.374	1.262	1.295	1.310		
D22	0.100	230	480.38	300.97	593.34	1.289	1.529	1.636	1.485		
D23	0.125	230	493.12	301.78	671.65	1.138	1.029	0.962	1.043		
D24	0.150	230	497.9	331.18	741.55	1.341	1.861	1.709	1.637		
D25	0.100	260	396.62	279.98	549.62	1.014	1.057	1.008	1.026		
D26	0.125	260	460.64	292.4	654.69	1.321	1.211	1.24	1.257		
D27	0.150	260	461.15	313.49	713.44	1.701	1.433	1.318	1.484		

Çizelge 4.1. İncoloy 901 deney sonuçları (devamı)

4.1.2. Rene 41 kesici takım deneyleri

Seramik kesici takımlar ile Rene 41 üzerinde yapılan deneyler sonucunda elde edilen veriler aşağıda(Çizelge 4.2) verilmiştir.

	KY4300 kesici takım ile Rene 41										
Dneey No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	$\begin{array}{c} R_{a1} \\ (\mu m) \end{array}$	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D28	0.100	200	372.92	301.8	564.55	1.174	1.23	1.174	1.193		
D29	0.125	200	365.23	266.09	644.7	1.413	1.213	1.216	1.281		
D30	0.150	200	383.45	292.22	729.64	1.293	1.298	1.27	1.287		
D31	0.100	230	346.37	240.99	562.07	1.323	1.343	1.458	1.375		
D32	0.125	230	353.51	251.61	635.53	0.923	1.001	0.962	0.962		
D33	0.150	230	391.18	282.89	717.1	1.187	1.211	1.305	1.234		
D34	0.100	260	335.98	227.96	551.73	0.996	0.954	0.848	0.933		
D35	0.125	260	366.49	246.29	628.79	0.965	1.305	1.063	1.111		
D36	0.150	260	364.88	253.15	694.91	1.021	1.003	0.986	1.003		
			KYS3	0 kesici tak	ım ile Re	ne 41					
No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	$\frac{R_{a1}}{(\mu m)}$	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D37	0.100	200	438.45	291.53	577.91	1.348	1.321	1.32	1.330		
D38	0.125	200	467.27	324.24	662.01	1.34	1.368	1.255	1.321		

Çizelge 4.2. Rene 41 deney sonuçları

Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μm)	R _{a2} (μm)	$\begin{array}{c} R_{a3} \ (\mu m) \end{array}$	R _{aort} (μm)	
D39	0.150	200	493.92	342.86	738.19	1.236	0.908	0.91	1.018	
D40	0.100	230	392.55	259.16	553.39	0.988	1.019	0.948	0.985	
D41	0.125	230	454.52	294.05	651.51	0.861	0.97	0.957	0.929	
D42	0.150	230	475.56	321.05	714.77	1.342	1.416	1.429	1.396	
D43	0.100	260	397.98	270.41	549.49	1.131	0.936	1.202	1.090	
D44	0.125	260	446.25	305.19	636.77	1.097	1.157	1.208	1.154	
D45	0.150	260	477.39	338.88	706.61	1.374	1.471	1.389	1.411	
KYS25 kesici takım ile Rene 41										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx (N) Ff	Fy(N) Fr	Fz (N) Fc	$\begin{array}{c} R_{a1} \ (\mu m) \end{array}$	R _{a2} (µm)	$\begin{array}{c} R_{a3} \ (\mu m) \end{array}$	R _{aort} (μm)	
D46	0.100	200	468.42	308.52	600.31	1.261	0.864	1.157	1.094	
D47	0.125	200	474.23	332.86	673.3	0.951	1.202	1.187	1.113	
D48	0.150	200	477.2	349.87	737.92	1.066	1.048	1.122	1.079	
D49	0.100	230	430.97	298.06	582.27	1.447	1.233	1.686	1.455	
D50	0.125	230	475.94	321.99	662.53	0.702	0.918	0.822	0.814	
D51	0.150	230	450.07	362.71	714.22	1.062	1.221	1.196	1.160	
D52	0.100	260	352.29	279.58	554.02	0.843	0.854	0.866	0.854	
D53	0.125	260	466.1	317.85	649.46	0.883	0.985	0.9	0.923	
D54	0.150	260	466.28	337.85	696.46	0.607	0.739	0.749	0.698	

Çizelge 4.2. Rene 41 deney sonuçları (devamı)

4.2. S/N Oranları

4.2.1. Kesici takım deneyleri S/N oranları (Incoloy 901)

Seramik kesiciler ile yapılan deneyler sonucunda kesme kuvveti (Fz) ve ortalama yüzey pürüzlülüğü (Ra) değerleri kullanılarak hesaplanan sinyal gürültü (S/N) oranları (Çizelge 4.3) yerlerine yazılmıştır.

				Incoloy 901			
Sıra No	İlerleme Adımı (mm/rev)	Kesme Hızı (m/min)	Kesici Takım	Ra (µm) (Yüzey Pürüzlülüğü)	Ra S/N	Fz (N) (Kesme Kuvveti)	Fz S/N
1	0.100	200	KY4300	0.671	3.46555	555.96	-54.9009
2	0.100	200	KYS30	0.918	0.74315	598.09	-55.5353
3	0.100	200	KYS25	1.109	-0.89863	608.12	-55.6798
4	0.100	230	KY4300	0.674	3.42680	542.04	-54.6806
5	0.100	230	KYS30	0.807	1.86253	548.39	-54.7818
6	0.100	230	KYS25	1.485	-3.43453	593.34	-55.4661
7	0.100	260	KY4300	1.399	-2.91635	526.48	-54.4276
8	0.100	260	KYS30	0.803	1.90569	548.80	-54.7883
9	0.100	260	KYS25	1.026	-0.22295	549.62	-54.8013
10	0.125	200	KY4300	1.375	-2.76	562.07	-54.99
11	0.125	200	KYS30	0.962	0.33	635.53	-56.06
12	0.125	200	KYS25	1.234	-6.98	717.1	-57.11
13	0.125	230	KY4300	0.985	0.13	553.39	-54.86
14	0.125	230	KYS30	0.929	0.63	651.51	-56.27
15	0.125	230	KYS25	1.396	-2.89	714.77	-57,08
16	0.125	260	KY4300	1.455	-3.25	582.27	-55.30
17	0.125	260	KYS30	0.814	1.78	662.53	-56.42
18	0.125	260	KYS25	1.160	-1.28	714.22	-57.07
19	0.150	200	KY4300	1.205	-1.61974	710.18	-57.0274
20	0.150	200	KYS30	1.425	-3.07630	711.82	-57.0474
21	0.150	200	KYS25	1.310	-2.34543	757.01	-57.5820
22	0.150	230	KY4300	1.287	-2.19157	687.08	-56.7401
23	0.150	230	KYS30	2.115	-6.50621	714.10	-57.0752
24	0.150	230	KYS25	1.637	-4.28097	741.55	-57.4028
25	0.150	260	KY4300	1.627	-4.22775	693.68	-56.8232
26	0.150	260	KYS30	1.457	-3.26919	695.56	-56.8467
27	0.150	260	KYS25	1.484	-3.42868	713.44	-57.0671

Çizelge 4.3. İncoloy 901'e ait kesme kuvvetleri (Fz), ortalama yüzey pürüzlülüğü (Ra) ve S/N oranları

Seramik kesiciler ile yapılan deneyler sonucunda kesme kuvveti (Fz) ve ortalama yüzey pürüzlülüğü (Ra) değerleri kullanılarak hesaplanan sinyal gürültü (S/N) oranları (Çizelge 4.4) yerlerine yazılmıştır.

Rene 41								
Sıra No	İlerleme Adımı (mm/rev)	Kesme Hızı (m/min)	Kesici Takım	Ra (µm) (Yüzey Pürüzlülüğü)	Ra S/N	Fz (N) (Kesme Kuvveti)	Fz S/N	
1	0.100	200	KY4300	1.193	-1.53281	564.55	-55.0340	
2	0.100	200	KYS30	1.330	-2.47703	577.91	-55.2372	
3	0.100	200	KYS25	1.094	-0.78035	600.31	-55.5675	
4	0.100	230	KY4300	1.375	-2.76605	562.07	-54.9958	
5	0.100	230	KYS30	0.985	0.13128	553.39	-54.8606	
6	0.100	230	KYS25	1.455	-3.25726	582.27	-55.3025	
7	0.100	260	KY4300	0.933	0.60237	551.73	-54.8345	
8	0.100	260	KYS30	1.090	-0.74853	549.49	-54.7992	
9	0.100	260	KYS25	0.854	1.37084	554.02	-54.8705	
10	0.125	200	KY4300	1.281	-2.15098	644.7	-56.1872	
11	0.125	200	KYS30	1.321	-2.41806	662.01	-56.4173	
12	0.125	200	KYS25	1.113	-0.92990	673.3	-56.5642	
13	0.125	230	KY4300	0.962	0.33650	635.53	-56.0627	
14	0.125	230	KYS30	0.929	0.63969	651.51	-56.2784	
15	0.125	230	KYS25	0.814	1.78751	662.53	-56.4241	
16	0.125	260	KY4300	1.111	-0.91428	628.79	-55.9701	
17	0.125	260	KYS30	1.154	-1.24412	636.77	-56.0797	
18	0.125	260	KYS25	0.923	0,69597	649.46	-56.2510	
19	0.150	200	KY4300	1.287	-2.19157	729.64	-57.2622	
20	0.150	200	KYS30	1.018	-0.15496	738.19	-57.3634	
21	0.150	200	KYS25	1.079	-0.66043	737.92	-57.3602	
22	0.150	230	KY4300	1.234	-1.82630	717.10	-57.1116	
23	0.150	230	KYS30	1.396	-2.89771	714.77	-57.0833	
24	0.150	230	KYS25	1.160	-1.28916	714.22	-57.0766	
25	0.150	260	KY4300	1.003	-0.02602	694.91	-56.8386	
26	0.150	260	KYS30	1.411	-2.99054	706.61	-56.9836	
27	0.150	260	KYS25	0.698	3.12289	696.46	-56.8579	

Çizelge 4.4. Rene 41'e ait kesme kuvvetleri (Fz), ortalama yüzey pürüzlülüğü (Ra) ve S/N Oranları

4.3. Annova Analizleri

4.3.1. İncoloy 901 (Ra ve Fz) kesici takım analizleri

a. Seramik kesici takımla incoloy 901 işlenirken elde edilen ortalama yüzey pürüzlülüğü (Ra) değerlerinin S/N oranları analizleri sonucunda en uygun parametrelerin A1, B1 ve C3 olduğu Şekil 4.1 de görülmektedir. Kesme parametrelerimiz ile kıyasladığımızda bu parametreler 0.100 mm/dev ilerleme adımında, 200 m/dak kesme hızında ve KYS30 kesici takımı ile elde edilmiştir.

Şekil 4.1. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç grafiği.

Taguchi optimizasyonu sonucunda elde edilen değerler kaydedilerek, aynı parametreler ile tekrardan doğrulama deneyleri yapıldı. Sonuç olarak elde edilen değerler arasında % 0.65 fark olduğu ancak bu değerlerin benzer olduğu (Çizelge 4.5) görülmektedir.

Taguchi Optimizasyonu	Т	ahmin Edi	len	Doğrulama Deneyi			
Seviye		A1B1C3		A1B1C3			
Kesme Şartları	0.100	200	KYS30	0.100	200	KYS30	
Ortalama Yüzey Pürüzlülüğü		0.918			0.912		
S/N Oranı		0.74315		0.800103			

Çizelge 4.5. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç ve doğrulama deneyi

b. Seramik kesici takımla incoloy 901 işlenirken elde edilen kesme kuvveti (Fz) değerlerinin S/N oranları analizleri sonucunda en uygun parametrelerin A1, B3 ve C1 olduğu Şekil 4.2 de görülmektedir. Kesme parametrelerimiz ile kıyasladığımızda bu parametreler 0.100 mm/dev ilerleme adımında, 260 m/dak kesme hızında ve KY4300 kesici takımı ile elde edilmiştir.

Şekil 4.2. İncoloy 901 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç grafiği.

Taguchi optimizasyonu sonucunda elde edilen değerler kaydedilerek, aynı parametreler ile tekrardan doğrulama deneyleri yapıldı. Sonuç olarak elde edilen değerler arasında % 0.88 fark olduğu ancak bu değerlerin benzer olduğu (Çizelge 4.6) görülmektedir.

Taguchi Optimizasyonu	Т	ahmin Edi	len	Doğrulama Deneyi			
Seviye		A1B3C1		A1B3C1			
Kesme Şartları	0.100	260	KY4300	0.100	260	KY4300	
Ortalama Kesme Kuvveti		526.48		531.15			
S/N Oranı		-54.4276		-54.5043			

Çizelge 4.6. İncoloy 901 ortalama yüzey pürüzlülüğü (ra) taguchi optimizasyonu sonuç ve doğrulama deneyi

4.3.2. Rene 41 (Ra ve Fz) kesici takım analizleri

a. Seramik kesici takımla rene 41 işlenirken elde edilen ortalama yüzey pürüzlülüğü (Ra) değerlerinin S/N oranları analizleri sonucunda en uygun parametrelerin A2, B3 ve C2 olduğu Şekil 4.3 te görülmektedir. Kesme parametrelerimiz ile kıyasladığımızda bu parametreler 0.125 mm/dev ilerleme adımında, 260 m/dak kesme hızında ve KYS25 kesici takımı ile elde edilmiştir.

Şekil 4.3. Rene 41 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç grafiği.

Taguchi optimizasyonu sonucunda elde edilen değerler kaydedilerek, aynı parametreler ile tekrardan doğrulama deneyleri yapıldı. Sonuç olarak elde edilen değerler arasında % 0.54 fark olduğu ancak bu değerlerin benzer olduğu (Çizelge 4.7) görülmektedir.

Taguchi Optimizasyonu	Tahmin Edilen			Doğrulama Deneyi			
Seviye		A2B3C2		A2B3C2			
Kesme Şartları	0.125	260	KYS25	0.125	260	KYS25	
Ortalama Yüzey Pürüzlülüğü		0.923		0.918			
S/N Oranı	0.65597			0.743146			

Çizelge 4.7. Rene 41 ortalama yüzey pürüzlülüğü (Ra) taguchi optimizasyonu sonuç ve doğrulama deneyi

b. Seramik kesici takımla rene 41 işlenirken elde edilen kesme kuvveti (Fz) değerlerinin S/N oranları analizleri sonucunda en uygun parametrelerin A1, B3 ve C olduğu Şekil 4.4 te görülmektedir. Kesme parametrelerimiz ile kıyasladığımızda bu parametreler 0.100 mm/dev ilerleme adımında, 260 m/min kesme hızında ve KY4300 kesici takımı ile elde edilmiştir.

Şekil 4.4. Rene 41 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç grafiği.

Taguchi optimizasyonu sonucunda elde edilen değerler kaydedilerek, aynı parametreler ile tekrardan doğrulama deneyleri yapıldı. Sonuç olarak elde edilen değerler arasında % 0.05 fark olduğu ancak bu değerlerin benzer olduğu (Çizelge 4.8) görülmektedir.

Taguchi Optimizasyonu	T	ahmin Edi	len	Doğrulama Deneyi				
Seviye	A1B3C1			A1B3C1				
Kesme Şartları	0.100	260	KY4300	0.100	260	KY4300		
Ortalama Kesme Kuvveti	551.73			552.02				
S/N Oranı	-54.8345			-54.8391				

Çizelge 4.8. Rene 41 kesme kuvvetleri (Fz) taguchi optimizasyonu sonuç ve doğrulama deneyi

4.4. Analizler ve Etki Parametreleri

4.4.1. İncoloy 901 (Ra ve Fz) kesici takım etkileri

ANOVA analizleri sonucunda (Çizelge 4.9) İncoloy 901'in işlenmesinde ortalama yüzey pürüzlülüğüne etki eden faktörler ve bu faktörlerin etki seviyeleri verilmiştir. İlerleme adımımızın ortalama yüzey pürüzlülüğüne etkisi % 42.27 iken, kesme hızının etkisi % 2.80 kesici takım etkisi ise % 49.79 olarak hesaplanmıştır. Sonuç olarak ilerleme adımı ve kesici takım tipi ortalama yüzey pürüzlülüğüne büyük etki ederken, kesme hızı etkisi minimum boyutlardadır.

Çizelge 4.9. İncoloy 901 ortalama yüzey pürüzlülüğü (Ra) anova analizleri etki parametreleri

Parametre	Serbestlik derecesi(Df)	Kareler Toplamı	Kareler ortalaması	F	P (p<0.05)	Parametre Etkisi (%)
İlerleme	2	1.26511	0.63255	8.49	0.002	42.27
Kesme Hızı	2	0.08384	0.04192	0.56	0.578	2.80
Kesici Takım	2	0.15365	0.07683	1.03	0.375	49.79
Hata	20	1.49005	0.07450			11,95
Toplam	26	2.99265				100

ANOVA analizleri sonucunda (Çizelge 4.10) İncoloy 901'in işlenmesinde kesme kuvvetlerine etki eden faktörler ve bu faktörlerin etki seviyeleri verilmiştir. İlerleme adımımızın kesme kuvvetlerine etkisi % 69.28 iken, kesme hızının etkisi % 1.12 kesici takım etkisi ise % 18.29 olarak hesaplanmıştır. Sonuç olarak ilerleme adımı ortalama yüzey pürüzlülüğüne çok büyük etki ederken, kesici takım etkisi daha küçük

-	-				-	
Parametre	Serbestlik derecesi(Df)	Kareler Toplamı	Kareler ortalaması	F	P (p<0.05)	Parametre Etkisi (%)
İlerleme	2	101943	50971.4	61.26	0.000	69.28
Kesme Hızı	2	1639	819.3	0.98	0.391	1.12
Kesici Takım	2	26916	13457.8	16.17	0.000	18.29
Hata	20	16641	832.1			11.31
Toplam	26	147138				100

boyutlarda ve kesme hızının etkisi çok küçük boyutlardadır.

Çizelge 4.10. İncoloy 901 kesme kuvvetleri (Fz) anova analizleri etki parametreleri

4.4.2. Rene 41 (Ra ve Fz) seramik kesici takım etkileri

ANOVA analizleri sonucunda (Çizelge 4.11). da görüldüğü gibi Rene 41'in işlenmesinde ortalama yüzey pürüzlülüğü ne etki eden faktörler ve bu faktörlerin etki seviyeleri verilmiştir. İlerleme adımımızın ortalama yüzey pürüzlülüğüne etkisi % 3.45 iken, kesme hızının etkisi % 13.85 kesici takım etkisi ise % 12.93 olarak hesaplanmıştır. Sonuç oilerleme adımı etkisi çok daha küçük boyutlardadır.

Çizelge 4.11. Rene 41 ortalama yüzey pürüzlülüğü (Ra) anova analizleri etki parametreleri

Parametre	Serbestlik derecesi(Df)	Kareler Toplamı	Kareler ortalaması	F	P (p<0.05)	Parametre Etkisi (%)
İlerleme	2	0.03524	0.01762	0.49	0.617	3.45
Kesme Hızı	2	0.14137	0.07069	1.98	0.164	13.85
Kesici Takım	2	0.13200	0.06600	1.85	0.183	12.93
Hata	20	0.71224	0.03561			69.77
Toplam	26	1.02085				100

ANOVA analizleri sonucunda (Çizelge 4.12) Rene 41'in işlenmesinde kesme kuvvetlerine etki eden faktörler ve bu faktörlerin etki seviyeleri verilmiştir. İlerleme adımımızın kesme kuvvetlerine etkisi % 94.32 iken, kesme hızının etkisi % 3.47 kesici takım etkisi ise % 1.03 olarak hesaplanmıştır. Sonuç olarak ilerleme adımının etkisi çok büyük düzeyde iken, kesme hızı ve kesici takım etkisi ise çok küçük boyutlardadır.

Parametre	Serbestlik derecesi(Df)	Kareler Toplamı	Kareler ortalaması		F	Р (р<0.05)	Parametre Etkisi (%)
İlerleme	2	102245	51122.5	800.32	0.000	0.617	94.32
Kesme Hızı	2	3766	1882.9	29.48	0.000	0.132	3.47
Kesici Takım	2	1118	559	8.75	0.002	0.176	1.03
Hata	20	1278	63.9		3,14		1.18
Toplam	26	108406					100

Çizelge 4.12. Rene 41 kesme kuvvetleri (Fz) anova analizleri etki parametreleri

4.5. Deney Grafikleri

4.5.1. İncoloy 901 kesici takım grafikleri

a. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.100 mm/dev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin büyük oranda azaldığı aşağıda görülmektedir(Şekil 4.5.). En düşük kesme kuvvetleri 90 m/dak hızında elde edilmiştir.

Şekil 4.5. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.100 mm/dev'de.
b. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.125 mm/dev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin azaldığı aşağıda görülmektedir(Şekil 4.6.). En düşük kesme kuvvetleri 260 m/dak hızında KYS30 kesici takımıyla elde edilmiştir.

Şekil 4.6. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.125 mm/dev'de.

c. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.150 mm/rev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin büyük oranda azaldığı aşağıda görülmektedir(Şekil 4.7.). En düşük kesme kuvvetleri 230 m/dak hızında KY4300 kesici takımıyla elde edilmiştir.

Şekil 4.7. İncoloy 901 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.150 mm/dev'de.

d. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.100 mm/dev ilerleme adımında kesme hızı arttıkça yüzey pürüzlülüğünün farklı oranlarda değiştiği aşağıda görülmektedir(Şekil 4.8.). En kaliteli yüzey 200 m/dak hızında KYS4300 kesici takımıyla elde edilmiştir.

Şekil 4.8. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.100 mm/dev'de.

e. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.125 mm/dev ilerleme adımında kesme hızı arttıkça yüzey değişkenlik gösterdiği aşağıda görülmektedir(Şekil 4.9.). En kaliteli yüzey 200 m/dak hızında KYS30 kesici takımıyla elde edilmiştir.

Şekil 4.9. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.125 mm/dev'de.

f. İncoloy 901'in seramik kesici takımları ile işlenmesinde 0.150 mm/dev ilerleme adımında kesme hızı arttıkça yüzey pürüzlülüğünün farklı oranlarda arttığı aşağıda görülmektedir(Şekil 4.10.). En kaliteli yüzey 200 m/dak hızında KY4300 kesici takımıyla elde edilmiştir.

Şekil 4.10. İncoloy 901 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.150 mm/dev'de.

4.5.2. Rene 41 seramik kesici takım grafikleri

a. Rene 41'in seramik kesici takımları ile işlenmesinde 0.100 mm/dev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin azaldığı aşağıda görülmektedir(Şekil 4.11.). En düşük kesme kuvveti 260 m/dak hızında elde edilmiştir.

Şekil 4.11. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.100 mm/dev'de.

b. Rene 41'in seramik kesici takımları ile işlenmesinde 0.125 mm/dev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin azaldığı aşağıda görülmektedir.(Şekil 4.12.). En düşük kesme kuvveti 260 m/dak hızında elde edilmiştir.

Şekil 4.12. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.125 mm/dev'de.

c. Rene 41'in seramik kesici takımları ile işlenmesinde 0.15 mm/rev ilerleme adımında kesme hızı arttıkça kesme kuvvetlerinin azaldığı aşağıda görülmektedir.(Şekil 4.13.). En düşük kesme kuvveti 260 m/dak hızında elde edilmiştir.

Şekil 4.13. Rene 41 kesme hızına göre kesme kuvvetleri (Fz) değişimi a=0.150 mm/dev'de.

d. Rene 41'in seramik kesici takımları ile işlenmesinde 0.100 mm/dev ilerleme adımında kesme hızı arttıkça yüzey pürüzlülüğünün farklı oranlarda değiştiği aşağıda görülmektedir(Şekil 4.14.). En kaliteli yüzey 260 m/dak hızında KYS25 kesici takımıyla elde edilmiştir.

Şekil 4.14. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi (a) a=0.100 mm/dev'de.

e. Rene 41'in seramik kesici takımları ile işlenmesinde 0.125 mm/dev ilerleme adımında kesme hızı arttıkça yüzey pürüzlülüğünün önce azalıp sonrasında arttığı aşağıda görülmektedir(Şekil 4.15.). En kaliteli yüzey 230 m/dak hızında KYS25 kesici takımıyla elde edilmiştir.

Şekil 4.15. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.125 mm/dev'de.

f. Rene 41'in seramik kesici takımları ile işlenmesinde 0.15 mm/rev ilerleme adımında kesme hızı arttıkça yüzey pürüzlülüğünün farklı oranlarda değiştiği aşağıda görülmektedir(Şekil 4.16.). En kaliteli yüzey 260 m/dak hızında KYS25 kesici takımıyla elde edilmiştir.

Şekil 4.16. Rene 41 kesme hızına göre yüzey pürüzlülüğü (Ra) değişimi a=0.150 mm/dev'de

5. TARTIŞMA VE SONUÇ

Elde ettiğimiz bulgular sonucunda yaptığımız deney ve analiz sonuçları ile ilgili aşağıdaki karşılaştırmalara yer verilmiştir.

Ezilarasan ve ark. (2013), nimonic C-263 alaşımının işlenebilirliğini deneysel olarak analiz etmiştir. Çalışma kapsamında, kesme kuvvetlerinin, serbest yüzey aşınmasının ve yüzey bütünlüğü değerlerinin üzerinde farklı parametrelerin etkisi incelenmiştir. Sonuç olarak, ilerleme miktarının, kesme kuvvetleri ve yüzey pürüzlülüğü değerlerinde, kesme hızı ve kesme derinliğinden daha önemli olduğu belirtilmiştir.

Yaptığımız analizler sonucunda; İncoloy 901 malzemesinde kesme kuvvetleri ve yüzey pürüzlülüğü değerinde, ilerleme adımı ve kesici takımın kesme hızından daha önemli olduğu görülmüştür. Rene 41 malzemesinde kesme kuvvetlerine kesme hızı ve kesici takım etkisi görülmüşken, yüzey pürüzlülüğü değerinde ise ilerleme adımının etkisinin çok büyük etkisi olduğu görülmüştür.

Rahman ve ark. (1997), olarak Inconel 718 malzemesinin düşük kesme hızı ve ilerlemelerde kullanılması tavsiye edilmiştir. Kesme hızı ve ilerlemeler arttıkça kesici uç aşınması artmakta ve sıcaklığın da etkisiyle malzeme üzerinde oluşan gerilmeler de artmaktadır.

Yaptığımız deneyler sonucunda; İncoloy 901 ve Rene 41 malzemesinde kesme kuvvetleri açısından yüksek hızların kullanılması uygun görülmüştür. Ancak kesme hızı arttıkça uç aşınmaların arttığı gözlemlenmiştir.

Tali D. (2016), gözlemlenen takım aşınma çeşitleri; çentik oluşumu, kesici kenardan parçacık kopmaları, ısıl çatlaklar ve mekanik yorulma çatlaklarıdır. Kesici takımlarda en az aşınma değerleri 0,15 mm/dev ilerleme ve 180 m/dak kesme hızı ile çalışıldığında görülmüştür. Rene 41 malzeme için bu kesme parametreleri, kullanılan takım ve takım geometrisi için optimum olarak kabul edilebilir. Yüzey pürüzlülüğü ilerleme ile bağıntılıdır. İlerleme arttıkça yüzey kalitesi bozulmakta ve yüzey

pürüzlülüğü artmaktadır. Aynı zamanda kesme kuvvetleri ve sıcaklık da artış göstermektedir. Kesme hızının yüzey pürüzlülüğü üzerinde etkisi görünmemektedir.

Yaptığımız deneyler ve analizler sonucunda kesici takımlarda çentik oluşumu ve yan kenar aşınmaları sıklıkla görüldü. Rene 41 malzemesinde en az aşınma değeri 0,100 mm/dev ilerleme ve 230 m/dak kesme hızında elde edilmiştir. Yüzey pürüzlülüğünde ise en büyük etkenin kesme hızı olduğu görülmüştür. Kesme hızı arttıkça kesme kuvvetlerinin azaldığı bu nedenle kesme kuvvetlerinde en büyük etkenin kesme hızı olduğu görülmüştür.

Sonuç olarak;

1. Taguchi yöntemiyle parametre tertibi, kesme parametrelerinin optimizasyonunda basit, sistematik ve etkin bir metodoloji sağladığı görülmüştür.

2. Torna ile işleme deney sonuçları, kesme derinliği ve ilerlemenin ortalama yüzey pürüzlülüğü ve kesme kuvvetini etkileyen üç adet kontrol edilebilir faktör (kesici, kesme hızı, ilerleme) arasında ana parametreler olduğunu göstermiştir.

3. Kesme kuvvetine (Fz) etkili parametrelerin ilerleme adımı ve kesme hızının olduğu görülmüştür.

4. Ortalama yüzey pürüzlülüğüne etkili parametrelerin ilerleme adımı ve kesici takım olduğu görülmüştür.

5. En küçük kesme kuvveti İncoloy 901'de 0.100 mm/dev ilerleme adımında 260 m/dak kesme hızında ve KY4300 kesici takımı ile Rene 41' de 0.100 mm/dev ilerleme adımında 260 m/dak kesme hızında ve KYS30 kesici takımı işleme parametreleriyle ve en küçük ortalama yüzey pürüzlülüğü İncoloy 901'de 0.100 mm/dev ilerleme adımında 200 m/dak kesme hızında ve KY4300 kesici takımı ile Rene 41'de 0.150 mm/dev 260 m/dak KYS25 kesici takımı işleme parametreleriyle elde edilmiştir.

5.1. Deney Sonuçları

1. İncoloy 901 malzemesinin seramik kesici takımları ile yapılan kesme deneylerinde en küçük yüzey pürüzlülüğü değeri 0.100 mm/dev ilerleme adımında, 200 m/dak kesme hızında ve KYS30 kesici takımı ile elde edilmiştir. İncoloy malzemesinin seramik kesici takımları ile yapılan kesme deneylerinde en küçük kesme kuvveti değeri 0.100 mm/dev ilerleme adımında, 260 m/dak kesme hızında ve KY4300 kesici takımı ile elde edilmiştir.

3. Rene malzemesinin seramik kesici takımları ile yapılan kesme deneylerinde en küçük yüzey pürüzlülüğü değeri 0.125 mm/dev ilerleme adımında, 260 m/dak kesme hızında ve KYS25 kesici takımı ile elde edilmiştir.

4. Rene 41 malzemesinin seramik kesici takımları ile yapılan kesme deneylerinde en küçük kesme kuvveti değeri 0.100 mm/dev ilerleme adımında, 260 m/min kesme hızında ve KY4300 kesici takımı ile elde edilmiştir.

5.2. Analiz Sonuçları

1. İncoloy 901 seramik kesici takımları ile yapılan analiz sonuçlarına göre; ilerleme adımımızın yüzey pürüzlülüğüne etkisi % 42.27 iken, kesme hızının etkisi % 2.80 kesici takım etkisi ise % 49.79 olarak hesaplanmıştır. Sonuç olarak ilerleme adımı ve kesici takım tipi yüzey pürüzlülüğüne büyük etki ederken, kesme hızı etkisi minimum boyutlardadır.

2. İncoloy 901 seramik kesici takımları ile yapılan analiz sonuçlarına göre; ilerleme adımımızın kesme kuvvetlerine etkisi % 69.28 iken, kesme hızının etkisi % 1.12 kesici takım etkisi ise % 18.29 olarak hesaplanmıştır. Sonuç olarak ilerleme adımı yüzey pürüzlülüğüne çok büyük etki ederken, kesici takım etkisi daha küçük boyutlarda ve kesme hızının etkisi çok küçük boyutlardadır.

3. Rene 41'in seramik kesici takımları ile yapılan analiz sonuçlarına göre; ilerleme adımımızın yüzey pürüzlülüğüne etkisi % 3.45 iken, kesme hızının etkisi % 13.85 kesici takım etkisi ise % 12.93 olarak hesaplanmıştır. Sonuç oilerleme adımı etkisi çok daha küçük boyutlardadır.

4. Rene 41'in seramik kesici takımları ile yapılan analiz sonuçlarına göre; ilerleme adımımızın kesme kuvvetlerine etkisi % 94.32 iken, kesme hızının etkisi % 3.47 kesici takım etkisi ise % 1.03 olarak hesaplanmıştır. Sonuç olarak ilerleme adımının etkisi çok büyük düzeyde iken, kesme hızı ve kesici takım etkisi ise çok küçük boyutlardadır.

5.3. İncoloy 901 Kesici Takım Uç Aşınmaları

İncoloy 901 malzemesi işlenirken kesici uçlarda oluşan aşınmalar ile ilgili olarak;

1. KYS 4300 kesici takımında en çok aşınma 0.125 mm/dev ilerleme adımında ve 200 m/dak kesme hızında gerçekleşmiş ve 5.10 mm olarak ölçülmüştür(Ek 2.). En az aşınma ise 0.150 mm/dev ilerleme adımında ve 230 m/dak kesme hızında gerçeklemiş ve 1.25 mm olarak ölçülmüştür(Ek 6.).

2. KYS30 kesici takımında en çok aşınma 0.150 ilerleme adımında ve 260 m/dak kemse hızında gerçekleşmiş ve 1.68 mm olarak ölçülmüştür(Ek 18.). En az aşınma ise 0.150 mm/dev ilerleme adımında ve 230 m/dak kesme hızında gerçekleşmiş ve 0.73 mm olarak ölçüşmüştür(Ek 15.).

3. KYS 25 kesici takımında en çok aşınma 0.150 ilerleme adımında ve 260 m/dak kemse hızında gerçekleşmiş ve 1.85 mm olarak ölçülmüştür(Ek 27.). En az aşınma ise 0.100 mm/dev ilerleme adımında ve 260 m/dak kesme hızında gerçekleşmiş ve 1.28 mm olarak ölçüşmüştür(Ek25.).

5.4.Rene 41 Kesici Takım Uç Aşınmaları

Rene 41 malzemesi işlenirken kesici uçlarda oluşan aşınmalar ile ilgili olarak;

1. KYS 4300 kesici takımında en çok aşınma 0.125 mm/dev ilerleme adımında ve 260 m/dak kesme hızında gerçekleşmiş ve 2.80 mm olarak ölçülmüştür(Ek 35.). En az aşınma ise 0.100 mm/dev ilerleme adımında ve 200 m/dak kesme hızında gerçeklemiş ve 2.07 mm olarak ölçülmüştür(Ek 28.).

2. KYS30 kesici takımında en çok aşınma 0.150 ilerleme adımında ve 200 m/dak kemse hızında gerçekleşmiş ve 2.70 mm olarak ölçülmüştür(Ek 39.). En az aşınma ise 0.125 mm/dev ilerleme adımında ve 200 m/dak kesme hızında gerçekleşmiş ve 1.98 mm olarak ölçüşmüştür(Ek 38.).

3. KYS 25 kesici takımında en çok aşınma 0.125 ilerleme adımında ve 200 m/dak kemse hızında gerçekleşmiş ve 1.30 mm olarak ölçülmüştür(Ek 47.). En az aşınma ise 0.100 mm/dev ilerleme adımında ve 230 m/dak kesme hızında gerçekleşmiş ve 0.48 mm olarak ölçüşmüştür(Ek 49.).

KAYNAKLAR

- Altın, A., 2005. Nikel Esaslı İnconel 718 Süper Alaşımının İşlenebilirliğinin İncelenmesi, Ankara.
- Altın, A., Gökkaya, H., ve Nalbant, M., 2006. İşleme Parametrelerinden Kesme Hızının Inconel 718 Süperalaşımının İşlenebilirliğine Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(3): 581-586.
- Altın, A., 2005. *Inconel 718 Süper Alaşımlı Çeliğin İşlenebilirliğinin İncelenmesi,* (doktora tezi), Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1-35, 138-142.
- Anagün, A.S., 2000. Kalite Kontrolde İleri Teknikler. Ders notları.
- Aykut, S., Bagcı, E., Kentli, A. ve Yazıcıoğlu, O. (2007). Experimental observation of tool wear, cutting forces and chip morphology in face milling of cobalt based superalloy with physical vapour deposition coated and uncoated tool. *Materials and Design*, 28(6):1880-1888.
- Bartlay, E., 1988. Super Alloys a Technical Guide.
- Bradley, E.F., 1979, Source Book on Materials for Elevated-Temprature Aplicacions, *American Society for Metals, Metals Park*,::29.
- Betteridge, W., Heslop, J., 1974, *The Nimonic Alloys, and Other Nickel-Base High-Temprature Alloys*, New York. 29
- Chouldhury, I. A, E1-Baradie, M (1996) Machinability assessment of nickel based alloys: tool life in turning Inconel 718, *In Proceedings of the Sixth Cario University International MDP Conference*, Cario, Egypt, 233-240.
- Chouldhury, I. A., EI-Baradie, M. A., 1997. Machining nickel base superalloys: inconel 718, *Proc Instn Mech Engrs*, 212, (Part B): 195-205.
- Çay V. V., Ozan Ş., 2005 Süperalaşımlar ve Uygulama Alanları, Elazığ.
- Dye, D., Hunziker, O., Roberts, S.M., Reed, R.C., 2001, Modelling of the mechanical effects induced by the tungsten inert gas welding of IN718 superalloy. *Met. Trans.*, **32A**,::1713-1725.
- Ezilarasan, C., Senthil Kumar, V.S. and Velayudham, A. (2013). An experimental analysis and measurement of process performance in machining of nimonic c-263 super alloy. *Measurement: Journal of the International Measurement Confederation*, 46(1): 185-199
- Ezugwu, E. O., Bonney, J., Yamane, Y., 2003. "An overview of the machinability of aeroengine alloys", *Journal of Materials Processing Technology*, **134:**233-253
- Ezugwu, E. O., Wanga, Z. M., Machadop A. R., 1998. "The machinability of nickelbased alloys: a review", *Journal of materials Processing Technology*, 86: 1-3: 1-16.
- Ezugwu, E. O., Wang, Z. M., 1996. "Performance of PVD and CVD coated tools when nickel-based machining Inconel 718 alloy". IN: N.Narutaki et al. *Progress of Cutting and Grinding 111*, (102-107).
- Field, M., 1968, Machining aerospace alloys, *Iron and Steel Institute, Special Report* 94, 151-160.
- Hagel, W.C., Wiley, J., 1972, The Superalloys. New York. 29
- High Temp Metal Inc., 2008.

http://www.hightempmetals.com/techdata/hitempIncoloy901data.php Erişim tarihi: 10.03.2016. High Temp Metal Inc., 2008.

http://www.hightempmetals.com/techdata/hitempRene41data.php Erişim tarihi: 10.03.2016.

- Huang, X., Chaturvedi, M.C., Richards, N.L., 1996, "Effect of Homogenisation heat treatment on the Microstructure and Heat Affected Zone Microfissuring in Welded Cast Alloy IN718." Met., Trans., A, 27A,.785-790.
- Loria, E.A., 1992, *Recent Development in The Progress of Superalloy 718*, JOM 44 6: 33–36
- Lu, C., 2008, Study of prediction of surface quality in machining process, Journal of Materials Processing Technology, 205: 439-450
- Motorcu, A.R., Kus, A. and Durgun, I. (2014). The evaluation of the effects of control factors on surface roughness in the drilling of Waspaloy superalloy. *Measurement: Journal of the International Measurement Confederation*, 58(1): 394-408.
- Rahman, M., Seah, W.K.H. and Teo, T.T., 1997, The machinability of inconel 718, *Journal of Materials Processing Technology*, 63: 199-204
- Richards, N., Aspinwall, D.,1989, Use of ceramic tools for machining nickel-based alloys, *Int. J. Mach. tools Manuf.*, 294: 575-588.
- Ross, P.J., 1996. Taguchi tecniques for quality engineering, *McGrow Hill International book company*, ISBN 0-07-114663-6: 1-73.
- Shintani, K., Kato, H., Maeda, T., Fujimera, Y., Yamamoto, A., 1992, Cutting performance of CBN tools in machining of nickel-based superalloy, *J. Precis, Eng.* 58: (10): 63-68.
- Sims, C.T., Hagel, W.C., 1972, The Superalloys Wiley, New York 25.
- Şahin, Y., 2000, Talas Kaldırına Prensipleri 1, Nobel Yayın Dagıtım 45-46.
- Şahin, Y., 2001, Talaş kaldırma prensipleri 2, Nobel Yayın Dağıtım 58-59.
- Tali D., 2016, *Rene 41 süperalaşımının işlenebilirliğinin farklı torna parametrelerinde incelenmesi,* (doktora tezi), Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir,.
- Taylan, D. 2009. *Taguchi Deney Tasarım Uygulaması,* (yüksek lisans tezi), Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, 33-34
- Wang, Z. M., Ph.D Thesis, 1997, South Bank University, London, 78-79.
- Warbuton, P., 1967 Problems of Machining Nickel-Based Alloys, Iron and Steel Institute, Special Report 94, 151-160.
- White, C. H., 1986 Nickel Base Alloys, Wiggin Alloy 12.
- Yang, W.H., Tarng, Y.S., 1998. Design optimization of cutting parameters for turning based on Taguchi Method, *Journal of Materials Processing* Technology, Taiwan.

EKLER

	KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D1	0.100	200	403.39	290.49	555.96	0.661	0.67	0.681	0.671		
Oluş	an Aşınma	a Çeşidi			Yanak as	şınması,	Çentik				
Aşınma yorumu				Yanak	aşınması	ve çenti	k oluşm	uştur.			

Ek 1. İncoloy 901 Deney 1 Kesici Uç Aşınması

	KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D2	0.125	200	382.78	263.01	625.82	1.369	1.328	1.472	1.390		
Oluş	an Aşınma	a Çeşidi			Yana	ak aşınma	ası				
Aşınma yorumu Uzun bir yanak aşınması oluşmuştur.											

Ek 3. 1	Incoloy 90	1 Deney 3	Kesici	Uç Aşınması
	5	5		, ,

	KY4300 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D3	0.150	200	417.63	285.89	710.18	1.325	1.198	1.092	1.205	
Oluşan Aşınma Çeşidi Yanak aşınma						şınması,	çentik			
A	Aşınma yorumu İki yerde çentik aşınması olmuştur.									

			KY	4300 kesi	ici takım				
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)
D4	0.100	230	357.4	221.81	542.04	0.538	0.881	0.602	0.674
Oluş	an Aşınma	ı Çeşidi			Çent	ik aşınm	ası		
А	şınma yor	umu		Küçül	k bir çent	ik aşınm	ası olmu	ştur.	

Ek 4. İncoloy 901 Deney 4 Kesici Uç Aşınması

Ek 5.	İncoloy 9	1 Deney 5	6 Kesici	Uç Aş	inması
-------	-----------	-----------	----------	-------	--------

	KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D5	0.125	230	387.15	254.84	622.92	1.005	0.969	1.15	1.041		
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik				
Aşınma yorumu Küçük bir çentik aşınması olmuştur.											

	KY4300 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D6	0.150	230	393.31	263.94	687.08	1.221	1.473	1.166	1.287	
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik			
Aşınma yorumu Küçük bir çentik aşınması olmuştur.										

Ek 6. İncoloy 901 Deney 6 Kesici Uç Aşınması

Ek 7. İncoloy 901 Deney 7 Kesici Uç Aşınması

	KY4300 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D7	0.100	260	330.97	219.12	526.48	1.257	1.505	1.434	1.399	
Oluş	an Aşınma	a Çeşidi		Ya	nak aşınn	nası, Def	òrmasyc	n		
А	Aşınma yorumu Yanak aşınması olmuştur. Ayrıca uç deforme olmuştur.							uştur.		

Ek 8. Incoloy 901	Deney 8 Kesici Uç Aşınması	

	KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D8	0.125	260	356.85	260.56	609.9	2.239	2.261	2.134	2.211		
Oluşan Aşınma Çeşidi Yanak aşınması,											
Aşınma yorumu Küçük bir yanak aşınması oluşmuştur.											

Ek 9. İnc	oloy 901	Deney 9	Kesici	Uç A	Aşınması
-----------	----------	---------	--------	------	----------

	KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D9	0.150	260	412.16	276.29	693.68	1.524	1.679	1.678	1.627		
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik				
A	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrı	ca çentik	c oluşmu	ştur.		

KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D10	0.100	200	495.26	291.14	598.09	0.921	0.876	0.958	0.918	
Oluş	an Aşınma	a Çeşidi		Yanak aşınması, çentik						
А	şınma yor	umu	Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 10. İncoloy 901 Deney 10 Kesici Uç Aşınması

Ek 11.	İncoloy 901	Deney 11	Kesici U	ç Aşınması
--------	-------------	----------	----------	------------

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D11	0.125	200	405.17	279.23	640.23	0.737	0.726	0.722	0.728		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
A	şınma yor	rumu	Yan	ak aşınma	ası olmuşt	tur. Ayrı	ca çentik	c oluşmu	ştur.		

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D12	0.150	200	395.68	273.38	711.82	1.446	1.421	1.409	1.425		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
A	şınma yor	umu	Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.								

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)		
D13	0.100	230	420	272.3	548.39	0.77	0.833	0.818	0.807		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
А	şınma yor	umu	Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.								

Ek 13. İncoloy 901 Deney 13 Kesici Uç Aşınması

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)		
D14	0.125	230	414.32	279.4	623.59	1.154	1.237	1.14	1.177		
Oluș	an Aşınma	a Çeşidi		Yanak aşınması, çentik							
Aşınma yorumu				Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 14. İncoloy 901 Deney 14 Kesici Uç Aşınması

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D15	0.150	230	470.43	319.79	714.1	2.039	2.253	2.053	2.115		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
А	şınma yor	umu	Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.								

Ek 15. İncoloy 901 Deney 15 Kesici Uç Aşınması

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R_{a1} (μ m)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)		
D16	0.100	260	403.35	260.91	548.8	0.813	0.734	0.863	0.803		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
А	şınma yor	umu	Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.								

Ek 16. İncoloy 901 Deney 16 Kesici Uç Aşınması

EK 17. meolog 901 Deney 17 Rester Og Aşinmusi

	KYS30 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D17	0.125	260	347.85	252.69	604.13	1.292	1.335	1.283	1.303	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrıc	ca çentik	c oluşmu	ştur.	

KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (µm)	
D18	0.150	260	397.05	293.71	695.56	1.489	1.432	1.449	1.457	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
Aşınma yorumu			Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 18. İncoloy 901 Deney 18 Kesici Uç Aşınması

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D19	0.100	200	486.73	288.29	608.12	1.23	1.034	1.062	1.109	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 19. İncoloy 901 Deney 19 Kesici Uç Aşınması

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D20	0.125	200	492.66	301.55	680.81	1.318	1.31	1.232	1.287	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 20. İncoloy 901 Deney 20 Kesici Uç Aşınması

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D21	0.150	200	499.13	346.59	757.01	1.374	1.262	1.295	1.310	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Yanak aşınması olmuştur. Ayrıca çentik oluşmuştur.							

Ek 21. İncoloy 901 Deney 21 Kesici Uç Aşınması

KYS25 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)
D22	0.100	230	480.38	300.97	593.34	1.289	1.529	1.636	1.485
Oluşan Aşınma Çeşidi					Yanak a	şınması,	çentik		
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrıc	ca çentik	oluşmuş	stur.

Ek 22. İncoloy 901 Deney 22 Kesici Uç Aşınması

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D23	0.125	230	493.12	301.78	671.65	1.138	1.029	0.962	1.043	
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik			
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrı	ca çentik	c oluşmu	ştur.	

Ek 23. İncoloy 901 Deney 23 Kesici Uç Aşınması

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (µm)	
D24	0.150	230	497.9	331.18	741.55	1.341	1.861	1.709	1.637	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
А	şınma yor	umu	Yan	ak aşınma	ısı olmuşt	ur. Ayrıc	a çentik	oluşmuş	stur.	

Ek 24. İncoloy 901 Deney 24 Kesici Uç Aşınması

	KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (µm)	R _{aort} (μm)		
D25	0.100	260	396.62	279.98	549.62	1.014	1.057	1.008	1.026		
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik				
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrıc	ca çentik	oluşmu	ştur.		

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)	
D26	0.125	260	460.64	292.4	654.69	1.321	1.211	1.24	1.257	
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik			
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrı	ca çentik	oluşmu	ştur.	

Ek 26. İncoloy 901 Deney 26 Kesici Uç Aşınması

	KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D27	0.150	260	461.15	313.49	713.44	1.701	1.433	1.318	1.484		
Oluş	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik				
А	şınma yor	umu	Yan	ak aşınma	ası olmuşt	ur. Ayrı	ca çentik	c oluşmu	ştur.		

KY4300 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D28	0.100	200	372.92	301.8	564.55	1.174	1.23	1.174	1.193	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması							
А	şınma yor	umu		Uzun	bir yanak	aşınmas	ı oluşmı	ıştur.		

Ek 28. Rene 41 Deney 28 Kesici Uç Aşınması

KY4300 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D29	0.125	200	365.23	266.09	644.7	1.413	1.213	1.216	1.281		
Oluş	an Aşınma	a Çeşidi		Yanak aşınması							
Aşınma yorumu				Uzun	bir yanak	aşınmas	ı oluşmı	ıştur.			

Ek 29. Rene 41 Deney 29 Kesici Uç Aşınması

KY4300 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (µm)	R _{aort} (μm)		
D30	0.150	200	383.45	292.22	729.64	1.293	1.298	1.27	1.287		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması								
А	şınma yor	umu		Uzun	bir yanak	aşınmas	1 oluşmu	ıştur.			

Ek 30. Rene 41 Deney 230 Kesici Uç Aşınması

Ek 31. Rene 4	1 Deney 31	Kesici	Uç	Aşınması
---------------	------------	--------	----	----------

			KY4300 kesici takım							
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D31	0.100	230	346.37	240.99	562.07	1.323	1.343	1.458	1.375	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

	KY4300 kesici takım								
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)
D32 0.125 230 353.5				251.61	635.53	0.923	1.001	0.962	0.962
Oluş	an Aşınma	a Çeşidi	Yanak aşınması						
А	şınma yor	umu	Uzun bir yanak aşınması oluşmuştur.						

Ek 32. Rene 41 Deney 32 Kesici Uç Aşınması

Ek 33. Rene 41	Deney 33	Kesici	Uç	Aşınması
----------------	----------	--------	----	----------

			KY	'4300 kes	ici takım					
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D33	0.150	230	391.18	282.89	717.1	1.187	1.211	1.305	1.234	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

	Ek 34	. Rene 4	1 Deney	34]	Kesici	Uç	: As	sinmasi
--	-------	----------	---------	------	--------	----	------	---------

			KY	'4300 kes	ici takım					
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R_{a1} (μ m)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D34	0.100	260	335.98	227.96	551.73	0.996	0.954	0.848	0.933	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

Ek	35.	Rene 4	1 Deney	35	Kesic	i Uo	; A	şınması
			2				,	,

	KY4300 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R_{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D35 0.125 260			366.49	246.29	628.79	0.965	1.305	1.063	1.111	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

KY4300 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)
D36 0.150 260 364				253.15	694.91	1.021	1.003	0.986	1.003
Oluş	an Aşınma	a Çeşidi	Yanak aşınması,						
А	şınma yor	umu	Uzun bir yanak aşınması oluşmuştur.						

Ek 36. Rene 41 Deney 36 Kesici Uç Aşınması

Ek	37.	Rene	41 I	Deney	37	Kesi	ci	Uç	As	sinmasi	L
				2				,			

			KYS30 kesici takım							
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D37	0.100	200	438.45	291.53	577.91	1.348	1.321	1.32	1.330	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

Ek 38. Rene 38 Der	ey 38 Kes	ici Uç Aşınması
--------------------	-----------	-----------------

	KYS30 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D38	0.125	200	467.27	324.24	662.01	1.34	1.368	1.255	1.321	
Oluș	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

	Ek 3	9.]	Rene	41 I	Deney	39	Kes	ici	Uç	A:	şınmas	51
--	------	------	------	------	-------	----	-----	-----	----	----	--------	----

KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D39	0.150	200	493.92	342.86	738.19	1.236	0.908	0.91	1.018	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik olusmustur.							

Ek 40. Rene 41 Deney 40 Ke	esici Uç Aşınması
----------------------------	-------------------

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)		
D40	0.100	230	392.55	259.16	553.39	0.988	1.019	0.948	0.985		
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik								
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.								

Ek 41.	Rene 41	Deney 41	Kesici	Uç	Aşınması
--------	---------	----------	--------	----	----------

	KYS30 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D41	0.125	230	454.52	294.05	651.51	0.861	0.97	0.957	0.929	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik olusmustur.							

	KYS30 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)		
D42	0.150	230	475.56	321.05	714.77	1.342	1.416	1.429	1.396		
Oluşan Aşınma Çeşidi				Yanak aşınması,							
А	şınma yor	rumu		Yanak aşınması oluşmuştur.							

Ek 42. Rene 41 Deney 42 Kesici Uç Aşınması

Ek 43. Rene 41 Deney 42	8 Kesici Uç Aş	inması
-------------------------	----------------	--------

	KYS30 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D43	0.100	260	397.98	270.41	549.49	1.131	0.936	1.202	1.090	
Oluşan Aşınma Çeşidi			Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik oluşmuştur.							

Ek 44.	Rene 41	Deney 44	Kesici	Uç Aşınması
		2		, ,

	KYS30 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R_{a1} (μ m)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)	
D44	0.125	260	446.25	305.19	636.77	1.097	1.157	1.208	1.154	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik ve deformasyon oluşmuştur.							

	KYS30 kesici takım											
Deney No	İlerleme mm/dev.	temeKes. H1z1 $Fx(N)$ $Fy(N)$ $Fz(N)$ R_{a1} R_{a2} R_{a3} lev.(m/dak)FfFr Fc (μ m)(μ m)(μ m)						R _{aort} (μm)				
D45	0.150	260	477.39	338.88	706.61	1.374	1.471	1.389	1.411			
Oluş	an Aşınma	a Çeşidi			Yana	ık aşınma	ası					
A	ışınma yor	umu		Uzun	bir yanak	aşınmas	ı oluşmı	ıştur.				

Ek 45. Rene 41 Deney 45 Kesici Uç Aşınması

	KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (μm)	R _{a3} (µm)	R _{aort} (μm)		
D46	0.100	200	468.42	308.52	600.31	1.261	0.864	1.157	1.094		
Oluș	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik				
Aşınma yorumu			Uzun bir yanak aşınması oluşmuştur. Ayrıca çentik ve deformasyon oluşmuştur.								

Ek 46. Rene 41 Deney 46 Kesici Uç Aşınması

	KYS25 kesici takım											
Deney No	ey İlerleme Kes. Hızı $Fx(N)$ $Fy(N)$ $Fz(N)$ R_{a1} R_{a2} R_{a3} p mm/dev. (m/dak) Ff Fr Fc (µm) (µm) (µm)							R _{aort} (μm)				
D47	0.125	200	474.23	332.86	673.3	0.951	1.202	1.187	1.113			
Oluş	an Aşınma	a Çeşidi			Yana	ak aşınma	181					
Aşınma yorumu				Küçük	bir yanal	x aşınmas	sı oluşm	uştur.				

Ek 47. Rene 41 Deney 47 Kesici Uç Aşınması

	KYS25 kesici takım										
Deney No	İlerleme Kes. Hızı $Fx(N)$ $Fy(N)$ $Fz(N)$ R_{a1} R_{a2} R_{a3} mm/dev.(m/dak)FfFrFc(μ m)(μ m)(μ m)						R _{aort} (μm)				
D48	0.150	200	477.2	349.87	737.92	1.066	1.048	1.122	1.079		
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik								
Aşınma yorumu			Küçük y	anak aşını	ması oluşi	muştur. 4	Ayrıca çe	entik olu	şmuştur.		

Ek 49. Ro	ene 41 Den	ey 49 Ke	sici Uç	Aşınması
-----------	------------	----------	---------	----------

	KYS25 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (µm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)			
D49	0.100	230	430.97	298.06	582.27	1.447	1.233	1.686	1.455			
Oluș	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik					
Aşınma yorumu			Küçük bir yanak aşınması oluşmuştur. Ayrıca çentik olusmustur.									

	KYS25 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)			
D50	0.125	230	475.94	321.99	662.53	0.702	0.918	0.822	0.814			
Oluș	an Aşınma	a Çeşidi				Çentik						
Aşınma yorumu				K	üçük bir ç	entik olu	ışmuştur					

Ek 50. Rene 41 Deney 50 Kesici Uç Aşınması

Ek 51.	Rene 41	Deney 51	Kesici	Uç Aşınması
		2		, ,

KYS25 kesici takım										
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)	
D51	0.150	230	450.07	362.71	714.22	1.062	1.221	1.196	1.160	
Oluş	an Aşınma	a Çeşidi	Yanak aşınması, çentik							
Aşınma yorumu			Küçük bir yanak aşınması oluşmuştur. Ayrıca çentik ve deformasyon olusmustur.							

	KYS25 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz (N) Fc	R _{a1} (μm)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)			
D52	0.100	260	352.29	279.58	554.02	0.843	0.854	0.866	0.854			
Oluş	an Aşınma	a Çeşidi				Çentik						
Aşınma yorumu				K	üçük bir ç	entik olu	ışmuştur					

Ek 52. Rene 41 Deney 52 Kesici Uç Aşınması

Ek 53. Rene 41	Deney 53	Kesici	Uç	Aşınması
----------------	----------	--------	----	----------

	KYS25 kesici takım											
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R_{a1} (μ m)	R _{a2} (µm)	R _{a3} (μm)	R _{aort} (μm)			
D53	0.125	260	466.1	317.85	649.46	0.883	0.985	0.9	0.923			
Oluș	an Aşınma	a Çeşidi			Yanak a	şınması,	çentik					
Aşınma yorumu			Küç	Küçük bir yanak aşınması oluşmuştur. Ayrıca çentik olusmustur.								

KYS25 kesici takım									
Deney No	İlerleme mm/dev.	Kes. Hızı (m/dak)	Fx(N) Ff	Fy(N) Fr	Fz(N) Fc	R _{a1} (μm)	R _{a2} (μm)	R _{a3} (μm)	R _{aort} (μm)
D54	0.150	260	466.28	337.85	696.46	0.607	0.739	0.749	0.698
Oluşan Aşınma Çeşidi				Yanak aşınması					
Aşınma yorumu				Küçük bir yanak aşınması oluşmuştur.					

115

Ek 54. Rene 41 Deney 54 Kesici Uç Aşınması

ÖZ GEÇMİŞ

1983 yılı Hakkari'de doğumluyum. İlk ve orta öğrenimimi Hakkari'de, lise öğrenimini ise Erzincan İMKB Nevzat Ayaz Fen Lisesinde tamamladım. 2007 yılında Mustafa Kemal Üniversitesi Makine Mühendisliği Bölümü'nden mezun oldum. İlk iş olarak Van ilinde Doğalgaz İç Tesisat Mühendisliği ile iş hayatında başladım. Daha sonra Van İl Milli Eğitim Müdürlüğü'ne Makine Mühendisi olarak atandım. Halen Van İl Milli Eğitim Müdürlüğü'ndeki vazifesime devam etmekteyim.

T.C VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ LİSANSÜSTÜ TEZ ORİJİNALLİK RAPORU	
	Tarih: 04/12/20
Tez Baslığı / Konusu:	
Süper Alaşımlardan Incoloy 901 ve Rene 41'in Tornalanmasında Kesme k	uvvetleri ve Vüzev
pürüzlülüğünün Taguchi Deneysel Tasarımı İle İncelenmesi	and the fully
 Yukarıda başlığı/konusu belirlenen tez çalışmamın Kapak sayfası, Giriş, Ar bölümlerinden oluşan toplam 116 sayfalık kısmına ilişkin, 04 / 12 / 2019 tarihinde ş tarafından turnitin intihal tespit programından aşağıda belirtilen filtreleme uygulanarak raporuna göre, tezimin benzerlik oranı % 7 (Yedi) dır. Uygulanan filtreler aşağıda verilmiştir: Kabul ve onay sayfası hariç, Teşekkür hariç, İçindekiler hariç, Gereç ve yöntemler hariç, Gereç ve yöntemler hariç, Tezden çıkan yayınlar hariç, 7 kelimeden daha az örtüşme içeren metin kısımları hariç (Limit inatch size to 7 words) Van Yüzüncü Yıl Üniversitesi Lisansüstü Tez Orijinallik Raporu Alınması ve Kul Yönergeyi inceledim ve bu yönergede belirtilen azami benzerlik oranlarına göre tez çalışri intihal içermediğini; aksinin tespit edileceği muhtemel durumda doğabilecek her türlü huk kabul ettiğimi ve yukarıda vermiş olduğum bilgilerin doğru olduğunu beyan ederim. 	lanılmasına İlişkin namın herhangi bir cuki sorumluluğu OGAL 200 Tarih ve İmza
Adı Soyadı: Recep AKIN	
Öğrenci No: 7911710016	
Anabilim Dalı: Makine Mühendisliği	
Programı: Makine Mühendisliği	
Statüsü: Y. Lisans X Doktora	
PANIŞMAN ONAYI UYGUNDUR Doç. Dr. Abdullah ALTEN	WY SUNDUR