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ABSTRACT

Master of Science Thesis

THE SOLUTIONS OF SOME SYSTEMS OF EXPONENTIAL DIFFERENCE
EQUATIONS

CANSU GUGERCIN
Zonguldak Biilent Ecevit University
Graduate School of Natural and Applied Sciences
Department of Mathematics

Thesis Advisor: Assist. Prof. Melih GOCEN
January 2020, 53 pages

Difference equations are applied to mathematical models within biology, genetics, population
dynamics, probability theory, psychology, sociology and many other disciplines. For this
reason, recently there has been a lot of interest in studying the difference equations.

This thesis consists of four chapters.

In the first chapter, general informations, basic definitions and theorems about difference

equations are given.

In the second chapter, a literature review of the studies on difference equations of exponential

form is presented.

In the third chapter, the equilibrium point and local asymptotic stability of positive solutions

of some rational exponential difference equations are investigated.

111



ABSTRACT (continued)

In last chapter, the local asymptotic stability of positive solutions of some systems of rational

exponential difference equations are studied.

Moreover, in the thesis, the local asymptotic stability of positive solutions are showed by

graphs.

Key Words: Exponential difference equations, equilibrium point, local asymptotic stability.

Science Code: 403.03.01
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OZET
Yiiksek Lisans Tezi
BAZI USTEL FARK DENKLEM SiSTEMLERININ COZUMLERI
Cansu GUGERCIN
Zonguldak Biilent Ecevit Universitesi
Fen Bilimleri Enstitiisii

Matematik Ana Bilim Dal

Tez Damismani: Dr. Ogr. Uyesi Melih GOCEN
Ocak 2020, 53 sayfa

Fark denklemleri biyoloji, genetik, popiilasyon dinamigi, olasilik teorisi, psikoloji, sosyoloji
ve daha bir ¢ok bilim daliin i¢indeki matematiksel modellere uygulanir. Bu nedenden dolayz,
son zamanlarda fark denklem sistemlerinin ¢aliymasina ¢ok biiyiik ilgi vardir.

Bu tez dort boliimden olusmaktadir.

Birinci boliimde fark denklemleri ile ilgili genel bilgiler, temel tanimlar ve teoremler veril-

mistir.

Ikinci béliimde iistel fark denklemleri ile ilgili yapilan ¢alismalarm literatiir taramasi sunul-

mustur.

Ugiincii béliimde bazi rasyonel iistel fark denklemlerinin pozitif ¢dziimlerinin denge noktasi

ve lokal asimptotik kararlilig1 incelenmistir.



OZET (devam ediyor)

Son boliimde ise bazi rasyonel iistel fark denklem sistemlerinin pozitif ¢éziimlerinin lokal

asimptotik kararliligi calisilmistir.

Ayrica tezde, pozitif ¢oziimlerin lokal asimptotik kararlilig grafiklerle gdsterilmistir.

Anahtar Kelimeler: Ustel fark denklemleri, denge noktasi, lokal asimptotik kararlilik

Bilim Kodu: 403.03.01

vi



ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my esteemed teacher, Assist. Prof. Melih
GOCEN who patiently guided me through the course of my master’s degree and thesis study,
who has supported me at every stage, who has devoted precious time to me and who has

contributed a great deal to my thesis.

I would like to thank all my family, especially my father Abdiilbaki GOKCEK and my mother
Necla GOKCEK, who have always supported me thoughout my education life and have a big
role in my success. I would like to thank Tenzile ARSLAN, the esteemed English teacher
who has always been there for me, who has always supported me with regard to foreign

language.

I also want to thank my husband Baris GUGERCIN who has never left me alone in my thesis

study, as in every aspect of my life and my precious daughter Meva.

vil






TABLE OF CONTENS

Page
APPROVAL OF THE THESIS ...t 11
ABSTRACT ..ot e e et e e e e e e e e e e e e e e e e e e et eeeeeeaeeees 11
(072 23 ST USSP USRS v
ACKNOWLEDGMENTS ..ot et e et e et e e e v Vil
TABLE OF CONTEN S L.ttt e et e e e e X
LIST OF FIGURES ..o e et e et e e et e e e aanaaas X1
CHAPTER 1 INTRODUCTION AND PRELIMINARIES ..., 1
CHAPTER 2 LITERATURE REVIEW ... et 7
2.1 DIFFERENCE EQUATIONS OF EXPONENTIAL FORM ......cccccvvviiiiiiiiiiiiiiiiiiiinans 7
2.2 DIFFERENCE EQUATIONS OF RATIONAL EXPONENTIAL FORM ................. 22
CHAPTER 3 SOME DIFFERENCE EQUATIONS OF EXPONENTIAL FORM ................ 29
_ xn+ Xn—1
3.1 THE EQUATIONS Xpyy = 78200 29
_ Xnt Xn—2
3.2 THE EQUATIONS Xpyy = 75202 31
_ xn+ Xn-3
3.3 THE EQUATIONS Xpyy = 752050 s 31
_ Xnt Xn—k
3.4 THE EQUATIONS Xy = f255005 s 32
CHAPTER 4 SOME SYSTEMS OF EXPONENTIAL DIFFERENCE EQUATIONS.......... 35
_ _XntYn- _ _ Yntnoa
4.1 THE EQUATIONS SYSTEM X4y = o diole y, ) = I0ES0d 35
_ _XntYn—2 — _YntXn-—
4.2 THE EQUATIONS SYSTEM X4y = ooty ) = JUES02 38
_  XntYn-3 _ YntXn-3
4.3 THE EQUATIONS SYSTEM xpyy = ;o ecd y, | = tiica 41
_  XntYn-k _  IntXng
4.4 THE EQUATIONS SYSTEM x4y = oo dich y, ) = 0000k 45

X



BIBLIOGRAPHY .........
CURRICULUM VITAE

TABLE OF CONTENTS (Continued)



LIST OF FIGURES

No

Figure 3.1 The plot of the equation x,,; =

Figure 4.1 The plot of the equation x,,,; =

Xnt Xn—q

1+xpe*n-1

XntYn-1
1+yp-_1e*n-1

xi

Ynt Xn—1

yYn+1 = 1+xp_1e¥n—1






CHAPTER 1

INTRODUCTION AND PRELIMINARIES

The difference equation is an algebraic connection that gives the relationship between
finite differences of a function with one or more variables and independent variables of this
function. In these equations the independent variable is defined on integers. Therefore,
the difference equations contain differences of unknown function instead of differentiation
terms. Difference equations are used in mathematical modeling of events that are not

continuous and vary according to evenly spaced time.

Some of the events in the nature are not continous. For example, in the genetic field,
genetic characteristics vary between generations. The variable that represents the gen-
eration is an independent variable and also a discrete variable. The price changes in
economy is calculated annually, monthly, weekly or daily. In this case, time variable is an
independent variable and also a discrete variable. In population dynamics, the variable
that shows the age groups appears as a discrete independent variable in the problems
of population change among the age groups. Economic problems, such as national in-
come and government debts, that take the same values in a period and change as the
period changes are analyzed by the difference equations. It is a common theme to process

discrete subjects in noncontinuous stages, from clocks to computers and chromosomes.

The difference equations are used in many disciplines and in the fields such as probability
theory, sequence problems, statistical problems, probabilistic time series, combinatorial
analysis, number theory, geometry, electrical circuits, radiation, psychology, sociology,
stock market movements in economics, the research of the number of live populations
in medicine and biology, and more importantly the study of cell movements (the rate of

increase in cancer cells).

The wide range of application has increased the interest in difference equations and it
has attracted the attention of not only mathematicians but also the researchers work-

ing in science, engineering, health and social science. For example, in the 1950s, several



environmental scientists used the simple nonlinear difference equation which included a
logistic equation, to examine year-to-year changes in the behavior of populations. How-
ever, in the early 1970s, Robert May researched the types of complex behaviors exhibited
by the logistic equation and he studied on the relationship between these behaviors and
fluctations in real populations. Furthermore, more advanced models developed from this
logistic model are used to identify the behaviors of HIV viruses, bacteria or cancer cells.
In recent years, many studies have been carried out on the behaviors of difference equa-
tions, and the system of difference equations, in particular periodicity, stability, bounded-
ness. In this study, equilibrium point and asymptotic stability of some nonlinear rational
difference equation of exponential form and rational difference equation systems of expo-
nential form are examined. In addition, some numerical examples are given to support
our theoretical results.

In this section, we give basic definitions and theorems related to difference equations.

A difference equation of order (k + 1) is an equation of the form

Tp+1 :f(xnaxnfla-“? l'nfk)? 77,:0,1,... (11)

where F is a function that maps some set I**! into I. The set I is usually an interval
of real numbers, or a union of intervals, or a discrete set such as the set of integers
zZ={..,-1,01,.. .}

A solution of (1.1) is a sequence {x,}2° ,that satisfies Equation (1.1) for all n > 0.

A solution of (1.1) that is constant for all n > —k is called an equilibrium solution of

(1.1). If
r, =7, foralln > —k
is an equilibrium solution of (1.1), then 7 is called an equilibrium point.

Definition 1.1 (Discrete Dynamical System) An m-dimensional discrete dynamical sys-

tem is a system of the following form

Tp+1 = fl(xna Tn—1y+++yTn—myYns Yn—1, - - - 7ynfm) (1 2)

Yn+1 = f2(l‘n7 Tn—15---yTpn—m>Yn>Yn—-1,- - - 7yn—m)
where f1 @ [T x I — I and fy 2 17 x I — I, are continuously differentiable
functions and I, I are some intervals of real numbers. Also, a solution {(z,,yn)}>> . of

system (1.2) is uniquely determined by initial values (x_;,y_;) € I1 x Iy fori =0,1,... m.



Definition 1.2 An equilibrium point of Equation (1.1) is a point T that satisfies
T =f(z,7,...,7).

The point T is also called to a fixed point of the function f.

Definition 1.3 An equilibrium point of system (1.2) is a point (T,7y) that satisfies

7"'7§7g7y7"'7y)
- 7)

sl
|

fi(
= fo

if we assume that the associated vector map
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Y

<
=
=
=
<
<

J

F = (flaxnuxn—17 R 7xn—maf27ynayn—17 cee 7yn—m)7

then, the point (T,7) is also called a fixed point of the vector map F.
Definition 1.4 Let T be a positive equilibrium of (1.1).

1) An equilibrium point T of Equation (1.1) is called locally stable if, for every e > 0;

there exists 0 > 0 such that if {x,}3> _, is a solution of Equation (1.1) with
|T_p — T+ |21k — T| + ... + |To — T| < 6,
then
|z, —T| <€, for all n>0.
1) An equilibrium point T of Equation (1.1) is called locally asymptotically stable if, T

is locally stable, and if in addition there exists v > 0 such that if {x,}32_, is a

solution of Equation (1.1) with
2 — T+ |T1ok — T + ... + |z0 — T| <7,
then

lim z, = .

n—o0

141) An equilibrium point T of FEquation (1.1) is called a global attractor if, for every

solution {x,}>° _, of Equation (1.1) we have

lim z, =T=.

n—oo



w) An equilibrium point T of Equation (1.1) is called globally asymptotically stable if T

is locally stable, and T is also a global attractor of Equation (1.1).

v) An equilibrium point T of Equation (1.1) is called unstable if T is not locally stable.
Definition 1.5 Let (Z,7) be an equilibrium point of the system (1.2).

1) An equilibrium point (T,7) is said to be stable if for every ¢ > 0, there exists § > 0 so
that for every initial condition (x;,4:), i € {—1,0}, with if | S0, (zs,1:)— (T, 7)|| <
d implies ||(xn, yn) — (Z,7)|| < €, for all n > 0, where || - || is usual Fuclidian norm

in R2.
1) It is said to be unstable, if an equilibrium point (T,7) is not stable.

i) If an equilibrium point (7,7) is stable and there exists n > 0 such that || Yo, (24, yi)—
(@, 9)|| <n and (zn,yn) — (T,Y) as n — oo, then, it is called to be asymptotically
stable.

1) The equilibrium point (Z,7) is said to be a global attractor if

lim (z,,y,) = (T,7).

n—oo

v) If an equilibrium point (T,7) is both global attractor and stable, then, it is called to be
globally asymptotically stable.

Definition 1.6 (Linearization Method) Suppose that the function F is continuously dif-

ferentiable in some open neighborhood of an equilibrium point T. Let

_OF

qi (Z,T,...,T) fori=0,1,...,k

denote the partial derivative of F(ug,uy, ..., ug) with respect to u; evaluated at the equilib-

rium point T of Equation (1.1). Then the equation

Yn+1 = qoYn + d1Yn—1 +...+ qxYn—k, n = 07 ]-7 (]‘3)

is called the linearized equation of Equation (1.1) about the equilibrium point T, and the

equation
)\]H_l — pg/\k — pl)\k_l — .. — Pk = 0 (14)

is called the characteristic equation of Equation (1.1) about .



Theorem 1.1 (The Linearized Stability Theorem) Assume that the function F is a con-
tinuously differentiable function defined on some open neighborhood of an equilibrium

point T. Then the following statements are true:

1) The equilibrium point T of Equation (1.1) is locally asymptotically stable if all the roots

of Equation (1.4) have absolute value less than one.

1) The equilibrium point T of Equation (1.1) is unstable if at least one root of Equation

(1.4) has absolute value greater than one.

1it) When there exists a root of Equation (1.4) with absolute value equal to one, then the
equilibrium T is called nonhyperbolic, then the equilibrium point T of Equation (1.1)

is called hyperbolic if no root of Equation (1.4) has absolute value equal to one.

i) When it is hyperbolic and if there exists a root of Equation (1.4) with absolute value
less than one and another root of Equation (1.4) with absolute value greater than

one then equilibrium point T of Equation (1.1) is called a saddle point.

v) When all roots of Equation (1.4) have absolute value greater than one then equilibrium

point T of Equation (1.1) is called a repeller.

Theorem 1.2 Assume that
lgo| + |q1| + ... + || < 1.

Then all roots of Equation (1.4) lie inside the unit disk.

Definition 1.7 (Linearization Method for a discrete dynamical system) If (T,7) be an

equilibrium point of a map

F = (flu Tnyeeey Tn—m, fl; Yny ooy yn—m>

where f1 and fs are continuously differentiable functions at (T,7y). The linearized system

of system (1.2) about the equilibrium point (T,7y) is

Xn+1 = F(Xn) = FJXna



where

ynfm

and Fj is a Jacobian matriz of the system (1.2) about the equilibrium point (T,7).

Proposition 1.3 Assume that x,.1 = F(z,), n = 0,1, ..., is a system of difference
equations and T be a fized point of F. If all eigenvalues of the Jacobian matriz Jr about
T lie inside the open unit disk |\| < 1, then T is locally asymptotically stable. If one of

them has a modulus greater than one, then T is unstable.

Theorem 1.4 (Rouche’s Theorem) Let two functions f(z) and g (z) be analytic inside
and on a simple closed curve C, and suppose that |f (2)| > |g(2)| at each point on C.

Then f (z) and f (z) + g (2) have the same number of zeroes, inside C.



CHAPTER 2

LITERATURE REVIEW

2.1 DIFFERENCE EQUATIONS OF EXPONENTIAL FORM

In this section, we give some information about difference equations of exponential form
and difference equation systems of exponential form.
In [8] , Metwally et al. dealt with the global stability, the boundedness nature, and the

periodic character of the positive solutions of the difference equation
Tpi1=a + Pr,e™  n=0,1, ... (2.1)

where «, § are positive constants and the initial values x_1, z¢ are positive numbers. As

a result, they proved that:

e Equation (2.1) has a unique equilibrium solution Z and Z > a.

e The equilibrium 7T of Equation (2.1) is locally asymtotically stable if

—CY+ V 012“—40[ a+\/m
a+\/a2+4a ’

and is unstable (and in fact is a saddle point) if

—a+Va?+4a a+\/ 21
a++vVa?+ 4a

e Every positive solution of Equation (2.1) is bounded if 5 < e* and Equation (2.1)

b <

b >

has positive unbounded solutions if 3 > e®.

o If B < e(—atvatl V2“2+4), Equation (2.1) has no positive solutions of prime period two
and the equilibrium T of Equation (2.1) is globally asymptotically stable.

In [9], Fotiades and Papaschinopoulos discussed the existence, uniqueness and attractivity

of prime period two solution of the difference equation

Tpi1 = a+br, 17" (2.2)



where a, b are positive constants and the initial values z_1, xo are positive numbers. More-

over, they found

e Equation (2.2) has a periodic solution of prime period two if

—a + a? + 4a a+\/;2+4a
e
a+ Va2 +4a

e When b < ¢” and ab > 2b — 2, Equation (2.2) has a unique prime period two

< band b < e%.

solution.

In [22], Ma et al. investigated the boundedness and the asymptotic behavior of the

positive solutions of the difference equation
Tnp1 = a + brpe "1 (2.3)

where a, b are positive constants, and the initial values x_1, o are positive numbers.

Then the following results were exhibited in their paper for the equation (2.3);

e If b < e, the equation (2.3) has a unique positive equilibrium T and every positive

solution is bounded.

o If b < €% the equation (2.3) has a unique positive equilibrium Z so that T €

la, 7—==] and every positive solution of (2.3) tends to the unique positive equilib-

rium T as n — oQ.

elfa>210< Wﬁelﬂ, the equilibrium Z of (2.3) is locally asymptotically
stable.

o If a > 2 b < min{e?, melﬂ}, the equilibrium 7 of (2.3) is globally asymp-
totically stable.

In [29], Papaschinopoulos, Radin and Schinas discussed the boundedness, the persistence
and the asymptotic behavior of the positive solutions of the system of two difference

equations of exponential type
Tpt+1 = Q + bﬂfnfleiyn7 Yn4+1 = C -+ dyn,lef‘r” (24)

where a, b, ¢, d are positive constants, and the initial values x_1,zg,y_1,%yo are positive
real values.

They demonstrated that:



o If be ¢ < 1, de”® < 1, every positive solution of (2.4) is bounded and persists.

e Ifc>a
—a+Va?+4 0 . —CcHVE+L c—Vc—a?
b<e——— d < emin{ : }
2 2 a
and if a > ¢,
—CFVAE+4 e . —a+vVat+4 a—+a?—c?
d<6f,b<em1n{ 5 : }
c

the system (2.4) has a unique positive equilibrium (Z,7) and every positive solution

of (2.4) tends to the unique positive equilibrium (7,7) as n — oo.

e Every positive solution of (2.4) tends to the unique positive equilibrium (7,7) as
n — 0o when assume that the constants a, b, ¢, d satisfy

e’ d < ¢ min{ 1—be ¢ 1-=blc+1l)e®
e min
c+1’ 1—bec+a’ 1—bec

b <

}

and the system (2.4) has unique positive equilibrium (Z,7%) such that

_ a _ c
x € (a,m% y € (c, m)‘
o If
b d —a—cC
0<be “+de ®+bde " “+ aneee <1,

(1 —de=)(1 — be~)

the unique positive equilibrium (7,7) of (2.4) is globally asymptotically stable.

In [27], Papaschinopoulos, Fotiades and Schinas dealt with the asymptotic behaviour of

the positive solutions of the system of two difference equations

Tn

Tpil = QYp + bxp 7" Ypi1 = cxy +dy,e ™, n=0,1,... (2.5)

where a, b, c,d are positive constants and the initial values x_1,xg,y_1,yo are positive

numbers.

e They demonstrated that under the requirement that a,b,c¢,d € (0,1) a+b> 1, c+
d>1;

o Every positive solution of (2.5) is bounded and persists.



o Every positive solution of (2.5) tends to the unique positive equilibrium (Z,7) of

(2.5) as n — oo, assume that both relationship
c<a, b<e¢ d<c
or

a<c, b<a, d<a.

e When a +b < 1, c +d < 1; every positive solution of (2.5) tends to the zero

equilibrium (0, 0) of (2.5) as n — oc.

e They proved that such that
a+b<l1l c+d<1
or
a+b=1 c+d=1,

the zero equilibrium (0, 0) of (2.5) is globally asymptotically stable.

In [5], Din and Elsayed studied

Tn

Tpy1 =+ 6xn + 'yxnfleiyna Yn—1 = 0+ EYpn + Cynflei ) (26)

where parameters «, 3,7, 0, €, ¢ and initial conditions g,z _1,%o,y_1 are positive real
numbers. They dealt with the existence and uniqueness of positive equilibrium point,
boundedness character, persistence, local asymptotic stability, global behavior and rate
of convergence of unique positive equilibrium point.

They obtained the following results:

o If

B+ e\ /ed 52 + 4y < 2¢°, e + €2\ /ete? + 4C < 2¢°,

every positive solution {(x,,y,)} of system (2.6) is bounded and persists.

10



o If

B+ e\ + 4y < 260, e + eV et +4¢ < 2%, 0< B, €<,

and

—e6 — 0¢exp(i=52) )
1_€_pr&$%j;)<7<%1—Bﬁmmfj;jgzg

),

Cexp(

the system (2.6) has a unique positive equilibrium point (Z,%) such that

a )
. 7 -
a’l—ﬁ—’ye*‘s] and ye[é’l—e—(’e*a

|=J

Te|

o If

Bte+Be+ A+ B)e™ + (1 +e)e™ + ¢ (1 + qogmemriiimee=sgy) < Li

the unique positive equilibrium point (Z,7) of system (2.6) is locally asymptotically

stable.

e The unique positive equilibrium point (Z,y) of system (2.6) is globally asymptoti-
cally stable.

e Under the condition that 8,e € (0, 1) and {(x,, y,)} be a positive solution of system
(2.6);

o When v > e&, then x, — o0, y, — d + ln(v) as n — oo,

o If (> e, then x, — a+ 1n((), y, — 00 as n — 0.

In [30], Papaschinopoulos and Schinas investigated the asymptotic behavior of the positive

solutions of the systems of the two difference equations

Tpp1 = a+by,_1e7™, Yo =c+dr, e, (2.7)

Tn

Tn1 = a+byp1e™", Ypy = c+dr,_je ™, (2.8)

where the constants a, b, ¢, d are positive real numbers, and the initial values z_1, o, y_1, yo
are also positive real numbers.

They proved that under the condition that:

11



o If
0, =be * < 1, Oy = de “ < 1,

(1 +a)p+ch <1, (1 +c)p+aby <1

and

p(1 —p)?

A= 1—(1+a)p—chll—(L+c)p— aby)

<1

the system (2.7) has a unique positive equilibrium (7, %) and every solution of (2.7)

tends to the unique positive equilibrium of (2.7) as n — oc.
o If
G=be <1, G=de <1

and

_pl—=p+ectal)l—p+a+cQ) .
" (1—-p)? &

the system (2.8) has a unique positive equilibrium (Z,7) and every positive solution

of (2.8) tends to the unique positive equilibrium of (2.8) as n — oc.

o If

0, =be ™ < 1,0, =de ™ < 1

)2
5 — p(1—p) -1,
[1—(1+4+a)p—chh][l — (14 c)p— abs]
and when
- cty +aby + (a+c)p N p(a+c€1)(c;|—a92) el
1—p (1-p)

the unique positive equilibrium (7,7) of (2.7) is globally asymptotically stable.

o If
Cl =be ‘< 1, <2:d€_a <1

and

poPlzpretaG)l—pratcq)
(1—p)?

the unique positive equilibrium (Z,7) of (2.8) is globally asymptotically stable.

12



e When 6; > 1, 6, > 1, there exist unbounded solutions (x,,y,) of (2.7) so that

lim x5, = 0o, lim x9, = a, lim y9,11 = 00, lim s, = ¢ (2.9)
n—oo n—oo n—oo n—oo

lim z9,.1 = a, lim x9, = 0o, lim y9,11 = ¢, lim yo, = 00. (2.10)
n—oo n—oo n—oo n—oo

e (; > 1, (> 1, there exist unbounded solutions (z,, y,) of (2.8) such either relations

(2.9) or (2.10) hold.

In [33], Phong dealt with the boundedness, the persistence and the asymptotic behavior

of the positive solutions of the system of two difference equations of exponential type:
Tpty1 = Q + biL‘n,1 + anfleiyna Yn+1 = & + ﬂynfl + ’Yynfleixrx (211)

where a,b, ¢, a, 3,7 € (0,00), and the initial values x_1, g, y_1, 3o are positive real values.

They proved the following results:

e If b+ ce ™ < 1, f+ve* < 1, every positive solution of (2.11) is bounded and

persists.

o If a(1 —b) > a(l —f) then

o —a(1-28)+1/a2(1-28)2+4(1-b)2
2 )

)—+/a2(1-b)2—a2(1— )2 fa(172b)+\/a2(172b)2+4(175)2}
) 2

a

c<e

. ra(l-b
v < e min{ o

and if ¢(1 — b) < a(1 — ) then

- —a(1—2b)+\/a2§1—26)2—0—4(1—,6)2 7

c<e”,

system (2.11) has a unique positive equilibrium (Z,7) and every positive solution

of (2.11) tends to the unique positive equilibrium (7,7) as n — co.

e When the contants a, b, ¢, a, 3,y satisfy the following relations:

—B)(A=b—ce™®) (1—5)(1—5)—0(1%!—5)6’“)}’

1+a—b—ce—> 1—b—ce—@

v < e*min{ &

(A-b)(1-5)

«
c< eV

system (2.11) has unique positive equilibrium (7,7) such that » € ( a, 75%=),

y € (a ) every positive solution of (2.11) tends to the unique positive

o
I 1*57’}/6_0‘

equilibrium (Z,7) as n — oo.
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—a—«

e Ifb+ce ®+B+~ve "+ (b+ce ) (B+ve )+ T j;fﬁf(lf 7= < 1, the unique

positive equilibrium (Z,7) of (2.11) is globally asymptotically stable.

In [26], Papaschinopoulos et al. studied the existence of a unique positive equilibrium,
the boundedness, persistence and global attractivity of the positive solutions of a system

of the following two difference equations
Tpi1 = aXy + byp_1€7" Ypi1 = cyp +dr,_e7", n=0,1,... (2.12)

where a, b, ¢, d are positive contants and the initial values z_1, xo,y_1, yo are positive real
numbers.

They obtained the results which are listed below:
e When a,b,¢,d € (0,1),

o= % > 1, system (2.12) has a unique positive equilibrium (7, 7) .

o @ <1, the zero equilibrium (0, 0) is the unique equilibrium of system (2.12).
e If a,b,c,d € (0,1), every positive solution of (2.12) is bounded.

e If a,b,c,d € (0,1), ﬁ > 1, 1%0 > 1, every positive solution of (2.12) is bounded

and persists.

e When a,b,¢,d € (0,1),bd < (1 —a)(1 — ¢), every positive solution of (2.12) tends

to the zero equilibrium.

e If max {%, ﬁ} < min {65,6%}, every positive solution of (2.12) tends to the

unique positive equilibrium of (2.12).

In [31] under some conditions on the constants A, B € (0,00), Papaschinopoulos et al.
studied the existence of positive solutions, the existence of a unique nonnegative equilib-
rium and the convergence of the positive solutions to the nonnegative equilibrium of the

system of difference equations

Tor1 = (L= Yo — Y1) (L — €M), yprs = (1 — 2 — 221) (1 — e P7) (2.13)
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where A, B € (0,00) and the initial values x_1, %,y 1,70 are positive numbers which
satisfy the relations zo+z_1 < 1, yo+y_1 < 1, 1=y > (1—2¢g—2_1)(1—e B%), 1—z¢ >

(1—yo—y_1)(1 — e4w).

They proved the following results:

e Under the condition that the system of algebrations
r=(1 —2)(1—-e), y=010 —22)(1—eP"), x,y€(0, 0.5). (2.14)

olf0 < A<1,0< B <1, the system (2.14) has a unique nonnegative solution
(7,7) = (0,0).

olfl1 < A<4 1< B <4, system (2.14) has a unique positive solution (7,7),
Z,y € (0,0.5).

e If 0 < A <1, 0 < B <1 are satisfied the solution (z,,y,) tends to the zero

equilibrium (0, 0) of (2.13) as n — oo.

e When 1 < A < 4,1 < B < 4 are satisfied and there exists a m € N so that for
n > m either x, < T, y, <Jorx, > T, Y, > T; (Tn,Ys) tends to the unique positive

equilibrium (7, 7y) of (2.13) as n — oc.
In [3], Din studied
Tnt1 = a$n€_yn + 67 Yn+1 — Oé:)?n(l - e—yn)7 (215)

where 0 < @ < 1 and 0 < 8 < oo. More precisely, he investigated boundedness char-
acter, existence and uniqueness of positive equilibrium point, local asymptotic stability
and global asymptotic stability of unique positive equilibrium point, and the rate of
convergence of positive solutions of a population model.

He determined the following results:

e If 0 < a < 1, then every positive solution {(x,,y,)}>>, of the system (2.15) is
bounded.

e When 0 < a < 1 and a8 > 1—a, the system (2.15) has a unique positive equilibrium

point (7,9) € [, 12-] x [0, 22].

T l-a
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When 0 < a < 1, then following statements are true:

o The equilibrium point (£-, 0) of the system (2.15) is locally asymptotically stable

1—-a’

if and only if a8 < 1 — a.

o If a8 > 1 — a, the equilibrium point (%, 0) of the system (2.15) is unstable.

If 3(1+ a) +r < ;= where r = g, the unique positive equilibrium point (Z,7) €

18, %] x [0, %] of system 2.15 is locally asymptotically stable.

If and only if (1 —7)(r+ ) < r+aB(1—r) < 2r where r = £, the unique positive

equilibrium point (7,7) € [8, 12-]x [0, 2] of system (2.15) is locally asymptotically
stable.
When 0 < a < 1, then the unique positive equilibrium point (Z,7) € [, %] X

0, %] is a global attractor.

When 0 < a < 1 and (1 —7r)(r+ ) < r+ abf(l —r) < 2r, the unique posi-

tive equilibrium point (7,7) € [8, {2=] x [0, 2] of the system (2.15) is globally

asymptotically stable.

When {(z,,y,)} be a positive solution of the system (2.15) then

lim z, =7, limy, =71,
n—oo n—oo

where 7 € [3, {2-] and 7 € [0, 22].

' l—a

In [7], Ding and Zhang studied the following discrete delay Mosquito population equation

Tn+1 = (CLSEn +6'Tn71)€7mn7 Zo, L1 > 07 n= 172737 S (216)

where a € (0,1),8 € (0,00). For a + 5 > 1, a unique nontrivial positive fixed point

E* = (z,7)" appears.

They got the results are given below:

e The equilibrium points of (2.16) are solutions of the following equation T = (aT +

BT)e .
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e When a+ 3 > 1, T = 0 is always a equilibrium to (2.16), and (2.16) has an unique

positive equilibrium 7 = In(a + 3).

e When a+ < 1, the zero equilibrium of (2.16) is asymptotically stable, and unstable
when a + > 1, and a fold bifurcation takes place when a + § = 1.

e When a+ 3 > 1,

o If § < By(a), E* is asymptotically stable.
o If B> py(a), E* is unstable.

o The bifurcation of a period two solution occurs at 5 = fy(a), that is, system
Upt1 = (aup+pPu,)e ", v,41 = u, has a unique period two solution bifurcating

from the equilibrium E*.

e A period two bifurcation of u, 1 = (au, + fv,)e ", v,11 = u, at § = [y occurs,

and the unique period two solution bifurcating from E* is unstable.

In [21], Ma and Feng discussed the boundedness and the global asymptotic behavior of

the positive solutions of the system of difference equation

Tns1 = Tn+ (01 — Prag)wpe” o) (2.17)

Yn+t1 = Un + (052 - BQyn)ynei(xn+yn)

where «;, 8; € (0,00) with a; > (;, ¢ = 1,2, and the initial values x¢,yo are positive
numbers.

They then achieved the following main results:

The equilibrium point Ey of system (2.17) is unstable.

The equilibria points £ and Es of system (2.17) are saddle points.

cl a1 4 ag

If either 0 < ozi{(%Jr@) <lorlc< ozief(ﬂJr@) < 2, 1 = 1,2, the Nash equilib-

rium point F3 of system (2.17) is asymptotically stable.

When «; < 1, the unique positive equilibrium point (Z,7) of system (2.17) is a

global attractor of all positive solutions of system (2.17).

17



e If o < 1, the unique positive equilibrium point (Z,7) of system (2.17) is a global
attractor of all positive solutions of system (2.17) for a1 = ay = a, 1 = B =

and if g > 2+4ﬁ2

e When o; < f3;, 041'67?: < 1, the unique positive equilibrium point (Z,7) of system
(2.17) is a global attractor of all positive solutions of system (2.17) for a; = ay =

a, B = P2 = B.
2.2 DIFFERENCE EQUATIONS OF RATIONAL EXPONENTIAL FORM

In this section, we give some information about the rational exponential type difference
equations and systems.
In [25], Ozturk, Bozkurt and Ozen investigated the convergence, the boundedness and the

periodic character of the positive solutions of the difference equation

o
gy = P 012, (2.18)
7+yn—1

where the parameters «, 3,7 are positive numbers and the initial conditions y_1, 1y, are
arbitrary nonnegative numbers.

They obtained the results are given below:

e The equilibrium point 7 is locally asymptotically stable if

—(v=2)+ /(7 — 2>+ 4{a+7)
2

<2+V(r—22+4(a+7))e

and is unstable if

—(v=2)+ /(v —22+4(a+1)
5 ,

> (24 V(7 =22+ 4(a+7))e

furthermore, it is a saddle point.

e The following items are correct;

o When « < y,, every positive solution of Equation (2.18) is bounded.

o When « < 7, the positive equilibrium point of Equation (2.18) is bounded.

e Equation (2.18) has no positive solutions of prime period two.
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e When 3 < (24 /(v —2)2 + 4(a + 7))6—(7—2)+ (72_2)2+4(a+7) and that 8 < v, the

equilibrium 7, of Equation (2.18) is global asymptotically stable.

In [28] Papaschinopoulos et al. studied the boundedness, the persistence and the asymp-
totic behavior of the positive solutions of the following systems of two difference equations

of exponential form:

o+ fe v 0 +ece
Tpp1 = ——, Ypp1 = ————, 2.19
+1 Y+ Ut Yn+1 C+ 2, ( )
o+ Pe Yn 0 +ee
Tppl1 = ———— Ypy1 = ————, 2.20
i '7 + Tp—1 y i g + Yn—1 ( )
o+ fe O+ e Un
Tppl = ——————— Ypp1 = —————, 2.21
+1 Y+ Una Yn+1 C+n s ( )

where «, 3,7, 0, €, ( are positive constants and the initial values x_, g, y_1, yo are positive
constants.

Consequently, the following statements are obtained:
e For (2.19) system

o Every positive solution of Equation (2.19) is bounded and persists.

o When € < v, f < (, system Equation (2.19) has a unique positive equilibrium
(Z,7) and every positive solution of Equation (2.19) tends to the unique posi-

tive equilibrium of Equation (2.19) as n — oo.
o Consider system Equation (2.19) where the condition Equation ¢ < v, § < ¢

holds true and suppose that

Be+ (B+e)e™ L (@tBl+e)
¢ Y22

the unique positive equilibrium (7,7) of Equation (2.19) is globally asymptot-

<1,

ically stable.
e For (2.20) system

o Every positive solution of Equation (2.20) is bounded and persists.

o When (e < 7(, Equation (2.20) has a unique positive equilibrium (7, 7) and every
positive solution of Equation (2.20) tends to the unique positive equilibrium

of Equation (2.20) as n — oo.
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o Assume that system Equation (2.20) where e < (¢ holds true and suppose that

atf Ote P (atP0O+e)

T TTE Tt T e

the unique positive equilibrium (7,7) of Equation (2.20) is globally asymptot-

ically stable.

e For (2.21) system

o Every positive solution of Equation (2.21) is bounded and persists.

o When 5 < v, € < (, system Equation (2.21) has a unique positive equilibrium
(Z,y) and every positive solution of Equation (2.21) tends to the unique posi-

tive equilibrium of Equation (2.21) as n — oc.

o Assume that system Equation (2.21) where § < v, € < ¢ holds true and suppose

that
B e Be (a+tB)(d+¢)
7+<+7<+ 72(? -

the unique positive equilibrium (7, 7) of Equation (2.21) is globally asymptot-
ically stable.

In [6] Din, Khan and Nosheen studied the boundedness character and persistence, ex-
istence and uniqueness of positive equilibrium, local and global behavior, and rate of
convergence of positive solutions of the following system of exponential difference equa-

tions:

041 _'_ Ble_xn + 716_3771—1 052 + /82€_y’n + 726_yn—1
Tn+1 = b S ) (222)
a1 + 01Yn + C1Yn—1 as + bowp + 2Ty

where the parameters «;, f3;, 7, a;, b; and ¢; for i € {1,2} and initial conditions xo, z_1, %o
and y_; are positive real numbers.

They demonstrasted that:
e Every positive solution {(z,,y,)} of system (2.22) is bounded and persists.

e If the following condition is satisfied:

g + (B2 +y2)e X

a2+L1(b2+62) < K

20



where

o+ e (B +7) — a1 Ly
Li(by + 1) ’

K —
system (2.22) has a unique positive equilibrium point (Z,7) € [L1, Uy X [La, Us].

e When

Bre~ Bre~

+ (1
ar + (b1 +c¢1)Ly ( ar + (b1 +c¢1)Ly

X(Cz(Oéz + (B2 + 72)e2) (B2 + 7a)e 12
(CLQ + (bz + 02)L1)2 as + (bg + CQ)Ll

ba(ag + (B2 + 72)e 12)
(CL2 + (bg -+ 02)L1)2
(by + c1)(ar + (B1 + m)e 1)
(a1 4+ (b1 + ¢1)Loy)?
et
a; + (b + 01)L2) =

x(

L,

the unique positive equilibrium point of system (2.22) is locally asymptotically

stable.
o If
o + (B +y)e ™ < T(ay + (by 4 ¢1)Ly),

ay + (B2 +Y2)e " < G(ag + (by + c2)Ly),

the unique positive equilibrium point (Z,7) of system (2.22) is globally asymptoti-
cally stable.

In [18] Khan and Qureshi studied

bx, e

Tom e =c(l- ), (2.23)

Tp+l =

where a, b, ¢, d and the initial conditions xg, yg are positive real numbers. More precisely,
they investigated the boundedness character, existence and uniqueness of a positive equi-
librium point, local asymptotic stability and global stability of the unique equilibrium
point, and the rate of convergence of equilibrium solutions of the system.

They demonstrated that:

21



e Every positive solution {(z,, y,)}32, of system (2.23) is bounded.

elfb>1andd< blﬁfﬂ then system (2.23) has a unique positive equilibrium point

(,7) in [0, 4] x [0, %].

e For the unique positive equilibrium point (Z,7) in [0, 2] x [0, %] of system (2.23)

following statements hold true:

o If and only if

beerbdr+1=0) (qepr(1 + bdr)? + 1)
(1 + bdr)?

ab2c7ﬂeacr(bdr+17b) (bdr<€acr(bdr+lfb) _ 1) _ 1)
(1 + bdr)?

the unique positive equilibrium point of system (2.23) is locally asymptotically

<2,

<1-

stable.

o If and only if

ab2CT€aCT(bdr+1_b) (bdr<eacr(bdr+l—b) _ 1) _ 1)

1
| (1 + bdr)? >

and

beerbdr+1=0) (qer (1 + bdr)? + 1)
(1 + bdr)?

abQC,r,eacr(bdr—‘rl—b)(de,(eacr(bdr—‘rl—b) _ 1) _ 1)’
(1 + bdr)? ’

the unique positive equilibrium point is a repeller.

<|1-

o If and only if
beerbdr+1=0) (qep (1 + bdr)? + 1)

)2

(1 + bdr)?
+4(ab20r€acr(bdr+lfb) (bdr(eacr(bdﬂrlfb) _ 1) _ 1)) .
(1 + bdr)?

and

beaer(bdr+1=8) (qep (1 + bdr)? + 1)
(1 + bdr)?

ab2CT€aCT(bdr+1_b)(de(eaCT(de+1_b) _ 1) _ 1)|
(1 + bdr)? ’

the unique positive equilibrium point is a saddle point.

> |1 —
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o If and only if

beerbdr+1=0) (e (1 + bdr)? + 1)
(1 + bdr)?

ab2creacr(bdr+lfb) (bdr(eacr(bdr+17b) _ 1) _ 1)|
(L + bdr)? !

the unique positive equilibrium point is nonhyperbolic.

11—

e If ac+ d > abc, then the unique positive equilibrium point (Z, %) in [0, g] x [0, %c] of

system (2.23) is a global attractor.

e If and only if

beerbdr+1=0) (qepr (1 + bdr)? + 1)
(1 + bdr)?
abQCreacr(berrlfb) (bdr(eacr(berrlfb) _ 1) _ail 1)

1 - 2
< (1 + bdr)? &

the unique positive equilibrium point (Z,7) in [0, g] x [0, %C] of system (2.23) is

globally asymptotically stable.

In [17] Khan and Qureshi studied the qualitative behavior of the following exponential

system of rational difference equations:

Oéefyn + @efynfl O{le*xn _.I_ 51671""71
y Ynt1 = )
v+ ary, + B - M+ a1y + Biyn—1

n=0,1, ..., (2.24)

Tp41 =

where «, 3,7, a1, 81 and v and initial conditions xg,z_1,y9 and y_; are positive real
numbers. They investigated the boundedness character and persistence, existence and
uniqueness of positive equilibrium, local and global behavior, and rate of convergence of
positive solutions that converges to unique positive equilibrium point of the system.

Later, the following results were exhibited in their paper:

e Every positive solution {(z,,y,)} of the system (2.24) is bounded and persists.

o If

a+pf )
(v + (a4 B)L1) Ly

¢ < (m+ (1 +pBr)In]

a+ ]
(y+ (a+ B)Ly) Ly~

X In|
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where
C=m((v+2(a+B)U1)/((v+ (a+ B)L1)L1))

—In[(a + B)/((v + (o + B)L1) L1)])

+2(e1 + A1) ((y + 2(a + B)U1) /(v + (e + 5) L1) L1))

x Inf[(a + B)/((v + (a + B)L1)L1)],

and so the system (2.24) has a unique positive equilibrium point (z,5) in [L1, U1] X
(Lo, Us).

o If

< (y+ (a+B)L1)(n + (a1 + B1)La),

where
p = (a+ B)Ui(1 + (a1 + B1)Ls)

+(o1 + B1)Us(y + (o + B)L1)
+(a+ B)(ay + B (e 72 L U 1Y),

and so, the unique positive equilibrium point (7, %) of the system (2.24) is locally

asymptotically stable.

e The unique positive equilibrium point (7,7) of the system (2.24) is a global attrac-

tor.

In [19] Khuong and Phong investigated the boundedness, the continuity and the asymp-
totic behavior of the positive solutions of the system of difference equations of exponential
type:

a + be=*n a+ be¥n

Tprl] = ——— ] = —————, 2.25
+1 ctun Yn+1 o+, ( )

where a, b, ¢ are positive constants and the initial values xg,yo are positive real values.
Also, they determined the rate of convergence of a solution that converges to the equilib-

rium E = (7,7) of this system. Moreover, they found,

e Every positive solution of (2.25) is bounded and persists.
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o If b < ¢, system (2.25) has a unique positive equilibrium (Z,7) and every posi-
tive solution of (2.25) tends to the unique positive equilibrium (7,7) as n — oo.

Additively, the equilibrium (Z,7) is globally asymptotically stable.

In [1] Bozkurt, the local and global behavior of the positive solutions of the difference
equation

aeyn + 56—%—1

Y+ oy + Byn-1’

Ynil = n=20,1,--- (2.26)

was investigated, where the parameters «,  and v and the initial conditions are arbitrary
positive numbers. Furthermore, the characterization of the stability was studied with a

basin that depends on the conditions of the coefficients.
e If 0 < y,, every solution of Equation (2.26) is bounded.

e If 0 < 7, the equilibrium point of Equation (2.26) is bounded.

=1+ 2+4(atB)y
o If a>fand (a+ ) < e B 7;

o The positive equilibrium point of Equation (2.26) is locally asymptotically stable.

o 7, and 7, are the equilibrium points of Equation (2.26), which parameters have
the conditions v, < 11 < @ If the parameter v decreases, then the local
stability of the positive equilibrium point

—(ay = (@ + B)B) + V(ay = (e + )B)* + da(a + )’

2a(a + B)

7=
decreases also.

o If {y,}> is a monoton decreasing solution of Equation (2.26) and y,, > 27, the

positive equilibrium point of Equation (2.26) is globally asymptotically stable.

o If f(z,y) = % be a function such that f € C[(0, 00)z(0, 00), (0, 00)], every

oscillatory solution of Equation (2.26) has semicycle of length at most two.

In [16] Khan, studied boundedness character and persistence, existence and uniqueness
of the positive equilibrium, local and global behavior, and rate of convergence of positive
solutions of the following two systems of exponential rational difference equations:

ae Y 4 fem¥n—1 e + Brem et
y Yn =
Y+ ayn + BYn-1 ! M+ 1Ty + Birn

Tpil = , n=0,1, ... (2.27)
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and

ae_zn + 66_:&”71 ale_yn _.I_ /Ble_ynfl

 Yna1 = . n=0,1, ... 2.28
Y + QAYn + ﬁyn—l Yt N + 1Ty, + 611'71—1 ( )

Tpt+1 =

where the parameters a;, 3, v, a1, 51,71 and the initial conditions are positive real numbers.

He obtained the following results:
e For (2.27) system

o Every positive solution {(x,,y,)} of system (2.27) is bounded and persists.

o If

n < (y(n+ (a1 + B1)L1) + (a+ B)(ea + Br)e ") (0 + (aa + B1) La)

where

(o +8)e”F1

n=(a+B) o+ fi)e MHEHRII ((y + o+ B) (71 + (a1 + B1)Ur)

Hat B)(ar+B)e ™) (n+ (1 + Ui + Br)),
system (2.27) has a unique positive equilibrium point (Z,7) in [Ly, Uy] X [La, Us].

o If (a+ B) (a1 + Bi) (e + Ur) (e + Uz) < (v + (a + B)L2) (71 + (a1 + i) La),
the unique positive equilibrium point (Z,7) in [Ly, Uy] X [La, Us| system (2.27)
is locally asymptotically stable.

o If (¢ + B)e ™2 <ZT(y+ (a+ B)Ly) and (ay + B1)e 1 < 4(y1 + (ay + B1)L1), the
unique positive equilibrium point (Z,7) of system (2.27) is globally asymptot-
ically stable.

e For (2.28) system

o Every positive solution {(z,,y,)} of system (2.28) is bounded and persists.

o If

~y €_L1 Ly

e~ L1
(U + e Bt s (& - - 7

. e . Y )2
Ll o+ 6 ’

1) < L?
+) 1(L1 04+6

system (2.28) has a unique positive equilibrium point (Z, ) in [L1, U] X [Le, Us).
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o If
(a+B) (a1 + Br)(e 772 + U Uy)

< (1 =U = U)(y+ (a4 B)La) (7 + (a1 + B1) L1),

the unique positive equilibrium point (Z,7) of system (2.28) is locally asymp-

totically stable.

o When (a+ B)e 5 < Z(y+ (a+ B) L) and (a1 + B1)e L2 < g(y1 + (a1 + B1) Ly),
the unique positive equilibrium point (7, y) of system (2.28) is globally asymp-
totically stable.

In [20] Khuong and Thai studied the boundedness, the persistence, and the asymptotic
behavior of the positive solutions of the system of difference equations of exponential

form:

a+ be Y 4 ce % G be %n 4 ce”Yn
d+hy, = T T diha,

, (2.29)

Tp+l =

where a, b, c,d and h are positive constants and the initial values x, yo are positive real

values. After, they achieved the following main results:
e Every positive solution of (2.29) is bounded and persists.

e In the case b+ ¢ < d, system (2.29) has a unique positive equilibrium (Z,7) and
every positive solution of (2.29) tends to the unique positive equilibrium (Z,7) as

n — oo. Additively, the equilibrium (7, 7) is globally asymptotically stable.

In [32] Papaschinopoulos et al. studied the boundedness and the persistence of the positive
solutions, the existence, the attractivity and the global asymptotic stability of the unique
positive equilibrium and the existence of penodic solutions conceming the biological model
given by

06372 ek—da:n

= o , 2.30
il ajn+b+cl+ek*d‘f" (2:30)

where 0 < a < 1,0, ¢, d, k are positive constants and x( is a positive real number.

They obtained the results are given below:

e All positive solution of (2.30) is bounded and persists.
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e Equation (2.30) has a unique positive equilibrium.
o If ed < 2(1 —a),

o Every positive solution of (2.30) tends to the unique positive equilibrium Z of

(2.30).

o The unique positive equilibrium T of (2.30) is globally asymptotically stable.

e If ¢ be a positive real number and

(14 a)(1 + €¥) - (1 —a)e? + be)(1 + ek~%)

d
~ e(l—a) ¢ (€ + b)eh—de ’

equation (2.30) has periodic solutions of prime period two.

In [4] Din studied, the qualitative behavior the following two dimensional discrete dy-

namical system of exponential form:

ap + 6167?/” % ’7167%%1 Qo + 6267%1 aF ’Vzefmnfl
a1 + blyn + C1Yn—1 7 yn+1 as + b2$n + Colp—1

(2.31)

Tp41 =

where the parameters «;, 5;, Vi, ai, b;, ¢; for i € {1,2} and initial conditions xg,z_1, Yo, y_1
are positive real numbers.

He proved the following results:
e Every positive solution {(z,,y,)} of system (2.31) is bounded and persists.
e lf oty <ar,fit+m<ay,bi+c=b+c,

o System (2.31) has a unique positive equilibrium (7, 7) and every positive solution

of system (2.31) converges to the unique positive equilibrium (7, 7) as n — oo.

o The unique positive equilibrium of system (2.31) is globally asymptotically stable.
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CHAPTER 3
SOME DIFFERENCE EQUATIONS OF EXPONENTIAL FORM

In this section we consider the following rational difference equation

Tn + Tn—k

Tpyl] = ——————
n+1 1+ T, eTn—k

and its special cases which was studied by Gocen [10].

3.1 THE EQUATION gz, , = 2221

1+$nezn_ 1

In this section, we consider the equilibrium point and local asymptotic stability of the
following rational exponential difference equation

Ty, + Tp—1
1+ z,e%n1

(3.1)

Tnt1 =

where the initial values x_;, zy are arbitrary nonnegative numbers.
Firstly, we demonstrate that Equation (3.1) has a unique positive equilibrium point .

The equilibrium points of Equation (3.1) are the solutions of the equation

== z +_I7 (3.2)
1+ 7e®
Set
T+
flz) = 1+ zer  ©

then we have

lim f(z) = —o0.

rT—00
Moreover, it follows from the
2 2x2%e”

fl(l')—m—1<o
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that (3.1) has a unique positive equilibrium point Z.
The equilibrium point T of Equation (3.1) is the solution of the equation
T+

T = —.
1+ xe®

(3.3)

It is easy to see that the first root of the Equation (3.3) is T = 0 and the other root is
evaluated numerically as ¥ = 0.56714.
The linearized equation of (3.1) is

1 (1 — Te® — 27%e%)

1+zes " (1+7e)?

Tnt1 — Tn—1 — 0 (34)

Theorem 3.1 The positive equilibrium point T of Equation (3.1) is locally asymptotically
stable.

Proof. If we set T = 0.56714 in the lineariazed Equation (3.4), we have the following

characteristic equation

A2 — (0.5)\ + 0.28357 = 0. (3.5)
The roots of Equation (3.5) are

A2 = 0.25 £0.47018¢

and the absolute value of each root is less than one. It follows from the Theorem (1.1)

that the positive equilibrium point T of Equation (3.1), is locally asymptotically stable. m

Example 3.1 Consider the system (3.1) with the initial conditions x_1 = 0.2, xqg = 0.4

to verify our results.

0.825094 [

0.825093

0.825092 |

0.825091 |- =5
0.825090

0.825089 [

0.825088 |-

20 40 60 80 100

Tn+Tpn 3
1+zpe®rl

Figure 3.1. Plot of the equation x, | =
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3.2 THE EQUATION gz, — -tnttn-2

14+x,en—2

We study the equilibrium point and local asymptotic stability of the following rational
exponential difference equation

Tn + Tn—2

_nTe 3.6
1+ zpetn—2 (3:6)

Tnt1 =

where the initial values x_5,x_1, o are arbitrary nonnegative numbers.

Theorem 3.2 The positive equilibrium point T of Equation (3.6) is locally asymptotically
stable.

Proof. The linearized equation of Equation (3.6)

1 (1 — Te™ — 27%e%)
—, — —
1+ e” (1 + ze?)?

Tpn—2 — 0 (37)

Tpt1 —
the characteristic equation of Equation (3.7) is as follows:

A — (0.5)A* + 0.28357 = 0. (3.8)
The roots of Equation (3.8) are

A2 = 0.51289 + 0.525621,

Az = 0.52578

and the absolute value of each root is less than one. So the positive equilibrium point T

of Equation (3.6) is locally asymptotically stable. m

3.3 THE EQUATION gz, = ‘2»t2ns_

14+x,e"n—3

In this part, we investigate the equilibrium point and local asymptotic stability of the

following rational exponential difference equation

Tn + Tn—3
1+ z,e%»-3

(3.9)

Tnt1 =
where the initial values x_3,x_5,2r_1, 2o are arbitrary nonnegative numbers.

Theorem 3.3 The positive equilibrium point T of Equation (3.9) is locally asymptotically
stable.
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Proof. The linearized equation of Equation (3.9) is

1 (1 — Te™ — 27%e%)
—T, — —
1+ e (1 + 7e™)?

Tnt1 — Tp—3 = 0 (310)

and the corresponding characteristic equation of Equation (3.10) is
A —(0.5)\* + 0.28357 = 0. (3.11)
The roots of Equation (3.11) are

A2 = 0.66294 + 0.485017

Aga = —0.41294 £ 0.49976:.
It is easy to see that absolute value of each root is less than one. This implies that the
positive equilibrium point T of Equation (3.9), is locally asymptotically stable. m

3.4 THE EQUATION g, = -2t%-t

1+zpe*n—Fk

Finally, we consider the equilibrium point and local asymptotic stability of the following
higher order exponential difference equation

Tn + Tn—k
1+ z,e%nk

(3.12)

Tnt1 =
where the initial values x_y, ..., z_1, xg are arbitrary nonnegative numbers.

Theorem 3.4 The positive equilibrium point T of Equation (3.12) is locally asymptoti-
cally stable.

Proof. The linearized equation associated with Equation (3.12) about the equilibrium
point T is

;l‘ (1 —we” 27°%e7%)
1+7zem " (1+ we™)?

Tpp = 0. (3.13)

7

Hence, for all k € N wvalues, we obtain the characteristic equation of Equation (3.13)

about the equilibrium point T is

AL (0.5) A% +0.28357 = 0. (3.14)
Set
f(>\) _ )\k—‘rl
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and
g(\) = —(0.5)\* 4+ 0.28357.

Then, by Rouche’s theorem, f(\) and f(\) + g(\) have same number zeroes in an open
unit disc |A\| < 1. Hence, all the roots of (3.14) satisfies |\| < 1, and it follows from
Theorem (1.1) that the unique positive equilibrium point T of Equation (3.12) is locally
asymptotically stable. Therefore, one can obtain the desired results and the proof is com-

plete. m

Remark 3.1 The zero equilibrium point of Equation (3.1), (3.6), (3.9) and (3.12) is

unstable. Because the corresponding characteristic equations of these equations is respec-

tively

M —-A—-1=0
M- —1=0
M-X—1=0

Nt \F 1 =0.

At least one root of the all above characteristic equations is greater than one, so we obtain
the zero equilibrium point of Equation (3.1), (3.6), (3.9) and (3.12) is unstable.
Now, we give a numerical example to show the positive equilibrium point = of Equation

(3.1) is locally asymptotically stable.
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CHAPTER 4

SOME SYSTEMS OF EXPONENTIAL DIFFERENCE EQUATIONS

4.1 THE EQUATION SYSTEM z,,,, = —2xt¥n1 YntTn_1

Ttyn_1e°n—19 Yn+1 = 134, evn—1

In this section, we consider the equilibrium point and local asymptotic stability of the

second order difference equation system

x _ T + Yn—1 _ Yn i Tpn—1 (4 1)
n+1 1+ v ietnt AP » Yn+l 1+ 2 ovnt ¥z, jevnt .
where the initial values x_1,xg, y_1, yo are arbitrary nonnegative numbers.
Let (Z,7) be the equilibrium point of system (4.1)
g2tV o U¥T (4.2)
14 ye® 14 zey
Set
__ ®+ Tl THTI T+
1+ %ef 1+ Te¥ + Te + yeT
Then
e+ T —T -7 =0
and we obtain that
(T+7)(1—7e") =0 (4.3)
from which it follows that system (4.2) has solution
(z,y) = (0,0) or (7,7)=(0.56714,0.56714).
Let us consider the four dimensional discrete dynamical system of the form
($n>yn>$n—layn—l) - (faga flvgl)> (44)
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where

Tp + Yn—
f=—""" fi=u,
1 + yn—lexn_1
Yn + Tn-1
g = 91 = UYn

1+ 2, jeyn-1’

The linearized system of (4.1) about (7,7) is given by

Zni1 = Fy(T,9) Zn, (4.5)
T

where 7, = on and the Jacobian matrix about the fixed point (Z,7) under
Tn-1
Yn—1

transformation (4.4) is given by

awn«l»l 811:77.«#1 811:77.+1 811377,«#1

Oxn OYn, 0xpn—1  OYyn—1

OYnt1  OYnt+1  OYnt1  OYn+i

F, (f y) _ ATy, Oyn 0rp—1  OYyn—1
’ Oxn OTn OTn OTn

Oxn ayn 0Tn—1 8yn—l
OYn % Oyn Oyn

Oxn 6yn axn—l 8yn—1

and it follows that

A 0 Ay O
L 0 By 0 By

FJ(ZE, y) - )

1 0 0 O

0O 1 0 O
where

1 7 7pT
A= ———, A= & gieﬂ
14 ye® 14 ye”

B 1 —T ye¥

:1+fe?’ 2:1+Ee?‘

The characteristic equation of Fj(Z,7) is

P(A) =M — (A1 + BN — (A2 + By — A1 By) N
+(A9B; + A1 Bo) A + Ay Bs.

36



Then we take A, Ay, B, By as above, we have

Y
=
Il
>
N
|
7N

1 1
— — ) A3
1+ ez+1+fey)

<

- gjeer —T ye¥ 1 1 \2
1+ge® 1+7Te¥d  1+73e®1+Tel

T yge® 1 1 —-Tyel

TRy (et S N L DY
1+ye*l1+7evy 1+7ye* 1+ xe¥

—T ye*© —T yev

+ (==

1+7ye® 1+ xev

Theorem 4.1 i) The zero equilibrium point (Z,7) of system (4.1) is nonhyperbolic point.

ii) The positive equilibrium (T,7) of system (4.1) is locally asymptotically stable.

Proof.

i) For the zero equilibrium point (T,7y) of system (4.1), using (4.4), (4.5) and (4.6) we

have
P(\) =AM —=2X+ )\ =0. (4.7)
Obviously, the roots of characteristic equation of Fj(Z,y) are given by X = 0

(maultiple root) and X\ = 1 (multiple root). From this result, the equilibrium point
(Z,7) = (0,0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4.7) is equal to one.

ii) For the positive equilibrium point (T,y) of system (4.1), using (4.4), (4.5) and (4.6)

we have

1 1
PN = M- A3
) <1 T 0.56714e05 T 1+ 0.5671460'56714>

— (0.56714)* 026714 — (0.56714)? 036714
_| T+ 056714005671 1+ 0.56714c056714 | | 5
1 1

"1+ 0.56714€056714 1  (0.56714¢0-56714
1 (— (0.56714)? 60'56714>
A

1+ 0.56714€056714 | 1 + 0.56714¢0-56714

+
— (0.56714)% £0-56714 1
(=
1+ 0.56714€0-56714 | 1 4 (0.56714e0-56714

L[~ (0.56714)7 02T [ (0.56714)° 0074
1+ 0.56714€0-56714 1 + 0.56714¢0-56714
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and we obtain

P () = A" — X% 4 (0.25) A2 + (0.56714) A* — (0.28376) A + 0.08041. (4.8)
Obviously, the roots of characteristic equation of F;(Z,7y) are given by

A12 = 0.24454  0.47938:

Az4 = 0.25546 T 0.460861%

Hence, all the roots of Equation (4.8) are of modulus less than one which implies

that (Z,7) = (0.56714,0.56714) is locally asymptotically stable.

Now, we can give an example to verify our results.

Example 4.1 Consider the system (4.1) with the initial conditions x_; = 0.3, xg = 0.1,
y_1 = 0.7, yo = 0.5 to support our results.

D.567143 [~ ‘ \1

0.567143 |- |

1
L 1]
0.567143 r IH['
[
|

D.567143

1 L] n 1 n 1 n n 1 L 1
o | | 40 1] &0 100

. . o Tn+Yn—1 _ Yn+Tn—1
Figure 4.1. Plot of the equation x,,, = Troo e T Untl = T ein -

4.2 THE EQUATION SYSTEM z,,,, = —2t¥n2 Yntn 2

Ityn_oen—29 Ynt1 = 154, sePn—2

We study on the equilibrium point and local asymptotic stability of the third order

difference equation system

T, + Yn—2 o Yn + Tn—2
1+ UYp_p€Tn—2 v Ynt1 = 1+ z,,_oe¥n—2

(4.9)

Tnt1 =
where the initial values x_o,x_1,xg,y_2,y_1, Yo are arbitrary nonnegative numbers.
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Let us consider the six dimensional discrete dynamical system of the form

($n>ynaxn—17yn—laxn—Zayn—2)__>(f7g7jaaglajé>g2% (4'10>
where
In'+’yn—2
= —, = Tp, = Tp—
= it h=aw o=
yn'+'xn—2
g9 = 7T/ 91 = Yn, 92 = Yn—1.

1.+.$n72eyn72’

The linearized system of (4.9) evaluated at positive equilibrium (Z,7) is given by
Zns1 = Fi(T,9) 2y, (4.11)

Tn

where Z,, = and the Jacobian matrix about the fixed point (Z,7) under

Yn—2
transformation (4.10) is given by

0nt1  OTpt1  Oxny1  OTptl  OTpy1  OTngl

Ozn Oyn Oxn_1 OyYyn—1 O0Tp—2 OYn—2
ayn+1 ayn+1 8yn+l ayn+1 ayn+1 8yn+l
Oxn 8yn 81'11—1 ayn—l 8$n—2 ayn—Q
O, Oz, Oz Oz dxn dzn
= 77\ — Oxn ayn 8mn,1 8’,_Unfl 81"”72 ayn72
Fy(xay)'_
Oyn Oyn OYn Oyn O0xn Oxy
Oxn, Oyn 0xpn—1 OYyn—1 0Tpn—2 OYyn—2
Oxn_1 O0xn_1 0xn_1 Oxn_1 O0xn_1 0xpn_1
0zn ayn Oxpn—1 ayn—l Oxn_2 0Tn—2
8yn7 1 3yn7 1 8yn7 1 aynf 1 3yn7 1 8yn7 1
Ozn ay” O0zn—1 8ynfl O0xyp—2 Oxp—2
and
A1 0 0 0 Ay, O
0 B 00 0 B,
L 1 0 00 0 O
Pb(xay):: ;
0O 1 00 0 O
0O 0 10 0 O
0O 0 01 0 O
where
A 1 —T ye®
1= 2 = —
1+ yer’ 1+ ye*’
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1 —T ye¥

T 1tzer T 14zen

By
The characteristic equation of Fj(Z,7) is

P(A\) =X — (A; + By) N> + A BiA* — (Ay + Bo) NP

, (4.12)
+ (AgBy + A1B2) A2 + A2 Bs.

When we set Ay, Ay, B1, By as above, we have

1 1 1 1
P(\) = M- — — )\ — — ) A!
) (1+fey+1+yex) +<1—|—§e¢”1+fey)
_Fh6%  —7 mel
B xgei_i_ xgei 33
1+7ye* 1+ 7Tev

1 —-zye® Ty’ 1
" - a:geijL :L’gei )
1+ye*l+ye* 1+7e¥1+ Te¥

—T ye* —T yev
+ — — .
1+7ye® 1+ ey
It follows from Equation (4.3) that the equilibrium points are (Z,7) = (0,0) and (Z,7) =
(0.56714, 0.56714) .

Theorem 4.2 i) The zero equilibrium point (T,7) of system (4.9) is nonhyperbolic point.

ii) The positive equilibrium (T,7y) of system (4.9) is locally asymptotically stable.

Proof.

i) For the zero equilibrium point (T,y) of system (4.9), using (4.10), (4.11) and (4.12)

we have
P(\) =X —2) )t =0. (4.13)
Obviously, the roots of characteristic equation of F;(Z,y) are given by A = 0

(maultiple Toot) and X\ = 1 (multiple root). From this result, the equilibrium point
(Z,7) = (0,0) is a nonhyperbolic point since the modulus of one of the roots of the
Equation (4.13) is equal to one.

ii) For the positive equilibrium point (T,y) of system (4.9), using (4.10), (4.11) and
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(4.12) we have

1 1
P\ = X — A5
) <1 0567140507 Ty 0.5671460'56714>

N 1 1 4
1+ 0.56714€0-56714 | 4 (56714056714

— (0.56714)* 056714 (- 56714)2 (056714 N
1+ 0.56714¢0-56714 1 + 0.56714¢0-56714

1 — (0.56714)* 056714
1+ 0.56714e0-56714 | 1 4 0.56714¢0-56714 N
+
(= (0.56714) 0-56714 1
1+ 0.56714e0-56714 | 1 4 (0.56714€0-56714
([~ (0.56714)7 02T [ (0.56714)° 00714
1+ 0.56714€0-56714 1 + 0.56714¢0-56714

and So
P(A\) =A% — X\’ 4 (0.25) \* + (0.56714) A\* — (0.28376) A? + 0.08041. (4.14)

Obviously, the roots of characteristic equation of F;(Z,7y) are given by

Aza = 0.51029 F 0.533441,
Ns = —0.52034,

¢ = —0.53123.

Thus, all the roots of Equation (4.14) are of modulus less than one which implies

that (z,7) = (0.56714,0.56714) is locally asymptotically stable.

4.3 THE EQUATION SYSTEM z,,,, = —2» 3 —ntincs

1+yn73ezn—37 yn—i-l = 1+, _3e¥n—3

In this part, we consider the equilibrium point and local asymptotic stability of the
following system of fourth order rational exponential difference equation

T, + Yn—3 Yn + Tp—3

— ' Ypp1 = —————— 4.15
1+ yn_3exn_3’ Ynt1 1+ xz,,_3eyn-3 ( )

Tpt+1 =
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where the initial values z_3,x_9,2_1,%0,y_3,Y_2,Y_1, Yo are arbitrary nonnegative num-

bers.

Let us consider the eight dimensional discrete dynamical system of the form

($n>ynaxn—layn—laxn—Q;yn—27$n—3>yn—S)'_)(fagajﬁ7gl7157927f5793)7 (4'16)
where
xn’+’yn—3
= —— = Tnp, = Tpn-1, = Tp—
f 1 +'yn—3€$"73’ j& jé 1 jé 2
yn'+'$n—3
g = T/ 91 =Yn, 92 =Yn-1, 93 = Yn—2.

]_ + xn_seynfl’: ’

The linearized system of (4.15) about (Z,7) is given by

Zi1 = Fy(Z, ) Zn, (4.17)

In

where Z,, = and the Jacobian matrix F};(7,7y) evaluated at (Z,7) of system

Yn—3
(4.16) is given by

8-T'r7,+1 8$n+1 a3377,«5»1 8-T'r7,+1 8$n+1 a3377,«5»1 8-T'r7,+1 8$n+1

Oxn ayn 82n71 8ynf]. 8xn72 ayn72 axnfi’: ayn73
OYnt+1  OYn+1  OYnt+1  OYnt1i  OYnt1  OYnt1  OYnt1  OYnti
Oxn Oyn 0Ty _1 OYn—1 Oy _2 Oyn—2 0Ty _3 OYyn—3
0y Ozn 0y 0y Ozn 0y 0y Ozn
Oxn ayn 0Tn—1 8yn—l O0Tn—2 ayn—2 62'371,—3 8yn—3
Oyn  Oyn  _Oyn Oyn Ayn Ay Oy n
FJ (E y) — Oxp, Oyn 0Ty —1 OYn—1 Oy —2 OYyn—2 Oxyp—3 OYyn—3
’ O0Tn_1 OTn—1 O0Tn_1 O0Tn—1 OTn—1 O0Tn—1 O0Tn_1 OTn—1
axn 8yn 8a:n,1 82-!7171 81‘n72 8yn72 axnfi’) ayn73
OYyn—1 OYyn—1 OYn—1 OYyn—1 OYn—1 OYn—1 OYn—1 OYn—1
Oxn Oyn, 0xp—1 OyYyn—1 0Tn—2 OYn—2 Oxpn—3 OYyn—3

axn72 81’n72 amn72 axn72 81’n72 amn72 axn72 81’n72
Oxn, Oyn O0xp—1 Oyn—1 O0xp—2 OYyn—2 Oxp_3 OyYyn—3

ayn72 6:’/71,72 6yn72 ayn72 6:’/71,72 6yn72 ayn72 6:’/71,72
Oxn ayn amnfl 8ynf]. 81"”72 ayn72 axnfi’: ayn73
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and

A, 0 0 0 00 Ay, O
0 B, 00 00 0 By
1 O 00 0O O o0
L 0 1 00 0O0 O O
FJ($7 y) = )
O 0 1 000 0 O
O 0 0100 0 O
O 0O 0010 0 O
O 0 0O00O0O1 0 o0
where
1 7 7l
Al = — AQ - ’ gefv
1+ ye® 14+ 7ye®
B 1 —T yeY

:1+fe?’ 221—1—?65‘

We obtain the characteristic equation of F;(Z,7) is as follows:

P ()\) = )\8 - (Al + Bl) )\7 + AlBl)\6 - (A2 = BQ) )\4
+ (AyBy + A1 By) A3 + Ay By

Then we get Ay, A, By, By as above, it follows that

P()\):/\S—( S— )M

1+7ye* 1+ 7e¥

1 1 6 -
+ — — |\ —
1+7ye® 1+ xev 1+

1 —zyey —Tyet 1
L+ - x%ei_l_ xgei ST
1+ye*l1+7xevy 1+7ye® 1+ xey

—T ye* —T yev
+ - |.
1+7ye® 1+ xev

(4.18)

From Equation (4.3), we have the some equilibrium points (Z,7) = (0,0) and (Z,7) =

(0.56714,0.56714) |

Theorem 4.3 i) The zero equilibrium point (Z,y) of system (4.15) is nonhyperbolic

point.

ii) The positive equilibrium (T,7) of system (4.15) is locally asymptotically stable.

Proof.
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i) For the zero equilibrium point (T,7) of system (4.15), using (4.16), (4.17) and (4.18)

we have
PA) =X -2"+)=0. (4.19)
Obviously, the roots of characteristic equation of Fj(T,y) are given by X = 0

(maultiple Toot) and N\ = 1 (multiple root). From this result, the equilibrium point
(Z,7) = (0,0) is a nonhyperbolic point since the modulus of one of the roots of the

Equation (4.19) is equal to one.

ii) For the positive equilibrium point (T,7) of system (4.15), using (4.16), (4.17) and
(4.18) we have

1 1
P(\) = M- A\
() <1 + 0.56714¢0-56714 1 iy 0.5671460'56714>

+ 1 1 /\6
1 + 0.56714e056714 T 1 0.56714¢0-56714
_(056714) 05514 [ (0.56714)? 056714
— L \
1+ 0.56714¢0-56714 1 + 0.56714¢0-56714
1 — (0.56714)2 056714
1+ 056714056714 | 1 + 0.56714¢056714 y

+
(= (0.56714)% 096714 1
1+ 0.56714€0-56714 | 1 4 (0.56714¢0-56714

(= (056714) 2N [ (0.56714)° €7
1+ 0.56714¢0-56714 1 + 0.56714¢0-56714

and
P(\) =X — AT+ (0.25) A5 + (0.56714) A\* — (0.28376) A\* + 0.08041. (4.20)

Obviously, the roots of characteristic equation of F;(Z,7y) are given by

A2 = —0.40903 F 0.497234,
Aga = —0.41686 F 0.502297,
Ase = 0.66435 F 0.478421,

Arg = 0.66153 F 0.49157:.

So, all the roots of Equation (4.20) are of modulus less than one which implies that
(Z,y) = (0.56714,0.56714) is locally asymptotically stable.
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4.4 THE EQUATION SYSTEM z,,,; = —2xfnk Ynt ok

Tyn_pen—k 9 Ynt1 = 145 ePnF

In this section, we consider the equilibrium point and local asymptotic stability of some
systems of higher order exponential difference equation

T + Yn—k Yn + Tn—k

ntl = 77 4.21
1+ Yp_peTn—k > Yntl 1+ z,,_peyn—*k ( )

Tnt1 =

where the initial values x_g, ..., x_1, X0, Y_&, ..., Y_1, Yo are arbitrary nonnegative numbers.

Let us consider the (2k + 2) dimensional discrete dynamical system of the form

('rna Yns Tn—1,Yn—15 --s Tn—k, yn—k:) - (.fa g, f17 g1,y fk7 gk)a (422>
where
Tn +yn7k
= T S — = Tp_1y s [k = T (k—
/ Tp——— fi f2 1 k (k—1)
Yn +xnfk
g = 5 91 =Yn, 92 = Yn-15---, 9k = Yn—(k—1)-

1+ x,_pe¥n—r’

Futhermore, the linearized system of (4.21) about (7,7) is

Zn+1 = FJ(fv 'y)Zna (423)
Tn
Yn
Tn—1
where Z, = | y,_; | and the Jacobian matrix about the fixed point (Z,7) under
Tn—k
Yn—k
transformation (4.22) is given by
O0Tn 1 OTn41 OTn+1 OTn 1 OTn 41 0T 1
Oxn 3yn 0xn_1 8:’/nfl e 0Ty _1 6yn—k
ayn+l 8yn+1 3yn+1 3yn+1 3yn+1 3yn+1
Oy, OYyn O0Tn—1 Oyn—1 o 0Ty —k OYn—rk
0Ty OTn Oxn Oxn Oxn Oxn
Oxn Oyn, OTpn_1 OYyn—1 e 0Ly _ g OYn_k
FAZ.7) = Oyn, Oyn, OYn, Oyn, Oyn Oyn
J('T7 y) afEn ayn amnfl ayn71 e aznfk aynfk
8In7(k71) &L“nf(kfl) 85577.7(1@71) aﬂﬁnf(kﬂ) aﬂﬁnf(kﬂ) 633717(1671)
Oxn Oyn Oxp—1 Oyn—1 e O0xn—3 OYn—3
OYn—(k—1)  OWn—(k—1) Wn_(k—1) Wn_(k—1) OYn—(k-1) OYn—(k—1)
Oxn ayn axnfl 3yn71 e 81"”73 ayn73
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and

A, 0 00 ... Ay 0
0 B, 00 ... 0 B,
1 000.. 0 O
F;zy)=] 0 1 00 ... 0 0
0 0 00 ... 0 0
0 0 00 0 0
where
1 -z e
P 1 4gen 1+ e
B, 1 :—xge?

T ——— B2 — 7"
1+ ze¥ 14+ ey

The characteristic polynomial of the F;(Z,7) is as follows:

P (X)) = A2 — (A) + By) N+ A1 BIA?F — (Ay + By) A

. (4.24)
+ (A2By + A1B2) \* + A3 Bs.

It follows from Equation (4.3) that the equilibrium points are (Z,7) = (0,0) and (Z,7) =
(0.56714,0.56714) .

Theorem 4.4 i) The zero equilibrium point (Z,7y) of system (4.21) is nonhyperbolic

point.

ii) The characteristic Equation of system (4.21) about the positive equilibrium point (T,7)

18
P (\) = A#F2 — \2FFL 4 (0.25) A2 + (0.56714) AP — (0.28376) A" + 0.08041.

Proof.

i) For the zero equilibrium point (T,7) of system (4.21), using (4.22), (4.23) and (4.24)

we have
P ()\) — )\2k+2 . 2)\2k+1 T /\2k = 0. (425)

Obviously, the roots of characteristic Equation of Fj(T,y) are given by A = 0

(multiple root) and A\ = 1 (multiple Toot). From this result, the equilibrium point
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(Z,7) = (0,0) is a nonhyperbolic point since the modulus of one of the roots of the
Equation (4.25) is equal to one.

ii) For the zero equilibrium point (Z,7y) of system (4.21) | using (4.22), (4.23) and (4.24),
it follows that

1 1
P () — /\2k+2 . >\2k+1
(Y (1 + 0.56714¢0-56714 + 1+ 0.5671460'56714)

1 1 2k
+ A
1+ 0.56714e0-56714 1 4 (0.56714¢0-56714

— (0.56714) 056714 = (0.56714)2 £0-36714 -
1+ 0.56714¢0-56714 1 + 0.56714¢0-56714

1 — (0.56714)2 056714
1+ 0.56714€056714 | "1 1 0.56714¢0-56714 N
+
h, (0.56714) 0-56714 1
1+ 0.56714€0-56714 | 1 4 (0.56714€0-56714
L[~ (056714)% 05T [ (0.56714)° 0714
1+ 0.56714¢0-56714 1 + 0.56714¢0-56714 .

Hence, we obtain the characteristic equation of system of higher order rational ex-

ponential difference equation F;(T,7) is as follows

P (X)) = M2 2L (0.25) A% 4 (0.56714) AFT! — (0.28376) A* 4-0.08041. (4.26)

|

Furthermore, intuitively we can see that all the roots of the higher order polynomial
Equation (4.26) satisy |A\| < 1 by numerical methods and graphs. Therefore, it can be
said that the positive equilibrium point (Z,7) of system (4.21) is locally asymptotically
stable but here we could not show it theoretically. Thus, in this section we discussed
the equilibrium point and the local asymptotic stability of some systems of higher order

rational exponential difference equations.
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