A CASE STUDY: IMPROVEMENT OF COMPONENT PLACEMENT SEQUENCE OF A TURRET STYLE SMT MACHINE

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

 \mathbf{BY}

MEHMET SAVAŞ ÇENGEL

IN PARTIAL FULFILLMENT OF THE REQUIRMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
INDUSTRIAL ENGINEERING

DECEMBER 2006

Approval	l of the	Graduate	School	of Natural	and App	olied S	Sciences

		Prof. Dr. Canan Özgen Director
I certify that this thesis satisfies all Master of Science.	the requiremen	ats as a thesis for the degree of
		Prof. Dr. Çağlar Güven Head of Department
This is to certify that we have read adequate, in scope and quality, as a		- · · · · · · · · · · · · · · · · · · ·
Assist. Prof. Dr. Pelin Bayındır Co-Supervisor		Assoc. Prof. Dr. Levent Kandiller Supervisor
Examining Committee Members		
Assoc. Prof. Dr. Sedef Meral	(METU, IE)	
Assoc. Prof. Dr. Levent Kandiller	(METU, IE)	
Assoc. Prof. Dr. Haldun Süral	(METU, IE)	
Assist. Prof. Dr. Pelin Bayındır	(METU, IE)	
Aydın Kaynarca(M.S.)	(KAREL)	

presented in accordance with acad	ion in this document has been obtained and demic rules and ethical conduct. I also declare d conduct, I have fully cited and referenced ot original to this work.
	Name, Last name : Mehmet Savaş Çengel
	Signature :

ABSTRACT

A CASE STUDY: IMPROVEMENT OF COMPONENT PLACEMENT SEQUENCE OF A TURRET STYLE SMT MACHINE

Çengel, Mehmet Savaş

M.S. Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Levent Kandiller

Co-supervisor: Assis. Prof. Dr. Z. Pelin Bayındır

December 2006, 119 pages

This study aims to improve component placement sequencing of a number of PCBs

produced on a turret style SMT machine. After modeling the problem and having

found that an optimal solution to the real PCB problem is hard to be achieved because

of the concurrent behavior of the machine and the PCB design parameters, two

heuristics are developed by oversimplifying the problem down to TSP. Performance of

the heuristics and the lower bounds is evaluated by comparing the results with the

optimal solution for two sets of randomly generated PCBs. The heuristic solutions are

also compared with the lower bounds and the current implementation for the real PCBs.

It is found out that the heuristics improve the current efficiency figures of the company.

Keywords: TSP, heuristics, optimization, PCB assembly.

iv

VAKA ÇALIŞMASI: TARET TİPİ YÜZEY MONTE MAKİNASINDA BİLEŞEN YERLEŞTİRME SIRALAMASININ İYİLEŞTİRİLMESİ

Çengel, Mehmet Savaş

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Levent Kandiller

Yardımcı Tez Yöneticisi: Yrd. Doç. Dr. Z. Pelin Bayındır

Aralık 2006, 119 sayfa

Bu çalışma, taret tipi yüzey monte makinesi tarafından üretilen bir gurup baskıdevre kartının parça yerleştirme sıralamasının iyileştirilmesini amaçlamaktadır. Modellenen problemde, gerçek kartlara ait en iyi sonucun, makinenin ardışık ve birbirine bağımlı hareketleri ile baskıdevre kartın tasarım verilerinden kaynaklanan karmaşıklık sonucu, kabul edilen sürelerde elde edilememesi sonrasında iki sezgisel yöntem geliştirilmiştir. Bu sezgisel yöntemler, problemin gezgin satıcı problemine dönüştürülmesi ile oluşturulmuştur. Sezgisel yöntemlerin ve bunların kıyaslanması ve oluşturulan alt sınırların performansını değerlendirebilmek için iki küme rassal baskıdevre kartına ait en iyi sonuçlar bulunmuştur. Ayrıca, gerçek kartlar için bulunan sezgisel sonuçlar ve belirlenen alt sınırlar, bu kartların halihazırdaki üretim hızı ile karşılaştırılmış ve sezgisel yöntemlerin makine verimini geliştirme düzeyi ortaya konmuştur.

Anahtar Kelimeler: Gezici Satıcı Problemi, sezgisel yöntemler, optimizasyon, Baskıdevre kart montajı.

To My Parents and My Wife

ACKNOWLEDGMENTS

It was a pleasure and honor to study with Assoc. Prof. Dr. Levent Kandiller and Asist. Prof. Dr. Pelin Bayındır. With their helps, encourageous attitude and endless support I have been succeeded. I know I can not thank them enough, although these few words can express my appreciation to them.

SMT production was an unknown to me, I would like to thank to Bugra Karahan who taught all the concepts, definitions and the technology behind the production environment. His patient and kind approach helped me so much in defining the complex problem. I would like to thank to Taner Durucan, who has given all his support, even he has shared some of my work during my absence in the company I worked as the study continued. Aydin Kaynarca has helped me endlessly, I would like to thank to him and wishing him luck for the future.

Technical assistance of Oguz Solyali regarding the CONCORDE program is acknowledged.

My family always had faith in me; I would like to thank to my mother and father for their full support even in my worst times. Finally; I would like to thank to my wife who cares for and loves me all the time.

TABLE OF CONTENTS

PLAGIARISM	iii
ABSTRACT	iv
ÖZ	v
DEDICATION	vi
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	X
LIST OF FIGURES	xiii
LIST OF ABREVIATIONS	XV
1. INTRODUCTION	1
2. LITERATURE REVIEW	9
2.1. Background	9
2.2. Placement Sequencing Subproblem	14
2.3. Feeder Arrangement Subproblem	15
2.4. Feeder Arrangement and Placement Sequencing	17
2.5. The link between the current study and the literature	22
3. PROBLEM DEFINITION AND SOLUTION PROPOSED	25
3.1. Problem Environment.	26
3.1.1. Assembly Line	26
3.1.2. Turret Style Placement Machine	27
3.1.3. The setup process	29
3.2. Problem Statement.	31
3.3. Model Formulation	31
3.3.1. Combinatorial Formulation	32
3.3.2. Quadratic Forulation.	34
3.3.3. Mixed Integer Formulation.	37
3.4. Model Validation.	39

3.5. Solution Approach	42
3.5.1. Heuristic 1	42
3.5.2. Heuristic 2	52
3.6. Lower Bounds	54
3.6.1. Lower Bound 1	55
3.6.2. Lower Bound 2	57
4. COMPUTATIONAL ANALYSIS	60
4.1. The study on the PCBs that are currently in the product mix of the	
company	60
4.2. Experimental Study	69
5. CONCLUSION	78
REFERENCES	82
APPENDICES	86
A. TURRET STYLE SMT MACHINE	86
B. MATHEMATICAL MODEL AND RESULTS OF A REAL PCB	87
C. ALGORITHM USED IN HEURISTIC 1	90
D. COMBINING SUBTOURS	97
E. GAIN CALCULATIONS	103
F. PROCEDURE FOR LOWER BOUND 2.	106
G. RANDOM GENERATED PCB DATA	108

LIST OF TABLES

Table 1.1. World Production by Sectors, 2002-2007	2
Table 2.1. Classification of the studies according to the problem type and machine type considered	23
Table 3.1. Costs realized in the optimal solution	40
Table 3.2. Component data provided from the SMT machine	44
Table 3.3. Movement characteristics of the turret style SMT machine	45
Table 3.4. Subtour Information for component types	45
Table 3.5. PCB Table movement gains by combining components	48
Table 3.6. Net Gain Calculations.	49
Table 3.7. Results obtained after 2 – opt iterations for Heuristic 1	52
Table 3.8. Results obtained after 2 – opt iterations for Heuristic 2	54
Table 4.1. Summary information on PCBs studied	61
Table 4.2. Lower bounds and heuristics solutions	62
Table 4.3. Summary statistics for percentage deviation from the best lower bound	64
Table 4.4. Run time of Heuristics and Lower Bounds	65
Table 4.5. Percent improvements by the best heuristic over the company's solutions.	66
Table 4.6. The performance of the lower bounding schemes and heuristics with respect to optimal solutions	69
Table 4.7: Factors and the corresponding levels in the experiment	71
Table 4.8. Basic Statistics on the percentage deviation from the optimal tour length under different levels of the factors	73

Table 4.9: Change in % gap from optimal as the number of component types is increased from 2 to 4	74
Table 4.10. Run time of heuristics and lower bounds for the random generated PCBs.	77
Table A.1. Turret Style SMD Machine's Concurrent operations in continuous production	86
Table B.1. Location – component type data of the example PCB	87
Table B.2. Feeder distances between component types	87
Table B.3. Table movement time between locations	88
Table D.1. Concurrent operations for the PCB and cycle time calculations for clockwise direction	98
Table D.2. Concurrent operations for the example PCB and	
cycle time calculations for counter clockwise direction	101
Table E.1. First part of the gain calculations.	104
Table E.2. Second part of the gain calculations.	104
Table E.3. Third part of the gain calculations.	105
Table G.1. PCB DATA FOR CASE A - 1*2.5 - 2 COMPONENTS	108
Table G.2. PCB DATA FOR CASE A - 2*5 - 2 COMPONENTS	109
Table G.3. PCB DATA FOR CASE A - 10*25 - 2 COMPONENTS	110
Table G.4. PCB DATA FOR CASE A - 1*2.5 - 4 COMPONENTS	111
Table G.5. PCB DATA FOR CASE A - 2*5 - 4 COMPONENTS	112
Table G.6. PCB DATA FOR CASE A - 10*25 - 4 COMPONENTS	113
Table G.7. PCB DATA FOR CASE B - 1*2.5 - 2 COMPONENTS	114
Table G.8. PCB DATA FOR CASE B - 2*5 - 2 COMPONENTS	115
Table G.9. PCB DATA FOR CASE B - 10*25 - 2 COMPONENTS	116
Table G.10. PCB DATA FOR CASE B - 1*2.5 - 4 COMPONENTS	117

Table G.11. PCB DATA FOR CASE B - 2*5 - 4 COMPONENTS	118
Table G.12. PCB DATA FOR CASE B – 10*25 - 4 COMPONENTS	119

LIST OF FIGURES

Figure 1.1. World electronics market, 2000 to 2005, million USD [32]	1
Figure 1.2. Worldwide semiconductor market by segment, 1990 to 2003 (million USD) [32]	2
Figure 1.3. General process flow for SMT manufacturing line	3
Figure 1.4. Automated SMT line.	4
Figure 2.1. SMT Machine types.	10
Figure 3.1. Schematic representation of the turret style machine	28
Figure 3.2. A turret with 6 heads.	33
Figure 3.3. PCB Layout of the example problem.	44
Figure 3.4. Subtours over PCB layout.	46
Figure 3.5. Combining associated subtours of two component types	47
Figure 3.6. Construction tour.	49
Figure 3.7. Application of 2-opt to the construction tour	50
Figure 3.8. Lower Bound 1	56
Figure 3.9. Iteration k in the augmenting algorithm	58
Figure 3.10. Ties in the augmenting algorithm.	58
Figure 4.1. Lower bound on tour length calculated according to two schemes proposed versus number of locations	63
Figure 4.2. Lower bound on tour length calculated according to two schemes proposed versus number of component types	64
Figure 4.3. Percent improvement over the company's solution versus number of locations on the PCB.	68

Figure 4.4. Percent improvement over the company's solution versus number of component types on the PCB	68
versus number of component types on the PCB	06
Figure B.1. Output of the linear model	88
Figure D.1 Construction tour with counter clockwise direction	100

LIST OF ABBREVIATIONS

B&B : Branch and Bound Algorithm.

CONCORDE: Computer code for the symmetric traveling salesman problem (TSP)

and some related network optimization problems.

CPLEX : Linear programming optimizer developed in the C programming

language.

DPP : Dynamic pick—and –place point.

FPP : Fixed pick-and -place point.

FSA : Feeder Slot Allocation.

HSCS : High speed chip shooter.

MWMP : Minimum weight matching problem.

PCB : Printed circuit board.

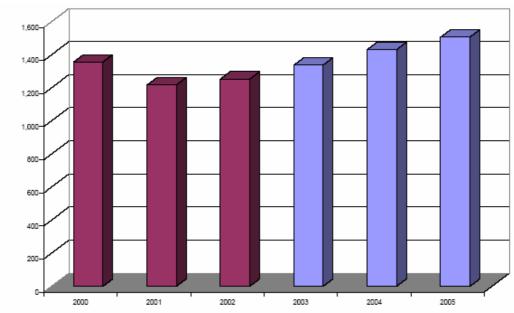
PCTSP : Precedence constrained traveling salesman problem.

QAP : Quadratic assignment problem.

SCARA : Single compliance robot for assembling.

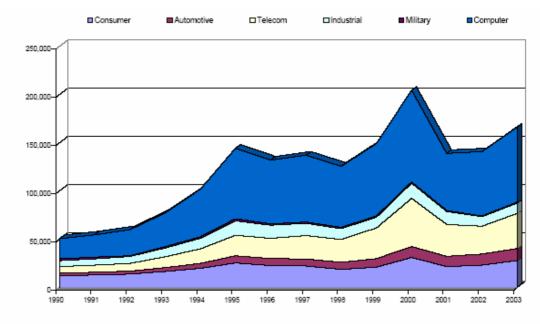
SMT : Surface mount technology.

TRAVEL : A software that uses a combination of 2-opt, 3-opt and Lin-


Kernighan algorithms to solve traveling salesman problem.

TSP : Traveling salesman problem.

CHAPTER 1


INTRODUCTION

World's electronics production increases every year due to high volume usage in daily life, and technology (see Figure 1.1). As a key input to the electronics industry, semi-conductors trade can be seen as a lead indicator of market trends. Figure 1.2 shows the historical pace of the sector for different market segments.

Source: Reed Electronics Group (2003) Electronics Market Outlook Presentation.

Figure 1.1. World electronics market, 2000 to 2005, million USD [32]

Source: World Semiconductor Trade Statistics. OECD (2004) Information Technology Outlook 2004, OECD, Paris.

Figure 1.2 – Worldwide semiconductor market by segment, 1990 to 2003 (million USD) [32]

Increases in the sales also imply the increase in the usage of the electronics in other areas of production (see Table 1.1).

Table 1.1. World production by sectors, 2002-2007 (billion EUROs and percent growth) [32]

Total World	2002	2007	2002-03	2003-04	2002-07
Consumer electronics	204.6	271.0	4.5%	6.3%	5.8%
Computers	370.6	492.9	7.1%	6.3%	5.9%
Telecommunications	195.4	267.2	1.4%	8.5%	6.5%
Avionics, Space, Defence	89.3	109.4	-0.9%	3.7%	4.2%
Automotive	93.4	154.5	9.9%	12.2%	10.6%
Energy, Industry and Services	188.2	246.3	1.6%	5.0%	5.5%
TOTAL	1,141.4	1,541.3	4.4%	6.8%	6.2%

Source: Electronics.ca (2003) World Electronics Industry 2002-2007, Research Report #DE3120. Available http://www.electronics.ca/reports/industrial/electronics industry.html

Since the electronic products have become more critical inputs in terms of both cost figures and functional effectiveness, new technologies have been developed in order to speed up the manufacturing lines as well as the functional output of an electronic semi-finished good. Surface mount technology (SMT) is one of these technologies. It involves the use of tiny components to be placed so that tighter layouts can be achieved on the printed circuit board (PCB). SMT products mainly lead to finished goods of smaller sizes. It also brings an advantage in terms of manufacturing performance, since SMT production, compared to the prior production techniques like through hole, axial insertion, can produce higher amounts in less time. Being widely used for more than 20 years [1], certain improvements in SMT manufacturing technology have been achieved. General process flow for SMT manufacturing is depicted in Figure 1.3. The main steps are: the placement of the components on a pre-pasted PCB (screen printing process: solder paste is printed over PCB by a print-screen machine – see Figure 1.4) and passing it through an oven (re-flow oven – see Figure 1.4) on a basis of a heating profile. The placement process can be divided into subprocesses according to the component characteristics (such as component class, shape, packaging type) while assembly line balance is taken into account.

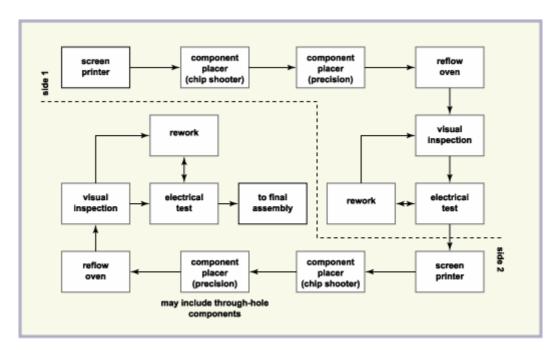


Figure 1.3 – General process flow for SMT manufacturing line

A surface mounting line is usually the vital part of the electronics production and costs more than a million USD constituting the main investment for most of the electronics companies. SMT line feeds other processes such as optical inspection,

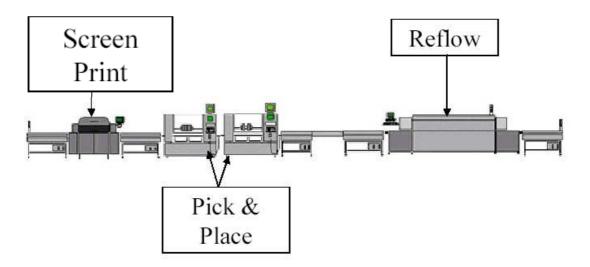


Figure 1.4 – Automated SMT line

assembly line, functional test, in-circuit test, mechanical assembly, packaging. In most of the production environments, the SMT line is the bottleneck process. Our study focuses on pick and place SMT machines, which are the most expensive part of an SMT assembly line in terms of investment. These machines are capable of processing in high volumes (components/hour) and placing the components on the PCBs with higher precision. Therefore, full utilization of these machines is desirable in this manufacturing environment. Utilization, classically measured as the usage of the machine per shift/day (in terms of hours/day), is an inadequate performance measure since what matters is the amount of PCBs manufactured and/or components placed per shift/day.

The main motivation of this study is to investigate ways of increasing productivity of the placement process based on the scientific method. We explore the problem environment using the following terms and definitions.

Performance of an SMT manufacturing is the result of a production plan that considers the main issues below [2]:

- characteristics of the equipment (layout, number of machines, details of the operating mode, etc.),
- characteristics of the product mix (diversity of PCB types, batch sizes, etc.),
- managerial policies like the frequency of setups or the willingness to redesign the lines on a regular basis.

An SMT machine consists of three main units: a worktable, a feeder carrier, and a pick and place device. The *worktable* is the place where the PCB is attached during the placement operations. The *feeder carrier* is the unit through which the component feeders are fed. The *pick and place device* is the mechanism that picks the components from the feeder carrier and places the component on the PCB that is attached to the worktable. The way these main units work together may differ; for instance, the worktable may be fixed or movable in X or X-Y direction; the feeder carrier may be fixed or move along X-axis while pick and place mechanism can move in Y direction or X-Y directions to pick up the components from the feeders or a set of heads that can pick and place components may rotate 360 degrees. Machine types can be classified according to the picking and/or placing mechanism: dual delivery placement machine, multi-station placement machine, turret style placement machine, multi-head placement machine and sequential pick-and-place machines. These are the types of machines mainly studied in the relevant literature and an interested reader is referred to the survey in [3].

Four factors are considered in processing PCBs: component location, component type, PCB size and component placement angle. These input data determine the setup for each PCB type, which is transformed into a machine code that specifies the mechanical movements for the sequence of pick up and placement of the components. Diversity of PCB products requires grouping as a family, since each PCB family uses the same feeder setup. Small batch sizes of PCB constitute another reason for forming families to save the setup time/cost of feeder changes.

As multiple SMT lines exist and a variety of PCB types have to be manufactured, the manufacturer has to decide on the product mix that an SMT line can handle according to the above factors. Since each PCB type uses a different set of component types and the machine types might have different characteristics (a machine can mount a given range of component types), assigning the PCB types into SMT lines have to be done as the first design decision. As the groups are formed, the setup strategy for the SMT line has to be covered and a sequence of the groups has to be formed. Assuming that the long term decisions (on SMT line investments and setup policy) are already made and the shop floor and product mix are fixed, Crama et al. [2] build up a perfect hierarchical approach to cover the decisions regarding the planning of PCB manufacturing. The decisions to be made should cover the answers to eight sub-problems (SP) as given below:

SP1. assignment of PCB types to product families and product families to machine groups (cells or lines).

SP2. allocation of component feeders to machines.

SP3. for each PCB type, partition of the set of component locations on the board type, indicating which components are to be placed by each machine.

SP4. for each machine group, sequence of the PCB types, indicating the order the board types are to be produced on these machines.

SP5. for each machine, location of feeders on the carrier.

SP6. for each pair consisting of a machine and a PCB type, component placement sequence; that is, a sequence of the placement operations to be performed by the machine on this board type.

SP7. for each pair consisting of a machine and a PCB type, component retrieval plan; that is, for each component on the board, a rule indicating from which feeder this component should be retrieved.

SP8. for each pair consisting of a machine and a PCB type, motion control specification; that is, for each component, a specification of where the pick-and-place device should be located when it picks or places the component.

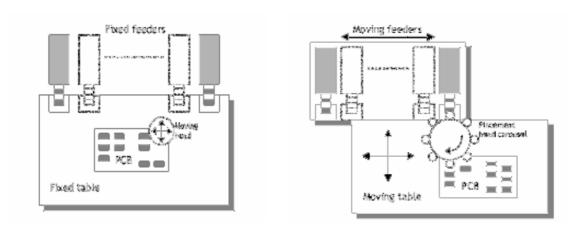
In this thesis, we focus on the problem of component placement sequence for a given machine and PCB type, that is SP6 under Crama's [2] hierarchy. The study is motivated from a real-life situation observed in one of the leading electronics companies in Turkey. The main objective of the study is to improve the operations of an SMT machine. The problem is finding the best tour that minimizes the component placement sequencing of PCBs given the machine specifications and managerial decisions. Since the underlying optimization problem is difficult to solve (optimal solution could not be found in 14 days for a small sized PCB, where the optimization tool evaluates only 37% of the possible solutions in the branch&cut tree in that time period), we propose heuristic approaches. The performance of the heuristics is tested for real PCBs that the company produces. The results are compared with both the optimal solutions of the restricted number of real cards based instances and randomly generated problem instances under a modified machine specifications (which also reduces the computational effort required to get the optimal solutions). In order to make a performance assessment based on the problem instances for which the optimal solution could not been obtained in a reasonable time, we proposed two lower bounding schemes. The performance of the heuristics is compared with the current placement sequence for the company's machine and PCB pairs as well as the heuristic results are compared with the lower bounds. The computational study on the PCBs that are currently on the product mix of the company shows that the heuristics result in the placement sequences better than the current practise. It is found out that the proposed heuristics find near optimal results for the randomly generated PCBs. However, the computational study with these randomly generated PCBs shows that there can be a high gap between lower bounds and the optimal solution values.

The thesis includes five chapters. In Chapter 2, a literature survey on SMT machine optimization techniques and different approaches to the SP6 problem are presented following the framework provided by Crama et. al. [2]. In Chapter 3, a detailed

description of the problem environment, the problem definition, the proposed heuristic approaches and the lower bounding schemes are given. Chapter 4 involves a computational study that is carried out to assess the performance of the heuristics and lower bounding schemes. In Chapter 5, a summary of the work done is given and future research directions are addressed.

CHAPTER 2

LITERATURE REVIEW


2.1 Background

A family setup is made for an SMT machine assigned to a group of PCBs. This strategy (as explained by McGinnis et al. [5] and Ammons et al. [11]) eliminates the need for machine setups between the manufacturing of different PCB types at the cost of potentially increasing the assembly time for each individual PCB type in the family. In order to apply a family setup strategy, one has to solve the grouping problem that determines the setup policy for a machine (i.e. feeder placement). Then, for each PCB in the family, the placement sequence of the components with respect to the fixed setup (i.e. the location of feeders) is planned. In the related literature, the studies about the family setup policy focus on the problem of grouping PCBs in order to minimize the setups while the placement sequencing for each PCB is also optimized as well.

The researchers have tried to overcome the complexity of the problem by generalizing the problem or simplifying it by making some assumptions. While some researchers have tried to decompose the overall problem into subproblems to reach an approximately optimal solution, the problem is directly attacked to be solved by means of heuristic methods (in some studies).

SMT machines are of various types and can be classified with respect to the mechanical structure as follows [4]: (i) single compliance robot for assembling (SCARA) (pick and place machines), (ii) cartesian/gantry and (iii) high speed chip

shooter (HSCS) (turret head) [4]. Operational characteristics of the machines is another classification criterion: concurrent vs. sequential machines. The distinction comes from the machine cycle as defined in [5], concurrent machines operate a series of consecutive operations beginning with a component pick and ending with a component placement, while sequential machine cycle consists of only one pick and one placement. From this point of view, sequential machines (i.e. pick and place machines, see Figure 2.1.a) are those whose machine cycle involves exactly one component (the same component is picked and immediately placed) while concurrent machines (i.e. rotary turret machines, see Figure 2.1.b) are those whose cycle involves the pick of one component type and the placement of a component that is previously picked.

2.1.a Pick and place machine (sequential) 2.1.b Rotary turret machine (concurrent)

Figure 2.1 – SMT Machine types

Other classifications are fixed pick-and-place point (FPP) vs. dynamic pick-and-place point (DPP) [6], insertion vs. pick-and-place vs. rotary turret machines [7], turret-head vs. pick-and-place vs. pick-and-place with rotary head [8], multi-head vs. high speed chip shooter machine (HCHS) vs. robotic arm placement machine [9]. In order to fully understand the features of the machines and to design new optimization methods for these machines, the classification criteria have to be more detailed in terms of operational activities and concurrent characteristics of the machines. Thus we follow dual-delivery, multi-station, turret-type, multi-head and sequential pick-and-place classification [3] as the framework in this study.

After various studies concerning the problems faced in electronics production have been conducted; Crama et al. [2] presented a detailed hierarchy where planning problems in electronics production are divided into eight subproblems. These are:

SP1. assignment of PCB types to product families and product families to machine groups (cells or lines).

SP2. allocation of component feeders to machines.

SP3. for each PCB type, partition of the set of component locations on the board type, indicating which components are to be placed by each machine.

SP4. for each machine group, sequence of the PCB types, indicating the order the board types are to be produced on these machines.

SP5. for each machine, location of feeders on the carrier.

SP6. for each pair consisting of a machine and a PCB type, component placement sequence; that is, a sequence of the placement operations to be performed by the machine on this board type.

SP7. for each pair consisting of a machine and a PCB type, component retrieval plan; that is, for each component on the board, a rule indicating from which feeder this component should be retrieved.

SP8. for each pair consisting of a machine and a PCB type, motion control specification; that is, for each component, a specification of where the pick-and-place device should be located when it picks or places the component.

SP1 deals with the grouping problem, SP2-SP4 deal with problems to be solved for each group, SP5-SP8 are related to a particular machine type with a single PCB type. The difficulty with the above hierarchy is the tight relationship of subproblems with each other. The way to overcome this problem is the selection of a group of

subproblems to be dealt with while the other subproblems are solved beforehand. The operational decisions are seen in the subproblems SP5-SP8 where one makes decisions on the manufacturing process, as the others can be viewed as mid-term decisions (SP4) and results of long term decisions given by top management (SP1-SP3). Although these strategic decisions affect the performance of the manufacturing system, focusing on the manufacturing variables in order to optimize the assembly (SP5-SP8) as other decisions are made beforehand is seen more realistic.

In the literature, it is seen that most researchers focus on SP5 and SP6 of Crama's hierarchical framework. Motion control (SP8) subproblem is seen as a part of preparation for production [10], and researchers are interested in the machine types having no motion control problem. Motion control is related to the movable heads that can move in X-Y direction with a PCB carrier moving on X direction, where machines having fixed pick and place points have motion control problem related to the table movement in X-Y directions which can be formulated into the component placement sequencing, i.e., turret-type SMT placement machines. Thus, there are less studies covering the motion control subproblem compared to those related to SP5 and SP6.

Component retrieval (SP7) subproblem is even less studided in the literature, because it requires the assignment of one component type to several feeders (duplication of component types) which might be seen as a managerial decision to make before operational planning takes place. In addition, it is related to the operational characteristics of the SMT placement machines. For most sequential machines, it can be modeled and solved within the placement sequencing subproblem. The same holds true for the turret-type SMT placement machine if the start of a pick activity coincides with the start of a place activity.

Single machine single PCB type problems have to deal with the operational characteristics of the SMT machine, hence model formulation, assumptions and solution techniques vary according to the characteristics of the machine considered [2], [9], [14]. There are many studies on this problem in the literature. Feeder arrangement, placement sequencing and component retrieval are the basic concerns

of these studies, as SP8 (motion control) problem in Crama et al [2]'s classification is included in the placement sequencing subproblem. As a number of components (of different types with respect to size and shape) have to be located on specific points on a PCB, an optimal solution should handle all these concerns together. It is seen in the previous works that solving component placement sequencing alone is a traveling salesman problem (TSP).

TSP is defined as follows: given n cities and their intermediate distances, find a shortest route traversing each city exactly once [33]. By defining locations on a PCB as cities and the time between placements (or insertions) as distances, the component placement sequencing problem can be formulated as a TSP [16]. The classical formulation of TSP is:

min
$$\sum_{l=1}^{n} \sum_{k=1}^{n} d_{lk} x_{lk}$$
s.t.
$$\sum_{k=1}^{n} x_{lk} = 1 \qquad \text{for } l = \{1, 2, ..., n\}$$

$$\sum_{l=1}^{n} x_{lk} = 1 \qquad \text{for } k = \{1, 2, ..., n\}$$

$$\sum_{l \in S} \sum_{k \in S} x_{lk} \le |S| - 1 \quad \text{for all } S \subseteq \{2, ..., n\}$$

$$x_{lk} = 0 \text{ or } 1 \text{ for all } l, k$$

Although powerful tools to solve the TSP have been developed [31], as the amount of locations on a PCB increase, the optimal tour is hard to be found. The authors address that TSP is an NP-Hard optimization problem that is difficult to solve for some practical instances in a reasonable time [7], [9], [13], [15], [27], [30]. The determination of the distance between locations on a PCB, e.g. on turret style machine types, forces the entrance of new decision variables into the formulation because of the concurrent behavior of the movements (which will be discussed in Chapter 3). When other subproblems are included, such as feeder assignment problem, mathematical programming approach for the overall design problem

induces a computational burden [12]. Given that the optimal solution is hard to be found, researchers construct heuristics to obtain near optimal solutions and heuristic solutions are compared with the lower bounds. Heuristic algorithms that attempt to find feasible solutions step-by-step are called construction heuristics while algorithms that modify or improve some given starting solution are called improvement heuristics [34]. Lawler [35] discusses some useful construction heuristics such as nearest neighbor, furthest insertion point, arbitrary insertion point as well as improvement heuristics such as 2-opt, 3-opt and or-opt for TSP. He also provides comparisons on the quality of the solutions. Another extensive review on heuristics for TSP is by Applegate et al. [36]. They schematically explain the algorithms on pseudo-codes.

The literature review related to the placement sequencing subproblem and feeder assignment subproblem is presented in Sections 2.2 and 2.3, respectively. Some authors study feeder arrangement and placement sequencing subproblems together; they use a solution technique such that first one of the subproblems is solved separately (using heuristics), then based on this initial solution another heuristics is applied to the other subproblem. The solutions are tried to be improved in an iterative manner. These studies are reviewed in Section 2.4.

2.2. Placement Sequencing Subproblem:

TSP formulation is used in placement sequencing subproblem by almost all of the researchers, however they all obtain near optimal solutions.

Chan and Mercier [16] study a special insertion machine that feeds the head (movable on Z axis) with the components and a PCB table moving on X-Y axis. They assume that the feeder movement is faster than the PCB table. Since the components are arranged beforehand for the header the component placement sequencing problem boils down to a TSP. The model is solved by TRAVEL software using a combination of 2-opt, 3-opt and Lin-Kernighan algorithms.

Moyer and Gupta [17] study the subproblem on a rotary turret machine. For the traveling time between locations, Euclidean metric is used instead of Tchebycheff's metric. It is assumed that the table movement time is longer than the feeder exchange time. The placement sequencing subproblem is formulated as a two dimensional TSP. For the solution, an initial placement sequence is taken as input and a pairwise exchange algorithm is applied. The initial sequence is generated via three methods: random selection, increasing component type identifier; and sorting the components over the PCB according to the components' location point definitions; X and then Y coordinates. The initial placement sequence is improved by exchanging the components according to the proposed pairwise exchange algorithm.

Duman and Or [18] study a specific machine where the components are ready to be picked. The machine in concern limits the placement sequencing since the placement head can damage the PCB depending on the sequence. The formulation is a special kind of TSP named as precedence constrained TSP (PCTSP), where a constraint regarding the prevention of component damage is added. Tchebycheff's distance is considered in this study. For the solution, a two step heuristic is proposed. First an approximate TSP solution is found, then a heuristic is applied for damage reduction. The performance of the proposed method is tested on a real production environment. It is shown that component damage is decreased and the throughput figures are increased.

2.3. Feeder Arrangement Subproblem:

Ahmadi [19] assumes that the head and the PCB table move in a constant time. As placing of a component depends on the maximum of this constant time and feeder movement time, he claims that the feeder arrangement would affect the assembly time more than the placement sequence. The shortest path of a set of nodes containing the possible locations of the feeders in the feeder carriers is found as the solution

Some researchers have tried to solve the problem by solving component sequencing subproblem first or by fixing the component sequence. Leipala and Nevalainen [20] and Francis et al. [21] formulate the subproblem as a quadratic assignment problem (QAP). Foulds and Hamacher [22] model the subproblem as a bin location assignment which is formulated as a single facility location problem.

Crama [23] studies the subproblem on two turret rotary machines aiming to balance the workload by assignment of feeders and finding a placement sequence for each PCB. It is assumed that a certain component type may be carried on two feeders. The feeders that can carry the components are found by a clustering heuristic. An arbitrary assignment of feeders for each machine's slot is made as initial assignment. The placement time for the assignment is estimated by assuming that the feeders move from left to right; i.e., for each PCB the components in each feeder is finished first, then the feeder moves to the next. After estimation of placement time for each PCB with the feeder assignment, workload balance is done by using two heuristics that consider the exchange of feeder types with their component clusters between the machines. An iterative search is performed as a heuristic and the placement times are estimated for each assignment cycle.

Moyer and Gupta [4] solve the feeder assignment subproblem on a rotary turret machine for a given placement sequence. A QAP formulation, where the departments are component feeders and possible department locations are feeder slot locations, is applied. Feeder Slot Allocation (FSA) heuristic considers the flow between any pair of components and a weighting scheme. In order to compare results of FSA heuristic pairwise exchange algorithm is considered. Although pairwise exchange algorithm gives better result, FSA solves the problem in a shorter time.

Sun [14] aims to maximize a component's simultaneous pick activity, i.e., a component type's placement is tried to be arranged such that picking activity for that component type again is minimized. Using a genetic algorithm, feeder traveling time is reduced.

2.4. Feeder Arrangement and Placement Sequencing

The feeder arrangement and placement sequencing subproblems are interrelated. The setup strategy for a machine type might necessitate the component feeders to be fixed at a certain position. In other words, since feeder arrangement might take longer times compared to production of a single PCB for a large product mix, it would be reasonable to assume that feeder arrangement is given. Single setup strategy uses a fixed feeder arrangement for the production of a family of PCBs. The feeders are arranged such that all components required to produce each PCB in that family are available at that machine. This strategy can be seen in two ways: unique setup strategy (the family consists of one PCB, i.e. high volume/low diversity of production) and family setup strategy (the family has more than one PCB, i.e. low volume/high diversity of production) [5].

Due to machine characteristics, component feeder movement might take much longer time than placement of components. This assumption is seen in some papers presented in Section 2.3, since the assumption forces one to deal with only the feeder arrangement subproblem if a placement sequence is given. It should be noted that this assumption might not be valid for the machinery developed in recent years and the strength of the assumption must be tested for different placement sequencing instead of considering one case of sequences.

Another scope that affects the description of the problem lies in the functional performance of a machine. Note that the feeder movement and placement time for a component depends on the head, i.e., the time interval for a placement may be described as a sum of two events. This may change the optimization model such that the feeder arrangement might simply be included in the TSP formulation. On the other hand, for concurrent type of machines, the updated model is harder since feeder movement and component placement sequencing seem to occur independently. Sequential machines' feeder arrangement subproblem might be embedded into the formulation of the placement sequencing subproblem.

It is stated by several authors ([2], [3]) that the feeder arrangement affects placement sequencing since the time to pick a component by a head lags the placement operation performed by the same head or vice versa.

As being the pioneering work on PCB assembly optimization, Ball and Magazine [15] divide the overall problem into two parts for a sequential pick & place SMT machine: feeder arrangement and component insertion sequence. Feeder assignment is modelled as a linear assignment problem as the total placement time of all the components retrieved from a given feeder is roughly approximated. For placement sequencing problem, a network of nodes, where each node starts at a feeder location and end at a component location is developed. Movements between the nodes are described as nodes that are formed as movements from feeders to components (placing operation), and nodes that are formed as movements from components to feeders (picking operation).

Placing operation is named as "required" because as the component types are assigned to the feeders, these movements have to be done, since the head must move from the feeder (one component type has one feeder assigned) containing the component type to each component location. Picking operation is named as "nonrequired" and it depends on the placement sequencing. The authors model the problem as a special case of traveling salesman problem (TSP): Rural Postman Problem or Stacker Crane problem. The network of possible nodes and the types of possible movements are defined, by applying an Eulerian tour algorithm, a closed path between the nodes that minimizes the distance traveled by the placement head is found. The metrics used in the formulation affects the solution. If the placement head moves only in one orthogonal direction at a time, the Manhattan metric is used for measuring the length of the movements and one can find an optimal solution in polynomial time. If the head can move in both of X and Y-directions independently, Tchebycheff's metric can be applied for the distance calculations, but the solutions to be obtained are then suboptimal. However, in the latter case, Ball and Magazine [15] prove that the maximum error of the solution is bounded.

Leipala and Nevalainen [20] deal with placement sequence and feeder arrangement separately on a rotary turret machine with two heads and a moving feeder carriage. Placement sequence is modelled as a three dimensional asymmetric TSP problem and the solution is found using a heuristic that is a version of furthest insertion point heuristic for an initial feeder assignment. This initial placement sequence is used to solve the feeder arrangement subproblem which is modeled as a QAP. A heuristic that exchanges component feeders pairwise is proposed for QAP. Iterations of the two heuristics continue until the feeder arrangement results with no improvement in placement sequence.

Leu [24] considers insertion and sequential pick and place machines. In insertion machines, the components to be placed are sequenced into a feeder tape by a sequencer beforehand, i.e. there is no feeder arrangement problem. The placement problem is just the TSP. For sequential pick and place machine, the problem can be modeled as a rural postman, linear assignment or QAP. For a rotary turret machine, a genetic algorithm is proposed. The algorithm includes solving feeder assignment and placement sequencing iteratively; the results are combined in order to find the optimal placement time.

Kumar and Li [25] study placement sequencing and feeder arrangement subproblems for sequential pick and place machines. They use a combined model of TSP and minimum weight matching problem (MWMP). Lower and upper bounds are calculated to compare the results found. Upper bound for the sequencing is found by solving the TSP for a given feeder assignment and upper bound for the feeder assignment is found by solving MWMP for a given component sequence. Lower bounds are calculated by means of linear programming and Lagrangian relaxation techniques. MWMP is solved using a software program, and initial component sequencing is found by nearest neighbor, nearest insertion, furthest insertion and random generation heuristics. 2-opt and 3-opt are used for the improvement of initial solution. The results found are also compared with the solutions obtained by the S shape and greedy algorithms.

De Souza and Lijun [26], for a rotary turret style machine, form a knowledge based system for component sequencing and feeder assignment subproblems. The components are grouped according to their types, quantity and sizes. Arrangement of the components is done considering the groups and the components' location on PCB. For the component sequence subproblem, a heuristic is formed as a combination of minimum spanning tree and knowledge based heuristic which guarantees a reasonable worst-case performance. With this heuristic, a placement sequence for each group of components is obtained. The solutions for the groups are combined in the end.

Gupta and Moyer [12] study rotary turret machine and use nearest neighbor algorithm for obtaining an initial placement sequence. The sequence is improved by means of a pairwise exchange algorithm until all the pairs are tried or a prespecified number of solutions that do not improve the sequence are observed. Each improved solution is recorded to be used in feeder assignment subproblem. The initial feeder assignment is based on the component ID numbers. Given the initial placement sequence, the feeder arrangement is tried to be improved according to the pairwise exchange algorithm with the same limitation stated above. After finishing the work with the initial sequence, other sequences in the record list are tried in the same manner. The solution is the one that gives the minimum placement time. The work done is tested against algorithms presented by Leu et al. [24] and De Souza and Lijun [26]. The main shortcoming of the study is the assumed traveling time (between two placement events), the authors do not construct the distance as the maximum time of three concurrent events (PCB table movement, feeder carriage movement, turret movement).

Ng [27] develops heuristics to solve feeder assignment and placement sequence problems for a rotary turret machine. The research is based on the following assumptions: (i) the feeder movement starts with a certain feeder position and the feeder movement is defined beforehand such that the feeder locations are filled with component types using that movement. (ii) The feeder movement by one feeder position is more significant than any placement movement. (iii) Movements are linear. The main idea is partitioning the locations into component types and modeling

a connectivity and distance relation between the types using the functions and heuristics. Assignment of feeders is modeled as a group TSP each of which is solved by a nearest insertion algorithm. With the initial feeder assignment total placement time is tried to be minimized using the nearest insertion algorithm. With an exchange technique, where the exchange is limited with two feeder rack positions at a time, total placement time is tried to be improved. Ng [27] also tries to solve the problem of adding another feeder reel for a component type, using a weighted sum of the factors that affect the placement time, the component type and the place of the feeder is calculated. The heuristics' results are compared with the existing solution and a lower bound found by experience.

Ahmadi and Mamer [28] work on a sequential pick and place machine, and propose heuristics for feeder assignment and placement sequencing problem. The heuristics constructed solve TSP for each component type independently and then patch the tours together. Since cost of patching the tours depend on the assignment of end-start point for each part type, for a group of locations formed between different part types, a TSP is formulated to find the shortest path where in the end, the end-start points for each part type is calculated. For both TSP models, different heuristics are tried (nearest neighbour, greedy algorithm, S-shape methods, space-filling curves) and the results are tried to be improved by 2-opt heuristics. Different types and numbers of PCBs (with different shapes and number of components) are solved.

Altinkemer et al. [29], for a multi-head machine, try to solve the subproblems in an integrated approach. They model the overall problem as a vehicle routing problem. Two cases are investigated: the feeder moves and does not move. Since non-moving feeder case is a more complex environment, certain assumptions had to be made for the modeling. The integrated algorithm proposed consists of solving a vehicle routing problem for each component type at every possible feeder location, and an assignment problem (where the costs are obtained in the previous step) is solved for the placement sequencing problem. They show that the proposed algorithm provides feasible solutions with an error gap less than or equal to the maximum error gap of the vehicle routing problem.

Ellis [30] solves the subproblems in a number of iterations for rotary turret head SMT machine. The component types according to the allowable machine's table and turret rotation speed are grouped. An initial placement sequence for each group is formed using nearest neighbor algorithm considering the table movement time. The placement sequence is transformed into a component type flow matrix for each group where the relation between two component types are tried to be shown. QAP greedy algorithm is used for feeder sequencing considering the flows between component types. Using arbitrary insertion point or nearest neighbor algorithm and considering the cost of placement as the maximum of turret rotation, placement and feeder movement time; a placement sequence and a feeder arrangement are found. This solution is tried to be improved with 2-opt iteratively where the placement sequence is tried to be improved as the feeder arrangement is kept fixed and the feeder arrangement is improved as the placement sequence is kept fixed. If the feeder arrangement is improved, the placement sequence is again tried to be improved. Results are compared with the lower bound generated in Mover and Gupta [17]. It is claimed that the results are close to the lower bounds and better than the commercial software results. Although the study aims to decrease the computation time, for large PCB sizes the algorithm requires 12 hours. Time difference between the initial solution and the improved one is also another aspect that points out room for improvement.

2.5 The link between the current study and the literature

Our study aims to improve the component placement sequence (SP6 of Crama et al. [2] hierarchy) for a specific SMT machine, which is of turret style. Some assumptions made in the studies in the literature contradict with the specific SMT machine in concern.

Table 2.1 contains the studies carried out on the machine types mostly related to our study. These machine types are turret style, sequential pick & place and dual delivery SMT machines. For turret style machines, there are three basic movement

Table 2.1. Classification of the studies according to the problem type and machine type considered

Authors	Reference	Problem	Machine Type	Turret	Table	Feeder	Assumptions/Remarks
Chan & Mercier	[16]	SP6	Sequential Pick & Place	— -	$\sqrt{}$	$\sqrt{}$	Table moves slower than the feeder
Moyer & Gupta	[17]	SP6	Turret Style	\checkmark	$\sqrt{}$	$\sqrt{}$	Turret movement speed is constant
							Table moves slower than the feeder
							Table movement: Euclidean Distances
Duman & Or	[18]	SP6	Special Type	_		_	Position of the component types around the sequencer is not critical
Ahmadi	[19]	SP5	Dual Delivery	$\sqrt{}$		$\sqrt{}$	Head movement & Table movement: Constant
Crama	[23]	SP5	Turret Style	2/	2		A component type's all locations will be placed to continue with
Crama	[23]	SF3	Turret Style	V	V	V	another component type's locations
							The feeder moves from left to right by one
Ball & Magazine	[15]	SP5 & SP6	Sequential Pick & Place	_		$\sqrt{}$	Distance between locations to feeder locations used
Leipala &	[20]	SP5 & SP6	Turret Style	\checkmark	$\sqrt{}$	$\sqrt{}$	Turret has 2 heads
Nevalainen							Turret movement is constant
Leu et al.	[24]	SP5 & SP6	Turret Style	$\sqrt{}$		$\sqrt{}$	Turret has 2 heads. Turret movement is constant
De Souza&Lijun	[26]	SP5 & SP6	Turret Style	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	No figure for movements in the paper
Moyer & Gupta	[12]	SP5 & SP6	Turret Style	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	Cycle duration is not the maximum of three movements
No	[27]	CD5 % CD6	Types Ctrylo	ما	4		A component type's all locations will be placed to continue other
Ng	[27]	SP3 & SP0	Turret Style	V	V	V	locations with different component type
							Feeder movement is slower compared to other movements
							Table movements are Euclidean
							Turret movement is constant
Ellis	[30]	SP5 & SP6	Turret Style	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	Durations reflect the machine characteristics.
							Statistical analysis is done to estimate the duration figures.
							Due to the M/C type examined, table speed is taken as a function of
							the component type according to the table speed index

mechanisms (which will be presented in detail in Chapter 3) that duration of a PCB placement depends on: turret rotation, PCB table movement and feeder movement.

Some critical assumptions regarding these movements in the literature are:

- 1. The feeder carrier moves slower than PCB table.
- 2. Table or turret movement speeds are constant.
- 3. The table distance between locations is taken as Euclidean instead of Tchebycheff distance.

Based on one or more of the assumptions stated above, a solution approach from the literature cannot be applied directly to real life cases. In Table 2.1, it is seen that Ellis et al.'s [30] approach is the most realistic on with respect to the machine aspects.

In our study, based on the specifications of the machine under study, we include the followings with the modeling of the situation:

- We explicitly include turret rotation time, feeder carriage time and table movement time. We do not make any assumption on the dominance of one type of concurrent event's time to the others.
- There are 12 heads on the turret, and the turret rotation time depends on the types of the components on the turret.
- The actual feeder times are based on the feeder arrangement currently applied for each family of PCBs included.
- Table movement times are calculated based on Tchebycheff distance in between the locations. We assume constant velocity for the motors.

CHAPTER 3

PROBLEM DEFINITION AND THE SOLUTION APPROACH PROPOSED

SMT electronics production is composed of three phases considering process requirements as it is briefly discussed in Chapter 1.

- a) SMT production line: An automated assembly line consists of machines with different functional abilities that produce semi-finished goods. Figure 1.4 shows a general layout for an assembly line.
- b) Visual inspection and assembly: Semi-finished goods (PCBs) are optically inspected to test whether they conform to the international standards, such as IPC-610, or not. If the PCB involves components that could not be mounted on the automated assembly line, those components are also placed at this stage. Wave soldering is used to solder the through hole components at this phase.
- c) Test: In-circuit tests are performed to judge whether there exist any problems regarding the solder joints and the circuit paths or not. Functional tests are performed to check if the finished goods conform to the functional requirements or not. Non-conforming products are sent to the rework station. Software is also uploaded on the PCBs (if any required) at this step.

Some electronics companies widen their operations by adding cleaning, coating, mechanical assembly, packaging processes as well as monitoring defects.

The company where the study is carried out is one of the well-known companies in Turkish electronics industry. It was founded as a telecommunication company and therefore focuses on telecommunication sector. In recent years, it has widened its product mix to cover electronic cards for households products. The company has three main processes:

- automated assembly where the components are placed onto PCBs by using SMT, axial and radial insertion techniques.
- telecommunication PCB production that deals with the PCBs used in telecommunication products.
- electronic card production where electronic cards functioning as display,
 power or control units used in appliances are produced.

Automated assembly feeds both telecommunication PCB and electronics card production lines. It should be noted that production departments have their own control of visual inspection and testing processes.

3.1. Problem Environment

3.1.1. Assembly Line

Automated assembly line has the ability to produce electronic cards using axial and SMT placement techniques. There are three axial (electronic components are inserted into the PCB through the holes vertically) and one radial (electronic components are inserted into the PCB through the holes horizontally) placement assembly lines. There are three SMT assembly lines (see Figure 1.4) in the production facility. Two of these have chip shooter machines as multi-station placement machines having multiple heads working in a concurrent manner. Placement occurs as the PCB moves along a conveyor [3]. These machines are state-of-the-art technology, more traceable in functioning and faster than the other chip shooter SMT machine. Their operations are believed to be fine tuned already.

The other SMT line contains Panasonic Mv2F which is a chip shooter machine placed after screen printing where the solder paste is printed over the PCB in order to mount electronic components over it. A fine pitch machine – Panasonic MPA G1 SMT Machine – is positioned after the chip shooter machine for more sensitive electronic components. The assembly line ends with the re-flow oven that heats and cools down the PCB and the solder paste in order to mount the components onto the PCB (see Figure 1.4). The chip shooter machine is a turret style SMT machine that is produced in 1998. Its performance is inferior when compared to the multi-station placement machines. The machine can place 40,000 components/hour theoretically if one component type is placed; it produces 10,000 components/hour in the case of multiple component types. One of the reasons for low output level in the case of multiple component types is the setups for PCB manufacturing. The placement sequence is determined with the help of the "optimizer" software that Panasonic has provided and it is known that the output usually requires expert modifications to have satisfactory performance. The higher the number of PCBs of a certain type produced, the more expertise is added. The main aim of this study is to come up with a methodology yielding better results than the expert retouch.

3.1.2 Turret Style Placement Machine

Figure 3.1 depicts the main parts of the machine listed below:

- a) Feeder carriage: The component reels are placed on feeders and these feeders are put into the carriage. The carriage has slot numbers that describes where component reels are placed. Feeder carriage moves horizontally for the component to be picked at the grip station.
- b) Turret: The machine has a rotary turret on which the picking and placement events occur. The turret has 12 revolving heads. Each head has 5 types of nozzles that can grab different types of components. After the turret turns 30 degrees, the head that meets grip station picks the component to be placed 6 steps ahead and the placement event occurs at the placement station. Grip and placement stations are fixed.

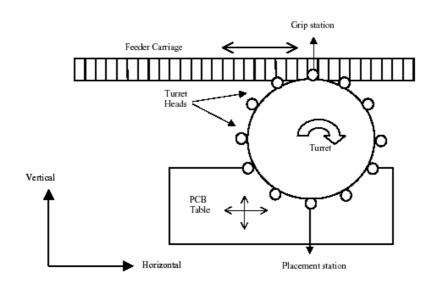


Figure 3.1 – Schematic representation of the turret style machine

c) PCB table: PCB is placed over this table. It moves in X and Y directions to bring the PCB under the placement station. Each axis uses its own motor to generate the movement, therefore the time it takes the table to meet the placement station is the maximum of X and Y movements' time, the l_{∞} norm known as Tchebycheff's distance metrics.

These three elements' movements depend on each other, in other words they move concurrently. Table A.1 in Appendix A, is an updated version of the one that Ng [27] undertakes. As it can be seen in Table A.1, there are three concurrent events that affect the time it takes to complete a step:

Turret_rotation: Each component type used in a PCB has different turret rotation index, meaning that every component cannot rotate at the same speed, since nozzle that grabs the component changes and the precision of the placement may be affected during the rotations. Turret's one rotation depends on the turret rotation indices of the components picked by the heads; component having the slowest turret rotation index (hence the smallest speed) determines the turret rotation time. The rotation index is divided into 8 groups where 1 means 0.10 sec/component, 2 means 0.16 sec/component, 3 means 0.21 sec/component, 4 means 0.27 sec/component, 5 means

0.33 sec/component, 6 means 0.38 sec/component, 7 means 0.44 sec/component and 8 means 0.50 sec/component.

Feeder: Feeder movement occurs if the previous component picked is not the same type with the component to be picked. If so, the feeder carriage has to move to the right component reel, defining the feeder cost. The feeder moves with a constant velocity.

Table_movement: Movement time between previous placement position to the new position is the minimum time traveled in X and Y axis. If position 2 (x_2,y_2) is placed after position 1 (x_1,y_1) , then the table movement for this step is defined as

table movement_{1,2}=
$$\max\{|x_1-x_2|/v(X), |y_1-y_2|/v(Y)\},\$$

where v(X) and v(Y) are velocity figures for x and y motors, respectively.

Each placement step cannot be completed until all the movements are finished, since three events occur concurrently. The placement event can occur after the table comes to the right position and new position's component reel (6 steps ahead of the placed position) parks to be picked by the empty head as long as the turret head reaches the placement station and the empty one reaches the picking station. Therefore, the maximum time of these three concurrent events defines the duration for each placement step.

Once positioning is completed, placing requires a fixed time, as nozzle selection happens while the turret head is empty. An empty PCB is loaded from a conveyor and an assembled PCB is unloaded back to the conveyor in a fixed time.

3.1.3. The setup process

Working principles of the turret style SMT machine is explained in the previous section. PCB data should be transformed into the machine; the component types to be placed on the PCB form the component array data, where the turret rotation index

for each type should be entered. Placement sequencing and feeder arrangement are currently obtained by the Panasonic optimizer which yields solutions that need to be improved.

The company has two families of PCBs as stated previously:

- Electronic cards produced for the household products
- Electronic cards to be used in the telecommunication industry

This grouping is formed considering the below factors:

- The ease in production planning: Demand figures and the customers of the two families differ. Household products' PCB production resembles mass production with low diversity and higher amounts, while telecommunication PCBs are highly diversified and manufactured in small quantities.
- 2. Organizational differentiation is considered, since semi-finished products of each family are produced by different departments. Moreover, each family requires different processes on the assembly line.
- 3. Component types, PCB design parameters and functional purposes of these families are different. Household products' PCBs are sparser, while a larger number of components are placed per unit area of a PCB of the telecommunication family.

Having two families, there are two different setup figures on the production line; one setup holds the low volume/high variety PCBs' component types, while the other holds high volume/low variety PCBs' component types. There are 150 feeders assigned to each product family. From these 150 feeders, none of them carry the same component type because the PCB families are formed in such a way that all feeders have to be appointed to different component types. A mechanical engineer

makes improvements over the solution provided by the optimizer software using his expert opinion without any analytical tools.

Since the components are already placed to the feeders at specific locations, the setup process does not include the feeder exchange time. It only involves changing the conveyor width used for loading and unloading operations and entering the placement sequence in the assembly language format by means of the machine's user-interface.

3.2. Problem Statement

We have already presented a detailed analysis of the turret style SMT machine, as well as the managerial decisions regarding the production planning. The opportunity to increase the productivity of turret style machines comes from the inferiority of the performance of the Panasonic software. Secondly, the literature reports that even application of the most well-known heuristics (e.g. nearest neighbor, greedy algorithms) may provide better results compared to machine specific optimizer software [27], [30]. Thirdly, the rough competition in the electronics sector demands to increase the throughputs, as we observe that the amount of backlogs in the firm under study is considerable.

The feeder assignment subproblem, (SP5) as stated by Crama et al. [2], is not the concern of this study while our main focus is to develop a modelling framework for the placement sequencing (SP6) problem for all PCB instances in each product family.

3.3. Model Formulation

We follow an evaluationary approach for the mathematical programming formulation of the problem: conceptual \rightarrow quadratic \rightarrow integer.

3.3.1 Combinatorial Formulation

Let us start from a conceptual formulation after introducing the notation given below. For simplicity, we assume that the turret rotational velocity (hence time) is constant and each component is already assigned to a single feeder.

L: the set of locations on the PCB $L = \{1, 2, ..., n\}$

K: the set of components on the PCB $K = \{1, 2, ..., m\}$

 $\mathit{mt}_{l_l l_2}$: Table movement time from location l_1 to location l_2

Let (x_1, y_1) and (x_2, y_2) be the x and y coordinates of locations l_1 and l_2 , respectively. Depending on the type of the machine, one of the following (Manhattan, Euclidian, Tchebycheff's) distances are used:

$$mt_{l_1,l_2} = \begin{cases} \frac{\left|x_1 - x_2\right|}{v_x} + \frac{\left|y_1 - y_2\right|}{v_y} & \text{, if machine has a single motor to move} \\ \text{the table, (Manhattan distance)} \end{cases}$$

$$Max \left\{ \frac{\left|x_1 - x_2\right|}{v_x} \right\}^2 + \left(\frac{\left|y_1 - y_2\right|}{v_y} \right)^2 & \text{, if table moves in any direction, (Euclidian distance)} \\ Max \left\{ \frac{\left|x_1 - x_2\right|}{v}, \frac{\left|y_1 - y_2\right|}{v} \right\} & \text{, if there are two independent motors in} \\ \text{x and y directions, (Tchebycheff's distance)} \end{cases}$$

where v_x , v_y , v are constant velocities. We assume that acceleration and deceleration effects are negligible.

Let

c_i : Component type at location l

 $f\!t_{i,j}$: feeder movement time from the feeder i containing components c_{l_i} to the feeder j containing c_{l_j} .

Since feeders are located in tandom along the horizontal axis, the movement time from feeder i to feeder j is simply $\frac{\left|x_i - x_j\right|}{v_f}$, where v_f is the constant velocity of the feeder.

r: constant time for turret rotation

Our problem is similar to a symmetric TSP, combinatorially speaking, with the following distances $d_{l_1 l_2} = \max\{mt_{l_1 l_2}, ft_{ij}, r\}$. However, while the turret in the system is making a placement on a PCB, it is being fed from the feeder. For instance, consider the turret given in Figure 3.2. While the second head holds the component for insertion on the PCB, the fifth head is being fed. In general, let τ be the turret capacity (even) in terms of the number of heads. While the h^{th} head is used in placement, head $h + \tau/2 \pmod{\tau}$ is being fed.

Figure 3.2 – A turret with 6 heads

Thus, assuming that we choose to move from location l_s to l_{s+1} at step s, the correct feeder movement is for the placement at $\tau/2$ ahead, that is the feeder movement

time from the feeder i containing components $c_{l_i+\tau/2-1}$ to the feeder j containing

 $c_{l_{c}+ au/2}$ should be used. Therefore, distances are sequence dependent.

This conceptual formulation ignores the fact that one component type could be

assigned to more than one feeder. This requires a further association of a location and

a feeder, even feeder assignment is given.

3.3.2 Quadratic Formulation

Let the feeder assignment for components be given. Let us keep constant turret

rotation time assumption for $\frac{360}{\tau}$ degrees. Let us introduce our further notation:

Sets

F: set of feeders, $F = \{1, 2, ..., f\}$

 F_c : Set of feeders containing component c, $F = \bigcup_{c \in K} F_c$

Indices

l,k: locations on PCB

i, j: feeders

s: sequence counter for a pick & place operation. This index shows the step

information of a picking and placement activity since a picking activity happening at

step s will imply a placement at step $s + \tau/2$ where τ is the number of heads on a

turret. As there are n locations on a PCB there are also n sequences for a PCB to be

produced.

Decision variables:

 T_s : Duration of step s

 $x_{sl} = \begin{cases} 1, & \text{if } l^{\text{th}} \text{ location is selected in the sequence at step } s \\ 0, & \text{otherwise} \end{cases}$

34

 $y_{si} = \begin{cases} 1, & \text{if feeder } i \text{ is used in the sequence at step } s \\ 0, & \text{otherwise} \end{cases}$

Formulation:

$$\operatorname{Min} \sum_{s} T_{s} \tag{1}$$

s.t.

$$\sum_{l} \sum_{k \neq l} m t_{lk} \cdot x_{sl} \cdot x_{(s+1(\text{mod }n))k} \le T_s$$
 $\forall s$ (2)

$$\sum_{i} \sum_{j} ft_{ij} \cdot y_{si} \cdot y_{(s+1(\text{mod }n))j} \le T_s$$
 $\forall s$ (3)

$$r \le T_s$$
 $\forall s$ (4)

$$\sum_{s} x_{sl} = 1 \qquad \forall l \tag{5}$$

$$\sum_{l} x_{sl} = 1 \qquad \forall s \tag{6}$$

$$\sum_{i \in F_{c_l}} y_{si} \le x_{s+\tau/2(\text{mod } n),l} \qquad \forall s, \forall l$$
 (7)

$$\sum_{i \in F} y_{si} = 1 \qquad \forall s \tag{8}$$

$$x_{sl} = 0 \text{ or } 1 \qquad \forall l, \forall s$$
 (9)

$$y_{si} = 0 \text{ or } 1$$
 $\forall s, \forall i$ (10)

Objective function (1) is the sum of the costs of all the steps occurring in the PCB assembly. The objective function is aimed to be minimized. The cost of each step is determined in constraints (2), (3) and (4). As the maximum duration of three concurrent events is related to the cost associated for each step, the constraints are to incorporate the cost of placement, feeder movement and turret, respectively. If the step becomes the last location to be placed (s = n), the next step will be the first step of the placement sequence and this is implied by the modular notation "mod n".

Constraint (2) implies that moving from location l at a step s, to a location k in the next step (s+1) generates movement time of the table between two locations (mt_{lk}) . Constraints (3) are related to the feeder carrier movement. While the feeder carrier is at location i (feeder number of the component in the carrier) at a step s for picking operation, it has to move to location j for the next step's $(s+1^{st})$ picking operation. Picking operation is the preparation of placement operation, i.e. the component to be picked at a step s will be placed at step $(s+\tau/2)$. Therefore, picking and placement mechanisms depend on each other, and this dependence is represented by constraints (7). Since a component type is assigned to more than one feeder in the model, a feeder should be selected among the possible ones only if the corresponding component is going to be placed $\tau/2$ steps ahead, as seen in (7). Constraint set (8) points out to the fact that only one feeder can be used at each step. Constraint set (4) is related to the turret movement costs.

Constraint set (5) specifies that a location on a PCB must be visited exactly once during the operations. Constraint (6) implies that at any step, only one location will be visited during the operations. These two sets of constraints eliminate subtours since we only sequence all locations and get the associated tour length using this sequence with the help of the quadratic behavior of the constraints (2) and (3).

This model involves quadratic constraints: constraint (2) and the constraint (3), where the costs related to the placement and picking sequencing are given respectively. One could linearize the model by introducing new decision variables,

$$\alpha_{slk} = x_{sl} \cdot x_{(s+1)k} = \begin{cases} 1, & \text{if the table moves from location } l \text{ to location } k \text{ at step } s \\ 0, & \text{otherwise} \end{cases}$$

$$\beta_{sij} = y_{si} \cdot y_{(s+1)j} = \begin{cases} 1, & \text{if there is a movement from feeder } i \text{ to feeder } j \text{ at step } s \\ 0, & \text{otherwise} \end{cases}$$

where,

$$\alpha_{slk} \le x_{sl} \qquad \beta_{sij} \le y_{si}$$

$$\alpha_{slk} \le x_{(s+1)k} \qquad \text{and} \qquad \beta_{sij} \le y_{(s+1)j}$$

$$x_{sl} + x_{(s+1)k} \le 1 + \alpha_{slk} \qquad y_{si} + y_{(s+1)j} \le 1 + \beta_{sij}$$

3.3.3 Mixed Integer Formulation

We can reformulate the problem using α and β decision variables.

$$\operatorname{Min} \sum_{s} T_{s} \tag{1}$$

s.t.

$$\sum_{l} \sum_{k \neq l} m t_{lk} \cdot \alpha_{slk} \le T_{s} \qquad \forall s$$
 (2')

$$\sum_{i} \sum_{j} f t_{ij} \cdot \beta_{sij} \le T_{s}$$
 $\forall s$ (3')

$$r \le T_s$$
 $\forall s$ (4)

$$\sum_{k} \sum_{s} \alpha_{slk} = 1 \qquad \forall l \qquad (5')$$

$$\sum_{k} \sum_{l} \alpha_{slk} = 1 \qquad \forall s \tag{6'}$$

$$\sum_{l} \sum_{s} \alpha_{slk} = 1 \qquad \forall k \tag{11}$$

$$\sum_{i \in F_{c_l}} \sum_{j \in F_{c_k}} \beta_{sij} \le \alpha_{s + \tau/2(\text{mod } n), l, k} \qquad \forall s, \forall l, \forall k$$
 (7')

$$\sum_{i \in F_{ct}} \sum_{j \in F_{ct}} \beta_{sij} = 1 \qquad \forall s$$
 (8')

$$\sum_{k=1}^{n} \alpha_{s+1(\text{mod }n),l,k} = \sum_{k=1}^{n} \alpha_{s,k,l} \qquad \forall s, \forall l$$
 (12)

$$\alpha_{slk} = 0 \text{ or } 1 \qquad \forall l, \forall k, \forall s$$
 (9')

$$\beta_{sij} = 0 \text{ or } 1 \qquad \forall s, \forall i, \forall j$$
 (10')

After linearization, constraint set (5') implies that there is only one location visited from any location. Since there is only one previous location after which any location is visited, constraint set (11) is added to reflect this property. Another constraint set (12) is also added to reflect continuity of the tour. This set implies that, if we visit location l at a step s, in the next step $(s+1 \pmod{n})$ we should move from location l. Constraint sets (5'), (6'), (11) and (12) will eliminate subtours, since (5'), (6') and (11) enable both sides of the equation to 1, i.e., there is one movement at each step; while (12) ensures the continuity of the tour as it forces the assignment of ending point of one step to the starting point of the next step.

Even the formulation with linear constraints is not realistic, since the turret rotation time depends on the components carried on the turret. Each component type has a range of rotation speed of the turret. At any step in the placement process, the turret velocity should be set to the minimum (maximum) of the maximum (minimum) speed (time) of the different component types carried. To reflect this property on the formulation, parameter r_{c_l} is used as turret rotation time for a component type c_l to be placed on location l, and define $z_{c_l s}$ as a decision variable, whether a component c_l is active (on the turret) at step s. We modified the constraint set as below.

$$r_{c_l} \cdot z_{c_l s} \le T_s \qquad \forall s \,, \forall l \tag{4'}$$

$$\sum_{l} \sum_{t=s}^{s+\tau/2-1 \pmod{n}} \alpha_{tlk} \le (\tau/2) \cdot z_{c_k s} \qquad \forall s, \forall k$$
 (13)

$$z_{c,s} = 0 \text{ or } 1 \qquad \forall l, \forall s$$
 (14)

Relaxing the constant turret movement assumption made in the quadratic model, z_{c_ls} is introduced as a nonnegative decision variable as explained in constraint (14), and the turret movement time at a step s enters the model $(r_{c_l} \cdot z_{c_ls})$ by constraint (4'). Selection of the slowest turret rotation at step s is by means of the placement sequence, where of $\tau/2$ turret heads after the picking event are filled with components and the maximum rotation time of the component in this set

 $(s,s+1,...,s+\tau/2-1)$ determines the turret rotation time. Therefore, constraint set (13) indicates the dependence of turret rotation and the component placement sequencing. The active component that effects the turret rotation time is one of the components to be placed in this set (that would be placed in $\tau/2$ steps after step s). Since all of the following $\tau/2$ steps after a step s might be selected from the locations that have same component type, right hand side of the constraint set is written to reflect this possibility by putting $\tau/2 \cdot z_{cs}$.

The quadratic model has n continuous and n(f+n) binary variables with n(6+n) constraints. In the mixed integer formulation with linear constraints, there are n continuous and $n(f^2+n^2)$ binary variables with $n(7+n+n^2)$ constraints. After removing the assumption that turret moves with a constant velocity, the model has n continuous and $n(n^2+f^2+n)$ binary variables with $n(6+m+2n+n^2)$ constraints.

3.4. Model Validation

The formulation in the previous section is adapted to a number of PCBs instances in order to test whether the model generates optimal solution with no subtours, check if the optimal is found regarding the given constraints. Starting from small PCBs and by reducing the number of heads in the turret; four real-life PCB instances are run by CPLEX. In addition to these real PCBs, randomly generated 120 PCBs are solved optimally. Detailed analyses on the results are further discussed in Chapter 4.

In order to show the verification our model formulation, a small PCB produced in the company, will be examined in detail. The PCB has 12 locations and 3 component types, i.e., n = 12 and m = 3. For simplicity, each component type is assigned to one feeder and heads in the turret are taken as four¹, i.e. f = m = 3 and $\tau = 4$.

¹ The problem formulation for turret size of 6 is intractible, CPLEX continues to run after two days of computation.

39

Coordinates of the locations, component types of the locations and duration of turret rotation for the component types are given in Table B.1; distances between feeders that the components are carried are given in Table B.2, table movement distances are given in Table B.3 in Appendix B.

The results (see Figure B.1 in Appendix B for the CPLEX output) are summarized in Table 3.1.

Table 3.1. Costs realized in the optimal solution

Step (s)	1	2	3	4	5	6	7	8	9	10	11	12
Table	$mt_{8,10}$	$mt_{10,9}$	$mt_{9,7}$	$mt_{7,2}$	$mt_{2,11}$	$mt_{11,5}$	$mt_{5,3}$	$mt_{3,4}$	$mt_{4,6}$	$mt_{6,1}$	$mt_{1,12}$	$mt_{12,8}$
	136	68	134	362	322	463	136	68	136	361	322	463
Feeder	$ft_{2,2}$	$ft_{2,1}$	$ft_{1,3}$	$ft_{3,2}$	$ft_{2,2}$	$ft_{2,2}$	$ft_{2,2}$	$ft_{2,1}$	$ft_{1,3}$	$ft_{3,2}$	$ft_{2,2}$	$ft_{2,2}$
	0	250	150	100	0	0	0	250	150	100	0	0
Turret	r_2	$r_1,$ r_2, r_3	r_1 , r_2 , r_3	r_1 , r_3	r_1 , r_2 , r_3	r_1 , r_2 , r_3	r_2	r_2	r_1 , r_2 , r_3	r_1 , r_3	r_1 , r_2 , r_3	r_2
	500	271, 500, 157	271, 500, 157	271, 157	271, 500, 157	271, 500, 157	500	500	271, 500, 157	271, 157	271, 500, 157	500
Cost (T_s)	500	500	500	362	500	500	500	500	500	361	500	500

Durations for each concurrent event are shown in Table 3.1. For example at step 1: $\alpha_{1,8,10}=1$, $\beta_{1,2,2}=1$, $z_{2,1}=1$. Feeder movement duration occurring at a step s is formed by the table movement realized at step (s+2). For step 1, the feeder carrier should stay at component type 2. The table movement at step 3 also shows that the table will move from location 9 to location 7 whose component types are the same, component type 2. Decision variable regarding the turret movement shows that the present step's component type and the next ($\tau/2-1$) steps' component types that are determined by the table movement variables is taken into account. For step 1, since table movements at steps 1 and 2 indicate that the turret will place a component of type 2, the turret rotation duration for component type 2 is the associated cost.

The optimal solution indicates that the number of active decision variables related to the turret can be more than the number of loaded heads ($\tau/2$). This is realized as a result of the model formulation since the model tries to limit the turret rotation cost occurring at a step (see constraint set (4')) as the dependency of the turret movement and the table movement has to be considered (see constraint set (13)). Constraint set (13) does not limit the number of active components on the turret; i.e. if the table movement between two locations is realized, the model will assign the decision variable related to the turret to the component type of the ending location. The reverse is not true for the model, i.e., even in the case that the table movements are not related to a component type the turret decision variable related to the component type can be assigned to 1. Addition of another constraint that would limit the number of active components on the turret ($\sum_{c} z_{cs} \le \tau/2$) does not guarantee that all active decision variables related to the turret will reflect the active table movement decision variables in the following ($\tau/2$ -1) steps. As the model will minimize the turret

decision variables related to the turret will reflect the active table movement decision variables in the following $(\tau/2-1)$ steps. As the model will minimize the turret related costs, active decision variables related to the turret movement will be selected from the ones that are lower than the overall cost associated at a step. Hence, this does not affect the optimum solution.

Duration of a step (T_s) is the maximum of the concurrent events realized. For step 1, duration is maximum of 136, 0 and 500 which is 500. Tour obtained as the optimal solution does not contain any subtours and the optimal solution is 5723 msec, which is solved in 3.5 hours on a PC with P4 1.5 GHz processor with 256 MB RAM.

The model is a mixed integer programming and the solution is found by using CPLEX's standard branch and bound (B&B) technique. B&B tree sizes as well as the solution times are also related to the concurrent events; if one dominates the others (i.e., for example if the table movement durations are more than the others), smaller solution times are observed in 120 randomly generated problems. The details will be explained in Chapter 4.

3.5. Solution Approach

After finding out that the optimal solutions to PCBs that have 10 components and 4 locations may be found in 19 hours (69646 seconds), a PCB that has 19 locations and 5 components is investigated. Having 12 heads on the turret, the model is run on the CPLEX, the software could solve 37% of the B&B tree in 14 days and it is estimated that finding the optimal solution would be realized at most in 40 days.

Having discovered that an optimal solution to our formulation is difficult to be found in a reasonable time for a real instance, a new approach has to be developed to find a component placement sequence for the rotary turret machine. The concurrency in the machine complicates the problem as well as it becomes intractable even in small instances. Therefore, two upper-bounding algorithms ignoring some of the concurrent events and using the classical TSP heuristics are developed in this study.

3.5.1. Heuristic 1

The main characteristics are listed below:

- 1. The overall PCB component insertion problem is divided into smaller sized problems such that a symmetric TSP considering only the table movement times is solved for each component type and solutions are conquered. This strategy is used by some of the researchers (such as Ng [25], Ellis et al. [30]). When only one component type is to be placed, the feeder carriage does not move while the turret continues to rotate. The feeder duration is zero and the total time of each step is the maximum of table movement time and turret rotation time, which is constant for a component group.
- 2. An optimal TSP solution is found by using CONCORDE [31] for each component type.

- 3. In order to construct a complete tour, we combine the subtours obtained for component types one by one at each iteration. Maximum of the movement times between pairs of locations from two subtours and the associated feeder movement times are taken for all pairs of locations of different component types. Among all possible ways of combining subtours, the one with the minimum duration is selected and the corresponding pairs of subtours are combined at the associated location pairs. This step continues until we construct a solution, one tour covering all the locations. The length of the constructed tour differs according to the direction, as the placement sequence of the locations (on which the turret movement costs and feeder carrier costs depend) also changes when the direction of the constructed tour changes. The tour is evaluated for selecting the best direction, clockwise or counterclockwise. Another reason for tour length calculations for both directions is the usage of clockwise and counter-clockwise costs (regarding the turret rotation and feeder carrier movement costs) for a specific location at improvement phase calculations.
- 4. As an improvement heuristics, we modified the classical 2-opt. By breaking two arcs between locations and connecting the locations in the reverse direction, possible gains are calculated and the one with the maximum gain is applied. In traditional 2-opt, at any iteration, gain can be calculated by finding the difference between two connections that are cut and two connections that are newly formed. Because of the machine characteristics, the direction change means a change in the placement sequence, which also implies that tour length will change, since the turret rotation costs and the feeder carriage costs are sequence dependent. The modified 2-opt, therefore, considers the changes in the distance matrix regarding the directional changes in the tour as the cost at a step is taken as the maximum duration of three movements performed by the SMT machine. This greedy step continues until no improvement is obtained.

The details of the first algorithm are given in Appendix C. An example PCB is used to illustrate the developed algorithm. This PCB has 32 locations with 7 types of components. The PCB layout is depicted in scale in Figure 3.3. Table 3.2 contains the component types used in the PCB and machine specifications, which are feeder positions of each component type on the SMT machine and the turret rotation index for component types respectively.

Table 3.2. Component Data provided from the SMT machine

Component		Feeder	Turret Rotation Index			
Component No	Component Name	Position	Minimum	Maximum		
110		Assigned	Speed	Speed		
1	HDRN00160-449	174	8	2		
2	HDRN00162	10	8	4		
3	HDRN00169	9	8	4		
4	HDRN00180	74	8	4		
5	HDRN00291	212	8	4		
6	HKPS00089	6	8	4		
7	HYRL00146	2	8	6		

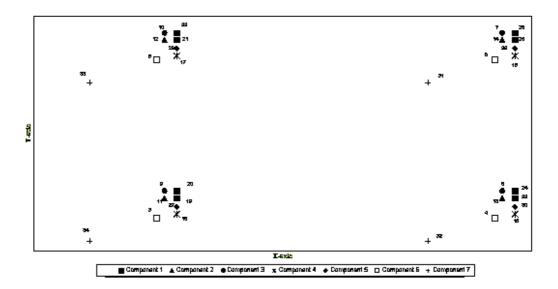


Figure 3.3 – PCB Layout of the example problem

The table moves in 6.7 mm/sec. If a feeder is located at position i in a feeder carrier, it will take 0.67 seconds to reach to the next feeder located at position i+1. Turret

heads' maximum movement velocity on the components are listed in Table 3.2. For instance, a component that has turret rotation index of 8 can rotate one turn in 0.5 seconds, which means that this component will rotate 2 turns in one second.

Table 3.3. Movement characteristics of the turret style SMT machine

Turret rotation	Max turret rotation speed (turn/sec)
Index	allowed
1	10.000
2	6.365
3	4.668
4	3.686
5	3.045
6	2.594
7	2.259
8	2.000

STEP 1: SUBTOUR GENERATION FOR EACH COMPONENT TYPE

For each component type, CONCORDE is run to obtain the associated subtour. In Figure 3.4, these subtours are depicted for all component types. Table 3.4 shows the subtour information for component types.

Table 3.4. Subtour Information for component types

Component		Length
ID	Subtour Strucuture	(msec)
1	$19 \rightarrow 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 23 \rightarrow 19$	24316
2	$11 \rightarrow 13 \rightarrow 14 \rightarrow 12 \rightarrow 11$	23978
3	$7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 7$	23978
4	$15 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 15$	23978
5	$27 \rightarrow 28 \rightarrow 29 \rightarrow 30 \rightarrow 27$	23978
6	3->5643	23976
7	$31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 31$	23976

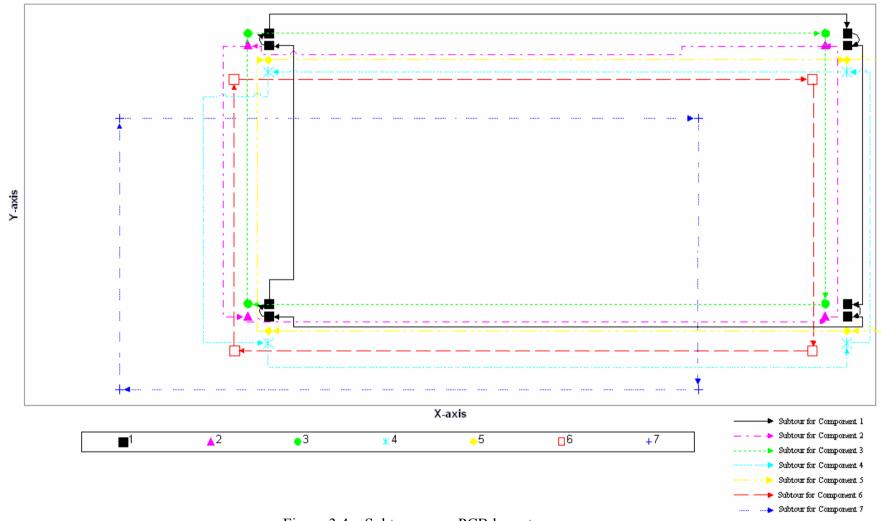


Figure 3.4 – Subtours over PCB layout

STEP 2: COMBINING SUBTOURS TO GET A COMPLETE TOUR

Subtours obtained for each component should be joined to form the assembly sequence for a PCB. In order to join two components' subtours, arcs from both components' subtours should be cut and new tours have to be formed by joining the locations whose links are cut. The best cut is found after enumerating all such pairs and selecting minimum time (maximum of the gains) is found to build the new tour cycle.

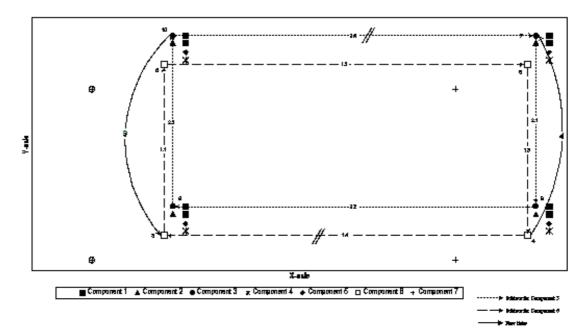


Figure 3.5 – Combining associated subtours of two component types

Two components, HKPS00089 and HDRN00169, are taken as an example. The links are numbered with the component index, as 1.1 represents the first movement occurring in component 1. Assume that we have selected 2.4 and 1.4, the new cycle will be formed with the addition of connections 4 and 8 as illustrated in Figure 3.5; the gain value for a pair of links is obtained as follows:

Move_Gain(HKPS00089, HDRN00169)

= Length of the new arcs – Length of the old arcs

= Length (4,7)+Length(3,10)-Length(4,3)-Length(10,7)

Let CONN1(i, j) be the function used to represent the first location to be cut, CONN2(i, j) shows the second one. CONN1(1, 3) = 4 while CONN2(1, 3) = 7. Table 3.5 shows the results of iterations to find the maximum gain between these two components.

Table 3.5. PCB Table movement gains by combining components (msec)

	Component 3 Table Movement				Component 3 Feeder movement			
Component 1	7 8 9 10			7	8	9	10	
3	-1687	-10357	-374	-374	4500	4500	4500	4500
4	6976	-1694	-1312	-1313	4500	4500	4500	4500
5	-1314	-382	9601	-1	4500	4500	4500	4500
6	-1313	-381	0	-9601	4500	4500	4500	4500

In calculating the best gain values between locations, it should be noted that combining the tours also implies a change in feeder location, i.e. feeder carrier will move to feed the next placement. This movement should also be taken into account as two components' tours are combined. Feeder movement between component 1 and component 3 is calculated as:

Feeder(i, j) =
$$\frac{|fp(i) - fp(j)|}{v_f} \times 1000$$
,

where fp(i): feeder position of component i

 v_f : feeder velocity (racks/sec).

Therefore,

Feeder(component1, component3) =
$$\frac{|6-9|}{0.67} \times 1000 = 4500 \text{ m sec}$$

It can be seen in Table 3.5 that the maximum gain is obtained by joining location 5 and location 9 with a gain of 9601 msec, since the feeder movement will imply 4500 msec of cost joining the components from these locations will end up with a better subtour. Therefore, 1.3 and 2.2 are cut while locations 8-4 and 5-9 are joined, in the end the cycle is formed as: $5 \rightarrow 9 \rightarrow 10 \rightarrow 7 \rightarrow 8 \rightarrow 4 \rightarrow 3 \rightarrow 6 \rightarrow 5$.

The feeder time should also be included in the gain calculations, this will be done by taking the feeder time as a cost factor into the function such that:

$$Net_Gain(i, j) = \begin{cases} move_gain(i, j) \text{ , if } move_gain(i, j) < Feeder(i, j), \\ -Feeder(i, j) & \text{, otherwise.} \end{cases}$$

Net_gain is obtained after calculation of locational gains between all pairs of component types, i.e. comparison of gain results with the feeder costs for each pair will give the combined gain figure for each pairs of component types. Table 3.6 shows the gain values between each component types, the highest gain value will be selected as the components having the highest gain will be joined.

9601 -252000 -309000 9008 -97500 -247500 -304500 -10500-96000 -246000 -303000 -150000 -207000 -108000-57000 -258000 5 -315000

Table 3.6. Net Gain calculations

Continuing in this manner, we combine subtour 1 & 2, then 3 is added to them, afterwards 3 and 7 are combined. In the next iteration, 5 and 6 form a new subtour, where 4 is connected to this subtour. Subtours formed by components 1-2-3-7 and 4-5-6 are joined by the locations from 3 and 4. The full constructed tour given in Figure 3.6 is obtained finally.

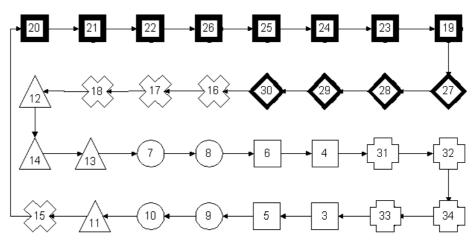


Figure 3.6 – Constructed tour

The concurrent events taking place under the tour given in Figure 3.5 are listed in Table D.1 in Appendix D.

STEP 3: IMPROVEMENT WITH 2-OPT

The modified 2-opt application is shown in Figure 3.7 where two connections are cut and a new tour structure is formed.

After cutting the connection between locations 13 - 7 and 11 - 15, the new tour is formed by combining locations 13 - 11 and 7 - 15 as the tour is revised by changing the directions of the connections between locations 11 to 7. In this example, since the tour is clockwise directed, the direction of the tour between locations 11 and 7 becomes naturally counter-clockwise.

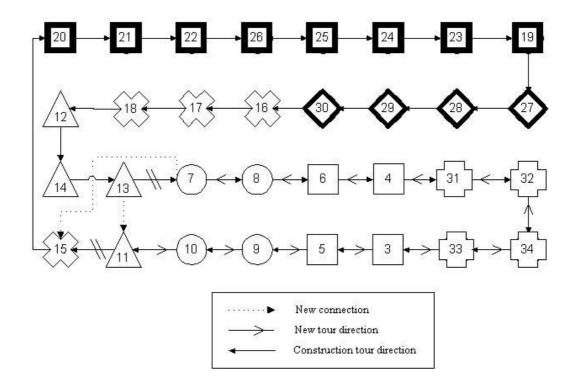


Figure 3.7 – Application of 2-opt to the constructed tour

Improvement, using 2-opt requires GAIN calculations. As the tour lengths for clockwise and counter-clockwise directions are calculated prior to 2-opt, the tour was

broken into stepwise costs where the tour length is found out after adding the cost figure affecting each step.

The difference between the new and the old tour obtained by exchanging i & j can be divided into three parts:

- 1. Although the tour direction does not change from the location right(j) to i, the change in tour structure after location i points out that, calculations regarding the locations that are 6 steps prior to location i should be made since turret movement and feeder movement costs are different than the old tour.
- 2. Tour structure between locations left(j) and right(i) becomes counter-clockwise direction where one can use counter-clockwise calculations performed previously with a difference that the new tour structure after location right(i) requires new calculations for the locations right(i) and the locations 6 steps prior to right(i). This requirement is again caused by the changes in feeder and turret movements.
- 3. Calculations to be done for right(i) and 6 steps prior to this location, is similar to table movement time changes for part 2.

The details of GAIN calculations are provided in Appendix E.

After GAIN calculations for all possible pairs (except the neighbors) are made, the arc with the maximum GAIN is selected if it improves the tour. In our algorithm that uses 2-opt for improvement phase, starting from a given point and cutting all connections except neighbor connections next to the given point, all pairs are enumerated as GAIN results are recorded to find the best tour. The best GAIN figure is used to change the tour structure, after changing the tour structure 2-opt iterations are applied to the new tour again until no better improvement is achieved. For the example shown in Figure 3.2, Table 3.7 shows the summary of results of our 2-opt improvement step.

Table 3.7 Results obtained after 2-opt iterations for Heuristic 1

Iteration	Tour	Tour length (msec)
0	$ \begin{array}{c} 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 23 \rightarrow 19 \rightarrow 27 \rightarrow 28 \rightarrow 29 \rightarrow 30 \\ \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 13 \rightarrow 7 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow \\ \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 15 \rightarrow 20 \end{array} $	742074
1	$ \begin{array}{c} 20 \rightarrow 19 \rightarrow 27 \rightarrow 28 \rightarrow 29 \rightarrow 30 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 13 \\ \rightarrow 7 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow \\ 15 \rightarrow 23 \rightarrow 24 \rightarrow 25 \rightarrow 26 \rightarrow 22 \rightarrow 21 \rightarrow 20 \end{array} $	718976
2	$ \begin{array}{c} 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 13 \\ \rightarrow 7 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow \\ 15 \rightarrow 23 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 19 \rightarrow 20 \end{array} $	708679
3	$ 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 7 \rightarrow 13 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 15 \rightarrow 23 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 19 \rightarrow 20 $	701797
4	$ \begin{array}{c} 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 7 \rightarrow \\ 13 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 10 \rightarrow 9 \rightarrow 11 \rightarrow \\ 15 \rightarrow 23 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 19 \rightarrow 20 \end{array} $	695557
5	$ \begin{array}{c} 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 7 \rightarrow \\ 6 \rightarrow 8 \rightarrow 13 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 10 \rightarrow 9 \rightarrow 11 \rightarrow \\ 15 \rightarrow 23 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 19 \rightarrow 20 \end{array} $	694277
6	$ \begin{array}{c} 20 \rightarrow 21 \rightarrow 22 \rightarrow 26 \rightarrow 25 \rightarrow 24 \rightarrow 16 \rightarrow 17 \rightarrow 18 \rightarrow 12 \rightarrow 14 \rightarrow 7 \rightarrow \\ 6 \rightarrow 13 \rightarrow 8 \rightarrow 4 \rightarrow 31 \rightarrow 32 \rightarrow 34 \rightarrow 33 \rightarrow 3 \rightarrow 5 \rightarrow 10 \rightarrow 9 \rightarrow 11 \rightarrow \\ 15 \rightarrow 23 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 27 \rightarrow 19 \rightarrow 20 \end{array} $	693122

3.5.2. Heuristic 2

The second algorithm, instead of decomposing the locations according to the component types, treats the placement sequencing as a whole. The distance matrix for the PCBs is developed such that the asymmetry in rotation times is resolved by taking the maximum:

$$d_{l,k} = \max\{mt_{lk}, \max\{r_{c_l}, r_{c_k}\}\}\$$

The distance matrix obtained is a symmetric TSP and it is run by CONCORDE, the solution serves as the constructed solution. We apply the same improvement procedure that of the first heuristic once we set a direction (clockwise/counter-clockwise).

STEP 1: OBTAINING A CONSTRUCTION TOUR

For the example PCB used in the first heuristic, distance matrix is formed which is sent to the CONCORDE software. Duration of the tour obtained is calculated in clockwise and counter-clockwise direction. Minimum of the durations is selected as the constructed solution. If the tour selected is directed counter-clockwise modification of the tour is done.

After tour is obtained from CONCORDE output, cycle duration with clockwise and counter-clockwise is found as 2821703 miliseconds and 2826832 miliseconds, respectively. Since duration of clockwise direction is lower construction tour has clockwise direction.

STEP 2: IMPROVEMENT BY MODIFIED 2-OPT

The constructed solution has to be improved since feeder distances are not involved in the distance matrix and concurrency is not fully covered yet. The constructed solution takes the movements between two locations into account, and it neglects the " $\tau/2$ - 2" turret movements which should be the maximum duration of the component types to be placed within $\tau/2$ steps. The feeder movement should also be evaluated in the solution procedure as a duration that would affect the duration of a step by taking the component change which will be the table movement happen after $\tau/2$ steps. The output and tour information for the constructed solution provided by the software is seen in Table 3.8 as the "iteration 0" row. During the 2-opt iterations, the directions of the tour also change as described in "Step 3" of the heuristic 1.

Table 3.8 Results obtained after 2-opt iterations for Heuristic 2

Iteration	Tour	Tour length (msec)
0	$1 \to 2 \to 15 \to 9 \to 25 \to 32 \to 31 \to 27 \to 10 \to 16 \to 4 \to 3 \to 22 \to 19 \to 29 \to 28 \to 12 \to 13 \to 8 \to 7 \to 23 \to 18 \to 6 \to 14 \to 11 \to 5 \to 24 \to 17 \to 26 \to 30 \to 20 \to 21 \to 1$	2821703
1	$1 \to 2 \to 15 \to 9 \to 25 \to 32 \to 31 \to 27 \to 10 \to 16 \to 4 \to 3 \to 22 \to 19 \to 29 \to 28 \to 12 \to 13 \to 11 \to 14 \to 6 \to 18 \to 23 \to 7 \to 8 \to 5 \to 24 \to 17 \to 26 \to 30 \to 20 \to 21 \to 1$	2324585
2	$1 \to 2 \to 15 \to 9 \to 25 \to 32 \to 31 \to 27 \to 10 \to 16 \to 14 \to 11 \to 13 \to 12 \to 28 \to 29 \to 19$ $\to 22 \to 3 \to 4 \to 6 \to 18 \to 23 \to 7 \to 8 \to 5 \to 24 \to 17 \to 26 \to 30 \to 20 \to 21 \to 1$	1820082
3	$1 \rightarrow 2 \rightarrow 15 \rightarrow 9 \rightarrow 25 \rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29 \rightarrow 19$ $\rightarrow 20 \rightarrow 30 \rightarrow 26 \rightarrow 17 \rightarrow 24 \rightarrow 5 \rightarrow 8 \rightarrow 7 \rightarrow 23 \rightarrow 18 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 1$	1421460
4	$1 \rightarrow 2 \rightarrow 15 \rightarrow 9 \rightarrow 25 \rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29 \rightarrow 19$ $\rightarrow 20 \rightarrow 30 \rightarrow 26 \rightarrow 17 \rightarrow 18 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 24 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 1$	1110055
5	$1 \rightarrow 21 \rightarrow 22 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 24 \rightarrow 5 \rightarrow 8 \rightarrow 7 \rightarrow 23 \rightarrow 18 \rightarrow 17 \rightarrow 26 \rightarrow 30 \rightarrow 15 \rightarrow 9 \rightarrow 25$ $\rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	912271
6	$1 \rightarrow 21 \rightarrow 22 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 26 \rightarrow 30 \rightarrow 15 \rightarrow 9 \rightarrow 25$ $\rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	806483
7	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 26 \rightarrow 30 \rightarrow 15 \rightarrow 9 \rightarrow 25$ $\rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 14 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	721168
8	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 26 \rightarrow 30 \rightarrow 29 \rightarrow 28 \rightarrow 12$ $\rightarrow 13 \rightarrow 11 \rightarrow 14 \rightarrow 16 \rightarrow 10 \rightarrow 27 \rightarrow 31 \rightarrow 32 \rightarrow 25 \rightarrow 9 \rightarrow 15 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	707539
9	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 26 \rightarrow 14 \rightarrow 16 \rightarrow 10 \rightarrow 27 \rightarrow 31 \rightarrow 32 \rightarrow 25 \rightarrow 9 \rightarrow 15 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	699056
10	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 13 \rightarrow 12 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 26 \rightarrow 14 \rightarrow 15 \rightarrow 9 \rightarrow 25 \rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	692507
11	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 26 \rightarrow 14 \rightarrow 15 \rightarrow 9 \rightarrow 25 \rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 10 \rightarrow 16 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	689778
12	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 26 \rightarrow 14 \rightarrow 15 \rightarrow 9 \rightarrow 25 \rightarrow 32 \rightarrow 31 \rightarrow 27 \rightarrow 16 \rightarrow 10 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	688279
13	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 32 \rightarrow 25 \rightarrow 9 \rightarrow 15 \rightarrow 14 \rightarrow 26 \rightarrow 31 \rightarrow 27 \rightarrow 16 \rightarrow 10 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	685753
14	$1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28 \rightarrow 29$ $\rightarrow 30 \rightarrow 32 \rightarrow 25 \rightarrow 15 \rightarrow 9 \rightarrow 14 \rightarrow 26 \rightarrow 31 \rightarrow 27 \rightarrow 16 \rightarrow 10 \rightarrow 19 \rightarrow 20 \rightarrow 2 \rightarrow 1$	684253
15	$1 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 21 \rightarrow 24 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28$ $\rightarrow 29 \rightarrow 30 \rightarrow 32 \rightarrow 25 \rightarrow 15 \rightarrow 9 \rightarrow 14 \rightarrow 26 \rightarrow 31 \rightarrow 27 \rightarrow 16 \rightarrow 10 \rightarrow 19 \rightarrow 20 \rightarrow 1$	683915
16	$1 \rightarrow 2 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 22 \rightarrow 24 \rightarrow 21 \rightarrow 23 \rightarrow 7 \rightarrow 8 \rightarrow 5 \rightarrow 18 \rightarrow 17 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 28$ $\rightarrow 29 \rightarrow 30 \rightarrow 32 \rightarrow 25 \rightarrow 15 \rightarrow 9 \rightarrow 14 \rightarrow 26 \rightarrow 31 \rightarrow 27 \rightarrow 16 \rightarrow 10 \rightarrow 19 \rightarrow 20 \rightarrow 1$	671292

3.6. Lower Bounds

In order to measure the performance of our heuristics over real life problems in the absence of the optimal solutions, we need to find a sound basis for comparison purposes. In this section, we report the development two lower bounding schemes, which are used in the comparative study given in Chapter 4.

3.6.1. Lower Bound 1

The first lower bounding approach considers table movement times and rotation times first. In this sense, it is similar to the second heuristic. The optimum solution for the case in which we ignore one or two concurrent events yields clearly a lower bound to the overall problem. In the mixed integer formulation (see Section 3.3.3), we use constraint sets (2') and a simpler version of (4'). Constraint set (4') has to be modified, since a sequence that will define the turret rotation cost will also mean finding the optimal solution which is difficult to be obtained. We would like to make use of a symmetric TSP solver to find the optimum solutions. In order to use such a software, the distance matrix should be symmetric. To have a lower bound, we modify the distance matrix of the first heuristic as

$$d_{1k} = \max\{mt_{1k}, \min\{r_{c_1}, r_{c_2}\}\}$$

by taking the minimum of the rotation times corresponding to the components to be mounted at location l and location k. Assume that z_{TSP}^{-1} be the optimum tour using this distance matrix. Let z^* be the optimum solution of our problem and let the maximum edge length on this TSP tour be mt^* . Since we are taking the maximum of the table movement, turret rotation and feeder movement times, we have $z_{TSP}^{-1} \le z^*$.

The extreme case in which the effect of the feeder movements is kept at the minimum is when we have a TSP tour on n locations such that

1- all the locations of the same component type are consecutive (in a connected path) in the optimal tour. Thus, one feeder is used to supply all the components and it is visited only once.

2- the component type paths are concatinated in such a way that the feeder sequence is optimized with respect to feeder movements.

Therefore, we have another tour of length on m feeder locations in this extreme case. Let the maximum edge length on this TSP tour be ft^* .

Since the two TSPs are concurrent, we may safely increase the lower bound as $LB_1 \doteq z_{TSP}^{-1} + [ft^* - mt^*]^+ \leq z^*$, where $[ft^* - mt^*]^+ = \max\{0, ft^* - mt^*\}$. Considering the mixed integer formulation, constraint set (3') is taken as an independent problem through which we obtain an optimal solution that minimizes the feeder carriage movements for a PCB's component types. The highest cost of a step in the optimal solution, is merged into the first problem's optimal solution.

Consider the situation given in Figure 3.8 where we have four locations {a,b,c,d} and three component types (a and b are of the same type). Let the turret rotation time is 1 for all components. Then, the edge values in the figure are the table movement times determining the distances in the first TSP. One of the alternative optimal tours in the PCB is "a \rightarrow b \rightarrow d \rightarrow c \rightarrow a" yielding a length of $2+4+5+3=14=z_{TSP}^{-1}$. The maximum edge length here is $mt^*=5$. There is only one feeder movement TSP tour "I \rightarrow II \rightarrow III \rightarrow I" with length 2+5+7. The maximum edge length here is $ft^*=7$. Then, the lower bound is $LB_1 \doteq z_{TSP}^{-1} + [ft^* - mt^*]^+ = 14 + (7-5) = 16 \le z^*$.

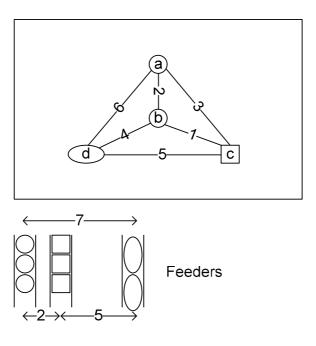


Figure 3.8 – Lower Bound 1

The real cost of the first tour "a \Rightarrow b \Rightarrow d \Rightarrow c \Rightarrow a" is max $\{2,0,1\}^2 + \max\{4,7,1\} + \max\{5,5,1\} + \max\{3,2,1\} = 2+7+5+3 = 17$. Consider the tour "a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow a" with length max $\{2,0,1\} + \max\{1,2,1\} + \max\{5,5,1\} + \max\{6,7,1\} = 2+2+5+7=16$. Thus, $z^* \le 16$. Hence, $LB_1 = z^* = 16$ for this instance.

3.6.2. Lower Bound 2

The second lower bound focuses on feeder movements first. The smallest feeder movement tour is resulted from the same extreme case explained in the previous section. Let the optimal TSP tour length for m feeder locations be z_{TSP}^2 . The overall tour specifying a solution to our problem should contain n edges. In order to have a sound lower bound, we can extend the z_{TSP}^2 value if we can find the minimum length path with n-m edges using the distance function $(d_{l,k} = \max\{mt_{lk}, \min\{r_{c_l}, r_{c_k}\}\})$ used in z_{TSP}^{-1} , independent of the optimal feeder TSP tour. If the minimum length of a path of size n-m is z_{path}^{-n} , then $LB_2 \doteq z_{TSP}^{-2} + z_{path}^{-n} \le z^*$.

Feeder movements' minimum tour is found by constraint set (3') in the mixed integer formulation. As the tour found has m locations and n-m locations are required to complete the tour, a modified approach to the problem is applied using the distance function used in Lower Bound 1.

In our example instance given in Figure 3.7, $z_{TSP}^2 = 2 + 5 + 7 = 14$ and since n - m = 4 - 3 = 1 we pick the one--edge path with the minimum length as "b–c" with value $z_{path}^* = 1$. Therefore, the value of the second lower bound in this instance is $LB_2 \doteq z_{TSP}^2 + z_{path}^* = 14 + 1 = 15 \le z^* = 16$.

We modified Prim's algorithm [37] developed for finding the minimum spanning tree, for the purpose of finding the shortest path of size n-m in a given graph G = (V, E). Our procedure for a given vertex $v \in V$ starts with the path of size one

-

² max {table, feeder, turret}

after we locate the closest vertex $w = \arg\min\{d_{u,w}: (u,w) \in E\}$ to v. At iteration k, we have a path of size k-1, and augment this path by finding a vertex outside the current path with the minimum distance to one of the two endpoints of the path. This augmenting algorithm for a vertex $v \in V$ terminates at the end of iteration n-m with a shortest path containing v and having n-m edges. If we enumerate this augmenting algorithm initiated for all such vertices, and pick the one with the shortest length, we determine z_{path}^{*} .

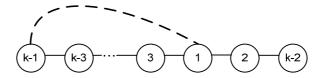


Figure 3.9 – Iteration k in the augmenting algorithm

Consider iteration $k \ge 3$ and the situation given in Figure 3.9. It is not possible to find a better path of the same size? The answer is no! The edge in the path incident to any node is either the closest edge or the second closest edge. For instance, the edge in between node 1 and 2 is the closest edge to node 1 whereas the edge between nodes 1 and 3 is the second closest edge to node 1, whose distance value is less than that of the one in between 2 and k-2. We know that node 3 is closer to node 1 than node k-1; otherwise, node k-1 is selected in the second or third iteration. Thus, $d_{31} \le d_{(k-1)1}$. Then, $d_{31} + \cdots + d_{(k-3)(k-1)} \le d_{(k-1)1} + \cdots + d_{(k-3)(k-1)}$ implying that the current path is better than that of cutting edge 13 and inserting edge (k-1)1. Similarly, the new path formed by cutting one of the edges in the subpath from node 3 to node k-1 and adding the edge (k-1)1 does not yield a better solution, as this subpath was formed by picking the best possible edges. Thus, it is enough to consider only the nodes outside the current path at each augmenting iteration.

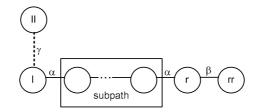


Figure 3.10 – Ties in the augmenting algorithm

What if we have a tie broken arbitrarily. Consider the situation given in Figure 3.10. Assume that a tie occurs in deciding whether we add node r or node l and we choose to add node r. If $\beta \leq \alpha$, we add node rr to the path in the next iteration; otherwise, the path is augmented through node l. If $\beta \geq \gamma$ and we terminate our procedure without adding node ll, we give up a better path ("ll-l—subpath—r" over "l—subpath—r" or "ll-l—subpath" over "subpath—r"). However, there is another search initiated from node 1. We may obtain these ("ll-l—subpath—r" or "ll-l—subpath"), if a better path does not exist, at the end of that search. Thus, we can safely break ties arbitrarily.

The detailed procedure is given in Appendix F. This procedure terminates in n[2n(n-m)] operations, thus it is pretty fast.

Our algorithms given in this chapter are coded in Visual Basic scripts and as a user interface MS Excel is used. The main reason of selecting MS Office tools is to allow the users working for the company to run the program without installing any other licensed software. Recall that we use CONCORDE in the process of obtaining constructed solutions for the heuristics, which is a shareware program. Another reason is that most of the industrial people are more familiar with Excel spreadsheets.

CHAPTER 4

COMPUTATIONAL STUDY

A computational study is carried out to test the performance of the proposed heuristics and lower bounds. In the study, the PCBs that are currently in the product mix of the company, as well as randomly generated problem instances are considered.

The proposed algorithms are coded in Visual Basic. The code is run on a computer with Pentium M processor 2 GHz. The mathematical model provided in Chapter 3 is implemented using CPLEX. For most of the PCBs that the company produces, the optimal solutions could not been obtained within 10 days. Therefore, for these PCBs the performance of the heuristics is reported as relative to the lower bounds proposed. In order to investigate the quality of both heuristics and lower bounds against optimal values, fictitious PCBs are generated randomly. In addition, for some of the PCBs that the company produces we could obtain the optimal solutions for a simplified case where there are four (instead of twelve) heads. The results of the computational study are discussed in Sections 4.1 and 4.2 for the PCBs that are in the product mix of the company, and the randomly generated problem instances, respectively.

4.1. Real PCBs currently produced

The design parameters of PCBs studied are given in Appendix G and a summary on number of locations, number of different components used and annual demand is provided in Table 4.1. Note that PCBs for which there is no annual demand figure

are the ones that are not produced in regular basis, but were produced for some project work in the past.

Table 4.1. Summary information on PCBs studied

PCB Name	Number of Locations	Number of Component types	Annual Demand
FT10-2	38	15	1200
PS03	32	7	5000
FT20-1GA	38	15	2000
CPUMOD	39	6	360
FIRIN	38	15	
EVM224SL	137	28	100
DSS16-2	131	27	500
CCSLAVE2	173	21	40
200CPU	118	28	600
DS200SBP	231	5	150
48EX26	455	52	6000
128EX1	963	51	3500
DS10BP	384	50	5
224CPUOPT	344	66	150
MS48ABA	1156	83	10000
POWERSTAR_PNP_N	60	31	21600
ZARC00076-AAA	66	22	85000
ZGDA33AAA	53	20	4200
A0V01	72	31	600000
HBDK00437PNP	109	24	45000
VECTOR-V03	132	32	50
HBDK00414	154	16	25000
HBDK00437AAC2	141	26	48000
HBDK00446	172	34	850000
HBDK00386-AAA-P	186	41	15000
7241-0101-SS1	240	67	4
PIO2-1	465	26	200
SLIC	326	47	2800
7550-0078-SS	329	41	4
PIO68	432	21	100

Tour length (in milliseconds) is our primary performance measure. Table 4.2 includes the lower bounds on the tour lengths, and the tour lengths found by the proposed two heuristics. The percentage deviation of the solution generated by each heuristic from the best lower bound (the greater lower bound) is also provided in this table. Out of 30 PCBs studied, lower bound 1 provides a larger lower bound value for 17 PCBs. We could not identify the conditions in terms of number of locations

and number of component types on the PCB under which each lower bound calculation scheme provides better results based on the problems that we consider (See Figure 4.1 and 4.2).

Table 4.2. Lower bounds and heuristic solutions

	Lov	wer	I	Ie uris tic	1]	Heuristic	2
	Tour	length		le ngth	% Gap		length	% Gap
PCB Name	(ms	ec.)	(ms		from	(msec.)		from
	LB1	LB2	Constr	_	best LB		Improv	best LB
DOMEDCEAD DAD A		17520	ucted	ement	40.02	ucted	ement	40.00
POWERSTAR_PNP_N	16054	17538	34801	24698	40.83	62291	26295	49.93
ZARC00076-AAA	31613	19749	75645	39986			39510	24.98
ZGDA33AAA	9075	14855	28995	19980		21003	17625	18.65
A0V01	16810	17434	43233	29782	70.83	72101	29329	68.23
HBDK00437PNP	19259	22912	42008	35653	55.61	37343	31619	38
VECTOR-V03	46503	41025	95578	72176		267826	69474	49.4
HBDK00414	53065	43834	103151	72362	36.36		72639	36.89
HBDK00437AAC2	27411	29668	68937	43547	46.78		40829	37.62
HBDK00446	31456	35492	70652	59220	66.85		55240	55.64
HBDK00386-AAA-P	43627	37763	138429	84508	93.71	522691	97566	123.64
7241-0101-SS1	50011	52451	298513	134035	155.54	370809	121473	131.59
PIO2-1	89534	73876	193935	160529	79.29	745314	179358	100.32
100900022NEC	80911	73780	283422	168308	108.02	423525	150843	86.43
7550-0078-SS	65379	62514	146618	111096	69.93	195422	102348	56.55
PIO68	133664	145206	218001	165700	14.11	514202	184153	26.82
PS03	29109	17783	44194	32486	11.6	149712	33175	13.97
FT10-2	26579	18226	49847	33374	25.57	91331	36975	39.11
CMD4B1	12802	12627	24362	22343	74.53	35624	21603	68.75
CPUMOD	25330	17817	30962	26634	5.15	58274	26986	6.54
FIRIN	26406	16390	63645	33495	26.85	74676	34590	30.99
EVM224SL	46987	46888	120006	77246	64.4	195850	71350	51.85
DSS16-2	40140	33857	120314	68134	69.74	198045	62156	54.85
CCSLAVE2	52300	49287	144532	68384	30.75	268235	77784	48.73
200CPU	45003	44339	125346	69119	53.59	267557	66931	48.73
DS200SBP	61443	52250	84574	70074	14.05	144217	82608	34.45
48EX26	111950	128260	333414	217658	69.7	485888	190850	48.8
128EX1	235717	265060	494641	368984	39.21	1E+06	695641	162.45
DS10BP	112192	117030	330542	174426	49.04	1E+06	174639	49.23
224CPUOPT	95424	102218	313682	172124	68.39	641861	187006	82.95
MS48ABA	274069	319197	818363	526005	64.79	529695	400656	25.52

From Table 4.2 it can be observed that heuristic 1 provides better results than the heuristic 2 for 14 PCBs. At the construction phase, heuristic 1 always generates

better schedules than heuristic 2. Heuristic 1 constructs solutions by merging subtours (of component types) as it considers feeder locations of the component types; whereas, in heuristic 2 component locations are not involved in the construction phase. Therefore, if a PCB's component types are placed close in the feeder carrier (a feeder arrangement where the locations of component types are designed specifically for a PCB type) heuristic 2 is expected to perform better than heuristic 1 regarding the constructed solution. Similar to the lower bound calculations schemes, we could not identify the conditions on number of component types and locations under which each heuristic performs better.

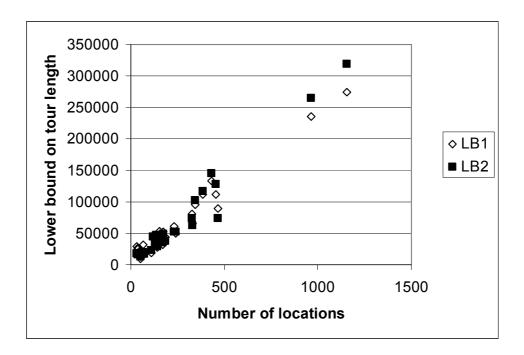


Figure 4.1 – Lower bound on tour length calculated according to two schemes proposed versus number of locations

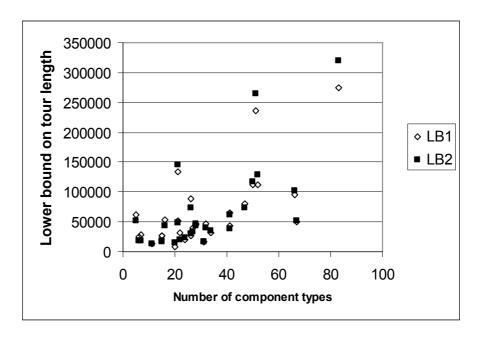


Figure 4.2 – Lower bound on tour length calculated according to two schemes proposed versus number of component types

In Table 4.3, we summarize the percentage deviation from the best lower bound statistics based on 30 PCBs studied. These summary statistics indicate that heuristic 1 provides better results in terms of average, best and worst case performance.

Table 4.3. Summary statistics for percentage deviation from the best lower bound

	Heuristic 1	Heuristic 2
Average	54.04	55.72
Maximum	155.54	162.44
Minimum	5.15	6.54
Standard Deviation	31.55	35.52

Heuristic 1 provides more robust results, in other words the standard deviation of the deviations from the best lower bound is smaller.

Another performance criterion in the comparison of the procedures proposed is the run time of the heuristics. The run times of lower bounding schemes and heuristics are given on a computer with Pentium M 2 GHz processor, are provided in Table 4.4. Run time requirements are higher for heuristic 1 than heuristic 2 for small PCBs. Heuristic 1 requires longer time since constructed solution is found after obtaining

the subtours and merging processes. Heuristic 2 constructs a solution in less time since it does not require any iterative processes. Although constructed solutions of heuristic 1 is better as stated previously, improvement phase for small PCBs does not require much time. Heuristic 1 is better in run time performance for larger PCBs, as

Table 4.4. Run time of Heuristics and Lower Bounds

PCB Name	Heuristic 1 (sec)	Heuristic 2 (sec)	LB1 (sec)	LB2 (sec)
FT10-2	43	20	7	7
PS03	35	12	5	6
CMD4B1	45	25	5	5
CPUMOD	65	18	6	6
FIRIN	40	15	6	6
EVM224SL	368	332	6	9
DSS16-2	357	108	9	9
CCSLAVE2	497	369	6	10
200CPU	436	150	6	8
DS200SBP	410	1060	7	7
48EX26	9400	13678	21	124
128EX1	108426	193457	149	354
DS10BP	5394	17055	14	20
224CPUOPT	3359	6396	13	36
MS48ABA	231400	506800	252	662
POWERSTAR_PNP_N	84	55	7	7
ZARC00076-AAA	390	155	7	9
ZGDA33AAA	46	35	7	8
A0V01	65	45	7	8
HBDK00437PNP	153	62	8	12
VECTOR-V03	354	308	8	21
HBDK00414	331	285	7	16
HBDK00437AAC2	285	177	8	13
HBDK00446	463	349	8	17
HBDK00386-AAA-P	728	1028	9	10
7241-0101-SS1	1545	2370	9	15
PIO2-1	4911	20917	24	19
100900022NEC	2746	6284	14	25
7550-0078-SS	2272	3657	13	133
PIO68	2569	15262	20	17

it obtains better constructed solution, it takes less time for the heuristic to reach a solution in improvement phase. Besides as number of locations increase number of possible pairs to be cut and connected increase in the modified 2-opt phase. It is observed that for 12 out of 30 PCBs, heuristic 2 requires more time to reach a solution. In general, run times are expected to increase as both number of locations and number of component types on the PCB, we could not observe a numeric relation.

In order to investigate the benefits that can be obtained by the application of the heuristics, we compare the best heuristic's results with the company's solutions. The results are tabulated in Table 4.5. The minimum, maximum and average percent improvements are 7.88%, 70.96% and 26.49%, respectively. In order to capture the overall impact on the company's side, we consider demand weighted percent improvement. This figure is around 24.40%, it is found out that there is no relationship between the amount of PCB demand with the improvements obtained with the heuristics.

Table 4.5. Percent improvements by the best heuristic over the company's solutions

PCB Name	Tour length best heuristic (msec.)	Tour length company's solution (msec.)	% improvement
POWERSTAR_PNP_N	24698	42481	41.86
ZARC00076-AAA	39510	136058	70.96
ZGDA33AAA	17625	21108	16.50
A0V01	29329	37410	21.60
HBDK00437PNP	31619	35835	11.77
VECTOR-V03	69474	156155	55.51
HBDK00414	72362	89962	19.56
HBDK00437AAC2	40829	55428	26.34
HBDK00446	55240	65912	16.19
HBDK00386-AAA-P	84508	99452	15.03
7241-0101-SS1	121473	133256	8.84
PIO2-1	160529	195194	17.76

Table 4.5. Percent improvements by the best heuristic over the company's solutions (continued)

PCB Name	Tour length best heuristic (msec.)	Tour length company's solution (msec.)	% improvement
100900022NEC	150843	229014	34.13
7550-0078-SS	102348	111106	7.88
PIO68	165700	204547	18.99
PS03	32486	49141	33.89
FT10-2	33374	41803	20.16
CMD4B1	21603	36219	40.35
CPUMOD	26634	32343	17.65
FIRIN	33495	45492	26.37
EVM224SL	71350	84024	15.08
DSS16-2	62156	94969	34.55
CCSLAVE2	68384	84748	19.31
200CPU	66931	122099	45.18
DS200SBP	70074	84914	17.48
48EX26	190850	215625	11.49
128EX1	368984	420760	12.31
DS10BP	174426	404173	56.84
224CPUOPT	172124	249554	31.03
MS48ABA	400656	573620	30.15

The main reason behind the observation that there is no consistent behavior of lower bounds, individual heuristic performances and the percent improvement over the company's solution with respect to changing number of locations and component types on the PCBs, is the fact that these two characteristics carry very restricted information about the complexity of the problem instances. The performance of the

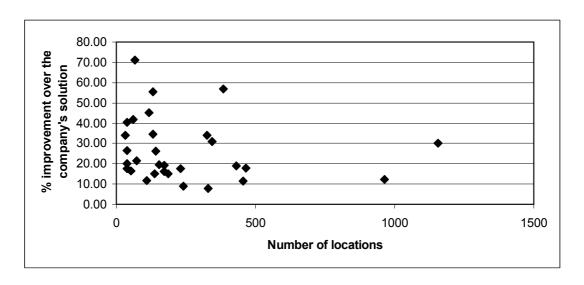


Figure 4.3 – Percent improvement over the company's solution versus number of locations on the PCB

Figure 4.4. Percent improvement over the company's solution versus number of component types on the PCB

both heuristics and the lower bounds proposed heavily depend on other factors like the arrangement of component feeders, the speed requirements of different types of components, and so on. Especially the dominance relation between table movement times in between the locations, the turret rotation time and the feeder time plays the most important role on the performance of the procedures that we propose. In order to assess the performance of the heuristics and lower bounding schemes against these factors, we set up an experiment. The results of the study are discussed in Section 4.2.

Note that we could not obtain the optimal solutions for none of these 30 PCBs. In order to assess the performance of the lower bounding schemes and heuristic procedures on real PCBs that the company produces, we consider 4 PCBs for which both number of locations and component types are very small. We also restrict the problem complexity by reducing the number of heads on the turret to four from twelve. Therefore, for these problem instances, it is not meaningful to compare the generated results with company's solutions since the latter ones are proposed for the machine with twelve heads. In Table 4.6 we provide optimal tour lengths, the lower bounds under two schemes proposed and the two heuristic's results. The columns "% Gap" provide figures that are calculated against the optimal tour lengths. As it can be seen, there is no dominance of one lower bounding method. It can be seen that heuristic 2 performs better than heuristic 1. The performances of the heuristics are quite good; the maximum percentage gap from the optimal figure is almost 2.3%. On the other hand, our lower bounds are not as good as the heuristics, even the minimum percent deviation from the optimal is around 7.5%.

Table 4.6. The performance of the lower bounding schemes and heuristics with respect to optimal solutions.

	N	N	Optimal	LE	B 1	LE	32	Heuri	stic 1	Heuri	stic 2
PCB #	_	Number of component types	tour			Tour length (msec.s)	_	Tour length (msec.s)	t zan	Tour length (msec.s)	% Gap
1	10	2	7235	6485	10.37	4463	38.31	7302	0.93	7235	0.00
2	12	3	5723	3730	34.82	5293	7.51	5758	0.61	5723	0.00
3	13	6	14276	12855	9.95	7932	44.44	14508	1.63	14527	1.76
4	10	5	16452	15417	6.29	12003	27.04	16452	0.00	16452	0.00

4.2. Experimental Study

In order to investigate the parameter sensitivity of the proposed heuristics and lower bounds' performances, we set up an experimental study. We first randomly generate x and y coordinates of 10 locations on a 10*25 cm PCB; i.e., x and y coordinates are generated from uniform distribution over the range 0 and 10, and over the range 0 and 25, respectively. 10 different PCB instances are generated in that way. For number of different components to be mounted on these locations, we consider two different cases: there are either 2 or 4 different component types. Each location's component type is randomly generated from discrete uniform distribution over the range 1 and 2, or 1 and 4, depending on the number of different component types case. For the problem instances, where the generated number of different components is less than the desired number, a new set of random variates are generated until we have exactly 2 or 4 different component types on the PCB.

In order to assess the performance of the proposed heuristics on different scenarios that differ in the dominance of table movement time or the feeder time, we consider the following scenarios:

- Component feeder locations: The component feeders are sorted in the index of component type, i.e., component feeders are arranged in the order of 1, 2, or 1, 2, 3, 4. For the distance between the racks, the actual distances in the company considered. Two cases on the racks including different components are considered
 - a. Case A: Component type c's feeder is next to component type c+1's feeder, i.e., racks including different components are adjacent to each other.
 - b. Case B: There are four racks in between component type c's feeder and component type c+1.
- PCB dimension: In order to assess the performance against different table movement times, we change the dimension of PCBs. In addition the original 10*25 cm PCBs, we rescale the locations generated to 1*2.5 cm, and 2*5 cm PCBs. Note that, since the table movement times are the results of Tchebycheff movement in between the locations, reducing the size from

10*25 to 1*2.5 is equivalent to speeding up the table movement 10 times, and to 2*5 is equivalent to speeding the table movement type 5 times. For the movement times, actual speed of the machine is considered.

Instead of twelve heads on the machine, we consider four heads to reduce the computational complexity. For a PCB having two different component types, as one of them is given ID as 1, the other's ID is given as 2. Feeder racks and turret rotation indices are assigned according to the component type ID, for example component type ID 1 has the turret rotation index of 1. Turret rotation times for differently indexed components are taken as in the real life environment. Table 4.7 summarizes the factors and levels of these factors. PCB data used in the experiment is available in Appendix G.

Table 4.7: Factors and the corresponding levels in the experiment

Factor	Levels
PCB size	1. 1*2.5 (Table movement speed is 10 times of the actual speed)
(table movement speed)	2. 2*5 (Table movement speed is 5 times of the actual speed)
	3. 10*25 (Table movement speed is the actual speed)
Number of different component types	1. 2 2. 4
Feeder placement	 Case A: Feeders are next to each other Case B: There are four racks in between the feeder carriages.

There are 3*2*2=12 combinations of these factors, and 10 PCBs for each combination are considered for each combination. Therefore, in a total of 120 problem instances are solved in the study. The lower bounds and heuristic solutions are found on a computer with Pentium M processor (2 GHz). On the other hand, the

optimal solutions are found on another computer with Pentium 4 processor (1.5 GHz).

For each combination of the factors of the experiment, we report the average, maximum, minimum and standard deviation of the tour lengths generated by upper bounding methods, and heuristics from the optimal tour lengths. These basic statistics are provided in Table 4.8.

The following observations are made based on Table 4.8:

The relative performance of two lower bounding schemes: The second lower bounding method outperforms the first one for every problem instance where

- the feeders of different components placed next to each other, i.e., case A
- when the size of the PCB is large in terms of dimension, i.e., 2*5 cm, and there are 4 racks in between two feeders, i.e., case B.

The first lower bounding method outperforms the second one for every problem instance where

• the size of the PCB is small in terms of its dimensions, i.e., 1*2.5 cm and feeders are placed next to each other, i.e., case A.

Notice that the factors levels where the second lower bounding scheme outperforms the first are the cases where table movement times dominate the feeder times: either feeders are located next to each other or feeders are farther from each other but the dimension of the card is bigger. Similarly, the parameter settings where the first lower bounding method outperforms the second one are the ones under which the feeder times dominate the table movement times, the feeders are located relatively far from each other and the dimension of PCB is smaller.

Table 4.8. Basic Statistics on the percentage deviation from the optimal tour length under different levels of the factors

Feeder		of different ent types				2			4					
Placement	PCB Size	% deviation from The optimal	LB1	LB2	Best LB	Heuristic 1	Heuristic 2	Best Heuristic	LB1	LB2	Best LB	Heuristic 1	Heuristic 2	Best Heuristic
		Minimum	26.14	9.37	9.37	0	0	0	42.65	24.2	24.2	0	0	0
	1*2.5	Maximum	34.74	20.37	20.37	0.53	1.27	0	54.06	35.57	35.57	2.37	0	0
	1.2.3	Average	28.99	13.93	13.93	0.05	0.16	0	48.95	28.9	28.9	0.72	0	0
		Std. Dev.	2.52	3.65	3.65	0.17	0.4	0	4.07	3.13	3.13	0.85	0	0
		Minimum	26.33	0	0	0	0	0	40.91	5.4	5.4	0	0	0
Case A	2*5	Maximum	36.41	7.89	7.89	7.99	2.16	0	52.11	28.83	28.83	4.27	2.52	2.52
Case A	2.3	Average	32.32	4.35	4.35	0.87	0.22	0	46.02	18.1	18.1	1.49	0.31	0.31
		Std. Dev.	3.38	3.02	3.02	2.51	0.68	0	3.81	7.32	7.32	1.77	0.8	0.8
		Minimum	32.28	0	0	0	0	0	44.05	0	0	0	0	0
	10*25	Maximum	47.53	0.68	0.68	3.08	0	0	63.04	2.68	2.68	8.25	1.02	1.02
	10 23	Average	39.61	0.07	0.07	0.46	0	0	55.31	0.48	0.48	1.39	0.1	0.1
		Std. Dev.	4.24	0.22	0.22	1.04	0	0	6.19	0.89	0.89	2.66	0.32	0.32
		Minimum	12.16	16.15	12.16	0	0	0	0.91	20.54	0.91	0	0	0
	1*2.5	Maximum	19.49	24.97	19.49	1.67	6.14	0	21.15	35.43	21.15	1.87	0	0
	1 2.3	Average	15.45	19.48	15.45	0.38	0.61	0	13.04	27.06	13.04	0.26	0	0
		Std. Dev.	2.1	2.71	2.1	0.65	1.94	0	6.01	4.95	6.01	0.61	0	0
		Minimum	16.76	6.63	6.63	0	0	0	9.39	18.36	9.39	0	0	0
Case B	2*5	Maximum	27.44	17.05	16.76	4.09	2.1	1.38	25.03	31.34	25.03	3.78	4.97	0.68
Cuse B	, 23	Average	22.25	12.29	12.27	0.97	0.35	0.14	18.83	23.93	18.65	0.87	0.67	0.07
		Std. Dev.	3.81	3.59	3.55	1.61	0.75	0.44	4.39	4.21	4.36	1.47	1.54	0.21
		Minimum	27.97	0	0	0	0	0	35.05	0	0	0	0	0
	10*25	Maximum	44.23	1.19	1.19	3.08	0	0	52.76	3.04	3.04	8.2	0	0
	10 23	Average	35.76	0.18	0.18	0.46	0	0	43.99	1.26	1.26	1.33	0	0
		Std. Dev.	4.48	0.4	0.4	1.04	0	0	6.08	0.93	0.93	2.82	0	0

In between these two extreme cases, i.e., under case B, for 2*5 PCBs, we do not have such a consistent relative performance relation over all instances. When number of component types is 2, the second lower bound generates better results in terms of worst, best and average performances. On the other hand when there are 4 types of components, the first lower bound is better in terms of these three.

In general it is observed that the first lower bounding method performance gets better as the feeder time dominates the table movement time; i.e., as the size of PCB increases, or the speed of table decreases, or the feeders are far from each other. On the other hand, the performance of the second lower bounding method gets worse under these conditions.

The sensitivity of lower bounding schemes with respect to number of component types: In order to assess this we calculate the percentage increase in gap from the optimal tour when the number of component types increases from 2 to 4 in the worst and the average performance. The figures are provided in Table 4.9.

Table 4.9: Change in % gap from optimal as the number of component types is increased from 2 to 4.

Feeder Placement	PCB size		LB1	LB2
	1*2.5	Maximum	55.59	74.62
	1.2.3	Average	68.84	107.40
Case A	2*5	Maximum	43.12	265.21
Case A	2.3	Average	42.38	316.13
	10*25	Maximum	32.64	293.59
	10.23	Average	39.64	606.09
	1*2.5	Maximum	8.51	41.90
	1.2.3	Average	-15.57	38.92
Case B	2*5	Maximum	-8.78	83.82
Case B	2.3	Average	-15.40	94.68
	10*25	Maximum	19.27	155.66
	10.23	Average	23.00	612.67

It can be observed that lower bound 2 is more sensitive to an increase in the number of components, its both average and worst case performances get worse with an increase in number of component types. On the other hand, the second lower bound is less sensitive to this parameter. It provides better results when the feeder time dominates the table movement time.

The overall performance of the lower bounding schemes: When we examine the overall problem instances, the percentage deviation of the best lower bound from the optimal tour is maximum 35.57%, and the average is 10.56%. This shows a room for improvement in lower bounding schemes.

The relative performance of two heuristics proposed: The second heuristic outperforms the first one for problem instances except the following parameter sets

- PCB size is 1*2.5, there are 2 component types under case A: Average and worst case performances of heuristic 1 is better.
- PCB size is 2*5, there are 2 component types under case B: Although there is no consistent behavior, heuristic 2 performs better on the average and based on the worst performance.

In general we expect that heuristic 1 under which the construction is based on the subtours of different component types are combined provide good results when

- the number of different component types is large,
- the number of locations requiring a particular component type is large.

In this study, due to time pressure we could not find any chance to examine such problem instances due to high computational requirements for the optimal solutions. Nevertheless, the maximum percentage deviation from optimal is 8.25% for heuristic 1 over all problem instances considered.

The overall performance of the heuristics: When we examine the overall problem instances, except 4 out of 120 problem instances, we always find the optimal tour with heuristic 1 or heuristic 2. The maximum error made by the best heuristic 2.52% over all instances.

Runtime performance of the heuristics: Table 4.10 is a summary table for the run time figures of the random generated PCBs. Although construction and improvement phase of the heuristics are examined together, it can be concluded that much of the run time comes from the construction part of the heuristics. Improvement phase does not take more than 1 second, therefore as heuristic 1 decomposes locations according to the component types, we have subtours to be solved as much as the number of components. It is also seen that as heuristic 2 needs one tour to be solved, it requires approximately half the time of heuristic 1 for the PCB card groups with component type size 2. When number of component types increase run time of Heuristic 1 is higher. Lower bound run time is close to each other for each group investigated. Optimal solutions are found in different times, since different groups of PCBs have different characteristics; for example in PCBs with 10*25 cm dimensions, table movement distances are more with respect to feeder movement and turret durations which means the optimal will treat the problem as a TSP and find the solution in less time compared to the other problems. If concurrency is forced by the entrance of other distances; i.e., turret durations, feeder and table movement distances get closer, the run time to acquire optimal solution is higher.

Table 4.10. Run time of heuristics and lower bounds for the random generated PCBs.

Feeder				Co	mponent	Size = 2	_		Co	mponent	Size = 4	
Placement	PCB size		LB1	LB2	Optimal	Heuristic 1	Heuristic 2	LB1	LB2	Optimal	Heuristic 1	Heuristic 2
		Minimum	4	4	195	10	5	5	5	2064	20	(
		Maximum	7	7	56728	15	9	7	7	71806	28	Ç
		Average	5.6	6	10631.1	12.4	6.8	6.1	6.4	33831.4	25.7	7
	1*2.5	Std.Dev	0.97	1.15	17246.42	1.96	1.14	0.74	0.84	26808.31	2.79	1.05
		Minimum	6	6	87	13	6	4	4	1087	20	4
		Maximum	7	7	1534	16	8	5	5	21058	21	7
		Average	6.5	6.4	404.3	14.5	6.8	4.8	4.9	4568.2	20.2	5.9
	2*5	Std.Dev	0.53	0.52	429.99	0.85	0.63	0.42	0.32	5905.93	0.42	0.57
		Minimum	4	5	13	10	5	5	5	15	18	4
		Maximum	7	7	102	15	8	7	8	673	38	8
		Average	5.6	6	46.4	11.8	5.7	6.3	6.5	156.2	26.7	6.7
Case A	10*25	Std.Dev	1.17	1.05	30.54	1.99	0.95	0.82	0.97	219.45	5.44	1.16
		Minimum	4	4	501	10	5	4	5	1237	19	5
		Maximum	5	5	44009	11	6	5	5	33004	21	(
		Average	4.4	4.9	10013	10.5	5.3	4.8	5	10117.1	19.7	5.5
	1*2.5	Std.Dev	0.52	0.32	12642.55	0.53	0.48	0.42	0	10844.97	0.67	0.53
		Minimum	4	4	187	10	5	4	5	1689	19	۷
		Maximum	5	5	5649	20	6	5	5	7554	. 22	7
		Average	4.8	4.8	1480.8	12.75	5.25	4.9	5	4349.1	19.7	5.3
	2*5	Std.Dev	0.42	0.42	1680.76	4.2	0.46	0.32	0	1967.25	0.95	0.82
		Minimum	4	5	10	10	5	4	4	18	20	4
		Maximum	5	5	142	12	6	5	5	256	20	
		Average	4.4	5	58.7	11	5.1	4.8	4.9	113.9	20	4
Case B	10*25	Std.Dev	0.52	0	41.14	0.67	0.32	0.42	0.32	79.18	0	(

CHAPTER 5

CONCLUSION

The pressure of global competition in the electronic devices sector demands the productivity and efficiency increase in the manufacturing processes through the technological development of the state of the art machinery and equipment as well as improvements in the decision process to use these devices. Our study focuses on the latter for a certain equipment setting in a real manufacturing environment. We have designed a decision methodology for some of the manufacturing processes at that equipment in this thesis work. The application of our methodology on two families of real products yielded a considerable increase (24.4 %) in productivity.

The production environment investigated is the SMT manufacturing process on a turret style SMT machine. The aim is to increase the productivity of the machine by improving the component placement sequence in a prespecified family setups, i.e. the feeder arrangement. The problem of determining a component placement sequence under three concurrent events (table movement, turret rotation and feeder movement) is modelled and formulated. We followed an evaluational approach in modelling; a combinatorial optimization formulation as a conceptual model, a nonlinear mixed integer programming formulation taking some part of the real environment into consideration, and finally a linear-mixed integer formulation for the upmost degree of representation for the placement sequence determination problem as far as we could. The final formulation is NP-Hard in the strong sense, since we may detect special cases as symmetric/assymmetric TSP problems if we oversimplfy the problem. Thus, we resort our efforts on the development of solution methodology to heuristics.

We have designed two heuristics. In the first algorithm, PCB locations are decomposed according to the component types, near optimal tours for each subtours are found using a software, CONCORDE, by considering table movement and turret rotation times only. The subtours are then merged to form a constructed tour by using a myopic local search. As an improvement step over the constructed tour, we apply a modified 2-opt. In the second algorithm, we treat all locations (irrespective of their component types) together and form a distance matrix as a function of table movement and turret rotation durations only. We use CONCORDE to get a constructed tour; that is improved further by using the same modified 2-opt. It is observed that the second heuristic provides better tour durations for PCBs whose feeder positions of the component types are located close, and the first algorithm gives better figures when the feeder arrangement of the component types of the PCB are far from each other. Another observation is that the quality of the constructed tour determines the amount of improvement that can be achieved. The run times for the heuristics indicate that solutions can be obtained in reasonable times.

A comparison between the optimal values and the heuristics' results for the placement sequencing problem instances of the real PCBs could not be carried out, since we are not able to find the optimal values. Instead, two lower bounds are developed to test the performance of the heuristics. The first lower bounding approach considers table movement times and rotation times to compile a symmetric distance matrix in such a way that the distance values are lower bounds to the durations of the three concurrent events. Then, the corresponding TSP problem is solved, whose optimal tour length yields a lower bound. Consequently, this lower bound is improved with the use of the optimal TSP tour based on only feeder movement times. The second lower bound is calculated by adding the minimum length of a path, of size equal to the difference between number of locations and the number of different components, in the complete graph generated by the distance matrix compiled to the length of the optimal TSP tour considering only the feeder movements.

We set two experiments to evaluate the performance of our methodology. We considered four real but small PCBs and 120 randomly generated problem instances to compare our heuristics and lower bounds with the optimum solutions. The machine characteristic is modified such that the turret has 4 heads instead of 12 to find the optimum solutions in a reasonable time by means of CPLEX. Our heuristics are able to find almost all of the optimum solutions. Although there is a room for improvement for the lower bounds, they seem to be performing satisfactorily. In the second computational study, we consider 30 PCBs that are currently in the product mix of the company. In these 30 problem instances, we compare the heuristics' results with the lower bounds and the company's solution generated by an expert touch over the solutions provided by the machine specific optimizer software. We could not identify the conditions in terms of number of locations and number of component types on the PCB under which each lower/upper bound calculation scheme provides better results based on the problems that we consider. However, when we apply demand weighted percent improvement as the sole measure to capture the overall impact on the company's side, we get 24.4% improvement.

We address the following further research directions:

- Throughout the study, we assumed that the acceleration/deceleration effect is negligible. The solution technique we developed could easily be modified to incorporate these effects.
- We also assumed that feeder assignment is given for all family of products.
 Better results for our comparative study could be obtained if the feeder assignment is done for the two families under study. We may investigate the effect of feeder placement change or equivalently robustness of the solution quality with respect to feeder setup.
- One may improve the current lower/upper bounds and can develop new bounds. All these could be incorporated into a branch and cut/bound scheme to find the optimum solutions for larger problems.

- Another possible research direction is to study feeder assignment and component placement problems simultaneously. A starting point for such an integrated approach could be an iterative one: First solve the feeder assignment problem for a product family (which imposes constraints for the component placement sequence). Then, using the placement solutions of all PCBs in that family, provide a feedback to the feeder assignment problem and continue in this way.
- We studied a turret style SMT machine. Similar approaches could be devised for other technologies such as for sequential pick & place, dual delivery, etc.
- Balancing the overall SMT assembly line is another topic for future research. After the solution methodologies for all such technologies are developed, a production line composed of different types of automated machinery laid out in a tandom configuration could be studied. Once, a bottleneck station is found and optimized, the next bottleneck could be identified for a family. These family specific optimizations could be integrated for all families produced in that manufacturing line.

REFERENCES

- [1] Wikipedia, the free encyclopedia, *Printed Circuit Board*, Available at http://en.wikipedia.org/wiki/Printed_circuit_board#History, (2007), accessed at 12.01.2007.
- [2] Yves Cramaa; Joris van de Klundert, Frits C.R. Spieksma, *Production planning problems in printed circuit board assembly*, Discrete Applied Mathematics, 123 (2002), pp.339-361.
- [3] Masri Ayob, Peter Cowling, Graham Kendall, *Optimisation for Surface Mount Placement Machines*, Available at http://www.cs.nott.ac.uk/~mxa/OptimisationForSurfaceMountPlacementMachines.p df#search=%22optimization%20for%20surface%20mount%20placement%22, accessed at 12.01.2007.
- [4] Moyer, L.K. and Gupta, S. M., *SMT feeder slot assignment for predetermined component placement paths*, Journal of Electronics Manufacturing (1996), 6, 173-192.
- [5] L.F. McGinnis, J.C. Ammons, M. Carlyle, L. Cranmer, G.W. DePuy, K.P. Ellis, C.A. Tovey, H. Xu, *Automated process planning for printed circuit card assembly*, IIE Trans. 24 (1992) 18–30.
- [6] Wang, C., Ho, L. -S. and Cannon, D. J., *Heuristics for assembly sequencing and relative magazine assignment for robotic assembly*, Computers and Industrial Engineering (1998) 34, 423-431.
- [7] Magyar, G., Johnsson, M. And Nevalainen, O, *On solving single machine optimization problems in electronics assembly*, Journal of Electronics Manufacturing (1999), 9(4), 249-267.
- [8] Bentzen, B, *SMD placement*, SMT in FOCUS. (27.11.2000), Available at: http://www.smtinfocus.com/PDF/SMD placement.pdf, accessed at 12.01.2007.
- [9] Jeevan, K., Parthiban, A., Seetharamu, K. N., Azid, I. A. and Quadir, G. A., *Optimization of PCB Component Placement using Genetic Algorithms*, Journal of Electronics Manufacturing (2002), 11(1), 69-79.

- [10] P.J.M. van Laarhoven, W.H.M. Zijm, *Production preparation and numerical control in PCB assembly*, Int. J. Flexible Manuf. Systems 5 (1993), pp. 187-207.
- [11] J. C. Ammons, M. Carlyle, L. Cranmer, G. DePuy, K. Ellis, L. F. McGinnis, C. A. Tovey, H. Xu, *Component allocation to balance workload in printed circuit card assembly systems*, IIE Transactions 29 (4): 265-75, 1997
- [12] Moyer, L.K. and Gupta, S. M, Simultaneous component sequencing and feeder assignment for high speed chip shooter machines, Journal of Electronics Manufacturing, 6 (1996), 271-305.
- [13] Nelson, K. M. and Wille, L.T., *Comparative study of heuristics for optimal printed circuit board assembly*, Proceedings of Southcon'95. Fort Lauderdale (1995), Florida, USA, 322-327.
- [14] Sun, D. -S., Lee, T. -E and Kim, K. -H., Component allocation and feeder arrangement for a dual-gantry multi-head surface mounting placement tool, International Journal of Production Economics, 2005, vol. 95, issue 2, pages 245-264.
- [15] M. O. Ball and M. J. Magazine, Sequencing of insertions in printed circuit board assembly, Operations Research, 36(2):192–201, 1988.
- [16] Chan, D. and Mercier, D., *IC Insertion: an Application of the Travelling Salesmen Problem*, International Journal of Production research, Vol. 27, No. 10, pp. 1837-1841, 1989.
- [17] Moyer, L. K. and Gupta, S, M., An Efficient Assembly Sequencing Heuristic for Printed Circuit Boards Configurations, Journal of Electronics Manufacturing, Vol. 7, No. 2, pp. 143-160, 1997.
- [18] Duman, E and Or, I., *Precedence constrained TSP arising in printed circuit board assembly*, International Journal of Production Research, 42(1), (2004), 67-78.
- [19] Ahmadi, J., Ahmadi, R., Matsuo, H., Tirupati, D.. Component Fixture Positioning/Sequencing for Printed Circuit Board Assembly with Concurrent Operations, Operations Research, Vol. 43, No. 3, pp. 444-457, 1995.
- [20] T. Leipala and O. Nevalainen, *Optimization of the movements of a component placement machine*, European Journal of Operational Research, 38:167–77, 1989.
- [21] Francis, R. L., McGinnis, L. F. and White, J. A., *Facility Layout and Location: An Analytical Approach*, (1992), NJ:Prentice-Hall.

- [22] Foulds, L. R. and Hamacher, H. W., *Optimal bin location and sequencing in printed circuit board assembly*, European Journal of Operational Research, 66, 279-290, 1993.
- [23] Crama, Y., Flippo, O.E., Van de Klundert, J., Spieksma, F., *The Assembly of Printed Circuit Boards: A Case with Multiple Machines and Multiple Board Types*, European Journal of Operational Research, Vol. 98, pp. 457-472, 1997.
- [24] Ji, Z. Leu, M. C. and Wong, H., Application of linear assignment model for planning of robotic PC board assembly, ASME Journal of Electronic Packaging, 114, 455-460, (1992).
- [25] Kumar, R. and Li, H., *Assembly Time Optimization for PCB Assembly*, Proceedings of the American Control Conference, pp. 306, 1994.
- [26] De Souza, R. and Lijun, W., *Intelligent Optimization of Component Insertion in Multi-Head Concurrent Operation PCBA Machines*, Journal of Intelligent Manufacturing, Vol. 6, pp. 235-243, 1995.
- [27] Ng, M., Heuristics approach to printed circuit board insertion problem, Journal of the Operational Resarch Society, 49, 1051-1059, 1998.
- [28] Ahmadi, R. H. and Mamer, J. W., *Routing heuristics for automated pick and place machines*, European Journal of Operational Research, 117, 533-552, (1999).
- [29] Altinkemer, K., Kazaz, B., Koksalan, M. and Moskowitz, H., *Optimization of printed circuit board manufacturing: Integrated modeling and algorithms*, European Journal of Operational Research, 124, 409-421, 2000.
- [30] Ellis, K. P, Vittes, F. J. and Kobza, J. E, *Optimizing the performance of a surface mount placement machine*, IEEE Transactions on Electronic Packaging Manufacturing, 24(3), 160-170, 2001.
- [31] Concorde TSP Solver, January 2005, Available at http://www.tsp.gatech.edu/concorde.html, accessed at 12.01.2007.
- [32] Thorburn, LJ and Houghton, J., *The Victorian Electronics Industry Cluster*, Australian Electrical and Electronic Manufacturers Association, (2004), Available at www.cfses.com/documents/CSES_Victorian_Electronics_Cluster_Study.pdf, accessed at 12.01.2007.
- [33] A. Schrijver, *On the history of combinatorial optimization (till 1960)*, in: "Handbook of Discrete Optimization" (K. Aardal, G.L. Nemhauser, R. Weismantel, eds.), Elsevier, Amsterdam, 2005, Available at http://homepages.cwi.nl/~lex/files/histco.pdf

- [34] Karla Hoffmann, Manfred Padberg, *Traveling Salesman Problem*, Available at http://iris.gmu.edu/~khoffman/papers/trav_salesman.html, accessed at 12.01.2007.
- [35] E.L. Lawler, J.K. Lenstra, A.H. Rinooy Kan, D.B. Shmoys, *The Travelling Salesmen Problem*, John Wiley and Sons, 1983.
- [36] David Applegate, Robert Bixby, Vašek Chvátal, William Cook, *Finding Tours in the TSP*, Forschungsinstitut für Diskrete Mathematik, Report No. 99885, 1998, Universitaet Bonn, available at http://www.tsp.gatech.edu/methods/papers/lk report.pdf, accessed at 12.01.2007.
- [37] R. C. Prim. *Shortest connection networks and some generalizations*. Bell System Technical Journal, 36:1389-1401, 1957.

Table A.1. Concurrent Events on a Turret Style SMT Machine

ep (i)	PCB Table	Turret	Feeder Carriage	Distance (travelling time for step i)
1			Move from the initial (0) position to 1st pick position	Feeder (0,1)
		Pick 1st component	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Picking event
2		Rotate	Move from 1st position to 2nd pick position	max{turret_rotation(1), feeder(1,2)}
		Pick 2nd component		Picking event
3		Rotate	Move from 2nd position to 3rd pick position	max{turret rotation(1,2), feeder(2,3)}
		Pick 3rd component		Picking event
4		Rotate	Move from 3rd position to 4th pick position	max{turret rotation(1,2,3), feeder(3,4)}
		Pick 4th component	India nom ora podition to itm piek podition	Picking event
5		Rotate	Move from 4th position to 5th pick position	max{turret rotation(1,2,3,4), feeder(4,5)}
		Pick 5th component	Move from 4th position to our pick position	Picking event
6		Rotate	Move from 5th position to 6th pick position	max{turret_rotation(1,2,3,4,5), feeder(5,6)}
		Pick 6th component	Wove from 5th position to oth pick position	Picking event
7	Move from initial table position to 1st placement location	Rotate	Move from 6th position to 7th pick position	max{table movement(0,1), turret rotation(1,2,3,4,5,6), feeder(6,7)}
	wove normalitial table position to 1st placement location		Wove from our position to 7th pick position	Pick&Place event
	Move from 1st to 2nd placement location	Pick 7th and place 1st component Rotate	Move from 7th position to 8th pick position	max{table movement(1,2), turret rotation(2,3,4,5,6,7), feeder(7,8)}
	wove norm 1st to 2nd placement location		wove norm zur position to atm pick position	Pick&Place event
	Manager Control Control Control Control	Pick 8th and place 2nd component	Maria form Other william to Other laboration	
9	Move from 2nd to 3rd placement location	Rotate	Move from 8th position to 9th pick position	max{table_movement(2,3), turret_rotation(3,4,5,6,7,8), feeder(8,9)}
		Pick 9th and place 3rd component		Pick&Place event
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
n	Move from (n-7)th to (n-6)th placement location	Rotate	Move from (n-1)th position to (n)th pick position	max{table_movement(n-7,n-6), turret_rotation(n-6,n-5,n-4,n-3,n-2,n-1), feeder(n-1,n)
		Pick (n)th and place (n-6)th component		Pick&Place event
n+1	Move from (n-6)th to (n-5)th placement location	Rotate	Move from (n)th position to 1st pick position	max{table_movement(n-6,n-5), turret_rotation(n-5,n-4,n-3,n-2,n-1,n), feeder(n,1)}
		Pick 1st and place (n-5)th component		Pick&Place event
n+2	Move from (n-5)th to (n-4)th placement location	Rotate	Move from 1st position to 2nd pick position	max{table_movement(n-5,n-4), turret_rotation(n-4,n-3,n-2,n-1,n,1), feeder(1,2)}
		Pick 2nd and place (n-4)th component		Pick&Place event
n+3	Move from (n-4)th to (n-3)rd placement location	Rotate	Move from 2nd position to 3rd pick position	max{table_movement(n-4,n-3), turret_rotation(n-3,n-2,n-1,n,1,2), feeder(2,3)}
		Pick 3rd and place (n-3)rd component		Pick&Place event
n+4	Move from (n-3)rd to (n-2)nd placement location	Rotate	Move from 3th position to 4th pick position	max{table_movement(n-3,n-2), turret_rotation(n-2,n-1,n,1,2,3), feeder(3,4)}
		Pick 4th and place (n-2)nd component		Pick&Place event
n+5	Move from (n-2)nd to (n-1)st placement location	Rotate	Move from 4th position to 5th pick position	max{table_movement(n-2,n-1), turret_rotation(n-1,n,1,2,3,4), feeder(4,5)}
		Pick 5th and place (n-1)st component		Pick&Place event
n+6	Move from (n-1)st to (n)th placement location	Rotate	Move from 5th position to 6th pick position	max{table_movement(n-1,n), turret_rotation(n,1,2,3,4,5), feeder(5,6)}
		Pick 6th and place (n)th component		Pick&Place event
	A	ASSEMBLED PCB IS UNLOADED NEW F	CB IS LOADED FROM THE CONVEYOR AND PLACE	DED OVER THE PCB TABLE
1	Move from (n)th table position to 1st placement location	Rotate	Move from 6th position to 7th pick position	max{table movement(n,1), turret rotation(1,2,3,4,5,6), feeder(6,7)}
		Pick 7th and place 1st component	, , , ,	Pick&Place event
2	Move from 1st to 2nd placement location	Rotate	Move from 7th position to 8th pick position	max{table movement(1,2), turret rotation(2,3,4,5,6,7), feeder(7,8)}
		Pick 8th and place 2nd component		Pick&Place event
3	Move from 2nd to 3rd placement location	Rotate	Move from 8th position to 9th pick position	max{table movement(2,3), turret rotation(3,4,5,6,7,8), feeder(8,9)}
	2 2 to ora piacomoni rocation	Pick 9th and place 3rd component	2.11 pooliton to our pion pooliton	Pick&Place event
:	:	·	i i	:
:	:	:	:	:
-	:	:		<u>.</u>
			UNTIL PRODUCTION OF PCB TYPE STOPS	· · · · · · · · · · · · · · · · · · ·

APPENDIX B

MATHEMATICAL MODEL AND RESULTS OF A REAL PCB

The PCB locations, coordinates of these locations, component types of the locations and turret rotation time for each location regarding its component type is given in Table B.1. Table movement distance matrix between the locations is given in Table B.2. Feeder distances are given in Table B.3.

Table B.1. Location – component type data of the example PCB

l	X_{l}	Y_l	c_l	r_{c_l} (msec)
1	134880	-435780	1	271
2	115860	-450570	1	271
3	173660	-439350	2	500
4	168570	-439350	2	500
5	163470	-439350	2	500
6	158380	-439350	2	500
7	92240	-447060	2	500
8	87270	-447060	2	500
9	82180	-447060	2	500
10	77100	-447060	2	500
11	132630	-443220	3	157
12	118130	-443210	3	157

Table B.2. Feeder distances between component types (msec)

j	1	2	3
1	0	250	150
2	250	0	100
3	150	100	0

Table B.3. Table movement time between locations (msec)

l	1	2	3	4	5	6	7	8	9	10	11	12
1	0	451	565	497	429	361	719	785	853	921	129	322
2	451	0	920	852	784	717	362	428	496	564	322	128
3	565	920	0	68	136	204	1188	1255	1323	1390	599	792
4	497	852	68	0	68	136	1121	1187	1255	1322	531	724
5	429	784	136	68	0	68	1053	1119	1187	1254	463	656
6	361	717	204	136	68	0	985	1051	1119	1187	395	588
7	719	362	1188	1121	1053	985	0	66	134	202	590	397
8	785	428	1255	1187	1119	1051	66	0	68	136	656	463
9	853	496	1323	1255	1187	1119	134	68	0	68	724	531
10	921	564	1390	1322	1254	1187	202	136	68	0	792	598
11	129	322	599	531	463	395	590	656	724	792	0	193
12	322	128	792	724	656	588	397	463	531	598	193	0

Given data in the tables above, results of the linear model as an output of CPLEX, is shown in Figure B.1. Notations used in the CPLEX model are: "XsXlXk" is α_{slk} ; "YsYiYj" is β_{sij} ; "ZiZs" is z_{is} (since number of feeders equal to number of components z_{is} can be used instead of z_{c_js}).

Figure B.1. Output of the linear model

Integer optimal solution: Objective = 5.7230000000e+003Solution time = 20623.82 sec. Iterations = 21666232 Nodes = 225215

Variable T1	Name	Solution Value 500.000000
Т2		500.000000
Т3		500.000000
Т4		362.000000
T5		500.000000
T6		500.000000€
Т7		500.000000
T8		500.000000
Т9		500.000000
T10		361.000000
T11		500.000000
T12		500.000000
X1X3X5		-0.000000
X1X5X3		0.000000
X1X8X9		0.000000
X1X8X10		1.000000
X2X5X3		-0.000000
X2X9X3		0.000000
X2X10X9		1.000000

```
X3X9X7
                               1.000000
                               1.000000
X4X7X2
                               1.000000
X5X2X11
X6X11X5
                               1.000000
X7X5X3
                               1.000000
X8X1X10
                              0.000000
X8X3X4
                              1.000000
X8X3X9
                              -0.000000
                               1.000000
X9X4X6
X9X9X7
                              -0.000000
X9X10X7
                              0.000000
X10X6X1
                              1.000000
X11X1X12
                               1.000000
X12X11X3
                              -0.000000
X12X11X5
                               0.000000
X12X12X8
                               1.000000
Y1Y2Y2
                               1.000000
Y2Y2Y1
                               1.000000
Y3Y1Y3
                               1.000000
Y4Y3Y2
                               1.000000
Y5Y2Y2
                               1.000000
Y6Y1Y1
                              -0.000000
Y6Y1Y2
                               0.000000
Y6Y2Y2
                               1.000000
Y7Y2Y2
                               1.000000
Y8Y2Y1
                               1.000000
Y9Y1Y3
                               1.000000
Y10Y3Y2
                               1.000000
                               1.000000
Y11Y2Y2
                               1.000000
Y12Y2Y2
                               1.000000
Z2Z1
Z1Z2
                               1.000000
Z2Z2
                               1.000000
                               1.000000
Z3Z2
                               1.000000
Z1Z3
                               1.000000
Z2Z3
                               1.000000
Z3Z3
Z1Z4
                               1.000000
Z3Z4
                              1.000000
                              1.000000
Z1Z5
Z2Z5
                              1.000000
                              1.000000
Z3Z5
Z1Z6
                              1.000000
Z2Z6
                              1.000000
Z3Z6
                              1.000000
Z2Z7
                              1.000000
Z2Z8
                              1.000000
Z1Z9
                              1.000000
Z2Z9
                              1.000000
Z3Z9
                              1.000000
Z1Z10
                              1.000000
Z3Z10
                              1.000000
Z1Z11
                               1.000000
Z2Z11
                               1.000000
Z3Z11
                               1.000000
Z2Z12
                               1.000000
All other variables in the range 1-1740 are zero.
```

89

APPENDIX C

ALGORITHM USED IN HEURISTIC 1

The algorithm used have been divided into 4 groups:

- 1. PCB is partitioned into component vs. the positions associated.
 - a. Naming the sets for the components. A component set involves positions that are of same type.
 - b. Location matrix for each set is derived.
- 2. Sending partitions for TSP solutions:
 - a. Each set with location matrix are sent to CONCORDE TSP Package to receive solution for each component type
 - b. The result of each component is transformed to be used in tour structure.
- 3. Components are combined:
 - a. For each component set using an element location in the set; distance function between another component set is calculated.
 - b. The minimum distance result gives the components to be combined.
 - c. The component sets to be combined is decreased by 1.
 - d. Go to step (a) till no component set exists to be combined.
- 4. Tour length calculation and 2-opt
 - a. Calculate tour length via clockwise and counter-clockwise
 - b. Select the one which gives better result.
 - c. Starting from the tourpointer, apply 2-opt. Break 2 arcs form old tour. Form new tour, calculate the gain between new and old tour.
 - d. Find the minimum gain regarding the broken locations in the tour
 - e. If gain <0; form the new tour as found in 2-opt.Go to a. If gain >0 then stop.

COMPONENT TYPE vs. LOCATION

```
i: location index for PCB
```

j: location index for PCB (alias of i)

t: component type index

N : Location set (i.e. $i \in N$) $N = \{1, 2, ..., n\}$

M: Component type set (i.e. $t \in M$) $M = \{1, 2, ..., m\}$

C(i): Component type of a location i $C(i): N \to M$

G(t): Set of component type t where locations' component type is t (i.e.

$$i \in G(t) \leftrightarrow C(i) = t$$

len(i, j): Travel time from location i to location j

LOC(N): Location matrix for all locations for placement (i.e. LOC(N) is an

 $n \times n$ matrix)

LOC(G(t)): Location matrix for G(t)

tpnt: Tour pointer array for component type.

right: Array to describe the right of a location in a sequence found

left : Array to describe the right of a location in a sequence found

INITIALIZATION

$$\forall t \in M \text{ set } G(t) = \{\}$$

$$\forall i \in N \quad C(i) = t \Rightarrow G(t) = G(t) \cup \{i\}$$

$$\forall t \in M$$

$$\forall i \in G(t)$$

$$\forall j \in G(t)$$

$$LOC(G(t)) = LOC(G(t)) \cup len\{i, j\}$$

```
For t = 1 to m

Run TSP (LOC(G(t)))

CALL PROCEDURE ARR_TSP(G(t))

Next t
```

Using output of TSP file, string functions (LEN, LEFT, RIGHT, etc) are used to find arrays

PROCEDURE ARR_TSP(G(t))

```
Set tpnt(t)

For each i \in G(t)

Set right(i)

Set left(i)
```

ASSUMING THE TOUR IS **CLOCKWISE**

```
MAXGAIN = -999999

GAIN1CUT \leftarrow tourpnt

GAIN2CUT \leftarrow tourpnt

i \leftarrow tourpnt

while right (i) \neq tourpnt

j \leftarrow right.right (i)

while j \neq left (i)

NTC = 0

FIRSTCAL (i, j, NTC)
```

```
SECONDCAL (i, j, NTC)

If MAXGAIN \leq NTC then

MAXGAIN \leftarrow NTC

GAIN1CUT \leftarrow i

GAIN2CUT \leftarrow j

End if

j \leftarrow \text{right}(j)
```

PROCEDURE FIRSTCAL (i, j, NTC): Calculates the net gain for <u>Counter-clockwise tour</u>:

NTC: Net gain found as a result of the new tour

NT: Array for the following 6 locations in a tour beginning with a given location

NT.feeder: Array holding the feeder movement cost of a location in the new tour

NT.turret: Array holding the turret movement cost of a location in the new tour

p : Array index

row: Integer to record calculation sequence

opt: Pointer used to fill the array

opttourptr: Variable used for assignment of the location in the 2-opt sequence

PROCEDURE FIRSTCAL (i, j, NTC)

```
NTC = 0

opt \leftarrow right(j)

For p = 1 to 6

NT(p) \leftarrow opt

opt \leftarrow right(opt)

Next p

opttourptr \leftarrow right(i)

row = 1
```

```
While opttourptr \neq j
      If row \le 6
             NT.feeder(opttourptr) = FEEDERDISTANCE (component
             (NT (6)), component (NT (5))
             NT.turret(opttourptr) = component (opttourptr).turret min
             For p = 1 to 5
                    If NT.turret(opttourptr) < component (NT (p)).turret min
                    NT.turret(opttourptr) = component(NT(p)).turret min
             Next p
              NT(6) = NT(5)
              NT(5) = NT(4)
              NT(4) = NT(3)
              NT(3) = NT(2)
              NT(2) = NT(1)
              NT(1) = opttourptr
      End If
      NTC = NTC + [max {NT.turret(opttourptr); NT.feeder(opttourptr);
      DISTANCE (location (opttourptr), location(right (opttourptr)))}- max
       {CW.turret(opttourptr); CW.feeder(opttourptr);
      DISTANCE(location (opttourptr), location (right (opttourptr)))}
opttourptr \leftarrow right(opttourptr)
```

PROCEDURE SECONDCAL (i, j, NTC): Calculates the net gain for <u>clockwise</u> tour where the cost changes before the first cut:

NTC: Net gain found as a result of the new tour

NT: Array for the following 6 locations in a tour beginning with a given location NT.feeder: Array holding the feeder movement cost of a location in the new tour NT.turret: Array holding the turret movement cost of a location in the new tour

```
p : Array index
opt: Pointer used to fill the array
opttourptr: Variable used for assignment of the location in the 2-opt sequence
opt \leftarrow j
For p = 1 to 6
       NT(p) \leftarrow opt
       opt \leftarrow left (opt)
Next p
opttourptr \leftarrow i
row = 1
While row < 6
       NT.feeder(opttourptr) = FEEDERDISTANCE (component (NT (6)),
       component (NT (5))
       NT.turret(opttourptr) = component (opttourptr).turret min
       For p = 1 to 5
              If NT.turret(opttourptr) < component (NT (p)).turret min
                     NT.turret(opttourptr) = component(NT(p)).turret min
       Next p
       NT(6) = NT(5)
       NT(5) = NT(4)
       NT(4) = NT(3)
       NT(3) = NT(2)
       NT(2) = NT(1)
       NT(1) = opttourptr
NTC = NTC + [max {NT.turret(opttourptr); NT.feeder(opttourptr); DISTANCE
```

(location(opttourptr), location(right(opttourptr)))}- max {CW.turret(opttourptr);

```
CW.feeder(opttourptr); DISTANCE(location(opttourptr), location (right(opttourptr)))}]

opttourptr \leftarrow left (opttourptr)

row \leftarrow (row+1)
```

APPENDIX D

COMBINING SUBTOURS

Starting with the location 20 in the constructed tour, the steps of the algorithm are explained. Any location can be taken as a starting point since the tour cycle will not be effected. Initially the PCB table is at a park point, but in mass manufacturing, steps will follow each other without visiting this park point. The first six steps is devoted to feeding the turret heads with components. As the first placement occurs after table movement from the initial placement, the cycle length of the construction tour with clockwise direction will be calculated from placement of location 21 to the next placement of location 21.

Table location is the coordinate to which the table will move to place component. Feeder location shows the coordinate to which the component type will be picked. Since the feeder carrier should move six steps ahead the placement, feeder location is represented as $(i+6)^{th}$ step. Movement time (mt(l,k)) is determined from the distance from location l to k, and feeder time (fl(c(l),c(k))) is determined from the distance between feeder rack where component of location l is placed and feeder rack where component of location l is placed and feeder rack where component of location l is placed. Turret movement time is minimum time of the turret heads rotating with components before placement occurs. Rotation of a head depends on the turret rotation index of the component that head carries, thus tr(c(l)) is the time required for component type of location l, to rotate 1 turn, i.e. 30 degrees.

Table D.1. Concurrent operations for the PCB and cycle time calculations for clockwise direction

Table	Motion Feeder					Feeder ca	rrier	Distance (travelling time for step i) max
oc (i)	Loc (i+6)	Table move (i	l	Turret Movement_Clockwise(i)		move		(table, turret, feeder
	20	No movement		No movement		ft(0,174)		
	21	No movement		tr(HDRN00160-449)		ft(174,174)		
	22	No movement		max[tr(HDRN00160-449), tr(HDRN00160-449)]		ft(174,174)		
	26	No movement		max[tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449)]		ft(174,174)		
	25	No movement		max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449)]		ft(174,174)		
	24	No movement		max[tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449)]		ft(174,174)		
20	23	mt(0,20)		max(tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449)		ft(174,174)		
21	19	mt(20,21)	3658	max(tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449)	157	ft(174,174)	0	36:
22	27	mt(21,22)	169	max}n(HDRN00160-449), tn(HDRN00160-449), tn(HDRN00160-449), tn(HDRN00160-449), tn(HDRN00160-449), tn(HDRN00160-449)	157	ft(174,212)	57000	5700
26	28	mt(22,26)	8162	maxfr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00291)]	271	ft(212,212)	0	81
25	29	mt(26,25)	169	maxfr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00291), tr(HDRN00291)]	271	ft(212,212)	0	2
24	30	mt(25,24)	3658	max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291)]	271	ft(212,212)	0	366
23	16	mt(24,23)	169	max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291)]	271	ft(212,74)	207000	2070
19	17	mt(23,19)	8162	max[tr/HDRN00160-449), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00180)]	271	ft(74,74)	0	81
27	18	mt(19,27)	211	max[tr(HDRN00291), tr(HDRN00291), tr(HDRN00291), tr(HDRN00291), tr(HDRN00180), tr(HDRN00180)]	271	ft(74,74)	0	2
28	12	mt(27,28)	3827	max[tr(HDRN00291), tr(HDRN00291), tr(HDRN00291), tr(HDRN00180), tr(HDRN00180), tr(HDRN00180)]	271	ft(74,10)	96000	960
29	14	mt(28,29)	8162	max[tr(HDRN00291), tr(HDRN00291), tr(HDRN00180), tr(HDRN00180), tr(HDRN00180), tr(HDRN00162)]	271	ft(10,10)	0	81
30	13	mt(29,30)	3827	max[tr(HDRN00291), tr(HDRN00180), tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162)]	271	ft(10,10)	0	38
16	7	mt(30,16)	3657	max[tr(HDRN00180), tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162)]	271	ft(10,9)	1500	36
17	8	mt(16,17)	8162	max[tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00169)]	271	ft(9,9)	0	81
18	6	mt(17,18)	3827	max[tr/HDRN00180), tr/HDRN00162), tr/HDRN00162), tr/HDRN00162), tr/HDRN00169), tr/HDRN00169)]	271	ft(9,6)	4500	45
12	4	mt(18,12)	4505	max[tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00169), tr(HDRN00169), tr(HKPS00089)]	271	ft(6,6)	0	45
14	31	mt(12,14)	8162	max[tr(HDRN00162), tr(HDRN00162), tr(HDRN00169), tr(HDRN00169), tr(HKPS00089), tr(HKPS00089)]	271	ft(6,2)	6000	81
13	32	mt(14,13)	3827	max[tr(HDRN00162), tr(HDRN00169), tr(HDRN00169), tr(HKPS00089), tr(HKPS00089), tr(HYRL00146)]	386	ft(2,2)	0	38
7	34	mt(13,7)	3997	max[tr(HDRN00169), tr(HDRN00169), tr(HKPS00089), tr(HKPS00089), tr(HYRL00146), tr(HYRL00146)]	386	ft(2,2)	0	39
8	33	mt(7,8)		max[tr(HDRN00169), tr(HKPS00089), tr(HKPS00089), tr(HYRL00148), tr(HYRL00146), tr(HYRL00146)]	386	ft(2,2)	0	38
6	3	mt(8,6)	3361	max[tr(HKPS00089), tr(HKPS00089), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146)]	386	ft(2,6)	6000	60
4	- 5	mt(6,4)	3827	max[tr(HKPS00089), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089)]	386	ft(6,6)	0	38
31	9	mt(4,31)	4885	max[tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089)]	386	ft(6,9)	4500	48
32	10	mt(31,32)	3827	max[tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089), tr(HDRN000169)]	386	ft(9,9)	0	38
34	11	mt(32,34)	8161	max[tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089), tr(HDRN000169), tr(HYRL00169)]	386	ft(9,10)	1500	81
33	18	mt(32,33)	3827	max[tr/HYRL00146), tr/HKPS00089), tr/HKPS00089), tr/HDRN000169), tr/HYRL00169), tr/HDRN00162)]	271	ft(10,74)	96000	960
3	20	mt(33,3)	4889	max[tr(HKPS00089), tr(HKPS00089), tr(HDRN000169), tr(HYRL00169), tr(HDRN00162), tr(HDRN00180)]	271	ft(74,174)	150000	1500
5	_	mt(3,5)		max[tr(HKPS00089), tr(HDRN000169), tr(HDRN00169), tr(HDRN00162), tr(HDRN00180), tr(HDRN000160-449)]	_	ft(174,174)	0	38
9		mt(5,9)		max[tr(HDRN000169), tr(HDRN00169), tr(HDRN00162), tr(HDRN00180), tr(HDRN000160-449), tr(HDRN000160-449)]	271	ft(174,174)	0	33
10		mt(9,10)		max[tr(HDRN000169), tr(HDRN00162), tr(HDRN00180), tr(HDRN000160-449), tr(HDRN000160-449), tr(HDRN000160-449)]	_	ft(174,174)	0	
11	25	mt(10,11)		max[tr(HDRN00162), tr(HDRN00180), tr(HDRN000160-449), tr(HDRN000160-449), tr(HDRN000160-449), tr(HDRN000160-449)]	271	ft(174,174)	0	39
16	_	mt(11,15)		max[tr(HDRN00180), tr(HDRN000160-449),tr(HDRN000160-449),tr(HDRN000160-449),tr(HDRN000160-449), tr(HDRN000160-449)	_	ft(174,174)	0	88
20	_	mt(18,20)		max[tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449),	_	ft(174,174)	0	
21		mt(20,21)		max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449),	1	ft(174,174)		
		/				TOTAL		74207

The costs incurring at step i can be formulated as follows:

 $cost(i) = max \{Table movement at step i, Turret movement at step i, Feeder movement at step i \}$

Using this step info in terms of tour functions as left() and right(), which is explained previously, cost associated to a location may be defined as follows:

$$cl_cost(i) = \max\{table_move(i), turret_move_clockwise(i), feeder_move(i)\} \quad \text{where} \\ cl_table_move(i) = mt(left(i), i) \\ cl_turret_move(i) = \max \left\{ tr[c\langle right(right(right(right(right(i))))\rangle], tr[c\langle right(right(right(i)))\rangle], tr[c\langle right(right(i))\rangle], tr[c\langle right(right(i))\rangle], tr[c\langle right(right(i))\rangle], tr[c\langle right(right(right(i)))\rangle], tr[c\langle right(rig$$

In equation (1), the table's movement from the last placed location to the new location is defined. Equation (2) defines the turret movement as the rotation of the turret which depends on the minimum turret rotation speed of turret heads carrying components. As each component type has a turret rotation index (i.e. tr(c(i), wherec(i) is the component type of location i) shows the turret rotation index of component type of location i), meaning that each component type can rotate at a maximum allowable speed, the turret's one turn cannot exceed this allowable speed, i.e. turret's one turn is minimum of the components' (that are already picked and carried by turret heads) maximum allowable speed. Over the turret, in the opposite direction of the placement station, there is a picking station. Turret head which is at this picking station, is fed by the component type that would be placed after "turret head amount"/2 steps. Feeding the turret head requires the movement of the feeder carrier unless component type of location that would be placed after "turret head amount"/2 steps is same with the component that will be placed "turret head amount" $\frac{1}{2} - 1$. If the component type of location that would be placed after "turret head amount"/2 steps is not same with the one to be placed "turret head amount" $\frac{1}{2} - 1$ steps after; a feeder carrier movement, i.e. f(f(c(i)),f(c(j))) is the feeder time that occurs if the

carrier moves from feeder location reserved for the component of location i to feeder location reserved for the component of location j, which is described by Equation 3 will be realized.

The tour presented in the Figure 3.6 and the time table (Table D.1) is compiled base on the clockwise direction, the counter clockwise direction will also be examined to check whether the cycle time is better than that of clockwise direction. It should also be noted that calculations regarding the turret movement will be used in the 2-opt improvement part of the solution approach. Figure D.1 and Table D.2 are showing the cycle and the calculations regarding the counter clockwise direction. For counter clockwise direction, instead of building the tour structure again, costs for each step will be calculated using the cycle information developed for clockwise direction such that:

$$cc_cost(i) = \max\{cc_table_move(i), cc_turret_move(i), cc_feeder_move(i)\} \quad \text{where} \\ cc_table_move(i) = mt(right(i), i) \tag{4} \\ cc_turret_move(i) = \max \begin{cases} tr[c\langle left(left(left(left(left(i))))\rangle], \\ tr[c\langle left(left(left(left(i)))\rangle], \\ tr[c\langle left(left(i))\rangle], \\ tr[c\langle left(i)\rangle], \\ tr[c\langle left(i)\rangle] \end{cases}$$

(6)

Equations (4), (5) and (6) are substitutes of (1), (2) and (3) respectively.

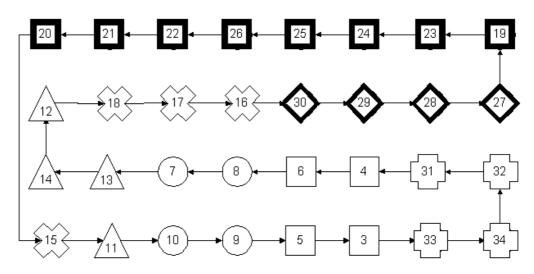


Figure D.1 Constructed tour with counter clockwise direction

Table D.2. Concurrent operations for the example PCB and cycle time calculations for counter clockwise direction

	Motion				
					Distance (travelling time fo
Table	Feeder Lod				step i) max (table, turret,
loc (i)	(i+6) Table move (i)	Turret Movement_Clockwise(i)	Feeder carri		
	20 No movement	- · · ·	ft(0, 174)		•
	15 No movement		ft(174,74)		
	11 No movement		ft(74,10)		
	10 No movement		ft(10,9)		
	9 No movement		ft(9,9)		
	5 No movement		ft(9,6)		
20	3 mt(0,20)		ft(6,6)		
15	33 mt(20,15) 871:	max[tr/HDRN00180), tr/HDRN00162), tr/HDRN00169), tr/HDRN00169), tr/HKPS00089), tr/HKPS00089)]	271 ft(6,2)	6000	8712
11		max[tr/HDRN00162], tr/HDRN00169), tr/HDRN00169), tr/HKPS00089), tr/HKPS00089), tr/HYRL00148)]	386 ft(2,2)	0	8839
10		max[tr/HDRN00169), tr/HDRN00169), tr/HKPS00089), tr/HKPS00089), tr/HYRL00146), tr/HYRL00146)	386 ft(2,2)	0	3997
9		max[tr/HDRN00169), tr/HKPS00089), tr/HKPS00089), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146)]	386 ft(2,2)	0	3827
		max[tr/HKPS00089), tr/HKPS00089), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146)	386 ft(2,6)	6000	6000
3		max[tr/HKP\$00089), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HKP\$00089)]	386 ft(6,6)	0	3830
33		max[tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HKPS00089), tr/HKPS00089)]	386 ft(6,9)	4500	4889
34	7 mt(33,34) 382	max[tr/HYRL00146), tr/HYRL00146), tr/HYRL00146), tr/HKPS00089), tr/HKPS00089), tr/HDRN00169)]	386 ft(9,9)	0	3827
32		max[tr/HYRL00146), tr/HYRL00146), tr/HKPS00089), tr/HKPS00089), tr/HDRN00169), tr/HDRN00169)]	386 ft(9,10)	1500	8161
31		maxftr/HYRL00146), tr/HKPS00089), tr/HKPS00089), tr/HDRN00169), tr/HDRN00169), tr/HDRN00162)]	386 ft(10,10)	0	3827
-		max[tr/HKPS00089), tr/HKPS00089), tr/HDRN00169), tr/HDRN00169), tr/HDRN00162), tr/HDRN00162)]	271 ft(10,10)	0	4886
	1 1 1 1	max tr/HKP\$00089), tr/HDRN00169), tr/HDRN00169), tr/HDRN00169), tr/HDRN00162), tr/HDRN00162)]	271 ft(10.74)	96000	96000
		max[tr/HDRN00169), tr/HDRN00169), tr/HDRN00162), tr/HDRN00162), tr/HDRN00162), tr/HDRN00180)]	271 ft(74,74)	0	336
7		max [tr/HDRN00169), tr/HDRN00162), tr/HDRN00162), tr/HDRN00162), tr/HDRN00180), tr/HDRN00180)]	271 ft(74,74)	0	3827
13		max[tr/HDRN00162), tr/HDRN00162), tr/HDRN00162), tr/HDRN00162), tr/HDRN00180), tr/HDRN00180)	271 ft(74,212)	207000	207000
14	1 1 1 1	max[tr/HDRN00162), tr/HDRN00162), tr/HDRN00180), tr/HDRN00180), tr/HDRN00180), tr/HDRN00291)]	271 ft(212,212)	0	3827
12		2 max tr/HDRN00162), tr/HDRN00180), tr/HDRN00180), tr/HDRN00180), tr/HDRN00291), tr/HDRN00291)	271 ft(212,212)	0	8162
18		max[tr/HDRN00180), tr/HDRN00180), tr/HDRN00180), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291)]	271 ft(212,212)	0	4505
17		max tr/HDRN00180), tr/HDRN00180), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291)	271 ft(212,174)	57000	57000
16		2 max fr/HDRN001801, tr/HDRN002911, tr/HDRN002911, tr/HDRN002911, tr/HDRN002911, tr/HDRN00180-4491	271 ft(174,174)	0	8162
30		max ftr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00160-449), tr/HDRN00160-449)]	271 ft(174,174)	0	3657
29		max[tr/HDRN00291), tr/HDRN00291), tr/HDRN00291), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449),	271 ft(174,174)	0	3827
28		2 max ftr/HDRN00291), tr/HDRN00291), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449)	271 ft(174,174)	0	8162
27		7 max tr/HDRN00291), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449)	271 ft(174,174)	0	3827
19		max[tr/HDRN00180-449), tr/HDRN00180-449), tr/HDRN00180-449), tr/HDRN00180-449), tr/HDRN00180-449), tr/HDRN00180-449), tr/HDRN00180-449),	157 ft(174,174)	0	211
23	 	max[m/HDRN00160-449), m/HDRN00160-449), m/HDRN00160-449), m/HDRN00160-449), m/HDRN00160-449), m/HDRN00160-449)	157 ft(174,174)	0	8162
24	, , , t	max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449),	157 ft(174,74)	150000	150000
25	1 1 1 1	8 max[tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN001803	271 ft(74,10)	96000	96000
26		9 max (r/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00180), tr/HDRN00162)	271 ft(10,9)	1500	1500
22	 	2 max [tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00160-449), tr/HDRN00180), tr/HDRN00162), tr/HDRN00169)]	271 ft(9,9)	0	8162
21		9 max (r/HDRN00169-449), tr/HDRN00160-449), tr/HDRN00180), tr/HDRN00162), tr/HDRN00169), tr/HDRN00169)	271 ft(9,6)	4500	4500
20		8 max(tr/HDRN00160-449), tr/HDRN00180), tr/HDRN00162), tr/HDRN00169), tr/HDRN00169), tr/HKP\$00089)]	271 ft(8,6)	1000	3658
15		max(tr/HDRN00180), tr/HDRN00162), tr/HDRN00169), tr/HDRN00169), tr/HKPS00089), tr/HKPS00089)]	271 ft(6,6)	0	3000
	-1 001	PRODUCTION OF THE PRODUCT OF A STATE OF THE PRODUCT OF A STATE OF THE PRODUCT OF	TOTAL		744304

With the tour illustrated in Figure D.1 the SMT machine's costs at each step is shown at Table D.2. Since clockwise directed tour gives better cycle time, construction tour will be directed clockwise. Modified 2-opt will be applied to this construction tour and improvement to the initial solution will be made.

APPENDIX E

GAIN CALCULATIONS

For the example given in Figure 3.6, calculations of part (1) is shown at Table F.1. Location 30 in the table is placed to show the costs are same, since the next six steps are same for both tours' structure. Calculations regarding the turret and feeder movements have to be conducted because of the change in the tour structure. The second part, as shown in Table E.2 shows that the 2-opt change in the tour has provided a subtour whose length can be calculated as a means of the counter clockwise costs. The third part requires one to calculate the costs of movements since the turret movement and feeder movement figures changed. At the end, it is found out that this sample 2-opt process improves the tour 100 seconds approximately.

It is important for one to define the calculation steps by using conditional statements, since there may not be 6 locations between locations right(j) and i, or the second part can not be applied in the case where the amount of locations between left(j) and i are less than 6.

Table E.1. First part of the gain calculations

e loc	Feeder Loc (i+6)	Newtable move (i)		Motion Clockw		New Turret Movement			New Fee	der	Clockwis Feeder o	carrier	(for step i) max (table, turret,	turret,	Gain (difference between distances)
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
30	1	3 mt(29,30)	3827	mt(29,30)	3827	max[tr(HDRN00291), tr(HDRN00180), tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162)]	271	271	ft(10,10)	0	ft(10,10)	0	3827	3827	0
16	1	1 mt(30,16)	3657	mt(30,16)	3657	max[tr(HDRN00180), tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162)]	271	271	ft(10,10)	0	ft(10,9)	1500	3657	3657	0
17	1	0 mt(16,17)	8162	mt(16,17)	8162	max[tr(HDRN00180), tr(HDRN00180), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162)]	271	271	ft(10,9)	1500	ft(9,9)	0	8162	8162	0
18		9 mt(17,18)	3827	mt(17,18)	3827	max[tr(HDRN00180), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00169)]	271	271	ft(9,9)	0	ft(9,6)	4500	3827	4500	-673
12		5 mt(18,12)	4505	mt(18,12)	4505	max[tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00169), tr(HDRN00169)]	271	271	ft(9,6)	4500	ft(6,6)	0	4505	4505	0
14		3 mt(12,14)	8162	mt(12,14)	8162	max[tr(HDRN00162), tr(HDRN00162), tr(HDRN00162), tr(HDRN00169), tr(HDRN00169), tr(HKPS00089)]	271	271	ft(6,6)	0	ft(6,2)	6000	8162	8162	0
13	3	3 mt(14,13)	3827	mt(14,13)	3827	max[tr(HDRN00162), tr(HDRN00162), tr(HDRN00169), tr(HDRN00169), tr(HKPS00089), tr(HKPS00089)]	271	386	ft(6,2)	6000	ft(2,2)	0	6000	3827	2173
														total	1500

Table E.2. Second part of the gain

Tabl e loc (i)	Feeder Loc (i+6)	Newtable move (i)		Clockv table mo		NewTurret Movement (i.e. counter clockwise turret movement)			New F carrier move		Clockwise carrier mo	Feeder	(for step i)	max (table,	Gain (difference between distances)
10	32	mt(11,10)	3997	mt(9,10)	3827	max[tr(HDRN00169), tr(HDRN00169), tr(HKPS00089), tr(HKPS00089), tr(HYRL00146), tr(HYRL00146)]	386	271	ft(2,2)	C	ft(174,174)	С	3997	3827	170
9	31	mt(10,9)	3827	mt(5,9)	3361	max[tr(HDRN00169), tr(HKPS00089), tr(HKPS00089), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146)]	386	271	ft(2,2)	C	ft(174,174)	С	3827	3361	466
5	4	mt(9,5)	3361	mt(3,5)	3830	max[tr(HKPS00089), tr(HKPS00089), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146)]	386	271	ft(2,6)	6000	ft(174,174)	С	6000	3830	2170
3	6	mt(5,3)	3830	mt(33,3)	4889	max[tr(HKPS00089), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089)]	386	271	ft(6,6)	C	ft(74,174)	150000	3830	150000	-146170
33	8	mt(3,33)	4889	mt(32,33)	3827	max[tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089)]	386	271	ft(6,9)	4500	ft(10,74)	96000	4889	96000	-91111
34	7	mt(33,34)	3827	mt(32,34)	8161	max[tr(HYRL00146), tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089), tr(HDRN00169)]	386	386	ft(9,9)	(ft(9,10)	1500	3827	8161	-4334
														total	-238809

Table E.3. Third part of the gain calculations

		Motion								
	/;±6/	Newtable (i)		NewTurret Movement (i.e. counter clockwise turret movement)		NewFeede move		New distance (for step i) max (table, turret, feeder)		Gain (difference between distances)
11	34	mt(13,11)	8162	max[tr(HDRN00162), tr(HKPS00089), tr(HDRN00169), tr(HDRN00169), tr(HDRN00180), tr(HDRN00160-449)]	271	ft(2,2)	0	8162	3997	4165
32	15	mt(34,32)	8161	max[tr(HYRL00146), tr(HYRL00146), tr(HKPS00089), tr(HKPS00089), tr(HDRN00169), tr(HDRN00169)]	386	ft(9,74)	97500	97500	3827	93673
31	20	mt(32,31)	3827	max[tr(HYRL00146), tr(HKPS00089), tr(HKPS00089), tr(HDRN00169), tr(HDRN00169), tr(HDRN00180)]	386	ft(74,174)	150000	150000	4885	145115
4	21	mt(31,4)	4885	max[tr(HKPS00089), tr(HKPS00089), tr(HDRN00169), tr(HDRN00169), tr(HDRN00180), tr(HDRN00160-449)]	271	ft(174,174)	0	4885	3827	1058
6	22	mt(4,6)	3827	max[tr(HKPS00089), tr(HDRN00169), tr(HDRN00169), tr(HDRN00180), tr(HDRN00160-449), tr(HDRN00160-449)]	271	ft(174,174)	0	3827	6000	-2173
8	26	mt(6,8)	3361	max[tr(HDRN00169), tr(HDRN00169), tr(HDRN00180), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449)]	271	ft(174,174)	0	3361	3827	-466
7	25	mt(8,7)	3827	max[tr(HDRN00169), tr(HDRN00180), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449)]	271	ft(174,174)	0	3827	3997	-170
15	24	mt(7,15)	550	max[tr(HDRN00180), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449), tr(HDRN00160-449)]	271	ft(174,174)	0	550	8839	-8289

APPENDIX F

PROCEDURE FOR LOWER BOUND 2

```
n: \# of locations
edges: length of the path
D: Distance matrix \ni l \neq k \Rightarrow d_{lk} = d_{kl} = \max\{mt_{lk}, r\}
                        l = k \Rightarrow d_{ll} = M = \text{large number}
PROCEDURE LowerBound (D, slength, n, edges)
// Initialization //
slength = M
// Process //
for l = 1, ..., n
        getshortest(D, l, n, length, edges)
        if length < slength then slength = length
// Output //
Print slength
PROCEDURE Getshortest(D, l, n, length, edges)
// Initialization //
last = 0
mdistance = M
for k = 1, ..., n
        if mdistance > D(l,k) then last = k
                                        mdistance = D(l,k)
        inpath(k) = False
first = l
```

```
length = mdistance
inpath (first) = True
inpath (last) = True
// process //
for s = 2, ..., edges
Check (D, first, n, inpath, fdistance, nextf)
Check (D, first, n, inpath, ldistance, nextl)
If ldistance < fdistance
        Then length = length + ldistance
               last = nextl
               Inpath(nextl)= True
               length = length + fdistance
        Else
               first = nextf
               inpath (nextf) = True
PROCEDURE Check(D, key, n, inpath, fdistance, next)
// Initialization //
distance = M
next = 0
for k = 1, ..., n
        if (not.inpath(k)) then if D(k, \text{key}) < \text{distance} then distance = D(k, \text{key})
                                                               next = k
```

APPENDIX G

Table G.1. PCB DATA FOR CASE A – 1*2.5 – 2 COMPONENTS

		PCB	0.	1					PCB	02	2				PCB	03	3	
l	х	Y	G	r_{q}	Feeder		l	Х	Υ	c_{l}	r_{c}	Feeder	l	Х	Υ	c_{l}	r_{q}	Feeder
1			1	100	1		1	382	8381	1		1	1	12414	7271		157	2
2		7919	1	100	1		2	18670	196	2	157	2	2	22494	3093	_	157	2
3	15171	9218	2	157	2		3	11127	6813	1	100	1	3	20541	8385	2	157	2
4	12150	7382	1	100	1		4	23295	3795	2	157	2	4	16123	5681	2	157	
5			1		1		5	11650		1	100	1	5	20449	3704		100	1
6		4057	1	100	1		6	10466	5028	2	157	2	6	16506	7027		157	2
7			1	100	1		7	21156	7095	1	100	1	7	8549	5466		100	1
8			2	157	2		8	13129	4289	2	157	2	 8	7243			100	1
9			1	100	1		9	5066 16803	3046	2	157	2	 9	13352	6946	-	157	2
10	11118	8936	1	100	1		10	16803	1897	2	157		10	13352	6213	2	157	
		PCB	04	4					PCB	0	5				PCB	06	3	
l	х	Y	G	r_{q}	Feeder		l	Х	Υ	c_{l}	r_{g}	Feeder	l	Х	Υ	c_{l}	r_{q}	Feeder
1	3413		1	100	1		1	10384	2140			2	1	11286	6085		100	1
2	294	4235	1	100	1		2	7625	6435	1	100	1	2	1097	158	1	100	1
3			2	157	2		3	21859	3200	2	157	2	3	680	164	1	100	1
4			2	157	2		4	375	9601	2	157	2	4	7817	1901		100	1
5			1	100	1	_	5	19199	7266	1	100	1	5	322		1	100	1
6			2	157	2		6	24271	4120	1	100	1	6	9599	576		157	2
7	7110		2	157	2	_	7	24752		2	157	2	7	17078	3676	_	157	2
8			1	100	1		8	19722		2	157	2	 8	2321	6315	-	157	2
10	1620 24708	6405	2	157 100	2 1		9 10	10966 12458	4399 9334	2	100 157	1 2	9 10	883 15310	7176 6927	2	100 157	2
10	24700	0403		100			10	12430	9004	_	137		10	13310	0921	ك	137	
		PCB	0.	7					PCB	08	8				PCB	09	9	
l	x		÷		Feeder		l	Х		$\frac{0}{c_l}$	_	Feeder	l	X	PCB Y	c_{l}		Feeder
<i>l</i>	X 3026	Υ	÷	7 r _q 100	Feeder 1		<i>l</i>	X 23356	Υ	Ė	_	Feeder 1	<i>l</i>	7435	PCB Y 3759	c_{l}		1
	3026	Y 2319 2393	ς_{l}	r					Y 1370 8188	c_{l}	r q 100			7435 1229	Υ	<i>c</i> _l	r_{q}	1 2
1 2 3	3026 11269 17897	Y 2319 2393 498	<i>C_l</i> 1 1	r _q 100 100	1 1 1	_	1 2 3	23356 6611 4008	Y 1370 8188 4302	<i>c</i> ₁ 2 1	r _q 100 157 100	1 2 1	1 2 3	7435 1229 17330	Y 3759 99 4199	<i>c</i> ₁ 2 2	100 157 157	1 2 2
1 2 3 4	3026 11269 17897 22321	Y 2319 2393 498 784	G 1 1 1	100 100 100 100	1 1 1	_	1 2 3 4	23356 6611 4008 21821	Y 1370 8188 4302 8903	<i>C</i> ₁ 2 1 2	100 157 100 157	1 2 1 2	1 2 3 4	7435 1229 17330 16253	Y 3759 99 4199 7537	<i>C</i> ₁ 2 2 2	100 157 157 157	1 2 2 2
1 2 3 4 5	3026 11269 17897 22321 6828	Y 2319 2393 498 784 6408	G 1 1 1	100 100 100 100 100	1 1 1 1	_	1 2 3 4 5	23356 6611 4008 21821 5947	Y 1370 8188 4302 8903 7349	ζ ₁ 2 1	100 157 100 157 100	1 2 1 2	1 2 3 4 5	7435 1229 17330 16253 24575	Y 3759 99 4199 7537 7939	<i>C</i> ₁ 2 2 1	100 157 157 157 157	1 2 2 2 1
1 2 3 4 5 6	3026 11269 17897 22321 6828 6369	Y 2319 2393 498 784 6408 1909	G 1 1 1 1 2	100 100 100 100 100 157	1 1 1 1 1 2		1 2 3 4 5	23356 6611 4008 21821 5947 16146	Y 1370 8188 4302 8903 7349 6873	ζ 1 2 1 2	100 157 100 157 100 100	1 2 1 2 1 1	1 2 3 4 5	7435 1229 17330 16253 24575 13817	Y 3759 99 4199 7537 7939 9200	7 1 2 2 1 2	100 157 157 157 100 157	1 2 2 2 1
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640	Y 2319 2393 498 784 6408 1909 8439	G 1 1 1 1 2	100 100 100 100 100 157 100	1 1 1 1 1 2		1 2 3 4 5 6	23356 6611 4008 21821 5947 16146 24172	Y 1370 8188 4302 8903 7349 6873 3461	<i>G</i> 1 2 1 1 1 1	100 157 100 157 100 100 100	1 2 1 2 1 1	1 2 3 4 5 6	7435 1229 17330 16253 24575 13817 10002	Y 3759 99 4199 7537 7939 9200 8447	<i>G</i> 1 2 2 1 2 2	100 157 157 157 100 157	1 2 2 2 1 1 2
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640 5809	Y 2319 2393 498 784 6408 1909 8439 1739	7 1 1 1 1 1	100 100 100 100 100 157 100	1 1 1 1 1 2 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623	Y 1370 8188 4302 8903 7349 6873 3461 1660	G 1 2 1 1 1	100 157 100 157 100 157 100 100	1 2 1 2 1 1 1	1 2 3 4 5 6 7	7435 1229 17330 16253 24575 13817 10002 4970	Y 3759 99 4199 7537 7939 9200 8447 3678	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157	1 2 2 2 1 2 2 2
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708	G 1 1 1 1 2	100 100 100 100 100 157 100	1 1 1 1 1 2		1 2 3 4 5 6 7	23356 6611 4008 21821 5947 16146 24172	Y 1370 8188 4302 8903 7349 6873 3461	<i>G</i> 1 2 1 1 1 1	100 157 100 157 100 100 100	1 2 1 2 1 1	1 2 3 4 5 6	7435 1229 17330 16253 24575 13817 10002	Y 3759 99 4199 7537 7939 9200 8447	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157	1 2 2 2 1 1 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943	G 1 1 1 1 1 1 2	100 100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	G 1 1 1 1 1 1 1 2	100 100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	G 1 1 1 1 1 1 1 2	100 100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1 1 2 2		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165	G 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	100 100 100 100 100 157 100 100 157 100 157	1 1 1 1 1 2 1 1 1 1 2 2 Feeder		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113	$\frac{9}{11111111111111111111111111111111111$	100 100 100 100 100 157 100 157 100 157 100 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 <i>l</i>	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764	9 1 1 1 1 2 1 1 2 1 1 2 1	100 100 100 100 100 157 100 157 100 157 100 157 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341	Y 2319 2393 498 784 6408 1909 1739 1708 9943 PCB Y 7165 5113 7764 4893	$\frac{9}{11111111111111111111111111111111111$	T _q	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 l 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380	2319 2393 498 784 1909 8439 1739 1708 9943 7165 5113 7764 4893 1859	$\frac{C_7}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$	7g 100 100 100 100 100 100 157 100 100 157 100 100 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940	2319 2393 498 784 6408 1909 8439 1708 9943 7165 5113 7764 4893 1859 7006	$\frac{c_7}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $$	100 100 100 100 100 157 100 157 100 157 100 157 100 157 100 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	2319 2393 498 784 6408 1909 8439 1708 9943 7165 5113 7764 4893 1859 7006 9827	$\frac{C_7}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$	7g 100 100 100 100 100 100 157 100 100 157 100 100 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 6 7 7 7 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 498 6408 6408 1739 1708 9943 7165 5113 7764 4893 1859 7006 9827 8066	$\frac{C_7}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $$	7g 100 100 100 100 157 100 100 157 157 157 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 498 498 498 1739 1708 9943 7165 5113 7764 4893 1859 7006 9827 8066	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 157 100 157 100 157 100 157 100 157 100 157 157 157 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>G</i> 1 2 1 1 1 2 2	100 157 100 157 100 100 100 100 157	1 2 1 2 1 1 1 1	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 2 2 2 1 2 2

Table G.2. PCB DATA FOR CASE A -2.5*5-2 COMPONENTS

		PCB	01						PCB	02						PCB	03		
l	Х	Υ	c_{l}	$r_{_{G}}$	Feeder		l	Х	Y	$c_{\!\scriptscriptstyle l}$	r	Feeder		l	Х	Υ	c_{l}	r	Feeder
1		12308	_	100	1		1	764	16762		100	1		1	24828	14542		157	2
2		15838	_	100	1		2	37340	392	-	157	2		2	44988	6186		157	2
3	30342	18436	2	157	2		3	22254	13626	1	100	1		3	41082	16770	2	157	2
4	24300	14764	1	100	1		4	46590	7590	2	157	2		4	32246	11362	2	157	2
5		3526	1	100	1		5	23300	16636	-	100	1		5	40898	7408	1	100	1
	38104	8114	-	100	1		6	20932	10056	-	157	2			33012		_	157	2
7		18710		100	1		7	42312	14190		100	1		7	17098		1	100	1
8		18338	-	157	2		8	26258	8578	-	157	2		8	14486	8898	_	100	1
10	41070 22236	8206 17872	1	100	1		9	10132 33606	6092 3794	_	157	2		9 10	17060 26704	13892 12426	2	157 157	2
10	22230	1/0/2	<u> </u>	100	- 1		10	33000	3/94	_	157			10	20704	12420	_	157	
		PCB	04						PCB	05						PCB	06		
l	.,	.,	c	r			l		.,	c	r			1		.,	c.	r	
	X	Y 11656		r 4	Feeder	\vdash	1	X 20769	Y 4290	c_l		Feeder	\vdash	1	X 22572		$\frac{C_l}{1}$		Feeder
2		11656 8470	-	100	1		2	20768 15250	4280 12870	-	157	2 1	\vdash	1 2	22572 2194	12170 316		100	1
	588 44694				2				6400	-	100 157	2		3	1360	328		100	1
4		6680	_	157	2		4	750	19202	-	157	2		4	15634	3802		100	1
	14936	8658	_	100	1		_	38398	14532	_	100	1		5	644	11738	_	100	1
	33072	4518		157	2		_	48542	8240		100	1		6	19198	1152		157	2
7	14220	11596		157	2		7	49504	14892		157	2		7	34156	7352		157	2
8	23462	15208	1	100	1		8	39444	5358	2	157	2		8	4642	12630	2	157	2
9	3240	10596	2	157	2		9	21932	8798	1	100	1		9	1766	14352	1	100	1
10	49416	12810	1	100	1		10	24916	18668	2	157	2		10	30620	13854	2	157	2
		PCB	07						PCB	00						PCB	00		
-		РСВ					1		РСВ					,					
	Χ	Υ	c_{l}		Feeder		l	Χ	Υ		r	Feeder		_	X		c_{l}	_	Feeder
1	6052	4638	1	100	1		1	46712	2740	1	100	1		_	14870	7518	1	100	1
1	6052 22538	4638 4786	1	100 100	1		1	46712 13222	2740 16376	1 2	100 157	1 2		1	14870 2458	7518 198	1	100 157	1 2
1 2 3	6052 22538 35794	4638 4786 996	1 1	100 100 100	1 1 1		1 2 3	46712 13222 8016	2740 16376 8604	1 2 1	100 157 100	1 2 1		1 2 3	14870 2458 34660	7518 198 8398	1 2 2	100 157 157	1 2 2
1 2 3 4	6052 22538 35794 44642	4638 4786 996 1568	1 1 1	100 100 100 100	1 1 1		1 2 3 4	46712 13222 8016 43642	2740 16376 8604 17806	1 1 2	100 157 100 157	1 2 1 2		1 2 3 4	14870 2458 34660 32506	7518 198 8398 15074	1 2 2	100 157 157 157	1 2 2 2
1 2 3 4 5	6052 22538 35794 44642 13656	4638 4786 996 1568 12816	1 1 1 1	100 100 100 100 100	1 1 1 1		1 2 3 4 5	46712 13222 8016 43642 11894	2740 16376 8604 17806 14698	1 1 2 1	100 157 100 157 100	1 2 1 2		1 2 3 4 5	14870 2458 34660 32506 49150	7518 198 8398 15074 15878	1 2 2	100 157 157 157 100	1 2 2 2 1
1 2 3 4 5 6	6052 22538 35794 44642 13656 12738	4638 4786 996 1568 12816 3818	1 1 1 1 2	100 100 100 100 100 157	1 1 1 1 1 2		1 2 3 4	46712 13222 8016 43642 11894 32292	2740 16376 8604 17806 14698 13746	1 2 1 2 1	100 157 100 157 100 100	1 2 1 2 1 1		1 2 3 4 5 6	14870 2458 34660 32506 49150 27634	7518 198 8398 15074 15878 18400	1 2 2 1 2	100 157 157 157 100 157	1 2 2 2 1 2
1 2 3 4 5 6 7	6052 22538 35794 44642 13656 12738 43280	4638 4786 996 1568 12816 3818 16878	1 1 1 1 2	100 100 100 100 100 157 100	1 1 1 1		1 2 3 4 5	46712 13222 8016 43642 11894 32292 48344	2740 16376 8604 17806 14698 13746 6922	1 2 1 1 1	100 157 100 157 100 100	1 2 1 2		1 2 3 4 5	14870 2458 34660 32506 49150 27634 20004	7518 198 8398 15074 15878 18400 16894	1 2 2 1 2 2	100 157 157 157 100 157 157	1 2 2 2 1 1 2
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738	4638 4786 996 1568 12816 3818	1 1 1 1 2 1	100 100 100 100 100 157	1 1 1 1 1 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292	2740 16376 8604 17806 14698 13746	1 2 1 1 1 1	100 157 100 157 100 100	1 2 1 2 1 1 1 1		1 2 3 4 5 6	14870 2458 34660 32506 49150 27634 20004 9940	7518 198 8398 15074 15878 18400 16894 7356	1 2 2 1 2 1	100 157 157 157 100 157	1 2 2 2 1 2 2 2
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618	4638 4786 996 1568 12816 3818 16878 3478	1 1 1 2 1 1	100 100 100 100 100 157 100	1 1 1 1 1 2 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246	2740 16376 8604 17806 14698 13746 6922 3320	1 2 1 1 1 1	100 157 100 157 100 100 100	1 2 1 2 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356	1 2 2 1 2 1	100 157 157 157 100 157 157 100	1 2 2 2 1 1 2
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244	4638 4786 996 1568 12816 3818 16878 3478 3416 19886	1 1 1 1 2 1 1 2	100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9	6052 22538 35794 44642 13656 12738 43280 11618 40244	4638 4786 996 1568 12816 3818 16878 3478 3416 19886	1 1 1 1 2 1 1 1 2	100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	1 1 1 1 2 1 1 1 2 7 7	100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1 1 2 7		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	1 1 1 1 2 1 1 1 2 7 10 7	100 100 100 100 157 100 100 157	1 1 1 1 1 2 1 1 1 1 2 2 Feeder 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226	1 1 1 1 2 1 1 2 1 1 2 1 2 1 2	100 100 100 100 157 100 100 157 r q 100 157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2	100 100 100 100 157 100 100 157 100 157 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 4 1 1 2 1 1 2 1 1 2 1 1 2 3 3 4 4 1 1 1 1 1 1 2 1 1 1 1 1 1 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786	1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1	100 100 100 100 157 100 100 157 100 157 100 157 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 2	100 100 100 100 157 100 100 157 100 157 100 100 157	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2	100 100 100 100 157 100 157 100 157 100 157 157	1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 6 7 8 9 10 1 1 2 3 3 4 1 5 6 6 7 7 8 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012	1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2	100 100 100 100 157 100 157 100 157 100 157 100 157 157 157	Feeder 1 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 6 7 7 8 8 9 6 7 7 8 8 8 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8 8 8 7 8 7 8 8 8 8 8 7 8 8 8 8 8 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 100 100 100 100 157 100 100 157 100 157 100 100 157 157 157 157	1 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 6 7 7 8 9 9 1 9 1 9 1 9 1 8 1 8 1 8 1 8 1 8 1	X 31366 34954 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262	4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 2 2 2 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157 157 157 157	Feeder 1 1 2 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 6 7 7 8 9 9 1 9 1 9 1 9 1 8 1 8 1 8 1 8 1 8 1	X 31366 34944 45420 X 31366 34954 19860 20682 32760 41880 18580 21262 29734	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 2 2 2 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157 157 157 157	Feeder 1 1 2 2 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 6 7 8 9 10 1 1 2 3 3 4 5 6 6 7 7 8 9 9 1 9 1 9 1 0 1 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	X 31366 34944 45420 X 31366 34954 19860 20682 32760 41880 18580 21262 29734	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 2 2 2 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157 157 157 157	Feeder 1 1 2 2 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 6 7 7 8 9 9 1 9 1 9 1 9 1 8 1 8 1 8 1 8 1 8 1	X 31366 34944 45420 X 31366 34954 19860 20682 32760 41880 18580 21262 29734	4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 2 2 2 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157 157 157 157	Feeder 1 1 2 2 2 2 2 2 2 2		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	2740 16376 8604 17806 14698 13746 6922 3320 3112	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	1 2 1 2 1 1 1 1 1		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	7518 198 8398 15074 15878 18400 16894 7356 12416	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	1 2 2 2 1 2 2 2 1 2

Table G.3. PCB DATA FOR CASE A – 10*2.5 – 2 COMPONENTS

PCB 1	PCB 2	PCB 3
$l \times r \sim r \sim r_q $	$l \mid \chi \mid_{Y} \qquad c_{l} \mid_{r_{g}} Feeder$	$l \mid_{X} \qquad \mid_{Y} \qquad c_l \mid_{r_q}^{r} \qquad Feeder$
1 237530 61540 1 100 1	1 3820 83810 1 100 1	1 124140 72710 2 157 2
2 57780 79190 1 100 1		2 224940 30930 2 157 2
3 151710 92180 2 157 2	3 111270 68130 1 100 1	3 205410 83850 2 157 2
4 121500 73820 1 100 1	4 232950 37950 2 157 2	4 161230 56810 2 157 2
5 222820 17630 1 100 1	5 116500 83180 1 100 1	5 204490 37040 1 100 1
6 190520 40570 1 100 1	6 104660 50280 2 157 2	6 165060 70270 2 157 2
7 114120 93550 1 100 1	7 211560 70950 1 100 1	7 85490 54660 1 100 1
8 4630 91690 2 157 2	8 131290 42890 2 157 2	8 72430 44490 1 100 1
9 205350 41030 1 100 1	9 50660 30460 2 157 2 10 168030 18970 2 157 2	9 85300 69460 2 157 2 10 133520 62130 2 157 2
10 111180 89360 1 100 1	10 168030 18970 2 157 2	10 133520 62130 2 157 2
PCB 4	PCB 5	PCB 6
$l \mid_{X} \qquad_{Y} \qquad c_l \mid_{r_q}^{r} \qquad_{Feeder}$	$l \times Y \qquad C_l r_q \qquad Feeder$	$l \mid_{X} \qquad_{Y} \qquad c_l \mid_{q}^{r} \qquad_{Feeder}$
1 34130 58280 1 100 1	1 103840 21400 2 157 2	1 112860 60850 1 100 1
2 2940 42350 1 100 1		2 10970 1580 1 100 1
3 223470 51550 2 157 2	3 218590 32000 2 157 2	3 6800 1640 1 100 1
4 49780 33400 2 157 2	4 3750 96010 2 157 2	4 78170 19010 1 100 1
5 74680 43290 1 100 1 6 165360 22590 2 157 2		5 3220 58690 1 100 1 6 95990 5760 2 157 2
6 165360 22590 2 157 2 7 71100 57980 2 157 2	6 242710 41200 1 100 1 7 247520 74460 2 157 2	6 95990 5760 2 157 2 7 170780 36760 2 157 2
8 117310 76040 1 100 1		8 23210 63150 2 157 2
9 16200 52980 2 157 2	9 109660 43990 1 100 1	9 8830 71760 1 100 1
10 247080 64050 1 100 1	10 124580 93340 2 157 2	10 153100 69270 2 157 2
PCB 7	PCB 8	PCB 9
$l \mid_{X} \qquad_{Y} \qquad c_l \mid_{r_q}^{r} \qquad_{Feeder}$	$l \mid_{X} \qquad_{Y} \qquad c_l \mid_{\mathit{q}}^{\mathit{r}} \qquad_{Feeder}$	$l \times Y \qquad C_l \nearrow_q \qquad Feeder$
I X Y C _I I' Feeder 1 30260 23190 1 100 1	l X Y C _l I' _q Feeder 1 233560 13700 1 100 1	l X Y C _l P _c Feeder 1 74350 37590 1 100 1
I X Y C _I I _q Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1	l X Y C _l I' _q Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2	l X Y C _l P _c Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1	l X Y C _I	l X Y C _l P _c Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2
I X Y C _I I _q Feeder Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2	l X Y C _l P _c Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1	l X Y C _l I _q Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1
I X Y C _I I _q Feeder Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2	I X Y C _I C _I C _I Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2	l X Y C _I C _I C _I Feeder 1 233560 13700 1 100 1 1 2 66110 81880 2 157 2 2 3 40080 43020 1 100 1 1 4 218210 89030 2 157 2 2 5 59470 73490 1 100 1 1 6 161460 68730 1 100 1 1	I X Y C _I F _Q Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1	I X Y C _I I I G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1	I X Y C _I F _Q Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1	I X Y C _I I' _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2 8 49700 36780 1 100 1
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 1 2 112690 23930 1 100 1 1 3 178970 4980 1 100 1 1 4 223210 7840 1 100 1 1 5 68280 64080 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 8 58090 17390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2	I X Y C _I I' _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _l I' _q Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1 9 201220 17080 1 100 1 10 227100 99430 2 157 2	I X Y C _I I' _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
l X Y C _l I' _q Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1 9 201220 17080 1 100 1 10 227100 99430 2 157 2 PCB 10 l X Y C _I I' _Q Feeder	I X Y C _I I _g Feeder 1 233560 13700 1 1000 1 1 2 66110 81880 2 157 2 2 3 40080 43020 1 100 1 1 4 218210 89030 2 157 2 2 5 59470 73490 1 100 1 1 6 161460 68730 1 100 1 1 7 241720 34610 1 100 1 1 8 166230 16600 1 100 1 1 9 217600 15560 2 157 2 2 10 2480 19110 1 100 1 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2 8 49700 36780 1 100 1 9 156300 62080 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 1 2 112690 23930 1 100 1 1 3 178970 4980 1 100 1 1 4 223210 7840 1 100 1 1 5 68280 64080 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 8 58090 17390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I I' _G Feeder 1 156830 71650 1 100 1 1	I X Y CI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1 9 201220 17080 1 100 1 10 227100 99430 2 157 2 PCB 10 I X Y C _I I' _Q Feeder Feeder 1 156830 71650 1 100 1 2 174770 51130 2 157 2 <td>I X Y C_I I_G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1</td> <td>I X Y C_I I_G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2 8 49700 36780 1 100 1 9 156300 62080 2 157 2</td>	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2 8 49700 36780 1 100 1 9 156300 62080 2 157 2
I X Y C _I I' _G Feeder 1 30260 23190 1 1000 1 1 2 112690 23930 1 1000 1 1 3 178970 4980 1 100 1 1 4 223210 7840 1 100 1 1 5 68280 64080 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 8 58090 17390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I I' _G Feeder 1 156830 71650 1 100 1 1 2 174770 51130 2 157 2 2 3 99300 77640 1 100 1 1	I X Y C _I V _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1 9 201220 17080 1 100 1 10 227100 99430 2 157 2 PCB 10 I X Y C _I I' _G Feeder 1 156830 71650 1 100 1 2 174770 51130 2 157 2	I X Y C _I V _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I I' _G Feeder 1 30260 23190 1 100 1 2 112690 23930 1 100 1 3 178970 4980 1 100 1 4 223210 7840 1 100 1 5 68280 64080 1 100 1 6 63690 19090 2 157 2 7 216400 84390 1 100 1 8 58090 17390 1 100 1 9 201220 17080 1 100 1 10 227100 99430 2 157 2 PCB 10 I X Y C _I I' _Q Feeder 1 156830 71650 1 100 1 2 174770 51130 2 157 2	I X Y C _I I _g Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I I' _G Feeder 1 30260 23190 1 1000 1 1 2 112690 23930 1 1000 1 1 3 178970 4980 1 100 1 1 4 223210 7840 1 100 1 1 5 68280 64080 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 8 58090 17390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I I' _G Feeder 1 156830 71650 1 100 1 1 2 174770 51130 2 157 2 2 3 99300 77640 1 100 1 1 4 103410 48930 1 100 1 1 5 163800 18590 2 157 2 2 6 209400 70060 2 157 2 1	I X Y C _I V _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I C _I C _I Feeder 1 30260 23190 1 100 1 100 1 1 2 112690 23930 1 100 1 100 1 1 3 178970 4980 1 100 1 100 1 1 4 223210 7840 1 100 1 100 1 1 5 68280 64080 1 100 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I C _I C _I Feeder 1 156830 71650 1 100 1 1 2 2 174770 51130 2 157 2 2 3 99300 77640 1 100 1 1 4 103410 48930 1 100 1 1 5 163800 18590 2 157 2 6 209400 70060 2 157 2 7 92900 98270 2 157 2	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I C _I C _I Feeder 1 30260 23190 1 100 1 100 1 1 2 112690 23930 1 100 1 100 1 1 3 178970 4980 1 100 1 100 1 1 4 223210 7840 1 100 1 100 1 1 5 68280 64080 1 100 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I C _I C _I Feeder 1 156830 71650 1 100 1 1 2 174770 51130 2 157 2 2 3 99300 77640 1 100 1 1 4 103410 48930 1 100 1 1 5 163800 18590 2 157 2 6 209400 70060 2 157 2 7 92900 98270 2 157 2	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 1 2 12290 990 2 157 2 2 3 173300 41990 2 157 2 2 4 162530 75370 2 157 2 2 5 245750 79390 1 100 1 1 6 138170 92000 2 157 2 2 7 100020 84470 2 157 2 2 8 49700 36780 1 100 1 1 9 156300 62080 2 157 2 2
I X Y C _I C _I C _I Feeder 1 30260 23190 1 100 1 100 1 1 2 112690 23930 1 100 1 100 1 1 3 178970 4980 1 100 1 100 1 1 4 223210 7840 1 100 1 100 1 1 5 68280 64080 1 100 1 100 1 1 6 63690 19090 2 157 2 2 7 216400 84390 1 100 1 1 9 201220 17080 1 100 1 1 10 227100 99430 2 157 2 2 PCB 10 I X Y C _I C _I C _I Feeder 1 156830 71650 1 100 1 1 2 2 174770 51130 2 157 2 2 3 99300 77640 1 100 1 1 4 103410 48930 1 100 1 1 5 163800 18590 2 157 2 6 209400 70060 2 157 2 8 106310 80660 2 157 2	I X Y C _I I _G Feeder 1 233560 13700 1 100 1 2 66110 81880 2 157 2 3 40080 43020 1 100 1 4 218210 89030 2 157 2 5 59470 73490 1 100 1 6 161460 68730 1 100 1 7 241720 34610 1 100 1 8 166230 16600 1 100 1 9 217600 15560 2 157 2 10 2480 19110 1 100 1	I X Y C _I I _G Feeder 1 74350 37590 1 100 1 2 12290 990 2 157 2 3 173300 41990 2 157 2 4 162530 75370 2 157 2 5 245750 79390 1 100 1 6 138170 92000 2 157 2 7 100020 84470 2 157 2 8 49700 36780 1 100 1 9 156300 62080 2 157 2

Table G.4. PCB DATA FOR CASE A – 1*2.5 – 4 COMPONENTS

		PCB	0	1				PCB	02	2				PCB	0;	3	
l	Х	Υ	C_{i}	$r_{_{\!\scriptscriptstyle G}}$	Feeder	l	Х	Y	$c_{\!\scriptscriptstyle l}$	r.	Feeder	l	Х	>	c_{l}	r _g	Feeder
1	23753		1	100	1	1	382			100	1	1		7271		9 271	4
2	5778		_		2		18670			100	1	2	22494		-	271	4
	15171		_	271	4	3					3	3					3
4	12150		1		1	4	23295		-		3	4	16123		_	271	4
5	22282		1		1	5	11650		_		2	5	20449		_	100	1
6	19052		1	100	1	6	10466		-		2	6	16506		4	271	4
7	11412	9355	1	100	1	7	21156	7095	3	214	3	7	8549	5466	2	157	2
8	463	9169	3	214	3	8	13129	4289	4	271	4	8	7243	4449	2	157	2
9	20535	4103	2	157	2	9	5066	3046	4	271	4	9	8530	6946	4	271	4
10	11118	8936	1	100	1	10	16803	1897	3	214	3	10	13352	6213	3	214	3
		D.00						D00						D.0.D			
		PCB	04	4				PCB	Ut	<u> </u>				PCB	00	o o	
l	Х	Υ	$c_{\!\scriptscriptstyle l}$	r_q	Feeder	l	X	Υ	$c_{\!\! l}$	r_{q}	Feeder	l	Х	Υ	$c_{\!\! l}$	r_{q}	Feeder
1	3413				1	1	10384	2140	3	214	3	1	11286	6085	1	100	1
2	294	4235	2	157	2	2	7625				1	2	1097	158		157	2
	22347		4	271	4	3	21859		4	271	4	3	680	164			2
4	4978			214	3	4			$\boldsymbol{\vdash}$	214	3	4	7817	1901	-	157	2
5		4329	_	157	2		19199		1		1	5		5869	_	100	1
-	16536		_	214	3	6	24271		1		1	6	9599	576		214	3
7	7110	5798	_	271	4	7	24752			214	3	7	17078			214	3
8	11731		_	100	1	8			-	214	3	8	2321		_	214	3
9	1620		_		3	9			-		2	9		7176	_	157	2
10	24708	6405	1	100	1	10	12458	9334	3	214	3	10	15310	6927	4	271	4
		PCB	0.	7				PCB	30	3				PCB	09	9	
1		PCB			F	1		PCB			F	1	V	PCB			F
l	X 3026	Υ	$c_{\!\! l}$	r_{q}	Feeder		X 23356	Υ	$c_{\!\scriptscriptstyle l}$	r_{q}	Feeder		X 7/35	Υ	c_{l}	r_{q}	Feeder
1	3026	Y 2319	<i>c</i> _l	r 157	2	1	23356	Y 1370	<i>c</i> _l	r q 214	3	1	7435	Y 3759	<i>c</i> _l	r _q 100	1
1	3026 11269	Y 2319 2393	<i>c</i> ₁ 2 2	r _q 157 157	2	1	23356 6611	Y 1370 8188	<i>C</i> ₁ 3 4	r 214 271	3 4		7435 1229	Y 3759 99	<i>C_l</i> 1 4	r _q 100 271	1
1 2 3	3026 11269 17897	Y 2319 2393 498	<i>G</i> 2 2 2	1 ^r _q 157 157 157	2 2 2	1 2 3	23356 6611 4008	Y 1370 8188 4302	<i>C</i> ₁ 3 4 2	r _q 214 271 157	3 4 2	1 2 3	7435 1229 17330	Y 3759 99 4199	<i>G</i> 1 4 3	r _q 100 271 214	1 4 3
1 2 3 4	3026 11269 17897 22321	Y 2319 2393 498 784	<i>G</i> 2 2 2 2	157 157 157 157 157	2 2 2 2	1	23356 6611 4008 21821	Y 1370 8188 4302 8903	<i>C</i> _l 3 4 2 4	214 271 157 271	3 4 2 4	1 2 3 4	7435 1229 17330 16253	Y 3759 99 4199 7537	<i>C_l</i> 1 4	r _q 100 271 214 214	1 4 3 3
1 2 3	3026 11269 17897 22321 6828	Y 2319 2393 498 784 6408	<i>C</i> ₁ 2 2 2 2	157 157 157 157 157	2 2 2 2 2	1 2 3 4 5	23356 6611 4008 21821 5947	Y 1370 8188 4302 8903 7349	<i>G</i> 3 4 2 4	214 271 157 271 157	3 4 2 4 2	1 2 3	7435 1229 17330 16253 24575	Y 3759 99 4199 7537 7939	<i>C</i> ₁ 4 3 1	7q 100 271 214 214 100	1 4 3 3 1
1 2 3 4 5	3026 11269 17897 22321 6828	Y 2319 2393 498 784 6408 1909	<i>C</i> ₁ 2 2 2 2	157 157 157 157 157 157 214	2 2 2 2	1 2 3 4 5	23356 6611 4008 21821	Y 1370 8188 4302 8903 7349	<i>G</i> 3 4 2 4	214 271 157 271	3 4 2 4	1 2 3 4 5	7435 1229 17330 16253	Y 3759 99 4199 7537 7939 9200	<i>C</i> ₁ 4 3 3	r _q 100 271 214 214	1 4 3 3
1 2 3 4 5	3026 11269 17897 22321 6828 6369	Y 2319 2393 498 784 6408 1909 8439	<i>C</i> ₁ 2 2 2 3 1	157 157 157 157 157 157 214	2 2 2 2 2 2 3	1 2 3 4 5	23356 6611 4008 21821 5947 16146 24172	Y 1370 8188 4302 8903 7349 6873 3461	C ₁ 3 4 2 4 2 2 2 2 2	214 271 157 271 157 157	3 4 2 4 2 2	1 2 3 4 5	7435 1229 17330 16253 24575 13817 10002	Y 3759 99 4199 7537 7939 9200	<i>G</i> 1 4 3 1 3 4	7q 100 271 214 214 100 214	1 4 3 3 1 1
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640	Y 2319 2393 498 784 6408 1909 8439	<i>C</i> ₁ 2 2 2 2 3 1 1	157 157 157 157 157 157 214 100	2 2 2 2 2 2 3 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172	Y 1370 8188 4302 8903 7349 6873 3461 1660	C ₁ 3 4 2 4 2 2 2 2 2	214 271 157 271 157 157 157	3 4 2 4 2 2 2	1 2 3 4 5 6 7	7435 1229 17330 16253 24575 13817 10002	Y 3759 99 4199 7537 7939 9200 8447 3678	<i>G</i> 1 4 3 1 3 4 2	7q 100 271 214 214 100 214 271	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809	Y 2319 2393 498 784 6408 1909 8439 1739	<i>C</i> ₁ 2 2 2 2 3 1 1	157 157 157 157 157 157 214 100 100	2 2 2 2 2 3 1 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	7 3 4 2 4 2 2 2 2	214 271 157 271 157 157 157	3 4 2 4 2 2 2 2	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970	Y 3759 99 4199 7537 7939 9200 8447 3678	<i>G</i> 1 4 3 1 3 4 2	100 271 214 214 100 214 271 157	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943	C ₁ 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943	C ₁ 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710	Y 2319 2393 498 784 6408 1909 1739 1708 9943 PCB	2 2 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	Cq 2 2 2 2 3 1 2 4 Cq 1	157 157 157 157 157 214 100 100 157 271	2 2 2 2 3 1 1 1 2 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 l	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477	Y 2319 2393 498 784 6408 1909 8439 1708 9943 PCB Y 7165 5113	7 2 2 2 2 3 1 1 2 4 7 7	157 157 157 157 157 214 100 100 157 271 0 7 q	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8 9 10 l	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930	Y 2319 2393 498 784 6408 1909 8439 1708 9943 PCB Y 7165 5113 7764	7 2 2 2 2 3 1 1 2 4 7 1 3 2	157 157 157 157 157 157 214 100 157 271 100 214 157	2 2 2 2 3 1 1 1 2 4 Feeder 1 3 2	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893	7 2 2 2 2 3 1 1 2 4 7 1 3 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	157 157 157 157 157 157 214 100 157 271 0 7 4 100 214 157 100	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380	Y 2319 2393 498 784 6408 1909 8439 1739 PCB Y 7165 5113 7764 4893 1859	C ₁ 2 2 2 2 3 1 1 2 4 1 3 2 1 3	7 157 157 157 157 157 214 100 100 100 214 157 100 214 157 100 214	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940	Y 2319 2393 498 784 6408 1909 8439 1739 PCB Y 7165 5113 7764 4893 1859 7006	C ₁ 2 2 2 2 3 1 1 2 4 1 3 2 1 3 4	7 157 157 157 157 157 214 100 100 214 271	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 4 2
1 2 3 4 5 6 7 8 9 10 l 1 2 3 4 4 5 6 6 7 6 6 7 7 6 7 7 8 7 8 7 8 7 8 7 8 7	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 784 6408 1909 8439 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827	C ₁ 2 2 2 2 3 1 1 2 4 1 3 2 1 3 4 3	157 157 157 157 157 214 100 100 157 271 0 214 157 100 214 271 214	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 3 3	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 l 1 2 3 4 4 5 6 6 7 7 8 8 9 9 1 8 9 1 8 1 8 9 1 8 1 8 1 8 1 8	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290 10631	Y 2319 2393 498 784 6408 1909 8439 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 157 157 157 157 157 214 100 100 214 271 214 271 271	2 2 2 3 3 1 1 1 2 4 4 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 6 7 8 9 9 10 6 6 7 7 8 8 8 8 9 8 9 8 9 8 9 8 8 9 8 9 8 8 9 8 8 9 8 9 8 8 9 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 8 8 8 8 8 9 8	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827 8066 7036	C ₁ 2 2 2 2 3 1 1 2 4 4 3 4 4 4	7 157 157 157 157 157 214 100 100 214 157 100 214 271 214 271 271	2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 3 3	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	G 3 4 2 4 2 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	1 4 3 3 1 1 3 4 2

Table G.5. PCB DATA FOR CASE A -2*5 - 4 COMPONENTS

		PCB	01					PCB	02					PCB	03	,	
l	х	Υ	C_{i}	r_{q}	Feeder	l	Х	Υ	c_{l}	r_{q}	Feeder	l	Х	Υ	c_{l}	r	Feeder
1		•	_	_	1	1	764	16762		9 100	1	1	24828	14542			4
2	11556	15838	_		2	2	37340	392	1	100	1	2	44988	6186		271	4
3	30342	18436	4	271	4	3	22254	13626	3	214	3	3	41082	16770	3	214	3
4	24300	14764	1	100	1	4	46590	7590	3	214	3	4	32246	11362	4	271	4
5	44564	3526	_		1	5	23300	16636	ш	157	2	5	40898	7408	1	100	1
6	38104	8114	_		1	6	20932	10056	_	157	2		33012		4	271	4
7	22824	18710	_		1	7	42312	14190	ш	214	3	7	17098	10932	$\overline{}$	157	2
8	926	18338			3	8	26258 10132	8578	-	271	4	8 9	14486	8898	-	157	2
9 10	41070 22236	8206 17872	2	_	2 1	9 10	33606	6092 3794	-	271	4	10	17060 26704	13892 12426	4	271 214	4
10	22230	17072	<u>'</u>	100	- 1	10	33000	3/94	3	214	3	10	20704	12420	٥	214	3
		PCB	04					PCB	05					PCB	06		
l	Х	Υ	c_{l}	r_{q}	Feeder	l	Х	Υ	c_{l}	r_{a}	Feeder	l	Х	Υ	c_{l}	r_{a}	Feeder
1	6826	11656			1	1	20768	4280		214	3	1	22572	12170			1
2	588	8470			2	2	15250		ш	100	1	2	2194	316		157	2
3	44694	10310	_	271	4	3	43718	6400		271	4	3	1360	328		157	2
4	9956	6680	_	214	3	4	750	19202	-		3	4		3802		157	2
5	14936	8658	_		2	5	38398	14532	1	100	1	5	644	11738	1	100	1
6	33072	4518	_		3	6	48542	8240	-	100	1	6		1152	-		3 3
7			_		4	7		14892	_	214	3	7	34156	7352	-		3
8	23462 3240	15208 10596	_		1	8 9	39444 21932	5358 8798	ш	214 157	2	8 9	4642 1766	12630 14352	ა 2	214 157	2
10		12810	_		1	10	24916		ш	214	3	10	30620	13854	4	271	4
10	43410	12010	'	100		10	24310	10000	٦	Z 1 4		10	30020	13034	-	211	4
	1	PCB	07					PCB	08					PCB	09)	
l	Х	PCB Y		r_{q}	Feeder	l	X	PCB Y	08 <i>C</i> _l		Feeder	l	Х		09 <i>C</i> _l		Feeder
<i>l</i>	6052	Y 4638	<i>c</i> _l 2	r q 157	2	<i>l</i>	46712	Y 2740	<i>c</i> _l 3	r 214	3	1	14870	Y 7518	<i>c</i> ₁	r 100	1
2	6052 22538	Y 4638 4786	<i>G</i> 2 2	I [*] _{q} 157 157	2	1	46712 13222	Y 2740 16376	<i>C</i> ₁ 3 4	r 214 271	3	1	14870 2458	Y 7518 198	<i>C_l</i> 1 4	I ^r _q 100 271	1 4
3	6052 22538 35794	Y 4638 4786 996	<i>G</i> 2 2 2	1 6 157 157 157	2 2 2	1 2 3	46712 13222 8016	Y 2740 16376 8604	<i>G</i> 3 4 2	r _q 214 271 157	3 4 2	1 2 3	14870 2458 34660	Y 7518 198 8398	<i>C_l</i> 1 4 3	100 271 214	1 4 3
2 3 4	6052 22538 35794 44642	Y 4638 4786 996 1568	<i>C</i> ₁ 2 2 2 2	1 67 157 157 157 157	2 2 2 2	1 2 3 4	46712 13222 8016 43642	Y 2740 16376 8604 17806	<i>C</i> ₁ 3 4 2 4	r _q 214 271 157 271	3 4 2 4	1 2 3 4	14870 2458 34660 32506	Y 7518 198 8398 15074	<i>C</i> ₁ 4 3 3	100 271 214 214	1 4 3 3
2 3 4 5	6052 22538 35794 44642 13656	Y 4638 4786 996 1568 12816	<i>G</i> 2 2 2 2	157 157 157 157 157	2 2 2 2 2	1 2 3 4 5	46712 13222 8016 43642 11894	Y 2740 16376 8604 17806 14698	<i>C</i> ₁ 3 4 2 4 2	214 271 157 271 157	3 4 2 4 2	1 2 3 4 5	14870 2458 34660 32506 49150	Y 7518 198 8398 15074 15878	7 1 4 3 1	r _q 100 271 214 214 100	1 4 3 3 1
2 3 4 5 6	6052 22538 35794 44642 13656 12738	Y 4638 4786 996 1568 12816 3818	<i>G</i> 2 2 2 3	157 157 157 157 157 157 214	2 2 2 2 2 2 3	1 2 3 4 5 6	46712 13222 8016 43642 11894 32292	Y 2740 16376 8604 17806 14698 13746	ζ ₁ 3 4 2 4 2	214 271 157 271 157 157	3 4 2 4 2 2	1 2 3 4	14870 2458 34660 32506 49150 27634	7518 198 8398 15074 15878 18400	<i>G</i> 1 4 3 1 3	7q 100 271 214 214 100 214	1 4 3 3 1 3
2 3 4 5 6 7	6052 22538 35794 44642 13656 12738 43280	Y 4638 4786 996 1568 12816 3818 16878	<i>C</i> ₁ 2 2 2 2 3 1	157 157 157 157 157 157 214 100	2 2 2 2 2 2 3 1	1 2 3 4 5 6	46712 13222 8016 43642 11894 32292 48344	Y 2740 16376 8604 17806 14698 13746 6922	<i>G</i> 3 4 2 4 2 2	214 271 157 271 157 157 157	3 4 2 4 2 2 2	1 2 3 4 5 6	14870 2458 34660 32506 49150 27634 20004	Y 7518 198 8398 15074 15878 18400 16894	G 1 4 3 1 3 4	7q 100 271 214 214 100 214 271	1 4 3 3 1 1 3 4
2 3 4 5 6	6052 22538 35794 44642 13656 12738 43280	Y 4638 4786 996 1568 12816 3818 16878 3478	<i>C</i> ₁ 2 2 2 3 1 1	157 157 157 157 157 157 214 100 100	2 2 2 2 2 2 3	1 2 3 4 5 6	46712 13222 8016 43642 11894 32292	Y 2740 16376 8604 17806 14698 13746	<i>G</i> 3 4 2 4 2 2	214 271 157 271 157 157	3 4 2 4 2 2	1 2 3 4 5	14870 2458 34660 32506 49150 27634	Y 7518 198 8398 15074 15878 18400 16894	G 1 4 3 1 3 4 2	7q 100 271 214 214 100 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244	Y 4638 4786 996 1568 12816 3818 16878	<i>C</i> ₁ 2 2 2 3 1 1 2	157 157 157 157 157 157 214 100 100	2 2 2 2 2 3 1 1	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246	Y 2740 16376 8604 17806 14698 13746 6922 3320	C ₁ 3 4 2 4 2 2 2 2 2 2 2 2 2 2	214 271 157 271 157 157 157 157	3 4 2 4 2 2 2 2	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940	Y 7518 198 8398 15074 15878 18400 16894 7356	G 1 4 3 1 3 4 2	7q 100 271 214 214 100 214 271 157	1 4 3 3 1 1 3 4
2 3 4 5 6 7 8 9	6052 22538 35794 44642 13656 12738 43280 11618 40244	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886	<i>C</i> _l 2 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 2	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	<i>C</i> ₁ 2 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	2 2 2 2 3 1 1 1 2 4	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	Cq 2 2 2 2 2 3 1 2 4 Cq	157 157 157 157 157 214 100 100 157 271	2 2 2 2 3 1 1 1 2 4	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y	Cq 2 2 2 2 2 3 1 2 4 10 Cq 1	157 157 157 157 157 214 100 157 271 	2 2 2 2 3 1 1 2 4 Feeder	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226	Cq 2 2 2 2 3 1 1 2 4 1 3	157 157 157 157 157 214 100 100 157 271 100 214	2 2 2 2 3 1 1 1 2 4 Feeder 1 3	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10 l	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528	Cq 2 2 2 2 3 1 2 4 10 Cq 1 3 2	7 157 157 157 157 157 157 157 157 157 214 100 157 271 100 214 157 157	2 2 2 3 1 1 1 2 4 Feeder 1 3 2	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10 l	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786	7 2 2 2 2 3 1 1 2 4 10 7 1 3 2 1	7 157 157 157 157 157 157 157 214 100 157 271 100 214 157 100	2 2 2 2 3 1 1 1 2 4 Feeder 1 3	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718	C ₁ 2 2 2 2 2 3 4 1 3 2 1 3	7 157 157 157 157 157 100 100 214 157 100 214	2 2 2 3 1 1 1 2 4 Feeder 1 3 2	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718	$ \begin{array}{c} C_{l} \\ C_{l} $	7 157 157 157 157 157 214 100 214 271	2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10 l 1 2 3 4 5 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012	Cq 2 2 2 2 3 1 2 3 4 3 4 3	7 157 157 157 157 214 100 214 157 100 214 271 214	2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 4	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	X 31366 34954 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262 29734	Y 4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/g 157 157 157 157 157 214 100 105 271 100 214 157 100 214 271 214 271 271	2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 3 3	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
2 3 4 5 6 7 8 9 10	22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262	Y 4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/g 157 157 157 157 157 214 100 105 271 100 214 157 100 214 271 214 271 271	2 2 2 3 1 1 2 4 Feeder 1 3 3 4 3 4	1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	 G A A B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2 4	1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	<i>C</i> ₁ 1 4 3 3 1 3 4 2 3	7q 100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2

Table G.6. PCB DATA FOR CASE A – 10*25 – 4 COMPONENTS

		PCB	01					PCB ()2					PCB (03		
l	Х	Y	C_{I}	$r_{_{G}}$	Feeder	l	Х	Υ	C_{I}	$r_{_{\!G}}$	Feeder	l	Х	Υ	C_{j}	$r_{_{\!\scriptscriptstyle G}}$	Feeder
1	237530	-			1	1		83810	1	100	1	_	124140	•	4	⁹ 271	4
2			_		2	2	186700	1960	1	100	1		224940				4
3	151710		_		4		111270		3	214	3		205410			_	3
4	121500	73820	1	100	1	4	232950	37950	3	214	3	4	161230	56810	4	271	4
5	222820	17630	1	100	1	5	116500	83180	2	157	2	5	204490	37040	1	100	1
6	190520	40570	1	100	1	6	104660	50280	2	157	2	6	165060	70270	4	271	4
7	-				1	7	211560		3	214	3	7		54660	2		2
8			_		3	8	131290	42890	4	271	4	8		44490	$\overline{}$		2
9			_		2	9		30460		271	4	9		69460			4
10	111180	89360	1	100	1	10	168030	18970	3	214	3	10	133520	62130	3	214	3
		PCB	04					PCB (าร					PCB (16		
,		I CD	П			7		I CD (,		I CD (
l	X	Υ	c_{l}	$r_{_{\!G}}$	Feeder		X	Υ		r_{q}	Feeder	l	X	Υ	c_{l}	$r_{_{\!G}}$	Feeder
1	34130		_		1	_	103840		_	214	3	-	112860		1	100	1
2		42350	_		2	2	76250			100	1	2	10970		2		2
3	223470				4		218590			271	4	3	6800		-		2
4	49780				3	4		96010			3	4	78170		_		2
5	74680		_		2		191990		-	100	1	5	3220		1		1
6					3	6	242710		1	100	1	6	95990		3		3
7	71100		_	_	4	/	247520		_	214	3		170780		3		3
8			_		3		197220 109660			214 157	3	8 9		63150 71760	_	_	3 2
10			_	_	1		124580			214	3	10			-		4
10	247000	04030	<u>'</u>	100	- 1	10	124300	93340	J	214	3	10	133100	09270	4	211	4
_																	
		PCB	07					PCB (36					PCB (9		
1	v		Т	r	Foodor	l	v			r	Foodor	l	v			r	Foodor
<i>l</i>	X 30260	Υ	$c_{\!\! l}$	<i>r</i> 9	Feeder		X 233560	Υ	c_{l}	9	Feeder	-	X 74350	Υ	c_{l}	7	Feeder
1	30260	Y 23190	<i>c</i> _l	157	2	1	233560	Y 13700	$\frac{c_l}{3}$	214	3	1	74350	Y 37590	<i>c</i> _l	100	1
1	30260 112690	Y 23190 23930	<i>c</i> _l 2 2	157 157	2	1	233560 66110	Y 13700 81880	$\frac{c_l}{3}$	214 271	3	1	74350 12290	Y 37590 990	<i>C_l</i> 1 4	100 271	1
1 2 3	30260 112690 178970	Y 23190 23930 4980	<i>C_l</i> 2 2 2	157 157 157	2 2 2	1 2 3	233560 66110 40080	Y 13700 81880 43020	<i>G</i> ₁ 3 4 2	214 271 157	3 4 2	1 2 3	74350 12290 173300	Y 37590 990 41990	<i>C_l</i> 1 4	100 271 214	1 4 3
1	30260 112690 178970 223210	Y 23190 23930 4980 7840	<i>G</i> 2 2 2	157 157 157 157	2 2 2 2	1 2 3	233560 66110 40080 218210	Y 13700 81880 43020 89030	<i>G</i> 3 4 2	214 271	3 4 2 4	1 2 3 4	74350 12290 173300	Y 37590 990 41990 75370	<i>C_l</i> 1 4	100 271 214 214	1 4 3 3
1 2 3 4	30260 112690 178970 223210 68280	Y 23190 23930 4980 7840 64080	<i>C</i> _l 2 2 2 2	157 157 157 157 157	2 2 2	1 2 3 4	233560 66110 40080 218210 59470	Y 13700 81880 43020 89030 73490	ζ ₁ 3 4 2 4 2	214 271 157 271	3 4 2	1 2 3 4	74350 12290 173300 162530 245750	Y 37590 990 41990 75370 79390	<i>C</i> ₁ 4 3 3	100 271 214 214 100	1 4 3
1 2 3 4 5	30260 112690 178970 223210 68280 63690	Y 23190 23930 4980 7840 64080 19090	<i>G</i> 2 2 2 2 3	157 157 157 157 157 157 214	2 2 2 2 2	1 2 3 4 5	233560 66110 40080 218210 59470	Y 13700 81880 43020 89030 73490 68730	<i>G</i> 3 4 2 4 2 2	214 271 157 271 157	3 4 2 4 2	1 2 3 4 5	74350 12290 173300 162530 245750 138170	Y 37590 990 41990 75370 79390 92000	<i>C</i> _l 1 4 3 1	100 271 214 214 100 214	1 4 3 3 1 1 3 4
1 2 3 4 5	30260 112690 178970 223210 68280 63690 216400	Y 23190 23930 4980 7840 64080 19090 84390	9 2 2 2 2 3 1	157 157 157 157 157 157 214 100	2 2 2 2 2 2 3	1 2 3 4 5 6	233560 66110 40080 218210 59470 161460	Y 13700 81880 43020 89030 73490 68730 34610	G 3 4 2 4 2 2 2	214 271 157 271 157 157	3 4 2 4 2 2	1 2 3 4 5 6	74350 12290 173300 162530 245750 138170 100020	Y 37590 990 41990 75370 79390 92000 84470	<i>G</i> 1 4 3 1 3	100 271 214 214 100 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7	30260 112690 178970 223210 68280 63690 216400	Y 23190 23930 4980 7840 64080 19090 84390 17390	<i>C</i> ₁ 2 2 2 3 1 1	157 157 157 157 157 214 100	2 2 2 2 2 2 3 1	 1 2 3 4 5 6 7	233560 66110 40080 218210 59470 161460 241720	Y 13700 81880 43020 89030 73490 68730 34610 16600	G 3 4 2 4 2 2 2	214 271 157 271 157 157	3 4 2 4 2 2 2	1 2 3 4 5 6 7	74350 12290 173300 162530 245750 138170 100020	Y 37590 990 41990 75370 79390 92000 84470 36780	<i>G</i> 1 4 3 3 4	100 271 214 214 100 214 271 157	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8	30260 112690 178970 223210 68280 63690 216400 58090 201220	Y 23190 23930 4980 7840 64080 19090 84390 17390	7 2 2 2 2 3 1 1 2	157 157 157 157 157 214 100 100	2 2 2 2 2 3 1 1	1 2 3 4 5 6 7	233560 66110 40080 218210 59470 161460 241720 166230	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 4 2 2 2 2 2	214 271 157 271 157 157 157	3 4 2 4 2 2 2 2	1 2 3 4 5 6 7	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780	G 1 4 3 1 3 4 2	100 271 214 214 100 214 271 157	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8	30260 112690 178970 223210 68280 63690 216400 58090 201220	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430	<i>G</i> 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 2	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB	9 2 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 1 1 1 2 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB	2 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	2 2 2 2 2 3 3 1 1 1 2 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y	2 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	2 2 2 2 3 1 1 1 2 4 Feeder	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130	2 2 2 2 3 1 1 2 4 7 7	157 157 157 157 157 214 100 100 157 271 100 214	2 2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 2 3	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130	7 2 2 2 2 3 1 1 2 4 10 7 1 3 2	157 157 157 157 157 214 100 100 157 271 r_q	2 2 2 2 2 3 3 1 1 1 2 2 4 4 Feeder 1 3 3 2 2	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 4 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930	7 2 2 2 2 3 1 1 2 4 10 7 1 3 2 1	157 157 157 157 157 214 100 100 157 271 100 214 157 100	2 2 2 2 2 3 3 1 1 1 2 2 4 4 Feeder 1 3 3 2 2 1 1	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 4 5 6 7 7 8 9 9 1 9 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590	7 2 2 2 2 3 1 1 1 2 4 1 3 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	157 157 157 157 157 214 100 100 157 271 100 214 157 100 214	2 2 2 2 2 3 3 1 1 1 2 2 4 4 Feeder 1 3 3 2 2 1 1 3 3	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 l 1 2 3 4 4 5 6 6 7 6 6 6 7 6 6 7 6 7 6 7 8 7 8 7 8 7	30260 112690 178970 223210 68280 63690 216400 201220 227100 X 156830 174770 99300 103410 163800 209400	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590 70060	7 2 2 2 2 3 1 1 2 4 10 7 1 3 2 1 3 4	157 157 157 157 157 157 214 100 157 271 271 100 214 157 100 214 271	2 2 2 2 2 3 3 1 1 1 2 4 4 Feeder 1 3 3 2 1 1 3 3 4 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 201220 227100 X 156830 174770 99300 103410 163800 92900	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590 70060 98270	7 2 2 2 2 3 1 1 2 4 10 7 1 3 2 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 3	157 157 157 157 157 157 214 100 157 271 271 100 214 157 100 214 271 214 271 214	2 2 2 2 2 3 3 1 1 1 2 2 4 4 5 5 5 5 5 5 5 5 5 6 5 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 6 7 8 9 10 1 1 2 3 4 4 5 6 6 7 7 8 9 1 9 1 9 1 9 1 9 1 8 1 8 1 8 1 8 1 8	30260 112690 178970 223210 68280 63690 216400 201220 227100 X 156830 174770 99300 103410 163800 92900 106310	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590 70060 98270 80660	7 2 2 2 2 2 3 1 1 2 4 10 7 1 3 2 1 3 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4	157 157 157 157 157 157 214 100 157 271 100 214 157 100 214 271 271 271	2 2 2 2 2 3 3 1 1 1 2 4 4 4 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 92900 106310 148670	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590 70060 98270 80660 70360	C ₁ 2 2 2 2 2 3 1 1 1 2 4 1 3 2 1 3 4 4 4 4	157 157 157 157 157 157 214 100 157 271 100 214 157 100 214 271 271 271 271	2 2 2 2 2 3 3 1 1 1 2 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30260 112690 178970 223210 68280 63690 216400 201220 227100 X 156830 174770 99300 103410 163800 92900 106310	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB Y 71650 51130 77640 48930 18590 70060 98270 80660 70360	C ₁ 2 2 2 2 2 3 1 1 1 2 4 1 3 2 1 3 4 4 4 4	157 157 157 157 157 157 214 100 157 271 100 214 157 100 214 271 271 271 271	2 2 2 2 2 3 3 1 1 1 2 4 4 4 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 2 2 2 2 4	214 271 157 271 157 157 157 157 271	3 4 2 4 2 2 2 2 2	1 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{3}{2}$ $\frac{4}{3}$	100 271 214 214 100 214 271 157 214	1 4 3 3 1 3 4 2

Table G.7. PCB DATA FOR CASE B – 1*2.5 – 2 COMPONENTS

		PCB	0	1					PCB	02	2				PCB	0	3	
l	Х	Y	c_{l}	$r_{_{G}}$	Feeder		l	Х	Υ	c_{l}	r_{g}	Feeder	l	Х	Υ	c_{l}	$r_{_{G}}$	Feeder
1	23753	6154	1	_	4		1	382	8381	1			1	12414	7271	2		8
2	5778	7919	1	100	4		2	18670	196	2	157	8	2	22494	3093	2	157	8
3	15171	9218	2	157	8		3	11127	6813	1	100	4	3	20541	8385	2	157	8
4	12150	7382	1	100	4		4	23295	3795	2	157	8	4	16123	5681	2	157	8
5	22282	1763	1	100	4		5	11650	8318	1	100	4	5	20449	3704		100	4
6	19052	4057	1	100	4		6	10466		2	157	8	6	16506		_		8
7	11412	9355	1		4		7	21156		1	100	4	7	8549	5466	-	100	4
8	463	9169	2	157	8		8	13129			157	8	8	7243	4449		100	4
9	20535		1		4		9		3046	_	157	8	9	8530		_	157	8
10	11118	8936	1	100	4		10	16803	1897	2	157	8	10	13352	6213	2	157	8
		PCB	_	1					PCB	0					PCB		2	
1							1						1		FUB			
l	Χ		c_{l}	$r_{_{G}}$	Feeder		l	Χ		c_{l}		Feeder	l	Χ	Υ	c_{l}		Feeder
1	3413	5828	1		4		1	10384		2	157	8	1	11286	6085			4
2	294			l	4		2		6435		100		2	1097	158	-		4
3			_	157	8		3	21859		-	157	8	3	680	164	-	100	4
4	4978		2		8	Ш	4	375		2	157	8	4	7817	1901		100	4
5	7468	4329	1	100	4		5	19199		1	100	4	5	322	5869			4
6	16536		2	157	8		6	24271	-	1	100	4	6	9599	576	-	157	8
7	7110 11731	5798	2	157 100	8		/	24752 19722		2	157 157	8 8	7	17078 2321	3676 6315		157 157	8
8	1620	7604 5298	2	157	8		8 9	10966		1	100	4	8 9	883		-	100	4
10	24708	6405	1		4	_	10	12458		2	157	8	10	15310	6927	2	157	8
10	24700	0+03	Ľ	100	7		10	12430	3334	_	137	0	10	13310	0321		137	0
		PCB	0	7					PCB	08	3				PCB	09	9	
-				_					_				 _			_		
1/	v l	V	C_{i}	r	Fooder		1	v	v	C_{i}	r	Cooder	1	V	v	c_{i}	r	Cooder
l	X		c_{l}	•	Feeder			X		c_l	_	Feeder		X 7/25	Y 2750		r 9	Feeder
1	3026	2319	1	100	4		1	23356	1370	1	100	4	1	7435	3759	1	100	4
1	3026 11269	2319 2393	1	100 100	4		1	23356 6611	1370 8188	1 2	100 157	4 8	1	7435 1229	3759 99	1 2	100 157	4 8
1 2 3	3026 11269 17897	2319 2393 498	1 1 1	100 100 100	4 4 4		1 2 3	23356 6611 4008	1370 8188 4302	1 2	100 157 100	4 8 4	1 2 3	7435 1229 17330	3759 99 4199	1 2 2	100 157 157	4 8 8
1 2 3 4	3026 11269 17897 22321	2319 2393 498 784	1 1 1	100 100 100 100	4 4 4 4		1	23356 6611 4008 21821	1370 8188 4302 8903	1 1 2	100 157 100 157	4 8 4 8	1 2 3 4	7435 1229 17330 16253	3759 99 4199 7537	1 2 2	100 157 157 157	8 8 8
1 2 3	3026 11269 17897	2319 2393 498 784	1 1 1	100 100 100 100	4 4 4		1 2 3 4	23356 6611 4008	1370 8188 4302 8903 7349	1 2	100 157 100	4 8 4	1 2 3	7435 1229 17330	3759 99 4199	1 2 2 1	100 157 157	4 8 8 8 4
1 2 3 4 5	3026 11269 17897 22321 6828	2319 2393 498 784 6408 1909	1 1 1 1	100 100 100 100 100 157	4 4 4 4		1 2 3 4 5	23356 6611 4008 21821 5947	1370 8188 4302 8903 7349	1 2 1	100 157 100 157 100	4 8 4 8 4	1 2 3 4 5	7435 1229 17330 16253 24575	3759 99 4199 7537 7939	1 2 2 1 2	100 157 157 157 100	4 8 8 8 4 8 8
1 2 3 4 5 6	3026 11269 17897 22321 6828 6369	2319 2393 498 784 6408 1909	1 1 1 1 2	100 100 100 100 100 157	4 4 4 4 4 8		1 2 3 4 5 6	23356 6611 4008 21821 5947 16146	1370 8188 4302 8903 7349 6873 3461	1 2 1 2	100 157 100 157 100 100	4 8 4 8 4 4	1 2 3 4 5 6	7435 1229 17330 16253 24575 13817	3759 99 4199 7537 7939 9200	1 2 2 1 2	100 157 157 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640	2319 2393 498 784 6408 1909 8439 1739 1708	1 1 1 1 2	100 100 100 100 100 157 100 100	4 4 4 4 8 8 4 4		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 2 1	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809	2319 2393 498 784 6408 1909 8439 1739	1 1 1 2 1 1	100 100 100 100 100 157 100	4 4 4 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 2 1 1	100 157 100 157 100 100 100	4 8 4 8 4 4 4 4	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970	3759 99 4199 7537 7939 9200 8447 3678	1 2 2 1 2 1 2	100 157 157 157 100 157 157 100	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	2319 2393 498 784 6408 1909 8439 1739 1708 9943	1 1 1 1 1 2	100 100 100 100 100 157 100 100 157	4 4 4 4 8 8 4 4		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122	2319 2393 498 784 6408 1909 8439 1739 1708	1 1 1 1 1 2	100 100 100 100 100 157 100 100 157	4 4 4 4 8 8 4 4		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	2319 2393 498 784 6408 1909 8439 1708 9943 PCB	1 1 1 1 1 2 1 1 1 2	100 100 100 100 157 100 100 157	4 4 4 4 8 8 4 4		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	1 1 1 1 1 1 1 2 1 1 1 7 7	100 100 100 100 157 100 100 157	4 4 4 4 8 8 4 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	1 1 1 1 1 1 1 2 1 1 1 2 7	100 100 100 100 157 100 100 157 100 100 157	4 4 4 4 8 4 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113	1 1 1 1 1 1 2 1 1 1 2 1 2 1 2	100 100 100 100 157 100 100 157 7 q 100 157	4 4 4 4 8 4 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893	1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2	100 100 100 100 157 100 157 100 157 100 157 100 157 100	4 4 4 4 8 4 4 4 8 8 Feeder 4 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10 l	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859	1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157	4 4 4 8 4 4 4 8 Feeder 4 8 4 4		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10 l	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006	1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2	100 100 100 100 157 100 100 157 100 157 100 157 100 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827	1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 2 2 2 2 2	100 100 100 100 100 100 100 100 157 100 157 100 157 100 157 157	4 4 4 8 4 4 4 8 Feeder 4 8 4 4 4 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290 10631	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827 8066	1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100 157 100 157 100 157 100 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 4 4 4 8 8 8 8 8 8 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290 10631 14867	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827 8066 7036	1 1 1 1 1 1 2 1 1 1 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100 157 100 157 100 157 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 8 8 8 8 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290 10631 14867	2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB Y 7165 5113 7764 4893 1859 7006 9827 8066	1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100 157 100 157 100 157 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 4 4 4 8 8 8 8 8 8 8 8		1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	1370 8188 4302 8903 7349 6873 3461 1660 1556	1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	3759 99 4199 7537 7939 9200 8447 3678 6208	1 2 2 1 2 1 2	100 157 157 157 100 157 100 157	8 8 8 4 8 8 8

Table G.8. PCB DATA FOR CASE B – 2*5 – 2 COMPONENTS

2 11556 15838 1 100			PCB	01						PCB	02					PCB	03	i	
1 17506 12308 1 100	l	Х	Υ	c_{l}	r_{c}	Feeder		l	Х	Y	c_{l}	r _c	Feeder	l	Х	Υ	c_{l}	r	Feeder
2 11566 16838 1 100	1		12308	_				1		16762	-			1		14542		-	8
3 33342 18436 2 157 8 3 32254 13626 1 100 4 3 341082 16770 2 157 8 4 24300 14764 1 100 4 4 4 46590 7590 2 157 8 4 32246 11362 2 157 8 6 34564 3526 1 100 4 6 20932 10056 2 157 8 6 33012 14054 2 157 8 7 28284 8470 1 100 4 6 20932 10056 2 157 8 6 33012 14054 2 157 8 7 28284 8470 1 100 4 7 17098 10932 1 100 4 7 17098 10932 1 100 4 9 10132 6092 2 157 8 8 14486 8898 1 100 4 9 10132 6092 2 157 8 9 17060 13882 2 157 8 8 26258 8578 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 9 17060 13882 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 26704 12426 2 157 8 10 24916 12604 2 157 8 3 1300 328 1 100 4 4 9956 6680 2 157 8 4 4750 19202 2 157 8 3 1300 328 1 100 4 4 14320 11596 2 157 8 3 34684 3624 14304 3 34684 3624 14304 3 34684 3624 14304 3 34684 3624 14304 3 34684 3624 14304 3 34684 3624 14304 3 34684 3624 14304 3 34684 3626 14302 14004 3 34684 34644	2	11556	15838	1	100			2	37340	392	2	157	8	2	44988	6186	2	157	8
4	3	30342		_	157			3	22254		_	100		3	41082	16770	2	157	8
6 38104 8114 1 100	4	24300	14764	1	100			4	46590	7590	2	157		4	32246	11362	2	157	8
Total Property Tota	5	44564	3526	1	100	4		5	23300	16636	1	100	4	5	40898	7408	1	100	4
Total Property Tota	6	38104	8114	1	100	4		6	20932	10056	2	157	8	6	33012	14054	2	157	8
9 41070 8206 1 100	7	22824	18710	1	100	4		7	42312	14190	1	100	4	7	17098	10932	1	100	4
The color of the	8	926	18338	2	157	8		8	26258	8578	2	157	8	8	14486	8898	1	100	4
PCB 04	9	41070	8206	1	100	4		9	10132	6092	2	157	8	9	17060	13892	2	157	8
	10	22236	17872	1	100	4	1	10	33606	3794	2	157	8	10	26704	12426	2	157	8
1 6826 11656 1 100 4 1 20768 4280 2 157 8 1 22572 12170 1 100 4 2 588 8470 1 100 4 2 15250 12870 1 100 4 2 2194 316 1 100 4 4 4 49956 6680 2 157 8 4 750 19202 2 157 8 4 15634 3802 1 100 4 5 14936 8658 1 100 4 4 5 38398 14532 1 100 4 6 19198 1152 2 157 8 8 23462 157 8 9 24916 1506 2 157 8 9 24916 12810 1 100 4 1 46712 2740 1 100 4 9 1766 14352 1 100 4 1 44642 1568 1 100 4 4 4 43642 17806 2 157 8 4 33660 3398 2 157 8 4 44642 1568 1 100 4 4 4 43642 17806 2 157 8 4 33660 3398 2 157 8 4 4642 1568 1 100 4 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 4 33660 3398 2 157 8 4 34660 3398 2 157 8 4 34660 3398 2 157 8 4 34660 3398 2 157 8 4 34660 3398 2 157 8 4 34660 3398 2 157 8 3 335794 996 1 100 4 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 4 34660 3398 2 157 8 4 34660 3398 2 157 8 3 335794 996 1 100 4 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 4 34660 3398 2 157 8 3 3186 3818 2 157 8 4 34660 3398 2 157 8 3 3186 3818 2 157 8 3 3186 34878 1 100 4 4 3 34660			PCB	04	ļ.					PCB	05					PCB	06		
1 6826 11656 1 100	l	Х	Υ	c_{l}	r	Feeder		l	Х	Y	c_{l}	r _c	Feeder	l	X	Υ	c_{l}	r	Feeder
3 44694 10310 2 157 8 3 43718 6400 2 157 8 3 1360 328 1 100 4 4 9956 6680 2 157 8 4 750 19202 2 157 8 4 15634 3802 1 100 4 6 34036 8658 1 100 4 5 38398 14532 1 100 4 5 644 11738 1 100 4 6 33072 4518 2 157 8 6 48542 8240 1 100 4 6 19198 1152 2 157 8 7 49504 14892 2 157 8 8 4642 12630 2 157 8 8 24362 15208 1 100 4 8 39444 5358 2 157 8 8 4642 12630 2 157 8 9 3240 10596 2 157 8 9 21932 8798 1 100 4 9 1766 44542 12630 13654 2 157 8 100 4 1 46712 2740 1 100 4 1 14870 7518 1 100 4 2 22538 4786 1 100 4 3 3016 8604 1 100 4 3 34660 8398 2 157 8 3 35794 996 1 100 4 4 4 43642 17806 2 157 8 4 44642 15680 1 100 4 4 4 43642 17806 2 157 8 4 44642 1568 1 100 4 4 4 43642 17806 2 157 8 4 44642 1568 1 100 4 4 4 43642 17806 2 157 8 4 43650 17806 2 157 8 4 4 4 4 4 4 4	1		11656					1	20768	4280		•		1	22572			•	4
4 9956 6680 2 157 8 4 750 19202 2 157 8 5 14936 8658 1 100 4 5 38398 14532 1 100 4 6 33072 4518 2 157 8 6 48542 8240 1 100 4 6 19198 1152 2 157 8 8 2 34520 1 100 4 6 19198 1152 2 157 8 8 2 3462 1 200 4 6 19198 1152 2 157 8 8 2 2 2 2 2 2 2 2	2	588	8470	1	100	4		2	15250	12870	1	100	4	2	2194	316	1	100	4
4 9956 6680 2 157 8 4 750 19202 2 157 8 5 14936 8658 1 100 4 5 38398 14532 1 100 4 6 33072 4518 2 157 8 6 48542 8240 1 100 4 6 19198 1152 2 157 8 8 2 34520 1 100 4 6 19198 1152 2 157 8 8 2 3462 1 200 4 6 19198 1152 2 157 8 8 2 2 2 2 2 2 2 2	3			_				3			-	157		3	1360		1	100	4
S 14936 8658 1 100	4	9956		_	157			4	750	19202	2	157		4	15634	3802	1	100	4
T 14220 11596 2 157 8 7 49504 14892 2 157 8 7 34156 7352 2 157 8 8 33442 15308 1 100 4 8 39444 5358 2 157 8 8 4642 12630 2 157 8 9 3240 10596 2 157 8 9 21932 8798 1 100 4 9 1766 14352 1 100 4 10 24916 18668 2 157 8 10 30620 13854 2 157 8 10 340620 13854 2 157 8 10 3620 13854 2 157 8 3 3660 12 10 3 3 3 3 3 3 3 3 3	5	14936	8658	1	100			5	38398	14532	1	100		5	644	11738	1	100	4
T 14220 11596 2 157 8 7 49504 14892 2 157 8 7 34156 7352 2 157 8 8 33442 15308 1 100 4 8 39444 5358 2 157 8 8 4642 12630 2 157 8 9 3240 10596 2 157 8 9 21932 8798 1 100 4 9 1766 14352 1 100 4 10 24916 18668 2 157 8 10 30620 13854 2 157 8 10 340620 13854 2 157 8 10 3620 13854 2 157 8 3 3660 12 10 3 3 3 3 3 3 3 3 3	6	33072	4518	2	157	8		6	48542	8240	1	100	4	6	19198	1152	2	157	8
9 3240 10596 2 157 8 9 21932 8798 1 100 4 9 1766 14352 1 100 4 10 49416 12810 1 100 4 10 24916 18668 2 157 8 10 30620 13854 2 157 8 10 49416 12810 1 100 4 10 24916 18668 2 157 8 10 30620 13854 2 157 8 10 30620 13654 2 157 8 10 30620 13654 2 157 8 10 30	7	14220	11596	2	157	8		7	49504	14892	2	157	8	7	34156	7352	2	157	8
PCB 07	8	23462	15208	1	100	4		8	39444	5358	2	157	8	8	4642	12630	2	157	8
PCB 07 V	9	3240	10596	2	157	8		9	21932	8798	1	100	4	9	1766	14352	1	100	4
I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Reder 1 6052 4638 1 100 4 2 13222 16376 2 157 8 2 2458 198 2 157 8 3 35794 996 1 100 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 4 32506 15074 2 157 8 4 32506 15074 2 157 8 1	10	49416	12810	1	100	4	1	10	24916	18668	2	157	8	10	30620	13854	2	157	8
I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Feeder I X Y C _I T _I Reder 1 6052 4638 1 100 4 2 13222 16376 2 157 8 2 2458 198 2 157 8 3 35794 996 1 100 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 4 32506 15074 2 157 8 4 32506 15074 2 157 8 1																			
1 6052 4638 1 100			PCB	07	,	ı		_		PCB	80					PCB	09		
2 22538 4786 1 100 4 2 13222 16376 2 157 8 2 2458 198 2 157 8 3 35794 996 1 100 4 3 8016 8604 1 100 4 3 34660 8398 2 157 8 4 44642 1568 1 100 4 4 43642 17806 2 157 8 4 43642 1568 1 100 4 5 13656 12816 1 100 4 5 13894 14698 1 100 4 5 49150 15878 1 100 4 6 12738 3818 2 157 8 6 32292 13746 1 100 4 6 27634 18400 2 157 8 7 43280 16878 1 100 4 7 48344 6922 1 100 4 7 20004 16894 2 157 8 8 11618 3478 1 100 4 8 33246 3320 1 100 4 8 9940 7356 1 100 4 9 43520 3112 2 157 8 9 31260 12416 2 157 8 10 45420 19886 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 3260 3718 2 157 8 10	l		Υ			Feeder		l	X	Υ	$c_{\!\! l}$	r_{q}	Feeder	l			c_{l}	•	Feeder
3 35794 996 1 100 4 3 8016 8604 1 100 4 3 34660 8398 2 157 8 4 44642 1568 1 100 4 4 43642 17806 2 157 8 4 32506 15074 2 157 8 5 13656 12816 1 100 4 5 11894 14698 1 100 4 5 49150 15878 1 100 4 6 12738 3818 2 157 8 6 32292 13746 1 100 4 6 27634 18400 2 157 8 8 11618 3478 1 100 4 8 33246 3320 1 100 4 8 9940 7356 1 100 4 9 40244 3416 1 100 4 9 43520 3112 2 157 8 9 31260 12416 2 157 8 10 45420 19886 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 2 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 12 34954 10226 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 10 3666				_				1									_		4
4 44642 1568 1 100				_				2											8
5 13656 12816 1 100	_			_				_			_			_					8
6 12738 3818 2 157 8 6 32292 13746 1 100 4 6 27634 18400 2 157 8 7 43280 16878 1 100 4 7 48344 6922 1 100 4 7 20004 16894 2 157 8 8 11618 3478 1 100 4 8 33246 3320 1 100 4 8 9940 7356 1 100 4 9 40244 3416 1 100 4 9 43520 3112 2 157 8 9 31260 12416 2 157 8 10 45420 19886 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 2 34954 10226 2 157 8 3 19860 15528 1 100 4 4 20682 9786 1 100 4 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 8 21262 16132 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157 8 2 157	_			_				_						-			2		
7 43280 16878 1 100	_			_				-			-			-			_		
8 11618 3478 1 100 4 8 33246 3320 1 100 4 8 9940 7356 1 100 4 9 40244 3416 1 100 4 9 43520 3112 2 157 8 9 31260 12416 2 157 8 10 45420 19886 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 PCB 10 X	_			_				6						_					
9 40244 3416 1 100								7			-						_		
10 45420 19886 2 157 8 10 496 3822 1 100 4 10 36668 14626 1 100 4 PCB 10	_							Ť			_			 _			_		
PCB 10 X	_							_			-			 -			_		
I X Y C _I Feeder 1 31366 14330 1 100 4 2 34954 10226 2 157 8 3 19860 15528 1 100 4 4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8	10	45420	19000	_	157	0	<u> </u>	IU	496	3822	<u> </u>	100	4	10	30008	14626		100	4
I X Y C _I Feeder 1 31366 14330 1 100 4 2 34954 10226 2 157 8 3 19860 15528 1 100 4 4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8			PCB	10	<u> </u>			-			H								
1 31366 14330 1 100 4 2 34954 10226 2 157 8 3 19860 15528 1 100 4 4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8	1	.,																	
2 34954 10226 2 157 8 3 19860 15528 1 100 4 4 4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8								_			H						_		
3 19860 15528 1 100 4 4 4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8	-							-			H						_		
4 20682 9786 1 100 4 5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8								-			H						_		
5 32760 3718 2 157 8 6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8								-			H						_		
6 41880 14012 2 157 8 7 18580 19654 2 157 8 8 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8	_							-			\vdash						_		
7 18580 19654 2 157 8 8 8 21262 16132 2 157 8 9 29734 14072 2 157 8	4		3/12		101		\vdash	-			\vdash						_		
8 21262 16132 2 157 8 9 29734 14072 2 157 8	4 5	32760				Ω													
9 29734 14072 2 157 8	4 5 6	32760 41880	14012	2	157			-			H								
	4 5 6 7	32760 41880 18580	14012 19654	2	157 157	8													
	4 5 6 7 8	32760 41880 18580 21262	14012 19654 16132	2 2 2	157 157 157	8 8													
	4 5 6 7 8 9	32760 41880 18580 21262 29734	14012 19654 16132 14072	2 2 2 2	157 157 157 157	8 8 8													

Table G.9. PCB DATA FOR CASE B – 10*25 – 2 COMPONENTS

		PCB 0)1						PCB ()2					PCB ()3		
l	х	Υ	c_{j}	$r_{_{G}}$	Feeder	l	x		Υ	c_{j}	$r_{_{\!G}}$	Feeder	l	х	Υ	c_{l}	r_{c}	Feeder
1		61540	1	100	4	-	1		83810	1	100	4	1	124140	72710		4 157	8
2	57780	79190	1	100	4	2	2 1	86700	1960	2	157	8	 2	224940		2	157	8
3	151710	92180	2	157	8	- ;	3 1	11270	68130	1	100	4	3	205410	83850	2	157	8
4	121500		1	100	4	4	_	232950		2	157	8	4	161230		2	157	8
5	222820	17630	1	100	4			16500		1	100	4	5	204490		1	100	4
6	190520	40570	1	100	4	6		04660		2	157	8	 6	165060		2	157	8
7			1	100	4		_	211560		1	100	4	 7	85490		1	100	4
9	205350		2	157 100	8		_	31290 50660		2	157 157	8	8 9	72430 85300		1	100 157	8
10	111180		1	100	4			68030	18970	2	157	8	10	133520		2	157	8
10	111100	00000	_	100		<u>''</u>	7 1	00000	10070	_	107		10	100020	02100		107	U
		PCB ()4						PCB ()5					PCB ()6		
l	Х	Υ	c_{l}	r_{g}	Feeder	l	Х		Υ	c_{l}	$r_{_{\!G}}$	Feeder	l	Х	Υ	c_{l}	$r_{_{\!G}}$	Feeder
1	34130		1	100	4		_	03840		2	157	8	1	112860		1		4
2			1	100	4		_	76250		1	100	4	2	10970	1580	1	100	4
3	223470		2	157	8		4	18590		2	157	8	 3	6800	1640	1	100	4
4			2	157	8		4		96010	2	157	8	4	78170		1	100	4
5	74680 165360		์ ว	100 157	4 8	_	-	91990 42710		1	100	4	5 6	3220 95990	58690 5760	1	100 157	4 8
7			2	157	8	-	_	47520		2	157	8	7	170780			157	8
8	117310		1	100	4		_	97220		2	157	8	8	23210		2	157	8
9			2	157	8		_	09660		1	100	4	 9		71760	1	100	4
10		64050	1	100	4	10	_		93340	2	157	8	 10		69270	2	157	8
									PCB (20					DCD (20		
		PCB ()7				_	Ī	F C B (0			_		PCB (
l	Х	Υ	$c_{\!$	r_q	Feeder	l	^		Y	c_{l}	-	Feeder		X	Υ	c_{l}	r_q	Feeder
1	30260	Y 23190		100	4		1 2	233560	Y 13700	<i>c</i> _l	100	4	1	74350	Y 37590	<i>c</i> _l	100	4
1	30260 112690	Y 23190 23930	<i>c</i> _l 1 1	100 100	4	- 2	1 2	233560 66110	Y 13700 81880	$\frac{c_l}{1}$	100 157	4 8	1	74350 12290	Y 37590 990	$\frac{c_l}{1}$	100 157	4
1 2 3	30260 112690 178970	Y 23190 23930 4980	<i>c</i> _l 1 1 1	100 100 100	4 4	2	1 2:	233560 66110 40080	Y 13700 81880 43020	<i>C_l</i> 1 2 1	100 157 100	8 4	1 2 3	74350 12290 173300	Y 37590 990 41990	<i>G</i> 1 2	100 157 157	8 8
1 2 3 4	30260 112690 178970 223210	Y 23190 23930 4980 7840	<i>c</i> _l 1 1	100 100 100 100	4 4 4 4	4	1 2 2 0 3 4 4 2	233560 66110 40080 218210	Y 13700 81880 43020 89030	<i>C</i> ₁ 2 1 2	100 157 100 157	4 8 4 8	1 2 3 4	74350 12290 173300 162530	Y 37590 990 41990 75370	<i>C</i> ₁ 2 2 2	100 157 157 157	4 8 8 8
1 2 3	30260 112690 178970	Y 23190 23930 4980 7840 64080	<i>c</i> _l 1 1 1	100 100 100	4 4 4 4	4	1 2 2 (3 (4 2	233560 66110 40080 218210 59470	Y 13700 81880 43020 89030	<i>C_l</i> 1 2 1	100 157 100	4 8 4 8 4	1 2 3 4 5	74350 12290 173300 162530 245750	Y 37590 990 41990 75370 79390	<i>G</i> 1 2	100 157 157	8 8 8 4
1 2 3 4 5	30260 112690 178970 223210 68280	Y 23190 23930 4980 7840 64080	<i>G</i> 1 1 1 1 1	100 100 100 100 100	4 4 4 4	4	1 2: 2 (3 4 2 5 1	233560 66110 40080 218210 59470	Y 13700 81880 43020 89030 73490	η 1 2 1 2	100 157 100 157 100	4 8 4 8	1 2 3 4 5	74350 12290 173300 162530 245750	Y 37590 990 41990 75370 79390 92000	η 1 2 2 1	100 157 157 157 100	4 8 8 8
1 2 3 4 5	30260 112690 178970 223210 68280 63690	Y 23190 23930 4980 7840 64080 19090	<i>G</i> 1 1 1 1 1	100 100 100 100 100 157	4 4 4 4 4 8	2	1 2 2 0 3 4 5 1 7 2	233560 66110 40080 218210 59470 61460	Y 13700 81880 43020 89030 73490 68730	η 1 2 1 2	100 157 100 157 100 100	4 8 4 8 4 4	1 2 3 4 5	74350 12290 173300 162530 245750 138170	Y 37590 990 41990 75370 79390 92000 84470	<i>C</i> ₁ 2 2 1 2	100 157 157 157 100 157	4 8 8 8 4 8 8 4
1 2 3 4 5 6 7	30260 112690 178970 223210 68280 63690 216400 58090	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080	<i>C</i> ₁ 1 1 1 2 1	100 100 100 100 100 157 100 100	4 4 4 4 8 8 4 4	2	1 2 0 1 2 1 3 4 2 5 5 5 5 6 1 1 2 4 3 1 1 2 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600	<i>G</i> 1 2 1 1 1 1	100 157 100 157 100 100	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7	74350 12290 173300 162530 245750 138170 100020	Y 37590 990 41990 75370 79390 92000 84470 36780	<i>G</i> 1 2 2 1 2 2	100 157 157 157 100 157 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8	30260 112690 178970 223210 68280 63690 216400 58090	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080	<i>C</i> ₁ 1 1 1 2 1	100 100 100 100 100 157 100	4 4 4 4 4 8 8 4	4	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230	Y 13700 81880 43020 89030 73490 68730 34610 16600	<i>G</i> 1 2 1 1 1 1	100 157 100 157 100 100 100	4 8 4 8 4 4 4 4	1 2 3 4 5 6 7	74350 12290 173300 162530 245750 138170 100020 49700	Y 37590 990 41990 75370 79390 92000 84470 36780	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 157	4 8 8 8 4 8 8 4
1 2 3 4 5 6 7 8	30260 112690 178970 223210 68280 63690 216400 58090 201220	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080	<i>C</i> ₁ 1 1 1 1 1 1 2 1 1 2	100 100 100 100 100 157 100 100	4 4 4 4 8 8 4 4	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430	<i>C</i> ₁ 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 157 100 100 157	4 4 4 4 8 8 4 4 4 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB 1	$\frac{G_{l}}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$	100 100 100 100 100 157 100 100 157	4 4 4 4 8 4 4 4 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 PCB 1	$\frac{G_{l}}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$	100 100 100 100 157 100 100 157	4 4 4 4 8 4 4 4 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 Y 71650 51130	$\frac{C_{l}}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$	100 100 100 100 157 100 157 100 157	4 4 4 4 8 4 4 4 8 8 Feeder 4 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 Y 71650 51130 77640	$\frac{C_{l}}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$	100 100 100 100 157 100 100 157 100 157 100	4 4 4 4 8 4 4 4 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 Y 71650 51130 77640 48930	$ \begin{array}{c cccc} C_{l} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	100 100 100 100 157 100 157 100 157 100 157 100	4 4 4 4 8 4 4 4 8 Feeder 4 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 209400	Y 23190 23930 4980 7840 64080 19090 84390 17390 99430 PCB 1 71650 51130 77640 48930 70060	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100 100 100 100 157 100 157 100 157 100 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 4 4 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 4 5 6 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 209400 92900	Y 23190 23930 4980 7840 64080 19090 84390 17390 17080 99430 71650 51130 77640 48930 18590 70060 98270	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100 100 100 100 100 100 100 100 157 100 157 100 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 8 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 4 5 6 7 7 8 9	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 209400 92900 106310	Y 23190 23930 4980 7840 64080 19090 84390 17390 71650 51130 77640 48930 18590 70060 98270 80660	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100 100 100 100 100 100 100 157 100 157 100 157 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 8 8 8 8 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7 8 9 9 10 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 209400 92900 106310 148670	Y 23190 23930 4980 7840 64080 19090 84390 17390 71650 51130 77640 48930 18590 70060 98270 80660 70360	G 1 1 1 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 2	100 100 100 100 100 100 100 100 157 100 100 157 100 157 157 157 157	## 4	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 4 5 6 7 7 8 9	30260 112690 178970 223210 68280 63690 216400 58090 201220 227100 X 156830 174770 99300 103410 163800 209400 92900 106310	Y 23190 23930 4980 7840 64080 19090 84390 17390 71650 51130 77640 48930 18590 70060 98270 80660 70360	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 100 100 100 100 100 100 100 157 100 157 100 157 157 157 157	4 4 4 8 4 4 4 8 8 Feeder 4 8 8 8 8 8 8 8	2 2 4 6 8	1 2: 2 0 3 4 2 5 3 6 10 7 20 8 10 9 2	233560 66110 40080 218210 59470 61460 241720 66230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 1 2 1 1 1 1 2	100 157 100 157 100 100 100 157	4 8 4 8 4 4 4 4 8	1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	<i>C</i> ₁ 1 2 2 1 2 1	100 157 157 157 100 157 100 157	4 8 8 8 4 8 8

Table G.10. PCB DATA FOR CASE B - 1*2.5 - 4 COMPONENTS

		PCB	0	1				PCB	0:	2					PCB	0;	3			
l	Х	Y	c_{l}	r_{g}	Feeder	l	X	Υ	c_{l}	r	Feeder		l	X	Υ	c_{l}	r_{q}	Feeder		
1	23753	6154	_	100	4	1	382	8381		100	4		1	12414	7271	4	271	16		
2	5778	7919	2	157	8	2	18670	196	1	100	4		2	22494	3093	4	271	16		
3	15171	9218	4	271	16	3	11127	6813	3	214	12		3	20541	8385	3	214	12		
4	12150	7382	1	100	4	4	23295	3795	3	214	12		4	16123	5681	4	271	16		
5	22282	1763	1	100	4	5	11650	8318	2	157	8		5	20449	3704	1	100	4		
6	19052	4057	1	100	4	6	10466	5028	2	157	8		6	16506	7027	4	271	16		
7	11412	9355	1	100	4	7	21156	7095	3	214	12		7	8549	5466	2	157	8		
8	463	9169	3	214	12	8	13129	4289	4	271	16		8	7243	4449	2	157	8		
9	20535		2	157	8	9	5066	3046	4	271	16		9	8530	6946	4	271	16		
10	11118	8936	1	100	4	10	16803	1897	3	214	12		10	13352	6213	3	214	12		
		PCB	0	1				PCB	0	<u> </u>					PCB	0	2			
-		PUB				-									PUB					
l	Χ	Υ	c_{l}	r_q	Feeder	l	X		$c_{\!\! l}$	r_q	Feeder		l	Χ	Υ	c_{l}	r_q	Feeder		
1	3413	5828		100	4	1	10384	2140	-	214	12		1	11286	6085	1	100	4		
2		4235	_	157	8	2	7625	6435		100	4		2	1097	158	_	157	8		
3	22347	5155		271	16	3	21859	3200	-	271	16		3	680	164	2	157	8		
4		3340		214	12	4	375	9601	3	214	12		4	7817	1901	2	157	8		
5		4329	_	157	8	5		7266	-	100	4		5	322	5869	1	100	4		
6		2259	_	214	12	6	24271	4120	1	100	4		6	9599	576	3	214	12		
7	7110	5798		271	16	7	24752	7446	-	214	12		7	17078		3	214	12		
8	11731	7604	_	100	4	8	19722	2679	-	214	12		8	2321	6315	3	214	12		
9	1620	5298	_	214	12	9	10966	4399		157	8		9	883	7176	2	157	8		
10	24708	6405	1	100	4	10	12458	9334	3	214	12		10	15310	6927	4	271	16		
						PCB 08								PCB 09						
		PCB	0	7				PCB	0	8					PCB	0	9			
l	х	Υ	$c_{\!\! l}$		Feeder	l	Х		c_{l}		Feeder		l	Х	PCB Y		9 r q	Feeder		
1	3026	Y 2319	<i>c</i> _l	r 157	8	<i>l</i>	X 23356	Y 1370	$\frac{c_l}{3}$	r 214	12		1	7435	Y 3759	<i>c</i> _l	r q 100	4		
1	3026 11269	Y 2319 2393	<i>c</i> ₁ 2 2	1 7 157 157	8	1	23356 6611	Y 1370 8188	<i>C</i> ₁ 3 4	I r 214 271	12 16		1	7435 1229	Y 3759 99	<i>c</i> _l 1 4	r 100 271	4 16		
1 2 3	3026 11269 17897	Y 2319 2393 498	<i>G</i> 2 2 2	157 157 157 157	8 8 8	1 2 3	23356 6611 4008	Y 1370 8188 4302	<i>C</i> ₁ 3 4 2	r q 214 271 157	12 16 8		1 2 3	7435 1229 17330	Y 3759 99 4199	<i>C</i> _l 1 4 3	r 100 271 214	4 16 12		
1 2 3 4	3026 11269 17897 22321	Y 2319 2393 498 784	<i>G</i> 2 2 2	157 157 157 157 157	8 8 8	1 2 3 4	23356 6611 4008 21821	Y 1370 8188 4302 8903	<i>G</i> 3 4 2 4	r _q 214 271 157 271	12 16 8 16		1 2 3 4	7435 1229 17330 16253	Y 3759 99 4199 7537	<i>c</i> _l 1 4	100 271 214 214	4 16 12 12		
1 2 3 4 5	3026 11269 17897 22321 6828	Y 2319 2393 498 784 6408	<i>G</i> 2 2 2 2	157 157 157 157 157	8 8 8 8	1 2 3 4 5	23356 6611 4008 21821 5947	Y 1370 8188 4302 8903 7349	<i>C</i> ₁ 3 4 2 4 2	214 271 157 271 157	12 16 8 16 8		1 2 3 4 5	7435 1229 17330 16253 24575	Y 3759 99 4199 7537 7939	<i>C</i> _l 1 4 3 1	7q 100 271 214 214 100	4 16 12 12 4		
1 2 3 4 5 6	3026 11269 17897 22321 6828 6369	Y 2319 2393 498 784 6408 1909	<i>G</i> 2 2 2 2	157 157 157 157 157 157 214	8 8 8 8 8	1 2 3 4	23356 6611 4008 21821 5947 16146	Y 1370 8188 4302 8903 7349 6873	<i>G</i> 3 4 2 4 2 2	214 271 157 271 157 157	12 16 8 16 8		1 2 3 4 5 6	7435 1229 17330 16253 24575 13817	Y 3759 99 4199 7537 7939 9200	G 1 4 3 1 3	70 100 271 214 214 100 214	4 16 12 12 4 12		
1 2 3 4 5 6 7	3026 11269 17897 22321 6828 6369 21640	Y 2319 2393 498 784 6408 1909 8439	<i>G</i> 2 2 2 2 3 1	157 157 157 157 157 157 214 100	8 8 8 8 12 4	1 2 3 4 5 6	23356 6611 4008 21821 5947 16146 24172	Y 1370 8188 4302 8903 7349 6873 3461	<i>G</i> 3 4 2 2 2 2	214 271 157 271 157 157	12 16 8 16 8 8 8		1 2 3 4 5 6 7	7435 1229 17330 16253 24575 13817 10002	Y 3759 99 4199 7537 7939 9200 8447	C ₁ 1 4 3 1 3 4	7q 100 271 214 214 100 214 271	4 16 12 12 4 12 16		
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809	Y 2319 2393 498 784 6408 1909 8439 1739	<i>G</i> 2 2 2 3 1 1	157 157 157 157 157 157 214 100 100	8 8 8 8 12 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623	Y 1370 8188 4302 8903 7349 6873 3461 1660	<i>C</i> ₁ 3 4 2 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970	Y 3759 99 4199 7537 7939 9200 8447 3678	G 1 4 3 1 3 4 2	7q 100 271 214 214 100 214 271 157	4 16 12 12 4 12 16 8		
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708	<i>C</i> ₁ 2 2 2 3 1 1 2	157 157 157 157 157 214 100 100	8 8 8 8 12 4 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809	Y 2319 2393 498 784 6408 1909 8439 1739	<i>C</i> ₁ 2 2 2 3 1 1 2	157 157 157 157 157 157 214 100 100	8 8 8 8 12 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623	Y 1370 8188 4302 8903 7349 6873 3461 1660	<i>C</i> ₁ 3 4 2 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970	Y 3759 99 4199 7537 7939 9200 8447 3678	G 1 4 3 1 3 4 2	7q 100 271 214 214 100 214 271 157	4 16 12 12 4 12 16 8		
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122	Y 2319 2393 498 784 6408 1909 8439 1739 1708	C ₁ 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	C ₁ 2 2 2 2 3 1 1 2 4	157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4 4 8 16	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710	Y 2319 2393 498 784 6408 1909 8439 1739 1708 9943 PCB	7 2 2 2 2 2 3 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB	Cq 2 2 2 2 3 1 2 4 Cq 1	157 157 157 157 157 214 100 100 157 271 271	8 8 8 8 12 4 4 8 16	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB Y 7165 5113	Cq 2 2 2 2 2 3 1 2 4 1 3	157 157 157 157 157 214 100 100 157 271 271 7 100 214	88 88 88 12 4 4 8 16 Feeder 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB Y 7165 5113 7764	Cq 2 2 2 2 2 3 1 3 2	157 157 157 157 157 157 214 100 157 271 100 214 157	8 8 8 8 12 4 4 8 16	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB Y 7165 5113 7764 4893	7 2 2 2 2 3 1 1 2 4 7 1 3 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	157 157 157 157 157 157 214 100 157 271 100 214 157 100	88 88 88 12 4 4 8 16 Feeder 4 12 8	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB Y 7165 5113 7764 4893 1859	Cq 2 2 2 2 3 1 3 2 1 3 2 1 3	157 157 157 157 157 157 214 100 157 271 100 214 157	88 88 12 4 4 8 16 Feeder 4 12 8	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10 l	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380	Y 2319 2393 498 784 6408 1909 8439 1739 9943 PCB Y 7165 5113 7764 4893 1859 7006	Cq 2 2 2 3 1 3 4	7 157 157 157 157 157 157 214 100 157 271 100 214 157 100 214 271	88 88 88 12 4 4 4 8 16 Feeder 4 12 8 4	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 6 7 6 6 6 7 6 6 6 7 6 7 6 7 6 7 6 7	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 784 6408 1909 8439 1739 PCB Y 7165 5113 7764 4893 1859 7006 9827	C ₁ 2 2 2 2 3 1 1 2 4 4 3 4 3	7 157 157 157 157 157 214 100 157 271 100 214 157 100 214 271 271 214	88 88 88 12 4 4 4 8 16 Feeder 4 12 8 4 12 16	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 7	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290	Y 2319 2393 498 784 6408 1909 1739 1708 9943 7165 5113 7764 4893 1859 7006 9827 8066	Cq 2 2 2 3 1 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 5 6 7 8 9 10 10 10 10	7 157 157 157 157 157 214 100 100 157 271 0 214 157 100 214 271 214 271	88 88 88 12 4 4 4 8 16 Feeder 4 12 8 4 12 16 12	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9	3026 11269 17897 22321 6828 6369 21640 5809 20122 22710 X 15683 17477 9930 10341 16380 20940 9290 10631 14867	Y 2319 2393 498 784 6408 1909 1739 1708 9943 7165 5113 7764 4893 1859 7006 9827 8066 7036	Cq 2 2 2 2 3 4 3 4 3 4	7 157 157 157 157 157 214 100 100 157 271 0 214 157 100 214 271 214 271	88888888881224448816000000000000000000000000000000000	1 2 3 4 5 6 7 8	23356 6611 4008 21821 5947 16146 24172 16623 21760	Y 1370 8188 4302 8903 7349 6873 3461 1660 1556	<i>C</i> ₁ 3 4 2 2 2 2 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	7435 1229 17330 16253 24575 13817 10002 4970 15630	Y 3759 99 4199 7537 7939 9200 8447 3678 6208	7 1 4 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8 12		

Table G.11. PCB DATA FOR CASE B - 2*5 - 4 COMPONENTS

		PCB	01						PCB	02						PCB	03	,	
\overline{l}	Х	Υ	C_{i}	r_{q}	Eggdor		l	Х	Υ	c_{l}	r_{q}	Eggdor		l	Х	Υ	c_{l}	r	Feeder
1	47506	12308	<i>ા</i> 1	<i>i_q</i> 100	Feeder 4	\vdash	1	764	16762	<i>ا</i>	<i>q</i> 100	Feeder 4	\vdash	1					reeder 16
2	11556	15838	2	157	8		2	37340	392	1	100	4	\vdash	2		6186		271	16
3	30342	18436	4	271	16	\vdash	3	22254	13626		214	12		3					12
4	24300	14764	1	100	4		4	46590	7590	3	214	12		4		11362		271	16
5	44564	3526	1	100	4			23300	16636	2	157	8	H	5		7408		100	4
6	38104	8114	1	100	4			20932	10056		157	8		6		14054	-	271	16
7	22824	18710	1	100	4		7	42312	14190	3	214	12		7	17098	10932	2	157	8
8	926	18338	3	214	12		8	26258	8578	4	271	16		8	14486	8898	2	157	8
9	41070	8206	2	157	8		9	10132	6092	4	271	16		9	17060	13892	4	271	16
10	22236	17872	1	100	4		10	33606	3794	3	214	12		10	26704	12426	3	214	12
		DCD	04						DCD	05						DCD	06		
-	1	PCB			l	\vdash	1		PCB			l		7		PCB			
l	Χ			r_q	Feeder		l	Χ	Υ	c_{l}	r_q	Feeder		l	Χ		c_{l}		Feeder
1	6826	11656	1	100	4		1	20768	4280	-	214	12	Ш	1	22572			100	4
2	588	8470	2	157	8	\sqcup	2	15250	12870	1	100	4	Щ	2	2194	316		157	8
3	44694	10310	4	271	16		3	43718	6400	4	271	16		3	1360	328		157	8
4	9956	6680			12	\vdash	4	750	19202		214	12		4	15634	3802		157	8
5	14936	8658	2	157	8	\vdash	5	38398	14532	1	100	4	\vdash	5	644	11738		100	4 12
7	33072 14220	4518 11596	3 4	214 271	12 16	\vdash	7	48542 49504	8240 14892	3	100 214	4 12	\vdash	6 7	19198 34156	1152 7352		214 214	12
8	23462	15208	4	100	4	\vdash	8	39444	5358	3	214	12	\vdash	8	4642			214	12
9	32402	10596	3	214	12	\vdash	_	21932	8798	2	157	8	\vdash	9	1766	14352	-	157	8
10	49416	12810	1	100	4	\vdash	10	24916	18668	3	214	12	\vdash	10	30620	13854	4	271	16
-5	.5115	5.5	۲	.55				5 .5	.5555	Ľ				. 0	55525	. 555 1	Ë		
			_			iπ			PCB	00			1 1			DOD	00		
-	1	PCB	07	Ī	1	\vdash	_		PUB	Uδ	'	1				PCB	U9		
l	х	Υ	c_{l}	r_{q}	Feeder		l	Х	Υ	c_{l}	r_{q}	Feeder		l	Х	Υ	c_{l}	r_q	Feeder
1	6052	Y 4638	$\frac{c_l}{2}$	r 157	8		1	46712	Y 2740	$\frac{c_l}{3}$	r 214	12		1	14870	Y 7518	<i>c</i> _l	r 100	4
1	6052 22538	Y 4638 4786	<i>c</i> ₁ 2 2	r _q 157 157	8 8		1	46712 13222	Y 2740 16376	$\frac{c_l}{3}$	r 214 271	12 16		1	14870 2458	Y 7518 198	<i>C_l</i> 1 4	r 100 271	4 16
1 2 3	6052 22538 35794	Y 4638 4786 996	<i>C</i> ₁ 2 2 2	r _q 157 157 157	8 8 8		1 2 3	46712 13222 8016	Y 2740 16376 8604	<i>C</i> ₁ 3 4 2	r _q 214 271 157	12 16 8		1 2 3	14870 2458 34660	Y 7518 198 8398	<i>C_l</i> 1 4 3	r _q 100 271 214	4 16 12
1 2 3 4	6052 22538 35794 44642	Y 4638 4786 996 1568	<i>C</i> ₁ 2 2 2	r _q 157 157 157 157	8 8 8		1 2 3 4	46712 13222 8016 43642	Y 2740 16376 8604 17806	<i>C</i> ₁ 3 4 2 4	214 271 157 271	12 16 8 16		1 2 3 4	14870 2458 34660 32506	Y 7518 198 8398 15074	<i>C_l</i> 1 4 3 3	r _q 100 271 214 214	4 16 12 12
1 2 3 4 5	6052 22538 35794 44642 13656	Y 4638 4786 996 1568 12816	<i>C</i> ₁ 2 2 2 2	157 157 157 157 157 157	8 8 8 8		1 2 3 4 5	46712 13222 8016 43642 11894	Y 2740 16376 8604 17806 14698	<i>C</i> ₁ 3 4 2 4 2	214 271 157 271 157	12 16 8 16 8		1 2 3 4 5	14870 2458 34660 32506 49150	Y 7518 198 8398 15074 15878	7 1 4 3 1	r _q 100 271 214 214 100	4 16 12 12 4
1 2 3 4 5 6	6052 22538 35794 44642 13656 12738	Y 4638 4786 996 1568 12816 3818	<i>G</i> 2 2 2 3	157 157 157 157 157 157 214	8 8 8 8 8		1 2 3 4 5	46712 13222 8016 43642 11894 32292	Y 2740 16376 8604 17806 14698 13746	<i>C</i> ₁ 3 4 2 4 2 2	214 271 157 271 157 157	12 16 8 16 8		1 2 3 4 5	14870 2458 34660 32506 49150 27634	Y 7518 198 8398 15074 15878 18400	<i>G</i> 1 4 3 1 3	7q 100 271 214 214 100 214	4 16 12 12 4 12
1 2 3 4 5 6 7	6052 22538 35794 44642 13656 12738 43280	Y 4638 4786 996 1568 12816 3818 16878	<i>G</i> 2 2 2 3 1	157 157 157 157 157 157 214 100	8 8 8 8 8 12 4		1 3 4 5 6	46712 13222 8016 43642 11894 32292 48344	Y 2740 16376 8604 17806 14698 13746 6922	<i>G</i> 3 4 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8		1 2 3 4 5 6 7	14870 2458 34660 32506 49150 27634 20004	Y 7518 198 8398 15074 15878 18400 16894	<i>C</i> ₁ 1 4 3 3 1 3 4	7q 100 271 214 214 100 214 271	4 16 12 12 4 12 16
1 2 3 4 5 6	6052 22538 35794 44642 13656 12738 43280 11618	Y 4638 4786 996 1568 12816 3818 16878 3478	<i>G</i> 2 2 2 3 1 1	157 157 157 157 157 157 214 100	8 8 8 8 12 4		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246	Y 2740 16376 8604 17806 14698 13746 6922 3320	<i>C</i> ₁ 3 4 2 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7	14870 2458 34660 32506 49150 27634 20004 9940	Y 7518 198 8398 15074 15878 18400 16894 7356	<i>C</i> ₁ 1 4 3 3 1 3 4 2	7q 100 271 214 214 100 214 271 157	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280	Y 4638 4786 996 1568 12816 3818 16878	<i>G</i> 2 2 2 3 1	157 157 157 157 157 157 214 100	8 8 8 8 8 12 4		1 3 4 5 6	46712 13222 8016 43642 11894 32292 48344	Y 2740 16376 8604 17806 14698 13746 6922	<i>G</i> 3 4 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8		1 2 3 4 5 6 7	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271	4 16 12 12 4 12 16
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886	<i>G</i> 2 2 2 2 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4 8		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244	Y 4638 4786 996 1568 12816 3818 16878 3478 3416	<i>G</i> 2 2 2 2 1 1 2 4	157 157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4 8		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	<i>G</i> 2 2 2 3 1 1 2 4 10	157 157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4 8		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB	C ₁ 2 2 2 2 2 3 1 2 4 10 C ₁	7 157 157 157 157 157 214 100 100 157 271	8 8 8 8 12 4 4 4 8		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226	C _I 2 2 2 2 2 3	157 157 157 157 157 214 100 157 271 100 214	8 8 8 8 12 4 4 8 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 l	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7g 157 157 157 157 214 100 157 271 100 214 157	8 8 8 8 8 12 4 4 4 8 16 Feeder 4 12 8		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786	C ₁ 2 2 2 2 3 1 2 4 10 C ₁ 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 4 5 6 7 8 9 9 1 1 2 2 2 2 3 4 4 5 6 6 7 8 8 9 9 1 1 2 2 2 2 2 2 2 2 3 4 4 5 6 6 <td>7 157 157 157 157 157 157 157 157 214 100 157 271 100 214 157 100</td> <td>8 8 8 8 8 12 4 4 4 8 16 Feeder 4 12 8 4 4</td> <td></td> <td>1 2 3 4 5 6 7 8</td> <td>46712 13222 8016 43642 11894 32292 48344 33246 43520</td> <td>Y 2740 16376 8604 17806 14698 13746 6922 3320 3112</td> <td>C₁ 3 4 2 2 2 4 4</td> <td>214 271 157 271 157 157 157 157 271</td> <td>12 16 8 16 8 8 8 8</td> <td></td> <td>1 2 3 4 5 6 7 8</td> <td>14870 2458 34660 32506 49150 27634 20004 9940 31260</td> <td>Y 7518 198 8398 15074 15878 18400 16894 7356 12416</td> <td>$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$</td> <td>7q 100 271 214 214 100 214 271 157 214</td> <td>4 16 12 12 4 12 16 8</td>	7 157 157 157 157 157 157 157 157 214 100 157 271 100 214 157 100	8 8 8 8 8 12 4 4 4 8 16 Feeder 4 12 8 4 4		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 4 5 6 7 7 8 9 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718	C ₁ 2 2 2 2 3 1 2 4 10 C ₁ 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 4 5 6 7 1 2 2 3 4 4 5 6 7 8 8 9 9 1 1 2 2 2 3 4 4 4 5 6 6 7 8 8 8 9 1 1 1 2 2 2 <td>7 157 157 157 157 157 157 100 100 157 100 214 157 100 214</td> <td>8 8 8 8 8 12 4 4 4 8 16 Feeder 4 12 8 4 4 12</td> <td></td> <td>1 2 3 4 5 6 7 8</td> <td>46712 13222 8016 43642 11894 32292 48344 33246 43520</td> <td>Y 2740 16376 8604 17806 14698 13746 6922 3320 3112</td> <td>C₁ 3 4 2 2 2 4 4</td> <td>214 271 157 271 157 157 157 157 271</td> <td>12 16 8 16 8 8 8 8</td> <td></td> <td>1 2 3 4 5 6 7 8</td> <td>14870 2458 34660 32506 49150 27634 20004 9940 31260</td> <td>Y 7518 198 8398 15074 15878 18400 16894 7356 12416</td> <td>$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$</td> <td>7q 100 271 214 214 100 214 271 157 214</td> <td>4 16 12 12 4 12 16 8</td>	7 157 157 157 157 157 157 100 100 157 100 214 157 100 214	8 8 8 8 8 12 4 4 4 8 16 Feeder 4 12 8 4 4 12		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 4 5 6 6 7 6 6 6 7 7 6 7 8 7 8 7 8 7 8 7 8 7	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012	G Q <t< td=""><td>7 157 157 157 157 157 157 100 214 271 271</td><td>88 88 88 12 4 4 8 16 Feeder 4 12 8 4 4 12 16</td><td></td><td>1 2 3 4 5 6 7 8</td><td>46712 13222 8016 43642 11894 32292 48344 33246 43520</td><td>Y 2740 16376 8604 17806 14698 13746 6922 3320 3112</td><td>C₁ 3 4 2 2 2 4 4</td><td>214 271 157 271 157 157 157 157 271</td><td>12 16 8 16 8 8 8 8</td><td></td><td>1 2 3 4 5 6 7 8</td><td>14870 2458 34660 32506 49150 27634 20004 9940 31260</td><td>Y 7518 198 8398 15074 15878 18400 16894 7356 12416</td><td>$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$</td><td>7q 100 271 214 214 100 214 271 157 214</td><td>4 16 12 12 4 12 16 8</td></t<>	7 157 157 157 157 157 157 100 214 271 271	88 88 88 12 4 4 8 16 Feeder 4 12 8 4 4 12 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 6 7 6 7 6 6 7 6 6 7 7 6 7 6 7 7 7 8 7 8	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654	G 2 2 2 2 3 4 3 4 3	7 157 157 157 157 157 157 150 100 100 100 214 157 100 214 271 214	88 88 88 12 4 4 8 16 Feeder 4 12 8 4 12 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 4 5 6 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262	Y 4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132	G 2 2 2 2 3 1 1 2 4 10 G 1 3 2 1 3 4 3 4	7 157 157 157 157 157 157 157 214 100 214 157 100 214 271 214 271	88 88 12 4 4 8 16 Feeder 4 12 8 4 12 16 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 6 7 7 8 9 9 10 6 6 7 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8	X 31366 3494 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262 29734	Y 4638 4786 996 1568 12816 3818 16878 3478 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132 14072	G 2 2 2 2 3 1 1 2 4 10 G 1 3 2 1 3 4 3 4 4	7q 157 157 157 157 157 214 100 100 214 157 100 214 271 214 271 271	88 88 12 4 4 8 16 Feeder 4 12 8 4 12 16 16 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8
1 2 3 4 5 6 7 8 9 10 1 2 3 4 4 5 6 6 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	6052 22538 35794 44642 13656 12738 43280 11618 40244 45420 X 31366 34954 19860 20682 32760 41880 18580 21262	Y 4638 4786 996 1568 12816 3818 16878 3416 19886 PCB Y 14330 10226 15528 9786 3718 14012 19654 16132	G 2 2 2 2 3 1 1 2 4 10 G 1 3 2 1 3 4 3 4 4	7 157 157 157 157 157 157 157 214 100 214 157 100 214 271 214 271	88 88 12 4 4 8 16 Feeder 4 12 8 4 12 16 16		1 2 3 4 5 6 7 8	46712 13222 8016 43642 11894 32292 48344 33246 43520	Y 2740 16376 8604 17806 14698 13746 6922 3320 3112	C ₁ 3 4 2 2 2 4 4	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	14870 2458 34660 32506 49150 27634 20004 9940 31260	Y 7518 198 8398 15074 15878 18400 16894 7356 12416	$\frac{C_{l}}{1}$ $\frac{1}{4}$ $\frac{3}{3}$ $\frac{1}{1}$ $\frac{3}{3}$ $\frac{4}{2}$ $\frac{2}{3}$	7q 100 271 214 214 100 214 271 157 214	4 16 12 12 4 12 16 8

Table G.12. PCB DATA FOR CASE B – 10*25 – 4 COMPONENTS

PCB 01			PCB ()2						PCB ()3		
$l \times Y \qquad c_l r_q \qquad \text{Feeder}$	l	Х	Υ	c_{l}	r_{q}	Feeder		l	Х	Υ	c_{l}	r_{c}	Feeder
1 237530 61540 1 100 4	1	3820	83810		100	4				72710			16
2 57780 79190 2 157 8	2	186700	1960	1	100	4			224940		4	271	16
3 151710 92180 4 271 16	3	111270	68130	3	214	12		3	205410	83850	3	214	12
4 121500 73820 1 100 4	4	232950	37950	3	214	12		4	161230	56810	4	271	16
5 222820 17630 1 100 4	5	116500	83180	2	157	8		5	204490	37040	1	100	4
6 190520 40570 1 100 4	6	104660	50280	2	157	8		6	165060	70270	4	271	16
7 114120 93550 1 100 4	7	211560	70950	3	214	12		7	85490	54660	2	157	8
8 4630 91690 3 214 12	8	131290	42890	4	271	16		8	72430	44490	2	157	8
9 205350 41030 2 157 8	9	50660	30460	4	271	16		9	85300	69460	4	271	16
10 111180 89360 1 100 4	10	168030	18970	3	214	12		10	133520	62130	3	214	12
DCD 04			DCD (75						DCD (20		
PCB 04		ı	PCB (JO				-		PCB (
$l \mid_{X} \qquad \mid_{Y} \qquad c_l \mid_{q}^{r} \qquad Feeder$	l	X	Υ	c_{l}	r_{q}	Feeder		l	Х		c_{l}	r_q	Feeder
1 34130 58280 1 100 4	1	103840		3	214	12			112860		1	100	4
2 2940 42350 2 157 8	2		64350	1	100	4	Ш	2	10970	1580	2	157	8
3 223470 51550 4 271 16	3				271	16		3		1640		157	8
4 49780 33400 3 214 12	4	3750	96010	3	214	12		4		19010	_	157	8
5 74680 43290 2 157 8		191990	72660	1	100	4		5	3220	58690	1	100	4
6 165360 22590 3 214 12	6		41200	1	100	4		6	95990	5760	3	214	12
7 71100 57980 4 271 16	/	247520	74460	3	214	12		7		36760	3	214	12
8 117310 76040 1 100 4	8	197220	26790	3	214	12		8		63150	3	214	12
9 16200 52980 3 214 12 10 247080 64050 1 100 4	10		43990 93340	2	157 214	8 12		9 10		71760	2	157 271	8 16
10 247080 64050 1 100 4	10	124580	93340	ગ	214	12		10	153100	09270	4	2/ 1	16
			PCB (10						PCB (20		
PCB 07			PUBL	Ю						F CB (J		
$l \times PCB 07$ $l \times PCB 07$ $l \times PCB 07$ $l \times PCB 07$ $l \times PCB 07$	l	Х			$r_{_{\!G}}$	Feeder		l	X		c_{l}	$r_{_{G}}$	Feeder
I X Y C _I F _G Feeder 1 30260 23190 2 157 8	<i>l</i>	233560	Y 13700	c_{l}	<i>r</i> 214	12		1	74350	Y 37590		<i>r</i> _q	4
I X Y C _I F _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8	1 2	233560 66110	Y 13700 81880	<i>G</i> 3 4	214 271	12 16		1	74350 12290	Y 37590 990	<i>c</i> _l 1 4	100 271	4 16
I X Y C _I F _Q Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8	1 2 3	233560 66110 40080	Y 13700 81880 43020	<i>G</i> 3 4 2	214 271 157	12 16 8		1 2 3	74350 12290 173300	Y 37590 990 41990	<i>C_l</i> 1 4 3	100 271 214	4 16 12
I X Y C _I F _Q Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8	1 2 3 4	233560 66110 40080 218210	Y 13700 81880 43020 89030	<i>G</i> 3 4 2 4	214 271 157 271	12 16 8 16		1 2 3 4	74350 12290 173300 162530	Y 37590 990 41990 75370	<i>G</i> 1 4 3	100 271 214 214	4 16 12 12
I X Y C _I F _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8	1 2 3 4 5	233560 66110 40080 218210 59470	Y 13700 81880 43020 89030 73490	<i>G</i> 3 4 2 4 2	214 271 157 271 157	12 16 8 16 8		1 2 3 4 5	74350 12290 173300 162530 245750	Y 37590 990 41990 75370 79390	7 1 3 3	100 271 214 214 100	4 16 12 12 4
I X Y C _I C _I C _I Feeder 1 30260 23190 2 157 8 8 2 112690 23930 2 157 8 8 3 178970 4980 2 157 8 8 4 223210 7840 2 157 8 8 5 68280 64080 2 157 8 8 6 63690 19090 3 214 12	1 2 3 4 5	233560 66110 40080 218210 59470 161460	Y 13700 81880 43020 89030 73490 68730	G 3 4 2 4 2	214 271 157 271 157 157	12 16 8 16 8		1 2 3 4 5	74350 12290 173300 162530 245750 138170	Y 37590 990 41990 75370 79390 92000	G 1 4 3 1 3	100 271 214 214 100 214	4 16 12 12 4 12
I X Y C _I F _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4	1 2 3 4 5 6	233560 66110 40080 218210 59470 161460 241720	Y 13700 81880 43020 89030 73490 68730 34610	G 3 4 2 4 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8		1 2 3 4 5 6	74350 12290 173300 162530 245750 138170 100020	Y 37590 990 41990 75370 79390 92000 84470	G 1 4 3 1 3 4	100 271 214 214 100 214 271	4 16 12 12 4 12 16
I X Y C _I I' _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230	Y 13700 81880 43020 89030 73490 68730 34610 16600	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700	Y 37590 990 41990 75370 79390 92000 84470 36780	G 1 4 3 1 3 4 2	100 271 214 214 100 214 271 157	4 16 12 12 4 12 16 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	G 3 4 2 4 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I' _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230	Y 13700 81880 43020 89030 73490 68730 34610 16600	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780	G 1 4 3 1 3 4 2	100 271 214 214 100 214 271 157	4 16 12 12 4 12 16 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I' _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y C _I I _T Feeder	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y C _I I _G Feeder 1 156830 71650 1 100 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y C _I I _G Feeder 1 156830 71650 1 100 4 2 174770 51130 3 214	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y C _I I _G Feeder 1 156830 71650 1 100 4	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I I _I	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I C _I C _I Feeder 1 30260 23190 2 157 8 8 2 112690 23930 2 157 8 8 3 178970 4980 2 157 8 8 4 223210 7840 2 157 8 8 5 68280 64080 2 157 8 8 6 63690 19090 3 214 12 12 7 216400 84390 1 100 4 4 8 58090 17390 1 100 4 4 9 201220 17080 2 157 8 8 10 227100 99430 4 271 16 PCB 10 I Y C _I C _I C _I Feeder 1 156830 71650 1 100 4 4 2 174770 51130 3 214 12 3 3 99300 77640 2 157 8 4 4 103410 48930 1 100 4 4 5 163800 18590 3 214 12	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y Y Y Y Y Y Feeder 1 156830 71650 1 100 4 2 174770 51130	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I I _G Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 PCB 10 1 X Y Y Y _q Feeder 1 156830 71650 1 100 4 2 174770 5113	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12
I X Y C _I C _I C _I Feeder 1 30260 23190 2 157 8 2 112690 23930 2 157 8 3 178970 4980 2 157 8 4 223210 7840 2 157 8 5 68280 64080 2 157 8 6 63690 19090 3 214 12 7 216400 84390 1 100 4 8 58090 17390 1 100 4 9 201220 17080 2 157 8 10 227100 99430 4 271 16 PCB 10 I X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y <td>1 2 3 4 5 6 7 8</td> <td>233560 66110 40080 218210 59470 161460 241720 166230 217600</td> <td>Y 13700 81880 43020 89030 73490 68730 34610 16600 15560</td> <td><i>G</i> 3 4 2 2 2 2 2</td> <td>214 271 157 271 157 157 157 157 271</td> <td>12 16 8 16 8 8 8 8</td> <td></td> <td>1 2 3 4 5 6 7 8</td> <td>74350 12290 173300 162530 245750 138170 100020 49700 156300</td> <td>Y 37590 990 41990 75370 79390 92000 84470 36780 62080</td> <td>G 1 4 3 3 1 3 4 2 3</td> <td>100 271 214 214 100 214 271 157 214</td> <td>16 12 12 12 4 12 16 8 12</td>	1 2 3 4 5 6 7 8	233560 66110 40080 218210 59470 161460 241720 166230 217600	Y 13700 81880 43020 89030 73490 68730 34610 16600 15560	<i>G</i> 3 4 2 2 2 2 2	214 271 157 271 157 157 157 157 271	12 16 8 16 8 8 8 8		1 2 3 4 5 6 7 8	74350 12290 173300 162530 245750 138170 100020 49700 156300	Y 37590 990 41990 75370 79390 92000 84470 36780 62080	G 1 4 3 3 1 3 4 2 3	100 271 214 214 100 214 271 157 214	16 12 12 12 4 12 16 8 12