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ABSTRACT 

Doctor of Philosophy Thesis 

DYNAMICAL ANALYSIS OF SOME SYSTEMS OF NONLINEAR DIFFERENCE 
EQUATIONS 

İnci OKUMUŞ 

Zonguldak Bülent Ecevit University 

Graduate School of Natural and Applied Sciences 

  Department of Mathematics 

Thesis Advisor: Prof. Yüksel SOYKAN 

July 2019, 143 pages 

In this thesis, we present a systematic study of dynamical behavior of solutions of some 

specific non-linear difference equations and systems of difference equations. Especially, we 

investigate the stability character of equilibrium points, the exact forms, the periodicity, the 

oscillation and the boundedness of solutions of these equations and systems. 

The organization of this thesis is as follows: 

Chapter 1 is a concise overview of what this thesis is about and also is a literature summary of 

difference equation theory. 

Chapter 2 consists of some basic important definitions and some significant theorems used 

throughout the thesis. 

Chapter 3 includes some results about the stability, boundedness character and periodic nature 

of positive solutions of the system of difference equations 



iv 

ABSTRACT (continued) 

1 1 1 1 1 1/ ,   y / ,   z /n n n n n n n n nx A x z A y z A z y           , for 0,1,...n   where the parameter 

A and the initial conditions 1 0 1 0 1 0, , , , ,x x y y z z    are arbitrary positive real numbers. 

Chapter 4 presents the local asymptotic stability of the equilibrium points, boundedness 

character, oscillatory, and global asymptotic behavior of positive solutions of the system of 

rational difference equations 1 1 1/ ,   y / ,   z /n n m n n n m n n n m nx A x z A y z A z y           , for 

0,1,...n   where the parameter A and the initial values , , ,i i ix y z    for 0,1,...,i m  are 

positive real numbers and m is positive integer. 

Chapter 5 contains some results about the local asymptotic stability of the equilibrium points 

and oscillation behaviour of positive solutions of the following system of rational difference 

equations 1 1 1 1 1 1/ ,   y / ,   z /p p p p p p

n n n n n n n n nx A x z A y z A z y           , for 0,1,...n   where the 

parameters    0, ,   1,A p     and the initial values  , , 0, ,   1,0.i i ix y z i        

Chapter 6 states the stability character of equilibrium points and the form of solutions and 

asymptotic behavior of positive solutions of the following four rational difference equations

1 11/ ( ( 1) 1),n n nx x x     1 11/ ( ( 1) 1),n n nx x x     such that their solutions are associated 

with Tribonacci numbers. 

Chapter 7 acquaints about the stability character of equilibrium points, the periodic nature of 

solutions and the global behavior of solutions of the following four rational difference 

equations 1 1 1 11/ ( ( 1) 1),  1/ ( ( 1) 1).n n n n n nx x x x x x           

Chapter 8 presents some results about the stability character of equilibrium points of and the 

explicit form and global behavior of positive solutions of the following two systems of 

rational difference equations 1 1 1 11/ ( ( 1) 1),   y 1/ ( ( 1) 1),n n n n n nx y x x y            such that 

their solutions are associated with Tribonacci numbers. 
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ABSTRACT (continued) 

Chapter 9 expresses the stability character of equilibrium points of and the explicit form and 

asymptotic behavior of solutions of the following nonlinear difference equation 

1 1/ ( ( ) ),n n nx x x       such that their solutions are associated with generalized 

Tribonacci numbers. 

Keywords: Difference equation, equilibrium point, asymptotic behaviour, global asymptotic 

stability, oscillation, periodicity, unbounded solutions, boundedness, recursive sequence, 

Tribonacci numbers. 

Science Code: 403.06.01 
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ÖZET 

Doktora Tezi 

LİNEER OLMAYAN BAZI FARK DENKLEM SİSTEMLERİNİN DİNAMİK 

ANALİZİ 

İnci OKUMUŞ 

Zonguldak Bülent Ecevit Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Yüksel SOYKAN 

Temmuz 2019, 143 sayfa 

Bu tezde, bazı özel lineer olmayan fark denklemlerinin ve fark denklem sistemlerinin 

çözümlerinin dinamik davranışlarının sistematik bir çalışması verilmiştir. Özellikle, bu fark 

denklemlerinin ve fark denklem sistemlerinin çözümlerinin sınırlılığı, salınımlılığı, 

periyodikliği, kesin çözüm formları ve denge noktalarının kararlılık karakteri araştırılmıştır. 

Bu tezin organizasyonu aşağıdaki gibidir: 

Bölüm 1,  bu tezin ne ile ilgili olduğuna dair kısa bir tanıtım ve ayrıca fark denklem teorisinin 

literatür özetidir. 

Bölüm 2, tez boyunca kullanılan bazı temel önemli tanımlardan ve teoremlerden 

oluşmaktadır. 
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ÖZET (devam ediyor) 

Bölüm 3, A parametresi ve 1 0 1 0 1 0, , , , ,x x y y z z    başlangıç koşulları keyfi pozitif gerçel sayılar 

olmak üzere 0,1,...n   için 1 1 1 1 1 1/ ,   y / ,   z /n n n n n n n n nx A x z A y z A z y            fark 

denklem sisteminin pozitif çözümlerinin kararlılığı, sınırlılık karakteri ve periyodik niteliği 

hakkında bazı sonuçlar içerir. 

Bölüm 4, m pozitif tamsayı ve A parametresi ve 0,1,...,i m  için , , ,i i ix y z    başlangıç 

koşulları pozitif gerçel sayılar olmak üzere 1 1/ ,   y / ,n n m n n n m nx A x z A y z      

1z /n n m nA z y    rasyonel fark denklem sisteminin pozitif çözümlerinin sınırlılık 

karakterini, salınımlığını ve global asimptotik davranışını ve denge noktalarının yerel (lokal) 

asimptotik kararlılığını verir. 

Bölüm 5,    0, ,   1,A p     ve  , , 0, ,   1,0i i ix y z i        olmak üzere 0,1,...n   için 

1 1 1 1 1 1/ ,   y / ,   z / ,p p p p p p

n n n n n n n n nx A x z A y z A z y            rasyonel fark denklem sisteminin 

pozitif çözümlerinin salınım davranışı ve denge noktalarının lokal asimptotik kararlılığı 

hakkında bazı sonuçlar içermektedir. 

Bölüm 6, çözümleri Tribonacci sayılarıyla ilişkili olan aşağıdaki 1 11/ ( ( 1) 1),n n nx x x     

1 11/ ( ( 1) 1),n n nx x x     dört rasyonel fark denkleminin pozitif çözümlerinin kesin çözüm 

formlarını ve asimptotik davranışlarını ve denge noktalarının kararlılık karakterlerini ifade 

eder. 

Bölüm 7, aşağıdaki 1 1 1 11/ ( ( 1) 1),  1/ ( ( 1) 1)n n n n n nx x x x x x           dört rasyonel fark 

denkleminin çözümlerinin periyodik doğası ve global davranışları ve denge noktalarının 

kararlılık yapıları hakkında bilgi verir. 

Bölüm 8, çözümleri Tribonacci sayılarıyla ilişkili olan aşağıdaki 1 11/ ( ( 1) 1),n n nx y x      

1 1y 1/ ( ( 1) 1),n n nx y      iki rasyonel fark denklem sisteminin pozitif çözümlerinin kesin 

(açık) çözüm formları ve global davranışları ve denge noktalarının kararlılık karakterleri 

hakkında bazı sonuçlar sunmaktadır. 
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ÖZET (devam ediyor) 

Bölüm 9, çözümleri genelleştirilmiş Tribonacci sayılarıyla ilişkili olan aşağıdaki 

1 1/ ( ( ) ),n n nx x x       lineer olmayan fark denkleminin çözümlerinin asimptotik 

davranışlarını ve kesin çözüm formlarını ve denge noktalarının kararlılık karakterlerini ifade 

eder. 

Anahtar Kelimeler: Fark denklem, denge noktası, asimptotik davranış, global asimptotik 

kararlı, salınımlılık, periyodiklik, sınırsız çözümler, sınırlılık, tekrarlı dizi, Tribonacci sayıları. 

Bilim Kodu: 403.06.01 
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEWS

Di¤erence equation or discrete dynamical system is a diverse �eld which impact almost

every branch of pure and applied mathematics. Every dynamical system

xn+1 = f (xn; xn�1; :::; xn�k)

determines a di¤erence equation and vice versa.

Recently, there has been great interest in studying the di¤erence equations and systems of

di¤erence equations. One of the reasons for this is a necessity for some techniques which

can be used in investigating equations arising in mathematical models describing real life

situations in population biology, economics, probability theory, genetics, psychology and

so forth.

The theory of di¤erence equations occupies a central position in applicable analysis. There

is no doubt that the theory of di¤erence equations will continue to play an important role

in mathematics as a whole. Nonlinear di¤erence eqautions of order greater than one are of

paramount importance in applications. Such equations also appear naturally as discrete

analogues and as numerical solutions of di¤erential and delay di¤erential equations which

model various diverse phenomena in biology, ecology, psychology, physics, engineering,

and economics (see [1-14]). It is very interesting to investigate the behavior of solutions

of a system of nonlinear di¤erence equations and to discuss the local asymptotic stability

of their equilibrium points. Though di¤erence equations are very simple in their form, it

is quite hard to understand throughly the global behavior of their solutions. There are

many papers in which systems of di¤erence equations have been studied, see [29-42].

Moreover, there has been a growing interest in the study of �nding closed-form solutions

of di¤erence equations and systems of di¤erence equations. Some of the forms of solutions

of these equations are representable via well-known integer sequences such as Fibonacci

numbers, Lucas numbers, Pell numbers and Padovan numbers, see also [74-100].

The purpose in this thesis is to investigate a systematic study of dynamical behavior of so-
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lutions of some speci�c nonlinear di¤erence equations and systems of di¤erence equations.

Especially, we research the exact forms, periodicity, stability character and boundedness

of solutions of di¤erence equations and systems of nonlinear di¤erence equations. This

thesis consist of nine chapters.

The �rst chapter is a concise overview of what this thesis is about and also is a literature

summary of di¤erence equation theory.

The second chapter consists of some basic important de�nitions and some signi�cant the-

orems used throughout the thesis.

The third chapter includes some results about the stability, boundedness character and

periodicity of positive solutions of the system of di¤erence equations

xn+1 = A+
xn�1
zn

; yn+1 = A+
yn�1
zn

; zn+1 = A+
zn�1
yn
, n = 0; 1; :::,

where the parameter A and the initial conditions

x�1; x0; y�1; y0; z�1; z0

are arbitrary positive real numbers.

The fourth chapter presents the local asymptotic stability of the equilibrium points,

boundedness character, oscillatory, and global asymptotic behavior of solutions of the

system of di¤erence equations

xn+1 = A+
xn�m
zn

; yn+1 = A+
yn�m
zn

; zn+1 = A+
zn�m
yn

; n = 0; 1; :::,

where the parameter A and the initial values

x�i; y�i; z�i; for i = 0; 1; :::;m;

are positive real numbers and m is positive integer.

The �fth chapter contains some results about the local asymptotic stability of the equi-

librium points and oscillation behaviour of positive solutions of the following system of

rational di¤erence equations

xn+1 = A+
xpn�1
zpn

; yn+1 = A+
ypn�1
zpn

; zn+1 = A+
zpn�1
ypn

; n = 0; 1; :::;

where the parameters

A 2 (0;1) ; p 2 [1;1)

2



and the initial values

xi; yi; zi 2 (0;1) ; i = �1; 0.

The sixth chapter introduces the form of solutions, stability character and asymptotic

behavior of the following four rational di¤erence equations

xn+1 =
1

xn (xn�1 � 1)� 1
,

xn+1 =
�1

xn (xn�1 � 1)� 1
,

such that their solutions are associated with Tribonacci numbers.

The seventh chapter acquaints about the stability character, the periodicity and the global

behavior of solutions of the following four rational di¤erence equations

xn+1 =
�1

xn (xn�1 � 1)� 1

xn+1 =
�1

xn (xn�1 � 1) + 1
.

The eighth chapter presents some results about the explicit form, stability character and

global behavior of solutions of the following two systems of rational di¤erence equations

xn+1 =
�1

yn (xn�1 � 1) + 1
; yn+1 =

�1
xn (yn�1 � 1) + 1

; n = 0; 1; :::

such that their solutions are associated with Tribonacci numbers.

The ninth chapter expresses the dynamical behavior of solutions of the following nonlinear

di¤erence equation

xn+1 =



xn (xn�1 + �) + �
, n = 0; 1; :::,

such that their solutions are associated with generalized Tribonacci numbers.

The following two sections are important summaries about di¤erence equations and sys-

tems of di¤erence equations which have shed light on our studies in this thesis.

1.1 LITERATURE REVIEW FOR SYSTEMS OF NONLINEAR DIFFER-

ENCE EQUATIONS

In this section, we have divided the studies which we examine in literature into three

subsections as two-dimensional, three-dimensional and multi-dimensional systems of non-

linear di¤erence equations.

3



1.1.1 Review on Two-Dimensional Systems of Nonlinear Di¤erence Equa-

tions

This subsection is concerned with the review of dynamical behavior of solutions of the

systems of two-dimensional nonlinear di¤erence equations. Then, we have classi�ed these

studies into three subsubsections as systems of rational-type di¤erence equations, systems

of exponential-type di¤erence equations and systems of max-type di¤erence equations.

Systems of Rational-Type Di¤erence Equations

In [15], Papaschinopoulos and Schinas considered the system of di¤erence equations

xn+1 = A+
yn
xn�p

; yn+1 = A+
xn
yn�q

; n = 0; 1; :::, (1.1)

whereA 2 (0;1), p, q are positive integers and x�p; :::; x0, y�q; :::; y0 are positive numbers.

They investigated the oscillatory behavior, the boundedness of the solutions, and the

global asymptotic stability of the positive equilibrium of the system (1.1). As a result,

they prove that:

� Every positive nontrivial solution f(xn; yn)g of system (1.1) oscillates about the

positive equilibrium of system (1.1).

� If A > 0 and one at least of p, q is an odd number (resp. A > 1 and p, q are both

even numbers), then any positive solution of system (1.1) is bounded away from

zero and in�nity.

� If A > 1, then the positive equilibrium (c; c) of system (1.1) is globally asymptoti-

cally stable.

In [16], Papaschinopoulos and Schinas studied the oscillatory behavior, the periodicity

and the asymptotic behavior of the positive solutions of the system of di¤erence equations

xn+1 = A+
xn�1
yn

; yn+1 = A+
yn�1
xn

; n = 0; 1; :::, (1.2)

where A is a positive constants and initial conditions are positive numbers.

They established conditions so that a positive solution (xn; yn) of system (1.2) oscillates

about positive equilibrium of the system (1.2). Moreover, they found

4



� For the case 0 � A < 1,

�The unique positive equilibrium (c; c) of (1.2) is not stable.

�The system (1.2) has unbounded solutions.

� For the case A = 1,

�For every � 2 (1;1), there exist positive solutions (xn; yn) of system (1.2)

which tend to the positive equilibrium
�
�; �

��1

�
.

�Every positive solution of system (1.2) tends to a period 2 solution as n!1.

� For the case A > 1,

�The unique positive equilibrium (c; c) of (1.2) is locally asymptotically stable.

�The positive equilibrium (c; c) of system (1.2) is globally asymptotically stable.

In [17], Camouzis and Papaschinopoulos studied the boundedness, persistence, and the

global asymptotic behavior of the positive solutions of the system of di¤erence equations

xn+1 = 1 +
xn
yn�m

; yn+1 = 1 +
yn
xn�m

; n = 0; 1; :::, (1.3)

where xi, yi, i = �m;�m+ 1; :::; 0 are positive numbers and m is a positive integer.

Then the following results were exhibited in their paper:

� Every positive solution of system (1.3) is bounded and persists,

� System (1.3) has an in�nite number of positive equilibrium solutions (x; y) with x,

y 2 (1;1) that satisfy equation xy = x+ y,

� Every positive solutions of system (1.3) converges to a positive equilibrium solution

of system (1.3) as n!1.

In [18], Yang studied the behavior of positive solutions of the system of di¤erence equa-

tions

xn+1 = A+
yn�1

xn�pyn�q
; yn+1 = A+

xn�1
xn�ryn�s

; n = 1; 2; :::, (1.4)
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where p � 2, q � 2, r � 2, s � 2, A is a positive constant, and x1�maxfp;rg, x2�maxfp;rg,

...,x0, y1�maxfq;sg, y2�maxfq;sg, ...,y0 are positive real numbers.

He demonstrated that:

� The system (1.4) has the unique positive equilibrium

(c; c) =

 
A+

p
A2 + 4

2
;
A+

p
A2 + 4

2

!
,

� When A > 1, every positive solution of system (1.4) is bounded,

� When A > 2=
p
3, (c; c) is locally asymptotically stable,

� When A >
p
2, every positive solution of system (1.4) approaches (c; c),

� When A >
p
2, the positive equilibrium (c; c) of (1.4) is globally asymptotically

stable for all positive solutions.

In [19], Zhang et al. considered the behavior of positive solutions of the system of di¤er-

ence equations

xn+1 = A+
1

yn�p
; yn+1 = A+

1

xn�ryn�s
; n = 1; 2; :::, (1.5)

where p � 1, r � 1, s � 1, A � 0, and x1�r, x2�r, ...,x0, y1�maxfp;sg, y2�maxfp;sg, ...,y0 are

positive real numbers.

They obtained the following results:

� If A > 0, every positive solution of system (1.5) is bounded,

� If A = 0, all positive solutions of system (1.5) are periodic,

� If A > 2=
p
3 and maxfp; r; sg � 2, the positive equilibrium (c; c) of (1.5) is locally

asymptotically stable where (c; c) =
�
A+

p
A2+4
2

; A+
p
A2+4
2

�
,

� If A >
p
2, every positive solution of system (1.5) approaches (c; c) ;

� If A >
p
2 and maxfp; r; sg � 2, the positive equilibrium (c; c) of (1.5) is globally

asymptotically stable for all positive solutions.
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In [20], Zhang et al. studied the system of rational di¤erence equations

xn+1 = A+
yn�m
xn

; yn+1 = A+
xn�m
yn

; n = 0; 1; :::. (1.6)

They investigated the dynamic behavior of positive solutions of system (1.6) for the cases

of A < 1, A = 1, and A > 1.

For the case A < 1, they obtained that the system (1.6) has unbounded solutions.

For the case A = 1, they proved that every positive solution of the system (1.6) is bounded

and persists with interval
�
L; L

L�1
�
and has prime two periodic solutions.

For the case A > 1, the global asymptotic stability of the unique equilibrium point of the

system (1.6) is established. For this case, they proved that:

� Every positive solution of the system (1.6) is bounded and persists by interval�
L; L

L�A
�
,

� The positive equilibrium point (c; c) of system (1.6) is locally asymptotically stable

where c = A+ 1,

� Every positive solution of system (1.6) converges to (c; c).

In [21], Zhang et al. considered the behavior of the symmetrical system of rational

di¤erence equations

xn+1 = A+
yn�k
yn

; yn+1 = A+
xn�k
xn

; n = 0; 1; ::: (1.7)

where A > 0 and xi, yi 2 (0;1), for i = �k;�k + 1; :::; 0.

They investigated the dynamic behavior of positive solutions of system (1.7) for the cases

of 0 < A < 1, A = 1, and A > 1.

In the case 0 < A < 1, they obtained similar results as in above Theorem 1 for k is odd.

However, they said that they can�t get some useful results for k is even.

In the case A = 1, the results which are obtained are similar to results in [20].

In the case A > 1, the following results were established:

� Every positive solution of the system (1.7) is bounded and persists by interval�
L; L

L�A
�
,

� Every positive solution of the system (1.7) converges to the equilibrium as n!1.
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In [22], Kurbanli, Çinar and Yalcinkaya studied the behavior of the positive solutions of

the system of di¤erence equations

xn+1 =
xn�1

ynxn�1 + 1
; yn+1 =

yn�1
xnyn�1 + 1

, (1.8)

where the initial conditions are arbitrary non-negative real numbers.

They found the equilibrium point and all solutions of the system (1.8). Also, they obtained

the followings where y0 = a, y�1 = b, x0 = c and x�1 = d are arbitrary non-negative real

numbers:

� If b 6= 0 and c = 0, x2n = 0 and y2n�1 = b,

� If b = 0 and c 6= 0, x2n = c and y2n�1 = 0,

� If d = 0 and a 6= 0, y2n = a and x2n�1 = 0,

� If a = 0 and d 6= 0, y2n = 0 and x2n�1 = d.

In [23], Kurbanli et al. investigated the periodicity of the solutions of the system of

di¤erence equations

xn+1 =
xn�1 + yn
ynxn�1 � 1

; yn+1 =
yn�1 + xn
xnyn�1 � 1

, (1.9)

where x0, x�1, y0, y�1 2 R.

They proved that the solutions of xn and yn are six periodic under the special conditions.

In [24], Wang, Zhang and Fu considered the system of di¤erence equations

xn+1 =
xn�2k+1

Ayn�k+1xn�2k+1 + �
; yn+1 =

yn�2k+1
Bxn�k+1yn�2k+1 + �

, n � 0, (1.10)

where k is a positive integer, A, B, �, � and the initial conditions are positive real

numbers.

Under the speci�c conditions, they established the convergence of the positive solutions

of the system (1.10) and showed that the system (1.10) has unbounded solutions.

In [25], Zhang et al. corcerned with the dynamical behavior of positive solutions of the

system of two rational di¤erence equations

xn+1 = A+
xnPk

i=1 yn�i
; yn+1 = B +

ynPk
i=1 xn�i

, n = 0; 1; :::, (1.11)
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where A, B are positive constants and the initial conditions x�i, y�i 2 (0;1), i =

0; 1; :::; k.

They proved that under the case A > 1=k, B > 1=k and assuming that

k2AB � 1
kA� 1 +

k2AB � 1
kB � 1 < 1:

� Every positive solution of system (1.11) is persistent and bounded,

� The system (1.11) has a unique positive equilibrium given by

x =
k2AB � 1
k (kB � 1) , y =

k2AB � 1
k (kA� 1) ,

� Every positive solution of the system (1.11) tends to the positive equilibrium of

system (1.11) as n!1,

� The unique positive equilibrium of the system (1.11) is locally asymptotically stable,

� The unique positive equilibrium of the system (1.11) is globally asymptotically

stable.

In [26], Zhang and Zhang investigated the solutions, stability character and asymptotic

behavior of the system of high-order nonlinear di¤erence equations

xn+1 =
xn�k

q +
kY
i=0

yn�i

; yn+1 =
yn�k

p+
kY
i=0

xn�i

, k 2 N+, n = 0; 1; :::, (1.12)

where p, q 2 (0;1), x�i 2 (0;1), y�i 2 (0;1) and i = 0; 1; :::; k.

First, they obtained the equilibrium points of system (1.12) as follows:

� (0; 0) and
�
k+1
p
1� p; k+1

p
1� q

�
are equilibrium points if p < 1 and q < 1,

� Every point on the x-axis is an equilibrium point if q = 1,

� Every point on the y-axis is an equilibrium point if p = 1,

� (0; 0) is the unique equilibrium point if p > 1 and q > 1.

Then, they proved the following results:
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� If p > 1 and q > 1, then the unique equilibrium point (0; 0) of system (1.12) is

locally asymptotically stable,

� If p < 1 and q < 1, then the unique equilibrium point (0; 0) of system (1.12) is

unstable,

� If p < 1 and q < 1, then the positive equilibrium point
�
k+1
p
1� p; k+1

p
1� q

�
of

system (1.12) is unstable,

� Every solutions of system (1.12) is bounded,

� If p > 1 and q > 1, then the unique equilibrium point (0; 0) of system (1.12) is

globally asymptotically stable.

In [27], Zhang et al. studied the behavior of solutions of the following system

xn+1 = A+
xn

yn�1yn�2
; yn+1 = A+

yn
xn�1xn�2

, n = 0; 1; :::, (1.13)

where A is positive constant and x�i, y�i 2 (0;1), i = 0; 1; 2.

They obtained the results which are listed below:

� If A > 1, every positive solution of system (1.13) is bounded,

� If A > 2=
p
3, (c; c) is locally asymptotically stable,

� If A >
p
3, every positive solution of system (1.13) approaches (c; c),

� If 1 < A < 2=
p
3, (a1; b1) and (a2; b2) are locally asymptotically stable.

In [28], Stevic et al. considered the following system of di¤erence equations

xn+1 = A+
ypn
xqn�1

; yn+1 = A+
xpn
yqn�1

; n 2 N0 (1.14)

where parameters A, p and q are positive and investigated the boundedness character of

positive solutions of system (1.14).

They proved the following results:

� If p2 � 4q > 4, or p � 1 + q, q � 1, then system (1.14) has positive unbounded

solutions where A > 0,
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� If p2 < 4q, or 2pq � p < 1+q, q 2 (0; 1), then all postive solutions of system (1.14)

are bounded.

In [29], Bao investigated the local stability, oscillation and boundedness character of

positive solutions of the system of di¤erence equations

xn+1 = A+
xpn�1
ypn

; yn+1 = A+
ypn�1
xpn

; n = 0; 1; :::, (1.15)

where A 2 (0;1), p 2 [1;1) and initial conditions xi, yi 2 (0;1), i = �1; 0.

He proved that the system (1.15) has a positive equilibrium point (x; y) = (A+ 1; A+ 1)

and the equilibrium point of system (1.15) is locally asymptotically stable if A > 2p�1, is

unstable if 0 < A < 2p�1 and is a sink or an attracting equilibrium if p=(A+1) <
p
2�1.

Also, he indicated that the positive solution of system (1.15) which consists of at least

two semicycles is oscillatory and the system (1.15) has unbounded solutions.

In [30], Gümüş and Soykan considered the dynamical behavior of positive solutions for a

system of rational di¤erence equations of the following form

un+1 =
�un�1

� + 
vpn�2
; vn+1 =

�1vn�1
�1 + 
1u

p
n�2

; n = 0; 1; :::, (1.16)

where the parameters �, �, 
, �1, �1, 
1, p and the initial values u�i, v�i for i = 0; 1; 2

are positive real numbers.

First, they reduced the system (1.16) to the following system of di¤erence equations

xn+1 =
rxn�1
1 + ypn�2

; yn+1 =
syn�1
1 + xpn�2

; n = 0; 1; :::, (1.17)

by the change of variables un = (�1=
1)
1=p xn and vn = (�=
)1=p yn with r = �=� and

s = �1=�1.

Then, they found the equilibrium points of the system (1.17) under the certain conditions

and investigated their local asymptotical behavior. Also, they proved that

� If r < 1 and s < 1, the zero equilibrium point of system (1.17) is globally asymp-

totically stable,

� For r, s 2 (1;1), the system (1.17) has unbounded solutions,

� If r = s = 1, the system (1.17) possesses the prime period two solution.

11



In [31], Din studied the qualitative behavior of positive solutions of following second-order

system of rational di¤erence equations

xn+1 =
�1 + �1yn�1
a1 + b1xn

; yn+1 =
�2 + �2xn�1
a2 + b2yn

, (1.18)

where the parameters �i, �i, ai, bi for i 2 f1; 2g and initial conditions are positive real

numbers.

He determined the following results:

� Every positive solution of system (1.18) is bounded and persists when �1�2 < a1a2,

� The unique positive equilibrium point of system (1.18) is global attractor when

a1a2 6= �1�2,

� Under the some speci�c conditions the unique positive equilibrium point of system

(1.18) is globally asymptotically stable.

� The system (1.18) has no prime period-two solutions when a1a2 6= �1�2.

In [32], Mansour et al. got the exact form of the solutions and the periodic nature of the

following systems of di¤erence equations

xn+1 =
xn�5

�1 + xn�5yn�2
; yn+1 =

yn�5
�1� yn�5xn�2

, (1.19)

where the initial conditions are real numbers.

In [33], Elsayed and El-Metwally had the periodic nature and the form of the solutions

of some systems of di¤erence equations

xn+1 =
xnyn�2

yn�1 (�1� xnyn�2)
; yn+1 =

ynxn�2
xn�1 (�1� ynxn�2)

, (1.20)

where the initial conditions are nonzero real numbers.

In [34], Elsayed obtained the form of the solutions and the periodicity of the following

systems of second-order rational di¤erence equations

xn+1 =
xnyn�1

yn (�1� xnyn�1)
; yn+1 =

ynxn�1
xn (�1� ynxn�1)

, (1.21)

with the initial conditions are nonzero real numbers.
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In [35], Clark and Kulenovic investigated the asymptotic and global stability behavior of

solutions of the following systems of di¤erence equations

xn+1 =
xn

a+ cyn
; yn+1 =

yn
b+ dxn

, n = 0; 1; :::, (1.22)

where the parameters are positive numbers and the initial conditions are arbitrary non-

negative numbers.

Then, in [36], Clark et al. completed the investigation studied in [35] of the global

behavior of system (1.22).

In [37], Kulenovic and Nurkanovic studied the system of di¤erence equations

xn+1 = Axn
yn

1 + yn
; yn+1 = Byn

xn
1 + xn

, n = 0; 1; :::, (1.23)

where the parameters A and B are in (0;1) and the initial conditions are arbitrary

nonnegative numbers. Under the special circumstances of parameters, they established

the global asymptotic stability of the equilibrium points of the system (1.23).

Also, there are many similar woks, see [38, 39, 40, 41, 42].

Systems of Exponential-Type Di¤erence Equations

In this subsubsection, we review on some papers studied related to system of di¤erence

equations of exponential form.

In [43], Papaschinopoulos, Radin and Schinas studied the boundedness, the persistence

and the asymptotic behavior of the positive solutions of the system of two di¤erence

equations of exponential form

xn+1 = a+ bxn�1e
�yn, yn+1 = c+ dyn�1e

�xn (1.24)

where a, b, c, d are positive constants, and the initial values x�1, x0, y�1, y0 are positive

real values.

They investigated the boundedness character and the existence of invariant intervals

of system (1.24). Then, they found the following results. Under the conditions that

be�c < 1 and de�a < 1, every positive solution of system (1.24) is bounded and persists.

Also, they proved that the unique positive equilibrium (x; y) of system (1.24) is globally

asymptotically stable under appropriate conditions.
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In [44], Papaschinopoulos and Schinas considered the following systems of di¤erence equa-

tions

xn+1 = a+ byn�1e
�xn, yn+1 = c+ dxn�1e

�yn (1.25)

xn+1 = a+ byn�1e
�yn, yn+1 = c+ dxn�1e

�xn (1.26)

where the constants are positive real numbers and the initial values x�1, x0, y�1, y0 are

positive real numbers.

They investigated the boundedness and the persistence of the positive solutions, the

existence of a unique positive equilibrium and the global asymptotic stability of the above

mentioned systems. As a result, they established that every solution of the systems (1.25)

and (1.26) is positive, bounded and persists if p = bde�a�c < 1. Also, under the speci�c

conditions, they indicated that the systems (1.25) and (1.26) have a unique positive

equilibrium and every solution of these systems tends to the unique positive equilibrium of

their as n!1, each one positive equilibrium of these systems is globally asymptotically

stable and �nally, these systems have unbounded solutions.

In [45], Papaschinopoulos et al. investigated the boundedness, the persistence and the

asymptotic behavior of the positive solutions of the following systems of di¤erence equa-

tions

xn+1 =
�+ �e�yn


 + yn�1
; yn+1 =

� + �e�xn

� + xn�1
, (1.27)

xn+1 =
�+ �e�yn


 + xn�1
; yn+1 =

� + �e�xn

� + yn�1
, (1.28)

xn+1 =
�+ �e�xn


 + yn�1
; yn+1 =

� + �e�yn

� + xn�1
, (1.29)

where �, �, 
, �, �, � are positive constant and the initial values x�1, x0, y�1, y0 are

positive constant.

They got the results are given below:

� For the system (1.27)

�Every positive solution of the system (1.27) is bounded and persists,

� If � < 
 and � < �, the system (1.27) has a unique positive equilibrium and

every solution of the system (1.27) tends to the unique positive equilibrium of

the system (1.27) as n!1,
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� If ��+(�+�)e�1

�

+ (�+�)(�+�)


2�2
< 1, the unique positive equilibrium of the system

(1.27) is globally asymptotically stable.

� For the system (1.28)

�Every positive solution of the system (1.28) is bounded and persists,

� If �� < 
�, the system (1.28) has a unique positive equilibrium and every

solution of the system (1.28) tends to the unique positive equilibrium of the

system (1.28) as n!1,

� If �+�

2
+ �+�

�2
+ ��


�
+ (�+�)(�+�)


2�2
< 1, the unique positive equilibrium of the system

(1.28) is globally asymptotically stable.

� For the system (1.29)

�Every positive solution of the system (1.29) is bounded and persists,

� If � < 
 and � < �, the system (1.29) has a unique positive equilibrium and

every solution of the system (1.29) tends to the unique positive equilibrium of

the system (1.29) as n!1,

� If �


+ �

�
+ ��


�
+ (�+�)(�+�)


2�2
< 1, the unique positive equilibrium of the system

(1.29) is globally asymptotically stable.

In [46], Elettreby and El-Metwally considered the system of di¤erence equations, which

describes an economic model,

xn+1 = (1� �)xn + �xn (1� xn) e
�(xn+yn), (1.30)

yn+1 = (1� �) yn + �yn (1� yn) e
�(xn+yn), n = 0; 1; :::, (1.31)

where � and � 2 (0;1) with the initial conditions x0 and y0 2 (0;1).

They studied the boundedness and the invariant of the solutions of system (1.30) and also

investigated global convergence for the solutions of system (1.30). Then, they obtained

the following main results:

� Every positive solution f(xn; yn)g1n=0 of system (1.30) is bounded. Moreover,

lim
n!1

sup xn �
�

�e
, lim
n!1

sup yn �
�

�e
.
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� When � � �, the zero equilibrium (0; 0) is a global attractor of all positive solutions

of system (1.30).

� When � + �e�2 < 1, the unique positive equilibrium point (x; x) of system (1.30)

is a global attractor of all positive solutions of system (1.30).

� When � (�e� �) � �2e3, the unique positive equilibrium point (x; x) of system

(1.30) is a global attractor of all positive solutions of system (1.30).

� When one of the following conditions hold

i) 5� � 4e2 (1� �)

ii) �+ � < 1

the unique positive equilibrium point (x; x) of system (1.30) is a global attractor of all

positive solutions of system (1.30).

In [47], Papaschinopoulos et al. studied the asymptotic behavior of the positive solutions

of the system of di¤erence equations

xn+1 = ayn + bxn�1e
�yn, yn+1 = cyn + dyn�1e

�xn, n = 0; 1; :::, (1.32)

where a, b, c, d are positive constants and the initial values x�1, x0, y�1, y0 are positive

numbers.

Then, they prove that under the condition that a, b, c, d 2 (0; 1), a+ b > 1, c+ d > 1;

� Every positive solution of system (1.32) is bounded and persists.

� Every positive solution of system (1.32) tends to the unique positive equilibrium

(x; y) of system (1.32) as n!1, when suppose that either relations

c � a, b � c, d � c or a � c, b � a, d � a.

Under the condition that a+ b � 1, c+ d � 1;

� Every positive solution of system (1.32) tends to the zero equilibrium (0; 0) of system

(1.32) as n!1.
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Finally, they established that where a, b, c, d are positive constants such that either

a+ b < 1, c+ d < 1 or a+ b = 1, c+ d = 1,

the zero equilibrium (0; 0) of system (1.32) is globally asymptotically stable.

In [48], Khan investigated the qualitative behavior of positive solutions of the following

two systems of exponential rational di¤erence equations

xn+1 =
�e�yn + �e�yn�1


 + �yn + �yn�1
; yn+1 =

�1e
�xn + �1e

�xn�1


1 + �1xn + �1xn�1
; n = 0; 1; :::, (1.33)

xn+1 =
�e�xn + �e�xn�1


 + �yn + �yn�1
; yn+1 =

�1e
�yn + �1e

�yn�1


1 + �1xn + �1xn�1
; n = 0; 1; :::, (1.34)

where �, �, 
, �1, �1, 
1 and the initial conditions are positive real numbers.

They obtained the results are given below:

� For the system (1.33)

�Every positive solution of the system (1.33) is bounded and persists,

� If (�+ �) e�L2 < x (
 + (�+ �)L2) and

(�1 + �1) e
�L1 < y (
1 + (�1 + �1)L1),

the unique positive equilibrium point of the system (1.33) is globally asymp-

totically stable.

� For the system (1.34)

�Every positive solution of the system (1.34) is bounded and persists,

� If (�+ �) e�L1 < x (
 + (�+ �)L2) and (�1 + �1) e
�L2 < y (
1 + (�1 + �1)L1),

the unique positive equilibrium point of the system (1.34) is globally asymp-

totically stable.

Systems of Max-Type Di¤erence Equations

In [49], Simsek, Demir and Cinar considered the behavior of the solutions of the following

system of di¤erence equations

xn+1 = max

�
A

xn
;
yn
xn

�
, yn+1 = max

�
A

yn
;
xn
yn

�
, (1.35)

17



where the constant A and the initial conditions are positive real numbers. They proved

that the system (1.35) has unbounded solutions for special cases.

But then, in [50], Stevic corrected the results given in [49] and showed that the general

solution to the max-type system of di¤erence equations (1.35) for the case

y0; x0 � A > 0; y0=x0 � max fA; 1=Ag ;

is given by:

xn =

 
Afk(n)�1��(n)x

fk(n)
0

y
fk(n)
0

!(�1)n
, n 2 N,

and

yn =

 
y
fk(n�1)+1
0

Afk(n�1)+�(n)�1x
fk(n�1)+1
0

!(�1)n
, n � 2.

In [51], Fotiades and Papaschinopoulos studied the periodic character of the solutions of

the system of the di¤erence equations

xn+1 = max

�
A;

yn
xn�1

�
, yn+1 = max

�
B;

xn
yn�1

�
, (1.36)

where A, B are positive constants and the initial values x�1, x0, y�1, y0 are positive

numbers.

The authors established that every solution of system (1.36) is eventually periodic for the

cases:

1 � A � B, A < 1 � B, A � B < 1, 1 � B � A, B < 1 � A, B � A < 1.

In [52], Stevic studied behavior of positive solutions of the max-type system of di¤erence

equations

xn+1 = max

�
c;

ypn
xpn�1

�
, yn+1 = max

�
c;

xpn
ypn�1

�
; n 2 N0 (1.37)

where p,c 2 (0;1). In his work, boundedness character and global attractivity are

investigated for some special cases.

For the case p 2 (0; 4) and c > 0, boundedness of all positive solutions of system (1.37)

is determined. Also, for p 2 (0; 4) and c � 1, it is given that every positive solution

(xn; yn)n�1 of system (1.37) is eventually equal to (c; c). Besides, the system (1.37) has
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positive unbounded solutions when p � 4 and c > 0. Finally, every positive solution of

system (1.37) converges to (1; 1) when p 2 (0; 1) and c 2 (0; 1).

In [53], Stevic et al. studied the boundedness character of positive solutions of system of

di¤erence equations

xn+1 = max

�
A;

ypn
xqn�1

�
; yn+1 = max

�
A;

xpn
yqn�1

�
; n 2 N0 (1.38)

with min fA; p; qg > 0.

Consequently, the following statements are obtained:

� All positive solutions of system (1.38) are bounded when A > 0, 2
p
q � p < 1 + q

and q 2 (0; 1).

� All positive solutions of system (1.38) are bounded when A > 0, p > 0 and p2 < 4q.

� All positive solutions of system (1.38) are bounded when A > 0, p = 1 + q and

q 2 (0; 1).

� The system (1.38) has positive unbounded solutions if A > 0, p2 � 4q � 4, or

p > 1 + q and q 2 (0; 1).

1.1.2 Review on Three-Dimensional Systems of Nonlinear Di¤erence Equa-

tions

This subsection is concerned with review of dynamical behavior of solutions of the systems

of three-dimensional nonlinear di¤erence equations.

Systems of Rational-Type Di¤erence Equations

In [54], Kulenovic and Nurkanovic studied the global behavior of solutions of the system

of di¤erence equations

xn+1 =
a+ xn
b+ yn

; yn+1 =
c+ yn
d+ zn

; zn+1 =
e+ zn
f + xn

, n = 0; 1; :::, (1.39)

where the parameters a, b, c, d, e and f are in (0;1) and the initial conditions are

arbitrary non-negative numbers.
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They indicated that the equilibrium of system (1.39) is locally asymptotically stable if

b � 1, d � 1, f � 1, and obtained the global asymptotic stability of the unique positive

equilibrium for several cases depending of some special values of the parameters.

In [55] Kurbanli, in [56] Kurbanli and in [57] Kurbanli et al. investigated the behavior of

the solutions of the di¤erence equations systems

xn+1 =
xn�1

ynxn�1 � 1
; yn+1 =

yn�1
xnyn�1 � 1

; zn+1 =
zn�1

ynzn�1 � 1
(1.40)

xn+1 =
xn�1

ynxn�1 � 1
; yn+1 =

yn�1
xnyn�1 � 1

; zn+1 =
1

ynzn
, (1.41)

xn+1 =
xn�1

ynxn�1 � 1
; yn+1 =

yn�1
xnyn�1 � 1

; zn+1 =
xn

ynzn�1
, (1.42)

where the initial conditions are arbitrary real numbers, respectively.

They found all exact solutions of systems (1.40), (1.41), and (1.42) under special condi-

tions and showed that the systems have unbounded solutions.

In [58], Özkan and Kurbanli studied the periodical solutions of the systems of di¤erence

equations

xn+1 =
yn�2

�1� yn�2xn�1yn
; yn+1 =

xn�2
�1� xn�2yn�1xn

; zn+1 =
xn�2 + yn�2

�1� xn�2yn�1xn
, n 2 N0,

where the initial conditions are arbitrary real numbers. They obtained all six-period

solutions of given systems under special conditions.

In [59], Stevic showed that the following system of di¤erence equations

xn+1 =
a1xn�2

b1ynzn�1xn�2 + c1
; yn+1 =

a2yn�2
b2znxn�1yn�2 + c2

; zn+1 =
a3zn�2

b3xnyn�1zn�2 + c3
, n 2 N0,

where the parameters and the initial conditions are real numbers, can be solved.

1.1.3 Review on Multi-Dimensional Systems of Nonlinear Di¤erence Equa-

tions

This subsection is concerned with review of dynamical behavior of solutions of the systems

of multi-dimensional nonlinear di¤erence equations.
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Systems of Max-Type Di¤erence Equations

In [60], Stevic studied the system of max-type di¤erence equations

x(1)n = max
1�i�m1

�
f1i

�
x
(1)

n�k(1)i;1

; x
(2)

n�k(1)i;2

; :::; x
(l)

n�k(1)i;l

; n

�
; x
(1)
n�s

�
, (1.43)

x(2)n = max
1�i�m2

�
f2i

�
x
(1)

n�k(2)i;1

; x
(2)

n�k(2)i;2

; :::; x
(l)

n�k(2)i;l

; n

�
; x
(2)
n�s

�
,

...

x(l)n = max
1�i�ml

�
fli

�
x
(1)

n�k(l)i;1
; x
(2)

n�k(l)i;2
; :::; x

(l)

n�k(l)i;l
; n

�
; x
(l)
n�s

�
,

n 2 N0, where s, l, mj, k
(j)
i;t 2 N, j, t 2 f1; :::; lg and for a �xed j, i 2 f1; :::;mjg, and

where the functions fij : (0;1)l � N0 ! (0;1), j 2 f1; :::; lg, i 2 f1; :::;mjg.

He proved that every positive solution to system (1.43) is eventually periodic with period

s under some conditions. Also, he proved some related results for the corresponding

system of min-type di¤erence equations.

In [61], Stevic and Iricanin investigated the long-term behavior of positive solutions of

the cyclic system of di¤erence equations

x
(i)
n+1 = max

8<:�;
�
x
(i+1)
n

�p
�
x
(i+2)
n�1

�q
9=; , i = 1; :::; k, n 2 N0, (1.44)

where k 2 N, min f�; p; qg > 0.

They showed that the system (1.44) has bounded and unbounded solutions depending

on the status of the parameters and gave some su¢ cient conditions which guaranty the

global attractivity of all positive solutions of system (1.44).

1.2 LITERATUREREVIEWS FORDIFFERENCE EQUATIONSANDDIS-

CRETE SYSTEMS VIA INTEGER SEQUENCES

In this section, we study the recent investigations on the forms of solutions of systems

di¤erence equations and di¤erence equations in terms of well-known integer sequences

such as Fibonacci numbers, Horadam numbers, Padovan numbers. We focus on the

papers given some interesting relationships both between the exact solutions of di¤erence

equations and the integer sequences and between the equilibrium points of di¤erence

equations and golden ratio, plastic number.
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In [74], Tollu et al. considered the following di¤erence equations

xn+1 =
1

1 + xn
; yn+1 =

1

�1 + yn
; n = 0; 1; :::, (1.45)

such that their solutions are associated with Fibonacci numbers, where initial conditions

are x0 2 R �
n
�Fm+1

Fm

o1
m=1

and y0 2 R �
n
�Fm+1

Fm

o1
m=1

and Fm is the mth Fibonacci

number.

They investigated the some relationships both between Fibonacci numbers and solutions

of equations (1.45) and between the golden ratio and equilibrium points of equations

(1.45). Then, they proved that: the solutions of equations (1.45) are given by

xn =
Fn + Fn�1x0
Fn+1 + Fnx0

, yn =
F�n + F�(n�1)y0
F�(n+1) + F�ny0

,

where Fn is the nth Fibonacci number, and the nontrival solutions of equations (1.45)

converge to �� and �, so that � is conjugate to the golden ratio.

Next, Rabago [75] presented a theoretical explanation in deriving the closed-form solution

of Eq.(1.45) which Tollu et al. studied in [74] and provided another approach in proving

Sroysang�s conjecture (2013).

Then, in [76], Yazlik et al. studied the following rational di¤erence equation systems

xn+1 =
xn�1 � 1
ynxn�1

; yn+1 =
yn�1 � 1
xnyn�1

; n = 0; 1; :::, (1.46)

such that their solutions associated with Padovan numbers. In their study, they obtained

that the forms of solutions of system (1.46) are as follows

xn =

� �Pnx�1y0�Pn+1x�1+Pn�1
Pn�1x�1y0�Pnx�1+Pn�2 , if n is odd

�Pny�1x0�Pn+1y�1+Pn�1
Pn�1y�1x0�Pny�1+Pn�2 , if n is even

yn =

� �Pny�1x0�Pn+1y�1+Pn�1
Pn�1y�1x0�Pny�1+Pn�2 , if n is odd

�Pnx�1y0�Pn+1x�1+Pn�1
Pn�1x�1y0�Pnx�1+Pn�2 , if n is even

where Pn is the nth Padovan number. Also, they demonstrated that every solutions of

the systems (1.46) converge to point (p; p) and (�p;�p), where p is the plastic number.

Tollu et al. [77] considered the following four Riccati di¤erence equations

xn+1 =
1 + xn
xn

; yn+1 =
1� yn
yn

, un+1 =
1

un + 1
; vn+1 =

1

vn � 1
, (1.47)
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in which the initial conditions are real numbers. They derived the formulae for the

solutions of equations (1.47) are given by

xn =
Fn+1x0 + Fn
Fnx0 + Fn�1

,

yn =
F�(n+1)y0 + F�n
F�ny0 + F�(n�1)

;

un =
Fn + Fn�1u0
Fn+1 + Fnu0

,

vn =
F�n + F�(n�1)v0
F�(n+1) + F�nv0

,

where Fn is nth Fibonacci number, F�n is nth negative Fibonacci number. In addition to,

they stated the asymptotic behaviors of the solutions of these equations and introduced

that every solutions of these equations converge to their positive or negative equilibrium

points.

Also, they in [78] studied the systems of di¤erence equations

xn+1 =
1 + pn
qn

; yn+1 =
1 + rn
sn

, n 2 N0,

where each of the sequences pn, qn, rn and sn is some of the sequences xn or yn by their

own. They solved fourteen systems out of sixteen possible systems. In particularly, the

representation formulae of solutions of twelve systems were stated via Fibonacci numbers.

Also, for ten systems, they expressed that the solutions of these systems tend to the unique

point (�; �) where � is the golden ratio.

In [79], Halim concerned with the following systems of rational di¤erence equations

xn+1 =
1

1 + yn
; yn+1 =

1

1 + xn
; n = 0; 1; :::, (1.48)

and

xn+1 =
1

1� yn
; yn+1 =

1

1� xn
; n = 0; 1; :::, (1.49)

initial conditions are arbitrary nonzero real numbers. He determined the form of solutions

of system (1.48) as given below

x2n�1 =
F2n�1+F2n�2y0
F2n+F2n�1y0

, x2n =
F2n+F2n�1x0
F2n+1+F2nx0

,

y2n�1 =
F2n�1+F2n�2x0
F2n+F2n�1x0

, y2n =
F2n+F2n�1y0
F2n+1+F2ny0

,

and proved that the equilibrium point E of system (1.48) is globally asymptotically

stable, where E =
�
�1+

p
5

2
; �1+

p
5

2

�
=
�
1
�
; 1
�

�
, where � is the golden ratio. Furthermore,

he established the solutions of system (1.49) are periodic with period six and are unstable.
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In [80], Bacani and Rabago studied the behavior of solutions of the following nonlinear

di¤erence equations

xn+1 =
q

p+ xvn
and yn+1 =

q

�p+ yvn
, (1.50)

where p, q 2 R+ and v 2 N. They proved that the solutions of equations (1.50) are as

follows

xn =
qWn + x0qWn�1

Wn+1 + x0Wn

,

yn =
qW�n + y0qW�(n�1)

W�(n+1) + y0W�n
,

where Wn is the nth Horadam number.

In [81], Halim and Bayram investigated the solutions, stability character, and asymptotic

behavior of the di¤erence equation

xn+1 =
�

� + 
xn�k
, n 2 N0, (1.51)

where the initial conditions x�k; x�k+1; :::; x0 are nonzero real numbers, such that its

solutions are associated to Horadam numbers, which are generalized Fibonacci numbers.

Firstly, they had the di¤erence equation

xn+1 =
q

p+ xn�k
, (1.52)

by putting q = �


and p = �



. Then, they proved that the forms of the solutions of

di¤erence equation (1.52) are as follows

x(k+1)n+i =
Wn+1 +Wnxi�(k+1)
Wn+2 +Wn+1xi�(k+1)

q, i = 1; 2; :::; k + 1,

where Wn is the nth Horadam number. Also, they obtained that the equilibrium point

E of di¤erence equation (1.52) is globally asymptotically stable, where E =
�p+
p
p2+4q

2
.

Then, in [82] Halim considered the system of di¤erence equations

xn+1 =
1

1 + yn�2
; yn+1 =

1

1 + xn�2
; n = 0; 1; :::, (1.53)

where N0 = N [ f0g and the initial conditions x�2, x�1, x0, y�2, y�1, and y0 are real

numbers. He presented the relationship between Fibonacci numbers and the solutions of

system (1.53), i.e., the form of the solutions of system (1.53) are given by

x6n+i =
F2n+1+F2nyi�3
F2n+2+F2n+1yi�3

, i = 1; 2; 3,

y6n+i =
F2n+1+F2nxi�3
F2n+2+F2n+1xi�3

, i = 1; 2; 3,

x6n+i =
F2n+2+F2n+1xi�6
F2n+3+F2n+2xi�6

, i = 4; 5; 6,

y6n+i =
F2n+2+F2n+1yi�6
F2n+3+F2n+2yi�6

, i = 4; 5; 6,
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where Fn is the nth Fibonacci number. Furthermore, he shown that the equilibrium point

E of system (1.53) is globally asymptotically stable, where E =
�
�1+

p
5

2
; �1+

p
5

2

�
.

El-Dessoky in [83] dealt with the following di¤erence equation

xn+1 = axn +
�xnxn�l

�xn + 
xn�k
, n = 0; 1; :::, (1.54)

where the parameters �, �, 
 and a and the initial conditions x�t, x�t+1, ,x�1 and x0

where t = max fl; kg are positive real numbers. He introduced the explicit formula of

solutions of some special cases of Eq.(1.54) via Fibonacci numbers and also, discussed the

global behavior of solutions of Eq.(1.54).

In [84], Halim and Rabago studied the systems of di¤erence equaions

xn+1 =
1

�1� yn�k
; yn+1 =

1

�1� xn�k
; n, k 2 N0, (1.55)

where the initial conditions x�k, x�k+1, :::, x0, y�k, y�k+1, :::, y0 are nonzero real numbers.

Initially, they examined the form and behavior of solutions of system of di¤erence equa-

tions

xn+1 =
1

1 + yn�k
; yn+1 =

1

1 + xn�k
. (1.56)

Therefore, they determined that the exact solutions of system (1.56) are as follows

x2(k+1)n+i =
F2n+1+F2nyi�(k+1)
F2n+2+F2n+1yi�(k+1)

, i = 1; 2; :::; k + 1,

y2(k+1)n+i =
F2n+1+F2nxi�(k+1)
F2n+2+F2n+1xi�(k+1)

, i = 1; 2; :::; k + 1,

x2(k+1)n+i =
F2n+2+F2n+1xi�(2k+2)
F2n+3+F2n+2xi�(2k+2)

, i = k + 2; :::; 2k + 2,

y2(k+1)n+i =
F2n+2+F2n+1yi�(2k+2)
F2n+3+F2n+2yi�(2k+2)

, i = k + 2; :::; 2k + 2,

and the equilibrium point of system (1.56) is globally asymptotically stable. In addition,

the authors given some results for other systems.

Then, in [85], the authors studied the rational di¤erence equation

xn+1 =
�xn�1 + �


xnxn�1
, n 2 N0, (1.57)

where N0 = N [ f0g, �, �, 
 2 R+ and the initial conditions nonzero real numbers and

also investigated the two-dimensional case of the this equation given by

xn+1 =
�xn�1 + �


ynxn�1
, yn+1 =

�yn�1 + �


xnyn�1
, n 2 N0. (1.58)
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Firstly, they reduced the di¤erence equation (1.57) to the di¤erence equation

xn+1 =
pxn�1 + q

xnxn�1
(1.59)

by using changes variables p = �


and q = �



. Then, they presented that the closed-form

solution of di¤erence equation (1.59) is given by

xn =
Sn+1x�1 + Snx0x�1 + qSn�1
Snx�1 + Sn�1x0x�1 + qSn�2

,

where Sn is the nth generalized Padovan number and the equilibrium point of Eq.(1.59)

is globally asymptotically stable.

Later, they reduced the system of di¤erence equation (1.58) to the system

xn+1 =
pxn�1 + q

ynxn�1
, yn+1 =

pyn�1 + q

xnyn�1
(1.60)

by using changes variables p = �


and q = �



. Then, they presented that the closed-form

solutions of system (1.60) are given by

xn =

� Sn+1y�1+Snx0y�1+qSn�1
Sny�1+Sn�1x0y�1+qSn�2

, if n is even,

Sn+1x�1+Sny0x�1+qSn�1
Snx�1+Sn�1y0x�1+qSn�2

, if n is odd,

yn =

� Sn+1x�1+Sny0x�1+qSn�1
Snx�1+Sn�1y0x�1+qSn�2

, if n is even,

Sn+1y�1+Snx0y�1+qSn�1
Sny�1+Sn�1x0y�1+qSn�2

, if n is odd,

and the equilibrium point of the system (1.60) is global attractor.

Then, in [86], Stevic et al. the following nonlinear second-order di¤erence equation

xn+1 = a+
b

xn
+

c

xnxn�1
, n 2 N0, (1.61)

in which parameters a, b, c and the initial values x�1 and x0 are complex numbers such

that c 6= 0. Next, they used the following change of variables

xn =
yn
yn�1

,

and obtained the following third-order linear di¤erence equation with constant coe¢ cients

yn+1 = ayn + byn�1 + cyn�2.

After, they introduced that the representation formula of every solution of Eq.(1.61) is

xn =
(sn+1 � asn)x�1 + snx0x�1 + csn�1
(sn � asn�1)x�1 + sn�1x0x�1 + csn�2

,
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where sn is the nth generalized Padovan number. Note that, Eq.(1.57) is a special case

of Eq.(1.61) such that a = 0.

Alotaibi et al. in [87] considered the following systems of di¤erence equations

xn+1 =
ynyn�2

xn�1 + yn�2
, yn+1 =

xnxn�2
�yn�1 � xn�2

, n = 0; 1; :::, (1.62)

where the initial conditions x�2, x�1, x0, y�2, y�1, y0 are arbitrary positive real numbers.

They analyzed the solutions of the systems (1.62) such that their solutions are associated

with Fibonacci numbers.

In [88], El-Dessoky et al. examined the following di¤erence equation

yn+1 =
�ynyn�3

Ayn�4 +Byn�3
, n = 0; 1; :::, (1.63)

where �, �, A, and B are real numbers and the initial values y�4, y�3, y�2; y�1 and y0 are

positive real numbers. They presented the solutions of Eq.(1.63) in terms of Fibonacci

numbers according to some special cases of the parameters �, �, A, and B.

Then, in [89], Matsunaga and Suzuki studied the following system of rational di¤erence

equations

xn+1 =
ayn + b

cyn + d
, yn+1 =

axn�1 + b

cxn + d
, n = 0; 1; :::, (1.64)

where the parameters a, b, c, d and the initial values x0, y0 are real numbers. They

obtained that the explicit solutions of system (1.64) are as follows

x2n�1 =
(ay0 + b)G2n�1 + (bc� ad) y0G2n�2

G2n + (cy0 � a)G2n�1
, x2n =

(ax0 + b)G2n + (bc� ad)x0G2n�1
G2n+1 + (cx0 � a)G2n

,

y2n�1 =
(ax0 + b)G2n�1 + (bc� ad)x0G2n�2

G2n + (cx0 � a)G2n�1
, y2n =

(ay0 + b)G2n + (bc� ad) y0G2n�1
G2n+1 + (cy0 � a)G2n

,

where Gn is a generalized Fibonacci sequence de�ned by

Gn+2 = (a+ d)Gn+1 + (bc� ad)Gn,

with G0 = 0 and G1 = 1. Moreover, they presented that every solution of system (1.64)

converges to its equilibrium points.

In [90], Öcalan and Duman considered the following nonlinear recursive di¤erence equa-

tion

xn+1 =
xn�1
xn

, n = 0; 1; :::, (1.65)
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with any nonzero initial values x�1 and x0. Then, they extended their all results to

solutions of the following nonlinear recursive equations

xn+1 =

�
xn�1
xn

�p
, p > 0 and n = 0; 1; :::, (1.66)

with any nonzero initial values x�1 and x0. Later, they obtained that the exact solution

of Eq.(1.65) is

xn =

� x
fn�1
�1
xfn0

if n = 1; 3; 5; :::,

xfn0

x
fn�1
�1

if n = 2; 4; 6; :::,

where fn is the nth Fibonacci number. Under the special case of initial values, they

determined that there exist non-oscillatory positive solutions of Eq.(1.65), which converge

monotonically to the equilibrium point 1.

Furthermore, they given that the exact solution of Eq.(1.66) is

xn =

� x
gn�1(p)
�1

x
fn(p)
0

if n = 1; 3; 5; :::,

x
fn(p)
0

x
fn�1(p)
�1

if n = 2; 4; 6; :::,

where fn (p) and gn (p) are the nth Fibonacci-type number. And also, under the special

case of initial values, they demonstrated that there exist non-oscillatory positive solutions

of Eq.(1.66), which converge monotonically to the equilibrium point 1 and the Eq.(1.66)

has unbounded solutions.

Next, Akrour et al. [91] studied the following system of di¤erence equations

xn+1 =
aynxn�1 + bxn�1 + c

ynxn�1
, yn+1 =

axnyn�1 + byn�1 + c

xnyn�1
, n = 0; 1; :::,

where the parameters a, b, c are arbitrary real numbers with c 6= 0 and the initial values

x�1, x0, y�1 and y0 are arbitrary nonzero real numbers. They examined that the explicit

solutions of system (1.56) are given by

x2n+1 =
cJ2n+1 + (J2n+3 � aJ2n+2)x�1 + J2n+2x�1y0
cJ2n + (J2n+2 � aJ2n+1)x�1 + J2n+1x�1y0

,

x2n+2 =
cJ2n+2 + (J2n+4 � aJ2n+3) y�1 + J2n+3x0y�1
cJ2n+1 + (J2n+3 � aJ2n+2) y�1 + J2n+2x0y�1

,

y2n+1 =
cJ2n+1 + (J2n+3 � aJ2n+2) y�1 + J2n+2x0y�1
cJ2n + (J2n+2 � aJ2n+1) y�1 + J2n+1x0y�1

,

y2n+2 =
cJ2n+2 + (J2n+4 � aJ2n+3)x�1 + J2n+3x�1y0
cJ2n+1 + (J2n+3 � aJ2n+2)x�1 + J2n+2x�1y0

,
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where Jn is de�ned by the recurrent relation

Jn+3 = aJn+2 + bJn+1 + cJn, n 2 N,

such that J0 = 0, J1 = 1, J2 = a.

For related studies on solving di¤erence equations and systems of di¤erence equations

and investigating the asymptotic behavior of their solutions, see [92, 100].
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CHAPTER 2

THE GENERAL DEFINITIONS AND THEOREMS

In this chapter, we state some de�nitions and theorems used in this thesis. For details,

see [1-14, 105-120].

2.1 DIFFERENCE EQUATIONS

In this section, we give some important de�nitions and theorems about di¤erence equa-

tions and systems of di¤erence equations (discrete dynamical systems).

Let I be some interval of real numbers and let f : Ik+1 ! I be a continuously di¤erentiable

function. A di¤erence equation of order (k + 1) is an equation of the form

xn+1 = f(xn; xn�1; :::; xn�k); n = 0; 1; :::. (2.1)

A solution of Eq.(2.1) is a sequence fxng1n=�k that satis�es Eq.(2.1) for all n � �k.

De�nition 2.1 A solution of Eq.(2.1) that is constant for all n � �k is called an

equilibrium solution of Eq.(2.1). If

xn = x, for all n � �k

is an equilibrium solution of Eq.(2.1), then x is called an equilibrium point, or simply

an equilibrium of Eq.(2.1).

De�nition 2.2 (Stability) Let x an equilibrium point of Eq.(2.1).

(a) An equilibrium point x of Eq.(2.1) is called locally stable if, for every " > 0; there

exists � > 0 such that if fxng1n=�k is a solution of Eq.(2.1) with

jx�k � xj+ jx1�k � xj+ :::+ jx0 � xj < �;

then

jxn � xj < "; for all n � �k.
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(b) An equilibrium point x of Eq.(2.1) is called locally asymptotically stable if, it is locally

stable, and if in addition there exists 
 > 0 such that if fxng1n=�k is a solution of

Eq.(2.1) with

jx�k � xj+ jx�k+1 � xj+ :::+ jx0 � xj < 
;

then we have

lim
n!1

xn = x:

(c) An equilibrium point x of Eq.(2.1) is called a global attractor if, for every solution

fxng1n=�k of Eq.(2.1), we have

lim
n!1

xn = x:

(d) An equilibrium point x of Eq.(2.1) is called globally asymptotically stable if it is locally

stable, and a global attractor.

(e) An equilibrium point x of Eq.(2.1) is called unstable if it is not locally stable.

Suppose that the function f is continuously di¤erentiable in some open neighborhood of

an equilibrium point x: Let

qi =
@f

@ui
(x; x; :::; x); for i = 0; 1; :::; k

denote the partial derivative of f(u0; u1; :::; uk) with respect to ui evaluated at the equi-

librium point x of Eq.(2.1).

De�nition 2.3 The equation

yn+1 = q0yn + q1yn�1 + :::+ qkyn�k; n = 0; 1; ::: (2.2)

is called the linearized equation of Eq.(2.1) about the equilibrium point x, and the equation

�k+1 � q0�
k � :::� qk�1�� qk = 0 (2.3)

is called the characteristic equation of Eq.(2.2) about x.

Theorem 2.1 (The Linearized Stability Theorem) Assume that the function f is a

continuously di¤erentiable function de�ned on some open neighborhood of an equilibrium

point x: Then the following statements are true:
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(a) When all the roots of characteristic equation (2.3) have absolute value less than one,

then the equilibrium point x of Eq.(2.1) is locally asymptotically stable.

(b) If at least one root of characteristic equation (2.3) has absolute value greater than

one, then the equilibrium point x of Eq.(2.1) is unstable.

(c) The equilibrium point x of Eq.(2.1) is called hyperbolic if no root of characteristic

equation (2.3) has absolute value equal to one. If there exists a root of characteristic

equation (2.3) with absolute value equal to one, then the equilibrium x is called

nonhyperbolic.

(d) An equilibrium point x of Eq.(2.1) is called a repeller if all roots of characteristic

equation (2.3) have absolute value greater than one.

(e) An equilibrium point x of Eq.(2.1) is called a saddle if one of the roots of character-

istic equation (2.3) is greater and another is less than one in absolute value.

The following two theorems state necessary and su¢ cient conditions for all the roots of

a real polynomial of degree two or three, respectively, to have modulus less than one.

Theorem 2.2 ([1], p.6) Assume that a1 and a0 are real numbers. Then a necessary

and su¢ cient condition for all roots of the equation

�2 + a1�+ a0 = 0

to lie inside the unit disk is

ja1j < 1 + a0 < 2.

Theorem 2.3 ([1], p.6) Assume that a2, a1, and a0 are real numbers. Then a necessary

and su¢ cient condition for all roots of the equation

�3 + a2�
2 + a1�+ a0 = 0

to lie inside the unit disk is

ja2 + a0j < 1 + a1; ja2 � 3a0j < 3� a1 and a20 + a1 � a0a2 < 1.
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Theorem 2.4 (Clark Theorem) ([1], p.6) Assume that q0; q1; :::; qk are real numbers

such that

jq0j+ jq1j+ :::+ jqkj < 1

Then all roots of Eq.(2.3) lie inside the unit disk.

Let us introduce the discrete dynamical system:

xn+1 = f1 (xn; xn�1; :::; xn�k; yn; yn�1; :::; yn�k; zn; zn�1; :::; zn�k) ,

yn+1 = f2 (xn; xn�1; :::; xn�k; yn; yn�1; :::; yn�k; zn; zn�1; :::; zn�k) , (2.4)

zn+1 = f3 (xn; xn�1; :::; xn�k; yn; yn�1; :::; yn�k; zn; zn�1; :::; zn�k) ,

n 2 N, where f1 : Ik+11 � Ik+12 � Ik+13 ! I1, f2 : Ik+11 � Ik+12 � Ik+13 ! I2 and f3 :

Ik+11 � Ik+12 � Ik+13 ! I3 are continuously di¤erentiable functions and I1, I2, I3 are some

intervals of real numbers. Also, a solution f(xn; yn; zn)g1n=�k of system (2.4) is uniquely

determined by initial values (x�i; y�i; z�i) 2 I1 � I2 � I3 for i 2 f0; 1; :::; kg.

De�nition 2.4 An equilibrium point of system (2.4) is a point (x; y; z) that satis�es

x = f1 (x; x; :::; x; y; y; :::; y; z; z; :::; z) ,

y = f2 (x; x; :::; x; y; y; :::; y; z; z; :::; z) ,

z = f3 (x; x; :::; x; y; y; :::; y; z; z; :::; z) .

Together with system (2.4), if we consider the associated vector map

F = (f1; xn; xn�1; :::; xn�k; f2; yn; yn�1; :::; yn�k; f3; zn�1; :::; zn�k) ,

then the point (x; y; z) is also called a �xed point of the vector map F .

De�nition 2.5 Let (x; y; z) be an equilibrium point of system (2.4).

(a) An equilibrium point (x; y; z) is called stable if, for every " > 0; there exists � > 0

such that for every initial value (x�i; y�i; z�i) 2 I1 � I2 � I3, withX0

i=�k
jxi � xj < �;

X0

i=�k
jyi � yj < �,

X0

i=�k
jzi � zj < �

implying jxn � xj < ", jyn � yj < ", jzn � zj < "for n 2 N.
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(b) If an equilibrium point (x; y; z) of system (2.4) is called unstable if it is not stable.

(c) An equilibrium point (x; y; z) of system (2.4) is called locally asymptotically stable if,

it is stable, and if in addition there exists 
 > 0 such that

X0

i=�k
jxi � xj < 
;

X0

i=�k
jyi � yj < 
,

X0

i=�k
jzi � zj < 


and (xn; yn; zn)! (x; y; z) as n!1.

(d) An equilibrium point (x; y; z) of system (2.4) is called a global attractor if, (xn; yn; zn)!

(x; y; z) as n!1.

(e) An equilibrium point (x; y; z) of system (2.4) is called globally asymptotically stable

if it is stable, and a global attractor.

De�nition 2.6 Let (x; y; z) be an equilibrium point of the map F where f1, f2 and f3

are continuously di¤erentiable functions at (x; y; z). The linearized system of system (2.4)

about the equilibrium point (x; y; z) is

Xn+1 = F (Xn) = BXn,

where

Xn = (xn; :::; xn�k; yn; :::; yn�k; zn; :::; zn�k)
T

and B is a Jacobian matrix of system (2.4) about the equilibrium point (x; y; z).

Theorem 2.5 (The Linearized Stability Theorem) Assume that

Xn+1 = F (Xn) ; n = 0; 1; :::,

be a system of di¤erence equations such that X is a �xed point of F .

(a) If all eigenvalues of the Jacobian matrix B about X lie inside the open unit disk

j�j < 1, that is, if all of them have absolute value less than one, then X is locally

asymptotically stable.

(b) If at least one of them has a modulus greater than one, then X is unstable.
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Corollary 2.1 Assume that

Xn+1 = F (Xn) ; n = 0; 1; :::,

be a system of di¤erence equations such that X is a �xed point of F . If no eigenvalues

of the Jacobian matrix B about X have absolute value equal to one, then X is called

hyperbolic. If there exists an eigenvalue of the Jacobian matrix B about X with absolute

value equal to one, then X is called nonhyperbolic.

The so-called Schur-Cohn criterion provides necessary and su¢ cient conditions for all

roots of the equation

P (�) = a0�
n + a1�

n�1 + � � �+ an�1�+ an = 0 (2.5)

with real coe¢ cients to lie in the open disk j�j < 1.

Before we can explain the Schur-Cohn criterion, we need the so-called Routh-Hurwitz

criterion.

Theorem 2.6 (Routh-Hurwitz criterion) Assume that

Xn+1 = F (Xn); n = 0; 1; :::;

is a system of di¤erence equations and X is a �xed point of F , the characteristic polyno-

mial of this system about the equilibrium point X is given by (2.5) with real coe¢ cients

and a0 > 0. Then all roots of the polynomial P (�) lie inside the open unit disk j�j < 1

if and only if

�k > 0 for k = 1; 2; : : : ; n

where �k is the principal minor of order k of the n� n matrix

�n =

0BBBBBBBBB@

a1 a3 a5 � � � 0

a0 a2 a4 � � � 0

0 a1 a3 � � � 0
...

...
...

. . .
...

0 0 0 � � � an

1CCCCCCCCCA
:
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Theorem 2.7 (Schur-Cohn criterion) The equation

P (�) = �0�
n + �1�

n�1 + : : :+ �n�1�+ �n = 0

has all its roots in the open unit disk j�j < 1 if and only if the equation

P

�
z + 1

z � 1

�
= 0

has all its roots in the left-half plane

Re(z) < 0:

De�nition 2.7 A solution f(xn; yn; zn)g1n=�k of system (2.4) is bounded and persists if

there exist positive constants M , N such that

M � xn; yn; zn � N , n = �m;�m+ 1; :::.

De�nition 2.8 A solution f(xn; yn; zn)g1n=�k of system (2.4) is periodic with period p if

xn+p = xn, yn+p = yn, zn+p = zn, for all n � �1.

De�nition 2.9 Let (x; y; z) be an equilibrium point of system (2.4), and assume that

f(xn; yn; zn)g1n=�k is a solution of the system (2.4).

A "string" of consecutive terms fxs:::; xmg (resp. fys:::; ymg, fzs:::; zmg), s � �1, m � 1

is said to be a positive semicycle if xi � x (resp. yi � y, zi � z), i 2 fs; :::;mg, xs�1 < x

(resp. ys�1 < y, zs�1 < z), and xm+1 < x (resp. ym+1 < y, zm+1 < z).

A "string" of consecutive terms fxs:::; xmg (resp. fys:::; ymg, fzs:::; zmg), s � �1, m � 1

is said to be a negative semicycle if xi < x (resp. yi < y, zi < z), i 2 fs; :::;mg, xs�1 � x

(resp. ys�1 � y, zs�1 � z), and xm+1 � x (resp. ym+1 � y, zm+1 � z).

A "string" of consecutive terms f(xs; ys; zs) ; :::; (xm; ym; zm)g is said to be a positive (resp.

negative) semicycle if fxs:::; xmg, fys:::; ymg, fzs:::; zmg are positive (resp. negative) semi-

cycles.

De�nition 2.10 A solution f(xn; yn; zn)g1n=�k of system (2.4) is called nonoscillatory

about (x; y; z), or simply nonoscillatory, if there exists N � �k such that either

xn � x, yn � y, zn � z, for all n � N
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or

xn < x, yn < y, zn < z, for all n � N .

Otherwise, the solution f(xn; yn; zn)g1n=�k is called oscillatory about (x; y; z), or simply

oscillatory.

Theorem 2.8 (Rouche�s Theorem) ([105], p.365) Let C be a simple closed contour

lying entirely with a domain D. Suppose f and g are analytic in D. If the strict inequality

jf (z)� g (z)j < jf (z)j holds for all z on C, then f and g have the same number of zeros

(counted according to their order or multiplicities) inside C.

Now, we give some noti�cations about centre manifold theorem see [106-113].

Centre manifold theory [106] may be utilized to refer to the stability of non-hyberbolic

�xed points. A centre manifold is a set Mc in a lower dimensional space where the

dynamics of the original systems can be derived by examining the dynamics on Mc.

Regard the m�parameter map F (m;u), F : Rs�Rk ! Rk, where m 2 Rs is a parameter

and u 2 Rk. Let F (m;u� (m)) = u� (m) be a �xed point of F . It is notice that the

stability of the hyperbolic �xed points of F is established from the stability of the �xed

points under the linear map J = DuF (m;u
� (m)).

Centre manifold theory make use of when one of the eigenvalues lies on the unit circle

and the other eigenvalues are inside the unit circle.

Assuming, without loss of generality that u� = 0k = (0; 0; :::; 0) the k�dimensional zero

vector, the map F can be written in the form

x 7�! Ax+ f (x; y) (2.6)

y 7�! Bx+ g (x; y)

where J on (2.6) has the form

J =

24 A 0

0 B

35 .
Notice that all of the eigenvalues of A lie on the unit circle and all of the eigenvalues of

B are o¤ the unit circle. Hereby, A is a t � t matrix and B is an s � s matrix, with

t+ s = k. The following theorem alleges the existence of a (non-unique) centre manifold

(a curve y = h (x)) on which the dynamics of system (2.6) is provided with the map on

the centre manifold.
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Theorem 2.9 There is a Cr centre manifold for system (2.6) that can be represented

locally as

Mc =
�
(x; y) 2 Rt � Rs : y = h (x) , kxk < �, h (0) = 0, Dh (0) = 0

	
.

Furthermore, the dynamics restricted to Mc are given locally by the map

x 7�! Ax+ f (x; h (x)) , x 2 Rt.

The following theorem indicates that the dynamics on the centre manifoldMc determines

the dynamics on (2.6).

Theorem 2.10 Suppose that the t-dimensional zero vector 0t = (0; :::; 0) is a �xed point

for the map x 7�! Ax + f (x; h (x)), x 2 Rt. If 0t is stable, asymptotically stable,

or unstable, then the �xed point 0k of system (2.6) is stable, asymptotically stable, or

unstable, respectively.

2.2 INTEGER SEQUENCES

Now, we give information about integer sequences that establish a large part of our study.

Some properties of the above sequences were studied in various papers, see [114-120].

2.2.1 Fibonacci Numbers

The Fibonacci sequence is de�ned by

Fn = Fn�1 + Fn�2; n � 2 (2.7)

with initial conditions F0 = 0; F1 = 1. Also, it is obtained to extend the Fibonacci

sequence backward as

F�n = (�1)n+1 Fn.

The characteristic equation of (2.7) is x2 � x� 1 = 0 such that the roots

� =
1 +

p
5

2
(golden ratio) and � =

1�
p
5

2
.

Also, there exists the following limit

lim
n!1

Fn+1
Fn

= �,

where Fn is nth Fibonacci number.
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2.2.2 Padovan Numbers

The Padovan sequence is de�ned by

Pn = Pn�2 + Pn�3; n 2 N (2.8)

with initial conditions P�2 = 0, P�1 = 0, P0 = 1.

The characteristic equation of (2.8) is x3 � x� 1 = 0 such that the roots

p =
r2 + 12

6r

q = �r
2 + 12

6r
� i

p
3

2

�
r

6
� 2

3r

�
t = �r

2 + 12

6r
+ i

p
3

2

�
r

6
� 2

3r

�
where r = 3

p
108 + 12

p
69 and the unique real root is p named as plastic number. Also,

there exists the following limit

lim
n!1

Pn+1
Pn

= p,

where Pn is nth Padovan number.

2.2.3 Horadam Numbers

Horadam sequence, a generalization of Fibonacci sequence, (Wn(a; b; p; q))n�0 or simply

(Wn)n�0 is de�ned by

Wn = pWn�1 + qWn�2; W0 = a;W1 = b; n � 2, (2.9)

where a, b, p and q are arbitrary real numbers.

The characteristic equation of (2.9) is x2 � px� q = 0 such that the roots

� =
p+

p
p2 + 4q

2
and � =

p�
p
p2 + 4q

2
.

Also, there exists the following limit

lim
n!1

Wn+1

Wn

= �,

where Wn is nth Horadam number.
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2.2.4 Generalized Padovan Numbers

The generalized Padovan sequence, an extension of the padovan sequence, is de�ned by

Sn = pSn�2 + qSn�3; n 2 N (2.10)

with initial conditions S�2 = 0, S�1 = 0, S0 = 1, where p and q are arbitrary real

numbers.

The characteristic equation of (2.10) is x3 � px� q = 0 such that the roots

� =
R2 + 12p

6R

' = �R
2 + 12p

12R
+ i

p
3

2

�
R

6
� 2p
R

�
 = �R

2 + 12p

12R
� i

p
3

2

�
R

6
� 2p
R

�

where R = 3

q
108q + 12

p
�12p3 + 81q2. Also, there exists the following limit

lim
n!1

Sn+1
Sn

= �,

where Sn is nth generalized Padovan number.

Also, the other integer sequences are as follows:

� Lucas sequence is de�ned by

Ln = Ln�1 + Ln�2; L0 = 2; L1 = 1,

� Pell sequence is de�ned by

Pn = 2Pn�1 + Pn�2; P0 = 0; P1 = 1,

� Pell-Lucas sequence is de�ned by

Pn = 2Pn�1 + Pn�2; P0 = 2; P1 = 2,

� Jacobsthal sequence is de�ned by

Jn = Jn�1 + 2Jn�2; J0 = 0; J1 = 1,
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� Jacobsthal-Lucas sequence is de�ned by

jn = jn�1 + 2jn�2; j0 = 2; j1 = 1,

� Perrin sequence is de�ned by

Qn = Qn�2 +Qn�3; Q0 = 3; Q1 = 0; Q2 = 2.

Now, we give information about Tribonacci numbers that we afterwards need in the paper.

2.2.5 Tribonacci Numbers

The Tribonacci sequence fTng1n=0 is de�ned by the third-order recurrence relations

Tn+3 = Tn+2 + Tn+1 + Tn, (2.11)

with initial conditions T0 = 0, T1 = 1, T2 = 1. Also, it can be extended the Tribonacci

sequence backward (negative subscripts) as

T�n = T�n+3 � T�n+2 � T�n+1. (2.12)

It can be clearly obtained that the characteristic equation of (2.11) has the form

x3 � x2 � x� 1 = 0 (2.13)

such that the roots

� =
1 +

3
p
19 + 3

p
33 +

3
p
19� 3

p
33

3

� =
1 + !

3
p
19 + 3

p
33 + !2

3
p
19� 3

p
33

3


 =
1 + !2

3
p
19 + 3

p
33 + !

3
p
19� 3

p
33

3

where � is called Tribonacci constant and

! =
�1 + i

p
3

2
= exp (2�i=3)

is a primitive cube root of unity. Therefore, Tribonacci sequence can be expressed using

Binet formula

Tn =
�n+1

(�� �) (�� 
)
+

�n+1

(� � �) (� � 
)
+


n+1

(
 � �) (
 � �)
.

Furthermore, there exist the following limit

lim
n!1

Tn+r
Tn

= �r, (2.14)

where r 2 Z and Tn is the nth Tribonacci number.
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2.2.6 Generalized Tribonacci Numbers

The generalized Tribonacci sequence in [121] fVngn�0 is de�ned as follows:

Vn = rVn�1 + sVn�2 + tVn�3; V0 = a; V1 = b; V2 = c; n � 3 (2.15)

where a, b, c are arbitrary integers and r; s; t are real numbers.

The sequence fVngn�0 can be expanded to negative subscripts by de�ning

V�n = �
s

t
V�(n�1) �

r

t
V�(n�2) +

1

t
V�(n�3)

for n = 1; 2; 3; ::: when t 6= 0: Thus, recurrence (2.15) holds for all integer n:

If we set r = s = t = 1 and V0 = 0; V1 = 1; V2 = 1 then fVngn�0 is the well-known

Tribonacci sequence and if we set r = s = t = 1 and V0 = 3; V1 = 1; V2 = 3 then fVngn�0
is the well-known Tribonacci-Lucas sequence.

Actually, the generalized Tribonacci sequence is the generalization of the renowned se-

quences like Tribonacci, Tribonacci-Lucas, Padovan (Cordonnier), Perrin, Padovan-Perrin,

Narayana, third order Jacobsthal and third order Jacobsthal-Lucas. In literature, for in-

stance, the following names and notations (see Table 1) are used for the special cases of

r; s; t and initial values.

Table 2.1 A few values of generalized Tribonacci sequences.

Sequences (Numbers) Notation

Tribonacci fTng = fVn(0; 1; 1; 1; 1; 1)g

Tribonacci-Lucas fKng = fVn(3; 1; 3; 1; 1; 1)g

Padovan (Cordonnier) fPng = fVn(1; 1; 1; 0; 1; 1)g

Pell-Padovan fRng = fVn(1; 1; 1; 0; 2; 1)g

Jacobsthal-Padovan fJPng = fVn(1; 1; 1; 0; 1; 2)g

Perrin fQng = fVn(3; 0; 2; 0; 1; 1)g

Pell-Perrin fpQng = fVn(3; 0; 2; 0; 2; 1)g

Jacobsthal-Perrin fJQng = fVn(3; 0; 2; 0; 1; 2)g

Padovan-Perrin fSng = fVn(0; 0; 1; 0; 1; 1)g

Narayana fNng = fVn(0; 1; 1; 1; 0; 1)g

third order Jacobsthal fJng = fVn(0; 1; 1; 1; 1; 2)g

third order Jacobsthal-Lucas fjng = fVn(2; 1; 5; 1; 1; 2)g
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As fVngn�0 is a third order recurrence sequence (di¤erence equation), it�s characteristic

equation is x3 � rx2 � sx� t = 0; whose roots are

� = �(r; s; t) =
r

3
+ A+B

� = �(r; s; t) =
r

3
+ !A+ !2B


 = 
(r; s; t) =
r

3
+ !2A+ !B

where

A =

�
r3

27
+
rs

6
+
t

2
+
p
�

�1=3
; B =

�
r3

27
+
rs

6
+
t

2
�
p
�

�1=3
� = �(r; s; t) =

r3t

27
� r2s2

108
+
rst

6
� s3

27
+
t2

4
,

! =
�1 + i

p
3

2
= exp(2�i=3).

Note that we obtain the following identities

�+ � + 
 = r;

�� + �
 + �
 = �s;

��
 = t:

From now on, we assume that �(r; s; t) > 0; so that the Eq.(2.15) has one real (�) and

two non-real solutions with the latter being conjugate complex. Therefore, in this case,

it is known that generalized Tribonacci numbers can be declared, for all integers n; using

Binet�s formula

Vn =
P�n

(�� �)(�� 
)
+

Q�n

(� � �)(� � 
)
+

R
n

(
 � �)(
 � �)
(2.16)

where

P = V2 � (� + 
)V1 + �
V0; Q = V2 � (�+ 
)V1 + �
V0; R = V2 � (�+ �)V1 + ��V0:

Notice that the Binet form of a sequence satisfying (2.15) for non-negative integers is

valid for all integers n; for a proof of this result see [122]: This result of Howard and

Saidak [122] is even true in the case of higher-order recurrence relations.

We can present Binet�s formula of the generalized Tribonacci numbers for the negative

subscripts: for n = 1; 2; 3; ::: we get

V�n =
�2 � r�� s

t

P�1�n

(�� �)(�� 
)
+
�2 � r� � s

t

Q�1�n

(� � �)(� � 
)

+

2 � r
 � s

t

R
1�n

(
 � �)(
 � �)
.
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CHAPTER 3

GLOBAL BEHAVIOR OF SOLUTIONS OF A SYSTEM OF

THREE-DIMENSIONAL NONLINEAR DIFFERENCE EQUATIONS

Firstly, we state that the results of this chapter are cited from [65] which has been

published by us.

In this chapter, we investigate the stability, boundedness character and periodicity of

positive solutions of the system of di¤erence equations

xn+1 = A+
xn�1
zn

; yn+1 = A+
yn�1
zn

; zn+1 = A+
zn�1
yn
, n = 0; 1; :::, (3.1)

where the parameter A and the initial values x�1, x0, y�1, y0, z�1, z0 are positive real

numbers.

3.1 MAIN RESULTS

In this section, we prove our main results.

Theorem 3.1 The following statements are true:

(i) If (x; y; z) is a positive equilibrium point of system (3.1), then

(x; y; z) =

8<: (A+ 1; A+ 1; A+ 1) , if A 6= 1,�
�; �; �

��1

�
, � 2 (1;1) if A = 1.

(ii) If A > 1, then the equilibrium point of system (3.1) is locally asymptotically stable.

(iii) If 0 < A < 1, then the equilibrium point of system (3.1) is locally unstable.

(iv) If A = 1, then for every � 2 (1;1) there exist positive solutions f(xn; yn; zn)g of

system (3.1) which tend to the positive equilibrium point
�
�; �; �

��1

�
.
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Proof. (i) It is easily seen from the de�nition of equilibrium point that the equilibrium

points of system (3.1) are the nonnegative solution of the equations

x = A+
x

z
, y = A+

y

z
, z = A+

z

y
.

From this, we get

x:z = Az + x, y:z = Az + y, z:y = Ay + z

) x:z � x = y:z � y, Az + y = Ay + z

) x (z � 1) = y (z � 1) , z (A� 1) = y (A� 1) .

From which it follows that if A 6= 1,

x = y = z = A+ 1) (x; y; z) = (A+ 1; A+ 1; A+ 1) .

Also, we have

x:z � x

z
= A,

y:z � y

z
= A,

z:y � z

y
= A

) x:z � x

z
=
y:z � y

z
,
y:z � y

z
=
z:y � z

y

) x:z � x = y:z � y, y2z � y2 = z2y � z2

) x (z � 1) = y (z � 1) , y:z (y � z) = (y � z) (y + z) .

From which it follows that if A = 1,

x = y and y:z = y + z ) (x; y; z) =

�
�; �;

�

�� 1

�
, � 2 (1;1) .

In that case, we have a continuous of positive equilibriums which lie on the hyperboloid

y:z = y + z. (3.2)

(ii) We consider the following transformation to build the corresponding linearized form

of system (3.1):

(xn; xn�1; yn; yn�1; zn; zn�1)! (f; f1; g; g1; h; h1)
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where

f = A+
xn�1
zn

f1 = xn

g = A+
yn�1
zn

g1 = yn

h = A+
zn�1
yn

h1 = zn.

The Jacobian matrix about the equilibrium point (x; y; z) under the above trans-

formation is given by

B (x; y; z) =

0BBBBBBBBBBBB@

0 1
z

0 0 � x
z2

0

1 0 0 0 0 0

0 0 0 1
z
� y
z2

0

0 0 1 0 0 0

0 0 � z
y2

0 0 1
y

0 0 0 0 1 0

1CCCCCCCCCCCCA
. (3.3)

Hence, the linearized system of system (3.1) about the equilibrium point

(x; y; z) = (A+ 1; A+ 1; A+ 1)

is

Xn+1 = B (x; y; z)Xn,

where

Xn = ((xn; xn�1; yn; yn�1; zn; zn�1))
T

and

B (x; y; z) =

0BBBBBBBBBBBB@

0 1
A+1

0 0 � 1
A+1

0

1 0 0 0 0 0

0 0 0 1
A+1

� 1
A+1

0

0 0 1 0 0 0

0 0 � 1
A+1

0 0 1
A+1

0 0 0 0 1 0

1CCCCCCCCCCCCA
.
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Then, the characteristic equation of B (x; y; z) about

(x; y; z) = (A+ 1; A+ 1; A+ 1)

is

�6 � (3A+ 4)
(A+ 1)2

�4 +
(3A+ 4)

(A+ 1)3
�2 � 1

(A+ 1)3
= 0. (3.4)

From this, the roots of characteristic equation (3.4) are

�1 =
1p
A+ 1

,

�2 = � 1p
A+ 1

,

�3 =
1

2

p
4A+ 5� 1
A+ 1

,

�4 = �1
2

p
4A+ 5 + 1

A+ 1
,

�5 =
1

2

p
4A+ 5 + 1

A+ 1
,

�6 = �1
2

p
4A+ 5� 1
A+ 1

.

From the Linearized Stability Theorem, since A > 1, all roots of the characterictic

equation lie inside the open unit disk j�j < 1. Therefore, the positive equilibrium

point of system (3.1) is locally asymptotically stable.

(iii) From the proof of (ii), it is true.

(iv) From (3.3), the linearized system of system (3.1) about the equilibrium point

(x; y; z) =

�
�; �;

�

�� 1

�
is

Xn+1 = B (x; y; z)Xn,

where

Xn = ((xn; xn�1; yn; yn�1; zn; zn�1))
T
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and

B (x; y; z) =

0BBBBBBBBBBBB@

0 ��1
�

0 0 � (��1)2
�

0

1 0 0 0 0 0

0 0 0 ��1
�

� (��1)2
�

0

0 0 1 0 0 0

0 0 � 1
�(��1) 0 0 1

�

0 0 0 0 1 0

1CCCCCCCCCCCCA
.

Hence, the characteristic equation of the matrix B is

�6 �
�
2�2 � 1
�2

�
�4 +

�
�3 + �2 � 3�+ 1

�

�
�2 � (�� 1)

2

�3
= 0. (3.5)

Therefore, the roots of the equation (3.5) are:

�1 = �1,

�2 = 1,

�3 =

p
�� 1
�

,

�4 = �
p
�� 1
�

,

�5 =

r
�� 1
�

,

�6 = �
r
�� 1
�

.

Then, the modulus of four of the roots of (3.5) are less than 1. So, there exist positive

solutions of system (3.1) which tend to the positive equilibrium point
�
�; �; �

��1

�
of system (3.1) (this follows from the following proposition). This completes the

proof.

In the following proposition we �nd positive solutions of system (3.1) which tend to

(x; y; z) as n!1.

Proposition 3.2 Let f(xn; yn; zn)g be a positive solution of system (3.1). Then, if there

exists an s 2 f�1; 0; :::g such that for n � s, xn � x, yn � y, zn � z (resp., xn < x,

yn < y, zn < z), the solution f(xn; yn; zn)g tends to the positive equilibrium (x; y; z) of

system (3.1) as n!1.
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Proof. Let f(xn; yn; zn)g be a positive solution of system (3.1) such that

xn � x, yn � y, zn � z, n � s, (3.6)

where s 2 f�1; 0; :::g. Then from (3.1) and (3.6) we have

xn+1 = A+
xn�1
zn

� A+
xn�1
z

; n � 1: (3.7)

Set

un+1 = A+
un�1
z

; n � 1 (3.8)

such that

us = xs, us+1 = xs+1, s 2 f�1; 0; 1; :::g ; n � s: (3.9)

Then, the solution un of the di¤erence equation (3.8) is as follows:

un = c1

�
1p
z

�n
+ c1

�
� 1p

z

�n
+

Az

Az � 1 = c1

�
1p
z

�n
+ c1

�
� 1p

z

�n
+ x, (3.10)

where c1, c2 depend on xs, xs+1. In addition, the relations (3.7) and (3.8) imply that

xn+1 � un+1 �
xn�1 � un�1

z
; n > s. (3.11)

Then, by using (3.9) and (3.11) and induction, we have

xn � un; n � s. (3.12)

Therefore, from (3.6), (3.10), and (3.12), it is clear that

lim
n!1

xn = x. (3.13)

Similarly, we can prove that

lim
n!1

yn = y and lim
n!1

zn = z. (3.14)

Thus, from (3.13) and (3.14), the solution f(xn; yn; zn)g tends to (x; y; z) as n!1.

Arguing as above we can show that if xn < x, yn < y, zn < z for n � s, then f(xn; yn; zn)g

tends to (x; y; z) as n!1. The proof of the proposition is completed.

Theorem 3.3 Assume that 0 < A < 1 and f(xn; yn; zn)g is an arbitrary positive solution

of system (3.1). Then, the following statements are true.
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(i) If

x�1 < 1, y�1 < 1, z�1 < 1, x0 >
1

1� A
, y0 >

1

1� A
, z0 >

1

1� A
, (3.15)

then

lim
n!1

x2n+1 = A, lim
n!1

y2n+1 = A, lim
n!1

z2n+1 = A,

lim
n!1

x2n = 1, lim
n!1

y2n =1, lim
n!1

z2n =1.

(ii) If

x0 < 1, y0 < 1, z0 < 1, x�1 >
1

1� A
, y�1 >

1

1� A
, z�1 >

1

1� A
, (3.16)

then

lim
n!1

x2n+1 = 1, lim
n!1

y2n+1 =1, lim
n!1

z2n+1 =1,

lim
n!1

x2n = A, lim
n!1

y2n = A, lim
n!1

z2n = A.

Proof. (i) From (3.1) and (3.15), we get

x1 = A+
x�1
z0

< A+
1

z0
< A+ (1� A) = 1,

y1 = A+
y�1
z0

< A+
1

z0
< A+ (1� A) = 1,

z1 = A+
z�1
y0

< A+
1

y0
< A+ (1� A) = 1,

x2 = A+
x0
z1

> x0 >
1

1� A
,

y2 = A+
y0
z1
> y0 >

1

1� A
,

z2 = A+
z0
y1
> z0 >

1

1� A
.

By induction for n = 0; 1; 2; :::; we obtain

x2n�1 < 1, y2n�1 < 1, z2n�1 < 1, (3.17)

x2n >
1

1� A
, y2n >

1

1� A
, z2n >

1

1� A
.

Thus, relations (3.1) and (3.17) imply that

x2n = A+
x2n�2
z2n�1

> A+ x2n�2 > 2A+
x2n�4
z2n�3

> 2A+ x2n�4,

y2n = A+
y2n�2
z2n�1

> A+ y2n�2 > 2A+
y2n�4
z2n�3

> 2A+ y2n�4,

z2n = A+
z2n�2
y2n�1

> A+ z2n�2 > 2A+
z2n�4
y2n�3

> 2A+ z2n�4.
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From which we get

lim
n!1

x2n =1, lim
n!1

y2n =1, lim
n!1

z2n =1.

Noting that (3.17) and taking limits on both sides of three equations

x2n+1 = A+
x2n�1
z2n

, y2n+1 = A+
y2n�1
z2n

, z2n+1 = A+
z2n�1
y2n

,

we have

lim
n!1

x2n+1 = A, lim
n!1

y2n+1 = A, lim
n!1

z2n+1 = A.

(ii) The proof is similar to the proof of (i), so we leave it to readers.

Theorem 3.4 Assume that A = 1. Then every positive solution of system (3.1) is

bounded and persists.

Proof. Let f(xn; yn; zn)g be a positive solution of the system (3.1).

Obviously, xn > 1, yn > 1, zn > 1, for n � 1. So, we have

xi; yi; zi 2
�
K;

K

K � 1

�
, i = 1; 2; :::;m+ 1,

where

K = min

�
�;

�

� � 1

�
> 1, � = min

1�i�m+1
fxi; yi; zig , � = max

1�i�m+1
fxi; yi; zig :

Then, we obtain

K = 1 +
K

K= (K � 1) � xm+2 = 1 +
x1
zm+1

� 1 + K= (K � 1)
K

=
K

K � 1 ,

K = 1 +
K

K= (K � 1) � ym+2 = 1 +
y1
zm+1

� 1 + K= (K � 1)
K

=
K

K � 1 ,

K = 1 +
K

K= (K � 1) � zm+2 = 1 +
z1
ym+1

� 1 + K= (K � 1)
K

=
K

K � 1 .

By induction, we get

xi; yi; zi 2
�
K;

K

K � 1

�
, i = 1; 2; :::.

Theorem 3.5 Assume A = 1. Then, every positive solution of system (3.1) is periodic

of period 2.
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Proof. From system (3.1), we have

xn+1 = 1 +
xn�1
zn
, yn+1 = 1 +

yn�1
zn
, zn+1 = 1 +

zn�1
yn

xn+2 = 1 +
xn
zn+1

, yn+2 = 1 +
yn
zn+1

, zn+1 = 1 +
zn�1
yn

= 1 + xn
1+

zn�1
yn

= 1 + yn
1+

zn�1
yn

= 1 + zn
1+

yn�1
zn

= 1 + xnyn
yn+zn�1

= 1 + y2n
yn+zn�1

= 1 + z2n
zn+yn�1

(from 3.2)
= zn�1+xn

zn�1

(from 3.2)
= zn�1+yn

zn�1

(from 3.2)
= yn�1+zn

yn�1

= xn = yn = zn

Theorem 3.6 Assume A > 1. Then, every positive solution of system (3.1) is bounded.

Proof. Let f(xn; yn; zn)g is a positive solution of system (3.1). Clearly,

xn; yn; zn > A > 1, for n � 1. (3.18)

From (3.18), we have

xn+1 = A+
xn�1
zn

� A+
xn�1
A
, n � 1. (3.19)

Set

un+1 = A+
un�1
A
, n � 1 (3.20)

such that

us = xs, us+1 = xs+1, s 2 f�1; 0; 1; :::g , n � s: (3.21)

Then, the solution un of the di¤erence equation (3.20) is as follows:

un = c1

�
1p
A

�n
+ c1

�
� 1p

A

�n
+

A2

A� 1 . (3.22)

Indeed, from (3.20), we get

un+1 �
1

A
un�1 = 0) �2 � 1

A
= 0

) �1;2 = �
1p
A
.

The homogen solution of di¤erence equation (3.20) is given by

uh = c1

�
1p
A

�n
+ c2

�
� 1p

A

�n
.
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Also, from (3.20), the equilibrium solution of di¤erence equation (3.20) is following

x� 1

A
x = A) x =

A2

A� 1 .

In addition, the relations (3.19) and (3.22) imply that

xn+1 � un+1 �
xn�1 � un�1

A
, n > s. (3.23)

Then, by using (3.21) and (3.23) and induction, we have

xn � un, n � s. (3.24)

Therefore, from (3.18), (3.22), and (3.24), we obtain

A < xn � c1

�
1p
A

�n
+ c2

�
� 1p

A

�n
+

A2

A� 1 ,

where

c1 =
1

2

�
x0 +

p
Ax1 �

A2

A� 1

�
1 +

p
A
��

,

c2 =
1

2

�
x0 �

p
Ax1 �

A2

A� 1

�
1�

p
A
��

.

Similarly, we can prove that

A < yn � c3

�
1p
A

�n
+ c4

�
� 1p

A

�n
+

A2

A� 1 ,

A < zn � c5

�
1p
A

�n
+ c6

�
� 1p

A

�n
+

A2

A� 1 ,

where

c3 =
1

2

�
y0 +

p
Ay1 �

A2

A� 1

�
1 +

p
A
��

,

c4 =
1

2

�
y0 �

p
Ay1 �

A2

A� 1

�
1�

p
A
��

,

c5 =
1

2

�
z0 +

p
Az1 �

A2

A� 1

�
1 +

p
A
��

,

c6 =
1

2

�
z0 �

p
Az1 �

A2

A� 1

�
1�

p
A
��
.

Theorem 3.7 Suppose that A > 1. Then, the positive equilibrium point of system (3.1)

is globally asymptotically stable.
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Proof. By the means of Theorem 3.6, we set

L1 = lim
n!1

sup xn, L2 = lim
n!1

sup yn, L3 = lim
n!1

sup zn, (3.25)

m1 = lim
n!1

inf xn, m2 = lim
n!1

inf yn, m3 = lim
n!1

inf zn.

Then, from (3.1) and (4.4) we have

L1 � A+
L1
m3

, L2 � A+
L2
m3

, L3 � A+
L3
m2

, (3.26)

m1 � A+
m1

L3
, m2 � A+

m2

L3
, m3 � A+

m3

L2
.

Relations (4.5) imply that

AL2 +m3 � m3L2 � Am3 + L2, AL3 +m2 � m2L3 � Am2 + L3,

from which we have

(A� 1) (L2 �m3) � 0, (A� 1) (L3 �m2) � 0.

Since A > 1, we get

L2 � m3 � L3, L3 � m2 � L2,

from this it is obvious that

L2 = L3 = m2 = m3. (3.27)

Moreover, from (4.5) it follows that

L1m3 � Am3 + L1, m1L3 � AL3 +m1,

from which

L1 (m3 � 1) � Am3, AL3 � m1 (L3 � 1) .

Using (4.6), we have

L1 (L3 � 1) � m1 (L3 � 1) ,

then

L1 � m1.

Since xn is bounded, it implys that

L1 = m1.

Hence, every positive solution f(xn; yn; zn)g of system (3.1) tends to the positive equlib-

rium system (3.1). So, this completes the proof.
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CHAPTER 4

GLOBAL ANALYSIS OF A SYSTEM OF HIGHER ORDER NONLINEAR

DIFFERENCE EQUATIONS

We state that the results of this chapter are cited from [66] which has been published by

us.

In this chapter, in the light of work in [65], we investigate the global asymptotic stability,

boundedness character and oscillatory of positive solutions of the system of di¤erence

equations

xn+1 = A+
xn�m
zn

; yn+1 = A+
yn�m
zn

; zn+1 = A+
zn�m
yn

, n = 0; 1; :::, (4.1)

where A and the initial values x�i, y�i, z�i, for i = 0; 1; :::;m, are positive real numbers

and m is positive integer.

4.1 MAIN RESULTS

In this section, we prove our main results. We deal with the following cases of 0 < A < 1,

A = 1, and A > 1.

Theorem 4.1 If (x; y; z) is a positive equilibrium point of system (4.1), then

(x; y; z) =

8<: (A+ 1; A+ 1; A+ 1) , if A 6= 1,�
�; �; �

��1

�
, � 2 (1;1) if A = 1.

Proof. It is easily seen from the de�nition of equilibrium point that the equilibrium

points of system (4.1) are the nonnegative solution of the equations

x = A+
x

z
, y = A+

y

z
, z = A+

z

y
.

From this, we get

xz = Az + x, yz = Az + y, zy = Ay + z

) xz � x = yz � y, Az + y = Ay + z

) x (z � 1) = y (z � 1) , z (A� 1) = y (A� 1) .
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From which it follows that if A 6= 1,

x = y = z = A+ 1) (x; y; z) = (A+ 1; A+ 1; A+ 1) .

Also, we have

xz � x

z
= A,

yz � y

z
= A,

zy � z

y
= A

) xz � x

z
=
yz � y

z
,
yz � y

z
=
zy � z

y

) xz � x = yz � y, y2z � y2 = z2y � z2

) x (z � 1) = y (z � 1) , yz (y � z) = (y � z) (y + z) .

From which it follows that if A = 1,

x = y and yz = y + z ) (x; y; z) =

�
�; �;

�

�� 1

�
, � 2 (1;1) .

In that case, we have a continuous of positive equilibriums which lie on the hyperboloid

yz = y + z.

Theorem 4.2 Assume that 0 < A < 1. Let f(xn; yn; zn)g be an arbitrary positive solution

of the system (4.1). Then, the following statements are true.

(i) If m is odd and 0 < x2k�1 < 1, 0 < y2k�1 < 1, 0 < z2k�1 < 1, x2k > 1
1�A , y2k >

1
1�A ,

z2k >
1

1�A for k =
1�m
2
; 3�m

2
; :::; 0, then

lim
n!1

x2n = 1, lim
n!1

y2n =1, lim
n!1

z2n =1,

lim
n!1

x2n+1 = A, lim
n!1

y2n+1 = A, lim
n!1

z2n+1 = A.

(ii) If m is odd and 0 < x2k < 1, 0 < y2k < 1, 0 < z2k < 1, x2k�1 > 1
1�A , y2k�1 >

1
1�A ,

z2k�1 >
1

1�A for k =
1�m
2
; 3�m

2
; :::; 0, then

lim
n!1

x2n = A, lim
n!1

y2n = A, lim
n!1

z2n = A,

lim
n!1

x2n+1 = 1, lim
n!1

y2n+1 =1, lim
n!1

z2n+1 =1.

(iii) If m is even, we can not get some useful results.

Proof.
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(i) Clearly, we get

0 < x1 = A+
x�m
z0

< A+
1

z0
< A+ (1� A) = 1,

0 < y1 = A+
y�m
z0

< A+
1

z0
< A+ (1� A) = 1,

0 < z1 = A+
z�m
y0

< A+
1

y0
< A+ (1� A) = 1,

x2 = A+
x1�m
z1

> x1�m >
1

1� A
,

y2 = A+
y1�m
z1

> y1�m >
1

1� A
,

z2 = A+
z1�m
y1

> z1�m >
1

1� A
.

By induction for n = 1; 2; :::; we obtain

0 < x2n�1 < 1, 0 < y2n�1 < 1, 0 < z2n�1 < 1, (4.2)

x2n >
1

1� A
, y2n >

1

1� A
, z2n >

1

1� A
.

Thus, for n � (m+ 2) =2,

x2n = A+
x2n�(m+1)
z2n�1

> A+ x2n�(m+1) = 2A+
x2n�(2m+2)
z2n�(m+2)

> 2A+ x2n�(2m+2),

y2n = A+
y2n�(m+1)
z2n�1

> A+ y2n�(m+1) = 2A+
y2n�(2m+2)
z2n�(m+2)

> 2A+ y2n�(2m+2),

z2n = A+
z2n�(m+1)
y2n�1

> A+ z2n�(m+1) = 2A+
z2n�(2m+2)
y2n�(m+2)

> 2A+ z2n�(2m+2),

from which we get

lim
n!1

x2n =1, lim
n!1

y2n =1, lim
n!1

z2n =1.

Noting that (4.2) and taking limits on the both sides of three equations

x2n+1 = A+
x2n�m
z2n

, y2n+1 = A+
y2n�m
z2n

, z2n+1 = A+
z2n�m
y2n

,

we have

lim
n!1

x2n+1 = A, lim
n!1

y2n+1 = A, lim
n!1

z2n+1 = A.
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(ii) Obviously, we have

x1 = A+
x�m
z0

> x�m >
1

1� A
,

y1 = A+
y�m
z0

> y�m >
1

1� A
,

z1 = A+
z�m
y0

> z�m >
1

1� A
,

0 < x2 = A+
x1�m
z1

< A+
1

z1
< A+ (1� A) = 1,

0 < y2 = A+
y1�m
z1

< A+
1

z1
< A+ (1� A) = 1,

0 < z2 = A+
z1�m
y1

. < A+
1

y1
< A+ (1� A) = 1.

By induction for n = 1; 2; :::; we obtain

x2n�1 >
1

1� A
, y2n�1 >

1

1� A
, z2n�1 >

1

1� A
, (4.3)

0 < x2n < 1, 0 < y2n < 1, 0 < z2n < 1:

So, for n � (m+ 2) =2,

x2n+1 = A+
x2n�m
z2n

> A+ x2n�m = 2A+
x(2n�2m)�1
z2n�(m+1)

> 2A+ x(2n�2m)�1,

y2n+1 = A+
y2n�m
z2n

> A+ y2n�m = 2A+
y(2n�2m)�1
z2n�(m+1)

> 2A+ y(2n�2m)�1,

z2n+1 = A+
z2n�m
y2n

> A+ z2n�m = 2A+
z(2n�2m)�1
y2n�(m+1)

> 2A+ z(2n�2m)�1,

from which we get

lim
n!1

x2n+1 =1, lim
n!1

y2n+1 =1, lim
n!1

z2n+1 =1.

Noting that (4.3) and taking limits on the both sides of three equations

x2n = A+
x2n�(m+1)
z2n�1

, y2n+1 = A+
y2n�(m+1)
z2n�1

, z2n+1 = A+
z2n�(m+1)
y2n�1

,

we have

lim
n!1

x2n = A, lim
n!1

y2n = A, lim
n!1

z2n+ = A.
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Theorem 4.3 Suppose that A = 1. Then every positive solution of system (4.1) is

bounded and persists.

Proof. Let f(xn; yn; zn)g be a positive solution of the system (4.1).

Obviously, xn > 1, yn > 1, zn > 1, for n � 1. So, we have

xi; yi; zi 2
�
M;

M

M � 1

�
, i = 1; 2; :::;m+ 1,

where

M = min

�
�;

�

� � 1

�
> 1, � = min

1�i�m+1
fxi; yi; zig , � = max

1�i�m+1
fxi; yi; zig .

Then, we obtain

M = 1 +
M

M= (M � 1) � xm+2 = 1 +
x1
zm+1

� 1 + M= (M � 1)
M

=
M

M � 1 ,

M = 1 +
M

M= (M � 1) � ym+2 = 1 +
y1
zm+1

� 1 + M= (M � 1)
M

=
M

M � 1 ,

M = 1 +
M

M= (M � 1) � zm+2 = 1 +
z1
ym+1

� 1 + M= (M � 1)
M

=
M

M � 1 .

By induction, we get

xi; yi; zi 2
�
M;

M

M � 1

�
, i = 1; 2; :::.

Theorem 4.4 Assume that A = 1. Let f(xn; yn; zn)g be a positive solution of the system

(4.1). Then, either f(xn; yn; zn)g consists of a single semicycle or f(xn; yn; zn)g oscillates

about the equilibrium point (x; y; z) =
�
�; �; �

��1

�
with semicycles having at most m

terms.

Proof. Suppose that f(xn; yn; zn)g has at least two semicycles Then, there exists N �

�m such that either xN < x � xN+1 or xN+1 < x � xN (yN < y � yN+1 or yN+1 < y � yN

and zN < z � zN+1 or zN+1 < z � zN). Firstly, we assume that the case xN < x � xN+1,

yN < y � yN+1 and zN < z � zN+1. Since the other case is similar, it will be omitted.

Suppose that the positive semicycle beginning with the term (xN+1, yN+1, zN+1) have m

terms. Then we have

xN+1 < x = � � xN+m,

yN+1 < y = � � yN+m,

zN+1 < z =
�

�� 1 � zN+m.
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Therefore, we get

xN+m+1 = 1 +
xN
zN+m

< 1 +
x

z
= �,

yN+m+1 = 1 +
yN
zN+m

< 1 +
y

z
= �,

zN+m+1 = 1 +
zN
yN+m

< 1 +
z

y
=

�

�� 1 .

This completes the proof.

Theorem 4.5 Suppose that A > 1. Then every positive solution of system (4.1) is

bounded and persists.

Proof. Let f(xn; yn; zn)g be a positive solution of the system (4.1).

Obviously, xn > A > 1, yn > A > 1, zn > A > 1, for n � 1. So, we have

xi; yi; zi 2
�
M;

M

M � A

�
, i = 1; 2; :::;m+ 1,

where

M = min

�
�;

�

� � 1

�
> 1, � = min

1�i�m+1
fxi; yi; zig , � = max

1�i�m+1
fxi; yi; zig .

Then, we obtain

M = A+
M

M= (M � A)
� xm+2 = 1 +

x1
zm+1

� 1 + M= (M � A)

M
=

M

M � A
,

M = A+
M

M= (M � A)
� ym+2 = 1 +

y1
zm+1

� 1 + M= (M � A)

M
=

M

M � A
,

M = A+
M

M= (M � A)
� zm+2 = 1 +

z1
ym+1

� 1 + M= (M � A)

M
=

M

M � A
.

By induction, we get

xi; yi; zi 2
�
M;

M

M � A

�
, i = 1; 2; :::.

The proof is completed.

Before we give the following theorems about the stability of the equilibrium points, we

consider the following transformation to build the corresponding linearized form of system

(4.1) :

(xn; xn�1; :::; xn�m; yn; yn�1; :::; yn�m; zn; zn�1; :::; zn�m)

! (f; f1; :::; fm; g; g1; :::; gm; h; h1; :::; hm)
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where

f = A+
xn�m
zn

f1 = xn
...

fm = xn�m

g = A+
yn�m
zn

g1 = yn
...

gm = yn�m

h = A+
zn�m
yn

h1 = zn
...

hm = zn�m.

The Jacobian matrix about the equilibrium point (x; y; z) under the above transformation

is given by

B (x; y; z) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 : : : 0 1
z

0 : : : 0 0 � x
z2

: : : 0 0

1 : : : 0 0 0 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 1 0 0 : : : 0 0 0 : : : 0 0

0 : : : 0 0 0 : : : 0 1
z
� y
z2

: : : 0 0

0 : : : 0 0 1 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 1 0 0 : : : 0 0

0 : : : 0 0 � z
y2

: : : 0 0 0 : : : 0 1
y

0 : : : 0 0 0 : : : 0 0 1 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 0 0 0 : : : 1 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

where B = (bij), 1 � i; j � 3m+ 3 is an (3m+ 3)� (3m+ 3) matrix.

Theorem 4.6 If A = 1, then the equilibrium point of system (4.1) is locally asymptoti-

cally stable.
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Proof. The linearized system of system (4.1) about the equilibrium point
�
�; �; �

��1

�
is

Xn+1 = BXn,

where Xn = (xn; xn�1; :::; xn�m; yn; yn�1; :::; yn�m; zn; zn�1; :::; zn�m)
T and

B (x; y; z) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 : : : 0 ��1
�

0 : : : 0 0 � (��1)2
�

: : : 0 0

1 : : : 0 0 0 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 1 0 0 : : : 0 0 0 : : : 0 0

0 : : : 0 0 0 : : : 0 ��1
�

� (��1)2
�

: : : 0 0

0 : : : 0 0 1 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 1 0 0 : : : 0 0

0 : : : 0 0 � 1
�(��1)2 : : : 0 0 0 : : : 0 1

�

0 : : : 0 0 0 : : : 0 0 1 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 0 0 0 : : : 1 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Let �1; �2; :::; �3m+3 denote the 3m+ 3 eigenvalues of the matrix B and

D = diag (d1; d2; :::; d3m+3)

be a diagonal matrix, where

d1 = dm+2 = d2m+3 = 1, d1+k = dm+2+k = d2m+3+k = 1� k", 1 � k � m

and

0 < " <

�
�2 � 2�+ 2

m�
;
�2 � 2�+ 2
m� (�� 1)

�
.
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Obviously, D is invertible. Computing matrix DBD�1, we have that

DBD�1 =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 : : : 0 p 0 : : : 0 0 q : : : 0 0

d2
d1

: : : 0 0 0 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : dm+1
dm

0 0 : : : 0 0 0 : : : 0 0

0 : : : 0 0 0 : : : 0 r s : : : 0 0

0 : : : 0 0 dm+3
dm+2

: : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : d2m+2
d2m+1

0 0 : : : 0 0

0 : : : 0 0 t : : : 0 0 0 : : : 0 w

0 : : : 0 0 0 : : : 0 0 d2m+4
d2m+3

: : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 0 0 0 : : : d3m+3
d3m+2

0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where

p =
�� 1
�

d1
dm+1

,

q = �(�� 1)
2

�

d1
d2m+3

,

r =
�� 1
�

dm+2
d2m+2

,

s = �(�� 1)
2

�

dm+2
d2m+3

,

t = � 1

� (�� 1)2
d2m+3
dm+2

,

w =
1

�

d2m+3
d3m+3

.

The three chains of inequalities

1 = d1 > d2 > ::: > dm > dm+1 > 0,

1 = dm+2 > dm+3 > ::: > d2m+1 > d2m+2 > 0,

1 = d2m+3 > d2m+4 > ::: > d3m+2 > d3m+3 > 0,

imply that

d2d
�1
1 < 1, d3d�12 < 1,:::, dm+1d�1m < 1,

dm+3d
�1
m+2 < 1, dm+4d�1m+3 < 1,:::, d2m+2d

�1
2m+1 < 1,

d2m+4d
�1
2m+3 < 1, d2m+5d�12m+4 < 1,:::, d3m+3d

�1
3m+2 < 1.
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Also, �
�� 1
�

�
d1d

�1
m+1 +

 
�(�� 1)

2

�

!
d1d

�1
2m+3

=

�
�� 1
�

��
1

1�m"

�
� (�� 1)

2

�

<

�
�� 1
�

��
1

1�m"

�
�
 
(�� 1)2

�

!�
1

1�m"

�
=

�
��2 + 3�� 2

�

��
1

1�m"

�
< 1,

�
�� 1
�

�
dm+2d

�1
2m+2 +

 
�(�� 1)

2

�

!
dm+2d

�1
2m+3

=

�
�� 1
�

��
1

1�m"

�
� (�� 1)

2

�

=

�
��2 + 3�� 2

�

��
1

1�m"

�
< 1,

�
� 1

� (�� 1)2
�
d2m+3d

�1
m+2 +

�
1

�

�
d2m+3d

�1
3m+3

=

�
� 1

� (�� 1)2
�
+

�
1

�

��
1

1�m"

�
<

�
� 1

� (�� 1)2
��

1

1�m"

�
+

�
1

�

��
1

1�m"

�
=

�
�� 2

� (�� 1)

��
1

1�m"

�
< 1.

Since B has the same eigenvalues as DBD�1 = E = (eij), we obtain that

max
1�i�3m+3

j�ij �


DBD�1



1

= max
1�i�3m+3

(
3m+3X
j=1

jeijj
)

= max

8>>>>>>>>>>>><>>>>>>>>>>>>:

d2d
�1
1 , d3d

�1
2 ,:::, dm+1d

�1
m ,

dm+3d
�1
m+2, dm+4d

�1
m+3,:::, d2m+2d

�1
2m+1,

d2m+4d
�1
2m+3, d2m+5d

�1
2m+4,:::, d3m+3d

�1
3m+2,�

��1
�

�
d1d

�1
m+1 �

�
(��1)2
�

�
d1d

�1
2m+3,�

��1
�

�
dm+2d

�1
2m+2 �

�
(��1)2
�

�
dm+2d

�1
2m+3,�

� 1
�(��1)2

�
d2m+3d

�1
m+2 +

�
1
�

�
d2m+3d

�1
3m+3

9>>>>>>>>>>>>=>>>>>>>>>>>>;
< 1.

This implies that the equilibrium point of system (4.1) is locally asymptotically stable.
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Theorem 4.7 If A > 1, then the equilibrium point of system (4.1) is locally asymptoti-

cally stable.

Proof. The linearized system of system (4.1) about the equilibrium point (x; y; z) =

(A+ 1; A+ 1; A+ 1) is

Xn+1 = BXn,

where Xn = (xn; xn�1; :::; xn�m; yn; yn�1; :::; yn�m; zn; zn�1; :::; zn�m)
T and

B (x; y; z) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 : : : 0 c�1 0 : : : 0 0 �c�1 : : : 0 0

1 : : : 0 0 0 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 1 0 0 : : : 0 0 0 : : : 0 0

0 : : : 0 0 0 : : : 0 c�1 �c�1 : : : 0 0

0 : : : 0 0 1 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 1 0 0 : : : 0 0

0 : : : 0 0 �c�1 : : : 0 0 0 : : : 0 c�1

0 : : : 0 0 0 : : : 0 0 1 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 0 0 0 : : : 1 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

where c = A+ 1.

Let �1; �2; :::; �3m+3 denote the 3m+ 3 eigenvalues of the matrix B and

D = diag (d1; d2; :::; d3m+3)

be a diagonal matrix, where

d1 = dm+2 = d2m+3 = 1, d1+k = dm+2+k = d2m+3+k = 1� k", 1 � k � m

and

0 < " <

�
1

m
;
c� 2
cm

�
.

Obviously, D is invertible. Computing matrix DBD�1, we have that

DBD�1 =
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0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 : : : 0 c�1d1
dm+1

0 : : : 0 0 �c�1d1
d2m+3

: : : 0 0

d2
d1

: : : 0 0 0 : : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : dm+1
dm

0 0 : : : 0 0 0 : : : 0 0

0 : : : 0 0 0 : : : 0 c�1dm+2
d2m+2

�c�1dm+2
d2m+3

: : : 0 0

0 : : : 0 0 dm+3
dm+2

: : : 0 0 0 : : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : d2m+2
d2m+1

0 0 : : : 0 0

0 : : : 0 0 �c�1d2m+3
dm+2

: : : 0 0 0 : : : 0 c�1d2m+3
d3m+3

0 : : : 0 0 0 : : : 0 0 d2m+4
d2m+3

: : : 0 0
...
. . .

...
...

...
. . .

...
...

...
. . .

...
...

0 : : : 0 0 0 : : : 0 0 0 : : : d3m+3
d3m+2

0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

The three chains of inequalities

1 = d1 > d2 > ::: > dm > dm+1 > 0,

1 = dm+2 > dm+3 > ::: > d2m+1 > d2m+2 > 0,

1 = d2m+3 > d2m+4 > ::: > d3m+2 > d3m+3 > 0,

imply that

d2d
�1
1 < 1, d3d�12 < 1,:::, dm+1d�1m < 1,

dm+3d
�1
m+2 < 1, dm+4d�1m+3 < 1,:::, d2m+2d

�1
2m+1 < 1,

d2m+4d
�1
2m+3 < 1, d2m+5d�12m+4 < 1,:::, d3m+3d

�1
3m+2 < 1.

Also,

c�1d1d
�1
m+1 + c�1d1d

�1
2m+3 = c�1

�
1

1�m"
+ 1

�
< c�1

2

1�m"
< 1,

c�1dm+2d
�1
2m+2 + c�1dm+2d

�1
2m+3 = c�1

�
1

1�m"
+ 1

�
< c�1

2

1�m"
< 1,

c�1d2m+3d
�1
m+2 + c�1d2m+3d

�1
3m+3 = c�1

�
1 +

1

1�m"

�
< c�1

2

1�m"
< 1.
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Since B has the same eigenvalues as DBD�1 = E = (eij), we obtain that

max
1�i�3m+3

j�ij �


DBD�1



1

= max
1�i�3m+3

(
3m+3X
j=1

jeijj
)

= max

8>>>>>>>>>>>><>>>>>>>>>>>>:

d2d
�1
1 , d3d

�1
2 ,:::, dm+1d

�1
m ,

dm+3d
�1
m+2, dm+4d

�1
m+3,:::, d2m+2d

�1
2m+1,

d2m+4d
�1
2m+3, d2m+5d

�1
2m+4,:::, d3m+3d

�1
3m+2,

c�1d1d
�1
m+1 + c�1d1d

�1
2m+3,

c�1dm+2d
�1
2m+2 + c�1dm+2d

�1
2m+3,

c�1d2m+3d
�1
m+2 + c�1d2m+3d

�1
3m+3

9>>>>>>>>>>>>=>>>>>>>>>>>>;
< 1.

This implies that the equilibrium point of system (4.1) is locally asymptotically stable.

Theorem 4.8 Assume that A > 1. Then, the positive equilibrium point of system (4.1)

is globally asymptotically stable.

Proof. Using Theorem 4.5, we have

L1 = lim
n!1

sup xn, L2 = lim
n!1

sup yn, L3 = lim
n!1

sup zn, (4.4)

m1 = lim
n!1

inf xn, m2 = lim
n!1

inf yn, m3 = lim
n!1

inf zn.

Then, from (4.1) and (4.4) we have

L1 � A+
L1
m3

, L2 � A+
L2
m3

, L3 � A+
L3
m2

, (4.5)

m1 � A+
m1

L3
, m2 � A+

m2

L3
, m3 � A+

m3

L2
.

Relations (4.5) imply that

AL2 +m3 � m3L2 � Am3 + L2, AL3 +m2 � m2L3 � Am2 + L3,

from which we have

(A� 1) (L2 �m3) � 0, (A� 1) (L3 �m2) � 0.

Since A > 1, we get

L2 � m3 � L3, L3 � m2 � L2,
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from which

L2 = L3 = m2 = m3. (4.6)

Moreover, from (4.5) it follows that L1m3 � Am3 + L1, m1L3 � AL3 +m1, from which

L1 (m3 � 1) � Am3, AL3 � m1 (L3 � 1) .

Using (4.6), we have

L1 (L3 � 1) � m1 (L3 � 1) ,

from which L1 � m1.

Since xn is bounded, it implys that L1 = m1.

Hence, every positive solution f(xn; yn; zn)g of system (4.1) tends to the positive equilib-

rium system (4.1). So, the proof is completed.
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CHAPTER 5

THE NATURE OF SOLUTIONS OF A SYSTEM OF SECOND ORDER

RATIONAL DIFFERENCE EQUATIONS

We state that the results of this chapter are cited from [68] which was published by us.

In the light of the works in [65] and [66], the aim of this chapter is to study local stability

of the equilibrium points and oscillation behaviour of positive solutions of the following

system of rational di¤erence equations

xn+1 = A+
xpn�1
zpn

; yn+1 = A+
ypn�1
zpn

; zn+1 = A+
zpn�1
ypn

; n = 0; 1; :::, (5.1)

where A 2 (0;1), p 2 [1;1) and the initial values xi, yi, zi 2 (0;1), i = �1; 0.

5.1 MAIN RESULTS

In this section, we prove our main results.

Theorem 5.1 The following statements are true:

(i) The system (5.1) has a positive equilibrium point (x; y; z) = (A+ 1; A+ 1; A+ 1).

(ii) If A > 2p � 1, then the equilibrium point of system (5.1) is locally asymptotically

stable.

(iii) If A < 2p� 1, then the equilibrium point of system (5.1) is unstable.

(iv) Also, when A = 2p� 1 and p = 1, the results has been investigated in [65].

Proof.

(i) It is easily seen from the de�nition of equilibrium point.
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(ii) We consider the following transformation to build the corresponding linearized form

of system (5.1):

(xn; xn�1; yn; yn�1; zn; zn�1)! (f; f1; g; g1; h; h1)

where

f = A+
xpn�1
zpn

f1 = xn

g = A+
ypn�1
zpn

g1 = yn

h = A+
zpn�1
ypn

h1 = zn.

The Jacobian matrix about the equilibrium point (x; y; z) under the above trans-

formation is given by

B (x; y; z) =

0BBBBBBBBBBBB@

0 pxp�1

zp
0 0 � pxp

zp+1
0

1 0 0 0 0 0

0 0 0 pyp�1

zp
� pyp

zp+1
0

0 0 1 0 0 0

0 0 � pzp

yp+1
0 0 pzp�1

yp

0 0 0 0 1 0

1CCCCCCCCCCCCA
. (5.2)

Hence, the linearized system of system (5.1) about the equilibrium point

(x; y; z) = (A+ 1; A+ 1; A+ 1)

is

Xn+1 = B (x; y; z)Xn,

where

Xn = (xn; xn�1; yn; yn�1; zn; zn�1)
T
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and

B (x; y; z) =

0BBBBBBBBBBBB@

0 p
A+1

0 0 � p
A+1

0

1 0 0 0 0 0

0 0 0 p
A+1

� p
A+1

0

0 0 1 0 0 0

0 0 � p
A+1

0 0 p
A+1

0 0 0 0 1 0

1CCCCCCCCCCCCA
.

Then, the characteristic equation of B (x; y; z) about

(x; y; z) = (A+ 1; A+ 1; A+ 1)

is

�6�
�

p2

(A+ 1)2
+ 3

p

A+ 1

�
�4+

�
p3

(A+ 1)3
+ 3

p2

(A+ 1)2

�
�2� p3

(A+ 1)3
= 0. (5.3)

From this, the roots of characteristic equation (5.3) are

�1 =

r
p

A+ 1
,

�2 = �
r

p

A+ 1
,

�3 = � 1

2A+ 2

�
p+

p
p2 + 4Ap+ 4p

�
,

�4 =
1

2A+ 2

�
�p+

p
p2 + 4Ap+ 4p

�
,

�5 =
1

2A+ 2

�
p+

p
p2 + 4Ap+ 4p

�
,

�6 =
1

2A+ 2

�
p�

p
p2 + 4Ap+ 4p

�
.

From the Linearized Stability Theorem, since A > 2p � 1, all roots of the char-

acterictic equation lie inside the open unit disk j�j < 1. Therefore, the positive

equilibrium point of system (5.1) is locally asymptotically stable.

(iii) From the proof of (ii), it is true.

Theorem 5.2 Let 0 < A < 1 and f(xn; yn; zn)g be an arbitrary positive solution of

system (5.1). Then, the following statements are true.
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(i) If

0 < x�1 < 1, 0 < y�1 < 1, 0 < z�1 < 1, (5.4)

x0 � 1

(1� A)1=p
, y0 �

1

(1� A)1=p
, z0 �

1

(1� A)1=p
,

then

lim
n!1

x2n+1 = A, lim
n!1

y2n+1 = A, lim
n!1

z2n+1 = A,

lim
n!1

x2n = 1, lim
n!1

y2n =1, lim
n!1

z2n =1.

(ii) If

0 < x0 < 1, 0 < y0 < 1, 0 < z0 < 1, (5.5)

x�1 � 1

(1� A)1=p
, y�1 �

1

(1� A)1=p
, z�1 �

1

(1� A)1=p
,

then

lim
n!1

x2n+1 = 1, lim
n!1

y2n+1 =1, lim
n!1

z2n+1 =1,

lim
n!1

x2n = A, lim
n!1

y2n = A, lim
n!1

z2n = A.

Proof. (i) From system (5.1) and (5.4), we have

x1 = A+
xp�1
zp0

� A+
1

zp0
� A+ (1� A) = 1,

y1 = A+
yp�1
zp0

� A+
1

zp0
� A+ (1� A) = 1,

z1 = A+
zp�1
yp0

� A+
1

yp0
� A+ (1� A) = 1,

x1 = A+
xp�1
zp0

> A,

y1 = A+
yp�1
zp0

> A,

z1 = A+
zp�1
yp0

> A.

Hence,

x1 2 (A; 1] , y1 2 (A; 1] , z1 2 (A; 1] .
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Also,

x2 = A+
xp0
zp1
� A+ xp0,

y2 = A+
yp0
zp1
� A+ yp0,

z2 = A+
zp0
yp1
� A+ zp0 .

Similarly, we get

x3 = A+
xp1
zp2
� A+

1

(A+ zp0)
p � A+

1

A+ zp0
� A+

1

zp0
� A+ (1� A) = 1,

y3 = A+
yp1
zp2
� A+

1

(A+ zp0)
p � A+

1

A+ zp0
� A+

1

zp0
� A+ (1� A) = 1,

z3 = A+
zp1
yp2
� A+

1

(A+ yp0)
p � A+

1

A+ yp0
� A+

1

yp0
� A+ (1� A) = 1.

Thus,

x3 2 (A; 1] , y3 2 (A; 1] , z3 2 (A; 1] .

Also,

x4 = A+
xp2
zp3
� A+ xp2 � A+ (A+ xp0)

p � A+ (A+ xp0) = 2A+ xp0,

y4 = A+
yp2
zp3
� A+ yp2 � A+ (A+ yp0)

p � A+ (A+ yp0) = 2A+ yp0,

z4 = A+
zp2
yp3
� A+ zp2 � A+ (A+ zp0)

p � A+ (A+ zp0) = 2A+ zp0 .

By induction for n = 1; 2; :::; we obtain

A < x2n�1 < 1, A < y2n�1 < 1, A < z2n�1 < 1, (5.6)

x2n � nA+ xp0, y2n � nA+ yp0, z2n � nA+ zp0 .

From system (5.1) and (5.6), it follows that

lim
n!1

x2n = 1, lim
n!1

y2n =1, lim
n!1

z2n =1,

lim
n!1

x2n+1 = lim
n!1

�
A+

xp2n�1
zp2n

�
= A,

lim
n!1

y2n+1 = lim
n!1

�
A+

yp2n�1
zp2n

�
= A,

lim
n!1

z2n+1 = lim
n!1

�
A+

zp2n�1
yp2n

�
= A.

(ii) The proof is similar to the proof of (i), so we omit it. The proof is completed.
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Theorem 5.3 Let f(xn; yn; zn)g be a positive solution of system (5.1) which consists of

at least two semicycles. Then f(xn; yn; zn)g1n=�1 is oscillatory.

Proof. Since f(xn; yn; zn)g1n=�1 has at least two semicycles, there exists N � 0 such that

either

xN�1 < A+ 1 � xN ,

yN�1 < A+ 1 � yN , (5.7)

zN�1 < A+ 1 � zN ,

or

xN < A+ 1 � xN�1,

yN < A+ 1 � yN�1, (5.8)

zN < A+ 1 � zN�1.

First, we suppose the case (5.7). Then

xN+1 = A+
xpN�1
zpN

< A+ 1,

yN+1 = A+
ypN�1
zpN

< A+ 1,

zN+1 = A+
zpN�1
ypN

< A+ 1,

xN+2 = A+
xpN
zpN+1

> A+ 1,

yN+2 = A+
ypN
zpN+1

> A+ 1,

zN+2 = A+
zpN
ypN+1

> A+ 1.

So, we have

xN+1 < A+ 1 < xN+2,

yN+1 < A+ 1 < yN+2,

zN+1 < A+ 1 < zN+2.

Last, we suppose the case (5.8). The case is similar to the �rst case, so we leave it to

readers.
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CHAPTER 6

THE EXACT SOLUTIONS OF FOUR RATIONAL DIFFERENCE

EQUATIONS ASSOCIATED TO TRIBONACCI NUMBERS

Initially, we express that the results of this chapter are cited from [101] which has been

published by us.

In Chapter 6 and Chapter 7, we discuss eight cases (eight distinct di¤erence equations)

of the following di¤erence equation

xn+1 =
�1

xn (xn�1 � 1)� 1
.

We study the four cases of eight cases in this chapter and the remaining four cases in

Chapter 7.

As far as we examine, there is no paper dealing with the following di¤erence equations.

Hence, in this chapter, we investigate the form of solutions, stability character and as-

ymptotic behavior of the following four rational di¤erence equations

xn+1 =
1

xn (xn�1 � 1)� 1
, n = 0; 1; :::, (6.1)

xn+1 =
1

xn (xn�1 + 1) + 1
, n = 0; 1; :::, (6.2)

xn+1 =
�1

xn (xn�1 � 1) + 1
, n = 0; 1; :::, (6.3)

xn+1 =
�1

xn (xn�1 + 1)� 1
, n = 0; 1; :::, (6.4)

such that their solutions are associated with Tribonacci numbers.

Our aim in this chapter is to investigate some relationships both between Tribonacci num-

bers and solutions of above mentioned di¤erence equations and between the Tribonacci

constant and the equilibrium points of these di¤erence equations.
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6.1 MAIN RESULTS

In this section, we present our main results considering above mentioned di¤erence equa-

tions. Our aim is to investigate the general solutions in explicit form of di¤erence equa-

tions and the asymptotic behavior of solutions of di¤erence equations.

6.1.1 The Di¤erence Equation (6.1)

In this subsection, we consider the Eq.(6.1), that is,

xn+1 =
1

xn (xn�1 � 1)� 1
, n = 0; 1; :::,

and investigate the dynamical behavior of solutions of Eq.(6.1).

Theorem 6.1 Let fxng1n=�1 be a solution of Eq.(6.1). Then, for n = 0; 1; 2; :::, the form

of solutions fxng1n=�1 is given by

xn =
T�nx�1x0 +

�
T�(n+1) + T�(n+2)

�
x0 + T�(n+1)

T�(n+1)x�1x0 +
�
T�n � T�(n+1)

�
x0 + T�(n+2)

, (6.5)

where Tn is the nth Tribonacci number and the initial conditions x�1, x0 2 R� F1, with

F1 is the forbidden set of Eq.(6.1) given by

F1 =

1[
n=�1

�
(x�1; x0) : T�(n+1)x�1x0 +

�
T�n � T�(n+1)

�
x0 + T�(n+2) = 0

	
.

Proof. We will prove this theorem by induction on k. For k = 0, from Eq.(6.1),

x1 =
1

x0 (x�1 � 1)� 1
=

1

x�1x0 � x0 � 1
=
T�1x�1x0 + (T�2 + T�3)x0 + T�2
T�2x�1x0 + (T�1 � T�2)x0 + T�3

.

Now, we assume that

xk =
T�kx�1x0 +

�
T�(k+1) + T�(k+2)

�
x0 + T�(k+1)

T�(k+1)x�1x0 +
�
T�k � T�(k+1)

�
x0 + T�(k+2)

(6.6)
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is true for all 1 � n � k. Hence, we have to prove that it is true for k + 1. Taking into

account (2.12) and (6.6), we have

xk+1

=
1

xk (xk�1 � 1)� 1

=
1�

T�kx�1x0+(T�(k+1)+T�(k+2))x0+T�(k+1)
T�(k+1)x�1x0+(T�k�T�(k+1))x0+T�(k+2)

��
T�(k�1)x�1x0+(T�k+T�(k+1))x0+T�k
T�kx�1x0+(T�(k�1)�T�k)x0+T�(k+1)

� 1
�
� 1

=
T�(k+1)x�1x0 +

�
T�k � T�(k+1)

�
x0 + T�(k+2)�

T�(k�1) � T�k � T�(k+1)
�
x�1x0 +

�
T�(k+1) � T�(k+2)

�
x0 + T�k � T�(k+1) � T�(k+2)

=
T�(k+1)x�1x0 +

�
T�(k+2) + T�(k+3)

�
x0 + T�(k+2)

T�(k+2)x�1x0 +
�
T�(k+1) � T�(k+2)

�
x0 + T�(k+3)

,

which ends the induction and the proof.

Theorem 6.2 Eq.(6.1) has unique positive equilibrium point x = � and � is saddle point.

Proof. Equilibrium point of Eq.(6.1) satisfy the equation

x =
1

x (x� 1)� 1 .

After simpli�cation, we get the following cubic equation

x3 � x2 � x� 1 = 0. (6.7)

The cubic equation (6.7) is the characteristic equation of the recurrence relation of the

Tribonacci numbers in (2.13) having the unique real root �. Therefore, the unique positive

equilibrium point of Eq.(6.1) is x = �.

Now, we indicate that the equilibrium point of Eq.(6.1) is saddle point.

Let I be an interval of real numbers and

f : I2 ! I

be a continuous function de�ned by

f (x; y) =
1

x (y � 1)� 1 .

Therefore, it follows that

@f (x; y)

@x
=

� (y � 1)
(x (y � 1)� 1)2

,

@f (x; y)

@y
=

�x
(x (y � 1)� 1)2

.
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Then, from (6.7)

@f (x; x)

@x
=

� (�� 1)
(� (�� 1)� 1)2

=
1� �

(�2 � �� 1)2

=
1� ��
1
�

�2
= �2 � �3

= � (�+ 1) ,
@f (x; x)

@y
=

��
(� (�� 1)� 1)2

=
��

(�2 � �� 1)2

=
���
1
�

�2
= ��3,

and the linearized equation of Eq.(6.1) about x = � is

zn+1 = � (�+ 1) zn +
�
��3

�
zn�1

or equivalently

zn+1 + (�+ 1) zn + �3zn�1 = 0.

Therefore, the corresponding characteristic polynomial is

�2 + (�+ 1)�+ �3 = 0.

Then, from Theorem (2.1), it is clearly seen that

�1;2 =
� (�+ 1)�

p
�4�3 + �2 + 2�+ 1

2

and numerically

j�1j =
����� (�+ 1) +p�4�3 + �2 + 2�+ 1

2

���� = 0; 11228 < 1
j�2j =

����� (�+ 1)�p�4�3 + �2 + 2�+ 1

2

���� = 1; 4314 > 1.
So, the equilibrium point � is a saddle point. This completes the proof.
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6.1.2 The Di¤erence Equation (6.2)

In this subsection, we study the Eq.(6.2), that is,

xn+1 =
1

xn (xn�1 + 1) + 1
, n = 0; 1; :::,

and examine the dynamical behavior of solutions of Eq.(6.2).

Theorem 6.3 Let fxng1n=�1 be a solution of Eq.(6.2). Then, for n = 0; 1; 2; :::, the form

of solutions fxng1n=�1 is given by

xn =
Tn�1x�1x0 + (Tn+1 � Tn)x0 + Tn
Tnx�1x0 + (Tn�1 + Tn)x0 + Tn+1

; (6.8)

where Tn is the nth Tribonacci number and the initial conditions x�1, x0 2 R� F2, with

F2 is the forbidden set of Eq.(6.2) given by

F2 =
1[

n=�1
f(x�1; x0) : Tnx�1x0 + (Tn�1 + Tn)x0 + Tn+1 = 0g .

Proof. (First proof) Now, we give the proof with an analytic approach. We make the

substitution

xn =
tn�1
tn

(6.9)

in Eq.(6.2) to get the linear di¤erence equation. Then, we have

tn+1 = tn + tn�1 + tn�2.

By using same operations in Theorem 2.1 in [86] such that a = b = c = 1, we obtain the

initial values of three sequences are de�ned

an = aan�1 + ban�2 + can�3,

bn = an+1 � aan,

cn = can�1,

such that

a0 = 1, a�1 = 0, a�2 = 0,

b0 = 0, b�1 = 1, b�2 = 0,

c0 = 0, c�1 = 0, c�2 = 1.

(6.10)
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Next, we get

tn = ant0 + (an+1 � aan) t�1 + can�1t�2.

So a = b = c = 1 and from (6.9), we obtain

xn =
an�2x�1x0 + (an � an�1)x0 + an�1
an�1x�1x0 + (an+1 � an)x0 + an

or equivalently

xn =
an�2x�1x0 + (an � an�1)x0 + an�1
an�1x�1x0 + (an�1 + an�2)x0 + an

.

From initial values (6.10) and de�nitions of sequences an and Tn, we have

an = Tn+1,

with the backward shifted initial values of the sequence an. Hence, we obtain

xn =
Tn�1x�1x0 + (Tn+1 � Tn)x0 + Tn
Tnx�1x0 + (Tn�1 + Tn)x0 + Tn+1

.

So, the proof is complete.

Proof. (Second proof) We will prove this theorem by induction on k. For k = 0, from

Eq.(6.2),

x1 =
1

x0 (x�1 + 1) + 1
=

1

x�1x0 + x0 + 1
=
T0x�1x0 + (T2 � T1)x0 + T1
T1x�1x0 + (T0 + T1)x0 + T2

.

Now, we assume that

xk =
Tk�1x�1x0 + (Tk+1 � Tk)x0 + Tk
Tkx�1x0 + (Tk�1 + Tk)x0 + Tk+1

, (6.11)

is true for all 1 � n � k. Hence, we have to prove that it is true for k + 1. Taking into

account (2.11) and (6.11), we have

xk+1 =
1

xk (xk�1 + 1) + 1

=
1�

Tk�1x�1x0+(Tk+1�Tk)x0+Tk
Tkx�1x0+(Tk�1+Tk)x0+Tk+1

��
Tk�2x�1x0+(Tk�Tk�1)x0+Tk�1
Tk�1x�1x0+(Tk�2+Tk�1)x0+Tk

+ 1
�
+ 1

=
Tkx�1x0 + (Tk�1 + Tk)x0 + Tk+1

(Tk�2 + Tk�1 + Tk)x�1x0 + (Tk + Tk+1)x0 + Tk�1 + Tk + Tk+1

=
Tkx�1x0 + (Tk+2 � Tk+1)x0 + Tk+1
Tk+1x�1x0 + (Tk + Tk+1)x0 + Tk+2

,

which ends the induction and the proof.
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Proof. (Third proof) Consider Eq.(6.2) by taking n = 0; 1; 2; ::: as follows:

n = 0 ) x1 =
1

x�1x0+x0+1
,

n = 1 ) x2 =
x�1x0+x0+1
x�1x0+2x0+2

,

n = 2 ) x3 =
x�1x0+2x0+2
2x�1x0+3x0+4

,

n = 3 ) x4 =
2x�1x0+3x0+4
4x�1x0+6x0+7

,

n = 4 ) x5 =
4x�1x0+6x0+7
7x�1x0+11x0+13

,

n = 5 ) x6 =
7x�1x0+11x0+13
13x�1x0+20x0+24

,

� � �

If we keep on this process and also regard (2.11), then the solution in (9.6) directly follows

from a simple induction.

Theorem 6.4 Eq.(6.2) has unique positive equilibrium point x = a and a is locally as-

ymptotically stable.

Proof. Equilibrium point of Eq.(6.2) is the real roots of the equation

x =
1

x (x+ 1) + 1
.

After simpli�cation, we get the following cubic equation

x3 + x2 + x� 1 = 0. (6.12)

Then, the roots of the cubic equation (6.12) are given by

a =
�1 + 3

p
3
p
33 + 17� 3

p
3
p
33� 17

3
,

b =
�1 + ! 3

p
3
p
33 + 17� !2

3
p
3
p
33� 17

3
,

c =
�1 + !2 3

p
3
p
33 + 17� !

3
p
3
p
33� 17

3
,

where

! =
�1 + i

p
3

2
= exp (2�i=3)

is a primitive cube root of unity. So, the root a is only real number. Therefore, the unique

positive equilibrium point of Eq.(6.2) is x = a.

Now, we show that the equilibrium point of Eq.(6.2) is locally asymptotically stable.
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Let I be an interval of real numbers and consider the function

f : I2 ! I

de�ned by

f (x; y) =
1

x (y + 1) + 1
.

The linearized equation of Eq.(6.2) about the equilibrium point x = a is

zn+1 = pzn + qzn�1,

where

p =
@f (x; x)

@x
=

� (a+ 1)
(a (a+ 1) + 1)2

= a� 1,

q =
@f (x; x)

@y
=

�a
(a (a+ 1) + 1)2

= �a3,

and the corresponding characteristic equation is

�2 + (1� a)�+ a3 = 0.

Therefore, from Theorem 2.1, it is easily seen that

�1;2 =
a� 1�

p
�4a3 + a2 � 2a+ 1

2

and numerically

j�1j = j�2j = 0; 40089 < 1.

This completes the proof.

Theorem 6.5 The equilibrium point of Eq.(6.2) is globally asymptotically stable.

Proof. Let fxngn��1 be a solution of Eq.(6.2). By Theorem 6.4, we need only to prove

that the equilibrium point a is global attractor, that is

lim
n!1

xn = a.
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From Theorem 6.3 and (2.13) and (2.14), it follows that

lim
n!1

xn = lim
n!1

Tn�1x�1x0 + (Tn+1 � Tn)x0 + Tn
Tnx�1x0 + (Tn�1 + Tn)x0 + Tn+1

= lim
n!1

Tn�1

�
x�1x0 +

�
Tn+1
Tn�1

� Tn
Tn�1

�
x0 +

Tn
Tn�1

�
Tn

�
x�1x0 +

�
Tn�1
Tn

+ 1
�
x0 +

Tn+1
Tn

�
=

 
x�1x0 + (�

2 � �)x0 + �

x�1x0 +
�
1
�
+ 1
�
x0 + �

!
lim
n!1

Tn�1
Tn

= lim
n!1

Tn�1
Tn

=
1

�

= a.

The proof is complete.

6.1.3 The Di¤erence Equation (6.3)

In this subsection, we take into account the Eq.(6.3), that is,

xn+1 =
�1

xn (xn�1 � 1) + 1
, n = 0; 1; :::,

and analyze the dynamical behavior of solutions of Eq.(6.3).

Theorem 6.6 Let fxng1n=�1 be a solution of Eq.(6.3). Then, for n = 0; 1; 2; :::, the form

of solutions fxng1n=�1 is given by

xn =
� (Tn�1x�1x0 + (Tn � Tn+1)x0 + Tn)

Tnx�1x0 � (Tn�1 + Tn)x0 + Tn+1
; (6.13)

where Tn is the nth Tribonacci number and the initial conditions x�1, x0 2 R� F3, with

F3 is the forbidden set of Eq.(6.3) given by

F3 =
1[

n=�1
f(x�1; x0) : Tnx�1x0 � (Tn�1 + Tn)x0 + Tn+1 = 0g .

Proof. (First proof) We will prove this theorem by induction on k. For k = 0, from

Eq.(6.3),

x1 =
�1

x0 (x�1 � 1) + 1
=

�1
x�1x0 � x0 + 1

=
� (T0x�1x0 + (T1 � T2)x0 + T1)

T1x�1x0 � (T0 + T1)x0 + T2
.

Now, we assume that

xk =
� (Tk�1x�1x0 + (Tk � Tk+1)x0 + Tk)

Tkx�1x0 � (Tk�1 + Tk)x0 + Tk+1
, (6.14)

85



is true for all 1 � n � k. Hence, we have to prove that it is true for k + 1. Taking into

account (2.11) and (6.14), we have

xk+1 =
�1

xk (xk�1 � 1) + 1

=
�1�

�(Tk�1x�1x0+(Tk�Tk+1)x0+Tk)
Tkx�1x0�(Tk�1+Tk)x0+Tk+1

��
�(Tk�2x�1x0+(Tk�1�Tk)x0+Tk�1)
Tk�1x�1x0�(Tk�2+Tk�1)x0+Tk � 1

�
+ 1

=
� (Tkx�1x0 � (Tk�1 + Tk)x0 + Tk+1)

(Tk�2 + Tk�1 + Tk)x�1x0 � (Tk + Tk+1)x0 + Tk�1 + Tk + Tk+1

=
� (Tkx�1x0 + (Tk+1 � Tk+2)x0 + Tk+1)

Tk+1x�1x0 � (Tk + Tk+1)x0 + Tk+2
,

which ends the induction and the proof.

Proof. (Second proof) Consider Eq.(6.3) by taking n = 0; 1; 2; ::: as follows:

n = 0 ) x1 =
�1

x�1x0�x0+1 ,

n = 1 ) x2 =
�(x�1x0�x0+1)
x�1x0�2x0+2 ,

n = 2 ) x3 =
�(x�1x0�2x0+2)
2x�1x0�3x0+4 ,

n = 3 ) x4 =
�(2x�1x0�3x0+4)
4x�1x0�6x0+7 ,

n = 4 ) x5 =
�(4x�1x0�6x0+7)
7x�1x0�11x0+13 ,

n = 5 ) x6 =
�(7x�1x0�11x0+13)
13x�1x0�20x0+24 ,

� � �

If we keep on this process and also regard (2.11), then the solution in (6.13) directly

follows from a simple induction.

Theorem 6.7 Eq.(6.3) has unique negative equilibrium point x = d and d is locally

asymptotically stable.

Proof. Equilibrium point of Eq.(6.3) is the real roots of the equation

x =
�1

x (x� 1) + 1 .

After simpli�cation, we get the following cubic equation

x3 � x2 + x+ 1 = 0. (6.15)

Then, the roots of the cubic equation (6.15) are given by

d =
1 +

3
p
3
p
33� 17� 3

p
3
p
33 + 17

3
,

e =
1 + !

3
p
3
p
33� 17� !2

3
p
3
p
33 + 17

3
,

f =
1 + !2

3
p
3
p
33� 17� !

3
p
3
p
33 + 17

3
,
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where

! =
�1 + i

p
3

2
= exp (2�i=3)

is a primitive cube root of unity. So, the root d is only real number. Therefore, the unique

negative equilibrium point of Eq.(6.3) is x = d.

Now, we show that the unique negative equilibrium point of Eq.(6.3) is locally asymptot-

ically stable.

Let I = (0;1) and consider the function

f : I2 ! I

de�ned by

f (x; y) =
�1

x (y � 1) + 1 .

The linearized equation of Eq.(6.3) about the equilibrium point x = d is

zn+1 = pzn + qzn�1,

where, from (6.15),

p =
@f (x; x)

@x
=

d� 1
(d (d� 1) + 1)2

=
d� 1

(d2 � d+ 1)2
=

d� 1�
�1
d

�2 = � (d+ 1) ,
q =

@f (x; x)

@y
=

d

(d (d� 1) + 1)2
=

d

(d2 � d+ 1)2
=

d�
�1
d

�2 = d3,

and the corresponding characteristic equation is

�2 + (d+ 1)�� d3 = 0.

Therefore, from Theorem 2.1, it is easily seen that

�1;2 =
� (d+ 1)�

p
4d3 + d2 + 2d+ 1

2

and numerically

j�1j = j�2j = 0; 40089 < 1.

So, this completes the proof.

Theorem 6.8 The equilibrium point of Eq.(6.3) is globally asymptotically stable.
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Proof. Let fxngn��1 be a solution of Eq.(6.3). By Theorem 6.7, we need only to prove

that the equilibrium point d is global attractor, that is

lim
n!1

xn = d.

From Theorem 6.6 and (2.13) and (2.14), it follows that

lim
n!1

xn = lim
n!1

� (Tn�1x�1x0 + (Tn � Tn+1)x0 + Tn)

Tnx�1x0 � (Tn�1 + Tn)x0 + Tn+1

= lim
n!1

�
�
Tn�1

�
x�1x0 +

�
Tn
Tn�1

� Tn+1
Tn�1

�
x0 +

Tn
Tn�1

��
Tn

�
x�1x0 �

�
Tn�1
Tn

+ 1
�
x0 +

Tn+1
Tn

�
=

 
x�1x0 + (�� �2)x0 + �

x�1x0 �
�
1
�
+ 1
�
x0 + �

!
lim
n!1

�Tn�1
Tn

= lim
n!1

�Tn�1
Tn

= � 1
�

= d.

The proof is complete.

6.1.4 The Di¤erence Equation (6.4)

In this subsection, we take into account the Eq.(6.4), that is,

xn+1 =
�1

xn (xn�1 + 1)� 1
, n = 0; 1; :::,

and analyze the dynamical behavior of solutions of Eq.(6.4).

Theorem 6.9 Let fxng1n=�1 be a solution of Eq.(6.4). Then, for n = 0; 1; 2; :::, the form

of solutions fxng1n=0�1 is given by

xn =
�
�
T�nx�1x0 �

�
T�(n+1) + T�(n+2)

�
x0 + T�(n+1)

�
T�(n+1)x�1x0 +

�
T�(n+1) � T�n

�
x0 + T�(n+2)

, (6.16)

where Tn is the nth Tribonacci number and the initial conditions x�1, x0 2 R� F4, with

F4 is the forbidden set of Eq.(6.4) given by

F4 =
1[

n=�1

�
(x�1; x0) : T�(n+1)x�1x0 +

�
T�(n+1) � T�n

�
x0 + T�(n+2) = 0

	
.
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Proof. We will prove this theorem by induction on k. For k = 0, from Eq.(6.4),

x1 =
�1

x0 (x�1 + 1)� 1
=

�1
x�1x0 + x0 � 1

=
� (T�1x�1x0 (T�2 + T�3)x0 + T�2)

T�2x�1x0 + (T�2 � T�1)x0 + T�3
.

Now, we assume that

xk =
�
�
T�kx�1x0 �

�
T�(k+1) + T�(k+2)

�
x0 + T�(k+1)

�
T�(k+1)x�1x0 +

�
T�(k+1) � T�k

�
x0 + T�(k+2)

(6.17)

is true for all 1 � n � k. Hence, we have to prove that it is true for k + 1. Taking into

account (2.12) and (6.17), we have

xk+1

=
�1

xk (xk�1 + 1)� 1

=
�1�

�(T�kx�1x0�(T�(k+1)+T�(k+2))x0+T�(k+1))
T�(k+1)x�1x0+(T�(k+1)�T�k)x0+T�(k+2)

��
�(T�(k�1)x�1x0�(T�k+T�(k+1))x0+T�k)
T�kx�1x0+(T�k�T�(k�1))x0+T�(k+1)

+ 1

�
� 1

=
�
�
T�(k+1)x�1x0 �

�
T�(k+2) + T�(k+3)

�
x0 + T�(k+2)

��
T�(k�1) � T�k � T�(k+1)

�
x�1x0 +

�
T�(k+2) � T�(k+1)

�
x0 + T�k � T�(k+1) � T�(k+2)

=
�
�
T�(k+1)x�1x0 �

�
T�(k+2) + T�(k+3)

�
x0 + T�(k+2)

�
T�(k+2)x�1x0 +

�
T�(k+2) � T�(k+1)

�
x0 + T�(k+3)

,

which ends the induction and the proof.

Theorem 6.10 Eq.(6.4) has unique negative equilibrium point x = a and a unstable.

Proof. Equilibrium point of Eq.(6.4) satisfy the equation

x =
�1

x (x+ 1)� 1 .

After simpli�cation, we get the following cubic equation

x3 + x2 � x+ 1 = 0. (6.18)

Then, the roots of the cubic equation (6.18) are given by

g =
�1� 3

p
19 + 3

p
33� 3

p
19� 3

p
33

3
,

h =
�1� !

3
p
19 + 3

p
33� !2

3
p
19� 3

p
33

3
,

k =
�1� !2

3
p
19 + 3

p
33� !

3
p
19� 3

p
33

3
,
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where

! =
�1 + i

p
3

2
= exp (2�i=3)

is a primitive cube root of unity. So, the root g is only real number. Therefore, the unique

negative equilibrium point of Eq.(6.4) is x = g.

Now, we indicate that the negative equilibrium point of Eq.(6.4) is unstable.

Let I be an interval of real numbers and

f : I2 ! I

be a continuous function de�ned by

f (x; y) =
�1

x (y + 1)� 1 .

Therefore, it follows that

@f (x; y)

@x
=

y + 1

(x (y + 1)� 1)2
,

@f (x; y)

@y
=

x

(x (y + 1)� 1)2
.

Then, from (6.18)

@f (x; x)

@x
=

g + 1

(g (g + 1)� 1)2

=
g + 1

(g2 + g � 1)2

=
g + 1�
�1
g

�2
= g3 + g2

= g � 1,
@f (x; x)

@y
=

g

(g (g + 1)� 1)2

=
g

(g2 + g � 1)2

=
g�
�1
g

�2
= g3,

and the linearized equation of Eq.(6.4) about x = g is

zn+1 = (g � 1) zn + g3zn�1
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or equivalently

zn+1 � (g � 1) zn � g3zn�1 = 0.

Therefore, the corresponding characteristic polynomial is

�2 � (g � 1)�� g3 = 0.

Then, from Theorem 2.1, it is clearly seen that

�1;2 =
(g � 1)�

p
4g3 + g2 � 2g + 1
2

and numerically

j�1j = j�2j = 2; 4944 > 1.

So, the equilibrium point g is unstable. This completes the proof.

91



92



CHAPTER 7

THE DYNAMICS OF EXACT SOLUTIONS OF SECOND ORDER

NONLINEAR FOUR DIFFERENCE EQUATIONS

We mention that the results of this chapter are cited from [102] which has been published

by us.

The purpose of this chapter is to determine the forms of solutions, the stability character

of equilibrium points, the periodicity of solutions and global behavior of solutions of the

following four di¤erence equations

xn+1 =
1

xn (xn�1 + 1)� 1
, n = 0; 1; :::, (7.1)

xn+1 =
�1

xn (xn�1 � 1)� 1
, n = 0; 1; :::, (7.2)

xn+1 =
1

xn (xn�1 � 1) + 1
, n = 0; 1; :::, (7.3)

xn+1 =
�1

xn (xn�1 + 1) + 1
, n = 0; 1; :::. (7.4)

7.1 MAIN RESULTS

In this section, we present our main results for the above mentioned di¤erence equations.

Our aim is to investigate the general solutions in explicit form of the above mentioned

di¤erence equations and the asymptotic behavior of solutions of these di¤erence equations.

7.1.1 The Di¤erence Equation (7.1)

Theorem 7.1 Let fxng1n=�1 be a solution of Eq.(7.1). Then, for n = 0; 1; 2; :::, the forms

of solutions fxng1n=�1 are given by

x2n�1 =
(1� n)x�1x0 + n

nx�1x0 + x0 � n
(7.5)

x2n =
nx�1x0 + x0 � n

�nx�1x0 + n+ 1
(7.6)
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where the initial conditions x�1, x0 2 R � F1, with F1 is the forbidden set of Eq.(7.1)

given by

F1 =

1[
n=�1

f(x�1; x0) : nx�1x0 + x0 � n = 0 or � nx�1x0 + n+ 1 = 0g .

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds

for n� 1. That is,

x2n�3 =
(2� n)x�1x0 + n� 1

(n� 1)x�1x0 + x0 � (n� 1)

and

x2n�2 =
(n� 1)x�1x0 + x0 � (n� 1)

(1� n)x�1x0 + n
.

From this and from Eq.(7.1), it follows that

x2n�1 =
1

x2n�2 (x2n�3 + 1)� 1

=
1

(n�1)x�1x0+x0�(n�1)
(1�n)x�1x0+n

�
(2�n)x�1x0+n�1

(n�1)x�1x0+x0�(n�1) + 1
�
� 1

=
(1� n)x�1x0 + n

nx�1x0 + x0 � n
.

Hence, similarly, we obtain

x2n =
1

x2n�1 (x2n�2 + 1)� 1

=
1

(1�n)x�1x0+n
nx�1x0+x0�n

�
(n�1)x�1x0+x0�(n�1)

(1�n)x�1x0+n + 1
�
� 1

=
nx�1x0 + x0 � n

�nx�1x0 + n+ 1
.

Theorem 7.2 The following statements are true.

(i) The equilibrium points of Eq.(7.1) are x1 = 1 and x2 = �1.

(ii) The positive equilibrium point of Eq.(7.1), x1 = 1, is nonhyperbolic point.

(iii) The negative equilibrium point of Eq.(7.1), x2 = �1, is nonhyperbolic point.

Proof.
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(i) Equilibrium points of Eq.(7.1) satisfy the equation

x =
1

x (x+ 1)� 1 .

After simpli�cation, we have the following cubic equation

x3 + x2 � x� 1 = 0. (7.7)

The roots of the cubic equation (7.7) are �1, �1, 1. Therefore, Eq.(7.1) has two

equilibra, one positive and one negative, such that

x1 = 1; x2 = �1:

(ii) Now, let I = (0;1) and consider the function

f : I2 ! I

de�ned by

f (x; y) =
1

x (y + 1)� 1 . (7.8)

Then, it follows that

@f (x; y)

@x
=

� (y + 1)
(x (y + 1)� 1)2

,

@f (x; y)

@y
=

�x
(x (y + 1)� 1)2

.

Therefore, the linearized equation of Eq.(7.1) about the equilibrium point x1 = 1 is

zn+1 = pzn + qzn�1,

where

p =
@f (x1; x1)

@x
= �2,

q =
@f (x1; x1)

@y
= �1,

and the corresponding characteristic equation is

�2 + 2�+ 1 = 0.
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Therefore, from Theorem 2.1, it is clearly seen that

�1;2 = �1

and

j�1j = j�2j = 1.

So, x1 is nonhyperbolic point.

(iii) Similarly, from (7.8), the linearized equation of Eq.(7.1) about the equilibrium point

x2 = �1 is

zn+1 = pzn + qzn�1,

where

p =
@f (x2; x2)

@x
= 0,

q =
@f (x2; x2)

@y
= 1,

and its characteristic equation is

�2 � 1 = 0.

Thus, it follows that

�1;2 = �1

and

j�1j = j�2j = 1.

So, x2 is nonhyperbolic point.

Theorem 7.3 Let fxng1n=�1 be a solution of Eq.(7.1). Then, the negative equilibrium

point of Eq.(7.1), x2, is a global attractor.
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Proof. From Theorem 7.1, we have

lim
n!1

x2n�1 = lim
n!1

(1� n)x�1x0 + n

nx�1x0 + x0 � n

= lim
n!1

(1� n)
�
x�1x0 +

n
1�n
�

n
�
x�1x0 +

x0
n
� 1
�

= lim
n!1

(1� n)
�
x�1x0 � 1 + 1

1�n
�

n
�
x�1x0 +

x0
n
� 1
�

= �1,

and

lim
n!1

x2n = lim
n!1

nx�1x0 + x0 � n

�nx�1x0 + n+ 1

= lim
n!1

n
�
x�1x0 +

x0
n+1

� 1
�

�n
�
x�1x0 � 1� 1

n

�
= �1.

Hereby, it implies

lim
n!1

xn = �1.

7.1.2 The Di¤erence Equation (7.2)

Theorem 7.4 Let fxng1n=�1 be a solution of Eq.(7.2). Then, for n = 0; 1; 2; :::, the forms

of solutions fxng1n=�1 are given by

x2n�1 =
� ((1� n)x�1x0 + n)

nx�1x0 � x0 � n
(7.9)

x2n =
� (nx�1x0 � x0 � n)

�nx�1x0 + n+ 1
(7.10)

where the initial conditions x�1, x0 2 R � F2, with F2 is the forbidden set of Eq.(7.2)

given by

F2 =
1[

n=�1
f(x�1; x0) : nx�1x0 � x0 � n = 0 or � nx�1x0 + n+ 1 = 0g .

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds

for n� 1. That is,

x2n�3 =
� ((2� n)x�1x0 + n� 1)
(n� 1)x�1x0 � x0 � (n� 1)

and

x2n�2 =
� ((n� 1)x�1x0 � x0 � (n� 1))

� (n� 1)x�1x0 + n
.
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From this and from Eq.(7.2), it follows that

x2n�1 =
�1

x2n�2 (x2n�3 � 1)� 1

=
�1

�((n�1)x�1x0�x0�(n�1))
�(n�1)x�1x0+n

�
�((2�n)x�1x0+n�1)
(n�1)x�1x0�x0�(n�1) � 1

�
� 1

=
� ((1� n)x�1x0 + n)

nx�1x0 � x0 � n
.

Hence, similarly, we obtain

x2n =
�1

x2n�1 (x2n�2 � 1)� 1

=
�1

�((1�n)x�1x0+n)
nx�1x0�x0�n

�
�((n�1)x�1x0�x0�(n�1))

�(n�1)x�1x0+n � 1
�
� 1

=
� (nx�1x0 � x0 � n)

�nx�1x0 + n+ 1
.

Theorem 7.5 The following statements are true.

(i) The equilibrium points of Eq.(7.2) are x1 = 1 and x2 = �1.

(ii) The positive equilibrium point of Eq.(7.2), x1 = 1, is nonhyperbolic point.

(iii) The negative equilibrium point of Eq.(7.2), x2 = �1, is nonhyperbolic point.

Proof.

(i) Equilibrium points of Eq.(7.2) satisfy the equation

x =
�1

x (x� 1)� 1 .

After simpli�cation, we have the following cubic equation

x3 � x2 � x+ 1 = 0. (7.11)

The roots of the cubic equation (7.11) are �1, 1, 1. Therefore, Eq.(7.2) has two

equilibra, one positive and one negative, such that

x1 = 1; x2 = �1:
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(ii) Now, let I = (0;1) and consider the function

f : I2 ! I

de�ned by

f (x; y) =
�1

x (y � 1)� 1 . (7.12)

Then, it follows that

@f (x; y)

@x
=

(y � 1)
(x (y � 1)� 1)2

,

@f (x; y)

@y
=

x

(x (y � 1)� 1)2
.

Therefore, the linearized equation of Eq.(7.2) about the equilibrium point x1 = 1 is

zn+1 = pzn + qzn�1,

where

p =
@f (x1; x1)

@x
= 0,

q =
@f (x1; x1)

@y
= 1,

and the corresponding characteristic equation is

�2 � 1 = 0.

Therefore, from Theorem 2.1, it is clearly seen that

�1;2 = �1

and

j�1j = j�2j = 1.

So, x1 is nonhyperbolic point.

(iii) Similarly, from (7.12), the linearized equation of Eq.(7.2) about the equilibrium

point x2 = �1 is

zn+1 = pzn + qzn�1,
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where

p =
@f (x2; x2)

@x
= �2,

q =
@f (x2; x2)

@y
= �1,

and its characteristic equation is

�2 + 2�+ 1 = 0.

Thus, it follows that

�1;2 = �1

and

j�1j = j�2j = 1.

So, x2 is nonhyperbolic point.

Theorem 7.6 Let fxng1n=�1 be a solution of Eq.(7.2). Then, the positive equilibrium

point of Eq.(7.2), x1, is a global attractor.

Proof. From Theorem 7.4, we obtain

lim
n!1

x2n�1 = lim
n!1

� ((1� n)x�1x0 + n)

nx�1x0 � x0 � n

= lim
n!1

(n� 1)
�
x�1x0 +

n
1�n
�

n
�
x�1x0 � x0

n
� 1
�

= lim
n!1

(n� 1)
�
x�1x0 � 1 + 1

1�n
�

n
�
x�1x0 � x0

n
� 1
�

= 1,

and

lim
n!1

x2n = lim
n!1

� (nx�1x0 � x0 � n)

�nx�1x0 + n+ 1

= lim
n!1

�n
�
x�1x0 � x0

n
� 1
�

�n
�
x�1x0 � 1� 1

n

�
= 1.

Herewith, it implies

lim
n!1

xn = 1:

So, the proof is complete.
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7.1.3 The Di¤erence Equation (7.3)

Lemma 7.7 Let fxng1n=�1 be a solution of Eq.(7.3). Then, fxng
1
n=�1 is periodic with

period four.

Proof. From Eq.(7.3),

xn+4 =
1

xn+3 (xn+2 � 1) + 1

=
1�

1
xn+2(xn+1�1)+1

��
1

xn+1(xn�1)+1 � 1
�
+ 1

=
1 

1�
1

xn+1(xn�1)+1

��
1

xn(xn�1�1)+1
�1
�
+1

! 
1�

1
xn(xn�1�1)+1

�
(xn�1)+1

� 1
!
+ 1

=
10BB@ 10@ 1

1
xn(xn�1�1)+1

(xn�1)+1

1A� xn(1�xn�1)
xnxn�1�xn+1

�
+1

1CCA� 1�xn
xnxn�1

�
+ 1

=
1

xn�1

�
1�xn
xnxn�1

�
+ 1

= xn.

Hence, the result holds.

Theorem 7.8 Let fxng1n=�1 be a solution of Eq.(7.3). Then, for n = 1; 2; :::,

x4n�3 =
1

x�1x0 � x0 + 1

x4n�2 =
x�1x0 � x0 + 1

x�1x0
(7.13)

x4n�1 = x�1

x4n = x0

where the initial conditions x�1, x0 2 R � F3, with F3 is the forbidden set of Eq.(7.3)

given by

F3 =

�
(x�1; x0) : x�1x0 = 0 or x�1 =

x0 � 1
x0

�
.
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Proof. From (7.3), for n = 0, the result holds. Suppose that n > 0 and that our

assumption holds for n� 1. That is,

x4n�7 =
1

x�1x0 � x0 + 1
,

x4n�6 =
x�1x0 � x0 + 1

x�1x0
,

x4n�5 = x�1,

x4n�4 = x0.

Now, from Eq.(7.3), it follows that

x4n�3 =
1

x4n�4 (x4n�5 � 1) + 1
=

1

x�1x0 � x0 + 1
.

From this and from Eq.(7.3), it follows that

x4n�2 =
1

x4n�3 (x4n�4 � 1) + 1
=

1
1

x�1x0�x0+1 (x0 � 1) + 1
=
x�1x0 � x0 + 1

x�1x0
.

Again from Eq.(7.3), we get

x4n�1 =
1

x4n�2 (x4n�3 � 1) + 1
=

1
x�1x0�x0+1

x�1x0

�
1

x�1x0�x0+1 � 1
�
+ 1

=
x�1x0
x0

= x�1.

Similarly, from Eq.(7.3), we have

x4n�4 =
1

x4n�1 (x4n�2 � 1) + 1
=

1

x�1

�
x�1x0�x0+1

x�1x0
� 1
�
+ 1

=
1

x�1 � 1 + 1
x0
� x�1 + 1

= x0.

Thus, the proof is complete.

Theorem 7.9 Eq.(7.3) has unique positive equilibrium point x = 1 and 1 is nonhyper-

bolic point.

Proof. Equilibrium point of Eq.(7.3) satisfy the equation

x =
1

x (x� 1) + 1 .

After simpli�cation, we have the following cubic equation

x3 � x2 + x� 1 = 0. (7.14)
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The roots of the cubic equation (7.14) are �i, i, 1. Therefore, the unique positive equi-

librium point of Eq.(7.3) is x = 1.

Now, we prove that the equilibrium point of Eq.(7.3) is nonhyperbolic.

Let I = (0;1) and consider the function

f : I2 ! I

de�ned by

f (x; y) =
1

x (y � 1) + 1 .

The linearized equation of Eq.(7.3) about the equilibrium point x = 1 is

zn+1 = pzn + qzn�1,

where

p =
@f (x; x)

@x
= 0,

q =
@f (x; x)

@y
= �1,

and the corresponding characteristic equation is

�2 + 1 = 0.

Therefore, from Theorem 2.1, it is clearly seen that

�1;2 = �i

and

j�1j = j�2j = 1.

So, this completes the proof.

7.1.4 The Di¤erence Equation (7.4)

Lemma 7.10 Let fxng1n=�1 be a solution of Eq.(7.4). Then, fxng
1
n=�1 is periodic with

periods four.
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Proof. From Eq.(7.4),

xn+4 =
�1

xn+3 (xn+2 + 1) + 1

=
�1�

�1
xn+2(xn+1+1)+1

��
�1

xn+1(xn+1)+1
+ 1
�
+ 1

=
�1 

�1�
�1

xn+1(xn+1)+1

��
�1

xn(xn�1+1)+1
+1

�
+1

! 
�1�

�1
xn(xn�1+1)+1

�
(xn+1)+1

+ 1

!
+ 1

=
�10BB@ �10@ �1

�1
xn(xn�1+1)+1

(xn+1)+1

1A� xn(xn�1+1)
xnxn�1+xn+1

�
+1

1CCA�� xn+1
xnxn�1

�
+ 1

=
�1

xn�1

�
� xn+1
xnxn�1

�
+ 1

= xn.

Hence, the result holds.

Theorem 7.11 Let fxng1n=�1 be a solution of Eq.(7.4). Then, for n = 1; 2; :::,

x4n�3 =
�1

x�1x0 + x0 + 1

x4n�2 =
� (x�1x0 + x0 + 1)

x�1x0
(7.15)

x4n�1 = x�1

x4n = x0

where the initial conditions x�1, x0 2 R � F4, with F4 is the forbidden set of Eq.(7.4)

given by

F4 =

�
(x�1; x0) : x�1x0 = 0 or x�1 =

� (x0 + 1)
x0

�
.

Proof. From (7.4), for n = 0, the result holds. Suppose that n > 0 and that our

assumption holds for n� 1. That is,

x4n�7 =
�1

x�1x0 + x0 + 1
,

x4n�6 =
� (x�1x0 + x0 + 1)

x�1x0
,

x4n�5 = x�1,

x4n�4 = x0.
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Now, from Eq.(7.4), it follows that

x4n�3 =
�1

x4n�4 (x4n�5 + 1) + 1
=

�1
x�1x0 + x0 + 1

.

From this and from Eq.(7.4), it follows that

x4n�2 =
�1

x4n�3 (x4n�4 + 1) + 1
=

�1
�1

x�1x0+x0+1
(x0 + 1) + 1

=
� (x�1x0 + x0 + 1)

x�1x0
.

Again from Eq.(7.4), we get

x4n�1 =
�1

x4n�2 (x4n�3 + 1) + 1
=

�1
�(x�1x0+x0+1)

x�1x0

�
�1

x�1x0+x0+1
+ 1
�
+ 1

=
�x�1x0
�x0

= x�1.

Similarly, from Eq.(7.4), we have

x4n =
�1

x4n�1 (x4n�2 + 1) + 1
=

�1
x�1

�
�(x�1x0+x0+1)

x�1x0
+ 1
�
+ 1

=
�1

�x�1 � 1� 1
x0
+ x�1 + 1

= x0.

Thus, the proof is complete.

Theorem 7.12 Eq.(7.4) has unique positive equilibrium point x = 1 and the equilibrium

point 1 is locally assymptotically stable.

Proof. Equilibrium point of Eq.(7.4) satisfy the equation

x =
�1

x (x+ 1) + 1
.

After simpli�cation, we have the following cubic equation

x3 + x2 + x+ 1 = 0. (7.16)

The roots of the cubic equation (7.16) are �i, i, 1. Therefore, the unique positive equi-

librium point of Eq.(7.4) is x = 1.

Now, we demonstrate that the equilibrium point of Eq.(7.4) is locally asymptotically

stable.

Let I = (0;1) and consider the function

f : I2 ! I
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de�ned by

f (x; y) =
�1

x (y + 1) + 1
.

The linearized equation of Eq.(7.4) about the equilibrium point x = 1 is

zn+1 = pzn + qzn�1,

where

p =
@f (x; x)

@x
=
2

9
,

q =
@f (x; x)

@y
=
1

9
,

and the corresponding characteristic equation is

�2 � 2
9
�� 1

9
= 0.

Therefore, from Theorem 2.1, it is clearly seen that

�1;2 =
1

9
� 1
9

p
10

and

j�1;2j < 1.

Thus, the proof is complete.
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CHAPTER 8

GLOBAL ANALYSIS OF SOLUTIONS OF SYSTEMS OF DIFFERENCE

EQUATIONS VIA TRIBONACCI NUMBERS

Primarily, we mean that the results of this chapter are cited from [103] which has been

published by us.

The main objective of this chapter is to investigate the explicit form, stability charac-

ter and global behavior of solutions of the following two systems of rational di¤erence

equations

xn+1 =
1

yn (xn�1 + 1) + 1
; yn+1 =

1

xn (yn�1 + 1) + 1
; n = 0; 1; :::, (8.1)

xn+1 =
�1

yn (xn�1 � 1) + 1
; yn+1 =

�1
xn (yn�1 � 1) + 1

; n = 0; 1; :::, (8.2)

such that their solutions are associated with Tribonacci numbers.

Our aim in this chapter is to determine some relationships both between Tribonacci

numbers and and solutions of the aforementioned systems of di¤erence equations and

between the Tribonacci constant and the equilibrium points of these systems of di¤erence

equations.

8.1 MAIN RESULTS

In this section, we introduce our results.

8.1.1 The System (8.1)

In this subsection, we present our main results related to the system (8.1). Our aim is to

investigate the general solution in exact form of system (8.1) and the asymptotic behavior

of solutions of system (8.1).
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Theorem 8.1 Let fxn; yng1n=�1 be a solution system (8.1). Then, for n = 0; 1; 2; :::, the

form of solutions fxn; yng1n=�1 is given by

x2n�1 =
T2n�2x�1y0 + (T2n � T2n�1) y0 + T2n�1
T2n�1x�1y0 + (T2n�2 + T2n�1) y0 + T2n

,

x2n =
T2n�1y�1x0 + (T2n+1 � T2n)x0 + T2n
T2ny�1x0 + (T2n�1 + T2n)x0 + T2n+1

,

y2n�1 =
T2n�2y�1x0 + (T2n � T2n�1)x0 + T2n�1
T2n�1y�1x0 + (T2n�2 + T2n�1)x0 + T2n

,

y2n =
T2n�1x�1y0 + (T2n+1 � T2n) y0 + T2n
T2nx�1y0 + (T2n�1 + T2n) y0 + T2n+1

,

where Tn is the nth Tribonacci number and the initial conditions x�1, y�1, x0, y0 2 R�F1,

with F1 is the forbidden set of system (8.1) given by

F1 =
1[

n=�1
f(x�1; y�1; x0; y0) : An = 0 or Bn = 0 or Cn = 0 or Dn = 0g

where

An = T2n�1x�1y0 + (T2n�2 + T2n�1) y0 + T2n,

Bn = T2ny�1x0 + (T2n�1 + T2n)x0 + T2n+1,

Cn = T2n�1y�1x0 + (T2n�2 + T2n�1)x0 + T2n,

Dn = T2nx�1y0 + (T2n�1 + T2n) y0 + T2n+1.

Proof. We use the induction on k. For k = 0, the result holds. Suppose that k > 0 and

that our assumption holds for k � 1. That is,

x2k�3 =
T2k�4x�1y0 + (T2k�2 � T2k�3) y0 + T2k�3
T2k�3x�1y0 + (T2k�4 + T2k�3) y0 + T2k�2

,

xk�2 =
T2k�3y�1x0 + (T2k�1 � T2k�2)x0 + T2k�2
T2k�2y�1x0 + (T2k�3 + T2k�2)x0 + T2k�1

,

y2k�3 =
T2k�4y�1x0 + (T2k�2 � T2k�3)x0 + T2k�3
T2k�3y�1x0 + (T2k�4 + T2k�3)x0 + T2k�2

,

y2k�2 =
T2k�3x�1y0 + (T2k�1 � T2k�2) y0 + T2k�2
T2k�2x�1y0 + (T2k�3 + T2k�2) y0 + T2k�1

.

From system (8.1) and (2.11), it follows that

x2k�1 =
1

y2k�2 (x2k�3 + 1) + 1

=
1

T2k�3x�1y0+(T2k�1�T2k�2)y0+T2k�2
T2k�2x�1y0+(T2k�3+T2k�2)y0+T2k�1

�
T2k�4x�1y0+(T2k�2�T2k�3)y0+T2k�3
T2k�3x�1y0+(T2k�4+T2k�3)y0+T2k�2

+ 1
�
+ 1

=
T2k�2x�1y0 + (T2k�3 + T2k�2) y0 + T2k�1

(T2k�4 + T2k�3 + T2k�2)x�1y0 + (T2k�2 + T2k�1) y0 + T2k�3 + T2k�2 + T2k�1
.

108



Therefore, we have

x2k�1 =
T2k�2x�1y0 + (T2k � T2k�1) y0 + T2k�1
T2k�1x�1y0 + (T2k�2 + T2k�1) y0 + T2k

.

And also, it follows that

y2k�1 =
1

x2k�2 (y2k�3 + 1) + 1

=
1

T2k�3y�1x0+(T2k�1�T2k�2)x0+T2k�2
T2k�2y�1x0+(T2k�3+T2k�2)x0+T2k�1

�
T2k�4y�1x0+(T2k�2�T2k�3)x0+T2k�3
T2k�3y�1x0+(T2k�4+T2k�3)x0+T2k�2

+ 1
�
+ 1

=
T2k�2y�1x0 + (T2k�3 + T2k�2)x0 + T2k�1

(T2k�4 + T2k�3 + T2k�2) y�1x0 + (T2k�2 + T2k�1)x0 + T2k�3 + T2k�2 + T2k�1
.

So, we obtain

y2k�1 =
T2k�2y�1x0 + (T2k � T2k�1)x0 + T2k�1
T2k�1y�1x0 + (T2k�2 + T2k�1)x0 + T2k

.

Similarly, from system (8.1) and (2.11), it follows that

x2k =
1

y2k�1 (x2k�2 + 1) + 1

=
1

T2k�2y�1x0+(T2k�T2k�1)x0+T2k�1
T2k�1y�1x0+(T2k�2+T2k�1)x0+T2k

�
T2k�3y�1x0+(T2k�1�T2k�2)x0+T2k�2
T2k�2y�1x0+(T2k�3+T2k�2)x0+T2k�1

+ 1
�
+ 1

=
T2k�1y�1x0 + (T2k�2 + T2k�1)x0 + T2k

(T2k�3 + T2k�2 + T2k�1) y�1x0 + (T2k�1 + T2k)x0 + T2k�2 + T2k�1 + T2k
.

Thus, we get

x2k =
T2k�1y�1x0 + (T2k�2 + T2k�1)x0 + T2k
T2ky�1x0 + (T2k�1 + T2k)x0 + T2k+1

.

And also, it follows that

y2k =
1

x2k�1 (y2k�2 + 1) + 1

=
1

T2k�2x�1y0+(T2k�T2k�1)y0+T2k�1
T2k�1x�1y0+(T2k�2+T2k�1)y0+T2k

�
T2k�3x�1y0+(T2k�1�T2k�2)y0+T2k�2
T2k�2x�1y0+(T2k�3+T2k�2)y0+T2k�1

+ 1
�
+ 1

=
T2k�1x�1y0 + (T2k�2 + T2k�1) y0 + T2k

(T2k�3 + T2k�2 + T2k�1)x�1y0 + (T2k�1 + T2k) y0 + T2k�2 + T2k�1 + T2k
.

Herefrom, we have

y2k =
T2k�1x�1y0 + (T2k�2 + T2k�1) y0 + T2k
T2kx�1y0 + (T2k�1 + T2k) y0 + T2k+1

.

Theorem 8.2 The system (8.1) has unique positive equilibrium point (x; y) = (a; a) and

(a; a) is locally asymptotically stable.
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Proof. Clearly, equilibrium point of system (8.1) is the real roots of the equations

x =
1

x (y + 1) + 1
, y =

1

y (x+ 1) + 1
. (8.3)

In (8.3), after some operations, we obtain

x = y.

As a result, we obtain the following equation

x3 + x2 + x� 1 = 0. (8.4)

Then, the roots of the cubic equation (8.4) are given by

a =
�1 + 3

p
3
p
33 + 17� 3

p
3
p
33� 17

3
,

b =
�1 + ! 3

p
3
p
33 + 17� !2

3
p
3
p
33� 17

3
,

c =
�1 + !2 3

p
3
p
33 + 17� !

3
p
3
p
33� 17

3
,

where

! =
�1 + i

p
3

2
= exp (2�i=3)

is a primitive cube root of unity. So, the root a is only real number. Therefore, the unique

positive equilibrium point of system (8.1) is (x; y) = (a; a).

Now, we show that the unique positive equilibrium point of system (8.1) is locally as-

ymptotically stable.

Let I and J are some intervals of real numbers and consider the functions

f : I2 � J2 ! I and g : I2 � J2 ! J

de�ned by

f (xn; xn�1; yn; yn�1) =
1

yn (xn�1 + 1) + 1
; g (xn; xn�1; yn; yn�1) =

1

xn (yn�1 + 1) + 1
.

We consider the following transformation to build corresponding linearized form of system

(8.1)

(xn; xn�1; yn; yn�1)! (f; f1; g; g1) ,
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where

f (xn; xn�1; yn; yn�1) =
1

yn (xn�1 + 1) + 1
,

f1 (xn; xn�1; yn; yn�1) = xn,

g (xn; xn�1; yn; yn�1) =
1

xn (yn�1 + 1) + 1
,

g1 (xn; xn�1; yn; yn�1) = yn.

Then, the linearized system of system (8.1) about the equilibrium point (a; a) under the

above transformation is given as

Xn+1 = BXn,

where Xn = (xn; xn�1; yn; yn�1)
T and B is a Jacobian matrix of system (8.1) about the

equilibrium point (a; a) and given by

B =

0BBBBBB@
0 �a

(a(a+1)+1)2
�(1+a)

(a(a+1)+1)2
0

1 0 0 0

�(1+a)
(a(a+1)+1)2

0 0 �a
(a(a+1)+1)2

0 0 1 0

1CCCCCCA

=

0BBBBBB@
0 �a3 a� 1 0

1 0 0 0

a� 1 0 0 �a3

0 0 1 0

1CCCCCCA .

Thus, we obtain the characteristic equation of the Jacobian matrix B as

�
a3 + �2

�2 � (a� 1)2 �2 = 0,
or

�
�2 + (a� 1)�+ a3

� �
�2 � (a� 1)�+ a3

�
= 0.

Hence, it is clearly seen that numerically

j�1j = j�2j = j�3j = j�4j = 0:40089 < 1.

Consequently, the equilibrium point (a; a) is locally asymptotically stable. So, this com-

pletes the proof.
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Theorem 8.3 The equilibrium point of system (8.1) is globally asymptotically stable.

Proof. Let fxn; yngn��1 be a solution system (8.1). By Theorem 8.2, we need only to

prove that the equilibrium point (a; a) is global attractor, that is

lim
n!1

(xn; yn) = (a; a) .

From Theorem 8.1 and (2.13) and (2.14), it follows that

lim
n!1

x2n�1 = lim
n!1

T2n�2x�1y0 + (T2n � T2n�1) y0 + T2n�1
T2n�1x�1y0 + (T2n�2 + T2n�1) y0 + T2n

= lim
n!1

T2n�2

�
x�1y0 +

�
T2n
T2n�2

� T2n�1
T2n�2

�
y0 +

T2n�1
T2n�2

�
T2n�1

�
x�1y0 +

�
T2n�2
T2n�1

+ 1
�
y0 +

T2n
T2n�1

�
=

 
x�1y0 + (�

2 � �) y0 + �

x�1y0 +
�
1
�
+ 1
�
y0 + �

!
lim
n!1

T2n�2
T2n�1

= lim
n!1

T2n�2
T2n�1

=
1

�

= a;

and

lim
n!1

x2n = lim
n!1

T2n�1y�1x0 + (T2n+1 � T2n)x0 + T2n
T2ny�1x0 + (T2n�1 + T2n)x0 + T2n+1

= lim
n!1

T2n�1

�
y�1x0 +

�
T2n+1
T2n�1

� T2n
T2n�1

�
x0 +

T2n
T2n�1

�
T2n

�
y�1x0 +

�
T2n�1
T2n

+ 1
�
x0 +

T2n+1
T2n

�
=

 
y�1x0 + (�

2 � �)x0 + �

y�1x0 +
�
1
�
+ 1
�
x0 + �

!
lim
n!1

T2n�1
T2n

= lim
n!1

T2n�1
T2n

=
1

�

= a.

Then, we have

lim
n!1

xn = a.

Similarly, we obtain

lim
n!1

yn = a.
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Therefore, we get

lim
n!1

(xn; yn) = (a; a) .

The proof is completed.

8.1.2 The System (8.2)

In this subsection, we introduce our main results related to the system (8.2). Our aim

is to investigate the general solution in explicit form of system (8.2) and the asymptotic

behavior of solutions of system (8.2).

Theorem 8.4 Let fxn; yng1n=�1 be a solution system (8.2). Then, for n = 0; 1; 2; :::, the

form of solutions fxn; yng1n=�1 is given by

x2n�1 =
� (T2n�2x�1y0 + (T2n�1 � T2n) y0 + T2n�1)

T2n�1x�1y0 � (T2n�2 + T2n�1) y0 + T2n
,

x2n =
� (T2n�1y�1x0 + (T2n � T2n+1)x0 + T2n)

T2ny�1x0 � (T2n�1 + T2n)x0 + T2n+1
,

y2n�1 =
� (T2n�2y�1x0 + (T2n�1 � T2n)x0 + T2n�1)

T2n�1y�1x0 � (T2n�2 + T2n�1)x0 + T2n
,

y2n�1 =
� (T2n�1x�1y0 + (T2n � T2n+1) y0 + T2n)

T2nx�1y0 � (T2n�1 + T2n) y0 + T2n+1

where initial conditions x�1, y�1, x0, y0 2 R� F2, with F2 is the forbidden set of system

(8.2) given by

F2 =
1[

n=�1
f(x�1; y�1; x0; y0) : An = 0 or Bn = 0 or Cn = 0 or Dn = 0g

where

An = T2n�1x�1y0 � (T2n�2 + T2n�1) y0 + T2n,

Bn = T2ny�1x0 � (T2n�1 + T2n)x0 + T2n+1,

Cn = T2n�1y�1x0 � (T2n�2 + T2n�1)x0 + T2n,

Dn = T2nx�1y0 � (T2n�1 + T2n) y0 + T2n+1.
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Proof. Consider system (8.2) by taking n = 0; 1; 2; ::: as follows:

n = 0 ) x1 =
�1

x�1y0�y0+1 , y1 =
�1

y�1x0�x0+1 ,

n = 1 ) x2 =
�(y�1x0�x0+1)
y�1x0�2x0+2 , y2 =

�(x�1y0�y0+1)
x�1y0�2y0+2 ,

n = 2 ) x3 =
�(x�1y0�2y0+2)
2x�1y0�3y0+4 , y3 =

�(y�1x0�2x0+2)
2y�1x0�3x0+4 ,

n = 3 ) x4 =
�(2y�1x0�3x0+4)
4y�1x0�6x0+7 , y4 =

�(2x�1y0�3y0+4)
4x�1y0�6y0+7 ,

n = 4 ) x5 =
�(4x�1y0�y0+7)
7x�1y0�11y0+13 , y5 =

�(4y�1x0�6x0+7)
7y�1x0�11x0+13 ,

n = 5 ) x6 =
�(7y�1x0�11x0+13)
13y�1x0�20x0+24 , x6 =

�(7x�1y0�11y0+13)
13x�1y0�20y0+24 ,

...

If we keep on this process and also regard (2.11), then the result directly follows from a

simple induction.

Theorem 8.5 The system (8.2) has unique negative equilibrium point (x; y) = (d; d) and

(d; d) is locally asymptotically stable.

Proof. Clearly, equilibrium point of system (8.2) is the real roots of the equations

x =
�1

x (y � 1) + 1 , y =
�1

y (x� 1) + 1 . (8.5)

In (8.5), after some operations, we get

x = y.

As a result, we obtain the following equation

x3 � x2 + x+ 1 = 0. (8.6)

Then, the roots of the cubic equation (8.6) are given by

d =
1 +

3
p
3
p
33� 17� 3

p
3
p
33 + 17

3
,

e =
1 + !

3
p
3
p
33� 17� !2

3
p
3
p
33 + 17

3
,

f =
1 + !2

3
p
3
p
33� 17� !

3
p
3
p
33 + 17

3
,

where

! =
�1 + i

p
3

2
= exp (2�i=3)
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is a primitive cube root of unity. So, the root d is only real number. Therefore, the unique

negative equilibrium point of system (8.2) is (x; y) = (d; d).

Now, we show that the unique negative equilibrium point of system (8.2) is locally as-

ymptotically stable.

Let I and J are some intervals of real numbers and consider the functions

f : I2 � J2 ! I and g : I2 � J2 ! J

de�ned by

f (xn; xn�1; yn; yn�1) =
�1

yn (xn�1 � 1) + 1
; g (xn; xn�1; yn; yn�1) =

�1
xn (yn�1 � 1) + 1

.

We consider the following transformation to build corresponding linearized form of system

(8.2)

(xn; xn�1; yn; yn�1)! (f; f1; g; g1) ,

where

f (xn; xn�1; yn; yn�1) =
�1

yn (xn�1 � 1) + 1
,

f1 (xn; xn�1; yn; yn�1) = xn,

g (xn; xn�1; yn; yn�1) =
�1

xn (yn�1 � 1) + 1
,

g1 (xn; xn�1; yn; yn�1) = yn.

The linearized system of system (8.2) about the equilibrium point (d; d) under the above

transformation is given as

Xn+1 = BXn,
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where Xn = (xn; xn�1; yn; yn�1)
T and B is a Jacobian matrix of system (8.2) about the

equilibrium point (d; d) and given by

B =

0BBBBBB@
0 d

(d(d�1)+1)2
d�1

(d(d�1)+1)2 0

1 0 0 0

d�1
(d(d�1)+1)2 0 0 d

(d(d�1)+1)2

0 0 1 0

1CCCCCCA

=

0BBBBBB@
0 d3 � (1 + d) 0

1 0 0 0

� (1 + d) 0 0 d3

0 0 1 0

1CCCCCCA .

Thus, we obtain the characteristic equation of the Jacobian matrix B as

�
d3 � �2

�2 � (1 + d)2 �2 = 0,
or

�
�2 � (1 + d)�� d3

� �
�2 + (1 + d)�� d3

�
= 0.

Hence, it is clearly seen that numerically

j�1j = j�2j = j�3j = j�4j = 0:40089 < 1.

Consequently, the equilibrium point (d; d) is locally asymptotically stable.

Theorem 8.6 The equilibrium point of system (8.2) is globally asymptotically stable.

Proof. Let fxn; yngn��1 be a solution system (8.2). By Theorem 8.5, we need only to

prove that the equilibrium point (d; d) is global attractor, that is

lim
n!1

(xn; yn) = (d; d) .
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From Theorem 8.4 and (2.13) and (2.14), it follows that

lim
n!1

x2n�1 = lim
n!1

� (T2n�2x�1y0 + (T2n�1 � T2n) y0 + T2n�1)

T2n�1x�1y0 � (T2n�2 + T2n�1) y0 + T2n

= lim
n!1

�T2n�2
�
x�1y0 +

�
T2n�1
T2n�2

� T2n
T2n�2

�
y0 +

T2n�1
T2n�2

�
T2n�1

�
x�1y0 �

�
T2n�2
T2n�1

+ 1
�
y0 +

T2n
T2n�1

�
=

 
x�1y0 + (�� �2) y0 + �

x�1y0 �
�
1
�
+ 1
�
y0 + �

!
lim
n!1

�T2n�2
T2n�1

= lim
n!1

�T2n�2
T2n�1

= � 1
�

= d;

and

lim
n!1

x2n = lim
n!1

� (T2n�1y�1x0 + (T2n � T2n+1)x0 + T2n)

T2ny�1x0 � (T2n�1 + T2n)x0 + T2n+1

= lim
n!1

�T2n�1
�
y�1x0 +

�
T2n
T2n�1

� T2n+1
T2n�1

�
x0 +

T2n
T2n�1

�
T2n

�
y�1x0 �

�
T2n�1
T2n

+ 1
�
x0 +

T2n+1
T2n

�
=

 
y�1x0 + (�� �2)x0 + �

y�1x0 �
�
1
�
+ 1
�
x0 + �

!
lim
n!1

�T2n�1
T2n

= lim
n!1

�T2n�1
T2n

= � 1
�

= d.

Then, we have

lim
n!1

xn = d.

Similarly, we obtain

lim
n!1

yn = d.

Therefore, we get

lim
n!1

(xn; yn) = (d; d) ,

which completes the proof.
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CHAPTER 9

THE DYNAMICS OF SOLUTIONS OF A RATIONAL DIFFERENCE

EQUATION VIA GENERALIZED TRIBONACCI NUMBERS

Initially, we state that the results of this chapter are cited from [104] which has been

published by us.

In this chapter, in the light of Chapter 6 and 7, we study the following di¤erence equation

xn+1 =



xn (xn�1 + �) + �
, n = 0; 1; :::, (9.1)

where the inital values x�1 and x0 are arbitrary nonzero real and the parameters �, �

and 
 are nonnegative real numbers with 
 6= 0.

9.1 Introduction

First, from [121], consider the generalized Tribonacci sequence fVng1n=0 de�ned by the

recurrent relation

Vn+3 = rVn+2 + sVn+1 + tVn, n 2 N, (9.2)

where the constant coe¢ cients r, s, t are real numbers and the special initial conditions

V0 = 0, V1 = 1, V2 = r.

The sequence fVng1n=0 can be extended to negative subscripts by de�ning

V�n = �
s

t
V�(n�1) �

r

t
V�(n�2) +

1

t
V�(n�3)

for n = 1; 2; 3; ::: when t 6= 0: Hereby, recurrence (9.2) holds for all integer n.

As fVng1n=0 is a third order recurrence sequence (di¤erence equation), it�s characteristic

equation is

x3 � rx2 � sx� t = 0, (9.3)
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whose roots are

' = '(r; s; t) =
r

3
+ A+B

� = �(r; s; t) =
r

3
+ !A+ !2B

 =  (r; s; t) =
r

3
+ !2A+ !B

where

A =

�
r3

27
+
rs

6
+
t

2
+
p
�

�1=3
; B =

�
r3

27
+
rs

6
+
t

2
�
p
�

�1=3
� = �(r; s; t) =

r3t

27
� r2s2

108
+
rst

6
� s3

27
+
t2

4
;

! =
�1 + i

p
3

2
= exp(2�i=3).

Notice that we get the following identities

'+ �+  = r;

'�+ ' + � = �s;

'� = t:

From now on, we assume that �(r; s; t) > 0; so that the Eq.(9.2) has one real ' and two

non-real solutions with the latter being conjugate complex. Therefore, in this case, it is

widely known that generalized Tribonacci numbers can be stated, for all integers n; using

Binet�s formula

Vn =
'n+1

('� �)('�  )
+

�n+1

(�� ')(��  )
+

 n+1

( � ')( � �)
. (9.4)

We can present Binet�s formula of the generalized Tribonacci numbers for the negative

subscripts: for n = 1; 2; 3; ::: we have

V�n =
'2 � r'� s

t

'2�n

('� �)('�  )
+
�2 � r�� s

t

�2�n

(�� ')(��  )

+
 2 � r � s

t

 2�n

( � ')( � �)
.

Lemma 9.1 Let ', � and  be the roots of Eq.(9.3), suppose that ' is a real root with

max fj'j ; j�j ; j jg = j'j. Then,

lim
n!1

Vn+1
Vn

= '. (9.5)
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Proof. Note that there are three cases of the roots, that is when the roots are all real

and distinct, all roots are equal or two roots are equal, complex conjugate. We will only

proof the �rst case. The proof of the other two cases of the roots is similar to �rst one,

so it will be omitted.

If ', � and  are real and distinct then, from Binet�s formula

lim
n!1

Vn+1
Vn

= lim
n!1

'n+2

('��)('� ) +
�n+2

(��')(�� ) +
 n+2

( �')( ��)
'n+1

('��)('� ) +
�n+1

(��')(�� ) +
 n+1

( �')( ��)

= lim
n!1

'n+1
�

'
('��)('� ) +

�
(��')(�� )

�n+1

'n+1
+  

( �')( ��)
 n+1

'n+1

�
'n
�

'
('��)('� ) +

�
(��')(�� )

�n

'n
+  

( �')( ��)
 n

'n

�

= lim
n!1

'n+1

'n

�
'

('��)('� ) +
�

(��')(�� )

�
�
'

�n+1
+  

( �')( ��)

�
 
'

�n+1�
�

'
('��)('� ) +

�
(��')(�� )

�
�
'

�n
+  

( �')( ��)

�
 
'

�n�
= '.

9.2 Main Results

In this section, we present our main results related to the di¤erence equation (9.1). Our

aim is to investigate the general solution in explicit form of Eq.(9.1) and the asymptotic

behavior of solutions of Eq.(9.1).

Theorem 9.2 Let fxng1n=�1 be a solution of Eq.(9.1). Then, for n = 0; 1; 2; :::, the form

of solutions fxng1n=�1 is given by

xn =
tVn�1x�1x0 + (Vn+1 � rVn)x0 + Vn
tVnx�1x0 + (Vn+2 � rVn+1)x0 + Vn+1

; (9.6)

where Vn is the nth generalized-Tribonacci number and the initial conditions x�1, x0 2

R� F , with F is the forbidden set of Eq.(9.1) given by

F =

1[
n=�1

f(x�1; x0) : tVnx�1x0 + (Vn+2 � rVn+1)x0 + Vn+1 = 0g .

Proof. First, by using the change of variables

xn =
wn�1
wn

, (9.7)

Eq.(9.1) is reduced to linear third order di¤erence equation

wn+1 =
�



wn +

�



wn�1 +

1



wn�2.
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Set

r :=
�



, s :=

�



, t :=

1



,

so we have

wn+1 = rwn + swn�1 + twn�2.

Now, as done in [86], we describe initial values of three sequences which will be repetitively

de�ned and used in the rest of the proof. Let

a1 := r, b1 := s, c1 := t.

We use an recurrent (iterative) method. Thus, we get

wn = a1wn�1 + b1wn�2 + c1wn�3

= a1 (rwn�2 + swn�3 + twn�4) + b1wn�2 + c1wn�3

= (ra1 + b1)wn�2 + (sa1 + c1)wn�3 + ta1wn�4

= a2wn�2 + b2wn�3 + c2wn�4, (9.8)

where

a2 := ra1 + b1, b2 := sa1 + c1, c2 := ta1. (9.9)

By continuing iteration, it implies that

wn = a2wn�2 + b2wn�3 + c2wn�4

= a2 (rwn�3 + swn�4 + twn�5) + b2wn�3 + c2wn�4

= (ra2 + b2)wn�3 + (sa2 + c2)wn�4 + ta2wn�5

= a3wn�3 + b3wn�4 + c3wn�5, (9.10)

where

a3 := ra2 + b2, b3 := sa2 + c2, c3 := ta2. (9.11)

Based on relations (9.8)-(9.11), we suppose that for some k 2 N such that 2 � k � n� 1,

we have

wn = akwn�k + bkwn�k�1 + ckwn�k�2, (9.12)
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and

ak := rak�1 + bk�1, bk := sak�1 + ck�1, ck := tak�1. (9.13)

Next, by continuing iteration, it follows that

wn = akwn�k + bkwn�k�1 + ckwn�k�2

= ak (rwn�k�1 + swn�k�2 + twn�k�3) + bkwn�k�1 + ckwn�k�2

= (rak + bk)wn�k�1 + (sak + ck)wn�k�2 + takwn�k�3

= ak+1wn�k�1 + bk+1wn�k�2 + ck+1wn�k�3,

where

ak+1 := rak + bk, bk+1 := sak + ck, ck+1 := tak.

Now, we maintain sequences ak, bk and ck for some nonpositive values of index k. Notice

that since 
 6= 0, the recurrent relations in (9.13) can be really used for computing values

of sequences ak, bk and ck for every k � 0.

Using the recurrent relations with the indices k = 1, k = 0 and k = �1, respectively,

after some computations, it implies that

a0 =
c1
c
= 1

b0 = a1 � aa0 = a� a:1 = 0

c0 = b1 � ba0 = b� b:1 = 0

a�1 =
c0
c
= 0

b�1 = a0 � aa�1 = 1� a:0 = 1

c�1 = b0 � ba�1 = 0� b:0 = 0

a�2 =
c�1
c
= 0

b�2 = a�1 � aa�2 = 0� a:0 = 0

c�2 = b�1 � ba�2 = 1� b:0 = 1.

Thus, we obtain

a0 = 1 a�1 = 0 a�2 = 0

b0 = 0 b�1 = 1 b�2 = 0

c0 = 0 c�1 = 0 c�2 = 1.

(9.14)
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From (9.13), we get

an = ran�1 + san�2 + tan�3, (9.15)

bn = an+1 � ran, (9.16)

cn = tan�1, (9.17)

for n 2 N.

If we get k = n in (9.12), we have

wn = anw0 + bnw�1 + cnw�2,

for n 2 N0.

From (9.15)-(9.17), we obtain

wn = anw0 + (an+1 � ran)w�1 + tan�1w�2, (9.18)

for n 2 N0.

Using (9.18) in (9.7), we get

xn =
an�1w0 + (an � ran�1)w�1 + tan�2w�2
anw0 + (an+1 � ran)w�1 + tan�1w�2

,

it follows that

xn =
tan�2x�1x0 + (an � ran�1)x0 + an�1
tan�1x�1x0 + (an+1 � ran)x0 + an

or equivalently

xn =
tan�2x�1x0 + (an � ran�1)x0 + an�1
tan�1x�1x0 + (san�1 + tan�2)x0 + an

.

From initial values (9.14) and de�nitions of sequences an and Vn, we have

an = Vn+1,

with the backward shifted initial values of the sequence an. Then, it follows

xn =
tVn�1x�1x0 + (Vn+1 � rVn)x0 + Vn
tVnx�1x0 + (Vn+2 � rVn+1)x0 + Vn+1

,

or

xn =
tVn�1x�1x0 + (Vn+1 � rVn)x0 + Vn
tVnx�1x0 + (sVn + tVn�1)x0 + Vn+1

.
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The proof is complete.

Now, we will analyze �ve special cases of the above theorem according to the states of r,

s, t.

Case 1: r = s = t = 1

In this case, the (an) sequence has the following recurrence relation

an = an�1 + an�2 + an�3,

such that a few terms of this sequence are

a�2 = 0; a�1 = 0; a0 = 1; a1 = 1; a2 = 2; a3 = 4. (9.19)

Then, from initial values (9.19) and de�nitions of sequences an and Tn which is Tribonacci

numbers, we have

an = Tn+1,

with the backward shifted initial values of the sequence an.

Hence, we obtain

xn =
Tn�1x�1x0 + (Tn+1 � Tn)x0 + Tn
Tnx�1x0 + (Tn + Tn�1)x0 + Tn+1

:

Case 2: r = 0, s = t = 1

In this case, the (an) sequence has the following recurrence relation

an = an�2 + an�3,

such that a few terms of this sequence are

a�2 = 0; a�1 = 0; a0 = 1; a1 = 0; a2 = 1; a3 = 1, a4 = 1. (9.20)

Then, from initial values (9.20) and de�nitions of sequences an and Pn which is Padovan

numbers, we get

an+2 = Pn,

with the forward shifted initial values of the sequence an.

Therefore, we have

xn =
Pn�4x�1x0 + Pn�2x0 + Pn�3
Pn�3x�1x0 + Pn�1x0 + Pn�2

.
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Case 3: r = 0, s = t = 1

In this case, the (an) sequence has the following recurrence relation

an = an�2 + an�3,

such that a few terms of this sequence are

a�2 = 0; a�1 = 0; a0 = 1; a1 = 0; a2 = 1; a3 = 1, a4 = 1. (9.21)

Then, from initial values (9.21) and de�nitions of sequences an and Sn which is Padovan-

Perrin numbers, we have

an = Sn+2,

with the backward shifted initial values of the sequence an.

Thus, we obtain

xn =
Snx�1x0 + Sn+2x0 + Sn+1
Sn+1x�1x0 + Sn+3x0 + Sn+2

.

Case 4: r = 1, s = 0, t = 1

In this case, the (an) sequence has the following recurrence relation

an = an�1 + an�3,

such that a few terms of this sequence are

a�2 = 0; a�1 = 0; a0 = 1; a1 = 1; a2 = 1; a3 = 2, a4 = 3. (9.22)

Then, from initial values (9.22) and de�nitions of sequences an and Nn which is Narayana

numbers, we have

an = Nn+1,

with the backward shifted initial values of the sequence an.

Fromhere, we have

xn =
Nn�1x�1x0 +Nn�2x0 +Nn

Nnx�1x0 +Nn�1x0 +Nn+1

.

Case 5: r = s = 1, t = 2

In this case, the (an) sequence has the following recurrence relation

an = an�1 + an�2 + 2an�3,
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such that a few terms of this sequence are

a�2 = 0; a�1 = 0; a0 = 1; a1 = 1; a2 = 2; a3 = 5, a4 = 9. (9.23)

Next, from initial values (9.23) and de�nitions of sequences an and Jn which is third order

Jacobsthal numbers, we have

an = Jn+1,

with the backward shifted initial values of the sequence an.

Herefrom, we get

xn =
2Jn�1x�1x0 + (Jn+1 � Jn)x0 + Jn
2Jnx�1x0 + (Jn+2 � Jn+1)x0 + Jn+1

.

Theorem 9.3 Eq.(9.1) has unique equilibrium point x = � and � is locally asymptotically

stable.

Proof. Equilibrium point of Eq.(9.1) is the real roots of the equation

x =



x (x+ �) + �
.

After simpli�cation, we get the following cubic equation

x3 + �x2 + �x� 
 = 0. (9.24)

Then, the roots of the cubic equation (9.24) are given by

� = � (�; �; 
) = ��
3
+ C +D,

� = � (�; �; 
) = ��
3
+ !C + !2D,

� = � (�; �; 
) = ��
3
+ !2C + !D,

where

C =

�
��3
27

+
��

6
+



2
+
p
�

�1=3
, D =

�
��3
27

+
��

6
+



2
�
p
�

�1=3
� = �(r; s; t) = ��

3


27
� �2�2

108
+
��


6
+
�3

27
+

2

4

and

! =
�1 + i

p
3

2
= exp (2�i=3)
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is a primitive cube root of unity. So, the root � is only real number. So, the unique

equilibrium point of Eq.(9.1) is x = �.

Now, we demonstrate that the equilibrium point of Eq.(9.1) is locally asymptotically

stable.

Let I be an interval of real numbers and consider the function

f : I2 ! I

de�ned by

f (x; y) =



x (y + �) + �
.

The linearized equation of Eq.(9.1) about the equilibrium point x = � is

zn+1 = pzn + qzn�1,

where

p =
@f (x; x)

@x
=

�
 (�+ �)

(� (�+ �) + �)2

=
�
 (�+ �)

(�2 + ��+ �)2

=
�
 (�+ �)�



�

�2
=

� (�3 + ��2)




=
��� 




,

q =
@f (x; x)

@y
=

�
�
(� (�+ �) + �)2

=
�
�

(�2 + ��+ �)2

=
�
��


�

�2
= ��

3



,

and the corresponding characteristic equation is

�2 �
�
��� 





�
�+

�3



= 0.
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Consider two functions de�ned by

a (�) = �2, b (�) =
�
��� 





�
�� �3



.

We have������� 




� �3




���� < 1.
Then, it follows that

jb (�)j < ja (�)j , for all � : j�j = 1.

Therefore, by Rouche�s Theorem, all zeros of P (�) = a (�) � b (�) = 0 lie in j�j < 1.

Hereby, by Theorem 2.4, we have that the unique equilibrium point of Eq.(9.1) x = � is

locally asymptotically stable.

Theorem 9.4 Assume that �' = 1. Then, the equilibrium point of Eq.(9.1) is globally

asymptotically stable.

Proof. Let fxngn��1 be a solution of Eq.(9.1). By Theorem 9.3, we need only to prove

that the equilibrium point � is global attractor, that is

lim
n!1

xn = �.

From Theorem 9.2 and (9.3) and (9.5), it follows that

lim
n!1

xn = lim
n!1

tVn�1x�1x0 + (Vn+1 � rVn)x0 + Vn
tVnx�1x0 + (Vn+2 � rVn+1)x0 + Vn+1

= lim
n!1

tVn�1

�
x�1x0 +

�
1
t
Vn+1
Vn�1

� r
t
Vn
Vn�1

�
x0 +

Vn
Vn�1

�
tVn

�
x�1x0 +

�
1
t
Vn+2
Vn

� r
t
Vn+1
Vn

�
x0 +

Vn+1
Vn

�
=

 
x�1x0 +

�
1
t
'2 � r

t
'
�
x0 + '

x�1x0 +
�
1
t
'2 � r

t
'
�
x0 + '

!
lim
n!1

Vn�1
Vn

= lim
n!1

Vn�1
Vn

=
1

'

= �

This completes the proof.

Note that when � = � = 
 = 1, our assumption in Theorem 9.4 is immediately seen.

Indeed,
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�' = 1
3


�
1

3 3
p
2

3
p
27
 � 2�3 + 9�� � 3

p
3S � 1

3
�+ 1

3 3
p
2

3
p
27
 � 2�3 + 9�� + 3

p
3S
��

� + 1
3p2

3
p
2�3 + 27
2 � 3

p
3
S + 9��
 + 1

3p2
3
p
2�3 + 27
2 + 3

p
3
S + 9��


�
S =

p
�4�3
 � �2�2 + 18��
 + 4�3 + 27
2.

Then, in the case � = � = 
 = 1, it follows that �' = 1.
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[71] Taşdemir E and Soykan Y (2018) Stability of Negative Equilibrium of a Non-

Linear Di¤erence Equation. J. Math. Sci. Adv. Appl., 49 (1): 51-57.

137
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