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ABSTRACT 

 

Master of Science Thesis 

 

THE SOLUTIONS OF SOME SYSTEMS OF EXPONENTIAL DIFFERENCE 

EQUATIONS 

 

CANSU GÜĞERÇİN 

Zonguldak Bülent Ecevit University 

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

 

Thesis Advisor: Assist. Prof. Melih GÖCEN 

January 2020, 53 pages 

 

Difference equations are applied to mathematical models within biology, genetics, population 

dynamics, probability theory, psychology, sociology and many other disciplines. For this 

reason, recently there has been a lot of interest in studying the difference equations. 

 

This thesis consists of four chapters. 

 

In the first chapter, general informations, basic definitions and theorems about difference 

equations are given. 

 

In the second chapter, a literature review of the studies on difference equations of exponential 

form is presented. 

 

In the third chapter, the equilibrium point and local asymptotic stability of positive solutions 

of some rational exponential difference equations are investigated. 
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ABSTRACT (continued) 

 

In last chapter, the local asymptotic stability of positive solutions of some systems of rational 

exponential difference equations are studied.  

 

Moreover, in the thesis, the local asymptotic stability of positive solutions are showed by 

graphs. 

 

Key Words: Exponential difference equations, equilibrium point, local asymptotic stability. 
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ÖZET 

 

Yüksek Lisans Tezi 

 

BAZI ÜSTEL FARK DENKLEM SİSTEMLERİNİN ÇÖZÜMLERİ 

 

Cansu GÜĞERÇİN 

 

Zonguldak Bülent Ecevit Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Ana Bilim Dalı 

 

Tez Danışmanı: Dr. Öğr. Üyesi Melih GÖCEN 

Ocak 2020, 53 sayfa 

 

Fark denklemleri biyoloji, genetik, popülasyon dinamiği, olasılık teorisi, psikoloji, sosyoloji 

ve daha bir çok bilim dalının içindeki matematiksel modellere uygulanır. Bu nedenden dolayı, 

son zamanlarda fark denklem sistemlerinin çalışmasına çok büyük ilgi vardır. 

 

Bu tez dört bölümden oluşmaktadır. 

 

Birinci bölümde fark denklemleri ile ilgili genel bilgiler, temel tanımlar ve teoremler veril-

miştir. 

 

İkinci bölümde üstel fark denklemleri ile ilgili yapılan çalışmaların literatür taraması sunul-

muştur. 

 

Üçüncü bölümde bazı rasyonel üstel fark denklemlerinin pozitif çözümlerinin denge noktası 

ve lokal asimptotik kararlılığı incelenmiştir. 
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ÖZET (devam ediyor) 

 

Son bölümde ise bazı rasyonel üstel fark denklem sistemlerinin pozitif çözümlerinin lokal 

asimptotik kararlılığı çalışılmıştır. 

 

Ayrıca tezde, pozitif çözümlerin lokal asimptotik kararlılığı grafiklerle gösterilmiştir. 

 

Anahtar Kelimeler: Üstel fark denklemleri, denge noktası, lokal asimptotik kararlılık 

 

Bilim Kodu: 403.03.01 
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The di¤erence equation is an algebraic connection that gives the relationship between

�nite di¤erences of a function with one or more variables and independent variables of this

function. In these equations the independent variable is de�ned on integers. Therefore,

the di¤erence equations contain di¤erences of unknown function instead of di¤erentiation

terms. Di¤erence equations are used in mathematical modeling of events that are not

continuous and vary according to evenly spaced time.

Some of the events in the nature are not continous. For example, in the genetic �eld,

genetic characteristics vary between generations. The variable that represents the gen-

eration is an independent variable and also a discrete variable. The price changes in

economy is calculated annually, monthly, weekly or daily. In this case, time variable is an

independent variable and also a discrete variable. In population dynamics, the variable

that shows the age groups appears as a discrete independent variable in the problems

of population change among the age groups. Economic problems, such as national in-

come and government debts, that take the same values in a period and change as the

period changes are analyzed by the di¤erence equations. It is a common theme to process

discrete subjects in noncontinuous stages, from clocks to computers and chromosomes.

The di¤erence equations are used in many disciplines and in the �elds such as probability

theory, sequence problems, statistical problems, probabilistic time series, combinatorial

analysis, number theory, geometry, electrical circuits, radiation, psychology, sociology,

stock market movements in economics, the research of the number of live populations

in medicine and biology, and more importantly the study of cell movements (the rate of

increase in cancer cells).

The wide range of application has increased the interest in di¤erence equations and it

has attracted the attention of not only mathematicians but also the researchers work-

ing in science, engineering, health and social science. For example, in the 1950s, several
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environmental scientists used the simple nonlinear di¤erence equation which included a

logistic equation, to examine year-to-year changes in the behavior of populations. How-

ever, in the early 1970s, Robert May researched the types of complex behaviors exhibited

by the logistic equation and he studied on the relationship between these behaviors and

�uctations in real populations. Furthermore, more advanced models developed from this

logistic model are used to identify the behaviors of HIV viruses, bacteria or cancer cells.

In recent years, many studies have been carried out on the behaviors of di¤erence equa-

tions, and the system of di¤erence equations, in particular periodicity, stability, bounded-

ness. In this study, equilibrium point and asymptotic stability of some nonlinear rational

di¤erence equation of exponential form and rational di¤erence equation systems of expo-

nential form are examined. In addition, some numerical examples are given to support

our theoretical results.

In this section, we give basic de�nitions and theorems related to di¤erence equations.

A di¤erence equation of order (k + 1) is an equation of the form

xn+1 = f(xn; xn�1; : : : ; xn�k); n = 0; 1; : : : (1.1)

where F is a function that maps some set Ik+1 into I. The set I is usually an interval

of real numbers, or a union of intervals, or a discrete set such as the set of integers

Z = f: : : ;�1; 0; 1; : : :g:

A solution of (1:1) is a sequence fxng1n=�kthat satis�es Equation (1:1) for all n > 0.

A solution of (1:1) that is constant for all n � �k is called an equilibrium solution of

(1:1). If

xn = x, for all n � �k

is an equilibrium solution of (1:1), then x is called an equilibrium point.

De�nition 1.1 (Discrete Dynamical System) An m-dimensional discrete dynamical sys-

tem is a system of the following form8<: xn+1 = f1(xn; xn�1; : : : ; xn�m; yn; yn�1; : : : ; yn�m)

yn+1 = f2(xn; xn�1; : : : ; xn�m; yn; yn�1; : : : ; yn�m)
(1.2)

where f1 : Im+11 � Im+12 ! I1 and f2 : Im+11 � Im+12 ! I2 are continuously di¤erentiable

functions and I1; I2 are some intervals of real numbers. Also, a solution f(xn; yn)g1n=�m of

system (1:2) is uniquely determined by initial values (x�i; y�i) 2 I1�I2 for i = 0; 1; : : : ;m.
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De�nition 1.2 An equilibrium point of Equation (1:1) is a point x that satis�es

x = f(x; x; : : : ; x):

The point x is also called to a �xed point of the function f .

De�nition 1.3 An equilibrium point of system (1:2) is a point (x; y) that satis�es8<: x = f1(x; x; : : : ; x; y; y; : : : ; y)

y = f2(x; x; : : : ; x; y; y; : : : ; y)

if we assume that the associated vector map

F = (f1; xn; xn�1; : : : ; xn�m; f2; yn; yn�1; : : : ; yn�m);

then, the point (x; y) is also called a �xed point of the vector map F .

De�nition 1.4 Let x be a positive equilibrium of (1:1).

i) An equilibrium point x of Equation (1:1) is called locally stable if, for every � > 0;

there exists � > 0 such that if fxng1n=�k is a solution of Equation (1:1) with

jx�k � xj+ jx1�k � xj+ :::+ jx0 � xj < �;

then

jxn � xj < �; for all n � 0:

ii) An equilibrium point x of Equation (1:1) is called locally asymptotically stable if, x

is locally stable, and if in addition there exists 
 > 0 such that if fxng1n=�k is a

solution of Equation (1:1) with

jx�k � xj+ jx1�k � xj+ :::+ jx0 � xj < 
;

then

lim
n!1

xn = x:

iii) An equilibrium point x of Equation (1:1) is called a global attractor if, for every

solution fxng1n=�k of Equation (1:1) we have

lim
n!1

xn = x:
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iv) An equilibrium point x of Equation (1:1) is called globally asymptotically stable if x

is locally stable, and x is also a global attractor of Equation (1:1).

v) An equilibrium point x of Equation (1:1) is called unstable if x is not locally stable.

De�nition 1.5 Let (x; y) be an equilibrium point of the system (1:2).

i) An equilibrium point (x; y) is said to be stable if for every � > 0, there exists � > 0 so

that for every initial condition (xi; yi); i 2 f�1; 0g; with if k
P0

i=�1(xi; yi)�(x; y)k <

� implies k(xn; yn)� (x; y)k < �, for all n > 0, where k � k is usual Euclidian norm

in R2:

ii) It is said to be unstable, if an equilibrium point (x; y) is not stable.

iii) If an equilibrium point (x; y) is stable and there exists � > 0 such that k
P0

i=�1(xi; yi)�

(x; y)k < � and (xn; yn) ! (x; y) as n ! 1, then, it is called to be asymptotically

stable.

iv) The equilibrium point (x; y) is said to be a global attractor if

lim
n!1

(xn; yn) = (x; y):

v) If an equilibrium point (x; y) is both global attractor and stable, then, it is called to be

globally asymptotically stable.

De�nition 1.6 (Linearization Method) Suppose that the function F is continuously dif-

ferentiable in some open neighborhood of an equilibrium point x. Let

qi =
@F

@ui
(x; x; : : : ; x) for i = 0; 1; :::; k

denote the partial derivative of F (u0; u1; :::; uk) with respect to ui evaluated at the equilib-

rium point x of Equation (1:1). Then the equation

yn+1 = q0yn + q1yn�1 + : : :+ qkyn�k; n = 0; 1; ::: (1.3)

is called the linearized equation of Equation (1:1) about the equilibrium point x, and the

equation

�k+1 � p0�k � p1�k�1 � : : :� pk = 0 (1.4)

is called the characteristic equation of Equation (1:1) about x.

4



Theorem 1.1 (The Linearized Stability Theorem) Assume that the function F is a con-

tinuously di¤erentiable function de�ned on some open neighborhood of an equilibrium

point x: Then the following statements are true:

i) The equilibrium point x of Equation (1:1) is locally asymptotically stable if all the roots

of Equation (1:4) have absolute value less than one.

ii) The equilibrium point x of Equation (1:1) is unstable if at least one root of Equation

(1:4) has absolute value greater than one.

iii) When there exists a root of Equation (1:4) with absolute value equal to one, then the

equilibrium x is called nonhyperbolic, then the equilibrium point x of Equation (1:1)

is called hyperbolic if no root of Equation (1:4) has absolute value equal to one.

iv) When it is hyperbolic and if there exists a root of Equation (1:4) with absolute value

less than one and another root of Equation (1:4) with absolute value greater than

one then equilibrium point x of Equation (1:1) is called a saddle point.

v) When all roots of Equation (1:4) have absolute value greater than one then equilibrium

point x of Equation (1:1) is called a repeller.

Theorem 1.2 Assume that

jq0j+ jq1j+ :::+ jqkj < 1:

Then all roots of Equation (1:4) lie inside the unit disk.

De�nition 1.7 (Linearization Method for a discrete dynamical system) If (x; y) be an

equilibrium point of a map

F = (f1; xn; :::; xn�m; f1; yn; :::; yn�m)

where f1 and f2 are continuously di¤erentiable functions at (x; y). The linearized system

of system (1:2) about the equilibrium point (x; y) is

Xn+1 = F (Xn) = FJXn;

5



where

Xn =

0BBBBBBBBBBBB@

xn
...

xn�m

yn
...

yn�m

1CCCCCCCCCCCCA
and FJ is a Jacobian matrix of the system (1:2) about the equilibrium point (x; y).

Proposition 1.3 Assume that xn+1 = F (xn); n = 0; 1; : : :, is a system of di¤erence

equations and x be a �xed point of F. If all eigenvalues of the Jacobian matrix JF about

x lie inside the open unit disk j�j < 1, then x is locally asymptotically stable. If one of

them has a modulus greater than one, then x is unstable.

Theorem 1.4 (Rouche�s Theorem) Let two functions f (z) and g (z) be analytic inside

and on a simple closed curve C, and suppose that jf (z)j > jg (z)j at each point on C.

Then f (z) and f (z) + g (z) have the same number of zeroes, inside C:

6



CHAPTER 2

LITERATURE REVIEW

2.1 DIFFERENCE EQUATIONS OF EXPONENTIAL FORM

In this section, we give some information about di¤erence equations of exponential form

and di¤erence equation systems of exponential form.

In [8] , Metwally et al. dealt with the global stability, the boundedness nature, and the

periodic character of the positive solutions of the di¤erence equation

xn+1 = � + �xn�1e
�xn ; n = 0; 1; : : : (2.1)

where �; � are positive constants and the initial values x�1; x0 are positive numbers. As

a result, they proved that:

� Equation (2:1) has a unique equilibrium solution x and x > �.

� The equilibrium x of Equation (2:1) is locally asymtotically stable if

� <
��+

p
�2 + 4�

�+
p
�2 + 4�

e
�+
p
�2+4�
2 ;

and is unstable (and in fact is a saddle point) if

� >
��+

p
�2 + 4�

�+
p
�2 + 4�

e
�+
p
�2+4�
2 :

� Every positive solution of Equation (2:1) is bounded if � < e� and Equation (2:1)

has positive unbounded solutions if � > e�.

� If � � e�(��+
p
�2+4
2

), Equation (2:1) has no positive solutions of prime period two

and the equilibrium x of Equation (2:1) is globally asymptotically stable.

In [9], Fotiades and Papaschinopoulos discussed the existence, uniqueness and attractivity

of prime period two solution of the di¤erence equation

xn+1 = a+ bxn�1e
�xn ; (2.2)

7



where a; b are positive constants and the initial values x�1; x0 are positive numbers. More-

over, they found

� Equation (2:2) has a periodic solution of prime period two if

�a+
p
a2 + 4a

a+
p
a2 + 4a

e
a+
p
a2+4a
2 < b and b < ea:

� When b < ea and ab > 2b � 2; Equation (2:2) has a unique prime period two

solution.

In [22], Ma et al. investigated the boundedness and the asymptotic behavior of the

positive solutions of the di¤erence equation

xn+1 = a+ bxne
�xn�1 ; (2.3)

where a; b are positive constants, and the initial values x�1; x0 are positive numbers.

Then the following results were exhibited in their paper for the equation (2:3);

� If b < ea; the equation (2:3) has a unique positive equilibrium x and every positive

solution is bounded.

� If b < ea; the equation (2:3) has a unique positive equilibrium x so that x 2

[a; a
1�be�a ] and every positive solution of (2:3) tends to the unique positive equilib-

rium x as n!1.

� If a � 2, b < 2
a+
p
a2�4ae

1+a, the equilibrium x of (2:3) is locally asymptotically

stable.

� If a � 2, b < minfea; 2
a+
p
a2�4ae

1+ag; the equilibrium x of (2:3) is globally asymp-

totically stable.

In [29], Papaschinopoulos, Radin and Schinas discussed the boundedness, the persistence

and the asymptotic behavior of the positive solutions of the system of two di¤erence

equations of exponential type

xn+1 = a+ bxn�1e
�yn ; yn+1 = c+ dyn�1e

�xn (2.4)

where a; b; c; d are positive constants, and the initial values x�1; x0; y�1; y0 are positive

real values.

They demonstrated that:

8



� If be�c < 1; de�a < 1, every positive solution of (2:4) is bounded and persists.

� If c � a

b < ec
�a+

p
a2 + 4

2
; d < eaminf�c+

p
c2 + 4

2
;
c�

p
c2 � a2
a

g

and if a � c,

d < ea
�c+

p
c2 + 4

2
; b < ecminf�a+

p
a2 + 4

2
;
a�

p
a2 � c2
c

g

the system (2:4) has a unique positive equilibrium (x; y) and every positive solution

of (2:4) tends to the unique positive equilibrium (x; y) as n!1.

� Every positive solution of (2:4) tends to the unique positive equilibrium (x; y) as

n!1 when assume that the constants a; b; c; d satisfy

b <
ec

c+ 1
; d < eaminf 1� be�c

1� be�c + a;
1� b(c+ 1)e�c
1� be�c g

and the system (2:4) has unique positive equilibrium (x; y) such that

x 2 (a; a

1� be�c ); y 2 (c;
c

1� de�a ):

� If

0 < be�c + de�a + bde�a�c +
abcde�a�c

(1� de�a)(1� be�c) < 1;

the unique positive equilibrium (x; y) of (2:4) is globally asymptotically stable.

In [27], Papaschinopoulos, Fotiades and Schinas dealt with the asymptotic behaviour of

the positive solutions of the system of two di¤erence equations

xn+1 = ayn + bxn�le
�yn ; yn+1 = cxn + dyn�le

�xn ; n = 0; 1; : : : (2.5)

where a; b; c; d are positive constants and the initial values x�1; x0; y�1; y0 are positive

numbers.

� They demonstrated that under the requirement that a; b; c; d 2 (0; 1) a+ b > 1; c+

d > 1;

� Every positive solution of (2:5) is bounded and persists.

9



� Every positive solution of (2:5) tends to the unique positive equilibrium (x; y) of

(2:5) as n!1, assume that both relationship

c � a; b � c; d � c

or

a � c; b � a; d � a:

� When a + b � 1; c + d � 1; every positive solution of (2:5) tends to the zero

equilibrium (0; 0) of (2:5) as n!1.

� They proved that such that

a+ b < 1; c+ d < 1

or

a+ b = 1; c+ d = 1;

the zero equilibrium (0; 0) of (2:5) is globally asymptotically stable.

In [5], Din and Elsayed studied

xn+1 = �+ �xn + 
xn�1e
�yn ; yn�1 = � + "yn + �yn�1e

�xn ; (2.6)

where parameters �; �; 
; �; "; � and initial conditions x0; x�1; y0; y�1 are positive real

numbers. They dealt with the existence and uniqueness of positive equilibrium point,

boundedness character, persistence, local asymptotic stability, global behavior and rate

of convergence of unique positive equilibrium point.

They obtained the following results:

� If

e�� + e�=2
p
e��2 + 4
 < 2e�; ea"+ ea=2

p
ea"2 + 4� < 2ea;

every positive solution f(xn; yn)g of system (2:6) is bounded and persists.
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� If

e�� + e�=2
p
e��2 + 4
 < 2e�; ea"+ ea=2

p
ea"2 + 4� < 2ea; 0 < �; 2< 1;

and

� exp(
�"� � �� exp( �

1���e��
 )

1� "� � exp( �
1���e��
 )

) < 
 < (1� �) exp( �

1� "� e��� );

the system (2:6) has a unique positive equilibrium point (x; y) such that

x 2 [�; a

1� � � 
e�� ] = I and y 2 [�; �

1� "� �e�� ] = J:

� If

� + "+ �"+ �(1 + �)e�a + 
(1 + ")e�� + 
�e�a��(1 + a�
(1���e��
)(1�"�e���)) < 1;

the unique positive equilibrium point (x; y) of system (2:6) is locally asymptotically

stable.

� The unique positive equilibrium point (x; y) of system (2:6) is globally asymptoti-

cally stable.

� Under the condition that �; " 2 (0; 1) and f(xn; yn)g be a positive solution of system

(2:6);

� When 
 > e
�

1�" , then xn !1; yn ! � + " ln(
) as n!1,

� If � > e
�
1�
 , then xn ! �+ � ln(�); yn !1 as n!1.

In [30], Papaschinopoulos and Schinas investigated the asymptotic behavior of the positive

solutions of the systems of the two di¤erence equations

xn+1 = a+ byn�1e
�xn ; yn+1 = c+ dxn�1e

�yn ; (2.7)

xn+1 = a+ byn�1e
�yn ; yn+1 = c+ dxn�1e

�xn ; (2.8)

where the constants a; b; c; d are positive real numbers, and the initial values x�1; x0; y�1; y0

are also positive real numbers.

They proved that under the condition that:
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� If

�1 = be
�a < 1; �2 = de

�c < 1;

(1 + a)p+ c�1 < 1; (1 + c)p+ a�2 < 1

and

� =
p(1� p)2

[1� (1 + a)p� c�1][1� (1 + c)p� a�2]
< 1;

the system (2:7) has a unique positive equilibrium (x; y) and every solution of (2:7)

tends to the unique positive equilibrium of (2:7) as n!1.

� If

�1 = be
�c < 1; �2 = de

�a < 1

and

� =
p(1� p+ c+ a�2)(1� p+ a+ c�1)

(1� p)2 < 1;

the system (2:8) has a unique positive equilibrium (x; y) and every positive solution

of (2:8) tends to the unique positive equilibrium of (2:8) as n!1.

� If

�1 = be
�a < 1; �2 = de

�c < 1

� =
p(1� p)2

[1� (1 + a)p� c�1][1� (1 + c)p� a�2]
< 1;

and when

� =
c�1 + a�2 + (a+ c)p

1� p +
p(a+ c�1)(c+ a�2)

(1� p)2 + p < 1;

the unique positive equilibrium (x; y) of (2:7) is globally asymptotically stable.

� If

�1 = be
�c < 1; �2 = de

�a < 1

and

� =
p(1� p+ c+ a�2)(1� p+ a+ c�1)

(1� p)2 < 1;

the unique positive equilibrium (x; y) of (2:8) is globally asymptotically stable.

12



� When �1 > 1; �2 > 1; there exist unbounded solutions (xn; yn) of (2:7) so that

lim
n!1

x2n+1 =1; lim
n!1

x2n = a; lim
n!1

y2n+1 =1; lim
n!1

y2n = c (2.9)

lim
n!1

x2n+1 = a; lim
n!1

x2n =1; lim
n!1

y2n+1 = c; lim
n!1

y2n =1: (2.10)

� �1 > 1; �2 > 1; there exist unbounded solutions (xn; yn) of (2:8) such either relations

(2:9) or (2:10) hold.

In [33], Phong dealt with the boundedness, the persistence and the asymptotic behavior

of the positive solutions of the system of two di¤erence equations of exponential type:

xn+1 = a+ bxn�1 + cxn�1e
�yn ; yn+1 = �+ �yn�1 + 
yn�1e

�xn ; (2.11)

where a; b; c; �; �; 
 2 (0;1); and the initial values x�1; x0; y�1; y0 are positive real values.

They proved the following results:

� If b + ce�� < 1; � + 
e�a < 1; every positive solution of (2:11) is bounded and

persists.

� If �(1� b) � a(1� �) then

c < e�
�a(1�2�)+

p
a2(1�2�)2+4(1�b)2
2

;


 < eaminf�(1�b)�
p
�2(1�b)2�a2(1��)2

a
;
��(1�2b)+

p
�2(1�2b)2+4(1��)2
2

g

and if c(1� b) � a(1� �) then


 < ea
��(1�2b)+

p
�2(1�2b)2+4(1��)2
2

;

c < e�;

system (2:11) has a unique positive equilibrium (x; y) and every positive solution

of (2:11) tends to the unique positive equilibrium (x; y) as n!1.

� When the contants a; b; c; �; �; 
 satisfy the following relations:


 < eaminf (1��)(1�b�ce
��)

1+a�b�ce�� ; (1�b)(1��)�c(1+���)e��)
1�b�ce�� g ;

c < e� (1�b)(1��)
1+��� ;

system (2:11) has unique positive equilibrium (x; y) such that x 2 ( a; a
1�b�ce�� );

y 2 (�; �
1���
e�a ) every positive solution of (2:11) tends to the unique positive

equilibrium (x; y) as n!1.
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� If b+ ce��+ � + 
e�a+ (b+ ce��)(� + 
e�a) + ac�
e�a��

(1�b�oe��)(1���
e�a) < 1, the unique

positive equilibrium (x; y) of (2:11) is globally asymptotically stable.

In [26], Papaschinopoulos et al. studied the existence of a unique positive equilibrium,

the boundedness, persistence and global attractivity of the positive solutions of a system

of the following two di¤erence equations

xn+1 = axn + byn�le
�xn ; yn+1 = cyn + dxn�le

�yn ; n = 0; 1; : : : (2.12)

where a; b; c; d are positive contants and the initial values x�1; x0; y�1; y0 are positive real

numbers.

They obtained the results which are listed below:

� When a; b; c; d 2 (0; 1);

� � = bd
(1�a)(1�c) > 1; system (2:12) has a unique positive equilibrium (x; y) :

� � � 1; the zero equilibrium (0; 0) is the unique equilibrium of system (2:12).

� If a; b; c; d 2 (0; 1); every positive solution of (2:12) is bounded.

� If a; b; c; d 2 (0; 1); b
1�a > 1; d

1�c > 1; every positive solution of (2:12) is bounded

and persists.

� When a; b; c; d 2 (0; 1); bd < (1 � a)(1 � c); every positive solution of (2:12) tends

to the zero equilibrium.

� If max
�

d
1�c ;

b
1�a
	
< min

�
e
c
d ; e

a
b

	
; every positive solution of (2:12) tends to the

unique positive equilibrium of (2:12).

In [31] under some conditions on the constants A;B 2 (0;1), Papaschinopoulos et al.

studied the existence of positive solutions, the existence of a unique nonnegative equilib-

rium and the convergence of the positive solutions to the nonnegative equilibrium of the

system of di¤erence equations

xn+1 = (1� yn � yn�1)(1� e�Ayn); yn+1 = (1� xn � xn�1)(1� e�Bxn) (2.13)
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where A;B 2 (0;1) and the initial values x�1; x0; y�1; y0 are positive numbers which

satisfy the relations x0+x�1 < 1; y0+y�1 < 1; 1�y0 > (1�x0�x�1)(1�e�Bx0); 1�x0 >

(1� y0 � y�1)(1� e�Ay0).

They proved the following results:

� Under the condition that the system of algebrations

x = (1 � 2y)(1� e�Ay); y = (1 � 2x)(1� e�Bx); x; y 2 (0; 0:5): (2.14)

� lf 0 < A � 1; 0 < B � 1, the system (2:14) has a unique nonnegative solution

(x; y) = (0; 0).

� If 1 < A � 4; 1 < B � 4, system (2:14) has a unique positive solution (x; y);

x; y 2 (0; 0:5).

� If 0 < A � 1; 0 < B � 1 are satis�ed the solution (xn; yn) tends to the zero

equilibrium (0; 0) of (2:13) as n!1.

� When 1 < A � 4; 1 < B � 4 are satis�ed and there exists a m 2 N so that for

n � m either xn < x; yn < y or xn � x; yn � y; (xn; yn) tends to the unique positive

equilibrium (x; y) of (2:13) as n!1.

In [3], Din studied

xn+1 = �xne
�yn + �; yn+1 = �xn(1� e�yn); (2.15)

where 0 < � < 1 and 0 < � < 1. More precisely, he investigated boundedness char-

acter, existence and uniqueness of positive equilibrium point, local asymptotic stability

and global asymptotic stability of unique positive equilibrium point, and the rate of

convergence of positive solutions of a population model.

He determined the following results:

� If 0 < � < 1, then every positive solution f(xn; yn)g1n=0 of the system (2:15) is

bounded.

� When 0 < � < 1 and �� > 1��, the system (2:15) has a unique positive equilibrium

point (x; y) 2 [�; �
1�� ]� [0;

��
1�� ].
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� When 0 < � < 1, then following statements are true:

� The equilibrium point ( �
1�� ; 0) of the system (2:15) is locally asymptotically stable

if and only if �� < 1� �.

� If �� > 1� �, the equilibrium point ( �
1�� ; 0) of the system (2:15) is unstable.

� If �(1 + �) + r < r
1�r where r =

�
x
, the unique positive equilibrium point (x; y) 2

[�; �
1�� ]� [0;

��
1�� ] of system 2.15 is locally asymptotically stable.

� If and only if (1 � r)(r+ �) < r+��(1� r) < 2r where r = �
x
, the unique positive

equilibrium point (x; y) 2 [�; �
1�� ]�[0;

��
1�� ] of system (2:15) is locally asymptotically

stable.

� When 0 < � < 1, then the unique positive equilibrium point (x; y) 2 [�; �
1�� ] �

[0; ��
1�� ] is a global attractor.

� When 0 < � < 1 and (1 � r)(r + �) < r + ��(1 � r) < 2r, the unique posi-

tive equilibrium point (x; y) 2 [�; �
1�� ] � [0;

��
1�� ] of the system (2:15) is globally

asymptotically stable.

� When f(xn; yn)g be a positive solution of the system (2:15) then

lim
n!1

xn = x; lim
n!1

yn = y;

where x 2 [�; �
1�� ] and y 2 [0;

��
1�� ].

In [7], Ding and Zhang studied the following discrete delay Mosquito population equation

[13]:

xn+1 = (axn + �xn�1)e
�xn ; x0; x1 > 0; n = 1; 2; 3; : : : ; (2.16)

where a 2 (0; 1); � 2 (0;1): For a + � > 1; a unique nontrivial positive �xed point

E� = (x; x)T appears.

They got the results are given below:

� The equilibrium points of (2:16) are solutions of the following equation x = (ax +

�x)e�x.
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� When a+ � > 1, x = 0 is always a equilibrium to (2:16), and (2:16) has an unique

positive equilibrium x = ln(a+ �).

� When a+� < 1, the zero equilibrium of (2:16) is asymptotically stable, and unstable

when a+ � > 1, and a fold bifurcation takes place when a+ � = 1.

� When a+ � > 1,

� If � < �0(a), E� is asymptotically stable.

� If � > �0(a), E� is unstable.

� The bifurcation of a period two solution occurs at � = �0(a), that is, system

un+1 = (aun+�vn)e
�un ; vn+1 = un has a unique period two solution bifurcating

from the equilibrium E�.

� A period two bifurcation of un+1 = (aun + �vn)e�un ; vn+1 = un at � = �0 occurs,

and the unique period two solution bifurcating from E� is unstable.

In [21], Ma and Feng discussed the boundedness and the global asymptotic behavior of

the positive solutions of the system of di¤erence equation

xn+1 = xn + (�1 � �1xn)xne�(xn+yn) (2.17)

yn+1 = yn + (�2 � �2yn)yne�(xn+yn)

where �i; �i 2 (0;1) with �i > �i; i = 1; 2; and the initial values x0; y0 are positive

numbers.

They then achieved the following main results:

� The equilibrium point E0 of system (2:17) is unstable.

� The equilibria points E1 and E2 of system (2:17) are saddle points.

� If either 0 < �ie�
�
�1
�1
+
�2
�2

�
< 1 or 1 < �ie

�
�
�1
�1
+
�2
�2

�
< 2; i = 1; 2; the Nash equilib-

rium point E3 of system (2:17) is asymptotically stable.

� When �i < 1, the unique positive equilibrium point (x; y) of system (2:17) is a

global attractor of all positive solutions of system (2:17).
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� If � < 1, the unique positive equilibrium point (x; y) of system (2:17) is a global

attractor of all positive solutions of system (2:17) for �1 = �2 = �; �1 = �2 = �

and if � > �2+4�2

4
.

� When �i � �i; �ie�
�i
�i < 1, the unique positive equilibrium point (x; y) of system

(2:17) is a global attractor of all positive solutions of system (2:17) for �1 = �2 =

�; �1 = �2 = �.

2.2 DIFFERENCE EQUATIONS OF RATIONAL EXPONENTIAL FORM

In this section, we give some information about the rational exponential type di¤erence

equations and systems.

In [25], Ozturk, Bozkurt and Ozen investigated the convergence, the boundedness and the

periodic character of the positive solutions of the di¤erence equation

yn+1 =
�+ �e�yn


 + yn�1
; n = 0; 1; 2; : : : (2.18)

where the parameters �; �; 
 are positive numbers and the initial conditions y�1; y0 are

arbitrary nonnegative numbers.

They obtained the results are given below:

� The equilibrium point y is locally asymptotically stable if

� < (2 +
p
(
 � 2)2 + 4(�+ 
))e�(
 � 2) +

p
(
 � 2)2 + 4(�+ 
)
2

and is unstable if

� > (2 +
p
(
 � 2)2 + 4(�+ 
))e�(
 � 2) +

p
(
 � 2)2 + 4(�+ 
)
2

;

furthermore, it is a saddle point.

� The following items are correct;

� When � < yn, every positive solution of Equation (2:18) is bounded.

� When � < y1, the positive equilibrium point of Equation (2:18) is bounded.

� Equation (2:18) has no positive solutions of prime period two.
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� When � < (2 +
p
(
 � 2)2 + 4(�+ 
))e�(
�2)+

p
(
�2)2+4(�+
)
2

and that � < 
, the

equilibrium y1 of Equation (2:18) is global asymptotically stable.

In [28] Papaschinopoulos et al. studied the boundedness, the persistence and the asymp-

totic behavior of the positive solutions of the following systems of two di¤erence equations

of exponential form:

xn+1 =
�+ �e�yn


 + yn�1
; yn+1 =

� + "e�xn

� + xn�1
; (2.19)

xn+1 =
�+ �e�yn


 + xn�1
; yn+1 =

� + "e�xn

� + yn�1
; (2.20)

xn+1 =
�+ �e�xn


 + yn�1
; yn+1 =

� + "e�yn

� + xn�1
; (2.21)

where �; �; 
; �; "; � are positive constants and the initial values x�1; x0; y�1; y0 are positive

constants.

Consequently, the following statements are obtained:

� For (2:19) system

� Every positive solution of Equation (2:19) is bounded and persists.

� When " < 
; � < �, system Equation (2:19) has a unique positive equilibrium

(x; y) and every positive solution of Equation (2:19) tends to the unique posi-

tive equilibrium of Equation (2:19) as n!1.

� Consider system Equation (2:19) where the condition Equation " < 
; � < �

holds true and suppose that

�"+ (� + ")e�1


�
+
(�+ �)(� + ")


2�2
< 1;

the unique positive equilibrium (x; y) of Equation (2:19) is globally asymptot-

ically stable.

� For (2:20) system

� Every positive solution of Equation (2:20) is bounded and persists.

� When �" < 
�, Equation (2:20) has a unique positive equilibrium (x; y) and every

positive solution of Equation (2:20) tends to the unique positive equilibrium

of Equation (2:20) as n!1.
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� Assume that system Equation (2:20) where �" < 
� holds true and suppose that

�+ �


2
+
� + "

�2
+
�"


�
+
(�+ �)(� + ")


2�2
< 1;

the unique positive equilibrium (x; y) of Equation (2:20) is globally asymptot-

ically stable.

� For (2:21) system

� Every positive solution of Equation (2:21) is bounded and persists.

� When � < 
; " < �, system Equation (2:21) has a unique positive equilibrium

(x; y) and every positive solution of Equation (2:21) tends to the unique posi-

tive equilibrium of Equation (2:21) as n!1.

� Assume that system Equation (2:21) where � < 
; " < � holds true and suppose

that

�



+
"

�
+
�"


�
+
(�+ �)(� + ")


2�2
< 1;

the unique positive equilibrium (x; y) of Equation (2:21) is globally asymptot-

ically stable.

In [6] Din, Khan and Nosheen studied the boundedness character and persistence, ex-

istence and uniqueness of positive equilibrium, local and global behavior, and rate of

convergence of positive solutions of the following system of exponential di¤erence equa-

tions:

xn+1 =
�1 + �1e

�xn + 
1e
�xn�1

a1 + b1yn + c1yn�1
; yn+1 =

�2 + �2e
�yn + 
2e

�yn�1

a2 + b2xn + c2xn�1
; (2.22)

where the parameters �i; �i; 
i; ai; bi and ci for i 2 f1; 2g and initial conditions x0; x�1; y0
and y�1 are positive real numbers.

They demonstrasted that:

� Every positive solution f(xn; yn)g of system (2:22) is bounded and persists.

� If the following condition is satis�ed:

a2 + L1(b2 + c2) <
�2 + (�2 + 
2)e

�K

K
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where

K =
�1 + e

�L1(�1 + 
1)� a1L1
L1(b1 + c1)

,

system (2:22) has a unique positive equilibrium point (x; y) 2 [L1; U1]� [L2; U2].

� When

�1e
�L1

a1 + (b1 + c1)L2
+ (1 +

�1e
�L1

a1 + (b1 + c1)L2
)

�(c2(�2 + (�2 + 
2)e
�L2)

(a2 + (b2 + c2)L1)2
+

(�2 + 
2)e
�L2

a2 + (b2 + c2)L1
)

+
b2(�2 + (�2 + 
2)e

�L2)

(a2 + (b2 + c2)L1)2

�((b1 + c1)(�1 + (�1 + 
1)e
�L1)

(a1 + (b1 + c1)L2)2

+

1e

�L1

a1 + (b1 + c1)L2
) < 1;

the unique positive equilibrium point of system (2:22) is locally asymptotically

stable.

� If

�1 + (�1 + 
1)e
�L1 < x(a1 + (b1 + c1)L2);

�2 + (�2 + 
2)e
�L2 < y(a2 + (b2 + c2)L1);

the unique positive equilibrium point (x; y) of system (2:22) is globally asymptoti-

cally stable.

In [18] Khan and Qureshi studied

xn+1 =
bxne

�ayn

1 + dxn
; yn+1 = cxn(1� e�ayn); (2.23)

where a; b; c; d and the initial conditions x0; y0 are positive real numbers. More precisely,

they investigated the boundedness character, existence and uniqueness of a positive equi-

librium point, local asymptotic stability and global stability of the unique equilibrium

point, and the rate of convergence of equilibrium solutions of the system.

They demonstrated that:
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� Every positive solution f(xn; yn)g1n=0 of system (2:23) is bounded.

� If b > 1 and d < ac
b ln(7)

then system (2:23) has a unique positive equilibrium point

(x; y) in [0; b
d
]� [0; bc

d
].

� For the unique positive equilibrium point (x; y) in [0; b
d
] � [0; bc

d
] of system (2:23)

following statements hold true:

� If and only if

beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2

< 1� ab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
< 2;

the unique positive equilibrium point of system (2:23) is locally asymptotically

stable.

� If and only if

jab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
j > 1

and

beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2

< j1� ab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
j;

the unique positive equilibrium point is a repeller.

� If and only if

(
beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2
)2

+4(
ab2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
) > 0

and

beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2

> j1� ab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
j;

the unique positive equilibrium point is a saddle point.
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� If and only if

beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2

= j1� ab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
j;

the unique positive equilibrium point is nonhyperbolic.

� If ac+ d > abc, then the unique positive equilibrium point (x; y) in [0; b
d
]� [0; bc

d
] of

system (2:23) is a global attractor.

� If and only if

beacr(bdr+1�b)(acr(1 + bdr)2 + 1)

(1 + bdr)2

< 1 � ab
2creacr(bdr+1�b)(bdr(eacr(bdr+1�b) � 1)� 1)

(1 + bdr)2
< 2;

the unique positive equilibrium point (x; y) in [0; b
d
] � [0; bc

d
] of system (2:23) is

globally asymptotically stable.

In [17] Khan and Qureshi studied the qualitative behavior of the following exponential

system of rational di¤erence equations:

xn+1 =
�e�yn + �e�yn�1


 + �xn + �xn�1
; yn+1 =

�1e
�xn + �1e

�xn�1


1 + �1yn + �1yn�1
; n = 0; 1; : : : ; (2.24)

where �; �; 
; �1; �1 and 
1 and initial conditions x0; x�1; y0 and y�1 are positive real

numbers. They investigated the boundedness character and persistence, existence and

uniqueness of positive equilibrium, local and global behavior, and rate of convergence of

positive solutions that converges to unique positive equilibrium point of the system.

Later, the following results were exhibited in their paper:

� Every positive solution f(xn; yn)g of the system (2:24) is bounded and persists.

� If

� < (
1 + (�1 + �1) ln[
�+ �

(
 + (�+ �)L1)L1
])

� ln[ �+ �

(
 + (�+ �)L1)L1
];
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where

� = 
1(((
 + 2(�+ �)U1)=((
 + (�+ �)L1)L1))

� ln[(�+ �)=((
 + (�+ �)L1)L1)])

+2(�1 + �1)((
 + 2(�+ �)U1)=((
 + (�+ �)L1)L1))

� ln[(�+ �)=((
 + (�+ �)L1)L1)];

and so the system (2:24) has a unique positive equilibrium point (x; y) in [L1; U1]�

[L2; U2].

� If

� < (
 + (�+ �)L1)(
1 + (�1 + �1)L2);

where

� = (�+ �)U1(
1 + (�1 + �1)L2)

+(�1 + �1)U2(
 + (�+ �)L1)

+(�+ �)(�1 + �1)(e
�L1�L2 + U1U2);

and so, the unique positive equilibrium point (x; y) of the system (2:24) is locally

asymptotically stable.

� The unique positive equilibrium point (x; y) of the system (2:24) is a global attrac-

tor.

In [19] Khuong and Phong investigated the boundedness, the continuity and the asymp-

totic behavior of the positive solutions of the system of di¤erence equations of exponential

type:

xn+1 =
a+ be�xn

c+ yn
; yn+1 =

a+ be�yn

c+ xn
; (2.25)

where a; b; c are positive constants and the initial values x0; y0 are positive real values.

Also, they determined the rate of convergence of a solution that converges to the equilib-

rium E = (x; y) of this system. Moreover, they found,

� Every positive solution of (2:25) is bounded and persists.
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� If b < c; system (2:25) has a unique positive equilibrium (x; y) and every posi-

tive solution of (2:25) tends to the unique positive equilibrium (x; y) as n ! 1.

Additively, the equilibrium (x; y) is globally asymptotically stable.

In [1] Bozkurt, the local and global behavior of the positive solutions of the di¤erence

equation

yn+1 =
�eyn + �e�yn�1


 + �yn + �yn�1
; n = 0; 1; � � � (2.26)

was investigated, where the parameters �; � and 
 and the initial conditions are arbitrary

positive numbers. Furthermore, the characterization of the stability was studied with a

basin that depends on the conditions of the coe¢ cients.

� If 0 < yn, every solution of Equation (2:26) is bounded.

� If 0 < y, the equilibrium point of Equation (2:26) is bounded.

� If � > � and (�+ �) < 
e
�
+

p

2+4(�+�)

2(�+�) ;

� The positive equilibrium point of Equation (2:26) is locally asymptotically stable.

� y1 and y2 are the equilibrium points of Equation (2:26), which parameters have

the conditions 
2 < 
1 <
(�+�)�
�

. If the parameter 
 decreases, then the local

stability of the positive equilibrium point

y =
�(�
 � (�+ �)�) +

p
(�
 � (�+ �)�)2 + 4�(�+ �)2
2�(�+ �)

decreases also.

� If fyng1�1 is a monoton decreasing solution of Equation (2:26) and yn > 2y, the

positive equilibrium point of Equation (2:26) is globally asymptotically stable.

� If f(x; y) = �e�x+�e�y


+�x+�y
be a function such that f 2 C[(0;1)x(0;1); (0;1)], every

oscillatory solution of Equation (2:26) has semicycle of length at most two.

In [16] Khan, studied boundedness character and persistence, existence and uniqueness

of the positive equilibrium, local and global behavior, and rate of convergence of positive

solutions of the following two systems of exponential rational di¤erence equations:

xn+1 =
�e�yn + �e�yn�1


 + �yn + �yn�1
; yn+1 =

�1e
�xn + �1e

�xn�1


1 + �1xn + �1xn�1
; n = 0; 1; : : : (2.27)

25



and

xn+1 =
�e�xn + �e�xn�1


 + �yn + �yn�1
; yn+1 =

�1e
�yn + �1e

�yn�1


1 + �1xn + �1xn�1
; n = 0; 1; : : : (2.28)

where the parameters �; �; 
; �1; �1; 
1 and the initial conditions are positive real numbers.

He obtained the following results:

� For (2:27) system

� Every positive solution f(xn; yn)g of system (2:27) is bounded and persists.

� If

� < (
(
1 + (�1 + �1)L1) + (�+ �)(�1 + �1)e
�L1)2(
1 + (�1 + �1)L1)

where

� = (�+ �)(�1 + �1)e
� (�1+�1)e

�L1

1+(�1+�1)L1

L1((
 + �+ �)(
1 + (�1 + �1)U1)

+(�+ �)(�1 + �1)e
�L1)(
1 + (1 + U1)(�1 + �1));

system (2:27) has a unique positive equilibrium point (x; y) in [L1; U1]�[L2; U2].

� If (� + �)(�1 + �1)(e�L2 + U1)(e�L1 + U2) < (
 + (� + �)L2)(
1 + (�1 + �1)L1);

the unique positive equilibrium point (x; y) in [L1; U1]� [L2; U2] system (2:27)

is locally asymptotically stable.

� If (�+ �)e�L2 < x(
 + (�+ �)L2) and (�1 + �1)e�L1 < y(
1 + (�1 + �1)L1), the

unique positive equilibrium point (x; y) of system (2:27) is globally asymptot-

ically stable.

� For (2:28) system

� Every positive solution f(xn; yn)g of system (2:28) is bounded and persists.

� If

(U1 + 1)e
�(L1+ e�L1

L1
� 

�+�

)
(
e�L1

L1
� 


�+ �
+ 1) < L21(

e�L1

L1
� 


�+ �
)2;

system (2:28) has a unique positive equilibrium point (x; y) in [L1; U1]�[L2; U2].
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� If

(�+ �)(�1 + �1)(e
�L1�L2 + U1U2)

< (1� U1 � U2)(
 + (�+ �)L2)(
1 + (�1 + �1)L1);

the unique positive equilibrium point (x; y) of system (2:28) is locally asymp-

totically stable.

� When (�+ �)e�L1 < x(
 + (�+ �)L2) and (�1 + �1)e�L2 < y(
1 + (�1 + �1)L1),

the unique positive equilibrium point (x; y) of system (2:28) is globally asymp-

totically stable.

In [20] Khuong and Thai studied the boundedness, the persistence, and the asymptotic

behavior of the positive solutions of the system of di¤erence equations of exponential

form:

xn+1 =
a+ be�yn + ce�xn

d+ hyn
; yn+1 =

a+ be�xn + ce�yn

d+ hxn
; (2.29)

where a; b; c; d and h are positive constants and the initial values x0; y0 are positive real

values. After, they achieved the following main results:

� Every positive solution of (2:29) is bounded and persists.

� In the case b + c < d, system (2:29) has a unique positive equilibrium (x; y) and

every positive solution of (2:29) tends to the unique positive equilibrium (x; y) as

n!1. Additively, the equilibrium (x; y) is globally asymptotically stable.

In [32] Papaschinopoulos et al. studied the boundedness and the persistence of the positive

solutions, the existence, the attractivity and the global asymptotic stability of the unique

positive equilibrium and the existence of penodic solutions conceming the biological model

given by

xn+1 =
�x2n
xn + b

+ c
ek�dxn

1 + ek�dxn
; (2.30)

where 0 < a < 1; b; c; d; k are positive constants and x0 is a positive real number.

They obtained the results are given below:

� All positive solution of (2:30) is bounded and persists.
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� Equation (2:30) has a unique positive equilibrium.

� If cd < 2(1� a);

� Every positive solution of (2:30) tends to the unique positive equilibrium x of

(2:30).

� The unique positive equilibrium x of (2:30) is globally asymptotically stable.

� If " be a positive real number and

d >
(1 + a)(1 + ek)

"(1� a) ; c >
((1� a)"2 + b")(1 + ek�d")

("+ b)ek�d"
;

equation (2:30) has periodic solutions of prime period two.

In [4] Din studied, the qualitative behavior the following two dimensional discrete dy-

namical system of exponential form:

xn+1 =
�1 + �1e

�yn + 
1e
�yn�1

a1 + b1yn + c1yn�1
; yn+1 =

�2 + �2e
�xn + 
2e

�xn�1

a2 + b2xn + c2xn�1
; (2.31)

where the parameters �i; �i; 
i; ai; bi; ci for i 2 f1; 2g and initial conditions x0; x�1; y0; y�1
are positive real numbers.

He proved the following results:

� Every positive solution f(xn; yn)g of system (2:31) is bounded and persists.

� If �2 + 
2 < a1 ; �1 + 
1 < a2 ; b1 + c1 = b2 + c2 ;

� System (2:31) has a unique positive equilibrium (x; y) and every positive solution

of system (2:31) converges to the unique positive equilibrium (x; y) as n!1.

� The unique positive equilibrium of system (2:31) is globally asymptotically stable.
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CHAPTER 3

SOME DIFFERENCE EQUATIONS OF EXPONENTIAL FORM

In this section we consider the following rational di¤erence equation

xn+1 =
xn + xn�k
1 + xnexn�k

and its special cases which was studied by Gocen [10].

3.1 THE EQUATION xn+1 =
xn+xn�1
1+xne

xn�1

In this section, we consider the equilibrium point and local asymptotic stability of the

following rational exponential di¤erence equation

xn+1 =
xn + xn�1
1 + xnexn�1

(3.1)

where the initial values x�1, x0 are arbitrary nonnegative numbers.

Firstly, we demonstrate that Equation (3:1) has a unique positive equilibrium point x.

The equilibrium points of Equation (3:1) are the solutions of the equation

x =
x+ x

1 + xex
(3.2)

Set

f(x) =
x+ x

1 + xex
� x

then we have

f(
1

2
) > 0

and

lim
x!1

f(x) = �1:

Moreover, it follows from the

f 0(x) =
2� 2x2ex
(1 + xex)2

� 1 < 0
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that (3:1) has a unique positive equilibrium point x.

The equilibrium point x of Equation (3:1) is the solution of the equation

x =
x+ x

1 + xex
: (3.3)

It is easy to see that the �rst root of the Equation (3:3) is x = 0 and the other root is

evaluated numerically as x = 0:56714.

The linearized equation of (3:1) is

xn+1 �
1

1 + xex
xn �

(1� xex � 2x2ex)
(1 + xex)2

xn�1 = 0 (3.4)

Theorem 3.1 The positive equilibrium point x of Equation (3:1) is locally asymptotically

stable.

Proof. If we set x = 0:56714 in the lineariazed Equation (3:4), we have the following

characteristic equation

�2 � (0:5)�+ 0:28357 = 0: (3.5)

The roots of Equation (3:5) are

�1;2 = 0:25� 0:47018i

and the absolute value of each root is less than one. It follows from the Theorem (1:1)

that the positive equilibrium point x of Equation (3:1), is locally asymptotically stable.

Example 3.1 Consider the system (3.1) with the initial conditions x�1 = 0:2; x0 = 0:4

to verify our results.

Figure 3.1. Plot of the equation xn+1 = 
1+
xn
x
+

ne
x
x
n
n
�1
�1
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3.2 THE EQUATION xn+1 =
xn+xn�2
1+xne

xn�2

We study the equilibrium point and local asymptotic stability of the following rational

exponential di¤erence equation

xn+1 =
xn + xn�2
1 + xnexn�2

(3.6)

where the initial values x�2; x�1; x0 are arbitrary nonnegative numbers.

Theorem 3.2 The positive equilibrium point x of Equation (3:6) is locally asymptotically

stable.

Proof. The linearized equation of Equation (3:6)

xn+1 �
1

1 + xex
xn �

(1� xex � 2x2ex)
(1 + xex)2

xn�2 = 0 (3.7)

the characteristic equation of Equation (3:7) is as follows:

�3 � (0:5)�2 + 0:28357 = 0: (3.8)

The roots of Equation (3:8) are

�1;2 = 0:51289 + 0:52562i;

�3 = 0:52578

and the absolute value of each root is less than one. So the positive equilibrium point x

of Equation (3:6) is locally asymptotically stable.

3.3 THE EQUATION xn+1 =
xn+xn�3
1+xne

xn�3

In this part, we investigate the equilibrium point and local asymptotic stability of the

following rational exponential di¤erence equation

xn+1 =
xn + xn�3
1 + xnexn�3

(3.9)

where the initial values x�3; x�2; x�1; x0 are arbitrary nonnegative numbers.

Theorem 3.3 The positive equilibrium point x of Equation (3:9) is locally asymptotically

stable.
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Proof. The linearized equation of Equation (3:9) is

xn+1 �
1

1 + xex
xn �

(1� xex � 2x2ex)
(1 + xex)2

xn�3 = 0 (3.10)

and the corresponding characteristic equation of Equation (3:10) is

�4 � (0:5)�3 + 0:28357 = 0: (3.11)

The roots of Equation (3:11) are

�1;2 = 0:66294� 0:48501i

�3;4 = �0:41294� 0:49976i:

It is easy to see that absolute value of each root is less than one. This implies that the

positive equilibrium point x of Equation (3:9), is locally asymptotically stable.

3.4 THE EQUATION xn+1 =
xn+xn�k
1+xne

xn�k

Finally, we consider the equilibrium point and local asymptotic stability of the following

higher order exponential di¤erence equation

xn+1 =
xn + xn�k
1 + xnexn�k

(3.12)

where the initial values x�k; :::; x�1; x0 are arbitrary nonnegative numbers.

Theorem 3.4 The positive equilibrium point x of Equation (3:12) is locally asymptoti-

cally stable.

Proof. The linearized equation associated with Equation (3:12) about the equilibrium

point x is

xn+1 �
1

1 + xex
xn �

(1� xex � 2x2ex)
(1 + xex)2

xn�k = 0: (3.13)

Hence, for all k 2 N values, we obtain the characteristic equation of Equation (3:13)

about the equilibrium point x is

�k+1 � (0:5)�k + 0:28357 = 0: (3.14)

Set

f(�) = �k+1
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and

g(�) = �(0:5)�k + 0:28357:

Then, by Rouche�s theorem, f(�) and f(�) + g(�) have same number zeroes in an open

unit disc j�j < 1. Hence, all the roots of (3:14) satis�es j�j < 1, and it follows from

Theorem (1:1) that the unique positive equilibrium point x of Equation (3:12) is locally

asymptotically stable. Therefore, one can obtain the desired results and the proof is com-

plete.

Remark 3.1 The zero equilibrium point of Equation (3:1), (3:6), (3:9) and (3:12) is

unstable. Because the corresponding characteristic equations of these equations is respec-

tively

�2 � �� 1 = 0

�3 � �2 � 1 = 0

�4 � �3 � 1 = 0
...

�k+1 � �k � 1 = 0:

At least one root of the all above characteristic equations is greater than one, so we obtain

the zero equilibrium point of Equation (3:1), (3:6), (3:9) and (3:12) is unstable.

Now, we give a numerical example to show the positive equilibrium point x of Equation

(3:1) is locally asymptotically stable.
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CHAPTER 4

SOME SYSTEMS OF EXPONENTIAL DIFFERENCE EQUATIONS

4.1 THE EQUATION SYSTEM xn+1 =
xn+yn�1

1+yn�1e
xn�1 , yn+1 =

yn+xn�1
1+xn�1e

yn�1

In this section, we consider the equilibrium point and local asymptotic stability of the

second order di¤erence equation system

xn+1 =
xn + yn�1

1 + yn�1exn�1
; yn+1 =

yn + xn�1
1 + xn�1eyn�1

(4.1)

where the initial values x�1; x0; y�1; y0 are arbitrary nonnegative numbers.

Let (x; y) be the equilibrium point of system (4:1)

x =
x+ y

1 + yex
; y =

y + x

1 + xey
: (4.2)

Set

x =
x+ x+y

1+xey

1 + x+y
1+xey

ex
=

x+ x2ey + x+ y

1 + xey + xex + yex

Then

x2ex + x yex � x� y = 0

and we obtain that

(x+ y)(1� xex) = 0 (4.3)

from which it follows that system (4:2) has solution

(x; y) = (0; 0) or (x; y) = (0:56714; 0:56714) :

Let us consider the four dimensional discrete dynamical system of the form

(xn; yn; xn�1; yn�1)! (f; g; f1; g1); (4.4)
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where

f =
xn + yn�1

1 + yn�1exn�1
; f1 = xn

g =
yn + xn�1

1 + xn�1eyn�1
; g1 = yn:

The linearized system of (4:1) about (x; y) is given by

Zn+1 = FJ(x; y)Zn; (4.5)

where Zn =

0BBBBBB@
xn

yn

xn�1

yn�1

1CCCCCCA and the Jacobian matrix about the �xed point (x; y) under

transformation (4:4) is given by

FJ(x; y) =

0BBBBBB@

@xn+1
@xn

@xn+1
@yn

@xn+1
@xn�1

@xn+1
@yn�1

@yn+1
@xn

@yn+1
@yn

@yn+1
@xn�1

@yn+1
@yn�1

@xn
@xn

@xn
@yn

@xn
@xn�1

@xn
@yn�1

@yn
@xn

@yn
@yn

@yn
@xn�1

@yn
@yn�1

1CCCCCCA
and it follows that

FJ(x; y) =

0BBBBBB@
A1 0 A2 0

0 B1 0 B2

1 0 0 0

0 1 0 0

1CCCCCCA ;

where

A1 =
1

1 + yex
; A2 =

�x yex
1 + yex

;

B1 =
1

1 + xey
; B2 =

�x yey
1 + xey

:

The characteristic equation of FJ(x; y) is8<: P (�) = �4 � (A1 +B1)�3 � (A2 +B2 � A1B1)�2

+(A2B1 + A1B2)�+ A2B2:
(4.6)
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Then we take A1; A2; B1; B2 as above, we have

P (�) = �4 �
�

1

1 + yex
+

1

1 + xey

�
�3

�
�
�x yex
1 + yex

+
�x yey
1 + xey

� 1

1 + yex
1

1 + xey

�
�2

+

�
�x yex
1 + yex

1

1 + xey
+

1

1 + yex
�x yey
1 + xey

�
�

+

�
�x yex
1 + yex

�x yey
1 + xey

�
:

Theorem 4.1 i) The zero equilibrium point (x; y) of system (4:1) is nonhyperbolic point.

ii) The positive equilibrium (x; y) of system (4:1) is locally asymptotically stable.

Proof.

i) For the zero equilibrium point (x; y) of system (4:1) ; using (4:4), (4:5) and (4:6) we

have

P (�) = �4 � 2�3 + �2 = 0: (4.7)

Obviously, the roots of characteristic equation of FJ(x; y) are given by � = 0

(multiple root) and � = 1 (multiple root). From this result, the equilibrium point

(x; y) = (0; 0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4:7) is equal to one.

ii) For the positive equilibrium point (x; y) of system (4:1) ; using (4:4), (4:5) and (4:6)

we have

P (�) = �4 �
�

1

1 + 0:56714e0:56714
+

1

1 + 0:56714e0:56714

�
�3

�

0BB@
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
+

� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
� 1

1 + 0:56714e0:56714
1

1 + 0:56714e0:56714

1CCA�2

+

0BBBB@
1

1 + 0:56714e0:56714

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!

+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
1

1 + 0:56714e0:56714

1CCCCA�

+

  
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

! 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!
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and we obtain

P (�) = �4 � �3 + (0:25)�2 + (0:56714)�2 � (0:28376)�+ 0:08041: (4.8)

Obviously, the roots of characteristic equation of FJ(x; y) are given by

�1;2 = 0:24454� 0:47938i

�3;4 = 0:25546� 0:46086i

Hence, all the roots of Equation (4:8) are of modulus less than one which implies

that (x; y) = (0:56714; 0:56714) is locally asymptotically stable.

Now, we can give an example to verify our results.

Example 4.1 Consider the system (4:1) with the initial conditions x�1 = 0:3; x0 = 0:1;

y�1 = 0:7; y0 = 0:5 to support our results.

Figure 4.1. Plot of the equation xn+1 =
xn+yn�1

1+yn�1e
xn�1 ; yn+1 =

yn+xn�1
1+xn�1e

yn�1 :

4.2 THE EQUATION SYSTEM xn+1 =
xn+yn�2

1+yn�2e
xn�2 , yn+1 =

yn+xn�2
1+xn�2e

yn�2

We study on the equilibrium point and local asymptotic stability of the third order

di¤erence equation system

xn+1 =
xn + yn�2

1 + yn�2exn�2
; yn+1 =

yn + xn�2
1 + xn�2eyn�2

(4.9)

where the initial values x�2; x�1; x0; y�2; y�1; y0 are arbitrary nonnegative numbers.
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Let us consider the six dimensional discrete dynamical system of the form

(xn; yn; xn�1; yn�1; xn�2; yn�2)! (f; g; f1; g1; f2; g2); (4.10)

where

f =
xn + yn�2

1 + yn�2exn�2
; f1 = xn; f2 = xn�1

g =
yn + xn�2

1 + xn�2eyn�2
; g1 = yn; g2 = yn�1:

The linearized system of (4:9) evaluated at positive equilibrium (x; y) is given by

Zn+1 = FJ(x; y)Zn; (4.11)

where Zn =

0BBBBBBBBBBBB@

xn

yn

xn�1

yn�1

xn�2

yn�2

1CCCCCCCCCCCCA
and the Jacobian matrix about the �xed point (x; y) under

transformation (4:10) is given by

FJ(x; y) =

0BBBBBBBBBBBB@

@xn+1
@xn

@xn+1
@yn

@xn+1
@xn�1

@xn+1
@yn�1

@xn+1
@xn�2

@xn+1
@yn�2

@yn+1
@xn

@yn+1
@yn

@yn+1
@xn�1

@yn+1
@yn�1

@yn+1
@xn�2

@yn+1
@yn�2

@xn
@xn

@xn
@yn

@xn
@xn�1

@xn
@yn�1

@xn
@xn�2

@xn
@yn�2

@yn
@xn

@yn
@yn

@yn
@xn�1

@yn
@yn�1

@xn
@xn�2

@xn
@yn�2

@xn�1
@xn

@xn�1
@yn

@xn�1
@xn�1

@xn�1
@yn�1

@xn�1
@xn�2

@xn�1
@xn�2

@yn�1
@xn

@yn�1
@yn

@yn�1
@xn�1

@yn�1
@yn�1

@yn�1
@xn�2

@yn�1
@xn�2

1CCCCCCCCCCCCA
and

FJ(x; y) =

0BBBBBBBBBBBB@

A1 0 0 0 A2 0

0 B1 0 0 0 B2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1CCCCCCCCCCCCA
;

where

A1 =
1

1 + yex
; A2 =

�x yex
1 + yex

;
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B1 =
1

1 + xey
; B2 =

�x yey
1 + xey

:

The characteristic equation of FJ(x; y) is8<: P (�) = �6 � (A1 +B1)�5 + A1B1�4 � (A2 +B2)�3

+(A2B1 + A1B2)�
2 + A2B2:

(4.12)

When we set A1; A2; B1; B2 as above, we have

P (�) = �6 �
�

1

1 + xey
+

1

1 + yex

�
�5 +

�
1

1 + yex
1

1 + xey

�
�4

�
�
�x yex
1 + yex

+
�x yey
1 + xey

�
�3

+

�
1

1 + yex
�x yex
1 + yex

+
�x yey
1 + xey

1

1 + xey

�
�2

+

�
�x yex
1 + yex

�x yey
1 + xey

�
:

It follows from Equation (4:3) that the equilibrium points are (x; y) = (0; 0) and (x; y) =

(0:56714; 0:56714) :

Theorem 4.2 i) The zero equilibrium point (x; y) of system (4:9) is nonhyperbolic point.

ii) The positive equilibrium (x; y) of system (4:9) is locally asymptotically stable.

Proof.

i) For the zero equilibrium point (x; y) of system (4:9) ; using (4:10), (4:11) and (4:12)

we have

P (�) = �6 � 2�5 + �4 = 0: (4.13)

Obviously, the roots of characteristic equation of FJ(x; y) are given by � = 0

(multiple root) and � = 1 (multiple root). From this result, the equilibrium point

(x; y) = (0; 0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4:13) is equal to one.

ii) For the positive equilibrium point (x; y) of system (4:9) ; using (4:10), (4:11) and
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(4:12) we have

P (�) = �6 �
�

1

1 + 0:56714e0:56714
+

1

1 + 0:56714e0:56714

�
�5

+

�
1

1 + 0:56714e0:56714
1

1 + 0:56714e0:56714

�
�4

�
  

� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!
�3

+

0BBBB@
1

1 + 0:56714e0:56714

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!

+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
1

1 + 0:56714e0:56714

1CCCCA�2

+

  
� (0:56714)2 e0:56714
1 + 0:56714e0:567 14

! 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!

and so

P (�) = �6 � �5 + (0:25)�4 + (0:56714)�3 � (0:28376)�2 + 0:08041: (4.14)

Obviously, the roots of characteristic equation of FJ(x; y) are given by

�1;2 = 0:51549� 0:51774i;

�3;4 = 0:51029� 0:53344i;

�5 = �0:52034;

�6 = �0:53123:

Thus, all the roots of Equation (4:14) are of modulus less than one which implies

that (x; y) = (0:56714; 0:56714) is locally asymptotically stable.

4.3 THE EQUATION SYSTEM xn+1 =
xn+yn�3

1+yn�3e
xn�3 , yn+1 =

yn+xn�3
1+xn�3e

yn�3

In this part, we consider the equilibrium point and local asymptotic stability of the

following system of fourth order rational exponential di¤erence equation

xn+1 =
xn + yn�3

1 + yn�3exn�3
; yn+1 =

yn + xn�3
1 + xn�3eyn�3

(4.15)
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where the initial values x�3; x�2; x�1; x0; y�3; y�2; y�1; y0 are arbitrary nonnegative num-

bers.

Let us consider the eight dimensional discrete dynamical system of the form

(xn; yn; xn�1; yn�1; xn�2; yn�2; xn�3; yn�3)! (f; g; f1; g1; f2; g2; f3; g3); (4.16)

where

f =
xn + yn�3

1 + yn�3exn�3
; f1 = xn; f2 = xn�1; f3 = xn�2

g =
yn + xn�3

1 + xn�3eyn�3
; g1 = yn; g2 = yn�1; g3 = yn�2:

The linearized system of (4:15) about (x; y) is given by

Zn+1 = FJ(x; y)Zn; (4.17)

where Zn =

0BBBBBBBBBBBBBBBBBB@

xn

yn

xn�1

yn�1

xn�2

yn�2

xn�3

yn�3

1CCCCCCCCCCCCCCCCCCA

and the Jacobian matrix FJ(x; y) evaluated at (x; y) of system

(4:16) is given by

FJ(x; y) =

0BBBBBBBBBBBBBBBBBB@

@xn+1
@xn

@xn+1
@yn

@xn+1
@xn�1

@xn+1
@yn�1

@xn+1
@xn�2

@xn+1
@yn�2

@xn+1
@xn�3

@xn+1
@yn�3

@yn+1
@xn

@yn+1
@yn

@yn+1
@xn�1

@yn+1
@yn�1

@yn+1
@xn�2

@yn+1
@yn�2

@yn+1
@xn�3

@yn+1
@yn�3

@xn
@xn

@xn
@yn

@xn
@xn�1

@xn
@yn�1

@xn
@xn�2

@xn
@yn�2

@xn
@xn�3

@xn
@yn�3

@yn
@xn

@yn
@yn

@yn
@xn�1

@yn
@yn�1

@yn
@xn�2

@yn
@yn�2

@yn
@xn�3

@yn
@yn�3

@xn�1
@xn

@xn�1
@yn

@xn�1
@xn�1

@xn�1
@yn�1

@xn�1
@xn�2

@xn�1
@yn�2

@xn�1
@xn�3

@xn�1
@yn�3

@yn�1
@xn

@yn�1
@yn

@yn�1
@xn�1

@yn�1
@yn�1

@yn�1
@xn�2

@yn�1
@yn�2

@yn�1
@xn�3

@yn�1
@yn�3

@xn�2
@xn

@xn�2
@yn

@xn�2
@xn�1

@xn�2
@yn�1

@xn�2
@xn�2

@xn�2
@yn�2

@xn�2
@xn�3

@xn�2
@yn�3

@yn�2
@xn

@yn�2
@yn

@yn�2
@xn�1

@yn�2
@yn�1

@yn�2
@xn�2

@yn�2
@yn�2

@yn�2
@xn�3

@yn�2
@yn�3

1CCCCCCCCCCCCCCCCCCA
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and

FJ(x; y) =

0BBBBBBBBBBBBBBBBBB@

A1 0 0 0 0 0 A2 0

0 B1 0 0 0 0 0 B2

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1CCCCCCCCCCCCCCCCCCA

;

where

A1 =
1

1 + yex
; A2 =

�x yex
1 + yex

;

B1 =
1

1 + xey
; B2 =

�x yey
1 + xey

:

We obtain the characteristic equation of FJ(x; y) is as follows:8<: P (�) = �8 � (A1 +B1)�7 + A1B1�6 � (A2 +B2)�4

+(A2B1 + A1B2)�
3 + A2B2

(4.18)

Then we get A1; A2; B1; B2 as above, it follows that

P (�) = �8 �
�

1

1 + yex
+

1

1 + xey

�
�7

+

�
1

1 + yex
1

1 + xey

�
�6 �

�
�x yex
1 + yex

+
�x yey
1 + xey

�
�4

+

�
1

1 + yex
�x yey
1 + xey

+
�x yex
1 + yex

1

1 + xey

�
�3

+

�
�x yex
1 + yex

�x yey
1 + xey

�
:

From Equation (4:3) ; we have the some equilibrium points (x; y) = (0; 0) and (x; y) =

(0:56714; 0:56714) :

Theorem 4.3 i) The zero equilibrium point (x; y) of system (4:15) is nonhyperbolic

point.

ii) The positive equilibrium (x; y) of system (4:15) is locally asymptotically stable.

Proof.
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i) For the zero equilibrium point (x; y) of system (4:15) ; using (4:16), (4:17) and (4:18)

we have

P (�) = �8 � 2�7 + �6 = 0: (4.19)

Obviously, the roots of characteristic equation of FJ(x; y) are given by � = 0

(multiple root) and � = 1 (multiple root). From this result, the equilibrium point

(x; y) = (0; 0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4:19) is equal to one.

ii) For the positive equilibrium point (x; y) of system (4:15) ; using (4:16), (4:17) and

(4:18) we have

P (�) = �8 �
�

1

1 + 0:56714e0:56714
+

1

1 + 0:56714e0:56714

�
�7

+

�
1

1 + 0:56714e0:56714
1

1 + 0:56714e0:56714

�
�6

�
  

� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!
�4

+

0BBBB@
1

1 + 0:56714e0:56714

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!

+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
1

1 + 0:56714e0:56714

1CCCCA�3

+

  
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

! 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!

and

P (�) = �8 � �7 + (0:25)�6 + (0:56714)�4 � (0:28376)�3 + 0:08041: (4.20)

Obviously, the roots of characteristic equation of FJ(x; y) are given by

�1;2 = �0:40903� 0:49723i;

�3;4 = �0:41686� 0:50229i;

�5;6 = 0:66435� 0:47842i;

�7;8 = 0:66153� 0:49157i:

So, all the roots of Equation (4:20) are of modulus less than one which implies that

(x; y) = (0:56714; 0:56714) is locally asymptotically stable.
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4.4 THE EQUATION SYSTEM xn+1 =
xn+yn�k

1+yn�ke
xn�k , yn+1 =

yn+xn�k
1+xn�ke

yn�k

In this section, we consider the equilibrium point and local asymptotic stability of some

systems of higher order exponential di¤erence equation

xn+1 =
xn + yn�k

1 + yn�kexn�k
; yn+1 =

yn + xn�k
1 + xn�keyn�k

(4.21)

where the initial values x�k; :::; x�1; x0; y�k; :::; y�1; y0 are arbitrary nonnegative numbers.

Let us consider the (2k + 2) dimensional discrete dynamical system of the form

(xn; yn; xn�1; yn�1; :::; xn�k; yn�k)! (f; g; f1; g1; :::; fk; gk); (4.22)

where

f =
xn + yn�k

1 + yn�kexn�k
; f1 = xn; f2 = xn�1; :::; fk = xn�(k�1)

g =
yn + xn�k

1 + xn�keyn�k
; g1 = yn; g2 = yn�1; :::; gk = yn�(k�1):

Futhermore, the linearized system of (4:21) about (x; y) is

Zn+1 = FJ(x; y)Zn; (4.23)

where Zn =

0BBBBBBBBBBBBBBB@

xn

yn

xn�1

yn�1
...

xn�k

yn�k

1CCCCCCCCCCCCCCCA
and the Jacobian matrix about the �xed point (x; y) under

transformation (4:22) is given by

FJ(x; y) =

0BBBBBBBBBBBBBBB@

@xn+1
@xn

@xn+1
@yn

@xn+1
@xn�1

@xn+1
@yn�1

: : : @xn+1
@xn�k

@xn+1
@yn�k

@yn+1
@xn

@yn+1
@yn

@yn+1
@xn�1

@yn+1
@yn�1

: : : @yn+1
@xn�k

@yn+1
@yn�k

@xn
@xn

@xn
@yn

@xn
@xn�1

@xn
@yn�1

: : : @xn
@xn�k

@xn
@yn�k

@yn
@xn

@yn
@yn

@yn
@xn�1

@yn
@yn�1

: : : @yn
@xn�k

@yn
@yn�k

...
...

...
...

. . .
...

...
@xn�(k�1)

@xn

@xn�(k�1)
@yn

@xn�(k�1)
@xn�1

@xn�(k�1)
@yn�1

: : :
@xn�(k�1)
@xn�3

@xn�(k�1)
@yn�3

@yn�(k�1)
@xn

@yn�(k�1)
@yn

@yn�(k�1)
@xn�1

@yn�(k�1)
@yn�1

: : :
@yn�(k�1)
@xn�3

@yn�(k�1)
@yn�3

1CCCCCCCCCCCCCCCA
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and

FJ(x; y) =

0BBBBBBBBBBBBBBB@

A1 0 0 0 : : : A2 0

0 B1 0 0 : : : 0 B2

1 0 0 0 : : : 0 0

0 1 0 0 : : : 0 0
...

...
...
...
. . .

...
...

0 0 0 0 : : : 0 0

0 0 0 0 : : : 0 0

1CCCCCCCCCCCCCCCA
where

A1 =
1

1 + yex
; A2 =

�x yex
1 + yex

;

B1 =
1

1 + xey
; B2 =

�x yey
1 + xey

:

The characteristic polynomial of the FJ(x; y) is as follows:8<: P (�) = �2k+2 � (A1 +B1)�2k+1 + A1B1�2k � (A2 +B2)�k+1

+(A2B1 + A1B2)�
k + A2B2:

(4.24)

It follows from Equation (4:3) that the equilibrium points are (x; y) = (0; 0) and (x; y) =

(0:56714; 0:56714) :

Theorem 4.4 i) The zero equilibrium point (x; y) of system (4:21) is nonhyperbolic

point.

ii) The characteristic Equation of system (4:21) about the positive equilibrium point (x; y)

is

P (�) = �2k+2 � �2k+1 + (0:25)�2k + (0:56714)�k+1 � (0:28376)�k + 0:08041:

Proof.

i) For the zero equilibrium point (x; y) of system (4:21) ; using (4:22), (4:23) and (4:24)

we have

P (�) = �2k+2 � 2�2k+1 + �2k = 0: (4.25)

Obviously, the roots of characteristic Equation of FJ(x; y) are given by � = 0

(multiple root) and � = 1 (multiple root). From this result, the equilibrium point
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(x; y) = (0; 0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4:25) is equal to one.

ii) For the zero equilibrium point (x; y) of system (4:21) ; using (4:22), (4:23) and (4:24),

it follows that

P (�) = �2k+2 �
�

1

1 + 0:56714e0:56714
+

1

1 + 0:56714e0:56714

�
�2k+1

+

�
1

1 + 0:56714e0:56714
1

1 + 0:56714e0:56714

�
�2k

�
  

� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!
�k+1

+

0BBBB@
1

1 + 0:56714e0:56714

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!

+

 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!
1

1 + 0:56714e0:56714

1CCCCA�k

+

  
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

! 
� (0:56714)2 e0:56714
1 + 0:56714e0:56714

!!
:

Hence, we obtain the characteristic equation of system of higher order rational ex-

ponential di¤erence equation FJ(x; y) is as follows

P (�) = �2k+2� �2k+1+(0:25)�2k +(0:56714)�k+1� (0:28376)�k +0:08041: (4.26)

Furthermore, intuitively we can see that all the roots of the higher order polynomial

Equation (4:26) satisy j�j < 1 by numerical methods and graphs. Therefore, it can be

said that the positive equilibrium point (x; y) of system (4:21) is locally asymptotically

stable but here we could not show it theoretically. Thus, in this section we discussed

the equilibrium point and the local asymptotic stability of some systems of higher order

rational exponential di¤erence equations.
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