MİKROŞERİT ANTENLERİN TASARIM VE PERFORMANS OPTİMİZASYONU

Fatih İMAMOĞLU

T.C. BURSA ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MİKROŞERİT ANTENLERİN TASARIM VE PERFORMANS OPTİMİZASYONU

Fatih İMAMOĞLU ORCID No: 0000-0002-8720-4166

Dr. Öğr. Üyesi Esin KARPAT (Danışman) ORCID No: 0000-0002-2740-8183

YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

BURSA-2019

TEZ ONAYI

Fatih İMAMOĞLU tarafından hazırlanan "Mikroşerit Antenlerin Tasarım ve Performans Optimizasyonu" adlı tez çalışması aşağıdaki jüri tarafından oy birliği/oy çokluğu ile Uludağ Üniversitesi Fen Bilimleri Enstitüsü Elektronik Mühendisliği Anabilim Dalı'nda **YÜKSEK LİSANS TEZİ** olarak kabul edilmiştir.

Danışman

: Dr. Öğr. Üyesi Esin KARPAT

- **Başkan :** Prof.Dr.Güneş YILMAZ Uludağ Üniv. Mühendislik Fakültesi Telekomünikasyon ABD
 - Üye: Dr.Öğr.Üyesi Esin KARPAT Uludağ Üniv. Mühendislik Fakültesi Elk. Alanlar ve Mikr. Tekniği ABD
 - **Üye :** Dr.Öğr.Üyesi Ömer ZOR BTÜ Müh. ve Doğa Bil. Fakültesi Elk. Alanlar ve Mikr. Tekniği ABD

to 10mer

Yukarıdaki sonucu onayların Prof. Dr. Hüseyin ksel ER Enstitü Mudürü 2019

U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,
- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,
- başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,
- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,
- kullanılan verilerde herhangi bir tahrifat yapmadığımı,
- ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

Fatih İMAMOĞI

ÖZET

Yüksek Lisans Tezi

MİKROŞERİT ANTENLERİN TASARIM VE PERFORMANS OPTİMİZASYONU

Fatih İMAMOĞLU

Uludağ Üniversitesi Fen Bilimleri Enstitüsü Elektronik Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Esin KARPAT

Mikroşerit antenler özellikle son yıllarda gezgin haberleşme sistemleri, radar, uçak, füze uydu ve navigasyon alanlarında sıkça kullanılmakta ve yaygınlaşmaktadır. Dikdörtgen H, E şekilli, dairesel vb. farklı geometrik şekilli mikroşerit antenler uygulama amacının gerektirdiği koşullara göre kullanılmaktadır. Kullanım amacına yönelik olarak istenilen performansın elde edilmesine yönelik anten geometrisi, alttaş malzeme tipi, besleme tipi değiştirilerek çok çeşitli uygulamalar elde edilmektedir.

Bu tez kapsamında dikdörtgen ve dikdörtgen tabanlı E, H ve diğer tipteki oyuklar içeren mikroşerit antenler üzerinde yapılan çalışmalar incelenmiş, H tipi ve farklı dikdörtgen oyuklu tipler tasarlanıp benzeşime tabi tutulmuştur. Dikdörtgensel oyuklu yapıların rezonans frekansı (fr) ve bant genişliği (BG) üzerindeki azaltıcı etkileri yeni bir geometrik model arayışının girdisi olmuştur. Tasarım ve benzeşimler neticesinde, dikdörtgen yapının üst köşesinde çeyrek dairesel oyukların açıldığı yapıların fr ve BG üzerinde artırıcı etkileri gözlenmiştir.

Çok sayıda ve farklı frekanslardaki denemelerde dairesel oyuklu yapının benzer olumlu sonuçlarından faydalanılarak eğri uyumlandırma yöntemiyle 1,5-2,5 GHz aralığında geçerli olacak oyuk yarıçapı (r) ve alttaş kalınlığı (h)'ın girdi, f_r 'nin çıktı olduğu bir denklem modeli elde edilmiştir. 1,57 GHz civarındaki sonuçlar neticesinde otomotivde kullanılan GPS antenlerinde uygulanabilecek bir tasarım da elde edilmiştir. Tüm bu çalışmalar esnasında, literatür denklemlerinin kısmen yetersiz kaldığı durumlarda tasarıma yardımcı olacak deneysel tespitlere dayanan bulgular da elde edilmiştir.

Anahtar Kelimeler: Mikroşerit anten, mikroyama anten, rezonans frekans optimizasyonu, bant genişliği optimizasyonu, anten optimizasyonu, GNSS anten tasarımı.

2019, ix + 64 sayfa

ABSTRACT

MSc Thesis

DESIGN AND PERFORMANCE OPTIMISATION OF MICROSTRIP ANTENNAS

Fatih İMAMOĞLU

Uludağ University Graduate School of Natural and Applied Sciences Department of Electronics Engineering

Supervisor: Asst.Prof.Dr. Esin KARPAT

Microstrip antennas are frequently used in mobile communication systems, radar, space, satellite and navigation systems in recent years increasingly. Rectengular, H, E, round etc differen shaped antennas are used according to circumstances that their application scopes requiring. In order to obtain required performance where they are used, many different applications are carried out by changing antenna geometry, substrate type, feeding technics.

Rectangular, E, H and including different shaped of cavities antenna studies are researched, H shaped and including rectangular cavities antennas are designed and simulated within scope of the thesis. Negative influences of rectangular caved antenns on f_r and BW became and input and motivation of investigating new geometric model having positive influence on f_r and BW. After many design and simulation, positive influence of circular caved antennas on fr and BW is obviously observed.

An equation model valid between 1,5-2,5 GHz and having r and h as inputs and f_r as output has been obtained by curve fitting via many simulations of circular caved structure on different frequencies. A design proposal that could be used during automotive navigation antennas has been obtained also after results around 1,57 GHz. Furthermore, some fruitful clues to support cases where theorical equations not totally helpfull are obtained from simulation results.

Key words: Microstrip antenna, micropatch antenna, resonance frequency optimisation, bandwidth optimisation, antenna optimisation, GNSS antenna design.

2019, ix + 64 pages.

TEŞEKKÜR

Yoğun iş hayatı temposunun yanında yürüttüğüm tez çalışmalarımda bana gösterdiği sabırlı ve yapıcı yaklaşımlarından ötürü Tez Danışmanım Sn. Yrd. Doç. Dr. Esin KARPAT'a, beni yetiştirip maddi ve manevi desteğiyle bu günlere gelmemi sağlayan Anneannem Sn. Meral BOZUNOĞULLARI'na, tez ve iş hayatımın her aşamasında desteğini her zaman hissettiren eşim Sn. Zehra İMAMOĞLU'na teşekkür ve şükranlarımı sunarım.

Fatih İMAMOĞLU

23.03.2013

İÇİNDEKİLER

	Sayfa
OZET	i
ABSTRACT	ii
TEŞEKKUR	iii
SIMGE ve KISALTMALAR DIZINI	iv
ŞEKİLLER DİZİNİ	vi
ÇİZELGELER DİZİNİ	vii
1. GİRİŞ	1
2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI	4
2.1. Küresel Konumlama Uydu Sistemi ve Alıcılarda Kullanılan Anten Tipleri	4
2.2.Mikroşerit Yama Antenler	8
2.2.1. Mikro Yama Antenlerin Genel Özellikleri	8
2.2.2. Mikro Yama Antenlerin Avantaj ve dezavantajları	9
2.2.3. Mikro Yama Antenlerin Besleme Teknikleri	10
2.2.4. Mikro Yama Antenlerin Analiz Yöntemleri	13
2.2.5. Dikdörtgen Yapılı Mikroyama Antenlerin Analitik Modeli ve Tasarımı	14
3. MATERYAL VE YÖNTEM	22
3.1. H Şekilli Yama Anten Tasarım ve Benzetimi	23
3.2. Dikdörtgen Oyuklu Yama Anten Tasarım ve Benzetimi	27
3.3. Dairesel Oyuklu Yama Anten Tasarım ve Benzetimi	29
4. BULGULAR	31
4.1. H Şekilli Yama Anten Benzetim Sonuçları	31
4.2. Dikdörtgen Oyuklu Yama Anten Benzetim Sonuçları	34
4.3. Dairesel Oyuklu Yama Anten Benzetim Sonuçları	40
4.4. Dairesel Oyuklu Anten Benzetim Sonuçlarından Analitik Denklem Eldesi	44
5. TARTIŞMA ve SONUÇ	53
KAYNAKLAR	56
EKLER	
ÖZGEÇMİŞ	64

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler	Açıklamalar
μs	Mikrosaniye
L1	GPS sistemi frekans bandı
L2	GPS sistemi frekans bandı
Н	Anten Alttaş Kalınlığı
t	Anten Metal Yama Kalınlığı
$\lambda_{ m o}$	Dalgaboyu
L	Yama Anten Boy Uzunluğu
W	Yama Anten En Uzunluğu
ε _r	Malzeme dielektrik Sabiti
Zo	Empedans
E _{reff}	Bağıl Dielektrik Sabiti
co	Boş Uzayda Işık Hızı
Y	Admitans
G	Kondüktans
В	Süseptans
P _{rad}	Işıma Gücü
$\mathbf{f}_{\mathbf{r}}$	Anten Rezonans Frekansı
\mathbf{h}_{\min}	Alttaş en az kalınlığı
h _{maks}	Alttaş en fazla kalınlığı
L _e	Bağıl Yama Boy Uzunluğu
S11	Geri Dönüş Kaybı
dB	Desibel
x,y	Oyuk İç Boyutları
r	Dairesel Oyuk Yarıçapı
L_{eff}	Etkin Yama Boy Uzunluğu
μ_0	Manyetik Geçirgenlik Katsayısı

Kısaltmalar	Açıklamalar
МҮА	Mikroyama Anten
MŞA	Mikroşerit Anten
MY	Mikroyama
GNSS	Küresel Navigasyon Uydu Sistemi
GLONASS	Rusya Küresel Konumlama Sistemi
GPS	Küresel Konumlama Sistemi
MHz	Megahertz
A.B.D.	Amerika Birleşik Devletleri
LNA	Düşük Gürültülü Yükselteç
RF	Radyo frekansı
FDTD	Zaman Domeninde Sonlu Farklar
FEM	Sonlu Elemanlar Yöntemi
BG	Bant Genişliği
GHz	Gigahertz
MHz	Megahertz
F.B.E.	Fen Bilimleri Enstitüsü

ŞEKİLLER DİZİNİ

Sayfa

Sekil 1.1. MSA Genel Yapısı	1
Şekil 1.2. Küresel Konumlama Uydu Sistemi Uyduları	2
Şekil 2.1. Küresel Konumlama Sistemi Ana Bölümleri	4
Şekil 2.2. GNSS MYA Uygulaması	6
Şekil 2.3. GNSS Helezon Anten	6
Şekil 2.4. Çip Anten	6
Şekil 2.5. Dipol Anten	7
Şekil 2.6. Döngü Anten	7
Şekil 2.7. MYA Yapısı	8
Şekil 2.8. MYA Geometrileri	9
Şekil 2.9. Mikroşerit Besleme	11
Şekil 2.10. Koaksiyel Besleme	11
Şekil 2.11. Açıklık Kuplajlı Besleme	12
Şekil 2.12. Yakınlık Kuplajlı Besleme	12
Şekil 2.13. Mikroşerit Besleme Modeli	14
Şekil 2.14. Yarıklı Mikroşerit Besleme Modeli	14
Şekil 2.15. MYA ve Elektrik Alan Çizgileri	15
Şekil 2.16. Mikroşerit Besleme Yama Anten Işıma Çizgileri	16
Şekil 2.17. Dikdörtgen Yama ve Eşdeğer Devre Modeli	
Şekil 2.18. Uyumlandırılmış Mikroşerit Hat ile Besleme	20
Şekil 2.19. Gırıntılı Mıkroşerit Besleme-Empedans Değişimi	
Şekil 3.1. H Şekilli MYA	
Şekil 3.2. H Şekilli Oyuklu MYA	
Şekil 3.3. HFSS Programi ile H Şekilli Oyuklu MYA Tasarımi	25
Şekil 3.4. HFSS Programi ile H Şekilli Oyuklu MYA Benzeşimi	
Sekil 3.5. 4 Oyuklu MYA \sim	
Şekil 3.6. 3 Üyüklü Mi Y A	
Şekil 3.7. Dairesel MIYA	
Şekil 4.1. 24 GHZ de STT Degişimi y sabit x degişiyor iken	
Şekil 4.2. H. Şekilli M.Y.A	
Sekil 4.4.1.5 GHz'de S11 Değişimi y sabit y değişiyor iken	
Sekil 4.4. 1,5 GHZ de S11 Degişinin x sabit y değişiyor iken	
Sekil 4.6. 24 GHz'de S11 Değişimi y sabit x değişiyor iken	
Şekil 4.0. 24 OHZ de STI Değişinin x sabit y değişiyol ikeli	
Sekil 4.8. 1.5 GHz'de S11 Dečisimi v sekit v dečisivor iken	
Sekil 4.9. 1.5 GHz'de S11 Değişimi y sabit v değişiyor iken	
Sekil 4 10 3 Ovuklu MVA	
Sekil 4 11 Benzesim Sonucu fr-Denklemden Elde Edilen fr Kuvaslaması 1	
Sekil 4 12 1 43-16 63 GHz Aralığında r've Bağlı S11 Değişimi	
Sekil 4 13 1 43-16 63 GHz Aralığında r've Bağlı Kazanc Değişimi	رب 49
Sekil 4 14 1 43-16 63 GHz Aralığında r've Bağlı Kazanç Değişimi	
Sekil 4 15 Benzesim Sonucu fr-Denklemden Elde Edilen fr Kuvaslaması 2	
Sekil 4.16. Benzesim Sonucu fr-Denklemden Elde Edilen fr Kıyaslaması 3	51
Sekil 4.17. Benzesim Sonucu fr-Denklemden Elde Edilen fr Kıvaslaması 4	
, , ,	

Şekil 4.18. Benzeşim Sonucu fr-Denklemden Elde Edilen fr Kıyaslaması 5	52
Sekil 4.19. Benzesim Sonucu fr-Denklemden Elde Edilen fr Kiyaslaması 6	52
Sekil 4.20. Benzesim Sonucu fr-Denklemden Elde Edilen fr Kivaslaması 7	52
Sekil 5.1. r'nin Farklı h Değerlerinde fr've Etkişi	53
Sekil 5.2. Otomobil Köpekbalığı Anteni	55

ÇİZELGELER DİZİNİ

Sayfa

Çizelge 2.1. Aktif-Pasif Anten Karşılaştırması	5
Çizelge 2.2. Helezon-MY Anten Karşılaştırması	7
Çizelge 2.3. Besleme Tipleri Karşılaştırması	13
Çizelge 3.1. H Tipi Anten Tasarım İterasyon Sonuçları	26
Çizelge 3.2. 3 Oyuklu MYA İç Boyutları	29
Çizelge 3.3. Dairesel Oyuklu MYA İç Boyutları	30
Çizelge 3.4. Dairesel Oyuklu MYA İç Boyutları	30
Çizelge 4.1. H Şekilli MYA İç Boyutlarının fr ve BG'ye Etkisi	31
Çizelge 4.2. H Şekilli MYA İç Boyutlarının fr ve BG'ye Etkisi	33
Çizelge 4.3. 4 Oyuklı MYA İç Boyutlarının fr ve BG'ye Etkisi	35
Çizelge 4.4. 4 Oyuklı MYA İç Boyutlarının fr ve BG'ye Etkisi	37
Çizelge 4.5. 3 Oyuklı MYA İç Boyutlarının fr ve BG'ye Etkisi	39
Çizelge 4.6. Dairesel Oyuklu MYA İç Boyutları	40
Çizelge 4.7. Dairesel Oyuklu MYA İç Boyutlarının fr ve BG'ye Etkisi	41
Çizelge 4.8. Dairesel Oyuklu MYA İç Boyutları	42
Çizelge 4.9. Dairesel Oyuklu MYA İç Boyutlarının fr ve BG'ye Etkisi	42
Çizelge 4.10. Benzeşim Sonucu fr-Denklemden Elde Edilen fr Karşılaştırması	45
Çizelge 4.11. Dairesel Oyuklu MYA İç Boyutları	47
Çizelge 4.12. Dairesel Oyuklu MYA İç Boyutlarının fr ve BG'ye Etkisi	48
Çizelge 4.13. 1,5-2,5 GHz İçin Oluşturulan Denklem Modelleri	50
Çizelge 5.1. Anten Tipleri Karşılaştırması	53

1.GİRİŞ

Mikroyama anten (MYA) tasarımı ilk olarak Deschamps tarafından 1953 yılında ortaya atıldı. İlk patent kaydı ise Fransa'da 1955 yılında Gutton ve Baissinot adına tescil edildi. Mikroşerit antenlerin üretimi düşük kayıp tanjantlı yeterli ısıl parametrelere sahip alttaş malzemelerin gelişimine bağlı olarak 20 yıl geçtikten sonra 1970'lerde gerçekleştirilebildi. Üretime yönelik ilk endüstriyel MŞA'lar Howell ve Munson tarafından geliştirildi. Sonrasında, MYA ve MYA dizileri üzerindeki detaylı çalışmalar, düşük maliyet, düşük hacim, uyumluluk, hafiflik gibi özelliklerin daha geliştirilmesini sağlayarak MŞA'ların çeşitli mikrodalga uygulamalarında kullanımına olanak sağlamıştır (Garg ve Bahal 2001).

Endüstriyel uygulanabilirliği kolaylaştıran özelliklerinden dolayı MŞA'lar, güdümlü mermi, hava savunma, uzay uygulamaları, küresel konumlama sistemi gibi hassasiyet gerektiren uygulamalarda sık kullanılmaktadır (Toktas 2009).

MYA temel olarak altta metal toprak tabaka, arada dielektrik malzemeden oluşan alttaş ve üstte ışıma sağlayan metal yama birleşiminden oluşur.

Şekil 1.1. MŞA Genel Yapısı

MYA'lar, diğer mikrodalga antenlerden farklı olarak birçok farklı fiziksel ve boyutsal parametreye göre karakterize edilirler. Ağırlıklı olarak dairesel ve dikdörtgensel fiziksel yapıda MYA'lar sık olarak kullanılır (Garg ve Bahal 2001).

Küresel Konumlama Uydu Sistemi (GNSS), kara deniz yada havada seyreden bir alıcının çoklu uydularca tespit edilen konumunu belirlemek için kullanılır. Her uydu sürekli olarak navigasyon mesajı gönderir. Alıcı bu sürekli gelen mesajı alır ve alma süresinden uyduya olan uzaklığını hesaplar. Uydularda nanosaniye hassasiyetinde atomik saatler bulunur. 1µs'lik hata 300 metrelik konum hatasına neden olur. Tüm GNSS sistemlerinde alıcının konumunun belirlenebilmesi için en az 4 uydunun alıcı tarafından görülebiliyor olması gerekir. Genel olarak 3 uydu alıcı enlem ve boylamının, 4. uydu ise alıcının yüksekliğinin hesabı için gereklidir. Uydular yerçekimi sayesinde yörüngede kalır. Son yıllarda farklı GNSS sistemleri kullanıma girmiştir. Amerika Birleşik Devletleri'ne ait GPS'e ilaveten, GLONASS (Rusya), Galileo (Avrupa Birliği), Compass (Çin) sistemleri GNSS sistemleri olarak kullanılmaktadır (Dawoud 2012).

Anten bir GNSS alıcısının performansını etkileyen en önemli bileşenidir. İyi tasarlanmış bir GPS anteni sistemin gerekliliklerini optimize edebilir ve alıcının konum belirlenme performansını iyileştirir (Kumar 2015). Literatürdeki uygulamalara bakıldığında GPS anteni olarak MYA'ların ağırlıklı olarak kullanıldığı görülmektedir. Farklı yapı ve geometrideki MYA'lar GNSS sistem performansını önemli ölçüde değiştirebilmektedir.

Şekil 1.2. Küresel Konumlama Uydu Sistemi Uyduları

Türkiye'de dikdörtgenden farklı olan veya dikdörtgenden evrilen geometrideki MYA tasarım ve iyileştirme üzerine yapılan çalışmalar araştırıldığında İTÜ'de Çetme (2009) tarafından yapılan "Yarıklı Mikroşerit Yama Anten Dizaynı" başlıklı yüksek lisans tezi, ODTÜ'de İşeri (2012) tarafından yapılan "Çift Kutuplu ve H Yarıklı Yarık Bağdaşımlı Mikroşerit Anten Dizileri ve H Tipi Yarıkların Devre Şeklinde Modellenmesi" başlıklı yüksek lisans tezi, Ulutaş (2013) tarafından Hava Harp Okulu FBE'de yapılan "Genetik Algoritma Kullanarak H Tipi Mikroşerit Antenlerin Rezonans Frekansının Hesaplanması" başlıklı yüksek lisans tezi, farklı geometride yarıklar içeren Arıcan

(2012) tarafından Haliç Üniversitesi'nde yapılan "Genişbandlı Mikroşerit Yama Anten Tasarımı" başlıklı yüksek lisans tezi, kanallı geometriye sahip Şencan (2012) tarafından Haliç Üniversitesi'nde yapılan "Dört Rezonanslı Mikroşerit Yama Antenlerin İncelenmesi, Tasarımı ve Simülasyonu" başlıklı yüksek lisans tezi, dairesel geometriye sahip Amin (2011) tarafından Selçuk Üniversitesi'nde yapılan "Çeşitli Frekanslarda Geniş Band Dairesel Mikroşerit Yama Anten Analizi ve Tasarımı" başlıklı yüksek lisans tezi, Toktaş (2009) tarafından Mersin Üniversitesi'nde yapılan "Farksal Gelişim Algoritması Kullanarak H Şekilli Mikroşerit Antenlerin Rezonans Frekansının Hesaplanması" başlıklı yüksek lisans tezi, Erdemir (2014) tarafından UÜ dergisinde yayınlanan "L1 Frekansında Çalışan E Şekilli Mikroşerit Anten Tasarımı" başlıklı makale başlıca örnekler arasında ifade edilebilir. Toktaş (2009) tarafından yapılan H anten geometrili çalışmada genel olarak oyuk iç boyutları artırıldığında rezonans frekansının azaldığı veya önce artış sonrasında azalış gösterdiği görülmüştür. Dikdörtgenden evirme geometrilerde H ve E tipi yapılardaki oyuklar tasarımda istenen frekanslarda ışıma sağlarken band genişliğini azaltmıştır.

Bu tez kapsamında amaç dikdörtgen geometrili MYA en ve boy temel boyutlarını değiştirmeden oyuklar açarak değişik geometrilerin rezonans frekansına etkisini incelemek ve istenilen rezonans frekans ve bant genişliğine uygun anten tasarımını sağlayacak bir model geliştirmektir. Bu kapsamda dikdörtgen yapı üzerinde açılan farklı tip ve boyuttaki oyukların rezonans frekansı ve bant genişliğine etkisi benzetim yoluyla incelenmiştir. Farklı tasarım ve benzeşimlerle dairesel oyuklu yapı farklı frekanslarda incelenmiş, oyuk yarıçapı ve alttaş yüksekliğinin girdi olduğu ve rezonans frekansının çıktı olduğu bir sayısal model oluşturulmuş ve model aracılığıyla elde edilen sonuçların benzeşim sonuçları ile uyumluluğu incelenmiştir.

2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI

2.1. Küresel Konumlama Uydu Sistemi ve Alıcılarında Kullanılan Anten Tipleri

GNSS'lerin 3 ana temel bileşeni vardır. Bunlar Uzay Bölümü, Kontrol Bölümü ve Alıcı Bölümüdür. (NovAtel 2017).

Uzay Bölümü dünyanın etrafında yörüngede dönen uydulardan oluşur. Bir alıcının konumunun belirlenebilmesi için 3 uydu enlem-boylam, 1 uydu da yükseklik olmak üzere toplam 4 uyduyu görüyor olması gereklidir. Alıcı her uydudan gelen sinyalin uydudan çıkış zamanı ile sinyalin kendine varış zamanı arasındaki zaman farkından mesafeyi hesaplar bu mesafe psedo mesafesi olarak adlandırılır. GNSS uyduları, dünyadan farklı uzaklıklarda dairesel yörünge düzlemleri üzerine konumlandırılmışlardır. 3 temel yörünge düzlemi bulunmaktadır. Yörüngenin dünya yüzeyinden yüksekliği ile yer düzleminin değişimi oransaldır.

Kontrol bölümü, uyduların yörüngedeki hareketlerinin, saat parametrelerinin ve yardımcı diğer bilgilerin izlenmesi ve gerektiğinde komut ve bilgilerin uydulara gönderimini yönetir. Ayrıca GNSS verilerinin kodlanması/kriptolanması ve yetkisiz kullanıcıların girişimlerine karşı da koruma sağlamaktadır.

Alıcı bölümü sinyal gönderimi yapmayıp uydulardan gelen sinyal kodlarını çözer. Sivil GNSS alıcıları askeri GNSS konum kodlarını çözemez (Dawoud 2012).

Şekil 2.1. Küresel Konumlama Sistemi Ana Bölümleri

GPS sinyalleri kullanıcı (alıcı) bölümüne L1=1575,42 MHz ve L2=1227,60 MHz taşıyıcı frekansları ile gönderilirler. Sinyalin değişik hava koşullarından en az

etkilenmesi ve iyonosferi geçebilmesi için bu frekanslar seçilmiştir. Uydular, atomik sahili saat ve konum bilgisi içeren taşıyıcı sinyalleri L1 ve L2 frekansları ile gönderirler. L1 frekansına sivil ve askeri kullanıcılar erişebiliyorken, L2 frekansına sadece A.B.D. Hükümeti ve Ordusu erişebilmektedir çünkü sadece bu kurumlar L2 içerisindeki kodlanmış bilgiyi çözebilmektedir (Dawoud 2012). Bu nedenle bu tez kapsamındaki anten tasarımı L1 frekansını temel alacak şekilde yapılmıştır.

GNSS alıcısı mümkün olduğunca çok uydudan sinyal alması gerekir. Şehirlerdeki dar sokaklar, yüksek binaların yanı gibi mekanlarda alıcı daha zor sinyal alabildiğinden anten performansı önem kazanır. Anten gereklilikleri

- Yönlendiricilik
- Antenin gökyüzüne açıklığı
- Empedans uyumluluğu
- Kazanç
- Bant genişliği
- Dairesel polarizasyonlu GNSS sinyalini alabilmesi

Pasif antenler sadece ışımayı alan yama, helezonik, dipol vb. tipte antenler iken aktif antenler alınan sinyali güçlendiren düşük güç yükselteçleri (low noise amplifier-LNA) de bünyesinde barındırır.

Çizelge 2.1. Aktif-Pasif Anten Kıyaslaması (https://www.u-blox.com 2019)

Aktif Antenler	Pasif Antenler		
• Pasif antene göre daha fazla güç gerektirir.(10-60mW)	İlave güç gereksinimi yoktur.İyi bir GNSS alış performansının		
 Empedans uyumsuzluklarına ve kablo uzunluğuna karşı bağışıklığı pasife göre yüksektir. 	sağlanması için GPS alıcısına en fazla 10 cm uzunluğundaki bir şerit vb. besleme hattıyla bağlı olması gerekir.		
 Alıcı gürültüsünü düşük tutulmasını sağlar. 	•Parazitik (jamming) sinyaller besleme hattına kuplajlanarak alış performansını		
 Parazıt (jammer) etkilere karşı bağışıklığı yüksektir. 	• Ciddi RF tasarım deneyimi gerektirir.		

<u>Mikroşerit Yama Anten</u>: GNSS sistemlerinde en sık kullanılan anten tipleridir. Toprak ve yama metalik plakalar arasındaki dielektrik maddeden oluşur. Araç uygulamalarında torpido ön kısım veya tavana monte edilmeye uygundur.

Şekil 2.2. GNSS MYA uygulaması

<u>Helezonik Anten</u>: Quadrafilik helezon anten içini dolduran materyalin dielektrik sabiti yüksek ise anten boyutu daha düşük olabilir bu nedenle metalik helezonların içindeki dielektrik malzeme antenin çalışacağı frekansa göre tasarlanırken antenin boyutlarını belirler.

Şekil 2.3. GNSS Helezon Anten

<u>*Cip Anten:*</u> Mobil telefonlarda kullanılan çip antenler, yönsüz ve yüksek kazançlı olmaları nedeniyle tercih edilir. Ancak bu anten GNSS uygulamalarında kullanılacaksa, toprak tabakalı olması tatmin edici GNSS alış performansı için gereklidir.

Şekil 2.4. Çip Anten

<u>Dipol Anten</u>: Navigasyonun önem arz etmediği uygulamalarda maliyet etkin bir çözüm olarak kullanılır. Dipol antenlerin doğrusal polarizasyonlu olması GNSS uygulamaları için dezavantajdır.

Şekil 2.5. Dipol Anten

Döngü Anten: Cama yapıştırılarak kullanılır.

Şekil 2.6. Döngü Anten

Tüm anten tipleri dikkate alındığında, en sık olarak helezon ve mikroyama antenler GNSS uygulamalarında kullanılırlar. MY ve herezon antenler kendi arasında kıyaslandığında, helezon antenin tüm yönlü olması farklı açılardan gelen sinyalleri almasına olanak sağlayarak daha çok uydudan sinyal alma olasılığı olarak dşünülebilir. Ancak alınan sinyaller farklı yerlerden alınan sinyal olduğunda bunlar navigasyon sinyaline parazitik etki yaratır ve nihai navigasyon bilgisine esas sinyalleri bozabilir.(Rabinovich ve ark. 2010)

Helezon Anten	MY Anten	
+ Tüm Yönlü	+ Görece Yüksek Kazançlı	
+ Dayanıklı	+ Düşük maliyet	
– Maliyetli	+ Farklı ebatlarda uygulamalar	
 Yer gereksinimi 	– Anten ve besleme arasındaki	
	izolasyon helezondakine göre	
	daha kötü	

Çizelge 2.2. Helezon-MY Anten Kıyaslaması (https://www.u-blox.com 2019)

Tüm bu kıyaslamalardaki faktörler dikkate alındığında, maliyet etkin çözüm olması, pratik uygulanabilirlik ve teknik üstünlükleri de dikkate alındığında GNSS alıcılarında

en çok MY antenler kullanılmaktadır. Bu tez çalışmasında da MY antenler üzerinde çalışılmıştır. MY antenlerin performansını iyileştirmek ve en iyi verim elde edebilmek için yama antenler üzerine U oyuklu (El Alami ve ark. 2014), üçgen yama tipli (Kumar ve ark. 2016), dikdörtgensel yama tipli (Kumar 2016), elmas köşeli yama tipli (Yogita ve ark. 2016), dikdörtgensel ve boşluklu yama tipli (Jvss ve ark 2015), E şekilli yama tipli (Erdemir ve ark. 2014), dairesel yama tipli (Hasan ve ark 2017) uygulamalar çalışılmıştır.

2.2. Mikroşerit Yama Antenler

2.2.1. Mikro Yama Antenleri Genel Özellikleri

MYA'lar çok ince metalik yamanın, metalik toprak tabakasından h kadar yüksekte konumlandığı, h kalınlığındaki dielektrik malzemenin metalik yama ile toprak tabakasını doldurduğu anten tipidir.

Şekil 2.7. MY Anten Yapısı

Teme olarak anten boyut kriterleri

- Metal yama kalınlığı t <<λ_o
- Alttaş kalınlığı, yama-toprak arası uzunluk $h \ll \lambda_o$, 0,003 $\lambda_o \le h \le 0,05 \lambda_o$
- L yama uzunluğu $\lambda_0/3 < L < \lambda_0/2$
- Dielektrik malzeme sabiti E_r 2,2 \leq $E_r \leq 12$

olarak ifade edilir.

İyi anten performansı için düşük dielektrik sabitli ve kalın alttaş malzemeleri tercih edilir böylelikle yüksek bant genişliği, geniş ışıma alanı elde edilir. Yüksek dielektrik sabitli ve dar alttaş malzemeler ise istenmeyen ışıma ve kuplajların en az olması ve düşük boyutlar gerektiği için mikrodalga devre elemanlarında kullanılır. MYA'lar diğer mikrodalga devre elemanları ile kullanıldığı durumlarda iyi anten performansı ve iyi devre tasarımı arasında dengeleme gerekir.

Işıma yapan yama kare, dikdörtgen, ince strip (dipol), dairesel, eliptik, üçgensel veya başka bir geometride olabilir. Kare, dikdörtgen, dipol (strip), ve diresel yamalar en sık kullanılan tiplerdir çünkü analiz ve üretimleri kolaydır, ışıma karakteristikleri praik uygulamalara uygundur. Mikrostrip dipoller ise dizi anten uygulamalarında tercih edilir (Balanis,2005).

Şekil 2.8. MY Anten Geometrileri

2.2.2. Mikro Yama Antenlerin Avantaj ve Dezavantajları

MYA'lar geleneksel şekilli antenlere kıyasla birçok üstün yönlere sahiptir. 100 MHz ile 100 GHz arasındaki geniş bir aralıkta yer alan uygulamalarda kullanılırlar. Geleneksel mikrodalga antenlere kıyasla üstünlükleri

- Düşük ağırlık ve hacimli olmaları.
- İnce profilli olmaları ve buna bağlı olarak otomotiv ve savunma sektöründeki araçlarda kolay entegre edilebilir olması.
- Düşük üretim maliyeti, kolay üretilebilirlik.

- Besleme konumundaki küçük değişikliklerle dairesel ve doğrusal polarizasyonlu ışıyabilmeleri.
- Mikrodalga devrelerine kolay entegre edilebilmeleri.
- Yassı biçimde olmalarından dolayı mekanik tasarımlarda kolay uyumlanabilirliği

Geleneksel mikrodalga antenlere göre zayıf yanları ise

- Bant genişliğinin dar olması
- Düşük anten kazancı
- Dizi uygulamalarındaki yapıya bağlı geniş kayıplar
- Yarı düzlemde ışıma yapmaları
- Yüksek performans istenen dizi uygulamalarında karmaşık yapıda tasarım gerekliliği
- Yüzey dalgaları uyarımının mümkün olması
- Besleme ve ışıma elemanı arası zayıf yalıtım
- Besleme ve bağlantılardan istenmeyen ışımalar

Zayıf yanları iyileştirmek için yöntemler mevcuttur. Örneğin bant genişliği, alttaş kalınlığı ve farklı malzemeler ile artırılabilir. Düşük kazanç, anten dizileri ile iyileştirilebilir (Garg ve Bahal, 2001). MYA'ların Q kalite faktörü çok yüksektir. Yüksek Q dar bant genişliği ve düşük verimlilik demektir. Q alttaş kalınlığı artırılarak düşürülebilir. Ancak kalınlık artırıldığında, kaynak tarafından sağlanan gücün artan kısmı yüzey dalgaları oluşturur ve istenmeyen güç kaybına neden olur (Balanis,2005 more books at blog.jannatun.com).

$$Q = 2 \times \pi \times \frac{depolanan \, enerji}{yayılan \, güç}$$
(2.1)

2.2.3. Mikro Yama Antenlerin Besleme Teknikleri

MYA'lar farklı besleme tiplerinden en yaygın olan 4 tip besleme tipi, mikroşerit düzlemsel hat, koaksiyel, açıklık kuplajlı ve yakınlık kuplajlı besleme tipleridir. Mikroşerit hatlı beslemede yamaya bitişik genişliği yama genişliğinden çok daha küçük bir şerit hattından oluşur. Mikroşerit besleme hattının üretimi çok kolay, şeridin antene göre konumlandırılması ve modellenmesi çok kolaydır. Bu beslemede alttaş kalınlığı arttığında yüzey dalgaları ve istenmeyen ışımalar artar, bu da bant genişliğini düşürür

(yaklaşık %5) (Balanis,2005). Bu tez çalışmasında yama geometrisine bağlı tasarım etkileri incelendiğinden besleme tipi sabit tutulmuş ve sadece mikroşerit besleme tipi kullanılmıştır.

Şekil 2.9. Mikroşerit Besleme

Koaksiyel beslemede koaksiyel hattaki dış iletken anten toprağına, iç iletken ışıma yapan yamaya bağlıdır. Koaksiyel prob üretimi kolaydır ve istenmeyen ışıma düşüktür. Ancak alttaş kalın olduğu durumlarda (h>0,02 λ_0) koaksiyel besleme bant genişliğini düşürücü etki yapar ve beslemenin modellemesi zorlaşır.

Şekil 2.10. Koaksiyel Besleme

Mikroşerit ve koaksiyel beslemeler hattın doğasından kaynaklanan karşıt ışımalar oluşturur. Bu olumsuz etkileri giderebilmek için açıklık kuplajlı besleme yöntemi geliştirilmiştir. Açıklık kuplajlı, bu dört besleme tipi içerisinde üretimi en zor olanıdır ancak koaksiyel ve mikroşerit beslemedeki istenmeyen ışımalar için bir çözümdür, bant genişliği koaksiyel ve mikroşerite göre daha yüksektir. Açıklık kuplajlı beslemede toprak düzlemi ile ayrılan iki alttaş bulunur. Alttaki alttaşın alt kısmında enerjisini toprak düzlemi üzerindeki boşluk aracılığıyla ışıyan yamaya ileten mikroşerit hat bulunur. Bu yapı ışıyan yama ve besleme elemanının bağımsız olmasını sağlar ve ışıyan yamanın ve besleme hattından sızan ışımadan korunmasını sağlar. Alt kısımdaki alttaşta yüksek dielektrik sabitli malzeme, üst kısımdaki alttaşta düşük dielektrik sabitli malzeme kullanılır (Balanis,2005).

Şekil 2.11. Açıklık Kuplajlı Besleme

Yakınlık kuplajlı beslemede besleme hattı yama ile toprak düzlemi arasında iki yalıtkan alttaşı ayıracak şekilde yerleştirilir. Besleme hattı yamanın altında açık devre yan hatla sonlanmaktadır. İki alttaşın parametreleri, antenin bant genişliğini artıracak şekilde ve mikroşerit hattın ucundan gelen sahte ışımaları azaltacak şekilde seçilebilir. Bu besleme yöntemi ile %13 bant genişliğini elde edebilmek mümkündür (Öztürk, 2010).

Şekil 2.12. Yakınlık Kuplajlı Besleme

	Mikroșerit Besleme Yöntemleri			
Özellikler	Koaksiyel	Mikroșerit	Yakınlık B.	Açıklık B.
Besleme kay. İstenmeyen	Fazla	Fazla	Fazla	Az
ışıma				
Polarizasyon Saflığı	Zayıf	Zayıf	Zayıf	Çok iyi
Üretilebilirlik	Lehim ve	Kolay	Hassas	Hassas
	delme		hizalama	hizalama
	gerekir zor		gerekir zor	gerekir zor
Güvenilirlik	Lehimden	Üretimden	İyi	İyi
	dolayı	dolayı çok		
	düşük	iyi		
Empedans	Kolay	Kolay	Kolay	Kolay
Uyumlandırılabilirliği				
Bant Genişliği	%5'e kadar	%5'e	%13'e	%21'e
		kadar	kadar	kadar

Çizelge 2.3. Besleme Tipleri Kıyaslaması (Garg ve Bahal 2001)

2.2.4. Mikro Yama Antenlerin Analiz Yöntemleri

MY anten analizleri, 2 temel yaklaşıma göre gruplanabilir. Manyetik alanın anten kenarlarında eşit dağıldığı varsayımına göre

- İletim hattı modeli
- Boşluk (cavity) modeli

olarak sınıflandırılır.

Işıyan yama ve toprak üzerindeki akım dağılımına göre dayanan analizler sayısal yöntemlerle desteklenmektedir (Ulutaş, 2013). Bu yöntemler

- Moment yöntemi (Method of moments)
- Sonlu elemanlar yöntemi (Finite element method)
- Spektral domen tekniği (Spectral domain technique)
- Zaman alanında sonlu farklar yöntemi (FDTD method) olarak sıralanabilir.

Tüm bu yöntemler içerisinde dikdörtgen MYA'lar için en kolay ve en uygulanabilir olan yöntem iletim hattı modelidir (Pues ve ark 1985). Bu tez çalışması kapsamında dikdörtgen MY anten üzerinde model geliştirildiği için iletim hattı modeli esas alınmıştır ve iletim hattı modeli tez kapsamında incelenecektir. Benzetim çalışmalarında sonlu elemanlar yöntemi (FEM) tabanlı çalışan HFSS programı kullanılmıştır.

2.2.5. Dikdörtgen Yapılı MY Antenlerin Analitik Modeli ve Tasarımı

İletim hat modeli temel olarak MY anteni L uzunluğundaki Z_o empedanslı hat olarak betimler (Balanis,2005).

Şekil 2.14. Yarıklı Mikroşerit Besleme Modeli

• Saçak Etkileri

Yamanın en ve boyunun sonlu ebatlarından dolayı elektrik alan yamanın en ve boy uçlarında saçaklanmaya uğrar. Hem en hem boy kısmında oluşan etki grafiksel olarak aşağıda gösterilmiştir. Bu saçaklanma miktarı yama boyutlarının ve alttaş kalınlığının bir fonksiyonudur. İlkesel olarak E düzlemi (xy düzlemi)ndeki saçaklanma, yama boyu nun (L) alttaş yüksekliğine (h) oranının ve alttaş dielektrik sabitinin (\mathcal{E}_r) fonksiyonudur. MY antenlerde L/h »1 olduğundan L'ye bağlı saçaklanma azalır ancak yine de dikkate alınmalıdır çünkü rezonans frekansında belirleyici bir girdidir. Aynı durum anten eni (W) için de geçerlidir. Mikroşerit yama şekil 2.14.a'da, elektrik alan çizgileri 2.14.b'de, hava ve dielektrik malzemenin hesaba katılmasıyla hesaplanan bağıl dielektrik sabitli \mathcal{E}_{reff} anten gösterimi 2.14.c de gösterilmiştir. Hava ve malzemenin yan yana gelmesiyle heterojen dielektrik sabitli bir ortam oluşmuştur.

Şekil 2.15. MY Anten ve Elektrik Alan Çizgileri

W/h >> 1 olduğundan Şekil 2.14.b'de görüldüğü üzere, elektrik alan çizgilerinin çoğunluğu alttaş malzemenin içinde, azınlık bir kısmı ise havadadır. Bu etkilerden dolayı ışıma çizgilerine bakıldığında, fiziksel boyutlarından daha geniş bir anten varmışçasına bir sonuç elde edilir. Kenar etkisini ve dalganın hava ve alttaşta yayılımını dikkate alabilmek için bağıl dielektrik sabiti (ε_{reff}) hesaplanır. ε_{rr} hesabı için mikroşerit yamanın orijinal fiziksel boyutları ile toprak tabakadan alttaş yüksekliği (h) kadar yüksekte konumlandırıldığını ve ε_{rr} hayali malzeme içine gömüldüğünü (Şekil 2.14.c) farz edelim. Gerçekte üzerinde hava olan bir alttaşın dielektrik sabiti $1 < \varepsilon_{reff} < \varepsilon_r$ aralığındadır. $\varepsilon_r >>1$ olduğu durumlarda $\varepsilon_{reff} \in \varepsilon_r$ 'ye çok yakındır. Bağıl dielektrik sabiti aynı zamanda frekansa bağlı olarak da değişir. Frekans arttıkça elektrik alan çoğunluk olarak alttaşın içinde yayılır. Düşük frekanslarda bağıl dielektrik sabiti sabiti olarak kabul edilir. Orta frekanslarda monoton olarak artar ve nihayette alttaş dielektrik sabitin yakınsar. $\varepsilon_{reff} = W/h > 1$ olduğu durum için

$$\operatorname{Ereff} = \frac{\varepsilon_{r+1}}{2} + \frac{\varepsilon_{r-1}}{2} \left[1 + 12 \frac{h}{W} \right]^{-\frac{1}{2}}$$
(2.1)

olarak ifade edilir.

• Etkin Uzunluk, Rezonans Frekansı ve Etkin Genişlik

Saçaklanma etkilerinden dolayı, elektriksel etkiler dikkate alındığında MYA fiziksel boyutlarından daha büyük görünür. Kendi fiziksel özelliklerinin yarattığı elektriksel alandan daha fazlasını meydana getirir. xy düzleminden MY antene bakıldığında anten, boyu her iki uçtan ΔL kadar fazlaymışçasına ışıma yapar. ΔL \mathcal{E}_{reff} ve W/h in fonksiyonudur.

Şekil 2.16. Mikroşerit Besleme Yama Anten Işıma Çizgileri

ΔL'nin normalize edilmiş uzunluğu

$$\frac{\Delta L}{h} = 0.412 \frac{(\text{Ereff}+0.3) + \left(\frac{W}{h}+0.264\right)}{(\text{Ereff}-0.258) + \left(\frac{W}{h}+0.8\right)}$$
(2.2)

Her iki uçtan ΔL kadar uzayan yamanın etkin uzunluğu ; (TM₀₁₀ modu için saçak etkisi olmadan L= $\lambda/2$)

$$L_{eff} = L + 2\Delta L \tag{2.2}$$

kansıTM₀₁₀ modu için MY anten rezonansı L uzunluğunun bir fonksiyonudur.

$$f_r = \frac{1}{2L\sqrt{\epsilon_0\mu_0}\sqrt{\epsilon_r}} = \frac{c_0}{2L\sqrt{\epsilon_r}}$$
(2.3)

 c_0 ışığın boşluktaki hızı. (2.3) saçak etkilerini dikkate almadığından saçak etkisi de ilave edildiğinde denklem

$$f_r = \frac{1}{2L_{eff}\sqrt{\varepsilon_{reff}}\sqrt{\epsilon_0\mu_0}} = \frac{1}{2(L+2\Delta L)\sqrt{\varepsilon_{reff}}\sqrt{\epsilon_0\mu_0}} = \frac{c_o}{2(L+2\Delta L)\sqrt{\varepsilon_{reff}}}$$

Buradan MY antenin fiziksel gerçek uzunluğu L, f_r antenin istediğimiz rezonans frekansı olmak üzere

$$L = \frac{c_o}{2f_r \sqrt{\varepsilon_{reff}}} - 2\Delta L \tag{2.4}$$

olarak bulunur. İyi bir ışıma etkinliği için anten genişliği (W) ise

$$W = \frac{1}{2f_r \sqrt{\epsilon_0 \mu_0}} \sqrt{\frac{2}{\epsilon r+1}} = \frac{c_0}{2f_r} \sqrt{\frac{2}{\epsilon r+1}}$$
(2.5)

• İletkenlik ve İletim Hat Model Hesabı

Mikroşerit besleme hattı ve ışıyan yama, birbirine paralel iki admitans Y (G kondüktans ve B süseptans) olarak modellenir.

$$Y_1 = G_1 + jB_1$$

yama genişliği W olduğunda

$$G_1 = \frac{W}{120\lambda_0} \left[1 - \frac{1}{24} (k_0 h)^2 \right] \qquad \qquad \frac{h}{\lambda_0} < \frac{1}{10}$$
(2.6)

$$B_1 = \frac{W}{120\lambda_0} \left[1 - 0.636 \ln(k_0 h) \right] \qquad \frac{h}{\lambda_0} < \frac{1}{10}$$
(2.7)

Birbirine eş Y₁ ve Y₂ admitanslı iki yama (ışıyan yama ve mikroşerit besleme hattı)

$$Y_2 = Y_1, \quad G_2 = G_1, \quad B_2 = B_1$$
 (2.7)

Bir yamanın kondüktansı ışıma gücüne (Prad) bağlı denklemle ifade edilir.

Şekil 2.17. Dikdörtgen Yama ve Eşdeğer Devre Modeli

Elektrik alan denkleminden faydalanılarak

$$P_{rad} = \frac{|V_0|^2}{2\pi\eta_0} \int_0^{\pi} \left[\frac{\sin\left(\frac{k_0 W}{2} \cos\theta\right)}{\cos\theta} \right]^2 \sin^3\theta \, d\theta \tag{2.9}$$

Bununla birlikte eşitlik 2.8'de belirtilen kondüktans (2.10)'dak şekilde ifade edilebilir.

$$G_1 = \frac{I_1}{120 \,\pi^2} \tag{2.10}$$

$$I_1 = \int_0^{\pi} \left[\frac{\sin\left(\frac{k_0 W}{2} \cos \theta\right)}{\cos \theta} \right]^2 \sin^3 \theta \, d\theta \tag{2.11}$$

$$= -2 + \cos(X) + XS_i(X) + \frac{\sin(X)}{X}$$
$$X = k_o W$$
(2.12)

Eşitlik (2.11) ve (2.12) asimptot değerleri

$$G_{1} = \begin{cases} \frac{1}{90} \left(\frac{W}{\lambda_{0}}\right)^{2} & W \ll \lambda_{0} \\ \frac{1}{120} \left(\frac{W}{\lambda_{0}}\right) & W \gg \lambda_{0} \end{cases}$$
(2.13)

olarak iletkenliğin değeri bulunur . (Balanis,2005).

• Anten Giriş Direnci Hesaplaması

Yama 1 toplam admitansı (giriş direnci) iletim hattı admitans denklemleri kullanılarak bulunur. İdealde iki yama, " λ alttaştaki dalganın boyu olmak üzere" birbirleri arasında $\lambda/2$ mesafe olacak şekilde konumlanır ancak saçaklanma etkisinden dolayı yamaların

elektriksel uzunluğu fiziki uzunluğundan fazladır. Bundan ötürü yamalar arasındaki mesafe $\lambda/2$ 'den biraz daha azdır. Eğer uzunluktaki azalma eşitlik (2.2)'ye göre seçilirse

 $(0,48\lambda < L < 0,49\lambda)$, yama 2'ye aktarılan admitans;

$$\widetilde{Y}_2 = \widetilde{G}_2 + J\widetilde{B}_2 = G_1 - jB_1 \tag{2.14}$$

$$\widetilde{G_2} = G_1 \tag{2.15}$$

$$\widetilde{B_2} = -B_1 \tag{2.16}$$

Bundan dolayı toplam giriş admitansı reeldir ve;

$$Y_{in} = Y_1 + \tilde{Y}_2 = 2G_1 \tag{2.17}$$

Toplam giriş admitansı reel olduğundan rezonans giriş empedansı da reeldir;

$$Z_{in} = \frac{1}{Y_{in}} = R_{in} = \frac{1}{2G_1}$$
(2.18)

Eşitlik (2.18) iki yama arasındaki ortak etkileşimi (G₁₂) hesaba katmaz. Etkileşimi dikkate almak için;

$$R_{in} = \frac{1}{2(G_1 \pm G_{12})} \tag{2.19}$$

Burada (+) tek (asimetrik) rezonans gerilim dağılımlı modlar için, (-) çift (simetrik) rezonans gerilim dağılımlı modlar için kullanılır. Uzak alanda ortak etkileşimli iletkenlik G₁₂;

$$G_{12} = \frac{1}{|V_0|^2} Re \iint_S E_1 \times H_2^*. ds$$
 (2.20)

 E_1 yama 1'den yayılan elektik alan, H_2 yama 2'den yayılan manyetik alan, V_o yamalar arası gerilimi ifade eder ve integral işlemi geniş çaplı küre üzerinden yapılır ve denklemi;

$$G_{12} = \frac{1}{120\pi^2} \int_0^{\pi} \left[\frac{\sin\left(\frac{k_0 W}{2} \cos \theta\right)}{\cos \theta} \right]^2 J_0(k_0 L \sin \theta) \sin^3 \theta \, d\theta \tag{2.21}$$

Burada J₀ sıfırıncı sıranın birinci bessel fonksiyonudur. Tipik bir mikroşerit beslemeli MY antende ortak etkileşimli kondüktans denklem (2.10)'da verilen G₁'e göre çok azdır. Eşitlik (2.6) ve (2.19)'da görüldüğü üzere, giriş direnci alttaş kalınlığı (h)'a çok fazla bağlı değildir. Aslında, h'ın çok küçük değerleri (k₀h<<1) için giriş direnci h'a bağlı değildir. Model tabanlı analizlerin de kanıtladığı üzere giriş direnci alttaş kalınlığından dikkate alınabilir oranda etkilenmez. Denklem (2.19), (2.6) ve G₁'in G₁₂'ye göre dirençteki üstün etkisi düşünüldüğünde yama eni W artırılarak giriş direncinin düşürülebileceği açıktır. Bu kanı, W/L oranı 2'yi aşmadığı sürece geçerlidir çünkü 2'den sonra anten açıklık değeri düşer.

Eşitlik (2.19)'da hesaplanan giriş direnci yama 1 referans alınarak yapılmıştır. Giriş direnci, ana yamadan içeri y_0 kadar girinti yapılmasıyla oluşan ilave beslemeyle değişebilir ve bu teknik besleme hattı anten empedeans uyumlandırma için kullanılabilir.

Şekil 2.18. Uyumlandırılmış mikroşerit hat ile besleme

Şekil 2.19. Girintili mikroşerit besleme-empedans değişimi

Şekil 2.18'de görüleceği üzere y_0 girinti miktarı değiştirildiğinde girintisiz besleme durumuna göre giriş direnci azaltılabilir. Bu uyumlandırma devresinin karakteristik empedansı;

$$Z_{c} = \begin{cases} \frac{60}{\sqrt{\varepsilon_{reff}}} \ln\left[\frac{8h}{W_{0}} + \frac{W_{0}}{4h}\right], & \frac{W_{0}}{h} \le 1\\ \frac{120\pi}{\sqrt{\varepsilon_{reff}}\left[\frac{W_{0}}{h} + 1,393 + 0,667\ln\left(\frac{W_{0}}{h} + 1,444\right)\right]}, & \frac{W_{0}}{h} > 1 \end{cases}$$
(2.22)

Burada W₀ mikroşerit hattın enidir (Şekil 2.17). Model tabanlı analiz sonuçlarına göre girintili beslemenin giriş direnci

$$R_{in}(y = y_0) = \frac{1}{2(G_1 \pm G_{12})} \left[\cos^2\left(\frac{\pi}{L}y_0\right) + \frac{G_1^2 + B_1^2}{Y_c^2} \sin^2\left(\frac{\pi}{L}y_0\right) - \frac{B_1}{Y_c} \sin\left(\frac{2\pi}{L}y_0\right) \right]$$
(2.23)

 $Y_c=1/Z_c$ ve birçok mikroşerit beslemede $G_1/Y_1 \ll 1$ ve $B_1/Y_c \ll 1$ olduğundan (2.23) denklemi (2.24) haline gelir ve y0 girintili bir mikroşerit besleme için giriş direnç denklemi bulunur (Balanis,2005).

$$R_{in(y=y_o)} = \frac{1}{2(G_1 \pm G_{12})} \cos^2\left(\frac{\pi}{L}y_o\right)$$

= $R_{in}(y=0) \cos^2\left(\frac{\pi}{L}y_o\right)$ (2.24)

3. MATERYAL VE YÖNTEM

Bu çalışmada dikdörtgen MY anten tipinden yola çıkılarak, dikdörtgen orjinli farklı geometrilerin etkileri incelenmiş, rezonans frekansı ve bant genişliğini iyileştiren bir geometri bulunması amaçlanmıştır. Bu kapsamda dikdörtgen orjinli farklı geometri tipindeki antenler HFSS tasarım programı ile tasarlanış ve benzeşimleri gerçekleştirilmiştir. Benzeşim sonuçlarının çıktılarına göre geometri değişimlerinin f_r ve BG'ye etkileri yeni geometrik tasarımlar için girdi oluşturmuştur. Dikdörtgen orjinli H tipi MY anten, dikdörtgene çeşitli konum ve boyutlarda açılan oyuklu anten tipleri ve dairesel oyuklu MY anten tasarım ve benzeşimleri gerçekleştirilmiştir.

H, dikdörtgen oyuklu ve dairesel oyuklu antenlerde tez çalışması kapsamında

- Analitik denklemlere ve limit koşullarına göre L, W ve h temel boyutlarının belirlenmesi
- Oyuk iç boyutlarının hangi aralıklarda değişeceğinin belirlenmesi ve değişim tablosunun oluşturulması ve iterasyonların belirlenmesi
- Bu boyutlara göre her bir anten iterasyonunun HFSS programında fiziksel tasarımı
- Program üzerinde tasarım doğrulama
- Tanımlanan frekans aralığı ve örnekleme sayısına göre benzeşiminin yapılması
- Benzeşim sonuçlarının tabloya işlenmesi ve geometrik değişimin f_r ve BG üzerindeki etkisi
- Sonuç çıktılarına göre f_r ve BG değerlerini iyileştiren uygun geometrinin belirlenmesi çalışmaları yapılmıştır.

Tezin amacına uygun geometrinin dairesel oyuklu geometri olduğu tespitinden sonra ise model geliştirmeye yönelik olarak, iç boyutların belirli adım aralıklarıyla değiştiği yeni tasarım iterasyonları belirlenerek

- Yeni oyuk iç boyutlarının ve h yüksekliğinin hangi aralıklarda değişeceğinin belirlenmesi, değişim tablosunun oluşturulması ve yeni iterasyonların belirlenmesi
- Belirlenen iterasyonların tasarımının ve sonrasında benzeşimlerinin yapılması

- Yeterli sayıda örneklem oluşturacak şekilde girdilerin (oyuk boyutu r ve alttaş yüksekliği h) ve çıktının (f_r) MATLAB programına aktarılması ve eğri uyumlandırma yapılarak model oluşturulması
- Girdilerin model fonksiyonuna tabi tutularak oluşturdukları f_r ile benzeşim sonucundaki f_r'lerin karşılaştırılması
- Karşılaştırma sonucunda hata oranının %1'den düşük olduğu modellerin belirlenmesi

3.1. H Şekilli Yama Anten Tasarım ve Benzetimi

Şekil 3.1. H Şekilli MY Anten

H şekilli dikdörtgen MY anten temel olarak normal dikdörtgen MY antenden 2 küçük dikdörtgenin çıkarılmasıyla oluşan antendir. Antenin dış boyutları W b ile, L a ile ifade edilmiştir. b'ye paralel olan H'nin göbek kısmının kenarı d, a'ye paralel olan kısım s ile ifade edilmiştir. Normal dikdörtgen MY antenin rezonans denkleminde L boyutu, H yapıdaki iç oyukların hesaba etkisinden dolayı L_e olarak ifade edilmiştir (Urul ve Cengiz 2014). Dikdörtgen yapıdaki MY antenin denklemine benzer şekilde

$$\varepsilon_{reff} = \frac{\varepsilon_{r+1}}{2} + \frac{\varepsilon_{r-1}}{2} \left[1 + 12 \frac{h}{b} \right]^{-\frac{1}{2}}$$
(3.1)

$$\frac{\Delta L}{h} = 0.412 \frac{(\text{Ereff}+0.3) + (\frac{b}{h}+0.264)}{(\text{Ereff}-0.258) + (\frac{b}{h}+0.8)}$$
(3.2)
$$f_r = \frac{c}{2(L_e + 2\Delta L)\sqrt{\varepsilon_{reff}}}$$
(3.2)

Dikdörtgen MY antenin denklemlerine benzer şekilde elde edilir.

$$L_e = (\alpha_1 \cdot a + \alpha_2 \cdot d) \left(\frac{a}{b}\right)^{\alpha_3} + (\alpha_4 \cdot a + \alpha_5 \cdot s) \left(\frac{s}{d}\right)^{\alpha_6} + (\alpha_7 \cdot d) \left(\frac{d}{b}\right)^{\alpha_8}$$
(3.3)

Normal dikdörtgen antenden farklı olarak Le'nin oyuk boyutlarına bağlı denklemi birçok deneme sonucunda elde edilmiştir (Garg ve Bahal 2001).

Literatür denkleminden de anlaşıldığı üzere, antenin ışıma frekansında belirleyici unsur olan L boyutuna, antenin H şekli üzerindeki oyukların etkisi önemli ölçüde olmaktadır. H şekilli anten geometrisi ile tasarlanan 2 farklı rezonans frekansında ışıma yapan anten tasarımı yapılmıştır. Geometrinin etkisini görmek adına 24 GHz ve 1,5 GHz'te ışıma yapan 2 H tipi anten farklı oyuk boyutlarına göre tasarlanıp farklı boyut iterasyonlarındaki her bir antenin benzeşimleri yapılmıştır.

<u>*H tipi MY anten, f_r* = 24 *GHz*</u>: Anten rezonans frekansı 24 GHz olarak seçildiğinden dış boyutlar

Denklem (2.4)'e göre L=4,00 mm

Denklem (2.5)'e göre W=4,94 mm

 $\lambda_0 = 12,49 \text{ mm}$

(h_{min}) 0,003
$$\lambda_0 \le h \le 0,05 \lambda_0$$
 (h_{maks}) (3.4)

olduğundan $h_{maks}=0.62 \text{ mm ve } h=h_{maks}*1$, $h=h_{maks}*0.9$, $h=h_{maks}*0.8$ farklı h değerleri ve $h=h_{maks}*0.8$ için iç oyuk boyutları x ve y'nin değiştiği iterasyonlar belirlenip her bir iterasyon için ayrı bir tasarım ve benzeşim yapılmıştır.

Şekil 3.3. HFSS Programı ile H Şekilli Oyuklu MY Anten Tasarımı

Şekil 3.4. HFSS Programı ile H Şekilli Oyuklu MY Anten Benzetimi

HFSS ekran çıktı örnekleri H şekilli için örnek olarak verilmiş olup dikdörtgen ve dairesel tip ve iterasyonlarındaki işlemler aynı araç ve yöntemler kullanılarak yapılmıştır.

F:24 GHz		Sor	uçlar]
W:4,94 , L:4.0 mm		fr(GHz)	BG(MHz)	h(mm)
		21,5739	1115	0,624715376
		21,8747	994	0,562243838
		22,1253	754	0,499772301
	x:0.4	20,5714	393	0,499772301
	x:0.8	19,9198	166	0,499772301
y:0.8	x:1.2	19,5689	0	0,499772301
	x:1.6	19,3684	0	0,499772301
	x:2	19,3183	0	0,499772301
y:0.4		21,3734	585	0,499772301
y:0.8		19,9198	166	0,499772301
y:1.2	x:0.8	18,1153	0	0,499772301
y:1.6		15,9589	0	0,499772301
y:2		13,7544	0	0,499772301
y:2	x:2	12,6516	0	0,499772301

Çizelge 3.1. H Tipi Anten Tasarım İterasyon Sonuçları

Şekil 3.2'de belirtilen x ve y iç boyutlarının çizelge belirtilen adımlarda değişimlerinden oluşan yeni iterasyonlar çizelge 3.1'deki gibi tanımlanmıştır. Her bir iterasyon için tasarım ve benzeşim yapılmıştır. Sonuçlar 4. Bölümde detaylı olarak incelenecek olup çizelge 3.1'de yer alan sonuçlar yöntem gösterimi amacıyla verilmiştir.

<u>*H tipi MY anten, f_r* = 1,5 *GHz:*</u> Anten rezonans frekansı 1,5 GHz olarak seçildiğinden dış boyutlar

Denklem (2.4)'e göre L=75,23 mm

Denklem (2.5)'e göre W=54,41 mm

 $\lambda_0 = 190 \text{ mm}$

h=h_{maks}=≤0,05 λ_0 olduğundan h_{maks}=9,51 mm ve h=h_{maks}*1, h=h_{maks}*0,9, h=h_{maks}*0,8 farklı h değerleri ve h= h_{maks}*0,8 için iç oyuk boyutları x ve y'nin değiştiği iterasyonlar belirlenip her bir iterasyon için ayrı bir tasarım ve benzeşim yapılmıştır.

3.2. Dikdörtgen Oyuklu Yama Anten Tasarım ve Benzetimi

<u>4 oyuklu dikdörtgen MY anten, $f_r = 24 \text{ GHz}$ </u>: Anten rezonans frekansı 24 GHz olarak seçildiğinden dış boyutlar;

Denklem (2.4)'e göre L=4,00 mm

Denklem (2.5)'e göre W=4,94 mm

λ_o=12,49 mm

h=h_{maks}=≤0,05 λ_0 olduğundan h_{maks}=9,51 mm ve h=h_{maks}*1, h=h_{maks}*0,9, h=h_{maks}*0,8 farklı h değerleri ve h= h_{maks}*0,8 için iç oyuk boyutları x ve y'nin değiştiği iterasyonlar belirlenip her bir iterasyon için ayrı bir tasarım ve benzeşim yapılmıştır.

Şekil 3.5. 4 Oyuklu MY Anten

<u>4 oyuklu dikdörtgen MY anten $f_r = 1,5$ GHz</u>: Anten rezonans frekansı 1,5 GHz olarak seçildiğinden dış boyutlar

Denklem (2.4)'e göre L=75,23 mm

Denklem (2.5)'e göre W=54,41 mm

 $\lambda_0 = 190 \text{ mm}$

 $h=h_{maks}=\leq 0,05 \lambda_0$ olduğundan $h_{maks}=9,51 \text{ mm}$ ve $h=h_{maks}*1$, $h=h_{maks}*0,9$, $h=h_{maks}*0,8$ farklı h değerleri ve $h=h_{maks}*0,8$ için iç oyuk boyutları x ve y'nin değiştiği iterasyonlar belirlenip her bir iterasyon için ayrı bir tasarım ve benzeşim yapılmıştır.

<u>3 oyuklu dikdörtgen MY anten, $f_r = 24 GHz$ </u>: Anten rezonans frekansı 24 GHz, h değerleri denklem (3.4) e göre bulunan h_{min} ve h_{maks} arasında olacak şekilde 0,1 ve 0,3 mm olarak seçilmiştir.

Şekil 3.6. 3 Oyuklu MY Anten

a ve b iç boyutları ise çizelgedeki görülen koşullara tabi olarak değiştirilerek 40 farklı tasarım iterasyonu elde edilmiş olup benzetimleri gerçekleştirilmiştir.

Çizelge 3.2. 3 Oyuklu MY Anten İç Boyutları

	Boyut Aralığı	min	max	Δ
6	0,05 W < b < 0,2 W	0,247	0,988	0,05
	0,05 L < a < 0,2 W	0,202	0,809	0,04

3.3. Dairesel Oyuklu Yama Anten Tasarım ve Benzetimi

Tezin ana konusu ve savı olan bu yapı, merkezi dikdörtgenin üst köşelerini başlangıç noktası alan bir yarıçap olan (r) oyuk yarıçapı r'nin 0L ile 0,5L arasında değiştiği bir geometri üzerine kurulmuştur.

Şekil 3.7. Dairesel Oyuklu MY Anten

Bu geometride r ve h'ın değişimlerinin f_r ve BG'ye etkisi, farklı frekanslarda çokça örneklemli benzeşimlerle ortaya konmuş, benzeşim verilerinden r ve h'nin etkisinin matematiksel modeli MATLAB programı aracılığıyla eğri uyumlandırma uygulanarak elde edilmiştir.

<u>Dairesel oyuklu dikdörtgen MY anten</u>, $f_r = 24 GHz$: Anten rezonans frekansı 24 GHz, h ise denklem (3.4) ile hesaplanan h_{min} ve h_{maks} arasında kalacak şekilde çizelge 3.3'e görülen 50 farklı iterasyon tasarımı ve benzetimi yapılmıştır.

Değişken	min	maks	Δ	Açıklama
r	0,000	1,786	0,1786	10 farklı r
h	0,2	0,6	0,1	5 farklı h

Çizelge 3.3. Dairesel Oyuklu MY Anten İç Boyutları

<u>Dairesel oyuklu dikdörtgen MY anten</u>, $f_r = 1,575 \text{ GHz}$: Anten rezonans frekansı 1,575 GHz, h ise denklem (3.4) ile hesaplanan h_{min} ve h_{maks} arasında kalacak şekilde çizelge 3.4'te görüldüğü üzere 70 farklı iterasyon tasarımı ve benzetimi yapılmıştır.

Çizelge 3.4. Dairesel Oyuklu MY Anten İç Boyutları

Değişken	min	maks	Δ	Açıklama
r	0,000	0,5L	0,05L	10 farklı r
h	6	9,5	0,5	7 farklı h

50 ve 70'lik örneklemler sonucunda elde edilen verilerle sayısal model oluşturulmuştur. <u>Dairesel oyuklu dikdörtgen MY anten, $f_r = 1,5 - 2,5$ GHz</u>: Anten rezonans frekansı 1,5-2,5 GHz arasında değişen 6 farklı W ve L dış boyutlu dikdörtgen anten tasarlanmış ve bu 6 antenin değişen farklı r ve h değerleriyle 1,5-2,5 GHz aralığını kapsayacak 147 adet anten iterasyonunun tasarım ve benzetimi yapılmıştır. 147 örneklem sonucu ile sayısal model oluşturulmuştur.

4. BULGULAR

Bu bölümde H tipi, dikdörtgen oyuklu ve dairesel oyuklu MY anten iterasyonlarında oyuk boyutlarındaki geometrik değişimlerin anten rezonans frekansı (f_r) ve bant genişliğine (BG) etkisi incelenmiştir. H tipi ve dikdörtgen oyuklu MY antenlerdeki dikdörtgensel oyukların benzeşim sonuçlarından görülen olumsuz etkileri, f_r ve BG'yi olumlu yönde etkileyecek yeni bir geometri arayışına sevk etmiş ve dairesel oyuklu geometrinin f_r ve BG'yi artıran yönde etkileri benzeşim sonuçlarında görülmüştür. Örneklem sayıları artırılarak oyuk yarıçapının f_r ve BG'ye etkisinin sayısal modeli elde edilmiştir.

4.1. H Şekilli Yama Anten Benzetim Sonuçları

<u>*H tipi MY anten, f_r* = 24 *GHz:*</u> Geometrilerin farklı frekanstaki etkilerini gözlemlemek ve yüksek frekans davranışlarını gözlemlemek için, 24 GHz'de de tasarım ve benzeşimler yapılmıştır. İlk 3 örnek, H oyukları açılmadan h yüksekliğinin MY dikdörtgen antene etkisini görmek için yapılmıştır. h_{max} eşitlik (3.4)'ten 0,62 mm olarak bulunmuş ve h_{maks}*1, h_{maks} *0,9 ve h_{maks} *0,8 olarak 3 farklı tasarımın benzeşimi yapılmıştır. h= h_{maks} *0,8 seçilerek H oyukları açılarak 11 farklı tasarımın benzeşimi yapılmıştır.

f _r :24 GHz		Benzeşin	ı Sonuçları	h(mm)	Örnek
W:4,94, L:4.0 mm		fr(GHz)	BG(MHz)	n(mm)	Numarası
		21,5739	1115	0,62	4.1.1
		21,8747	994	0,56	4.1.2
		22,1253	754	0,50	4.1.3
	x:0.4	20,5714	393	0,50	4.1.4
	x:0.8	19,9198	166	0,50	4.1.5
y:0.8	x:1.2	19,5689	0	0,50	4.1.6
	x:1.6	19,3684	0	0,50	4.1.7
	x:2	19,3183	0	0,50	4.1.8
y:0.4		21,3734	585	0,50	4.1.9
y:0.8		19,9198	166	0,50	4.1.10
y:1.2	x:0.8	18,1153	0	0,50	4.1.11
y:1.6		15,9589	0	0,50	4.1.12
y:2		13,7544	0	0,50	4.1.13
y:2	x:2	12,6516	0	0,50	4.1.14

Çizelge 4.1. H Şekilli MY Anten İç Boyutların f_r ve BG'ye Etkisi

H şeklini oluşturan iç oyuğun x ve y boyutları arttıkça f_r ve BG'yi azalmaktadır. İç boyut arttıkça aslında antenin ışıma yaptığı dış yüzey artmış olmaktadır. Denklem (3.2)'de yer alan etkin dış boyut L_e'nin iç boyutlara bağlı olma durumu ile bu durum açıklanabilir. Daha uzun L, daha düşük rezonans frekansı anlamına gelmektedir. Etkin L_e arttıkça f_r'nin azaldığı sonuçlar denklem (3.3) ile örtüşmektedir.

Şekil 4.1. 24 GHz'de S11 Değişimi, y sabit x değişiyor iken

İç boyutlar attıkça, S11 geri dönüş kaybı artarak -10dB üzerine çıktığından 4.1.6'dan itibaren ışımanın anten özelliği kaybolmaktadır. x ve y'nin herhangi birinin artması, f_r ve BG'yi azaltmaktadır dolayısıyla x ve y arasında ayırt edici bir fark görüşmemiştir.

Şekil 4.2. H Şekilli Oyuklu MY Anten

<u>*H tipi MY anten, f_r* = 1,5 *GHz:*</u> Tezimizin konusu kapsamında olan 1,5 GHz'de H şeklinin etkisi incelenmiştir. İlk 3 örnek, H oyukları açılmadan h yüksekliğinin MY dikdörtgen antene etkisini görmek için yapılmıştır. h_{maks} eşitlik (3.4)'ten 9,52 mm olarak bulunmuş ve h_{maks} *1, h_{maks} *0,9 ve h_{maks} *0,8 olarak 3 farklı tasarımın benzeşimi yapılmıştır. $h = h_{maks}$ *0,8 seçilerek H oyukları açılarak 13 farklı tasarımın benzeşimi yapılmıştır.

fr:1,5 GHz		Ber Son	ızeşim luçları	b ()	Örnek	
W:75,2	.5mm , L:54.41			n(mm)	Numarası	
	mm	fr(GHz)	BG(MHz)	_		
		1,4887	132	9,52	4.2.1	
		1,5238	120	8,57	4.2.2	
		1,5489	99	7,62	4.2.3	
	x:4	1,5063	94	7,62	4.2.4	
	x:8	1,4737	91	7,62	4.2.5	
0	x:12	1,4486	89	7,62	4.2.6	
y:8	x:16	1,4385	87	7,62	4.2.7	
	x:20	1,4386	87	7,62	4.2.8	
	x:22	1,3759	81	7,62	4.2.9	
y:4		1,5163	99	7,62	4.2.10	
y:8		1,4762	91	7,62	4.2.11	
y:12	9	1,3634	76	7,62	4.2.12	
y:16	X:0	1,3183	67	7,62	4.2.13	
y:20		1,18	55	7,62	4.2.14	
y:22		1,1529	51	7,62	4.2.15	
y:20	x:20	1,0752	48	7,62	4.2.16	

Çizelge 4.2. H Şekilli MY Anten İç Boyutların f_r ve BG'ye Etkisi

24 GHz'dekine benzer şekilde H şeklini oluşturan iç oyuğun x ve y boyutları arttıkça f_r ve BG azalmaktadır. Sonuçlara bakıldığında oyuğun y kısmının artımı, x kısmındaki artış miktarına göre f_r ve BG'yi daha çok azaltmaktadır. Örneğin 4.2.8 ve 4.2.14'i ele alırsak y'nin 20 mm olması (4.2.14), x'in 20 mm olduğu örnekten (4.2.8) daha fazla f_r ve BG düşümüne neden olmaktadır. S11 grafiklerinde görüldüğü üzere x'in artımı y'nin artımına göre f_r 'de daha düzenli bir azalışa neden olmaktadır. Işımanın anten kenarlarında olduğu düşünüldüğünde y'nin az olması, daha düzgün bir ışıma kenarı sağlamaktadır.

Şekil 4.3. 1,5 GHz'de S11 Değişimi, y sabit x değişiyor iken

Şekil 4.4. 1,5 GHz'de S11 Değişimi, x sabit y değişiyor iken

4.2. Dikdörtgen Oyuklu Yama Anten Benzeşim Sonuçları

<u>4 Oyuklu Dikdörtgen tipi MY anten,</u> $f_r = 24 GHz$: İlk 3 örnek, oyuklar açılmadan h yüksekliğinin MY dikdörtgen antene etkisini görmek için yapılmıştır. h_{max} eşitlik (3.4)'ten 0,62 mm olarak bulunmuş ve h_{maks}*1, h_{maks} *0,9 ve h_{maks} *0,8 olarak 3 farklı tasarımın benzeşimi yapılmıştır. h= h_{maks} *0,8 seçilmiş ve 4 oyuk açılarak 11 farklı tasarımın benzeşimi yapılmıştır

fr:24 GHz		Benzeşin	n Sonuçları	h(mm)	Örnek
W:4,9	94, L:4.0 mm	fr(GHz)	BG(MHz)	II(IIIII)	Numarası
		21,5238	1181	0,624715376	4.3.1
		21,7744	1100	0,562243838	4.3.2
		22,0251	932	0,499772301	4.3.3
	x:0.4	20,5213	299	0,499772301	4.3.4
	x:0.8	20,1704	0	0,499772301	4.3.5
y:0.8	x:1.2	20,1704	0	0,499772301	4.3.6
	x:1.6			0,499772301	4.3.7
	x:2			0,499772301	4.3.8
y:0.4		21,4737	605	0,499772301	4.3.9
y:0.8		20,1704	0	0,499772301	4.3.10
y:1.2	x:0.8	18,1153	0	0,499772301	4.3.11
y:1.6		-		0,499772301	4.3.12
y:2		-		0,499772301	4.3.13
w.2	x.2	/		0 / 99772301	1314

Çizelge 4.3. 4 Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

Şekil 4.5. 24 GHz'de S11 Değişimi, y sabit x değişiyor iken

Oyukları oluşturan iç oyuğun x ve y boyutları arttıkça f_r ve BG'yi azalmaktadır. H oyuklu antendeki sonuçlara benzer souçlar elde edilmiştir. İç boyut arttıkça aslında antenin ışıma yaptığı dış yüzey artmış olmaktadır. Denklem (3.2) ve (3.3) ile örtüşen sonuçlar elde edilmiştir. 4.3.5 ve 4.3.10'dan itibaren S11 -10 dB üstüne çıktığından anten özelliği kaybolmuştur.

Şekil 4.6. 24 GHz'de S11 Değişimi, x sabit y değişiyor iken

Şekil 4.7. 4 Oyuklu MY Anten

Sonuç itibariyle aynı x ve y oyuk değerleri için H tipi (2 oyuklu) ve 4 oyuklu antenler arasında x ve y'nin aynı değerleri için birbirine yakın f_r ve BG elde edilmiştir.

<u>4 Oyuklu Dikdörtgen tipi MY anten,</u> $f_r = 1,5 GHz$: İlk 3 örnek, oyuklar açılmadan h yüksekliğinin MY dikdörtgen antene etkisini görmek için yapılmıştır. h_{maks} eşitlik (3.4)'ten 9,52 mm olarak bulunmuş ve h_{maks} *1, h_{maks} *0,9 ve h_{maks} *0,8 olarak 3 farklı tasarımın benzeşimi yapılmıştır. $h = h_{maks}$ *0,8 seçilerek oyuklar açılarak 14 farklı tasarımın benzeşimi yapılmıştır.

fr:1,5	5 GHz	Benzeşir	n Sonuçları		Örnalı	
W:75,25mm , L:54.41				h(mm)	Numarasi	
m	im	fr(GHz)	BG(MHz)			
		1,5038	135	0,01	4.4.1	
		1,5313	119	0,01	4.4.2	
		1,5614	100	0,01	4.4.3	
	x:4	1,4987	92	7,62	4.4.4	
	x:8	1,4712	90	7,62	4.4.5	
y:8	x:12	1,4486	88	7,62	4.4.6	
	x:16	1,4536	87	7,62	4.4.7	
	x:20	1,4637	88	7,62	4.4.8	
y:4		1,5288	96	7,62	4.4.9	
y:8		1,4712	90	7,62	4.4.10	
y:12	x:8	1,411	81	7,62	4.4.11	
y:16		1,3183	68	7,62	4.4.12	
y:20		1,2155	56	7,62	4.4.13	
y:20	x:20	1,1754	54	7,62	4.4.14	

Çizelge 4.4. 4 Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

Oyukları oluşturan iç oyuğun x ve y boyutları arttıkça f_r ve BG'yi azalmaktadır. H oyuklu antendeki sonuçlara benzer sonuçlar elde edilmiştir. İç boyut arttıkça aslında antenin ışıma yaptığı dış yüzey artmış olmaktadır. Denklem (3.2) ve (3.3) ile örtüşen sonuçlar elde edilmiştir.

Şekil 4.8. 1,5 GHz'de S11 Değişimi, y sabit x değişiyor iken

Şekil 4.9. 1,5 GHz'de S11 Değişimi, x sabit y değişiyor

24 GHz'dekine benzer şekilde 1,5 GHz'de de aynı x ve y oyuk değerleri için H tipi (2 oyuklu) ve 4 oyuklu antenler arasında x ve y'nin aynı değerleri için birbirine yakın f_r ve BG elde edilmiştir.

<u>3 Oyuklu Dikdörtgen tipi MY anten, $f_r = 24 GHz$ </u>: Bölüm 3.2'de anlatıldığı üzere MY antenin solunda sağında ve ortasında olmak üzere 3 oyuk açılmış iç boyutların değişimiyle elde edilen 40 farklı iterasyon çalışılmıştır.

Şekil 4.10. 3 Oyuklu MY Anten

Örnek							
Numarası	W(mm)	L(mm)	b(mm)	a(mm)	h(mm)	fr(GHz)	BG(GHz)
4.5.1	4,94	4,04	0,247	0,202	0,3	22,42	0,569
4.5.2	4,94	4,04	0,297	0,242	0,3	21,76	0,479
4.5.3	4,94	4,04	0,347	0,282	0,3	22,17	0,538
4.5.4	4,94	4,04	0,397	0,322	0,3	22,07	0,522
4.5.5	4,94	4,04	0,447	0,362	0,3	21,96	0,498
4.5.6	4,94	4,04	0,497	0,402	0,3	21,81	0,464
4.5.7	4,94	4,04	0,547	0,442	0,3	21,61	0,43
4.5.8	4,94	4,04	0,597	0,482	0,3	21,41	0,415
4.5.9	4,94	4,04	0,647	0,522	0,3	21,21	0,39
4.5.10	4,94	4,04	0,697	0,562	0,3	20,76	0,356
4.5.11	4,94	4,04	0,747	0,602	0,3	20,66	0,323
4.5.12	4,94	4,04	0,797	0,642	0,3	20,36	0,276
4.5.13	4,94	4,04	0,847	0,682	0,3	20,06	0,204
4.5.14	4,94	4,04	0,897	0,722	0,3	19,76	0,179
4.5.15	4,94	4,04	0,947	0,762	0,3	19,46	0,094
4.5.16	4,94	4,04	0,997	0,802	0,3	19,11	0
4.5.17	4,94	4,04	1,047	0,842	0,3	18,66	0
4.5.18	4,94	4,04	1,097	0,882	0,3	18,41	0
4.5.19	4,94	4,04	1,147	0,922	0,3	18,11	0
4.5.20	4,94	4,04	1,197	0,962	0,3	17,80	0
4.5.21	4,94	4,04	0,247	0,202	0,1	23,57	0
4.5.22	4,94	4,04	0,297	0,242	0,1	23,42	0
4.5.23	4,94	4,04	0,347	0,282	0,1	23,27	0
4.5.24	4,94	4,04	0,397	0,322	0,1	23,07	0
4.5.25	4,94	4,04	0,447	0,362	0,1	22,82	0
4.5.26	4,94	4,04	0,497	0,402	0,1	22,27	0
4.5.27	4,94	4,04	0,547	0,442	0,1	22,22	0
4.5.28	4,94	4,04	0,597	0,482	0,1	22,02	0
4.5.29	4,94	4,04	0,647	0,522	0,1	21,76	0
4.5.30	4,94	4,04	0,697	0,562	0,1	21,31	0
4.5.31	4,94	4,04	0,747	0,602	0,1	20,91	0
4.5.32	4,94	4,04	0,797	0,642	0,1	20,46	0
4.5.33	4,94	4,04	0,847	0,682	0,1	20,26	0
4.5.34	4,94	4,04	0,897	0,722	0,1	19,76	0
4.5.35	4,94	4,04	0,947	0,762	0,1	19,31	0
4.5.36	4,94	4,04	0,997	0,802	0,1	19,21	0
4.5.37	4,94	4,04	1,047	0,842	0,1	18,81	0
4.5.38	4,94	4,04	1,097	0,882	0,1	18,31	0
4.5.39	4,94	4,04	1,147	0,922	0,1	17,95	0
4.5.40	4,94	4,04	1,197	0,962	0,1	17,1	0

Çizelge 4.5. 3 Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

H ve 4 oyuklu antendekine benzer şekilde iç oyuk boyutları arttıkça f_r ve BG azalmaktadır. 4.5.15'ten itibaren S11 -10dB üstüne çıktığından anten özelliği kaybolmuştur. Denklem (3.2) ve (3.3) ile örtüşen sonuçlar elde edilmiştir. Burada görülen diğer önemli durum, 4.5.1 ve 4.5.20 arasında h=0,3 mm iken 4.5.15'e kadar anten özelliği korunuyorken, 4.5.21 ve 4.5.40 arasında h=0,1 mm iken 20 örnekte de anten özelliği olmayan S11 -10dB'den yüksek olma durumu gözlenmiştir. Yani aynı dış boyutlar ve malzeme ile h=0,3 mm iken ışıma olurken h=0,1 mm iken anten özellikli ışıma olmamaktadır. Halbuki h=0,1 mm denklem (3.4)'e göre 0,003 $\lambda_0 \leq h \leq 0,05 \lambda_0$ koşulunu sağlamaktadır. Bu durum bize analitik denklemlerin yanında benzeşim sonuçları ve bunlardan elde edilecek modellere gereksinim duyulduğunu ortaya koymuştur.

H tipi, 4 oyuklu ve 3 oyuklu dikdörtgen MY anten benzeşim sonuçlarının f_r ve BG üzerinde bir iyileştirme sağlamaması, f_r ve BG'yi iyileştirecek bir geometrik yapı gerekliliğini ortaya koymuştur. Değişik tasarım denemeleri ve benzeşimler sonucunda bölüm 3.3'de şeklen ifade edilen anten geometrisinin f_r ve BG'yi iyileştirdiği görülmüş ve bu geometri üzerine yoğunlaşılarak birçok farklı tasarım ve benzeşimler yapılmıştır.

4.3. Dairesel Oyuklu Yama Anten Benzeşim Sonuçları

<u>Dairesel oyuklu dikdörtgen tipi MY anten</u>, $f_r = 24 GHz$: Anten rezonans frekansı 24 GHz, h ise denklem (3.4) ile hesaplanan h_{min} ve h_{max} arasında kalacak şekilde çizelge 4.6'da görülen 50 farklı iterasyon tasarımı ve benzetimi yapılmıştır.

$$r; \ 0L < r < 0.5L \tag{4.1}$$

Değişken	min	maks	Δ	Açıklama
r	0,000	1,786	0,1786	10 farklı r
h	0,2	0,6	0,1	5 farklı h

Çizelge 4.6. Dairesel Oyuklu MY Anten İç Boyutları

Örnek No	W(mm)	L(mm)	r=L/x(mm)	h(mm)	fr(GHz)	BG(MHz)
4.6.1	4,40	3,50	0,18	0,6	23,9749	1,025
4.6.2	4,40	3,50	0,36	0,6	24,1253	1,034
4.6.3	4,40	3,50	0,54	0,6	24,3759	1,069
4.6.4	4,40	3,50	0,71	0,6	24,5764	1,087
4.6.5	4,40	3,50	0,89	0,6	24,8271	1,102
4.6.6	4,40	3,50	1,07	0,6	25,0276	1,1149
4.6.7	4,40	3,50	1,25	0,6	25,2281	1,092
4.6.8	4,40	3,50	1,43	0,6	25,4787	1,074
4.6.9	4,40	3,50	1,61	0,6	25,7293	1,021
4.6.10	4,40	3,50	1,79	0,6	26,0802	0,977
4.6.11	4,40	3,50	0,18	0,5	24,4261	0,918
4.6.12	4,40	3,50	0,36	0,5	24,5764	0,933
4.6.13	4,40	3,50	0,54	0,5	24,8271	0,959
4.6.14	4,40	3,50	0,71	0,5	25,0276	0,983
4.6.15	4,40	3,50	0,89	0,5	25,3283	1,001
4.6.16	4,40	3,50	1,07	0,5	25,5789	1,013
4.6.17	4,40	3,50	1,25	0,5	25,8296	1,014
4.6.18	4,40	3,50	1,43	0,5	25,9799	0,98
4.6.19	4,40	3,50	1,61	0,5	25,2306	0,936
4.6.20	4,40	3,50	1,79	0,5	25,5313	0,882
4.6.21	4,40	3,50	0,18	0,4	24,9774	0,723
4.6.22	4,40	3,50	0,36	0,4	25,0777	0,713
4.6.23	4,40	3,50	0,54	0,4	25,3784	0,756
4.6.24	4,40	3,50	0,71	0,4	25,5288	0,754
4.6.25	4,40	3,50	0,89	0,4	25,8797	0,785
4.6.26	4,40	3,50	1,07	0,4	26,1303	0,808
4.6.27	4,40	3,50	1,25	0,4	26,4311	0,834
4.6.28	4,40	3,50	1,43	0,4	26,5815	0,83
4.6.29	4,40	3,50	1,61	0,4	26,7318	0,794
4.6.30	4,40	3,50	1,79	0,4	27,0827	0,752
4.6.31	4,40	3,50	0,18	0,3	25,5789	0
4.6.32	4,40	3,50	0,36	0,3	25,7293	0
4.6.33	4,40	3,50	0,54	0,3	25,9799	0
4.6.34	4,40	3,50	0,71	0,3	26,2306	0,165
4.6.35	4,40	3,50	0,89	0,3	26,5313	0,269
4.6.36	4,40	3,50	1,07	0,3	26,8321	0,449
4.6.37	4,40	3,50	1,25	0,3	27,0326	0,52
4.6.38	4,40	3,50	1,43	0,3	27,2331	0,577
4.6.39	4,40	3,50	1,61	0,3	27,3835	0,572
4.6.40	4,40	3,50	1,79	0,3	27,5840	0,581
4.6.41	4,40	3,50	0,18	0,25	25,9799	0
4.6.42	4,40	3,50	0,36	0,25	26,0802	0
4.6.43	4,40	3,50	0,54	0,25	26,2807	0
4.6.44	4,40	3,50	0,71	0,25	26,5313	0

Çizelge 4.7. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

4.6.45	4,40	3,50	0,89	0,25	26,8822	0
4.6.46	4,40	3,50	1,07	0,25	27,0827	0
4.6.47	4,40	3,50	1,25	0,25	27,4336	0,147
4.6.48	4,40	3,50	1,43	0,25	27,6341	0,334
4.6.49	4,40	3,50	1,61	0,25	27,5338	0,484
4.6.50	4,40	3,50	1,79	0,25	27,7845	0,474

Çizelge 4.7. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi (Devamı)

Benzeşim sonuçları incelendiğinde;

- r'nin artması hem f_r'yi hem de BG'yi artırmıştır.
- BG için en iyi sonuçlar r=0,3L (4.6.6), r=0,35L (4.6.17, 4.6.27), r=0,4L (4.6.38) ve r=0,45L (4.6.49)'da elde edilmiştir. Yani h değeri azaldıkça BG_{max} için r'nin artması gerekmektedir.
- r'nin fr'ye etkisi farklı h'larda benzer şekilde görülmüştür. Doğrusala yakın bir şekilde artırmaktadır.

<u>Dairesel oyuklu dikdörtgen MY anten</u>, $f_r = 1,5 GHz$: Anten rezonans frekansı 1,575 GHz, h ise denklem (3.4) ile hesaplanan h_{min} ve h_{max} arasında kalacak şekilde çizelge 4.8'de görülen 70 farklı iterasyon tasarımı ve benzetimi yapılmıştır.

Değişken	min	max	Δ	Açıklama
r	0,000	0,5L	0,05L	10 farklı r
h	6	9,5	0,5	7 farklı h

Cizelge 4.8. Dairesel Oyuklu MY Anten İç Boyutları

Çizelge 4.9. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

Örnek No	W(mm)	L(mm)	r=L/x(mm)	1	h(mm)	fr(GHz)	BG(MHz)
4.7.1	75,2380	54,4125	2,72		9,5	1,5060	137
4.7.2	75,2380	54,4125	5,44		9,5	1,5138	138
4.7.3	75,2380	54,4125	8,16]	9,5	1,5260	144
4.7.4	75,2380	54,4125	10,88		9,5	1,5414	150
4.7.5	75,2380	54,4125	13,60		9,5	1,5589	155
4.7.6	75,2380	54,4125	16,32		9,5	1,5714	166
4.7.7	75,2380	54,4125	19,04]	9,5	1,5865	174
4.7.8	75,2380	54,4125	21,77]	9,5	1,5960	180
4.7.9	75,2380	54,4125	24,49]	9,5	1,5940	158
4.7.10	75,2380	54,4125	27,21		9,5	1,5865	137
4.7.11	75,2380	54,4125	2,72		9	1,5213	130
4.7.12	75,2380	54,4125	5,44		9	1,5263	132

4.7.13	75,2380	54,4125	8,16	9	1,5388	135
4.7.14	75,2380	54,4125	10,88	9	1,5589	141
4.7.15	75,2380	54,4125	13,60	9	1,5714	149
4.7.16	75,2380	54,4125	16,32	9	1,5865	159
4.7.17	75,2380	54,4125	19,04	9	1,6015	174
4.7.18	75,2380	54,4125	21,77	9	1,6065	165
4.7.19	75,2380	54,4125	24,49	9	1,6140	158
4.7.20	75,2380	54,4125	27,21	9	1,6115	136
4.7.21	75,2380	54,4125	2,72	8,5	1,5338	120
4.7.22	75,2380	54,4125	5,44	8,5	1,5439	124
4.7.23	75,2380	54,4125	8,16	8,5	1,5539	126
4.7.24	75,2380	54,4125	10,88	8,5	1,5689	132
4.7.25	75,2380	54,4125	13,60	8,5	1,5815	137
4.7.26	75,2380	54,4125	16,32	8,5	1,5965	147
4.7.27	75,2380	54,4125	19,04	8,5	1,6115	152
4.7.28	75,2380	54,4125	21,77	8,5	1,6216	160
4.7.29	75,2380	54,4125	24,49	8,5	1,6241	146
4.7.30	75,2380	54,4125	27,21	8,5	1,6266	126
4.7.31	75,2380	54,4125	2,72	8,00	1,5464	110
4.7.32	75,2380	54,4125	5,44	8,00	1,5539	112
4.7.33	75,2380	54,4125	8,16	8,00	1,5714	115
4.7.34	75,2380	54,4125	10,88	8,00	1,5890	123
4.7.35	75,2380	54,4125	13,60	8,00	1,5990	126
4.7.36	75,2380	54,4125	16,32	8,00	1,6165	137
4.7.37	75,2380	54,4125	19,04	8,00	1,6266	146
4.7.38	75,2380	54,4125	21,77	8,00	1,6366	149
4.7.39	75,2380	54,4125	24,49	8,00	1,6391	138
4.7.40	75,2380	54,4125	27,21	8,00	1,6416	120
4.7.41	75,2380	54,4125	2,72	7,50	1,5589	98
4.7.42	75,2380	54,4125	5,44	7,50	1,5689	97
4.7.43	75,2380	54,4125	8,16	7,50	1,5840	102
4.7.44	75,2380	54,4125	10,88	7,50	1,5990	107
4.7.45	75,2380	54,4125	13,60	7,50	1,6115	114
4.7.46	75,2380	54,4125	16,32	7,50	1,6266	125
4.7.47	75,2380	54,4125	19,04	7,50	1,6341	130
4.7.48	75,2380	54,4125	21,77	7,50	1,6391	133
4.7.49	75,2380	54,4125	24,49	7,50	1,6566	130
4.7.50	75,2380	54,4125	27,21	7,50	1,6516	111
4.7.51	75,2380	54,4125	2,72	7,00	1,5764	82
4.7.52	75,2380	54,4125	5,44	7,00	1,5890	81
4.7.53	75,2380	54,4125	8,16	7,00	1,5990	83
4.7.54	75,2380	54,4125	10,88	7,00	1,6165	93
4.7.55	75,2380	54,4125	13,60	7,00	1,6341	100
4.7.56	75,2380	54,4125	16,32	7,00	1,6466	106
4.7.57	75,2380	54,4125	19,04	7,00	1,6566	122

Çizelge 4.9. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi (Devamı)

				1		
4.7.58	75,2380	54,4125	21,77	7,00	1,6667	126
4.7.59	75,2380	54,4125	24,49	7,00	1,6667	118
4.7.60	75,2380	54,4125	27,21	7,00	1,6591	100
4.7.61	75,2380	54,4125	2,72	6,5	1,5940	55
4.7.62	75,2380	54,4125	5,44	6,5	1,5990	56
4.7.63	75,2380	54,4125	8,16	6,5	1,6140	65
4.7.64	75,2380	54,4125	10,88	6,5	1,6366	68
4.7.65	75,2380	54,4125	13,60	6,5	1,6491	77
4.7.66	75,2380	54,4125	16,32	6,5	1,6667	94
4.7.67	75,2380	54,4125	19,04	6,5	1,6767	110
4.7.68	75,2380	54,4125	21,77	6,5	1,6842	114
4.7.69	75,2380	54,4125	24,49	6,5	1,6817	109
4.7.70	75,2380	54,4125	27,21	6,5	1,6767	95

Cizelge 4.9. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi (Devamı)

Benzeşim sonuçları incelendiğinde;

- r'nin artması hem f_r'yi hem de BG'yi artırmıştır.
- BG için en iyi sonuçlar r=0,4L 'de elde edilmiştir. (4.7.7, 4.7.17.,....)
- r'nin fr'ye etkisi farklı h'larda benzer şekilde görülmüştür. Doğrusala yakın bir şekilde artırmaktadır. 24 GHz'dekine benzer sonuçlar elde edilmiştir.

4.4. Dairesel Oyuklu Anten Benzetim Sonuçlarından Analitik Denklem Eldesi

Dairesel oyuklu yapıdaki r artımının f_r 'ye düzenli etkisi r ve h'ın girdi, f_r 'nin çıktı olduğu bir model oluşturma çalışmasın girdisi olmuştur. Çizelge 4.9'da yer alan 70 iterasyona ait r ve h girdi, f_r de çıktı olacak şekilde benzeşim değerleri MATLAB aracılığıyla 3. dereceden polynominal regresyona tabi tutularak eğri uydurma yapılmıştır. Regresyon sonucunda elde edilen denklem aşağıdaki gibidir.

$$f_{r}(r,h) = A + B * r + C * h + D * r^{2} + E * r * h + F * h^{2} + G * r^{3} + H * r^{2} * h + I * r^{2} + J * h^{3}$$
(4.2)

A=2,538, B=-0,001349, C=-0,3041, D=0,000293, E=0,000986, F=0,03242, G=-0,00001172, H=0,00001514, I=-0,00008751, J=-0,001249

Bu 70 örnek 1,5 GHz 1, 67 GHz aralığındaki f_r frekanslı veriler ile beslendiğinden bu aralıkta geçerlidir.

f_b benzeşimden elde edilen fr

fm modelden elde edilen fr olmak üzere hata hesabında aşağıdaki formül kullanılmıştır.

$$%hata = \left(\frac{|f_b - f_m|}{f_b}\right) * 100$$
 (4.3)

		Benzeşimden elde edilen veriler	Regresyon modelinden elde edilen veriler	Benzeşim Sonucundan - Denklemden Bulunan fr'ler arasındaki hata
	••			
	Ornek No	f _b (GHz)	f _m (fitting)	% hata
	4.8.1	1,5060	1,51	0,09
	4.8.2	1,5138	1,52	0,13
	4.8.3	1,5260	1,53	0,12
	4.8.4	1,5414	1,54	0,04
	4.8.5	1,5589	1,56	0,12
	4.8.6	1,5714	1,57	0,00
	4.8.7	1,5865	1,58	0,17
	4.8.8	1,5960	1,59	0,20
	4.8.9	1,5940	1,60	0,18
÷.,	4.8.10	1,5865	1,59	0,52
	4.8.11	1,5213	1,52	0,04
	4.8.12	1,5263	1,53	0,23
	4.8.13	1,5388	1,54	0,23
	4.8.14	1,5589	1,56	0,12
	4.8.15	1,5714	1,57	0,07
	4.8.16	1,5865	1,59	0,04
	4.8.17	1,6015	1,60	0,12
	4.8.18	1,6065	1,61	0,13
	4.8.19	1,6140	1,61	0,09
	4.8.20	1,6115	1,61	0,08
	4.8.21	1,5338	1,53	0,03
	4.8.22	1,5439	1,54	0,06
	4.8.23	1,5539	1,56	0,13
	4.8.24	1,5689	1,57	0,13
	4.8.25	1,5815	1,59	0,32
	4.8.26	1,5965	1,60	0,31
	4.8.27	1,6115	1,61	0,15

Çizelge 4.10. Benzeşim Sonucu fr –Denklemden Elde Edilen fr Kıyaslaması

4.8.28	1,6216	1,62	0,07
4.8.29	1,6241	1,63	0,15
4.8.30	1,6266	1,62	0,17
4.8.31	1,5464	1,55	0,03
4.8.32	1,5539	1,56	0,14
4.8.33	1,5714	1,57	0,12
4.8.34	1,5890	1,58	0,27
4.8.35	1,5990	1,60	0,09
4.8.36	1,6165	1,62	0,08
4.8.37	1,6266	1,63	0,07
4.8.38	1,6366	1,64	0,02
4.8.39	1,6391	1,64	0,04
4.8.40	1,6416	1,64	0,30
4.8.41	1,5589	1,56	0,06
4.8.42	1,5689	1,57	0,08
4.8.43	1,5840	1,58	0,01
4.8.44	1,5990	1,60	0,01
4.8.45	1,6115	1,61	0,22
4.8.46	1,6266	1,63	0,19
4.8.47	1,6341	1,64	0,47
4.8.48	1,6391	1,65	0,67
4.8.49	1,6566	1,65	0,21
4.8.50	1,6516	1,65	0,13
4.8.51	1,5764	1,58	0,05
4.8.52	1,5890	1,59	0,17
4.8.53	1,5990	1,60	0,06
4.8.54	1,6165	1,62	0,07
4.8.55	1,6341	1,63	0,19
4.8.56	1,6466	1,65	0,07
4.8.57	1,6566	1,66	0,04
4.8.58	1,6667	1,67	0,09
4.8.59	1,6667	1,67	0,05
4.8.60	1,6591	1,66	0,25
4.8.61	1,5940	1,59	0,03
4.8.62	1,5990	1,61	0,39
4.8.63	1,6140	1,62	0,30
4.8.64	1,6366	1,63	0,15
4.8.65	1,6491	1,65	0,03
4.8.66	1,6667	1,66	0,18
4.8.67	1,6767	1,68	0,10
4.8.68	1,6842	1,68	0,11
4.8.69	1,6817	1,68	0,14
4.8.70	1,6767	1,68	0,13

Çizelge 4.10. Benzeşim Sonucu fr –Denklemden Elde Edilen fr Kıyaslaması (Devamı)

Şekil 4.11. Benzeşim Sonucu fr – Denklemden Elde Edilen fr Kıyaslaması 1

Şekil 4.11'de görüldüğü üzere 1,5-1,67 GHz aralığında %1'den az hata ile çalışan model elde edilmiştir.

<u>Dairesel oyuklu dikdörtgen MY anten</u>, $f_r = 1,5 - 2,5$ <u>GHz</u>: Anten rezonans frekansı 1,5-2,5 GHz arasında değişen 6 farklı W ve L dış boyutlu dikdörtgen anten tasarlanmış ve bu 6 antenin değişen farklı r ve h değerleriyle 1,5-2,5 GHz aralığını kapsayacak çizelge 4.11'de görülen 147 adet anten iterasyonunun tasarım ve benzetimi yapılmıştır.

$$r; \ 0L < r < 0.5L \tag{4.1}$$

Frekans Aralığı	Değişken	min	max	Δ	Açıklama
	r	0,1L	0,5L	0,1L	5 farklı r
1,43-1,63 GHz	h	0,5h _{maks}	1h _{maks}	0,1 h _{maks}	6 farklı h
1,63-1,83 GHz	r	0,1L	0,5L	0,1L	5 farklı r
	h	0,6h _{maks}	1h _{maks}	0,1 h _{maks}	5 farklı h
1,83-2,03 GHz	r	0,1L	0,5L	0,1L	5 farklı r
	h	0,6h _{maks}	1h _{maks}	0,1 h _{maks}	5 farklı h
2,03-2,25 GHz	r	0,1L	0,5L	0,1L	5 farklı r
	h	0,6h _{maks}	1h _{maks}	0,1 h _{maks}	5 farklı h
2,25-2,43 GHz	rs	0,1L	0,5L	0,1L	5 farklı r
	h	0,6h _{maks}	1h _{maks}	0,1 h _{maks}	5 farklı h
2,43-2,65 GHz	r	0,1L	0,5L	0,1L	5 farklı r
	h	0,7h _{maks}	1h _{maks}	0,1 h _{maks}	4 farklı h

Çizelge 4.11. Dairesel Oyuklu MY Anten İç Boyutları

Örnek No	W(mm)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BG(MHz)
4.8.1	79,0209	57,1484	5,71	10	1,4311	146
4.8.2	79,0209	57,1484	11,43	10	1,4612	159
4.8.3	79,0209	57,1484	17,14	10	1,4862	175
4.8.4	79,0209	57,1484	22,86	10	1,5063	182
4.8.5	79,0209	57,1484	28,57	10	1,5130	125
4.8.6	79,0209	57,1484	5,71	9	1,4561	133
4.8.7	79,0209	57,1484	11,43	9	1,4837	144
4.8.8	79,0209	57,1484	17,14	9	1,5113	163
4.8.9	79,0209	57,1484	22,86	9	1,5113	151
4.8.10	79,0209	57,1484	28,57	9	1,5338	113
4.8.11	79,0209	57,1484	5,71	8	1,4862	118
4.8.12	79,0209	57,1484	11,43	8	1,5088	125
4.8.13	79,0209	57,1484	17,14	8	1,5439	145
4.8.14	79,0209	57,1484	22,86	8	1,5614	142
4.8.15	79,0209	57,1484	28,57	8	1,5268	112
4.8.16	79,0209	57,1484	5,71	7	1,5188	97
4.8.17	79,0209	57,1484	11,43	7	1,5414	105
4.8.18	79,0209	57,1484	17,14	7	1,5639	117
4.8.19	79,0209	57,1484	22,86	7	1,5840	122
4.8.20	79,0209	57,1484	28,57	7	1,5789	93
4.8.21	79,0209	57,1484	5,71	6	1,5489	62
4.8.22	79,0209	57,1484	11,43	6	1,5739	63
4.8.23	79,0209	57,1484	17,14	6	1,614	92
4.8.24	79,0209	57,1484	22,86	6	1,6115	101
4.8.25	79,0209	57,1484	28,57	6	1,6065	80
4.8.26	79,0209	57,1484	28,57	5,5	1,6165	70
4.8.27	79,0209	57,1484	28,57	5	1,6341	66

Çizelge 4.12. Dairesel Oyuklu MY Anten İç Boyutların f_r ve BG'ye Etkisi

Burada örnek olarak 1,43-1,63 GHz aralığındaki sonuçlar verilmiştir. 1,63-2,6 GHz aralığını kapsayan diğer 120 iterasyon sonuçları ektedir. Benzeşim sonuçları incelendiğinde;

- Tüm 1,5-2,5 GHz aralğınında r'nin artması hem f_r 'yi hem de BG'yi artırmıştır.
- BG için en iyi sonuçlar r=0,3L ve r=0,4L'de elde edilmiştir.
- Belirli bir h değerindeki r'nin 0-0,5L arasında değişimi rezonans frekansını 1,5 GHz'lerde 60-70 MHz kaydırıyor iken 2-2,5 Ghz aralığında 130 MHz'e kadar kaydırabilmektedir.

• r'nin f_r'ye etkisi farklı h'larda benzer şekilde görülmüştür. Doğrusala yakın bir şekilde artırmaktadır. 1,5 GHz'dekine benzer sonuçlar elde edilmiştir.

Şekil 4.12. 1,43-1,63 GHz aralığında r'ye Bağlı S11 Değişimi

Şekil 4.13. 1,43-1,63 GHz aralığında r'ye Bağlı Kazanç Değişimi

Şekil 4.14. 1,43-1,63 GHz aralığında r'ye Bağlı Kazanç Değişimi

Şekil 4.13. ve şekil 4.14'e göre 4.8.1 ve 4.8.5 arasında r=0,1L'den 0,5L'ye gittikçe kazanç 4,37 dB'den 2,8 dB'ye düşmüştür. Sonuç bölümünde detaylandırılacaktır.

Dairesel oyuklu 1,5 GHz'lik antendekine benzer şekilde benzeşim sonuçlarından elde edilen f_r değerleri, r ve h ile çizelge 4.11'de verilen frekans aralıkları için model oluşturulmuştur. Denklem (4.2)'deki gibi bir biçimde denklem modeli elde edilmiştir.

$$f_{r}(r,h) = A + B * r + C * h + D * r^{2} + E * r * h + F * h^{2} + G * r^{3} + H * r^{2} * h + I * r^{2} + A^{2} + A^{3}$$

$$(4.2)$$

Frekans Aralıkları (GHz)	1,43-1,63	1,63-1,83	1,83-2,03	2,03-2,25	2,25-2,43	2,43-2,65
Denklem						
Katsayıları						
Α	1,379	2,223	1,914	2,461	2,562	2,649
В	0,01507	-0,003211	0,01544	0,01277	0,01872	-0,007235
С	0,09171	-0,1322	0,06238	-0,1031	-0,04735	0,05259
D	0,00003486	0,00004972	0,00006439	0,0002446	0,0001298	0,001289
Ε	-0,002532	0,002868	-0,002002	-0,001091	-0,002573	0,003471
F	-0,01528	0,008131	-0,01732	0,007066	-0,004215	-0,0286
		-		-	-	-
G	0,00008539	0,000009099	-0,00002278	0,00003751	0,00004832	0,0000739
Н	0,00002938	0,00002413	0,00009694	0,0001322	0,0001954	0,0001166
Ι	0,0001111	-0,0002373	0,00003429	0,0001533	0,0001018	0,0005063
J	0,000651	-0,0001189	0,001026	-0,0001143	0,0005888	0,002299

Çizelge 4.13. 1,5-2,5 GHz için Oluşturulan Denklem Modelleri

Şekil 4.15. Benzeşim Sonucu fr –Denklemden Elde Edilen fr Kıyaslaması 2

Şekil 4.16. Benzeşim Sonucu fr – Denklemden Elde Edilen fr Kıyaslaması 3

Şekil 4.18. Benzeşim Sonucu fr – Denklemden Elde Edilen fr Kıyaslaması 5

Şekil 4.19. Benzeşim Sonucu fr – Denklemden Elde Edilen fr Kıyaslaması 6

5. TARTIŞMA ve SONUÇ

Tez çalışması kapsamında H tipi, dikdörtgen oyuklu tip ve dairesel oyuklu tipteki dikdörtgen MY antenlerin farklı geometrik tasarımlarından oluşan toplamda 365 farklı anten için benzeşim ile S11 geri dönüş kayıpları incelenerek fr ve BG değerleri bulunmuştur. Bu geometrik yapıların birbirine karşı üstünlükleri aşağıdaki tabloda özetlenmiştir.

	H tipi	H tipi Dikdörtgen Oyuklu			Dairocal Avuklu				
Özelliği	Anten	3 Oyuklu	4 Oyuklu		Dallesel Oyuklu				
Ozemgi		Oyuk Boyutları Arttıkça							
fr	Azalır	Azalır	Azalır	Artar	Artar				
BG	Azalır	Azalır	Azalır	Artar	Artar				

Çizelge 5.1. Anten Tipleri Kıyaslaması

Şekil 5.1. r'nin Farklı h Değerlerinde fr'ye Etkisi

Geri dönüş kaybı, BG ve kazanç grafikleri ile denklem-benzeşim sonuç karşılaştırma sonuçları incelendiğinde aşağıdaki tespit ve sonuçlara varılmıştır.

- MY dikdörtgen anten dış boyutları değiştirilmeden tek bir r değişkenine bağlı oyuk yapısı ile fr ve BG artırılmıştır.
- Benzeşim sonuçlarından elde edilen fr denklem modeli, istenilen fr'de anten tasarımında tasarımcılara analitik denklemlerin yanında destek sağlayabilecektir. Zira analitik denklemdeki fr'ye göre hesaplanmış L ve W değerleri benzeşimde hedeflenen fr'yi tam olarak vermemektedir. Benzeşim sonuçlarından geliştirilen bir model olduğu için daha gerçekçi sonuçlar sağlayabilir.
- Şekil 5.1'de görüldüğü üzere farklı frekanslarda r'nin artması doğrusala yakın benzer sonuçlar vermektedir. Bu da modelin güvenilirliğini artırmaktadır.
- S11, BG ve anten kazancı hepsi aynı anda dikkate alındığında en optimum sonuçların r=0,3L ile r=0,4L arasında görülmüştür. Şekil 4.13. ve şekil 4.14. sonuçları da dikkate alınarak anten kazancından çok feragat etmemek adına r=0,4L aşılmamalıdır.
- Denemelerde denklem (3.4)'e göre tasarlanmış h > 0,003 λ_0 koşulunu sağlayan antenlerin anten özelliği göstermediği (S11 > -10 dB) ancak artan r ile S11 <-10dB koşulunu sağlamaya başladığı (bkz. 4.6.45, 4.6.46, 4.6.47) görülmüştür. Bu da analitik denklem ve koşulların yeterli olmadığı durumda modelin katkısını ortaya koymaktadır.
- Antende oyuk açılması daha az malzeme anlamına geldiğinden endüstride maliyet azaltma amacıyla kullanılabilir.
- Otomotive GPS antenleri artık köpekbalığı adı verilen tavan antenlerine entegre olarak üretilmektedir. Küçük boyutlu dar alan uygulamalarında dairesel oyuklu anten iyi bir alternatif olabilir örneğin 4.7.15 ve 4.7.51 nolu örnekler kullanılabilir.

Şekil 5.2 Otomobil Köpekbalığı Anteni

- h kalınlığı arttıkça fr azalmakta, h azaldıkça ise BG düşmektedir. Dairesel oyukla
 bu olumsuz etkiler kısmen sönümler ve fr ve BG'yi iyileştirir.
- Aynı veya birbirine çok fr farklı h ve r değerlerinde elde edilebilmektedir. Bu da tasarım anlamında elastikiyet sağlamaktadır.

KAYNAKLAR

Amin 2011 Çeşitli Frekanslarda Geniş Band Dairesel Mikroşerit Yama Anten Analizi ve Tasarımı, *Yüksek Lisans Tezi*, Selçuk Üniversitesi F.B.E. Elektrik-Elektronik Mühendisliği A.B.D.

Anonim 2019 GPS Anten Uygulama Notları https://www.ublox.com/sites/default/files/products/documents/GPS-Antenna_AppNote_%28GPS-X-08014%29.pdf (Erişim tarihi 12.05.2019)

Arıcan 2012 Genişbandlı Mikroşerit Yama Anten Tasarımı, Yüksek Lisans Tezi, Haliç Üniversitesi F.B.E. Elektrik-Elektronik Mühendisliği A.B.D.

Balanis 2005 Antenna Theory Third Edition, John Wiley & Sons, Inc. Publication, ISBN: 0-471-66782-X

Çetme 2009 Yarıklı Mikroşerit Yama Anten Dizaynı, *Yüksek Lisans Tezi*, İstanbul Teknik Üniversitesi F.B.E.

Dawoud ve ark. 2012 GPS Principles and Comparison, https://www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/gnss-principles-and-

comparison_dawoud.pdf, (Erişim tarihi 18.05.2019)

El Alami ve ark. 2014 Design, Analysis and Optimisation of a New Structure of Microstrip Patch Antenna for RFID Applications. ,https://www.researchgate.net/publication/267449122_Design_analysis_and_optimizati on_of_a_new_structure_of_microstrip_patch_antenna_for_RFID_applications (Erişim tarihi 21.05.2019)

Erdemir 2014 L1 Frekansında Çalışan E Şeklilli Mikroşerit GPS Anteni Tasarımı, *Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi*, 19(1):15-21.

Garg ve Bahal 2001 Microstrip Antenna Design Handbook ,Artech House antennas and propagation library, ISBN 0-89006-513-6

Hasan ve ark. 2017 Design and Fabrication of a Circular Microstrip Patch Antenna for GPS Application, *IJECT*, 8(3):54-57

İşeri 2012 Çift Kutuplu ve H Yarıklı Yarık Bağdaşımlı Mikroşerit Anten Dizileri ve H Tipi Yarıkların Devre Şeklinde Modellenmesi, *Yüksek Lisans Tezi*, Orta Doğu Teknik Üniversitesi F.B.E. Elektrik-Elektronik Mühendisliği Programı

Jvss ve ark 2015 Design of Microstrip Patch Antenna for GPS Applications using EBG Structures, *International Journal of Innovatie Research in Computer and Communication Engineering*, 3(3):2209-2214

Kumar 2015 GPS Microstrip Rectengular Patch Antenna at 2,45 GHz Mounted Over Angular Towers, *International Research Journal of Engineering and Technology*, 02 (08):255-261

Kumar ve ark 2016 Freqency Reconfigurable Triangular Microstrip Patch Antenna for Wireless Applications, *International Journal of Computer Systems*, 03(03): 277-280.

Novatel Inc 2015 An Introduction to GNSS, http://www.novatel.com (Erişim Tarihi: 14.04.2019)

Öztürk 2010 Çift Frekanslı Çift Kutuplamalı Dikdörtgen Mikroşerit Anten Tasarım ve Analizi, *Yüksek Lisans Tezi*, Hacettepe Üniversitesi F.B.E. Elektrik-Elektronik Mühendisliği A.B.D.

Pues ve ark 1985 Accurate transmission line model for rectengular microstrip patch antenna, https://www.researchgate.net/publication/224337019 (Erişim tarihi:21.05.2019)

Şencan 2012 Dört Rezonanslı Mikroşerit Yama Antenlerin İncelenmesi, Tasarımı ve Simülasyonu, *Yüksek Lisans Tezi*, Haliç Üniversitesi F.B.E. Elektrik-Elektronik Mühendisliği A.B.D.

Toktaş 2009 Farksal Gelişim Algoritması Kullanarak H Şekilli Mikroşerit Antenlerin Rezonans Frekansının Hesaplanması, *Yüksek Lisans Tezi*, Mersin Üniversitesi F.B.E. Elektrik-Elektronik Müh. A.B.D.

Ulutaş 2013 Genetik Algoritma Kullanarak H Tipi Mikroşerit Antenlerin Rezonans Frekansının Hesaplanması, *Yüksek Lisans Tezi*, Hava Harp Okulu F.B.E. Elektronik Müh. A.B.D.

Urul ve Cengiz 2014 H Şekilli Mikroşerit Antenin Yabani Ot Algoritması ile Rezonans Frekansının Belirlenmesi, *DEÜ Mühendislik Fakültesi Mühendislik Bilimleri Dergisi*, 16 (48):109-117

Yogita ve ark. 2016 Design and Analysis of an Irregular Diamond Edge Slotted Microstrip Patch Antenna at 1,6 GHz for WLAN, *International Research Journal of Engineering and Technology*, 03 (03):1048-1051.

EKLER

- **EK 1** 1,63-1,83 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi
- **EK 2** 1,83-2,03 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi
- **EK 3** 2,03-2,23 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi
- **EK 4** 2,23-2,43 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi
- **EK 5** 2,43-2,63 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi

EK1

W(mm)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BG(MHz)
69,7244	50,4250	5,04	8,82	1,6311	148
69,7244	50,4250	10,09	8,82	1,6586	160
69,7244	50,4250	15,13	8,82	1,6987	180
69,7244	50,4250	20,17	8,82	1,7088	172
69,7244	50,4250	25,21	8,82	1,7238	140
69,7244	50,4250	5,04	7,94	1,6586	134
69,7244	50,4250	10,09	7,94	1,6862	143
69,7244	50,4250	15,13	7,94	1,7238	159
69,7244	50,4250	20,17	7,94	1,7388	157
69,7244	50,4250	25,21	7,94	1,7464	130
69,7244	50,4250	5,04	7,06	1,6837	112
69,7244	50,4250	10,09	7,06	1,7188	122
69,7244	50,4250	15,13	7,06	1,7539	137
69,7244	50,4250	20,17	7,06	1,7714	144
69,7244	50,4250	25,21	7,06	1,7840	125
69,7244	50,4250	5,04	6,18	1,7188	78
69,7244	50,4250	10,09	6,18	1,7539	75
69,7244	50,4250	15,13	6,18	1,7840	107
69,7244	50,4250	20,17	6,18	1,8065	126
69,7244	50,4250	25,21	6,18	1,8065	107
69,7244	50,4250	5,04	5,29	1,7664	0
69,7244	50,4250	10,09	5,29	1,7915	36
69,7244	50,4250	15,13	5,29	1,8291	69
69,7244	50,4250	20,17	5,29	1,8366	101
69,7244	50,4250	25,21	5,29	1,8341	91

1,63-1,83 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi
W(m	m)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BG(MHz)
62,38	350	45,1171	4,51	7,89	1,8361	147
62,38	350	45,1171	9,02	7,89	1,8612	154
62,38	350	45,1171	13,54	7,89	1,8937	164
62,38	350	45,1171	18,05	7,89	1,9238	168
62,38	350	45,1171	22,56	7,89	1,9363	141
62,38	350	45,1171	4,51	7,11	1,8586	131
62,38	350	45,1171	9,02	7,11	1,8937	138
62,38	350	45,1171	13,54	7,11	1,9213	149
62,38	350	45,1171	18,05	7,11	1,9539	156
62,38	350	45,1171	22,56	7,11	1,9614	131
62,38	350	45,1171	4,51	6,32	1,8937	106
62,38	350	45,1171	9,02	6,32	1,9338	114
62,38	350	45,1171	13,54	6,32	1,9639	127
62,38	350	45,1171	18,05	6,32	1,9840	138
62,38	350	45,1171	22,56	6,32	1,9940	123
62,38	350	45,1171	4,51	5,53	1,9288	72
62,38	350	45,1171	9,02	5,53	1,9614	74
62,38	350	45,1171	13,54	5,53	2,0015	96
62,38	350	45,1171	18,05	5,53	2,0241	120
62,38	350	45,1171	22,56	5,53	2,0216	106
62,38	350	45,1171	4,51	4,74	1,9639	0
62,38	350	45,1171	9,02	4,74	1,999	0
62,38	350	45,1171	13,54	4,74	2,0391	40
62,38	350	45,1171	18,05	4,74	2,0667	97
62,38	350	45,1171	22,56	4,74	2,0491	88

1,83-2,03 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi

W(mm)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BW(MHz)
56,4435	40,8203	4,08	7,14	2,0461	142
56,4435	40,8203	8,16	7,14	2,0762	148
56,4435	40,8203	12,25	7,14	2,1088	155
56,4435	40,8203	16,33	7,14	2,1439	150
56,4435	40,8203	20,41	7,14	2,1539	115
56,4435	40,8203	4,08	6,43	2,0687	130
56,4435	40,8203	8,16	6,43	2,1113	137
56,4435	40,8203	12,25	6,43	2,1439	144
56,4435	40,8203	16,33	6,43	2,1639	139
56,4435	40,8203	20,41	6,43	2,1714	113
56,4435	40,8203	4,08	5,71	2,1013	112
56,4435	40,8203	8,16	5,71	2,1338	117
56,4435	40,8203	12,25	5,71	2,1739	127
56,4435	40,8203	16,33	5,71	2,2065	132
56,4435	40,8203	20,41	5,71	2,2015	107
56,4435	40,8203	4,08	5,00	2,1338	79
56,4435	40,8203	8,16	5,00	2,1664	88
56,4435	40,8203	12,25	5,00	2,2115	103
56,4435	40,8203	16,33	5,00	2,2341	114
56,4435	40,8203	20,41	5,00	2,2291	95
56,4435	40,8203	4,08	4,29	2,1714	0
56,4435	40,8203	8,16	4,29	2,2115	13
56,4435	40,8203	12,25	4,29	2,2541	63
56,4435	40,8203	16,33	4,29	2,2717	95
56,4435	40,8203	20,41	4,29	2,2541	82

2,03-2,23 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi

W(mm)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BG(MHz)
51,5354	37,2707	3,73	6,52	2,2461	145
51,5354	37,2707	7,45	6,52	2,2787	152
51,5354	37,2707	11,18	6,52	2,3188	161
51,5354	37,2707	14,91	6,52	2,3539	161
51,5354	37,2707	18,64	6,52	2,3689	142
51,5354	37,2707	3,73	5,87	2,2712	126
51,5354	37,2707	7,45	5,87	2,3088	130
51,5354	37,2707	11,18	5,87	2,3539	143
51,5354	37,2707	14,91	5,87	2,3840	150
51,5354	37,2707	18,64	5,87	2,3865	127
51,5354	37,2707	3,73	5,22	2,3113	93
51,5354	37,2707	7,45	5,22	2,3464	103
51,5354	37,2707	11,18	5,22	2,3890	116
51,5354	37,2707	14,91	5,22	2,4165	132
51,5354	37,2707	18,64	5,22	2,4241	118
51,5354	37,2707	3,73	4,57	2,3439	27
51,5354	37,2707	7,45	4,57	2,3865	57
51,5354	37,2707	11,18	4,57	2,4291	78
51,5354	37,2707	14,91	4,57	2,4491	111
51,5354	37,2707	18,64	4,57	2,4466	102
51,5354	37,2707	3,73	3,91	2,384	0
51,5354	37,2707	7,45	3,91	2,4291	0
51,5354	37,2707	11,18	3,91	2,4742	0
51,5354	37,2707	14,91	3,91	2,4942	82
51,5354	37,2707	18,64	3,91	2,4767	86

2,23-2,43 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi

2,43-2,63 GHz için Dairesel Oyuklu MY Anten İç Boyutların fr ve BG'ye Etkisi

	W(mm)	L(mm)	r=L*0,x(mm)	h(mm)	fr(GHz)	BG(MHz)
	47,4126	34,2890	3,43	6	2,4361	145
	47,4126	34,2890	6,86	6	2,4687	152
	47,4126	34,2890	10,29	6	2,5188	162
	47,4126	34,2890	13,72	6	2,5514	164
	47,4126	34,2890	17,14	6	2,5639	138
	47,4126	34,2890	3,43	5,4	2,4712	127
	47,4126	34,2890	6,86	5,4	2,5063	135
	47,4126	34,2890	10,29	5,4	2,5489	144
	47,4126	34,2890	13,72	5,4	2,5840	149
	47,4126	34,2890	17,14	5,4	2,6015	135
	47,4126	34,2890	3,43	4,8	2,5063	98
	47,4126	34,2890	6,86	4,8	2,5489	105
	47,4126	34,2890	10,29	4,8	2,5915	118
	47,4126	34,2890	13,72	4,8	2,6190	132
	47,4126	34,2890	17,14	4,8	2,6316	120
	47,4126	34,2890	3,43	4,2	2,5514	39
	47,4126	34,2890	6,86	4,2	2,5789	57
	47,4126	34,2890	10,29	4,2	2,6291	86
	47,4126	34,2890	13,72	4,2	2,6642	111
	47,4126	34,2890	17,14	4,2	2,6566	105

ÖZGEÇMİŞ

Adı Soyadı	: Fatih İMAMOĞLU
Doğum Yeri ve Tarihi	: Bursa 17.05.1987
Yabancı Dil	: İngilizce ve Fransızca

Eğitim Durumu

Lise	: Turhan Tayan Anadolu Lisesi, 2005
------	-------------------------------------

.

Lisans : Uludağ Üniversitesi, 2009

Çalıştığı Kurum/Kurumlar : OYAK-Renault Otomobil Fabrikaları A.Ş. 2015-devam

MAKO Magneti Marelli A.Ş. 2013-2015

İletişim (e-posta)	: fatih.imamoglu016@gmail.com
Yayınları	: İmamoğlu ve Demirkol 2014, Gerçek Kaza İvmelenme
Değerlerinden yararlanılara	k Kaza Algılama ve Raporlama Sisteminin Tasarımı
ve Gerçeklenmesi, 7. Otomo	tiv Teknolojileri Kongresi 26-27 Mayıs 2014 Bursa