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ABSTRACT

Doctor of Philosophy Thesis

DYNAMICAL ANALYSIS OF SOME SYSTEMS OF NONLINEAR DIFFERENCE
EQUATIONS

inci OKUMUS

Zonguldak Biilent Ecevit University
Graduate School of Natural and Applied Sciences

Department of Mathematics

Thesis Advisor: Prof. Yiikksel SOYKAN
July 2019, 143 pages

In this thesis, we present a systematic study of dynamical behavior of solutions of some
specific non-linear difference equations and systems of difference equations. Especially, we
investigate the stability character of equilibrium points, the exact forms, the periodicity, the
oscillation and the boundedness of solutions of these equations and systems.

The organization of this thesis is as follows:

Chapter 1 is a concise overview of what this thesis is about and also is a literature summary of

difference equation theory.

Chapter 2 consists of some basic important definitions and some significant theorems used

throughout the thesis.

Chapter 3 includes some results about the stability, boundedness character and periodic nature

of positive solutions of the system of difference equations
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ABSTRACT (continued)

X, =A+X /2, y,.=A+Y.,/2,, z,,=A+2, ,/Y,, for n=0,1,... where the parameter

A and the initial conditions X ,,X,,Y_,Y,,Z ,Z, are arbitrary positive real numbers.

Chapter 4 presents the local asymptotic stability of the equilibrium points, boundedness
character, oscillatory, and global asymptotic behavior of positive solutions of the system of

rational difference equations X ,, =A+X, ., /Z,, You=A+Yon/Zy Zp=A+Z,.,/Y,, for
n=0,1,... where the parameter A and the initial values X,y ;,Zz;, for i=0,1,...,m are

positive real numbers and m is positive integer.

Chapter 5 contains some results about the local asymptotic stability of the equilibrium points
and oscillation behaviour of positive solutions of the following system of rational difference

equations X, =A+x", /2", y . =A+y? /2", z  =A+zP /y", for n=0,1,... where the

+

parameters Ae(0,0), pe[l,o0) and the initial values X,y ;,z; €(0,), i=-10.

Chapter 6 states the stability character of equilibrium points and the form of solutions and

asymptotic behavior of positive solutions of the following four rational difference equations
X =1/(X (X, D)1, X, =-1/(X, (X, £1)F1), such that their solutions are associated

with Tribonacci numbers.

Chapter 7 acquaints about the stability character of equilibrium points, the periodic nature of
solutions and the global behavior of solutions of the following four rational difference
equations X.,, =%1/(X,(X,, £1)=1), x,,, =£1/(X, (X, FD)+1).

Chapter 8 presents some results about the stability character of equilibrium points of and the

explicit form and global behavior of positive solutions of the following two systems of
rational difference equations X, ==x1/(y, (X, , D +1), y,,, ==x1/(X, (Y, , £D+1), such that

their solutions are associated with Tribonacci numbers.
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ABSTRACT (continued)

Chapter 9 expresses the stability character of equilibrium points of and the explicit form and
asymptotic behavior of solutions of the following nonlinear difference equation

X =7/(X(X_,+a)+ ), such that their solutions are associated with generalized

Tribonacci numbers.

Keywords: Difference equation, equilibrium point, asymptotic behaviour, global asymptotic
stability, oscillation, periodicity, unbounded solutions, boundedness, recursive sequence,

Tribonacci numbers.

Science Code: 403.06.01






OZET

Doktora Tezi

LINEER OLMAYAN BAZI FARK DENKLEM SIiSTEMLERININ DINAMIK
ANALIZI

Inci OKUMUS
Zonguldak Biilent Ecevit Universitesi
Fen Bilimleri Enstitiisii

Matematik Anabilim Dah

Tez Damismani: Prof. Dr. Yiiksel SOYKAN
Temmuz 2019, 143 sayfa

Bu tezde, bazi 6zel lineer olmayan fark denklemlerinin ve fark denklem sistemlerinin
¢dziimlerinin dinamik davranislarinin sistematik bir calismas1 verilmistir. Ozellikle, bu fark
denklemlerinin ve fark denklem sistemlerinin ¢dziimlerinin = sinirlilil, salimimhiligs,
periyodikligi, kesin ¢6ziim formlar1 ve denge noktalarinin kararlilik karakteri arastirilmistir.

Bu tezin organizasyonu asagidaki gibidir:

Boliim 1, bu tezin ne ile ilgili olduguna dair kisa bir tanitim ve ayrica fark denklem teorisinin

literatir Ozetidir.

Bolim 2, tez boyunca kullanilan bazi temel Onemli tanimlardan ve teoremlerden

olusmaktadir.

vii



OZET (devam ediyor)

Boliim 3, A parametresi ve X ;,X,,Y ;, Y, Z ;,Z, baslangi¢ kosullar1 keyfi pozitif gergel sayilar
olmak tlizere n=0,1l,... i¢in X, =A+X /2, You=A+Y,,/2,, z,,=A+z, /Yy, fark

denklem sisteminin pozitif ¢oziimlerinin kararliligi, smirlilik karakteri ve periyodik niteligi

hakkinda bazi sonuglar igerir.

Bolim 4, m pozitif tamsayr ve A parametresi ve 1=0,1,...m i¢in X,,Y;,Z,;, baslangi¢
kosullar1 pozitif gergel sayilar olmak tzere X, =A+X _./Z,, You=A+Y,n/Z,,
z,,,=A+z, ./Yy, rasyonel fark denklem sisteminin pozitif ¢oziimlerinin smirlilik

karakterini, salinimligini1 ve global asimptotik davranisin1 ve denge noktalarinin yerel (lokal)

asimptotik kararliligini verir.

Bolim 5, Ae(0,0), pe[l,o) ve X;,Y;,Z; €(0,0), i=—1,0 olmak iizere n=0,1,... igin
Xy =A+XY /20, vy =A+YY /20, z,,,=A+2",/y?, rasyonel fark denklem sisteminin

pozitif ¢ozlimlerinin salinim davranist ve denge noktalarinin lokal asimptotik kararlilig

hakkinda bazi sonuglar igermektedir.

Bolim 6, ¢oziimleri Tribonacci sayilariyla iligkili olan asagidaki X ,, =1/(X, (X, £D)£1),
X, =—1/(X, (X, £1)F1), dort rasyonel fark denkleminin pozitif ¢éziimlerinin kesin ¢6ziim

formlarin1 ve asimptotik davraniglarim1 ve denge noktalarinin kararlilik karakterlerini ifade

eder.

Bolim 7, asagidaki X ., =x1/(X. (X, , £D)—=1), X.,, =x1/(X (X, , F1)+1) dort rasyonel fark

denkleminin ¢6ziimlerinin periyodik dogasi ve global davraniglari ve denge noktalarinin

kararlilik yapilar1 hakkinda bilgi verir.

Boliim 8, ¢oztimleri Tribonacci sayilariyla iliskili olan asagidaki X ., ==%1/(y,(X,, £D)+1),
Yo =21/ (X, (Y, £D+1), iki rasyonel fark denklem sisteminin pozitif ¢oziimlerinin kesin

(agik) ¢6ziim formlar1 ve global davraniglart ve denge noktalarinin kararlhilik karakterleri

hakkinda bazi sonuglar sunmaktadir.
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OZET (devam ediyor)

Bolim 9, c¢oziimleri genellestirilmis Tribonacci sayilariyla iliskili olan asagidaki
Xou =7/ (X, (X, +a)+ ), linecer olmayan fark denkleminin ¢dzlimlerinin asimptotik

davraniglarint ve kesin ¢6ziim formlarin1 ve denge noktalarinin kararlilik karakterlerini ifade

eder.

Anahtar Kelimeler: Fark denklem, denge noktasi, asimptotik davranis, global asimptotik

kararli, salimimlilik, periyodiklik, sinirsiz ¢oziimler, sinirlilik, tekrarl dizi, Tribonacci sayilari.

Bilim Kodu: 403.06.01
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEWS

Difference equation or discrete dynamical system is a diverse field which impact almost

every branch of pure and applied mathematics. Every dynamical system

Tpt+1 = f (xna Tp—1, "'7xnfk)

determines a difference equation and vice versa.

Recently, there has been great interest in studying the difference equations and systems of
difference equations. One of the reasons for this is a necessity for some techniques which
can be used in investigating equations arising in mathematical models describing real life
situations in population biology, economics, probability theory, genetics, psychology and
so forth.

The theory of difference equations occupies a central position in applicable analysis. There
is no doubt that the theory of difference equations will continue to play an important role
in mathematics as a whole. Nonlinear difference eqautions of order greater than one are of
paramount importance in applications. Such equations also appear naturally as discrete
analogues and as numerical solutions of differential and delay differential equations which
model various diverse phenomena in biology, ecology, psychology, physics, engineering,
and economics (see [1-14]). It is very interesting to investigate the behavior of solutions
of a system of nonlinear difference equations and to discuss the local asymptotic stability
of their equilibrium points. Though difference equations are very simple in their form, it
is quite hard to understand throughly the global behavior of their solutions. There are
many papers in which systems of difference equations have been studied, see [29-42].
Moreover, there has been a growing interest in the study of finding closed-form solutions
of difference equations and systems of difference equations. Some of the forms of solutions
of these equations are representable via well-known integer sequences such as Fibonacci
numbers, Lucas numbers, Pell numbers and Padovan numbers, see also [74-100].

The purpose in this thesis is to investigate a systematic study of dynamical behavior of so-



lutions of some specific nonlinear difference equations and systems of difference equations.
Especially, we research the exact forms, periodicity, stability character and boundedness
of solutions of difference equations and systems of nonlinear difference equations. This
thesis consist of nine chapters.

The first chapter is a concise overview of what this thesis is about and also is a literature
summary of difference equation theory.

The second chapter consists of some basic important definitions and some significant the-
orems used throughout the thesis.

The third chapter includes some results about the stability, boundedness character and

periodicity of positive solutions of the system of difference equations

Tn—1 Yn—1

v Ynpr = A+ y Znpl = A+

Zn—1
Tpy1 = s

, n=0,1,...,
where the parameter A and the initial conditions

T-1,%0,Y-1,Y0,2-1, 20

are arbitrary positive real numbers.
The fourth chapter presents the local asymptotic stability of the equilibrium points,
boundedness character, oscillatory, and global asymptotic behavior of solutions of the

system of difference equations

Tn—m n—m Zn—m
xn+1:A+Z—7 yn+1:A+y ,Zn+1:A—|— ,n:(],l,...,

n n yn

where the parameter A and the initial values
T i Y_i, 2, fori=0,1,...,m,

are positive real numbers and m is positive integer.
The fifth chapter contains some results about the local asymptotic stability of the equi-
librium points and oscillation behaviour of positive solutions of the following system of

rational difference equations

37:0—1 ?Jg—l
Tnt1 = A+ —5=, Ynt1 :A+Z—p, Znp1 = A+

p
n n
2h

“p—1
> n=0,1,...,
n

where the parameters

A€ (0,00), pe|l,o0)



and the initial values
i Yi, 2 € (0,00), i =—1,0.

The sixth chapter introduces the form of solutions, stability character and asymptotic
behavior of the following four rational difference equations

1
SN RIS D I
—1
Tp (T £1)F1

Tn+41

such that their solutions are associated with Tribonacci numbers.
The seventh chapter acquaints about the stability character, the periodicity and the global
behavior of solutions of the following four rational difference equations

+1
Tpp1 =
i Tp (Tpg£1)—1
+1
Tp (T 1 F1)+1

Tn+1

The eighth chapter presents some results about the explicit form, stability character and
global behavior of solutions of the following two systems of rational difference equations

+1 y +1
Yn (1 £1)+ 17 Ynt1 = Tp (Y £1) + 17

Tntrl = 20,17...

such that their solutions are associated with Tribonacci numbers.
The ninth chapter expresses the dynamical behavior of solutions of the following nonlinear

difference equation

7
Tp (xn—l + Oé) +6,

Tpi1 = n=20,1,..,

such that their solutions are associated with generalized Tribonacci numbers.
The following two sections are important summaries about difference equations and sys-

tems of difference equations which have shed light on our studies in this thesis.

1.1 LITERATURE REVIEW FOR SYSTEMS OF NONLINEAR DIFFER-
ENCE EQUATIONS

In this section, we have divided the studies which we examine in literature into three
subsections as two-dimensional, three-dimensional and multi-dimensional systems of non-

linear difference equations.



1.1.1 Review on Two-Dimensional Systems of Nonlinear Difference Equa-

tions

This subsection is concerned with the review of dynamical behavior of solutions of the
systems of two-dimensional nonlinear difference equations. Then, we have classified these
studies into three subsubsections as systems of rational-type difference equations, systems

of exponential-type difference equations and systems of max-type difference equations.

Systems of Rational-Type Difference Equations

In [15], Papaschinopoulos and Schinas considered the system of difference equations

I = A+ p=0,1, ..., (1.1)

Tn—p Yn—q

Tp41 = A+

where A € (0,00), p, ¢ are positive integers and z_,, ..., o, Y_q, ..., Yo are positive numbers.
They investigated the oscillatory behavior, the boundedness of the solutions, and the
global asymptotic stability of the positive equilibrium of the system (1.1). As a result,
they prove that:

e Every positive nontrivial solution {(z,,y,)} of system (1.1) oscillates about the

positive equilibrium of system (1.1).

e If A > 0 and one at least of p, ¢ is an odd number (resp. A > 1 and p, ¢ are both
even numbers), then any positive solution of system (1.1) is bounded away from

zero and infinity.

e If A > 1, then the positive equilibrium (¢, ¢) of system (1.1) is globally asymptoti-
cally stable.

In [16], Papaschinopoulos and Schinas studied the oscillatory behavior, the periodicity

and the asymptotic behavior of the positive solutions of the system of difference equations

Tn-1 Yn—1

» Ynt1 = A+ , n=0,1,.. (12>

n 'CU’I'L

Tpy1 = A+

where A is a positive constants and initial conditions are positive numbers.
They established conditions so that a positive solution (x,,y,) of system (1.2) oscillates

about positive equilibrium of the system (1.2). Moreover, they found



e For thecase 0 < A< 1,

— The unique positive equilibrium (¢, ¢) of (1.2) is not stable.

— The system (1.2) has unbounded solutions.
e For the case A =1,

— For every pu € (1,00), there exist positive solutions (x,,y,) of system (1.2)

which tend to the positive equilibrium (,u, ﬁ)

— Every positive solution of system (1.2) tends to a period 2 solution as n — oo.
e For the case A > 1,

— The unique positive equilibrium (¢, ¢) of (1.2) is locally asymptotically stable.

— The positive equilibrium (¢, ¢) of system (1.2) is globally asymptotically stable.

In [17], Camouzis and Papaschinopoulos studied the boundedness, persistence, and the

global asymptotic behavior of the positive solutions of the system of difference equations

xn n
Toi1 =1+ g =14+ n=0,1,.., (1.3)

n—m n—m

where x;, y;, i = —m,—m + 1, ..., 0 are positive numbers and m is a positive integer.

Then the following results were exhibited in their paper:
e Every positive solution of system (1.3) is bounded and persists,

e System (1.3) has an infinite number of positive equilibrium solutions (x,y) with z,

y € (1,00) that satisfy equation zy = x + y,

e Every positive solutions of system (1.3) converges to a positive equilibrium solution

of system (1.3) as n — oc.

In [18], Yang studied the behavior of positive solutions of the system of difference equa-
tions

Ynt = Ayl 19, (1.4)

T = AL
Tn—pYn—q Tn—rYn—s



where p > 2, ¢ > 2, r > 2, s > 2, Ais a positive constant, and Zi_max{p,r}s T2—max{p,r}>
ey T05 Yl—max{q,s}> Y2—max{q,s}» ---»Yo are positive real numbers.

He demonstrated that:

e The system (1.4) has the unique positive equilibrium

6.6)— (A+¢m A+\/m>

2 2

When A > 1, every positive solution of system (1.4) is bounded,

When A > 2//3, (¢, ¢) is locally asymptotically stable,

When A > /2, every positive solution of system (1.4) approaches (c, ¢),

When A > /2, the positive equilibrium (c,c) of (1.4) is globally asymptotically

stable for all positive solutions.

In [19], Zhang et al. considered the behavior of positive solutions of the system of differ-

ence equations

1 1
S Y = A+ ———— n=1,2, .., (1.5)
Yn—p Tn—rYn—s

Tpy1 = A+

where p>1,7>1,5>1, A>0, and 21—, Ta_r, -..,70, Yi—max{p,s}s Y2—max{p,s}» --»Yo are
positive real numbers.

They obtained the following results:
e If A > 0, every positive solution of system (1.5) is bounded,

If A =0, all positive solutions of system (1.5) are periodic,

If A>2/y/3 and max{p,r,s} > 2, the positive equilibrium (c, c) of (1.5) is locally
) = (Awm A+\/AT4>
2 0 2 ’

asymptotically stable where (c, ¢

If A > /2, every positive solution of system (1.5) approaches (c, c),

If A> /2 and max{p,r,s} > 2, the positive equilibrium (c, ¢) of (1.5) is globally

asymptotically stable for all positive solutions.



In [20], Zhang et al. studied the system of rational difference equations

D Y = AT = 0,1, (1.6)
T, Yn

ynfm

Tp41 = A+

They investigated the dynamic behavior of positive solutions of system (1.6) for the cases
of A<1,A=1,and A > 1.

For the case A < 1, they obtained that the system (1.6) has unbounded solutions.

For the case A = 1, they proved that every positive solution of the system (1.6) is bounded

and persists with interval [L, %} and has prime two periodic solutions.
For the case A > 1, the global asymptotic stability of the unique equilibrium point of the

system (1.6) is established. For this case, they proved that:

e Every positive solution of the system (1.6) is bounded and persists by interval

it

e The positive equilibrium point (¢, ¢) of system (1.6) is locally asymptotically stable
where ¢ = A + 1,

e Every positive solution of system (1.6) converges to (c, c).

In [21], Zhang et al. considered the behavior of the symmetrical system of rational

difference equations

Unk = AR 0,1, (1.7)

n mn

Tpy1 = A+

where A > 0 and z;, y; € (0,00), for i = —k,—k+1,...,0.

They investigated the dynamic behavior of positive solutions of system (1.7) for the cases
of 0<A<1,A=1,and A > 1.

In the case 0 < A < 1, they obtained similar results as in above Theorem 1 for & is odd.
However, they said that they can’t get some useful results for k is even.

In the case A = 1, the results which are obtained are similar to results in [20].

In the case A > 1, the following results were established:

e Every positive solution of the system (1.7) is bounded and persists by interval
1L 725)

» L—A

e Every positive solution of the system (1.7) converges to the equilibrium as n — oo.



In [22], Kurbanli, Cinar and Yalcinkaya studied the behavior of the positive solutions of
the system of difference equations

Tn-1 Yn—1

—— Y1 = ————, 1.8
YnTn—1 + 1 Ynst TnYn—1 + 1 ( )

Tpt1 =

where the initial conditions are arbitrary non-negative real numbers.
They found the equilibrium point and all solutions of the system (1.8). Also, they obtained
the followings where yo = a, y_1 = b, xo = c and x_; = d are arbitrary non-negative real

numbers:
o Ifb#0and c=0, x5, =0 and o, 1 = b,
e Ifb=0and c#0, x5, =cand ys, 1 =0,
e Ifd=0and a#0, ys, = a and 5, 1 =0,
e Ifa=0and d#0, ys, =0 and z5, 1 = d.

In [23], Kurbanli et al. investigated the periodicity of the solutions of the system of
difference equations

Tp—1 + Yn Yn—1 + Tn

n = ) 19
YnTn—1 — 1’ Yot TnYn—1 — 1 ( )

Tnt1 =

where zg, T_1, Yo, y—1 € R.
They proved that the solutions of x,, and y,, are six periodic under the special conditions.
In [24], Wang, Zhang and Fu considered the system of difference equations

Tp—2k+1 Yn—2k+1

s Ynt1 = >0, 1.10
AYp—kt1%n—2k4+1 + - ( )

n
B ) -

Tnt1 =

where k is a positive integer, A, B, «, [ and the initial conditions are positive real
numbers.

Under the specific conditions, they established the convergence of the positive solutions
of the system (1.10) and showed that the system (1.10) has unbounded solutions.

In [25], Zhang et al. corcerned with the dynamical behavior of positive solutions of the

system of two rational difference equations

Tn n
Tpt1 :A+k—’ yn+1:B—|—ky—, 77,:0,1,..., (111)

Zi:l Yn—i Zizl Tn—i

8



where A, B are positive constants and the initial conditions z_;, y_; € (0,00), i =
0,1,..., k.
They proved that under the case A > 1/k, B > 1/k and assuming that

K*AB -1 k?AB -1

A1 T rp-1 b

e Every positive solution of system (1.11) is persistent and bounded,

e The system (1.11) has a unique positive equilibrium given by

kK*AB —1 k?*AB -1
xr = y:

k(kB—1) k(kA—1)

e Every positive solution of the system (1.11) tends to the positive equilibrium of

system (1.11) as n — oo,
e The unique positive equilibrium of the system (1.11) is locally asymptotically stable,

e The unique positive equilibrium of the system (1.11) is globally asymptotically
stable.

In [26], Zhang and Zhang investigated the solutions, stability character and asymptotic

behavior of the system of high-order nonlinear difference equations

Tp—k Yn—k
L s S e—
Q+Hyn—i p"’HfEnfi

i=0 i=0

where p, ¢ € (0,00), z_; € (0,00), y_; € (0,00) and ¢ = 0,1, ..., k.

Tpi1 = , keN", n=01,.., (1.12)

First, they obtained the equilibrium points of system (1.12) as follows:

e (0,0) and ( Y1 —p, *"RY/1— q) are equilibrium points if p < 1 and ¢ < 1,
e Every point on the z-axis is an equilibrium point if ¢ = 1,

e Every point on the y-axis is an equilibrium point if p = 1,

e (0,0) is the unique equilibrium point if p > 1 and ¢ > 1.

Then, they proved the following results:



e If p > 1 and ¢ > 1, then the unique equilibrium point (0,0) of system (1.12) is
locally asymptotically stable,

e If p < 1 and ¢ < 1, then the unique equilibrium point (0,0) of system (1.12) is

unstable,

o If p < 1 and g < 1, then the positive equilibrium point (’“\1/ I—p, */T—¢q) of
system (1.12) is unstable,

e Every solutions of system (1.12) is bounded,

e If p > 1 and ¢ > 1, then the unique equilibrium point (0,0) of system (1.12) is
globally asymptotically stable.

In [27], Zhang et al. studied the behavior of solutions of the following system

T n
Tapt = A+ " g = A

— " n=0,1,.., (1.13)
Yn—1Yn—2 Tp—-1Tp—2

where A is positive constant and z_;, y_; € (0,00), i = 0,1, 2.

They obtained the results which are listed below:
e If A > 1, every positive solution of system (1.13) is bounded,
o If A>2/v/3, (c,c) is locally asymptotically stable,
e If A > /3, every positive solution of system (1.13) approaches (c, c),
o If 1 < A<2/V3, (a1,b) and (ag, by) are locally asymptotically stable.

In [28], Stevic et al. considered the following system of difference equations

yh xy,

q
xn—l

Tpt1 = A+ y Unt1 = A+ , ne€Ny (114)

Yn1
where parameters A, p and ¢ are positive and investigated the boundedness character of
positive solutions of system (1.14).

They proved the following results:

o Ifp> > 4g >4, 0or p>1+¢q, q <1, then system (1.14) has positive unbounded

solutions where A > 0,

10



o If p> <4q,0r2,/g<p<1+gq,q € (0,1), then all postive solutions of system (1.14)

are bounded.

In [29], Bao investigated the local stability, oscillation and boundedness character of

positive solutions of the system of difference equations

A Ty _ Yn-1 _
Tnt1 = + P Yn+1 = A + :L‘p , N = 0, 1, ceny (115)

where A € (0,00), p € [1,00) and initial conditions z;, y; € (0,00), i = —1,0.

He proved that the system (1.15) has a positive equilibrium point (z,7) = (A+1,A+1)
and the equilibrium point of system (1.15) is locally asymptotically stable if A > 2p—1, is
unstable if 0 < A < 2p—1 and is a sink or an attracting equilibrium if p/(A+1) < v/2—1.
Also, he indicated that the positive solution of system (1.15) which consists of at least
two semicycles is oscillatory and the system (1.15) has unbounded solutions.

In [30], Giimiis and Soykan considered the dynamical behavior of positive solutions for a
system of rational difference equations of the following form

QUp—1 Q1Un—1

LY A LT A 1.16
B+ b _, " B+ viup_s ( )

Unp+1 =

where the parameters «, 3, v, a1, 8, 71, p and the initial values u_;, v_; for i = 0,1, 2
are positive real numbers.

First, they reduced the system (1.16) to the following system of difference equations

TTn—1 SYn—1
el = —2L o =0,1, .., 1.17
L+ o Yt ( )

Tp4+1 =
1+ 5

by the change of variables u, = (8,/7,)"" 2, and v, = (8/7)""y, with r = o/ and

s=aoq/p;.
Then, they found the equilibrium points of the system (1.17) under the certain conditions
and investigated their local asymptotical behavior. Also, they proved that

o If r < 1 and s < 1, the zero equilibrium point of system (1.17) is globally asymp-
totically stable,

e For r, s € (1,00), the system (1.17) has unbounded solutions,

o If r = s =1, the system (1.17) possesses the prime period two solution.

11



In [31], Din studied the qualitative behavior of positive solutions of following second-order

system of rational difference equations

ar + B1Yn—1 Qg + BoTn_1
g = 2T Pt o, 22T Patnl 1.18
i a, + bix, Yot as + bayn ( )

where the parameters «;, 3;, a;, b; for i € {1,2} and initial conditions are positive real
numbers.

He determined the following results:

Every positive solution of system (1.18) is bounded and persists when (3,5, < ajas,

The unique positive equilibrium point of system (1.18) is global attractor when

102 7é 5152,

Under the some specific conditions the unique positive equilibrium point of system

(1.18) is globally asymptotically stable.

The system (1.18) has no prime period-two solutions when a;as # (3, 3,.

In [32], Mansour et al. got the exact form of the solutions and the periodic nature of the

following systems of difference equations

Tn-5 Yn—5
bl = » Ung1 = : 1.19
I e s T E g, omn s (1.19)

where the initial conditions are real numbers.
In [33], Elsayed and El-Metwally had the periodic nature and the form of the solutions
of some systems of difference equations

TnYn—2 y o YnTn—2
5 n+1 — )
Yn—1 (:l:l + xnyn72) " Tn—1 (j:l + ynxan)

Tt = (1.20)

where the initial conditions are nonzero real numbers.
In [34], Elsayed obtained the form of the solutions and the periodicity of the following
systems of second-order rational difference equations

TnlYn—1 _ YnTn—1
o (ELE 2yn 1) T 2y (FLE yuwe )

(1.21)

Tntl1 =
with the initial conditions are nonzero real numbers.
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In [35], Clark and Kulenovic investigated the asymptotic and global stability behavior of

solutions of the following systems of difference equations

Ty, Yn
ntl = ————, Ypt1 = T— 5, =0,1,..., 1.22
Tpt1 “+ cun Yn+1 b+ dr, n ( )

where the parameters are positive numbers and the initial conditions are arbitrary non-
negative numbers.

Then, in [36], Clark et al. completed the investigation studied in [35] of the global
behavior of system (1.22).

In [37], Kulenovic and Nurkanovic studied the system of difference equations

Yn Tn
Tyl = Axnm, Ynil = Bynl g n=0,1,.., (1.23)

where the parameters A and B are in (0,00) and the initial conditions are arbitrary
nonnegative numbers. Under the special circumstances of parameters, they established
the global asymptotic stability of the equilibrium points of the system (1.23).

Also, there are many similar woks, see [38, 39, 40, 41, 42].

Systems of Exponential-Type Difference Equations

In this subsubsection, we review on some papers studied related to system of difference
equations of exponential form.

In [43], Papaschinopoulos, Radin and Schinas studied the boundedness, the persistence
and the asymptotic behavior of the positive solutions of the system of two difference

equations of exponential form

Tyl = a+brp_1e7 V", Y1 =c+dyp_1e " (1.24)

where a, b, ¢, d are positive constants, and the initial values x_1, xg, y_1, yo are positive
real values.

They investigated the boundedness character and the existence of invariant intervals
of system (1.24). Then, they found the following results. Under the conditions that
be ¢ < 1 and de~* < 1, every positive solution of system (1.24) is bounded and persists.
Also, they proved that the unique positive equilibrium (Z,7) of system (1.24) is globally

asymptotically stable under appropriate conditions.
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In [44], Papaschinopoulos and Schinas considered the following systems of difference equa-

tions
Tpi1 = a+byp_16""", Ypy1 = c+dx, 1" (1.25)
Tpy1 = a+by,_1e7%, Y1 =c+dr,_e”"" (1.26)

where the constants are positive real numbers and the initial values x_1, z¢, y_1, yo are
positive real numbers.

They investigated the boundedness and the persistence of the positive solutions, the
existence of a unique positive equilibrium and the global asymptotic stability of the above
mentioned systems. As a result, they established that every solution of the systems (1.25)
and (1.26) is positive, bounded and persists if p = bde "¢ < 1. Also, under the specific
conditions, they indicated that the systems (1.25) and (1.26) have a unique positive
equilibrium and every solution of these systems tends to the unique positive equilibrium of
their as n — 00, each one positive equilibrium of these systems is globally asymptotically
stable and finally, these systems have unbounded solutions.

In [45], Papaschinopoulos et al. investigated the boundedness, the persistence and the

asymptotic behavior of the positive solutions of the following systems of difference equa-

tions

where «, [, 7, 0, €, ( are positive constant and the initial values z_1, xg, y_1, yo are
positive constant.

They got the results are given below:

e For the system (1.27)

— Every positive solution of the system (1.27) is bounded and persists,

— If e < v and 8 < (, the system (1.27) has a unique positive equilibrium and
every solution of the system (1.27) tends to the unique positive equilibrium of

the system (1.27) as n — oo,
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. Be+(B+e)e—1 (a+B)(d+¢€)
It ¢ - y2¢?

(1.27) is globally asymptotically stable.

< 1, the unique positive equilibrium of the system

e For the system (1.28)

— Every positive solution of the system (1.28) is bounded and persists,

— If pe < ~(, the system (1.28) has a unique positive equilibrium and every
solution of the system (1.28) tends to the unique positive equilibrium of the
system (1.28) as n — oo,

(a+f2)ég+e)

(1.28) is globally asymptotically stable.

-1 O‘;;ﬁ + % + % + < 1, the unique positive equilibrium of the system

e For the system (1.29)

— Every positive solution of the system (1.29) is bounded and persists,

— If 5 < v and € < (, the system (1.29) has a unique positive equilibrium and
every solution of the system (1.29) tends to the unique positive equilibrium of
the system (1.29) as n — oo,

(a+52)é2+6)

(1.29) is globally asymptotically stable.

— If g + f + % + < 1, the unique positive equilibrium of the system

In [46], Elettreby and El-Metwally considered the system of difference equations, which

describes an economic model,

Tpyr = (1—a)z, + Br, (1 —1z,) e_(x”ﬂ/"), (1.30)

Yni1 = (1= ) yp+ Byn (1 —yp)e @Hv) n =01, ..., (1.31)

where a and /3 € (0, 00) with the initial conditions z and yy € (0, 00).
They studied the boundedness and the invariant of the solutions of system (1.30) and also
investigated global convergence for the solutions of system (1.30). Then, they obtained

the following main results:

e Every positive solution {(z,,y»)},—, of system (1.30) is bounded. Moreover,

lim supz, < ﬁ, lim supy, < ﬁ

n—oo e n—oo ae
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When « > f3, the zero equilibrium (0, 0) is a global attractor of all positive solutions

of system (1.30).

When o + Be? < 1, the unique positive equilibrium point (Z,7) of system (1.30)

is a global attractor of all positive solutions of system (1.30).

When 3 (ae — ) > a?e3, the unique positive equilibrium point (Z,Z) of system

(1.30) is a global attractor of all positive solutions of system (1.30).

e When one of the following conditions hold

i) 58 < 4e* (1 — )

i)a+p<1

the unique positive equilibrium point (Z,Z) of system (1.30) is a global attractor of all
positive solutions of system (1.30).

In [47], Papaschinopoulos et al. studied the asymptotic behavior of the positive solutions

of the system of difference equations
Tpi1l = QYp + 0 167" Ypi1 =cy, +dy,_ 1", n=0,1,..., (1.32)

where a, b, ¢, d are positive constants and the initial values x_1, xq, y_1, Yo are positive
numbers.

Then, they prove that under the condition that a, b, ¢, d € (0,1),a+b> 1, c+d > 1;

e Every positive solution of system (1.32) is bounded and persists.

e Every positive solution of system (1.32) tends to the unique positive equilibrium

(Z,7) of system (1.32) as n — oo, when suppose that either relations
c<a, b<c¢, d<cora<ec b<a, d<a.

Under the condition that a + b <1, c+d < 1;

e Every positive solution of system (1.32) tends to the zero equilibrium (0, 0) of system

(1.32) as n — oo.
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Finally, they established that where a, b, ¢, d are positive constants such that either
a+b<l1l, c+d<lora+b=1, c+d=1,

the zero equilibrium (0, 0) of system (1.32) is globally asymptotically stable.
In [48], Khan investigated the qualitative behavior of positive solutions of the following

two systems of exponential rational difference equations

ae Y + e ¥n-t are " + fie It

Tpt1 = 6 y Ynt+1 = ! 61 , N = 0, 1,..., (133)
Y+ ayn + Byn Y1+ s + B2
—Tn + —Tn-—1 —Yn + —Yn-—1

Tpy1 = — 66 y Yn41 = e 616 n = 0, 1, ceny (134)

Y+ ayn + BYn—1 Y1+ 1Ty + B1xn_1’

where «, (3, v, a1, 51, 7; and the initial conditions are positive real numbers.

They obtained the results are given below:
e For the system (1.33)

— Every positive solution of the system (1.33) is bounded and persists,
— If (a+pB)e 2 <T(y+ (a+ ) Ly) and
(a1 4 B1) e <G (v, + (ar + B1) L),
the unique positive equilibrium point of the system (1.33) is globally asymp-

totically stable.
e For the system (1.34)

— Every positive solution of the system (1.34) is bounded and persists,

—If(a+p)e ™l <T(y+ (a+ ) L) and (a1 + B;) e L2 <5 (v, + (aq + B;) L1),
the unique positive equilibrium point of the system (1.34) is globally asymp-
totically stable.

Systems of Max-Type Difference Equations

In [49], Simsek, Demir and Cinar considered the behavior of the solutions of the following

system of difference equations

A A
Tn+1 _max{_ay_n}a yn—l-l_max{_aﬁ}: (135)

x n n y?’l yn
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where the constant A and the initial conditions are positive real numbers. They proved
that the system (1.35) has unbounded solutions for special cases.
But then, in [50], Stevic corrected the results given in [49] and showed that the general

solution to the max-type system of difference equations (1.35) for the case

Yo, To > A > 0,y0/20 > max {A, 1/A},

is given by
Afk(n)—lfa(n)xfk(n) (="
Ty = 0 | e Fg,
Yo
and

yfk(”_1)+1 (=)™
e Afk( *UJF(L(n)*l Fr(n—1)+1 , N> 2.

In [51], Fotiades and Papaschinopoulos studied the periodic character of the solutions of

the system of the difference equations

Tpy1 = Max {A, 7 } , Ynp1 = Max {B, 2 } , (1.36)

n—1 Yn—1
where A, B are positive constants and the initial values x_;, zo, y_1, yo are positive
numbers.
The authors established that every solution of system (1.36) is eventually periodic for the

cases:
1<A<B, A<1<B, A<B<1, 1<B<A, B<1<A B<A<L

In [52], Stevic studied behavior of positive solutions of the max-type system of difference

equations

yp ./L'p
Tpy1 = Max {c, p—”} , Ynil = Max {c, o } , n €Ny (1.37)
T

n—1 Yn—1
where p,c € (0,00). In his work, boundedness character and global attractivity are
investigated for some special cases.
For the case p € (0,4) and ¢ > 0, boundedness of all positive solutions of system (1.37)
is determined. Also, for p € (0,4) and ¢ > 1, it is given that every positive solution

(T, Yn) >y Of system (1.37) is eventually equal to (c,c). Besides, the system (1.37) has
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positive unbounded solutions when p > 4 and ¢ > 0. Finally, every positive solution of
system (1.37) converges to (1,1) when p € (0,1) and ¢ € (0,1).
In [53], Stevic et al. studied the boundedness character of positive solutions of system of

difference equations

yP P
Tpy1 = Max {A, q—”} , Ypi1 = Max {A, L } , n €Ny (1.38)
Tp-1

q
n— Yn—1

with min {4, p, ¢} > 0.

Consequently, the following statements are obtained:

e All positive solutions of system (1.38) are bounded when A > 0,2,/ <p <1+¢q
and ¢ € (0,1).

e All positive solutions of system (1.38) are bounded when A > 0, p > 0 and p? < 4q.

e All positive solutions of system (1.38) are bounded when A > 0, p = 1 + ¢ and
q€(0,1).

e The system (1.38) has positive unbounded solutions if A > 0, p?> > 4¢ > 4, or
p>1+gqandqe(0,1).

1.1.2 Review on Three-Dimensional Systems of Nonlinear Difference Equa-

tions

This subsection is concerned with review of dynamical behavior of solutions of the systems

of three-dimensional nonlinear difference equations.

Systems of Rational-Type Difference Equations
In [54], Kulenovic and Nurkanovic studied the global behavior of solutions of the system
of difference equations

a-+ Ty, C+ Yn e+ zp
P n = - Zn - y
b+ v, Yn+1 d+ 2 +1 Ftx,

n=01,.., (1.39)

Tptl =

where the parameters a, b, ¢, d, e and f are in (0,00) and the initial conditions are

arbitrary non-negative numbers.
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They indicated that the equilibrium of system (1.39) is locally asymptotically stable if
b>1,d>1, f > 1, and obtained the global asymptotic stability of the unique positive
equilibrium for several cases depending of some special values of the parameters.

In [55] Kurbanli, in [56] Kurbanli and in [57] Kurbanli et al. investigated the behavior of

the solutions of the difference equations systems

Tp—1 Yn—1 Zn—1
Tpi1=—————, Ypo1 = ———————, Zpi1 = ——— 1.40
i YnTpn—1 — 1 Ynt TnYn—1 — 1 i YnZn—1 — 1 ( )
Tp—1 Yn—1 1
Tpn+1 = 7 Yn+1 = ————=, ZRnt+l — ’ (141)
YnTpn—1 — 1 TnYn—1 — 1 Ynzn
Tp—1 Yn—1 Ln
Tpgl = ——————, Ynp1 = ————, Znp1 = , (1.42)
YnTn—-1 — 1 TnYn—1 — 1 YnZn—1

where the initial conditions are arbitrary real numbers, respectively.

They found all exact solutions of systems (1.40), (1.41), and (1.42) under special condi-
tions and showed that the systems have unbounded solutions.

In [58], Ozkan and Kurbanli studied the periodical solutions of the systems of difference
equations

Yn—2 y _ Tp—2 p - Tp—2 + Yn—2
-1+ yn72xn71yn’ i -1+ xanynfle/ mH

Tp4+1 = , N & N07

B -1+ Tpn—2Yn—1Tn

where the initial conditions are arbitrary real numbers. They obtained all six-period

solutions of given systems under special conditions.

In [59], Stevic showed that the following system of difference equations

a1Tp—2 y - a2Yn—2 . o a3Zn—2
) n+1 — y n+1 —
b1Yn2n-—1Tn—2 + C1 ba2nTp_1Yn—2 + C2 b3TyYn—12n—2 + C3

Tpt1 = y TLEN(),

where the parameters and the initial conditions are real numbers, can be solved.

1.1.3 Review on Multi-Dimensional Systems of Nonlinear Difference Equa-

tions

This subsection is concerned with review of dynamical behavior of solutions of the systems

of multi-dimensional nonlinear difference equations.
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Systems of Max-Type Difference Equations

In [60], Stevic studied the system of max-type difference equations

x'fll) — max {fll <I‘(1)k(1) , x(2)k(1), ceey JJ(Z) k(l) ) n> 9 xnl_s} 9 (1'43)
n—R; 4 MR n-

1<i<my 4

(2 _— 1) (2) () 2
x = max i | X T s & n T
n 1<i<ms f2z n*kfl” n*kfz)’ 9 nfkfl)’ yfn—s (

n _ 1 (2) O] O]
T = max i | T ey L n T
n 1Sigm, Jui n—kg,li’ n—kl(l%’ ) ”_kflz)7 rn—s (9

n € Ny, where s, [, m;, kf]t) €N, j,te{l,..,I} and for a fixed j, i € {1,...,m;}, and
where the functions f;; : (0,00)" x Ng — (0,00), j € {1,...,1}, 7 € {1,...,m;}.

He proved that every positive solution to system (1.43) is eventually periodic with period
s under some conditions. Also, he proved some related results for the corresponding
system of min-type difference equations.

In [61], Stevic and Iricanin investigated the long-term behavior of positive solutions of

the cyclic system of difference equations

()
)

T . =max<{ «
n+1 T +2)\?
xn—l

where k£ € N, min {«, p,q} > 0.

Ci=1,...k necN, (1.44)

They showed that the system (1.44) has bounded and unbounded solutions depending
on the status of the parameters and gave some sufficient conditions which guaranty the

global attractivity of all positive solutions of system (1.44).

1.2 LITERATURE REVIEWS FOR DIFFERENCE EQUATIONS AND DIS-
CRETE SYSTEMS VIA INTEGER SEQUENCES

In this section, we study the recent investigations on the forms of solutions of systems
difference equations and difference equations in terms of well-known integer sequences
such as Fibonacci numbers, Horadam numbers, Padovan numbers. We focus on the
papers given some interesting relationships both between the exact solutions of difference
equations and the integer sequences and between the equilibrium points of difference

equations and golden ratio, plastic number.
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In [74], Tollu et al. considered the following difference equations

1 1
1= ———— n=01,.., 1.45
1+5Un’ Yn+1 _1+yn n ( )

Tnt1 =

such that their solutions are associated with Fibonacci numbers, where initial conditions
are rog € R — {—FF—;}::I and yo € R — {—F}”—;}::l and F;, is the mth Fibonacci
number.

They investigated the some relationships both between Fibonacci numbers and solutions
of equations (1.45) and between the golden ratio and equilibrium points of equations
(1.45). Then, they proved that: the solutions of equations (1.45) are given by

. F, + Fn—le o F—n + Ff(nfl)yo
Foi+ Fuxg” 7" F_ny1) + F oy’

Tn

where F), is the nth Fibonacci number, and the nontrival solutions of equations (1.45)
converge to —/ and [, so that 3 is conjugate to the golden ratio.

Next, Rabago [75] presented a theoretical explanation in deriving the closed-form solution
of Eq.(1.45) which Tollu et al. studied in [74] and provided another approach in proving
Sroysang’s conjecture (2013).

Then, in [76], Yazlik et al. studied the following rational difference equation systems

T+ 1 L E1
Gy = L =L 01, (1.46)
YnTn—1 TnlYn—1

such that their solutions associated with Padovan numbers. In their study, they obtained

that the forms of solutions of system (1.46) are as follows

in—lyO:FPn-‘rlx—1+Pn—l : :
{ F P e ptPar Py L 718 0dd

Ty, =
Pry_1z0FPrny1y—1+Pn—1 .
:FPn—1y—1x0:FPny—1+Pn—2’ if n is even
Pny—1m0$Pn+ly—l+Pn—l : :
- { Fpi oo, if n is odd
_
Ppax_ P, _14+P, . .
nT—1YoFPnt128—1+FPn—1 if n is even

:F Pn—lx—ly0$an—l+Pn—2 b

where P, is the nth Padovan number. Also, they demonstrated that every solutions of
the systems (1.46) converge to point (p,p) and (—p, —p), where p is the plastic number.

Tollu et al. [77] considered the following four Riccati difference equations

1+z, 11—y, 1 1
Tp - , n = Up = ; Un =
+1 T Yn+1 " +1 w + 1 +1 o —1

(1.47)
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in which the initial conditions are real numbers. They derived the formulae for the

solutions of equations (1.47) are given by

- Foy1mo + Fy
" Foog+ F_y’
Py + oy
In = F_nyg + F_(n—l)’
By + Fyqug
T Bt By
- F_, + F_(n_l)vg

F_(n1y + F_yup’

where F}, is nth Fibonacci number, F_,, is nth negative Fibonacci number. In addition to,
they stated the asymptotic behaviors of the solutions of these equations and introduced
that every solutions of these equations converge to their positive or negative equilibrium
points.

Also, they in [78] studied the systems of difference equations

14+ p, 1+7,
Tnt1 = y Yn+1 =

, TLGN(),

where each of the sequences p,, ¢,, r, and s, is some of the sequences z,, or y, by their
own. They solved fourteen systems out of sixteen possible systems. In particularly, the
representation formulae of solutions of twelve systems were stated via Fibonacci numbers.
Also, for ten systems, they expressed that the solutions of these systems tend to the unique
point («, ) where « is the golden ratio.

In [79], Halim concerned with the following systems of rational difference equations

1 1

n == 3 n == y :0, 1,..., 1,48
Tpt1 11y, Yn+1 1+, n ( )
and

1 1
n - 3 n - 5 - 0,1,..., 1,49
Tn+1 1=, Yn+1 1— =z, n ( )

initial conditions are arbitrary nonzero real numbers. He determined the form of solutions

of system (1.48) as given below

T — Fon14+Fon—2y0 Lo — Fon+Fon_170
2n—1 Fon+Fon_1y0 ’ 2n Fony1+Fanzo’

y _ Fon—1+Fon-—2%0 Yon = Fon+Fan—190
2n—1 F2'7L+F2n71x0 ’ 2n F27L+]_+F2ny0 )

and proved that the equilibrium point E of system (1.48) is globally asymptotically

a’l a

stable, where F = (#5, #5) = (£,1), where « is the golden ratio. Furthermore,

he established the solutions of system (1.49) are periodic with period six and are unstable.
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In [80], Bacani and Rabago studied the behavior of solutions of the following nonlinear

difference equations

Tyl = P and Y,y = "t (1.50)
where p, ¢ € RT and v € N. They proved that the solutions of equations (1.50) are as
follows

o = qWy + 2oqW,—1

Wn+1 + :BOWn ’
AW + YoqgW_(n-1)
W,(n+1) + ?Jonn ’

where W,, is the nth Horadam number.

Yn =

In [81], Halim and Bayram investigated the solutions, stability character, and asymptotic

behavior of the difference equation

Tpi1 = , n € Np, (1.51)

B + VTn—k

where the initial conditions x_j,z_ ki1, ..., 9 are nonzero real numbers, such that its
solutions are associated to Horadam numbers, which are generalized Fibonacci numbers.
Firstly, they had the difference equation

q

——a 1.52
b + Tn—k ( )

Tpy1 =

by putting ¢ = ¢ and p = %

2 Then, they proved that the forms of the solutions of

difference equation (1.52) are as follows

Wn+1 + ani—(k—‘rl)

€T n+i —
(ke tnt Wite + Won1Zi gy

g, i=1,2, .. k+1,

where W, is the nth Horadam number. Also, they obtained that the equilibrium point

E of difference equation (1.52) is globally asymptotically stable, where E = —HT\/M.
Then, in [82] Halim considered the system of difference equations
1 1
70 yn+1:m, n=20,1,.., (1.53)

where Ny = N U {0} and the initial conditions z_s, x_1, %o, Yy_2, y_1, and yo are real

Tp4+1 =

numbers. He presented the relationship between Fibonacci numbers and the solutions of

system (1.53), i.e., the form of the solutions of system (1.53) are given by

i = mintes 21,03
Yon+i = %7 1= 172737
Bt = e 1= 406
Yonti = PongotFons1vi-6 4,56,

Fonys+Fontoyi—e’
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where F), is the nth Fibonacci number. Furthermore, he shown that the equilibrium point
. . _ [ =1+V56 —1+V5
E of system (1.53) is globally asymptotically stable, where £ = <%, %)

El-Dessoky in [83] dealt with the following difference equation

ATy Ty
Tpi1 =0Ty +—————, n=0,1,..., 1.54
i ﬂxn + VTn—k ( )

where the parameters «, 3, 7 and a and the initial conditions x_;, z_;,1, ,r_1 and xg
where ¢ = max {l,k} are positive real numbers. He introduced the explicit formula of
solutions of some special cases of Eq.(1.54) via Fibonacci numbers and also, discussed the
global behavior of solutions of Eq.(1.54).

In [84], Halim and Rabago studied the systems of difference equaions

1
Tppl = ———, =——— n, keN 1.55
where the initial conditions ©_, _g11, .-, To, Y—ks Y—k+1, ---, Yo are nonzero real numbers.

Initially, they examined the form and behavior of solutions of system of difference equa-
tions

1 1

g = 1.56
1+ Yn—k il I+ Tn—k ( )

Tnt1 =

Therefore, they determined that the exact solutions of system (1.56) are as follows

Bt Fonyi(k41) T

Lo(k+1)n+i = Fonyot+Font1yi— (k+1)’ i=12..k+1,
_ Fonpa+Fonmi (k1) .

Y2(kt1)nti = Fonyot+Font1%;—(k41)’ i=12..k+1,

Fonyot+Font17; (2k42)

Fongs+Foni2®;—(2k+2)’

_ FonpotFont1yi(2k42) .
Ya(k+1)n+i = Fany3+Font2yi(2k+2)’ i=k+2..,2k+2,

L2(k+1)n+i = 1= k+2,...,2/€—|—2,

and the equilibrium point of system (1.56) is globally asymptotically stable. In addition,
the authors given some results for other systems.

Then, in [85], the authors studied the rational difference equation

T e (1.57)
YTnLp—1

where Ng = NU {0}, a, 8, v € R" and the initial conditions nonzero real numbers and

also investigated the two-dimensional case of the this equation given by

ot o+
Tnt1 = w—lﬁ, Yn+1 = Oéy_lﬁ, n e NO. (158)

YYnTn—1 YLnYn—1
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Firstly, they reduced the difference equation (1.57) to the difference equation

Tp_1 +
PR i | (1.59)
TnLp—1

by using changes variables p = % and ¢ = g Then, they presented that the closed-form

solution of difference equation (1.59) is given by

T = Sn-i—lx—l + Sn'xOx—l + an—l
" SaTo1 4 Spo1mor—1 + ¢Sn—a’

where S, is the nth generalized Padovan number and the equilibrium point of Eq.(1.59)
is globally asymptotically stable.
Later, they reduced the system of difference equation (1.58) to the system

PTn-1+q PYn—1+¢q
Tpn+l = ——— n+l — —
YnTn—-1 TnYn—1

(1.60)

by using changes variables p = % and ¢ = g Then, they presented that the closed-form

solutions of system (1.60) are given by

if n is even,

Sn+1Y—1+SnToy—1+q¢Sn—1
{ Snpy—-1+Sn—120Y—1+q¢Sn—2"

Ty =
Sn+1T—1+Snyor_1+qSn—1 . .
Snmfl“l‘snflyomfl‘i‘qsan’ lf gy Odd’
Sn+1T-1+SnYoT—1+qSn—1 . .
Yn = { Snz—1+Sn-1Y0T—-1+qSn—2"’ if n is even,
n =

Sn+1y—l+S7LCCOy—1+an—1 : :
Sny—1+Sn—1Zoy—1+qSn—2’ if n is odd,

and the equilibrium point of the system (1.60) is global attractor.

Then, in [86], Stevic et al. the following nonlinear second-order difference equation

Tpp1 = a+ — +
Tn TpTn—1

, N E NU, (161)

in which parameters a, b, ¢ and the initial values x_; and z, are complex numbers such

that ¢ # 0. Next, they used the following change of variables

= yn
Yn—1 ’

Tn
and obtained the following third-order linear difference equation with constant coefficients
Ynt1 = QYp + byn—l + CYn—2.

After, they introduced that the representation formula of every solution of Eq.(1.61) is

(Sna1 — aSp) 1+ SpToT_1 + CSp_1

Tn = )
(Sp — aSp_1) T_1 + Sp_1ToT_1 + CSp_2
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where s, is the nth generalized Padovan number. Note that, Eq.(1.57) is a special case
of Eq.(1.61) such that a = 0.

Alotaibi et al. in [87] considered the following systems of difference equations

x o YnlYn—2 y o TpTp—2
n+l — y Yn+l1l — )
Tp—1 + Yn—2 :tyn—l + Tp—2

n=01,.., (1.62)
where the initial conditions x_o, x_1, xo, y_2, Y_1, Yo are arbitrary positive real numbers.
They analyzed the solutions of the systems (1.62) such that their solutions are associated
with Fibonacci numbers.

In [88], El-Dessoky et al. examined the following difference equation

BYnYn—3
ntl = , n=20,1,... 1.63
Yot Ayn—4 + Byn—3 ( )

where «, 5, A, and B are real numbers and the initial values y_4, y_3, y_2,y_1 and y, are
positive real numbers. They presented the solutions of Eq.(1.63) in terms of Fibonacci
numbers according to some special cases of the parameters o, 5, A, and B.

Then, in [89], Matsunaga and Suzuki studied the following system of rational difference

equations
ay, + b aTp,—1 +b
il = ———, Ypy1 = —, n=0,1,.., 1.64
Tn+1 - d Yn+1 cr, +d n ( )

where the parameters a, b, ¢, d and the initial values xg, yo are real numbers. They

obtained that the explicit solutions of system (1.64) are as follows

(ayo + b) Gon_1 + (bc — ad) yoGap—2 _ (amo +b) Gay, + (be — ad) 10Gan—1
Gon + (cyo — a) Gan = Gont1 + (cxg — a) Gan

(axg + b) Gap1 + (be — ad) xoGap o _ (ayo +b) Gap + (be — ad) yoGap—1
Gop + (cxo — a) Gy e Gany1 + (cyo — a) Gan

Ton—1

)

Yon—1 9

where G, is a generalized Fibonacci sequence defined by
Gni2 = (a+d)Gpyq + (be — ad) G,

with Go = 0 and G; = 1. Moreover, they presented that every solution of system (1.64)
converges to its equilibrium points.

In [90], Ocalan and Duman considered the following nonlinear recursive difference equa-
tion

Tp—1

Tpy1 = , n=0,1,..., (1.65)

n
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with any nonzero initial values x_; and xy. Then, they extended their all results to

solutions of the following nonlinear recursive equations

p
Lnt1 = (xn1> , p>0andn=0,1,.., (166)

n

with any nonzero initial values x_; and z(. Later, they obtained that the exact solution
of Eq.(1.65) is

fn—l
T_1

— ifn=1,3,5,...,
n={
f}Si ifn:274,6,...7

1

T_q
where f, is the nth Fibonacci number. Under the special case of initial values, they
determined that there exist non-oscillatory positive solutions of Eq.(1.65), which converge
monotonically to the equilibrium point 1.

Furthermore, they given that the exact solution of Eq.(1.66) is

l“infl(p) )
{ W 1fn:1,3,5,...,

Tn =9 _me»
W 1fn:2,4,6,...,

A
where f, (p) and g, (p) are the nth Fibonacci-type number. And also, under the special
case of initial values, they demonstrated that there exist non-oscillatory positive solutions
of Eq.(1.66), which converge monotonically to the equilibrium point 1 and the Eq.(1.66)
has unbounded solutions.

Next, Akrour et al. [91] studied the following system of difference equations

aYpTn_1 +bxr, 1 +c ATpYn_1 + byn_1+c
Tp41 = y Yn+1 = 5
YnTn—1 TnYn—1

n=20,1,..,

where the parameters a, b, ¢ are arbitrary real numbers with ¢ # 0 and the initial values
r_1, g, Y—1 and yp are arbitrary nonzero real numbers. They examined that the explicit

solutions of system (1.56) are given by

cJont1 + (Jonts — adJapi) o1 + JopiaT_ 1Yo

Tan+1 CJQn + (J2n+2 — aJ2n+1) Tr_1 + J2n+1$_1y0 ’
T clonta + (Jonya — adongs) y—1 + J2n+3x0y—1’
cJant1 + (Jants — @ony2) Y1 + Joni2Toy 1
_ cJonpr + (Jangs — adoni2) Y1 + JoniaToy
Y1 = cJon + (Janyz — @Jons1) Y1 + Jong1Toy—1
oo+ (Jonga — adoni3) o1+ JonysT 190
Yont+2 =

cJonti1 + (Jonts — adapio) x4 + Jonor 1Yo’
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where J, is defined by the recurrent relation
Jn+3 = aJn+2 + an-l—l + CJna ne Na

such that Jo, =0, J; =1, J, =a.
For related studies on solving difference equations and systems of difference equations

and investigating the asymptotic behavior of their solutions, see [92, 100].
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CHAPTER 2

THE GENERAL DEFINITIONS AND THEOREMS

In this chapter, we state some definitions and theorems used in this thesis. For details,

see [1-14, 105-120].

2.1 DIFFERENCE EQUATIONS

In this section, we give some important definitions and theorems about difference equa-
tions and systems of difference equations (discrete dynamical systems).
Let I be some interval of real numbers and let f : I**! — I be a continuously differentiable

function. A difference equation of order (k 4 1) is an equation of the form
Tor1 = f(Tp, Tp_1,y ooy Tpg), n=0,1,.. (2.1)
A solution of Eq.(2.1) is a sequence {z,}32 , that satisfies Eq.(2.1) for all n > —k.

Definition 2.1 A solution of Eq.(2.1) that is constant for all n > —k is called an
equilibrium solution of Eq.(2.1). If

Tn =717, for alln > —k

is an equilibrium solution of Eq.(2.1), then T is called an equilibrium point, or simply

an equilibrium of Eq.(2.1).
Definition 2.2 (Stability) Let T an equilibrium point of Eq.(2.1).

(a) An equilibrium point T of Eq.(2.1) is called locally stable if, for every e > 0; there
exists 0 > 0 such that if {x,}3> . is a solution of Eq.(2.1) with

|z_p —Z| + |21k — T| + ... + |20 — T| < 6,
then

|z, —T| <e, foralln>—k.
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(b) An equilibrium point T of Eq.(2.1) is called locally asymptotically stable if, it is locally
stable, and if in addition there exists v > 0 such that if {x,}>> . is a solution of

Eq.(2.1) with
Tk — |+ |2 ko1 — T+ .. + |20 — T < 7,
then we have

lim z, = 7.
n—oo

(c) An equilibrium point T of Eq.(2.1) is called a global attractor if, for every solution
{zn}2 4 of Eq.(2.1), we have

lim z, = 7.
n—oo

(d) An equilibrium point T of Eq.(2.1) is called globally asymptotically stable if it is locally

stable, and a global attractor.

(e) An equilibrium point T of Eq.(2.1) is called unstable if it is not locally stable.

Suppose that the function f is continuously differentiable in some open neighborhood of

an equilibrium point 7. Let

i (z,7,...,7), fori=0,1,...,k

denote the partial derivative of f(ug,u1, ..., ux) with respect to u; evaluated at the equi-

librium point T of Eq.(2.1).

Definition 2.3 The equation

Ynil = QoYn + Q1Yn-1+ oo + @Yn_s, n=0,1,... (2.2)
is called the linearized equation of Eq.(2.1) about the equilibrium point T, and the equation
ML g\ — g A =g =0 (2.3)
is called the characteristic equation of Eq.(2.2) about .

Theorem 2.1 (The Linearized Stability Theorem) Assume that the function f is a
continuously differentiable function defined on some open neighborhood of an equilibrium

point T. Then the following statements are true:
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(a) When all the roots of characteristic equation (2.3) have absolute value less than one,

then the equilibrium point T of Eq.(2.1) is locally asymptotically stable.

(b) If at least one root of characteristic equation (2.3) has absolute value greater than

one, then the equilibrium point T of Eq.(2.1) is unstable.

(c) The equilibrium point T of Eq.(2.1) is called hyperbolic if no root of characteristic
equation (2.3) has absolute value equal to one. If there exists a root of characteristic
equation (2.8) with absolute value equal to one, then the equilibrium T is called

nonhyperbolic.

(d) An equilibrium point T of Eq.(2.1) is called a repeller if all roots of characteristic

equation (2.3) have absolute value greater than one.

(e) An equilibrium point T of Eq.(2.1) is called a saddle if one of the roots of character-

istic equation (2.83) is greater and another is less than one in absolute value.

The following two theorems state necessary and sufficient conditions for all the roots of

a real polynomial of degree two or three, respectively, to have modulus less than one.

Theorem 2.2 ([1], p.6) Assume that a; and ag are real numbers. Then a necessary

and sufficient condition for all roots of the equation
N4+ ad+ao=0

to lie inside the unit disk is

la1| < 1+ ag < 2.

Theorem 2.3 ([1], p.6) Assume that as, a1, and ay are real numbers. Then a necessary

and sufficient condition for all roots of the equation

N4 a N +ad+a=0

to lie inside the unit disk is

lag +ao| <1+ ay, |ag—3agl <3—a; and aﬁ—l—al—aoag < 1.
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Theorem 2.4 (Clark Theorem) ([1], p.6) Assume that qo, q1, ..., @& are real numbers
such that

go] + || + .+ lax| <1
Then all roots of Eq.(2.3) lie inside the unit disk.

Let us introduce the discrete dynamical system:

Tp+1 = fl (xn;xnfla"-7xn7k7yn7yn717---;ynfkaznaznfla---aznfk)7
Yn+1 = f2 (xna Tp—15 s Ln—ks Yns Yn—15 s Yn—k> ns fn—1y -+ ank) ) (24)
Zn4+1 = f3 (xnaxn—la'-wmn—kay?myn—la"'ayn—kaznazn—la'--7Zn—k)7

n € N, where fi : IFT' x I5*h 5 IMY — 1) fy « TP < ISP < I8 — [, and fs
It x I3t x I¥™ — I3 are continuously differentiable functions and I, I, I3 are some
intervals of real numbers. Also, a solution {(z,, yn, 2,)}22_, of system (2.4) is uniquely

determined by initial values (z_;,y_;,2_;) € I X I x I3 for 1 € {0, 1, ..., k}.

Definition 2.4 An equilibrium point of system (2.4) is a point (T,7,Z) that satisfies

T = fl (5757 7f7y7y7 '7ya§727 ,5)7
y = f2(f7f7 757@;@ '7@75777 72)7
zZ = f3 (f7§7 7§?yay7 "7y7§7§7 73)

Together with system (2.4), if we consider the associated vector map
F = (f1: @ Tne1s ooy Takes for Yns Yn—1s s Yn—is [35 21 s Znt) 5

then the point (7,7, %) is also called a fixed point of the vector map F.
Definition 2.5 Let (%,7,%) be an equilibrium point of system (2.4).

(a) An equilibrium point (T,7,Z) is called stable if, for every ¢ > 0; there exists 6 > 0

such that for every initial value (x_;,y_;, z2—;) € Iy X Iy X I3, with

Zj:_k |z — 7| <9, ij_k lyi — 9| <9, Z?:_k 2 — 2| <0

implying |x, —T| < e, |y, — Y| <&, |zn — Z| < eforn € N,

34



(b) If an equilibrium point (Z,7,Z) of system (2.4) is called unstable if it is not stable.

(c) An equilibrium point (T,7,Z) of system (2.4) is called locally asymptotically stable if,

it 1s stable, and if in addition there exists v > 0 such that

0 0 0
Yo w—T <y Y - gl<y Y la—z<y
and (:Cnu Yn, Zn) - (E,g, E) as n — 0.

(d) An equilibrium point (T,Y,Z) of system (2.4) is called a global attractor if, (X, Yn, 2n) —

(T,7,Z) as n — oo.

(e) An equilibrium point (T,7,Z) of system (2.4) is called globally asymptotically stable

if it is stable, and a global attractor.

Definition 2.6 Let (Z,7,%z) be an equilibrium point of the map F where f1, fo and f3
are continuously differentiable functions at (T,y,z). The linearized system of system (2.4)

about the equilibrium point (T,y,Z) is

Xoi1 = F(X,) = BX,,

where

X = (Tns ooy Toos Yns oos Ynihos Zras ooy Znit)

and B is a Jacobian matrix of system (2.4) about the equilibrium point (Z,7,Z).
Theorem 2.5 (The Linearized Stability Theorem) Assume that

Xop1 = F(X,),n=0,1,...,

be a system of difference equations such that X is a fized point of F.

(a) If all eigenvalues of the Jacobian matriz B about X lie inside the open unit disk
I\ < 1, that is, if all of them have absolute value less than one, then X is locally

asymptotically stable.
(b) If at least one of them has a modulus greater than one, then X is unstable.
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Corollary 2.1 Assume that
Xpn1=F(X,),n=0,1,...,

be a system of difference equations such that X is a fived point of F. If no eigenvalues
of the Jacobian matriz B about X have absolute value equal to one, then X is called
hyperbolic. If there exists an eigenvalue of the Jacobian matriz B about X with absolute

value equal to one, then X is called nonhyperbolic.

The so-called Schur-Cohn criterion provides necessary and sufficient conditions for all

roots of the equation
P =ap\"+a N '+ 4 a, A+ a, =0 (2.5)

with real coefficients to lie in the open disk |A\| < 1.
Before we can explain the Schur-Cohn criterion, we need the so-called Routh-Hurwitz

criterion.

Theorem 2.6 (Routh-Hurwitz criterion) Assume that
Xpi1 = F(X,), n=0,1,...,

is a system of difference equations and X is a fived point of F, the characteristic polyno-
mial of this system about the equilibrium point X is given by (2.5) with real coefficients
and ag > 0. Then all roots of the polynomial P(\) lie inside the open unit disk |\ < 1
if and only if

Ap>0fork=1,2...,n

where Ay is the principal minor of order k of the n X n matrix

a; asz das 0
ag Qg Qg 0
An = 0 ay as 0
0 0 O an,
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Theorem 2.7 (Schur-Cohn criterion) The equation
PA) =\ +a N P+, At a, =0
has all its roots in the open unit disk |\ < 1 if and only if the equation

P(Z+1):O
z—1

has all its roots in the left-half plane

Re(z) < 0.

Definition 2.7 A solution {(x,, Yn, 2n) 152, of system (2.4) is bounded and persists if

there exist positive constants M, N such that

M< 2, Yn,2n <N, n=—-m,—m-+1,....

Definition 2.8 A solution {(x,, Yn, 2,) 5> of system (2.4) is periodic with period p if
Tntp = Tny Yntp = Yns Zntp = 2n, Jor alln > —1.

Definition 2.9 Let (Z,7,Z) be an equilibrium point of system (2.4), and assume that
{(Tn, Yny 2n) }22 4. is a solution of the system (2.4).

A "string" of consecutive terms {xs...,xm} (resp. {YsrsYm}s {25y Zm}), s > —1, m < 00
is said to be a positive semicycle if x; > T (resp. y; >, 2z > Z), 1 € {s,...,m}, 151 <T
(resp. Ys—1 <Y, 2s-1 < Z), and Tpi1 < T (1€SP. Yms1 < Y, Zmi1 < Z).

A "string" of consecutive terms {xs...,xm} (resp. {Ys-r,Ym}s {25y 2m}), s > —1, m < o0
is said to be a negative semicycle if x; < T (resp. y; <Y, z; <Z), 1 € {s,...,m}, x5 1 > T
(resp. Ys—1 > Y, 25-1 > Z), and Typp1 2 T (T€SP. Yt > Y, Zmy1 > Z).

A "string" of consecutive terms {(Ts, Ys, Zs) s -+, (T, Ym, 2m) } 18 said to be a positive (resp.
negative) semicycle if {xs..., Tm}, {Ys--ss Ym}, {25, Zm } are positive (resp. negative) semi-

cycles.

Definition 2.10 A solution {(Tn, Yn, 2n) }32 1 of system (2.4) is called nonoscillatory

about (T,7,Z), or simply nonoscillatory, if there exists N > —k such that either
Tp 2T, Yn =Y, 2n > 2, for alln > N
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or
Tp <T, Yp <Y, 2n < Z, for alln > N.

Otherwise, the solution {(Tn, Yn, 2n) Y22, is called oscillatory about (T,7,Z), or simply

oscillatory.

Theorem 2.8 (Rouche’s Theorem) ([105], p.365) Let C' be a simple closed contour
lying entirely with a domain D. Suppose f and g are analytic in D. If the strict inequality
|f (2) =g (2)| < |f (2)] holds for all z on C, then f and g have the same number of zeros

(counted according to their order or multiplicities) inside C.

Now, we give some notifications about centre manifold theorem see [106-113].

Centre manifold theory [106] may be utilized to refer to the stability of non-hyberbolic
fixed points. A centre manifold is a set M, in a lower dimensional space where the
dynamics of the original systems can be derived by examining the dynamics on M.,.
Regard the m—parameter map F (m, u), F : R®* x R¥ — R¥, where m € R® is a parameter
and u € RF. Let F (m,u*(m)) = u*(m) be a fixed point of F. It is notice that the
stability of the hyperbolic fixed points of F' is established from the stability of the fixed
points under the linear map J = D, F (m,u* (m)).

Centre manifold theory make use of when one of the eigenvalues lies on the unit circle
and the other eigenvalues are inside the unit circle.

Assuming, without loss of generality that u* = 0 = (0,0, ...,0) the k—dimensional zero

vector, the map F' can be written in the form

r — Ax+ f(z,y) (2.6)
y — Br+g(zy)

where J on (2.6) has the form

A 0
0 B

J=

Notice that all of the eigenvalues of A lie on the unit circle and all of the eigenvalues of
B are off the unit circle. Hereby, A is a t X t matrix and B is an s X s matrix, with
t + s = k. The following theorem alleges the existence of a (non-unique) centre manifold
(a curve y = h (z)) on which the dynamics of system (2.6) is provided with the map on

the centre manifold.
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Theorem 2.9 There is a C" centre manifold for system (2.6) that can be represented

locally as

M.={(z,y) eR" xR*:y = h(z), ||z|| <&, h(0) =0, Dh(0) =0}.
Furthermore, the dynamics restricted to M, are given locally by the map
v+ Az + f (2, h(2)), x € R

The following theorem indicates that the dynamics on the centre manifold M, determines

the dynamics on (2.6).

Theorem 2.10 Suppose that the t-dimensional zero vector 0; = (0, ...,0) is a fixred point
for the map © — Az + f(x,h(z)), x € RL. If 0y is stable, asymptotically stable,
or unstable, then the fized point Oy of system (2.6) is stable, asymptotically stable, or

unstable, respectively.
2.2 INTEGER SEQUENCES

Now, we give information about integer sequences that establish a large part of our study.

Some properties of the above sequences were studied in various papers, see [114-120].

2.2.1 Fibonacci Numbers

The Fibonacci sequence is defined by
Fn =Fp 1+ an27 n Z 2 (27)

with initial conditions Fy, = 0, F; = 1. Also, it is obtained to extend the Fibonacci

sequence backward as
F,=(-1D)""FE,.
The characteristic equation of (2.7) is 2 — z — 1 = 0 such that the roots

14++/5 1—-5

5 (golden ratio) and 8 = 5

o =

Also, there exists the following limit

lim Pt = q,
F,

n—o0 n

where F;, is nth Fibonacci number.
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2.2.2 Padovan Numbers

The Padovan sequence is defined by
Pn:Pn72+Pn737 n €N (28)

with initial conditions P, =0, P41 =0, Py = 1.

The characteristic equation of (2.8) is 23 — z — 1 = 0 such that the roots

r?2 +12
P = 6r
o412 V3 2
T TG ﬂ?(é‘:),—r)
L _r2+12+2_\/_§<t_3)
6r 2 \6 3r

where 7 = v/108 4+ 121/69 and the unique real root is p named as plastic number. Also,

there exists the following limit

li Pn+1
11m

n—00 Pn

=D,

where P, is nth Padovan number.

2.2.3 Horadam Numbers

Horadam sequence, a generalization of Fibonacci sequence, (W, (a,b;p,q))n>o or simply

(Wh)n>o is defined by
Wn = an,1 + an,g, Wo = a, W1 = b, n 2 2, (29)

where a, b, p and g are arbitrary real numbers.

The characteristic equation of (2.9) is 22 — pz — ¢ = 0 such that the roots

y o Pt VP 4 andu:p—\/p2+4q
5 .

2
Also, there exists the following limit

Wn+1

n

lim =\,

n—oo

where W,, is nth Horadam number.
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2.2.4 Generalized Padovan Numbers

The generalized Padovan sequence, an extension of the padovan sequence, is defined by
Sp =pSn_o+qSn_3, neN (2.10)

with initial conditions S_9 = 0, S_; = 0, Sg = 1, where p and ¢ are arbitrary real
numbers.

The characteristic equation of (2.10) is 23 — pr — ¢ = 0 such that the roots

b = R%* +12p
N 6R
R2+12p 3 (R 2p
= ——mr Tl
12R 2 \6 R
y - i V3R 2
N 12R 2 \6 R

where R = f/ 108q + 124/ —12p3 4 81¢>. Also, there exists the following limit

lim Sni1 ®,

n—00 Sn

where 5,, is nth generalized Padovan number.

Also, the other integer sequences are as follows:

e Lucas sequence is defined by

L,=Ly, 1+ Ly o, Ly=2, Li=1,

e Pell sequence is defined by

PnZQPn—1+Pn—27 POZOa P1:17

e Pell-Lucas sequence is defined by

Pn:2Pn—l+Pn—27 P0:2, P1:27

e Jacobsthal sequence is defined by

Jp = Jp_1+ 2Jn—27 Jo = Oa J1 = 1,
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e Jacobsthal-Lucas sequence is defined by
jn = jn—l + 2jn—27 jO =2, jl = 17

e Perrin sequence is defined by
Qn = anZ + Qn737 QO = 37 Ql = 07 Q2 = 2.

Now, we give information about Tribonacci numbers that we afterwards need in the paper.

2.2.5 Tribonacci Numbers

The Tribonacci sequence {7, },-, is defined by the third-order recurrence relations
Tn+3 == Tn+2 + Tn+1 ‘I— TTU (211)

with initial conditions Ty = 0, 77 = 1, T5 = 1. Also, it can be extended the Tribonacci

sequence backward (negative subscripts) as

T =T pnig—T pio—T i1 (2.12)
It can be clearly obtained that the characteristic equation of (2.11) has the form
P22 -1=0 (2.13)

such that the roots

14+ v/19 4+ 3v33 + /19 — 3v/33
3
14+ wv19+3v33 + w?v19 — 3v/33

B = 3
14+ w?V/19 +3v33 +wv 19 — 3v/33
/y =
3

where « is called Tribonacci constant and

1443

5 = exp (27mi/3)

w

is a primitive cube root of unity. Therefore, Tribonacci sequence can be expressed using

Binet formula

n+1 ﬁn+1 n+1

° + + i
(@=B)(a=v) B-a)B-7 G-a)ly=5)
Furthermore, there exist the following limit

TTL T
lim 7 = q, (2.14)

n— 00 Tn

T, =

where r € Z and T,, is the nth Tribonacci number.
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2.2.6 Generalized Tribonacci Numbers

The generalized Tribonacci sequence in [121] {V},},>0 is defined as follows:
V=1V 1+sV, o+tV,s, Vo=a,Vi=0bVo=¢c, n>3 (2.15)

where a, b, ¢ are arbitrary integers and r, s,t are real numbers.
The sequence {V,,},>0 can be expanded to negative subscripts by defining

s r 1
Vo ===V ety = Vo) + Voo
y /=) T Vo) TV (ne3)

for n = 1,2,3,... when t # 0. Thus, recurrence (2.15) holds for all integer n.

Ifweset r=s=t¢t=1and Vj = 0,V4 = 1,V5 = 1 then {V,},>0 is the well-known
Tribonacci sequence and if we set r =s =t =1and Vy =3,V; = 1,V5 = 3 then {V,, },,>0
is the well-known Tribonacci-Lucas sequence.

Actually, the generalized Tribonacci sequence is the generalization of the renowned se-
quences like Tribonacci, Tribonacci-Lucas, Padovan (Cordonnier), Perrin, Padovan-Perrin,
Narayana, third order Jacobsthal and third order Jacobsthal-Lucas. In literature, for in-
stance, the following names and notations (see Table 1) are used for the special cases of
r,s,t and initial values.

Table 2.1 A few values of generalized Tribonacci sequences.

Sequences (Numbers) Notation

Tribonacci
Tribonacci-Lucas
Padovan (Cordonnier)
Pell-Padovan
Jacobsthal-Padovan
Perrin
Pell-Perrin
Jacobsthal-Perrin
Padovan-Perrin
Narayana
third order Jacobsthal
third order Jacobsthal-Lucas

{T,} ={V,(0,1,1;1,1,1)}
(K.} ={V,(3,1,3;1,1,1)}
(P} ={V,(1,1,1;0,1,1)}
{R,} ={V,(1,1,1;0,2,1)}
{JP,} = {V,(1,1,1;0,1,2)}
{Q.} = {V,(3,0,2;0,1,1)}
{pQn} = {Vn(3,0,2;0,2,1)}
{JQ,} = {V,(3,0,2:0,1,2)}
{5} = {V,(0,0,1;0,1,1)}
{N,} = {V,(0,1,1;1,0,1)}
{Jn} ={V.(0,1,1;1,1,2)}
{n} =1{Va(2,1,5:1,1,2)}

)
)

)
)
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As {V,,},>0 1s a third order recurrence sequence (difference equation), it’s characteristic
nfn>0 )

3

equation is 23 — rz? — sx — t = 0, whose roots are

a = a(r,s,t):g—kA—i—B
B = B(T,s,t):g+wA+wQB
= y(r,s,t):g—i—wQA%—wB
where
r3 rSs t 1/3 r3 TS t 1/3
A= |—=+—+= A B=|—4+—+-—+vVA
(27+6+2+\/_> ’ (27+6+2 f)
r3t r2s? rst 53 12
st =or ~ T8 6 w1

143
- %\/_:exp@m'/i%).

Note that we obtain the following identities
a+pB+y = r,
af tay+py = —s,
afy = t.
From now on, we assume that A(r,s,t) > 0, so that the Eq.(2.15) has one real («) and
two non-real solutions with the latter being conjugate complex. Therefore, in this case,

it is known that generalized Tribonacci numbers can be declared, for all integers n, using

Binet’s formula
Pa™ Qp" "

Rl Py TP ) S vy vy

(2.16)

where
P=Vo =B+ Vi + BV, Q=Vo—(a+V1+ayVo, R=Vy— (a+ B)V1 + aBV.

Notice that the Binet form of a sequence satisfying (2.15) for non-negative integers is
valid for all integers n, for a proof of this result see [122]. This result of Howard and
Saidak [122] is even true in the case of higher-order recurrence relations.

We can present Binet’s formula of the generalized Tribonacci numbers for the negative

subscripts: for n = 1,2, 3, ... we get
a? —ra—s Pal—m BE—rB—s QB

t (a-Aa-7 " t (G-a)@-7
Y-y —s Ry
. G—a)( -5

Vo, =

+
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CHAPTER 3

GLOBAL BEHAVIOR OF SOLUTIONS OF A SYSTEM OF
THREE-DIMENSIONAL NONLINEAR DIFFERENCE EQUATIONS

Firstly, we state that the results of this chapter are cited from [65] which has been
published by us.
In this chapter, we investigate the stability, boundedness character and periodicity of

positive solutions of the system of difference equations

Tp— n— Zn—
la yn+1:A+u7 Zn+1:A+ -

n Z n yn

Tpt1 = A+

. n=0,1,.., (3.1)

where the parameter A and the initial values x_1, g, y_1, Yo, 2_1, 20 are positive real

numbers.

3.1 MAIN RESULTS

In this section, we prove our main results.

Theorem 3.1 The following statements are true:

(1) If (z,7,%) is a positive equilibrium point of system (3.1), then

(A+LA+1LA+1), ifA#£1,
(i) e (Loo) ifA=1.

(i) If A > 1, then the equilibrium point of system (8.1) is locally asymptotically stable.
(iii) If0 < A < 1, then the equilibrium point of system (3.1) is locally unstable.

(iv) If A =1, then for every p € (1,00) there exist positive solutions {(xy,, Yn, zn)} of
system (3.1) which tend to the positive equilibrium point (u, 1, ﬁ)
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Proof. (i) It is easily seen from the definition of equilibrium point that the equilibrium

points of system (3.1) are the nonnegative solution of the equations

T=A+-,7=A+

ISR
IR

From this, we get

S
Y|

= AZ+47T, §jz=Az+7, zy=Ay+7z

= TZ-T=9Z-7, AZ+y=Ay+7
=

From which it follows that if A # 1,
T=y=z=A+1= (T,9,2) =(A+1,A+1,A+1).

Also, we have

TZ—T TZ—T ZY—Z

z

U
I
I

8|
|
|
8|
I
<
Nl
|
<

From which it follows that if A =1,

T:yandyz:y—i_zi (f7yaz) = (M%ﬁ) y € (1700)

In that case, we have a continuous of positive equilibriums which lie on the hyperboloid

YzZ=7y+7Z. (3.2)

(ii) We consider the following transformation to build the corresponding linearized form

of system (3.1):

(xna Tn—15Yns Yn—1, Zn, Zn—l) - (fa f17 g, 91, h’> hl)
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where

ZTL
fl = In

Zn
g = Un

Yn
hl = Zn.

The Jacobian matrix about the equilibrium point (Z,7,%) under the above trans-

formation is given by

0 0 0 -5 0
10 0 0 0 O
00 0 L —-% 0
B(z,y,7) = i - (3.3)

00 1 0 0 0
00 -%0 0 1

Yy Y
00 0 0 1 0

Hence, the linearized system of system (3.1) about the equilibrium point
(7,9,2) =(A+1,A+1,A+1)

is

Xnt1 =B (T,7,7) Xn,

where

Xn = ((l’n, Tn—1yYn) Yn—1, Zn; Zn—l))T

and
0 75 0 0 —z5 0
10 0 0 0 0
1 1
BEga=| 0 0 am am o
o0 1 0 0 0
0 0 —55 0 0 55
00 0 0 1 0
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Then, the characteristic equation of B (Z,7,z) about
(T,@,Z) = (A—|— 1LLA+1, A+ 1)

18

AG_(3A4~2A4+(3A4—QA2_ 1 o 5.4)
(A+1) (A+1) (A+1)

From this, the roots of characteristic equation (3.4) are

1
M o=

VA+T
1
)\2 = -

VAT
\ _ 1VEA+5 -1
T 9 A41

1VAA+5+1
M o= e P
2 A+l
N 1VAA+5+1
5T 9 A41
1VAA+5-1

2 A+1

e =

From the Linearized Stability Theorem, since A > 1, all roots of the characterictic
equation lie inside the open unit disk |A| < 1. Therefore, the positive equilibrium

point of system (3.1) is locally asymptotically stable.
(iii) From the proof of (ii), it is true.
(iv) From (3.3), the linearized system of system (3.1) about the equilibrium point
(7,7,2) = (u,u,;;ﬁfi>
is
Xoi1 = B(Z7,7,2) X,
where

Xn = ((l‘n, Tn—1yYny» Yn—1, Zn, Zn—l))T

48



and

p=l
0t 0 0 g
10 0 0 0 0
0 0 0 el =D
zZ) = I n

o0 1 0 0 0

1 1
00 - 0 o
00 0 0 1 0

Hence, the characteristic equation of the matrix B is

)\6

)

2

2u2—1)A4+<u3+u2—3u+1)/\2_(u—1)2:o

It Iz G

Therefore, the roots of the equation (3.5) are:

A1
A2

A3

Aq

As

A6

|
—_

—_

=
|
—

=
=]
—_

L

=
—_

Then, the modulus of four of the roots of (3.5) are less than 1. So, there exist positive

solutions of system (3.1) which tend to the positive equilibrium point (,u, (L, ﬁ)

of system (3.1) (this follows from the following proposition). This completes the

proof.

In the following proposition we find positive solutions of system (3.1) which tend to

(Z,7,%Z) as n — oc.

Proposition 3.2 Let {(zn, Yn, 2n)} be a positive solution of system (3.1). Then, if there

exists an s € {—1,0,...} such that forn > s, x, > T, yp > 7, 2, > Z (resp., x, < T,

Yn < T, 2n < Z), the solution {(x,,yn,z,)} tends to the positive equilibrium (T,7,Z) of

system (3.1) as n — oo.
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Proof. Let {(z,,yn, 2,)} be a positive solution of system (3.1) such that
anf, yn2y7 anza 'I’LZS, (36>

where s € {—1,0,...}. Then from (3.1) and (3.6) we have

Tn-1 Tn—1

Tpyr = A+ . <A+ = n > 1. (3.7)
Set

Unir = A+ “”;,n > 1 (3.8)
such that

Us = Ty, Ugi1 = Tey1, S € {—1,0,1,...}, n>s. (3.9)

Then, the solution w,, of the difference equation (3.8) is as follows:

(&) () rm o) v () = oo
Uy =cC1 [ —= | ——= ——=c | —= | ——= T, )

1 NG 1 Vi 1 1 NG 1 7

where ¢1, ¢3 depend on x4, x4, 1. In addition, the relations (3.7) and (3.8) imply that

< Tp—1 — Up-1
xn-f-l — Up41 > T

, n>s. (3.11)
Then, by using (3.9) and (3.11) and induction, we have
Ty < Up, N> S. (3.12)
Therefore, from (3.6), (3.10), and (3.12), it is clear that
nhi{)lo Ty =T. (3.13)

Similarly, we can prove that

lim y, =% and lim z, =7Z. (3.14)

n—oo

Thus, from (3.13) and (3.14), the solution {(x,, y., 2,)} tends to (Z,7,%) as n — oc.
Arguing as above we can show that if x,, < Z, y, <7, 2, < Z for n > s, then {(x,,, yn, 2,)}

tends to (¥,7,z) as n — oo. The proof of the proposition is completed.

Theorem 3.3 Assume that 0 < A <1 and {(zn, Yn, 2,)} is an arbitrary positive solution

of system (3.1). Then, the following statements are true.
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@) If

a<lyqi<1 <1 > — > — > — 3.15
T-1 » Y-1 ) R-1 > Lo 1—A’y0 1—A’ZO 11— A ( )
then
lim Ton+1 A, lim Yop+1 = A, lim 2n+1 — A,
lim x5, = oo, lim gy, =00, lim 2y, = co.
(i) If
<l,y<1,2<1 > ! > ! > (3.16)
x 2 T_ — Y A —_— .
0 » Yo » <0 ) 1 1_A7y1 1—14; 1 1—A’
then
lim 9,41 = 00, lim Yo7 =00, lim 29,41 = o0,
lim z9, = A, lim gy, = A, lim 2, = A.
Proof. (i) From (3.1) and (3.15), we get
_ 1
Ty = A+Q<A+—<A+(1—A):1,
<0 <0
Y-1 1
h = A+—<A+—<A+(1-A4)=1,
20 20
Z_1 1
7 = A+ —<A+—<A+(1-4) =1,
Yo Yo
ZTo 1
= A+—>x0>——
2 * 21 0 1 —A,
v = A+ LIS Yo > ;
21 1-A
20 1
= A+ —>z>——.
29 + " 20 1- A
By induction for n =0, 1,2, ..., we obtain
Top—1 < 1, Yon—1 < 1, Zon—1 < ]_, (317)
> L > L > L
€ n PR n PR Z n PR
2 1—A o1

Thus, relations (3.1) and (3.17) imply that

Ton—2 Ton—4a

Loy = A+ > A+ 29y_9 > 2A + > 2A—|—.%’2n_4,
Z9n—1 Z2n—3

Yo = A+ M > A+ Yon—2 > 2A + Yan—a > 2A + Yon—4,
“2n—1 “Z2n—3
Zop— Zom—

Zon = A+ 2 2>A+22n_2>2A+ 2 4>2A+Z2n—4-
Yon—1 Yon—3
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From which we get

lim x5, =00, lim yy, =00, lim 2, = 0.
n—oo

Noting that (3.17) and taking limits on both sides of three equations

Yon—1 Zon—1
s Yon4+1 = A + y R2n41 = A + )
Z2n Zon Yon

Ton—1

Topy1 = A+
we have
T}Lff)lo Top1 = A, nhjl;lo Yont1 = A, 7115{.10 Zon1 = A.

(ii) The proof is similar to the proof of (i), so we leave it to readers.

Theorem 3.4 Assume that A = 1. Then every positive solution of system (3.1) is

bounded and persists.

Proof. Let {(zn,Yyn, 2z,)} be a positive solution of the system (3.1).

Obviously, =, > 1, v, > 1, z, > 1, for n > 1. So, we have

K
Ty Yis 2 € |:K, K——l} s 1=1,2...m+1,

where

sziﬂ{a,i} >1, o= min {xiayhzi}: B = max {xi’yiuzi}'

6—1 1<i<m+1 1<i<m—+1

Then, we obtain

K 1 K/(K-1) K
K = 14— <ann=1 <1 - ,
M I A T K—1

K " K/(K-1) K
K = 14— <ypn=1 <1 — ,
TR K- SYme T L S T TR K1

K 2 K/(K-1) K

K = 14— <=1 <1 - .
TR K-y ST S T TR K1

By induction, we get

K
iy Yiy ~i K7— ’ ) = 1727""
T, Y ZG[ K—J 7

Theorem 3.5 Assume A = 1. Then, every positive solution of system (3.1) is periodic

of period 2.
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Proof. From system (3.1), we have

— -1 Y L
$n+1 B ) yn+1 - 1 + Zn ’
_ Yn
Tpyo = 1+ z +1’ Ynt2 = 1+ Zn+41’
=1+ 5 =1+ “T
Yn v
y2
. TnYn _
L+ Yn+2n—1 =1+ yn+2n 1
(from 3.2) , . 1a. (from 3.2) 2, 14y,
Zn—1 Zn—1
=T, = Yn

Zn+l = 1+ ==

An—1

z
zn+1_1+ el

=1+-

=1+

:Zn

yn

2

Yn

1

Zn+yn 1
(from 3.2) o 142z,
o Yn—1

Theorem 3.6 Assume A > 1. Then, every positive solution of system (3.1) is bounded.

Proof. Let {(zn,Yn, 2n)} is a positive solution of system (3.1). Clearly,

Ty Yn,2n > A >1, forn > 1.

From (3.18), we have

vV

Ly Ty
anrl:A—i_ ZlgA—i_ ’:1417 n
n

Set

1, n>1

Up1 =

such that

Us = Tg, Ugr1 = Tsy1, S E {—1,0,1,...

Then, the solution u, of the difference equation (3.20) is as follows:

AQ

e (G ()

Indeed, from (3.20), we get

1 1
Un+1—ZUn_1 = 0:>)\2—Z:0
1
= /\172 == :l:—

VA

The homogen solution of difference equation (3.20) is given by

a5 )
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b, n>s.

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)



Also, from (3.20), the equilibrium solution of difference equation (3.20) is following

1 A2
T--T=A=>7= .
x A.I' = A1

In addition, the relations (3.19) and (3.22) imply that
Tyl — Ups1 < %, n > s. (3.23)
Then, by using (3.21) and (3.23) and induction, we have

Ty, < Uy, N> S. (3.24)

Therefore, from (3.18), (3.22), and (3.24), we obtain

n > 01 \/Z 2 \/Z A—l’
where
1 A?
cT = §($0+\/Z$1—m<1+\/2)>,
1 A?
o = E(xo_mxl_A_l(l_m)).

Similarly, we can prove that

1\" 1\" A?
A < yngcii(ﬁ) +C4(_ﬁ> —|—H,

where
e = %(yo+ﬂy1—A—_21(1+\/Z)>,
G = %(yo—JZyl—AA_zl(l—\/Z)>,
S %(zﬁmzl—AAjl(H\/ﬁ)),
6 = %(Zo—\/ZZl—AA_Q1<1—\/Z>)

Theorem 3.7 Suppose that A > 1. Then, the positive equilibrium point of system (3.1)
1s globally asymptotically stable.
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Proof. By the means of Theorem 3.6, we set

Ly = lim supx,, Ly = lim supy,, Ls= lim sup z,, (3.25)
n—00 n—00 n—00

my; = lim infz,, me = lim infy,, ms = lim inf z,.
n—oo n—oo n—oo

Then, from (3.1) and (4.4) we have

L L L
Ly < A+2L Ly<A+2 Ly<A+ 2, (3.26)
ms ms mo
ma mo ms
> A+ — > A+ — > A+ —.
my = —|—L3, mo ~ —|—L3, ms -~ +L2

Relations (4.5) imply that

ALy +mg <mgLy < Ams + Ly, ALz + mo < moLs < Amy + Ls,

from which we have

(A—1)(Ly —m3) <0, (A—1)(Lz—my) <0.

Since A > 1, we get

Ly <mg < Lz, Ly <ma < Lo,

from this it is obvious that

Ly = L3 = my = mg3. (3.27)
Moreover, from (4.5) it follows that

Lims < Amsz+ L1, miLs < AL3+ mg,

from which

Li(ms—1) < Amg, AL3 <my(L3—1).

Using (4.6), we have

Ly(Ly—1) <my (L3 — 1),

then

Ly <my.

Since x,, is bounded, it implys that

Ly =mq.

Hence, every positive solution {(x,, yn, 2,)} of system (3.1) tends to the positive equlib-

rium system (3.1). So, this completes the proof.
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CHAPTER 4

GLOBAL ANALYSIS OF A SYSTEM OF HIGHER ORDER NONLINEAR
DIFFERENCE EQUATIONS

We state that the results of this chapter are cited from [66] which has been published by
us.

In this chapter, in the light of work in [65], we investigate the global asymptotic stability,
boundedness character and oscillatory of positive solutions of the system of difference
equations

yn—m Zn—m

y Yny1 = A+ , Zne1 = A+ , n=0,1,..., (4.1)

n Z’Vl yn

xn—m

Tnt1 = A+

where A and the initial values z_;, y_;, z_;, for ¢ = 0,1, ..., m, are positive real numbers

and m is positive integer.
4.1 MAIN RESULTS

In this section, we prove our main results. We deal with the following cases of 0 < A < 1,

A=1,and A > 1.

Theorem 4.1 If (Z,7,%) is a positive equilibrium point of system (4.1), then
(A+1,A+1,A+1), ifA#1,

Qwhﬁﬁ,ueuﬂm iFA=1.

Proof. It is easily seen from the definition of equilibrium point that the equilibrium

(7,9,%) =

points of system (4.1) are the nonnegative solution of the equations

T=A+S g=A+L z-a4+Z
Z Z ]
From this, we get
Tz = AZ+4T, yz=Az+7, zg=Ay+z

= TZ-T=y2—7, AZ+7=Ag+7%
= (



From which it follows that if A # 1,
T=y=z=A+1= (7,4,2) =(A+1,A+1,A+1).

Also, we have

Z—T 72—

8

z z Yy

j pu— y pu—
=> IZ—T=YZ2—UY, Yz—Y =zZyYy—=2
= T(z-1)=9(Z-1), ZF-2)=F-2)[F+72).

From which it follows that if A =1,

gl

:@aﬂdwzg+§:> (f7y7z): (Maﬂv%):ﬂe (1700)

In that case, we have a continuous of positive equilibriums which lie on the hyperboloid

TE=T+7

Theorem 4.2 Assume that0 < A < 1. Let {(zpn,Yn, 2n)} be an arbitrary positive solution

of the system (4.1). Then, the following statements are true.

(1) If mis odd and 0 < w91 <1, 0 < yop—1 <1, 0 < 2951 < 1, Top > ﬁ, Yo > —

1-A’
1 __1-m 3—-m
2ok > 1A fOT k= = 13 s ...,O, then
lim z9, = oo, lim ¥y, =00, lim 29, = 00,
N—00 n—oo n—00
lim Top+1 — A, lim Yon+1 = A, lim Zop+1 = A.
n—00 n—00 n—o00

(i) If m is odd and 0 < xo, < 1, 0 < yop < 1, 0 < 298, < 1, Top_q > ﬁ, Yok—1 > ﬁ,

1 _1-m 3—-m
2ok—1 > Ty fO’I" k= 5 g ...,0, then

lim 25, = A, lim gy, = A, lim 2y, = A,

n—oo n—oo n—oo
lim z9,11 = o0, lim yo,01 =00, lim 29,.1 = 0.
n—oo n—oo n—oo

(iii) If m is even, we can not get some useful results.

Proof.
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(i) Clearly, we get

. 1
0 < m:A+£—<A+—<A+u—mzL

20 20
—m 1
0 < p=A+d " Ay~ cAr(1-A) =1,
20 20
“m 1
0<:a:A+i—<A+—<A+u—mzL
Yo Yo
T1—m 1
= A > T, > —,
T2 + 7 T 1-A
Y1—-m 1
= A > Y, > —,
Y2 + P Y1 1= 4
Z1—m 1
= A > 2y, > ——.
Z9 -+ " 1 1—A

By induction for n = 1,2, ..., we obtain

0 < 291 < 1, 0< Yon—1 < 1, 0< z29p1 < 1, (42)
1

n —7 n —7 TL> .
Tm > T p¥mZ T e 7

Thus, for n > (m + 2) /2,

Lon—(m Lon—(2m
Top — A+M>A+x2n,(m+l):2A+w
Zon—1 Z2n—(m+2)

> 2A+ Ton—(2m+2)s

AL Y2n—(m+1 Y2n—(2m+2)

~ Ls A+ Yon—(m+1) = 2A +
2n—1 Z2n—(m+2)

> 2A+ Yon—(2m+2)s

Yon =

z n—m z n—(zm
Zon = A+M>A+22n7(m+l):2/l+w
Yan—1 Yon—(m+2)

> 2A+ 22n—(2m+2),

from which we get
lim x5, =00, lim yy, =00, lim 25, = 0.
n—oo n—oo n—oo

Noting that (4.2) and taking limits on the both sides of three equations

Lon—m Z9n—m
$2n+1=A+Z—,y2n+1 =A+ ) Zonp1 = A+ o
2n 2n 2n

Yon—m

we have

lim zo,1 = A, lim yo, 1 = A, lim 29,1 = A.
n—oo n—oo n—oo

29



(ii) Obviously, we have

T_ 1
= A+ >0 > —
T + P x 11— A
mo= A+ sy s ——
20 1-A
—m 1
no= A+ s s
Yo 1-
0 < Zp=A+""" <A+ —<A+(1-A) =1,
1 Z1
Y1—-m 1
0 < yp=A+ <A+ —<A+(1-4) =1,
Z1 21
Z1—m

By induction for n = 1,2, ..., we obtain

1 1 1
n— o Y1 > s a1 > 4.3
Top-1 > L 1>1—A 22 1>1—A (4.3)

0 < 29, <1, 0<ys, <1, 0< 29, <1.

So, for n > (m +2) /2,

n—m I‘ n—zm)—
T A gy = 2A 4 22l

Zon Z2n—(m+1)

Ton4+1 = A+

> 2A+ T(2p—2m)—1,

Yon—m Yen—2m)—1

> A+y2n_m:2A+
Zon, 22n—(m+1)

> 2A+ Y@n—2m)—1;

Ymt1 = A+

Z2n—m 2Z(2n—2m)—1

> A+Z2n—m =2A+
Yon Yon—(m+1)

> 2A+ Z@n—2m)—1,

Zopp1 = A+

from which we get
lim x9,41 =00, lim ys,11 =00, lim 29,41 = 00.
n—oo n—oo n—oo

Noting that (4.3) and taking limits on the both sides of three equations

'rnfm n—(m ZTL*TTL

Z22n—1 Z22n—1 Yon—1

we have

lim x5, = A, lim 4o, = A, lim 29,, = A.
n—oo n—oo

n—oo
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Theorem 4.3 Suppose that A = 1. Then every positive solution of system (4.1) is

bounded and persists.

Proof. Let {(z,,Yyn, z,)} be a positive solution of the system (4.1).

Obviously, z, > 1, y, > 1, z, > 1, for n > 1. So, we have

M

i Yirzi € | M, ———
iy Uiy 2 { V1

], i=1,2,...m+1,

where

M:min{a, b }>17 o= min {z,y,2}, B= max {x,y;,z}.

6—1 1<i<m+1 1<i<m+1

Then, we obtain

M I M/ (M —1) M
M = 14+———<zp,=1 <1 = :
L T I M—1
M n M/ (M —1) M
M = 14+ ———— < gpnia=1 <1 = :
Ty S¥r Tt S T T g M—1
M 7 M/ (M —1) M
M = 14— <zp0=1 <1 - .
TMjar—n ST S T TN M—1
By induction, we get
M
iy Yy ~1 M, I :1,2,
Tiy Yiy 2 6[ M—l] 1

Theorem 4.4 Assume that A = 1. Let {(zp, yn, 2n)} be a positive solution of the system
(4.1). Then, either {(zn,Yn, 2n)} consists of a single semicycle or {(xn, Yn, 2,)} oscillates
about the equilibrium point (T,7,Z) = (,u, 1, ﬁ) with semicycles having at most m

terms.

Proof. Suppose that {(x,, yn, 2,)} has at least two semicycles Then, there exists N >
—m such that either zy < T < zyporay <ZT<ay Yy <T<ynr10ryny <7 < yn
and zy < Z < zyy1 or 2y < Z < zy). Firstly, we assume that the case zy <7 < xy41,
yv <Y < yns1 and zy < Z < zyyq. Since the other case is similar, it will be omitted.
Suppose that the positive semicycle beginning with the term (zyy1, yn+1, 2v+1) have m

terms. Then we have

IN+1 < T=p < TNim,

Un+1 < Y=p < YNim,

_n
ZNy1 < Z2=—— < ZN4m-
w—1
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Therefore, we get

T T
INtm+1 = 1+ZNN <1+%:M7

+m

YN Y
YN+m+1 = 1+ZN <1+%:,U7

+m

z z
INtms+1 = 1+ N <1+::L

YN+m y p—1

This completes the proof.

Theorem 4.5 Suppose that A > 1. Then every positive solution of system (4.1) is

bounded and persists.

Proof. Let {(zn,yn, 2,)} be a positive solution of the system (4.1).
Obviously, =, > A>1,y, >A>1, 2z, > A>1, forn > 1. So, we have

M

9 i;’ie M7—

], i=1,2 .. m+1,

where

: B :
M mm{a, Fo1 > b o=, an, oo,y 2}, 6= max 1%y %}

Then, we obtain

M 21 M/(M~-4A) M
M = A+—— < =1 <1 =
7 A A N V M—A
M N M/ (M — A) M
M = Av— " <ya=1 <1 - ,
Tagar—a) Syt S T Ty M—A
M 2 M/(M—A) M
M= Ay <=1 <1 - .
Taar—a ST it st Ty M—A

By induction, we get

M

iy Yis Zi M, ——
a:yze{ M — A

], i=1,2,...

The proof is completed.
Before we give the following theorems about the stability of the equilibrium points, we
consider the following transformation to build the corresponding linearized form of system

(4.1) :

(Try Tty ooy T Yriy Y1y +os Yn—imy Zny Zn1s vy Zn—m)

- (fvfl?"'vfmagagla"'agmahvh‘lv"'ahm)
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where

f _ A_i_xn—m

Zn
fl = Tn
fm = Tp—-m
Zn
g1 = Un
9m = Yn—-m
ho— A+ Zn—m
Yn
hl = Zn
hm = Zn—m-

The Jacobian matrix about the equilibrium point (7,7, Z) under the above transformation

is given by
0 ...02% 0 .00 % 00
1 00 0 ...00 0 0 0
0 10 0 00 0 0 0
0 00 0 02 —-% ...00
0 00 1 00 0 ...00
B(7,7,z) = ;
0 00 0 10 0 0 0
0 00 —-% ...00 0 0 1
Y Y
0 00 0 00 1 0 0
0O...00O 0 ...00 0 ...10

where B = (b;;), 1 <i,j <3m+3is an (3m + 3) x (3m + 3) matrix.

Theorem 4.6 If A =1, then the equilibrium point of system (4.1) is locally asymptoti-
cally stable.
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Proof. The linearized system of system (4.1) about the equilibrium point (u, 14, ﬁ) is
Xn+1 = BXna

T
where Xy = (Ina Tn—1y -+ Tn—ms Yns Yn—15 s Yn—m» Zns Zn—1, -++» Zn—m) and

0 ... 0 ut 0 .0 0 w9 0
1 7

1 ...0 0 0 .0 0 0 ... 00

0 1 0 0 L0 0 0 0 0

0 0 0 0 0 #=t _ (=D 0 0
1 1

0 0 0 1 0 0 0 0 0

B (f, g,?) =

0 0 0 0 1 0 0 0 0

1 1

0 00 -1l 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 10

Let A1, Ao, ..., Aginrs denote the 3m + 3 eigenvalues of the matrix B and

D = dmg (db d27 s} d3m+3)

be a diagonal matrix, where

di = dpmys = domyz = 1, diyr = dpyoyr = domgzer =1 — ke, 1<kE<m

and

)

2_9u+2 pu2—2u+2
0<5<{N Ay pt }
mp mp (p—1)
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Obviously, D is invertible. Computing matrix DBD~!, we have that

0O p O 0 0 q 0
& 0 0 0 0 0 0
1
0 fnti 00 0 0 0 0
0 0 0 0 0 T s 0
. 0 ... 0 0% . 0 0 0 .. 0
DBD™' = m+2
0 ... 0 0 0 .. Zm=2 g g .. 0
2m—+1
0 0 0 ¢ 0 0 0 0
0O ... 0 0 0 ... 0 oj;mn—ig... 0
O ... 0 0 0 ... 0 0 0 jg:—ﬁ
where
op—1dy
g = _(M_1)2 dy
% d2m+3’
 p =1 dnye
r o= T
po domyo
s — _(M_1)2 A y2
M d2m+3’
f = 1 d2m+3
pp—1)" dmia’
w = 1 damys
o d3pmi3

The three chains of inequalities

1 = dy>dy>...>dp >dpy1 >0,

1 = dpio>dpis > ... > dopy1 > dopmao >0,
1 = domas > domea > ... > damio > dgpmas > 0,
imply that

dgdfl < 1, dgdgl <1,..., dm+1d;11 <1,
dm+3d;n{i-2 < 1, dm+4d;nl+3 < 1,..., d2m+2d5n11+1 < 1,

—1 —1 —1

65




1

1

pp—1)°

w—2

1

(G

(n—1)

)(

1 —me

)<t

Since B has the same eigenvalues as DBD ™' = E = (e;;), we obtain that

max |\ < ||DBD7!|
1<i<3m+3 00
3m+3
=  max g |esj]
1<i<3m+3 | 4
J=1
-1 —1 1 )
d2d1 ) d3d2 EARRE) dm+1dm )
—1 —1 —1
dm+3dm+27 dm+4dm+37“'7 d2m+2d2m+17
—1 —1 -1
d2m+4d2m+37 d2m+5d2m+4 9y d3m+3d3m+27
-y TSN e oV ul I O
o 1%m41 o 1%2m 439
p—1 —1 (n—=1)* —1
< w )dm+2d2m+2 _< o dm+2d2m+37
1 -1 1 —1
L e domy3yio + ) d2masdy s )
< 1.

This implies that the equilibrium point of system (4.1) is locally asymptotically stable.
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Theorem 4.7 If A > 1, then the equilibrium point of system (4.1) is locally asymptoti-
cally stable.

Proof. The linearized system of system (4.1) about the equilibrium point (7,7,%) =

(A+1,A+1,A+1)is
Xn+1 :BXna

T
where X, = (xnu Tn—1y -+ Tn—my Yns Yn—15 s Yn—m» Zns Zn—1, -++» Zn—m) and

0 ...0c¢c* 0 ...0 0 —!' ...0 0
1...0 0 O ...0 O 0 ...0 0
0 1 0 0 0 O 0 0 O
0 0 O 0 0 ¢! —¢t 0 O
0 0 O 1 0 O 0 0 O
B(%,7,%Z) = :
0 0 O 0 1 0 0 0 O
0 0 0 —c! .0 O 0 0 ¢!
0 0 0 0 .0 0 1 0 O
0...0 0O 0 ...0 0 0 ...1 0

where c = A + 1.

Let A1, Ao, ..., A3inrs denote the 3m + 3 eigenvalues of the matrix B and
D = diag (dy, da, ..., d3m+3)
be a diagonal matrix, where
dy = dpyo = doys = 1, dijr = dppyosk = doyssr =1 — ke, 1< E<m
and

{ 1 ¢—2 }
O<e< i —, .

m’ cm

Obviously, D is invertible. Computing matrix DBD~!, we have that

DBD™ ! =
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ol 0 .0 0 =l

dm+1 d2m+3
j—j 0 0 0 0 0 0 0
0 ... d2 0 .. 0 0 0 ... 0
Cilde *Cilde
0 ... 0 0 0 .0 oz ot
0O ... 0 0 dmts 0 0 o ... 0
m+2
0 ... 0 0 0 ZQZ—L 0 0 .0
0 0 0 “Cdms 0 0 ... 0
m—+2
0 ... 0 0 0 .0 0 jgm—f; .0
0 ... 0 0 0 .0 0 0 Zimn—ﬁ
The three chains of inequalities
1 = dy>dy>...>dp >dpi >0,
1 = dpio > dmisz > o > dopmgr > domya > 0,
1 = domys > dopgsa > ... > dapmgz > dypys > 0,
imply that

dgdl_l < 1, d3d2_1 <1,..., dm—&—ldr_nl <1,
disdyys < 1, dpgadytiy < Loy dopiadyy oy <1,

-1 —1 -1

Also,
“tdyd;} “tdydy} = ¢! ! 1
C 010y, g +C A1lgy g = C 1—m£+
2
~1
< 1
1—me ’
-1 —1 -1 —1 ~1 1
¢ dmtaday o + € dimyadyy, 3 ¢ 1 — me 1
< ¢! <1,
1 —me




Since B has the same eigenvalues as DBD ™' = E = (e;;), we obtain that

max |\ < |[DBD7Y||

1<i<3m+3
3m—+3
=  max g leij]
1<i<3m+3
J=1
(

—1 -1 —1
d2dl 7d3d2 geeey dm+1dm,
—1 —1 —1
dm+3dm+27 dm+4dm+3v---7 d2m+2d2m+17

-1 -1 -1
d2m+4d2m+37 d2m+5d2m+47---7 d3m+3d3m+27

= max
1 -1 1 -1
¢ dyd, g + ¢ didy, s,
-1 1 1 1
¢ dpyadyy, o+ ¢ dimyady, s,
“1 “1 1 1
¢ o3y io + ¢ damyads,, 3 )
< 1.

This implies that the equilibrium point of system (4.1) is locally asymptotically stable.

Theorem 4.8 Assume that A > 1. Then, the positive equilibrium point of system (4.1)
18 globally asymptotically stable.

Proof. Using Theorem 4.5, we have

Ly = lim supz,, L = lim supy,, L3 = lim sup z,, (4.4)
n—oo n—oo n—oo

my; = lim infx,, ms = lim infy,, ms = lim inf z,.
n—oo n—oo n—oo

Then, from (4.1) and (4.4) we have

L L L
Ly < A+ =22 Ly<A+ =22 Ly<A+ =2, (4.5)
ms ms mo

my > A+7Z—;, mQZA—F?Z—j, mng—i—%.
Relations (4.5) imply that

ALy +mg <mzLy < Ams + Ly, ALz + mo < maLs < Amy + Ls,
from which we have

(A—1)(Ly —m3) <0, (A—1)(Ls—my) <0.

Since A > 1, we get

Ly <mg < Lz, L3 <my < Lo,
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from which

Ly = L3y =msy =ms. (4.6)
Moreover, from (4.5) it follows that Lyms < Amg + Ly, myLs < AL3 + my, from which
Li(mg—1) < Amg, AL3 <mq(Lz—1).

Using (4.6), we have

Ly(Ly—1) <my (L3 — 1),

from which L; < m;.
Since x,, is bounded, it implys that L; = m;.
Hence, every positive solution {(z,, yn, 2,)} of system (4.1) tends to the positive equilib-

rium system (4.1). So, the proof is completed.
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CHAPTER 5

THE NATURE OF SOLUTIONS OF A SYSTEM OF SECOND ORDER
RATIONAL DIFFERENCE EQUATIONS

We state that the results of this chapter are cited from [68] which was published by us.
In the light of the works in [65] and [66], the aim of this chapter is to study local stability
of the equilibrium points and oscillation behaviour of positive solutions of the following
system of rational difference equations

p P p

xn“—A—l—xZ—gl, ynH—A—l—yZ—gl, Zn+1—A—|—Zn—£1, n=0,1,.., (5.1)
where A € (0,00), p € [1,00) and the initial values x;, y;, z; € (0,00), i = —1,0.

5.1 MAIN RESULTS

In this section, we prove our main results.

Theorem 5.1 The following statements are true:

(i) The system (5.1) has a positive equilibrium point (T,7,z) = (A+1,A+1,A+1).

(i) If A > 2p — 1, then the equilibrium point of system (5.1) is locally asymptotically
stable.

(iii) If A <2p — 1, then the equilibrium point of system (5.1) is unstable.
(iv) Also, when A =2p —1 and p =1, the results has been investigated in [65].

Proof.

(1) It is easily seen from the definition of equilibrium point.
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(ii) We consider the following transformation to build the corresponding linearized form

of system (5.1):

(.Tn, Tn—15Yn> Yn—1, Zn, Zn—l) - (f7 f17 g, 91, h’7 h’l)

where

D

x

— A+ n—1

f 7
fl = In

P
g1 = Yn

D

zZ
h = A+t

Yn
hl = Zn.

The Jacobian matrix about the equilibrium point (Z,7,%) under the above trans-

formation is given by

0 =2 0 0 -2 0
1 0 0 0 0 0
0 0 0 H_L _x
B(z,7,%) = : : (5.2)
0 0 1 0 0 0
0 0 -Z% 0 0 -
0 0 0 0 1 0

Hence, the linearized system of system (5.1) about the equilibrium point
(7,9,2) =(A+1,A+1,A+1)

is

Xoi1 = B(%,7.7) Xa,

where

T
Xn = (l‘n, Tn—1yYnyr Yn—1, Zn, Zn—l)
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and

0 &5 O 0 a7 O
1 0 0 0 0 0
e I
0 O 1 0 0 0
0 0 —x5 0 0 5
0 O 0 0 1 0

Then, the characteristic equation of B (¥,7,Zz) about
(7,9,2) =(A+1,A+1,A+1)
is

2 3 2 3
Ao (2 43t )A4+< P43 P ))\2—p——0. 5.3
((A+1)2 A+1 (A+1)?%  (A+1) (A+1)° (5:3)

From this, the roots of characteristic equation (5.3) are

B p
M= A+1’
N
Ay = — 1 <p+\/p2+4Ap+4p>
2A + 2 ’
1
_ _ 2
A = 2A+2( p+/p +4Ap—|—4p>,
1
_ 2
As = 2A+2<p+\ﬁ)+4Ap+@Q,
1
_ _ 2
N = 2A+2<p v +4Ap+4p>.

From the Linearized Stability Theorem, since A > 2p — 1, all roots of the char-
acterictic equation lie inside the open unit disk |A\| < 1. Therefore, the positive

equilibrium point of system (5.1) is locally asymptotically stable.

(iii) From the proof of (ii), it is true.

Theorem 5.2 Let 0 < A < 1 and {(zn,Yn,2,)} be an arbitrary positive solution of

system (5.1). Then, the following statements are true.
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@) If

0 < z1<1,0<y1<1,0<249<1, (5.4)
> 1 > > 1
To =2 g0 2 g, A0 T 1/
(1- A)l/p (1- A)l/p (1- A)l/p
then
lim Tont1 — A} lim Yon+1 = A; lim Zon+1 = A;
lim z9, = o0, lim gy, =00, lim 24, = co.
(i) If
0 < 20<1,0<yy<1,0<z<1, (5.5)
> L > L > 1
T Z Y12 A1 2 a0
(1- A)l/p (1— A)l/p (1— A)l/p
then
lim 29,11 = o0, lim y9,11 =00, lim 29,,7 = 00,
lim 25, = A, lim gy, = A, lim 2z, = A.

Proof. (i) From system (5.1) and (5.4), we have

33111 1

1) = A+—F <A+ 5 <A+ (1-4) =1,
20 20
ypl 1

Yy = A—i—;pSA—i—?SA—F(l—A):l,
0 0
22, 1

21 = A+ —5 <A+ 5<A+(1-4A)=1,
Yo Yo
p

Ty = A+$__I)1>A7
20

n = A+ —F > A,

z2 = A+Z—>A.

Hence,

x1 € (A 1],y € (A 1], 1 € (A, 1].
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Also,

Ty = A+—pZA+xg,
21
yg p

Yo = A—i_?ZA—i_yOv
o

2o = A+y—‘;2A+zg.
1

Similarly, we get

¥ 1 1 1
= A+ L <A = <A <A+ =< A+(1-A)=1
T3 +Z§_ +(A+Zg>p_ +A—|—zé’_ +z§_ + ( ) =1,
= A+yf<A+ ! <A+ ! <A+1<A+(1 A)=1
R S 7 WP L S o
2¥ 1 1 1
23 = A+ S <A+ —""—-1 <A+ ; A+ 5 <A+ (1-A)=1

Yy~ (A+yp)" — A+ yf o
Thus,

$3€(A,1],y3€(A,l],23E(A,1].

Also,
p

Ty = A—i—x—gZA+£§ZA+(A+&:€)]DZA+(A+$8):2A—|—a:8,
23
p

o= AT T ZAVE 2 AT (ATR) 2 A+ (At =24+,
3
p

24 = A+§2A+z§2A+(A+z§)p2A+(A+z§):2A+z§.
3

By induction for n = 1,2, ..., we obtain

A < Top—1 < 1, A< Yon—1 < ]., A< Zon—1 < ].,

Ton > nA+ab Yo, > nA+yh, 20, > nA+ 2L

From system (5.1) and (5.6), it follows that

lim z9, = o0, lim ¥y, =00, lim 2y, = oo,
n—oo n—oo n—oo
P
x
. . 2n—1
lim 29,41, = lim (A4 — = A,
n—oo n—oo Zoy,

e
lim 99,,1 = lim (A+ 221) = A,

P
lim z,,7 = lim (A+ 27;,1) = A.

n—oeo Yan

(ii) The proof is similar to the proof of (i), so we omit it. The proof is completed.
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Theorem 5.3 Let {(xn,Yn, 2n)} be a positive solution of system (5.1) which consists of

at least two semicycles. Then {(Tn, Yn, 2n) }22 1 1s oscillatory.

Proof. Since {(z,, Yn, 2,) }22 _; has at least two semicycles, there exists N > 0 such that

either

N1 < A—i—leN,
yn—1 < A+1<yn, (5.7)

IN— < A+1 < zn,
or

rny < A+1<zy_q,
yv < A+1<yn, (5.8)

i < A—f—lSZN_l.

First, we suppose the case (5.7). Then

'IIJ)V 1

$N+1 = A+ p_ < A+ 1,
N
Y

yve1 = A+ <A,
ZN

2N
ZN+1 = A + pf < A + 1,

Yn

p

T
Ty = A+ 5> A+1,

ZN+1
o

YN4+2 = A+ pN >A+]_,
AN+1

p

z
v = A+ > A4+ 1

Yni1

So, we have

Ty < A4+1<zNi9,
yny1 < A+1<ynyo,

ZN4+1 < A+1< ZN42-

Last, we suppose the case (5.8). The case is similar to the first case, so we leave it to

readers.
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CHAPTER 6

THE EXACT SOLUTIONS OF FOUR RATIONAL DIFFERENCE
EQUATIONS ASSOCIATED TO TRIBONACCI NUMBERS

Initially, we express that the results of this chapter are cited from [101] which has been
published by us.
In Chapter 6 and Chapter 7, we discuss eight cases (eight distinct difference equations)

of the following difference equation

+1
Tp (T £1) £ 1

Tnt1 =

We study the four cases of eight cases in this chapter and the remaining four cases in
Chapter 7.

As far as we examine, there is no paper dealing with the following difference equations.
Hence, in this chapter, we investigate the form of solutions, stability character and as-

ymptotic behavior of the following four rational difference equations

1
i = . n=0,1,.., 6.1
Nar Ty (Xp1—1)—1 " (6.1)

1
ntl = ) =0,1,.., 6.2
Tni1 o (@n1 1)+ 1 n (6.2)

-1
n - 3 — ,]_,..., 6,3
Tnt1 ol =1+ 1 n=>0 (6.3)

—1
Tp (Tpy +1)—1’

Tyt = n=0,1,.. (6.4)

such that their solutions are associated with Tribonacci numbers.

Our aim in this chapter is to investigate some relationships both between Tribonacci num-
bers and solutions of above mentioned difference equations and between the Tribonacci

constant and the equilibrium points of these difference equations.

7



6.1 MAIN RESULTS

In this section, we present our main results considering above mentioned difference equa-
tions. Our aim is to investigate the general solutions in explicit form of difference equa-

tions and the asymptotic behavior of solutions of difference equations.

6.1.1 The Difference Equation (6.1)

In this subsection, we consider the Eq.(6.1), that is,

1
Tp(Tpy —1) =1’

Tpt1 = n=20,1,..,

and investigate the dynamical behavior of solutions of Eq.(6.1).

Theorem 6.1 Let {x,} . | be a solution of Eq.(6.1). Then, forn=0,1,2, ..., the form

of solutions {x,} | is given by

 Tpzamo+ (Tf(n+1) + Tf(n+2)) o + T (nt1)
T_nsyZ-120 + (T-p — T-(nt1)) To + T-(ny2)

(6.5)

Tn

where T, 1s the nth Tribonacci number and the initial conditions x_1, vo € R — Fy, with

F} is the forbidden set of Fq.(6.1) given by

Fy = U {(z_1,20) : T_(nsnyz—120 + (T — T—(nr1)) To + T(ny2) = 0} .

n=-—1

Proof. We will prove this theorem by induction on k. For k& = 0, from Eq.(6.1),

1 o 1 . T,ll',l.’lfo + (T,Q + T,g) To + T,Q
Zo (1’_1 — 1) -1 T_1Tog — T — 1 T_gaf_ll’o + (T_l — T_g) To + T_3'

1 =

Now, we assume that

T rz_120 + (T-(or1) + To(rr2)) To + T (s
T snyr1zo + (T = T-(ry1y) o+ T-ky2)

T =
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is true for all 1 < n < k. Hence, we have to prove that it is true for k£ + 1. Taking into

account (2.12) and (6.6), we have

Tr41
1
T (l’k,1 — 1) —1

1

(Tkr1mo+(T_(k+1)+T_(k+2))960+T_(k+1)) (T—(k—1)ﬂc1:vo+(Tk+T_(k+1))Io+Tk . 1) _1

T (k1) —120+H( Tk —T_ (o1 1) )20+ T (4 2) T_ga—120+(T_ (1)~ Tk )20+ (ot 1)
T (k11)T-170 + (Tfk - Tf(k+1)) o+ T (ry2)
(T-(h—1) = Tt = T—(or1y) To1@0 + (Toorry — Togior2)) To + T — Ty — T (ror2)
T_(k41)T_1T0 + (T—(k+2) + T—(k+3)) 2o + T_(r42)
T kr2)T-1%0 + (T-(or1) — T—(h42)) To + T (kt3)

which ends the induction and the proof.
Theorem 6.2 Eq.(6.1) has unique positive equilibrium point T = o and « is saddle point.

Proof. Equilibrium point of Eq.(6.1) satisfy the equation

1

T i1

After simplification, we get the following cubic equation
-7 -7 —-1=0. (6.7)

The cubic equation (6.7) is the characteristic equation of the recurrence relation of the
Tribonacci numbers in (2.13) having the unique real root a. Therefore, the unique positive
equilibrium point of Eq.(6.1) is T = a.

Now, we indicate that the equilibrium point of Eq.(6.1) is saddle point.

Let I be an interval of real numbers and
f:I* =1

be a continuous function defined by

1
f(z,y) = Ty =1 =1
Therefore, it follows that
of (wy) _  —(y-1)
Oz (z(y—1) - 1)*
af ([L’,y) _ —z
%y (z(y—1)-1*

79



Then, from (6.7)

af (Eaf) _ _ (Oé — 1)
Ox (a(a—1)— 1)2
_ 11—«
(02 —a— 1)2
_ l-a
(&)’
= —(a+1),
of (z,T) _ —a
dy (a(a—1)—1)
B (a2 —a—1)°
Ok

and the linearized equation of Eq.(6.1) about T = « is
Zni1 = — (a+ 1)z, + (—043) 21

or equivalently

Zng1 +(a+1) 2z, + 2,1 = 0.

Therefore, the corresponding characteristic polynomial is
M4+ (a+1)A+a®=0.

Then, from Theorem (2.1), it is clearly seen that

—(a+1)£vV—-4a3+ a2 +2a +1

Al = 5

and numerically

—(a+1)+V-4a?+a?+2a+1

A = ‘ 5 ’ =0,11228 < 1
— 1) — v—4a3 242 1
Do| = ‘ (a+1)—v 2a + o+ 20+ ':1,4314>1.

So, the equilibrium point « is a saddle point. This completes the proof.
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6.1.2 The Difference Equation (6.2)

In this subsection, we study the Eq.(6.2), that is,

1
Tp (T +1)+ 17

Tnt1 = n:O,]_,...,

and examine the dynamical behavior of solutions of Eq.(6.2).

Theorem 6.3 Let {x,} . | be a solution of Eq.(6.2). Then, forn=0,1,2, ..., the form

of solutions {x,} - | is given by

Tn_lx_lxo + (Tn—l—l - Tn) Ty + Tn

- 5 6.8
Tnl’_lxo + (Tn—l + Tn> xo + Tn+1 ( )

Tn

where T;, 1s the nth Tribonacci number and the initial conditions x_1, xqg € R — Fy, with

F; is the forbidden set of Eq.(6.2) given by

Iy = U {(x_1,20) : Thx_1wo + (T + 1) w0 + Thoyr = 0} .

n=-—1

Proof. (First proof) Now, we give the proof with an analytic approach. We make the

substitution
T
Ty = = ! (6.9)

in Eq.(6.2) to get the linear difference equation. Then, we have
bnyr =t +tn1 + tho.

By using same operations in Theorem 2.1 in [86] such that a = b = ¢ = 1, we obtain the

initial values of three sequences are defined

an = aap-1+bay_o+ can_s,
bn = QAp41 — Aap,

Cp = Cp_q,

such that

ag = 1, a_1 = O, a_o9 = O,
bo - 0, b_l == 1, b_g == 0, (610)

C():O, C_1 :0, C_o2 = 1.
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Next, we get
tn = apto + (ant1 — aay)t_1 + ca,_,t_o.

So a =b=c=1 and from (6.9), we obtain

Un—2T_1%0 + (An, — 1) To + Qp_y
ap 12170 + (py1 — ay) To + an

Ty =

or equivalently

An—22_1%0 + (ay, — Gp_1) To + ap_1
Un-17-1T0 + (An_1 + an_2) To + an

T, =
From initial values (6.10) and definitions of sequences a,, and T},, we have
Ap = Lpyl,

with the backward shifted initial values of the sequence a,. Hence, we obtain

. Tn,lai,l&lo + (TnJrl —5 Tn) To + Tn
T,x_1x0 + (Tn,1 aF Tn) To + Tn+1 ’

Tn

So, the proof is complete.
Proof. (Second proof) We will prove this theorem by induction on k. For k& = 0, from
Eq.(6.2),

1 . 1 . To.’L',l.fL"o + (T2 - Tl) To + T1
Zo (33_1 + 1) +1 T_1Zg + To + 1 Tlx_ll'g + (To + Tl) Tg + Tg '

I =

Now, we assume that

_ Tk,1$,1$0 + (Tk+1 — Tk) To + Tk
Thr 120 + (Tho1 + Ti) ©0 + Tisr

T (6.11)

is true for all 1 < n < k. Hence, we have to prove that it is true for k£ + 1. Taking into
account (2.11) and (6.11), we have

1
Tk (xk—l + 1) +1

Th+1 =

1

Tp—12—120+(Tht1—Tr)zo+ Tk Ty2z—120+(Tp—Th—1)z0+Tk_1 +1)+1
Trx—120+(T—1+Tk)x0+Th 41 Tp_12—120+(Tk—2+Tk—1)T0+Tk

Tkl'_lxo + (Tk—l + Tk) To + Tk—i—l
(Th—o + Too1 + Ti) x—120 + (Th + Thg1) @0 + D1 + Tk + T
Thr_120 + (Thyo — Thy1) To + Thgr
Tiv1v_ 120 + (Ti + Tiy1) o + Thao

which ends the induction and the proof.
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Proof. (Third proof) Consider Eq.(6.2) by taking n =0, 1,2, ... as follows:

1

n=v = N = aimert
n=1 = 19= %,
n=2 = 13= %,
n=3 = o= Iamnn
n=4 = I5= 712;353:;%31137
n=o = Tg= 122111?011210?0112347

If we keep on this process and also regard (2.11), then the solution in (9.6) directly follows

from a simple induction.

Theorem 6.4 FEq.(6.2) has unique positive equilibrium point T = a and a is locally as-

ymptotically stable.

Proof. Equilibrium point of Eq.(6.2) is the real roots of the equation

1
S T(@+ 1)+ 1

After simplification, we get the following cubic equation
P+ +T-1=0. (6.12)

Then, the roots of the cubic equation (6.12) are given by

—1+\/3\/_+17—\/3\/_3—17
—14+wv3V33 +17 wiv/3v/33 — 17

h —
—1 4+ w?v/3V/33 +17 wv/3v33 — 17
C _—
where
—1+1V3
w= L\/_ = exp (27i/3)

2

is a primitive cube root of unity. So, the root a is only real number. Therefore, the unique
positive equilibrium point of Eq.(6.2) is T = a.

Now, we show that the equilibrium point of Eq.(6.2) is locally asymptotically stable.
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Let I be an interval of real numbers and consider the function
f:I* =1

defined by

1

flx,y) = TT DT

The linearized equation of Eq.(6.2) about the equilibrium point T = a is

Zn+1 = PZn + qzn—1,

where
_ 8f(f,f): —(a+1) A
0w (a(a+1)+ 1)2 ’
g = 8f (f75) _ —a _ _ag
Oy (a(a+1)+1)° ’

and the corresponding characteristic equation is
M4+A-—a)r+a®=0.

Therefore, from Theorem 2.1, it is easily seen that

a—1++vV—-4a3+a%2—2a+1
2

Mg =

and numerically

IA1] = |Ao| = 0,40089 < 1.

This completes the proof.

Theorem 6.5 The equilibrium point of Eq.(6.2) is globally asymptotically stable.

Proof. Let {z,} be a solution of Eq.(6.2). By Theorem 6.4, we need only to prove

n>—1

that the equilibrium point «a is global attractor, that is

lim z, = a.

n—oo
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From Theorem 6.3 and (2.13) and (2.14), it follows that

l1m T o hm Tn—lm—lxo + (Tn+1 - Tn) Zo + Tn
n—oo n—oo T, x_12T0 + (Tn—l + Tn) xo+ Tt

Thy1  Tn Ty,
Th-1 (3371550 + <_Tn_1 75 ) Tot+ 3"

1 1

= lim
oo Tn (l'_ll’o + (Tgﬂgl + ].) To + T;—f)

[ romo+ (0P — )z + i T,_1
T_1To + (i + 1) To +

n— oo Tn

T,
= lim !

n—oo

n

8 O~

The proof is complete.

6.1.3 The Difference Equation (6.3)

In this subsection, we take into account the Eq.(6.3), that is,

-1
Tp (T — 1)+ 17

Tnt1 = ’I'L:O,]_,...7

and analyze the dynamical behavior of solutions of Eq.(6.3).
Theorem 6.6 Let {z,} - | be a solution of Eq.(6.3). Then, forn =0,1,2, ..., the form

of solutions {x,},- | is given by

— (Tn_lx_l.fo + (Tn - Tn—i—l) To + Tn)
Thr_1xg — (T +T0) 2o + Tha

, (6.13)

Tp =

where T, 1s the nth Tribonacci number and the initial conditions x_1, vo € R — F3, with

F3 is the forbidden set of Eq.(6.3) given by

Iy = U {(z_1,20) : Thx_1xo — (L1 + T0) 2o + Thsr = 0} .

n=-—1
Proof. (First proof) We will prove this theorem by induction on k. For k = 0, from
Eq.(6.3),

—1 - —1 _ (T().T?fl.??o + (Tl — Tg) To + Tl)
Zo (.%,1 — 1) +1 T_1Tg — Tg + 1 Tlll',ll’o — (TO + Tl) To + TQ

T —

Now, we assume that

— (Tk_ll’_ll’(] + (Tk - Tk+1) To + Tk)
Tkl‘,ll‘o — (Tk,1 + Tk) Ty + Tk+1
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is true for all 1 < n < k. Hence, we have to prove that it is true for k£ + 1. Taking into

account (2.11) and (6.14), we have
—1
T (xk—l - 1) +1

Tk+1 =

—1

—(Tp—1z—120+(Tp —Thy1)To+Tk) —(Ty—2v—120+(Th—1—T)To+T—1) 1) +1
Tex—120—(Tp—1+Tk)T0+Tk+1 Ti—12—120—(Th—2+Tk—1)20+Tk

— (Thz—120 — (Thm1 + Tip) o + Tht)
(Tk_g + Tk—l + Tk) 1Ty — (Tk + Tk+1) To + Tk—l + Tk + Tk+1
— (Thw—120 + (T — Thoy2) o + Tht)
Tip12_120 — (Ti + Thy1) o + Ty

which ends the induction and the proof.

Proof. (Second proof) Consider Eq.(6.3) by taking n = 0, 1,2, ... as follows:

—1

n=0 = n=aa
n=3 = o= SRS,
N T
n= = I»GZ—(7$—1$0—11$0+13)

13x_120—20x0+24 ’

If we keep on this process and also regard (2.11), then the solution in (6.13) directly

follows from a simple induction.

Theorem 6.7 Fq.(6.3) has unique negative equilibrium point T = d and d is locally
asymptotically stable.

Proof. Equilibrium point of Eq.(6.3) is the real roots of the equation
-1
z(x-1)+1

After simplification, we get the following cubic equation

T =

-7 +T+1=0. (6.15)

Then, the roots of the cubic equation (6.15) are given by

1+\/3\/_3—17—\/3\/_+17

d =
. 1+wV/3v33 3—17 w?V/3V/33 +1
;- +w?v/3v/33 3—17 wV/3v/33 3417
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where

_ —1+iV3
-

w = exp (27i/3)

is a primitive cube root of unity. So, the root d is only real number. Therefore, the unique
negative equilibrium point of Eq.(6.3) is T = d.

Now, we show that the unique negative equilibrium point of Eq.(6.3) is locally asymptot-
ically stable.

Let I = (0,00) and consider the function

f:I*P =1
defined by

—1
[(z,y) = =D+

The linearized equation of Eq.(6.3) about the equilibrium point T = d is
Zn+1 = PZn + qdZn-1,

where, from (6.15),

— af(fvf)_ d_l o d—l _d—l__
o 0r (dd-1)+1)° (@-d+1)° (=1 (d+1),
_ If@T) _ d B d 4
T Ty S (dd-1)+1)? (@—d+1)? (=)

and the corresponding characteristic equation is
M4+ (d+1)N—d*=0.

Therefore, from Theorem 2.1, it is easily seen that

—(d+1) £ VAB + 2 +2d + 1
2

Al =
and numerically

|A1] = [A2] = 0,40089 < 1.
So, this completes the proof.

Theorem 6.8 The equilibrium point of Eq.(6.3) is globally asymptotically stable.
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Proof. Let {,},._, be a solution of Eq.(6.3). By Theorem 6.7, we need only to prove
that the equilibrium point d is global attractor, that is

lim z,, =d.

n—oo

From Theorem 6.6 and (2.13) and (2.14), it follows that

lim @, = lim — (Thrr120 + (T — Toga) 1o + 1)
n—oo n n— oo Tnl’—ll‘O - (Tn—l + Tn) Zo —+ Tn+1

— (Tn,1 <$,1fL'U + <TZ7—11 — _§Zt1> Zo -+ Tfil))
= lim
e T, (x_lxo — (T}: + 1) xo + T%—:l)

(.731130 + (@ —a?)zo + oz) . =T,
= lim

T_1Tyg — (é + 1) Zo + « n—o0 )
T, _
= lim !
B 1
- (8%
= d.

The proof is complete.

6.1.4 The Difference Equation (6.4)

In this subsection, we take into account the Eq.(6.4), that is,

—1
Ty (Tpy +1)—1’

M e n:O,l,...,

and analyze the dynamical behavior of solutions of Eq.(6.4).

Theorem 6.9 Let {x,} . | be a solution of Eq.(6.4). Then, forn=0,1,2, ..., the form

of solutions {x,} ~, | is given by

— (Tﬂﬂfliﬁo — (T—(nﬂ) + Tf(n+2)) To + Tf(n+1))
T_(ny1yT-170 + (Tf(nﬂ) - T—n) o + T_(n12)

Ty —

; (6.16)

where T;, 1s the nth Tribonacci number and the initial conditions x_1, xqg € R — Fy, with

Fy is the forbidden set of Eq.(6.4) given by

F4 = U {(33',1,330) . T_(n+1)$’,1$0 + (T_(n+1) — T,n) Xo + T—(n+2) = O} .

n=-—1
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Proof. We will prove this theorem by induction on k. For k = 0, from Eq.(6.4),

-1 . —1 _ (T,1$,1$0 (ng + T,3) To + T,Q)
Zo (.Z',l + 1) -1 T_1%9 + Tg — 1 T,Q:E,lxo + (T,Q — Tfl) To + T,3 '

T =

Now, we assume that

— (Topr—1w0 = (T-gerr) + Togran)) @0 + T
T_(k41)T_170 + (T—(k+1) - Tfk) 2o + T_(k42)

T =

(6.17)

is true for all 1 < n < k. Hence, we have to prove that it is true for k£ + 1. Taking into

account (2.12) and (6.17), we have

Th+1
-1
T (Jik_l + 1) —1

—1

_(T—kx—lxo_(Tf(lﬂ—l)+T7(k+2))$0+T7(k+1)) _(T—(k—l)mflxo_(T—k+T7(k+1))$O+T—k) + 1 . 1
T_ (k@120 (T (o) =T )20+ T (k42) T —1z0+(T—k~T- (k1) )20+ T_(i+1)

— (T_rnr-170 = (T-(r2) + T-(43)) To + T-(r+2))
(T_ o1y = T = T—(oy1)) 120 + (Tohr2) — T-erny) To + Tt — T (k1) — To(r2)
— (T eryr—120 — (T-er) + T-hr3)) o + T-(ry2))
T_e+2)T-120 + (T-(hr2) — T-(er1)) To + T (ir3)

Y

which ends the induction and the proof.
Theorem 6.10 FEq.(6.4) has unique negative equilibrium point T = a and a unstable.

Proof. Equilibrium point of Eq.(6.4) satisfy the equation

—1

T IE+ -1

After simplification, we get the following cubic equation
P4+ -7T+1=0. (6.18)

Then, the roots of the cubic equation (6.18) are given by

11— Y19+ 3v33 — V19— 333

g =
3
_— —1—wV/19 +3v/33 — w?v/19 — 333
= ; ,
. —1 — w?V/19+3v/33 —wv/19 — 333
- ; ,
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where

_—1+4iV3

5 = exp (27mi/3)

w

is a primitive cube root of unity. So, the root g is only real number. Therefore, the unique
negative equilibrium point of Eq.(6.4) is T = g.
Now, we indicate that the negative equilibrium point of Eq.(6.4) is unstable.

Let I be an interval of real numbers and
fi:I* =1

be a continuous function defined by

—1

f(x,y) = Pt -1

Therefore, it follows that

of (x,y) _ y+1
O (x(y+1)—1)"
of (x,y) _ z
dy (x(y+1)—1)2.
Then, from (6.18)
of (z,7) g+1
Ox (9(g+1)— 1)
. g+1
(92 +g—1)°
g+ 1
(1)
- P4 g
= g-1
of (x,7) _ g
y (g(g+1)—1)*
_ g
(> +g—1)°
_ 9
(1)
= g,

and the linearized equation of Eq.(6.4) about T = ¢ is
fn+l = (g - 1) Zp + ggzn—l
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or equivalently

Zni1 — (9 —1) 20 — §®2n_1 = 0.

Therefore, the corresponding characteristic polynomial is
M—(g—DA=—g*=0.

Then, from Theorem 2.1, it is clearly seen that

(g—1)£+/4g3 + g2 —2g +1
2

A1 =
and numerically
A1 = |Aa| = 2,4944 > 1.

So, the equilibrium point ¢ is unstable. This completes the proof.

91






CHAPTER 7

THE DYNAMICS OF EXACT SOLUTIONS OF SECOND ORDER
NONLINEAR FOUR DIFFERENCE EQUATIONS

We mention that the results of this chapter are cited from [102] which has been published
by us.

The purpose of this chapter is to determine the forms of solutions, the stability character
of equilibrium points, the periodicity of solutions and global behavior of solutions of the

following four difference equations

1

el = ’ =0,1,..., 7.1

Tnt1 Ty (Tp1+1) =1 4 (7.1)
-1

gl = , =0,1,..., 7.2

Nar Ty (Xpp—1)—1 i (7:2)
1

el = ., n=0,1,..., 7.3

Tni1 oo (Tm1 — 1) + 1 n (7.3)
-1

Tpi1 = n=0,1,... (7.4)

Tp (Tpy +1)+ 1

7.1 MAIN RESULTS

In this section, we present our main results for the above mentioned difference equations.
Our aim is to investigate the general solutions in explicit form of the above mentioned

difference equations and the asymptotic behavior of solutions of these difference equations.

7.1.1 The Difference Equation (7.1)

Theorem 7.1 Let {x,} >, be a solution of Eq.(7.1). Then, forn =0,1,2, ..., the forms

n=-—1

of solutions {x,} -~ | are given by

. _ (1—n)z_12¢0+n (75)
-t nr_1x9+ o —n '

— NT_1Tg+Tog— "N (7.6)
—NIT_1Tg +n+ 1
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where the initial conditions x_q, xg € R — Fy, with Fy is the forbidden set of Eq.(7.1)

given by

B = U {(z_1,20) :nx_120+20 —m =0 0or —nzr_120+n+1=0}.

n=-—1

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds
for n — 1. That is,

(2—n)z_1x9g+n—1

Ton—3 = (n — 1) T_1Zg + Tog — (n — 1)
and

(n — 1) T_1Tg + Tg — (n — 1)
Topn—2 = .

(1—n)z_120+n
From this and from Eq.(7.1), it follows that

1
Top—o (Tap-g+1) —1

Top—1 =

1

(n—1)xz_120+20—(n—1) ( (2—n)x_120+n—1 1) 1
(1-n)z_1zo+n (n—1)z_120+20—(n—1)

(1—n)z_120+n

NT_1Tg+ Tog— "N '
Hence, similarly, we obtain

1

Top—1 (Tap—2 +1) —1
1

(1-n)x_1x0+n ((n—l)w_lxo—f—xo—(n—l) + 1> 1

nTr_1T0+To—"n (1-n)x_1zo+n

Ton =

NT_1Tg+ g — N

—nr_1To+n+1

Theorem 7.2 The following statements are true.

(1) The equilibrium points of Eq.(7.1) are Ty = 1 and To = —1.

(ii) The positive equilibrium point of Eq.(7.1), T1 = 1, is nonhyperbolic point.

(iii) The negative equilibrium point of Eq.(7.1), Ts = —1, is nonhyperbolic point.

Proof.
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(i) Equilibrium points of Eq.(7.1) satisfy the equation

1

TTI@+n -1

After simplification, we have the following cubic equation
P4+ -7-1=0. (7.7)

The roots of the cubic equation (7.7) are —1, —1, 1. Therefore, Eq.(7.1) has two

equilibra, one positive and one negative, such that

Ti=1, Ty = —1.

(ii) Now, let I = (0, 00) and consider the function
f:I? =1

defined by

1

f(z,y) = Tt =1

Then, it follows that

of (wy) _  —(+1)
Oz ((y+1)—1)"
af (Z‘,y) _ —Z
0y (x(y+1)—1)*

Therefore, the linearized equation of Eq.(7.1) about the equilibrium point 7; = 1 is

Zpn41l = PZn + q2Zp_1,

where
af (fhfl)
= L0 9
p ax )
af (flvfl)
= L 1
q dy )

and the corresponding characteristic equation is
M +2X+1=0.
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Therefore, from Theorem 2.1, it is clearly seen that

/\172 = -1
and
A1 =X = 1.

So, T is nonhyperbolic point.

(iii) Similarly, from (7.8), the linearized equation of Eq.(7.1) about the equilibrium point

ZL‘QI—l is

Zp41 = PZn + Q2n—1,

where
_ Of (T2, Ta)
po= ox =0,
af (52752)
= =1
q 8y )

and its characteristic equation is

A2 —1=0.

Thus, it follows that

/\172 =41
and
A1 = [Ao] = 1.

So, T is nonhyperbolic point.

Theorem 7.3 Let {x,}.. | be a solution of Eq.(7.1). Then, the negative equilibrium

point of Eq.(7.1), To, is a global attractor.
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Proof. From Theorem 7.1, we have

(1—n)z_120+n

lim z9,-.1 = lim
n—00 n—oo0 NL_1Tg+ Tog— N
(1 =n) (z@0 + 1)
= lim
P e g )

(1—n) (a:,lxo -1+ ﬁ)

= lim =
n—oo n (33_1370 + i 1)
= —1’
and
. . Nr_1Tyg+ Tog—"Nn
lim x5, = lim
n—00 n—oo —NT_1Tg+n + 1
X
on(razo+ 7y — 1)
= lim T
n—oo —n, (:E,lazo —1- 5)
= —1.

Hereby, it implies

lim z, = —1.

n—oo

7.1.2 The Difference Equation (7.2)

Theorem 7.4 Let {x,} >, be a solution of Eq.(7.2). Then, forn =0,1,2, ..., the forms

n=-—1

of solutions {x,} | are given by

—((1=n)xz_120 +n)
ol = 7.9
Tan—1 nNr_1Trg —Tog— N ( )
— (nx_129 — 9 — N)
- 7.10
2 —nr_1x9g+n+1 ( )

where the initial conditions x_1, ro € R — Fy, with Fy is the forbidden set of Eq.(7.2)

given by
F,= U {(x_1,20) : nx_120 — 20 —M =0 or —nEr_120 +N+1=0}.
n=-—1

Proof. For n = 0 the result holds. Assume that n > 0 and that our assumption holds
for n — 1. That is,

—((2=n)x_1zo+n—1)

Pon=s = (n—1)z_q29 — 20— (n—1)
and

- (n—=1) 2120 — 20— (n— 1))
Ton—2 = .

—(n—=1)z_q20+n
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From this and from Eq.(7.2), it follows that

—1

Ton—9 (Tan—3 — 1) — 1

Lop—1 =

—1
—((n—1)z_120—30—(n—1)) ((7((27n)x_1a:0+n71) 1) 1

—(n—1)z_120+n n—1)z_izo—zo—(n—1)

—((1=n)x_1m0 +n)

nr_1rg —Tog — N
Hence, similarly, we obtain

-1
Ton—1 (11727172 - 1) -1
—1
—((1=n)z_1z0+n) <—((n—1)w71wo—xo—(n—1)) N 1) 1

NnT_1To—To—"n —(n—1)z_1z0+n

Ton =

— (nx_120 — L9 — N)
—nTr_1xg+n—+1

Theorem 7.5 The following statements are true.

(1) The equilibrium points of Eq.(7.2) are Ty =1 and T, = —1.

(ii) The positive equilibrium point of Eq.(7.2), T1 = 1, is nonhyperbolic point.
(iii) The negative equilibrium point of Eq.(7.2), Ts = —1, is nonhyperbolic point.
Proof.

(i) Equilibrium points of Eq.(7.2) satisfy the equation

—1

T IE—D—1

After simplification, we have the following cubic equation

-7 —-T+1=0. (7.11)

The roots of the cubic equation (7.11) are —1, 1, 1. Therefore, Eq.(7.2) has two

equilibra, one positive and one negative, such that
fl - 1, fg - —1
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(ii) Now, let I = (0, 00) and consider the function

f:I* =1
defined by
-1
fzy) = cy—1) -1 (7.12)

Then, it follows that

of (z,y) _ (y—1)

Oz (x(y—1)—1)*
of (x,y) _ x

9y (w(y—1)-1)"

Therefore, the linearized equation of Eq.(7.2) about the equilibrium point 7; = 1 is

Zn+1 = PZn + qzn-1,

where
_Of (m,m)
p - aaj F 07
of (T1,71)
= 71 =1
q ay )

and the corresponding characteristic equation is
N —1=0.

Therefore, from Theorem 2.1, it is clearly seen that

ALz = 1
and
A1 = [Ao] = 1.

So, T is nonhyperbolic point.

(iii) Similarly, from (7.12), the linearized equation of Eq.(7.2) about the equilibrium

point To = —1 1is
Zn+1 = PZn + qZn-1,

99



where

_ Of (T2, 7a)
po= ox =2
o 8f (fz,fg) o
q - ay - 17

and its characteristic equation is
N +2)0+1=0.

Thus, it follows that

)\172 - —1
and
A1 = A2 = 1.

So, Ty is nonhyperbolic point.

Theorem 7.6 Let {x,} . | be a solution of Eq.(7.2). Then, the positive equilibrium
point of Eq.(7.2), T1, is a global attractor.

Proof. From Theorem 7.4, we obtain

—((1=n)x_120+n)

lim z9,-.1 = lim
n—00 n—00 NT_1Tg —Xg—MN
o (n=1) (2w + 1)
= lim

n—oo n (x_lxg - — 1)

(n—1) (33_11’0 -1+ ﬁ)

= ( n
n(r_iro— 2 —1
= 17
and
. . - (niﬂflﬂfo — Xo — TL)
lim z9, = lim
n—00 n—oo  —NT_1Tog+ N + 1
. —n (x_lxo — % — 1)
= lim :
n—oo —n (x_lxo —1- E)

= 1.
Herewith, it implies
lim z, = 1.

So, the proof is complete.
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7.1.3 The Difference Equation (7.3)

Lemma 7.7 Let {z,} _ , be a solution of Eq.(7.3). Then, {x,} . | is periodic with

period four.

Proof. From Eq.(7.3),

1

Tn+3 ($n+2 - 1) +1
1

1 1
(xn+2(xn+1_1)+l> <xn+l(xn_1)+1 o 1) + 1

Tn+a =

1

. L —1] 41
( (zn-&-l(zl'rz*l)‘?l) (xn(xn11—1)+1_l)+l) ( (W)(xn—l)ﬂ )

1

1 1—xp,
(l? a:x 1) + 1
1 zn(l_mnfl) +1 -
el el A G B

Tp_1—1

1

1—xnp
Tn—1 (Inxn—1> + 1
= Tp-

Hence, the result holds.

Theorem 7.8 Let {z,} . | be a solution of Eq.(7.3). Then, forn=1,2, ...,

1
Tan—-3 =
$_11'0—I‘o—|—1
. [E_1$0—$0+1
Tan—2 = T T
—140
Tan—1 = T
Tan = Xo

(7.13)

where the initial conditions x_1, ro € R — F3, with F3 is the forbidden set of Eq.(7.3)

given by

—1
I3 = {($_1,x0) cx_x9g=0orxz_; = il } )
Lo
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Proof. From (7.3), for n = 0, the result holds. Suppose that n > 0 and that our

assumption holds for n — 1. That is,

1
Tan—7 =
T_1X9 — Tg + 17
T_1Tg — Tg + 1
Tan—6 = T ’
—140
Ton—s5 = T-1,
Tan—4 = Xo.

Now, from Eq.(7.3), it follows that

1 1
Ton—4 (.734n,5 — 1) +1 N T_1Tg — Tg + 1

Tan-3 =

From this and from Eq.(7.3), it follows that

1 1 T 19— o+ 1

Tan-2 = Tyn-3 (Tan_a — 1) +1 > m (v —1)+1 y T_1Zo '
Again from Eq.(7.3), we get
Par = 1 B 1 _x_lmo_wl

T meealBes S smmeenl(o s 1) T
Similarly, from Eq.(7.3), we have

1 1
Tan-4 = Tan-1 (Tgno— 1)+ 1 - Ty (% _ 1) +1
1
= xg-

.’13,1—14-%—37714‘1:

Thus, the proof is complete.

Theorem 7.9 FEq.(7.3) has unique positive equilibrium point T = 1 and 1 is nonhyper-

bolic point.

Proof. Equilibrium point of Eq.(7.3) satisfy the equation

1

TTI@-D+U

After simplification, we have the following cubic equation
-7 +T—1=0. (7.14)
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The roots of the cubic equation (7.14) are —i, i, 1. Therefore, the unique positive equi-
librium point of Eq.(7.3) is 7 = 1.
Now, we prove that the equilibrium point of Eq.(7.3) is nonhyperbolic.

Let I = (0,00) and consider the function
f:I* =1

defined by

1

f(z,y) = P R

The linearized equation of Eq.(7.3) about the equilibrium point T =1 is

Zp41 = PZn + Q2n—1,

where
_ Oof (m,7)
B or 0,
_of@m)
q - ay 2 9

and the corresponding characteristic equation is

N +1=0.

Therefore, from Theorem 2.1, it is clearly seen that

)\172 = 41
and
Ml =l = 1.

So, this completes the proof.

7.1.4 The Difference Equation (7.4)

Lemma 7.10 Let {z,} -~ , be a solution of Eq.(7.4). Then, {x,} - , is periodic with

periods four.
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Proof. From Eq.(7.4),

-1
Tn+3 ($n+2 + 1) + 1
-1

—1 —1
<73n+2($n+1+1)+1> <$n+1(3)n+1)+1 + 1) + 1
—1

- — + 1) +1
( (xn+1(;;+1)+1> (zn(zn_i+1)+1+1)+1) ( (m) (Tn+1)+1

-1

Tnta =

—1  aptl ) 1
1 ( zn(zn_1+l) )+1 ( TnTn—1
(zn+1)+1

—1 TnTy_1+aTn+1
G T
—1
Tp—1 (— Tntl ) +1

TnTn—1

= Ip.
Hence, the result holds.

Theorem 7.11 Let {z,},- | be a solution of Eq.(7.4). Then, forn=1,2,..,

—1
Tgn_3 =
an=3 T_1Tg + To + 1
— (129 + 20+ 1
Tan—2 = (w170 + 20 + 1) (7.15)
T_1Xg
Ton—1 = T—-1
Tan = Lo

where the initial conditions x_1, ro € R — Fy, with Fy is the forbidden set of Eq.(7.4)

given by

—(x0+1)}_

F, = {(;v_l,.ro) cx_xo=0o0rxz_, =
Zo

Proof. From (7.4), for n = 0, the result holds. Suppose that n > 0 and that our

assumption holds for n — 1. That is,

-1
LTan—7 = )
T_1Tg +xo+ 1
— (ZE_lfL‘O + 29 + 1)
Ton—-6 = T T 5
—1Zo
Tan—5 = T—1,
Tan—a = To-
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Now, from Eq.(7.4), it follows that

—1 -1
Tana (Tans+1)+1  w_qmo+a0+1°

Ton—-3 =

From this and from Eq.(7.4), it follows that

- o —1 . —1 o —<$_1$0+I0+1>
2 Tan-3 (Tan—a +1)+1 m (xo+1)+1 T_1% .
Again from Eq.(7.4), we get
-1 -1 —X_129
‘7'/'4”71 = = = = _1-
Tap—o2 (Tapn_3+1)+1 —(z_1mo+x0+1) —1 —x
an—2 (Tan—3 +1) Lo b <x71$0+x0+1 + 1> +1 0
Similarly, from Eq.(7.4), we have
—1 —1
'T4n = =
Tan-1(Tan—2+1)+1 T, <—(x—1xo+a:o+1) + 1) +1
T_170

~1
—r g —1—E4az,+1

Zo-
Thus, the proof is complete.

Theorem 7.12 FEq.(7.4) has unique positive equilibrium point T = 1 and the equilibrium

point 1 1s locally assymptotically stable.

Proof. Equilibrium point of Eq.(7.4) satisfy the equation

—1

TTIEA )+

After simplification, we have the following cubic equation
T 4+T+T+1=0. (7.16)

The roots of the cubic equation (7.16) are —i, i, 1. Therefore, the unique positive equi-
librium point of Eq.(7.4) is T = 1.

Now, we demonstrate that the equilibrium point of Eq.(7.4) is locally asymptotically
stable.

Let I = (0,00) and consider the function
f:I? =1
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defined by

—1

f(z,y) = UESIESh

The linearized equation of Eq.(7.4) about the equilibrium point T = 1 is

Zpnt1 = PZn + q2Zp_1,

where
of @7 2
N or 9
Cof@Em 1
q - ay - 9?

and the corresponding characteristic equation is

2. 1
M —ZA— - =0.
9" 9

Therefore, from Theorem 2.1, it is clearly seen that
1 1
AMo=—-1+=v10
7979

and
|)\172| < 1.

Thus, the proof is complete.
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CHAPTER 8

GLOBAL ANALYSIS OF SOLUTIONS OF SYSTEMS OF DIFFERENCE
EQUATIONS VIA TRIBONACCI NUMBERS

Primarily, we mean that the results of this chapter are cited from [103] which has been
published by us.

The main objective of this chapter is to investigate the explicit form, stability charac-
ter and global behavior of solutions of the following two systems of rational difference

equations

1 1

y Ynl = o 0 % 8.1
Yn (Tp—1+1) +1 Yot Ty (Yno1 +1) +1 (8.1)

Tnt1 =

—1 —1
Yn @ =D +1 " r e =D+ 1

=l ., (8.2)

Tpy1 =

such that their solutions are associated with Tribonacci numbers.

Our aim in this chapter is to determine some relationships both between Tribonacci
numbers and and solutions of the aforementioned systems of difference equations and
between the Tribonacci constant and the equilibrium points of these systems of difference

equations.

8.1 MAIN RESULTS

In this section, we introduce our results.

8.1.1 The System (8.1)

In this subsection, we present our main results related to the system (8.1). Our aim is to
investigate the general solution in exact form of system (8.1) and the asymptotic behavior

of solutions of system (8.1).
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Theorem 8.1 Let {z,,y,},. , be a solution system (8.1). Then, forn=0,1,2,..., the
form of solutions {x.,y,},— | is given by

Ton—ox 1Yo + (Ton — Ton-1) Yo + Ton—1

oot = Ton-17-1Yo + (Ton—2 + Ton—1) Yo + Ton’
P Ton—1y-120 + (Tont1 — Ton) 2o + Ton
" Tony-120 + (Ton—1 + Ton) To + Tony1’
 Tonoy-120 + (Ton — Ton—1) T0 + Ton—1
Y-t = Ton—1Y-120 + (Ton—2 + Ton—1) o + To,’
— Ton17 1Yo + (Tons1 — Ton) Yo + Ton

Ton 1Yo + (Ton—1 + Ton) Yo + Tons1’
where T,, is the nth Tribonacci number and the initial conditions x_1, y_1, Tg, Yo € R—F7,

with Fy is the forbidden set of system (8.1) given by

= U {(x_1,y-1,20,%) : Ay =0 0or B, =0 or C, =0 or D, =0}

n=—1
where

Ay = Ton12_1y0 + (Ton—2 + Ton—1) Yo + Ton,
B, = Tony—17 + (Ton—1 + Ton) 20 + Ton1,
Cn = Ton1y-170 + (Ton—2 + Ton-1) 2o + Ton,
D, = Ty 1yo + (Ton—1 + Ton) yo + Tony1-

Proof. We use the induction on k. For & = 0, the result holds. Suppose that k£ > 0 and

that our assumption holds for £ — 1. That is,

Tok—ax_1Yo + (Tog—2 — Tor—3) Yo + Tox—3

ks = Tor—32_1Yo + (Tor—a + Tor—3) Yo + Tog—2’
ey — Top—3y—170 + (Top—1 — Top—2) o + Top—2
Top—oy—120 + (Top—3 + Tor—2) o + Top—1’
obs = Top—ay—120 + (Top—2 — Top—3) o + Top—3
Tor—s3y—120 + (Top—a + Tor—3) o + Top—2’
 Topsz ayo + (Tor—1 — Tor—2) yo + Ton—2
Yok—2 =

Top—27 10 + (Tor—3 + Tor—2) Yo + Tox—1
From system (8.1) and (2.11), it follows that

1
Yor—2 (Top—3+ 1)+ 1

Tok—1 —

1
Tor—32—1yo+(Tox—1—Tor—2)yYo+Tok—2 (T2k—455—1y0+(T2k—2_TQk—S)?JO+T2k—3 + 1) +1

Tok—27 1Yo+ (Top—3+Tok—2)Yo+Tok—1 \ Tor—37—1y0+(Tok—a+Tok—3)yo+Tok—2
Tok—2x 1Yo + (Tok—3 + Tor—2) Yo + Tox—1
(Tog—a + Tog—3 + Tor—2) x—1yo + (Tok—2 + Tor—1) Yo + Tox—3 + Tog—o + Tor—1
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Therefore, we have

Top—ox_1Yyo + (Tor, — Tor—1) Yo + Tor—1
Tor—17_1Y0 + (Tog—2 + Tor—1) yo + Tor

Tog—1 =

And also, it follows that

1
Tog—o (Yor—3+ 1)+ 1

Yok—1 —

1

Top—3y—120+(Tor—1—Tor—2)T0+Tor—2 [ Top—ay—170+Tor—2—Tor—3)T0+Tok_3 +1)+1
Togp—2y—100+(Tok—3+Togp—2)r0+Top—1 \ Tor—3y—1T0+(Tok—a+Tok—3)T0+Tok_2

Tok—2y—120 + (Tor—3 + Tor—2) To + Tog—1
(Tok—a + Tor—3 + Tor—2) y—120 + (Tok—2 + Tor—1) o + Tor—3 + Tor—2 + Tor—1

So, we obtain

Yoy = To—o2y—120 + (Tor — Top—1) 2o + Tox—1
2%h—1 = 4
Top—1y-120 + (Tog—2 + Top—1) xo + Tok

Similarly, from system (8.1) and (2.11), it follows that

1
Tok =
Yor—1 (Tok—2+ 1)+ 1
B 1
 Top_ay120+(Tor—Tor—1)T0+Tok—1 [ Ton—3y—120+(Tor—1—Tor_2)T0+Tokn_2 1) +1
Top—1y—1@0+(Ton—2+Tok—1)xo+Tok \ Tok—2y—120+(Tok—3+Tok—2)T0o+T2k—1
_ Tor—1y—120 + (Tog—2 + Tor—1) o + Tox
(Tok—3 + Tog—2 + Tor—1) y—120 + (Tok—1 + Tox) o + Tok—2 + Tor—1 + Tox
Thus, we get
S Top—1y—170 + (Tog—2 + Tox—1) To + Top
2% =

Tory—170 + (Tog—1 + Tor) w0 + Tops1
And also, it follows that

1
Top—1 (Yok—2+ 1)+ 1

Yor =

1

Top—2x—1yo+(Tor—Tok—1)yo+Tor_1 T2k73x—lyo+(T2k71*T2k72)yO+T2k72+1 +1
Top—12-1Yy0+(Tor—2+Tok—1)yo+Tor \ Ton—22—1Y0+(Tor—3+Tok—2)yo+T2r—1

Tok—12_1Yo + (Tog—2 + Tor—1) Yo + Tok
(Tog—3 4+ Tog—2 + Tog—1) v_1yo + (Tor—1 + Tor) yo + Tor—o + Tor—1 + Tor

Herefrom, we have

Yok — Tor—12 1Yo + (Tor—2 + Tor—1) yo + Tox
2% = )
Torr_1yo + (Tog—1 + Tor) Yo + Tokt1

Theorem 8.2 The system (8.1) has unique positive equilibrium point (T,y) = (a,a) and
(a,a) is locally asymptotically stable.
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Proof. Clearly, equilibrium point of system (8.1) is the real roots of the equations

1 1
f:—,_:__—. 8.3
E SN TC RS (8.3)

In (8.3), after some operations, we obtain

T=7.

As a result, we obtain the following equation

T+ +7T-1=0. (8.4)

Then, the roots of the cubic equation (8.4) are given by

—1+¢3\/_+17—\/3\/_3—17
—1+wv/3V33 +17 w2v/3v/33 — 17

h —
—1 4+ w?v/3v/33 +17 wv/3v/33 — 17
C _—
where
—1+14vV3
w= %\/_ = exp (27i/3)

is a primitive cube root of unity. So, the root a is only real number. Therefore, the unique
positive equilibrium point of system (8.1) is (Z,7) = (a, a).

Now, we show that the unique positive equilibrium point of system (8.1) is locally as-
ymptotically stable.

Let I and J are some intervals of real numbers and consider the functions
f:IPxJ*—=Tandg:I*xJ*—J

defined by

1 1
y Lny Tp—15Yny Yn— - .
a1 9 LY Y-t) = e T A

f (:L‘na Tn—1,Yn, yn—l) =

We consider the following transformation to build corresponding linearized form of system

(8.1)

(£n>£n—1:ynayn—l) - (fa fl:gvgl) ’
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where

1
( ) Yn (:L'n,l + 1) +1
fl (xnvxn—laymyn—l) = In,
( )
( )

f Tns Tn—15Yns Yn—1 9

1
Ty, (%—1 + ]-) + 1,

G\ Tny Tpn—1,Yn, Yn—1

91 (Tn, Tn—15Yn, Yn—1

Then, the linearized system of system (8.1) about the equilibrium point (@, a) under the

above transformation is given as
Xn+1 - BXm

where X, = (2, Tp_1, Yn, yn_l)T and B is a Jacobian matrix of system (8.1) about the

equilibrium point (a,a) and given by

0 (a(a+_10)L+1)2 (a(;$$i)1)2 0

1 0 0 0

B = —(1+a) 0 0 —a
(a(a+1)+1)° (a(a+1)+1)°

0 0 1 0

Thus, we obtain the characteristic equation of the Jacobian matrix B as
(a® + )\2)2 —(a—1)*X =0,

or

(M +(a—1)A+d®) (N = (a—1)A+d®) =0.

Hence, it is clearly seen that numerically

|A1] = [A2| = |A3] = |A4] = 0.40089 < 1.

Consequently, the equilibrium point (a,a) is locally asymptotically stable. So, this com-

pletes the proof.
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Theorem 8.3 The equilibrium point of system (8.1) is globally asymptotically stable.

Proof. Let {z,,yn},>_; be a solution system (8.1). By Theorem 8.2, we need only to

prove that the equilibrium point (a,a) is global attractor, that is

lim (2,,y,) = (a,a).

n—oo

From Theorem 8.1 and (2.13) and (2.14), it follows that

lim z = lim Ton—22-10 + (Ton — Ton-1) Yo + Ton—1
2n—1 —
nooo N—00 T2n—1x—1y0 + (Tzn_g + TQn—l) Yo + 15,

Tonos (oo + (72 — Tnst) go + Ln=t)
= lim
T Ty <5E 1%0 + < =2 4 1) Yo + TZ::)
(Z‘lyo + (Oé - Oé) Yo + Oé) 1i Ton—2
— im

o1y + (2 +1)yo+a | n—oo Ty
T2n—2

n—00 Lon—1

and

lim z9, = lim Ton-1y-170 + (Tony1 — Ton) o + Ton
2n  —
n—00 n—00 T2ny—1x0 + (T2n 1+ Tgn) Xo + T2n+1

T2n—1 ( —1T0 + ( Ty~ T2n— )1’ + TQ” )

-1

= lim
n—o0 T271 <y 11;0_,_( 2n—1 +1) T + T2n+1)

(ylﬁfo + (a? — a) xo + a) . T
= lim

Y—1Zo + (é + 1) o+ a ) nooo Ty,

Then, we have

lim z, = a.

n—oo

Similarly, we obtain

lim y,, = a.

n—oo
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Therefore, we get

lim (2,,y,) = (a,a).

n—oo

The proof is completed.

8.1.2 The System (8.2)

In this subsection, we introduce our main results related to the system (8.2). Our aim
is to investigate the general solution in explicit form of system (8.2) and the asymptotic

behavior of solutions of system (8.2).

Theorem 8.4 Let {x,,yn} - _, be a solution system (8.2). Then, forn =0,1,2,..., the

n=-—1
form of solutions {x,y,} o | is given by

— (Top—2x 1Yo + (Ton—1 — Ton) Yo + Ton-1)

oot = Ton12_190 — (Ton—2 + Ton—1) Yo + Ton
oy = (Ton—1y—170 + (Ton — Topg1) w0 + Ton)
" Tony-120 — (Ton—1 + Ton) ®o + Tons1
= (Tanoy—120 + (Ton—1 — Ton) o + Ton1)
Y-t = Ton-1y-120 — (Ton—2 + Ton—1) To + Ton,
— (Ton—17-1y0 + (Ton — Tont1) Yo + Ton)

Tonx—1yo — (Ton—1 + Ton) Yo + Tont1

where initial conditions r_1, y_1, To, Yo € R — Fy, with Fy is the forbidden set of system

(8.2) given by

Iy = U {(x-1,y-1,20,%) : Ap =0 or B, =0 or C,, =0 or D, =0}

A, = Top12-1yo — (Ton—2 + Ton—1) Yo + Ton,

B, = Tyy_120 — (Ton—1 + Tan) o + Ton1,
Cn = Ton—1y—170 — (Ton—2 + Ton—1) xo + Ton,
D, = Tyx_1y0 — (Ton-1+ Ton) Yo + Toni1-
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Proof. Consider system (8.2) by taking n =0, 1,2, ... as follows:

-1 —1

n=0 = l'lzm, y1:m7

n=l s m=SiEhnE ws R
n=3 = xy= gl oy, = ety
n=5 = xg= —(Ty—1w0—11x0+413) T = —(Tz_1y0—11yo+13)

13y_120—20x0+24 13z_1y0—20yo+24 ’

If we keep on this process and also regard (2.11), then the result directly follows from a

simple induction.

Theorem 8.5 The system (8.2) has unique negative equilibrium point (,7y) = (d,d) and
(d,d) is locally asymptotically stable.

Proof. Clearly, equilibrium point of system (8.2) is the real roots of the equations
-1 1
T = S S YJy=——"". 8.5
TG-D+1 VT g@-1)+1 (8:5)
In (8.5), after some operations, we get
T =1.
As a result, we obtain the following equation

-7+ T+1=0. (8.6)

Then, the roots of the cubic equation (8.6) are given by

1+\/3\/_3—17—\/3\/_+17

d =
1 +wv3V33 3—17 w?v/3v/33 +1
[ o
;- +w?v/3v/33 3—17 wV/3v/33 3+17
where
—1+14vV3
w= %\/_ = exp (27mi/3)
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is a primitive cube root of unity. So, the root d is only real number. Therefore, the unique

negative equilibrium point of system (8.2) is (7,7) = (d, d).

Now, we show that the unique negative equilibrium point of system (8.2) is locally as-

ymptotically stable.

Let I and J are some intervals of real numbers and consider the functions

f:I’xJ*—=Tandg:I>?xJ>—J

defined by

—1 ( ) —1
; Tny Tp—1,Yny Yn— — .
Ya@na -1 +1 7 b ) = e — 1) + 1

f (IL’n, Tn—1,Yn, ynfl) =

We consider the following transformation to build corresponding linearized form of system

(8.2)

('anrnflvyruyn*l) - (f7 flvgvgl) )

where

f Tny Tn—15Yn,s Yn—1

(
J1 (@0, Tty Yo, Y1
9 (Tn, Tn1, Yn, Yn—1
(

)
)
) -1
)

91 (Tn, Tn—1,Yn, Yn—1

The linearized system of system (8.2) about the equilibrium point (d, d) under the above

transformation is given as

X1 = BX,,
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where X, = (2, Tn_1, Yn, yn_l)T and B is a Jacobian matrix of system (8.2) about the

equilibrium point (d, d) and given by

0 (d(dftf)+1)2 (d(dﬁ)lﬂ)2 0

1 0 0 0

B = d—1 0 0 d
(d(d—1)+1)2 (d(d—1)+1)?

0 0 1 0

- 1 0 0 0
~(14d) 0 0 &
0 0 1 0

Thus, we obtain the characteristic equation of the Jacobian matrix B as
(@ —2?)" —(1+d)* =0,

or

(NM=—(1+dA=d) (XP+Q+d)r—d*) =0.

Hence, it is clearly seen that numerically

|A1] = [A2| = |A3] = |A4] = 0.40089 < 1.

Consequently, the equilibrium point (d, d) is locally asymptotically stable.

Theorem 8.6 The equilibrium point of system (8.2) is globally asymptotically stable.

Proof. Let {x,,yn},-_, be a solution system (8.2). By Theorem 8.5, we need only to
prove that the equilibrium point (d, d) is global attractor, that is

lim (z,,y,) = (d,d).

n—oo
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From Theorem 8.4 and (2.13) and (2.14), it follows that

lim Ton—1

n—o0

and

lim Ton

n—oo

= lim

— (Ton—22_1yo + (Ton—1 — Ton) yo + Ton-1)
n—oo  To, 12 1Yo — (Ton—2 + Ton—1) Yo + Ton

_T2n—2 <$_1y0 + (% _ Ty ) Yo + T2n—1>

Ton—2 Ton—2 Ton—2

n—oo Ton—1 ((L’_lyo — (—;z::? + 1) Yo + Tij_Ll)

T_1yo + (@ —a?)yo + lim T,
T 1Yo — (é + 1) Yo +

. l _T2n—2
= lim
n—oo Ty,
1
Q
= d7
lim — (Ton—1y—120 + (Ton — Tont1) zo + Ton)

n—oo  To,y_129 — (Ton—1 + Ton) To + Tont1
15,1 (’y_lxo + (—TZTj:’ - —%Ztl) iiE TZj:)

1 1

lim 7 .
e Ton (Z/Ailfo - ( =+ 1) Zo + —;Z:l)

(?J—L’Eo + (o — o®) zo + Oé) N £
lim

Y-_1To — (é + 1) Tog+a | n—oe Ty,
lim —lons
n—oo Ty,
1
Ca
d.

Then, we have

lim z, =d.

n—oo

Similarly, we obtain

lim y,, = d.

n—oo

Therefore, we get

lim (x,,y,) = (d,d),

n—oo

which completes the proof.
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CHAPTER 9

THE DYNAMICS OF SOLUTIONS OF A RATIONAL DIFFERENCE
EQUATION VIA GENERALIZED TRIBONACCI NUMBERS

Initially, we state that the results of this chapter are cited from [104] which has been
published by us.
In this chapter, in the light of Chapter 6 and 7, we study the following difference equation

Y
Tp (xn—l + a) +ﬁ’

Tpi1 = =0,1,.., (9.1)

where the inital values z_; and x( are arbitrary nonzero real and the parameters «, 3

and vy are nonnegative real numbers with v # 0.
9.1 Introduction

First, from [121], consider the generalized Tribonacci sequence {V,,} -, defined by the

recurrent relation
Ve =1Vaio+ sV +tV,, ne€N, (9.2)
where the constant coefficients r, s, t are real numbers and the special initial conditions
‘/0:07‘/1:17‘/2:7"
The sequence {V,,}>°, can be extended to negative subscripts by defining
Vo, =-v "V ey + V.

—-n — ; —(n-1) P —(n—2) / —(n-3)

for n =1,2,3,... when t # 0. Hereby, recurrence (9.2) holds for all integer n.
As {V,,}>2 is a third order recurrence sequence (difference equation), it’s characteristic

equation is
23 —ra? — sy —t=0, (9.3)
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whose roots are

@ = go(r,s,t):g—i—A—i—B
= X(T,s,t):§+wA+w23
= @/J(T,s,t):quwQA—l—wB
where
r3 rSs t 1/3 r3 s t 1/3
A = — + — 4+ = A B=|—4+—4+-—=vVA
(27+6+2+\/_> ’ (27+6+2 \/_)
r3t r2s? rst 53 12
st =or ~ T8 6 w1

—1+iV3
2

w = = exp(2mi/3).

Notice that we get the following identities

ptx+y =
ex+ep+xy = —s,

oxy = t.

From now on, we assume that A(r, s, t) > 0, so that the Eq.(9.2) has one real ¢ and two
non-real solutions with the latter being conjugate complex. Therefore, in this case, it is
widely known that generalized Tribonacci numbers can be stated, for all integers n, using
Binet’s formula

P s Pt

= * R .

(=x)e—v) (k—9)—v¢
We can present Binet’s formula of the generalized Tribonacci numbers for the negative

(9.4)

subscripts: for n = 1,2, 3, ... we have

2—n

O —rp—s © +X2—7“X—5 X
t (o = x)(p =) t (x —©)(x =)
Porp—s P
t (v =)W —x)

Vo, =

+

Lemma 9.1 Let ¢, x and v be the roots of Eq.(9.3), suppose that ¢ is a real root with
max {|¢[; [x]; Y]} = |¢|. Then,

lim 2L ©. (9.5)

n—oo n
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Proof. Note that there are three cases of the roots, that is when the roots are all real

and distinct, all roots are equal or two roots are equal, complex conjugate. We will only

proof the first case. The proof of the other two cases of the roots is similar to first one,

so it will be omitted.

If v, x and ® are real and distinct then, from Binet’s formula

L,D"+2 X7L+2 ,l/}n+2
O Y e e B e [ e B (S [ )
lim = lim T
n—oo V), n—oo @M x4
(p=x) (=) x—e)(x—v¢) " (=) (v—x)

X X"t )

,Ll}n+1

n+1 %
2 ((@*X)(svfw) T G0 o T G @) o T

)

= lim

n—o0

¥

o X X n+1
1 (5) T

n ®p X X" P
¥ ((w—x)(so—w) . (x—@)(x—¥) ¥™ T WP—e)(¥—x) w")

P

Y—0)(¥—x)

(

)

9.2 Main Results

Sk | s

In this section, we present our main results related to the difference equation (9.1). Our

aim is to investigate the general solution in explicit form of Eq.(9.1) and the asymptotic

behavior of solutions of Eq.(9.1).

Theorem 9.2 Let {x,} - | be a solution of Eq.(9.1). Then, forn=0,1,2, ..., the form

of solutions {x,} >~ | is given by

S tVo1x_1x0 + (Vs — Vi) o + Vi
" tVaro1mg + (Ve — Vi) o + Vg

(9.6)

where V,, is the nth generalized-Tribonacci number and the initial conditions x_1, xg €

R — F, with F is the forbidden set of FEq.(9.1) given by

= U {(w_1,20) : tVw_1wo + (Vig — 7Voy1) o + Vir = 0}

n=-—1
Proof. First, by using the change of variables

Wp—1
Tp = )
Wn,

Eq.(9.1) is reduced to linear third order difference equation

a 1
Wpt1 = —Wp + —Wp—1 + —Wp—2.
gl v Y
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so we have
Wpt1 = TWp + SWp—1 + tWp_a.

Now, as done in [86], we describe initial values of three sequences which will be repetitively

defined and used in the rest of the proof. Let
a1 :=r, by:=s, ¢ :=1t.
We use an recurrent (iterative) method. Thus, we get

Wy, = G Wp—1 + biwy_g + crw,_3
= a1 (rwp—g + SWp—_g + twn_4g) + b1wp_o + 10,3
= (ra; + b)) wy_o+ (sa1 + ¢1) Wy_3 + tajw,_4

= AaWy_o + bow,_3 + CoWy_4, (9.8)
where
as :=ra; + by, by:=sa; +c1, co:=tay. (9.9)
By continuing iteration, it implies that

Wy, = AWp_2 + bywy_3 + Cowy,_y4
= g (rwp_3 + swy_4 + tw,_s5) + baw,_3 + cow,_4
= (rag+ bg) wy_3 + (Sag + ¢2) Wy_g + tasw, 5

= a3Wy_3 + b3wy_4 + C3w,_s, (9.10)
where
asz :=rag + bg, b3 = Say + Co, C3 = tag. (911)

Based on relations (9.8)-(9.11), we suppose that for some k € N such that 2 < k <n-—1,

we have
Wy, = ApWy—_g + DpwWp_p_1 + CLWp_g_o, (9.12)

122



and
ag ‘= 1rap_1 + bkfl, bk = Sag—1 + Cp—1, Cp = tak,l. (913)
Next, by continuing iteration, it follows that

Wy = QpWp—g + bpWy_p—1 + CLWy—p—2
= g (T1Wp—p—1 + SWy_j—2 + tWy_j—3) + DpWy—_p—1 + CLWn_k—2
= (Ta,k + bk) Wy—k—1 + (Sak + Ck) Wp—k—2 + takwn_k_g

= Qg1 Wp—k—1 + D1 Wn—g—2 + Chp1Wn——3,

where
Qi1 = Tap + b, bgiy = sax + g, Cpr1 = tay.

Now, we maintain sequences ay, by and ¢ for some nonpositive values of index k. Notice
that since v # 0, the recurrent relations in (9.13) can be really used for computing values
of sequences ay, by and ¢, for every k < 0.

Using the recurrent relations with the indices £ = 1, £ = 0 and k = —1, respectively,

after some computations, it implies that

1
ag = —=1
c
b = a1 —agg=a—a.1=0

Ch = bl—bagzb—blz()

Co
a_1 = — =0
C

b_1 = agy—aa_;1=1—al0=1
c_1 = bg—ba_lzo—b.():O
a_o9 = E =0

c
by = a_1—aa_o=0—a.0=0

C_o9 = b_1 - b(l_Q =1-b0=1.
Thus, we obtain

a[):l &,1:0 CZ,QZO
bo - O b_l - 1 b_2 - (914)

COZO 0_120 0_2:1.
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From (9.13), we get

Gy = TQp_1 + SUp_o + ta,_s, (9.15)
by = Qpi1 — Ty, (9.16)
Cp = tap_1, (9.17)
for n € N.

If we get k = n in (9.12), we have
Wy, = ApWo + byw_1 + cw_g,

for n € Np.
From (9.15)-(9.17), we obtain

Wy, = apWo + (Apg1 — rap) W_1 + ta, qw_o, (9.18)

for n € Np.
Using (9.18) in (9.7), we get

(p—1Wo + (an - ran—l) W_1 + ta,_sw_o
anwo + (Apy1 — ray) w_q + ta, qw_s

Tn = )

it follows that

. tan_gl’_lxo + (an — ran_l) To + Qp—1
ta, 17 170 + (ans1 — ra,) ro + ay

Tn

or equivalently

_ tap or 1o + (an — TAn 1) To + An1
tan,lx,lxo + (san,l + tCLn,Q) To + Ay

Tn
From initial values (9.14) and definitions of sequences a,, and V,,, we have
an = Vn+1,

with the backward shifted initial values of the sequence a,,. Then, it follows

V12120 + (Vogr —7Vo) 2o + V4

Ty = ,
tVar_120 + (Vigo — 7Voia) 2o + Vi

or

o tVn_lx_le + (Vn+1 — T’Vn) Zo + Vn

B tVn(E,1$0 + (SVn + tVn,l) To + Vn+1 .
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The proof is complete.

Now, we will analyze five special cases of the above theorem according to the states of r,
s, t.

Case I: r=s=1t=1

In this case, the (a,) sequence has the following recurrence relation

Qp = Gp_1 + Ap_2 + Qy_3,

such that a few terms of this sequence are

a_2=0 a_1=0,a=1, a1 =1, as =2, a3 =4. (9.19)

Then, from initial values (9.19) and definitions of sequences a,, and 7, which is Tribonacci

numbers, we have

Qp = Lpy1,

with the backward shifted initial values of the sequence a,,.

Hence, we obtain

- T30 + (T — 1) xo + 15,
" Taamo+ (T + Thor) wo + Togr

Case 2: r=0,s=t=1

In this case, the (a,) sequence has the following recurrence relation

ap = Qp—2 + Qp_3,

such that a few terms of this sequence are

a_o=0,a.1=0,a0=1,a;=0, aa =1, a3 =1, a4 = 1. (9.20)

Then, from initial values (9.20) and definitions of sequences a,, and P,, which is Padovan

numbers, we get
Qpy2 = Pn7

with the forward shifted initial values of the sequence a,,.

Therefore, we have

Po_sx 130 + Pp_gxo + Po_3
Py 3z 120+ Py1zo+ Poa’

Ty =
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Case 3: r=0,s=t=1

In this case, the (a,) sequence has the following recurrence relation

Ay = Qp—2 + Qp_3,

such that a few terms of this sequence are

a_5=0 a_1=0,a =1 a,=0, as=1, a3=1, as = 1. (9.21)

Then, from initial values (9.21) and definitions of sequences a,, and S,, which is Padovan-

Perrin numbers, we have

Qp = On+2,

with the backward shifted initial values of the sequence a,,.

Thus, we obtain

SnT_1Z0 + SnioTo + Sntt
Spt1Z-1T0 + Sny3To + Snia

Ty —

Case4: r=1,s=0,t=1

In this case, the (a,) sequence has the following recurrence relation

Ap = Qp—1 + Qp_3,

such that a few terms of this sequence are

a_o=0,a_1=0,a0=1, a1 =1, aa =1, a3 =2, ag = 3. (9.22)

Then, from initial values (9.22) and definitions of sequences a,, and N,, which is Narayana

numbers, we have

Qp = INp41,

with the backward shifted initial values of the sequence a,,.

Fromhere, we have

_ Ny1x 420 + Ny2o + Ny,
Npx_120 + Np—12 + Npg1

Tn

Case 5: r=s=1,t=2

In this case, the (a,) sequence has the following recurrence relation
(p = Qp—1 + Qp—2 + 2an—37
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such that a few terms of this sequence are
a_o = 0, a_1 = 0, apg = 1, ap = 1, g = 2, as = 5, g = 9. (923)

Next, from initial values (9.23) and definitions of sequences a,, and J,, which is third order

Jacobsthal numbers, we have

Qp = Jn41,

with the backward shifted initial values of the sequence a,,.

Herefrom, we get

R 2Jn_1x_1$0 + (Jn+1 — Jn) i) + Jn
" 2Jn£C,1$C0 + (Jn+2 — Jn+1> xo + Jn+1 )

Theorem 9.3 Fq.(9.1) has unique equilibrium point T = p and p is locally asymptotically
stable.

Proof. Equilibrium point of Eq.(9.1) is the real roots of the equation

v
T(T+a)+8

T =
After simplification, we get the following cubic equation
7+ a7 + BT —v=0. (9.24)

Then, the roots of the cubic equation (9.24) are given by

(07
Ho= N(aaB;W):_§+C+D;

o = a(a,ﬁ,’y):—%—l—wC—l—wQD,

¢ = ¢(a,8,7) = —= +wC +wD,

3
where
-3 af v 1/3 —0®  af 1/3
= (—+=+14VA D=(—+=24+1_VA
C (27+6+2+\/_>, (27+6+2 \/_)
oy _a?B® apy B9
A = Alrst)=-2T ZLr
(s =-57~ G5 T 76 Tt
and
NG
w= L\/_ = exp (27mi/3)

2
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is a primitive cube root of unity. So, the root pu is only real number. So, the unique
equilibrium point of Eq.(9.1) is T = p.

Now, we demonstrate that the equilibrium point of Eq.(9.1) is locally asymptotically
stable.

Let I be an interval of real numbers and consider the function

f:I*P =1
defined by
_ Y

The linearized equation of Eq.(9.1) about the equilibrium point 7 = p is

Zn+1 = PZn + qzn—1,

where
b= of @z _  —v(pta)
Ox (1 (p+ @) + B)?
1 kta)
(12 + ap + B)?
_ et
_ W tap?)
v
_ Bp—n
>
= (z,7) _ —YH
dy (1 (p+ @) + B)?
_ —y
(12 + ap + B)?
—Y

and the corresponding characteristic equation is
3

/\2—(M))\+M——O.
Y 8

128



Consider two functions defined by

a(\) =22 b)) = (5"7— 7) A “73

We have

< 1.

gl
Then, it follows that

‘5#—7 &
v

(V)] < Ja(A)], forall A: [\ = 1.

Therefore, by Rouche’s Theorem, all zeros of P (\) = a(A) —b(A) = 0 lie in |\ < 1.
Hereby, by Theorem 2.4, we have that the unique equilibrium point of Eq.(9.1) T = pu is
locally asymptotically stable.

Theorem 9.4 Assume that pp = 1. Then, the equilibrium point of Eq.(9.1) is globally
asymptotically stable.

Proof. Let {z,},._, be a solution of Eq.(9.1). By Theorem 9.3, we need only to prove
that the equilibrium point p is global attractor, that is

lim =, = p.

n—oo

From Theorem 9.2 and (9.3) and (9.5), it follows that

. . tvn—l'r—lJ;O + (vn+1 - 'rvn) Xo + Vn
lim z, = lim
n—00 n—oo tVw_120 + (Voo — rVog1) w0 + Vi

1Vat1 1 Vy Vi
tVn_l (l’_ll’o + (t_Vn—l t_anl> o + v

n—1

= lim - - ”
n—oo l nt+2 _ T Vni4l n+1
tVn (LC,1$0 + (t V., t V., ) To + Vv, )

_ [ *-1%o + (% 2 — %90) To + ¢ ‘m Va1
zazo+ (392 = Fp) mo + ¢ | oo Vy

= lim Vs
n—oo Vn
1
¥
= p

This completes the proof.
Note that when o« = 3 = v = 1, our assumption in Theorem 9.4 is immediately seen.

Indeed,
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ey = 5 (#{”/277 — 203+ 90 —3V35 — ta + ﬁf’/Q?w —2a% 4+ 9af + 3\/35)
(8+ 45 V28" + 277 = 3395 + 9aBy + 45 V287 + 2772 + 3V37S + 9a )

S = /—4a3y — a23% + 18afy + 4% + 2772,

Then, in the case a = 8 = v =1, it follows that up = 1.
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