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ABSTRACT 
 
 

3D FACE RECOGNITION 

 
 

Üstün, Bülend 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

 

December 2007, 87 pages 

 

 

 

In this thesis, the effect of registration process is evaluated as well 

as several methods proposed for 3D face recognition. Input faces are in 

point cloud form and have noises due to the nature of scanner 

technologies. These inputs are noise filtered and smoothed before 

registration step. In order to register the faces an average face model is 

obtained from all the images in the database. All the faces are registered 

to the average model and stored to the database. Registration is 

performed by using a rigid registration technique called ICP (Iterative 

Closest Point), probably the most popular technique for registering two 

3D shapes. Furthermore some variants of ICP are implemented and they 

are evaluated in terms of accuracy, time and number of iterations 

needed for convergence. At the recognition step, several recognition 

methods, namely Eigenface, Fisherface, NMF (Nonnegative Matrix 

Factorization) and ICA (Independent Component Analysis) are tested on 
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registered and non-registered faces and the performances are 

evaluated.  

 

Keywords: ICP variants, Eigenface, Fisherface, NMF, ICA 
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ÖZ 
 
 

3 BOYUTLU YÜZ TANIMA 

 

 

Üstün, Bülend 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

 

Aralık 2007, 87 sayfa 

 

 

 

Bu tezde, çakıştırma işleminin üç boyutlu yüz tanıma 

algoritmalarından birkaçı üzerine etkisi incelenmiştir. Girdiler üç boyutlu 

nokta kümesi şeklinde olup tarayıcıdan kaynaklanan gürültüler 

mevcuttur. Gürültü filtreleme işlemi sayesinde veriler daha pürüzsüz bir 

hale getirilmiştir. Yüz yüzeylerinin çakıştırılması amacıyla katı bir 

çakıştırma metodu olan ve muhtemelen üç boyutlu iki şeklin 

çakıştırılması amacıyla en sık kullanılan metot olan, Döngülü Yakın 

Nokta (DYN) metodu kullanılmıştır. Ayrıca DYN metodu için öne 

sürülmüş birkaç değişken doğruluk ve yakınsama için gerekli olan zaman 

ve döngü sayısı temel alınarak incelenmiştir. Tanıma aşamasında 

özyüzler, Fisherface, Bağımsız Bileşenler Analizi (BBA), Negatif 

Olmayan Matris Ayrıştırma (NOMA) metotları hayata geçirilmiştir. 

Çakıştırılmış ve çakıştırılmamış veriler üzerinde, tanıma algoritmalarının 

performansları incelenmiştir.  
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CHAPTER 1 
 

 

INTRODUCTION 
 
 
 
 

Authentication systems of the future are believed to operate on 

biometrics which means the systems will be able to identify the people 

from their biological characteristics. These types of systems are being 

used more and more in security systems and consumer electronics. 

Fingerprints have been the most common biometric over 100 years 

[54]. As the technology develops other types of biometrics have emerged 

such as hand geometry, iris, retina, signature, vein patterns, face, and 

DNA. They have several advantages and disadvantages when compared 

to others in terms of accuracy, speed, intrusiveness, environmental 

tolerance, and cost. For instance retina recognition is the most accurate 

biometrics however it is also the most expensive one.  

When compared to other biometrics one of the advantages of face 

recognition is its non-intrusive nature. To illustrate, fingerprint and iris 

based recognition systems perform better than face recognition systems 

however these methods necessitate the collaboration of the subjects. For 

a typical face recognition system, subjects may not even be aware of the 

scanner. Moreover in case a face recognition system fails to identify a 

person, security personnel may authorize that person for access by 

examining the individual’s image in the database.  

Big majority of the face recognition systems works with 2D images. 

These systems use intensity values of the pixels of the images for 
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extracting features and making decisions. Although these techniques can 

achieve good performances under controlled conditions, their 

performance can degrade dramatically when pose, illumination, and 

scale parameters change.  

3D techniques are thought to be advantageous in terms of these 

factors since the 3D shape of the face does not change due to these 

factors. Advances in computer vision make it possible to design face 

recognition systems with lower error rates. Also by the recent 

developments better sensor systems provide cheaper and accurate 3D 

data which increases the availability of 3D data.  

Finally evaluations like FRGC (Face Recognition Grand Challenge) 

and FRVT (Face Recognition Vendor Test) [55] aims to improve face 

recognition systems by encouraging and channeling more researchers 

into this area.  

FRVT 2006 results [51] show that FRGC has reached its aim since 

the results are much better than FRVT 2002 results. Three biometrics 

were compared in FRVT 2006: recognition from very-high resolution still 

face images, 3D face images, and single-iris images. Recognition 

performances were reported to be comparable for all three biometrics. 

Moreover some of the algorithms performed better than humans.  

In this thesis, FRGCv1 database in which 3D face data is given as 

point clouds is used as inputs to the system. After cropping the region of 

interest, the remaining face data is filtered in order to remove the spikes 

and holes and to obtain a smoother surface. Prior to storing a face data, 

it is registered to the average face model which is built by, as the name 

implies, taking the average of all the faces in the database. Several face 

recognition algorithms are implemented and their performances are 

evaluated on registered and non-registered face data.  

The rest of this thesis is organized as follows: Chapter 2 gives a 

background about common terms in face recognition area, algorithms 
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used in this thesis, and literature survey. Chapter 3 presents the results 

of the experiments performed. Finally in Chapter 4 conclusions and 

possible future works are summarized.  
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CHAPTER 2 
 
 

BACKGROUND 
 
 
 

In order to evaluate performances of face recognition systems, 

some common terms are employed [048]. Identification task is the case, 

when the person to be identified is known to be in the database and by 

comparing this person’s new image with all the images in the database, 

similarity scores are calculated. After sorting them, the most similar 

person in the database is given as output. If the system correctly 

identifies the person, when only the first similar match is considered, this 

is called a “top match”. If the system correctly identifies the person within 

the most similar n number of images from the database, this is called 

“Rank n score”. A curve which shows the relation between the rank and 

the number of correct identifications is referred as Cumulative Match 

Characteristic (CMC) curve. This curve gives an idea about how close a 

system is from the correct match. The ideal case would be having 100% 

top match score. However if a good n can be determined by examining 

the CMC curve, top n matches can be given to security personnel to 

make the final decision. An example for a CMC curve is given in Figure 

2.1. 
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Figure 2.1 A CMC curve 

 

 

In a verification task, the person makes a claim to be an identity in 

the database. In fact, he may even not have an image in the database. 

By comparing this person’s image with the claimed identity’s image, a 

similarity score is obtained. If this score is above a threshold, the system 

accepts that the person is who he claimed to be. Otherwise, if the 

similarity score is below than the threshold, the system will reject the 

person. There are two errors that a system can make for a verification 

task. Firstly, the person may make an errant claim to be an identity, and 

after calculating the similarity score the system may think that the person 

says the truth although he does not. This is called a “false accept.” 

Secondly, the person make appropriate claim regarding his identity, but 

the calculated similarity score is lower than the threshold. The system 

will reject the person although he is saying the truth. This is called a 

“false reject.” These two errors reversely related. If threshold is increased 

to lower FAR (False Acceptance Rate), this will in turn increase FRR 

(False Rejection Rate) and decrease the probability of verification. A plot 
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that related these parameters is called ROC (Receiver Operating 

Characteristic). It is also possible to plot this curve, putting the probability 

of correct verification onto y axis. The probability of correct verification 

can be computed by subtracting FRR from 1. An example ROC curve is 

given in Figure 2.2. 

 

 

 

Figure2.2 A ROC curve 

 

 

Dimensionality Reduction 

Consider a set of images all having size N by M dimensions. The 

pixels in each image can be represented by an NxM size vector, in other 

words by a point in an NxM dimensional image space. Conditioned that 

pixel values are ordered in the same manner, similar images will be 

nearer to each other in the image space. However, making an analysis in 

an NxM-dimensional space is very difficult.  

On the other hand face images have some common properties 

which make it possible to represent them in fewer dimensional spaces. 
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For example left part of the face is almost symmetric to the right part and 

every image has two eyes, a nose and a mouth in the middle. 

Furthermore value of a pixel is strongly related with the values of its 

neighbors which makes pixel-wise sampling unnecessary. Faces will not 

be distributed randomly among the image space. Instead great majority 

of the image space will not be used due to reasons explained above. As 

a result, it would be possible to represent them using fewer dimensions. 

This fewer dimensional space is called face space. 

 

2.1 PREPROCESSING 

 

2.1.1  FRGC DATABASE 
 

All references made to the FRGC (Face Recognition Grand 

Challenge) database in this thesis are always related to part v.1 of the 

database. Faces are scanned with a Minolta Vivid 3D laser scanner. This 

device can produce 3D shape and color information registered to each 

other (Figure 2.3). The FRGC database contains 943 2D images and 

943 3D data belonging to 275 different persons. People have different 

number of images in the database. The numbers are given in Table 2.1. 

Although great majority of 2D-3D data pairs are registered to each 

other, there are two completely unrelated pairs. These pairs are removed 

from database. Although there are some badly registered pairs in the 

data base, that is to say, there are small translation differences about 10 

pixels between the color image and depth image. These pairs are not 

removed from the database. All the experiments are carried out by the 

remaining 941 pairs.  
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Table 2.1 Images per person in the database 

# of images  
per person 

# of  
persons 

2D 
image 

3D 
data 

1 78 78 78 
2 32 64 64 
3 46 138 138 
4 33 132 132 
5 28 140 140 
6 30 180 180 
7 15 105 105 
8 13 104 104 

 

 

 
The resolution of 2D images is 480x640 pixels. Color information 

is provided by these images which have ’.ppm’ file extensions. Each 

pixel has 24 bits per pixel to code color in RGB (Red-Green-Blue) space 

(Figure2.4). 

3D data has 480x640x4 number of elements. For each pixel 

position in the registered 2D image there are 4 values in corresponding 

position (i,j) of 3D data: x, y, z, and validity. x y, and z values shows the 

position of the point in the space. Validity is a flag to determine whether 

the point corresponds to subject whose image is taken or not. If the point 

does not correspond to an object in the view, then there is no information 

relating to this point and x, y, and z values are assigned as -999999.  

There are some problems with the 3D data files. Firstly, the points 

where the laser scanner cannot get any reflections are regarded invalid. 

An example is given in Figure 2.5. Invalid points are black where as 

white points are valid. Some parts in the faces especially eyes, eyebrows 

are problematic. Although these points are visible, scanner cannot 

provide depth information. 
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Figure2.3. 2D image and 3D data 
 

04605d172.bmp

 
Figure2.4. bmp converted 2D image file 
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Figure2. 5 Validity flag points in the 3D data file 

 
Figure2.6 Depth (or Range) image constructed from 3D data 
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Unfortunately not every valid point has a proper x, y, and z values. 

Points within a few pixels of neighborhood of the invalid points tend to 

have improper x, y, and z values, such as eye corners.  

All images in the FRGC database are taken from front with minor 

in-depth pose variations. However, significant translation and scale 

variations are present in the images. In some of the images, rotation and 

expression variations are also present.  

 

2.1.2  PREPROCESSING OF IMAGES 
 

8 landmarks namely outer eye corners, inner eye corners, nose 

tip, middle points of upper and lower lips, and chin are marked manually 

on 2D images as shown in the Figure 2.7.  

 

 

Figure 2.7 Landmarks marked on a face image 
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Since some of the landmark locations are especially problematic 

such as eye corners many of them tend to have invalid pixel 

correspondences. As a result, only the nose tip is used in this thesis. 

Images having invalid pixel for the nose tip, are still marked because 

during the preprocessing of images, nose tip are carried to the origin by 

subtracting nose tips’ x, y, and z values from all the pixels in the image. If 

the nose tip is invalid, x, y, and z values will have -999999 and 

subtracting this value from every pixel will raze the image and perturb the 

system.  

After a 3D data is positioned so that the nose tip is at origin, 

filtering procedures for noise starts. Almost all the 3D face 

representations suffer from erroneous data points due to current 3D 

sensor technology which makes a noise removal step necessary. The 

distances of all the pixels with respect to nose tip are calculated and 

those having bigger distances than a threshold value are deleted. Then, 

impulse-like noises in the image are eliminated by noise filtering (Figure 

2.8) 

After the holes in the images are filled with interpolation, faces are 

placed in a grid centered at origin. By considering all the images in the 

database, a proper choice is made to determine the starting and ending 

points of the grid.  
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Figure 2.8 Effect of noise filter 
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Figure2. 9 Face image placed on an x-y grid 
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Since the faces are all placed on the same grid, and all nose tips 

are at the origin (Figure 2.9), z values can be used as features. By 

applying this method to all the faces in the database, depth images of 

size nxn are generated.   

In this thesis n is chosen as 21, 41, 61, 81, 101, 121, and 161 to 

see the effect of the grid size on the algorithms. 

 

2.2 ITERATIVE CLOSEST POINT 

 
Iterative Closest Point (ICP) [2] is, as the name implies, an 

iterative algorithm which registers rigidly a 3D set to a 3D model while 

minimizing the mean square error (MSE) between them. After the 

registration is complete, the given data set is in the best alignment with 

the model set with respect to the chosen error metric.  

ICP is a rigid transformation applying the same rotation and 

translation to all points of the data set. 

If the correct correspondences between the data set and the 

model shape are known, the registration parameters can be found easily. 

(Figure 2.10a) 

TDataRData rednonregisteregistered += *       (2.1) 

where R is the rotation matrix having size of 3x3 and T is the translation 

matrix having size of 1x3.  

However, finding the correct correspondences is not always trivial. 

Thus, ICP considers the closest points (Figure 2.10b) and calculates the 

Rotation and Translation matrices iteratively. The algorithm repeats the 

steps below, until the error falls below a preset threshold or the 

difference between consecutive error values fall below a threshold.  
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• Compute the closest points on the model set for every point in 

the data set 

• Compute the registration parameters (R, rotation matrix and T, 

Translation matrix) 

• Apply the registration to the data set 

• Calculate the error between the model and the registered set 

 

The algorithm will result in a good position if two set, data and 

model set, are close enough. (Figure 2.10c) 

ICP always converges monotonically to a local minimum [2] but a 

global minimum is not guaranteed. In order to end up in the global 

minimum, either a good initial estimate should be given to the algorithm 

or after trying several initial conditions the one resulting in the lower error 

rate would be chosen.  

There are also some papers that perform ICP on local regions. 

This technique has two main advantages. Firstly, non-rigid deformations 

of a face such as expressions cannot be expressed by standard ICP. 

Secondly, matching local regions is much faster than matching all the 

face data [42, 37].  
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Figure 2.10a (top left) If the correct correspondences are known, which is 
not possible in general, registration can be handled without any 
problems.2.10b (top right) ICP considers the nearest points in the model. 
2.10c (bottom) If starting point is good, the registration will give a good 
result. 

 

 

 

In every loop, the closest point in the model is calculated for each 

point in the data set. After that, registration can be computed by several 

means. In [52] 4 registration algorithms are evaluated and Singular Value 

Decomposition (SVD) has found to be better in general. In this thesis 

SVD approach given in [53], is used to compute registration algorithms 

as explained in the following.  
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2.2.1  SINGULAR VALUE DECOMPOSITION 
The error that is to be minimized is the mean square error of the 

Euclidian distance between each point in the data set and its registered 

correspondence. 

2

1

mod ||)(||
1

TRpp
n

data

i
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In order to find R and T firstly, the centroid of each set is calculated 

and subtracted from the analogous set to have two sets having the same 

centroid. 
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Data points are centered at their own centroid. These sets are sorts 

of normalized sets. Rotation parameter will be calculated so that one 

centroid will rotate and match the other.  

 

2
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      (2.7) 

 

Once R is found, T can be found as 

datamodel *centroidT centroidR−=      (2.8) 

 

If the equation (2.2) is expanded, it can be seen that the eigenvectors 

of the covariance matrix formed by the data set and the model set, are 
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the rotation axis which maps one set into the other. This covariance 

matrix is decomposed by SVD to get 

T
UWVH =         (2.9) 

and  

T

T

U

VU

VR

















=

)det(00

010

001

              (2.10) 

 

In a general SVD case similar to equation (2.10), U is the matrix of 

eigenvectors of HHT; V is the matrix of eigenvectors of HTH. W is a 

diagonal matrix containing the square root of the eigenvalues of U and V. 

Note that eigenvalues of HHT and HTH are same. 

 

To sum up 

• The centroid of the data and the model is found. The centroid 

of each set is subtracted to normalize them. 

•  Covariance matrix of the normalized sets is formed. 

• Using SVD on the covariance matrix, R is found and then T is 

found. 

 

At each iteration R is found and updated according to equations: 

1* −= iupdatei RRR                 (2.11) 

updateiupdatei TTRT += −1*                     (2.12) 

where Ri is the resulting rotation matrix of ith iteration calculated using the 

rotation matrix of the previous iteration (Ri-1) and the rotation matrix 

computed at that iteration (Rupdate). Ti is, again, the resulting translation 

matrix calculated by the translation matrix of the previous iteration (Ti-1) 

and the translation matrix computed at that iteration (Tupdate). 

 



 19 

2.2.2. VARIANTS OF THE ICP ALGORITHM 
Many different variants are proposed since the introduction of ICP. 

In [3] ICP variants are classified in six stages: 

 

• Selection of sample points 

• Matching of the points to the other mesh 

• Weighting the corresponding pairs 

• Rejecting certain pairs  

• Assigning an error metric  

• Minimizing the error metric 

 

In this thesis, the same classification will be followed and the 

effect of some variants will be examined. Different than [3] the scenes in 

this thesis are 3D faces which are either represented by depth images or 

point clouds. 

 

Selection of points: The original method [2] proposes using all the 

available points always. However in order to speed-up the process either 

uniform subsampling of the available points [5] or random sampling of 

the points at each iteration can be chosen as proposed in [58]. These are 

the variants that will be examined in this thesis. Also in [3] maximizing 

the distribution of normals is proposed. Moreover, there are some other 

methods such as selecting points with high intensity grey level gradient 

[57]. This method is preferable for improving the alignment if per-sample 

color or intensity information is available.  

 

Matching points: The original paper suggests finding the closest point 

in the other mesh [2]. One of the other methods is normal shooting 

proposed in [7]. In other words starting from the source point, normal 

direction is followed until the destination surface is reached. Another 
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method is to project the source point onto the destination mesh [49], 

which is called reverse calibration. In order to increase the probability of 

correct matching, a neighborhood of the matched point is searched in 

terms of a given compatibility metric based on color or angle between 

normals also proposed in the literature. 

 

Rejecting Pairs: A threshold may be defined by a user and the 

corresponding points having point-to-point distances greater than the 

threshold can be rejected. Another method is to reject worst n% of pairs, 

n=10 is used in [3]. Also it is possible to reject pairs whose point-to-point 

distance is larger than 2.5 times the standard deviation. These variants 

will be examined in this thesis. In addition, rejecting pairs that are not 

consistent with neighboring pairs was proposed by [59]. Finally the pairs 

containing points on mesh boundaries [5] can be rejected. 

 

In this thesis, our baseline ICP algorithm uses all the points in 

both meshes (no subsampling or rejection is performed), computes 

point-to-point distances between pairs and weights are given uniformly to 

every pair. As model, 61-by-61 depth image obtained by averaging all 

the 941 faces is used. 

  

Firstly, a face model is constructed by averaging all the faces in 

the database (Figure 2.11). Then, every 3D face image read from FRGC 

database is registered to the model face and the resulting depth images 

form new database on which all the experiments are performed. In other 

words, the faces in the database are already registered with the average 

face model. Each test image given to the system is registered to average 

face by ICP before recognition is performed.  
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Figure 2.11 Mean image 

 
 

2.3 BACKGROUND ON RECOGNITION 

ALGORITHMS 

 
Firstly, by ICP the 3D data is registered such that the nose tip is at 

origin and the new 3D data is converted to depth images. All the 

algorithms considered in this chapter are applied to depth images. Each 

algorithm is implemented in Matlab. Except ICA algorithm, which is 

obtained from internet [56], codes are written in Matlab. The downloaded 

code was also written in Matlab and some small modifications were 

made to the code in order to permit it operate with the database properly.  

 

 

2.3.1  EUCLIDIAN DISTANCE 
 
After the registration step is complete, all the images lies on the same x-

y grid. Thus differences between z values can be used to recognize the 

test image.  
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where Nx and Ny are chosen to be 30 since the size of the depth images 

are 61x61, and I(x,y) is the value of the depth image at x,y. 

2.3.2  EIGENFACES 
 

Principal Component Analysis (PCA), also called Karhunen-Loève 

transform, is one of the most common techniques used in different areas 

including the field of pattern recognition. It was first introduced in the 

early 1990’s and became very popular since then. It was first used in 

face recognition in [5]. PCA was also used many times for representing, 

detecting, recognizing, and compressing face images for decades.  

In order to find the vectors which best represent the distribution of 

the data set, a covariance analysis is performed. The eigenvectors of the 

covariance matrix are calculated and by eliminating the vectors having 

the smallest eigenvalues, the dimension of the data is reduced.  

The reason why this method is called Eigenface method is that when 

PCA is performed over a set of faces, the eigenvectors look like faces.   

 

Eigenface approach can be summarized as follows 

• Get the training images ( MΓΓΓ ,......, 21 ). M is the number of faces 

in the training set. 

• Calculate the mean ( ∑
=

Γ=Ψ
M

n

n

1

). n is the number of pixels in an 

image. 

• Subtract it from every image in the training set ( Ψ−Γ=Φ nn ) 

• Calculate the covariance matrix C=AAT where [ ]MA ΦΦΦ= .....21  
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• Find its eigenvectors, choose first k of them having the largest 

eigenvalues and project every image in the training set to face 

space and calculate the coefficients 

∑
=

⋅Ψ−Γ=
k

i

itest reigenvectoiprojectedweight
1

)(),(             (2.14) 
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• If recognition is to be performed, project the test depth image to 

face space after subtracting mean and by considering the 

coefficients, find the image in the database having the closest 

coefficients minimizing the equation 

2

1

)),(),(( itrainingweightiprojectedweightError
k

i

−=∑
=

          (2.16) 

 

In general C is so big that finding its eigenvectors becomes very 

difficult. The number of faces in the training set (M=941) is smaller than 

the number of pixels in a depth image (n=3721). Solving C, having size 

of 3721x3721, for eigen-analysis is computationally expensive. In [5] 

Turk and Pentland propose a way to determine the eigenvectors of the 

covariance matrix C. 

 

Consider a matrix L= ATA. The eigenvectors of this matrix will satisfy 

the equation 

iii

T
vv µ=ΑΑ

              (2.17)  

Multiplying both sides by A from left, we obtain iii

T
vv Α=ΑΑΑ µ  

which means ivΑ  are the eigenvectors of C. Therefore firstly the 

eigenvectors of L is found to reduce the calculations. Finding the 

eigenvectors of L is simpler since L has a size of 941x941. 
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Figure 2.12 Sample eigenfaces, corresponding to 10 biggest eigenvalues 

 

 

2.3.3  NONNEGATIVE MATRIX FACTORIZATION (NMF) 
The aim of NMF is to find W and H matrices for a given V matrix such 

that 

V ≈ W * H                  (2.18) 

In order to use NMF for face recognition [9], images in the training set 

are placed to columns of V. V has a size of nxm where n is the number 

of pixels, and m is the number of images in the training set. nxr
RW ∈ , 

rxm
RH ∈  and r is chosen smaller than n in order to reduce the 

dimension and compress the data.  

Firstly, PCA is applied to reduce the dimensionality of the data. 

Before the dimension-reduced training set is given as V to NMF 

algorithm, all the samples are added by a constant so that minimum 

value of V becomes zero since NMF requires V, W, and H to be non-
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negative. Therefore, during the experiments in this thesis, minimum 

value of V is added to all of the samples and test images.  

Non-negativity constraint enables parts-based representation 

since only additive combinations are allowed.  

W and H are initiated with random values. Reconstruction error 

function is defined as  

2||||),( WHVHWE −=                  (2.14) 

Convergence is assured if W and H are updated according to the 

equations below [8]: 
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←    i=1,…n  and  a=1,…r                   (2.16) 

 

After factorization is finished, the transpose of H matrix is directly 

used for similarity matching.  

V=WH and H=pinv(W)V where pinv symbolizes pseudo-inverse. 

Columns of H can be thought of representation of training images in 

fewer dimensional space and representation of each image is a column 

of H (Figure 2.13). This column is used to determine the similarity 

between a test image and a training image. 
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Figure 2.13 NMF factorization 

 

 

Test images are multiplied by eigenvectors of PCA analysis after 

mean correction. The resulting vector is pre-multiplied with pseudo 

inverse of W matrix to get the weights of the test image. Finally cosine 

similarity is used and the test image is compared with all the images in 

the training set. The one having smallest angle is chosen.  

 

)(:,TrainingHWeightTraining =  (corresponding column of H)             (2.17) 

)(*)( TestimagePCAWpinvWeightTest =               (2.18) 

||||*||||

),(
),(

TrainingTest

TrainingTest

TrainingTest
WeightWeight

WeightWeightdot
=α              (2.19) 

2.3.4  FISCHERFACE 
Fisherface method was first proposed in [29]. The idea is to use 

class specific information to find the projection direction which results in 

better recognition rates. In other words, after the projection the samples 
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belonging to different class are separated while samples belonging to 

same class are clustered.  

Mathematically it is achieved by maximizing the ratio of the 

between class scatter matrix to within class scatter matrix. Between 

class and within class matrices are calculated as follows:  

∑
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c
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T

iiiNS
1

))(( µµµµ
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where µ is the mean of all the samples, µi is the mean of class Xi and Ni 

is the number of samples in class Xi. Therefore optimal projection Wopt is 

chosen as 
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where {wi | i=1, 2, …,m} is the set of generalized eigenvectors of SB and 

SW corresponding to the m largest generalized eigenvalues {λi | i=1, 2, 

…,m }, i.e. 

iwiiB wSwS λ=                  (2.23) 

However SW has to be nonsingular for the above equations to be 

valid. If there are N number of images and c number of classes in the 

training set, the rank of SW is at most N-c. SW has a size of nxn where n 

is the number of pixels in an image. In general, n > N which means SW 

will be singular. In order to avoid this problem, PCA analysis performed 

on the training set, vectors belonging to the (N-c) biggest eigenvalues 

are kept and the dimension is reduced to N-c, as proposed in [8]. Then 

Fisher Linear Discriminant (FLD) is performed to reduce the dimension 

further, to c-1. 
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For the recognition purposes, dimensionality of training images is 

reduced by PCA. Then these reduced vectors are multiplied by 

eigenvectors of Linear Discriminant Analysis (LDA) to obtain weights. In 

order to find the most similar training image, the weights are evaluated 

by the same method used for Eigenface. 

 

2.3.5  INDEPENDENT COMPONENT ANALYSIS (ICA) 
ICA is an iterative method which is meant to solve the blind 

source separation problem. A sample data, or an observation, is 

regarded as a linear combination of some unknown sources.  

x=As                   (2.24) 

where s is the set of sources, A is the mixing matrix and x is the set of 

observations. The aim of ICA is to make sources as independent as 

possible. In order to find the inverse of the mixing matrix, the number of 

observations should be at least equal to the number of sources. The 

inverse of the mixing matrix is found iteratively and then used to obtain 

weights.  

It was introduced for 2D face recognition in [46]. Also some 

papers have used ICA for 3D face recognition purposes [13], [19], [47]. 

In this thesis source code available in [56] is used with small 

modifications. PCA was performed to reduce the dimensionality of the 

training image set prior to ICA. 

There are two architectures in ICA. In the first one, pixel values 

are treated as observations and face images are treated as variables. 

The aim is to find statistically independent basis images. In this thesis, 

Architecture II (Figure 2.14) is used, in which the aim is to find 

statistically independent coefficients. 
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Figure 2.14 Architecture II of ICA 

 

 

For recognition, as in the previous cases, training images are 

subjected to PCA to reduce dimensionality. ICA is performed to obtain 

weights and weights are considered by cosine similarity metric as in the 

NMF algorithm. 

2.4 LITERATURE REVIEW 

 
In the last decade, face recognition has become one of the most 

popular research areas. The majority of these researches are using 2D 

images. In [1] Zhao et al. carried out a survey of 2D-based and video-

based techniques. There are also several surveys performed on 3D face 

recognition [26], [14].  

One of the common representations used for 3D Face 

Recognition is depth image, also called depth image. Intensity value of 

each pixel corresponds to the depth value of the corresponding point. 3D 

point clouds can be converted to a depth image after being placed on an 

x-y grid. Irregularly sampled point clouds are interpolated to fit the grid at 

the cost of loss of some information.  2D Face Recognition techniques 

can be used for recognition of faces with 3D data once depth images are 

generated.  

In [13] scanner outputs are used to generate depth images. Using 

the nose tip and bridge of the noses, depth images are registered and 
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finally component analysis, PCA and ICA, are performed on the depth 

images. Database consists of 37 subjects each having 6 images with 

different expressions total 222 images. When 185 images are used 

during training and 37 are given as test images, ICA performed better. In 

other cases, PCA performed better. The performance of ICA decreased 

faster than PCA with the decrease in the number of training images 

which leads ICA to underperform PCA. 

In [19] depth images are projected to a linear subspace. A 

stochastic optimization algorithm is used to find the subspace which 

maximizes the classifier performance on the training set. The 

performance of the optimal projection is reported to be higher than that of 

standard algorithms such as PCA, ICA. 

In [41], Discriminant Common Vectors method was proposed and 

compared with PCA and ICA algorithms. Discriminant Common Vectors 

is reported to be superior.  

In [31] Hausdorff distance metric is used to depth images and 

reported to be better than PCA-based matching algorithm. Hausdorff 

distance of two sets is computed in two steps. Firstly, for all the points in 

the first set, the closest point on the second set is calculated. Secondly, 

the maximum value of the minimum values is equal to the Hausdorff 

distance. This measure is beneficial for cases where some of the data is 

missing, noisy, or occluded. In [15] Hausdorff distance is used to 

measure the similarity between two point sets or two voxel 

representations. In order to represent a 3D point cloud by a voxel 

function, a 3D grid is constructed whose center cell overlaps with the 

center point of the point cloud data. If there is at least one point within a 

voxel, its function takes value of 1, else it is 0. Voxel discretization is 

faster when the number of points increases, however it leads to some 

loss of information. Hausdorff metric is useful if the facial data is missing 
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or incomplete. However, it is computationally expensive. Voxel arrays 

are suggested for performing Hausdorff based comparisons faster. 

In [30] Hausdorff distance was used, however “The number of 

subjects in the identification study was limited because of the 

computational cost of the current algorithm.”  

In [37], several depth images are used to construct a 3D model for 

each subject. Matching a depth image to the model is handled in two 

steps. Firstly, in the coarse alignment step, three feature points are used 

to rotate the face. Secondly, five feature points are used to align grids of 

control points with ICP. Critical area of the face is determined and 

cropped to create a synthesized image. A virtual light source is used for 

simulation of lighting. LDA is performed on synthesized images and 

finally scores from shape and texture are fused to make a decision.  

In [12] a system using depth images as input is described. 

Eigenface and Hidden Markov Models operating for grey level images 

are extended to deal with depth images. A small database is used and 

eigenface outperformed HMM. Smoothing and rotating increased the 

performance of eigenface whereas the performance of HMM decreased. 

Their classification performances are better than standard PCA based 

matching algorithms. 

Depth image representation is only one of the representation 

techniques used for 3D face recognition. Other representation 

techniques are surface based methods, point-cloud based methods, 

curve based methods, and free form shape descriptor based methods. 

These are explained in the following very briefly. 

Extended Gaussian Image (EGI) representation which uses 

surface normals is one of the 3D face representation methods. Surface 

normals are mapped to a unit sphere, which is called Gaussian sphere, 

so that their tails lie at the origin of the sphere and their head lies on the 

surface. Then the area of the surface having the given normal is given as 
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weight to each point in the sphere. EGI based methods can not 

differentiate two faces of similar shape but different size since they use 

only curvature information of the face. 

In [6] EGI (Extended Gaussian Images) are used to estimate 

orientations between two point cloud sets. The space of rotations is 

traversed exhaustively to find the estimation which maximizes the 

correlation between EGI’s. In order to find this estimate efficiently, 

spherical histogram of surface orientations are used to approximate 

EGI’s. Fine registration is carried out by ICP. 

In [21] the sign of the mean and the Gaussian curvature are used 

to segment depth images and an EGI is created for each convex region. 

A graph matching algorithm is applied to establish correspondence.  

In [16] both input and the model faces are represented as an 

Extended Gaussian Image constructed by mapping principal curvatures 

and their directions at each surface point.  

In [20] facial surfaces are acquired with a structured light. A 

central and several lateral profiles are obtained from 3D shape. These 

profiles are used to match 3D surfaces.  

In [44] normal maps are generated for meshes in order to 

compare two 3D surfaces fast and accurately. Meshes are represented 

on 2D by applying a spherical projection. Keeping the correspondences 

between 3D meshes and 2D images, normals are encoded in RGB 

channels of images. A normal map is a 24 bit color image. Each pixel 

corresponds to a normal of a polygon in the given mesh. Three scalar 

components of normal are encoded by 8 bits each which correspond to 

360/256=1.4 degrees quantization.  

In [27] surface and profile matching are fused. For each individual 

a statistical model is built to perform surface matching. After finding the 

symmetry plane of the face, profile is extracted and k-th Hausdorff 
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distance is used to measure similarity. At the end, two scores are 

combined to make a recognition decision. In [38]  

In [10], symmetry plane of the face is found iteratively using two 

points. Profiles obtained from the plane of symmetry are matched or the 

surfaces of two faces are compared.  

In [11], plane of symmetry is determined using five feature points. 

Faces are rotated to fit a standard position and then some vertical, 

horizontal and circular curves extracted from faces are matched.  

In [40], five manually marked landmark points are used to 

determine the region of interest. 70 facial curves (35 horizontal curves 

and 35 vertical curves) are extracted from each face. Affine integral 

invariants are used to represent the curves since they are not affected by 

translation, scaling, rotation and shearing distortion of 3D faces. 

Discriminant analysis and Jensen-Shannon divergence analysis are 

carried out on these curves and it is found that 12 of the affine invariant 

curves are more characteristic. It is found that 10 of them were vertical 

and areas near the central face profile, nose, and eye corners are more 

distinguishing.  

In [17] faces are segmented based on signs of the mean and the 

Gaussian curvatures. Descriptors are obtained from segmented regions.  

Alternatively, after the profiles are obtained, area between two 

profiles [20] and also the distances between curves can be evaluated. In 

[18] L1, L2, and Hausdorff distances are compared and L1 norm is found 

to be better. Also some approaches for 3D face recognition, such as 

methods based on extended Gaussian images, ICP matching, depth 

profile, PCA, and linear discriminant analysis (LDA) are compared. It was 

reported that ICP and LDA overperformed other approaches although all 

the scores are similar except PCA alone. During the tests 571 images 

from 106 people were used.  



 34 

In [33] curvatures obtained from 8 different points are processed 

by a SVM for classification. 

In [22] a 3D facial model consisting of a sparse depth map is 

constructed from stereo images. Isoluminance lines are used for stereo 

matching. Edges and isoluminance contours are used for finding irises. 

Using the position of irises, the center of the mouth is found and pose of 

the images are standardized. Finally for each 3D data, in-depth 

differences are calculated for finding the best match.  

In [23] both 2D and 3D data are used for face recognition. Gabor 

filter responses of 2D images and point signatures from 3D data together 

form a feature vector after applying PCA. A similarity function or SVM is 

used for classification.  

In [24] both 2D and 3D data are used. Flattened texture and 

canonical images are formed from 2D and 3D data respectively. One set 

is constructed for each and eigen-decomposition is used separately to 

perform recognition.  

In [32] point cloud is represented by a regular mesh grid. Nose is 

utilized to initialize the mesh grid and other four areas are approximated 

on the mesh. Both global geometric shape of the mesh and local shape 

information form a feature vector. Matching is performed by examining 

both. Due to limited number of samples, PCA is applied to reduce the 

dimensionality.  

In [34] after registering the faces by hybrid-ICP, matching of facial 

scans is performed by considering three attributes: surface matching, 

texture matching, and shape index matching. 

In [35] in order to avoid facial expression changes, both rigid and 

non-rigid registrations are performed. Rigid registration of the probe 

image to the gallery is performed by ICP whereas Thin Plate Spline 

(TPS) is used for non-rigid deformation. 
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In [36] 3D face matching is performed by ICP on subsets of the 

face in the motivation of some subsets of face are considerably rigid 

between different expressions. 

In [39], a triangular mesh is given as input to the system. The 

symmetry plane of the face is found by registering the face with its mirror 

transformation. Three points are found on this curve and two horizontal 

curves passing around cheek and forehead are obtained. These three 

profiles are compared similarly. Although the most discriminative profile 

was found to be the symmetry profile, it is shown that combining three 

scores obtained separately improves performance.  

In [43], in order to overcome facial expression changes, for each 

subject a deformable model was built. Using a small control set, the 

deformations between neutral and non-neutral facial expressions are 

learned. This template is applied to all the models in the database to 

obtain the deformable models for individuals. A set of fiducial landmarks 

are determined and using the landmarks, deformation information is 

obtained by TPS. Finally this information is transferred to every model in 

the database.  

In [45] point signature, a way to represent free form surfaces, is 

used as a 3D descriptor.  

Comparing the strengths of different face recognition algorithms is 

difficult since used database differs to a great extent and the 

experimental conditions are not same. FRVT evaluation protocols 

respond to this need and light the way for researchers. 
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CHAPTER 3 
 
 

EXPERIMENTS 
 
 
 

In order to compare the efficiency of the recognition algorithms, 

seven Tn experiments (T1, T2, … T7) are held where n denotes the 

number of images used in the training set (Table 3.1). All available 

images are used in these experiments. The reason why different 

numbers of images are used in the training and test sets is that, 

individuals in the database have different number of images. Since the 

number of images per person in the database changes, the number of 

images in the training set also has to change. For example, in T7 

experiments, all 13 people having 8 images in the database are used. 

For T4 experiments, 4 images from each person having more than 4 

images are taken in the training step. In the test set, the rest of the faces 

belonging to the subjects participated in the training step are used.  

 

 

Table 3.1 Distribution of the number of images for Tn experiments 

Tn # of images 
per person  

# of persons 
(or classes) 

# of training 
images 

# of test 
images 

T1 1 197 197 666 
T2 2 165 330 469 
T3 3 119 357 304 
T4 4 86 344 185 
T5 5 58 290 99 
T6 6 28 168 41 
T7 7 13 91 13 
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T5, T6 and T7 experiments are not performed for every algorithm 

since these cases do not seem to be challenging enough. In general, as 

the number of training images increases, the recognition rate of 

algorithms increases. In this thesis, or for this database, there is another 

important factor: the number of classes and the images in the test set 

decrease which reduces the probability that the algorithms produce false 

responses. To illustrate, even for nonregistered database, the 

performances of T7 and T6 experiments are 13 out of 13 and 40 out of 

41 respectively. 

 

 

3.1.  DETERMINING PARAMETERS  

 
Before carrying out tests, two parameters were determined: the 

size of the depth image and the number of eigenfaces. For both tests, all 

941 images of the non-registered database are given during training 

step. After that every face is given to the system one by one and the 

algorithm found the most similar face in the database except the test 

image itself. Only the top match counts are given in the tables referenced 

in the following sections. The maximum probable value is 863 since 78 

person out of 941 have only one image in the database. 

 
 

3.1.1  SIZE OF THE DEPTH IMAGE 
 

There is a trade-off between the time complexity and the performance 

of the algorithms. As the size of the depth image increases, number of 

sampling points increases and thus, better recognition performances are 

expected. On the other hand, working with fewer samples greatly 

reduces the time consumption.  
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Size of the depth image is changed as in Table3.2. Non-registered 

faces are given during the training. In conclusion, 61-by-61 grid is 

chosen.  

 

Table 3.2 The effect of depth image size on performance 
 

# of 
eigenvectors 

21-21 41-41 61-61 81-81 101-
101 

121-
121 

161-
161 

20 475 496 500 498 505 502 501 
40 510 538 541 542 545 542 544 
60 520 554 557 556 559 560 560 
100 526 558 562 568 571 567 569 

 
 

Table 3.3 The effect of depth image size on performance as percentage 
 

# of 
eigenvectors 

21-21 41-41 61-61 81-81 101-
101 

121-
121 

161-
161 

20 55,0% 57,5% 57,9% 57,7% 58,5% 58,2% 58,1% 
40 59,1% 62,3% 62,7% 62,8% 63,2% 62,8% 63,0% 
60 60,3% 64,2% 64,5% 64,4% 64,8% 64,9% 64,9% 
100 61,0% 64,7% 65,1% 65,8% 66,2% 65,7% 65,9% 

 
 
 

3.1.2  NUMBER OF EIGENFACES 

 
 As in the previous case, greater number of eigenvalues will 

represent the faces better. However the number of samples will again 

be high and the computations will be heavier. 
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Table 3.4 The effect of number of eigenfaces 
 

# of 
eigen- 
vectors 

Top 
Match 
(Score) 

Top 
Match 
(%) 

Ratio of 
eigen-

values (*) 

Top 
Match 
(Score) 

Top 
Match 

(%) 

Ratio of 
eigen-

values (*) 
10 421 48

,8 
94 766 88,8 71,7 

20 500 57
,9 

96,9 803 93,0 80,3 

30 523 60
,6 

97,8 809 93,7 84,5 

40 541 62
,7 

98,4 815 94,4 86,9 

50 552 64
,0 

98,7 815 94,4 88,6 

60 557 64
,5 

98,9 815 94,4 89,9 

70 560 64
,9 

99 815 94,4 90,9 

80 562 65
,1 

99,2 815 94,4 91,7 

100 563 65
,2 

99,4 813 94,2 93 

500 566 65
,6 

~100 805 93,3 99,4 

 
(*) Ratio of the eigenvalues corresponding to selected vectors to all of 

the eigenvalues 
 
 
 

 

3.2 REGISTRATION ALGORITHMS 

 

In order to examine the effect of registration variants one of the faces 

having a big alignment error with respect to other faces in the database 

is chosen. All the tests concerning registration variants are performed 

using this image.  

Two different models are used to register the faces. In fact, the 

models are constructed in a similar manner, by averaging all the images 
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in the database. But the difference is that one of them has a size of 61-

by-61 whereas the second has 121x121. The first model is used 

throughout the registration tests. The second is used only to demonstrate 

the effect of establishing dense correspondence between the model and 

images. The experiments concerning the second model will be explained 

in detail in section 3.3. All the registration variants are evaluated on the 

first model. 

Inıtial condition is a crucial parameter for performance of ICP. 

Although the chosen image is relatively far away from the model when 

compared to other images, the experiments on variants show that the 

initial condition is too close to global minimum to examine the effect of 

variants so that every ICP variant performed similar. Therefore the test 

image is rotated to move far away from the model. During first two tests, 

the test image is in point cloud form, which is its original form. Thirdly, 

original image is converted to grid form.  

Experiments are performed in Matlab on a computer having 512 MB 

RAM and AMD Athlon 3000 2 GHz processor.  

Some points should be noted before the graphs are examined. 

Firstly, alignment error is calculated using the actual correspondences 

between the sets themselves instead the errors found by algorithms had 

been used. The reason is that the result would be subjective if the errors 

found by the algorithms had been used since different algorithms will 

chose different pairs as corresponding pairs and evaluate the alignment 

error using these correspondences. Thus, to determine the actual 

correspondences, the image is registered as it is. Since it is close to the 

model, the resulting position is considered as global minimum and the 

last pairs as actual correspondences. And then, effects of variants on 

rotated image are evaluated using these correspondences.  

Secondly, the first alignment error values in the figures showing 

alignment errors are the initial values. The second values are the results 
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of the first iterations of each method. All the variants are at the same 

point at the beginning and thus “iteration 1” values are all the same. 

Once the algorithm goes through the loop, this value changes with 

respect to efficiency of the algorithm and “iteration 2” values change 

between different variants.  

Thirdly, the algorithms stop in two case: either the update in the error-

measured by algorithm- is below a preset value for 10 times, or the 

maximum number of iterations is reached. The maximum number of 

iterations was kept 125 except the tests in Section 3.2.1. In Section 

3.2.1, the maximum number of iterations is smaller and the update error 

threshold is higher. Otherwise, understanding the graphs becomes even 

harder as the differences between variants are not easily sensible 

already.  

Finally, there are some abbreviations used in the graphics. The 

meanings are given below:  

Std-Dev: Rejecting pairs having distances greater than 2.5 times the 

standard deviation. 

Grid-lookup: In order to find correspondences, a simple lookup table 

has been constructed. 

 

3.2.1  TESTS ON UNCHANGED FACE IN POINT CLOUD 
REPRESENTATION 

 

Rejecting pairs according to the threshold defined by the user: At 

the initial state, some values regarding to the distances between 

corresponding point pairs are  

 

max=53.85, min=0.06, mean=8.67, and std= 8.93 
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Giving an “inf” threshold means that the threshold is so high that no pair 

will be rejected.  

It can be seen that as the threshold decreases, the speed of 

convergence also decreases. Keeping the threshold too small prevents 

the system from converging to global minimum. The reason is that, if for 

10 times, the alignment error measured by algorithm is not updated more 

than a predetermined value, the algorithm understand that the speed has 

decreased considerably and thinks that it is about to reach the minimum 

and thus stops iterations. Figure 3.1 and Figure 3.2 show alignment 

errors with different rejection thresholds. 

Rejecting a percentage of pairs: Unless the percentage is extremely 

high, the system settles down at the same position almost at the same 

time. However if the percentage is kept increasing, the speed of 

convergence decreases. Figure 3.3 and Figure 3.4 show alignment 

errors for rejecting different percentages of worst pairs. 

 

Rejection method: Not rejecting any pairs, rejecting 10% of pairs, and 

rejecting the pairs having distances bigger than 2.5*standard deviation 

methods all seem to have very similar performances. The only difference 

is that 10% worst algorithm is slower when compared to others. Figure 

3.5 and Figure 3.6 show alignment errors for different rejection methods.  

 

Subsampling: Subsampling methods follow the same path when the 

number of iterations is considered. However, in terms of time 

consumption, subsampling methods are much better than using all 

available points. As the number of points in the set decreases, the 

algorithm speeds up because the most time consuming step of ICP is 

finding the correspondences between data set and the model set. Figure 

3.7 and Figure 3.8 show alignment errors for different subsampling 

methods. 
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Figure 3.1 Alignment error for different threshold values for rejecting 

pairs with respect to the number of iterations 
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Figure 3.2 Alignment error for different threshold values for rejecting 

pairs with respect to time 
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Figure 3.3 Alignment error for rejecting different percentage of worst 

pairs with respect to the number of iterations 
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Figure 3.4 Alignment error for rejecting different percentage of worst 

pairs with respect to time 
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Figure 3.5 Alignment error for different rejection methods with respect 

to the number of iterations  
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Figure 3.6 Alignment error for different rejection methods with respect 

to time
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Figure 3.7 Alignment error for different subsampling methods with 

respect to the number of iterations 
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Figure 3.8 Alignment error for different subsampling methods with 

respect to time  
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 In conclusion, the initial state of the test face and the model is 

very close so that it does not matter which pairs are used for reaching 

the final point. When the final alignment error of the variants are 

considered, all the variants reach to same minimum, which is most 

probably the global minimum. The only difference between variants is the 

speed of convergence. Cases listed below perform worst in their scope, 

when compared to others.  

(i) Thre =5 has the worst performance 

(ii) Rejecting 50% has the worst performance 

 

 Using the pairs having larger differences neither disturb the 

system nor prevent it from converging. On the contrary, these pairs carry 

valuable information in terms of registration and thus speed up the 

process. However, not rejecting these pairs would prevent the system 

from converging if the initial condition is not good enough. 

 

3.2.2  TESTS ON ROTATED FACE AND POINT CLOUD 
REPRESENTATION 
 

 The same face data, used in Section 3.2.1, is rotated 30 degrees 

around x, y, and z axis each in order to disturb the system and increase 

the alignment error between the model. These values are determined 

experimentally. Many of the variants considered can still converge at that 

rotation angles. If the image is rotated a little more, then variants start to 

fail to converge to global minimum.  

 

max= 70.64, min= 0.15, mean= 25.55, std= 14.12 
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Rejecting a percentage of pairs: Once again, rejecting worst half of the 

corresponding pairs decrease the speed of convergence. In general, 

increasing the rejection percentage decreases the speed and the 

probability of convergence. Figure 3.9 and Figure 3.10 show alignment 

errors for rejecting different percentages of worst pairs. 

 

Rejection method:  Figure 3.11 and Figure 3.12 show effects of 

different rejection methods. When time is considered, 10% worst acts 

slower but the number of iterations are almost same. 

 

Subsampling: In terms of the number of iterations, except 1:5 uniform 

subsampling, subsampling methods converge faster. When the time 

needed for convergence is considered, all subsampling algorithms 

perform better than using all the available points. The advantage of 

random subsampling becomes obvious. Not all points carry the same 

information in terms of registration. Random subsampling gives every 

point a chance to get involved to registration step and thus speeds up 

the process. Figure 3.13 and Figure 3.14 show alignment errors for 

different subsampling methods. 
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Figure 3.9 Alignment error for rejecting different percentage of worst 

pairs with respect to the number of iterations 
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Figure 3.10 Alignment error for rejecting different percentage of worst 

pairs with respect to time 
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Figure 3.11 Alignment error for different rejection methods with 

respect to the number of iterations 
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Figure 3.12 Alignment error for different rejection methods with 

respect to time 
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Figure 3.13 Alignment error for different subsampling methods with 

respect to the number of iterations 
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Figure 3.14 Alignment error for different subsampling methods with 

respect to time 
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3.2.3  TESTS ON GRID DATA REPRESENTATION 

 

In Section 3.2.1 and 3.2.2, data to be registered is in point cloud form. It 

is also possible to register the test image using grid data representations. 

The model is already in grid form. Up to this point, registration 

parameters are found in by registering raw point cloud to average model. 

In this part raw point cloud data is represented by a grid and grid is used 

to determine the registration parameters. 

 

Matching pairs: One of the variants proposed for finding 

correspondences is to construct a lookup table for regularly sampled 

data. In general, the most time consuming step of ICP is to finding 

correspondences in the other mesh. Using a lookup table will surely 

reduce time consumption.  

 In order to find correspondences between data image and the 

model, simply the pixel positions are used (Figure 3.15).  

 

 

Figure 3.15 Matching by a look-up table 

 

 

In the examples below, the effect of lookup table was examined. 

In order to evaluate the accuracy of this algorithm, all the images in the 

database are registered with this method without rejecting any pairs and 
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without any subsampling. It was seen that the performance results are 

exactly the same with ICP baseline algorithm which is working on 61x61 

grid images. The results can be examined in Section 3.3 for ‘M61Grid’ 

case. 

This variant is known to be faster than but not as accurate as 

other variants. In cases, where speed is crucial but ending up in a little 

wrong result is acceptable, this variant is preferred if the sets to be 

registered are regularly sampled, such as grid represented images. In 

this case, two sets are already close to each other, which also enhances 

the probability of ending in global position. Furthermore, this variant 

perform same with ICP baseline which means when initial condition is 

good, this variant also converges to global minimum.  

In Figure 3.16 and Figure 3.17, several rejection methods are 

compared when matching is performed with the help of a lookup table. 

The most interesting point is that, it is possible to obtain a good 

registration in a single iteration by using all the points.  

In terms of speed, grid is very fast. However accuracy depends on 

“sampling frequency” of data while obtaining grid form. When the input 

data is converted to grid form, if it is not sampled dense enough, 

performance may decrease. In Figures 3.18-3.25 input data have size of 

61-by-61. If the input data is sampled twice denser, then the algorithm 

will reach to almost same point as in the point cloud case. In Figures 

3.26-3.29 input data have size of 121-by-121. When (Figure 3.26 and 

Figure 3.29 show the results of comparison when the input faces are in 

point cloud form and in grid form).  

In other words, in Figures 3.18-3.29, all the faces are registered to 

same model which has a size of 61-by-61. The difference is that, the 

input images are either in point cloud form, or in grid form having size 

either 61-by-61 or 121-by-121.  
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Figure 3.16 Alignment error for grid look-up matching method with 

respect to the number of iterations 
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Figure 3.17 Alignment error for grid look-up matching method with 

respect to time 
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Figure 3.18 Alignment error for different rejection methods with 

respect to the number of iterations 
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Figure 3.19 Alignment error for different rejection methods with 

respect to time 
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Figure 3.20 Threshold rejection for grid 61x61 and point cloud cases 
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Figure 3.21 Threshold rejection with respect to time  
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Figure 3.22 Alignment error for rejecting different percentage of worst 

pairs with respect to number of iterations 
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Figure 3.23 Alignment error for rejecting different percentage of worst 

pairs with respect to time  
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Figure 3.24 Alignment error for standard deviation rejection method 

with respect to the number of iterations 
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Figure 3.25 Alignment error for standard deviation rejection method 

with respect to time 
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Figure 3.26 and 3.27 show the difference when both the model 

and the test are twice sampled in each axis (the number of samples 

becomes four times greater) the time consumption does not increase by 

four. The area of face used does not change but the number of samples 

is doubled. Elapsed time for 61x61 grid case are 6.61 sec, 7.02 sec, and 

7.3 sec for Std-dev, 5% worst, and all points respectively. For 121x121 

grid case, 21.34 sec, 20.39 sec, and 13.81 sec in the same order of the 

cases. Point cloud registration requires 69.83 sec to reach convergence. 

These figures indicate the difference between 61x61 grid and 121x121 

grid. 121x121 grid is much more accurate than 61x61 grid case and yet 

much more faster than point cloud case. Figure 3.28 and 3.29 

demonstrate the difference between 121x121 grid and point cloud case. 
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Figure 3.26 Effect of grid size with respect to the number of iterations 
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Figure 3.27 Effect of grid size with respect to time 
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Figure 3.28 Grid size 121x121 vs Point Cloud 
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Figure 3.29 Grid size 121x121 vs Point Cloud 
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121x121 grid is comparable in terms accuracy and speed. In order 

to evaluate the effect of denser sampling, all the images in the 

database are registered with 121x121 model. Again, both point cloud 

form and grid form are evaluated in terms of accuracy by using the 

recognition algorithms of Section 3.3  

 

3.3.  EFFECT OF REGISTRATION ON DIFFERENT 

RECOGNITION ALGORITHMS 

 

During the registration step, the choice of region of face and the 

choice of model are two important parameters.  

To determine the region of face all the images are examined and 

boundaries on x and y axis, having valid points are considered. For each 

image, maximum value having a valid point is determined in + and -, x 

and y axis. Using minimum of these values, a region is obtained, in 

which every face will have valid data points. If during this step used 

images are not registered, region of face is smaller (Region 1). If 

registered faces are used, the region becomes greater (Region 2). These 

two regions for a sample image are shown in Figure 3.30. 

 

 

Figure 3.30 Region 1 and Region 2 
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Also three different cases were considered for the choice of the 

model: 

Js1: A sample image whose pose is favorable + Region 2 

Js2: Taking average of all the images + Region 2 

Js3: Summing all the faces with their x-y symmetrics + Region 2 

Js4: Summing all the faces with their symmetrics + Region 1 

Main: Taking average of all the images + Region 1 

 

Using the eigenface method and ICA method, the above methods are 

compared. The results are given in Table 3.5 and 3.6 respectively. 

 

Table 3.5 Eigenface method on differently chosen models 

 T1 T1(%) T2 T2(%) T3 T3(%) 
Main 571 85,7% 447 95,3% 297 97,7% 
Js1  559 83,9% 429 91,5% 283 93,1% 
Js2  552 82,9% 435 92,8% 286 94,1% 
Js3  576 86,5% 438 93,4% 287 94,4% 
Js4 369 55,4% 350 74,6% 244 80,3% 

 

 

Table 3.6 ICA method on differently chosen models 

 T1 T1(%) T2 T2(%) T3 T3(%) 
Main 602 90,4% 451 96,2% 298 98,0% 
Js1 590 88,6% 439 93,6% 290 95,4% 
Js2 580 87,1% 435 92,8% 286 94,1% 
Js3 594 89,2% 443 94,5% 287 94,4% 
Js4 405 60,8% 381 81,2% 255 83,9% 

 

 

The choice of a smaller region decreased the performance of method 

which symmetrically sums all the faces (js3 vs js4). However it improves 

the performance of averaging all the image case (js2 vs main).  
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It should be pointed that although the face region of interest changes 

between Region1 and Region2, depth image sizes are same. That is, the 

starting and end lines on the face changes but the sampling of 3D face 

data is also changed accordingly so that all the resulting depth images 

have 61-by-61 size. 

Finally, the grey level images are processed to compare their 

performace with respect to 3D images. Using the boundaries of 3D data 

for each image boundary pixels are determined. Then the image is cut, 

and the resulting image is resized to 61-by-61. Finally, histogram 

equalization is performed on all the resulting images to reduce the effect 

of lighting. Table 3.7 shows the performances of algorithms if only the 

grey level images are used. 

 

Table 3.7 Grey Level Images 

 T1 T1(%) T2 T2(%) T3 T3(%) 

Eigenface 465 69,8% 371 79,1% 250 82,2% 

NMF 452 67,9% 362 77,2% 247 81,3% 

ICA 513 77,0% 398 84,9% 267 87,8% 

Fisherface - - 396 84,4% 268 88,2% 
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Figure 3.31 Concatenating Grey Level Images and Depth Images 

 

 

Images are concatenated as explained in Figure 3.31. before 

concatenation, normalization of data is performed. The performance 

does not improve when concatenated images are used.  

 

Table 3.8 Normalized Image Concatenation 

 T1 T1(%) T2 T2(%) T3 T3(%) 

Eigenface 475 71,3% 378 80,6% 255 83,9% 

NMF 463 69,5% 371 79,1% 252 82,9% 

ICA 522 78,4% 403 85,9% 270 88,8% 

Fisherface - - 403 85,9% 271 89,1% 

 

 

To evaluate the effect of ICP on the performance, Tn experiments are 

performed as explained in Section 3.1. Same number of images from all 

classes is given to the algorithms as input and other images, not used in 

the training step and belonging to one of the training classes, is given as 

test image.  

Grey Level Image n 
(size:1x3721) 
 

Depth Image n 
(size:1x3721) 
 

Concatenated 
Image n 
(size:1x7442) 
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Some abbreviations used in this section for representing the 

databases are given below. Performances of these algorithms are shown 

in Table 3.9: 

Non-Reg: Database consisting of nonregistered images. Only the 

nose tips are carried to origin. Neither fine tuning nor rotation 

performed. 

M61Grid: During the registration process, the model image has a 

size of 61-by-61 and the faces registered to the model are in grid 

form. The resulting images are stored in 61-by-61 size. 

M61PC: During the registration process, the model image has a size 

of 61-by-61 and the faces registered to the model are in point cloud 

form. The resulting images are stored in 61-by-61 size. 

M121Grid: During the registration process, the model image has a 

size of 121-by-121 and the faces registered to the model are in grid 

form. The resulting images are stored in 121-by-121 size. 

M121PC: During the registration process, the model image has a size 

of 121-by-121 and the faces registered to the model are in point cloud 

form. The resulting images are stored in 61-by-61 size. 
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3.3.1  EFFECT OF NUMBER OF IMAGE PER CLASS IN THE 
TRAINING SET 
 
 The number of classes is kept constant at 119 and for each class 

1, 2, and 3 images are used during training step. An image not used 

during training and belonging to one of the 119 classes is given as input. 

The resulting performances are given in Figure 3.32 for eigenface 

method. 

 

Figure 3.32 Effect of number of images per class 
 
 

3.3.2  Tn EXPERIMENTS 

 
 For each recognition method, two graphs are drawn (Figure 3.33-

3.39) for each recognition method: one for nonregistered database and 

the other for M61PC database. In this section “point cloud registered” 

term in the graph corresponds to M61PC database. 
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EIGENFACE: 
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Figure 3.33 Tn experiments using eigenface on nonregistered database 
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Figure 3.34 Tn experiments using eigenface on M61PC database 
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NMF: 
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Figure 3.35 Tn experiments using NMF on nonregistered database 
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Figure 3.36 Tn experiments using NMF on M61PC database 
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ICA: 
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Figure 3.37 Tn experiments using ICA on nonregistered database 
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Figure 3.38 Tn experiments using ICA on M61PC database 
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FISHERFACE: 
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Figure 3.39 Tn experiments using Fisherface 

 
 
 

T1 experiments cannot be performed for Fisherface algorithm 

since it requires both between class scatter matrix and within class 

scatter matrix. In order to compute the within class scatter matrix, at 

least two samples are needed for each class.  

Besides when images have 121x121 points, between class 

scatter and within class scatter matrices have to be 14641 square 

matrices. The computer running the algorithms is not able to define 

that big matrix in Matlab 7. Thus Fisherface experiments could not be 

performed for these data sets.  

Figure 3.40-3.44 show Tn experiments performed on same 

registered database with different recognition algorithms. Fisherface 

perform better. For T1, where Fisherface cannot be performed, ICA 

perform best.  
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Table 3.9 Performances of face recognition algorithms as top match scores and percentages 
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Table 3.9 (continued) Performances of face recognition algorithms as top match scores and percentages 
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T1 EXPERIMENT 
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Figure 3.40 T1 experiments with different algorithms on the same 

database 
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Figure 3.41 T2 experiments with different algorithms on the same 

database 
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T3 EXPERIMENT 
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Figure 3.42 T3 experiments with different algorithms on the same 

database 
 
T4 EXPERIMENT 

0 5 10 15 20 25 30 35 40
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Rank

P
ro

b
ab

il
it

y 
o

f 
Id

en
ti

fi
ca

ti
o

n

Baseline Registered T4

Eigenface

ICA
NMF

Fisherface

 
Figure 3.43 T4 experiments with different algorithms on the same 

database 
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T5 EXPERIMENT 
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Figure 3.44 T5 experiments with different algorithms on the same 
database 
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CHAPTER 4 
 
 

CONCLUSION 
 
 

In this thesis different variants of ICP are considered and their 

performances are evaluated by different recognition methods. During 

these experiments, effects of some parameters such as sampling rate 

are considered.  

 

4.1 ICP VARIANTS 

 
If the model and the sample are close to each other, rejecting pairs 

with greater distances slows down the process. These pairs may carry 

valuable information in regards to registration parameters. Although it is 

possible to reach the global minimum by using only the smallest 

correspondences, this process is very slow when compared to the 

former.  

While defining a threshold by a user, the distribution of the distances 

between pairs should be considered. Choosing the threshold too small 

may prevent convergence. Also the speed of convergence reduces 

greatly if threshold becomes smaller. However for some cases, not 

rejecting some pairs would surely prevent convergence to global 

minimum unless they are rejected. 

The choice of rejection method (worst n% or std-dev) does not make 

big difference if two sets are close enough initially.  

Subsampling seems to increase the speed. The main reason is that 

number of correspondences, in other words number of pairs to be 

processed is reduced.  
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Random subsampling seems better than uniform subsampling since it 

gives a chance to each pair to contribute to solution. Firstly, choosing 

pairs randomly gives a chance to all pairs thus increasing the chance of 

harvesting information from useful pairs. If an informative point is not 

included in the iteration, there is a chance of processing it in the next 

iteration. On the contrary, if an informative pair is not selected in a 

uniformly sampled subset, it will never be used during registration. 

If a point which can mislead or slow down the registration process is 

included in the subset of uniform subsampling case, this pair will try to 

disturb the system until the process finishes. However, random 

subsampling determines the points at the beginning of each iteration 

which means a sample, which is ‘bothering’ the system, will be left at the 

end of the iteration and will not appear in the next iterations unless it is 

again selected by chance. That is to say, random subsampling does not 

insist on any points, including inefficient ones. 

Grid based registration is faster than point cloud based registration in 

any case unless the number of samples reach to number of points in the 

cloud. 

If grid form is not sampled dense enough, registration may not lead to 

global minimum and will be less accurate than using raw point cloud 

data. However, sampling the data denser would result in a much better 

situation both in terms of accuracy and speed. This is also true for point 

cloud based registration. Although the registered images are in point 

cloud form in M121PC case and M61PC case, former performed better. 

The only difference is the size of the model or in other words density of 

correspondences. 

If two data sets are close, it is possible to obtain a relatively 

acceptable registration in a single iteration by constructing a lookup 

table.  
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4.2 RECOGNITION ALGORITHMS 

 
As expected the performances of the algorithms get better as the 

number of training images for each class increases.  

When overall performance of recognition algorithms are considered, 

Fisherface outperforms other methods since it uses class specific 

information. Eigenface method approaches the problem in a similar 

manner to Fisherface without regarding class specific information and 

thus tries to maximize the discrimination of all the samples. As a result it 

performs worse. Fisherface finds the projection which maximizes the 

distribution of samples belonging to different classes and which 

minimizes the distribution of samples of same class. 

PCA alone (eigenface method) is not sufficient for making a good 

face recognition system. However it is a very good method for reducing 

dimensionality of the data. NMF, Fisherface, ICA algorithms in this thesis 

all use PCA-reduced data and overperform eigenface method when 

images are registered. 

ICA overperforms eigenface and NMF. PCA considers the correlation 

between data elements and does not consider dependencies between 

three or more pixels. ICA can analyze higher order dependencies which 

is an important advantage to PCA.  

4.3  FUTURE STUDIES 

 
ICP is a very efficient method for registering two 3D shapes. However 

convergence to global minimum is still can not be ensured. In terms of 

face registration, variants of ICP can be examined in more difficult 

situations. For instance, faces can be rotated around a single axis or 

multiple axes and for different cases, by examining the behavior of the 

variants, a more robust algorithm for registering face image data can be 

determined. Immunity to noise would be another parameter to work on. 
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Also more difficult cases such as partially overlapping, occluded scenes 

can be studied.  

3D face recognition is considered to be one of the future 

technologies. There are many different types of face recognition systems 

that use 3D information of the face. In this thesis, only a part of 

approaches were implemented. There are many other methods that can 

be implemented.  

A solid face recognition system should be able to handle with non-

rigid deformations of a face such as expressions. In this thesis faces are 

considered as rigid objects. Almost all the faces in the FRGC v1 

database have neutral expressions. Although the effect of change in the 

facial expression is not tested in this thesis, it is obvious that PCA based 

approaches will not be able to handle facial expressions. More robust 

algorithms such as using a deformable model would be more 

appropriate.  
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