### GÜNEŞ PANELLERİNE ETKİYEN RÜZGAR YÜKLERİNİN NÜMERİK ANALİZİ

Muhammed Osman AKSOY



T.C. BURSA ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

### GÜNEŞ PANELLERİNE ETKİYEN RÜZGAR YÜKLERİNİN NÜMERİK ANALİZİ

### **Muhammed Osman AKSOY**

ORCID No: 0000-0001-5490-0950

Dr. Öğr. Üyesi Onur YEMENİCİ ORCID No: 0000-0003-0011-8343 (Danışman)

YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

BURSA-2019

### **TEZ ONAYI**

Muhammed Osman AKSOY tarafından hazırlanan "GÜNEŞ PANELLERİNE ETKİYEN RÜZGAR YÜKLERİNİN NÜMERİK ANALİZİ" adlı tez çalışması aşağıdaki jüri tarafından oy birliği/oy çokluğu ile Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman

: Dr. Öğr. Üyesi Onur YEMENİCİ

- Başkan : Prof. Dr. Habib UMUR (0000-0002-8732-5283) Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Anabilim Dalı
  - Üye : Dr. Öğr. Üyesi Onur YEMENİCİ (0000-0003-0011-8343) Bursa Uludağ Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Anabilim Dalı
  - **Üye :** Dr. Öğr. Üyesi Celalettin YÜCE (0000-0003-1387-907x) Bursa Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Mekatronik Mühendisliği Anabilim Dalı

İmza

Yukarıdaki sonucu onaylarım

Prof. Dr. Hüseyin Aksel EREN Enstitü Müdürü 1.7/09 20.0 (Tarih)

# B.U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,

- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,

- başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,

- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,

- kullanılan verilerde herhangi bir tahrifat yapmadığımı,

- ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

17.10912019

Muhammed Osman AKSOY

### ÖZET

### Yüksek Lisans Tezi

### GÜNEŞ PANELLERİNE ETKİYEN RÜZGAR YÜKLERİNİN NÜMERİK ANALİZİ

#### Muhammed Osman AKSOY

Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı

### Danışman: Dr. Öğr. Üyesi Onur YEMENİCİ

Fosil yakıtların gün geçtikçe azalması nedeniyle dünyanın enerji ihtiyacının karşılanması için yapılan alternatif enerji çalışmaları her geçen gün artmaktadır. Güneş enerjisi enerji ihtiyacını karşılamak için kullanılabilecek en önemli kaynaklar arasında olduğundan güneş panelleri enerji üretiminde büyük bir rol oynamaktadır.

Bu çalışmada güneş panelleri üzerine etki eden rüzgar yükleri Hesaplamalı Akışkanlar Dinamiği yöntemlerinden yararlanılarak incelenmiştir. Analizler 3 boyutlu bir akış alanı içerisinde sürekli durumlu ve standart k-ɛ türbülans modeli kullanılarak yürütülmüştür. Yapılan çalışmalarda 10 m/s ve 20 m/s olmak üzere iki farklı rüzgar hızı, 25°, 35° ve 45° olmak üzere üç farklı panel eğim açısı ve 0°, 30°, 60°, 90°, 120°, 150° ve 180° olmak üzere yedi farklı rüzgar yönü kullanılmıştır.

Her iki rüzgar hızında da benzer hız ve basınç dağılımları elde edilmiştir. En yüksek net basınç katsayısı değeri 45° eğimli panelde 180° rüzgar yönünde 1,21 olarak tespit edilmiştir. En düşük net basınç katsayısı ise 45° panel eğim açısı ve 60° rüzgar yönünde oluşup -0,81 değerine sahiptir. En yüksek sürüklenme katsayısı olan 1,12 değeri 45° eğimli panelde 180° rüzgar yönünde elde edilmiştir. Maksimum kaldırma katsayısının değeri 1.51 olup 25° eğim açılı panelde 120° rüzgar yönünde tespit edilmiştir.

Anahtar Kelimeler: Güneş paneli, hesaplamalı akışkanlar dinamiği, panel eğim açısı, rüzgar yükleri 2019, xiii + 144 sayfa.

### ABSTRACT

### MSc Thesis

### NUMERICAL ANALYSIS OF WIND LOADS ON SOLAR PANELS

#### Muhammed Osman AKSOY

Bursa Uludağ University Graduate School of Natural and Applied Sciences Department of Mechanical Engineering

### Supervisor: Asst. Prof. Dr. Onur YEMENİCİ

Due to decrease of fossil fuels day by day, alternative energy research for providing adequate energy to the world are increasing. Solar energy is one of the most important sources of energy in order to utilize to provide required energy. Hence solar panels are playing an important role on energy production. Producing more efficient solar panels is the main goal of the current studies.

In this study, wind loads on a stand-alone solar panel have been investigated. Computational Fluid Dynamics methodology was used to carry out Computer-Aided analysis. Standard k- $\varepsilon$  has been chosen as the turbulence model. 3-D continuous flow analysis has been run in a flow field. The study has been done for two different velocities, three different inclination angles and seven different wind directions which are respectively, 10 m/s and 20 m/s, 25°, 35° and 45° and 0°, 30°, 60°, 90°, 120°, 150° and 180°.

For two different wind velocities, results showed similar patterns of velocity vectors and pressure coefficient distributions. Maximum net pressure coefficient is occurred for 45° inclination angle and 180° wind direction as 1.21. Minimum net pressure coefficient is provided for 45° inclination angle and 60° wind direction as -0.81. Increase of panel inclination angle is resulted in increase of drag coefficients. Maximum drag coefficient is found for 45° inclination angle and 180° wind direction as 1.12. Lift coefficients has decreased by increasing inclination angles. Maximum lift coefficient is observed for 25° inclination angle and 120° wind direction as 1.51.

**Key words:** Solar panel, computational fluid dynamics, panel inclination angle, wind loads

2019, xiii + 144 pages.

### ÖNSÖZ ve TEŞEKKÜR

Bu tezin yazımında güneş panellerinin üzerine etki eden rüzgar yüklerinin bilgisayar destekli yazılımlar sayesinde hesaplamak ve deneysel çalışmalara alternatif olarak kullanılabilirliğini görmek amaçlanmıştır.

Yüksek lisans eğitimim ve tez sürecim boyunca danışmanlığımı yapan, tez konusu seçiminde ve tez yazma aşamalarında beni yönlendiren danışman hocam Dr. Öğr. Üyesi Onur YEMENİCİ'ye teşekkürlerimi sunuyorum.

Muhammed Osman AKSOY 17/09/2019

|                                                                                   | Sayfa    |
|-----------------------------------------------------------------------------------|----------|
| OZET                                                                              | i        |
| ABSTRACT                                                                          | 11       |
| ONSOZ VE LEŞEKKUR                                                                 | 111      |
| SIMGELEK VE KISAL I MALAK DIZINI                                                  | V        |
| ŞENILLEK DIZINI<br>CİZELCELED DİZİNİ                                              | V1       |
| ÇIZELOELEK DIZINI                                                                 |          |
| 2 KAVNAK ARASTIRMASI                                                              | 1        |
| 2. KATIVAK AKAŞTIKWASI                                                            | 3<br>3   |
| 2.7. Oniş<br>2.7. Zemine Bağlanan Günes Panellerine Etkiyen Aerodinamik Kuvvetler |          |
| 2.2. Zehnne Dagianan Günes Panellerine Etkiyen Aerodinamik Kuvvetler              |          |
| 2. 9. Çatıya Dağıanan Güneş Fancherine Etkiyen Aerodinanink Ruvvetler             | 10       |
| 3.1 Giris                                                                         | 17<br>10 |
| 3.7 Günes Panelleri                                                               | 17<br>10 |
| 3.2. Ouneș I aneneri                                                              | 1)<br>20 |
| 3.4. Hesenlemeli Akiskenler Dinemiği                                              | 20<br>22 |
| 2.5. Litoratür Calamaları ilə Doğrulama                                           | 22<br>24 |
| 3.6. Panel Geometrisi ve Akıs Alanı                                               | 24<br>25 |
| 2.7 Ağ Vanışı                                                                     | 23<br>26 |
| 2.8. Korupum Danklamlari                                                          | 20<br>28 |
| 2.0. Deslange ve Suur Sertler                                                     | 20       |
| 3.7. Daşlangiç ve Silli Şatualı                                                   |          |
| 2.11. Mash Hassasiyati Calaması                                                   |          |
| 4. DUL CUL AD VE TADTISMA                                                         |          |
| 4. BULGULAR VE TARTIŞMA<br>4.1. Giris                                             |          |
| 4.1. Olliş<br>1.2. 0º Rüzger Vönünde Sonuclar                                     |          |
| 4.2. 30° Rüzgar Vönünde Sonuçlar                                                  |          |
| 4.5. 50 Ruzgar Tohunde Sonuçlar                                                   | 40<br>60 |
| 4.4. 00 Ruzgar Foliulide Soliuçiar                                                | 00<br>74 |
| 4.5. 90 Kuzgar Föhunde Sonuçlar                                                   |          |
| 4.0. 120 Ruzgar Vönünde Sonuçlar                                                  |          |
| 4.7. 150 Ruzgar Yonunde Sonuçlar                                                  | 102      |
| 4.8. 180° Ruzgar Yohunde Sonuçlar                                                 | 110      |
| 4.9. Net Basinç Katsayısı Degerleri                                               | 130      |
| 4.10. Kalairma Katsayilari                                                        |          |
| 4.11. Surukienme Katsayıları                                                      |          |
| 4.12. Moment Katsayıları                                                          |          |
| 5. SONUÇ                                                                          |          |
| KAYNAKLAK                                                                         |          |
| UZGEÇMIŞ                                                                          | 144      |

# İÇİNDEKİLER

### SİMGELER ve KISALTMALAR DİZİNİ

| Simgeler              | Açıklama                                                       |
|-----------------------|----------------------------------------------------------------|
| $C_p$                 | Basınç katsayısı                                               |
| μ                     | Dinamik viskozite                                              |
| $P_b$                 | Kaldırma etkisi ile oluşan türbülans kinetik enerjisi          |
| $C_L$                 | Kaldırma katsayısı                                             |
| x, y, z               | Kartezyen koordinat takımı                                     |
| u,v, w                | Kartezyen koordinatlarda x,y,z düzlemlerindeki lokal hızlar    |
| $S_{ij}$              | Ortalama gerilme oranı tensörü                                 |
| $P_k$                 | Ortalama hız gradyenleri ile oluşan türbülans kinetik enerjisi |
| $\Omega_{ii}$         | Ortalama rotasyon tensörü                                      |
| θ                     | Panel eğim açısı                                               |
| $Z_0$                 | Pürüzlülük yüksekliği                                          |
| Re                    | Reynolds Sayısı                                                |
| φ                     | Rüzgar yönü                                                    |
| $C_{m_{\mathcal{V}}}$ | Sapma momenti katsayısı                                        |
| ŵ                     | Spesifik kavıp                                                 |
| Cn                    | Sürüklenme katsayısı                                           |
| k                     | Türbülans kinetik enerjisi                                     |
| $\mu_t$               | Türbülans viskozitesi                                          |
| c                     | Veter uzunluğu                                                 |
| $C_{m_{\pi}}$         | Yalpalama momenti katsayısı                                    |
| g                     | Yer çekimi kuvveti                                             |
| ρ                     | Yoğunluk                                                       |
| $C_{m_{rr}}$          | Yunuslama momenti katsayısı                                    |
|                       |                                                                |
| Kısaltmalar           | Açıklama                                                       |
| BLWT                  | Boundary Layer Wind Tunnel                                     |
| CFD                   | Computational Fluid Dynamics                                   |
| DES                   | Detached Eddy Simulation                                       |
| LES                   | Large Eddy Simulation                                          |
| PV                    | Photovoltaic                                                   |
| PISO                  | Pressure Implicit with Splitting of Operators                  |

| F150   | Pressure implicit with splitting of Operators     |
|--------|---------------------------------------------------|
| RANS   | Reynolds-Averaged Navier-Stokes                   |
| RSM    | Reynolds Stress Model                             |
| SIMPLE | Semi-Implicit Method for Pressure-Linked Equation |

SIMPLESemi-Implicit Method for Pressure-Linked EquationsSSTShear Stress Transport

# ŞEKİLLER DİZİNİ

| Sayfa                                                                                      |
|--------------------------------------------------------------------------------------------|
| Şekil 3.1. Solar panel önden görünüş (a) ve yandan görünüş (b)24                           |
| Şekil 3.2. Akış Alanı                                                                      |
| Şekil 3.3. Solar panel model boyutları                                                     |
| Şekil 3.4. Akış Alanı                                                                      |
| Şekil 3.5. Solar panel ve akış alanının mesh yapısı                                        |
| Şekil 3.6. Mesh kesit görüntüsü - 1                                                        |
| Şekil 3.7. Mesh kesit görüntüsü – 2                                                        |
| Şekil 3.8. Üç farklı mesh ile yapılan mesh doğrulama çalışması kaldırma katsayısı          |
| değerleri                                                                                  |
| Şekil 3.9. Üç farklı mesh ile yapılan mesh doğrulama çalışması sürüklenme katsayısı        |
| değerleri                                                                                  |
| Şekil 4.1. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri                                                             |
| Şekil 4.2. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri                                                             |
| Şekil 4.3. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri                                                             |
| Şekil 4.4. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri35                                                           |
| Şekil 4.5. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri36                                                           |
| Şekil 4.6. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen  |
| düzlemde oluşan hız vektörleri                                                             |
| Şekil 4.7. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında |
| oluşan hız vektörleri                                                                      |
| Şekil 4.8. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında |
| oluşan hız vektörleri                                                                      |
| Şekil 4.9. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında |
| oluşan hız vektörleri                                                                      |
| Şekil 4.10. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı         |
| arasında oluşan hız vektörleri                                                             |
| Şekil 4.11. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı         |
| arasında oluşan hız vektörleri                                                             |
| Şekil 4.12. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı         |
| arasında oluşan hız vektörleri                                                             |
| Şekil 4.13. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları40           |
| Şekil 4.14. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları41           |
| Şekil 4.15. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları41           |
| Şekil 4.16. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b)       |
| yüzeyine etkiyen basınç katsayıları42                                                      |
| Şekil 4.17. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b)       |
| yüzeyine etkiyen basınç katsayıları                                                        |

Şekil 4.18. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları......44 Şekil 4.19. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.20. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.21. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği ......46 Sekil 4.22. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.23. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.24. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.25. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.26. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.27. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.28. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri ......49 Şekil 4.29. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.30. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.31. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.32. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.33. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.37. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.38. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.39 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.40. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.41. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç 

| Şekil 4.42. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç                             |
|----------------------------------------------------------------------------------------------------------------------|
| katsayısı ve konum grafiği60                                                                                         |
| Şekil 4.43. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden                                 |
| geçen düzlemde oluşan hız vektörleri60                                                                               |
| Şekil 4.44. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden                                 |
| geçen düzlemde oluşan hız vektörleri                                                                                 |
| Sekil 4.45. 35° panel eğim acısı ve 10 m/s rüzgar hızı icin panelin orta bölgesinden                                 |
| gecen düzlemde oluşan hız vektörleri                                                                                 |
| Sekil 4 46 35° panel eğim acısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden                                  |
| gecen düzlemde oluşan hız vektörleri                                                                                 |
| Sekil 4 47 45° nanel eğim acısı ve 10 m/s rüzgar hızı için nanelin orta bölgesinden                                  |
| gecen düzlemde oluşan hız vektörleri                                                                                 |
| Sekil 4.48 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden                                  |
| geçen düzlemde oluşan hız vektörleri                                                                                 |
| Sekil $4.40 - 25^{\circ}$ nanel exim acts ve 10 m/s rüzgar hızı için nanel ve destek yanışı                          |
| sekir 4.47. 25 paner egini açısı ve ro nızı ruzgar mzi için paner ve destek yapısı                                   |
| Solvil $4.50$ , $25^\circ$ nonal agim agist va $20$ m/s rüzgar hizt jain nonal va dastak vanist                      |
| şekii 4.50. 25 panel egini açısı ve 20 m/s tuzgat mzi için panel ve destek yapısı                                    |
| $\frac{1}{2}$                                                                                                        |
| şekii 4.51. 55 panel eğim açısı ve 10 m/s ruzgar mzi için panel ve destek yapısı                                     |
| Salvil 4.52, 25° nonal ažim aggs va 20 m/a rüzgan huz jain nanal va dastalt vangs                                    |
| Şekil 4.52. 55° panel egim açısı ve 20 m/s ruzgar nizi için panel ve destek yapısı                                   |
| arasında oluşan niz vektorleri                                                                                       |
| Şekil 4.53. 45° panel egim açısı ve 10 m/s ruzgar nizi için panel ve destek yapısı                                   |
| arasında oluşan hiz vektorleri                                                                                       |
| Şekil 4.54. 45° panel egim açısı ve 20 m/s ruzgar nizi için panel ve destek yapısı                                   |
| arasında oluşan hiz vektorleri                                                                                       |
| Şekil 4.55. 25° panel egim açısı ve 20 m/s ruzgar hizi için basınç katsayıları                                       |
| Şekil 4.56. 35° panel egim açısı ve 20 m/s ruzgar hizi için basınç katsayıları                                       |
| Şekil 4.57. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları                                       |
| Şekil 4.58. 25° panel eğim açısı ve 20 m/s rüzgar hizi için panel üst (a) ve alt (b)                                 |
| yüzeyine etkiyen basınç katsayıları                                                                                  |
| Şekil 4.59. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b)                                 |
| yüzeyine etkiyen basınç katsayıları                                                                                  |
| Şekil 4.60. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b)                                 |
| yüzeyine etkiyen basınç katsayıları71                                                                                |
| Şekil 4.61. 20 m/s rüzgar hızı ve $25^{\circ}$ (a), $35^{\circ}$ (b) ve $45^{\circ}$ (c) panel eğim açısında panelin |
| akış yönüne dik görünümü, akış alanının orta düzleminde Cp değerleri                                                 |
| Şekil 4.62. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç                             |
| katsayısı ve konum grafiği73                                                                                         |
| Şekil 4.63. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç                             |
| katsayısı ve konum grafiği73                                                                                         |
| Şekil 4.64. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç                             |
| katsayısı ve konum grafiği74                                                                                         |
| Şekil 4.65. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden                                 |
| geçen düzlemde oluşan hız vektörleri                                                                                 |

Şekil 4.66. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri......75 Şekil 4.67. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.68. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri......76 Şekil 4.69. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.70. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.71. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.72. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.73. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.74. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.75. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.76. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.80. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.81. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.82. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.83. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin Şekil 4.84. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.85. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.86. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.87. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.88. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.89. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden 

Şekil 4.90. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.91. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.92. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.93. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.94. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.95. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.96. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.97. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.98. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.102. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.103. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.104. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.105. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde *Cp* değerleri......100 Şekil 4.106 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği ......101 Şekil 4.107. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği ......101 Şekil 4.108. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.109. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.110. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.111. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.112. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.113. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri ......105

Şekil 4.114. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri ......105 Şekil 4.115. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.116. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.117. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri ......107 Şekil 4.118. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.119. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.120. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.121. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları ....... 109 Şekil 4.124. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları.....111 Şekil 4.125. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları.....112 Şekil 4.126. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.127. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde Cp değerleri......114 Şekil 4.128. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği ......115 Şekil 4.129. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.130. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği ......116 Şekil 4.131. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.132. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri ......117 Şekil 4.133. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.134. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.135. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.136. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden Şekil 4.137. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri ......119

Şekil 4.138. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.139. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.140. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.141. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.142. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı Şekil 4.144. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları ...... 123 Şekil 4.146. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) Şekil 4.147. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları......126 Şekil 4.148. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları......127 Şekil 4.149. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin Şekil 4.150. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.151. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.152. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç Şekil 4.153. 25° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net Şekil 4.154. 35° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net basınç katsayısı değerleri ......131 Şekil 4.155. 45° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net Şekil 4.158. 25°, 35° ve 45° panel eğim açılarında oluşan yunuslama momenti Cmx katsayıları.....134 Şekil 4.159. 25°, 35° ve 45° panel eğim açılarında oluşan yalpalama momenti Cmz katsayıları.....134

# ÇİZELGELER DİZİNİ

|                                                                             | Sayıa   |
|-----------------------------------------------------------------------------|---------|
| Çizelge 2.1. Güneş panellerine etkiyen aerodinamik yükler                   | 5       |
| Çizelge 2.2. Çatıya bağlanan güneş panellerine etkiyen aerodinamik yükler   | 14      |
| Çizelge 3.1. Model, tam ölçek ve mevcut çalışmaya ait sürüklenme ve kaldırı | na kat- |
| sayıları                                                                    | 25      |



### 1. GİRİŞ

Dünya üzerinde nüfusun hızlı bir şekilde artması, sanayide ve günlük hayatta kullanılmak üzere geliştirilen teknolojilerin bir enerji kaynağı ile kullanılabilmesi ve enerji tüketim bilincinin oluşturulamaması nedeniyle enerji kaynaklarına olan ihtiyaç gün geçtikçe artmaktadır. Bu enerji ihtiyacının büyük çoğunluğu fosil yakıtlardan karşılanmaktadır. Fakat fosil yakıtların geleceğinin belirsiz olması, rezervlerin tükenmesi, çevre kirliliği ve CO2 salınımı sonucu sera etkisi oluşturması nedeniyle alternatif enerji kaynaklarının kullanımına yönelik araştırmalara ve uygulamalara yönelim hızla artmaktadır. Güneş enerjisi en önemli yenilenebilir enerji kaynaklarından birisidir. Kömür, doğalgaz, petrol ve nükleer güç sistemleri ile enerji üretimi geri dönüştürülemeyen kaynaklara bağlı iken güneş enerjisi herhangi bir ek kaynağa gerek olmadan güneş ışınlarını ısı ve elektriğe dönüştürebilmektedir. Bunun yanı sıra madencilik ve yakıt işleme masrafları olmaması, gelişmekte olan güneş enerjisi teknolojisinin gelecekte diğer enerji kaynaklarıyla maliyet açısından rekabet edebilecek düzeye gelmesi beklenmektedir.

Günümüzde fotovoltaik güneş enerji panellerinin maliyetlerinin çok yüksek olması nedeniyle talep düşüktür. Bu durumu ortaya çıkaran sebeplerden birisi de ekonomik ve güvenli bir dizayn oluşturma problemidir. Güneş panellerinin maruz kaldığı rüzgar yüklerinin doğru olarak hesaplanabilmesi için herhangi bir tasarım standardı bulunmaması panellerin dayanıklılığının çok yüksek ya da çok düşük olmasına yol açmaktadır. Rüzgar yüklerine karşı dayanımın olması gerekenden daha yüksek tahmin edilmesi tasarımın ve dolayısıyla üretilen panelin maliyetinin yükselmesine yol açmaktadır. Tam tersi durumda ise panellerin rüzgar yükleri nedeniyle yapısal hasar görmesi durumu ortaya çıkmaktadır. Bu nedenle optimum ve uygun maliyetli dizayn parametrelerini elde etmek için deneysel ve nümerik çalışmalar yapılmaktadır.

Güneş panellerine etkiyen rüzgar yükleri üzerine çeşitli parametrelerin rolünü araştırmak için çalışmalar yapılmıştır. Rüzgar yönü, panellerin eğim açısı, yerden yükseklik ve barınak etkisi araştırmacılar tarafından incelenen parametrelerden bazılarıdır. Bu çalışmalardaki temel hedefler, kritik rüzgar yükleme koşullarını değerlendirmek ve etkilerini en aza indirmektir (Shademan ve ark. 2014).

Panellere etkiyen rüzgar yüklerini hesaplamak adına deneysel ve nümerik olmak üzere iki ayrı yaklaşım uygulanmaktadır. Deneysel analizler rüzgar tünelleri aracılığı ile yapılmaktadır. Bu analizler yapılırken güneş panelleri belirli ölçekte küçültülerek yapılmak zorundadır. Sınır tabaka rüzgar tünellerinde test edilen yapıların ölçekleri 1:500 ve 1:100 arası değişmektedir (Aly ve Bitsuamlak 2013). Coşoiu ve ark. (2008) Fluent CFD yazılımı ile PV güneş panellerini yüzeyine etki eden basınç katsayılarını ve aerodinamik kuvvetleri incelemişlerdir. Bitsuamlak ve ark. (2010) tarafından tam ölçek zemine bağlı PV panellerin Hesaplamalı Akışkanlar Dinamiği analizi yapılmıştır. Doğrulama açısından deneysel çalışmaları da yapmışlar ve iki ayrı rüzgar yönü için basınç dağılımlarını bulmuşlardır. Paneller arası yatay ve yanal mesafelerin etkileri Warsido ve ark. (2014) tarafından incelenmiştir. Sonuç olarak kuvvet, moment katsayıları ve barınak etkisi değerleri elde edilmiştir. Jubayer ve Hangan (2014) rüzgar yönlerini 0°-180° arası 45°'lik açılarla değiştirerek kuvvetler ve momentler için kritik rüzgar yönlerini belirlemişlerdir.

Bu tez çalışmasında ise zemine bağlı bir panel üzerinden CFD analizleri yapılmıştır. Bu analizler, 25°, 35° ve 45° panel eğim açısı, 0°, 30°, 60°, 90°, 120°, 150° ve 180° rüzgar yönleri ve 10 m/s ve 20 m/s rüzgar hızları ile gerçekleştirilmiştir. Panel üzerindeki basınç ve hız dağılımları elde edilerek, sürüklenme, kaldırma ve moment katsayıları ile aerodinamik yükler tespit edilmiştir.

### 2. KAYNAK ARAŞTIRMASI

### 2.1. Giriş

Güneş panelleri literatürde çatıya ve zemine bağlanan panel tipleri için ayrı ayrı ele alınmıştır. Paneller üzerine etki eden aerodinamik yüklerin hesaplanmasında hem deneysel hem de nümerik yöntemler kullanılmıştır. Bu yöntemlerle panel geometrisine, rüzgar yönüne ve hızına ve panelin yerden yüksekliğine bağlı olarak, panel yüzeyleri ve panel destek ayakları üzerindeki basınç dağılımlarının analizleri yapılmıştır. Ayrıca, hız profilleri, oluşan vorteksler, sürüklenme ve kaldırma kuvvetleri, basınç katsayıları değerleri de incelenmiştir. Güneş panelleri dizisinin yerleşim planlarının ortaya çıkardığı, paneller arası yanal ve yatay mesafeler sonucu, barınak etkisinin sonuçları da araştırılmıştır.

Bu bölümde zemine bağlanan ve çatıya bağlanan güneş panelleri üzerine yapılan çalışmalar ayrı ayrı ele alınacaktır. Bu çalışmaların daha iyi anlaşılabilmesi için kullanılan deney düzenekleri, nümerik yöntemler, geometrik parametreler detaylı bir şekilde incelenerek tablolar halinde sunulmuştur.

### 2.2. Zemine Bağlanan Güneş Panellerine Etkiyen Aerodinamik Kuvvetler

Bir yapı üzerine etkiyen rüzgar yükleri büyük oranda yapının geometrisine ve akış koşullarına bağlıdır. PV paneller ve solar kollektörler üzerine etkiyen rüzgar yüklerini hesaplamak için literatürde çeşitli çalışmalar yapılmıştır. Bu çalışmalar çatıya bağlanan ve zemine bağlanan olmak üzere iki ana sınıf halinde kategorize edilebilmektedirler. Çatıya bağlanan güneş panelleri üzerine geniş çalışmalar yapılırken, zemine bağlanan güneş panelleri üzerine geniş çalışmalar yapılırken, zemine bağlanan güneş panellerinin rüzgar tüneli testlerinde birçok parametreye bağlı olmasıdır. Sınır tabaka rüzgar tünelleri genellikle 1:100 ölçekte veya daha küçük ölçeklerde yapılacak testler için dizayn edilmiştir. Bu nedenle, yüksek ölçeklerde yeterli çözünürlükle zemine bağlı güneş panellerinin test edilmesi 10 m' lik en düşük atmosferik sınır tabakanın simüle edilmesi problemini ortaya çıkarır. Bitsuamlak ve ark. (2010) ve Shademan ve ark. (2014) tarafından yapılan iki çalışmada da zemine bağlanan güneş panellerine etkiyen rüzgar yüklerini hesaplamak için Hesaplamalı Akışkanlar

Dinamiği (CFD) yaklaşımı kullanılmıştır. Bitsuamlak ve ark. (2010) bir tek başına PV sistemin aerodinamik özelliklerini incelemiştir ve CFD ile bulunan sonuçlar tam ölçek deneysel sonuçlarla karşılaştırıldığında, CFD yöntemi ile bulunan sonuçların basınç katsayılarını olması gerekenden daha düşük hesapladığı ortaya çıkmıştır. Ayrıca iki panel arka arkaya yerleştirildiğinde, barınak etkisi nedeni ile ikinci panele gelen rüzgar yüklerinden daha düşük çıkmıştır.

Shademan ve ark. (2014), sıralı ve tek başına panel konfigürasyonlarında zemine bağlı panellere etkiyen rüzgar yüklerini incelemek için Reynolds Ortalamalı Navier Stokes (RANS) simülasyonlarından yararlanmışlardır. Doğrulama sonuçları Shear Stress Transport (SST) k-ω modelinin Realizable k-ε modelinden daha iyi performans gösterdiğini ortaya çıkarmıştır. Tekli panel sistemi için, maksimum aerodinamik kuvvet 0° ve 180° için bulunmuştur. Kopp ve ark. (2012) zemine bağlanan panellere etkiyen rüzgarlar üzerine çalışmışlar ve yapıların çatıya bağlı güneş panellerinde oluşturduğu etkiyi göstermeyi amaçlamışlardır. Bu çalışmada, rüzgar tüneli basınç ölçümleri Boundary Layer Wind Tunnel II (BLWT II) rüzgar tünelinde yapılmıştır. Bu çalışmada ana odak noktası çatıya bağlanan sıralı panellerdir ve yapının akışla etkileşimi nedeniyle çatıya bağlanan ve zemine bağlanan güneş panelleri arasında azımsanamayacak ölçüde aerodinamik yük farkları bulunmuştur. Abiola-Ogedengbe (2013) farklı panel eğim açıları için (25° ve 40°) farklı rüzgar yönlerinde (0°, 30°, 150° ve 180°) BLWT I rüzgar tünelinde 1:10 ölçek zemine bağlanan güneş paneliyle basınç testleri yapmıştır. 150° ve 180° rüzgar yönlerinde maksimum kaldırma kuvvetinin kritik olduğu sonucuna ulaşmıştır. Aly ve Bitsuamlak (2013) hem rüzgar tüneli hem de Hesaplamalı Akışkanlar Dinamiği (CFD) çalışmalarını kullanarak tek başına zemine bağlanan güneş panellerine etkiyen rüzgar yüklerine geometrik ölceklerin etkisini araştırmışlardır. 1:50 ve 1:5 geometrik ölçekte 25° ve 40° eğim açısı ile güneş panellerini incelemişlerdir. Ortalama basınçlarda önemli bir değişiklik meydana gelmemesine karşın, standart sapma ve en yüksek basınç katsayılarında önemli değişiklikler gözlemlemişlerdir. Stathopoulos ve ark. (2014) düz ve üçgen çatılarda ve zemine bağlanan güneş panelleri üzerinde rüzgar yüklerini hesaplamak için rüzgar tüneli deneyleri yapmışlardır. Zemine bağlanan sistem için, maksimum ve minimum pik basınç katsayıları sırasıyla 30° ve 135° rüzgar yönlerinde meydana geldiği tespit edilmiştir. Warsido ve ark. (2014) çatıya bağlanan ve

zemine bağlanan sıralı güneş panellerinde paneller arası mesafenin etkileri üzerine çalışma yapmışlardır.

Güneş panelleri üzerinde yapılan rüzgar yükleri çalışmaları Çizelge 2.1'de detaylı bir şekilde verilmiştir.

| Yazar, Yıl | Akış Konfigürasyonu                                 | Temel Bulgular               |
|------------|-----------------------------------------------------|------------------------------|
| Coșoiu,    | - Deneyler 1200x1200 mm'lik kesit alanı             | - Nümerik hesaplamalar,      |
| Damian,    | olan bir rüzgar tünelinde yapılmıştır.              | deneysel verilerle karşılaş- |
| Damian ve  | Deneylerde üç farklı akış senaryosu test            | tırılıp doğrulaması          |
| Degeratu   | edilmiştir. Panel eğim açısı ( $\theta$ ) ve rüzgar | yapılmış ve nümerik          |
| (2008)     | yönü (\$) sırasıyla ilk deney için -4° ve           | yöntemlerin aerodinamik      |
|            | 0°, ikinci deney için -45° ve 0°, üçüncü            | yükleri hesap-lama           |
|            | deney için -45° ve 65°'dir.                         | konusunda yeterli ol-duğu    |
|            |                                                     | bulunmuştur.                 |
|            | - Nümerik analizler için kullanılan akış            |                              |
|            | alanı 9000 mm uzunluk, 1200 mm                      | - Düz bir plakanın analizi   |
|            | genişlik ve 1200 mm yüksekliktir. Panel,            | yapılmış olmasına rağmen,    |
|            | giriş alanından 3000 mm uzaklığa                    | dikkate alınması gereken     |
|            | yerleştirilmiştir. 8,76 m/s hız ve k-ω SST          | kadar kaldırma kuvveti       |
|            | nümerik modeli kullanılmıştır.                      | meydana geldiği gözlem-      |
|            |                                                     | lenmiştir.                   |
| Shademan   | - 3x4'lük bir sistem olarak kurulan 12              | - Maksimum sürüklenme        |
| ve Hangan  | panelden oluşan model üzerinden CFD                 | kuvveti 90° ve 60° rüzgar    |
| (2009)     | analızleri yürütülmüştür. 30° ve 35°                | yönlerinde meydana gel-      |
|            | olarak iki farkli panel eğim açısı ve 30°,          | mıştır.                      |
|            | 60° ve 90° olarak uç tarklı ruzgar                  |                              |
|            | 1 m uzunluğu 0.5 m genişliği ve 3 mm                |                              |
|            | kalınlığı hulunmaktadır. Nümerik akış               |                              |
|            | alanı 22 m uzunlukta, 15 m genişlikte ve            |                              |
|            | 10 m yükseklikte modellenmistir.                    |                              |
|            | ,                                                   |                              |

Çizelge 2.1. Güneş panellerine etkiyen aerodinamik yükler

| Bitsuamlak, | 1300 mm uzunlukta, 1100 mm genişlikte      | - Güneş panelleri en        |
|-------------|--------------------------------------------|-----------------------------|
| Dagnew ve   | ve 19 mm kalınlıkta bir panel üzerinde     | yüksek rüzgar yükü ile      |
| Erwin       | deneyler yapılmıştır. 11 basınç musluğu    | 180° rüzgar açısında        |
| (2010)      | panele bağlanarak basınc ölcümleri         | karsılasmıştır.             |
| ()          | vanilmistir.                               |                             |
|             | <i>y</i>                                   | - Bu calismada en bastaki   |
|             | - 0° ve 180° olmak üzere iki farklı rüzgar | panelin en viiksek riizgar  |
|             | acisi ile testler vanilmistir Panelin      | vijkijne maruz kaldiği ve   |
|             | verden vüksekliği 510 mm ve 1220           | baringk etkisi nedeniyle    |
|             | mm'dir Danel eğim açışı 40°'dir Üc         | ardındaki papellere etki    |
|             | adat nanal ardışık alarak halirli hir      | adan rüzgar yüklərinin      |
|             | adet panel aldışık olarak bellili bil      |                             |
|             | mesare ne yerleştirilmiştir.               | duştuğu gözlemlenmiştir.    |
|             |                                            |                             |
|             | - CFD analizieri için ortalama hiz 50      |                             |
|             | m/s, turbulans yogunlugu %16 olarak        |                             |
|             | belirlenmiştir.                            |                             |
| 337         |                                            |                             |
| Wu,         | - Kullanilan ruzgar tuneli 5,5 m           | - Heliostat uzerine etkiyen |
| Gong,       | genişliginde ve 4,5 m yüksekliginde olup   | ruzgar yukleri için         |
| Wang,       | 0-18 m/s hızlarla testler yürütülmüştür.   | bölmeler arası boşlukların  |
| L1 ve       | Heliostatin ölçeği 1:10 olarak belir-      | etkisi ihmal edilebilir     |
| Zang        | lenmıştır. Panel 9 ayrı bölmeden oluş-     | olduğu sonucuna             |
| (2010)      | makta ve 0-40 (0, 5, 10, 20 ve 40) mm      | varılmıştır.                |
|             | bölmeler arası boşluk bulunmaktadır.       |                             |
|             | Karakteristik hız 10 m/s olarak            | - Heliostata etkiyen sürük- |
|             | alınmıştır. Fluent yazılımı kullanılarak   | lenme katsayısı bölmeler    |
|             | Pressure Implicit with Splitting of        | arası mesafenin artması ile |
|             | Operators algoritması ile çözümlemeler     | artma göstermiştir.         |
|             | yapılmıştır.                               |                             |
|             |                                            |                             |
| Wu,         | - Dört farklı eğim açısı (130°, 140°, 145° | - Sonuçlara göre panellere  |
| Lin ve      | ve 150°) ve yedi farklı rüzgar yönü (0°,   | etki eden maksimum          |
| Lin         | 30°, 60°, 90°, 120°, 150° ve 180°) analiz  | rüzgar yükleri 0° ve        |
| (2010)      | için modellenmiştir. Her biri 1 m          | 180°'dedir. Bu nedenle bu   |
|             | uzunluk ve 0,5 m genişlikte olan 12        | iki açı kritik yükleme      |
|             | panelden oluşan bir sistem meydana         | açıları olarak tespit       |
|             | getirilmiştir. Oluşturulan ağ yapısı       | edilmiştir.                 |
|             | toplam 1510326 hücre içermektedir. k-ε,    | -                           |
|             | k-ω ve Reynolds Stress (RSM) olmak         | - En yüksek sürüklenme ve   |
|             | üzere üç farklı türbülans modeli           | kaldırma kuvvetinin etki    |
|             | kullanılmıştır.                            | ettiği paneller ise köse    |
|             |                                            | panellerdir.                |
|             |                                            | -                           |

| Cizelge 2.1. | Güneş panel | lerine etkiyen | aerodinamik | yükler (devam) |
|--------------|-------------|----------------|-------------|----------------|
| , ,          | <b>,</b> 1  |                |             |                |

| Shademan<br>ve Hangan<br>(2010)                | - Dört farklı eğim açısı (130°, 140°, 145°<br>ve 150°) ve yedi farklı rüzgar yönü (0°,<br>30°, 60°, 90°, 120°, 150° ve 180°) analiz<br>için modellenmiştir. Her biri 1 m<br>uzunluk ve 0,5 m genişlikte olan 12<br>panelden oluşan bir sistem meydana<br>getirilmiştir. Oluşturulan ağ yapısı<br>toplam 1510326 hücre içermektedir. k-ε,<br>k-ω ve Reynolds Stress (RSM) olmak<br>üzere üç farklı türbülans modeli<br>kullanılmıştır.                                                                                                                                                                                                                                                                                            | <ul> <li>Sonuçlara göre panelleri<br/>etkiden maksimum rüzgar<br/>yükleri 0° ve 180°'dedir.<br/>Bu nedenle bu iki açı kritik<br/>yükleme açıları olarak<br/>tespit edilmiştir.</li> <li>En yüksek sürüklenme ve<br/>kaldırma etkileri ise köşe<br/>paneller üzerindedir.</li> </ul>                                                                                                                   |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Aly ve<br>Bitsuamlak<br>(2013)                 | <ul> <li>- 1:50, 1:30, 1:20, 1:10 ve 1:5 ölçekte<br/>olmak üzere beş farklı ölçekte güneş<br/>panelleri kullanılmıştır. Tam ölçek<br/>modelin boyutları 1,336 m x 9,144 m'dir.<br/>Test düzenekleri: 1) 25° eğim açısı ve<br/>60,96 cm ayak yüksekliği, 2) 25° eğim<br/>açısı ve 81,28 cm ayak yüksekliği, 3) 40°<br/>eğim açısı ve 60,96 cm ayak yüksekliği,<br/>4) 40° eğim açısı ve 81,28 cm ayak<br/>yüksekliği olarak belirlenmiştir. CFD<br/>için geometri 1:50, 1:20 ve 1:10<br/>ölçeklerde tasarlanmıştır. Panel eğim<br/>açısı 40° ve ayak yüksekliği 0,61 m<br/>olarak belirlenmiştir. Ortalama basıncın<br/>hesap-lanması için Reynolds Stress<br/>Model (RSM) ve LES türbülans modeli<br/>kullanılmıştır.</li> </ul> | <ul> <li>1:10 ölçekli LES<br/>türbülans modeli ile<br/>yapılan CFD<br/>simülasyonları deneysel<br/>sonuçlarla kıyaslandığında<br/>basınç katsayılarının<br/>benzer olduğu ortaya<br/>çıkmıştır.</li> <li>CFD sonuçları deneysel<br/>sonuçlara göre daha net<br/>sonuçlar vermiştir. Bunun<br/>nedeni deney düzeneğinde<br/>kullanılan ekipmanların<br/>akışla etkileşime girme-<br/>sidir.</li> </ul> |  |
| Somekawa,<br>Taniguchi<br>ve Taniike<br>(2013) | - Rüzgar tüneli deneyleri 3 m yükseklik<br>ve 3 m genişliği olan bir bölümde<br>yapılmıştır. Hız 11 m/s ve türbülans<br>yoğunluğu %20 olarak belirlenmiştir.<br>Güneş paneli 10° ve 30° eğimli olarak iki<br>farklı halde modellenmiştir. Sistem 10<br>ayrı rüzgar panelinin ardışık sıralanması<br>ile oluşturulmuştur. Toplam uzunluk 100<br>m' dir ve 1:100 ölçekle modellenmiştir.<br>Panel sistemi 4 farklı yerleştirme düzeni<br>oluşturularak deneyler yapılmıştır.                                                                                                                                                                                                                                                       | <ul> <li>C düzeni ile oluşturulmuş<br/>paneller en düşük basınç<br/>katsayılarına ulaşan sistem<br/>olmuştur. B düzeni kul-<br/>lanılan sistem ise en<br/>yüksek basınç katsayılarına<br/>sahip sistemdir.</li> <li>C düzenine etkiyen ba-<br/>sıncın 3344 Pa' a kadar<br/>çıktığı gözlemlenmiştir.</li> </ul>                                                                                        |  |

**Çizelge 2.1.** Güneş panellerine etkiyen aerodinamik yükler (devam)

| Γ | Abiola-     | - Sistem 24 adet alüminyum panelin bir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 150° ve 180° rüzgar        |
|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|   | Ogedengbe   | araya getirilmesi ile oluşturulmuştur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | açıları en kritik açılar     |
|   | ve Siddiqui | Sistemin toplam boyutları 0.72 m x 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olarak tespit edilmiştir.    |
|   | (2013)      | m x 0.17 m olarak ve destek avakları                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Panelin giris kenarından en  |
|   |             | arasında 0.3 m mesafe konularak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vüksek kaldırma kuvvetleri   |
|   |             | olusturulmustur. 1/10 ölcekli bir zemine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bu rüzgar acılarında ortava  |
|   |             | bağlanan nanel sistemi taşarlanarak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cıkmıştır                    |
|   |             | rüzgar tünelinde çalışmalar yanılmıştır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | çıxınıştır.                  |
|   |             | ruzgar tunennue çanşınarar yapınmştir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40° eğimli papel sis         |
|   |             | Panal ačim galari 25° va 40° almak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 40 eginin paner sis-       |
|   |             | - Fallel egili açılalı $23$ ve 40 olillak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rüzzen zülzlerinin 25°       |
|   |             | uzere dort larkli ruzgar açısı (0 <sup>-</sup> , 30 <sup>-</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ruzgar yuklerinin, 23        |
|   |             | 150° ve 180°) için testler gerçek-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | egimli panel sistemine       |
|   |             | leştirilmiştir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kiyasla çok daha buyuk       |
| - |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | olduğu bulunmuştur.          |
|   | Aly ve      | - 1:50, 1:30, 1:20, 1:10 ve 1:5 olmak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Test modelinin             |
|   | Bitsuamlak  | üzere beş farklı ölçekte güneş panelleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | boyutunun ortalama basınç    |
|   | (2013)      | sınır tabaka rüzgar tünelinde test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | yüklerini çok önemli bir     |
|   |             | edilmiştir. Panellerin eğim açısı 40° ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oranda etkilemediği          |
|   |             | tam ölçekte yüksekliği 0.61 m olarak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | görülmüştür.                 |
|   |             | tasarlanmıştır.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - Ortalama basınç yük-       |
|   |             | - İki farklı rüzgar profili üzerinde çalı-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lerinin aksine en yüksek     |
|   |             | şılmıştır: a) düşük türbülans akışlı, b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (pik) basınç yükleri model-  |
|   |             | açık arazi akışı. 9 m/s hız ile sırasıyla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in boyutuna göre değiş-      |
|   |             | 1:5, 1:10, 1:20, 1:30 ve 1:50 ölçekler için                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kenlik göstermiştir.         |
|   |             | 360 s, 240 s, 120 s, 80 s ve 48 s zaman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
|   |             | aralıklarında basınç verileri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |
|   |             | ,<br>kavdedilmistir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
|   |             | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| ŀ | Giorgis.    | - k-ε türbülans modeli kullanılarak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - En düsük basınc panelin    |
|   | Amador.     | nümerik analiz vöntemi ile calısmalar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | üst giris kenarında en       |
|   | Caravati ve | vanılmıştır. Sistem 4x2 fotovoltaik nanel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vüksek başınc ise panelin    |
|   | Goodman     | dizisinden olusmaktadır                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alt giris kenarında gözlem   |
|   | (2013)      | dizisinden oluşmaktadır.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lenmistir                    |
|   | (2013)      | Tast adilan hizlar 5 51 m/s arasında                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iciliiiştii.                 |
|   |             | değişmektedir. Donal ağım aşışı işa 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Danal ačim pous prttiliza    |
|   |             | $40^{\circ}$ areas $5^{\circ}$ is a solution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | - i anci egini açısı artikça |
|   |             | 40 arası 5 nik açılarla değişinektedir.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | adan kalduma wa ajirjit      |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | euen kaluirma ve suruk-      |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ienme katsayilari da dogru   |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | orantili bir şekilde artiş   |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gostermıştır.                |
|   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |

**Çizelge 2.1.** Güneş panellerine etkiyen aerodinamik yükler (devam)

| Shademan,<br>Balachandar<br>ve Barron<br>(2014) | <ul> <li>Panel geometrisi 3,2 m genişlik, 4,2 m<br/>uzunluk ve 50 mm kalınlıktan<br/>oluşmaktadır. Üç farklı yerden yükseklik<br/>(0,5-1,5-2,5 m) test edilmiştir. Referans<br/>rüzgar hızı 25 m/s olarak belirlenmiştir.</li> <li>DES (Detached Eddy Simulation)<br/>hibrid modeli kullanılmıştır. SST k-ω ve<br/>LES modelinden yararlanılarak analizler<br/>yapılmıştır.</li> </ul> | <ul> <li>Akış alanının büyük<br/>oranda yerden yüksekliğe<br/>bağlı olduğu gözlemlen-<br/>miştir. Yerden yükseklik<br/>arttıkça basınç farklarının<br/>arttığı ve dolayısıyla daha<br/>büyük rüzgar yüklerinin<br/>panele etkilediği sonucuna<br/>varılmıştır.</li> <li>Yerden yüksekliğin art-</li> </ul> |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                        | masıyla daha güçlü vor-<br>teksler oluşmakta ve daha<br>kararsız rüzgar yükleri<br>panele etki etmektedir.                                                                                                                                                                                                 |
| Strobel ve<br>Banks<br>(2014)                   | - Sıralı panel sistemi kullanılmış ve<br>paneller üzerinde farklı birçok noktadan<br>basınç ölçümleri yapılmıştır. Fotovoltaik<br>panellerin ölçekleri 1:30 ve 1:50 arasında<br>değişmektedir. Zemine bağlanan<br>sistemin panel eğim açıları -15° ve -25°<br>alınarak hesaplamalar yapılmıştır.                                                                                       | - Panellere gelen rüzgar<br>yüklerinin rezonansa<br>etkile-ri incelenmiştir.<br>Sonuç ola-rak sadece statik<br>yüklerin değil aynı<br>zamanda dina-mik yüklerin<br>de paneller üzerinde hasara<br>yol açabi-leceği sonucuna<br>varılmıştır.                                                                |
| Puneeth ve<br>Prakash<br>(2014)                 | - 30°, 45° ve 60°'lik açılarla 1000 mm<br>uzunluk, 700 mm genişlik ve 300 mm<br>kalınlığı olan bir panel CFD analizleri ile<br>incelenmiştir.                                                                                                                                                                                                                                          | - 30° eğimli panel için<br>kaldırma kuvveti, sürük-<br>leme kuvvetinden yüksek-<br>tir.                                                                                                                                                                                                                    |
|                                                 | - k – ε türbülans modeli kullanılmıştır.                                                                                                                                                                                                                                                                                                                                               | - 60° eğimli panel için<br>sürüklenme kuvveti, kaldır-<br>ma kuvvetinden yüksektir.                                                                                                                                                                                                                        |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                        | - Maksimum sürüklenme<br>60°'de maksimum<br>kaldırma kuvveti ise 45°<br>eğimli panellerde meydana<br>gel-miştir.                                                                                                                                                                                           |

**Çizelge 2.1.** Güneş panellerine etkiyen aerodinamik yükler (devam)

| Jubayer ve<br>Hangan<br>(2014)                             | <ul> <li>3D RANS simülasyonları, 25° panel<br/>eğim açılı fotovoltaik panel üzerinde<br/>atmosferik sınır tabakada SST k-ω<br/>türbülans modeli kullanılarak yürütül-<br/>müştür. Rüzgar yönleri 0°-180° arasında<br/>45°'lik açılarla değiştirilerek çalışmalar<br/>yapılmıştır.</li> <li>24 panelden oluşan 4 x 6'lık dizi<br/>kullanılmıştır ve sistemin toplam<br/>boyatları 2.48 m x 7.29 m x 1.65 m'dir.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Maksimum kaldırma<br/>kuvveti için 180°'lik rüzgar<br/>açısı kritik rüzgar yönü<br/>olarak ortaya çıkmıştır.</li> <li>Döndürme momentinin<br/>kritik olduğu açılar ise 45°<br/>ve 135°' dir.</li> <li>Maksimum sürüklenme<br/>kuvveti 0°' lik rüzgar açışı</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yönünde oluşmuştur.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Shademan,<br>Barron,<br>Balachandar<br>ve Hangan<br>(2014) | <ul> <li>3 boyutlu RANS simülasyonları farklı<br/>akış konfigürasyonlarında zemine<br/>bağlanan güneş paneli üzerinden geçen<br/>akışı hesaplamak için kullanılmıştır. 4<br/>ayrı panel 2x2' lik düzende<br/>incelenmiştir.</li> <li>Her bir panelin boyutları 2,1 m<br/>uzunluk, 1,6 m genişlik ve 0,05 m<br/>kalınlıktadır. Panellerin eğim açıları<br/>135°' dir. Yedi farklı rüzgar yönü (0°,<br/>30°, 60°, 90°, 120°, 150°, 180°) ve üç<br/>farklı paneller arası mesafe (0 m, 0,1 m,<br/>0,2 m) dikkate alınmıştır.</li> <li>Yerden yükseklik etkilerini gözlem-<br/>lemek için üç farklı yükseklik (0,5 m,<br/>1,5m, 2,5m) ele alınmıştır.</li> <li>Ağ yapısından bağımsız sonuçlar elde<br/>etmek için 5x10^6 toplam hücre sayısına<br/>sahip bir mesh oluşturulmuştur.</li> </ul> | <ul> <li>Tüm yapı göz önüne<br/>alındığında alt köşeye etki<br/>eden basınçlar ön ve arka<br/>yüzey arasında büyük bir<br/>farka sahiptir ve bu bölge<br/>yapının en zayıf bölgesidir.</li> <li>Paneller arası mesafe<br/>arttıkça dominant vorteks-<br/>lerin oluştuğu girdap böl-<br/>gesi küçülmektedir.</li> <li>Yerden yükseklik arttıkça<br/>panelin giriş ve çıkış<br/>kenar-larındaki basınç<br/>farkları artmıştır. Bu da<br/>daha büyük rüzgar yükleri<br/>anlamına gelmektedir.</li> <li>İlk sıradaki panelin oluş-<br/>turduğu barınak etkisinden<br/>dolayı ikinci sıradaki panel<br/>en düşük kaldırma kuv-<br/>vetine maruz kalan panel<br/>olmuştur.</li> </ul> |

Çizelge 2.1. Güneş panellerine etkiyen aerodinamik yükler (devam)

| Warsido,<br>Bitsuamlak<br>ve Barata<br>(2014)            | <ul> <li>Zemine bağlanan ve çatıya bağlanan<br/>güneş panelleri sistemleri ayrı ayrı<br/>incelenmiştir. Zemine bağlanan<br/>panellerin boyutları 9.14 m x 1.34 m,<br/>1:30 ölçeğinde, çatıya bağlanan paneller<br/>ise 5.64 m yüksekliğindeki bir çatıda<br/>27.43 m x 35.66 m boyutlarında 1:30<br/>ölçekte incelenmiştir.</li> <li>Panel eğim açısı 25° olarak alınmıştır<br/>ve rüzgar yönleri 0°-180° arası 10°'lik<br/>açılarla ayrı ayrı ele alınmıştır. Sistem<br/>toplam 10 panelin ardışık sıralanmasıyla<br/>oluşturulmuştur.</li> </ul> | <ul> <li>Barınak etkisi nedeniyle<br/>kuvvet ve moment katsayı-<br/>larındaki en büyük düşüş<br/>ikinci sırada yer alan<br/>panelde görülmüştür. Fakat<br/>ikinci panelden sonra bu<br/>düşüş hızla azalmıştır ve<br/>dördüncü panelden sonra<br/>bir anlam ifade etmeyecek<br/>kadar küçük bir düşüş<br/>meydana gelmiştir.</li> <li>Rüzgarı ilk karşılayan<br/>panellerin üzerine etkiyen<br/>kuvvetler her zaman en<br/>büyükken iç panellere daha<br/>az kuvvet etkimektedir.<br/>Paneller arası boylamsal<br/>mesafe arttıkça hem kuvvet<br/>hem de moment doğru<br/>orantılı olarak artış göster-<br/>miştir.</li> </ul> |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abiola-<br>Ogedengbe,<br>Hangan ve<br>Siddiqui<br>(2015) | - 1:10 ölçeğinde 24 tekli panelden oluşan<br>4x6 dizilik bir sistem üzerinde deneyler<br>yapılmıştır. Modelin toplam boyutları<br>0.72 m x 0.24 m x 0.17 olarak<br>tasarlanmıştır. Sistem farklı panel eğim<br>açıları ile test edilmiştir. Rüzgar yönleri<br>0°, 30°, 150° ve 180° olmak üzere dört<br>farklı koşulda analiz edilmiştir.                                                                                                                                                                                                          | <ul> <li>Paneller arası boşlukların<br/>yüzey basınç bölgelerini<br/>etkilediği görülmüştür.</li> <li>Panel eğim açısı arttıkça<br/>panele etkiyen basınç<br/>büyüklüklerinin arttığı so-<br/>nucuna ulaşılmıştır. Pürüz-<br/>süz rüzgara maruz<br/>bırakılan PV modüllerinin,<br/>açık ara-zide rüzgara<br/>maruz bıra-kılan PV<br/>modüllere nazaran daha<br/>yüksek basınç etkileri<br/>altında kaldığı gözlem-<br/>lenmiştir.</li> </ul>                                                                                                                                                                                   |

**Çizelge 2.1.** Güneş panellerine etkiyen aerodinamik yükler (devam)

| Jubayer ve<br>Hangan<br>(2016) | - Kullanılan panel dizisinin ölçüleri: 1,2<br>m uzunluk, 0,6 m genişlik ve 0.007 m<br>kalınlıktır. Ardışık 5 panel dizisi kul-                                                                                                                    | - Dört farklı rüzgar yönü<br>(0°, 45°, 135° ve 180°) için<br>de maksimum rüzgar yük-                                                                                                                         |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | <ul> <li>lanılmıştır. Panellerin eğimi 25° olarak<br/>alınmıştır.</li> <li>Dört farklı rüzgar yönü (0°, 45°, 135°<br/>ve 180°) kullanılmıştır.</li> <li>CFD analizleri SST k-ω modeli</li> </ul>                                                  | <ul> <li>İlk şırada bulunan panele<br/>en yüksek kaldırma kuvveti<br/>rüzgar açısı 180° iken, en<br/>yüksek sürüklenme kuvveti<br/>ise 0° iken etkimiştir. 0° ve</li> </ul>                                  |
|                                | kullanılarak yürütülmüştür.                                                                                                                                                                                                                       | 180° rüzgar yönlerinde, en<br>düşük aerodinamik kuvvet-<br>ler 3. sıradaki panel üzerin-<br>de oluşmuştur.                                                                                                   |
|                                |                                                                                                                                                                                                                                                   | -45° ve 135° rüzgar yönle-<br>rinde tüm paneller en yük-<br>sek devrilme momenti-ne<br>maruz kalmıştır ve 0° ve<br>180° rüzgar yönlerinin<br>aksine tüm panellere eşit<br>devrilme momenti etki<br>etmiştir. |
| Aly<br>(2016)                  | - Zemine bağlanan güneş paneli CFD<br>analizleri yapılmak üzere 1:1 ölçekte<br>modellenmiştir. Akış alanı uzunluğu yak-<br>laşık olarak 26 m, genişliği 2,4 m ve<br>yüksekliği ise 1,55-2,15 m arasında<br>belirlenmiştir. Güneş paneli 1,336 m x | - Nümerik analiz yöntemi<br>ile elde dilen ortalama ve<br>pik basınç değerleri deney-<br>sel verilere çok yakın çık-<br>mıştır.                                                                              |
|                                | 9,144 m genişlik ve uzunlukta, 0,11 m<br>kalınlıkta modellenmiştir. Panel eğim<br>açısı 40°'dir. Panelin yerden yüksekliği<br>0,61 m'dir.                                                                                                         | - Fakat deneysel yontem-<br>lerde ölçekler çok farklılık<br>gösterdiği için düşük so-<br>nuçlar üretebilmektedir.                                                                                            |
|                                | - Nümerik model ve deneysel modellerin<br>karşılaştırılması için zemine bağlanan<br>dört farklı ölçekte (1:50, 1:30, 1:20 ve<br>1:10) rüzgar tüneli testleri yürütülmüştür.                                                                       | - Ölçekli modellerin LES<br>nümerik analizleri yapı-<br>larak bu farklılıklardan et-<br>kilenmediği gözlemlenmiş-<br>tir.                                                                                    |

**Çizelge 2.1.** Güneş panellerine etkiyen aerodinamik yükler (devam)

| Circles 2.1  | Cinese |             | a +1 - : | 1:          |          | (d)     |  |
|--------------|--------|-------------|----------|-------------|----------|---------|--|
| Çizeige 2.1. | Guneş  | panellerine | etkiyen  | aerodinamik | yukler ( | (devam) |  |

| -         |                                                   |                              |
|-----------|---------------------------------------------------|------------------------------|
| Reina ve  | - 36 panelin yan yana dizilmesi ile bir           | - Düz rüzgar açıları için    |
| Stefano   | fotovoltaik sistem oluşturulmuştur. Her           | periyodik model kullanıl-    |
| (2017)    | bir panelin 2 m veter uzunluğu, 1,2 m             | masının uygun olduğu orta-   |
|           | genişliği ve 0,007 m kalınlığı bulun-             | ya çıkarmıştır ve böylece    |
|           | maktadır ve bütün sistemin toplam                 | bilgisayar gücü ve zaman-    |
|           | uzunluğu 43,2 m'dir.                              | dan tasarruf edilebilmiştir. |
|           |                                                   |                              |
|           | - Panel eğim açısı -60° derece olarak             | - Periyodik koşullar uygu-   |
|           | tasarlanmış ve CFD analizleri                     | landığında hesaplanan        |
|           | yapılmıştır. Referans hız 26 m/s olarak           | aero-dinamik yükler kabul    |
|           | alınmıştır. SST k-w türbülans modeli ile          | edile-bilir sonuçlar         |
|           | hem periyodik sınır şartları hem de tam           | vermiştir.                   |
|           | model kullanılarak analizler yapılmıştır.         |                              |
|           |                                                   |                              |
| Agarwal,  | - Zemine bağlanan PV paneller beş farklı          | - 90°' lik rüzgar açısında x |
| Irtaza ve | rüzgar açısı (0°, 30°, 45°,60°,90°) ile           | ve y yönünde sırasıyla       |
| Zameel    | 30°'lik panel açısı için modellenmiş ve           | maksimum sürüklenme ve       |
| (2017)    | analiz edilmiştir. Panel ölçüleri 3 m x 2         | maksimum kaldırma katsa-     |
|           | m uzunluk ve genişlik, 25 mm kalınlık             | yısı oluşmuştur.             |
|           | için modellenmiştir.                              |                              |
|           |                                                   | - z yönünde maksimum         |
|           | - k-ε türbülans modeli kullanılmıştır.            | kuvvet, 60°'lik rüzgar açı-  |
|           | RANS denklemleri uygulanmıştır.                   | sında meydana gelmiştir.     |
|           | Basınç-hız çifti denklemleri SIMPLE               |                              |
|           | algoritması ile çözülmüştür. Nümerik              |                              |
|           | zaman adımları 2x10 <sup>-3</sup> s alınarak 1000 |                              |
|           | adım iterasyon yapılmıştır.                       |                              |
|           |                                                   |                              |

### 2.3. Çatıya Bağlanan Güneş Panellerine Etkiyen Aerodinamik Kuvvetler

Warsido ve ark. (2014) zemine ve çatıya bağlanan güneş panellerinde, paneller arası boşlukların etkisini incelemiştir. Paneller arası yanal ve boylamsal uzunluklar sabit tutulup, yapının köşelerinden olan uzaklıkları değiştirilerek açıklık etkileri test edilmiştir. Çatıya bağlanan sistemde kuvvet ve moment katsayıları, yapının köşeleriyle olan mesafe arttıkça azalma göstermiştir. Geurts ve Steenbergen (2009) eğimli çatılar üzerine bağlanan güneş panelleri için çalışmalar yapmışlardır. Panellerin yukarı ve aşağı kısımlarında oluşan basınçların büyüklüklerinin incelenmesi sonucu, yukarı yönde oluşan yüklerin aşağı yönde oluşan yüklerden çok daha büyük olduğu sonucuna ulaşmışlardır. Stathopoulos ve ark. (2014) zemine bağlı panellerde rüzgar basınç dağılımları incelemek için denevsel çalışmalar yapmışlardır. Farklı bölgelerde ve çeşitli panel eğim açılarında 1:200 ölçekli geometrik modeller kullanmışlardır. Bu çalışma sonucunda 135° kritik rüzgar yönü için, farklı konfigürasyonlar altında basınç dağılımının değişiklik gösterdiği ve panelin arkasında daha yüksek emme kuvvetleri oluştuğu sonucuna varmışlardır. Pratt ve Kopp (2012) rüzgar tüneli testleriyle çatıya bağlanan fotovoltaik panellere etki eden güney rüzgarlarının basınç ve hız ölçümlerini yapmışlardır. Akış ayrılması baloncuğunun dışındaki ortalama akış alanı, panelsiz bir çatıdaki akışa benzer çıkmıştır. Panelin yukarı tarafından merkezine doğru en yüksek kaldırma kuvvetleri yüksek emme kuvvetleri tarafından karakterize edilmiştir.

| Yazar, Yıl | Akış Konfigürasyonu                       | Temel Bulgular                |
|------------|-------------------------------------------|-------------------------------|
| Radu,      | - 1,4 x 1,4 m'lik kesit alanına sahip bir | - Rüzgar tüneli deneyleri     |
| Axinte ve  | sınır tabaka rüzgar tünelinde deneyler    | sonucunda kollektörlerin      |
| Theohari   | yapılmıştır.                              | ilk sıradakilerinin diğerleri |
| (1986)     |                                           | üzerinde barınak etkileri     |
|            | - 5 katlı olarak dizayn edilmiş daire     | olduğu gözlemlenmiştir.       |
|            | blokları üzerine tam ölçek boyutları 2,0  |                               |
|            | x 1,0 m olan basit kollektörler 1:50      | - Benzer yapılar üzerinde     |
|            | ölçekli olarak yerleştirilmiştir. Bina    | akış birleşmesi gözlemlen-    |
|            | boyutu 43 cm uzunluk, 30 cm yükseklik     | memiştir.                     |
|            | ve 30 cm genişlik olarak                  |                               |
|            | modellenmiştir.                           |                               |
|            |                                           |                               |

Çizelge 2.2. Çatıya bağlanan güneş panellerine etkiyen aerodinamik yükler

| Geurts ve<br>Steenbergen<br>(2009)                                   | <ul> <li>Çatıya bağlanmış 1,60 m uzunluk ve<br/>0,8 m genişlikteki bir tahta panel<br/>üzerinde çalışma yapılmıştır. Panelin<br/>kalınlığı 18 mm ve çatı eğimi 42°'dir.<br/>12 adet basınç musluğu panele<br/>bağlanarak ölçümler yapılmıştır.</li> <li>Ölçümler 10° ve 350° arası her 10°'de<br/>bir yapılmıştır.</li> </ul>                                                                                                                               | <ul> <li>Maksimum ve minimum<br/>basınç büyüklükleri orantılı<br/>bir ilişki göstermiştir.</li> <li>Panel üzerine etkiyen<br/>rüzgar yüklerinin, panelin<br/>alt kısmına etkiyen rüzgar<br/>yüklerinden daha büyük<br/>olduğu gözlemlenmiştir.</li> </ul>                                                                                                                                                                                      |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bronkhorst,<br>Franke,<br>Geurts,<br>Bentum ve<br>Grepinet<br>(2010) | <ul> <li>Çatıya bağlanan güneş paneli<br/>analizlerinde kullanılan dikdörtgen<br/>yapının tam ölçek boyutları 10 m<br/>yükseklik, 30 m genişlik ve 40 m<br/>derinliğe sahiptir ve 1:50 ölçeğinde<br/>modellenmiştir. Kullanılan güneş paneli<br/>ise 35° eğim açısı ve 1,2 m tam ölçekte<br/>derinliğe sahiptir.</li> <li>Analizler FLUENT yazılımı yardımı<br/>ile RNG k-ε, DSM ve DSM-WR<br/>türbülans modelleri kullanılarak<br/>yapılmıştır.</li> </ul> | <ul> <li>RNG modeli ile elde<br/>edilen basınçların deney-<br/>lerle elde edilenlere göre<br/>daha büyük olduğu sonu-<br/>cuna varılmıştır.</li> <li>Deneysel olarak elde<br/>edilen emme kuvvetine en<br/>yakın değer RNG türbülans<br/>modeli ile elde edilmiştir.<br/>Köşelere yakın basınç nok-<br/>talarındaki köşe vor-<br/>teksleri DSM modeli ile<br/>deneysel sonuçlara yakın<br/>olarak gözlemlenmiştir.</li> </ul>                  |
| Aly ve<br>Bitsuamlak<br>(2012)                                       | <ul> <li>Küçük (0,9144 m x 1,524 m), orta<br/>(1,524 m x 2,4384) ve büyük boyutlu<br/>(1,524 m x 2,7432 m) olmak üzere üç<br/>farklı panel kullanılarak rüzgar tüneli<br/>testleri yapılmıştır.</li> <li>Tüm modelleme 1:15 ölçeğinde<br/>yapılmıştır ve çatı 3:12 ve 5:12 olmak<br/>üzere iki farklı eğim açısı modellenerek<br/>testler yapılmıştır.</li> </ul>                                                                                           | - Aynı geometriye sahip<br>güneş paneli olan ve olma-<br>yan çatıların basınç dağı-<br>lımı birbirinden çok fark-<br>lıdır. Çatıya bağlanan pa-<br>nellerin maruz kaldığı<br>aero-dinamik basınçlar<br>panelin çatı üzerindeki<br>konumu ve çatının eğimine<br>bağlı olarak büyük<br>değişiklikler göster-miştir.<br>Çatının kenarlarına yakın<br>olarak bağlanan gü-neş<br>panelleri genel olarak<br>düşük net basınçlara maruz<br>kalmıştır. |

Çizelge 2.2. Çatıya bağlanan güneş panellerine etkiyen aerodinamik yükler (devam)

| Kopp,<br>Farquhar ve<br>Morrison<br>(2012) | <ul> <li>1:30 ölçekte 12 sıralı panel art arda<br/>dizilerek rüzgar tüneli testleri<br/>yapılmıştır. 2° ve 20° olmak üzere iki<br/>farklı panel eğim açısı kullanılmıştır.</li> <li>Genişlik c=1,00 m ve uzunluk 1,65 m<br/>olarak belirlenmiştir. Çatı yüksekliği<br/>için ise 7,3 m kullanılmıştır. Pürüzlülük<br/>yüksekliği, z0, 0,03 m ve hız 15 m/s<br/>olarak belirlenmiştir.</li> <li>Testler 0° ve 180° arasında 19 farklı<br/>rüzgar yönü için (10° aralıklarla)<br/>yapılmıştır.</li> </ul>             | - Düşük panel eğim<br>açılarında basınç farkları<br>panele etki eden ana<br>yükleri oluştururken, yük-<br>sek eğim açılarında<br>türbülans etkileri de basınç<br>yükleri ile birlikte etki<br>ederek daha yüksek<br>yüklerin oluştuğu gözlem-<br>lenmiştir. Rüzgar yönlerine<br>göre, bina köşelerinde daha<br>büyük köşe vortekslerinin<br>oluştuğu durumlarda panel-<br>lere çok yüksek yükler etki<br>ettiği görülmüştür. |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Xynpnitou<br>(2012)                        | <ul> <li>Rüzgar tünelinde testler 1:200 ölçekli<br/>modeller kullanılarak yapılmıştır. Mo-<br/>dellenen yapının dış ölçüleri 15,3 cm x<br/>9,8 cm ve 3,5 cm ve 8 cm olmak üzere<br/>iki farklı yükseklik kullanılmıştır.</li> <li>Üç adet 4,3 cm uzunluk, 2,8 cm<br/>genişlik ve 1 mm kalınlığa sahip panel<br/>kullanılmıştır. 20°, 30°, 40° ve 45°<br/>olmak üzere dört farklı panel eğim<br/>açısında testler yapılmıştır.</li> </ul>                                                                           | - En kritik basınç<br>katsayıları 135° rüzgar<br>yönünde yapılan testler<br>sonucu ortaya çıkmıştır.<br>Yapının yüksekliğinin<br>artmasıyla, yapının rüzgarı<br>karşılayan kenarında daha<br>küçük emme kuvvetleri<br>oluştuğu gözlemlenmiştir.<br>105° ve 180° arasındaki<br>rüzgar yönle-rinde kuvvet<br>katsayılarının en yüksek<br>pik değeri verdiği<br>görülmüştür.                                                    |
| Pratt ve<br>Kopp<br>(2012)                 | <ul> <li>Model, 20° derece eğim açılı, 12 sıra<br/>ve panel başına 12 modülden oluşan,<br/>1:30 ölçeğinde tasarlanmış bir sis-<br/>temdir. Çatı yükseklisi 7,3 m, panel<br/>genişliği 1 m, panelin yerden yüksekliği<br/>0,16 m ve panel uzunluğu 1,65 m' dir.<br/>Paneller arası boşluk bırakılmadan<br/>dizilim yapılmıştır ve toplam uzunluk<br/>20 m' dir. Çatının yüksekliğine bağlı<br/>olarak hesaplanan Reynolds sayısı<br/>1,9x10<sup>5</sup> ve modelin oluşturduğu blokaj<br/>%3' den azdır.</li> </ul> | - Akış ayrılma bölgesi<br>panellerle doludur ve boş<br>olan çatılarla karşılaştı-<br>rıldığında birbirine çok ya-<br>kın çıkmıştır. Ayrılma böl-<br>gesinin içerisinde kalan pa-<br>nellere etkiyen en yüksek<br>kaldırma kuvvetleri diğer<br>panellere kıyasla çok daha<br>yüksek bulunmuştur.                                                                                                                              |

Çizelge 2.2. Çatıya bağlanan güneş panellerine etkiyen aerodinamik yükler (devam)

| Aly ve<br>Bitsuamlak<br>(2013)                  | <ul> <li>- Üç farklı boyutlarda (küçük, orta ve<br/>büyük ölçek) rüzgar tüneli testleri<br/>yapılmıştır. Küçük panelin boyutları<br/>0,9144 x 1,524 m, orta panelin<br/>boyutları 1,524x2,4384 m ve büyük<br/>panelin boyutları 1,524x2,7432 m'dir.<br/>Bütün modüller ve yapılar 1:15<br/>ölçeğinde modellenmiştir. İki farklı<br/>eğimli (3:12 ve 5:12) çatı kullanılmıştır.<br/>Blokaj oranı %5' in altında tutulmuştur.</li> </ul>                                                                                                               | - Aerodinamik basınçların<br>çatıya bağlanan panellerde<br>yüksek oranda çatının eği-<br>mine ve panellerin kon-<br>figürasyonuna bağlı olduğu<br>bulunmuştur. Çatı kenar ve<br>köşelerine yerleştirilen pa-<br>nellerin yüksek rüzgar yük-<br>lerine maruz kaldığı göz-<br>lemlenmiştir.                                                                                                                                                     |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stathopoulos,<br>Zisis ve<br>Xypnitou<br>(2014) | - Çatıya bağlanan bir panel sistemi<br>incelenmiştir. Toplam boyutları 4.3 cm<br>(uzunluk) x 2.8 cm (genişlik) x 1 mm<br>(kalınlık) olmak üzere üç panel<br>bağlanmıştır. Paneller iki farklı<br>konuma bağlanarak test edilmiştir.<br>Birincisi üzerine bağlı olduğu yapının<br>rüzgar giriş bölümüne yakın, ikincisi ise<br>rüzgar giriş bölgesinin uzak<br>kısmındadır. Panel eğim açıları 20° ve<br>45° arasında değiş-mektedir. 0°-180°<br>arası 15°'lik açılarla 13 farklı rüzgar<br>yönü analiz edilmiştir.                                   | - Ön konuma bağlanan<br>panelde panel eğim açısı<br>arttıkça basınç katsayıları<br>azalmaktadır. Arka<br>konuma bağlanan<br>panellerde ise panel eğim<br>açısı arttıkça ba-sınç<br>katsayıları da artmak-tadır.<br>Panelin üzerinde bul-<br>unduğu yapının yüksek-<br>liğine bağlı olarak, yük-<br>seklik arttıkça her panel<br>eğimi için emme kuvveti<br>azalma göstermiştir.                                                               |
| Warsido,<br>Bitsuamlak<br>ve Barata<br>(2014)   | <ul> <li>Zemine bağlanan ve çatıya bağlanan<br/>güneş panelleri sistemleri ayrı ayrı<br/>incelenmiştir. Zemine bağlanan panel-<br/>lerin boyutları 9.14 m x 1.34 m, 1:30<br/>ölçeğinde, çatıya bağlanan paneller ise<br/>5,64 m yüksekliğindeki bir çatıda 27,43<br/>m x 35,66 m boyutlarında 1:30 ölçekte<br/>incelenmiştir.</li> <li>Panel eğim açısı 25° olarak alınmıştır<br/>ve rüzgar yönleri 0°-180° arası 10°'lik<br/>açılarla ayrı ayrı ele alınmıştır. Sistem<br/>toplam 10 panelin ardışık<br/>sıralanmasıyla oluşturulmuştur.</li> </ul> | - Barınak etkisi nedeniyle<br>kuvvet ve moment katsayı-<br>larındaki en büyük düşüş<br>ikinci sırada yer alan<br>panelde görülmüştür. İkinci<br>panelden sonra bu düşüş<br>hızla azalmıştır ve dör-<br>düncü panelden sonra<br>ihmal edilebilecek kadar<br>küçük bir düşüş meydana<br>gelmektedir. Rüzgarı ilk<br>karşılayan panellerin<br>üzerine etkiyen kuvvetler<br>her zaman en büyükken iç<br>panellere daha az kuvvet<br>etkimektedir. |

Çizelge 2.2. Çatıya bağlanan güneş panellerine etkiyen aerodinamik yükler (devam)

| (        | Tizelge 2.2.  | Cativa | bağlanan | günes | panellerine etkive | en aerodinamik | vükler ( | (devam)   | ۱ |
|----------|---------------|--------|----------|-------|--------------------|----------------|----------|-----------|---|
| <u>م</u> | , incige a.a. | Çatiya | Jugianan | guneş | pullenterine etkiy |                | yunici ( | (ue vain) | , |

|            |                                                | <b>-</b>                    |
|------------|------------------------------------------------|-----------------------------|
| Stenabaugh | - 1:20 ölçekli bir çatıya bağlanan panel       | - Panel çatı köşelerine     |
| ve Kopp    | kullanılmıştır. Düz çatı ve 30° eğime          | yakın olduğu durumlarda     |
| (2015)     | sahip çatı olmak üzere iki farklı çatı tipi    | panel üst yüzeyine          |
|            | kullanılmıştır. 12,25 m'ye 15 m tam            | uygulanan rüzgar basıncı    |
|            | ölçüleridir. Reynolds sayısı 3x10 <sup>5</sup> | çok art-maktadır, bu        |
|            | olarak tespit edilmiştir.                      | nedenle çatıya bağlanan     |
|            |                                                | panellerde çatı             |
|            | - Düz panellerin tam ölçek boyu 50 cm          | köşelerinden uzak bölge-    |
|            | x 145,5 cm'dir. Her modül 2,5 cm x             | lerde kurulum yapılmalıdır. |
|            | 7,28 cm boyutundadır ve 0,3 cm                 |                             |
|            | kalınlığa sahiptir. Dizi toplam 28 ayrı        | - Panel dizaynında önemli   |
|            | modülden oluşmaktadır.                         | olan nokta basınç denge-    |
|            |                                                | lenme etkileridir.          |
|            |                                                |                             |

Bu bölümde, zemine bağlanan ve çatıya bağlanan güneş paneli tiplerinin üzerine etkiyen rüzgar yükleri konusunda kaynak araştırması ve özetlerinin çıkarılması yapılmıştır. Geçmişte yapılan çalışmaların sonuçlarının yanı sıra, akış konfigürasyonları, analiz sistemin geometrisi, kullanılan türbülans modelleri ve akış parametrelerine de yer verilmiştir.

Yapılan çalışmalarda ana hedef, güneş paneline etkiyen rüzgar yüklerinin yaklaşık olarak doğru hesaplanması ve bu sayede optimum bir güneş paneli geometrisi oluşturularak güneş paneline hasar verebilecek rüzgar yüklerinden veya ekstra maliyetlerden kaçınmaktır. Bu tezde ise, zemine bağlanan güneş panellerine etkiyen rüzgar yükleri Hesaplamalı Akışkanlar Dinamiği yöntemleri ile incelenerek, oluşabilecek aerodinamik yükler tespit edilmiştir. Güneş paneli üzerine etkilen rüzgar yükleri farklı rüzgar yönleri, rüzgar hızları ve panel eğimleri için incelenmiştir.

#### **3. MATERYAL VE YÖNTEM**

### 3.1. Giriş

Bu çalışmada zemine bağlı bir güneş panelinin üzerinden rüzgar akışındaki basınç ve hız dağılımları ve panel üzerine etki eden aerodinamik yükler farklı panel eğim açıları, rüzgar giriş hızları ve rüzgar yönleri ile nümerik olarak incelenmiştir. Analizler, 10 m/s ve 20 m/s olmak üzere iki farklı rüzgar giriş hızı, 0°, 30°, 60°, 90°, 120°, 150° ve 180° olmak üzere yedi farklı rüzgar giriş yönü ve 25°, 35° ve 45° olmak üzere üç farklı eğim açısında yapılmıştır. Bu üç ana değişkenin akış alanındaki etkileri ayrı ayrı incelenmiştir. Oluşan hız vektörlerinin şiddetleri, yönleri ayrıca panel ve destek yapısı üzerinde oluşan basınç katsayılarının değerleri başta olmak üzere panel dizaynında göz önüne alınması gereken tüm veriler değerlendirilmiştir. Ayrıca bu farklı parametrelerin kaldırma, sürüklenme ve moment katsayıları üzerindeki etkileri ve panel etrafındaki akışta oluşan girdap bölgelerinin şiddetleri de incelenmiştir.

Bu bölümde, güneş panelleri, keskin köşeli cisimler üzerinden akış ve Hesaplamalı Akışkanlar Dinamiği (CFD) yöntemleri hakkında temel bilgiler verilmiştir. Ayrıca daha önce yapılmış olan literatür araştırmalarında bulunan sonuçlarla doğrulama çalışmaları yapılmış ve bu tezde yararlanılan mevcut geometriye ve kullanılan analiz yöntemlerine dair bilgiler verilmiştir.

### 3.2. Güneş Panelleri

Yenilenebilir enerji son yıllarda dünya tarafından ana elektrik üretim kaynaklarından biri olarak tanımlanmaktadır. 2018 yılının sonunda yenilenebilir enerji kaynaklarından üretilen elektrik, toplam elektrik üretiminin %26'sını oluşturmaktadır. Ayrıca yenilebilir enerji kaynakları birçok ülkede fosil yakıtlar tarafından üretilen enerjiyle maliyet açısından yarışabilecek seviyelere gelmiştir. Dünya çapında yenilenebilir enerji kaynaklarına yapılan yatırım 2018 yılında 288,9 trilyon Amerikan Dolarıdır. Bu yatırımların neredeyse tamamı fotovoltaik güneş enerji panelleri ve rüzgar gücüyle çalışan enerji kaynaklarına yapılmıştır (https://www.ren21.net/reports/global-status-report/2019).
Güneş panelleri, fotovoltaik hücrelerden oluşan ve güneş ışığını direkt olarak elektrik enerjisine dönüştüren genellikle silikondan üretilmiş olan yapılardır. Güneş ışınları fotovoltaik hücrelere etki ettiğinde yarı iletkenlerin içerisindeki elektronlar serbest kalır ve akmaya başlar. Elektronların bu akışı bir akım oluşturur ve bu akımdan harici olarak yararlanılabilir (El-Ghonemy 2012). Fotovoltaik güneş enerji panelleri kullanılan malzemeye göre üç farklı kategoride değerlendirilmektedir. Bu malzemeler; kristal silikon, ince film ve yoğunlaştırılmış fotovoltaik organik malzemedir (Eldin ve ark. 2015). Güneş panellerinin avantajları bakım sürelerinin uzun olması, çalışması için operatöre ihtiyaç duyulmaması, uzun ömürlü olması, yakıt kullanmaması, kurulumunun kolay olması ve ihtiyacı karşılaması iken dezavantajları yüksek kurulum maliyetlerinin olması ve bulutlu hava şartlarında istenen üretimin elde edilememesidir (El-Ghonemy 2012).

### 3.3. Daldırılmış Cisimler Üzerinden Akış

Bazen akış sabit bir cisim üzerinden akarken, bazen de bir cisim durağan akışkanın içerisinde belirli bir hız ile ilerler. Bu iki durumda birbirine eşdeğerdir, çünkü burada sadece cismin ve akışkanın birbirine göre izafi hareketi önemlidir. Bu tip akışlar cisimler üzerinden akış veya dış akış olarak adlandırılır. Dış akışa maruz kalan cisimler, sahip olduğu genel şekillere göre akım çizgili ve küt cisimler olarak adlandırılırlar. Eğer bir cisim akışın içerisindeki tahmini akım çizgilerine göre dizayn edilmiş ise akım çizgili olarak adlandırılırken, cisim akışı engelleme eğiliminde ise bu cisimlere küt cisimler denilir.

Cisimler bir akışkan içerisinde ilerlemeye zorlanırsa akışkan tarafından belirli bir direnç kuvvetine maruz kalırlar. Bir akışkan cisim üzerinde çeşitli yönlerde kuvvetler ve momentler oluşturabilir. Akışkanın bir cisim üzerinde akış yönünde oluşturduğu kuvvete sürüklenme kuvveti denir. Basınç kuvvet bileşenleri ve akışın normali yönündeki duvar kayma kuvvetlerinin toplamına ise kaldırma kuvveti denir. Akışkan kuvvetleri ayrıca cismin dönme hareketi yapmasına sebep olan momentler de üretebilmektedir. Akış yönünde oluşan momente yuvarlanma momenti, kaldırma kuvveti yönünde oluşan momente sapma momenti ve yanal kuvvetler yönünde oluşan momente ise yunuslama momenti denir.

20

Bir diferansiyel dA alanı üzerine etki eden basınç ve sürtünme kuvvetleri sırasıyla PdA ve  $\tau_w$  dA olarak gösterilir. dA alanı üzerine etkiyen diferansiyel sürüklenme ve kaldırma kuvveti iki boyutlu akışta sırasıyla;

$$dF_D = -P \, dA \cos\theta + \tau_w \, dA \sin\theta \tag{2.1}$$

ve

$$dF_L = -P \, dA \sin \theta - \tau_w \, dA \cos \theta \tag{2.2}$$

ile ifade edilirler. Burada  $\theta$ , dA alanının dış normale olan açısıdır. Cisim üzerine etki eden toplam sürüklenme ve kaldırma kuvvetleri sırasıyla;

$$F_D = \int_A dF_D = \int_A (-P\cos\theta + \tau_w\sin\theta) dA$$
(2.3)

ve

$$F_L = \int_A dF_L = -\int_A (P\sin\theta + \tau_w\cos\theta) dA \qquad (2.4)$$

ile elde edilir. Sürüklenme ve kaldırma kuvvetleri, akışkanın yoğunluğuna  $\rho$ , akış hızına V, cismin boyutu ve şekline bağlıdır. Bu kuvvetleri kullanmak birçok durumda mümkün olmadığından onun yerine sürüklenme ve kaldırma kuvveti karakteristiklerini temsil eden boyutsuz sayılar kullanılır. Sürüklenme katsayısı C<sub>D</sub> ve kaldırma katsayısı C<sub>L</sub>;

$$C_D = \frac{F_D}{\frac{1}{2}\rho \, V^2 \, A} \tag{2.5}$$

ve

$$C_L = \frac{F_L}{\frac{1}{2}\rho \, V^2 \, A} \tag{2.6}$$

ile tanımlanır. Burada A cismin izdüşümü alanı ve 1/2pV<sup>2</sup> dinamik basınçtır (Çengel ve Cimbala 2006).

#### 3.4. Hesaplamalı Akışkanlar Dinamiği

Hesaplamalı akışkanlar dinamiği (HAD), akışkan denklemlerinin bilgisayar yardımıyla çözümler ve modern mühendislik uygulamalarında deneysel çalışmalara tamamlayıcı olarak kullanılır. Deneysel çalışmalarla kaldırma kuvveti, sürüklenme kuvveti, basınç düşüşleri ve güç gibi akış özellikleri elde edilebilirken, kayma gerilmeleri, hızlar, basınç profilleri ve akış çizgilerini elde etmek için HAD yöntemleri kullanılabilir. Ayrıca deneysel veriler, HAD analizleri sonucu bulunan genel değerleri doğrulamak amacıyla da kullanılmaktadır. HAD analizleri, deneysel yollarla uzun uğraşlar sonucu elde edilen ve zaman alan testlerin süresini azaltmak ve tasarım döngüsü sürecini kısaltmak için yararlanılan bir yöntemdir.

Hesaplamalı akışkanlar dinamiği günümüzde laminer akışları kolayca çözümleyebilirken türbülanslı akışları türbülans modelleri olmaksızın çözümlemesi neredeyse imkansızdır. Her durumu karşılayan bir türbülans modeli olmadığı için HAD çözümlemeleri yapılırken doğru türbülans modeli seçmek çok önemlidir. HAD analizlerinin bu kısıtlamalarına rağmen standart türbülans modelleri ile pratik mühendislik uygulamaları için kullanılabilir sonuçlar elde etmek mümkündür (Çengel ve Cimbala 2006).

HAD yöntemlerinde kullanılmak üzere bir çok farklı türbülans modeli geliştirilmiştir. Bunlar genel olarak, Spalart-Allmaras modeli, k-ε modelleri, k-ω modelleri ve Reynolds stress modelleri olarak sınıflandırılır. Spalart-Allmaras modeli, uzay ve havacılık yapılandırılmamış kodlar için geliştirilmiştir. endüstrisinde Turbo makine uygulamalarında yoğunlukla kullanılmaktadır. Duvara bağlı akışlarda, akış ayrılmasının ve yeniden dolaşım bölgelerini zayıf olduğu uygulamalarda Spalart-Allmaras modelinden yararlanılabilir. k-ɛ modelleri, ekonomik, güçlü ve bir çok akış durumunda güvenli sonuçlar vermektedir. k-w modelleri, k-ɛ modellerine iyi bir alternatiftir. Daha fazla bilgisayar gücüne ihtiyaç duymakta, fakat duvar yakını bölgelerde herhangi bir düzenleme yapılmasına gerek kalmadan çözümlemeler yapabilmektedir. Reynolds stress

modelleri, akışta oluşan dönümler ve rotasyonları hesaplamada başarılıdır. Diğer yöntemlere göre daha fazla bilgisayar gücüne gereksinim duymakta ve Reynolds gerilmeleri ile akış arasında güçlü bir bağ kurmaktadır.

Hesaplamalı akışkanlar dinamiği yöntemleri kullanılarak, güneş paneli üzerinde oluşan basınçlar, akış alanında gözlemlenen hızlar, panele etkiyen kaldırma, sürüklenme ve moment katsayılarının incelenmesi amaçlanmıştır. Literatürde bu konuda yapılan nümerik çalışmalarda RANS (Reynolds Ortalamalı Navier-Stokes denklemleri) türbülans modellerinden Realizable k-ε veya SST k-ω modelleri kullanılmıştır. Bu modeller akış analizi uygulamalarında, özellikle sınır tabaka akışlarını daha iyi inceleyebilmek ve akış ayrılmalarını gözlemleyebilmek amacıyla çok sık kullanılmaktadırlar. k-ɛ modeli kullanılacaksa y+ değerleri en az 30 olmalıdır ve bu nedenle ağ (mesh) yapısına dikkat edilmelidir. Ağ yapısının küçük olması y+ değerlerinin çok düşük çıkmasına neden olmaktadır. k-w türbülans modeli ise daha fazla bilgisayar gücü gerektiren fakat y+ değerlerinden bağımsız bir modeldir. İki modelin de kullanılma amacı akış ayrılmalarını daha net analiz edebilmektir. Bu nedenle akış ayrılmalarının söz konusu olduğu veya önemli olduğu çalışmalarda bu iki türbülans modelinden yararlanılır. Bu tez çalışmasında analizler Realizable k-ɛ türbülans modeli kullanılarak yapılmıştır.

Hesaplamalı akışkanlar dinamiğini yöntemlerinin kullanımında, öncelikle analiz edilecek geometrinin oluşturulması gerekmektedir. Akış denklemlerinin her seferinde çözümleneceği düğüm noktalarının atanması ve genel ağ yapısının oluşturulması ile analizlere ön hazırlık yapılmaktadır. Ağ yapısının tamamlanması ile çözümleme kısımlarına geçilmektedir. Çözümleme kısmında oluşturulan yapının tipine bağlı olarak (iç akış veya dış akış durumuna göre) belirlenen akış alanın sınır şartları belirlenir. Ayrıca analizlerde kullanılacak olan akışkanın özellikleri, başlangıç şartları, türbülans modelleri belirlenir. Bahsedilen aşamalar tamamlandıktan sonra yapılacak denklem çözümlerinin iterasyon sayısı verilir ve sonuçlar elde edilir.

## 3.5. Literatür Çalışmaları ile Doğrulama

Yapılan çalışmalarda kullanılan yöntemleri ve bulunan sonuçları doğrulamak için daha önce yapılmış olan çalışmalarla kıyaslama yapılmalı ve elde edilen sonuçların doğruluğundan emin olmak için doğruluğu kanıtlanmış çalışmalar referans alınmalıdır. Bu çalışmada Jubayer ve Hangan (2012) çalışması referans alınarak, kullandığı geometri ve akış alanı birebir modellenerek doğrulama yapılmıştır. Jubayer ve Hangan'ın (2012) çalışmasında SST k- $\omega$  türbülans modeli ile analizleri gerçekleştirirken bu doğrulama çalışmasında Realizable k- $\varepsilon$  modeli kullanılmıştır. Yüksek çözünürlüklü 3 boyutlu Reynolds Ortalamalı Navier-Stokes simülasyonu paneller üzerinde yapılmıştır. Kullanılan panel seti 4x6'lık 24 adet panelden oluşmaktadır. Her panel 1,2 m genişlik ve 0,6 m uzunluğa sahipken, toplam uzunluk 2,4 m ve genişlik 7,2 m ve panel açısı 25°'dir.



Şekil 3.1. Solar panel önden görünüş (a) ve yandan görünüş (b).

Şekil 3.1'de solar panelin ön ve yan görünüşleri verilmiştir. Burada L panelin uzunluğu, W panelin genişliği ve H ise yüksekliği ifade etmektedir.



Şekil 3.2. Akış Alanı

Şekil 3.2' de analizde kullanılan akış alanının tamamı gösterilmiştir. Tam model simülasyonu için, hız 10 m yükseklikte 17,5 m/s olarak alınmıştır ve açık alanı temsil eden aerodinamik pürüz uzunluğu 0,03'tür. Model ölçek (1:10) ve tam ölçek olmak üzere iki farklı çalışma yapılmıştır.

Akış alanın alt kısmı pürüzlü yüzey olarak tanımlanmış ve belirli bir pürüzlülük yüksekliği sınır tabaka modelini sağlaması amacı ile verilmiştir. Akış alanının yan duvarları simetri yüzeyi olarak belirlenmiştir. Panel yüzeyi pürüzsüz duvar olarak değerlendirilmiş ve çıkış bölgesine ise sıfır basınç gradyanı sınır şartı verilmiştir. Basınç ve hız denklemlerini çözümlemek için PISO (Pressure Implicit with Splitting of Operators) algoritması çalıştırılmıştır. Yakınsama kriteri 10<sup>-6</sup> olarak alınmıştır.

Çizelge 3.1'de Jubayer ve Hangan tarafından yapılan çalışmaya ait kaldırma ve sürüklenme katsayısına karşılık yapılan doğrulama çalışmasında elde edilen sürüklenme ve kaldırma katsayısı verilmiş ve sonuçlar uyumlu çıkmıştır. Jubayer ve Hangan'ın çalışmasına göre panelin üst yüzeyinde oluşan basınç katsayısı ( $C_p$ ) değerleri giriş ve çıkış kenarında sırasıyla 1.90 ve -0.31'dir. Mevcut çalışmada ise bu değerler sırasıyla 1.34 ve -0.5 olarak elde edilmiştir. Panelin alt yüzeyinde giriş ve çıkış kenarlarında oluşan Cp değerleri ise Jubayer ve Hangan tarafından -0.73 ve -0.30 olarak tespit edilirken, mevcut çalışmada bu değerler sırasıyla -0.71 ve -0.59 olarak bulunmuştur. Basınç katsayıları arasındaki bu fark türbülans modelinin farklılığı ile açıklanabilir.

|                       | Kaldırma Katsayısı | Sürüklenme Katsayısı |
|-----------------------|--------------------|----------------------|
| Model ölçek (Jubayer) | -1.20              | 0.56                 |
| Tam ölçek (Jubayer)   | -1.15              | 0.54                 |
| Mevcut Çalışma        | -1.28              | 0.59                 |

Çizelge 3.1. Model, tam ölçek ve mevcut çalışmaya ait sürüklenme ve kaldırma katsayıları

### 3.6. Panel Geometrisi ve Akış Alanı

Bu çalışmada, tek bir güneş paneline etkiyen rüzgar yükleri farklı rüzgar hızları, rüzgar yönleri ve panel eğim açısı etkisinde incelenmiştir. Şekil 3.3' de gösterildiği gibi solar

panel 20 cm uzunluk ve 10 cm genişliğe sahiptir. Panel eğim açısı 25°, 30° ve 45° olarak belirlenmiştir. Paneli destekleyen boru çapı ve panel kalınlığı 2 cm iken destek borusunun yüksekliği 6 cm olarak belirlenmiştir. Panel üzerinde yürütülen analizlerde 10 m/s ve 20 m/s olmak üzere iki farklı rüzgar hız kullanılmıştır. Ayrıca analizler panele gelen rüzgar yönü 0°, 30°, 60°, 90°, 120°, 150° ve 180° alınarak yapılmıştır.



Şekil 3.3. Solar panel model boyutları

Şekil 3.4' de gösterildiği gibi güneş panel modelinin analiz edildiği akış alanı 700 mm genişlik, 3510 mm uzunluk ve 600 mm yüksekliğe sahiptir. Geometri ve akış alanı SolidWorks ile modellenmiştir ve ağ (mesh) yapısı oluşturmak için Ansys Meshing yazılımı kullanılmıştır.



Şekil 3.4. Akış Alanı

#### **3.7.** Ağ Yapısı

Şekil 3.5'de Ansys Meshing yardımı ile oluşturulan panel ve akış alanına ait ağ yapısı gösterilmiştir. Ağ yapısı toplam 734600 adet elemandan oluşmaktadır. Panelin merkezinden x, y, z düzlemlerinde 0.2 m x 0.2 m x 0.25 m'lik bir dikdörtgen prizma

alan oluşturulmuş ve bu bölgede tetra ağ yapısı tanımlanmıştır. Akış alanının geri kalan kısımlarında panel etrafındaki bölgeye kıyasla daha seyrek ağ yapısına sahip olan hexa mesh oluşturulmuştur. Panel etrafında görülen dikdörtgen alanda tetra mesh sık olarak atılmıştır. Sonuç olarak panel etrafındaki bölgede daha sık çözümleme yapılması sağlanmıştır. Şekil 3.6 ve Şekil 3.7'de görüldüğü gibi, ağ yapısı akış alanın girişinden panele doğru ve çıkış yüzeyinden panele doğru gittikçe sıklaşmaktadır. Bunun nedeni de yine panele yakın bölgelerde çözümlemelerin çoğaltılması ile daha doğru sonuçlara ulaşmaktır. Bu şekilde bazı bölgelerde sık bazı bölgelerde seyrek ağ yapısı oluşturmak, her bölgede sık mesh oluşturmanın aksine, çözümlemelerin daha kısa sürede yapılması avantajı sağlar.



Şekil 3.5. Solar panel ve akış alanının mesh yapısı



Şekil 3.7. Mesh kesit görüntüsü – 2

### 3.8. Korunum Denklemleri

Bu bölümde güneş paneli modeli üzerinde oluşan akışlardaki analizlerde kullanılan korunum denklemleri ve türbülans modeline ait denklemler verilmiştir. Kartezyen koordinat sisteminde üç boyutlu, sürekli, sıkıştırılamaz bir akışta süreklilik denklemi Denklem (2.7) ile verilirken, x-y-z yönündeki momentum denklemleri sırasıyla Denklem (2.8), (2.9) ve (2.10) ile ifade edilmiştir.

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
(2.7)

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
(2.8)

$$\rho\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$
(2.9)

$$\rho\left(u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial P}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$
(2.10)

Bu çalışmada k- $\varepsilon$  denklemleri kullanılmıştır. Standart k- $\varepsilon$  modelinin sınır tabakayı çözmek için iyi tasarlanmış bir denklem olmasının yanında Realizable k- $\varepsilon$  modeli standart k- $\varepsilon$  modelinin iyileştirilmiş halidir. Realizable k- $\varepsilon$  modeli düzlemsel ve dairesel jetlerin dağılma oranını daha gelişmiş bir şekilde hesaplayabilmektedir. Ayrıca bu model, dönümlü akışlarda, güçlü ters basınç gradyanlarına maruz kalan sınır tabakalarda, akış ayrılmalarında ve yeniden dolaşım bölgelerinde çok iyi performans sergilemektedir. Denklem (2.11) ve (2.12) sırasıyla türbülans kinetik enerjisi

$$\frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho k u_j) = \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu_t}{\sigma_k}\right)\right] + P_k + P_b - \rho \epsilon - Y_M + S_k$$
(2.11)

ve türbülans yayınım oranı

$$\frac{\partial}{\partial t}(\rho\epsilon) + \frac{\partial}{\partial x_j}(\rho\epsilon u_j) = \frac{\partial}{\partial x_j} \left[ \left( \mu + \frac{\mu_t}{\sigma_\epsilon} \right) \frac{\partial\epsilon}{\partial x_j} \right] + \rho C_1 S_\epsilon - \rho C_2 \frac{\epsilon^2}{k + \sqrt{\nu\epsilon}} + C_{1\epsilon} \frac{\epsilon}{k} C_{3\epsilon} P_b + S_\epsilon$$
(2.12)

ifade etmektedir. Burada,

$$C_1 = \max\left[0.43, \frac{\eta}{\eta+5}\right], \quad \eta = S\frac{k}{\epsilon}, \quad S = \sqrt{2S_{ij}S_{ij}}$$
 (2.13)

iken türbülans viskozitesi;

$$\mu_t = \rho C_\mu \frac{k^2}{\epsilon} \tag{2.14}$$

ile tanımlanmıştır. Burada

$$C_{\mu} = \frac{1}{A_0 + A_s \frac{kU^*}{\epsilon}} \tag{2.15}$$

$$U^* = \sqrt{S_{ij}S_{ij} + \check{\Omega}_{ij}\check{\Omega}_{ij}}$$
(2.16)

$$\check{\Omega}_{ij} = \Omega_{ij} - 2\epsilon_{ijk}\omega_k \tag{2.17}$$

$$\Omega_{ij} = \overline{\Omega_{ij}} - \epsilon_{ijk}\omega_k \tag{2.18}$$

olarak ifade edilmiştir.  $\overline{\Omega_{\iota J}}$  ortalama rotasyon tensörü oranı iken model sabitleri;

$$A_{0} = 4.04, \ A_{s} = \sqrt{6} \cos \phi$$

$$\phi = \frac{1}{3} \cos^{-1}(\sqrt{6}W), \ W = \frac{S_{ij}S_{jk}S_{ki}}{\tilde{S}^{3}}, \quad \tilde{S} = \sqrt{S_{ij}S_{ij}}, \ S_{ij} = \frac{1}{2}\left(\frac{\partial u_{j}}{\partial x_{i}} + \frac{\partial u_{i}}{\partial x_{j}}\right)$$

$$C_{1\epsilon} = 1.44, \qquad C_2 = 1.9, \ \sigma_k = 1.0, \qquad \sigma_\epsilon = 1.2$$

ile tanımlanmıştır.

#### 3.9. Başlangıç ve Sınır Şartları

Bu çalışmada Realizable k-ε türbülans modeli kullanılarak analizler yapılmıştır. Realizable modelinin standart modele tercih edilmesinin sebebi bu modelin karmaşık geometrilerde akış davranışını daha iyi yakalayabilmesi ve akışın rotasyonlu olduğu, sınır tabakanın ters basınç gradyanlarına maruz kaldığı, akış ayrılmasının ve yeniden dolaşımın olduğu akışlarda standart k- ε türbülans modeline göre daha hassas sonuçlar vermesidir. Akış alanının üst, sağ ve sol yüzeyleri, çeper olarak tanımlanmış ve pürüzsüz bir yüzey olarak kabul edilmiştir. Bu nedenle kayma gerilmesi x, y ve z eksenlerinde 0 Pa olarak belirlenmiştir.

Panel yüzeyleri pürüzlü çeper olarak atanmıştır ve kaymama koşulu kabulü yapılmıştır. Ayrıca panel yüzeyi pürüzsüz kabul edilmiştir. Akış alanının alt bölgesine de çeper tanımlanması yapılmıştır ve kaymama koşulu uygulanmıştır. Alt duvarda aerodinamik pürüzlülük uzunluğu açık alanda zemini temsil eden durum için 0,03 olarak tanımlanmıştır. Bu çalışmada yapılan analizler panellerin açık arazide olduğu kabulü ile yapılmıştır. Bu pürüzlülük uzunluğu değeri ile analizlerde açık araziyi modelleyip sınır tabakada oluşacak logaritmik rüzgar profilini doğru simüle etmek amaçlanmıştır.

Akış alanının giriş yüzeyi hız girişi olarak tanımlanmış ve giriş yüzeyinden hava 20 m/s hızla panele yedi farklı rüzgar yönünden (0°, 30°, 60°, 90°, 120°, 150° ve 180°) verilmiştir. Ayrıca girişte türbülans yoğunluğu %5 ve türbülans viskozite oranı 10 olarak alınmıştır.

Akış alanının çıkış yüzeyi basınç çıkışı olarak tanımlanmış ve çıkış yüzeyindeki havanın basıncı 0 Pa olarak alınmıştır. Basınç çıkışı yüzeyinde türbülans yoğunluğu %10 ve türbülans viskozite oranı 10 olarak belirlenmiştir.

## 3.10. Nümerik Analiz Koşulları

Navier-Stokes denklemlerini çözümlemek için PISO (Pressure Implicit with Splitting of Operators) algoritması basınç-hız çifti olarak seçilmiştir. Konumsal denklemlerin ayrıklaştırılması kısmında basınç denklemleri için PRESTO, türbülans kinetik enerjisi ve türbülans yayılım oranı için ise ikinci dereceden denklemler seçilerek analizler yapılmıştır.

## 3.11. Mesh Hassasiyeti Çalışması

Yapılan CFD analizlerini kendi aralarında doğrulamak için mesh hassasiyeti çalışması yapılmıştır. Bu çalışmada, 524 382, 734 600 ve 990 333 hücreden oluşan üç farklı ağ

yapısı kullanılmıştır. Şekil 3.8 ve Şekil 3.9'da bu üç farklı mesh sayısı ile elde edilen sırasıyla kaldırma ve sürüklenme katsayısı değerleri verilmiştir. En kaba ağ yapısı ile yapılan çalışmadaki değerler, orta ve en ince hassasiyetteki ağ yapısında çıkan değerlere göre %3-%4 farklı çıkmıştır. En ince ve orta hassasiyetteki mesh arasındaki değerlerde kayda değer bir fark olmadığından dolayı orta hassasiyetteki mesh olan 734 600 hücreli ağ yapısı ile analizler yapılmıştır. Böylece daha düşük bir bilgisayar gücü ile daha kısa sürede analizlerin tamamlanması sağlanmıştır.



Şekil 3.8. Üç farklı mesh ile yapılan mesh doğrulama çalışması kaldırma katsayısı değerleri



Şekil 3.9. Üç farklı mesh ile yapılan mesh doğrulama çalışması sürüklenme katsayısı değerleri

## 4. BULGULAR VE TARTIŞMA

# 4.1. Giriş

Bu bölümde, 0°, 30°, 60°, 90°, 120°, 150° ve 180° rüzgar yönlerinde panel modeli üzerine etki eden basınç katsayıları ve panel etrafında oluşan hız dağılımları, 10 m/s ve 20 m/s rüzgar giriş hızlarında ve 25°, 35° ve 45° eğim açılı paneller için ayrı ayrı incelenmiştir. Yapılan analizlerde Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemleri kullanılarak farklı akış konfigürasyonları incelenmiştir. HAD analizleri yapılırken ANSYS Fluent yazılımından yararlanılmıştır.

Bu bölümde öncelikle kullanılan ağ yapısından bağımsız olarak sonuçların değişmediği hücre sayısını bulmak için hassasiyet çalışması yapılmıştır. Kaldırma katsayısı temel alınarak, yüzdesel olarak değişimin en aza indirgendiği ve çözümleme süresinin göreceli olarak düşük olduğu hücre sayısı belirlenerek optimum parametreler seçilmiştir. Daha sonra farklı rüzgar yönü, akış hızı ve panel eğim açılarında basınç ve hız dağılımları elde edilerek, kaldırma, sürüklenme ve moment katsayıları ile panele gelen aerodinamik yükler değerlendirilmiştir.

# 4.2. 0° Rüzgar Yönünde Sonuçlar

25° eğimli panelde 10 m/s ve 20 m/s rüzgar hızlarında akış alanında oluşan hız vektörleri sırasıyla Şekil 4.1 ve 4.2'de verilmiştir. Hem 10 m/s hem de 20 m/s rüzgar akış hızında oluşan hız vektörlerinin şiddet olarak farklı fakat dağılımlarının aynı olduğu görülmüştür. Ayrıca panelin giriş kenarında hızlar 10 m/s rüzgar hızında 10,2 m/s ve 20 m/s rüzgar hızında 16,5 m/s değerlerine sahipken panelin çıkış kenarında sırasıyla 13,6 m/s ve 24 m/s hızlar oluşmuştur.



**Şekil 4.1.** 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



**Şekil 4.2.** 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.3 ve 4.4'te görüldüğü gibi, 35° eğimli panel üzerinden akışta panel giriş kenarında 10 m/s ve 20 m/s rüzgar hızları için sırasıyla 7,5 m/s ve 15 m/s hızlar oluşmuştur. Panel çıkış kenarında ise 10 m/s ve 20 m/s rüzgar hızları için sırasıyla 13,5 m/s ve 27 m/s hızlar oluşmuştur.



**Şekil 4.3.** 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



**Şekil 4.4.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.5 ve 4.6'da görüldüğü gibi, 45° panel eğim açılarında elde edilen hız vektörleri 25° eğim açısında oluşan vektörlerle benzer sonuçlar ortaya koymuştur. Panel giriş kenarında 10 m/s rüzgar hızında 7,5 m/s ve 20 m/s rüzgar hızında 15 m/s hızlar oluşmuştur. Panel çıkış kenarında ise 10 m/s rüzgar hızında 13,5 m/s ve 27 m/s rüzgar hızında 15 m/s hızlar oluşmuştur.



**Şekil 4.5.** 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



**Şekil 4.6.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.7 ve 4.8'de görüldüğü gibi, 25° eğim açılı panelde her iki hızda da üç farklı vorteks akış bölgesi oluşmuştur. Bu bölgelerde 10 m/s rüzgar hızı için oluşan hızlar 3,43 m/s ve 0,036 m/s arasında değişmektedir. 20 m/s rüzgar hızı için ise oluşan hızlar 6,02 m/s ve 0,026 m/s arasında değiştiği görülmektedir.



Şekil 4.7. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.8. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.9 ve 4.10'da görüldüğü gibi, 35° eğim açılı panelde iki farklı hız için de üç farklı vorteks bölgesi oluştuğu görülmüştür. Bu bölgelerde 10 m/s rüzgar hızı için oluşan hızlar 3,21 m/s ve 0,016 m/s arasında değişmektedir. 20 m/s rüzgar hızı için ise oluşan hızlar 6,06 m/s ve 0,08 m/s arasında değiştiği görülmektedir.



Şekil 4.9. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.10. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.11 ve 4.12'de görüldüğü gibi, 25° ve 35° eğimli panellerde ortaya çıkan üç farklı vorteks bölgesinin 45° eğimli panellerde de oluştuğu görülmüştür. Bu bölgelerde 10 m/s rüzgar hızı için oluşan hızlar 3,43 m/s ve 0,033 m/s arasında değişmektedir. 20 m/s rüzgar hızı için ise oluşan hızlar 6,06 m/s ve 0,070 m/s arasında değiştiği görülmektedir.



Şekil 4.11. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.12. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.13'de 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin tam ortasından geçen bir düzlem oluşturulup bu düzlem üzerinde panele ve akış alanına etkiyen basınç katsayıları gösterilmiştir. Akış alanının genelinde 0,38 basınç katsayısı değeri hakimdir.

En yüksek basınç katsayılarının panelin giriş kenarı ve destek yapısının rüzgarı dik olarak karşıladığı bölgelerde olduğu görülmüştür ve bu bölgelerde basınç katsayısı değeri 1,01'dir. Panelin çıkış kenarına gidildikçe basınç katsayılarının düştüğü gözlemlenmiştir. Akış panel bölgesine giriş yaptığında panelin üst yüzeyinde yüksek basınç katsayıları oluşurken, panelin alt yüzeyinde basınç katsayıları düşmüştür.



Şekil 4.13. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.14'de 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları verilmiş ve akış panele gelmeden önceki Cp değeri 0,24 olarak tespit edilmiştir. Akış paneli geçtikten sonra bu değer 0,04'e düşmüştür. Maksimum basınç katsayısı olan 1,03 ise akışın paneli karşılayan giriş kenarı ve destek yapısının ön yüzeyinde elde edilmiştir.



Şekil 4.14. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.15'te görüldüğü gibi 20 m/s rüzgar hızı ve 45° panel eğim açısında akış alanında hakim olan  $C_p$  değeri 0,08'dir. Maksimum basınç katsayısı 35° panel eğim açısında olduğu gibi panel giriş kenarında ve destek yapısı ön yüzeyinde meydana gelmiş ve değeri 1,04'tür.



Şekil 4.15. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.16 (a) ve (b)'de 25° panel eğim açısı ve 20 m/s rüzgar hızı için sırasıyla panel üst ve alt yüzeylerine etkiyen basınç katsayıları dağılımları verilmiştir. Panelin giriş kenarına yakın üst yüzey bölgesinde basınç katsayısı 0,80 olarak tespit edilirken, panelin çıkış kenarına yakın üst yüzey bölgesinde bu değer -0,25 olarak belirlenmiştir. Üst yüzeyde 5 farklı basınç bölgesi oluşmuştur ve bunlar sırasıyla 0,80, 0,59, 0,38, 0,17, -0,04 ve -0,25 değerlerini göstermektedir. Alt yüzey üzerinde oluşan minimum basınç katsayısı -0,88'dir. Minimum değerler panel alt yüzeyinde giriş kenarına yakın olan bölge görülür. Panel alt yüzeyinde üst yüzeyin aksine çıkış kenarına doğru gidildikçe basınç katsayısı yükselmiştir. Alt yüzeyde oluşan en yüksek basınç katsayısı değeri -0,25 olarak tespit edilmiş ve bu değer panelin çıkış kenarına en yakın bölgede oluşmuştur.



**Şekil 4.16.** 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.17 (a) ve (b)'de 35° panel eğim açısı ve 20 m/s rüzgar hızı için sırasıyla panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları verilmiştir. Panelin üst yüzeyindeki Cp değerleri panelin giriş kenarından çıkış kenarına doğru sırasıyla 1,03, 0,83, 0,64, 0,44, 0,24, 0,04 ve -0,16 olarak elde edilmiştir. Panelin alt yüzeyinde giriş ve çıkış kenarında oluşan minimum basınç katsayıları sırasıyla -0,75 ve -0,16 olarak tespit edilmiştir.



Şekil 4.17. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla Şekil 4.18 (a) ve (b)'de gösterilmiştir. Panel üst yüzeyinde giriş kenarında elde edilen basınç katsayısı 1,04 iken, çıkış kenarına gidilince bu değer -0,10 olmuştur. Panel üst yüzeyi üzerine etki eden basınç dağılımları sırasıyla,

1,04, 0,85, 0,66, 0,47, 0,28, 0,09 ve -0,10'dur. Panel eğim açısı arttıkça panel üst yüzeyine etki eden basınç katsayılarında artış gözlemlenmiştir. 45° panel eğim açısında alt yüzey giriş ve çıkış kenarında oluşan maksimum basınç katsayısı değeri sırasıyla - 0,67 ve -0,10 olarak elde edilmiştir.



Şekil 4.18. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.19, 4.20 ve 4.21'de 20 m/s rüzgar hızında panel üzerine etkiyen basınç katsayısı değerleri sırasıyla 25°, 350 ve 450 panel eğim açısı için verilmiştir. Panel üst yüzeyinde basınç katsayısı tüm panel eğimlerinde çıkış kenarına gidildikçe azalmaktadır. Panel alt

yüzeyinde ise çıkış kenarına doğru basınç katsayısı artmaktadır. Tüm panel eğim açılarında üst yüzeyde oluşan panel giriş ve çıkış kenarı arasında basınç katsayısı farkı alt yüzeyde oluşana göre daha fazladır. -0,01 m olarak gösterilen konumda oluşan pik basınç katsayısı değerleri destek yapısının olduğu bölgede oluşup, destek yapısının panel üzerindeki basınç katsayısı dağılımına etkisini göstermektedir.



Şekil 4.19. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.20.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.21.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

# 4.3. 30° Rüzgar Yönünde Sonuçlar

Şekil 4.22 ve 4.23'te 25° eğim açısında panel etrafında oluşan hız vektörleri sırasıyla 10 m/s ve 20 m/s rüzgar akış hızlarında verilmiştir. Akışın panelin giriş kenarına yakın kısmında hız değerlerinin sırasıyla 7,5 m/s ve 15 m/s değerler sahip olduğu ve çıkış kenarına doğru 11,3 ve 22,5 m/s'ye yükseldiği tespit edilmiştir.



Şekil 4.22. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.23. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.24 ve 4.25'te görüldüğü gibi, 35° panel eğim açısında her iki hızda da, 25° eğimli paneldeki gibi vorteks oluşumu gözlemlenmiştir. Bu vorteks bölgesi paneli geçen akışın yavaşlaması ile panelin geri akış bölgesinde oluşmuştur.



**Şekil 4.24.** 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.25. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.26 ve 4.27'de görüldüğü gibi, 45° eğim açılı panel üzerinde yapılan analizlerde de her iki hızda panel geri akış bölgesinde vorteks oluşumu tespit edilmiştir. Aynı zamanda bir diğer vorteks bölgesi destek yapısı ön yüzeyinde panelin alt tarafında kalan alanda gözlemlenmiştir.



**Şekil 4.26.** 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.27. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.28 ve 4.29'da görüldüğü gibi, 25° panel eğim açısında her iki hızda da panel ve destek yapısı arasında kalan boşlukta ve bu boşlukta destek yapısına yakın olan bölgede vorteksler oluşmuştur. Maksimum hızlar bu vorteks alanının etrafında, alt akış bölgesinde tespit edilmiştir. 10 m/s hızında vorteks bölgesinde oluşan hızların 4,27 m/s ve 0,030 arasında değişmektedir. 20 m/s rüzgar hızında ise 7,75 m/s ve 0,088 m/s arasında değiştiği görülmektedir.



Şekil 4.28. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.29. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.30 ve 4.31 35° panel eğim açısı ve sırasıyla 10 m/s ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörlerini vermektedir. 25° panel eğim açısı ile kıyaslandığı vorteks bölgelerinin daha geniş bir alana yayıldığı görülmektedir. Burada 10 m/s rüzgar hızı için vorteks bölgesinde oluşan hızlar 4,32 m/s ve 0,087 m/s arasında olduğu görülmektedir. 20 m/s rüzgar hızı için bu hızlar 7,58 m/s ve 0,10 m/s'dir.



Şekil 4.30. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.31. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.32 ve 4.33 hız vektörlerini 45° panel eğim açısı için sırasıyla artan hızda vermektedir. 10 m/s rüzgar hızında vorteks bölgesinde oluşan hızlar 4,26 m/s ve 0,013 m/s arasında değişmektedir. 20 m/s rüzgar hızı için ise hız değerleri 7,54 m/s ve 0,055 m/s'dir. 45° panel eğim açısında meydana gelen vorteksler üç eğim açısı için yapılan analizler arasında en büyükleridir.



Şekil 4.32. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.33. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.34'de 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin tam orta düzleminden geçen akış alanı üzerinde basınç dağılımları gösterilmiştir. Akış alanının geneline hakim olan  $C_p$  katsayısı 0,12'dir. Panel üzerine ve destek yapısına etki eden maksimum basınç katsayıları, panelin giriş kenarında 1,0, destek yapısının giriş yüzeyinde ise 0,78 olarak elde edilmiştir. Panelin alt yüzeyinde düşük basınç gradyanları oluştuğu görülmüştür.



Şekil 4.34. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.35'de gösterildiği gibi 35° panel eğim açısında akış panele yaklaşırken  $C_p$  değeri 0,22, akış paneli geçtikten sonra ise akış alanının tamamında 0,03 değeri hakimdir. Maksimum basınç katsayısı panelin giriş kenarında 0,98 değerinde elde edilmiş ve destek yapısının giriş yüzeyinde ise bu değer 0,79 olarak belirlenmiştir.



Şekil 4.35. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.36'da görüldüğü gibi 45° panel eğim açısında akış panele yaklaşırken panel hizasının biraz üzerinde  $C_p$  değeri 0,25 iken, akış alanın geri kalan büyük kesiminde 0,08 değerindedir. Maksimum basınç katsayısı panel giriş kenarında  $C_p$  0,94 olarak elde edilmiştir. Destek yapısı giriş yüzeyinde ise oluşan basınç katsayısı değeri 0,77'dir. 0° rüzgar yönünde maksimum  $C_p$  değerleri destek yapısı üzerinde gözlemlenirken, 30° rüzgar açısında ise bu maksimum değer sadece panel giriş kenarında görülmüştür.



Şekil 4.36. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla Şekil 4.37 (a) ve (b)' de gösterilmiştir. Panelin giriş kenarı 30° rüzgar yönünde köşedir ve bu köşede basınç katsayısı 1,0 iken ve panelin çıkış kenarına gidildikçe basınç katsayısının gözlemlenen değeri -0,32'ye düşmektedir. Panel alt yüzeyinde rüzgarın giriş yaptığı köşede oluşan basınç katsayısı -1,43'tür. Panel alt yüzeyinin çıkış kenarına yakın bölgede  $C_p$  değeri -0,32'dir. Bu sonuçlara göre 0° rüzgar yönünde yapılan analizlerle benzer şekilde giriş kenarlarında üst yüzeyde maksimum, alt yüzeyde minimum basınç kuvvetleri oluşmaktadır. 0° rüzgar yönünde panel üzerinde açıya bağlı olarak yatay bir basınç katsayısı dağılımı gözlemlenirken, 30° rüzgar yönünde bu dağılım açısal düzlemde oluşmaktadır. Dikey rüzgar yönünde basınç kuvvetleri köşelerde oluşmaktadır ve bu da panel tasarımı yapılırken dikkate alınması gereken bir durumdur.


Şekil 4.37. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.38 (a) ve (b)' de 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla gösterilmiştir. Rüzgarın giriş yaptığı panel giriş kenarında görülen basınç katsayısı 0,98'dir. Bu değer çıkış kenarına gidilince -0,34'e düşmüştür. Panel alt yüzey giriş kenarında oluşan basınç katsayısı - 0,91 iken çıkış kenarında -0,34'tür. Alt yüzey orta bölgesinde ise minimum basınç bölgesi gözlemlenmiş ve burada basınç katsayısı -1,66 olarak elde edilmiştir.



**Şekil 4.38.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.39 (a) ve (b)' de 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla gösterilmiştir. Panel giriş kenarında oluşan maksimum basınç katsayısı 0,94 iken çıkış kenarında gözlemlenen düşük basınç bölgesinde ise basınç katsayısı -0,27'dir. Panel alt yüzeyi giriş kenarına etki eden basınç katsayısı -1,45 ve çıkış kenarına etkiyen basınç katsayısı -0,27 olarak tespit edilmiştir.



Şekil 4.39 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.40, 4.41 ve 4.42'de 20 m/s rüzgar hızında panel üzerine etkiyen basınç katsayısının konumla değişimi sırasıyla  $25^{\circ}$ ,  $35^{0}$  ve  $45^{0}$  panel eğim açısı için verilmiştir.  $25^{\circ}$  eğim açısına sahip panelin üst yüzeyindeki düz bir çizgi üzerinde  $C_p$  dağılımının 0° rüzgar yönünde oluşan dağılıma benzer olduğu görülmektedir. Basınç üst yüzeyde maksimum ve alt yüzeyde minimum değerden başlayıp panelin çıkış kenarında -0,32 değerine ulaşmaktadır.  $35^{\circ}$  ve  $45^{\circ}$  panel eğim açılarında elde edilen basınç dağılımları

25° eğim açısındaki dağılımla benzerdir. Tüm panel eğim açılarında oluşan basınç katsayısı değerleri farklı olmasına rağmen dağılımları benzerdir. -0,01 m konumunda gözlemlenen panel alt yüzeyindeki pik değerler, destek yapısının panel üzerindeki etkisini göstermektedir.



**Şekil 4.40.** 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.41.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği





## 4.4. 60° Rüzgar Yönünde Sonuçlar

Şekil 4.43 ve 4.44'de 25° eğim açısındaki panel etrafında oluşan hız vektörleri sırasıyla 10 m/s ve 20 m/s rüzgar akış hızlarında verilmiştir. Panel üst yüzeyinde hızların sırasıyla 10,5 m/s ve 21 m/s olduğu görülmektedir. Akışın panelin giriş kenarına yakın kısmında hız değerlerinin sırasıyla 7,5 m/s ve 15,1 m/s değerlere sahip olduğu ve çıkış kenarına doğru 11,3 ve 22,5 m/s' ye yükseldiği tespit edilmiştir.



**Şekil 4.43.** 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.44. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.45 ve 4.46'da görüldüğü üzere 35° eğimli panelde 10 m/s ve 20 m/s rüzgar akış hızlarında akış giriş kenarında sırasıyla 7,5 m/s ve 15,1 m/s hız ile girmekte ve çıkış kenarına doğru 10,5 m/s ve 21 m/s'ye ulaşmaktadır.



**Şekil 4.45.** 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.46. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

10 m/s ve 20 m/s rüzgar akış hızlarında 45° eğimli panel etrafında oluşan hız vektörleri sırasıyla Şekil 4.47 ve 4.48'de verilmiştir. Panel giriş yüzeyinde hız 8,2 m/s ve 16,5 m/s iken çıkış kenarına gidildikçe 12 m/s ve 24 m/s değerlerini almıştır.



Şekil 4.47. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.48. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

25° panel eğim açısında 10 m/s ve 20 m/s rüzgar hızı için panel ve destek yapısı etrafındaki hız vektörleri Şekil 4.49 ve 4.50'de gösterilmiştir. Her iki hızda da panel çıkış bölgesinde ve destek yapısının hemen arkasında hız değerlerinin düştüğü tespit edilmiştir. Bu bölgelerde 10 m/s rüzgar hızı 5,1 m/s ve 20 m/s rüzgar hızı 9,1 m/s değerlerine düşmüştür. Maksimum hız sırasıyla 15,3 m/s ve 30 m/s olarak panelin ve destek yapısının hemen arasında kalan bölgede oluşmuştur. Her iki hızda da panel çevresinde herhangi bir vorteks oluşumu görülmemiştir.



Şekil 4.49. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.50. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.51 ve 4.52'de görüldüğü gibi her iki hızda da 35° eğimli panel ve destek yapısı arasında kalan bölgede ve destek yapısının hemen arkasında iki farklı vorteks oluşumu gözlemlenmiştir. Vorteks bölgesindeki hız değerleri 10 m/s rüzgar hızı için 0,9 m/s ve 20 m/s rüzgar hızı için 1,6 m/s'dir.



Şekil 4.51. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.52. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.53 ve 4.54'de görüldüğü gibi her iki rüzgar hızında ve 45° eğimli panelde, 35° eğimli paneldekine benzer olarak, panel ve destek yapısı arasında ve destek yapısı arka akışında iki ayrı girdap bölgesi oluşmuş ve burada da hızlar sırasıyla 0,9 ve 1,6 m/s olarak tespit edilmiştir.



Şekil 4.53. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.54. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.55'de 25° panel eğim açısı ve 20 m/s rüzgar hızı için akış alanının ortasından geçen bir düzlem üzerinde basınç katsayısı dağılımları verilmiştir. En yüksek basınç katsayısı destek yapısının ön yüzeyinde görülmüş ve değeri 0,92 olarak tespit edilmiştir. Akış alanı içerisinde 0,32 basınç katsayısı değeri baskındır.



Şekil 4.55. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.56'da görüldüğü gibi 35° eğimli panele sahip akış alanı içerisindeki basınç dağılımında 0,27 değeri hakimdir. En yüksek basınç katsayısı değeri olan 0,87 destek yapısının rüzgarı karşılayan ön yüzeyinde elde edilmiştir.



Şekil 4.56. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.57'de gösterildiği gibi, rüzgar  $45^{\circ}$  eğimli panele yaklaşmadan önceki akış alanında  $C_p$  0,45 değerinde iken akış paneli geçtikten sonra bu değer 0,24'tür. Destek yapısının ön yüzeyinde meydana gelen basınç katsayısı değeri ise 0,65 olarak bulunmuştur.



Şekil 4.57. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.58 (a) ve (b)' de 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla gösterilmiştir. Rüzgar 60°'lik açı ile panel giriş kenarına yaklaşmıştır ve bunun sonucunda 0,52  $C_p$  değeri elde edilmiştir. Panel üst yüzey çıkış kenarında  $C_p$  değerinin -0,08 olduğu gözlemlenmiştir. Panel alt yüzeyinin giriş kenarındaki  $C_p$  değerinin en düşük -1,67 olduğu ve çıkış kenarına gidildikçe bu değerin -0,08 olduğu tespit edilmiştir.



Şekil 4.58. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla Şekil 4.59 (a) ve (b)' de gösterilmiştir. Panel üst ve alt yüzey giriş kenarında basınç katsayısı sırasıyla 0,67 ve -1,73 iken çıkış kenarında her iki yüzeyde de -0,13'tür.



Şekil 4.59. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.60 (a) ve (b)' de 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst ve alt yüzeyine etkiyen basınç katsayıları dağılımları sırasıyla gösterilmiştir. Panel üst ve alt yüzeyi giriş kenarında basınç katsayısı sırasıyla 0,65 ve -1,77'dir. Her iki yüzeydeki çıkış kenarında basınç katsayısı değeri -0,16'dır.



Şekil 4.60. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.61 (a), (b) ve (c)'de 20 m/s rüzgar hızı için akış alanının orta düzlemindeki  $C_p$  değerleri sırasıyla 25°, 35° ve 45° panel eğim açısında verilmiştir. 25° eğimli panelde maksimum  $C_p$  değeri rüzgarın panele dik olarak etki ettiği bölgede oluşmuş ve 0,92

değerine sahiptir. 35° ve 45° eğimli panelde maksimum basınç katsayısı panelin giriş yüzeyinde elde edilmiş ve sırasıyla 0,87 ve 0,85 değerine sahip olduğu görülmüştür.



Şekil 4.61. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde  $C_p$  değerleri

Şekil 4.62, 4.63 ve 4.64'de görüldüğü gibi, tüm panel eğim açılarında basınç dağılımı benzerdir. 0 m destek yapısının üzerinde kalan panel bölgesidir ve burada Cp'nin minimuma pik değerleri elde edilir.



Şekil 4.62. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.63.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.64.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

## 4.5. 90° Rüzgar Yönünde Sonuçlar

Şekil 4.65 ve 4.66'da görüldüğü gibi her iki rüzgar hızında da 25° eğimli panel yüzeyi etrafında oluşan hızlarda azalma görülürken panel etrafında göreceli olarak yüksek hızlar görülmektedir. Panel etrafında akış hızı 10 m/s akış hızı için 4,5 m/s ve 20 m/s akış hızı için 9,1 m/s iken, bu alanın dışında kalan bölgede hızlar sırasıyla 10,5 m/s ve 21 m/s'ye yükselmektedir. Panel geri akış bölgesinde oluşan hızlar 3,0 m/s ve 6,1 m/s değerlerindedir.



Şekil 4.65. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.66. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.67 ve 4.68'de görüldüğü gibi, 35° eğimli panel üzerinden akışta panel yüzeyleri yakınında hızlar düşük değerlere sahipken, panel yüzeyinden uzaklaştıkça hız değerleri oldukça artar. Panel etrafında 10 m/s rüzgar hızı için 4,5 m/s ve 20 m/s hız için 9,0 m/s olan hız değerleri bu alanın etrafında 10 m/s ve 21 m/s'lere çıkmaktadır.



Şekil 4.67. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.68. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.69 ve 4.70'de panelin ortasından geçen düzlemde oluşan hız vektörleri 45° panel eğim açısı için verilmiştir. Panel yüzeyine yakın bölgelerde hız vektörü değerleri sırasıyla 4,5 m/s ve 9,1 m/s iken bu bölge dışındaki kalan alanda hızlar 10,5 m/s ve 21 m/s'dir.



Şekil 4.69. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.70. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.71 ve 4.72'de görüldüğü gibi, 25° panel eğim açısında panel alt yüzeyinden destek yapısına doğru akışta negatif yönde hız vektörleri ve ters akışlar gözlemlenmiştir. 10 m/s rüzgar hızında 2,57 m/s ve 0,021 m/s arasında hızlar oluştuğu görülmektedir. 20 m/s rüzgar hızında ise 4,59 m/s ve 0,1 m/s arasında hızlar oluşmuştur.



Şekil 4.71. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.72. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.73, ve 4.74'te 35° panel eğim açısı ve 10 m/s ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri verilmiştir. 25° eğimli panel üzerinden akışta oluşan ters akışlar 35° eğimli panelde de aynı bölgede görülmüştür. 10 m/s rüzgar hızı için tersine akış bölgesinde oluşan hızlar 2,6 m/s ve 0,053 m/s arasındadır. 20 m/s rüzgar hızında ise 4,55 m/s ve 0,063 m/s arasında değişmektedir.



Şekil 4.73. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.74. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.73, ve 4.74'te 35° panel eğim açısı ve 10 m/s ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri verilmiştir. 25° eğimli panel üzerinden akışta oluşan ters akışlar 35° eğimli panelde de aynı bölgede görülmüştür. 10 m/s rüzgar hızı için tersine akış bölgesinde oluşan hızlar 2,69 m/s ve 0,038 m/s arasındadır. 20 m/s rüzgar hızında ise 4,56 m/s ve 0,076 m/s arasında değişmektedir. Panel eğim açısı arttıkça vorteks bölgesi genişlemektedir.



Şekil 4.75. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.76. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.77'de 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin ortasından geçen düzlemde akış alanına etkiyen basınç katsayıları verilmiştir. Akış panele gelmeden önce basınç katsayısı 0,19 iken, akış paneli geçtikten sonra bu değer 0,03'e düşmektedir. Maksimum basınç katsayısı olan 1,02 panelin ve destek yapısının rüzgarı karşıladığı giriş kenarında oluşmuştur.



Şekil 4.77. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.78'de görüldüğü gibi 35° eğimli panel üzerinden akışta akış alanına hakim olan basınç katsayısı 0,17'dir. En yüksek basınç katsayıları panelin ve destek yapısının rüzgarı karşılayan giriş yüzeylerinde oluşmuştur ve 1,0 değerine sahiptir.



Şekil 4.78. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.79'da görüldüğü üzere 45° eğimli panelde akış alanına hakim olan basınç katsayısı 0,24'tür. Maksimum basınç katsayısı (1,0) panelin ve destek yapısının giriş yüzeylerinde oluşmuştur.



Şekil 4.79. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.80 (a)'da panel üst yüzeyine etkiyen basınç katsayılarından görüldüğü üzere, panel giriş kenarında -0,63 gibi düşük basınç katsayıları oluşmuştur ve panel çıkış kenarına gidildikçe basınç katsayısı 0,19 değerine yükseltmektedir. Panel alt yüzeyine etkiyen basınç dağılımı 90° rüzgar yönü nedeniyle üst yüzeyle aynı dağılıma sahiptir. Basınç katsayısının panel alt yüzeyi giriş kenarında -0,63 iken çıkış kenarına gidilince 0,19 değerini verdiği Şekil 4.80 (b)' de gösterilmiştir.



Şekil 4.80. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.81 (a) ve (b)' de görüldüğü üzere 35° eğimli panelin hem üst ve hem de alt yüzeyine etkiyen basınç katsayıları simetri nedeniyle eşittir ve değerleri giriş kenarında -0,67 iken çıkış kenarında 0,17'dir.



Şekil 4.81. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.82 (a) ve (b)' de görüldüğü üzere 45° eğimli panelde de 90° rüzgar yönü nedeniyle diğer eğimli panellerdeki gibi simetrik bir dağılım elde edilmiştir. Panel üst ve alt yüzeyindeki  $C_p$  değerleri giriş kenarında -0,82 iken çıkış kenarında 0,24'tür



Şekil 4.82. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.83 (a)' da görüldüğü gibi 25° eğimli panele etki eden maksimum  $C_p$  değeri giriş kenarında 1,02 değerindedir. 35° ve 45<sup>0</sup> eğimli panelde akış yönünden dik bakıldığında maksimum basınç katsayısı değeri 1,0 olarak tespit edilmiştir. (Şekil 4.83 (b)ve (c))



Şekil 4.83. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde  $C_p$  değerleri

Şekil 4.84, 4.85 ve 4.86'da panel üzerindeki basınç katsayısı ve konum değişimi verilmiştir. Panel alt ve üst yüzeyinde basınç dağılımları ve basınç katsayısı değerleri aynıdır. Üç farklı panel eğim açısında da 0 m konumunda grafiklerde belirgin olarak görülen negatif basınç bölgesi, destek yapısının panel üzerindeki basınç dağılımına etkisini göstermektedir.



Şekil 4.84. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.85.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği





## 4.6. 120° Rüzgar Yönünde Sonuçlar

Şekil 4.87 ve 4.88'de görüldüğü gibi her iki rüzgar hızında da rüzgar 25° eğim açısında panelin giriş kenarında sırasıyla 14,3 m/s ve 28,5 m/s hızlarla giriş yapıp çıkış kenarına gidildikçe 9,8 m/s ve 19,5 m/s'ye düşmektedir.



Şekil 4.87. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.88. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.89 ve 4.90'da görüldüğü gibi 35° panel eğim açısında, panel giriş kenarında maksimum hız vektörü olarak 10 m/s rüzgar hızı için 15 m/s ve 20 m/s rüzgar hızı için 30 m/s gözlemlenmiştir. Çıkış kenarına gidildikçe sırasıyla 4,5 m/s ve 9 m/s hızlara düşmektedir.



Şekil 4.89. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.90. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.91 ve Şekil 4.92'de 45° eğim açısında panel giriş kenarında 12,8 m/s ve 25,5 m/s hızlar gözlemlenirken, çıkış kenarında 3 m/s ve 6,1 m/s hız vektörleri görülmektedir.



**Şekil 4.91.** 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.92. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.93 ve Şekil 4.94'te destek yapısı ve panel arasındaki hız vektörleri verilmiştir. Maksimum hız olan 16,7 m/s ve 28,5 m/s panel giriş kenarının üst yüzeyinin üst akım bölgesinde oluşmuştur. Akışın panelden ayrıldığı bölgede hızların düştüğü görülmektedir.



Şekil 4.93. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri


Şekil 4.94. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.95 ve Şekil 4.96'da görüldüğü gibi 10 m/s ve 20 m/s rüzgar hızlarında sırasıyla maksimum hız olan 16,7 m/s ve 28,5 m/s panel giriş kenarının üst yüzeyinin üst akım bölgesinde oluşmuştur. Panel üst yüzeyinde hızların düştüğü ve akışın yüzeye tutunmasının azaldığı görülmüştür.



Şekil 4.95. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.96. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.97 ve Şekil 4.98'de görüldüğü gibi 10 m/s ve 20 m/s panel üst yüzeyinde hızların düştüğü ve o bölgede düşük hız vektörlerinin kümelendiği görülmüştür. Panel üst yüzeyinde 10 m/s rüzgar hızında oluşan hızlar 3,59 m/s ve 20 m/s rüzgar hızında ise 6,09 m/s'dir.



Şekil 4.97. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.98. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Akış alanına genel olarak etkiyen basınç katsayısı konturleri Şekil 4.99'da verilmiştir. Akış panele ulaşmadan önceki bölgede ve panele ulaştıktan sonraki bölgede  $C_p$  değeri 0,15'tir. Basınç katsayısı dağılımı genel akış alanında önceki bölümlerde gözlemlendiği gibi panelden etkilenmemiştir ve her bölgede aynıdır.



Şekil 4.99. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.100'de 35° panel eğim açısında akış alanının büyük çoğunluğuna etki eden basınç katsayısı 0,07 iken girişten panele kadar panel seviyesinde 0,21 değerine sahip bir  $C_p$  değeri görülmektedir.



Şekil 4.100. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.101'de 45° eğim açısında da 35° eğim açılı panelin analizlerine benzer olarak, akışın geneline 0,13 değerine sahip bir basınç katsayısı etki etmektedir. Buna karşılık panel seviyede giriş yüzeyinden panele doğru gelen bir hat üzerinde 0,26 değerine sahip bir  $C_p$  değeri etkisi görülmektedir.



Şekil 4.101. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Panel üst yüzeyine etki eden basınç katsayıları dağılımı Şekil 4.102-a'da görülmektedir. Minimum basınç katsayısı olan -1,27 değeri panelin giriş kenarına yakın bölgede oluşmaktadır. Üst yüzeye etkiyen en yüksek basınç katsayısı değeri 0,11'dir, fakat panel çıkış kenarında oluşan  $C_p$  değeri -0.35'tir. Basınç katsayıları panel üst yüzeyinde giriş köşesinde düşük değerler gösterirken, çıkış köşesine gidildikçe artma eğilimi göstermektedir. Panel alt yüzeyinde oluşan  $C_p$  değerleri Şekil 4.102-b'de gösterilmiştir.

Panelin giriş köşesinde oluşan basınç katsayısı değeri 0,87'dir. Panel çıkış kenarına gidildikçe beklendiği gibi  $C_p$  değerleri düşüş göstermektedir. Panel çıkış kenarında alt yüzeye ait basınç katsayısı değeri -0.35'tir. Burada önceki bölümlerde de karşılaşılan alt yüzey ve üst yüzeyin çıkış kenarında ortak basınç katsayıları değerine sahip olması durumu ortaya çıkmıştır.



Şekil 4.102. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.103-a'da 35° panel eğim açısında panel üst yüzeyinde oluşan minimum basınç katsayısı -1,54 ve maksimum basınç katsayısı 0,20'dir. Panel çıkış kenarında basınç - 0,20'dir. Şekil 4.103-b'de 35° panel eğim açısında panel giriş köşesinde 0,87 değerine sahip basınç katsayısı oluşmaktadır. Panel çıkış köşesinde oluşan basınç katsayısı değerleri ise -0,20'dir.



Şekil 4.103. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.104-a ve 4.104-b'de görüldüğü gibi 45° panel eğim açısında üst yüzeye etki eden maksimum basınç katsayısı 0,13 ve minimum basınç katsayısı -1,32'dir. Panel çıkış kenarında oluşan basınç katsayısı ise -0,27 olarak tespit edilmiştir. 45° panel eğim açısında panel alt yüzeyi giriş kenarında basınç katsayısı değerleri 0,91'dir. Çıkış kenarında oluşan basınç katsayısı değeri ise -0,27'dir.



Şekil 4.104. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.105-a'da Maksimum basınç katsayısı olan 1,02 değeri panelin tam rüzgarı karşılayan köşesinde oluşmaktadır. Şekil 4.105-b'de görüldüğü gibi 35° eğim açılı panelde ise maksimum basınç katsayısı 0,87 olmakla beraber, etki ettiği bölge 25° açılı panel ile birebir aynıdır. Şekil 4.105-c'de 45° açılı panelin maruz kaldığı maksimum basınç katsayısının etki ettiği bölge aynıdır fakat burada maksimum basınç katsayısı 0,91'dir.



Şekil 4.105. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde  $C_p$  değerleri

Şekil 4.106'da akış alanının tam orta düzleminden geçen bir bölgede basınç katsayısının konuma göre grafiği verilmiştir. Panel üst yüzeyinde değerler minimum basınç katsayılarından -0,35 değerine ulaşana kadar yükselmekte çıkış kenarında panel alt yüzeyi ve üst yüzeyinde oluşan basınç katsayıları değerleri eşitlenmektedir.



**Şekil 4.106** 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

Şekil 4.107 ve Şekil 4.108'de sırasıyla 35° ve 45° açılı panellere ait analizlerin tam ortadan geçen düzlemde basınç katsayısı konum grafikleri verilmiştir. Burada sırasıyla basınç katsayısıları panel çıkış kenarında -0,20 ve -0,27 değerlerinde üst yüzey ve alt yüzey üzerinde oluşan  $C_p$  değerleri eşitlenmektedir.



**Şekil 4.107.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



Şekil 4.108. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

## 4.7. 150° Rüzgar Yönünde Sonuçlar

Şekil 4.109 ve Şekil 4.110'da verilen hız vektörlerinden gözlemlendiği üzere giriş kenarında hız 7,5 m/s ve 15,1 m/s'dir. Panel üst yüzeyinde oluşan düşük hız bölgesi dönümlü akışlara sebep olmuştur ve iki farklı girdap bölgesi oluşumuna yol açmıştır. Maksimum hız olan 14,3 m/s ve 28,5 m/s dönüm bölgesinin üst akımında gözlemlenmektedir.



Şekil 4.109. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.110. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.111-112'de görüldüğü üzere 35° eğim açısında da giriş kenarında hız 7,5 m/s ve 15,1 m/s'dir.



Şekil 4.111. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



**Şekil 4.112.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.113 ve 4.114'te görüldüğü gibi 45° rüzgar yönünde giriş kenarında oluşan hız vektörleri 10 m/s rüzgar hızında 7,8 m/s ve 20 m/s rüzgar hızında 16,3 m/s'yi göstermektedir.



Şekil 4.113. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



**Şekil 4.114.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.115 ve 4.116'da görüldüğü üzere, panel üst yüzeyinde vorteks bölgesi nedeniyle tersine akışlar oluşmuştur. Akış, paneli tersine yönde tırmanma eğilimi göstermiştir. Panelin üst yüzeyi ve panel art akımında iki farklı dönüm bölgesi oluşmuştur. 10 m/s

rüzgar hızında vorteks bölgesinde oluşan hızlar 4,24 m/s ve 0,89 m/s arasında değişirken, 20 m/s rüzgar hızında bu değerler 7,6 m/s ve 1,62 m/s arasındadır.



Şekil 4.115. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.116. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.117 ve 4.118'de görüldüğü üzere 35° panel eğim açısında iki rüzgar hızında da panel üst yüzeyinde vorteks bölgesi oluşmuştur. 25° panel eğim açısına kıyasla, 35°

panel eğim açısında oluşan vorteks bölgesi daha büyüktür. 10 m/s rüzgar hızında vorteks bölgesinde hızlar 3,81 m/s ve 0,84 m/s arasında değişirken, 20 m/s rüzgar hızında bu değerler 7,68 m/s ve 1,73 m/s arasındadır.



Şekil 4.117. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.118. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.119 ve 4.120'de görüldüğü gibi 45° panel eğim açısında panel üst yüzeyinde iki girdaptan oluşan bir tersine akış bölgesi oluşmuştur. Panel eğim açıları arasında karşılaştırma yapıldığında en büyük vorteks bölgesi 45° eğimli panellerde oluştuğu görülür. 10 m/s rüzgar hızında vorteks bölgesinde oluşan hızlar 3,6 m/s ve 0,78 m/s arasında değişirken, 20 m/s rüzgar hızında 7,48 m/s ve 1,61 m/s arasında değişimektedir.



Şekil 4.119. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.120. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Akış bölgesinde hakim olan basınç katsayısı değeri Şekil 4.121'de görüldüğü gibi 0,14'tür. Panel üst yüzeyi etrafında düşük basınç bölgelerinin oluştuğu görülmektedir. Panel giriş kenarında göreceli olarak yüksek  $C_p$  değerleri gözlemlenmektedir. Maksimum basınç destek yapısının akışı karşılayan ön yüzeyinde 1,03 olarak oluşmuştur.



Şekil 4.121. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.122'de görüldüğü gibi 35° rüzgar yönünde akış alanının büyük çoğunluğuna hakim olan  $C_p$  değeri 0,07'dir. Akış panele yaklaşırken oluşan basınç bölgesinde ise gözlemlenen  $C_p$  değeri 0,18'dir. Maksimum basınç katsayısı destek yapısının ön yüzeyindedir ve 1,04 değerine sahiptir.



Şekil 4.122. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.123'de 45° rüzgar yönünde akış panele yaklaşırken giriş yüzeyinden panele kadar bir bölgede oluşan basınç katsayısı değeri 0,15'tir. Geri kalan akış alanına hakim olan  $C_p$  değeri ise 0,04'tür. Maksimum basınç 1,09 olarak destek yapısının ön yüzeyi ve panelin giriş kenarında oluşmuştur.



Şekil 4.123. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.124-a'da panel giriş kenarında üst yüzeyde  $C_p$  değerleri -0,74 iken panel çıkış kenarında -0,24 değerine yükselmektedir. Üst yüzeyde görülen maksimum basınç katsayısı 0,27'dir. Şekil 4.124-b'de alt yüzeyde oluşan basınç dağılımı verilmiştir. Panel alt yüzey giriş kenarında basınç katsayısı 0,77'dir. Çıkış kenarında üst yüzeyle birleşen  $C_p$  değeri -0,24 değerini göstermiştir.



Şekil 4.124. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.125-a'da görüldüğü gibi 35° rüzgar yönünde üst yüzey giriş kenarında basınç katsayısı dağılımı -0,15 iken çıkış kenarında -0,37'dir. Şekil 4.125-b'de 35° panel eğim

açısında alt yüzey giriş kenarında oluşan basınç katsayısı 0,93 iken çıkış kenarında oluşan basınç katsayısı -0,37'dir.



**Şekil 4.125.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.126-a'da 45° rüzgar yönünde üst yüzey panel giriş kenarında 0,05 iken çıkış kenarında -0,37'dir. 45° eğim açısında alt yüzey giriş kenarında oluşan basınç katsayısı değeri aynı zamanda maksimum basınç katsayısı değeri olan 1,09'dur. Şekil 4.126-b'de çıkış kenarına gidilince gözlemlenen basınç katsayısı değeri -0,37'dir.



**Şekil 4.126.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.127-a'da 25° panel eğim açısında panel üzerinde üzerinde görülen maksimum basınç katsayıları sırasıyla 0,90 ve 1,03'tür. Panel üzerinde oluşan maksimum basınç katsayısı alt yüzey giriş kenarında ve destek yapısı üzerinde oluşan maksimum basınç katsayısı rüzgarı karşılayan ön yüzeyde oluşmuştur. Şekil 4.127-b'de 35° panel eğiminde panele akış yönünde dik bakıldığında panel üzerinde oluşan maksimum basınç 0,93'tür. Şekil 4.127-c'de 45° panel eğiminde akış yönünde panele dik bakıldığında oluşan maksimum basınç katsayısı olan 1,09 panelin giriş kenarında oluşmuştur.



Şekil 4.127. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde  $C_p$  değerleri

Şekil 4.128'de panel üzerindeki basınç katsayısı-konum grafiği verilmiştir. Panel üst yüzeyi giriş kenarında görülen düşük basınç katsayıları çıkış kenarına gidildikçe yükselmiştir ve panel alt yüzeyinde tam tersi gözlemlenerek giriş kenarında yüksek olan basınç katsayıları çıkış kenarına gidildikçe azalmış ve panel üst yüzeyi çıkış kenarı ile minimum  $C_p$  olan -0,24 değerinde eşitlenmiştir. Şekil 4.129 ve Şekil 4.130'da verilen 35° ve 45° panel eğiminde ise çıkış kenarında  $C_p$  değerleri -0,37'dir.



**Şekil 4.128.** 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.129.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



Şekil 4.130. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

## 4.8. 180° Rüzgar Yönünde Sonuçlar

Şekil 4.131 ve 4.132'de görüldüü gibi panel üst yüzeyinde hız vektörleri göreceli olarak düşük hız değerleri göstermektedir. Panel üst yüzeyi giriş kenarında 10 m/s akış hızı için hız değeri 6,8 m/s ve 20 m/s için ise 13,6 m/s'dir. Panel üst akımında bir girdap bölgesi oluşmuştur. Ayrıca panelin çıkış kenarında bir başka dönüm bölgesi oluştuğu gözlemlenmektedir. Bu bölgenin etrafında maksimum hız olarak 13,5 m/s ve 27 m/s ortaya çıkmıştır.



**Şekil 4.131.** 25° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.132. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.133 ve 4.134'de görüldüğü gibi 35° rüzgar yönünde akış panele yaklaşırken hız vektörleri 4,5 m/s ve 9,1 m/s iken panel alt yüzeyini takip eden hız vektörleri 10,5 m/s ve 21 m/s ile çıkış yapmaktadır.



**Şekil 4.133.** 35° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.134. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.135 ve 4.136'da 45° rüzgar yönünde ise akış panele 4,5 m/s ve 9 m/s hız ile giriş yapmakta ve alt yüzeyden ayrılırken 10,5 m/s ve 21 m/s hızlara ulaşmaktadır.



Şekil 4.135. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri



Şekil 4.136. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panelin orta bölgesinden geçen düzlemde oluşan hız vektörleri

Şekil 4.137 ve 4.138'de görüldüğü gibi destek yapısı ve panel arasındaki hız vektörlerinin dağılımından, panel ile destek yapısı arasında dönüm bölgesi oluşmadığı aksine hızın o bölgede ivmelendiği gözlemlenmiştir. Fakat panel üst akımında vorteksler oluşmuştur. Dönümlü akış bölgesinde 10 m/s rüzgar hızında oluşan hızlar 4,12 m/s ve 0,027 m/s arasındayken, 20 m/s rüzgar hızında 7,62 m/s ve 0,16 m/s arasında değişmektedir.



Şekil 4.137. 25° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.138. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.139 ve 4.140'da 35° eğim açısında panel üst yüzeyi etrafında dönümlü akış bölgeleri oluşmuştur. Dönümlü akış bölgesinde 10 m/s rüzgar hızında oluşan hızlar 3,81 m/s ve 0,085 m/s arasındayken, 20 m/s rüzgar hızında 7,60 m/s ve 0,13 m/s arasında değişmektedir.



Şekil 4.139. 35° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.140. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.141 ve 4.142'de 45° eğim açısında panel üzerinde tersine akışların oluştuğu görülmektedir. Dönümlü akış bölgesinde 10 m/s rüzgar hızında oluşan hızlar 3,86 m/s ve 0,04 m/s arasındayken, 20 m/s rüzgar hızında 7,76 m/s ve 0,11 m/s arasında değişmektedir.



Şekil 4.141. 45° panel eğim açısı ve 10 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri



Şekil 4.142. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel ve destek yapısı arasında oluşan hız vektörleri

Şekil 4.143'te akış alanının orta düzleminden geçen bölgede basınç katsayıları dağılımı verilmiştir. Akış panele yaklaşırken oluşan  $C_p$  değeri 0,19'dur, fakat akışın paneli geçtikten sonraki oluşturduğu basınç katsayısı değeri olan 0,07 büyük bir bölgede hakimdir. Panelin akışı karşılayan giriş kenarında üst yüzeyde minimum basınç bölgeleri oluşurken, panelin alt yüzeyinde giriş kenarında yüksek basınç kaysayısı değerleri meydana gelmiştir. 0° rüzgar yönünde oluşan dağılımın simetriği gözlemlenmektedir. Bunun sebebi tam tersi açıdan rüzgarın giriş yapması ve tam ters bir eğimde akışın panel üzerinde hareket etmesidir. Destek yapısı üzerinde oluşan basınç katsayısı dağılımları her rüzgar yönünde olduğu gibi aynıdır. Destek yapısının rüzgarı karşıladığı ön yüzeyinde maksimum basınç katsayısı olan 1,05 değeri destek yapısının ön yüzeyinde oluşmuştur.



Şekil 4.143. 25° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.144'te 35° rüzgar yönünde ise akış panele yaklaşırken  $C_p$  değeri 0,21 olan bir basınç alanı oluşmuştur. Fakat akış alanının geri kalanına hakim olan  $C_p$  değeri 0,08'dir. Panel alt yüzeyi giriş kenarında ve destek yapısı ön yüzeyinde oluşan 1,08 değeri maksimum basınç katsayısı değeridir.



Şekil 4.144. 35° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.145'te görüldüğü gibi 45° rüzgar yönünde panele yaklaşan akışta 0,21'lik bir basınç katsayısı oluşmuştur. Akış alanının geri kalanına hakim olan basınç katsayısı 0,09'dur. Panel alt yüzeyi giriş kenarında ve destek yapısı ön yüzeyi ve panel-destek yapısı arasında kalan bölgede maksimum basınç katsayısı olan 1,13 değeri gözlemlenmiştir.



Şekil 4.145. 45° panel eğim açısı ve 20 m/s rüzgar hızı için basınç katsayıları

Şekil 4.146-a'da panel üst yüzeyi giriş kenarında oluşan basınç katsayısı değeri - 0.67'dir. Buna karşılık panelin çıkış kenarında oluşan basınç katsayısı -0.18'dir. Şekil 4.146-b'de verilen panel alt yüzeyindeki basınç katsayısı dağılımından görüldüğü gibi, panelin giriş kenarında okunan  $C_p$  değeri 1,05, çıkış kenarında ise -0.18'dir.



Şekil 4.146. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.147-a'da görüldüğü gibi 35° rüzgar yönünde -0,42 basınç katsayısı değeri panel giriş kenarında oluşmuştur ve -0,17 basınç katsayısı değeri panel çıkış kenarında oluşmuştur. Şekil 4.147-b'de 35° rüzgar yönünde panel alt yüzeyinde oluşan basınç katsayıları panel giriş kenarında 1,08, çıkış kenarında ise basınç katsayısı değeri - 0,17'dir.



Şekil 4.147. 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.148-a'da 45° rüzgar yönünde üst yüzeye etki eden basınç katsayıları giriş kenarında -0,37 ve çıkış kenarında -0,14'tür. Şekil 4.148-b'de görüldüğü gibi 45° rüzgar yönünde alt yüzeye etki eden basınç katsayısı giriş kenarında 1,13 ve çıkış kenarında - 0,14'tür.



**Şekil 4.148.** 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üst (a) ve alt (b) yüzeyine etkiyen basınç katsayıları

Şekil 4.149-a'da panel ve destek yapısına etki eden maksimum basınç katsayılarından görüleceği üzere 1,05 değeri panelin giriş kenarında alt yüzeye yakın bölgede ve destek yapısının rüzgarı karşılayan yüzeyinde oluşmaktadır. Şekil 4.149-b'de 35° rüzgar yönünde panele akış yönünde dik bakıldığında maksimum basınç katsayısı 1,08 olarak panelin giriş kenarı alt yüzeyinde oluşmuştur. Şekil 4.149-c'de görüldüğü gibi 45° rüzgar yönünde panel alt yüzeyinde akış yönünde dik bakıldığında maksimum basınç katsayısı aktsayısı değeri 1,13'tür.


Şekil 4.149. 20 m/s rüzgar hızı ve 25° (a), 35° (b) ve 45° (c) panel eğim açısında panelin akış yönüne dik görünümü, akış alanının orta düzleminde  $C_p$  değerleri

Şekil 4.150'de panelin ortasından geçen düzlem üzerindeki basınç katsayısı dağılımının konuma göre grafiğinden, panelin alt yüzeyinde basınç katsayısının giriş kenarından çıkış kenarına doğru azaldığı görülmektedir. Fakat panel üst yüzeyinde neredeyse sabit bir çizgi üzerinde değerlerin oluştuğu gözlemlenmiştir. Şekil 4.151 ve Şekil 4.152'de aynı oluşumun 35° ve 45° panel eğim açılarında da meydana geldiği görülmektedir.



Şekil 4.150. 25° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



**Şekil 4.151.** 35° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği



Şekil 4.152. 45° panel eğim açısı ve 20 m/s rüzgar hızı için panel üzerine etkiyen basınç katsayısı ve konum grafiği

### 4.9. Net Basınç Katsayısı Değerleri

Bu bölümde, 25°, 35° ve 45° eğim açılı paneller üzerine etki eden net basınç katsayıları 0°, 30°, 60°, 90°, 120°, 150° ve 180° rüzgar yönleri için ayrı ayrı incelenmiştir.  $C_{p_{net}}$ değerleri  $C_{p_{net}} = (P_{\text{ü}st} - P_{alt})/(1/2\rho U^2)$  ifadesi ile hesaplanmıştır.

25° eğim açılı panelde elde edilen  $C_{p_{net}}$  değerleri rüzgar yönlerine bağlı olarak Şekil 4.153'te verilmiştir. En yüksek  $C_{p_{net}}$  değeri 0° eğimli panelde giriş kenarında 1,68 olarak elde edilmiştir. Minimum  $C_{p_{net}}$  -1,47, 180° rüzgar yönünde panel giriş kenarında oluşmuştur.



Şekil 4.153. 25° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net basınç katsayısı değerleri

Şekil 4.154'de 35° eğim açılı panel üzerindeki  $C_{p_{net}}$  dağılımı rüzgar yönlerine bağlı olarak gösterilmiştir. Maksimum  $C_{p_{net}}$  0,99, 0° rüzgar yönünde, panel giriş kenarı olan bölgede oluşmuştur. Elde edilen en düşük  $C_{p_{net}}$  net değeri, 180° rüzgar yönünde - 1,37'dir.



Şekil 4.154. 35° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net basınç katsayısı değerleri

Şekil 4.155'te  $C_{p_{net}}$  değerlerinin 45° eğim açılı panel üzerindeki değişimi rüzgar yönlerine bağlı olarak verilmiştir. En yüksek  $C_{p_{net}}$  1,91, 0° rüzgar yönünde oluşmuştur. En düşük  $C_{p_{net}}$  -1,61 ise 180° rüzgar yönünde gözlemlenmiştir.



Şekil 4.155. 45° panel eğim açısı için her bir rüzgar yönünde panel üzerinde oluşan net basınç katsayısı değerleri

## 4.10. Kaldırma Katsayıları

Şekil 4.156'da panel eğim açıları ve rüzgar yönlerine bağlı olarak kaldırma katsayıları verilmiştir. 25° eğimli panellerde en yüksek kaldırma katsayısı 60° rüzgar yönünde 1,39 olarak elde edilmiştir. Aynı şekilde 35° ve 45° eğimli panellerde de en yüksek kaldırma katsayıları 60° rüzgar yönünde sırasıyla 1,13 ve 0,93 olarak bulunmuştur. 90° rüzgar yönünde tüm eğimli panellerde kaldırma katsayısı ihmal edilebilecek kadar az olduğunda bu rüzgar yönünde kaldırma kuvveti oluşumu gözlemlenmediği söylenebilir. 0°, 30° ve 60° rüzgar yönlerinde pozitif kaldırma kuvveti oluşurken, 120°, 150° ve 180° rüzgar yönlerinde negatif kaldırma kuvvetleri oluşmuştur.



Şekil 4.156. 25°, 35° ve 45° panel eğim açılarında oluşan kaldırma katsayıları

## 4.11. Sürüklenme Katsayıları

Şekil 4.157'de panel eğim açıları ve rüzgar yönlerine bağlı olarak sürüklenme katsayıları verilmiştir. Sürüklenme katsayılarında en düşük değerler kaldırma katsayılarında olduğu gibi 90° rüzgar yönünde elde edilmiştir. 25°, 35° ve 45° panel eğim açılarında sırasıyla sürüklenme katsayıları 0,39, 0,34 ve 0,35'tir. En yüksek  $C_D$  değerleri üç farklı panel eğim açısında da 180° rüzgar yönünde sırasıyla -0,95, -1,06 ve -1,12 olarak tespit edilmiştir.



Şekil 4.157. 25°, 35° ve 45° panel eğim açılarında oluşan kaldırma katsayıları

### 4.12. Moment Katsayıları

Şekil 4.158 ve 4.159'da panel eğim açıları ve rüzgar yönlerine bağlı olarak sırasıyla  $C_{m_x}$  yunuslama ve  $C_{m_z}$  yalpalama moment katsayısı verilmiştir. En yüksek yunuslama momenti değeri 25° eğimli panelde negatif yönde 0,47 olarak 120° rüzgar yönünde elde edilmiştir. En düşük yunuslama momenti değeri ise yine negatif yönde ve 25° eğimli panelde 0,08 olarak 30° rüzgar yönünde elde edilmiştir. Elde edilen en yüksek yalpalama momenti ise 35° eğimli panelde negatif yönde 0,33 olarak 120° rüzgar yönünde meydana gelmiştir.



Şekil 4.158. 25°, 35° ve 45° panel eğim açılarında oluşan yunuslama momenti  $C_{m_x}$  katsayıları



Şekil 4.159. 25°, 35° ve 45° panel eğim açılarında oluşan yalpalama momenti  $C_{m_z}$  katsayıları

### 5. SONUÇ

Bu çalışmada bir güneş paneline etki eden rüzgar yükleri, üç farklı panel eğim açısı (25°, 35° ve 45°) ve yedi farklı rüzgar yönü (0°, 30°, 60°, 90°, 120°, 150° ve 180°) kullanılarak analiz edilip hesaplanmıştır. Analizler Hesaplamalı Akışkanlar Dinamiği yöntemlerinden yararlanılarak yapılmıştır. Üzerinde çalışılan güneş paneli, zemine bağlı ve tekil bir paneldir.

25° eğimli panelin analizlerinde, 20 m/s hızda rüzgar yönleri 0°, 30° ve 60° iken panel üst yüzeyi pozitif basınçlara maruz kalmakta ve panel alt yüzeyi negatif basınçlara maruz kalmaktadır. Bu üç rüzgar yönü arasında panel üst yüzeyinde oluşan en yüksek basınç katsayısı olan 1,00 değeri, rüzgar yönü 30° iken oluşmaktadır. En düşük basınç katsayısı olan -1,67 ise 60° rüzgar yönünde panel alt yüzeyinde gözlemlenmektedir. Rüzgar yönü 90° olduğu durumda panel üst ve alt yüzeyi aynı basınç katsayısı dağılımına sahiptir ve oluşan en yüksek ve en düşük basınç katsayıları sırasıyla panel çıkış kenarında 0,19 ve panel giriş kenarında -0,63'tür. Rüzgar yönlerinin 120°, 150° ve 180° olduğunda ise panel üst yüzeyine negatif basınç katsayıları ve panel alt yüzeyine ise pozitif basınç katsayıları hakim olmuştur. Bu üç rüzgar yönünde gözlemlenen en yüksek basınç katsayısı panel alt yüzeyinde 1,05 olarak 180° rüzgar yönünde meydana gelmektedir. En düşük basınç katsayısı ise panel üst yüzeyinde -1,27 olarak 120° rüzgar yönünde oluşmaktadır. 0° ve 30° rüzgar yönlerinde panel alt yüzeyi ve 150° ve 180° rüzgar yönlerinde panel üst yüzeyi bölgesinde akışların dönen akış olduğu gözlemlenmektedir. Buna karşılık 0° ve 30°'de panel üst yüzeyi bölgesinde rüzgar giriş kenarından çıkış kenarına doğru pozitif olarak ivmelenmektedir. 150° ve 180° ise aynı durum panel alt yüzeyi bölgesinde görülmektedir. 25° eğimli panelin maruz kaldığı en yüksek sürüklenme katsayısı değeri olan -0,95 değeri 150° ve 180° rüzgar yönlerinde oluşmaktadır. En yüksek kaldırma katsayısı ise pozitif yönde 1,39 olmak üzere 60° rüzgar yönünde, en düşük kaldırma kuvveti ise negatif yönde -1,51 olmak üzere 120° rüzgar yönünde meydana gelmiştir.

35° eğimli panelin analizlerinde, 20 m/s rüzgar giriş hızında yapılan analizlerde 0°, 30° ve 60° rüzgar yönlerinde panel üst yüzeyinde pozitif basınç katsayısı değerleri oluşmaktadır ve en yüksek değer olan 1,03 basınç katsayısı 0° rüzgar açısında meydana

gelmektedir. Panel alt yüzeyi üzerinde negatif basınç katsayısı değerleri hakimdir ve en düşük basınç katsayısı değeri 60° rüzgar yönünde -1,73 olarak görülmektedir. 90° rüzgar yönünde panel alt ve üst yüzeyi aynı basınç dağılımına sahiptir. Burada panel giriş kenarında her iki yüzeyde de -0,67 ve çıkış kenarında 0,17 basınç katsayısı değerleri oluşmuştur. 120°, 150° ve 180° rüzgar yönlerinde panel üst yüzeyi negatif basınçlara ve panel alt yüzeyi pozitif basınçlara maruz kalmaktadır. Panel üst yüzeyinde oluşan en düşük basınç katsayısı -1,54 olan 120° rüzgar yönünde oluşmuştur. Panel alt yüzeyinde oluşan en yüksek basınç katsayısı ise 180° rüzgar yönünde 1,08 olarak elde edilmiştir. Yine 0°, 30°, 150° ve 180° rüzgar yönlerinde vorteksler oluşmaktadır. Burada 25° eğimli panele kıyasla 30° rüzgar yönünde oluşan girdap bölgesinin daha büyük olduğu görülmektedir, panel eğim açısının daha dik olmasının etkisi analizler sonucu da beklendiği gibi kendini göstermektedir. Yedi rüzgar yönü arasında gözlemlenen en yüksek sürüklenme katsayısı ve kaldırma katsayısı sırasıyla 180°'de -1,06 ve 120°'de -1,37 olarak elde edilmiştir. 90° rüzgar yönünde yine en düşük sürüklenme katsayısı görülmektedir ve değeri 0,34 olarak elde edilmiştir. En yüksek negatif pozitif katsayısı 1,13 olarak 60° rüzgar yönünde oluşmaktadır.

45° eğimli panelin analizlerinde, rüzgar giriş hızı 20 m/s olan analizlerde 0°, 30° ve 60° rüzgar yönleri için panel üst yüzeyleri pozitif basınç katsayıları ve panel alt yüzeyleri negatif basınç katsayılarına maruz kalmaktadır. Panel üst yüzeyinde oluşan en yüksek basınç katsayısı değeri 1,04'tür ve bu değer 0° rüzgar yönünde oluşmuştur. En düşük basınç katsayısı ise -1,77'dir ve 60° rüzgar yönünde elde edilmiştir. 90° rüzgar yönünde yine simetrik bir basınç dağılımı ile karşılaşılmıştır. Burada panel giriş kenarı -0,82 basınç katsayısına maruz kalırken, panel çıkış kenarında bu değer 0,24 olarak gözlemlenmektedir. 120°, 150° ve 180° rüzgar yönlerinde karşılaşılan en yüksek basınç katsayısı değerleri panel alt yüzeyinde ve en düşük basınç katsayısı değerleri ise panel üst yüzeylerinde oluşmaktadır. 120° rüzgar yönü en düşük basınç katsayısı değerleri ase panel ashiptir. Burada oluşan en düşük basınç katsayısı panel üst yüzeyi giriş kenarında -1,32'dir. En yüksek basınç katsayısı ise 180° rüzgar yönünde panel alt yüzeyinde 1,13 olarak elde edilmiştir. Yine 0°, 30°, 150° ve 180° rüzgar yönlerinde büyük girdap bölgelerinin oluştuğu görülmektedir. Burada açı daha dik olduğu için daha geniş vorteks bölgeleri oluşmaktadır. Üç panel eğim açısı arasında gözlemlenen en yüksek sürüklenme katsayıları 45° eğim açılı panelde elde edilmiştir. En yüksek sürüklenme katsayısı diğer eğim açılarında da olduğu gibi 180° rüzgar yönünde oluşmuştur ve -1,12 değerine sahiptir. En yüksek kaldırma katsayısı pozitif yönde 0,93 olarak 60° rüzgar yönünde, en düşük kaldırma katsayısı ise negatif yönde -1,10 olarak 120° rüzgar yönünde oluşmuştur. Burada sürüklenme katsayısına kıyasla, üç panel eğim açısı arasında en düşük kaldırma katsayıları 45° eğimli panelde görülmektedir. Buradan panel eğim açısı arttıkça sürüklenme kuvvetinin arttığı ve kaldırma katsayısının azaldığı sonucu elde edilir. En yüksek sürüklenme kuvvetine maruz kalan panel açısı 25° ve en yüksek kaldırma katsayısına maruz kalan paneller ise 45° açılı panellerdir.

0° rüzgar yönünde yapılan analizlerde, panel eğim açısı arttıkça panel üst yüzeyinde oluşan basınç katsayılarınında arttığı panel alt yüzeyinde basınç katsayılarının azaldığı görülmektedir. Panel üst yüzeyinde oluşan en yüksek basınç katsayısının 45° eğimli panelde 1,04 olduğu ve panel alt yüzeyinde oluşan en düşük basınç katsayısının 25° eğimli panelde -0,88 olduğu gözlemlenmiştir. Panel üst yüzeyinde oluşan hızlarda 25° eğimli panelde hız vektörleri değerlerinin daha geniş bir dağılıma, 45° eğimli panelde daha küçük bir dağılıma sahip olmaktadır. Kısacası, panel eğim açısı küçüldükçe ivmelenme daha erken olmakta ve daha yüksek hızlara ulaşılmaktadır. Buna karşılık panel eğim açısı büyüdükçe oluşan girdap bölgeleri daha belirgin hale gelmekte ve daha büyük girdap bölgeleri gözlemlenmektedir. Ayrıca panel eğim açısı arttıkça, oluşan sürüklenme katsayılarının da arttığı gözlemlenmiştir. 25° eğim açılı panelde oluşan  $C_d$ değeri 0,88 iken, 45° eğim açılı panelde 1,04'tür. Üç panel eğim açısında da oluşan kaldırma katsayıları pozitif yöndedir ve oluşan en büyük kaldırma katsayısı pozitif yönde 0,88 ile 25° eğim açılı panelde görülmektedir. En düşük kaldırma katsayısı pozitif yönde 0,69 olarak 45° eğim açılı panelde oluşmuştur. Panel eğim açısı arttıkça sürüklenme kuvvetleri artarken, kaldırma kuvvetlerinde azalma olmaktadır.

 $30^{\circ}$  rüzgar yönünde yapılan analizlerde, panel üst yüzeyindeki basınç kuvvetleri düşük eğim açısından yüksek eğim açısına giderken azalmaktadır.  $25^{\circ}$  eğim açılı panelde  $C_p$ değeri 1,00 iken 45° eğim açılı panelde 0,94'tür. Panel alt yüzeyinde ise en düşük basınç katsayısı en yüksek eğim açısında görülmekte ve bu değer -1,47 olarak gözlemlenmektedir. Burada da 0° rüzgar yönünde görülen hız vektörleri benzer bir davranış sergilemekte ve panel eğim açısı dikleştikçe hızlanma azalmaktadır. Fakat panel ardında oluşan girdap bölgesi 25° eğim açılı panelde oldukça küçükken, 45° eğim açılı panelde oldukça belirgin bir dönüm bölgesi gözlemlenmektedir. Panel alt yüzeyi giriş kenarı etrafında akış hızı düşük eğim açılı panelde yüksek hız vektörleri oluşurken, panel eğim açısı arttıkça bu hız vektörleri değerleri düşmektedir. Panel eğim açısı arttıkça sürüklenme kuvveti artmakta ve en yüksek  $C_d$  değeri 0,95 olarak 45° eğim açılı panel üzerinde oluşmaktadır. En yüksek kaldırma katsayısı ise pozitif yönde 1,17 olarak 25° eğim açılı panel üzerinde oluşmaktadır.

60° rüzgar yönünde yapılan analizlerde, basınç katsayısı değerleri incelendiğinde oluşan en yüksek değer 35° eğim açılı panelde 0,67 olarak panel üst yüzeyinde oluşmuştur. En düşük basınç katsayısı değeri ise 45° eğim açılı panelde -1,77 olarak panel alt yüzeyi giriş kenarında oluşmuştur. Panel eğim açısı arttıkça, panel ve destek yapısı arasında kalan alanda oluşan hız vektörleri değerlerinin düştüğü gözlemlenmektedir. Panel eğim açısı arttıkça panel çıkış kenarında oluşan hızlarında azaldığı ve düşük hızların oluşturduğu kümelenme bölgesinin daha geniş olduğu görülmektedir. Sürüklenme katsayısı değerlerinin panel eğim açısı arttıkça arttığı sonucu elde edilmiştir. En yüksek sürüklenme katsayısı 45° eğimli panelde 0,84 olarak ve en düşük sürüklenme katsayısı değerinin 25° eğimli panelde 0,78 olarak oluştuğu görülmektedir. En yüksek kaldırma katsayısı değeri pozitif yönde 25° eğim açılı panelde 1,39'dur. Panel eğim açısı arttıkça kaldırma katsayısı azalmaktadır. 45° eğim açılı panelde ise pozitif yönde 0,93 kaldırma katsayısı elde edilmiştir.

90° rüzgar yönünde yapılan analizlerde, en düşük ve en yüksek basınç katsayıları 45° eğimli panelde oluşmuştur. Bunlar sırasıyla -0,67 panel üst ve alt yüzeyi giriş kenarında ve 0,24 panel üst ve alt yüzeyi çıkış kenarındadır. Panel eğim açısı arttıkça etki eden en düşük basınç katsayıları da artmaktadır. Hız vektörleri arasında üç panel eğim açısı içinde önemli bir değişim görülmemektedir. Sürüklenme katsayıları birbirlerine oldukça yakın değerlerdir. 25°, 35° ve 45° eğim açılı paneller için sürüklenme katsayıları sırasıyla, 0,39, 0,34 ve 0,35'tir. 90° rüzgar yönünde eğim açısı farketmeksizin, kaldırma kuvveti değerleri gözardı edilecek kadar küçüktür. Bu eğim açısında kaldırma kuvveti oluşmadığını söylenebilir.

120° rüzgar yönünde yapılan analizlerde, panel üst yüzeyleri negatif basınç dağılımlarına maruz kalırken, panel alt yüzeyleri pozitif basınç dağılımlarına sahiptir. Oluşan en yüksek negatif basınç katsayıları panel üst yüzey giriş kenarlarında görülmektedir. Üç panel eğim açısı karşılaştırıldığında en yüksek negatif basınç katsayısı 35° eğimli panelde -1,54 ve en düşük negatif basınç katsayısı 25° eğim panelde -1,27'dir. Buna karşılık panel alt yüzeyinde oluşan pozitif basınç katsayıları arasındaki dağılım panel eğim açısı arttıkça artan şekildedir. Panel alt yüzeylerinde oluşan en yüksek basınç katsayısı 0,91 değeri ile 45° eğim açılı panelde görülmektedir. En düşük basınç katsayısı ise 0,87 değeri ile hem 25° hem de 35° eğim açılı panelde meydana gelmektedir. En yüksek hız vektörü değeri 35° eğimli panelin üst yüzeyi bölgesinde oluşmuştur. Bu da en yüksek negatif basınç katsayısının oluştuğu bölgededir. Buradan yüksek hızların olduğu bölgelerde düşük basınçların oluşmasından dolayı beklenen bir sonuçtur. Panel eğim açısı arttıkça giriş kenarı panel üst yüzeyinde hızlarda yavaşlama görülmektedir. En yüksek sürüklenme katsayıları en büyük eğimli panel açısı olan 45°'de ortaya çıkmıştır. Burada sürüklenme katsayısı değeri -0,85'tir. En düşük sürüklenme katsayısı değeri ise 25° eğimli panelde -0,79'dur. Panel eğim açısı arttıkça, kaldırma katsayıları azalmaktadır. En yüksek kaldırma kuvveti negatif yönde 1,51 değeri ile 25° eğim açılı panelde meydana gelmektedir. En düşük kaldırma katsayısı ise negatif yönde 1,10 olarak 45° eğimli panelde oluşmuştur.

150° rüzgar yönünde yapılan analizlerde, en düşük basınç katsayısı değeri 25° eğimli panelde -0,74 olarak panel üst yüzeyi giriş kenarında oluşmuştur. En yüksek basınç katsayısı değeri 45° eğimli panelin alt yüzeyi giriş kenarında 1,09 değerine sahiptir. Panel eğim açısı azaldıkça oluşan en yüksek basınç katsayısı değeri azalmaktadır. 25° eğim açılı panelde bu değer 0,77'dir. Panel eğim açısı arttıkça oluşan hız vektörleri değerleri gittikçe küçülmektedir. Panel etrafında oluşan en düşük hız değerleri, 45° eğim açılı panelin analizleri sonucu görülmektedir. Üç rüzgar yönü içinde panel üst yüzeyi bölgesinde dönümlü akışlar oluştuğu gözlemlenmektedir. Burada yine panel eğim açısı arttıkça girdap bölgesi büyüklüğü artmaktadır. Sürüklenme katsayısı, panel eğim açısı arttıkça artma eğilimi göstermektedir. En yüksek sürüklenme katsayısı 45° eğim açılı panelde -1,01 olarak ve en düşük sürüklenme katsayısı 25° eğimli panelde - 0,95'tir. Kaldırma katsayıları ise sürüklenme katsayılarının aksine, panel eğim açısı arttıkça azalma eğilimindedir. En yüksek kaldırma katsayısı 25° panel eğim açısında - 1,27 olarak elde edilirken, en düşük kaldırma katsayısı 45° panel eğim açısında - 0,93'tür.

180° rüzgar yönünde yapılan analizlerde, oluşan en düşük basınç katsayıları panel üst yüzeyi giriş kenarında ve oluşan en yüksek basınç katsayıları panel alt yüzeyi giriş kenarındadır. Panel üst yüzeyinde oluşan en düşük basınç katsayıları panel eğimi arttıkça azalma eğilimi, en yüksek basınç katsayıları panel eğimi arttıkça artma eğilimi göstermektedir. En düşük basınç katsayısı 25° eğim açılı panelde -0,67 olarak tespit edilmiştir. 45° eğim açılı panelde ise bu değer -0,37'dir. En yüksek basınç katsayısı değeri ise 1,13 olarak 45° eğim açılı panelde görülmektedir. 25° eğim açılı panelde 1,05'tir. Panel eğim açısının artmasıyla panel etrafındaki hız vektörü değerinde azalma görülmektedir. Panel eğim açısının artması hızın yavaşlamasına sebep olmaktadır. Aynı zamanda hız azaldıkça yani panel eğim açısı arttıkça panel üst yüzeyi bölgesinde oluşan girdap bölgesi büyümektedir. En yüksek sürüklenme katsayısı değeri -1,12 olarak 45° eğim açılı panelde oluşmaktadır. En düşük sürüklenme katsayısı değeri ise -0,95 ile 25° eğim açılı panelde oluşmuştur. Kaldırma katsayılarında ise panel eğimi açısının artması ile birlikte kaldırma katsayısı azalmaktadır. En düşük değer olan -0,92, 45° eğim açılı panele etki ederken, en yüksek değer olan -1,06 değeri 25° eğim açılı panele etki etmektedir.

10 m/s ve 20 m/s hızlarda yapılan analizler sonucu, basınç katsayıları dağılımları ve hız vektörleri oluşum biçimleri tamamen aynıdır. Özellikle basınç katsayıları dağılımlarında oluşan değerler arasındaki farklar gözardı edilebilecek kadar düşük seviyelerdedir. Bütün panel eğim açıları ve rüzgar yönleri dahil edildiğinde, oluşan en yüksek basınç katsayısı değeri 180° rüzgar yönünde ve 45° panel eğim açısında 1,13 olarak elde edilmiştir. En düşük basınç katsayısı değeri ise 60° rüzgar yönünde ve 45° panel eğim açısı için en yüksek basınç açısında -1,77 değerine sahiptir. Bununla birlikte üç farklı eğim açısı için en yüksek basınç katsayısı değerleri 180° rüzgar yönünde oluşmuş ve en düşük basınç katsayısı değerleri ise 60° rüzgar yönünde oluşmuş ve en düşük basınç katsayısı Oluşan en yüksek sürüklenme katsayısı değerleri 45° eğim açılı panellerde görülmektedir. Bunlar içerisinde en yüksek olan değer ise 180° rüzgar yönünde 1,12 olarak tespit edilen değerdir. En az sürüklenme katsayısına maruz kalan panel ise 35° eğim açılı, 90° rüzgar yönünde analizleri yapılan paneldir ve sürüklenme katsayısı 0,34 olarak elde edilmiştir.

Kaldırma katsayılarına bakıldığında ise panel eğim açısı arttıkça maruz kalınan kaldırma katsayılarının azaldığı görülmektedir. Buna göre oluşan en yüksek negatif yönde kaldırma katsayısı 25° eğim açılı panelde 120° rüzgar yönünde 1,51 iken pozitif yönde en yüksek kaldırma katsayısı 25° eğim açılı panelde 60° rüzgar yönünde 1,39'dur. Her üç panel eğim açısı için de 90° rüzgar yönünde kaldırma kuvveti oluşmamaktadır.

z-ekseni etrafında panelin maruz kaldığı en yüksek yalpalama momenti negatif yönde 0,33 değeriyle 35° panel eğim açısında 120° rüzgar yönünde oluşmuştur. x-ekseni etrafında maruz kalınan en yüksek yunuslama momenti ise negatif yönde 0,44'tür ve 25° panel eğim açısı 120° rüzgar yönünde oluşmuştur.

#### KAYNAKLAR

**Abiola-Ogedengbe, A. 2013.** Experimental investigation of wind effect on solar panels. University of Western Ontario - Electronic Thesis and Dissertation Repository. Paper 1177.

Abiola-Ogedengbe, A., Hangan, H., Siddiqui, K. 2015. Experimental investigation of wind effects on a standalone photovoltaic (PV) module. *Renewable Energy* 78 657-665.

Agarwal, A., Irtaza, H., Zameel, A. 2016. Numerical study of lift and drag coefficients on a ground-mounted photo-voltaic solar panel. ICEMS.

Aly, A.M. 2016. On the evaluation of wind loads on solar panels: The scale issue. *Solar Energy* 135 423–434.

Aly, A.M., Bitsuamlak, G. 2013. Wind pressures on solar panels mounted on residential homes. J. Wind Eng. Ind. Aerodyn. 123 250–260.

Aly, A.M., Bitsuamlak, G. 2012. Aerodynamics of ground-mounted solar panels: Test model scale effects. World Congress on Advances in Civil, Environmental, and Materials Research. Korea.

Aly, A.M., Bitsuamlak, G. 2013. Aerodynamic Loads on Solar Panels. *Structures Congress 2013*, pp. 1555-1564.

**Bitsuamlak, G., Dagnew, A.K., Erwin, J. 2010.** Evaluation of wind loads on solar panel modules using CFD. *The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May* 23-27.

**Bronkhorst, A., Franke, J., Geurts, C., Bentum, C., Grepinet, F. 2010.** Wind tunnel and CFD modelling of wind pressures on solar energy systems on flat roofs. *The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina, USA May* 23-27.

**Coşoiu, C.I., Damian, A., Damian, R.M., Degeratu, M. 2008.** Numerical and experimental investigation of wind induced pressures on a photovoltaic solar panel. *4th IASME/WSEAS International Conference on ENERGY, ENVIRONMENT, ECOSYSTEMS and SUSTAINABLE DEVELOPMENT (EEESD'08)* Algarve, Portugal, June 11-13.

**Çengel, Y.A., Cimbala, J.M. 2006.** Fluid Mechanics Fundamentals and Applications. Mcgraw Hill, New York, USA, 1st ed.

El-Ghonemy, A.M.K. 2012. Photovoltaic Solar Energy: Review. International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November.

Eldin, A.A.H., Refaey, M., Farghly, A. 2015. A review on photovoltaic solar energy technology and its efficiency. *17th International Middle-East Power System Conference*.

Geurts, C.P.W., Steenbergen, R.D.J.M. 2009. Full scale measurements of wind loads on stand-off photovoltaic systems. *EACWE 5 Florence, Italy*, July.

Kopp,G.A., Farquhar,S., Morrison,M.J. 2012. Aerodynamics mechanisms for wind loads on tilted, roof-mounted, solar arrays. *J.WindEng.Ind.Aerodyn.111,40–52*.

Jubayer, C.M., Hangan, H. 2012. Numerical Simulation of Wind Loading on Photovoltaic Panels. *Structures Congress*.

Jubayer,C.M., Hangan,H. 2014. Numerical simulation of wind effects on a standalone ground mounted photovoltaic (PV) system. J. Wind Eng. Ind. Aerodyn. 134 56– 64. Jubayer,C.M., Hangan,H. 2016. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels. *J. Wind Eng. Ind. Aerodyn.* 153 60–70.

**Pratt, R.N., Kopp,G.A. 2012.** An initial study of the aerodynamics of photovoltaic panel arrays mounted on large flat-roofs. *The Seventh International Colloquium on Bluff Body Aerodynamics and Applications, Shanghai, China; September 2-6.* 

**Puneeth kumar, H.P., Prakash, S.B. 2014.** CFD Analysis of Wind Pressure Over Solar Panels at Different Orientations of Placement. *International Journal of Advanced Technology in Engineering and Science, Volume No.02, Issue No. 07.* 

Radu, A., Axinte, E., Theohari, C. 1986. Steady wind pressures on solar collectors on flat-roofed buildings. *Journal of Wind Engineering and Industrial Aerodynamics*, 23 249-258.

**Reina G.P., Stefano, G.D. 2017.** Computational evaluation of wind loads on suntracking ground-mounted photovoltaic panel arrays. *Journal of Wind Engineering & Industrial Aerodynamics 170* 283–293.

**Shademan, M., Hangani H. 2009.** Wind Loading on Solar Panels at Different Inclination Angles. *The Eleventh American Conference on Wind Engineering – San Juan, Puerto Rico.* 

**Shademan, M., Hangani H. 2010.** Wind loading on solar panels at different azimuthal and inclination angles. *The Fifth International Symposium on Computational Wind Engineering (CWE2010) Chapel Hill, North Carolina,* USA May 23-27.

Shademan, M., Barron, R.M., Balachandar, R., Hangan, H. 2014. Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. *Can. J. Civ. Eng.* 41: 728–738.

Shademan, M., Barron, R.M., Balachandar, R. 2014. Detached eddy simulation of flow past an isolated inclined solar panel. *Journal of Fluids and Structures 50*, 217–230. Stenabaugh, S.E., Kopp, G.A., 2015 Design wind loads for solar modules mounted parallel to the roof of a low-rise building. *Ph.D. Thesis*. The University of Western Ontario, Canada.

Somekawa, D., Taniguchi, T., Taniike, Y. 2013. Wind loads acting on pv panels and support structures with various layouts. *The Eighth Asia-Pacific Conference on Wind Engineering, Chennai, India.* 

Stathopoulos, T., Zisis, I., Xypnitou, E. 2014. Local and overall wind pressure and force coefficients for solar panels. *J.WindEng.Ind.Aerodyn.* 125,195–206.

Strobel, K., Banks, D. 2014. Effects of vortex shedding in arrays of long inclined flat plates and ramifications for ground-mounted photovoltaic arrays. *J. Wind Eng. Ind. Aerodyn.* 133 146–149.

Warsido, W.P., Bitsuamlak G.T., Barata, J., Chowdhury, A.G. 2014. Influence of spacing parameters on the wind loading of solar array. *Journal of Fluids and Structures* 48 295–315.

Wu, J., Lin, K., Lin, C. 2010. Wind load analysis of a solar tracker for concentrator photovoltaics. *AIP Conference Proceedings* 1277, 153; 10.1063/1.3509177.

Wu, Z., Gong, B., Wang, Z., Li, Z., Zang, C. 2010. An experimental and numerical study of the gap effect on wind load on heliostat. *Renewable Energy 35* 797–806.

**Xypnitou, E., 2010,** Wind loads on solar panel systems attached to building roofs. Degree of Master of Applied Science, Concordia University Building, Civil and Environmental Engineering.

# ÖZGEÇMİŞ

| Adı Soyadı<br>Doğum Yeri ve Tarihi<br>Yabancı Dili | : Muhammed Osman Aksoy<br>: Kayseri / 01.03.1992<br>: İngilizce / Almanca                                                                                                                        |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eğitim Durumu                                      |                                                                                                                                                                                                  |
| Lise                                               | : Necdet Taş Anadolu Lisesi / 2006-2010                                                                                                                                                          |
| Lisans                                             | : Balıkesir Üniversitesi / 2010-2014                                                                                                                                                             |
| Çalıştığı Kurumlar ve Yıl                          | : Yarış Kabin A.Ş. (2016-2017), SKT Yedek Parça (2018-2019)                                                                                                                                      |
| İletisim                                           | : muhammedosmanaksoy@gmail.com                                                                                                                                                                   |
| Yayınları                                          | : Yemenici, O., Aksoy, M.O. 2018. Numerical Study of<br>Wind Loads on A Solar Panel at Different Inclination<br>Angles, 9th International Conference on Mechanical and<br>Aerospace Engineering. |
|                                                    |                                                                                                                                                                                                  |