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ABSTRACT

ANALYSIS AND SIMULATION OF THE BACKSCATTERING
ENHANCEMENT PHENOMENON FROM RANDOMLY DISTRIBUTED
POINT SCATTERERS

AGAR, Kartal Sahin
Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Seyit Sencer KOC

August 2007, 122 pages

This thesis investigates analysis and simulation of the backscattering enhancement
phenomenon from randomly distributed point scatterers. These point scatterers are
randomly distributed within a cube or a sphere and then the backscattering
enhancement phenomenon from both cubical and spherical distributions are
examined throughout the thesis. The general characteristic differences between
cubical and spherical distribution about the scattering phenomenon are observed.
T-matrix method is used for analytic investigations of the backscattering
enhancement and also a certain number of approximate formulas are obtained. As
for Monte Carlo simulation method, it is used for simulated investigations of the
backscattering enhancement. Some Monte Carlo simulations are prepared by using
MATLAB programming language and verified by showing their confidence
intervals. Both analytic and simulated investigations of the backscattering
enhancement due to single and double scattering are analyzed; however, only
simulated investigation of the backscattering enhancement due to multiple
scattering are analyzed because of its computational complexity. The thesis traces
differences between single scattering and multiple scattering from randomly
distributed point scatterers. Effects of both incident field frequency and point

v



scatterer density on the backscattering enhancement are indicated. The thesis seeks
answers to questions such as which conditions cause the backscattering
enhancement phenomenon from randomly distributed point scatterers, why we need
to consider multiple scattering to examine the backscattering phenomenon and how
we can discriminate the backscattering enhancement from the specular

enhancement.

Keywords: Backscattering Enhancement Phenomenon, Point Scatterers, Monte

Carlo Simulation, Single Scattering, Multiple Scattering.
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RASGELE DAGITILMIS NOKTASAL SACICILARINDAN GERI SACILIM
ARTIRILMASI OLGUSUNUN IRDELENMESI VE SIMULASYONU

AGAR, Kartal Sahin
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Yoneticisi: Dog. Dr. Seyit Sencer KOC

Agustos 2007, 122 sayfa

Bu calisma, rasgele dagitilmis noktasal sagicilar iizerinden geri sacilim artirilmasi
olgusunun irdelenmesini ve simiilasyonunu arastirmistir. Bu noktasal sagicilar bir
kiipiin veya bir kiirenin igerisine rasgele dagitildiktan sonra hem kiibik hem de
kiiresel dagilimlar iizerinden geri sagilim artirilmasi olgusu calismanin basindan
sonuna kadar incelenmistir. Kiibik ve kiiresel dagilimlarin sag¢ilim olgusu
hususundaki genel karakteristik farklari gozlemlenmistir. T-matris metodu geri
sagilim artirilmasi olgusunun analitik arastirmasi i¢in kullanilmis ve ayrica birtakim
yaklasik formiiller elde edilmistir. Monte Carlo simiilasyon metodu ise geri sagilim
artirllmasi olgusunun simiilasyon arastirmasi i¢in kullanilmistir. Bazt Monte Carlo
simiilasyonlart MATLAB programlama dili kullanilarak hazirlanmis ve giiven
araliklar1 gosterilerek dogrulugu kanitlanmistir. Tekli ve ¢iftli sagilimda olusan geri
sacilim artirillmast  olgusunun hem irdelenmesi hem de simiilasyonunu
arastirilmistir; ancak, hesaplama karmasikligi nedeniyle ¢oklu sagilimda olusan geri
sacilim artirilmasi olgusu sadece simiilasyonlarla incelenmistir. Bu ¢alisma, rasgele
dagitilmis noktasal sagicilar iizerinden olusan tekli sagilim ile ¢oklu sagilim
arasindaki farklar1 arastirmistir. Hem gelen sinyalin frekansinin hem de noktasal
sagict yogunlugunun geri sagilim artirimu iizerindeki etkilerine isaret edilmistir. Bu

calismada, hangi kosullar altinda rasgele dagilmis noktasal sagicilar iizerinden geri
vi



sacilim artirnmi olgusunun olustugu, neden geri sagilim artirimi olgusunu incelemek
icin ¢oklu sacgilim1 hesaba katma ihtiyact duyuldugu ve geri sa¢ilim artiriminin
aynasal sacilim artirimindan nasil ayirt edilebilece§i gibi sorular yanitlanmaya

calisilmustir.

Anahtar Kelimeler: Geri Sagilim Artirilmasi Olay1, Noktasal Sacicilar, Monte Carlo

Simiilasyonu, Tekli Sa¢ilim, Coklu Sag¢ilim.
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CHAPTER 1

INTRODUCTION

The scattered field is clearly determined as the field radiated in space from
obstacles which are illuminated by an incident electromagnetic field. In this thesis,
these obstacles are considered as randomly distributed point scatterers and the
incident field is assumed as a plane wave for simplicity. Backscattered field
basically represents the field scattered back towards the direction of the incident
field. If these scattered fields are constructively interfered in the backscattering
direction, this special phenomenon is called as the backscattering enhancement.
This phenomenon has been one of the important subjects for radar engineering,
remote sensing, astronomy and bioengineering. The backscattering enhancement

has been investigated mostly from an academic point of view, [13].

The only source of information about the properties of randomly distributed point
scatterers is the intensity and polarization of their scattered field which is measured
remotely and this scattered field is also a function of incident field frequency and
the overall shape of distribution. In order to obtain the approximate size,
composition, shape and structure of this distribution from critical data about the
scattered field, one has to gradually resolve the inverse problem using simple
structures as model scatterers which are considered as both cubical and spherical
distributions of the point scatterers throughout this thesis, [9]. This inverse problem
is the event of defining the characteristics of randomly distributed point scatterers
from measurement of radiation. Therefore, we reasonably investigate the
backscattering enhancement phenomenon from randomly distributed point

scatterers in this study.

The single scattering is defined as an external radiation that is scattered only one

times from randomly distributed point scatterers. As for the multiple scattering, it is

1



defined as an external radiation that arises due to the scattering of an incident field
after interaction with more than one randomly distributed point scatterers. When an
electromagnetic incident field interacts with randomly distributed point scatterers in
a cubical or spherical volume medium, some of the scattered fields interfere
constructively to a higher level. To aid remotely-sensed data analysis, a model may
be used to simulate the interactions between randomly distributed point scatterers
and the radiant energy. Usually, such models include only single scattering. In
reality, multiple scattering has important contribution in intensity of the
backscattering enhancement, [11]. This contribution of the multiple scattering is
shown in this thesis and also analytic studies of both single and multiple scattering

phenomena are presented in more detail in Chapter 2.

Theoretical and experimental studies of multiple scattering from randomly
distributed point scatterers have a large scientific interest in academic research as
well as in the industry. Although the multiple scattering theory has been
investigated since the end of 1960s, the complexity of the calculation has limited

the range of applications, [12].

We describe a rather simple approach for separating not only single scattering but
also double scattering from the total intensity of multiple scattering. We consider
the situation in which the scattering orders can be separated, which gives additional
information about the scattering medium, [10]. The double scattering is the first
multiple scattering mechanism in the distribution volume and we illustrate that it
has the dominant effect on the backscattering enhancement. The double order
scattering from spherical distribution is presented and an approximate formula of
the mean field intensity due to double scattering is obtained in Chapter 3. The
Monte Carlo simulation technique for studying scattering from randomly distributed
point scatterers is employed. The reliability of the data obtained due to single
scattering has been checked by comparing the results of the computer simulation
with analytical calculations in Chapter 4. It has been shown that the significant

contribution of multiple scattering can vary by an order of magnitude, [10].



Statistics is necessary in order to gather relevant information from results of
experiments and the probability theory is used to estimate results of experiments.
Therefore, a certain number of errors are involved whenever an experiment is run.
Confidence intervals definitely give us an estimated amount of error involved in
result data of our experiments. They tell us about the accuracy of the statistical
estimates, [6]. In this study, we have computed the 95% confidence interval for the
MC simulation due to both single scattering and multiple scattering in Chapter 4 so

that the accuracy of our simulation results can be verified.

Multiple scattering of a field is commonly encountered when the density of
randomly distribution point scatterers is large enough, so that an incident field
interacts with more than one point scatterer in the medium before leaving it, [8].
This phenomenon is important for a number of applications: For example, Military
Area (remote sensing, underwater vision and acoustic), Industrial Area (design of
efficient headlamps for foggy driving), Biomedical Optics Area (imaging of small
tumors in opaque tissues), Astronomy Area (discovering of quasars) and Simulation
Systems for Training Area, [29]. Effects of the point scatterer density on the
backscattering enhancement are discussed in Chapter 4. A classical method for
simulating multiple scattering is the Monte Carlo technique. This type of program is
able to simulate a complex process as a rapid succession of elementary events for
which probabilities are known. Therefore, each event is governed by a random
number, [8]. Calculation of the multiple scattering is too complex; hence, its
consistent calculation costs too much CPU time and memory allocation. Solution of
the multiple scattering processes becomes too complicated after the density of
randomly distributed point scatterers becomes higher. However, research of
multiple scattering is growing because of the modern computer age. This thesis
calculates the mean field intensity due to multiple scattering by using Monte Carlo

simulation technique in Chapter 4.

Since the enhancement effect occurs in the backscattering direction, the angular
width of the backscattering enhancement effect becomes a critical issue. Because,
when the angular width is too small relative to the beam width of the receiving

antenna, the backscattering enhancement effect is not to be observed, [7]. The
3



determination of backscattering enhancement angle width is of great significance.
For example, in measuring scattering coefficients with a receiving antenna that has
a certain beam width, it is necessary to know the enhancement angle width. The
backscattering enhancement angle width is affected by the incident field frequency.
If the frequency gets higher, the backscattering enhancement angle width gets
narrower, [15]. Effect of the incident field frequency on the backscattering

enhancement from randomly distributed point scatterers are illustrated in Chapter 4.

This thesis proves that the backscattering enhancement is observed due to multiple
scattering; however, there is an enhancement from cubical distribution due to single
scattering. This enhancement is defined as the specular enhancement not the
backscattering enhancement. Because of the cubical structure, the surface of the
cubical distributed point scatterers is flat. If a surface is flat, the wave is scattered in
the specular direction, which situation corresponds to Snell's law, [14]. This type of

enhancement is illustrated in Chapter 4.

Briefly, this study includes analytic studies of the backscattering enhancement from
randomly distributed point scatterers illustrated in Chapter 3 and it also includes
simulated studies of the backscattering enhancement from randomly distributed
point scatterers presented in Chapter 4. The backscattering enhancement has been
analyzed for two different geometries, namely spherical distribution and cubical

distribution throughout this study.



CHAPTER 2

THE POINT SCATTERERS

2.1 Single Scattering from Point Scatterers

In this thesis, the transition matrix method (or T-matrix method) is used to calculate
the scattered field. The transition matrix (or T-matrix) depends only on the particle,
its structural composition, size, shape, and orientation and also T-matrix is
independent of the incident field. This means that for any particular particle, the
T-matrix only needs to be calculated once, and then it can be used for repeated
calculations. This is a significant advantage over many other methods which are
widely utilized for calculating scattering where the entire calculation needs to be
repeated, [2]. Throughout the thesis, we use point scatterers as scatterers whose
radii are nearly zero. Therefore, we need to use the T-matrix for a point scatterer.
T-matrix of a point scatterer consists of only one element which is nm=00 and all
other elements are zero. This means that the value of T-matrix for a point scatterer

is T,, =T and later we are to assume that 7 is equal to 1 for a point scatterer. Let us

write the incident and the scattered fields in terms of a spherical harmonic

expansion as follows:

l//inc = Z anmjn (krs )Ynm (9’ l9)

Voo = D b h" (k1Y (0,9)

nm

2.1)

where Y (0,9) are the surface harmonics, a,, are the coefficients for the incident

nm n

field and b,, are the coefficients for the scattered field. 7, is a vector from the

scatterer to the observation point. The position vector of a point scatterer 7, and the

position vector of the observation point 7, are shown in Figure 2.1.



A
Observation
Point

=" + T

— ’7 — — - =

¥ S s a n
|5 =7 =T |

n) scatterer v :| r,—r, |
"

Figure 2.1: Scattering from a single point scatterer and the position vectors.

In Eq. (2.1), j,(kr,)1s the spherical Bessel function of the first kind of order » and

h" (kr.) is the spherical Hankel function of the first kind of order n. Note that the

spherical Hankel functions are linear combinations of the spherical Bessel function

of the first kind and the spherical Bessel function of the second kind as follows:

@ - 7 )
{h,, (x)=Jj, (%) +1iy, (x)} (2.2)

h? () = j, (x) =iy, (x)

The scattered field coefficients b,, and the incident field coefficients a,, are

related by means of a T-matrix as follows:

b, =T,a (2.3)

nm nm - nm

Since a point scatterer has a T-matrix which is defined as 7, =0 for n # 0, we can

consider only mm=00 value. The scattered field at the observation point
(see Figure 2.1) from only one point scatterer consists of a single term of the
scattered field summation which is given in Eq. (2.1). This single term can be

written as
l//sca (’_;a ) = bOOh(gl) (krs )YOO (24)

We can insert b, = T,,a,, into Eq. (2.4) to get

6



Vo) = Tooaoohél)(krs Yoo (2.5)

The scattered field from a point scatterer (in the far-field) can be found by using the

expression of the spherical Hankel function of first kind of order O which is

eix
A" (x) = —i
X

eikrS (26)
B ) =i

and we get

ikr,
- e
Voo (1) = —i o Tooa00 Y0 (2.7)

N

The scattered field is related to the incident field at the location of the point

scatterer. Therefore, we need to calculate . (7, =0) or v, (7,) by using the

incident field written in Eq. (2.1). Thus, the incident field for a single point scatterer

is written as
Wine (F) = agg Jio (k1 )Y
Wine (7,) = W30 (F, = 0) = @/ (0) Xy Jo(0) =1 (2.8)
Wine (1) = ago Yoo
Substituting a,, =y, (7,)/Y,, and T,, =T into Eq. (2.7), we get
it

~ e’ —
Wio(T,) = _’FT Wine (7)) (2.9)

s

where 7. is a vector from the scatterer to the observation point (see Figure 2.1) and

its amplitude is written as |7, |=|7, -7, | or r, =7, —7, |. The scattered field at the
observation point (see Figure 2.1) can be expressed as

i oKl

- 1 -
Wsca (ra) = — — Tlr//inc (rn)
k|r,—r |

i4nT — ™

r)= (7
Wsca(a) k 47Z_|]_/';1_’7;1|Wznc(r1)

(2.10)




Using the free-space Green’s function as G°(7,,7,) =—e*" " /(47 |F —F, |) and

a

defining the constant / as i4x2T/k , the scattered field can be written as

Vo 7)) = G (7 F W e () @2.11)

where 7, and 7, denote the position vector of the point scatterer and the position
vector of the observation point, respectively. For simplicity, we can use a symbol
G’ = fG°(¥,,7,) which denotes scattering from the scatterer at 7 to the

observation point at 7, . Finally, the scattered field at the observation point becomes

l/lsca (Fa) = Gnal//[m: (Fn) (212)

Note that the single scattering phenomenon can be defined as the radiation which is
scattered only one times from randomly distributed point scatterers so above

defined scattered field can also be called as the single scattered field.

2.2 Multiple Scattering from Point Scatterers

Consider a distribution of N point scatterers located at 7,7,,...7,...,7,, which is
depicted in Figure 2.2. Define the wave ¢(7,) incident upon the scatterer at 7, as
the “effective field”. The effective field ¢(7,) consists of the incident wave v, (7,)
and the wave scattered from all the particles except the one at 7, . The effective field

is stated as

¢(}7n) = l//inc (}_/:n) + l/lsca (l_;l) +..t li”sca (f‘n—l) + li”sca (’_/:IHI) to.t l//sca (’_;N) (213)

which may be written as

¢(Fn):l//inc(?n)+zl//sca(;:t) (2.14)

t#n



» N

y w(r,)

Observation
Point

[\
w
=Y

Figure 2.2: A distribution of N point scatterers.

Substituting the scattered field w_ (7) defined by fG°(7,7)é(7) into Eq. (2.14),

we have

#(r,) =l//mc(?n)+ZfG°(?,,f,)¢(?,) (2.15)

t#n

If the effective field ¢(7,) is known at all locations of the scatterers, the total field

v(r,)=v,.(r,)+v,., (r,)at any observation point 7, can be written as

W(Fa)Zwinc(i)+ZfG°(?aaﬂ)¢(ﬁ) (2.16)

We note that the effective field ¢(7,) can be eliminated from Egs. (2.15) and (2.16)
and then a simple solution to the field at any observation point w(7,)can be

acquired.

In Eq. (2.15), we have N unknowns which are the effective field at positions of the

scatterers, i.e. ¢(7,) ;n=1L2,..,N . The effective field ¢(7,) can be written for any

n=1,2,...,N ; thus, Eq. (2.15) defines N equations in the N unknowns, which are the



effective fields at the exact location of the N scatterers. This equation can be written

in matrix form as follows:

$=7,.+G¢
$-GP=,
1-G)p =,
(I-G)p =77,

(2.17)

Note that the symbol G is the Green’s function matrix which consists of elements

depending on both 7 and 7, ¢ is the effective field vector which consists of

elements depending on 7, and . is the incident field vector which consists of

elements depending on 7, . If we write Eq. (2.17) as follows:

i=[-c]'w.

(2.18)

The effective field vector ¢ can be calculated from matrix multiplication of the

- =
inverse matrix [I -G } with the incident field vector v/, .

The elements of the Green’s matrix are given by

G|, =67 )1-3,]

where 0, is the Kronecker delta. We first write the below serial expansion:

i:[l—x]1:1+x+x2+x3+... for —1<x<1
If we write [I_ —Er in the same manner:
-Gl =14G+G* 4G ..=3G"
=0
Thus, the solution to Eq. (2.18) is:

7=[i-G|'v. =>G7.
=0

10

(2.19)

(2.20)

(2.21)

(2.22)



l7inc +52l7inc + (223)

Q|

6=2G Ve =W +
t=0
The total field at the observation point 7, is w(7,) =y,..(F,) + v, (F,):

N
w(r) =, )+ D fG (7, =7, )(7,) (2.24)
n=l1
We insert Eq. (2.22) into Eq. (2.24) and get

w(r,) =W, (7,)+ ZfGO(Fa - fi){ig } (2.25)

We can use shorthand symbols w“ to denote the total field at the observation point
7. and y,  to denote the incident field at the observation point 7, (see Figure 2.2).

A solution to the total field at the observation point y“ can be done by iterating,

this process is defined in the following manner:

N N
l// = l//mc +ZG“ l//znc + szl//mc + ZG:: ZG:’[//;C +... (226)
n=1 m=1 =1 =1

We obtain the total field at the observation point y“:

N N N
_ neym, v
V/ l//mc + Z G thc + Z Z G G l//zm Z Z Z G Gm Gv V/inc +
n=1 n=1 m=1 n=1 m=1 v=1
lfn\zjgcm sin gle m#n M#n v#m (2-27)
scattering double triple
scattering scattering

In this study, the symbols G‘ = fG°(¥ %), G'G! = fG"(¥,,7,) fG°(7,,7,) and

G!G!G! = fG°(¥,,7) fG°(7,,7,) fG"(¥,,7,) are used for shorthand.

Note that the multiple scattering phenomenon can be clearly defined as the radiation

which is scattered many times from randomly distributed point scatterers so above

defined the total field except the incident field w, is called as the total scattered

field or the multiple scattered field and it is given by

11



n=1 m=1 n=1 m=1 v=
- m#n m#n v#Em
sin gle

N N N N N N
l//:ca = ZG:l/lz’;c +ZZG:G;'//Z¢ +ZZZG:G;GTV/1‘;C ..
n=l1 1

scattering double
scattering

triple
scattering

which is the multiple scattered field at the observation point .. :

(2.28)

Note also that the term G, G, describes scattering of the incident field from the

point scatterer m to the point scatterer n and then from the point scatterer n to the

observation point 7, , hence a double scattering term. Similarly, G/ G, G describes

scattering of the incident field first by the point scatterer v to the point scatterer m

and then from the point scatterer m to the point scatterer #» and finally from the point

scatterer n to the observation point 7, hence a triple scattering term. These

scattering processes are shown in Figure 2.3.

Figure 2.3: (a) The single scattering phenomenon. (b) The double scattering

phenomenon. (c) The triple scattering phenomenon.

12



CHAPTER 3

ANALYTIC INVESTIGATION OF THE
BACKSCATTERING ENHANCEMENT
FROM RANDOMLY DISTRIBUTED POINT
SCATTERERS

This Chapter thoroughly includes analytic studies of the backscattering
enhancement from randomly distributed point scatterers. We begin this analysis by
considering some terms of the total field at the observation point. These terms are

given by Eq. (2.27). The first term of this summation is the incident field. The

second term represents all the singly scattered fields denoted by w(l) . The third

sca

summation accounts for all the doubly scattered fields denoted by w'?). The fourth

a

summation accounts for all the triple scattering denoted by ws(iz and so on, [1]. If

we consider only the scattered fields at the observation point, except the incident

field, the total scattered field at the observation point can be written as
Vi )=V Ay LA +y )+

* 3.1
V)= 2w ) 3-1)

The total field intensity is obtained by multiplying the total scattered field v, (7)

and its conjugate w__(7) and is given by

Lo (F) = ¥ o (F)Y 1 (F) 3.2)

Using Eq. (3.1) to express v (F)w.  (F), we get

L") =Y Yp @ @) (33)

n=1 n'=1

13



Expanding the serial summations in Eq. (3.3), the total scattered field intensity (or
the field intensity due to multiple scattering) is expressed as

1) =y Oy +l,/,<1),/,<z>* +w(2)t//“’*J GO\ 64
1]1 1]2 ‘

[22

Using Eq. (3.4) the total scattered mean field intensity (or the mean field intensity

due to multiple scattering) over all possible distributions of N particles can be
obtained and is given by

<[l ,>=<I,>+ <[, > +<[, >...
_ — —
average average average average
scattering sin gle int eraction double (3 5)
field scattering of scattering :
field sin gle&double field
scattering
field

where <..> denotes the ensemble average (or mean) over all possible distributions
of N particles.

3.1 Mean Field Intensity due to Single Scattering
Phenomenon

The single scattering phenomenon is shown in Figure 2.3 (a). The second term of

Eq. (2.27) represents all the single scattering denoted by l//fil and given by

v ()= Gy, (%) (3.6)

In the calculation, we assume that the incident wave is a plane wave:

Winc(}_;) = ei/;if (37)
Substituting the Green’s function G

=7l flax 7 -7

)] and the incident
field expression y, (7)) = ™7 into Eq. (3.6), we get

N ik|ry =15 -
(1) }_,.’ — _ e ik; .1, 3 8
w7, Z‘ f47r|?a—ﬁ,| (3.8)

The mean field intensity due to single scattering can be written as

14



<1, >=<yp VG W (7)) > (3.9)

Combining Eq. (3.8) and Eq. (3.9), we have

N o7 o T o M7y o
<] >= ik; .7, —ik; .7,y > 3.10
! Z 4 |F —F, | Z; 4 |F —F, | (3.10)

where the variable n is used for l// (r ) and the variable »’" is used for 1// (r ).

Also we note that | 7, — 7, | approaches | 7, | in the far-field approximation.

<1, >_ZZ |f| _ < el (3.11)
n=1l n' 1
<1, >_ |f § ZZ il -FG70] (3.12)

n=1 n'=1

where k, = k7. is the incident wave vector and 7, is a unit vector in the direction

from the source to the point scatterer and lgs = k7. is the scattered wave vector and
7. is a unit vector in the direction from the point scatterer to the observation point

(see Figure 2.3 (a)). Lastly, the wave number is denoted by k =27/1. Note that
when the equality 7, =7, occurs, the exponent term becomes zero and the

150Gl pecomes

expression of the mean field intensity due to single scattering e
equal to one. This mentioned condition occurs N times in Eq. (3.12). We can insert

N into that summation so that this condition (7, =7,) can be detached from the

summation and it is given by

<I, >= L N+22<e[“‘ +06,0] 5 (3.13)

( n=1 n'=l ay
n#n

We can use shorthand symbol ¢, to denote an ensemble average of ei[(';f_lzv)‘(F"_F"’)]
which is single scattering expression and it is taken from Eq. (3.13) and given by

| =< elEEGT] (3.14)

15



From this point, we give some relevant information about the ensemble average (or
mean) and the probability density function. We first write the ensemble average of a

function f'and explain how the ensemble average of this function can be calculated.

Let us state the ensemble average of fas
< f = [[ [ oG T s Py T V. F, . (3.15)

where the ensemble average (or mean) is given in terms of a probability density
function p(7,7,...,7,,...,7y). Now we consider a case where the point scatterer
density is low and the scatterer size is much smaller than the distances between
scatterers. In this case, we can neglect the finite size of scatterers and we can
assume that the location and characteristics of each scatterer are independent of the
locations and characteristics of other scatterers. This means that all scatterers are

considered as point scatterers, [1]. Under this assumption, we get
P(FsysensTss ) = p(R) p(R) P (7). p(7,)... p(Fy) (3.16)

This expression represents that probability density function of each point scatterers
can be written in a separate way. Probability of finding the scatterer » within a

volume dr, is given by p(7,)dr, :

number of scatterers within d7, = dx, dy dz,

p(r,)dr, = :
total number of scatterersin V’
_w(r,)dr,
N

(3.17)

where w(7,) is the number density or the number of scatterers per unit volume.

Thus, we get
. w(r)
r)=—7" 3.18
pn)=—y (3.18)

Note that if the number density w(7,) is uniform throughout the volume ¥, then

wiF) = p@):w](?) —> p(m:% (3.19)

The average is now given by

16



<f>= ” . j f W(F‘)W(;z,z'“w(?”) dr,dr,...dr,, (3.20)

If /" depends on the location of a single scatterer n, then writing f(7,), we obtain

W)

<fG)>=[ )= (3.21)

If f depends on the locations of two different scatterers m and n, then writing

f(,,r,), we obtain

<SG >=[[1G,.F,) Jav )W W) g g (3.22)

After all of the above expressions about finding the ensemble average (or mean) of
a function f, we can now calculate «;, by using these definitions. Therefore, the

8k, 7))

expression e is to be multiplied with the probability density function

p(r,,r,) and then the following integral must be evaluated.

= [[ PG e gy g, (3.23)

Since the scatterers are the point scatterers, it is assumed that their positions are

independent, 1.e., under this assumption, we have
p(,.7,) = p(r,)p(,) (3.24)

and also that if the density p(7,) is uniform throughout the total volume ¥, then

PE) =G =, (3.25)

p@,.1,) = p(,)p(r, )— (3.26)

Finally, substituting Eq. (3.26) into Eq. (3.23), we get the integral form of «,,:

a, = % bl gy g (3.27)

17



3.1.1 The Particles are Distributed within a Cube

We next consider a scenario in which the particles are distributed uniformly within

a cube whose dimension is D=2d, this scenario is depicted in Figure 3.1:

: &
g R

e’ ?
Wine g Observation
5 / Point

Figure 3.1: The particles are distributed within a cube whose dimension D=2d.

In order to understand the fundamentals of a scattering phenomenon let us consider
just only one of these scatterers. The incident wave vector and the scattered wave

vector of a single point scatterer are examined and depicted in Figure 3.2.

18



(@)

G=k +k, :2ksin%(}

k COS[KJ
2

)

Observation ki
Point

k:

l;S

=|ks|sinbsay, +|kg|-cosOsa

a, ks
];s

=sinbga,, +cosba;

Figure 3.2: (a) Representation of relation between the incident wave vector and the
scattered wave vector. (b) The incident wave vector and the scattered wave vector
in the Cartesian coordinate system.

In the far-field approximation, the scattering angle is assumed as 6, depicted in the
Figure 3.2. If we consider the incident field in the —z direction (see Figure 3.2 (b)),

the incident wave vector for this field is written as lgl. = —a_ and the scattered wave

vector can be written as k, =siné.a, +cosd.a, . If we insert these two wave vectors

into Eq. (3.27), this integral can be evaluated to give:

sin’ [kD cos (6, /2)|sin>[kd sin 0, ]

a,(0,) =
1(0,) (kD)“ cosé(ﬁs /2) Sinz(es /2)

(3.28)

where particles are confined to —d <x<d, —d<y<d and —d <z <d. In other

words, this cube’s dimension is D=2d (see Figure 3.1).
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The scattering angle 6, is the angle between the incident wave vector direction and
the scattered wave vector direction. Also, «,, from cubical distribution depends on
the scattering angle 6 . Note that if the scattering angle 6, approaches forward

scattering direction, 7, ¢, from cubical distribution is
Jim a,,(6,) =1 (3.29)
Note also that if the scattering angle 6. approaches backscattering direction, 0, «,,

from cubical distribution is

. _ sin® (kD) 1
é}g})all(es) = (kD)? < (kD)? (3.30)

In the limit as the volume of the cube goes to infinity, i.e., D — o, in Eq. (3.30)

a,, from cubical distribution becomes equal to 0:

1
>0
(kD)Z D—w

;xii%an(es)g (3.31)

We substitute Eq. (3.28) into Eq. (3.13) in order to get the mean field intensity due

to single scattering < /,, > from cubical distribution:

|f| Z:Zsmz[chosz(tS?s /2)]sin2[kdsint9s]
== (kD)*cos®(@, /2)sin* (6, /2)

n#n

<, >= (3.32)

In the above equation, the terms in the double summation are independent of the
summation variables. Thus, a factor (N—1) comes from the first summation and a

factor N comes from the second summation, and then we have

sin” [kD cos’ (6’s / 2)]sin2 [kd sin 6, ]
(kD)* cos® (8, /2)sin’ (8, / 2)

<l >=——— /T {N+N(N )

e } (3.33)

To depict this case, we arrange Eq. (3.33) by multiplying both sides of this Eq. with

constant (47,)* /| f|* , and then we get

sin’ [kD cos*(6, / 2)]sin2 [kd sin 6, |
(kD)* cos® (8, /2)sin* (6, /2)

= {N +N(N -1 } (3.34)
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This is the mean field intensity due to single scattering from cubical distribution of
the point scatterers </, > and is plotted in Figure 3.3 as a function of the

scattering angle.

The mean field intensity due to single scattering from cubical distribution
34 T T T T T T

T
— Single:Analytic |

N=50;
D=30;
d=D./2;
k=1;

<I11>.(4*pi*ra)/f| 2 (dB)

16
-200 -150 -100 -50 0 50 100 150 200
Scattering Angle (deg)

Figure 3.3: The mean field intensity due to single scattering from cubical
distribution: N=50, D=30 and k=1.

As can be seen from Figure 3.3, a peak occurs in the backscattering direction from
cubical distribution which is due to specular-like reflection since the incident field
is normal to the surface of this cube, and this case is investigated in more detail in
Section 4.3. In this study, we also prove that the backscattering enhancement is only
constituted due to multiple scattering. We note that the mean field intensities are
calculated in the decibel (dB) units throughout this thesis. The decibel (dB) is the
logarithmic quantity and determined in a common way when referring to

measurements of power or intensity. The basic decibel quantity is given by

S(X) g = 1010g10(f(x))-
21



3.1.2 The Particles are Distributed within a Sphere

We next consider a scenario in which the particles are distributed within a sphere

whose diameter is D=2a, this scenario is depicted in Figure 3.4:

L &

S s
+
Wine 95 / //' ObSF?c?i’r?tﬁon
P
/ l//j'ﬁﬂ

Figure 3.4: The particles are distributed within a sphere whose diameter is D=2a.

If we insert k, =—a_ and k, =sin 0.a,+cosb.a_ into Eq. (3.27), this integral, for

spherical distribution, can be evaluated and then «,, 1s obtained as
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[kD cos(kD cos(8, /2))cos(8, / 2) —sin(kDcos(8, / 2))f
(kD)® cos® (6, /2)

a,,(0,) = & (3.35)

Note that if the scattering angle 6, approaches forward scattering direction, 7, «,

from spherical distribution is

Jim e, (6,) =1 (3.36)
Note also that if the scattering angle 6. approaches backscattering direction, 0, «,,
from spherical distribution is

[kD cos(kD) - sin(kD )]’ .9
(kD)* - (kD)*

. 9
;12%0{“(t9s) = (3.37)

In the limit as the volume of the sphere goes to infinity, i.e., D — o0, in Eq. (3.37)

a,, from spherical distribution becomes equal to 0:

. 9
;}Lr(l)all(es):(kD)4 550 (3.38)

We substitute Eq. (3.35) into Eq. (3.13) in order to get the mean field intensity due

to single scattering < /,, > from spherical distribution:

<1, o= | /P { Ny EV: ﬁ 9[kDcos(kDcos(8, /2))cos(8, / 2) —sin(kDcos(6, /2))f

@m) | =S (kD)° cos® (0, /2) ] (3.39)

n'#n

In the above equation, the terms in the double summation are independent of the
summation variables. Thus, a factor (N—1) comes from the first summation and a

factor N comes from the second summation, and we have

9[kD cos(kD cos(, /2))cos(8, / 2) —sin(kD cos(8, / 2) )f

P
{N +N(N -1 (kD) c0s(6,/2) } (3.40)

<[, 6 >=
T my

To depict this case, we arrange Eq. (3.40) by multiplying both sides of this Eq. with

constant (47r,)’ / | 17, and then we get

(4m,)’

N 9[kD cos(kD cos(8, /2))cos(8, / 2) — sin(kD cos(8, /2))
Ty
|/

(kD) cos®(0, /2) } (341)

{N+N(N—1)
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This is the mean field intensity due to single scattering from spherical distribution
of the point scatterers </,, > and is plotted in Figure 3.5 as a function of the

scattering angle.

The mean field intensity due to single scattering from spherical distribution
34 T T T T T T

T
— Single:Analytic |

<I11>.(4*pi*ra)/f| 2 (dB)

16 | i I I i | i
-200 -150 -100 -60 0 50 100 150 200

Scattering Angle (deg)

Figure 3.5: The mean field intensity due to single scattering from spherical
distribution: N=50, D=30 and k=1.

As can be seen from Figure 3.3, any kind of the enhancement in the backscattering
direction from spherical distribution does not occur while the incident field is
normal to the surface of this sphere. Meanwhile, forward scattering intensity in the
direction of + 180 degrees can be seen clearly from the above figure while the

incident field is in the direction of 0 degrees.

Comparison of cubical and spherical distributions, for N=50, D=30, is shown in

Figure 3.6.
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Comparison of cubical and spherical distributions
T T T I

I T T
—— Single:Analytic for Cubic
——- Single:Analytic for Spherical
& i

N=50;
D=30;
k=1;
d=D./2;

i m

<111>.(4%pi*ra)?|f| 2 (dB)

200
Scattering Angle (deg)

Figure 3.6: Comparison of cubical and spherical distributions: N=50 and D=30.

It can be seen from the above results that a specular enhancement is observed for
the cubical distribution; however, no enhancement is observed for the spherical
distribution in the any direction. From this result, we can conclude that the overall

distribution of the point scatterers influences the result.

3.2 Mean Field Intensity due to Double Scattering
Phenomenon

3.2.1 The Particles are Distributed within a Sphere

The double scattering phenomenon is shown in Figure 2.3 (b). The double
scattering is the first multiple scattering mechanism in the distribution volume and it

is one of the low-order multiple scattering terms. The third term of Eq. (2.27)
(2)

sca

represents all the double scattering denoted by .-’ and given by
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i) = ZZG G ine (3.42)

n=1 m=1
m#n

After we substitute the Green’s functions, which are written as

=—fle*" " (ax |7 —7 )| and G =—fle* " (47 |7, — 7, 1)), and the incident

field expression v, (7)) = ™ into Eq. (3.42), the double scattered field 1//52 is

1k|1 =7, ik\?,,—‘m\ =
ik; .7,
r e"
( )= ,,Z:',,,Z:'f v, =7, |4 |F, —7, | (3.43)
The mean field intensity due to double scattering < /,, > can be written as
<1, >=<yGE W ) > (3.44)
Combining Eq. (3.43) and Eq. (3.44), we have
|f| ik, (7 e ik, (T~ ) e Tnl g
<[l >=— < m " Tm >
= 2 7, =7 117 =
o)
(3.45)

<[l 6 >= ‘ f ‘ z Z Z Z < ezk (Fy=F, ) ik; (P —=Fopr) eik‘aﬁ;'"‘ eiik‘;"'iF’”" S
22 7 — —
(4 ) u n=1 m=1 n'=1 m'=1 ‘ r ,

m#n m'#n’'

where the variables m and n are used for 1//(2)(?”) and the variables m' and n'are

used for (r ). Also, we can use shorthand symbol a§2> in order to denote an

N k(7 =T | =ik =T |

N N N e e
ensemble average of ZZZ el v n) @i ~7ar) which is

—

|Fn_’;:n ||}7n’_rm'

n=1 m=1 n'=1n z
m#n m

#H

double scattering expression for all cases and the superscript ¢ stands for the cases
that are defined below. The mean field intensity due to double scattering in Eq.

(3.45) can be written in a simple way:

£ ¢
< 122 >= W[@gz)] (346)

and ag‘z') is stated clearly as
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N N N N k(r_r)k(’_r)e"n‘m e =T
azz=ZZZZ<€’ ' s a0 (64

|7 —Fy |17y~ |

n m n m

iy ol ikl |

The expression ZZi ﬁe”; i) gk G T) €

n=l m=1 n'= m: ‘rn_Fern'_r’

m#n m -75

is to be multiplied

with the probability density function p(7 7..) and then integrated in order to

m? n’ m > n
calculate a22 This integral can be considered separately for seven possible cases.

(c)

o, can be also written as using these seven possible cases (see Figure 3.7) in the

following manner:

') =N(N -al) + NN -1)aP + NN -1)(N -2) ad) +
N(N-1)(N-2)a + N(N-1)(N -2) a3 + (3.48)
N(N-1)(N-2)a'¥ + N(N -1)(N —=2)(N -3) o)

The coefficients of the above equation are the total number of possible ways to
choose each one of their conditions (see Figure 3.7). The term N(N—1) of these
coefficients is a common multiplier. Thus, this equation can be simplified in the
following way:
(1) (2) 3) (4)
oy +ayy +(N=-2)ay,) +(N-2)a,, +
0{22 = N(N-1) 22 2 “ ( ) “ ( )y o (3.49)

(N=-2)ay, +(N-2)ay, +(N-2)(N-3)ay
We will next explain what these seven possible cases are and how the total number
of possible ways can be computed. Depending on the choice of m' and n', we are
evaluating the correlation of the ray with a different ray. There are seven possible

cases shown in Figure 3.7. In this figure, the dashed line refers to conjugate of the
double scattered field y/ (r ) and the continuous line refers to the double

scattered field 1//(2)(170 ). We use basic principle of counting to determine the number

of different ways occurring in Figure 3.7. Let us describe how this principle is

applied to our cases.

In case 1, we can choose point scatter m’ to be the same scatterer as m th one. From

N randomly distributed point scatterers, this can be done in N different ways. After
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this, there remain (N—1) point scatterers. Thus, n'=n can be chosen in (N—1)
different ways from the remaining (N—1) point scatterers. After the sequence of
these two choosing processes, the total number of possible ways to choose

m'=mé&n'=n is N(N-1).

Case 2 is very similar to case 1. Actually, case 2 is conjugate of case 1. Therefore,
we can say directly that the total number of possible ways to choose

m'=n&n"=m is again N(N—1).

In case 3, we can choose the point scatter m' from N randomly distributed point
scatterers in N different ways. After this, there remain (N—1) point scatterers among
which m'#n can be chosen in (N—1) different ways. Then, there remain (N—2)
point scatterers. Thus, n'=n can be chosen in (N-2) different ways from the
remaining (N—2) point scatterers. After the sequence of these three choosing

processes, the total number of possible ways to choose m'=#m,m' #n&n’'=n is

N(N-1)(N-2).

Case 4, case 5 and case 6 have the same kind of choosing methods as case 3.
Therefore, we can say directly the total number of possible ways to choose each one

of their conditions is N(N—1)(N-2).

In case 7, we can choose the point scatter m' from N randomly distributed point
scatterers in N different ways. After this, there remain (N—1) point scatterers among
which m'#n can be chosen in (N—1) different ways. Then, there remain (N—2)
point scatterers among which n’' # m can be chosen in (N-2) different ways leaving
(N—3) point scatterers. Finally, n' # n can be chosen in (N—3) different ways from
the remaining (N—3) point scatterers. After the sequence of these four choosing

processes, the total number of possible ways to choose m'=m,m' #n,n"#m

&n' £ n is N(N-1)(N-2)(N-3).
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Casel) m'=m&n'=n

Case2) m'=n&n'=m

N(N-1)(N-2)
ways

Case4) m'#mm'#n&n'=m [> N(N-1)(N-2)
ways

Case3) m'#mm'#n&n'=n

N(N-1)(N-2)
ways

Caseb) m'=mn'#mé&n' #n

N(N-1)(N-2)

’r_ ’ '
Case6) m'=nn'#m&n' #n ways

m'#m,m' #n, N(N-1)(N-2)(N-3)

ways

Case 7)
n#m&n' #n

Figure 3.7: Seven possible cases of agg).
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3.2.11 Casel: m'=m&n'=n

Case 1 is defined by the condition m'=m & n' = n . In order to get a result, we insert

m instead of m' and n instead of n’ into Eq. (3.47) as follows:

P o el‘klf‘,rfm\ e*ik\Fn*f‘m\
aglz) —< elkx.(rn—r,,)etk<.(rm—rm) ~ - _ _
’rl’l_rern_rm‘
_ _ ik|F, =T,y |~ ik|F, =T, |
aglz) —< k0 ik (0) L (3.50)
|7, =r, 7, -7,
e°
aglz) =<e’e’ — >
r.—=r, ||F, =7, |

After all, we obtain an ensemble average of 1/ |7 —7 |* and it is denoted by aglz) ;

(1 1
Oy :<ﬁ> (3.51)

Expression 1/ |7, —7, | is multiplied with the probability density function p(#,,7,)
and then integrated to obtain its ensemble average:
M _ 1 1 -
a,) =< ——"— E >= ij(rni,rn)ﬁdrnidrn

v |7 —r

}’l m

(3.52)
a22 ij(rni’rn) |2 d?md}_/:n

This integral is quite difficult to compute. Therefore, we can use change of
variables technique in order to evaluate this integral. Change of variables is one of
the basic techniques in replacing one variable with another to obtain a simpler form
integral. Now, we can apply this technique to above integral by introducing the
variables 7, =7, (7,/,) =7 +7/2 and F, =F (7,F,) =7 —F, /2. We suppose that
the region S’ in the 77, —plane is transformed into a region S in the 7 7, —plane,
[33]. Under this transformation, we can write the explicit statement of this

technique as

j [ 1@, 7)dr,dF, = | j S G R G, dr, (3.53)
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where |J(z71,172)| is the absolute value of the Jacobian which is defined as a

determinant of a 2x2 matrix. This determinant is given by

or, Or,
.o or. or or. or or or
JGE. 7Y = 2 T Rl T PN BBl 54
Cbr)=lor, o, [6?1 66) (6@ Gﬁj G-
o o,

After evaluating the absolute value of the Jacobian, the relationship between the

element of area dr,dr, and the corresponding area element dr,dr, is given by

ds =dr,dr, :|J(771’F2)|d’7;d’72 ; |J(’_’;”_;2)| =1

e (3.55)
dS =dr,dr, = drdr,

Let us rearrange the variables, the area elements and the absolute value of the

Jacobian in the following manner:

K=", =T,
. I, 47,
7y = (3.56)

drdr, = dr,dr, |J(7,7)| =1

After the change of variables and using joint probability density function of two

point scatterers, p(7,,r,) = p(r,)p(r,) = 1/ V* we get a simpler form integral as

1 | .
0592) = WHM—VdVlde (3.57)

- L

Fnl (3.58)
=5

o_Lrl -

a”‘Vl#m3 (3.59)

After the change of variables, the volume of above simpler integral is also varied. In
a condition of the infinite volume assumption, we can take integral over the sphere

and this gives us the approximate result. In order to evaluate the above volume
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integral, we'll first have to convert all the terms of 7 into spherical polar terms in

the following way:

27 7 a
al) =L [ [ [ sinirdaip (3.60)
V 0=06=0r=0 T

Finally, solution to this integral is

n_4r m_3
*r —7‘1 — a5, O0n=—7% (3.61)

3.2.1.2Case2: m'=n&n'=m

Case 2 is defined by the condition m'=n & n’'=m . In order to get a result, we insert

n instead of m' and m instead of n’ into Eq. (3.47) as follows:

. . Tl ikl T
o) =< ™ n ) gk ) ¢ ¢

|7 = 117, =7

o o eik\Fm—FH\ e—ik\im—F,J
ag) =< e Tghur) = ©
|7 =7 7 =T,
o ik|F,, —F, |—~ik|F,, — T, | (3'62)
al) =< g FHRIGTIE —>
7 =7, |
ag) —< o/ kirtk) (7 _ 1# _>
17 =7

—

After all, we obtain an ensemble average of lei““+k”'“m_i")l/|r —7 | and it is

m

denoted by

ei(i,-+1a>.(a,—fn)
af) =<———> (3.63)
|7, =7, |

Expression lei(';'+';‘)'(5"*F")j/|l7 —7 |* is multiplied with the probability density

m n

function p(7,,7,) and then integrated to obtain its ensemble average:

32



1(k +k $)-(F, =7 1(k +l€Y).(Fm—F,,)

aéZ) =< ﬁ >= jjp(?’m,l’n)?dfmda

m n | m n |

(3.64)

z(k +k).(Fy =7,

0‘22 = J‘Ip(rmﬁrn)—_.lzd,;;nd’_;n

|7, =7,

n

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

7y = (3.65)
drdr, = dr,dr, |J(F,5) =1

After the change of variables and using joint probability density function of two

point scatterers p(7,,7,) = p(7, )p(r,) = 1/ V?, we have

1(0')(’”1) o
o) = ﬂ AR, (3.66)

where & =k, +k, = 2ksin(6, /2)6 is the sum of the incident and scattered wave

vectors and l%..lgs =cos(r —6,) is the scalar product of the incident and scattered

wave unit vectors.

1(0')(”1)
(2) _ 1 —

as, 5 Idrzj dr, (3.67)

V Vv 1

14
1(0)(’1)
@_1

o) = VJ e (3.68)

v

In order to evaluate the above volume integral, we'll first have to convert all the

terms of 7 into spherical polar terms in the following way:

a n ocosé

@y [ [T

(pOHOrO

r* sin Odrd 6d (3.69)

Solution to this integral is ag) is
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4 Si(ao 3 Si(ao
o) AT, g 3 Sao) (3.70)

22
Vo V=gm a aoc

where Si(ao) = I%dt is the Sine integral and o = |5'| = ‘IES +l€i‘ =2k sin(é?s/2)
0

is the amplitude of the sum of the incident and scattered wave vectors. Some

properties of the Sinc function and the Sine integral are given in Appendix G. As
can be seen from the above equation, ag) has the form Sine integral divided by ao
and also o depends on the scattering angle. Therefore, we expect ag) to give rise
to the backscattering enhancement. In Section 3.2.1.8, we show that ag) is the
main cause of the backscattering enhancement. In order to see this contribution,

ag) is plotted in Figure 3.8 as a function of the scattering angle.

The ensemble average of double scattering expression for case 2

T
—— Case 2 alpha

-18

D=30;

d=D./2;

22 -

25 s ; |

ALFA222 (dB)

26 -

28

30~

-32
-200 -150 -100 -50 0 50 100 150 200
Scattering Angle (deg)

Figure 3.8: 2, the ensemble average of lei(';“”;”'“m_i") l/| 7 —7 |° which is double

scattering expression for case 2.
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NOTE:

If we insert the approximation lin% [Si (aa)]/a =a into Eq. (3.70), we get

lima) - im 37 Si(oa) _ 47

3.71
o0 |/ o V ( )

This limit lin%ag) is equal to 0‘92) as expected lin%ag) = (47[/ V)a = agl)).

If we insert the infinite volume approach lim [Si(aa)]/a = (7[/ 2)/ o into Eq. (3.70)

in the following manner, we get

. 2
limag) _ lim4—ﬂ Si(oua) :4_7r /2 _ 2

(3.72)
a—»o0 a—»o V o V (o} Vo-

Inserting & = k, +k, = 2ksin(@, /2)6; (o = 2ksin(@, /2)) into Eq. (3.72), we have

) 2 2 2 2 2
llma§§)= di. i -7

o Vo V 2k sin i Vk sin i
2 2

(3.73)

When we consider infinite volume assumption for the sphere (a — ), ag)

approaches 72 /[Vksin(6, /2)].

Note that we can take integral over the sphere and this gives us the approximate
results in a condition of the infinite volume assumption. In the following chapter,
these approximate numerical results are tested by MC simulations and we prove that
the results nicely agree with each other. This obviously indicates that the infinite

volume assumption is not too bad. Since there is no other way to evaluate integrals

of ag) and also we use this assumption to evaluate the others.

3.213Case3: m'#mm' #n&n'=n

Case 3 is defined by the condition m'#m,m'#n&n'=n. In order to get a result,

we insert n instead of »n" into Eq. (3.47) as follows:
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ikIF,~Fy | —iklF, <]

T _ay o _n @ e "
al) =< eh iy Z 7 (3.74)
|rn_rm||rn_rm,|
which can be rearranged into the form:
L e S
S e e
af) =< TR £ L (3.75)
|rm_rn||rm'_rn|
ikl7, =7, | —ik[F, =7,
7 e e e
al) =<t Ok tai) = Z (3.76)
|rm_rn||rm’_rn|

After all, we obtain an ensemble average and this is denoted by ag):

i G =Ti) ikl7 =Ty | =ikl |
o) <> (3.77)
Tw =1, ||rm' —-r, ’

Expression | )"l Ml [ 5 _7 |17 _7 | s multiplied with the

n

probability density function p(7, ,7 ,7 ) and then integrated to obtain its ensemble

m?>"n>
average:

ik (Fy=Fo) K[y =T =ik [Fo—F |
(3) e e e
Oy =< S = = = >
’rm_rn ||rm'_rn|

) o i T =To) ikl =T, =ik |
3 7 ” e — — —
Oy = j” P77y s ) — dr,dr.dr, (3.78)

|Fm_Fn ||’_;m’_rn
3 IO e
aéZ) = J‘IJ-p(rm 9rn ’rm')

i,y ) ikl =T =ikl

Tl

—— dr, dr dr,,
|r. —7 |7, —F

m n m n

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

h=1, o,

vy=r,—r, ==>F-—1=F —TI,

7 - v+, (3.79)
2

drdr,dr, = dr,,dr,dr,, |J (7, 75,75)| =1

After the change of variables and using joint probability density function of three

point scatterers p(7, .7, ,7,.) = p(r )p(T,)pF, )= l/V3 , we have
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lk (1i=13) lklll\ —ik\le

j j j dF. dF, dF, (3.80)

EAIEy

eﬂa.(a—m Ml g =ikIE|

I ¢ .. e
ag):—3jdr3j — dr,dr, (3.81)

ey oy Iailn |

ez‘/i-.(a—?z) o)

al) = % [dr || ————arar, (3.82)

nr,

Now, the above integral is quite complicated. Thus, we separate it into component

parts as follows:

zk R) gik(n) e—i/%.@)e—ik(rz) -
ap) = I d@j dr, | ar, (3.83)
v h v r :
A,_J
v I I

where the first integral is equal to volume V. Also, the last two integrals are
conjugate of each other. Hence, with respect to the equivalence 7.I° =], 0522) is

written as

(3.84)

In order to evaluate the above volume integral, we'll first have to convert all the

terms of 7 into spherical polar terms in the following way:

2

2r 7w a ikr(1+cos @)
(3) _ L e 2 .
oy = j 0 Jo jo—r r2 sin Odrd 6d (3.85)
[ =Ur
Solution to this integral is given by
2
o) = % [+ 2(ka)* - cos(2ka) - 2kassin(2ka) | (3.86)

When we consider infinite volume assumption for the sphere (a — «), the term

[1 +2(ka)® —cos(2ka) — 2ka sin(2ka)] can approach the term with the largest degree,
such as [Z(ka)2 ]
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=T _To(kay?] (3.87)

After expressing the volume of the sphere in terms of its radius as V = (4/3)m?,

ab) is determined as

1N

(3.88)

)

4k*at

3.2.1.4Cased: m'#mm' #n&n' =m

Case 4 is defined by the condition m'# m,m'#n&n"=m. In order to get a result,

we insert m instead of n’ into Eq. (3.47) as follows:

) B M Tnl o=kl =Ty
iky (P =1) ki (T =P
ik, (=) ks (=) > (3.89)

alt) =<e
rn _Vm Hrm _rm’

which can be rearranged into the form:

ikl =7, —ik|Fy =T |

N e

ag) —< elk"(’"’ r,,)elk,u(rm Tont) - — — — > (390)
‘Vm -1, Hrm' -7 ‘

m

Expression e/~ [l [ _ i ([ 5 —7 | is multiplied
with the probability density function p(7,,7,,7, ) and then integrated to obtain its

m>"nd

ensemble average:

. i oMl ikl |
ik (7, —F ik, (F, —F,
al¥) =< e u liGuiy € 1 7 € T T
|rm_rn||rm'_rm|
@ . 3 oMl ikl |
4) _ oo o ik ) ik (R = = e
a,, = Ijjp(rm,r,7,rm, )e e ——————dr,dr,dr,, (3.91)
|\r, —r ||r, =7, |
: ) i} Ky —F =ikl —F,|
(4) _ R S ik (7 =7,) ik; (T =T = x5 A7
o, = ||| p,.7,.7,)e e —dr, dr,dr,,

|Fm_’7;1||}7m'_r

m

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:
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n=r, =T,

]_;2 :l_/;n _Fm'

| _EtE, (3.92)
2

d;.;dFZdF} :dfmdfnd?m' |J(’71’;:2”73)|:1

After the change of variables and using joint probability density function of three

point scatterers p(7,,7,,7,.) = p(r, )p(T,)pF, )= l/V3 , we have

ikIR| -, =iklP|

all) = m kD _C gz g7 (3.93)
[n] 175
e ikn e —ikr,
all) = j [[e et ™ = drardr, (3.94)
0!(4) _L‘”jei&.(ﬂ) eikrl eil;"(a) e_ikrz drdr.dr 395
22 = V3 7"1 l"z 1 2773 ( . )
— zk (rl) zk (%) _'
ol = jd 1 p Gy j . LA (3.96)
ei[/i.mkrl] ) ei[l;,iz—krz] )
ay) = I dr, I p drll P (3.97)

Now, the above integral is quite complicated. Thus, we separate it into component

parts as follows:

ik, 7i-+he; ] ik, 7~k |

(4) _ 1 — ~ (€ -~

a,) =—|dr dr, dr

2 V3I 31 " 1! r, 2 (3.98)
4 I I

where the first integral is equal to volume V. Also, the last two integrals are

conjugate of each other (Note that IES and lgl are in general different so they are

conjugate of each other, too). Hence, with respect to the equivalence ./ =| I >, 0522)

is stated as
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1 ei(l;\. F+kr)

(4) _ :
oy, =—||———3dr 3.99
2=yl (3.99)
This result is the same as the result of ag). In other words, ag) is equal to ag) :
1 ei(l{..ﬂkr)
o) =—|[“——df| =a}) (3.100)
r
vV

3.2.15CaseS5: m'=mn'#m&n' #n

Case 5 is defined by the condition m'=m,n'#m &n'#n. In order to get a result,

we insert m instead of m’ into Eq. (3.47) as follows:

) ) k(7 =7 =iklF 7|
iky (Fy=Fy) ik (Fy=F) € e

aly) =< &™) gtk Ca T > (3.101)

which can be rearranged into the form:

) ) k(7 =7, —iklF, 7]
ik (Fy=Fy) ik (Fy=F) € e

aly) =< ™) gt o T > (3.102)

|7 =1 117 =7 |

Ky —F,| ikl
ik (7, —~F) ik.(0) € e
ag) —< o T ik (0) > (3.103)

Fm_’_;n ||’_;m_’7n’|

k|7, —ik|7, =7, |

w Tl oI T

ik, (7,-7,) €
|7 =7, |17, =7 |

We obtain an ensemble average of e devoted by ag) :

. M=l o=kl =]
5 ik .(Fy =T,
agz) =<< e[ s (Vn rn) > (3.104)

Expression e [e"% /7~ (e |7 —F, || is multiplied with the
probability density function p(7,,7,,7,) and then integrated to obtain its ensemble

average:
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o k|7, =1 | e’ikl’:m’;n"
ag) =< elk (7 =7,) — - - = >
|rm_rn||rm_rn'|
- eik\;/n*’:n| e*ik\zn*;n'\
i (77 - g g
aly) = J.”p( P r)e s T —  —dF dF dF, (3.105)
|rm_rn||rm_rn'|
eika—Fn\ e—ik\fm—Fn'\
k 7 - = 1=
a22 IIJ.p( Vs n,l" )el =) — — — — drmdrndrn'
|rm -7 | ‘rm -y

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

n=r, -,
FZZFm_Fn' :_>;:l_r2:;:n__.n
. F 4T, (3.106)
r,=
2
dr,dr,dF, = dr, dr,dr, |J(7,7,7)| =1

After the change of variables and using joint probability density function of three

point scatterers p(7, .7, ,7.)= p(r, ) p(r )p(r,) = l/V3 , we have

ikl7| tk\Fz\

ik, (7-7,) € d il e
al) =5 ”I kGiom) © |r WA dr.dr,dr, (3.107)
1 ik (F=7) ik (ri=r3) o
o) = — [ dF, [ drdr, (3.108)
Ves v nn

Now, the above integral is quite complicated. Thus, we separate it into component

parts as follows:

ik, (7)) G =ik, () =ik (r,)
s) |1 e _re e -
%5 ‘FJ drj drll - ar, (3.109)
I I

where the first integral is equal to volume V. Also, the last two integrals are
conjugate of each other. Hence, with respect to the equivalence /.I” =| I |*, 0522) is

stated as

(3.110)
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This result is the same as the result of &Y. In other words, ) is equal to a3
1 i(k, F+kr) -
af) =—|[“——dF| =a}) (.111)
r
V

3.2.1.6 Case 6: m'=n,n #m&n' #n

Case 6 is defined by the condition m'=n,n"#m&n'#n. In order to get a result,

we insert n instead of m' into Eq. (3.47) as follows:

7y =Tl =ikl =

T vy i (r iy €
agg) =< elk:.(r,, ’n)elk1~(rm ) — — — — > (3112)
|rn _rm ||rn' _rn |
which can be rearranged into the form:
o GRRL ik
a;g) =< elky(rn’*rn)elk,w(rm’rn) | - — > (31 13)

Ty =1 |17, =7 |

m

Expression e’ ek e gl 15 _ i ([ 7 7 |] is multiplied with
the probability density function p(7,,7,,7,) and then integrated to obtain its
ensemble average:

k7,7, —ik|F,~F

- - T 0Tl
(g) —< R T ik G T,) € €

@, - - - =
|rm_rn||rn_rn’|
- - k|7 =75 | —ik|r, =Ty
(6) _ 77 7 ik (5= ik (7, =T) emm e a7 dr dr
a22 - p(rm,rn,rn,)e e — — - - I"m rn Vn’ (3114)
|rm_rn||rn_rn'|
- - ik|ry =1, | —ik|F, =T,
(6) _ s s N ik (R ik (R T € e d7 dr d7
a22 - p(rmﬂrn’rn')e e - rm rn Vo

|7 =1 |17, =T |

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

n=r,—r,
ry="r, T,
L P 4T, (3.115)
r=—
2
dr.dr,dr, = dr, dr,dr, |J(7.7,7) =1
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After the change of variables and using joint probability density function of three

point scatterers p(7, .7, ,7.)= p(r, ) p(r)p(r,) = l/V3 , we have

iklA] -, =iklr|

zk (12) lk (i) s e e - g 7=
aj) = 7 m IR drdr,dr, (3.116)
zkr1 e —ikr,
ag) = 3 m o ’”— dridr.dr, (3.117)
(6) _ 1 B LA S
a) = [dr [ =i [ " ——ar, (3.118)
V vV V 7"1 v rz

Now, the above integral is quite complicated. Thus, we separate it into component

parts as follows:

ikn —ikry
(6) _ 1 - ik;.7; e - ik, .7, -
a,, = dr, dr|e dr,
’ -I[ -I[ I '1[ vy (3.119)
V I 7

where the first integral is equal to volume V. Also, the last two integrals are
conjugate of each other (Note that IES and lgl are in general different so they are
conjugate of each other, too). Hence, with respect to the equivalence 1./ =| I [*, agg)
1s stated as

i(k;.F+kr) 2

ad =i2 [ dr (3.120)

v r

This result is the same as the result of &Y. In other words, ) is equal to !¢

7l

Finally, we note that the last four results of the ensemble averages are equal to each

l(k F+kr)

dar

al¥) = _ag> (3.121)

other. This relation can be stated as

ay) = ay) =) = af) (3.122)

43



3.21.7Case7: m"#mm' #nn' #m&n' #n

Case 7 is defined by the condition m' #m,m' # n,n" #m&n' # n. In order to get a

result, we use the general formula of a§§> as follows:

k|7, =7, —ikl|7y =T
_ iy € e

ag) —< ke i) ik 7y =) N (3.123)

Vn_rern'_rm'

which can be rearranged into the form:
- iklFy =1, | —ik|F =T |
(7) __ ik, (Fp=7) ik, (F,-Fy) €

a,, =<e e — > (3.124)

|rm_rn||rm'_rn'|

. R (7). (F — ki 7l o= = Nk R = = . o
Expression e (™) g/ iu [ MmN\ F 7, |Ie Ml |7 —F, |] is multiplied

with the probability density function p(7, r,) and then integrated to obtain

m?2 n’ m’

its ensemble average:

. . L A
al) =< &™) gkt ) ‘i _ eﬁ NN
17 =7 |7 =T |
. . oM Fal ikl =7y
7 Yok =T ik (=T} s g e
a22 IJIIP( m> Vs o> T )e € |’-; _;: ||}7 P drmdrndrm’drn' (3.125)
m
@ - . P AR
7) — = N ik (Fy—Fy) ik (B =T ) — g = g
a22 J“[J.J‘p(rm’r,ﬂrms n)e e — — drmdrndrm,drn,

‘Fm_FnHFm'_r'

n

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

hW=r,—F, Iy=F,—F,

I N P+,

r; = s Ty ==
2 2

O L L

e =l =5h =5 h =1 =0 (3.126)
2 2

O O .

rm—rm,—Erl—Er2+r3+r4

dr,dr,dr,dr, = dr,dr,dr, dr, |J(r1 NN )| =1

After the change of variables and using joint probability density function of four

point scatterers p(7, .7, ,7,.,7.) = p(¥,)p(r,)p(7, ) p(T, :1/V4,we have
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k|- o= ikIrs|

ol =2 j [[[e R G )T N S Frdrdrdr,  (3.127)

which is separated into component parts, and then we have

Lk T
J~ i rl) i, G e qu- ik (5) k(57 e thry
r|e e
i

azz = r r dr,
v Lo 2 (3.128)
J‘ ezk.\u(—r_;) ezk,-.m) dF, I PURCAWACY d7,
14 |4
1 o oMb /2] il a2k )
(7) _ e d_. e dﬁ
Oy = e h T
% n % r
; ;
- o 5 (3.129)
J'et(k,-—k.\v)-rsd;}jel(k,v—k\-)uda
4 V
I [;

where the first two and the last two integrals are conjugate of each other (Note that

k. and k; are in general different so they are conjugate of each other, too). With

respect to the equivalences 7.1, =| I, |* and 1,.I, =| I, |*, a22 is stated as

T o= 2
el[(kb\.#’ki).(l’l/z)#»kri]

2

m_ 1 =l ithE) g

o) =% ! p dr, i e dF, (3.130)
Now, the above integral is quite complicated. It is expressed by
& h)Gek] | o 2

(7) :L € - 10—k g

n =y ! p dn ie dr, (3.131)
, - y

After making use of the sum of the incident and scattered wave vectors

o= IES + l;i = 2ksin(6, /2)6 , the solution to the integral 17 can be stated as
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o
3 —cos(8,) — 2 cos(ka) cos(kasin 7“) +

872 2 cos(ka)cos(6.,)cos(kasin %) -

I
., 0 0 0 0
SIHZESCOS4 -k cosz(kasin—z“)—cosﬁs cosz(kasin—z“)— (3.132)

S

4 sin(ka)sin % sin(ka sin %)

Note that, at the backscattering direction (8, — 0), the result of the integral I;

approaches

: 2
lim/; =
0,0

2 2712
32f {H" K~ _ cos(ka) — kasin(ka) (3.133)

After the functional graphic of the term [1+(a2k2/2)—cos(ka)—kasin(ka)] is
analyzed, it is evaluated that this term is always smaller than [azkz]. After this

examination, /; can be given by

. 27’
lim I < 3 74[
0, —0 k

k] (3.134)

Finally, at the backscattering direction (&, — 0), the result of the integral /7 attains

its max value as follows:

2
< 3?{’; o> (3.135)

After making use of the sum of the incident and scattered wave vectors

o= l;S + /gl. =2k sin(@s / 2)&, the solution to the integral /; can be stated as

XCOoSx —sinx

3

I; :l67r2a6{
x

’ 0
} ;X =2ka cos(zs) (3.136)

At the backscattering direction (6, — 0), this term x =2kacos(d,/2) is to be

x = 2ka and also the result of the integral I; is
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(2ka )(cos 2ka)— (sin 2ka) ’
(2ka)

lim [ = 167z2a6[ (3.137)

6, —0

When we consider infinite volume assumption for the sphere (a — «), the term

[((2ka)(cos 2ka)—(sin 2ka))/ ((2ka)3 )]2 can approach this term [1/ (2ka)2]2. Finally,
Note that, at the backscattering direction (6, — 0), the result of the integral I;

approaches

(3.138)

If we insert the approximate values of these integrals /; and I; into Eq. (3.131)

(ag) = (1/ v )132] ; ), o)) can be stated as

1 3272% , 7°d?
Otg) - 4 2 az 4
Ve ok k

(3.139)

After expressing the volume of the sphere in terms of its radius as ¥ = (4/3)m’ and

simplifying the above equation, ag) is given by

(7) 81

as) SW (3.140)

After finding the values of seven possible cases, we can now calculate a§§> by using

below expression:

al) +al) +(N-2)al) +(N-2)al) +

() _
ay =N(N-1)
N (N-2)af) +(N-2)af) + (N -2)(N -3) )

(3.141)

Eq. (3.141) can be simplified by using the equality a3 = ol = oY) = o9
aly = N(N-D]al) +al + (N -2)4al) + (N-2)(N-3) | (3.142)

After expressing the volume of the sphere in terms of its radius as V' = (4/3)m® and

inserting the ensemble average terms of double scattering, a§;> can be stated as
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3 N 3 Si(ao) 9

+(N —2)4 +
(@) (a)’ aco ( ) 4k*a’
() k* 7'2—)‘ a2 )
ay, :k—zN(N—l) # . (3.143)
N -2)(N -3)——
( YN =3) YR
ay))
Arranging Eq. (3.143), we have
3 - 3 : Sl(aO')+(N_2) 9 -
(ka)”  (ka)” aoc (ka)
o)/ a2 /i 4ol i
al) =k°N(N -1~ e ; (3.144)
(N=2)(N-3) :
8(ka)
ol /i
After inserting this constant f = [i47zT ]/k into Eq. (3.46), we get
T 7
<l >= W[ag;] (3.145)

a

Substituting Eq. (3.144) into Eq. (3.145), we obtain the mean field intensity due to

double scattering from spherical distribution:

32+ 3zSz(aJ)+(N_2) 94+
(ka) (ka)” ac (ka)
T o)k o)/ 4 [
<122 >=WN(N—1) ]1 (3146)
a (N-2)(N-3) .
8(ka)
o]k

3.2.1.8 Some Results about Double Scattering

I) We expect ag) to give the backscattering enhancement. As far as infinite volume
assumption (a — ) is concerned, ag) approaches 72 /[Vksin(6, /2)]. Due to its

form, a narrow peak in the backscattering direction (€, — 0) is observed.
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2
T

lim ;= 0 3.147
‘ Vksin(sj (3-147)
2
72_2
Sm o 3.148
% el e

IT) The mean field intensity due to double scattering is stated as

4 k32+ k32Si(aa)+(N_2) k94+
<l >= ';;' Ny -l F () a; U1 5.149)
(kr, (N =2)(N -3)——
8(ka)

If we want the effect of a%‘” to be negligible as compared to «

(1, we must have

2!

9 81
% >> (N -2)(N -3) S(ka)’

(N=2)

(3.150)
Considering some assumptions, we can find relationship between the diameter of
sphere D=2a and the number of scatterers N in the following manner:

4 >> ’ 81 8
(ka) 8(ka)

(ka)* >> Ng
8 (3.151)

(ka)* > N%

(ka)* > N(11.25)
The effect of the third term ag*) is negligible as compared to that of the last term
(

052;) if the diameter of sphere (ka)* is larger than the number of scatterers

N(11.25), such as (ka)(4) > N(11.25). So, an approximate formula of the mean

field intensity due to double scattering is stated as

|rr INEE 3 Siao) . o 9
<I, 2 N(N 1){(ka)2+(ka)2 a0} 2)(ka)4} (3.152)
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where (ka)® > N(11.25).

IIT) If we want the effect of ag"ﬁ) to be negligible as compared to that of aglz) and

ag) , we must have

9
(ka)* (3.153)

(ha)’ >> (N -2)

(ka)® > 30N
We also note that this inequality ensures that the last term ! is also much
smaller than both the first term ! and the second term 2. Therefore, o!] is
negligible as compared to the first two terms. The effects of the third term ag"ﬁ)
and the last term ag) are negligible as compared to that of both the first term aglz)
and the second term ag) if the diameter of sphere (ka)® is larger than the number

of scatterers 30N, like (ka)’ >30N . So, the approximate formula of the mean field

intensity due to double scattering is stated as

4
<, >= 7]

(3.154)

=L NWV-1
(kr,)’ ( ){

3 N 3 Si(ao)
(ka)*  (ka)’ ac

where (ka)’ >30N . As can be seen from the above equation, < /,, > has the Sine
integral divided by ao and also o depends on the scattering angle. Therefore, we

expect </,, > to give the backscattering enhancement. In previous section, we

present that this Sine integral term [Si(ao)]/ac comes from ag). We note that the

double scattering phenomenon is the first multiple scattering mechanism in the
distribution volume and the approximate formula of the mean field intensity due to
double scattering is obtained in an analytical manner and given by Eq. (3.154). In

order to depict this case, we arrange Eq. (3.154) and then we get

(3.155)

22

N TP 3 {1+Si(aa)}
(k) (ka)? ac
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22

(k) _ YR {1+ Si(aa)}

W— (ka)? o (3.156)

The above equation is shown in Figure 3.9 as a function of the scattering angle.

The approximate formula of the mean field intensity due to double scattering

9 T T T T T I I
i —— Double:Analytic |
N=100;
a=100; 85 : : ; .
k=1;
8 s s
o
E -
<
E
N‘\
= 4
*
=
=
& N
o
v
BB e ................................................... -
4 | | | | | | |
-200 -150 -100 -50 0 50 100 150 200

Scattering Angle (deg)

Figure 3.9: The approximate formula of the mean field intensity due to double
scattering: N=100 and a=100.

In Figure 3.9, the approximate formula of the mean field intensity due to double
scattering < I,, > is given for N=100, a=100 and k=1 (note that (ka)* =10000;

30N=3000). As far as the backscattering enhancement is concerned, the

approximate formula gives quiet satisfactory result.

IV) Define r to be the ratio of the mean field intensity in the backscattering

direction to the mean field intensity at any other direction:
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_ The Field Intensity in the Backscattering Direction
The Field Intensity in the Any Other Direction

<I(0.=0> (3.157)
<1, #0,7r>
2+ 3 N 2+ 3 >N
(ka) . (ka)
r= 3 = 11v1m 3 =1 (3.158)
I+ >N - SN
(ka) (ka)

which becomes very small for large values of point scatterers number N. This
means that if the point scatterers number N is getting larger, the backscattering
enhancement is to disappear because of the shadow effect. We also note that the
shadow effect is explained in Section 4.6 and we observed that same result for

multiple scattering, too.

3.3 Mean Field Intensity due to Interaction of Single and
Double Scattering Phenomenon

3.3.1 The Particles are Distributed within a Sphere

In Eq. (3.4), the mean field intensity due to interaction of single and double

scattering is found as
<1, >=2Re <y W ) > (3.159)
Substituting the single scattered field 1//(1)(770) and conjugate of the double scattered

field 1,// (r ) expressions into Eq. (3.159), we have

11111

f | f | lk\r -7, e—lk\ =T e—lk|r —Fo| P G
<112> 2Re<zz e’ > (3.160)

n=l m'.n' (4”) 7_;—}’ F_;:/||’7r_’_;/|

a I‘l||a n n m

m'#n'

where the variable n is used for w(l)(Fa) and the variables m' and n' are used for

)"(7 ). After arranging Eq. (3.160), we have
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f\f! AP Ty
<I,>= 2Re Z z< _ o ke Ta=) ik (FyF)
n=1 m',n' l" |
m:tn
als

(3.161)
—ik|7, =7, | o o
<112 S— 2Re (f | f| zz z<eﬁ_e—lkl\..(rn—r,,r)etki.(rn—rmy) >
r

3.2 i
47[) Y, u=1 n'=1m'=1 | w U
m'#n’

We can use shorthand symbol af? in order to denote an ensemble average of

NNN—zk\r1| o
zz z ”k""(r"””')e’k"'(r"’r’"') which defines the interaction of single and

n=1 n'= ‘ n

double scattering expression for all cases and the superscript ¢ stands for the cases
that are defined below. The mean field intensity due to interaction of single and
double scattering in Eq. (3.161) can be written in a simple way:

_ 2
<1, >=2Re L/ [0] (3.162)

4r)'r

a

and af;') is stated clearly as

© N N N e*t‘k\Fnrmer\ i ) i)
c) _ —iky (7, =7, ) _ik; (7, =T,y
oy =20 D<= > (3.163)
n=l n'=1 m'=1 | Vy —Fy |
m'#n'
N NNk Ty P I
The expression » ' zfe"’ ST i) g 1o be multiplied with the
n=1l n'=1 m'=l | rn rm |

probability density function p(7.

the expected value of al(g). This resulting integral can be evaluated for three

r.) and then integrated in order to calculate

n’ m ’

different possible cases which we consider separately in the following sections.

Under these three possible cases al(;') can be written as (see Figure 3.10) as follows:

0512 =N(N - 1)0{12 + N(N - 1)0512 + N(N -1)(N -2) 0512 (3.164)
The coefficients of the above equation are the total number of possible ways to

choose each one of their conditions (see Figure 3.10). The term N(N—1) of these
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coefficients is a common multiplier. Thus, this equation can be simplified in the

following way:
ol =NV -D|al) + a2 + (N -2)af| (3.165)

We will next explain what these three possible cases are and how the total number
of possible ways can be computed. Depending on the choice of n, we are evaluating
the correlation of the ray with a different ray. There are three possible cases shown

in Figure 3.10. In this figure, the dashed line refers to conjugate of the double
scattered field l//(z)* (7,) and the continuous line refers to the single scattered field

t//(l)(Fa) . We use basic principle of counting to determine the number of different

ways occurring in Figure 3.10. Let us describe how this principle is applied to our

cases.

In case 1, we can choose point scatter m' to be the same scatterer as n th one. From
N randomly distributed point scatterers, this can be done in N different ways. After
this, there remain (N—1) point scatterers. Thus, n'#n can be chosen in (N—1)
different ways from the remaining (N—1) point scatterers. After the sequence of
these two choosing processes, the total number of possible ways to choose

m'=n&n'#n is N(N-1).

Case 2 has the same kind of choosing processes as case 1. Therefore, we can say
directly the total number of possible ways to choose m'#n&n'=n is again

N(N-1).

In case 3, we can choose the point scatter m' from N randomly distributed point
scatterers in N different ways. After this, there remain (N—1) point scatterers among
which n'#n can be chosen in (N—1) different ways. Then, there remain (N—2)
point scatterers. Thus, n can be chosen in (N—2) different ways from the remaining
(N—2) point scatterers. After the sequence of these three choosing processes, the

total number of possible ways to choose m' # n,n' #n&n is N(IN-1)(N-2).
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‘ — usedfory(F)| used for 1//(2)*(}7”)
N(N-1) 4
r_ ' - ’
Casel) m'=n&n' #n ways
m' =n o
n!
, . N(N-1) R
Case2) m'#n&n'=n ways '
: : N(N-D(N-2) &
Case3) m'zn.,n'#n&n ways n
‘Q;\‘ /
m' R
n

Figure 3.10: Three possible cases of afg).

33.1.1Casel: m'=n&n'#n

Case 1 is defined by the condition m' =n & n' # n. In order to get a result, we insert

n instead of m' into Eq. (3.163) as follows:

—ik|7y =7 | . .
e _ik (F=FY ik (F —F
al(é) =< | — — |e ik (7, =1, )e’k:-(rn ) > (3.166)
r,—r
n n

which can be rearranged into the form:

—ik|7, =7y | . .
e ik, (F,=F) ik, (F,F
al(é) =< — — e ik (7, =1, )e’ (P =1 > (3.167)
| rn - rn' |
—ik|r, =Fy| - -
—iky (P, =T ) _ik;.(0
al(;) =< — — el_s(rﬂ rn)el,()> (3168)
‘ ry =Ty
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After all, we obtain an ensemble average of [e’ik‘;'"F"" N7 ~F, |]e’”;"(F"’F"')and it is
denoted by aV):
o]

al(;) =< Tefﬂgx ‘(;n 7Fn') > (3. 1 69)
r

| n n' |
; =ikl =il f) 2 3 —iky (Fy=Fy) ¢ C . . . .
Expression [e / |7, =7, I]e is multiplied with the probability density

function p(7,,7,) and then integrated to obtain its ensemble average:

—ik|r, =Ty

al) =< = T
| rn - rn' |
1k|r =7y PR
all = [[pCr e R, (3.170)
—lk|r 7] .
alZ J.J.p( n’ n | ]_’: |e_lk3'(r )d}" drn'
n'

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

<Y _
~
Sy

+
A== (3.171)

drdr, = dr,dr, |J(7.7,)|=1

After the change of variables and using joint probability density function of two

point scatterers p(7,,7,) = p(r, )p(r,) = l/V2 , we have

lk\rl\

el e (3.172)

l”

—ikn,
w_ L rre -k

o ‘Vzl‘%! , d (3.173)

5
o) ZLI—eM e dr, (3.174)

Vy n
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After the change of variables, the volume of above integral is also varied. In a
condition of the infinite volume assumption, we can take integral over the sphere

and this gives us the approximate result. Solution to the above integral is

T —2ia .
all) :W(l—e ik _2jgk) (3.175)

We first write the below approximated serial expansion:

2

e’ El+x+%+... (3.176)

. Diak -
So, we can write ¢ ~“ in the same manner,

(=2iak)’

e =14(~2iak)+ +... (3.177)

When we consider the above approximated serial expansion, the term
(l—e"Zi“k —2iak) can approach this term (2a2k2). After this approximation, al(é) is

stated as

2
o = 2’;—“ (3.178)

Expressing the volume of the sphere in terms of its radius as V' = (4/ 3)7za3 , we get

al(zl);

3
o (3.179)

33.1.2Case2: m'#n&n'=n

Case 2 is defined by the condition m'# n & n' =n. In order to get a result, we insert

n instead of n' into Eq. (3.163) as follows:

X
al(j) =< — — e_lks~(’n_’31)e’k[-(’n_rm') > (3180)
| rn - rm’ |

which can be rearranged into the form:
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= k|7 =1, |

U p—— P (3.181)
Vo =1y
—ikl =1l P
al(j) =< | — — |e—lkx.(())etki.(rn—rmr) > (3.182)
r.,—r
m n

- kil = = |G .
After all, we obtain an ensemble average of [e el =7l / |7, —F, ]]e’ w0 n)and it is

denoted by al(zz ):

e—1k|7r—r\ R

2 ik; (7, =Ty

a1(2) =<Te’z(”n T > (3183)
Vo =1 |

—ik|r =T,

S |]e"’9f'<f~—f~«) is multiplied with the probability density

Expression [e

function p(7, ,7 ) and then integrated to obtain its ensemble average:

n’m

—zk\r —7,|

) = [ 77 = ) . " dF, dF, (3.184)

zk\r

ll;i'(;n_;m') = A
alz _[J.p(rn’rm) — ;: drndrm'

n

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

171:7771 _Fm'

R

== (3.185)
drdF, = di,di,, |J (L) =1

After the change of variables and using joint probability density function of two

point scatterers p(7,,7,) = p(7,)p(7, ) = 1/ V* , we have

ocee™ o
_7”—|7| """V drdr, (3.186)
1
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|- .
af = [dn[=—edr (3.187)
vV Vv 1
o1 e i
2) .~ — ik; .7 g
a zj.drzj r e"dn, (3.188)
vV vV 1
14
o_Lre™
2 ik (7)) g
ay, =— e""dr
5= l p 1 (3.189)
Solution to the above integral is
(2 7 —iak .
ay = l—e ™ —2iak 3.190
12 sz( ) ( )

(1) )

This result is the same as the result of o). In other words, &) is equal to 2. So,

we can directly state al(j ) as

3
a?=ql) == (3.191)

33.1.3Case3: m'#n&n'#n

Case 3 is defined by the condition m'#n & n'# n. In order to get a result, we use

the general formula of al(;') as follows:

—ik|Fy =Ty | - -
e . P . 7
al(g) =< - - e ik, (7, rn)elk,.(r,, For) > (3192)
‘ rn’ - rm’ |
which can be rearranged into the form:
k| =7y | S
al(j) =< - - e—lké.(r,,—r”r)elk,.(r,,—rmv) > (3193)
|7, =7,

Expression [e /|7, — , (%70 is multiplied with the probability

density function p(r,,7,,7,) and then integrated to obtain its ensemble average:
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—ik|Fy =7y |

al) =< o e T ik 7 =F)
| - Fn’ |
lk\rm'*f,f\ - -
7 =ik 7y =Fy) ik (Fy=Fyr) gz g g
o) I_”P(m Tt > Tw) —e e dr,dr,.dr, (3.194)
7o =T |
—lk\r Pyl = -
o BT ik By F)
0‘12 ”JP( VsV sV —F| W70 i r”’)drndrm,drn,
m n'

This integral is quite difficult to compute. Therefore, we make change of variables

in the following manner:

e

By=r, =T, FKh—hK=I—I,

;R (3.195)
2

dr,dr,dF, = dF,dF, dF, | J(7 7, 7)) = 1

After the change of variables and using joint probability density function of three

point scatterers p(7,,7.,7,) = p(r )p(r )p(,) = l/V3 , we have

lklrl\

il et e araar (3.196)

—ikr;

al) = j [ j & O i dF i, (3.197)
which is separated into component parts, and then we have

af) =< [ [
4 Vv

—
vV

—ikn

ik. .7 = [ ilk—k)5 3=
e’ r'dl’l-[el( . S)VZdrz

Vv

(3.198)

h

where & = lgl. —lgs =2k cos(8, / 2)5' is the subtraction of the incident and scattered

wave vectors. The solution to Eq. (3.198) is given by

o = T (1_ek o k)3(smx_3x°°”) ;x:2kacos% (3.199)

kv X

In the backscattering direction (6, — 0), the term x = 2ka cos(@s / 2) approaches to

X = 2ka . Therefore, ag) can be stated as
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72r e _2jak) - 3(2ka cos 2ka3— sin 2ka)
kV (2ka)

(3.200)

When we consider the infinite volume assumption for the sphere (a — o) and the

volume of the sphere in terms of its radius as ¥ = (4/3)m°, ag) can approach

A p— 3.201
12 —8k2a3 ( . )

After finding the values of three possible cases, we can calculate af? by using

below expression:

o) =N(N -D]a!) +a? + (N -2)a? | (3.202)

a) =N(N - 1){—+i (N=2)—2 } 3.203

12 2 8k2 3 ( . )
O =3 NN=1)| 2= (N=2)—>—

%y = ( )[ ( ) A(ka) (3.204)

After expressing the volume of the sphere in terms of its radius as V' = (4/3)m’ and
this constant f = [i4xT|/k , we obtain the mean field intensity due to interaction of

single and double scattering as

|T| Re(T)[ 12]

<1, >=2 (3.205)

When inserting the value of afg) into the above equation, we get the mean field

intensity due to interaction of single and double scattering as

| T Re(T) 3

<[, >=i
(kr,)*  ka

—N(N - 1){2 -(N-2) L} (3.206)

4{ka)

We note that the mean field intensity due to interaction of single and double

scattering < /,, > is in the same order as the mean field intensity due to double
scattering < /,, > apart from the factor Re(T) and it is to be zero if T-matrix (T) has

an only imaginary component. Therefore, the effect of the mean field intensity due

to interaction of single and double scattering < /,, > can be neglected in most cases.
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3.4 Comparison of the Mean Field Intensities due to
Single and Double Scattering

From the previous calculation, we see that «,, approaches zero («,, — 0) when

infinite volume assumption is considered (D — o) in the backscattering direction.

Hence, the mean field intensity due to single scattering is stated as

O fP & ik k)., -7,0]
<I, >= N+Y Y <e > (3.207)

2
(47Wa) n=1 n:= ay;—0

After arranging and substituting f =[i47rT ]/k into Eq. (3.207), we have an
approximate formula of the mean field intensity due to single scattering:

N|T|
(kr,)’

a

<1, >= (3.208)

which is valid for infinite volume assumption (D — «)

In the previous section, we state the approximate formula of the mean field intensity

due to double scattering as

_NY|T" 3 {1+Si(aa)}

I,, >= oy Gy - (3.209)

In order to find effectiveness of the double scattering, we express the ratio of the
approximate formula of the mean field intensity due to double scattering to the
approximate formula of the mean field intensity due to single scattering as

<1, > , 3 Si(aa)}
——=N|T 1+
<1 > | T (ka)z{ . (3.210)

This result demonstrates that for the double scattering to be effective, we must have

N|T|

(ha)? >0.1 (3.211)
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In other words, as far as effectiveness of the backscattering enhancement is
concerned, we must have the above value because double scattering has dominant

effect on the backscattering enhancement.

If we only consider single scattering and double scattering, the approximate formula

of the total scattered mean field intensity is written as

<[, >=<I,>+<1l, > (3.212)

where the higher-order scattering terms are not taken into account. Inserting the
values of both the approximate formula of the mean field intensity due to single
scattering < /,, > and the approximate formula of the mean field intensity due to
double scattering < /,, > into the above equation, the approximate formula of the

total scattered mean field intensity is obtained as

2 2 4 .
o7 S NITP NIT[ 3 {1+Sz(aa)} (3.213)

k)t (k) (k) ac

where Si(ao) = J‘%dt is the Sine integral and o = |&| = ‘IES +l€i‘ =2k sin(&s /2)
0

is the amplitude of the sum of the incident and scattered wave vectors. Some
properties of the Sinc function and the Sine integral are given in Appendix G. As
can be seen from the above equation, </, > has the form Sine integral divided by
ao and also o depends on the scattering angle. Therefore, we expect </ > to
give rise to the backscattering enhancement. In previous sections, we present that
this Sine integral term [Si(ao)]/ac comes from @2 which is the main cause of

the backscattering enhancement. We can arrange Eq. (3.213) by multiplying both

sides of this equation with constant (kr,)*, and then we get

3 Si(ao)
<I. > ) =2N|T)P?+N*|T|* {1+ } 214
sea > (KT,) |7 |T | (ha)? s (3.214)

This is the approximate formula of the total scattered mean field intensity from
spherical distribution and it is given in Figure 3.11 with single and double scattered

mean field intensities by using MATLAB programming language

63



The approximate formula of the total scattered mean field intensity
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Figure 3.11: The approximate formula of the total scattered mean field intensity:
<[, >=<I,>+<1, >.

We note that Figure 3.11 shows the approximate formula of the total scattered mean

field intensity: </, >=<1,, >+ <1, > as a function of the scattered angle 6,

(continuous line). The total scattered mean field intensity has a peak in the
backscattering direction and it is called as the backscattering enhancement. In
addition, the backscattering enhancement due to double scattering is absorbed by

other peaks in other directions because single scattering < /,, > has large variation.

Therefore, the backscattering enhancement due to total scattering is less than
expected intensity of the enhancement. As can be seen from this Figure, the
intensity of the backscattering enhancement due to total scattering (nearly 1.4 dB) is
less than the intensity of the backscattering enhancement due to double scattering
(nearly 2.8 dB). The variation of single scattering can not be clearly seen from
Figure 3.11 because of the display resolution. Note that the variance of the mean

field intensity due to single scattering is calculated in Section 4.1.3.
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CHAPTER 4

SIMULATED INVESTIGATION OF THE
BACKSCATTERING ENHANCEMENT
FROM RANDOMLY DISTRIBUTED POINT
SCATTERERS

This Chapter thoroughly includes simulated studies of the backscattering
enhancement from randomly distributed point scatterers. We initially begin this
investigation with defining simulation as a computer version of real life or an
imitation model of some real thing, state of affairs, or process. Its computer version
runs on a computer by operating mathematical models. The simulating of something
basically requires representing acceptable behaviors or characteristics of a selected

physical system, [4].

A computer simulation is a trial to model of a real-life situation on a computer so
that it can be carefully examined to recognize how the system works. By changing
variables, sensible predictions may be made about the acceptable behavior of the
system without potential risks. Traditionally, the formal modeling of systems has
been via a mathematical model, which attempts to find analytical solutions to
problems which enable the prediction of the behavior of the system from a set of
parameters and initial conditions. Computer simulation is often used as a
substitution for modeling systems for which simple closed form analytic solutions
are not possible. There are many different types of computer simulation; the
common feature they try to generate a sample of representative scenarios for a
model in which all possible states of the model would be impossible. Some
computer-based simulations are the modeling almost effortless and simple, [4], one
of them is the Monte Carlo simulation model which is used for simulated
investigation of the backscattering enhancement from randomly distributed point

scatterers in this thesis.
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Monte Carlo simulation is a technique which uses random variables distributed on
the interval [0, 1]. Monte Carlo simulation is named after Monte Carlo, the coastal
city in Monaco. This city is the center of games of chance. All of these games

exhibit random behaviors or repetitive events with known probabilities.

The most important requirement of the Monte Carlo simulation is the probability
density function (pdf). The scenario representing a physical system, for example
some point scatterers distributed within a cube or a sphere, must be described by a
set of pdf's. Random samplings are taken from these probability density functions
(pdf) and then these operations are executed repetitively in the Monte Carlo

simulation model.

The primary components of the Monte Carlo simulation method are listed below:

e Probability distribution functions (pdf's): The physical (or mathematical)
system, which needs to be simulated, must be described by a set of pdf's.

e Random number generator: A source of random numbers which are
uniformly distributed on the unit interval must be available.

e Sampling rule: An instruction for sampling from the specified pdf's must be
given while assuming random numbers on the unit interval.

e Error estimation: An estimate of the statistical error (variance) as a
function of the number of trials.

e Variance reduction techniques: Methods for reducing the variance in the

estimated solution to reduce the computational time, [5].

Let us describe fundamental principle of the Monte Carlo method. The expected

value of a function f(x) with a probability density function p(x) is written as:
E = [ p(x)f(x)dx @1
)

The above integral is too difficult to evaluate. Therefore, £ can be estimated by

taking N samples x,,x,, x;,...,x, and evaluating the average of f(x), [22].
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[P0 f v =3 1(x) @2)

E~ %gf(xj) (4.3)

where E is the expected value of a function f(x) and the x, are chosen at random

from the volume V. This process is done within a uniform distribution.

Let us explain the way how this calculation can be done. We note that this
calculation will have a very large loop (or a very great MC) if we want a minimum
error estimation for numerical integration. We first write a piece of pseudo-program
to explain how this expected variable £ can be calculated by directly utilizing the

Monte Carlo method and it is stated as

E=0;

for run=1:MC

. %Choose x at random from V
E=E + f(X);

end

E=E/MC;

OO WNE

In the first line, we initialize the variable £ which denotes the expected value of a

function f(x) to be calculated by the Monte Carlo method. In the second line, we
write a loop for x;, and MC is the run number of that loop; in other words, this loop
runs MC times. In the third line, we choose x, at random from a large volume V’

with a uniform distribution. In the fourth line, for every loop step we repeatedly add
the function f(x;) to E. In the last line, the average (or mean value) of the total

expected variable E is calculated by dividing it by the run number MC.

We also note that the MATLAB Programming Language is used in order to

evaluate the simulation results through the next sections.
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4.1 Mean Field Intensity due to Single Scattering

The single scattering phenomenon is clearly shown in Figure 2.3 (a) and the mean

field intensity due to single scattering < /,, > is given by

|f| i|(k;—k,)(F, 7,
<I, >= 2121(4727/) <€(k' ko).(7, n)]> (4.4)
|f N N
<hi= L Z Z il s 4.5)

where k. = k7 is the incident wave vector and 7 is a unit vector in the direction
from the source to the point scatterer and IES = k7, is the scattered wave vector and
7. is a unit vector in the direction from the point scatterer to the observation point
(see Figure 2.3 (a)). We can use shorthand symbol ¢,, to denote the ensemble
average of e"[(’;"_a)'(;”_”"')] (see Eq. (4.5)) and it is given by

a, =< o EFG7] (4.6)

The expression e"[(];’_];*w"_;"')] is to be multiplied with the probability density

function p(7,,7,.) and then the following integral must be evaluated.

n’n

o = [[ P70 BNy g, (4.7)

Since the scatterers are the point scatterers, it is assumed that their positions are

independent, i.e., under this assumption, we have
p(n’ n) p( )p(il') (48)

and also that if the density p(7,) is uniform throughout the total volume V, the

probability density functions are given by

A
p(r,)=p(r,)= ” (4.9)
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1
pF1) = )P0 =5 (4.10)

Finally, substituting Eq. (4.10) into Eq. (4.7), we get integral form of «,,:

I g —iol e g
a, = [[ ozl dr, (4.11)

In Chapter 3, we compute the above integral in an analytical manner and then
substituting this obtained result into the mean field intensity due to single scattering

< 1,, > formula (see Eq. (4.5)). Finally, solution to the last evaluated integral is the

analytic result of the mean field intensity due to single scattering < /,, >.

In this chapter, we basically estimate the above integral by utilizing the Monte
Carlo method. To be able to find Monte Carlo simulation result of the mean field

intensity due to single scattering < /,, >, we first obtain the MC simulation result of
a,, and then we substitute this MC simulation result into the mean field intensity
due to single scattering < /,, > formula. After all that, this last evaluated result is

the Monte Carlo simulation result of the mean field intensity due to single scattering
< 1,, > . This Monte Carlo method is carefully applied to both cubical and spherical

distribution scenarios in the next sections.

4.1.1 The Particles are Distributed within a Cube

In this section, we use same scenario depicted in Figure 3.1. In this scenario, the
particles are distributed within a cube whose dimension is D=2d. In Section 3.1.1,
an analytic result of the mean field intensity due to single scattering from cubical
distribution is found and depicted in Figure 3.3. In this section, we find out the MC

simulation result of the mean field intensity due to single scattering < /,, > from

cubical distribution by using MATLAB Programming Language. In Figure 4.1, we
depict our scenario which is presented as the particles are distributed within a cube

thanks to the MATLAB programming language.
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Point scatterers distributed within a cube

N=50
D=30

Figure 4.1: Point scatterers distributed within a cube: N=50 and D=30.

The MC simulation and the analytic result of the mean field intensity due to single
scattering </, > from cubical distribution are obtained and shown in Figure 4.2.

We see that approximate result is quite accurate for this case. The MC simulation

was run for MC=100000 trials as shown in Figure 4.2.
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The MC simulation result of the mean field intensity due to single scattering from cubical distribution
35 T T T T T

T
—— Single:Analytic

! ——- Single:MC Sim
N = 50; :
D = 30;
MC=100000;
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<111>.(4%pi*ra)?|f| 2 (dB)
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Figure 4.2: The MC simulation result of the mean field intensity due to single
scattering from cubical distribution: N=50, D=30 and MC=100000.

We also note that these above results are obtained by using MATLAB programming

language and its codes are given in Appendix A.

In Figure 4.2, the MC simulation result of the mean field intensity due to single

scattering < /,, > from cubical distribution (dashed line) and the analytic result of
the mean field intensity due to single scattering </, > from cubical distribution

(continuous line) are very similar to each others. This basically verifies the analytic
expression obtained in Chapter 3. In other words, the run number MC = 100000 of
the MC simulation is sufficient to explain the single scattering phenomenon from
cubical distribution. As can be seen from Figure 4.2, there is a peak in the 0 degrees
direction or there is an enhancement in the backscattering direction. However, it is
not called as a backscattering enhancement; it is actually specular reflection. Why it

is a specular enhancement is explained in more detail in Section 4.3. In this study,
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we also prove that the backscattering enhancement can only occur due to multiple

scattering.

4.1.2 The Particles are Distributed within a Sphere

In this section, we use the same scenario as depicted in Figure 3.4. In this scenario,
the particles are distributed within a sphere whose diameter is D=2a. In Section
3.1.2, an analytic result of the mean field intensity due to single scattering from
spherical distribution is found and plotted in Figure 3.5. In this section, we find out
the MC simulation result of the mean field intensity due to single scattering </, >
from spherical distribution by using MATLAB Programming Language. In Figure
4.3, we depict our scenario which is presented as the particles are distributed within

a sphere thanks to the MATLAB programming language.

Point scatterers distributed within a sphere

Figure 4.3: Point scatterers distributed within a sphere: N=50 and D=30.
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The MC simulation and the analytic result of the mean field intensity due to single
scattering < /,, > from spherical distribution are obtained and shown in Figure 4.4.

This MC simulation result verifies the analytic expression obtained in Chapter 3.

The MC simulation was run for MC=100000 trials as shown in Figure 4.4.

The MC simulation result of the mean field intensity due to single scattering from spherical distribution
35 T T T T T

T
—— Single:Analytic

——- Single:MC Sim
N = 50;
D =30;
MC=100000;
30 — ' -

<111>.(4%pi*ra)?|f| 2 (dB)
[y
(8]
T

20+
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Scattering Angle (deg)

Figure 4.4: The MC simulation result of the mean field intensity due to single
scattering from spherical distribution: N=50, D=30 and MC=100000.

We also note that these above results are obtained by using MATLAB programming

language and its codes are given in Appendix B.

In Figure 4.4, the MC simulation result of the mean field intensity due to single

scattering < /,, > from spherical distribution (dashed line) and the analytic result of
the mean field intensity due to single scattering < /,, > from spherical distribution

(continuous line) are very similar to each others. This basically indicates that the
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approximate expression is quite accurate for this scenario and also that the number

of MC trials, MC = 100000, is sufficient.

As can be seen from Figure 4.4, there is no peak in the 0 degrees direction or there
is no enhancement in any direction due to single scattering from spherical

distribution.

4.1.3 The 95% Confidence Interval for the MC Simulation Result
of the Mean Field Intensity due to Single Scattering

As far as a simulation is concerned, an error estimation is an important subject;
because, the simulations yield some approximate answers. Their accuracy depends
on some parameters about programming structure but mostly they depend on the
run number of simulation. This run number is denoted by MC throughout this
thesis. In order to verify the MC simulation results of the mean field intensities due
to single scattering, we must calculate the confidence intervals for the MC
simulation results for which standard deviations are known. We must show that
these confidence intervals are narrow and the simulated mean results are between
these two confidence interval results. Thanks to this, we can present that our
simulation results are comparatively satisfactory. In order to evaluate the

confidence interval results, we first write the variance of this function f Var(f) in

the following manner:

Var(f)=< f*>>—-< f >’

1 MC
<f>:M_C,;f(x") (4.12)
2 _LMC 2
<f >_MC;f(xi)

We note that the standard deviation Std(f) is the square root of the variance

Var(f), such as Std(f)=Var(f) .

Because of the fact that the variance is really big value, the standard deviation is a

much more useful number. After this general definition of the variance and the
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standard deviation, we can write the variance of the MC simulation result of the

mean field intensity due to single scattering denoted by Var(/,,):
Var(l,)) =<1} >-<1, >° (4.13)

The mean field intensity due to single scattering can be written as

|/ N R 7))
<1, =% N+ > <Mt ol (4.14)

PR A N YR o IR (4.15)

Let us consider these constants y, . = ei[g‘(7"_7"')], A=|f|/(4mr,) and <y, >=a,,,

we get a simpler form of the field intensity due to single scattering as follows:

=

N
Iy=AN+Y >y, (4.16)
n=1

’

n
’

n

([l
= =

In the above equation, the terms in the double summation are independent if n = n'.
Thus, a factor of (N—1) appears for such terms. On the other hand, if n=n", we

have y, . =1 and a factor of N comes from such terms. Thus, the mean field

intensity due to single scattering can be expressed as
I,,=A* [N+ NN -1)y,,] (4.17)
and the mean field intensity due to single scattering can be expressed by

<I,>=A[N+N(N-1)<y,, >]

4.18
<1, >=A*[N+N(N -Da,,] (+.18)
The variance of the mean field intensity due to single scattering is given by
Var(l,))= A’N(N =1)Var(y,,)
; g (4.19)

* " 2
Var(y’m'):< Vo -y ' >—< Yo' >< Yo > :l_all
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In the limit as the volume goes to infinity, i.e., (D — ®), «,, approaches zero

(a,, = 0) and then the variance of the mean field intensity due to single scattering

can be simplified as follows:
Var(1,)) = A*’N(N -1)(1-a/) = (AN’ (4.20)

The standard deviation of the mean field intensity due to single scattering is

evaluated by using the variance expression as follows:
Std(1,,) = AN (4.21)

Both the variance and the standard deviation (especially the variance) have too large
values and also they depend on the number of the point scatterers N. This means
that if we increase the number of the point scatterers, the run number of the MC
simulation has to increase so that simulation error can be negligible. This explains
the difficulty in observing any kind of the enhancement from the Monte Carlo

simulation results of the mean field intensity due to single scattering.

After calculating the standard deviation, let’s express the confidence interval

formula for which the standard deviation is known and this is given by

Std
Cl=M=|z*
+[z MJ (4.22)

where M denotes the mean value, Std is the standard deviation, MC is the run
number of Monte Carlo simulation, and z is the z-score for the particular confidence
interval of interest, [34]. If you need the 95% confidence interval, z must be used as

1.96 in the following manner:

CI=M+ (1.96 * SA%J (4.23)

There is nothing special about 95%. It is just a convention that confidence interval
is expressed with 95% confidence. Confidence interval can be computed for any
desired degree of confidence. Some values of the z-scores are given for the other

particular confidence intervals of interest in the Table 4.1.
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Table 4.1: The z-scores for the particular confidence intervals of interest, [32].

Confidence Level Z-score
50% 0.674
80% 1.282
90% 1.645
95% 1.960
98% 2.326
99% 2.576

Let us show the 95% confidence interval for the MC simulation result of the mean
field intensity due to single scattering from cubical distribution in Figure 4.5 and the
95% confidence interval for the MC simulation result of the mean field intensity
due to single scattering from spherical distribution in Figure 4.6. As can be seen
from these two graphics, the run numbers MC = 100000 of the MC simulation
results are very sufficient because interval estimates are too narrow; actually, they
are overlapped with each other. Besides, the mean field intensities due to single
scattering overlap with their 95% confidence interval estimates (Confidence
Interval Plus and Confidence Interval Minus) and none of the mean field intensities
points falls outside of the 95% confidence intervals. Therefore, the results of mean
field intensities and confidence intervals are seemed as if one result in these two

Figures.
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The 95% confidence interval for the MC simulation result of the mean field intensity
due to single scattering from cubical distribution
T T T T
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Figure 4.5: The 95% confidence interval for the MC simulation result of the mean
field intensity due to single scattering from cubical distribution: N=50, D=30 and
MC=100000.
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The 95% confidence interval for the MC simulation of the mean field intensity
35 due to single scattering from spherical distribution
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Figure 4.6: The 95% confidence interval for the MC simulation of the mean field
intensity due to single scattering from spherical distribution: N=50, D=30 and
MC=100000.

We also note that these results are obtained by using MATLAB programming
language. Programming codes of Figure 4.5 are given in Appendix C and
programming codes of Figure 4.6 have also the same methodology. At these MC
simulation programs, the 95% confidence intervals are found out by using below

equations as follows:

Variance of the expression x is denoted by Var(x) and it is given by

Var(x) = Mé - Z (x, — %) (4.24)

where x is the mean of the term x and MC is the run number of the Monte Carlo

simulation. Arranging Eq. (4.24), we get
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X.
MC_l i=1 ! Mc_l

%Cj 2 MC )'62

Var(x) = (4.25)

Note that standard deviation is the square root of variance, i.e., Std(x) = \/Var(x) .

4.2 Mean Field Intensity due to Multiple Scattering

As it is explained in Section 2.2, the effective field ¢(7,) consists of the incident
wave vy, (7,) and the wave scattered from all the particles except the one at 7, and

it is stated as

B =, (7)) + D fG° (7. () (4.26)

If the effective field ¢(7,) is known at all locations of the point scatterers, the total

scattered field v (7,) for N scatterers at observation point 7, can be written as

Voo (7)) = ZfGO(?a,a)cé(Fn) 4.27)

We note that the effective field ¢(7,) can be eliminated from Eq. (4.27), and a
solution to the total scattered field at observation point y_ (7,) can be found by
using Eq. (4.27). After determining the total scattered field, we can now find the

total scattered field intensity (or the field intensity due to multiple scattering)

1. (r,) at the observation point by multiplying the total scattered field v (7,)

sca

and its conjugate w__(7,) in the following manner:

L (5) =¥t GV o0 (7)) (4.28)

The ensemble average (or mean) of the total scattered field intensity (or the field
intensity due to multiple scattering) over all possible distribution of N particles can

be evaluated as follows:

< ISC(I (l_;a) >:< l//sca (l_;a )!r//:ca (7_/';1) > (4'29)

80



which is the total scattered mean field intensity (or the mean field intensity due to

multiple scattering).

However, this calculation of the total scattered mean field intensity is still too
complex to be done analytically because of too many unknowns. In Eq. (4.26), we
have N unknowns which are the effective fields at the positions of the scatterers, i.e.

¢(r) ;n=12,.,N. The effective field ¢(7,) can be written for any »n=1,2,...,N ;

thus, Eq. (4.26) defines N equations in the N unknowns, which are the effective
fields at the exact location of the N scatterers. This equation can be written in matrix
form. To sum up, the mean field intensity due to multiple scattering is not possible
to be calculated analytically. However, we can compute the mean field intensity due
to multiple scattering in a simulation manner. For this purpose, we develop a certain
number of Monte Carlo simulations in this study. We will next explain how these

Monte Carlo simulations are gradually developed.

We can rearrange the effective field ¢(7,) for any n=1,2,...,N by defining Eq.

(4.26) as N equations in the N unknowns for simplifying. After this rearrangement,

we can write it in matrix form as follows:

$=7,+Go

__5_ _ _'

¢ :¢_ Vine (4.30)
(1-G)p =i,

(]_ - (_;)a = l/7mc

Note that the symbol G is the Green’s function matrix which consists of elements

depending on both 7 and 7, ¢ is the effective field vector which consists of
elements depending on 7,, and v, is the incident field vector which consists of

elements depending on 7, . If we write Eq. (4.30) in the following manner:

— — — 1

¢ :[I—G} V.. (4.31)
The effective field vector ¢7 can be calculated from matrix multiplication of the

- =
inverse matrix [] -G } with the incident field vector v/, .
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Let us explain how these calculations can be evaluated in the MC simulation
programming codes. We can determine the free-space Green's functions by
executing computer programming loops over and over again until computing each
one of the Green's functions matrix elements. We also note that the MC simulation
programming codes developed in this study are given in Appendixes. There are two
different kinds of the free-space Green's functions in these equations and they are
denoted by G°(7,,7) and G°(7,,7,) . Therefore, we use two different kinds of loops
computing each one of the Green's function matrix elements by considering each
one of the point scatterers' positions. In these loops, we apply a basic principle of
filling matrixes whose elements are dependent on the position of the point scatterers
in the distribution volume. Similarly, we compose another loop structure which fills

the incident field vector i, whose elements are also dependent on the position of
the point scatterers in the distributed volume. After determining the Green's
function matrix and the incident field vector, the effective field vector ¢ can be
calculated from matrix multiplication given by Eq. (4.31). After evaluating the
effective field vector ¢ , the total scattered field at any observation point w_, (7,)

can be calculated from similar matrix multiplication (see Eq. (4.27)). Now, we
achieve the MC simulation result of the total scattered field at observation point
¥ ...(7,) ; hence, the MC simulation result of the total scattered field intensity (or
the field intensity due to multiple scattering) can be found out by multiplying the

MC simulation result of total scattered field y__(7,) and its conjugate y_ (7).

In summary, because of the fact that calculation of the effective field vector ¢ is

too complex, the effective field vector ¢ is not possible to be estimated in an
analytic manner. Therefore, we compute it in a simulation manner and we directly
apply the Monte Carlo simulation method while evaluating the simulation results.
We also verify the accuracy of these MC simulations by presenting their confidence

intervals throughout this study.
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4.2.1 The Particles are Distributed within a Cube

In this section, we use same scenario depicted in Figure 4.1 where the particles are
distributed within a cube whose dimension is D=2d. However, this time we interest
the multiple scattering phenomenon. It is not possible to calculate the mean field

intensity due to multiple scattering </,

«a(7,)> from cubical distribution in an
analytic manner. Because of the fact that there are too many unknowns in the
scattered field equations, we can only achieve the mean field intensity due to

multiple scattering </, (7,)> from cubical distribution by running the MC

simulation computer codes. We also note that, in Section 4.1.1, both the analytic
and MC simulation results of the mean field intensity due to single scattering from
cubical distribution are properly calculated and also they are depicted in the same

graphical result in order to compare their characteristic behaviors.

In this section, the mean field intensity due to multiple scattering from cubical
distribution is obtained by running the programming codes in which the MC
simulation method is directly utilized. We also note that how the MC method is
applied these computer programming codes is mentioned in previous sections. After
we run the developed computer programming codes which are composed in order to
examine the multiple scattering phenomenon from cubical distribution, we evaluate
the MC simulation results of the mean field intensity due to multiple scattering from
cubical distribution. In order to be in a standard form, we only achieve the MC
simulation result in which these variables N=50, D=30 and MC=10000 are
considered and this MC simulation result is given in Figure 4.7. As far as a
simulation is concerned, an error estimation is an important subject; because, the
simulations yield some approximate answers. Their accuracy depends on some
parameters about programming structure but mostly they depend on the run number.
Therefore, this result is ultimately achieved by running computer codes 10000
times. This run number is sufficient in order to present the backscattering
enhancement due to multiple scattering from cubical distribution and this run

number is denoted by MC=10000 in Figure 4.7.
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55 The mean field intensity due to multiple scattering from cubical distribution
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Figure 4.7: The mean field intensity due to multiple scattering from cubical
distribution: N=50, D=30 and MC=10000.

We also note that this above result is ultimately achieved by using a MATLAB

programming language. Its programming codes are given in Appendix D.

As can be seen from Figure 4.7, there is a peak in the backscattering direction
whose intensity is nearly 10 dB. This peak actually comes into being due to the
backscattering enhancement phenomenon not the specular enhancement
phenomenon. Why this result is determined as the backscattering enhancement is
explained in more detail in Section 4.3. In this study, we also prove that the

backscattering enhancement is only constituted due to multiple scattering.
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4.2.2 The Particles are Distributed within a Sphere

In this section, we use same scenario depicted in Figure 4.3 where the particles are
distributed within a sphere whose diameter is D=2a. However, this time we only
interest the multiple scattering phenomenon. It is not possible to calculate the mean

field intensity due to multiple scattering </,

o (7,) > from spherical distribution in
an analytic manner. Because of the fact that there are too many unknowns in the
scattered field equations, we can only achieve the mean field intensity due to

multiple scattering </

«a(7,)> from spherical distribution by running the MC
simulation computer codes. We also note that, in Section 4.1.2, both the analytic
and the MC simulation results of the mean field intensity due to single scattering
from spherical distribution are properly calculated and also they are depicted in the

same graphical result in order to compare their characteristic behaviors.

In this section, the mean field intensity due to multiple scattering from spherical
distribution is obtained by running the programming codes in which the MC
simulation method is directly utilized. We also note that how the MC method is
applied these computer programming codes is mentioned in previous sections. After
we run the developed computer programming codes which are composed in order to
examine the multiple scattering phenomenon from spherical distribution, we
evaluate the MC simulation results of the mean field intensity due to multiple
scattering from spherical distribution. In order to be in a standard form, we only
achieve the MC simulation result in which these variables N=50, D=30 and
MC=10000 are considered and this MC simulation result is given in Figure 4.8. As
far as a simulation is concerned, an error estimation is an important subject;
because, the simulations yield some approximate answers. Their each accuracy
depends on some parameters about programming structure but mostly they depend
on the run number. Therefore, this result is ultimately achieved by running
computer codes 10000 times. This run number is sufficient in order to present the
backscattering enhancement due to multiple scattering from spherical distribution

and this run number is denoted by MC=10000 in Figure 4.8.
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The mean field intensity due to multiple scattering from spherical distribution
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Figure 4.8: The mean field intensity due to multiple scattering from spherical
distribution: N=50, D=30 and MC=10000.

We also note that this above result is ultimately achieved by using a MATLAB

programming language. Its programming codes are given in Appendix E.

As can be seen from Figure 4.8, there is a peak in the backscattering direction
whose intensity is nearly 5 dB. This peak actually comes into being due to the
backscattering enhancement phenomenon not the specular enhancement
phenomenon. Why this result is determined as the backscattering enhancement is
explained in more detail in Section 4.3. In this study, we also prove that the

backscattering enhancement is only constituted due to multiple scattering

We also emphasize that cubical distribution has stronger backscattering

enhancement intensity than spherical distribution.
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4.2.3 The 95% Confidence Interval for the Mean Field Intensity
due to Multiple Scattering

The MC simulation results of the mean field intensities need to be verified.
Therefore, we must calculate the confidence intervals for the MC simulation results
for which standard deviations are known. The 95% confidence intervals for the MC
simulation results of the mean field intensities due to single scattering are found for
both cubical and spherical distribution in Section 4.1.3. In this section, we present
the 95% confidence interval for the mean field intensity due to multiple scattering
from cubical distribution in Figure 4.9 and the 95% confidence interval for the
mean field intensity due to multiple scattering from spherical distribution in

Figure 4.10.

The 95% confidence interval for the MC simulation of the mean field intensity
55 due to multiple scattering from cubical distribution
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Figure 4.9: The 95% confidence interval for the MC simulation of the mean field
intensity due to multiple scattering from cubical distribution: N=50, D=30 and
MC=10000.
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The 95% confidence interval for the MC simulation of the mean field intensity
55 due to multiple scattering from spherical distribution
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Figure 4.10: The 95% confidence interval for the MC simulation of the mean field
intensity due to multiple scattering from spherical distribution: N=50, D=30 and
MC=10000.

We also note that these above results are obtained by using MATLAB programming
language. Programming codes of Figure 4.9 are given in Appendix F and

programming codes of Figure 4.10 have also the same methodology.

As can be seen from these two graphics, the run numbers MC = 10000 of the MC
simulation results are sufficient because estimate intervals are narrow and there is a
95% chance that the mean field intensities place within these narrow intervals.
Thank for this, accuracies and reliabilities of the MC simulation results have been
provided. We note that the mean field intensities due to multiple scattering, in both
of these two graphics, are between the 95% confidence interval results and none of

the mean field intensities’ points fall outside of the 95% confidence intervals.
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4.3 Investigation of the Specular Enhancement from
Randomly Distributed Point Scatterers

In the previous studies, some enhancement phenomena in the backscattering
direction are observed when the incident field comes from the —z direction. That the
incident field in the —z direction occasionally causes some unresolved difficulties
about deciding what kind of enhancement phenomenon is observed. In other words,
the incident field direction perpendicular to the surface of randomly distributed
point scatterers may be causing a specular reflection especially when a cubical
distribution is taken into consideration. Because, the cubical distribution of the
point scatterers has a flat surface and this surface behaves like a mirror for an
incident electromagnetic field under proper conditions (see Figure 4.11). In order to
distinguish the type of the enhancement phenomenon as a backscattering or a
specular, we send the incident field in a direction different than the z axis. Some
general characteristic behaviors of the scattered fields are depicted in Figure 4.11.
In this figure, the incident field comes from a direction different than the z axis and
the scattered field in the backscattering direction has a different scattering angle

than the scattered field in the specular direction.

Backscatter Direction Specular Direction

Slightly Away from Slightly Away from

Backscatter Direction Specular Direction

Figure 4.11: The incident field in a direction different than the z axis, [7].
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4.3.1 The Particles are Distributed within a Cube

In this part of the study, we examine what kind of the enhancement occurs due to

both single and multiple scattering phenomena from cubical distribution.

When we focus on the single scattering from the cubical distribution in Section
3.1.1, an enhancement is observed. However, this enhancement can not be clearly
determined as a backscattering or a specular; because, the incident field only comes
from the —z direction. In order to resolve this, we send the incident field in a
direction different than the z axis and then we get the enhancement results in the
different directions. The MC simulation result of the mean field intensity due to
single scattering < /,, > from cubical distribution while the incident field is in the
direction of +45 degrees and the analytic result of the mean field intensity due to

single scattering < /,, > from cubical distribution while the incident field is in the

direction of 0 degrees are obtained and shown in Figure 4.12.
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The MC simulation result of the mean field intensity due to single scattering from cubical distribution
5 while the incident field is in the +45 degrees
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Figure 4.12: The MC simulation result of the mean field intensity due to single
scattering from cubical distribution while the incident field is in the +45 degrees:
N=50, D=30 and MC=100000.

As can be seen from Figure 4.12, we get an enhancement in the direction of 0
degrees for the analytic result while the incident field is in the direction of 0 degrees
and we get an enhancement in the direction of —45 degrees for the MC simulation
result while the incident field is in the direction of +45 degrees. The expected
results prove obviously that the type of these enhancement phenomena are specular
not backscattering enhancements. Thanks to these results, we say clearly that there
is no backscattering enhancement due to single scattering from cubical distribution.
Meanwhile, the forward scattering intensity in the direction of + 180 degrees can be
seen clearly while the incident field is in the direction of 0 degrees for the analytic
result and the forward scattering intensity in the direction of —135 degrees can be
seen clearly while the incident field is in the direction of +45 degrees for the MC

simulation result.
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We next examine what kind of the enhancement occurs due to multiple scattering
from cubical distribution. When we focus on the multiple scattering from the
cubical distribution in Section 4.2.1, an enhancement is observed. However, this
enhancement can not be clearly determined as a backscattering or a specular;
because, the incident field only comes from the —z direction. In order to resolve this,
we send the incident field in a direction different than the z axis and then we get an

enhancement in the backscattering direction. It is stated as follows:

The mean field intensity due to multiple scattering </,

sca

(r,)> from cubical

distribution while the incident field is in the direction of +45 degrees is obtained

and shown in Figure 4.13.

The mean field intensity due to multiple scattering from cubical distribution
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Figure 4.13: The mean field intensity due to multiple scattering from cubical
distribution while the incident field is in the +45 degrees: N=50, D=30 and
MC=10000.
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As can be seen from Figure 4.13, we get an enhancement in the direction of +45
degrees for the mean field intensity due to multiple scattering from cubical
distribution while the incident field is in the direction of +45 degrees. The result
demonstrates obviously that the type of this enhancement phenomenon is a
backscattering not a specular. Its intensity is nearly 10 dB the same as amplitude of

intensity in Figure 4.7 where the incident field is in the direction of 0 degrees.

Thanks to the results of cubical distributions, we say clearly that the backscattering
enhancement is observed only as regard as multiple scattering conditions. At the
same time, this basically means the single scattering phenomenon is not enough
alone in order to explain the backscattering enhancement and also the higher-order
scattering terms have to be calculated in order to get accurate results in the case of

the backscattering enhancement.

4.3.2 The Particles are Distributed within a Sphere

In this part of the study, we examine both the single and multiple scattering

phenomena from spherical distribution.

When we focus on the single scattering from the spherical distribution in Section
3.1.2, any kind of an enhancement is not observed. So, we check the result of the
spherical distribution when the incident field comes from a direction different than
the z axis. The MC simulation result of the mean field intensity due to single
scattering < /,, > from spherical distribution while the incident field is in the
direction of +45 degrees and the analytic result of the mean field intensity due to

single scattering < /;, > from spherical distribution while the incident field is in the

direction of 0 degrees are obtained and shown in Figure 4.14.
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The MC simulation result of the mean field intensity due to single scattering from spherical distribution
34 while the incident field is in the +45 degree
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Figure 4.14: The MC simulation result of the mean field intensity due to single
scattering from spherical distribution while the incident field is in the +45 degrees:
N=50, D=30 and MC=100000.

As can be seen from Figure 4.14, none of the enhancement phenomenon occurs in
the direction of 0 degrees for the analytic result while the incident field is in the
direction of 0 degrees and none of the enhancement phenomenon occurs in the
direction of —45 degrees or +45 degrees for the MC simulation result while the
incident field is in the direction of +45 degrees. Those results demonstrate us
obviously that there is neither the backscattering enhancement phenomenon nor the
specular enhancement phenomenon appearing due to single scattering from
spherical distribution. Meanwhile, the forward scattering intensity in the direction
of + 180 degrees can be seen clearly while the incident field is in the direction of 0
degrees for the analytic result and the forward scattering intensity in the direction of
—135 degrees can be seen clearly while the incident field is in the direction of +45

degrees for the MC simulation result.
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We next examine what kind of the enhancement occurs due to multiple scattering
from spherical distribution. When we focus on the multiple scattering from the
spherical distribution in Section 4.2.2, an enhancement is observed. However, this
enhancement can not be clearly determined as a backscattering or a specular;
because, the incident field only comes from the —z direction. In order to resolve this,
we send the incident field in a direction different than the z axis and then we get an
enhancement in the backscattering direction which is stated as follows:

The mean field intensity due to multiple scattering </ (7,)> from spherical

distribution while the incident field is in the direction of +45 degrees is obtained

and shown in Figure 4.15.
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Figure 4.15: The mean field intensity due to multiple scattering from spherical
distribution while the incident field is in the +45 degrees: N=50, D=30 and
MC=10000.
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As can be seen from Figure 4.15, we get an enhancement in the direction of +45
degrees for the mean field intensity due to multiple scattering from spherical
distribution while the incident field is in the direction of +45 degrees. The result
proves us obviously that the type of this enhancement phenomenon is a
backscattering not a specular. Its intensity is nearly 5 dB the same as amplitude of

intensity in Figure 4.8 where the incident field is in the direction of 0 degrees.

Thanks to the investigation of the specular enhancement, we say clearly that the
backscattering enhancement is observed only as regard as multiple scattering
conditions. At the same time, this basically means the single scattering phenomenon
is not enough alone in order to explain the backscattering enhancement and also the
higher-order scattering terms have to be calculated in order to get accurate results in

the case of the backscattering enhancement.

4.4 Multiple Scattering Compared to Single Scattering
and Double Scattering Phenomena

In previous investigations, we get a certain number of results regarding multiple,
single and double scattering phenomena. In this section, we obviously present them
in the same graphical results in order to compare their characteristic behaviors.
Multiple scattering compared to single scattering from cubical distribution is
carefully examined in Section 4.4.1 and multiple scattering compared to single

scattering and double scattering from spherical distribution is looked over in

Section 4.4.2.

4.4.1 The Particles are Distributed within a Cube

In Section 4.1.1, the analytic and MC simulation results of the mean field intensity
due to single scattering from cubical distribution and in Section 4.2.1, the MC
simulation result of the mean field intensity due to multiple scattering from cubical
distribution are evaluated. In this section, we compare these results in order to
examine differences between the single and multiple scattering phenomena from

cubical distribution in Figure 4.16.
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As can be seen from Figure 4.16, the backscattering enhancement occurs due to
multiple scattering. As for single scattering, the specular enhancement is observed,
which is presented in previous sections. As well as this key difference, there is a
large amplitude distinction between multiple and single scattering results.
Therefore, if we definitely want to obtain general characteristic behaviors of the

cubical distribution, we must calculate higher-order scattering terms and consider
the multiple scattering phenomenon.

Multiple scattering compared to single scattering from cubical distribution
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Figure 4.16:

Multiple scattering compared to single scattering from cubical
distribution: N=50, D=30 and MC=10000.

4.4.2 The Particles are Distributed within a Sphere

In Section 3.2.1 the analytic result of the mean field intensity due to double

scattering from spherical distribution, in Section 4.1.2 the analytic and MC
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simulation results of the mean field intensity due to single scattering from spherical
distribution and in Section 4.2.2 the MC simulation result of the mean field
intensity due to multiple scattering from spherical distribution are evaluated. In this
section, we compare these four results in order to examine differences among the
single, double and multiple scattering phenomena from spherical distribution in

Figure 4.17.

As can be seen from Figure 4.17, the backscattering enhancement is observed due
to higher-order multiple scattering terms and double scattering term but none of the
enhancement is observed due to single scattering. As well as these key differences,
there is large amplitude distinction between the higher-order multiple scattering and
the low-order scattering phenomena. Therefore, if we specially want to obtain
general characteristic behaviors of the spherical distribution, we have to calculate
higher-order scattering terms and consider the multiple scattering phenomenon. We
have to note that the double scattering phenomenon is the first multiple scattering
mechanism and it is also one of the low-order multiple scattering terms. As can be
seen from Figure 4.17, double scattering has the dominant effect on the
backscattering enhancement. However, it is not enough in order to explain the
backscattering enhancement phenomenon alone. Because, the higher-order
scattering terms contribute significantly to the backscattering enhancement as much

as double scattering.
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Multiple scattering compared to single and double scattering from spherical distribution
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Figure 4.17: Multiple scattering compared to single and double scattering from
spherical distribution: N=50, D=30 and MC=10000.

The above comparing results of both the cubical and spherical distribution prove
that the backscattering enhancement phenomenon occurs only due to multiple
scattering. This conclusion about the cause of the backscattering enhancement is

verified for both cubical and spherical distributions.

4.5 The Effect of Incident Field Frequency on the
Backscattering Enhancement due to Multiple
Scattering

In this section, we show the effect of incident field frequency on the backscattering
enhancement due to multiple scattering. In previous sections, we use the incident

wave which is assumed as a plane wave and is given by
Winc(}_;) = eilzif (432)

99



The incident wave vector is denoted by k, = k&7 where 7 is a unit vector in the

direction from the source to the point scatterer and & is the wave number given by

k==" (4.33)

where A is the wave length which can be written in terms of the speed of

propagation v, and the frequency f, as A =v,_/f . Substituting this expression into
Eq. (4.33), we get

(2T 2
V.,

VM/

/

(4.34)

w

which is the relation between the wave number & and the frequency f* in 1/s = Hz.
As can be seen from Eq. (4.34), the wave number k£ and the frequency of a wave f

are proportional to each other and it is symbolized by k£ o« /. As can be seen from
this expression, we can increase the wave number k instead of the frequency f in

order to see the effect of frequency variation on the backscattering enhancement.

In the previous sections, we use the value /=1 while calculating the mean field
intensity due to multiple scattering from spherical distribution. In this section, the
wave number is increased from k=1 to &=2 and then the mean field intensity is
calculated for the wave number £=2. Lastly, the mean field intensities due to
multiple scattering from spherical distribution are rationally compared and depicted

for the wave numbers =1 and k=2 in Figure 4.18.
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Figure 4.18: The effect of incident field frequency on the backscattering
enhancement due to multiple scattering from spherical distribution.

In Figure 4.18, we also note that the mean field intensities due to multiple scattering
from spherical distribution are calculated in the decibel (dB) units. The decibel (dB)
is a logarithmic unit and clearly defined in a common way when referring to

measurements of power or intensity and this is written as f(x),, = 1010g10( f (x)) .

In Figure 4.18, the angular widths for both wave numbers 4=1 and £A=2 are shown at
the amplitude —1 dB. The angular width for /=1 at —1 dB is approximately 5.9
degrees and the angular width for /=2 at —1 dB is approximately 2.1 degrees. To
sum up, increasing incident wave frequency causes the narrower backscattering
enhancement angular widths. The backscattering enhancement angular width is
necessary in order to define the receiving pattern angular width of the receiver
antenna. If the backscattering enhancement angular width is smaller than the

receiving pattern angular width of the receiver antenna, the backscattering
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enhancement is not likely to be observed. Hence, the incident field frequency is so

much important in the remote sensing, [7].

4.6 The Effects of Point Scatterer Density on the
Backscattering Enhancement and the Specular
Enhancement

Density of the point scatterers distributed within a cube or a sphere can be denoted
by N/V where N is the number of distributed point scatterers and V is the volume of
distribution. After running a certain number of Monte Carlo simulations, we
observe that the point scatterer density has important effects on the backscattering
enhancement. In our studies, we also demonstrate that the backscattering
enhancement is only constituted due to multiple scattering. The multiple scattering
phenomenon is commonly encountered when the density of point scatterers is large
enough, so that an incident wave interacts with more than one point scatterer before
leaving them, [8]. Therefore, the backscattering enhancement is only observed
when the density of point scatterers is in a certain interval. If the distance between
point scatterers increase (that is to say, in the lower-density condition), the multiple
scattering to be occurring becomes a weak probability. Because of this weak
probability, the backscattering enhancement can not occur. If the distance between
point scatterers decrease (that is to say, in the higher-density condition), the incident
field is to be absorbed in the point scatterers distributed media so there will not be
enough returned fields after scattering processes and so once again the
backscattering enhancement can not be observed. This phenomenon (the absorption
of incident field) is mentioned as the “shadow effect” in [9], [25], [28] and [29]. On
the other hand, if the particle density is too high, the structure behaves like a solid.

After all, we need to determine a density interval where the backscattering
enhancement occurs. For this purpose, the simulation results about backscattering
enhancement are given in the Table 4.2 after running a certain number of Monte
Carlo simulations. In these simulations, dimension of cubical distribution and
diameter of spherical distribution are considered as D=30. From these results, the

density interval for the backscattering enhancement due to multiple scattering from
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cubical distribution can be determined as [3/27000 — 99/27000]. This means that the
backscattering enhancement is observed in this density interval [3/27000 —
99/27000] or [1.1x10™* — 36.6x10™*]. In the same way, the density interval for the
backscattering enhancement due to multiple scattering from spherical distribution
can be stated as [3/14137 — 74/14137] or [2.1x10™ — 52.3x10™*]. As can be seen
these intervals, the backscattering enhancement from cubical distribution has a

larger density interval than spherical distribution has.

Table 4.2: Density intervals for the backscattering enhancement due to multiple
scattering from cubical and spherical distributions

Distribution: | Number of Scatterers (N): | Volume of Distribution (V) for D=30:
Cubical 3-99 D’ =27000

Spherical 3-74 (4/3)z(D/2) =14137

We get some specular enhancement results due to single scattering from cubical
distribution; because of the cubical structure. From the results of Table 4.3, the
density interval can be determined as [7/27000 — INF/27000] or [2.59x107* — oo]. If
the scatterers are in a condition of the lower-density, the specular enhancement does
not occur. As for the scattering processes in a condition of higher-density, the
specular enhancement always occurs since a flat surface being. Meanwhile, owing
to the spherical structure, the specular enhancement results are not observed in any
intervals. After all, we prove that both the backscattering and specular

enhancements are related to the density of randomly distributed point scatterers.

Table 4.3: Density intervals for the specular enhancement due to single scattering
from cubical and spherical distributions

Distribution: | Number of Scatterers (N): | Volume of Distribution (V) for D=30:
Cubical 7 INF D* =27000

Spherical (4/3)z(D/2) =14137

where /NF denotes an infinite number of point scatterers.
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CHAPTER §

CONCLUSIONS

In this thesis, analysis and simulation of the backscattering enhancement
phenomenon from randomly distributed point scatterers are investigated. These
point scatterers are distributed randomly into two different geometries such as
spherical and cubical distributions throughout this study. Analytical explanations of
single and multiple scattering phenomena from point scatterers are presented by

expanding their general formulas.

T-matrix method is applied while analysis of the backscattering enhancement
phenomenon from randomly distributed point scatterers is being investigated in
Chapter 3 and also some computer programs using Monte Carlo method to compute
the backscattering enhancement phenomenon from randomly distributed point

scatterers are developed in Chapter 4.

Mean field intensities due to single scattering from cubical and spherical
distributions are properly calculated analytically. Moreover, these mean field
intensities are plotted by using MATLAB programming language and an
enhancement due to single scattering is observed for only cubical distribution. In
the last Chapter, we prove that this enhancement is a kind of the specular

enhancement not the backscattering enhancement.

Mean field intensity due to double scattering from spherical distribution is
estimated analytically by clearly determining seven possible cases which are
evaluated from correlation of two different rays. In addition, this mean field
intensity is plotted by using MATLAB programming language and we also present
that the second case is the dominant among the other cases as far as the

backscattering enhancement is concerned. We note that the double scattering
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phenomenon is the first multiple scattering mechanism in the distribution volume
and the approximate formula of the mean field intensity due to double scattering is

obtained in an analytical manner.

Mean field intensity due to interaction of single and double scattering from
spherical distribution is calculated analytically by clearly determining three possible
cases which are evaluated from correlation of two different rays. Subsequently, we
demonstrate that this intensity is to be zero if T-matrix (T) has an only imaginary
component. Therefore, the minimal effect of the mean field intensity due to

interaction of single and double scattering can be neglected in the most cases.

Mean field intensities due to single scattering from cubical and spherical
distributions are simulated by using Monte Carlo simulation technique. The
reliabilities of these simulation results have been checked by comparing their

analytical results and computing their 95% confidence intervals.

Mean field intensities due to multiple scattering from cubical and spherical
distributions are simulated by using Monte Carlo simulation technique. The
reliabilities of these simulation results have been checked by computing their 95%
confidence intervals. These results prove that the existence of the backscattering
enhancements due to multiple scattering from cubical and spherical distributions.
Moreover, we display that the cubical distribution give rise to stronger
backscattering enhancement intensity than the spherical distribution. Universal
survey studies about the individual existences of the backscattering enhancements
from different obstacles are presented in [21]. In addition, the experimental studies

about backscattering enhancement can be found in [24], [30] and [31].

The specular enhancement from randomly distributed point scatterers is
investigated. This type of the enhancement is observed over cubical distribution
when examining the single scattering phenomenon. This proves obviously that
specular enhancement occurs due to single scattering from cubical distribution and
also this result help us to conclude that the backscattering enhancement is only

constituted due to multiple scattering. As for the spherical distribution, the result
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presents us that specular enhancement due to single scattering from the spherical
distribution is not constituted. The specular enhancement is also observed in [14]
which presents that if a surface is flat, this condition corresponds to Snell’s law, and
the wave is always to be scattered in the specular direction. In [7], both
backscattering enhancement and specular enhancement are observed at the same

time.

Multiple scattering is compared to single scattering from the cubical distribution
and also multiple scattering is compared to single scattering and double scattering
from the spherical distribution. We prove that the backscattering enhancement is
mainly constituted due to only multiple scattering. Moreover, we demonstrate that
the double scattering is the first multiple scattering mechanism and it has dominant
effect on the backscattering enhancement. However, it is not enough in order to
explain the backscattering enhancement phenomenon alone. In the same manner,
the effect of double scattering has been presented in [9] and [27]. In addition, the
higher-order multiple scattering terms contributes to magnitude of the mean field
intensity. Similar conclusion drawn in [10] is that the significant contribution of
multiple scattering can vary by almost an order of magnitude. The similar results
about contributions of multiple scattering terms are presented in [11], [26], [27] and
[29]. On account of these results, we must include multiple scattering terms in our

scattering models to be realistic.

The effect of incident field frequency on the backscattering enhancement due to
multiple scattering is illustrated. The result proves that to increase incident wave
frequency causes narrower backscattering enhancement angular width and
calculating this width is necessary in order to define the receiving pattern angular
width of the receiver antenna. The same effect of incident field frequency can be
found in [7] and [15], which conclude that the higher the frequency, the narrower

the enhancement angle width.

The effects of point scatterer density on the backscattering enhancement and the
specular enhancement are illustrated. We present that the backscattering

enhancement is commonly encountered when the density of point scatterers is large
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enough. If the randomly distributed point scatterers are in a condition of the lower-
density, the multiple scattering to be occurring becomes a weak probability. As for
the scattering processes in condition of higher-density, the incident field is to be
absorbed in the randomly distributed point scatterers’ media so there are not enough
returned fields interfering constructively to produce the backscattering
enhancement. This event (the absorption of incident field) is mentioned as the
“shadow effect” in some academic articles, for example [9], [25], [28] and [29]. In
the same manner, the effects of density have been presented in [8] and [28]. We
also present that the specular enhancement is commonly encountered when the
density of point scatterers is large enough for only single scattering from cubical
distribution. In a condition of the lower-density, the specular enhancement is not to
occur since a flat surface occurring becomes a weak probability. As for the higher-
density condition, the specular enhancement is always observed because of a flat
surface occurring. Meanwhile, owing to the geometrical structure of the spherical

distribution, the specular enhancement results are not observed at any density ratio.

As a future work, the same problems can be solved in the presence of some
different distributions, such as cylindrical distribution. Moreover, instead of using
point scatterers, three dimensional scatterers can be distributed into the different
structures. However, these randomly distributed three dimensional scatterers cause
that the analytic solutions are to be more difficult and also the runtime of simulated

solutions are to be much longer.
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APPENDIX A

MATLAB PROGRAM OF FIGURE 4.2

clear;
N = 50;

D = 30
MC=10000;
=D./2;

k = 1.0

ths = linspace(-180,180,400).";

thsr = ths*pi/180;

ki = k*[0 O -1];

ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
alfalls = zeros(size(ths));

for run=1:MC;
Rn = D*(rand(3,N)-0.5);
Rnp = D*(rand(3,N)-0.5);

R1 = Rn-Rnp;
el = exp(Jey*ki*R1);
e2 = exp(-jey*ks*R1);

alfalls = alfalls+e2*el."/N;

run
end

alfalls=alfalls/MC;
alfalla=(((sin(k.*D.*(cos(thsr./2))."2) .~2_*((sin(k.*d.*sin(thsr)))
A2)) . /(((k-*D) M) . *((cos(thsr./2)) .76) . *((sin(thsr./2)) .~2))));

111a=N+N*(N-1)*alfalla;
111s=N+N*(N-1)*alfalls;

plot(ths,10.*1og10(l111a),ths,10.*logl0(real (111s))," m--");
axis([-200 200 15 35]);

title("The MC simulation result of the mean field intensity due to
single scattering from cubical distribution®);

xlabel ("Scattering Angle (deg)");

ylabel ("<111>_.(4*pi*ra)~2/|f|~2 (dB)");

legend("Single:Analytic™, "Single:MC Sim");

grid on;
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APPENDIX B

MATLAB PROGRAM OF FIGURE 4.4

clear;

Nexp = 50;

D = 30;

MC=10000;

Nc =(6./pi) -*Nexp;
d=D./2;

k = 1.0;

Jey = sqrt(-1);

ths = linspace(-180,180,400).";

thsr = ths*pi/180;

ki = k*[0 O -1];

ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
alfalls = zeros(size(ths));

for run=1:MC;
Rn = 2*d*(rand(3,Nc)-0.5);
r = sqrt(sum(Rn."2));
ixn = find(r<=d);

Rnp = 2*d*(rand(3,Nc)-0.5);
r = sqrt(sum(Rnp."2));
ixnp = Find(r<=d);

L = min([length(ixn) length(ixnp)1);
Rn Rn(:z,ixn(1:L));
Rnp = Rnp(:,ixnp(1:L));

R1 = Rn-Rnp;
el = exp(Jey*ki*R1);
e2 = exp(-jey*ks*R1);
alfalls = alfalls+e2*el."/L;
run

end

alfalls=alfalls/MC;
alfalla=[[9.*[k.*D.*cos(k.*D.*cos(thsr./2)).*cos(thsr./2)-
sin(k.*D.*cos(thsr./2))].-72]./[(k-*D."6) - *[[cos(thsr./2)]-76]11]1:;

111a=Nexp+Nexp*(Nexp-1)*alfalla;

111s=L+L*(L-1)*alfalls;
plot(ths,10.*1og10(111a),ths,10.*1og10(real (111s)), " m--");
axis([-200 200 15 35]);

title("The MC simulation result of the mean field intensity due to
single scattering from spherical distribution®);

xlabel ("Scattering Angle (deg)");

ylabel ("<111>_.(4*pi*ra)~2/|f|™2 (dB)");

legend("Single:Analytic™, "Single:MC Sim");

grid on;
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APPENDIX C

MATLAB PROGRAM OF FIGURE 4.5

clear;

N = 50;

D = 30;
MC=10000;
d=D./2;

k = 1.0;

Jey = sqrt(-1);

ths linspace(-180,180,400).";

thsr = ths*pi/180;

ki = k*[0 0 -1];

ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
alfalls = zeros(size(ths));

alfalls?2 zeros(size(ths));

for run=1:MC;
Rn = D*(rand(3,N)-0.5);
Rnp = D*(rand(3,N)-0.5);

R1 = Rn-Rnp;

el = exp(ey*ki*R1);
e2 = exp(-jey*ks*R1);
alfalls = alfalls+e2*el."/N;
alfalls2=alfalls2+(e2*el."/N)."2;
run

end

alfalls m=alfalls/MC;

111s m=N+N*(N-1)*alfalls m;
111s2=N+N*(N-1)*alfalls2;

111s_v= (1./7(MC-1))-*111s2-(MC./(MC-1))*(I11ls_m."2);
111s_sd=sqrt(ll1lls_v);

Clp=111s m+(1.96*111s sd)./sqrt(MC);
CIm=111s m-(1.96*111ls_sd)./sqrt(MC);

plot(ths,10.*1og10(l11s_m),"r-

.",ths,10.*10og10(Clp), "k",ths,10.*10og10(CIm),*g");

axis([-200 200 15 35]);

title("The 95% confidence interval for the MC simulation result of
the mean field intensity due to single scattering from cubical
distribution™);

xlabel ("Scattering Angle(deg)”);

ylabel ("<111>.(@*pi*ra)"2/|f|"2");

legend("Single:MC Sim","Confidence Interval:plus”,"Confidence
Interval :minus™);

grid on;
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APPENDIX D

MATLAB PROGRAM OF FIGURE 4.7

clear;

50;
= 30;
C=10000;

=0=2

D./2;

-0;

= 1.0;

Jey = sqrt(-1);

ths linspace(-180,180,400).";

thsr = ths*pi/180;

ki = k*[0 O -1];

ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
f=Qey*4*pi*T) ./k;

eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];
eRa=eRa. " ;

I_sca = zeros(size(ths));

(LI

d
k
T

for run=1:MC;

Rn = 2*d*(rand(3,N)-0.5);
I=eye(N);

Gnt=zeros(N);
field_inc_n=zeros(1,N);
Gan=zeros(400,N);
field_inc_a=zeros(1,400);

for n=1:N;
for t=1:N;
it t-=n
R1=Rn(:,n)-Rn(:,t);
rl = sqrt(sum(R1.72));
ent(n,t)=—expey*k*rl)./(4*pi*rl);
else
end
end
field_inc_n(n)=expey*(ki*Rn(:z,n)));
end
Gnt=Gnt*f;
A=1-0Gnt;

b=Ffield_inc_n.";
phi = inv(A)*b;

for a=1:400;
for n=1:N;
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R2=sum(eRa(:,a)-*Rn(:,n));
Gan(a,n)=(expey*k*R2));
end
end

Gan=Gan*f;
field= Gan*phi;
field=Ffield.";
field_conj=conj(field);
I_scal=(Ffield.*field _conj);
I_sca=1_sca+l_scal."/N;
run

end

I _sca m=1_sca./MC;

plot(ths,10.*1og10(l_sca m),"r-.");
axis([-200 200 0 50]);

title("The mean field intensity due to multiple scattering from
cubical distribution®);

xlabel ("Scattering Angle (deg)~);

ylabel ("<111>_(4*pi*ra)~2/|f|"2 (dB)");

legend("Multiple: MC Sim");

grid on;
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APPENDIX E

MATLAB PROGRAM OF FIGURE 4.8

clear;

Nexp = 50;
D = 30;
MC=10000;

Nc =(6./pi1).*Nexp;

d /2;

k .0;

T .0;

Jey = sqrt(-1);

ths linspace(-180,180,400).";

thsr = ths*pi/180;

ki k*[0 0 -1];

ks k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
f=Qey*4*pi*T) ./Kk;

eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];
eRa=eRa. " ;

I_sca = zeros(size(ths));

i kLo

for run=1:MC;

Rn = 2*d*(rand(3,Nc)-0.5);
r = sgrt(sum(Rn."2));

ixn = find(r<=d);

L = length(ixn);

Rn = Rn(:,ixn(1:L));
I=eye(L);

Gnt=zeros(L);
field_inc_n=zeros(1,L);
Gan=zeros(400,L);
field_inc_a=zeros(1,400);

for n=1:L;
for t=1:L;
it t-=n
R1=Rn(:,n)-Rn(:,t);
rl = sqrt(sum(R1.72));
ent(n,t)=—expey*k*rl)./(4*pi*rl);
else
end
end
field_inc_n(n)=expey*(ki*Rn(:z,n)));
end
Gnt=Gnt*f;
A=1-Gnt;
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b=Field_inc n.";
phi = inv(A)*b;

for a=1:400;
for n=1:L;
R2=sum(eRa(:,a)-*Rn(:,n));
Gan(a,n)=(expJey*k*R2));
end
end

Gan=Gan*f;
field= Gan*phi;
field=Ffield.";
field_conj=conj(field);
I_scal=(Ffield.*field _conj);
I_sca=1_sca+l_scal."/L;
run

end

I _sca m=1_sca./MC;

plot(ths,10.*1og10(l_sca m),"r-.");
axis([-200 200 0 50]);

title("The mean field intensity due to multiple scattering from
spherical distribution®);

xlabel ("Scattering Angle (deg)~);

ylabel ("<111>_(4*pi*ra)"2/|f]|~2 (dB)");

legend("Multiple: MC Sim®);

grid on;
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APPENDIX F

MATLAB PROGRAM OF FIGURE 4.9

.0;

sqrt(-1);

linspace(-180,180,400).";

thsr = ths*pi/180;

ki = k*[0 O -1];

ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];
f=Qey*4*pi*T) ./k;

eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];
eRa=eRa. " ;

I_sca = zeros(size(ths));

I_sca2 = zeros(size(ths));

for run=1:MC;

Rn = 2*d*(rand(3,N)-0.5);
I=eye(N);

Gnt=zeros(N);
field_inc_n=zeros(1,N);
Gan=zeros(400,N);
field_inc_a=zeros(1,400);

for n=1:N;
for t=1:N;
if t~=n
R1=Rn(:,n)-Rn(:,t);
rl = sqrt(sum(R1.72));
Gnt(n,t)=-exp(ey*k*rl)./(4*pi*rl);
else
end
end
field_inc_n(n)=expey*(ki*Rn(:z,n)));
end
Gnt=Gnt*f;
A=1-Gnt;

b=Field_inc n.";
phi = inv(A)*b;

for a=1:400;
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for n=1:N;
R2=sum(eRa(:,a)-*Rn(:,n));
Gan(a,n)=(exp(Jey*k*R2));
end
end

Gan=Gan*f;
field= Gan*phi;
field=field.";
field_conj=conj(field);
I_scal=(Ffield.*field _conj);
I _sca=l_sca+l_scal."/N;
I_sca2 = 1_sca2+(l_scal."/N)."2;
run

end

I _sca m=1_sca./MC;
I_sca_v=(1./(MC-1)).*1_sca2-(MC./(MC-1))*(1_sca_m."2);
I_sca sd=sqrt(l_sca v);

Clp=1_sca m+(1.96*1_sca_sd)./sqrt(MC);
CIm=1_sca_m-(1.96*1_sca_sd)./sqrt(MC);

plot(ths,10.*1og10(l_sca m), "r-
.",ths,10.*10g10(Clp), "k",ths,10.*10og10(CIm),"g");
axis([-200 200 0 50]);

title("The 95% confidence interval for the MC simulation of the
mean field intensity due to multiple scattering from cubical
distribution™);

xlabel ("Scattering Angle (deg)~);

ylabel ("Isca (dB)");

legend("Multiple:MC Sim","Confidence Interval:plus”, "Confidence
Interval :minus™);

grid on;
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APPENDIX G

SINC FUNCTION AND SINE INTEGRAL

Sinc Function:

The Sinc function is denoted by Sinc(x) and it is the function of the Sine function
sin(x) divided by x, such as Sinc(x) = [sin(x)]/x. The Sinc function is also known

as the “Sampling Function” and it is shown in Figure G.1 as dashed line.

Some Properties of the Sinc Function:

e The Sinc function is the frequency spectrum of the rectangular pulse. That
is, the sinc function and the rectangular pulse are Fourier transform pairs

e The Sinc function is the spherical Bessel fuction of the first kind of order
Zero

e The Sinc function is also determined as

1 ;x=0
Sinc(x) = 1 sin(x)
X

;otherwise

Sine Integral:

The Sine integral is denoted by Si(x) and it is the integral of the Sinc function, such

as Si(x) = j%ntdz or Si(x) = [ Sinc(¢)dt . The Sine integral divided by x [S’(x)}
X
0 0

is shown in Figure G.1 as continuous line.
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The Sinc function and the Sine integral divided by x
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Figure G.1: The Sinc function and the Sine integral divided by x

Matlab Program of Figure G.1:

clear;
x = linspace(-180,180,1000);

sinc_func =sin(X)./(X);
sine_int_x=sinint(xX)./(X);

plot(x,sinc_func, "k--",x,sine_int_x);

axis([-60 60 -0.4 1.2]);

title("Sinc Function & Sine Integral divided by x");
xlabel ("x");

ylabel ("Sinc(x) & Si(X)/x");
legend("Sinc(X) ", "SI(X)/x");

grid on;
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