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ABSTRACT 

ANALYSIS AND SIMULATION OF THE BACKSCATTERING 
ENHANCEMENT PHENOMENON FROM RANDOMLY DISTRIBUTED 

POINT SCATTERERS 
 
 
 
 

AĞAR, Kartal Şahin 

Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Seyit Sencer KOÇ 

 

August 2007, 122 pages 
 

 

This thesis investigates analysis and simulation of the backscattering enhancement 

phenomenon from randomly distributed point scatterers. These point scatterers are 

randomly distributed within a cube or a sphere and then the backscattering 

enhancement phenomenon from both cubical and spherical distributions are 

examined throughout the thesis. The general characteristic differences between 

cubical and spherical distribution about the scattering phenomenon are observed.  

T-matrix method is used for analytic investigations of the backscattering 

enhancement and also a certain number of approximate formulas are obtained. As 

for Monte Carlo simulation method, it is used for simulated investigations of the 

backscattering enhancement. Some Monte Carlo simulations are prepared by using 

MATLAB programming language and verified by showing their confidence 

intervals. Both analytic and simulated investigations of the backscattering 

enhancement due to single and double scattering are analyzed; however, only 

simulated investigation of the backscattering enhancement due to multiple 

scattering are analyzed because of its computational complexity. The thesis traces 

differences between single scattering and multiple scattering from randomly 

distributed point scatterers. Effects of both incident field frequency and point 
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scatterer density on the backscattering enhancement are indicated. The thesis seeks 

answers to questions such as which conditions cause the backscattering 

enhancement phenomenon from randomly distributed point scatterers, why we need 

to consider multiple scattering to examine the backscattering phenomenon and how 

we can discriminate the backscattering enhancement from the specular 

enhancement. 

 

 

Keywords: Backscattering Enhancement Phenomenon, Point Scatterers, Monte 

Carlo Simulation, Single Scattering, Multiple Scattering. 
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ÖZ 

RASGELE DAĞITILMIŞ NOKTASAL SAÇICILARINDAN GERİ SAÇILIM 
ARTIRILMASI OLGUSUNUN İRDELENMESİ VE SİMÜLASYONU 

 
 
 
 

AĞAR, Kartal Şahin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Doç. Dr. Seyit Sencer KOÇ 

 

Ağustos 2007, 122 sayfa 
 

 

Bu çalışma, rasgele dağıtılmış noktasal saçıcılar üzerinden geri saçılım artırılması 

olgusunun irdelenmesini ve simülasyonunu araştırmıştır. Bu noktasal saçıcılar bir 

küpün veya bir kürenin içerisine rasgele dağıtıldıktan sonra hem kübik hem de 

küresel dağılımlar üzerinden geri saçılım artırılması olgusu çalışmanın başından 

sonuna kadar incelenmiştir. Kübik ve küresel dağılımların saçılım olgusu 

hususundaki genel karakteristik farkları gözlemlenmiştir. T-matris metodu geri 

saçılım artırılması olgusunun analitik araştırması için kullanılmış ve ayrıca birtakım 

yaklaşık formüller elde edilmiştir. Monte Carlo simülasyon metodu ise geri saçılım 

artırılması olgusunun simülasyon araştırması için kullanılmıştır. Bazı Monte Carlo 

simülasyonları MATLAB programlama dili kullanılarak hazırlanmış ve güven 

aralıkları gösterilerek doğruluğu kanıtlanmıştır. Tekli ve çiftli saçılımda oluşan geri 

saçılım artırılması olgusunun hem irdelenmesi hem de simülasyonunu 

araştırılmıştır; ancak, hesaplama karmaşıklığı nedeniyle çoklu saçılımda oluşan geri 

saçılım artırılması olgusu sadece simülasyonlarla incelenmiştir. Bu çalışma, rasgele 

dağıtılmış noktasal saçıcılar üzerinden oluşan tekli saçılım ile çoklu saçılım 

arasındaki farkları araştırmıştır. Hem gelen sinyalin frekansının hem de noktasal 

saçıcı yoğunluğunun geri saçılım artırımı üzerindeki etkilerine işaret edilmiştir. Bu 

çalışmada, hangi koşullar altında rasgele dağılmış noktasal saçıcılar üzerinden geri 
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saçılım artırımı olgusunun oluştuğu, neden geri saçılım artırımı olgusunu incelemek 

için çoklu saçılımı hesaba katma ihtiyacı duyulduğu ve geri saçılım artırımının 

aynasal saçılım artırımından nasıl ayırt edilebileceği gibi sorular yanıtlanmaya 

çalışılmıştır. 

 

Anahtar Kelimeler: Geri Saçılım Artırılması Olayı, Noktasal Saçıcılar, Monte Carlo 

Simülasyonu, Tekli Saçılım, Çoklu Saçılım. 
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CHAPTER 1 

INTRODUCTION 

The scattered field is clearly determined as the field radiated in space from 

obstacles which are illuminated by an incident electromagnetic field. In this thesis, 

these obstacles are considered as randomly distributed point scatterers and the 

incident field is assumed as a plane wave for simplicity. Backscattered field 

basically represents the field scattered back towards the direction of the incident 

field. If these scattered fields are constructively interfered in the backscattering 

direction, this special phenomenon is called as the backscattering enhancement. 

This phenomenon has been one of the important subjects for radar engineering, 

remote sensing, astronomy and bioengineering. The backscattering enhancement 

has been investigated mostly from an academic point of view, [13]. 

 

The only source of information about the properties of randomly distributed point 

scatterers is the intensity and polarization of their scattered field which is measured 

remotely and this scattered field is also a function of incident field frequency and 

the overall shape of distribution. In order to obtain the approximate size, 

composition, shape and structure of this distribution from critical data about the 

scattered field, one has to gradually resolve the inverse problem using simple 

structures as model scatterers which are considered as both cubical and spherical 

distributions of the point scatterers throughout this thesis, [9]. This inverse problem 

is the event of defining the characteristics of randomly distributed point scatterers 

from measurement of radiation. Therefore, we reasonably investigate the 

backscattering enhancement phenomenon from randomly distributed point 

scatterers in this study. 

 

The single scattering is defined as an external radiation that is scattered only one 

times from randomly distributed point scatterers. As for the multiple scattering, it is 
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defined as an external radiation that arises due to the scattering of an incident field 

after interaction with more than one randomly distributed point scatterers. When an 

electromagnetic incident field interacts with randomly distributed point scatterers in 

a cubical or spherical volume medium, some of the scattered fields interfere 

constructively to a higher level. To aid remotely-sensed data analysis, a model may 

be used to simulate the interactions between randomly distributed point scatterers 

and the radiant energy. Usually, such models include only single scattering. In 

reality, multiple scattering has important contribution in intensity of the 

backscattering enhancement, [11]. This contribution of the multiple scattering is 

shown in this thesis and also analytic studies of both single and multiple scattering 

phenomena are presented in more detail in Chapter 2.  

 

Theoretical and experimental studies of multiple scattering from randomly 

distributed point scatterers have a large scientific interest in academic research as 

well as in the industry. Although the multiple scattering theory has been 

investigated since the end of 1960s, the complexity of the calculation has limited 

the range of applications, [12]. 

 

We describe a rather simple approach for separating not only single scattering but 

also double scattering from the total intensity of multiple scattering. We consider 

the situation in which the scattering orders can be separated, which gives additional 

information about the scattering medium, [10]. The double scattering is the first 

multiple scattering mechanism in the distribution volume and we illustrate that it 

has the dominant effect on the backscattering enhancement. The double order 

scattering from spherical distribution is presented and an approximate formula of 

the mean field intensity due to double scattering is obtained in Chapter 3. The 

Monte Carlo simulation technique for studying scattering from randomly distributed 

point scatterers is employed. The reliability of the data obtained due to single 

scattering has been checked by comparing the results of the computer simulation 

with analytical calculations in Chapter 4. It has been shown that the significant 

contribution of multiple scattering can vary by an order of magnitude, [10]. 
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Statistics is necessary in order to gather relevant information from results of 

experiments and the probability theory is used to estimate results of experiments. 

Therefore, a certain number of errors are involved whenever an experiment is run. 

Confidence intervals definitely give us an estimated amount of error involved in 

result data of our experiments. They tell us about the accuracy of the statistical 

estimates, [6]. In this study, we have computed the 95% confidence interval for the 

MC simulation due to both single scattering and multiple scattering in Chapter 4 so 

that the accuracy of our simulation results can be verified. 

 

Multiple scattering of a field is commonly encountered when the density of 

randomly distribution point scatterers is large enough, so that an incident field 

interacts with more than one point scatterer in the medium before leaving it, [8]. 

This phenomenon is important for a number of applications: For example, Military 

Area (remote sensing, underwater vision and acoustic), Industrial Area (design of 

efficient headlamps for foggy driving), Biomedical Optics Area (imaging of small 

tumors in opaque tissues), Astronomy Area (discovering of quasars) and Simulation 

Systems for Training Area, [29]. Effects of the point scatterer density on the 

backscattering enhancement are discussed in Chapter 4. A classical method for 

simulating multiple scattering is the Monte Carlo technique. This type of program is 

able to simulate a complex process as a rapid succession of elementary events for 

which probabilities are known. Therefore, each event is governed by a random 

number, [8]. Calculation of the multiple scattering is too complex; hence, its 

consistent calculation costs too much CPU time and memory allocation. Solution of 

the multiple scattering processes becomes too complicated after the density of 

randomly distributed point scatterers becomes higher. However, research of 

multiple scattering is growing because of the modern computer age. This thesis 

calculates the mean field intensity due to multiple scattering by using Monte Carlo 

simulation technique in Chapter 4. 

 

Since the enhancement effect occurs in the backscattering direction, the angular 

width of the backscattering enhancement effect becomes a critical issue. Because, 

when the angular width is too small relative to the beam width of the receiving 

antenna, the backscattering enhancement effect is not to be observed, [7]. The 
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determination of backscattering enhancement angle width is of great significance. 

For example, in measuring scattering coefficients with a receiving antenna that has 

a certain beam width, it is necessary to know the enhancement angle width. The 

backscattering enhancement angle width is affected by the incident field frequency. 

If the frequency gets higher, the backscattering enhancement angle width gets 

narrower, [15]. Effect of the incident field frequency on the backscattering 

enhancement from randomly distributed point scatterers are illustrated in Chapter 4. 

 

This thesis proves that the backscattering enhancement is observed due to multiple 

scattering; however, there is an enhancement from cubical distribution due to single 

scattering. This enhancement is defined as the specular enhancement not the 

backscattering enhancement. Because of the cubical structure, the surface of the 

cubical distributed point scatterers is flat. If a surface is flat, the wave is scattered in 

the specular direction, which situation corresponds to Snell's law, [14]. This type of 

enhancement is illustrated in Chapter 4. 

 

Briefly, this study includes analytic studies of the backscattering enhancement from 

randomly distributed point scatterers illustrated in Chapter 3 and it also includes 

simulated studies of the backscattering enhancement from randomly distributed 

point scatterers presented in Chapter 4. The backscattering enhancement has been 

analyzed for two different geometries, namely spherical distribution and cubical 

distribution throughout this study.  
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CHAPTER 2 

THE POINT SCATTERERS 

2.1 Single Scattering from Point Scatterers 

In this thesis, the transition matrix method (or T-matrix method) is used to calculate 

the scattered field. The transition matrix (or T-matrix) depends only on the particle, 

its structural composition, size, shape, and orientation and also T-matrix is 

independent of the incident field. This means that for any particular particle, the  

T-matrix only needs to be calculated once, and then it can be used for repeated 

calculations. This is a significant advantage over many other methods which are 

widely utilized for calculating scattering where the entire calculation needs to be 

repeated, [2]. Throughout the thesis, we use point scatterers as scatterers whose 

radii are nearly zero. Therefore, we need to use the T-matrix for a point scatterer.  

T-matrix of a point scatterer consists of only one element which is nm=00 and all 

other elements are zero. This means that the value of T-matrix for a point scatterer 

is TT =00  and later we are to assume that T is equal to 1 for a point scatterer. Let us 

write the incident and the scattered fields in terms of a spherical harmonic 

expansion as follows: 

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

=

∑

∑

nm
nmsnnmsca

nm
nmsnnminc

Ykrhb

Ykrja

),()(

),()(

)1( ϑθψ

ϑθψ
     (2.1) 

where ),( ϑθnmY  are the surface harmonics, nma  are the coefficients for the incident 

field and nmb  are the coefficients for the scattered field. sr  is a vector from the 

scatterer to the observation point. The position vector of a point scatterer nr  and the 

position vector of the observation point ar  are shown in Figure 2.1. 
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Figure 2.1: Scattering from a single point scatterer and the position vectors. 

In Eq. (2.1), )( sn krj is the spherical Bessel function of the first kind of order n and 

)()1(
sn krh  is the spherical Hankel function of the first kind of order n. Note that the 

spherical Hankel functions are linear combinations of the spherical Bessel function 

of the first kind and the spherical Bessel function of the second kind as follows: 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

+=

)()()(

)()()(
)2(

)1(

xiyxjxh

xiyxjxh

nnn

nnn      (2.2) 

The scattered field coefficients nmb  and the incident field coefficients nma  are 

related by means of a T-matrix as follows: 

 nmnmnm aTb =      (2.3) 

Since a point scatterer has a T-matrix which is defined as 0=nmT  for 0≠n , we can 

consider only nm=00 value. The scattered field at the observation point  

(see Figure 2.1) from only one point scatterer consists of a single term of the 

scattered field summation which is given in Eq. (2.1). This single term can be 

written as 

 00
)1(

000 )()( Ykrhbr sasca =ψ  (2.4) 

We can insert 000000 aTb =  into Eq. (2.4) to get 
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 00
)1(

00000 )()( YkrhaTr sasca =ψ      (2.5) 

The scattered field from a point scatterer (in the far-field) can be found by using the 

expression of the spherical Hankel function of first kind of order 0 which is  

 

s

ikr

s

ix

kr
eikrh

x
eixh

s

−=

−=

)(

)(

)1(
0

)1(
0

 (2.6) 

and we get 

 000000)( YaT
kr
eir

s

ikr

asca

s

−=ψ  (2.7) 

The scattered field is related to the incident field at the location of the point 

scatterer. Therefore, we need to calculate )0( =sinc rψ  or )( ninc rψ  by using the 

incident field written in Eq. (2.1). Thus, the incident field for a single point scatterer 

is written as 

 

00000 )()( Ykrjar ssinc =ψ  

00000 )0()0()( Yjarr sincninc ===ψψ           ; 1)0(0 =j  

0000)( Yarninc =ψ  

(2.8) 

Substituting 0000 )( Yra nincψ=  and TT =00  into Eq. (2.7), we get 

 )()( ninc
s

ikr

asca rT
kr
eir

s

ψψ −=  (2.9) 

where sr  is a vector from the scatterer to the observation point (see Figure 2.1) and 

its amplitude is written as  |||| nas rrr −=  or || nas rrr −= . The scattered field at the 

observation point (see Figure 2.1) can be expressed as 

 
)(

||4
4)(

)(
||

)(

||

||

ninc
na

rrik

asca

ninc
na

rrik

asca

r
rr

e
k

Tir

rT
rrk

ier

na

na

ψ
π

πψ

ψψ

−
−

=

−
−

=

−

−

 (2.10) 
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Using the free-space Green’s function as ( )||4),( ||0
na

rrik
na rrerrG na −−= − π  and 

defining the constant f  as kTi π4 , the scattered field can be written as   

 )(),()( 0
nincnaasca rrrfGr ψψ =  (2.11) 

where nr  and ar  denote the position vector of the point scatterer and the position 

vector of the observation point, respectively. For simplicity, we can use a symbol 

),(0
na

a
n rrfGG =  which denotes scattering from the scatterer at nr  to the 

observation point at ar . Finally, the scattered field at the observation point becomes 

 )()( ninc
a
nasca rGr ψψ =  (2.12) 

Note that the single scattering phenomenon can be defined as the radiation which is 

scattered only one times from randomly distributed point scatterers so above 

defined scattered field can also be called as the single scattered field.  

2.2 Multiple Scattering from Point Scatterers 

Consider a distribution of N point scatterers located at Nn rrrr ...,,..., 21 , which is 

depicted in Figure 2.2. Define the wave )( nrφ  incident upon the scatterer at nr  as 

the “effective field”. The effective field )( nrφ  consists of the incident wave )( ninc rψ  

and the wave scattered from all the particles except the one at nr . The effective field 

is stated as 

  )(...)()(...)()()( 111 Nscanscanscascanincn rrrrrr ψψψψψφ ++++++= +−  (2.13)

which may be written as 

 ∑
≠
=

+=
N

nt
t

tscanincn rrr
1

)()()( ψψφ  (2.14) 
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Figure 2.2: A distribution of N point scatterers. 

Substituting the scattered field )( tsca rψ  defined by )(),(0
ttn rrrfG φ  into Eq. (2.14), 

we have 

 ∑
≠
=

+=
N

nt
t

ttnnincn rrrfGrr
1

0 )(),()()( φψφ  (2.15) 

If the effective field )( nrφ  is known at all locations of the scatterers, the total field 

)()()( ascaainca rrr ψψψ += at any observation point ar  can be written as 

 )(),()()(
1

0
n

N

n
naainca rrrfGrr φψψ ∑

=

+=  (2.16) 

We note that the effective field )( nrφ  can be eliminated from Eqs. (2.15) and (2.16) 

and then a simple solution to the field at any observation point )( arψ can be 

acquired. 

 

In Eq. (2.15), we have N unknowns which are the effective field at positions of the 

scatterers, i.e. Nnrn ,...,2,1;)( =φ . The effective field )( nrφ  can be written for any 

n=1,2,…,N ; thus, Eq. (2.15) defines N equations in the N unknowns, which are the 
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effective fields at the exact location of the N scatterers. This equation can be written 

in matrix form as follows: 

 

inc

inc

inc

inc

GI

G

G

G

ψφ

ψφ

ψφφ

φψφ

=−

=−

=−

+=

)(

)1(
 (2.17) 

Note that the symbol G  is the Green’s function matrix which consists of elements 

depending on both nr  and tr , φ  is the effective field vector which consists of 

elements depending on nr , and incψ  is the incident field vector which consists of 

elements depending on nr . If we write Eq. (2.17) as follows: 

 [ ] incGI ψφ
1−

−=  (2.18) 

The effective field vector φ  can be calculated from matrix multiplication of the 

inverse matrix [ ] 1−
−GI  with the incident field vector incψ . 

 

The elements of the Green’s matrix are given by 

  [ ] [ ]nmmnmn rrfGG δ−= 1),(0  (2.19) 

where nmδ  is the Kronecker delta. We first write the below serial expansion: 

  [ ] 11for  ;         ...11
1

1 321 <<−++++=−=
−

− xxxxx
x

 (2.20) 

If we write [ ] 1−
−GI  in the same manner: 

 [ ] ∑
∞

=

−
=+++=−

0

321
...1

t

tGGGGGI  (2.21) 

Thus, the solution to Eq. (2.18) is: 

 [ ] inc
t

t
inc GGI ψψφ ∑

∞

=

−
=−=

0

1
 (2.22) 
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 ...2

0

+++== ∑
∞

=
incincincinc

t

t GGG ψψψψφ  (2.23) 

The total field at the observation point ar  is )()()( ascaainca rrr ψψψ += : 

 )()()()(
1

0
n

N

n
naainca rrrfGrr φψψ ∑

=

−+=  (2.24) 

We insert Eq. (2.22) into Eq. (2.24) and get 

 
nt

inc
t

N

n
naainca GrrfGrr

⎭
⎬
⎫

⎩
⎨
⎧

−+= ∑∑
∞

== 01

0 )()()( ψψψ  (2.25) 

We can use shorthand symbols aψ  to denote the total field at the observation point 

ar  and a
incψ  to denote the incident field at the observation point ar  (see Figure 2.2). 

A solution to the total field at the observation point aψ  can be done by iterating, 

this process is defined in the following manner: 
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==
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mv
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n
m

m
inc

N

nm
m

n
m

n
inc

N

n

a
n

a
inc

a GGGG ψψψψψ  (2.26) 

We obtain the total field at the observation point aψ :  

 

scattering
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N

n

N

nm
m

v
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N

mv
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n
m

a
n

scattering
double

N

n

m
inc
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nm
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scattering
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n
inc

N

n
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field
incident

a
inc

a GGGGGG ∑∑∑∑∑∑
=

≠
=

≠
==

≠
==

++++=
1 1 11 1

sin

1

....ψψψψψ  
(2.27)

In this study, the symbols ),(0
na

a
n rrfGG = , ),(),( 00

mnna
n
m

a
n rrfGrrfGGG =  and 

),(),(),( 000
vmmnna

m
v

n
m

a
n rrfGrrfGrrfGGGG =  are used for shorthand. 

 

Note that the multiple scattering phenomenon can be clearly defined as the radiation 

which is scattered many times from randomly distributed point scatterers so above 

defined the total field except the incident field a
incψ  is called as the total scattered 

field or the multiple scattered field and it is given by 
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≠
=

≠
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≠
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sin

1
....ψψψψ  

(2.28)

which is the multiple scattered field at the observation point a
scaψ :  

 

Note also that the term n
m

a
n GG  describes scattering of the incident field from the 

point scatterer m to the point scatterer n and then from the point scatterer n to the 

observation point ar , hence a double scattering term. Similarly, m
v

n
m

a
n GGG  describes 

scattering of the incident field first by the point scatterer v to the point scatterer m 

and then from the point scatterer m to the point scatterer n and finally from the point 

scatterer n to the observation point ar , hence a triple scattering term. These 

scattering processes are shown in Figure 2.3. 
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Figure 2.3: (a) The single scattering phenomenon. (b) The double scattering 
phenomenon. (c) The triple scattering phenomenon. 
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CHAPTER 3 

ANALYTIC INVESTIGATION OF THE 
BACKSCATTERING ENHANCEMENT 

FROM RANDOMLY DISTRIBUTED POINT 
SCATTERERS 

This Chapter thoroughly includes analytic studies of the backscattering 

enhancement from randomly distributed point scatterers. We begin this analysis by 

considering some terms of the total field at the observation point. These terms are 

given by Eq. (2.27). The first term of this summation is the incident field. The 

second term represents all the singly scattered fields denoted by ( )1
scaψ . The third 

summation accounts for all the doubly scattered fields denoted by ( )2
scaψ . The fourth 

summation accounts for all the triple scattering denoted by ( )3
scaψ  and so on, [1]. If 

we consider only the scattered fields at the observation point, except the incident 

field, the total scattered field at the observation point can be written as 

 

( ) ( ) ( )

( )∑
∞

=

=

+++=

1

321

)()(

...)()()()(

n

n
scasca

scascascasca

rr

rrrr

ψψ

ψψψψ
 (3.1) 

The total field intensity is obtained by multiplying the total scattered field )(rscaψ  

and its conjugate )(* rscaψ  and is given by 

 )()()( * rrrI scascasca ψψ=  (3.2) 

Using Eq. (3.1) to express )()( * rr scasca ψψ , we get 

 ( ) ( )∑∑
∞

=

∞

=′

′=
1 1

* )()()(
n n

n
sca

n
scasca rrrI ψψ  (3.3) 
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Expanding the serial summations in Eq. (3.3), the total scattered field intensity (or 

the field intensity due to multiple scattering) is expressed as 

 
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ...)(

221211

*22*12*21*11 ++++=
III

sca rI ψψψψψψψψ  (3.4) 

Using Eq. (3.4) the total scattered mean field intensity (or the mean field intensity 

due to multiple scattering) over all possible distributions of N particles can be 

obtained and is given by 

 

.....22

&sin

int

12

sin

11

field
scattering
double
average

field
scattering

doublegle
of

eraction
average

field
scattering

gle
average

field
scattering
average

sca IIII ><+><+><=><  

(3.5) 

where <..> denotes the ensemble average (or mean) over all possible distributions 

of N particles.  

3.1 Mean Field Intensity due to Single Scattering 
Phenomenon 

The single scattering phenomenon is shown in Figure 2.3 (a). The second term of 

Eq. (2.27) represents all the single scattering denoted by ( )1
scaψ  and given by 

 ( ) )()(
1

1
ninc

N

n

a
na rGr ψψ ∑

=

=  (3.6) 

In the calculation, we assume that the incident wave is a plane wave: 

 rki
inc

ier .)( =ψ  (3.7) 

Substituting the Green’s function ( )[ ]||4||
na

rrika
n rrefG na −−= − π  and the incident 

field expression rki
inc

ier .)( =ψ  into Eq. (3.6), we get  

 ( ) ni
na

rki
N

n na

rrik

a e
rr

efr .

1

||
1

||4
)( ∑

=

−

−
−=

π
ψ  (3.8) 

The mean field intensity due to single scattering can be written as 
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 ( ) ( ) >>=<< )()( *11
11 aa rrI ψψ  (3.9) 

Combining Eq. (3.8) and Eq. (3.9), we have 

 >⎥
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⎡
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e
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11 ||4||4 ππ
 (3.10) 

where the variable n  is used for ( ) )(1
arψ and the variable n′  is used for ( ) )(*1

arψ . 

Also we note that || na rr −  approaches || ar  in the far-field approximation. 
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∑∑ )).((

1 1
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11 )4(
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e
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 (3.11) 
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n

rrkki

a

nnsie
r

fI
1 1

)).((
2

2

11 )4(
||

π
 (3.12) 

where ii rkk ˆ=  is the incident wave vector and ir̂  is a unit vector in the direction 

from the source to the point scatterer and ss rkk ˆ=  is the scattered wave vector and 

sr̂  is a unit vector in the direction from the point scatterer to the observation point  

(see Figure 2.3 (a)). Lastly, the wave number is denoted by λπ2=k . Note that 

when the equality nn rr ′=  occurs, the exponent term becomes zero and the 

expression of the mean field intensity due to single scattering [ ])).(( nnsi rrkkie ′−−  becomes 

equal to one. This mentioned condition occurs N times in Eq. (3.12). We can insert 

N into that summation so that this condition ( nn rr ′= ) can be detached from the 

summation and it is given by 

 [ ]
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⎢
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11
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)4(
||

απ
 (3.13) 

We can use shorthand symbol 11α  to denote an ensemble average of [ ])).(( nnsi rrkkie ′−−  

which is single scattering expression and it is taken from Eq. (3.13) and given by 

 [ ] >=< ′−− )).((
11

nnsi rrkkieα  (3.14) 
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From this point, we give some relevant information about the ensemble average (or 

mean) and the probability density function. We first write the ensemble average of a 

function f and explain how the ensemble average of this function can be calculated.  

 

Let us state the ensemble average of f as  

 ∫∫ ∫>=< NnNn rdrdrdrdrrrrfpf ......),...,,...,,(.. 2121  (3.15) 

where the ensemble average (or mean) is given in terms of a probability density 

function 21( , ,..., ,..., )n Np r r r r . Now we consider a case where the point scatterer 

density is low and the scatterer size is much smaller than the distances between 

scatterers. In this case, we can neglect the finite size of scatterers and we can 

assume that the location and characteristics of each scatterer are independent of the 

locations and characteristics of other scatterers. This means that all scatterers are 

considered as point scatterers, [1]. Under this assumption, we get  

 )()...()...()()(),...,,...,,( 32121 NnNn rprprprprprrrrp =  (3.16) 

This expression represents that probability density function of each point scatterers 

can be written in a separate way. Probability of finding the scatterer n within a 

volume nrd  is given by nn rdrp )( : 

 

N
rdrw

V
dzdydxrdrdrp

nn

nnnn
nn

)(               

in  scatterers ofnumber  total
 within scatterers ofnumber  )(

=

=
=

 (3.17) 

where )( nrw  is the number density or the number of scatterers per unit volume. 

Thus, we get 

 
N
rwrp n

n
)()( =  (3.18) 

Note that if the number density ( )nw r  is uniform throughout the volume V, then 

 ( ) ( )
V

rp
N
rw)rp(

V
Nrw n

n
nn

1)(         ,  ===>==  (3.19) 

The average is now given by 
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 ∫∫ ∫>=< NN
N rdrdrd

N
rwrwrw

ff ...
)()...()(

.. 21
21  (3.20) 

If  f  depends on the location of a single scatterer n, then writing )( nrf , we obtain 

 ∫>=< n
n

nn rd
N
rwrfrf )()()(  (3.21) 

If f depends on the locations of two different scatterers m and n, then writing 

),( mn rrf , we obtain 

 mn
mn

mnmn rdrd
N

rwrw
rrfrrf 2

)()(
),(),( ∫∫>=<  (3.22) 

After all of the above expressions about finding the ensemble average (or mean) of 

a function f, we can now calculate 11α  by using these definitions. Therefore, the 

expression [ ])).(( nnsi rrkkie ′−−  is to be multiplied with the probability density function 

),( nn rrp ′  and then the following integral must be evaluated. 

 [ ]
nn

rrkki
nn rdrderrp nnsi

′
−−

′∫∫ ′= )).((
11 ),(α  (3.23) 

Since the scatterers are the point scatterers, it is assumed that their positions are 

independent, i.e., under this assumption, we have 

 )()(),( nnnn rprprrp ′′ =  (3.24) 

and also that if the density )( nrp  is uniform throughout the total volume V, then 

 
V

rprp nn
1)()( == ′  (3.25) 

 2

1)()(),(
V

rprprrp nnnn == ′′  (3.26) 

Finally, substituting Eq. (3.26) into Eq. (3.23), we get the integral form of 11α : 

 [ ]
nn

rrkki rdrde
V

nnsi
′

−−∫∫ ′= )).((
211

1α  (3.27) 
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3.1.1 The Particles are Distributed within a Cube 

We next consider a scenario in which the particles are distributed uniformly within 

a cube whose dimension is D=2d, this scenario is depicted in Figure 3.1: 

 

 

 

Figure 3.1: The particles are distributed within a cube whose dimension D=2d. 

In order to understand the fundamentals of a scattering phenomenon let us consider 

just only one of these scatterers. The incident wave vector and the scattered wave 

vector of a single point scatterer are examined and depicted in Figure 3.2. 
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Figure 3.2: (a) Representation of relation between the incident wave vector and the 
scattered wave vector. (b) The incident wave vector and the scattered wave vector 
in the Cartesian coordinate system. 

In the far-field approximation, the scattering angle is assumed as sθ  depicted in the 

Figure 3.2. If we consider the incident field in the –z direction (see Figure 3.2 (b)), 

the incident wave vector for this field is written as zi ak ˆ−=  and the scattered wave 

vector can be written as zsyss aak ˆcosˆsin θθ += . If we insert these two wave vectors 

into Eq. (3.27), this integral can be evaluated to give: 

 
( )[ ] [ ]

)2/(sin)2/(cos)(
sinsin2/cossin

)( 264

222

11
ss

ss
s kD

kdkD
θθ

θθ
θα =  (3.28) 

where particles are confined to dxd ≤≤− , dyd ≤≤−  and dzd ≤≤− . In other 

words, this cube’s dimension is D=2d (see Figure 3.1). 
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The scattering angle sθ  is the angle between the incident wave vector direction and 

the scattered wave vector direction. Also, 11α  from cubical distribution depends on 

the scattering angle sθ . Note that if the scattering angle sθ  approaches forward 

scattering direction, π , 11α  from cubical distribution is 

 1)(lim 11 =
→ s

s

θα
πθ

 (3.29) 

Note also that if the scattering angle sθ  approaches backscattering direction, 0, 11α  

from cubical distribution is 
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 (3.30) 

In the limit as the volume of the cube goes to infinity, i.e., ∞→D , in Eq. (3.30) 

11α  from cubical distribution becomes equal to 0: 

 0
)(

1)(lim 2110
⎯⎯ →⎯≤ ∞→→ Ds kDs

θα
θ

 (3.31) 

We substitute Eq. (3.28) into Eq. (3.13) in order to get the mean field intensity due 

to single scattering >< 11I  from cubical distribution: 
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In the above equation, the terms in the double summation are independent of the 

summation variables. Thus, a factor (N−1) comes from the first summation and a 

factor N comes from the second summation, and then we have 
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To depict this case, we arrange Eq. (3.33) by multiplying both sides of this Eq. with  

constant 22 ||)4( fraπ , and then we get 
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This is the mean field intensity due to single scattering from cubical distribution of 

the point scatterers >< 11I  and is plotted in Figure 3.3 as a function of the 

scattering angle. 

 

 

 

Figure 3.3: The mean field intensity due to single scattering from cubical 
distribution: N=50, D=30 and k=1. 

As can be seen from Figure 3.3, a peak occurs in the backscattering direction from 

cubical distribution which is due to specular-like reflection since the incident field 

is normal to the surface of this cube, and this case is investigated in more detail in 

Section 4.3. In this study, we also prove that the backscattering enhancement is only 

constituted due to multiple scattering. We note that the mean field intensities are 

calculated in the decibel (dB) units throughout this thesis. The decibel (dB) is the 

logarithmic quantity and determined in a common way when referring to 

measurements of power or intensity. The basic decibel quantity is given by 

( ))(log10)( 10 xfxf dB = .  
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3.1.2 The Particles are Distributed within a Sphere 

We next consider a scenario in which the particles are distributed within a sphere 

whose diameter is D=2a, this scenario is depicted in Figure 3.4: 

 

 

 

Figure 3.4: The particles are distributed within a sphere whose diameter is D=2a. 

If we insert zi ak ˆ−=  and zsyss aak ˆcosˆsin θθ +=  into Eq. (3.27), this integral, for 

spherical distribution, can be evaluated and then 11α  is obtained as 
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Note that if the scattering angle sθ  approaches forward scattering direction, π , 11α  

from spherical distribution is 

 1)(lim 11 =
→ s

s

θα
πθ

 (3.36) 

Note also that if the scattering angle sθ  approaches backscattering direction, 0 , 11α  

from spherical distribution is 
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In the limit as the volume of the sphere goes to infinity, i.e., ∞→D , in Eq. (3.37) 

11α  from spherical distribution becomes equal to 0: 

 0
)(

9)(lim 4110
⎯⎯ →⎯≅ ∞→→ Ds kDs

θα
θ

 (3.38) 

We substitute Eq. (3.35) into Eq. (3.13) in order to get the mean field intensity due 

to single scattering >< 11I  from spherical distribution: 
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In the above equation, the terms in the double summation are independent of the 

summation variables. Thus, a factor (N−1) comes from the first summation and a 

factor N comes from the second summation, and we have 

 ( ) ( )[ ]
⎥
⎦

⎤
⎢
⎣

⎡ −
−+>=<

)2/(cos)(
)2/cos(sin)2/cos()2/cos(cos9)1(

)4(
||

66

2

2

2

11
s

sss

a kD
kDkDkDNNN

r
fI

θ
θθθ

π
 (3.40) 

To depict this case, we arrange Eq. (3.40) by multiplying both sides of this Eq. with 

constant 22 ||)4( fraπ , and then we get 
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This is the mean field intensity due to single scattering from spherical distribution 

of the point scatterers >< 11I  and is plotted in Figure 3.5 as a function of the 

scattering angle. 

 

 

 

Figure 3.5: The mean field intensity due to single scattering from spherical 
distribution: N=50, D=30 and k=1. 

As can be seen from Figure 3.3, any kind of the enhancement in the backscattering 

direction from spherical distribution does not occur while the incident field is 

normal to the surface of this sphere. Meanwhile, forward scattering intensity in the 

direction of ± 180 degrees can be seen clearly from the above figure while the 

incident field is in the direction of 0 degrees. 

 

Comparison of cubical and spherical distributions, for N=50, D=30, is shown in 

Figure 3.6. 
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Figure 3.6: Comparison of cubical and spherical distributions: N=50 and D=30. 

It can be seen from the above results that a specular enhancement is observed for 

the cubical distribution; however, no enhancement is observed for the spherical 

distribution in the any direction. From this result, we can conclude that the overall 

distribution of the point scatterers influences the result. 

3.2 Mean Field Intensity due to Double Scattering 
Phenomenon 

3.2.1 The Particles are Distributed within a Sphere 

The double scattering phenomenon is shown in Figure 2.3 (b). The double 

scattering is the first multiple scattering mechanism in the distribution volume and it 

is one of the low-order multiple scattering terms. The third term of Eq. (2.27) 

represents all the double scattering denoted by ( )2
scaψ  and given by 
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After we substitute the Green’s functions, which are written as 

( )[ ]||4||
na

rrika
n rrefG na −−= − π  and ( )[ ]||4||

mn
rrikn

m rrefG mn −−= − π , and the incident 

field expression mi rki
minc er .)( =ψ  into Eq. (3.42), the double scattered field ( )2

scaψ  is 
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The mean field intensity due to double scattering >< 22I  can be written as 

 ( ) ( ) >>=<< )()( *22
22 aa rrI ψψ  (3.44) 

Combining Eq. (3.43) and Eq. (3.44), we have  
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where the variables m  and n  are used for ( ) )(2
arψ  and the variables m′  and n′ are 

used for ( ) )(*2
arψ . Also, we can use shorthand symbol ( )c

22α  in order to denote an 

ensemble average of ∑∑∑∑
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double scattering expression for all cases and the superscript c stands for the cases 

that are defined below. The mean field intensity due to double scattering in Eq. 

2(3.45) can be written in a simple way: 

 ( )[ ]c
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and ( )c
22α  is stated clearly as 
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 is to be multiplied 

with the probability density function ),,,( nmnm rrrrp ′′  and then integrated in order to 

calculate ( )c
22α . This integral can be considered separately for seven possible cases. 

( )c
22α  can be also written as using these seven possible cases (see Figure 3.7) in the 

following manner:  
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The coefficients of the above equation are the total number of possible ways to 

choose each one of their conditions (see Figure 3.7). The term N(N−1) of these 

coefficients is a common multiplier. Thus, this equation can be simplified in the 

following way: 
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We will next explain what these seven possible cases are and how the total number 

of possible ways can be computed. Depending on the choice of m′  and n′ , we are 

evaluating the correlation of the ray with a different ray. There are seven possible 

cases shown in Figure 3.7. In this figure, the dashed line refers to conjugate of the 

double scattered field ( ) )(*2
arψ  and the continuous line refers to the double 

scattered field ( ) )(2
arψ . We use basic principle of counting to determine the number 

of different ways occurring in Figure 3.7. Let us describe how this principle is 

applied to our cases. 

 

In case 1, we can choose point scatter m′  to be the same scatterer as m th one. From 

N randomly distributed point scatterers, this can be done in N different ways. After 
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this, there remain (N−1) point scatterers. Thus, nn =′  can be chosen in (N−1) 

different ways from the remaining (N−1) point scatterers. After the sequence of 

these two choosing processes, the total number of possible ways to choose 

nnmm =′=′ &  is N(N−1). 

 

Case 2 is very similar to case 1. Actually, case 2 is conjugate of case 1. Therefore, 

we can say directly that the total number of possible ways to choose 

mnnm =′=′ &  is again N(N−1). 

 

In case 3, we can choose the point scatter m′  from N randomly distributed point 

scatterers in N different ways. After this, there remain (N−1) point scatterers among 

which nm ≠′  can be chosen in (N−1) different ways. Then, there remain (N−2) 

point scatterers. Thus, nn =′  can be chosen in (N−2) different ways from the 

remaining (N−2) point scatterers. After the sequence of these three choosing 

processes, the total number of possible ways to choose nnnmmm =′≠′≠′ &,  is 

N(N−1)(N−2). 

 

Case 4, case 5 and case 6 have the same kind of choosing methods as case 3. 

Therefore, we can say directly the total number of possible ways to choose each one 

of their conditions is N(N−1)(N−2). 

 

In case 7, we can choose the point scatter m′  from N randomly distributed point 

scatterers in N different ways. After this, there remain (N−1) point scatterers among 

which nm ≠′  can be chosen in (N−1) different ways. Then, there remain (N−2) 

point scatterers among which mn ≠′  can be chosen in (N−2) different ways leaving 

(N−3) point scatterers. Finally, nn ≠′  can be chosen in (N−3) different ways from 

the remaining (N−3) point scatterers. After the sequence of these four choosing 

processes, the total number of possible ways to choose mnnmmm ≠′≠′≠′ ,,  

nn ≠′&  is N(N−1)(N−2)(N−3). 
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Figure 3.7: Seven possible cases of ( )c
22α . 
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3.2.1.1 Case 1: nnmm =′=′ &  

Case 1 is defined by the condition nnmm =′=′ & . In order to get a result, we insert 

m instead of m′  and n instead of n′  into Eq. (3.47) as follows: 
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After all, we obtain an ensemble average of 2||1 mn rr −  and it is denoted by ( )1
22α : 

 ( ) >
−

=< 2
1

22 ||
1

mn rr
α  (3.51) 

Expression 2||1 mn rr −  is multiplied with the probability density function ),( nm rrp  

and then integrated to obtain its ensemble average: 
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This integral is quite difficult to compute. Therefore, we can use change of 

variables technique in order to evaluate this integral. Change of variables is one of 

the basic techniques in replacing one variable with another to obtain a simpler form 

integral. Now, we can apply this technique to above integral by introducing the 

variables 2),( 1221 rrrrrr mm +==  and 2),( 1221 rrrrrr nn −== . We suppose that 

the region S ′  in the 21rr −plane is transformed into a region S  in the nmrr −plane, 

[33]. Under this transformation, we can write the explicit statement of this 

technique as 

 ∫∫∫∫
′

=
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nmnm rdrdrrJrrfrdrdrrf 212121 ),(),(),(  (3.53) 
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where ),( 21 rrJ  is the absolute value of the Jacobian which is defined as a 

determinant of a 2x2 matrix. This determinant is given by 
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After evaluating the absolute value of the Jacobian, the relationship between the 

element of area nm rdrd  and the corresponding area element 21 rdrd  is given by  
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Let us rearrange the variables, the area elements and the absolute value of the 

Jacobian in the following manner: 
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After the change of variables and using joint probability density function of two 

point scatterers, 21)()(),( Vrprprrp nmnm == we get a simpler form integral as 
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After the change of variables, the volume of above simpler integral is also varied. In 

a condition of the infinite volume assumption, we can take integral over the sphere 

and this gives us the approximate result. In order to evaluate the above volume 
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integral, we'll first have to convert all the terms of 1r  into spherical polar terms in 

the following way: 
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Finally, solution to this integral is 
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3.2.1.2 Case 2: mnnm =′=′ &  

Case 2 is defined by the condition mnnm =′=′ & . In order to get a result, we insert 

n instead of m′  and m instead of n′  into Eq. (3.47) as follows: 
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After all, we obtain an ensemble average of [ ] 2)).(( || nm
rrkki rre nmsi −−+ and it is 

denoted by ( )2
22α : 
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Expression [ ] 2)).(( || nm
rrkki rre nmsi −−+  is multiplied with the probability density 

function ),( nm rrp  and then integrated to obtain its ensemble average: 
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α

α
 (3.64) 

This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 

 

1),(
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rr
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rrr

nm

nm

nm

 (3.65) 

After the change of variables and using joint probability density function of two 

point scatterers 21)()(),( Vrprprrp nmnm == , we have 

 ( ) ∫∫=
V

ri

rdrd
r

e
V 212

1

)).((

2
2

22

11 σ

α  (3.66) 

where σθσ ˆ)2sin(2 sis kkk =+=  is the sum of the incident and scattered wave 

vectors and )cos(ˆ.ˆ
ssi kk θπ −=  is the scalar product of the incident and scattered 

wave unit vectors. 
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)).((
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22

11 σ

α  (3.68) 

In order to evaluate the above volume integral, we'll first have to convert all the 

terms of 1r  into spherical polar terms in the following way: 

 ( ) ϕθθα
π

ϕ

π

θ

θσ

ddrdr
r

e
V

a

r

ir

∫ ∫ ∫
= = =

=
2

0 0 0

2
2
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2

22 sin1  (3.69) 

Solution to this integral is ( )2
22α  is  
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( ) ( )

σ
σα

σ
σπα

π a
aSi

a
aSi

V aV

)(3)(4
2

2
22

3
4

2
22 3

=⎯⎯⎯ →⎯=
=

 (3.70) 

where  ∫=
σ

σ
a

dt
t

taSi
0

sin)(  is the Sine integral and ( )2sin2 sis kkk θσσ =+==  

is the amplitude of the sum of the incident and scattered wave vectors. Some 

properties of the Sinc function and the Sine integral are given in Appendix G. As 

can be seen from the above equation, ( )2
22α  has the form Sine integral divided by σa  

and also σ  depends on the scattering angle. Therefore, we expect ( )2
22α  to give rise 

to the backscattering enhancement. In Section 3.2.1.8, we show that ( )2
22α  is the 

main cause of the backscattering enhancement. In order to see this contribution, 
( )2
22α  is plotted in Figure 3.8 as a function of the scattering angle. 

 

 

 

Figure 3.8: ( )2
22α , the ensemble average of  [ ] 2)).(( || nm

rrkki rre nmsi −−+  which is double 
scattering expression for case 2. 
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NOTE:  

If we insert the approximation [ ] aaSi =
→

σσ
σ

)(lim
0

 into Eq. (3.70), we get 

 ( ) a
V

aSi
V

π
σ
σπα

σσ

4)(4limlim
0

2
220

==
→→

 (3.71) 

This limit ( )2
220

limα
σ→

 is equal to ( )1
22α  as expected ( ) ( ) ( )( )1

22
2

220
4lim απα

σ
==

→
aV . 

 

If we insert the infinite volume approach [ ] ( ) σπσσ 2)(lim =
∞→

aSi
a

 into Eq. (3.70) 

in the following manner, we get 

 ( )

σ
π

σ
ππ

σ
σπα

VV
aSi

Vaa

2
2

22
22/4)(4limlim ===

∞→∞→
 (3.72) 

Inserting ( )σθσ ˆ2sin2 ssi kkk =+= ; ( )( )2sin2 sk θσ =  into Eq. (3.72), we have  

 
( )

2
sin

2
sin2

22lim
222

2
22

ssa
VkkVV θ

π
θ

π
σ
πα ===

∞→
 (3.73) 

When we consider infinite volume assumption for the sphere ( ∞→a ), ( )2
22α  

approaches ( )[ ]2sin2
sVk θπ .  

 

Note that we can take integral over the sphere and this gives us the approximate 

results in a condition of the infinite volume assumption. In the following chapter, 

these approximate numerical results are tested by MC simulations and we prove that 

the results nicely agree with each other. This obviously indicates that the infinite 

volume assumption is not too bad. Since there is no other way to evaluate integrals 

of ( )2
22α  and also we use this assumption to evaluate the others. 

3.2.1.3 Case 3: nnnmmm =′≠′≠′ &,  

Case 3 is defined by the condition nnnmmm =′≠′≠′ &, . In order to get a result, 

we insert n instead of n′  into Eq. (3.47) as follows: 
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which can be rearranged into the form: 
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After all, we obtain an ensemble average and this is denoted by ( )3
22α : 
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||||).(
3

22
nmnm

rrikrrikrrki
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Expression [ ] ||||||||).(
nmnm

rrikrrikrrki rrrreee nmnmmmi −− ′
−−−− ′′  is multiplied with the 

probability density function ),,( mnm rrrp ′  and then integrated to obtain its ensemble 

average: 
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 (3.78) 

This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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After the change of variables and using joint probability density function of three 

point scatterers 31)()()(),,( Vrprprprrrp mnmmnm == ′′ , we have 
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Now, the above integral is quite complicated. Thus, we separate it into component 

parts as follows: 
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where the first integral is equal to volume V. Also, the last two integrals are 

conjugate of each other. Hence, with respect to the equivalence 2* ||. III = , ( )3
22α  is 

written as 

 ( )
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2
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α  (3.84) 

In order to evaluate the above volume integral, we'll first have to convert all the 

terms of r  into spherical polar terms in the following way: 
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Solution to this integral is given by 

 ( ) [ ])2sin(2)2cos()(212 2
24

2
3

22 kakakaka
Vk

−−+=
πα  (3.86) 

When we consider infinite volume assumption for the sphere ( ∞→a ), the term 

[ ])2sin(2)2cos()(21 2 kakakaka −−+  can approach the term with the largest degree, 

such as [ ]2)(2 ka . 
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 ( ) [ ]2
24

2
3

22 )(22 ka
Vk
πα ≅  (3.87) 

After expressing the volume of the sphere in terms of its radius as ( ) 334 aV π= , 
( )3
22α  is determined as 

 ( )
42

3
22 4

9
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≅α  (3.88) 

3.2.1.4 Case 4: mnnmmm =′≠′≠′ &,  

Case 4 is defined by the condition mnnmmm =′≠′≠′ &, . In order to get a result, 

we insert m instead of n′  into Eq. (3.47) as follows: 
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which can be rearranged into the form: 
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Expression [ ][ ]|||| ||||).().(
mm
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rrikrrkirrki rrerreee mmnmmminms −− ′
−−−−− ′′  is multiplied 

with the probability density function ),,( mnm rrrp ′  and then integrated to obtain its 

ensemble average: 
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 (3.91)

This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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After the change of variables and using joint probability density function of three 

point scatterers 31)()()(),,( Vrprprprrrp mnmmnm == ′′ , we have 
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Now, the above integral is quite complicated. Thus, we separate it into component 

parts as follows: 
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where the first integral is equal to volume V. Also, the last two integrals are 

conjugate of each other (Note that sk  and ik  are in general different so they are 

conjugate of each other, too). Hence, with respect to the equivalence 2* ||. III = , ( )4
22α  

is stated as 
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This result is the same as the result of ( )3
22α . In other words, ( )3

22α  is equal to ( )4
22α : 
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3.2.1.5 Case 5: nnmnmm ≠′≠′=′ &,  

Case 5 is defined by the condition nnmnmm ≠′≠′=′ &, . In order to get a result, 

we insert m instead of m′  into Eq. (3.47) as follows: 

 ( ) >
−−

=<
′

−−−
−−

′
′

||||

||||
).().(5

22
mn

rrik

mn

rrik
rrkirrki

rr
e

rr
eee

mnmn
mminnsα  (3.101) 

which can be rearranged into the form: 
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We obtain an ensemble average of 
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Expression [ ][ ]|||| ||||).(
nm

rrik
nm

rrikrrki rrerree nmnmnns
′

−−−− −− ′′  is multiplied with the 

probability density function ),,( nnm rrrp ′  and then integrated to obtain its ensemble 

average: 
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This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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After the change of variables and using joint probability density function of three 

point scatterers 31)()()(),,( Vrprprprrrp nnmnnm == ′′ , we have 
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Now, the above integral is quite complicated. Thus, we separate it into component 

parts as follows: 
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where the first integral is equal to volume V. Also, the last two integrals are 

conjugate of each other. Hence, with respect to the equivalence 2* ||. III = , ( )5
22α  is 

stated as 
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This result is the same as the result of ( )3
22α . In other words, ( )3

22α  is equal to ( )5
22α : 
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3.2.1.6 Case 6: nnmnnm ≠′≠′=′ &,  

Case 6 is defined by the condition nnmnnm ≠′≠′=′ &, . In order to get a result, 

we insert n instead of m′  into Eq. (3.47) as follows: 
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which can be rearranged into the form: 
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Expression [ ][ ]|||| ||||).().(
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−−−−− −− ′′  is multiplied with 

the probability density function ),,( nnm rrrp ′  and then integrated to obtain its 

ensemble average: 
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This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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After the change of variables and using joint probability density function of three 

point scatterers 31)()()(),,( Vrprprprrrp nnmnnm == ′′ , we have 
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Now, the above integral is quite complicated. Thus, we separate it into component 

parts as follows: 
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where the first integral is equal to volume V. Also, the last two integrals are 

conjugate of each other (Note that sk  and ik  are in general different so they are 

conjugate of each other, too). Hence, with respect to the equivalence 2* ||. III = , ( )6
22α  

is stated as 

 ( )
2

).(

2
6

22
1
∫

+

=
V

krrki

rd
r

e
V

i

α  (3.120) 

This result is the same as the result of ( )3
22α . In other words, ( )3

22α  is equal to ( )6
22α : 
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Finally, we note that the last four results of the ensemble averages are equal to each 

other. This relation can be stated as 
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3.2.1.7 Case 7: nnmnnmmm ≠′≠′≠′≠′ &,,  

Case 7 is defined by the condition nnmnnmmm ≠′≠′≠′≠′ &,, . In order to get a 

result, we use the general formula of ( )c
22α  as follows: 
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which can be rearranged into the form: 
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Expression [ ][ ]|||| ||||).().(
nm

rrik
nm

rrikrrkirrki rrerreee nmnmmminns
′′

−−−−− −− ′′′′  is multiplied 

with the probability density function ),,,( nmnm rrrrp ′′  and then integrated to obtain 

its ensemble average: 
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This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner:  
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 (3.126) 

After the change of variables and using joint probability density function of four 

point scatterers 41)()()()(),,,( Vrprprprprrrrp nmnmnmnm == ′′′′ , we have 
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which is separated into component parts, and then we have 
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where the first two and the last two integrals are conjugate of each other (Note that 

sk  and ik  are in general different so they are conjugate of each other, too). With 

respect to the equivalences 2
1

*
11 ||. III =  and 2

2
*
22 ||. III = , ( )7

22α  is stated as 
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Now, the above integral is quite complicated. It is expressed by 
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After making use of the sum of the incident and scattered wave vectors 

( )σθσ ˆ2sin2 sis kkk =+= , the solution to the integral 2
3I  can be stated as 



 46

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

+−−

=

)
2

sinsin(
2

sin)sin(4

)
2

sin(coscos)
2

sin(cos

)
2

sincos()cos()cos(2

)
2

sincos()cos(2)cos(3

2
cos

2
sin

8
22442

2
2
3

ss

s
s

s

s
s

s
s

ss

kaka

kaka

kaka

kaka

k
I

θθ

θ
θ

θ

θ
θ

θ
θ

θθ
π

 (3.132)

Note that, at the backscattering direction ( 0→sθ ), the result of the integral 2
3I  

approaches 
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After the functional graphic of the term ( )[ ])sin()cos(21 22 kakakaka −−+  is 

analyzed, it is evaluated that this term is always smaller than [ ]22ka . After this 

examination, 2
3I  can be given by 
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Finally, at the backscattering direction ( 0→sθ ), the result of the integral 2
3I  attains 

its max value as follows: 
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After making use of the sum of the incident and scattered wave vectors 

( )σθσ ˆ2sin2 sis kkk =+= , the solution to the integral 2
4I  can be stated as 
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At the backscattering direction ( 0→sθ ), this term )2cos(2 skax θ=  is to be 

kax 2=  and also the result of the integral 2
4I  is  
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When we consider infinite volume assumption for the sphere ( ∞→a ), the term 

( )( ) ( )( ) ( )( )[ ]2322sin2cos2 kakakaka −  can approach this term [ ]22)2(1 ka .  Finally, 

Note that, at the backscattering direction ( 0→sθ ), the result of the integral 2
4I  

approaches 
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If we insert the approximate values of these integrals 2
3I  and 2

4I  into Eq. (3.131) 
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After expressing the volume of the sphere in terms of its radius as ( ) 334 aV π=  and 

simplifying the above equation, ( )7
22 α  is given by 
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After finding the values of seven possible cases, we can now calculate ( )c
22α  by using 

below expression: 
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Eq. (3.141) can be simplified by using the equality ( ) ( ) ( ) ( )6
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5
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4
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3
22 αααα ===  

 ( ) ( ) ( ) ( )[ ]7
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3
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After expressing the volume of the sphere in terms of its radius as ( ) 334 aV π=  and 

inserting the ensemble average terms of double scattering, ( )c
22α  can be stated as 
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Arranging Eq. (3.143), we have 
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After inserting this constant [ ] kTif π4=  into Eq. (3.46), we get 
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Substituting Eq. (3.144) into Eq. (3.145), we obtain the mean field intensity due to 

double scattering from spherical distribution: 
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3.2.1.8 Some Results about Double Scattering 

I) We expect ( )2
22α  to give the backscattering enhancement. As far as infinite volume 

assumption ( ∞→a ) is concerned, ( )2
22α  approaches ( )[ ]2sin2

sVk θπ . Due to its 

form, a narrow peak in the backscattering direction ( 0→sθ ) is observed. 
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II) The mean field intensity due to double scattering is stated as 
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If we want the effect of ( )63
22
−α  to be negligible as compared to ( )7

22α , we must have 
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Considering some assumptions, we can find relationship between the diameter of 

sphere D=2a and the number of scatterers N in the following manner: 
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The effect of the third term ( )63
22
−α  is negligible as compared to that of the last term 

( )7
22α  if the diameter of sphere 4)(ka  is larger than the number of scatterers 

)25.11(N , such as ( ) )25.11()( 4 Nka > . So, an approximate formula of the mean 

field intensity due to double scattering is stated as  
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where ( ) )25.11()( 4 Nka > . 

 

III) If we want the effect of ( )63
22
−α  to be negligible as compared to that of ( )1

22α  and 
( )2
22α , we must have 
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We also note that this inequality ensures that the last term ( )7
22α   is also much 

smaller than both the first term ( )1
22α  and the second term ( )2

22α . Therefore, ( )7
22α  is 

negligible as compared to the first two terms. The effects of the third term ( )63
22
−α  

and the last term ( )7
22α  are negligible as compared to that of both the first term ( )1

22α  

and the second term ( )2
22α  if the diameter of sphere 2)(ka  is larger than the number 

of scatterers N30 , like Nka 30)( 2 > . So, the approximate formula of the mean field 

intensity due to double scattering is stated as  
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where Nka 30)( 2 > . As can be seen from the above equation, >< 22I  has the Sine 

integral divided by σa  and also σ  depends on the scattering angle. Therefore, we 

expect >< 22I  to give the backscattering enhancement. In previous section, we 

present that this Sine integral term [ ] σσ aaSi )(  comes from ( )2
22α . We note that the 

double scattering phenomenon is the first multiple scattering mechanism in the 

distribution volume and the approximate formula of the mean field intensity due to 

double scattering is obtained in an analytical manner and given by Eq. (3.154). In 

order to depict this case, we arrange Eq. (3.154) and then we get 
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The above equation is shown in Figure 3.9 as a function of the scattering angle. 

 

 

 

Figure 3.9: The approximate formula of the mean field intensity due to double 
scattering: N=100 and a=100. 

In Figure 3.9, the approximate formula of the mean field intensity due to double 

scattering >< 22I  is given for N=100, a=100 and k=1 (note that 2)(ka  =10000; 

30N=3000). As far as the backscattering enhancement is concerned, the 

approximate formula gives quiet satisfactory result. 

 

IV) Define r to be the ratio of the mean field intensity in the backscattering 

direction to the mean field intensity at any other direction: 
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which becomes very small for large values of point scatterers number N. This 

means that if the point scatterers number N is getting larger, the backscattering 

enhancement is to disappear because of the shadow effect. We also note that the 

shadow effect is explained in Section 4.6 and we observed that same result for 

multiple scattering, too. 

3.3 Mean Field Intensity due to Interaction of Single and 
Double Scattering Phenomenon 

3.3.1 The Particles are Distributed within a Sphere 

In Eq. (3.4), the mean field intensity due to interaction of single and double 

scattering is found as 

 ( ) ( ) ><>=< )()(Re2 *21
12 aa rrI ψψ  (3.159) 

Substituting the single scattered field ( ) )(1
arψ  and conjugate of the double scattered 

field ( ) )(*2
arψ  expressions into Eq. (3.159), we have  
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where the variable n  is used for ( ) )(1
arψ  and the variables m′  and n′  are used for 

( ) )(*2
arψ . After arranging Eq. (3.160), we have 
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We can use shorthand symbol ( )c
12α  in order to denote an ensemble average of 
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 which defines the interaction of single and 

double scattering expression for all cases and the superscript c stands for the cases 

that are defined below. The mean field intensity due to interaction of single and 

double scattering in Eq. (3.161) can be written in a simple way: 
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and ( )c
12α  is stated clearly as 
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 is to be multiplied with the 

probability density function ),,( nmn rrrp ′′  and then integrated in order to calculate 

the expected value of ( )c
12α . This resulting integral can be evaluated for three 

different possible cases which we consider separately in the following sections. 

Under these three possible cases ( )c
12α  can be written as (see Figure 3.10) as follows:  

 ( ) ( ) ( ) ( )3
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2
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1
1212  )2)(1()1( )1(  αααα −−+−+−= NNNNNNNc  (3.164) 

The coefficients of the above equation are the total number of possible ways to 

choose each one of their conditions (see Figure 3.10). The term N(N−1) of these 
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coefficients is a common multiplier. Thus, this equation can be simplified in the 

following way: 

 ( ) ( ) ( ) ( )[ ]3
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1212  )2( )1(  αααα −++−= NNNc  (3.165) 

We will next explain what these three possible cases are and how the total number 

of possible ways can be computed. Depending on the choice of n, we are evaluating 

the correlation of the ray with a different ray. There are three possible cases shown 

in Figure 3.10. In this figure, the dashed line refers to conjugate of the double 

scattered field ( ) )(*2
arψ  and the continuous line refers to the single scattered field 

( ) )(1
arψ .  We use basic principle of counting to determine the number of different 

ways occurring in Figure 3.10. Let us describe how this principle is applied to our 

cases. 

 

In case 1, we can choose point scatter m′  to be the same scatterer as n th one. From 

N randomly distributed point scatterers, this can be done in N different ways. After 

this, there remain (N−1) point scatterers. Thus, nn ≠′  can be chosen in (N−1) 

different ways from the remaining (N−1) point scatterers. After the sequence of 

these two choosing processes, the total number of possible ways to choose 

nnnm ≠′=′ &  is N(N−1). 

 

Case 2 has the same kind of choosing processes as case 1. Therefore, we can say 

directly the total number of possible ways to choose nnnm =′≠′ &  is again 

N(N−1). 

 

In case 3, we can choose the point scatter m′  from N randomly distributed point 

scatterers in N different ways. After this, there remain (N−1) point scatterers among 

which nn ≠′  can be chosen in (N−1) different ways. Then, there remain (N−2) 

point scatterers. Thus, n  can be chosen in (N−2) different ways from the remaining 

(N−2) point scatterers. After the sequence of these three choosing processes, the 

total number of possible ways to choose nnnnm &, ≠′≠′  is N(N−1)(N−2). 
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N(N-1)(N-2) 
ways

 

Figure 3.10: Three possible cases of ( )c
12α . 

3.3.1.1 Case 1: nnnm ≠′=′ &  

Case 1 is defined by the condition nnnm ≠′=′ & . In order to get a result, we insert 

n instead of m′  into Eq. (3.163) as follows: 

 ( ) >
−

=< −−−

′

−−
′

′
).().(

||
1

12 ||
nninns

nn
rrkirrki

nn

rrik

ee
rr

eα  (3.166) 

which can be rearranged into the form: 
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After all, we obtain an ensemble average of [ ] ).(|| || nnsnn rrki
nn

rrik erre ′′ −−
′

−− − and it is 

denoted by ( )1
12α : 
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Expression [ ] ).(|| || nnsnn rrki
nn

rrik erre ′′ −−
′

−− − is multiplied with the probability density 

function ),( nn rrp ′  and then integrated to obtain its ensemble average: 
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 (3.170) 

This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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 (3.171) 

After the change of variables and using joint probability density function of two 

point scatterers 21)()(),( Vrprprrp nnnn == ′′ , we have 
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After the change of variables, the volume of above integral is also varied. In a 

condition of the infinite volume assumption, we can take integral over the sphere 

and this gives us the approximate result. Solution to the above integral is 

 ( ) ( )iake
Vk

iak 21 2
2

1
12 −−= −πα  (3.175) 

We first write the below approximated serial expansion: 

 ...
2

1
2

+++≅
xxex  (3.176) 

So, we can write iake 2−  in the same manner, 

 ( ) ( ) ...
2

221
2

2 +
−

+−+≅− iakiake iak  (3.177) 

When we consider the above approximated serial expansion, the term 

( )iake iak 21 2 −− −  can approach this term ( )222 ka . After this approximation, ( )1
12α  is 

stated as  

 ( )

V
a 2

1
12

2πα ≅  (3.178) 

Expressing the volume of the sphere in terms of its radius as ( ) 334 aV π= , we get 

 ( )

a2
31

12 ≅α  (3.179) 

3.3.1.2 Case 2: nnnm =′≠′ &  

Case 2 is defined by the condition nnnm =′≠′ & . In order to get a result, we insert 

n instead of n′  into Eq. (3.163) as follows: 
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which can be rearranged into the form: 
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After all, we obtain an ensemble average of [ ] ).(|| || mninm rrki
nm

rrik erre ′′ −
′

−− −  and it is 

denoted by ( )2
12α : 
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Expression [ ] ).(|| || mninm rrki
nm

rrik erre ′′ −
′

−− −  is multiplied with the probability density 

function ),( mn rrp ′  and then integrated to obtain its ensemble average: 
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This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner: 
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After the change of variables and using joint probability density function of two 

point scatterers 21)()(),( Vrprprrp mnmn == ′′ , we have 
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Solution to the above integral is 

 ( ) ( )iake
Vk

iak 21 2
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2
12 −−= −πα  (3.190) 

This result is the same as the result of ( )1
12α . In other words, ( )1

12α  is equal to ( )2
12α . So, 

we can directly state ( )2
12α  as 
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3.3.1.3 Case 3: nnnm ≠′≠′ &  

Case 3 is defined by the condition nnnm ≠′≠′ & . In order to get a result, we use 

the general formula of ( )c
12α  as follows: 
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which can be rearranged into the form: 
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Expression [ ] ).().(|| || mninnsnm rrkirrki
nm

rrik eerre ′′′′ −−−
′′

−− −  is multiplied with the probability 

density function ),,( nmn rrrp ′′  and then integrated to obtain its ensemble average: 
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This integral is quite difficult to compute. Therefore, we make change of variables 

in the following manner:  
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After the change of variables and using joint probability density function of three 

point scatterers 31)()()(),,( Vrprprprrrp nmnnmn == ′′′′ , we have 
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which is separated into component parts, and then we have 
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where ( )δθδ ˆ2cos2 ssi kkk =−=  is the subtraction of the incident and scattered 

wave vectors. The solution to Eq. (3.198) is given by 
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θπα =
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In the backscattering direction ( 0→sθ ), the term ( )2cos2 skax θ=  approaches to 

kax 2= . Therefore, ( )3
12α  can be stated as 
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When we consider the infinite volume assumption for the sphere ( ∞→a ) and the 

volume of the sphere in terms of its radius as ( ) 334 aV π= , ( )2
22α  can approach 
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After finding the values of three possible cases, we can calculate ( )c
12α  by using 

below expression: 
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After expressing the volume of the sphere in terms of its radius as ( ) 334 aV π=  and 

this constant [ ] kTif π4= , we obtain the mean field intensity due to interaction of 

single and double scattering as 

 ( )[ ]c
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TTiI 1223
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)Re(||2 α>=<  (3.205) 

When inserting the value of ( )c
12α  into the above equation, we get the mean field 

intensity due to interaction of single and double scattering as 
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We note that the mean field intensity due to interaction of single and double 

scattering >< 12I  is in the same order as the mean field intensity due to double 

scattering >< 22I  apart from the factor Re(T) and it is to be zero if T-matrix (T) has 

an only imaginary component. Therefore, the effect of the mean field intensity due 

to interaction of single and double scattering >< 12I  can be neglected in most cases. 
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3.4 Comparison of the Mean Field Intensities due to 
Single and Double Scattering 

From the previous calculation, we see that 11α  approaches zero ( 011 →α ) when 

infinite volume assumption is considered ( ∞→D ) in the backscattering direction. 

Hence, the mean field intensity due to single scattering is stated as 
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After arranging and substituting [ ] kTif π4=  into Eq. (3.207), we have an 

approximate formula of the mean field intensity due to single scattering: 
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which is valid for infinite volume assumption ( ∞→D )  

 

In the previous section, we state the approximate formula of the mean field intensity 

due to double scattering as 
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In order to find effectiveness of the double scattering, we express the ratio of the 

approximate formula of the mean field intensity due to double scattering to the 

approximate formula of the mean field intensity due to single scattering as 
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This result demonstrates that for the double scattering to be effective, we must have 
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In other words, as far as effectiveness of the backscattering enhancement is 

concerned, we must have the above value because double scattering has dominant 

effect on the backscattering enhancement.  

 

If we only consider single scattering and double scattering, the approximate formula 

of the total scattered mean field intensity is written as 

 ><+>>≅<< 2211 III sca  (3.212) 

where the higher-order scattering terms are not taken into account. Inserting the 

values of both the approximate formula of the mean field intensity due to single 

scattering >< 11I  and the approximate formula of the mean field intensity due to 

double scattering >< 22I  into the above equation, the approximate formula of the 

total scattered mean field intensity is obtained as 
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where  ∫=
σ

σ
a

dt
t

taSi
0

sin)(  is the Sine integral and ( )2sin2 sis kkk θσσ =+==  

is the amplitude of the sum of the incident and scattered wave vectors. Some 

properties of the Sinc function and the Sine integral are given in Appendix G. As 

can be seen from the above equation, >< scaI  has the form Sine integral divided by 

σa  and also σ  depends on the scattering angle. Therefore, we expect >< scaI  to 

give rise to the backscattering enhancement. In previous sections, we present that 

this Sine integral term [ ] σσ aaSi )(  comes from ( )2
22α  which is the main cause of 

the backscattering enhancement. We can arrange Eq. (3.213) by multiplying both 

sides of this equation with constant 2)( akr , and then we get  

 
⎭
⎬
⎫

⎩
⎨
⎧ ++≅><

σ
σ

a
aSi

ka
TNTNkrI asca

)(1
)(

3||||)( 2
4222  (3.214) 

This is the approximate formula of the total scattered mean field intensity from 

spherical distribution and it is given in Figure 3.11 with single and double scattered 

mean field intensities by using MATLAB programming language  
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Figure 3.11: The approximate formula of the total scattered mean field intensity:   
><+>>=<< 2211 III sca . 

We note that Figure 3.11 shows the approximate formula of the total scattered mean 

field intensity: ><+>>=<< 2211 III sca  as a function of the scattered angle sθ  

(continuous line). The total scattered mean field intensity has a peak in the 

backscattering direction and it is called as the backscattering enhancement. In 

addition, the backscattering enhancement due to double scattering is absorbed by 

other peaks in other directions because single scattering >< 11I  has large variation. 

Therefore, the backscattering enhancement due to total scattering is less than 

expected intensity of the enhancement. As can be seen from this Figure, the 

intensity of the backscattering enhancement due to total scattering (nearly 1.4 dB) is 

less than the intensity of the backscattering enhancement due to double scattering 

(nearly 2.8 dB). The variation of single scattering can not be clearly seen from 

Figure 3.11 because of the display resolution. Note that the variance of the mean 

field intensity due to single scattering is calculated in Section 4.1.3. 
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CHAPTER 4 

SIMULATED INVESTIGATION OF THE 
BACKSCATTERING ENHANCEMENT 

FROM RANDOMLY DISTRIBUTED POINT 
SCATTERERS 

This Chapter thoroughly includes simulated studies of the backscattering 

enhancement from randomly distributed point scatterers. We initially begin this 

investigation with defining simulation as a computer version of real life or an 

imitation model of some real thing, state of affairs, or process. Its computer version 

runs on a computer by operating mathematical models. The simulating of something 

basically requires representing acceptable behaviors or characteristics of a selected 

physical system, [4]. 

 

A computer simulation is a trial to model of a real-life situation on a computer so 

that it can be carefully examined to recognize how the system works. By changing 

variables, sensible predictions may be made about the acceptable behavior of the 

system without potential risks. Traditionally, the formal modeling of systems has 

been via a mathematical model, which attempts to find analytical solutions to 

problems which enable the prediction of the behavior of the system from a set of 

parameters and initial conditions. Computer simulation is often used as a 

substitution for modeling systems for which simple closed form analytic solutions 

are not possible. There are many different types of computer simulation; the 

common feature they try to generate a sample of representative scenarios for a 

model in which all possible states of the model would be impossible. Some 

computer-based simulations are the modeling almost effortless and simple, [4], one 

of them is the Monte Carlo simulation model which is used for simulated 

investigation of the backscattering enhancement from randomly distributed point 

scatterers in this thesis. 



 66

 

Monte Carlo simulation is a technique which uses random variables distributed on 

the interval [0, 1]. Monte Carlo simulation is named after Monte Carlo, the coastal 

city in Monaco. This city is the center of games of chance. All of these games 

exhibit random behaviors or repetitive events with known probabilities.  

 

The most important requirement of the Monte Carlo simulation is the probability 

density function (pdf). The scenario representing a physical system, for example 

some point scatterers distributed within a cube or a sphere, must be described by a 

set of pdf's. Random samplings are taken from these probability density functions 

(pdf) and then these operations are executed repetitively in the Monte Carlo 

simulation model. 

 

The primary components of the Monte Carlo simulation method are listed below:  

• Probability distribution functions (pdf's): The physical (or mathematical) 

system, which needs to be simulated, must be described by a set of pdf's.  

• Random number generator: A source of random numbers which are 

uniformly distributed on the unit interval must be available.  

• Sampling rule: An instruction for sampling from the specified pdf's must be 

given while assuming random numbers on the unit interval. 

• Error estimation: An estimate of the statistical error (variance) as a 

function of the number of trials. 

• Variance reduction techniques: Methods for reducing the variance in the 

estimated solution to reduce the computational time, [5]. 

 

Let us describe fundamental principle of the Monte Carlo method. The expected 

value of a function )(xf  with a probability density function )(xp  is written as: 

 ∫=
V

dxxfxpE )()(  (4.1) 

The above integral is too difficult to evaluate. Therefore, E can be estimated by 

taking N samples Nxxxx ,...,,, 321  and evaluating the average of )(xf , [22]. 
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where E is the expected value of a function )(xf  and the jx  are chosen at random 

from the volume V. This process is done within a uniform distribution. 

 

Let us explain the way how this calculation can be done. We note that this 

calculation will have a very large loop (or a very great MC) if we want a minimum 

error estimation for numerical integration. We first write a piece of pseudo-program 

to explain how this expected variable E can be calculated by directly utilizing the 

Monte Carlo method and it is stated as 
1. E=0;  
2. for run=1:MC 
3. %Choose x at random from V 
4. E = E + f(x); 
5. end 
6. E=E/MC; 

 

In the first line, we initialize the variable E which denotes the expected value of a 

function )(xf  to be calculated by the Monte Carlo method. In the second line, we 

write a loop for jx  and MC is the run number of that loop; in other words, this loop 

runs MC times. In the third line, we choose jx  at random from a large volume V 

with a uniform distribution. In the fourth line, for every loop step we repeatedly add 

the function f(xj) to E. In the last line, the average (or mean value) of the total 

expected variable E is calculated by dividing it by the run number MC. 

 

We also note that the MATLAB Programming Language is used in order to 

evaluate the simulation results through the next sections.  
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4.1 Mean Field Intensity due to Single Scattering 

The single scattering phenomenon is clearly shown in Figure 2.3 (a) and the mean 

field intensity due to single scattering >< 11I  is given by  
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where ii rkk ˆ=  is the incident wave vector and ir̂  is a unit vector in the direction 

from the source to the point scatterer and ss rkk ˆ=  is the scattered wave vector and 

sr̂  is a unit vector in the direction from the point scatterer to the observation point  

(see Figure 2.3 (a)). We can use shorthand symbol 11α  to denote the ensemble 

average of [ ])).(( nnsi rrkkie ′−−  (see Eq. (4.5)) and it is given by 

 [ ] >=< ′−− )).((
11

nnsi rrkkieα  (4.6) 

The expression [ ])).(( nnsi rrkkie ′−−  is to be multiplied with the probability density 

function ),( nn rrp ′  and then the following integral must be evaluated. 

 [ ]
nn

rrkki
nn rdrderrp nnsi

′
−−

′∫∫ ′= )).((
11 ),(α  (4.7) 

Since the scatterers are the point scatterers, it is assumed that their positions are 

independent, i.e., under this assumption, we have 

 )()(),( nnnn rprprrp ′′ =  (4.8) 

and also that if the density )( nrp  is uniform throughout the total volume V, the 

probability density functions are given by 

 
V

rprp nn
1)()( == ′  (4.9) 
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1)()(),(
V

rprprrp nnnn == ′′  (4.10) 

Finally, substituting Eq. (4.10) into Eq. (4.7), we get integral form of 11α : 

 [ ]
nn

rrkki rdrde
V

nnsi
′

−−∫∫ ′= )).((
211

1α  (4.11) 

In Chapter 3, we compute the above integral in an analytical manner and then 

substituting this obtained result into the mean field intensity due to single scattering 

>< 11I  formula (see Eq. (4.5)). Finally, solution to the last evaluated integral is the 

analytic result of the mean field intensity due to single scattering >< 11I .    

 

In this chapter, we basically estimate the above integral by utilizing the Monte 

Carlo method. To be able to find Monte Carlo simulation result of the mean field 

intensity due to single scattering >< 11I , we first obtain the MC simulation result of 

11α  and then we substitute this MC simulation result into the mean field intensity 

due to single scattering >< 11I  formula. After all that, this last evaluated result is 

the Monte Carlo simulation result of the mean field intensity due to single scattering 

>< 11I . This Monte Carlo method is carefully applied to both cubical and spherical 

distribution scenarios in the next sections. 

4.1.1 The Particles are Distributed within a Cube 

In this section, we use same scenario depicted in Figure 3.1. In this scenario, the 

particles are distributed within a cube whose dimension is D=2d. In Section 3.1.1, 

an analytic result of the mean field intensity due to single scattering from cubical 

distribution is found and depicted in Figure 3.3. In this section, we find out the MC 

simulation result of the mean field intensity due to single scattering >< 11I  from 

cubical distribution by using MATLAB Programming Language. In Figure 4.1, we 

depict our scenario which is presented as the particles are distributed within a cube 

thanks to the MATLAB programming language. 
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Figure 4.1: Point scatterers distributed within a cube: N=50 and D=30. 

The MC simulation and the analytic result of the mean field intensity due to single 

scattering >< 11I  from cubical distribution are obtained and shown in Figure 4.2. 

We see that approximate result is quite accurate for this case. The MC simulation 

was run for MC=100000 trials as shown in Figure 4.2. 
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Figure 4.2: The MC simulation result of the mean field intensity due to single 
scattering from cubical distribution: N=50, D=30 and MC=100000. 

We also note that these above results are obtained by using MATLAB programming 

language and its codes are given in Appendix A.  

 

In Figure 4.2, the MC simulation result of the mean field intensity due to single 

scattering >< 11I  from cubical distribution (dashed line) and the analytic result of 

the mean field intensity due to single scattering >< 11I  from cubical distribution 

(continuous line) are very similar to each others. This basically verifies the analytic 

expression obtained in Chapter 3. In other words, the run number MC = 100000 of 

the MC simulation is sufficient to explain the single scattering phenomenon from 

cubical distribution. As can be seen from Figure 4.2, there is a peak in the 0 degrees 

direction or there is an enhancement in the backscattering direction. However, it is 

not called as a backscattering enhancement; it is actually specular reflection. Why it 

is a specular enhancement is explained in more detail in Section 4.3. In this study, 
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we also prove that the backscattering enhancement can only occur due to multiple 

scattering. 

4.1.2 The Particles are Distributed within a Sphere 

In this section, we use the same scenario as depicted in Figure 3.4. In this scenario, 

the particles are distributed within a sphere whose diameter is D=2a. In Section 

3.1.2, an analytic result of the mean field intensity due to single scattering from 

spherical distribution is found and plotted in Figure 3.5. In this section, we find out 

the MC simulation result of the mean field intensity due to single scattering >< 11I  

from spherical distribution by using MATLAB Programming Language. In Figure 

4.3, we depict our scenario which is presented as the particles are distributed within 

a sphere thanks to the MATLAB programming language. 

 

 

 

Figure 4.3: Point scatterers distributed within a sphere: N=50 and D=30. 
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The MC simulation and the analytic result of the mean field intensity due to single 

scattering >< 11I  from spherical distribution are obtained and shown in Figure 4.4. 

This MC simulation result verifies the analytic expression obtained in Chapter 3. 

The MC simulation was run for MC=100000 trials as shown in Figure 4.4. 

 

 

 

Figure 4.4: The MC simulation result of the mean field intensity due to single 
scattering from spherical distribution: N=50, D=30 and MC=100000. 

We also note that these above results are obtained by using MATLAB programming 

language and its codes are given in Appendix B.  

 

In Figure 4.4, the MC simulation result of the mean field intensity due to single 

scattering >< 11I  from spherical distribution (dashed line) and the analytic result of 

the mean field intensity due to single scattering >< 11I  from spherical distribution 

(continuous line) are very similar to each others. This basically indicates that the  
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approximate expression is quite accurate for this scenario and also that the number 

of MC trials, MC = 100000, is sufficient. 

 

As can be seen from Figure 4.4, there is no peak in the 0 degrees direction or there 

is no enhancement in any direction due to single scattering from spherical 

distribution. 

4.1.3 The 95% Confidence Interval for the MC Simulation Result 
of the Mean Field Intensity due to Single Scattering 

As far as a simulation is concerned, an error estimation is an important subject; 

because, the simulations yield some approximate answers. Their accuracy depends 

on some parameters about programming structure but mostly they depend on the 

run number of simulation. This run number is denoted by MC throughout this 

thesis. In order to verify the MC simulation results of the mean field intensities due 

to single scattering, we must calculate the confidence intervals for the MC 

simulation results for which standard deviations are known. We must show that 

these confidence intervals are narrow and the simulated mean results are between 

these two confidence interval results. Thanks to this, we can present that our 

simulation results are comparatively satisfactory. In order to evaluate the 

confidence interval results, we first write the variance of this function f )( fVar  in 

the following manner: 
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(4.12) 

We note that the standard deviation )( fStd  is the square root of the variance 

)( fVar , such as )()( fVarfStd = . 

 

Because of the fact that the variance is really big value, the standard deviation is a 

much more useful number. After this general definition of the variance and the 
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standard deviation, we can write the variance of the MC simulation result of the 

mean field intensity due to single scattering denoted by )( 11IVar : 

 2
11

2
1111 )( ><−>=< IIIVar  (4.13) 

The mean field intensity due to single scattering can be written as 
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Using the subtraction of the incident and scattered wave vectors si kk −=δ , we get 
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Let us consider these constants [ ]).( nn rri
nn ey ′−
′ =

δ , )4(|| arfA π=  and 11α>=< ′nny , 

we get a simpler form of the field intensity due to single scattering as follows: 
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In the above equation, the terms in the double summation are independent if nn ′≠ . 

Thus, a factor of (N−1) appears for such terms. On the other hand, if nn ′= , we 

have 1=′nny  and a factor of N comes from such terms. Thus, the mean field 

intensity due to single scattering can be expressed as 

 [ ]nnyNNNAI ′−+= )1(2
11  (4.17) 

and the mean field intensity due to single scattering can be expressed by 
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The variance of the mean field intensity due to single scattering is given by 
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In the limit as the volume goes to infinity, i.e., ( ∞→D ), 11α  approaches zero 

( 011 →α ) and then the variance of the mean field intensity due to single scattering 

can be simplified as follows: 

 ( )22
11

2
11 )1)(1()( ANNNAIVar ≅−−= α  (4.20) 

The standard deviation of the mean field intensity due to single scattering is 

evaluated by using the variance expression as follows: 

 ANIStd ≅)( 11  (4.21) 

Both the variance and the standard deviation (especially the variance) have too large 

values and also they depend on the number of the point scatterers N. This means 

that if we increase the number of the point scatterers, the run number of the MC 

simulation has to increase so that simulation error can be negligible. This explains 

the difficulty in observing any kind of the enhancement from the Monte Carlo 

simulation results of the mean field intensity due to single scattering.  

 

After calculating the standard deviation, let’s express the confidence interval 

formula for which the standard deviation is known and this is given by 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=

MC
StdzMCI *  (4.22) 

where M denotes the mean value, Std is the standard deviation, MC is the run 

number of Monte Carlo simulation, and z is the z-score for the particular confidence 

interval of interest, [34]. If you need the 95% confidence interval, z must be used as 

1.96 in the following manner: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±=

MC
StdMCI *96.1  (4.23) 

There is nothing special about 95%. It is just a convention that confidence interval 

is expressed with 95% confidence. Confidence interval can be computed for any 

desired degree of confidence. Some values of the z-scores are given for the other 

particular confidence intervals of interest in the Table 4.1. 



 77

Table 4.1: The z-scores for the particular confidence intervals of interest, [32]. 

Confidence Level z-score 

50% 0.674 

80% 1.282 

90% 1.645 

95% 1.960 

98% 2.326 

99% 2.576 

 

 

Let us show the 95% confidence interval for the MC simulation result of the mean 

field intensity due to single scattering from cubical distribution in Figure 4.5 and the 

95% confidence interval for the MC simulation result of the mean field intensity 

due to single scattering from spherical distribution in Figure 4.6. As can be seen 

from these two graphics, the run numbers MC = 100000 of the MC simulation 

results are very sufficient because interval estimates are too narrow; actually, they 

are overlapped with each other. Besides, the mean field intensities due to single 

scattering overlap with their 95% confidence interval estimates (Confidence 

Interval Plus and Confidence Interval Minus) and none of the mean field intensities 

points falls outside of the 95% confidence intervals. Therefore, the results of mean 

field intensities and confidence intervals are seemed as if one result in these two 

Figures. 
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Figure 4.5: The 95% confidence interval for the MC simulation result of the mean 
field intensity due to single scattering from cubical distribution: N=50, D=30 and 
MC=100000. 
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Figure 4.6: The 95% confidence interval for the MC simulation of the mean field 
intensity due to single scattering from spherical distribution: N=50, D=30 and 
MC=100000. 

We also note that these results are obtained by using MATLAB programming 

language. Programming codes of Figure 4.5 are given in Appendix C and 

programming codes of Figure 4.6 have also the same methodology. At these MC 

simulation programs, the 95% confidence intervals are found out by using below 

equations as follows: 

 

Variance of the expression x is denoted by )(xVar  and it is given by 

 ∑
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where x̂  is the mean of the term x and MC is the run number of the Monte Carlo 

simulation. Arranging Eq. (4.24), we get  
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Note that standard deviation is the square root of variance, i.e., )()( xVarxStd = . 

4.2 Mean Field Intensity due to Multiple Scattering 

As it is explained in Section 2.2, the effective field )( nrφ  consists of the incident 

wave )( ninc rψ  and the wave scattered from all the particles except the one at nr  and 

it is stated as 

 ∑
≠
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ttnnincn rrrfGrr
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0 )(),()()( φψφ  (4.26) 

If the effective field )( nrφ  is known at all locations of the point scatterers, the total 

scattered field )( asca rψ  for N scatterers at observation point ar  can be written as 

 )(),()(
1

0
n

N

n
naasca rrrfGr φψ ∑

=

=  (4.27) 

We note that the effective field )( nrφ  can be eliminated from Eq. (4.27), and a 

solution to the total scattered field at observation point )( asca rψ  can be found by 

using Eq. (4.27). After determining the total scattered field, we can now find the 

total scattered field intensity (or the field intensity due to multiple scattering) 

)( asca rI  at the observation point by multiplying the total scattered field )( asca rψ  

and its conjugate )(*
asca rψ  in the following manner: 

 )()()( *
ascaascaasca rrrI ψψ=  (4.28) 

The ensemble average (or mean) of the total scattered field intensity (or the field 

intensity due to multiple scattering) over all possible distribution of N particles can 

be evaluated as follows: 

 >>=<< )()()( *
ascaascaasca rrrI ψψ  (4.29) 
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which is the total scattered mean field intensity (or the mean field intensity due to 

multiple scattering). 

 

However, this calculation of the total scattered mean field intensity is still too 

complex to be done analytically because of too many unknowns. In Eq. (4.26), we 

have N unknowns which are the effective fields at the positions of the scatterers, i.e. 

Nnrn ,...,2,1;)( =φ . The effective field )( nrφ  can be written for any n=1,2,…,N ; 

thus, Eq. (4.26) defines N equations in the N unknowns, which are the effective 

fields at the exact location of the N scatterers. This equation can be written in matrix 

form. To sum up, the mean field intensity due to multiple scattering is not possible 

to be calculated analytically. However, we can compute the mean field intensity due 

to multiple scattering in a simulation manner. For this purpose, we develop a certain 

number of Monte Carlo simulations in this study. We will next explain how these 

Monte Carlo simulations are gradually developed.  

 

We can rearrange the effective field )( nrφ  for any n=1,2,…,N by defining Eq. 

(4.26) as N equations in the N unknowns for simplifying. After this rearrangement, 

we can write it in matrix form as follows: 
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Note that the symbol G  is the Green’s function matrix which consists of elements 

depending on both nr  and tr , φ  is the effective field vector which consists of 

elements depending on nr , and incψ  is the incident field vector which consists of 

elements depending on nr . If we write Eq. (4.30) in the following manner: 

 [ ] incGI ψφ
1−

−=  (4.31) 

The effective field vector φ  can be calculated from matrix multiplication of the 

inverse matrix [ ] 1−
−GI  with the incident field vector incψ . 
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Let us explain how these calculations can be evaluated in the MC simulation 

programming codes. We can determine the free-space Green's functions by 

executing computer programming loops over and over again until computing each 

one of the Green's functions matrix elements. We also note that the MC simulation 

programming codes developed in this study are given in Appendixes. There are two 

different kinds of the free-space Green's functions in these equations and they are 

denoted by ),(0
tn rrG  and ),(0

na rrG . Therefore, we use two different kinds of loops 

computing each one of the Green's function matrix elements by considering each 

one of the point scatterers' positions. In these loops, we apply a basic principle of 

filling matrixes whose elements are dependent on the position of the point scatterers 

in the distribution volume. Similarly, we compose another loop structure which fills 

the incident field vector incψ  whose elements are also dependent on the position of 

the point scatterers in the distributed volume. After determining the Green's 

function matrix and the incident field vector, the effective field vector φ  can be 

calculated from matrix multiplication given by Eq. (4.31). After evaluating the 

effective field vector φ , the total scattered field at any observation point )( asca rψ  

can be calculated from similar matrix multiplication (see Eq. (4.27)). Now, we 

achieve the MC simulation result of the total scattered field at observation point 

)( asca rψ ; hence, the MC simulation result of the total scattered field intensity (or 

the field intensity due to multiple scattering) can be found out by multiplying the 

MC simulation result of total scattered field )( asca rψ  and its conjugate )(*
asca rψ . 

 

In summary, because of the fact that calculation of the effective field vector φ  is 

too complex, the effective field vector φ  is not possible to be estimated in an 

analytic manner. Therefore, we compute it in a simulation manner and we directly 

apply the Monte Carlo simulation method while evaluating the simulation results. 

We also verify the accuracy of these MC simulations by presenting their confidence 

intervals throughout this study. 
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4.2.1 The Particles are Distributed within a Cube 

In this section, we use same scenario depicted in Figure 4.1 where the particles are 

distributed within a cube whose dimension is D=2d. However, this time we interest 

the multiple scattering phenomenon. It is not possible to calculate the mean field 

intensity due to multiple scattering >< )( asca rI  from cubical distribution in an 

analytic manner. Because of the fact that there are too many unknowns in the 

scattered field equations, we can only achieve the mean field intensity due to 

multiple scattering >< )( asca rI  from cubical distribution by running the MC 

simulation computer codes. We also note that, in Section 4.1.1, both the analytic 

and MC simulation results of the mean field intensity due to single scattering from 

cubical distribution are properly calculated and also they are depicted in the same 

graphical result in order to compare their characteristic behaviors.  

 

In this section, the mean field intensity due to multiple scattering from cubical 

distribution is obtained by running the programming codes in which the MC 

simulation method is directly utilized. We also note that how the MC method is 

applied these computer programming codes is mentioned in previous sections. After 

we run the developed computer programming codes which are composed in order to 

examine the multiple scattering phenomenon from cubical distribution, we evaluate 

the MC simulation results of the mean field intensity due to multiple scattering from 

cubical distribution. In order to be in a standard form, we only achieve the MC 

simulation result in which these variables N=50, D=30 and MC=10000 are 

considered and this MC simulation result is given in Figure 4.7. As far as a 

simulation is concerned, an error estimation is an important subject; because, the 

simulations yield some approximate answers. Their accuracy depends on some 

parameters about programming structure but mostly they depend on the run number. 

Therefore, this result is ultimately achieved by running computer codes 10000 

times. This run number is sufficient in order to present the backscattering 

enhancement due to multiple scattering from cubical distribution and this run 

number is denoted by MC=10000 in Figure 4.7. 
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Figure 4.7: The mean field intensity due to multiple scattering from cubical 
distribution: N=50, D=30 and MC=10000. 

We also note that this above result is ultimately achieved by using a MATLAB 

programming language. Its programming codes are given in Appendix D.  

 

As can be seen from Figure 4.7, there is a peak in the backscattering direction 

whose intensity is nearly 10 dB. This peak actually comes into being due to the 

backscattering enhancement phenomenon not the specular enhancement 

phenomenon. Why this result is determined as the backscattering enhancement is 

explained in more detail in Section 4.3. In this study, we also prove that the 

backscattering enhancement is only constituted due to multiple scattering. 
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4.2.2 The Particles are Distributed within a Sphere 

In this section, we use same scenario depicted in Figure 4.3 where the particles are 

distributed within a sphere whose diameter is D=2a. However, this time we only 

interest the multiple scattering phenomenon. It is not possible to calculate the mean 

field intensity due to multiple scattering >< )( asca rI  from spherical distribution in 

an analytic manner. Because of the fact that there are too many unknowns in the 

scattered field equations, we can only achieve the mean field intensity due to 

multiple scattering >< )( asca rI  from spherical distribution by running the MC 

simulation computer codes. We also note that, in Section 4.1.2, both the analytic 

and the MC simulation results of the mean field intensity due to single scattering 

from spherical distribution are properly calculated and also they are depicted in the 

same graphical result in order to compare their characteristic behaviors.  

 

In this section, the mean field intensity due to multiple scattering from spherical 

distribution is obtained by running the programming codes in which the MC 

simulation method is directly utilized. We also note that how the MC method is 

applied these computer programming codes is mentioned in previous sections. After 

we run the developed computer programming codes which are composed in order to 

examine the multiple scattering phenomenon from spherical distribution, we 

evaluate the MC simulation results of the mean field intensity due to multiple 

scattering from spherical distribution. In order to be in a standard form, we only 

achieve the MC simulation result in which these variables N=50, D=30 and 

MC=10000 are considered and this MC simulation result is given in Figure 4.8. As 

far as a simulation is concerned, an error estimation is an important subject; 

because, the simulations yield some approximate answers. Their each accuracy 

depends on some parameters about programming structure but mostly they depend 

on the run number. Therefore, this result is ultimately achieved by running 

computer codes 10000 times. This run number is sufficient in order to present the 

backscattering enhancement due to multiple scattering from spherical distribution 

and this run number is denoted by MC=10000 in Figure 4.8. 
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Figure 4.8: The mean field intensity due to multiple scattering from spherical 
distribution: N=50, D=30 and MC=10000. 

We also note that this above result is ultimately achieved by using a MATLAB 

programming language. Its programming codes are given in Appendix E.  

 

As can be seen from Figure 4.8, there is a peak in the backscattering direction 

whose intensity is nearly 5 dB. This peak actually comes into being due to the 

backscattering enhancement phenomenon not the specular enhancement 

phenomenon. Why this result is determined as the backscattering enhancement is 

explained in more detail in Section 4.3. In this study, we also prove that the 

backscattering enhancement is only constituted due to multiple scattering 

 

We also emphasize that cubical distribution has stronger backscattering 

enhancement intensity than spherical distribution. 
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4.2.3 The 95% Confidence Interval for the Mean Field Intensity 
due to Multiple Scattering 

The MC simulation results of the mean field intensities need to be verified. 

Therefore, we must calculate the confidence intervals for the MC simulation results 

for which standard deviations are known. The 95% confidence intervals for the MC 

simulation results of the mean field intensities due to single scattering are found for 

both cubical and spherical distribution in Section 4.1.3. In this section, we present 

the 95% confidence interval for the mean field intensity due to multiple scattering 

from cubical distribution in Figure 4.9 and the 95% confidence interval for the 

mean field intensity due to multiple scattering from spherical distribution in  

Figure 4.10.  

 

 

 

Figure 4.9: The 95% confidence interval for the MC simulation of the mean field 
intensity due to multiple scattering from cubical distribution: N=50, D=30 and 
MC=10000.  
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Figure 4.10: The 95% confidence interval for the MC simulation of the mean field 
intensity due to multiple scattering from spherical distribution: N=50, D=30 and 
MC=10000. 

We also note that these above results are obtained by using MATLAB programming 

language. Programming codes of Figure 4.9 are given in Appendix F and 

programming codes of Figure 4.10 have also the same methodology.  

 

As can be seen from these two graphics, the run numbers MC = 10000 of the MC 

simulation results are sufficient because estimate intervals are narrow and there is a 

95% chance that the mean field intensities place within these narrow intervals. 

Thank for this, accuracies and reliabilities of the MC simulation results have been 

provided. We note that the mean field intensities due to multiple scattering, in both 

of these two graphics, are between the 95% confidence interval results and none of 

the mean field intensities’ points fall outside of the 95% confidence intervals. 
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4.3 Investigation of the Specular Enhancement from 
Randomly Distributed Point Scatterers 

In the previous studies, some enhancement phenomena in the backscattering 

direction are observed when the incident field comes from the –z direction. That the 

incident field in the –z direction occasionally causes some unresolved difficulties 

about deciding what kind of enhancement phenomenon is observed. In other words, 

the incident field direction perpendicular to the surface of randomly distributed 

point scatterers may be causing a specular reflection especially when a cubical 

distribution is taken into consideration. Because, the cubical distribution of the 

point scatterers has a flat surface and this surface behaves like a mirror for an 

incident electromagnetic field under proper conditions (see Figure 4.11). In order to 

distinguish the type of the enhancement phenomenon as a backscattering or a 

specular, we send the incident field in a direction different than the z axis. Some 

general characteristic behaviors of the scattered fields are depicted in Figure 4.11. 

In this figure, the incident field comes from a direction different than the z axis and 

the scattered field in the backscattering direction has a different scattering angle 

than the scattered field in the specular direction. 

 

 

Directionr Backscatte DirectionSpecular 

fromAway Slightly 
Directionr Backscatte DirectionSpecular 

fromAway Slightly 

 

Figure 4.11: The incident field in a direction different than the z axis, [7]. 
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4.3.1 The Particles are Distributed within a Cube 

In this part of the study, we examine what kind of the enhancement occurs due to 

both single and multiple scattering phenomena from cubical distribution.  

 

When we focus on the single scattering from the cubical distribution in Section 

3.1.1, an enhancement is observed. However, this enhancement can not be clearly 

determined as a backscattering or a specular; because, the incident field only comes 

from the –z direction. In order to resolve this, we send the incident field in a 

direction different than the z axis and then we get the enhancement results in the 

different directions. The MC simulation result of the mean field intensity due to 

single scattering >< 11I  from cubical distribution while the incident field is in the 

direction of +45 degrees and the analytic result of the mean field intensity due to 

single scattering >< 11I  from cubical distribution while the incident field is in the 

direction of 0 degrees are obtained and shown in Figure 4.12. 
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Figure 4.12: The MC simulation result of the mean field intensity due to single 
scattering from cubical distribution while the incident field is in the +45 degrees: 
N=50, D=30 and MC=100000. 

As can be seen from Figure 4.12, we get an enhancement in the direction of 0 

degrees for the analytic result while the incident field is in the direction of 0 degrees 

and we get an enhancement in the direction of −45 degrees for the MC simulation 

result while the incident field is in the direction of +45 degrees. The expected 

results prove obviously that the type of these enhancement phenomena are specular 

not backscattering enhancements. Thanks to these results, we say clearly that there 

is no backscattering enhancement due to single scattering from cubical distribution. 

Meanwhile, the forward scattering intensity in the direction of ± 180 degrees can be 

seen clearly while the incident field is in the direction of 0 degrees for the analytic 

result and the forward scattering intensity in the direction of −135 degrees can be 

seen clearly while the incident field is in the direction of +45 degrees for the MC 

simulation result. 
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We next examine what kind of the enhancement occurs due to multiple scattering 

from cubical distribution. When we focus on the multiple scattering from the 

cubical distribution in Section 4.2.1, an enhancement is observed. However, this 

enhancement can not be clearly determined as a backscattering or a specular; 

because, the incident field only comes from the –z direction. In order to resolve this, 

we send the incident field in a direction different than the z axis and then we get an 

enhancement in the backscattering direction. It is stated as follows: 

 

The mean field intensity due to multiple scattering >< )( asca rI  from cubical 

distribution while the incident field is in the direction of +45 degrees is obtained 

and shown in Figure 4.13.  

 

 

 

Figure 4.13: The mean field intensity due to multiple scattering from cubical 
distribution while the incident field is in the +45 degrees: N=50, D=30 and 
MC=10000. 
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As can be seen from Figure 4.13, we get an enhancement in the direction of +45 

degrees for the mean field intensity due to multiple scattering from cubical 

distribution while the incident field is in the direction of +45 degrees. The result 

demonstrates obviously that the type of this enhancement phenomenon is a 

backscattering not a specular. Its intensity is nearly 10 dB the same as amplitude of 

intensity in Figure 4.7 where the incident field is in the direction of 0 degrees. 

 

Thanks to the results of cubical distributions, we say clearly that the backscattering 

enhancement is observed only as regard as multiple scattering conditions. At the 

same time, this basically means the single scattering phenomenon is not enough 

alone in order to explain the backscattering enhancement and also the higher-order 

scattering terms have to be calculated in order to get accurate results in the case of 

the backscattering enhancement. 

4.3.2 The Particles are Distributed within a Sphere 

In this part of the study, we examine both the single and multiple scattering 

phenomena from spherical distribution.  

 

When we focus on the single scattering from the spherical distribution in Section 

3.1.2, any kind of an enhancement is not observed. So, we check the result of the 

spherical distribution when the incident field comes from a direction different than 

the z axis. The MC simulation result of the mean field intensity due to single 

scattering >< 11I  from spherical distribution while the incident field is in the 

direction of +45 degrees and the analytic result of the mean field intensity due to 

single scattering >< 11I  from spherical distribution while the incident field is in the 

direction of 0 degrees are obtained and shown in Figure 4.14.  
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Figure 4.14: The MC simulation result of the mean field intensity due to single 
scattering from spherical distribution while the incident field is in the +45 degrees: 
N=50, D=30 and MC=100000. 

As can be seen from Figure 4.14, none of the enhancement phenomenon occurs in 

the direction of 0 degrees for the analytic result while the incident field is in the 

direction of 0 degrees and none of the enhancement phenomenon occurs in the 

direction of −45 degrees or +45 degrees for the MC simulation result while the 

incident field is in the direction of +45 degrees. Those results demonstrate us 

obviously that there is neither the backscattering enhancement phenomenon nor the 

specular enhancement phenomenon appearing due to single scattering from 

spherical distribution. Meanwhile, the forward scattering intensity in the direction 

of ± 180 degrees can be seen clearly while the incident field is in the direction of 0 

degrees for the analytic result and the forward scattering intensity in the direction of 

−135 degrees can be seen clearly while the incident field is in the direction of +45 

degrees for the MC simulation result. 
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We next examine what kind of the enhancement occurs due to multiple scattering 

from spherical distribution. When we focus on the multiple scattering from the 

spherical distribution in Section 4.2.2, an enhancement is observed. However, this 

enhancement can not be clearly determined as a backscattering or a specular; 

because, the incident field only comes from the –z direction. In order to resolve this, 

we send the incident field in a direction different than the z axis and then we get an 

enhancement in the backscattering direction which is stated as follows: 

 

The mean field intensity due to multiple scattering >< )( asca rI  from spherical 

distribution while the incident field is in the direction of +45 degrees is obtained 

and shown in Figure 4.15.  

 

 

 

Figure 4.15: The mean field intensity due to multiple scattering from spherical 
distribution while the incident field is in the +45 degrees: N=50, D=30 and 
MC=10000. 
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As can be seen from Figure 4.15, we get an enhancement in the direction of +45 

degrees for the mean field intensity due to multiple scattering from spherical 

distribution while the incident field is in the direction of +45 degrees. The result 

proves us obviously that the type of this enhancement phenomenon is a 

backscattering not a specular. Its intensity is nearly 5 dB the same as amplitude of 

intensity in Figure 4.8 where the incident field is in the direction of 0 degrees. 

 

Thanks to the investigation of the specular enhancement, we say clearly that the 

backscattering enhancement is observed only as regard as multiple scattering 

conditions. At the same time, this basically means the single scattering phenomenon 

is not enough alone in order to explain the backscattering enhancement and also the 

higher-order scattering terms have to be calculated in order to get accurate results in 

the case of the backscattering enhancement. 

4.4 Multiple Scattering Compared to Single Scattering 
and Double Scattering Phenomena 

In previous investigations, we get a certain number of results regarding multiple, 

single and double scattering phenomena. In this section, we obviously present them 

in the same graphical results in order to compare their characteristic behaviors. 

Multiple scattering compared to single scattering from cubical distribution is 

carefully examined in Section 4.4.1 and multiple scattering compared to single 

scattering and double scattering from spherical distribution is looked over in 

Section 4.4.2. 

4.4.1 The Particles are Distributed within a Cube 

In Section 4.1.1, the analytic and MC simulation results of the mean field intensity 

due to single scattering from cubical distribution and in Section 4.2.1, the MC 

simulation result of the mean field intensity due to multiple scattering from cubical 

distribution are evaluated. In this section, we compare these results in order to 

examine differences between the single and multiple scattering phenomena from 

cubical distribution in Figure 4.16. 
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As can be seen from Figure 4.16, the backscattering enhancement occurs due to 

multiple scattering. As for single scattering, the specular enhancement is observed, 

which is presented in previous sections. As well as this key difference, there is a 

large amplitude distinction between multiple and single scattering results. 

Therefore, if we definitely want to obtain general characteristic behaviors of the 

cubical distribution, we must calculate higher-order scattering terms and consider 

the multiple scattering phenomenon. 

 

 

 

Figure 4.16: Multiple scattering compared to single scattering from cubical 
distribution: N=50, D=30 and MC=10000. 

4.4.2 The Particles are Distributed within a Sphere 

In Section 3.2.1 the analytic result of the mean field intensity due to double 

scattering from spherical distribution, in Section 4.1.2 the analytic and MC 
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simulation results of the mean field intensity due to single scattering from spherical 

distribution and in Section 4.2.2 the MC simulation result of the mean field 

intensity due to multiple scattering from spherical distribution are evaluated. In this 

section, we compare these four results in order to examine differences among the 

single, double and multiple scattering phenomena from spherical distribution in 

Figure 4.17.  

 

As can be seen from Figure 4.17, the backscattering enhancement is observed due 

to higher-order multiple scattering terms and double scattering term but none of the 

enhancement is observed due to single scattering. As well as these key differences, 

there is large amplitude distinction between the higher-order multiple scattering and 

the low-order scattering phenomena. Therefore, if we specially want to obtain 

general characteristic behaviors of the spherical distribution, we have to calculate 

higher-order scattering terms and consider the multiple scattering phenomenon. We 

have to note that the double scattering phenomenon is the first multiple scattering 

mechanism and it is also one of the low-order multiple scattering terms. As can be 

seen from Figure 4.17, double scattering has the dominant effect on the 

backscattering enhancement. However, it is not enough in order to explain the 

backscattering enhancement phenomenon alone. Because, the higher-order 

scattering terms contribute significantly to the backscattering enhancement as much 

as double scattering. 
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Figure 4.17: Multiple scattering compared to single and double scattering from 
spherical distribution: N=50, D=30 and MC=10000. 

The above comparing results of both the cubical and spherical distribution prove 

that the backscattering enhancement phenomenon occurs only due to multiple 

scattering. This conclusion about the cause of the backscattering enhancement is 

verified for both cubical and spherical distributions. 

4.5 The Effect of Incident Field Frequency on the 
Backscattering Enhancement due to Multiple 
Scattering 

In this section, we show the effect of incident field frequency on the backscattering 

enhancement due to multiple scattering. In previous sections, we use the incident 

wave which is assumed as a plane wave and is given by 

 rki
inc

ier .)( =ψ  (4.32) 
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The incident wave vector is denoted by ii rkk ˆ=  where ir̂ is a unit vector in the 

direction from the source to the point scatterer and k is the wave number given by 

 
λ
π2

=k  (4.33) 

where λ  is the wave length which can be written in terms of the speed of 

propagation wv  and the frequency f, as fvw=λ . Substituting this expression into 

Eq. (4.33), we get 

 ww v
f

f
v

k ππ 22
==  

(4.34) 

which is the relation between the wave number k and the frequency f  in 1/s = Hz. 

As can be seen from Eq. (4.34), the wave number k and the frequency of a wave f 

are proportional to each other and it is symbolized by fk ∝ . As can be seen from 

this expression, we can increase the wave number k instead of the frequency f  in 

order to see the effect of frequency variation on the backscattering enhancement.    

 

In the previous sections, we use the value k=1 while calculating the mean field 

intensity due to multiple scattering from spherical distribution. In this section, the 

wave number is increased from k=1 to k=2 and then the mean field intensity is 

calculated for the wave number k=2. Lastly, the mean field intensities due to 

multiple scattering from spherical distribution are rationally compared and depicted 

for the wave numbers k=1 and k=2 in Figure 4.18.  
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Figure 4.18: The effect of incident field frequency on the backscattering 
enhancement due to multiple scattering from spherical distribution. 

In Figure 4.18, we also note that the mean field intensities due to multiple scattering 

from spherical distribution are calculated in the decibel (dB) units. The decibel (dB) 

is a logarithmic unit and clearly defined in a common way when referring to 

measurements of power or intensity and this is written as ( ))(log10)( 10 xfxf dB = .  

 

In Figure 4.18, the angular widths for both wave numbers k=1 and k=2 are shown at 

the amplitude −1 dB. The angular width for k=1 at −1 dB is approximately 5.9 

degrees and the angular width for k=2 at −1 dB is approximately 2.1 degrees. To 

sum up, increasing incident wave frequency causes the narrower backscattering 

enhancement angular widths. The backscattering enhancement angular width is 

necessary in order to define the receiving pattern angular width of the receiver 

antenna. If the backscattering enhancement angular width is smaller than the 

receiving pattern angular width of the receiver antenna, the backscattering 
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enhancement is not likely to be observed. Hence, the incident field frequency is so 

much important in the remote sensing, [7]. 

4.6 The Effects of Point Scatterer Density on the 
Backscattering Enhancement and the Specular 
Enhancement 

Density of the point scatterers distributed within a cube or a sphere can be denoted 

by N/V where N is the number of distributed point scatterers and V is the volume of 

distribution. After running a certain number of Monte Carlo simulations, we 

observe that the point scatterer density has important effects on the backscattering 

enhancement. In our studies, we also demonstrate that the backscattering 

enhancement is only constituted due to multiple scattering. The multiple scattering 

phenomenon is commonly encountered when the density of point scatterers is large 

enough, so that an incident wave interacts with more than one point scatterer before 

leaving them, [8]. Therefore, the backscattering enhancement is only observed 

when the density of point scatterers is in a certain interval. If the distance between 

point scatterers increase (that is to say, in the lower-density condition), the multiple 

scattering to be occurring becomes a weak probability. Because of this weak 

probability, the backscattering enhancement can not occur. If the distance between 

point scatterers decrease (that is to say, in the higher-density condition), the incident 

field is to be absorbed in the point scatterers distributed media so there will not be 

enough returned fields after scattering processes and so once again the 

backscattering enhancement can not be observed. This phenomenon (the absorption 

of incident field) is mentioned as the “shadow effect” in [9], [25], [28] and [29]. On 

the other hand, if the particle density is too high, the structure behaves like a solid. 

 

After all, we need to determine a density interval where the backscattering 

enhancement occurs. For this purpose, the simulation results about backscattering 

enhancement are given in the Table 4.2 after running a certain number of Monte 

Carlo simulations. In these simulations, dimension of cubical distribution and 

diameter of spherical distribution are considered as D=30. From these results, the 

density interval for the backscattering enhancement due to multiple scattering from 
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cubical distribution can be determined as [3/27000 – 99/27000]. This means that the 

backscattering enhancement is observed in this density interval [3/27000 – 

99/27000] or [1.1x10-4 – 36.6x10-4]. In the same way, the density interval for the 

backscattering enhancement due to multiple scattering from spherical distribution 

can be stated as [3/14137 – 74/14137] or [2.1x10-4 – 52.3x10-4]. As can be seen 

these intervals, the backscattering enhancement from cubical distribution has a 

larger density interval than spherical distribution has. 

Table 4.2: Density intervals for the backscattering enhancement due to multiple 
scattering from cubical and spherical distributions 

Distribution: Number of Scatterers (N): Volume of Distribution (V) for D=30: 
Cubical 3−99 270003 =D  

Spherical 3−74 ( ) ( ) 14137234 3 =Dπ  

 

 

We get some specular enhancement results due to single scattering from cubical 

distribution; because of the cubical structure. From the results of Table 4.3, the 

density interval can be determined as [7/27000 – INF/27000] or [2.59x10-4 − ∞]. If 

the scatterers are in a condition of the lower-density, the specular enhancement does 

not occur. As for the scattering processes in a condition of higher-density, the 

specular enhancement always occurs since a flat surface being. Meanwhile, owing 

to the spherical structure, the specular enhancement results are not observed in any 

intervals. After all, we prove that both the backscattering and specular 

enhancements are related to the density of randomly distributed point scatterers. 

Table 4.3: Density intervals for the specular enhancement due to single scattering 
from cubical and spherical distributions 

Distribution: Number of Scatterers (N): Volume of Distribution (V) for D=30: 
Cubical 7 − INF 270003 =D  

Spherical --- ( ) ( ) 14137234 3 =Dπ  

where INF denotes an infinite number of point scatterers.  
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CHAPTER 5 

CONCLUSIONS 

In this thesis, analysis and simulation of the backscattering enhancement 

phenomenon from randomly distributed point scatterers are investigated. These 

point scatterers are distributed randomly into two different geometries such as 

spherical and cubical distributions throughout this study. Analytical explanations of 

single and multiple scattering phenomena from point scatterers are presented by 

expanding their general formulas. 

 

T-matrix method is applied while analysis of the backscattering enhancement 

phenomenon from randomly distributed point scatterers is being investigated in 

Chapter 3 and also some computer programs using Monte Carlo method to compute 

the backscattering enhancement phenomenon from randomly distributed point 

scatterers are developed in Chapter 4. 

 

Mean field intensities due to single scattering from cubical and spherical 

distributions are properly calculated analytically. Moreover, these mean field 

intensities are plotted by using MATLAB programming language and an 

enhancement due to single scattering is observed for only cubical distribution. In 

the last Chapter, we prove that this enhancement is a kind of the specular 

enhancement not the backscattering enhancement. 

 

Mean field intensity due to double scattering from spherical distribution is 

estimated analytically by clearly determining seven possible cases which are 

evaluated from correlation of two different rays. In addition, this mean field 

intensity is plotted by using MATLAB programming language and we also present 

that the second case is the dominant among the other cases as far as the 

backscattering enhancement is concerned. We note that the double scattering 



 105

phenomenon is the first multiple scattering mechanism in the distribution volume 

and the approximate formula of the mean field intensity due to double scattering is 

obtained in an analytical manner. 

 

Mean field intensity due to interaction of single and double scattering from 

spherical distribution is calculated analytically by clearly determining three possible 

cases which are evaluated from correlation of two different rays. Subsequently, we 

demonstrate that this intensity is to be zero if T-matrix (T) has an only imaginary 

component. Therefore, the minimal effect of the mean field intensity due to 

interaction of single and double scattering can be neglected in the most cases. 

 

Mean field intensities due to single scattering from cubical and spherical 

distributions are simulated by using Monte Carlo simulation technique. The 

reliabilities of these simulation results have been checked by comparing their 

analytical results and computing their 95% confidence intervals. 

 

Mean field intensities due to multiple scattering from cubical and spherical 

distributions are simulated by using Monte Carlo simulation technique. The 

reliabilities of these simulation results have been checked by computing their 95% 

confidence intervals. These results prove that the existence of the backscattering 

enhancements due to multiple scattering from cubical and spherical distributions. 

Moreover, we display that the cubical distribution give rise to stronger 

backscattering enhancement intensity than the spherical distribution. Universal 

survey studies about the individual existences of the backscattering enhancements 

from different obstacles are presented in [21]. In addition, the experimental studies 

about backscattering enhancement can be found in [24], [30] and [31]. 

 

The specular enhancement from randomly distributed point scatterers is 

investigated. This type of the enhancement is observed over cubical distribution 

when examining the single scattering phenomenon. This proves obviously that 

specular enhancement occurs due to single scattering from cubical distribution and 

also this result help us to conclude that the backscattering enhancement is only 

constituted due to multiple scattering. As for the spherical distribution, the result 
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presents us that specular enhancement due to single scattering from the spherical 

distribution is not constituted. The specular enhancement is also observed in [14] 

which presents that if a surface is flat, this condition corresponds to Snell’s law, and 

the wave is always to be scattered in the specular direction. In [7], both 

backscattering enhancement and specular enhancement are observed at the same 

time. 

 

Multiple scattering is compared to single scattering from the cubical distribution 

and also multiple scattering is compared to single scattering and double scattering 

from the spherical distribution. We prove that the backscattering enhancement is 

mainly constituted due to only multiple scattering. Moreover, we demonstrate that 

the double scattering is the first multiple scattering mechanism and it has dominant 

effect on the backscattering enhancement. However, it is not enough in order to 

explain the backscattering enhancement phenomenon alone. In the same manner, 

the effect of double scattering has been presented in [9] and [27]. In addition, the 

higher-order multiple scattering terms contributes to magnitude of the mean field 

intensity. Similar conclusion drawn in [10] is that the significant contribution of 

multiple scattering can vary by almost an order of magnitude. The similar results 

about contributions of multiple scattering terms are presented in [11], [26], [27] and 

[29]. On account of these results, we must include multiple scattering terms in our 

scattering models to be realistic. 

 

The effect of incident field frequency on the backscattering enhancement due to 

multiple scattering is illustrated. The result proves that to increase incident wave 

frequency causes narrower backscattering enhancement angular width and 

calculating this width is necessary in order to define the receiving pattern angular 

width of the receiver antenna. The same effect of incident field frequency can be 

found in [7] and [15], which conclude that the higher the frequency, the narrower 

the enhancement angle width. 

 

The effects of point scatterer density on the backscattering enhancement and the 

specular enhancement are illustrated. We present that the backscattering 

enhancement is commonly encountered when the density of point scatterers is large 
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enough. If the randomly distributed point scatterers are in a condition of the lower-

density, the multiple scattering to be occurring becomes a weak probability. As for 

the scattering processes in condition of higher-density, the incident field is to be 

absorbed in the randomly distributed point scatterers’ media so there are not enough 

returned fields interfering constructively to produce the backscattering 

enhancement. This event (the absorption of incident field) is mentioned as the 

“shadow effect” in some academic articles, for example [9], [25], [28] and [29]. In 

the same manner, the effects of density have been presented in [8] and [28]. We 

also present that the specular enhancement is commonly encountered when the 

density of point scatterers is large enough for only single scattering from cubical 

distribution. In a condition of the lower-density, the specular enhancement is not to 

occur since a flat surface occurring becomes a weak probability. As for the higher-

density condition, the specular enhancement is always observed because of a flat 

surface occurring. Meanwhile, owing to the geometrical structure of the spherical 

distribution, the specular enhancement results are not observed at any density ratio. 

 

As a future work, the same problems can be solved in the presence of some 

different distributions, such as cylindrical distribution. Moreover, instead of using 

point scatterers, three dimensional scatterers can be distributed into the different 

structures. However, these randomly distributed three dimensional scatterers cause 

that the analytic solutions are to be more difficult and also the runtime of simulated 

solutions are to be much longer. 
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APPENDIX A 

MATLAB PROGRAM OF FIGURE 4.2 

clear; 
 
N = 50; 
D = 30; 
MC=10000; 
 
d=D./2; 
k = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';      
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];         
alfa11s  = zeros(size(ths));       
 
for run=1:MC; 
  Rn = D*(rand(3,N)-0.5);       
  Rnp = D*(rand(3,N)-0.5);       
  R1 = Rn-Rnp;                      
  e1 = exp(jey*ki*R1);              
  e2 = exp(-jey*ks*R1);             
  alfa11s = alfa11s+e2*e1.'/N;      
  
  run 
end 
 
alfa11s=alfa11s/MC; 
alfa11a=(((sin(k.*D.*(cos(thsr./2)).^2).^2.*((sin(k.*d.*sin(thsr)))
.^2))./(((k.*D).^4).*((cos(thsr./2)).^6).*((sin(thsr./2)).^2)))); 
 
I11a=N+N*(N-1)*alfa11a; 
I11s=N+N*(N-1)*alfa11s; 
 
plot(ths,10.*log10(I11a),ths,10.*log10(real(I11s)),'m--'); 
axis([-200 200 15 35]); 
 
title('The MC simulation result of the mean field intensity due to 
single scattering from cubical distribution'); 
xlabel('Scattering Angle (deg)'); 
ylabel('<I11>.(4*pi*ra)^2/|f|^2 (dB)'); 
legend('Single:Analytic','Single:MC Sim'); 
grid on; 
 



 113

APPENDIX B 

MATLAB PROGRAM OF FIGURE 4.4 

clear; 
Nexp = 50; 
D = 30; 
MC=10000;  
Nc =(6./pi).*Nexp;   
d=D./2; 
k = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';      
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];    
alfa11s  = zeros(size(ths));       
 
for run=1:MC; 
  Rn = 2*d*(rand(3,Nc)-0.5);                        
  r = sqrt(sum(Rn.^2)); 
  ixn = find(r<=d); 
   
  Rnp = 2*d*(rand(3,Nc)-0.5);                          
  r = sqrt(sum(Rnp.^2)); 
  ixnp = find(r<=d); 
   
  L = min([length(ixn) length(ixnp)]); 
  Rn = Rn(:,ixn(1:L));                            
  Rnp = Rnp(:,ixnp(1:L));                        
  R1 = Rn-Rnp;                      
  e1 = exp(jey*ki*R1);              
  e2 = exp(-jey*ks*R1);             
  alfa11s = alfa11s+e2*e1.'/L;       
  run 
end 
 
alfa11s=alfa11s/MC; 
alfa11a=[[9.*[k.*D.*cos(k.*D.*cos(thsr./2)).*cos(thsr./2)-
sin(k.*D.*cos(thsr./2))].^2]./[(k.*D.^6).*[[cos(thsr./2)].^6]]]; 
 
I11a=Nexp+Nexp*(Nexp-1)*alfa11a; 
I11s=L+L*(L-1)*alfa11s; 
plot(ths,10.*log10(I11a),ths,10.*log10(real(I11s)),'m--'); 
axis([-200 200 15 35]); 
title('The MC simulation result of the mean field intensity due to 
single scattering from spherical distribution'); 
xlabel('Scattering Angle (deg)'); 
ylabel('<I11>.(4*pi*ra)^2/|f|^2 (dB)'); 
legend('Single:Analytic','Single:MC Sim'); 
grid on; 



 114

APPENDIX C 

MATLAB PROGRAM OF FIGURE 4.5 

clear; 
N = 50; 
D = 30; 
MC=10000; 
d=D./2; 
k = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';     
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];         
alfa11s  = zeros(size(ths));       
alfa11s2 = zeros(size(ths));                         
 
for run=1:MC; 
  Rn = D*(rand(3,N)-0.5);      
  Rnp = D*(rand(3,N)-0.5);       
  R1 = Rn-Rnp;                     
  e1 = exp(jey*ki*R1);              
  e2 = exp(-jey*ks*R1);            
  alfa11s = alfa11s+e2*e1.'/N;       
  alfa11s2=alfa11s2+(e2*e1.'/N).^2;          
  run 
end 
 
alfa11s_m=alfa11s/MC; 
 
I11s_m=N+N*(N-1)*alfa11s_m; 
I11s2=N+N*(N-1)*alfa11s2; 
 
I11s_v= (1./(MC-1)).*I11s2-(MC./(MC-1))*(I11s_m.^2); 
I11s_sd=sqrt(I11s_v);                
 
CIp=I11s_m+(1.96*I11s_sd)./sqrt(MC); 
CIm=I11s_m-(1.96*I11s_sd)./sqrt(MC); 
 
plot(ths,10.*log10(I11s_m),'r-
.',ths,10.*log10(CIp),'k',ths,10.*log10(CIm),'g'); 
axis([-200 200 15 35]); 
title('The 95% confidence interval for the MC simulation result of 
the mean field intensity due to single scattering from cubical 
distribution'); 
xlabel('Scattering Angle(deg)'); 
ylabel('<I11>.(4*pi*ra)^2/|f|^2'); 
legend('Single:MC Sim','Confidence Interval:plus','Confidence 
Interval:minus'); 
grid on; 
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APPENDIX D 

MATLAB PROGRAM OF FIGURE 4.7 

clear; 
 
N = 50; 
D = 30; 
MC=10000; 
 
d = D./2; 
k = 1.0; 
T = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';      
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];          
f=(jey*4*pi*T)./k; 
eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];        
eRa=eRa.';                                           
I_sca = zeros(size(ths));                            
 
for run=1:MC; 
     
    Rn = 2*d*(rand(3,N)-0.5);                        
    I=eye(N);                                       
    Gnt=zeros(N);                                    
    field_inc_n=zeros(1,N);                        
    Gan=zeros(400,N);                                
    field_inc_a=zeros(1,400);                      
         
    for n=1:N; 
        for t=1:N; 
            if t~=n 
                R1=Rn(:,n)-Rn(:,t); 
                r1 = sqrt(sum(R1.^2)); 
                Gnt(n,t)=-exp(jey*k*r1)./(4*pi*r1); 
            else 
            end 
        end 
        field_inc_n(n)=exp(jey*(ki*Rn(:,n)));      
    end 
     
    Gnt=Gnt*f;           
    A=I-Gnt; 
    b=field_inc_n.'; 
    phi = inv(A)*b;                     
     
    for a=1:400; 
        for n=1:N; 
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            R2=sum(eRa(:,a).*Rn(:,n));          
            Gan(a,n)=(exp(jey*k*R2));     
        end 
    end 
     
    Gan=Gan*f;        
    field= Gan*phi;   
    field=field.';    
    field_conj=conj(field); 
    I_sca1=(field.*field_conj);   
    I_sca=I_sca+I_sca1.'/N; 
    run 
end 
 
I_sca_m=I_sca./MC;                
 
plot(ths,10.*log10(I_sca_m),'r-.');  
axis([-200 200 0 50]); 
 
title('The mean field intensity due to multiple scattering from 
cubical distribution'); 
xlabel('Scattering Angle (deg)'); 
ylabel('<I11>.(4*pi*ra)^2/|f|^2 (dB)'); 
legend('Multiple: MC Sim'); 
grid on; 
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APPENDIX E 

MATLAB PROGRAM OF FIGURE 4.8 

clear; 
 
Nexp = 50; 
D = 30; 
MC=10000; 
 
Nc =(6./pi).*Nexp; 
d = D./2; 
k = 1.0; 
T = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';      
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];          
f=(jey*4*pi*T)./k; 
eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];        
eRa=eRa.';                                            
I_sca = zeros(size(ths));                            
 
for run=1:MC; 
     
    Rn = 2*d*(rand(3,Nc)-0.5);                        
    r = sqrt(sum(Rn.^2)); 
    ixn = find(r<=d); 
    L = length(ixn); 
    Rn = Rn(:,ixn(1:L));                            
    I=eye(L);                                       
    Gnt=zeros(L);                                   
    field_inc_n=zeros(1,L);                          
    Gan=zeros(400,L);                               
    field_inc_a=zeros(1,400);                       
         
    for n=1:L; 
        for t=1:L; 
            if t~=n 
                R1=Rn(:,n)-Rn(:,t); 
                r1 = sqrt(sum(R1.^2)); 
                Gnt(n,t)=-exp(jey*k*r1)./(4*pi*r1); 
            else 
            end 
        end 
        field_inc_n(n)=exp(jey*(ki*Rn(:,n)));       
    end 
     
    Gnt=Gnt*f;           
    A=I-Gnt; 
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    b=field_inc_n.'; 
    phi = inv(A)*b;                      
     
    for a=1:400; 
        for n=1:L; 
            R2=sum(eRa(:,a).*Rn(:,n));          
            Gan(a,n)=(exp(jey*k*R2));     
        end 
    end 
     
    Gan=Gan*f;        
    field= Gan*phi;                 
    field=field.';          
    field_conj=conj(field); 
    I_sca1=(field.*field_conj);            
    I_sca=I_sca+I_sca1.'/L;    
    run 
end 
 
I_sca_m=I_sca./MC;                    
 
plot(ths,10.*log10(I_sca_m),'r-.'); 
axis([-200 200 0 50]); 
 
title('The mean field intensity due to multiple scattering from 
spherical distribution'); 
xlabel('Scattering Angle (deg)'); 
ylabel('<I11>.(4*pi*ra)^2/|f|^2 (dB)'); 
legend('Multiple: MC Sim'); 
grid on; 
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APPENDIX F 

MATLAB PROGRAM OF FIGURE 4.9 

clear; 
 
N = 50; 
D = 30; 
MC=10000; 
 
d = D./2; 
k = 1.0; 
T = 1.0; 
jey = sqrt(-1); 
ths = linspace(-180,180,400).';      
thsr = ths*pi/180;       
ki = k*[0 0 -1];         
ks = k*[zeros(size(thsr)) sin(thsr) cos(thsr)];          
f=(jey*4*pi*T)./k; 
eRa= [zeros(size(thsr)) sin(thsr) cos(thsr)];        
eRa=eRa.';                                         
I_sca = zeros(size(ths));                            
I_sca2 = zeros(size(ths));                           
 
for run=1:MC; 
     
    Rn = 2*d*(rand(3,N)-0.5);                       
    I=eye(N);                                        
    Gnt=zeros(N);                                    
    field_inc_n=zeros(1,N);                          
    Gan=zeros(400,N);                               
    field_inc_a=zeros(1,400);                        
         
    for n=1:N; 
        for t=1:N; 
            if t~=n 
                R1=Rn(:,n)-Rn(:,t); 
                r1 = sqrt(sum(R1.^2)); 
                Gnt(n,t)=-exp(jey*k*r1)./(4*pi*r1); 
            else 
            end 
        end 
        field_inc_n(n)=exp(jey*(ki*Rn(:,n)));       
    end 
     
    Gnt=Gnt*f;           
    A=I-Gnt; 
    b=field_inc_n.'; 
    phi = inv(A)*b;                    
     
    for a=1:400; 
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        for n=1:N; 
            R2=sum(eRa(:,a).*Rn(:,n));          
            Gan(a,n)=(exp(jey*k*R2));     
        end 
    end 
     
    Gan=Gan*f;        
    field= Gan*phi;                 
    field=field.';       
    field_conj=conj(field); 
    I_sca1=(field.*field_conj);         
    I_sca=I_sca+I_sca1.'/N; 
    I_sca2 = I_sca2+(I_sca1.'/N).^2;     
    run 
end 
 
I_sca_m=I_sca./MC;                                                     
I_sca_v=(1./(MC-1)).*I_sca2-(MC./(MC-1))*(I_sca_m.^2);  
I_sca_sd=sqrt(I_sca_v);                                                  
 
CIp=I_sca_m+(1.96*I_sca_sd)./sqrt(MC);   
CIm=I_sca_m-(1.96*I_sca_sd)./sqrt(MC);  
 
plot(ths,10.*log10(I_sca_m),'r-
.',ths,10.*log10(CIp),'k',ths,10.*log10(CIm),'g'); 
axis([-200 200 0 50]); 
 
title('The 95% confidence interval for the MC simulation of the 
mean field intensity due to multiple scattering from cubical 
distribution'); 
xlabel('Scattering Angle (deg)'); 
ylabel('Isca (dB)'); 
legend('Multiple:MC Sim','Confidence Interval:plus','Confidence 
Interval:minus'); 
grid on; 
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APPENDIX G 

SINC FUNCTION AND SINE INTEGRAL 

Sinc Function: 

The Sinc function is denoted by )(xSinc  and it is the function of the Sine function 

)sin(x  divided by x, such as [ ] xxxSinc )sin()( = . The Sinc function is also known 

as the “Sampling Function” and it is shown in Figure G.1 as dashed line. 

 

Some Properties of the Sinc Function: 

• The Sinc function is the frequency spectrum of the rectangular pulse. That 

is, the sinc function and the rectangular pulse are Fourier transform pairs 

• The Sinc function is the spherical Bessel fuction of the first kind of order 

zero 

• The Sinc function is also determined as  

⎪⎩

⎪
⎨
⎧ =

= otherwise
x

x
x

xSinc ;)sin(
0;1

)(  

Sine Integral: 

The Sine integral is denoted by )(xSi  and it is the integral of the Sinc function, such 

as ∫=
x

dt
t

txSi
0

sin)(  or ∫=
x

dttSincxSi
0

)()( . The Sine integral divided by x  ⎥⎦
⎤

⎢⎣
⎡

x
xSi )(  

is shown in Figure G.1 as continuous line. 
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Figure G.1: The Sinc function and the Sine integral divided by x  

Matlab Program of Figure G.1: 

clear; 
x = linspace(-180,180,1000); 
 
sinc_func =sin(x)./(x); 
sine_int_x=sinint(x)./(x);  
 
plot(x,sinc_func,'k--',x,sine_int_x); 
 
axis([-60 60 -0.4 1.2]); 
title('Sinc Function & Sine Integral divided by x'); 
xlabel('x'); 
ylabel('Sinc(x) & Si(x)/x'); 
legend('Sinc(x)','Si(x)/x'); 
grid on; 
 
 


