2-,4 VE 6 – BROMONİKOTİNİK ASİT MOLEKÜLLERİNİN YAPILARININ TİTREŞİM SPEKTROSKOPİSİ YÖNTEMİYLE DENEYSEL VE TEORİK OLARAK İNCELENMESİ

YÜKSEK LİSANS TEZİ

Şahin ERMEÇ

Danışman Yrd. Doç. Dr. Mehmet KARABACAK

FİZİK ANABİLİM DALI

Haziran 2008

Bu tez çalışması AKÜ 051.FENED.07 nolu BAPK projesi ile desteklenmiştir.

T.C.

AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

2-,4 VE 6 – BROMONİKOTİNİK ASİT MOLEKÜLLERİNİN YAPILARININ TİTREŞİM SPEKTROSKOPİSİ YÖNTEMİYLE DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Şahin ERMEÇ

YÜKSEK LİSANS TEZİ Fizik Anabilim Dalı Danışman Yrd. Doç. Dr. Mehmet KARABACAK

> AFYONKARAHİSAR 2008

ONAY SAYFASI

Yrd. Doç. Dr. Mehmet KARABACAK danışmanlığında, Şahin ERMEÇ tarafından hazırlanan "2, 4 ve 6-Bromonikotinik Asit Moleküllerinin Yapılarının Titreşim Spektroskopisi Yöntemiyle Deneysel ve Teorik Olarak İncelenmesi" başlıklı bu çalışma, lisansüstü eğitim ve öğretim yönetmeliğinin ilgili maddeleri uyarınca/.../.... tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalında Yüksek Lisans tezi olarak oybirliği ile kabul edilmiştir.

... / ... /

Jüri Üyesi : Doç. Dr. Mustafa KURT

(Başkan)

Jüri Üyesi : Yrd. Doç. Dr. Mehmet KARABACAK

(Danışman)

Jüri Üyesi : Yrd. Doç. Dr. Dilek KARAGÖZ

Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Yönetin Kurulu'nun tarih ve sayılı kararıyla onaylanmıştır.

> Doç. Dr. Zehra BOZKURT Enstitü Müdürü

ÖZET

YÜKSEK LİSANS TEZİ

2-,4 VE 6 – BROMONİKOTİNİK ASİT MOLEKÜLLERİNİN YAPILARININ TİTREŞİM SPEKTROSKOPİSİ YÖNTEMİYLE DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Şahin ERMEÇ

Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı

Danışman: Yrd.Doç.Dr.Mehmet KARABACAK

Bu çalışmada 2,- 4 ve 6 - Bromonikotinik asit moleküllerinin (2, 6-BrNA) deneysel ve teorik hesaplamaları karşılaştırılarak sunulmaktadır. Moleküllerin katı fazdaki İnfrared spekturumları 4000-400 cm⁻¹, Raman spekturumları ise 4000- 0 cm⁻¹ spektral bölgesinden kaydedildi. Gaussian 03 programıyla yarı-deneysel abinitio HF ve DFT(B3LYP) metodunu kullanılarak optimize geometrileri elde edildi. 6-311++G(d,p) temel setinde ab initio yöntemler içerisinde Hartre-Fock (HF) metodu ve yoğunluk fonksiyon teorisi (DFT) içerisinde B3LYP teori düzeylerinde her üç molekülün dört farklı (C1, C2, C3, C4) yapısı ve Dimer C1 yapıları için bağ açıları, bağ uzunlukları ve titreşim frekansları hesaplandı. Elde edilen verilerden her bir parametre için korelasyon grafikleri çizilerek hangi metodun deneysel verilere en yakın sonucu verdiği tespit edildi. Buna göre geometrik parametreler için HF metodunun, titreşim frekansları için de B3LYP metodunun daha iyi sonuç verdiği görülmektedir.

2008, 127 Sayfa

Anahtar kelimeler: IR, Raman, titreşim frekansı, Hartree-Fock, DFT 2-, 4-, 6-Bromonikotinik asit

ABSTRACT M.Sc Thesis

THE EXPERIMENTAL THEORICAL INVESTIGATION OF THE 2,-4 AND 6-BROMONIKOTONIC ACID MOLECULES BY VIBRATIONAL SPECTROSCOPY

Şahin ERMEÇ

Afyon Kocatepe University Graduate School of Natural and Applied Sciences Department of Physics

Supervisor: Assist. Prof. Dr. Mehmet KARABACAK

The experimental and theoretical study on the structures and vibrations of 2, 4 ve 6-bromonicotinic acid (2, 4 ve 6-BrNA, $C_6H_4BrNO_2$) are presented. The Fourier transform infrared spectra (4000–400 cm⁻¹) and the Fourier transform Raman spectra (4000–0 cm⁻¹) of the title molecule in solid phase have been recorded, for the first time. There are four conformers, C1, C2, C3, C4 and Dimer C1 for this molecule. The molecular geometry and vibrational frequencies of 2, 4 and 6-bromonicotinic acid in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-311++G (d,p) as the basis set. Calculations were carried out using Gaussian 03 package of program. On the basis of the comparison between calculated and experimental geometric parameters of 2 and 6-bromonicotinic acid HF method, B3LYP molecular vibrational problems gives best correlation.

2008, 127 Pages

Keywords : IR, Raman, Vibrational frequencies, Hartree-Fock, DFT 2-, 4-, 6bromonikotinik acid

TEŞEKKÜR

Yüksek Lisans Tezi olarak sunduğum bu çalışmada tez konumu seçen, tüm çalışmalarım sırasında engin bilgi ve tecrübesinden yararlandığım ve benden manevi desteğini esirgemeyen büyük bir özveriyle çalışmalarıma ışık tutan değerli hocam Sayın Yrd. Doç. Dr. Mehmet KARABACAK'a sonsuz saygılarımı sunarak teşekkür ederim.

Çalışmalarım sırasında değerli bilgi ve tecrübelerinden yararlandığım değerli bölüm asistanı kıymetli arkadaşım Arş. Gör. Mehmet ÇINAR'a teşekkür ederim.

Benden hayatım boyunca desteklerini esirgemeyen sevgili aileme en içten duygularımla teşekkür ederim.

Haziran 2008 AFYONKARAHİSAR ŞahinERMEÇ

İÇİNDEKİLER

ONAY SAYFASIi
ÖZETii
ABSTRACTiii
TEŞEKKÜRiv
İÇİNDEKİLERv
SİMGELER VE KISALTMALAR DİZİNİvii
ŞEKİLLER DİZİNİviii
ÇİZELGELER DİZİNİx
1.GİRİŞ1
2. LİTARATÜR BİLGİLERİ3
2.1 Moleküler Spektroskopi
2.1.1. İnfrared Spektroskopisi5
2.2. Moleküler Titreşimler9
2.2.1. Temel Titreşimler9
2.3. Molekül Gruplarında Titreşim Türleri11
2.3.1. Gerilme Titreşimi
2.3.2. Açı Bükülme Titreşimleri
2.3.3. Düzlem Dışı Açı Bükülme12
2.4. Grup Frekansları
2.5. Grup Frekanslarına Etkiyen Faktörler
2.5.1. Molekül İçi Etkiler
2.5.2. Molekül Dışı Etkiler
2.6. Moleküler Simetri
2.6.1. Simetri İşlemleri
2.6.2. Simetri Nokta Grupları
2.7.1. Raman Spektroskopisi ve Çalışma İlkesi
2.7.2. Raman Spektrumu
2.7.3. Normal Raman Piklerinin Şiddeti
2.7.4. Analitik Uygulamalar27
2.7.5. İyon ve Ligand Titreşimleri

2.8. Moleküler Enerji İçin Kuramsal Hesaplama Metotları	29
2.8.1. Moleküler Yöntemler	29
2.8.2. Kuantum Mekanik Yöntemler	30
2.8.3. Schrödinger Denklemi	30
2.8.4. Born-Oppenheimer Yaklaşıklığı	32
2.8.5. Hartree Fock Öz Uyumlu Alan Teorisi (SCF)	34
2.8.6. Yoğunluk Fonksiyon Teorisi (Density Functional Theory, DFT)	38
2.8.7. B3LYP Karma Yoğunluk Fonksiyonu Teorisi	41
2.8.8. Yarı – Ampirik Yöntemler	42
2.8.9. LCAO/MO Metodu	43
2.8.10. Gaussian Tipi Atomik Orbitaller (GTO)	46
2.9. Geometrik Optimizasyon	50
2.10. Gaussian 03 Programi	53
3. MATERYAL ve METOT	54
3.1. Deneysel Çalışmada Kullanılan Teknikler	54
3.2. IR Spektrumu Alınması için Numune Hazırlanması	54
3.2.1. Sıvıların IR spektrumu	54
3.2.2. Katıların IR spektrumu	55
3.2.3. Raman Spektroskopisi	56
4. BULGULAR	57
4.1. Bromonikotonik asit (2,4,6-BrNA) Moleküllerinin Simetri Nokta	
Gruplarının Bulunması	57
4.2. 2 ve 6-BrNA Moleküllerinin Deneysel IR ve Raman Spektrumlar1	57
4.3. 2, 4 ve 6-BrNA Moleküllerinin En Uygun Geometrilerinin Bulunması	61
4.4. 2, 4 ve 6-BrNA Moleküllerinin Geometrik Parametreleri	66
4.5. 2, 4 ve 6-BrNA Molekülerinin Titreşim Frekansları ve İşaretlemeleri	78
5. TARTIŞMA ve SONUÇ	108
ÖZGEÇMİŞ	113

SİMGELER VE KISALTMALAR DİZİNİ

<u>Simgeler</u>	<u>Açıklama</u>
λ	Dalga boyu
υ	Frekans
μ	İndirgenmiş kütle
ψ	Dalga fonksiyonu
Н	Hamiltoniyen işlemcisi
E	Hamiltoniyen işlemcisi özdeğeri
E	Özdeşlik elemanı
σ	Yansıma elemanı
C _n	n-katlı dönü ekseni
S _n	n-katlı dönü-yansıma ekseni
i	Terslenme merkezi
δ	Düzlem içi bükülme titreşimi
γ	Düzlem dışı bükülme titreşimi
υ	Gerilme titreșimi
W	Dalgalanma titreşimi
r	Sallanma titreşimi
τ	Burulma titreșimi
t	Kıvırma titreşimi
А	Soğurganlık
Т	Geçirgenlik
<u>Kısaltmalar</u>	<u>Açıklama</u>
2-BrNA	2-Bromonicotinic acid
4-BrNA	4-Bromonicotinic acid
6-BrNA	6-Bromonicotinic acid
HF	Hartree-Fock

DFT	Density Functional Theory
IR	İnfrared

ŞEKİLLER DİZİNİ

Şekil 2.1. % Geçirgenlik ve soğurma türünde kaydedilmiş Mn(INO)2I2
bileşiğinin IR spektrumu7
Şekil 2.2. Bir FT-IR spektrometrede yansımalar sonucu oluşan interferogram
örneği
Şekil 2.3. Temel titreşimlerde tüm atomların eşit yönelimlere sahip olduğu
durumlar
Şekil 2.4. Simetrik ve asimetrik gerilmeler
Şekil 2.5. Moleküler titreşim türleri
Şekil 2.6. Özdeşlik işlem
Şekil 2.7. Yansıma işlemi
Şekil 2.8. C ₂ H ₆ Terslenme işlemi
Şekil 2.9. x ekseni etrafında iki katlı dönü- C_2^x
Şekil 2.10. S _n n-katlı dönü-yansıma işlemi
Şekil 2.11. Bir molekülün nokta grubunun bulunmasında izlenecek yol
Şekil 2.12. Stokes ve anti-Stokes türü Raman saçılması olayının molekül enerji
diyagramı ile açıklanması24
Şekil 2.13. Raman saçılması
Şekil 2.14. Raman spektrometresi
Şekil 2.15. Polarize p ve d kabukları
Şekil 2.16. İki atomlu bir molekülde elektronik enerjinin atomlar arasındaki
mesafeye bağımlılığı51
Şekil 2.17. İki boyutta potansiyel enerji yüzeyleri
Şekil 4.1. 2-BrNA molekülünün geçirgenlik türünde kaydedilmiş IR spektrumu.58
Şekil 4.2. 2-BrNA molekülünün soğurma türünde kaydedilmiş IR spektrumu58
Şekil 4.3. 6-BrNA molekülünün geçirgenlik türünde kaydedilmiş IR spektrumu.59
Şekil 4.4. 6-BrNA molekülünün soğurma türünde kaydedilmiş IR spektrumu 59
Şekil 4.5. 2 ve 6-BrNA moleküllerine ait raman spekturumları60
Şekil 4.6. 2-BrNA molekülünün C1,C2,C3 ve C4 yapılarının en uygun geometrisi.

Şekil 4.7. 4-BrNA molekülünün C1,C2,C3 ve C4 yapılarının en uygun geometrisi.
Şekil 4.8. 6-BrNA molekülünün C1,C2,C3 ve C4 yapılarının en uygun geometrisi.
Şekil 4.9. 2,4, 6-BrNA moleküllerinin sırasıyla dimerC1 yapılarının en uygun
geometrisi65
Şekil 4.10. 2-BrNA molekülünün C1,C2,C3 ve C4 yapılarının deneysel ve teorik
olarak hesaplanan74
Şekil 4.11. 2-BrNA molekülünün C1,C2,C3 ve C4 yapılarının deneysel ve teorik
olarak hesaplanan bağ açılarının korelasyon grafikleri
Şekil 4.12. 6-BrNA molekülünün C1,C2,C3 ve C4 yapılarının deneysel ve teorik
olarak hesaplanan bağ uzunluklarının korelasyon grafikleri
Şekil 4.13. 6-BrNA molekülünün C1,C2,C3 ve C4 yapılarının deneysel ve teorik
olarak hesaplanan bağ açılarının korelasyon grafikleri
Şekil 4.14. 2-BrNA molekülüne ait teorik IR Raman spektrumları 100
Şekil 4.15. 4-BrNA molekülüne ait teorik IR Raman spektrumları 103
Şekil 4.16. 6-BrNA molekülüne ait teorik IR Raman spektrumları
Şekil 4.17. 2-BRNA molekülünün deneysel ve teorik olarak hesaplanan titreşim
frekanslarının korelasyon grafikleri106
Şekil 4.18. 6-BrNA molekülünün deneysel ve teorik olarak hesaplanan titreşim
frekanslarının korelasyon grafikleri107

ÇİZELGELER DİZİNİ

Çizelge 2.1. Elektromanyetik spektrum bölgeleri
Çizelge 2.2. İnfrared spektral bölge7
Çizelge 2.3. Grup Frekansları
Çizelge 2.4. Simetri elemanları ve simetri işlemleri 188
Çizelge 4.1. Cs nokta grubuna ait karakter tablosu
Çizelge 4.2. 2,4 ve 6-BrNA moleküllerinin 4 farklı yapısı için DFT/B3LYP ve HF teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanan enerji ve enerji farkları
Çizelge 4.3. 2-BrNA molekülünün C1 ve DimerC1 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.
Çizelge 4.4. 2-BrNA molekülünün C2, C3 ve C4 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler ve optimum enerjileri
Çizelge 4.5. 4-BrNA molekülünün C1 ve Dimer C1 yapıları için teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler
Çizelge 4.6. 4-BrNA molekülünün C2,C3 ve C4 yapıları için teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler
Çizelge 4.7. 6-BrNA molekülünün C1 ve Dimer C1 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

- Çizelge 4.8. 6-BrNA molekülünün C2, C3 ve C4 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler......73

- Çizelge 4.16. 4-BrNA molekülünün C3 yapısı için teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)]......90

1.GİRİŞ

Maddelerin tüm özellikleri, kendilerini oluşturan moleküllerin yapısına bağlıdır. Molekül yapısı dendiğinde 'statik' yani 'ölü' yapı değil, 'dinamik' yani 'hareketli' yapı göz önüne alınmalıdır. Molekül duran bir sistem değildir. Molekülü oluşturan atomlar titreşim hareketi, atom grupları ise tekli bağ etrafında dönü (iç dönme) hareketi yaparlar. Ayrıca molekül bütün olarak ötelenme ve dönü hareketleri yapabilir. Bu hareketlerin karakterleri doğrudan doğruya molekül yapısına bağlıdır. Dolayısıyla molekül içi titreşim ve dönü hareketlerinin incelenmesi molekül yapısı hakkında çok önemli bilgiler sağlamaktadır. Özellikle IR spektroskopisi molekül yapısı hakkında önemli bilgiler vermektedir.

Moleküllerin titreşim enerjileri, molekül içi ve moleküller arası etkileşmeye göre değiştiğinden bu enerjilerden yararlanılarak, moleküler etkileşmeler saptanabilir. Moleküler etkileşmeler deneysel olarak IR ve Raman spektroskopileri ile, teorik olarak ab- initio, semi emprical (kuvvet alanı ayarlaması) vb.. yöntemlerle incelenebilir. Infrared (titreşim) spektroskopisi, maddenin IR ışınlarını absorblaması üzerine kurulmuş bir spektroskopi dalıdır. IR spektroskopisinde absorblanan ışınların enerjileri, söz konusu madde moleküllerinin titreşim enerjileri kadardır. IR spektroskopisi yöntemi ile moleküllerin titreşim enerji geçişleri incelenmektedir.

Molekül içindeki atomların titreşimleri sırasında atomlar arasındaki uzaklık devamlı büyüyüp küçüldüğünden, iki atom arasında titreşim halinde bir elektriksel alan meydana gelir ve bu titreşim IR ışınlarının elektriksel alanının titreşimine uyunca, ışın absorblanır ve ışını absorblayan molekülün elektriksel yük dağılım daha da asimetrik olur ve dipol momenti büyür. Böylece IR spektroskopisi incelenerek, frekans, şiddet ve bant yarı genişliklerindeki değişimlere bakılarak moleküler yapı hakkında çok önemli bilgilere ulaşılabilir.

Molekül kuantum mekaniksel bir sistem olduğu için yapısını genel olarak kuantum mekaniksel yöntemlerle incelememiz gerekmektedir. Herhangi kuantum

mekaniksel bir sistemin enerji seviyelerini belirtmek ve incelemek için bu sistemi tanımlayan Schrödinger denklemini çözmek gerekmektedir. Çok atomlu moleküller söz konusu olduğu zaman bu denklemi tam anlamıyla çözmek mümkün değildir. Bu nedenle bazı yaklaşımlar yapılarak denklemin çözümü kolaylaştırılır. Moleküllerimizin geometrisi ve titreşim frekansları hesaplanırken kuantum kimyasal hesaplama yöntemlerinden yararlanılmıştır.

Moleküllerin titreşim frekans ve kiplerinin hesaplanması için kuantum mekaniksel hesaplamaları kullandık çünkü kuantum mekanik hesaplamalarda, moleküllerin elektronik yapısı, kuantum mekanik kurallar kullanılarak ve Schrödinger eşitliğinin çözümü ele alınarak sağlanır. Schrödinger denklemi çözülerek molekülün enerjisinin ve ona bağlı özelliklerinin elde edilmesi sağlanır. 2, 4 ve 6bromonikotinik moleküllerinin öncelikle en uygun geometrisi oluşturulup 'GAUSSIAN O3' paket programina tanıtılmıştır. Kuantum mekanik hesaplamalardan olan ab-initio yöntemlerden HF (Hartree-Fock), ve DFT (Yoğunluk Fonksiyon Teorisi) teori düzeyleri ve 6-311++G(d,p) baz seti kullanılarak titreşim frekans ve kipleri hesaplanmıştır. Yapılan literatür taraması sonucunda 2, 4 ve 6-bromonikotinik asit (2, 4 ve 6- bromonicotinic acid, 2, 4 ve 6-BrNA) molekülleri için bugüne kadar yapılmış herhangi bir teorik ve spektroskopik çalışmaya rastlanmamıştır. Bu çalışmada 2 ve 6- bromonikotinik asit moleküllerinin infrared spektrumları 4000–400 cm⁻¹ aralığında Perkin Elmer FT-IR System Spectrum BX spektrometresi kullanılarak kaydedildi. Aynı moleküller için Raman spektrumu 4000–0 cm⁻¹ aralığında FRA 106/S spektrometresi kullanılarak kaydedildi. Gaussian 03 programıyla, ab initio yöntemlerden Hartree Fock (HF) ve DFT (yoğunluk fonksiyon teorisi) teori düzeyleri ve 6-311++G(d,p) baz seti kullanılarak geometrik parametreler (bağ açıları ve bağ uzunlukları) ve titresim frekansları hesaplandı.

2. LİTARATÜR BİLGİLERİ

2.1 Moleküler Spektroskopi

İki veya daha fazla atomun bir araya gelerek kararlı bir düzen kurmaları ile molekül veya molekül sistemleri oluşur. Atomların molekül içindeki düzen ve kararlılığını incelemek için en iyi yöntem moleküler spektroskopidir. Moleküler spektroskopide elektromanyetik dalgaların numune molekülleri ile etkileşmesi incelenerek moleküllerin geometrik ve elektronik yapıları, aralarındaki etkileşmeler hakkında birçok bilgiyi elde edebiliriz.

Numune molekülleri elektromanyetik dalga ile etkileştiğinde başlangıçtaki enerjisi, elektromanyetik dalgayı soğurması veya salmasıyla değişir. Soğurulan ya da salınan elektromanyetik dalganın frekansı, bant şiddeti incelenerek etkileştiği molekülün simetrisi, bağ uzunlukları, bağ kuvvetleri, kararlılığı gibi önemli bilgilere ulaşabiliriz. Serbest bir molekülün enerjisini

- 1) Molekülün bütününün dönmesi
- 2) Molekül atomlarının titreşimi
- 3) Elektronların molekül içindeki hareketleri

gibi enerji bileşenlerinin ayrı ayrı toplamı şeklinde yazmak mümkündür. Molekülün ötelenme hareketi kuantize olmadığı için ihmal edilmiştir. Elektronların kütlesi, çekirdeğin kütlesine göre çok çok küçüktür bu nedenle elektronik enerji çekirdek enerjisine göre çok büyüktür. Bu sebepten dolayı elektronik enerji ile çekirdek enerjisi arasındaki etkileşim ihmal edilebilir. Çekirdek enerjisi de dönü ve titreşim enerjilerinin toplamı şeklinde yazılabilir. Titreşim enerjisi, dönü enerjisine göre 1000 kat daha büyük olduğundan, titreşim ve dönü enerjileri arasındaki etkileşim de ihmal edilebilir. Bu yaklaşıma Born-Oppenheimer yaklaşımı denir.

Elektromanyetik dalganın maddeyi oluşturan moleküllerle etkileşmesi, molekülün değişik enerji düzeyleri arasındaki geçişe sebep olur. Bu geçişler, gelen

elektromanyetik dalganın enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır.

Spektroskopi dalı	İncelenen olay	Frekans(Hz)	Dalgaboyu ())
Radyo frekansı	NMR ve NQR	$3.10^4 - 3.10^{10}$	$10^4 - 10^{-2} \text{ m}$
Mikrodalga frekansı	ESR ve Molekül dönme	3.10 ¹⁰ - 6.10 ¹¹	$10^{-2} - 5.10^{-4} \text{ m}$
Infrared	Molekül Dönme ve Titreşim	6.10 ¹¹ - 4.10 ¹⁴	$5.10^{-4} - 8.10^{-7}$ m
Görünür ve Morötesi	Elektronik geçişler Dış e	4.10 ¹⁴ - 2.10 ¹⁵	$8.10^{-7} - 2.10^{-7}$ m
X-Işınları	Elektronik geçişler İç e	3.10^{16} - 3.10^{18}	10 ⁻⁸ -10 ⁻¹⁰
γ- Işınları	Çekirdek enerji geçişleri	$3.10^{18} - 3.10^{20}$	$10^{-10} - 10^{-14}$

Çizelge 2. 1. Elektromanyetik spektrum bölgeleri (Chang, 1971).

Elektronik, titreşim ve dönme enerjilerinin birbirinden çok farklı olduğunu varsayan Born – Oppenheimer yaklaşımına göre toplam enerji;

$$E_{T} = E_{elek} + E_{tit} + E_{dön}$$
(2.1)

titreşim, dönü ve elektronik enerjilerinin toplamı olarak yazılabilir (Bransden and Joachim 1983). Bir moleküldeki toplam enerjinin değişimi;

$$\Delta E_{\text{toplam}} = \Delta E_{\text{elek}} + \Delta E_{\text{tit}} + \Delta E_{\text{dön}} \text{ (cm}^{-1})$$
(2.2)

$$\Delta E_{\text{elektronik}} = 10^3 . \Delta E_{\text{tit}} = 10^6 . \Delta E_{\text{dönme}} \text{ (cm}^{-1})$$
(2.3)

şeklinde ifade edilir (Banwell 1983). Molekülün dönme enerji seviyeleri birbirine çok yakın olduğu için düşük frekanslarda oluşur. Genel olarak molekülün saf dönme geçişleri 1cm-1µm dalga boyu aralığına düşen Mikrodalga Spektroskopisi ve Uzak İnfrared spektrum bölgesinde incelenir. Titreşim enerji seviyesi arasındaki geçişler 100µm-1µm dalga boyu aralığında İnfrared ve Raman spektroskopisi ile incelenir.

2.1.1. İnfrared Spektroskopisi

İnfrared (IR) spektroskopisi özellikle organik ve inorganik kimyacılar tarafından kullanılan en genel spektroskopi yöntemlerinden biridir. IR spektroskopisinin temel amacı; bir örnekteki kimyasal fonksiyonel grupların belirlenmesi ve analiz edilmesidir. Farklı fonksiyonel gruplar IR ışıması altında farklı karakteristik soğurulma frekanslarına sahiptirler. IR spektroskopisinin en önemli özelliği; bileşik yapıların tanımlanmasında ve açıklanmasında etkili olduğu gibi, örneğin, katı, sıvı ve gaz fazlarının tümün de ölçüm alınabilmesidir.

IR ışımaları elektromanyetik spektrumun dalga sayısı cinsinden ~1300–10 cm ⁻¹ ve dalga boyu cinsinden ~0,78-100µm olduğu bir bölgesine karşılık gelir. Düşük frekansları mikrodalgalarla, yüksek frekansları görünür bölge ile örtüşür. IR spektrum bölgeleri genel olarak dalga sayısı (v) ya da dalga boyu (λ) ile gösterilir. Dalga sayısı; birim uzunlukta sığışan dalgaların sayısını temsil etmekte olup, IR absorpsiyon enerjisi ve frekansı ile doğrudan bir ilişki içerisindedir. Dalga sayısı ile dalga boyu arasındaki ilişki;

$$\upsilon = 1/\lambda \text{ (cm)} \tag{2.4}$$

$$v = 1/2500.10^{-7} = 4000 \text{ cm}^{-1}$$
 (2.5)

$$v = 1/25000.10^{-7} = 400 \text{ cm}^{-1} \text{ dir.}$$
 (2.6)

Dalga sayıları 400 cm⁻¹' den daha küçük ışınların enerjileri moleküllerin rotasyon (dönme) enerji seviyesinde olduklarından, havadaki moleküller tarafından bile kolaylıkla absorbe edilirler. Infrared spektroskopisi, daha çok yapı analizinde kullanılır ve çoğu kez elektronik ve NMR spektroskopisiyle birlikte uygulanmaktadır. Her maddenin kendine özgü bir IR spektrumu vardır. Bir maddenin IR spektrumu, UV spektrumuna göre daha karışıktır. IR absorpsiyon verileri, x ekseni dalga boyu ya da dalga sayısı, y ekseni % Geçirgenlik (Transmittance) ya da soğurma yoğunluğu (Absorbance) şeklinde bir spektrumu olarak kaydedilir. Şekil 2.1'de tanımlamalara uygun örnek bir IR spektrumu

görülmektedir. % Geçirgenlik, T, örneğe gelen ışının şiddetinin (I_0) örnekten geçen ışının şiddetine (I) oranıdır. Soğurma, A, ise % Geçirgenliğin tersinin 10 tabanına göre logaritmasıdır.

$$A = \log(1/T) = -\log_{10}(I/I_0)$$
(2.7)

% Geçirgenlik ölçekli spektrumlar şiddetli ve zayıf bantlar arasında %0-%100 karşılaştırması yaparak net bir belirleme sağlarken, soğurma bölgesi sıfırdan başlayıp sonsuza uzandığı için netlik azalmaktadır. IR spektrumlarında dikkat edilmesi gereken bir diğer nokta; aynı örnek için farklı spektrum profillerinin elde edilmesidir. Bu farklılıklar dalga sayısı ekseninde değil de şiddetler bakımından ortaya çıkmaktadır ve bu durumun spektrumlar alınırken kontrol edilmesi gerekir (Bardak 2005). Molekül v frekanslı bir ışın soğurduğunda molekülün μ_r elektriksel dipol momenti (veya bileşenlerinden en az biri) bu frekansta titreşecektir. Böyle bir titreşim spektrumun infrared bölgesine düşer. IR spektroskopisi dalga boyuna, frekansa veya dalga sayısına göre yakın, orta ve uzak infrared bölge olmak üzere üç kısımda incelenir. Bunlar çizelge 2.2'de verilmiştir.

Yakın Infrared: Bu bölgede molekül titreşimlerinin üst ton ve harmonikleri incelenir. Yakın IR spektroskopisi çok az hatalı ya da örnek karşılaştırması yapmayan cihazlara gereksinim duyar ve uzaktan analizler için fiber optik aletlerle ve UV spektrometre aletleri ile çalışabilir. Yüksek hızlarda nicel analizler yapmayı sağlar ve son yıllarda uzaktan işlem kontrol uygulamalarında artan bir ilgiye sahiptir.

Orta Infrared: Moleküllerin hemen hemen bütün titreşimlerinin gözlendiği, en önemli olan ve en çok kullanılan bölgedir. Yani infrared spektroskopisi denilince akla bu bölge gelir. Organik moleküllerin temel titreşimlerinin belirlenmesinde ve yapı analizinde etkili bir şekilde kullanılmaktadır.

Şekil 2. 1. % Geçirgenlik ve soğurma türünde kaydedilmiş Mn(INO)2I2 bileşiğinin IR spektrumu.

Çizelge 2. 2. İnfrared spektral bölge

Bölge	λ(μm)	υ (cm ⁻¹)	V (Hz)	Enerji (E)
Yakın IR	0,78-2,5	12800 - 4000	3,8.10 ¹⁴ -1,2.10 ¹⁴	10-37 Kcal/mol
Orta IR	2,5 -50	4000 - 200	1,2.10 ¹⁴ -6.0 ¹²	1-10 Kcal/ mol
Uzak IR	50 - 1000	200-10	6.0 ¹² -3.0 ¹¹	0,1-1 Kcal/mol

Uzak Infrared: Moleküllerin saf dönü hareketiyle ilgilidir. Optik materyallerin ve kaynakların özelliklerini incelemede, ağır atomlar içeren (kütle numarası 19'un üstünde) organik, inorganik ve organo metalik bileşiklerin analizinde ve örneklerin örgü dinamikleri ve yapı gibi yapısal incelemelerinde birçok kolaylıklar sağlar. Mikrodalga bölgesine yakın olduğu için moleküllerin dönme hareketleri de incelenebilir. Kimyasal spektroskopide nadiren kullanılır.

2.1.2. İnterferogram

FT-IR spektrometre tarafından elde edilen sinyallerin şekline interferogram denir. Gerçekte bir tek sinüzoidal dalgadan çok daha karmaşık bir yapıya sahiptir. Şekildeki iki dalga boylu kaynaktan çıkan radyasyonla sistemdeki yansımalar ve şekil 2.2 de bu yansımalar sonucu oluşacak girişim sonucu elde edilen bir interferogram görülmektedir.

Şekil 2. 2. Bir FT-IR spektrometrede yansımalar sonucu oluşan interferogram örneği.

interferogramın merkezindeki sivri yükseliş geniş band kaynağın içinde belirlenmesi gereken gerçek büyüklüktür. Kaynaktan istenen bölge için tüm dalga boyları aynı anda gönderilerek bir interferogram oluşturulur.

$$\mathbf{F}(v) = \int_{-\infty}^{+\infty} f(t) e^{-i(2\pi\theta)vt} dt$$
(2.7)

$$F(v) = \int_{-\infty}^{+\infty} 2\pi F(v) e^{-i(2\pi\theta)vt} dt$$
(2.8)

fourier transform algoritmasının kullanılması ile bir bilgisayar yardımıyla aynı anda her frekanstaki IR ışığı gönderilerek elde edilen zaman eksenli spektrum, çok kısa bir sürede frekans eksenli duruma getirilir. Bilgisayar aynı ölçümü defalarca alıp hataları en aza indirebilir.

2.2. Moleküler Titreşimler

Mutlak sıfırın üzerindeki tüm sıcaklıklar için, bir moleküldeki tüm atomlar diğer atomlar ile sürekli bir titreşim halindedirler. Özel bir titreşim frekansına eşit bir frekansta bir IR radyasyonu molekül üzerine düşerse radyasyon molekül tarafından soğurulur ve bu soğurulmaların her biri spektrumda bir pik olarak belirir. Bu piklerin oluşmasını sağlayan soğurulmalar, ancak seçim kuralları dahilinde gerçekleşebilir.

2.2.1. Temel Titreşimler

Serbest uzayda her bir atom, üç boyutlu kartezyen koordinatlarının (x,y,z) her biri için bir harekete, yani üç serbestlik derecesine sahiptir. Çok atomlu bir molekül de N tane atom için toplam 3N serbestlik derecesine sahiptir. Bununla birlikte, her molekülde tüm atomların aynı yönde hareket yapmasına karşılık gelen üç mod vardır. Serbestlik derecelerinden 3'ü molekülün tüm atomlarının aynı yönelime sahip olmasına karşılık gelir ve buna ek olarak 3'ü de molekülün tüm atomlarının aynı dönme yönelime sahip olmasına karşılık gelir. Bu yüzden gerçek serbestlik derecesi 3N-6 dır ve lineer olmayan moleküllerin temel titreşimlerinin sayısıdır. Lineer moleküller ise 3N-5 temel titresime sahiptir. Cünkü molekülün dönme hareketinin tanımlanmasında sadece 2 serbestlik derecesi kullanılır. 3N-6 yada 3N-5 temel titreşimlerin (bunlar titreşimin normal modları olarak da adlandırılır) molekülün toplam dipol momentinde net bir değişim oluşturabilenleri IR aktif ve molekülde kutuplanabilirlik değişimleri verenler de Raman aktif modlardır. Doğal olarak bazı titreşimler hem IR hem de Raman aktiftirler. Genellikle gözlenen soğurulma bandlarının toplam sayısı temel titreşimlerin toplam sayısından farklıdır. Bunun sebebi bazı bandların IR aktif olmaması ve tek bir frekansın, hareketin birden fazla moduna karşılık gelebilmesidir ve bu durumda bir bant dejenerasyonunun olduğu söylenir.

Şekil 2. 3 Temel titreşimlerde tüm atomların eşit yönelimlere sahip olduğu durumlar.

Bunların yanında temel titreşim frekanslarına karşılık gelmeyecek yerlerde de ilave bandlar gözlenir. Bu ilave bandlar üst tonların ortaya çıkmasından, temel frekansların örtüşmelerinden ve ayrışmalardan iki temel titreşim frekansı arasındaki etkileşmelerden ve temel titreşim frekansları ve üst ton yada kombinasyon bandları arasındaki etkileşmelerden (Fermi rezonansı) kaynaklanmaktadır. Üst ton, kombinasyon ve farklı bandların şiddetleri, temel titreşim bandlarının şiddetlerinden daha azdır. Kombinasyonlar ve karışımların arındırılmasıyla her bir molekül için kendine özgü bir IR spektrumu elde edilir. IR spektrumunda gözlenen her bir pik moleküle ait titreşim modlarından birisine karşılık gelir (Sherrill, 2001).

2.3. Molekül Gruplarında Titreşim Türleri

2.3.1. Gerilme Titreşimi

Bağ ekseni doğrultusunda periyodik olarak uzama kısalma hareketidir. Atomların başlangıç konumları ile titreşim sonrası konumları arasındaki yer değiştirme vektörü bağ uzunluğundaki değişmeyi verir. Molekülün tüm bağlarının aynı anda uzayıp kısalması hareketi (simetrik gerilme) olabildiği gibi, bağların biri veya birkaçı uzarken diğerlerinin kısalması (asimetrik gerilme) ya da bunun tam tersi hareket yapabilir. Gerilme titreşimleri v ile gösterilir. Hem doğrusal hem de açısal moleküllerde gözlemlemek mümkündür. Bir moleküldeki atomların titreşim hareketi yapabilmeleri için mutlaka bir enerji soğurmaları gerekmektedir. Bu enerji miktarı; moleküllerdeki farklı türdeki titreşimler arasında, gerilme titreşimleri için en yüksektir. Atomlar arası bağ kuvvetinin artmasıyla birlikte bu titreşimlerde gerekli enerji miktarı da artar.

Şekil 2. 4. Simetrik ve asimetrik gerilmeler.

2.3.2. Açı Bükülme Titreşimleri

İki bağ arasındaki açının periyodik olarak değişim hareketidir. Yer değiştirme vektörleri bağ doğrultusuna diktir. Açı bükülme titreşimleri δ ile gösterilir. (Şekil 2.5. a)

Açı bükülmesinin özel şekilleri ise;

- a) Makaslama (Scissoring): iki bağ arasındaki açının bağlar tarafından kesilmesi ile periyodik olarak değişim hareketidir. Yer değiştirme vektörleri bağa dik doğrultuda aynı noktaya doğrudur. δs ile gösterilir. (Şekil 2.5.b)
- b) Sallanma (Rocking): Yer değiştirme vektörleri birbirini takip edecek yöndedir. İki bağ arasındaki veya bir bağ ile bir grup atom arasındaki açının yer değiştirmesidir. Bağ uzunluğu ve açının değeri değişmez kalır. ρr ile gösterilir. (Şekil 2.5.c.)
- c) Dalgalanma (Wagging): Bir bağ ile iki bağ tarafından tanımlanan bir düzlem arasındaki açının değişim hareketidir. Molekülün tüm atomları denge konumunda düzlemsel iken, bir atomun bu düzleme dik hareket etmesidir. w ile gösterilir. (Şekil 2.5.d.)
- d) *Kıvırma (Twisting):* Doğrusal ve düzlemsel olmayan moleküllerde bağların atomlar tarafından bükülmesidir. Burada bağın deformasyonu söz konusu değildir. Yer değiştirme vektörü bağ doğrultusuna diktir. t ile gösterilir. (Şekil 2.5.e.)
- e) Burulma (Torsion): İki düzlem arasındaki açının bir bağ veya açıyı deforme ederek periyodik olarak değişim hareketidir. τ ile gösterilir. (Şekil 2.5.f)

2.3.3. Düzlem Dışı Açı Bükülme

Atomların hareketi ile bir düzlemin (genellikle bir simetri düzlemi) yok edilmesi hareketidir. Genelde kapalı bir halka oluşturan moleküllerde görülür ve hareketin biçiminden dolayı şemsiye titreşimi denir ve γ ile gösterilir. (Şekil 2.5. g.)

Şekil 2. 5. Moleküler titreşim türleri.

2.4. Grup Frekansları

Grup frekansı yöntemi, çok atomlu moleküllerin titreşim spektrumlarının yorumlanmasında en çok kullanılan yöntemlerden birisidir. Molekülün bütün atomlarının aynı faz ve frekansta hareket etmesi anlamına gelen temel titreşimlerin genlikleri, titreşim frekanslarının kütle ile ters orantılı olmalarından dolayı birbirinden farklıdır. Molekül içindeki bir grup, moleküldeki diğer atomlara oranla daha hafif (OH, NH, NH₂, CN₂ gibi) veya daha ağır atomlar içeriyorsa (CCI, CBr, CI gibi), bu tip grupların molekülün geri kalan kısmından bağımsız olarak hareket ettiği kabul edilir. Bunun nedeni bu grupların harmonik titreşim genliğinin (yada hızının) molekülün diğer atomlara oranla daha büyük veya daha küçük olmasıdır. Yani bir moleküldeki bir grup titreşirken, bunun titreşim potansiyeline katkısı ile molekülün geri kalan kısmında olan titreşimlerin potansiyele olan katkısı oldukça farklıdır. Grubun, potansiyele olan katkısı yaklaşık % 98-99 iken, diğer titreşimlerin potansiyele olan katkısı geni grup, molekülün bağımsız titreşiyormuş gibi düşünülebilir.

Harmonik titreşicinin frekansı,

$$V = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(2.9)

ifadesi ile verilir. Burada; k: kuvvet sabiti, μ : indirgenmiş kütledir. Kuvvet sabitinin büyük olması atomların denge pozisyonunda hareketin zorlaşmasına sebep olacağından, ikili ve üçlü bağların (C=C, C=O, C=N) gerilme frekansları tekli bağlardan daha yüksektir. Grup frekanslarının bazıları çizelge 2.3'de verilmiştir. Birçok inorganik ve organik grupların frekansları belirli olup bunlar yapı analizinde kullanılır (Nakamoto, 1977). Moleküllerin normal titreşimlerini iskelet ve grup titreşimleri olarak iki gruba ayrılabilir. 1400-700 cm ⁻¹ dalga sayısı aralığında çok farklı frekanslarda bandların gözlendiği iskelet titreşim bölgesine parmak izi bölgesi de denir.

Grup	Gösterim	Titreşim Dalga Sayısı Aralığı (cm ⁻¹)
O-H gerilme	v(OH)	3640-3600
N-H gerilme	v(NH)	3500–3380
C-H gerilme	v(CH)	3100-3000
C-H gerilme	v(CH)	3000–2900
CH ₃ gerilme	v(CH ₃)	2962±10 ve 2872±5
CH ₂ gerilme	v(CH ₂)	2926±10 ve 2853±10
C=C gerilme	v(CC)	2260-2100
C≡N gerilme	v(CN)	2200–2000
C≡O gerilme	v(CO)	1800–1600
NH ₂ bükülme	$\delta(NH_2)$	1600–1540
CH ₂ bükülme	$\delta(CH_2)$	1465–1450
CH ₃ bükülme	δ(CH ₃)	1450–1375
C-CH ₃ bükülme	pr(CH ₃)	1150-850
S=O gerilme	v(SO)	1080–1000
C=S gerilme	v(CS)	1200–1050
C-H d. dışı açı bükülme	γ(CH)	650–800

Çizelge 2. 3. Grup Frekansları (Rao 1963).

2.5. Grup Frekanslarına Etkiyen Faktörler

Grup Frekanslarına etkiyen faktörler molekül içi ve molekül dışı olmak üzere iki kısımda incelenir (Colthup et.al. 1964).

2.5.1. Molekül İçi Etkiler

Molekül içi etkiler titreşimsel çiftlenim (coupling), komşu bağ etkisi ve elektronik etki olmak üzere üç kısma ayrılır.

Titreşimsel Çiftlenim (Coupling) : Bir molekülde frekansı birbirine yakın iki titreşim veya bir atoma bağlı iki titreşim arasında görülür. Buna örnek olarak iki atomlu C=O molekülü verilebilir. Bu molekülde gerilme titreşimi teorik olarak 1871 cm⁻¹ de gözlenmesi gerekirken (Bu hesap CO₂ den elde edilen kuvvet sabiti kullanılarak yapılmıştır), CO₂ molekülünün infrared spektrumuna baktığımızda 1871 cm⁻¹ de bir pik gözlenmeyip 1340 cm⁻¹ ve 2350 cm⁻¹ olmak üzere iki gerilme

titreşim gözlenmektedir. Bunun nedeni, CO₂ molekülündeki titreşimlerin birbirlerini etkilemeleri ve iki C–O bağı olmasıdır. Bu olaya titreşimsel çiftlenim denir.

Komşu Bağ Etkisi: Bu etkide önemli olan bağlar arasındaki kuvvet sabitidir. Bir bağa komşu olan bağın kuvvet sabitinin küçülmesi, o bağın kuvvet sabitinin de küçülmesine sebep olduğundan, bağın titreşim frekansı da düşer. Buna komşu bağ etkisi denir. Bunun tersi de doğrudur. Örneğin, nitril (R–C=N, R: alkali radikal) bileşiklerinde R yerine halojenler geldiği zaman titreşim frekansının düştüğü görülmektedir.

Elektronik Etki: Bağın elektron yoğunluğunda değişiklik meydana getiren etkilerdir. Bunlar indüktif ve rezonans etkisi olmak üzere iki kısımda incelenebilir. İndüktif etki bağın elektron yoğunluğunu artıran pozitif ve azaltan negatif etkiden oluşur. Bu etki, diğer gruplardaki elektron dağılımının elektrostatik etkisinin, bir gruba olan etkisi olarak tanımlanabilir. Rezonans etkisi ise, sadece elektronların yerlerinin birbirinden farklılık gösterdiği yapılar olarak tanımlanabilir. Bu yapılarda yalnız elektronlar hareket etmekte, çekirdek sabit kalmaktadır (Davies 1963).

2.5.2. Molekül Dışı Etkiler

Bir maddenin spektrumu en iyi gaz fazında iken alınır. Bunun nedeni madde gaz halinde iken moleküller arası uzaklık fazla olduğundan, molekül normal titreşimini yapar. Ancak madde sıvı halde iken molekül yakınında bulunan başka moleküllerden etkilenebilir. Bu etkilenme dipolar etkilenme ve hidrojen bağı ile etkilenme olmak üzere iki çeşittir.

Dipolar (çift kutupsal) etkilenme: Polar bir molekülün pozitif ucuyla diğer bir molekülün negatif ucunun birbirlerini çekmeleri dipolar etkileşmedir. Örneğin aseton molekülünün ((CH_3))₂-C=O) gaz halindeki titreşim frekansı 1738 cm⁻¹, sıvı haldeki aynı titreşimin frekansı 1715 cm⁻¹ de gözlenmiştir (Albert et.al 1970). Bunun nedeni sıvı haldeyken dipol olan iki C=O grubunun birbirlerini çekmeleridir. Böylece bağların polarlığı daha da artar ve karbonil grubunun bağ derecesi düşer.

Bu halde meydana gelen kaymalar 25 cm⁻¹ civarındadır. Polar çözücülerde, çözünen ve çözücü arasında etkileşim olmaktadır. Dolayısıyla değişik çözücülerde değişik dalga boylarında bantlar oluşabilmektedir (Albert et.al. 1970).

Hidrojen bağı ile etkilenme: Hidrojen bağından ileri gelen kaymalar, dipolar etkilerden ileri gelen kaymalardan daha büyüktür. Bir molekülün A-H molekülü ile diğer molekülün donörü olan ve üzerinde ortaklanmamış elektron çifti bulunan B atomu arasındaki etkileşme olarak tanımlanır. (A-H...B). A; hidrojenden daha elektronegatif bir atom ihtiva eder. Burada H...B bağı, normal kovalent bağa göre cok zayıf olduğundan infrared bölgede 300 cm⁻¹, in altında gözlenir. Buna örnek olarak karboksilli asitler verilebilir. Bunlar polar olmayan çözücüler ile derişik cözeltilerinde assosiye (dimer) moleküllerden oluşurlar. Bu diğerleşmenin nedeni iki molekül arasında iki hidrojen bağının meydana gelmesidir. Bu tür hidrojen bağları O-H bağının titreşim dalga sayısını, 3560-3500 cm⁻¹' den 3000-2500 cm⁻¹'e yaklaşık 1000 cm⁻¹ kadar düşürür. Hidrojen bağı sonucu aynı zamanda O-H bağının soğurma bandında da genişleme gözlenebilir. Hidrojen atomu etrafındaki kuvvet alanı A-H....B bağının oluşumu sonucunda değiştiğinden, A-H titreşim bantları da değişebilir. Hidrojen bağı A-H bağını da zayıflattığı için gerilme titresim frekansı da düşer. Buna karşılık H....B bağı nedeniyle bükülme frekansı yükselir. Örneğin primer amidlerde (R-NH₂ C=O) C=O gerilme titreşimleri ve NH bükülme titreşimlerinin frekansları hidrojen bağına imkan sağlayan bir ortamda çalışıldığı zaman yaklaşık 40 cm⁻¹ düşer. C=O gerilme titreşimleri çok seyreltik çözeltilerde 1690 cm⁻¹ de, parafin KBr içinde ise 1650 cm⁻¹ gözlenmektedir. Çünkü bu ortamda amid molekülleri arasında hidrojen bağı meydana gelir. Buna karşılık seyreltik çözeltilerde 1620–1590 cm⁻¹' de gözlenen N-H gerilme titreşimleri 1650-1620 cm⁻¹ ¹'e yükselebilmektedir (Colthup et.al. 1964).

2.6. Moleküler Simetri

Schrödinger denklemi sadece hidrojen atomu ve hidrojen molekül iyonu için tamamen çözülebilir. Atom ve moleküllerin kuantum mekaniksel davranışları incelenirken yaklaşık metodlar kullanılmasına rağmen Schrödinger denklemini çözmek oldukça zordur. Bunun için moleküllerin simetri özelliklerinden yararlanarak molekülün dalga fonksiyonları ve enerjileri hakkında bilgiye ulaşmamız için Schrödinger denklemini çözmeye gerek yoktur. Ayrıca dalga fonksiyonlarının simetrilerinden yaralanarak spektroskopik geçiş olasılıkları tahmin edilebilir. Bütün bu kolaylıklar "Grup Teori" adı verilen bir matematiksel tekniğin kullanımı sayesindedir (Chang 1971).

2.6.1. Simetri İşlemleri

Bir molekükün, herhangi bir geometrik şekil veya cisim gibi bir takım simetri elemanları vardır. Simetri elemanı geometrik nicelik; doğru, düzlem veya nokta olabilir. Simetri işlemi simetri elemanına uygulanır. Simetri elemanına göre yapılan belirli bir işlem ile molekül başlangıçtaki hali ile aynı kalır. İşlemden önceki ve sonraki şekiller birbirinin tamamen aynısıdır. Bu özel işlemlere **''simetri işlemi''** denir. Simetri işlemi, molekülün her kısmını tekrar aynı noktalara getiren veya benzer kısımların yer değiştirdiği işlemlerdir. Simetri işlemi yansıma, döndürme ve terslenme gibi bir hareketi tanımlar.

Simetri Elemanı	Simetri işlemi
E (özdeşlik elemanı)	E (özdeşlik işlemi): 360 ⁰ dönü
σ(yansıma elamanı)	σ(yansıma elamanı):
	$\boldsymbol{\sigma}^{xy}(x,y,z) = (x,y,-z)$
	$\boldsymbol{\sigma}^{\mathbf{xz}}(\mathbf{x},\mathbf{y},\mathbf{z}) = (\mathbf{x},-\mathbf{y},\mathbf{z})$
	$\sigma^{yz}(x,y,z)=(-x,y,z)$
i (terslenme elemanı)	i (terslenme elemanı):
	i(x,y,z)=(-x,-y,-z)
C _n (n katlı dönü ekseni)	C_n : n katlı dönü ekseni etrafında $2\pi/n$ dönü
$S_n(n \text{ katlı dönü ekseni + yansıma düzlemi })$	S_n : n katlı dönü ekseni etrafında $2\pi/n$ dönü + bu eksene dik düzlemde yansıma

Cizelge 2	2.4.	Simetri	elemanları	ve	simetri	islemleri.
YILVIDe .		01110011	erennen i		01110011	19101110111

Özdeşlik Elemanı (E veya I) : Tüm moleküllerin sahip olduğu bir elemandır. Bu elemana özdeşlik elemanı denir. Bu işlemde molekülü kütle merkezinden geçen

herhangi bir eksen etrafında 360° döndürdüğümüzde, molekülün tüm atomlarının konumlarında hiçbir değişim olmaz. Yani ilk durumuna özdeş duruma gelir. 360°, lik dönü hareketi de özdeşlik işlemidir.

Şekil 2. 6. Özdeşlik işlemi.

Simetri Düzleminde Yansıma (σ): Bu işlemde molekül düzlem üzerinden yansıtılır ve eski halini korur. Molekülü kütle merkezinden geçen bir düzlemden yansıtıyoruz ve bunun sonucunda molekül değişmeden kalıyorsa molekül yansıma işlemine sahiptir. Buradaki düzleme yansıma düzlemi, yansıtma hareketine de yansıma işlemi denir. Moleküler eksen, molekülün en yüksek katlı dönü eksenidir ve z ekseni doğrultusunu belirler. İki türlü yansıma düzlemi vardır.

 σ_v : Moleküler ekseni içeren yansıma düzlemi (düşey düzlem)

 σ_h : Moleküler eksene dik yansıma düzlemi (yatay düzlem)

Şekil 2. 7. Yansıma işlemi.

Terslenme merkezi (simetri merkezi) (i): Moleküldeki her atomun koordinatları (x,y,z) olsun. Terslendiğinde, yani (-x,-y,-z) olacak şekilde değiştiğinde, molekül ilk durumundan farklı ise molekül terslenme elemanına sahiptir. Her molekülün terslenme merkezi yoktur. Terslenme merkezi olabilmesi için, orijin olarak alınan noktanın mutlaka molekülün kütle merkezi olması gerekir ve bu noktaya molekülün terslenme merkezi veya simetri merkezi denir. Molekülün terslenme merkezi ancak molekülün kütle merkezi olabilir.

Şekil 2. 8. C₂ H₆ Terslenme işlemi.

n-katlı dönü ekseni (Cn) : Moleküle kütle merkezinden geçen bir eksen etrafında $2\pi/n$ radyan açı kadar döndü uygulandığında, molekülün şekli aynı kalır. Bu eksen molekülün n-katlı dönü eksenidir ve molekül n katlı dönü eksenine sahiptir. Bir n-katlı dönü eksenine dönü işlemi n-kez uygulanır ve n. uygulamada molekül ilk durumuna özdeş duruma gelir (2π radyan dönü).

Şekil 2. 9. x ekseni etrafında iki katlı dönü- C_2^x

n-katlı dönü-yansıma ekseni (Sn): Molekülü n-katlı dönü ekseni etrafında $2\pi/n$ kadar döndürüp ve bu eksene dik düzlemde yansıttığımızda molekül şeklini değiştirmiyorsa, molekül S_n simetri elemanına sahiptir denir.

Şekil 2. 10. S_n n-katlı dönü-yansıma işlemi.

2.6.2. Simetri Nokta Grupları

Simetri işlemleri, simetri elemanlarına uygulanır ve sonuçta molekülün kütle merkezi yer değiştirmez. Molekülün tüm simetri elemanlarından oluşan gruba simetri nokta grubu denir. Her nokta grubu için ayrı ayrı karakter tabloları vardır. Bu tablolar yardımıyla molekülün titreşimleri hakkında bilgi edinebiliriz. Örneğin bu tablolar yardımıyla titreşimlerin hangilerinin Raman aktif ve hangilerinin Infrared-aktif olduğu bulunabilir.

Bir molekülün simetri nokta grubunu bulabilmemiz için aşağıdaki kuralları bilmemiz gerekir (Chang 1971, Ferraro x).

1) Molekülün önce özel bir nokta grubunda olup olmadığına bakarız. Bu özel nokta grupları: çizgisel, tetrahedral veya oktahedral olabilir.

a) Molekül çizgisel ise; terslenme merkezi var mı yok mu diye bakarız. Eğer terslenme merkezine sahipse $D_{\infty h}$, terslenme merkezine sahip değilse; $C_{\infty v}$ nokta grubundadır.

 b) Molekül düzgün dörtyüzlü bir yapıya sahipse; tetragonal, düzgün sekizyüzlü bir yapıya sahipse; oktahedral bir yapıya sahiptir.

2) Molekül bu özel nokta gruplarına girmiyor ve hiçbir dönü eksenine sahip değil fakat (a) sadece σ_v yansıma düzlemine sahipse *Cs* nokta grubu, (b) sadece

terslenme merkezine sahipse; C_i nokta grubu, (c) sadece S simetri işlemine sahipse; S_n nokta grubuna girer.

3) Bunlardan hiçbirine sahip değil ise C1 nokta grubuna girer.

Şekil 2. 11. Bir molekülün nokta grubunun bulunmasında izlenecek yol.
2.7. Raman Spektroskopisi

2.7.1. Raman Spektroskopisi ve Çalışma İlkesi

Raman spektroskopisi, infrared (IR) spektroskopisi gibi bir titresim spektroskopisidir. Her iki spektroskopi de molekülün titreşim seviyeleri arasındaki enerji farkına dayanır. Buna göre bir grubun Raman kaymasının (pikinin) enerjisi, o grubun IR absorpsiyon bandının pikinin enerjisine esittir. Ancak, söz konusu grubun Raman ve IR aktif olması gerekir. Baska bir deyimle bir maddenin Raman ve IR spektrumlarının aynı ve farklı frekansta olan pikler vardır. Bundan başka aynı frekansta olan piklerinin siddetleri de birbirinden farklı olabilir. IR spektroskopisi, uyarıcı ışınla molekülün dipol momentinin değişmesi üzerine kurulduğu halde, Raman spektroskopisi molekülün polarlığının değişmesi üzerine kurulmuştur (Gündüz 2002). Raman spektroskopisi bir numunenin görünür bölge veya yakın-IR monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin şiddetli bir monokromatik ışın demeti ile etkileşmesi sırasında ışık absorpsiyonu olayı gerçekleşmiyorsa ışık saçılması olayı meydana gelir. Işık saçılması sırasında saçılan ışığın büyük bir kısmının enerjisi madde ile etkileşen ışığın enerjisine eşit olur ve bu tür elastik saçılma olayına Rayleigh saçılması denir. Elastik saçılma olayının yanı sıra, saçılan ışığın çok az bir kısmı elastik olmayan saçılma olayı ise Raman saçılması adını alır. Rayleigh saçılması olayında Raman saçılmasına göre 104 - 105 kez daha şiddetli bir saçılmış ışık oluşur. Ancak Rayleigh saçılması tek bir pik verir ve titreşim geçişleri hakkında bilgi vermez. Raman saçılması sırasında saçılan ışığın enerjisinde molekül ile etkileşen ışığınkine göre oluşan fazlalık veya azlık ışıkla etkilesen molekülün titreşim enerji düzeyleri arasındaki enerji farkları kadardır. Bu nedenle Raman saçılmasının spektroskopik incelenmesi ile de moleküllerin titreşim enerji düzeyleri hakkında bilgi edinilebilir. Bu tür bir spektroskopik yöntem *Raman* spektroskopisi adını alır. Bu yöntemde molekül ile etkileşen ışığın dalga boyuna göre saçılan ışığın dalga boyunda oluşan farklar ölçülür. Bu farklar Raman kayması olarak adlandırılır. Moleküller ile etkileştirilen ışığın kaynağı olarak son yıllarda genellikle lazer türü kaynaklar kullanıldığından bu yönteme Lazer Raman Spektroskopisi adı da verilir.

Raman spektroskopisi inorganik, organik ve biyolojik sistemlerin kalitatif ve kantitatif analizine uygulanır. Şekil 2.12'de Raman saçılması olayının ortaya çıkışının molekülün titreşim enerji düzeyleri ile ilişkisi ve şekil 2.13'te Raman saçılmasının prensibi görülmektedir. hv_0 enerjili ve molekülün absorplamadığı bir foton molekül ile etkileştiğinde saçılmadan önce çok az sayıda foton enerjilerinin bir kısmını moleküllere aktarır veya moleküllerden çok az sayıda fotona bir miktar enerji aktarılır. Bu enerji aktarımı olayı sonucu moleküller fotonla etkileştikten sonra farklı titreşim enerji düzeylerinde bulunurlar. Stokes türü saçılma hatları Rayleigh hattına göre negatif Δv değerlerinde, anti- Stokes türü saçılma hatları ise pozitif Δv değerlerinde gözlenir. Bir molekülde gözlenen Raman hatlarının mutlak Δv değerleri hattın Stokes veya anti-Stokes türü olmasına bağlı olmayıp her iki durumda da aynıdır.

Şekil 2. 12. Stokes ve anti-Stokes türü Raman saçılması olayının molekül enerji diyagramı ile açıklanması.

Bir molekülün bir fotonla Raman türü saçılma etkileşmesine girebilmesi için molekülün titreşimi sırasında etkileştiği fotonun elektrik alanı tarafından periyodik

ve fotonun frekansına eşit frekanslı olarak polarlanabilmesi yani periyodik ve geçici bir dipol momentinin oluşması gereklidir. Raman hatlarının şiddeti, titreşen molekülün fotonla etkileşirken oluşan polarlanabilme değişim hızının karesi ile orantılıdır.

Şekil 2. 13. Raman saçılması.

2.7.2. Raman Spektrumu

Bir Raman spektrumu, Raman saçılım ışınım şiddetinin onun başlangıç ışınımının frekansıyla olan farkının fonksiyonu olarak çizilir. Bu fark *Raman Kayması* olarak tanımlanır. Bir fark değeri olduğundan Raman kayması gönderilen ışının frekansından bağımsızdır. Dolayısıyla sadece Stokes bölgesi kullanılır (anti-Stokes spektrumu da aynı şekli verir ancak şiddeti çok daha düşüktür).

2.7.3. Normal Raman Piklerinin Şiddeti

Normal bir Raman pikinin şiddeti veya gücü, molekülün polarizlenebilirliğine, kaynağın şiddetine, aktif grubun derişimine ve bir dizi diğer faktöre karmaşık şekilde bağlıdır. Absorpsiyonun yokluğunda, Raman emisyonunun gücü kaynağın frekansının dördüncü kuvvetiyle artar, ancak UV ışınlamasının ışınla bozunmaya yol açtığından bu bağıntıdan pek yararlanılmaz.

Raman çizgilerinin şiddetleri genelde aktif türlerin derişimleri ile doğru orantılıdır. Molekül ile etkilesen fotonun enerjisi, molekülün absorplayacağı foton enerjisinden daha az olduğu durumda oluşan Raman hatlarının şiddetleri çok azdır. Eğer molekülün saçacağı ışığın enerjisi molekülün absorplayacağı fotonun enerji değerine çok yakın ise, saçılan ışığın şiddetinde büyük bir artış olur. Bunun temel nedeni, saçılan ışığın şiddetinin saçılan ışığın frekansının dördüncü kuvveti ile orantılı olarak artmasıdır. Bu yönteme Rezonans Raman Spektroskopisi (RRS) denir. Normal Raman spektroskopisi ile ancak saf sıvı ve katılar ile çok derişik (0,1M) çözeltilerden sinyal alınabilirken, rezonans Raman spektroskopisi ile 10⁻⁶ M gibi çok seyreltik çözeltilerle bile Raman kaymaları ölçülebilir. Yöntemde gerçekleştiren bu duyarlık artışına ek olarak, bu tür bir uygulamada yöntemin seçimliliği de artar, çünkü rezonans Raman spektrumunda sadece ışığı absorplayan kromofor grubun rol aldığı titreşimlere ait bantların şiddeti artar. Böylece, çok karmaşık bir yapıya sahip moleküllerin sadece kromoforlarla ilgili kaymaları gözlenir ve bunların Raman spektrumları daha basit bir biçimde elde edilir. Rezonans Raman spektroskopisi, floresans özelliği olan moleküller için uygun bir yöntem değildir. Floresans ısıması, Raman saçılmasına göre çok daha siddetli olduğundan Raman hatları ile örtüşür ve ölçümü güçleştirir.

Floresans özelliğine sahip moleküllere Raman spektroskopisinin uygulanabilmesi için Stokes hatları yerine anti-Stokes hatlarının ölçülmesi gerekir, çünkü bir moleküle ait anti-Stokes hattı o molekülün floresans bandından daha büyük frekanslardadır ve bunlar birbirleri ile örtüşmez. Anti-Stokes hatları normal yoldan ölçüldüğü zaman, çok zayıf hatlar oldukları için genellikle kullanılmazlar. Öte yandan, *Koherent anti-Stokes Raman Spektroskopisi* (CARS) adı verilen bir yöntemle anti-Stokes hatlarının şiddetleri arttırılabilir. Bu yöntemde örneğe şiddetli

iki lazer ışıması birden gönderilir. Bunlardan birisinin yaydığı ışının frekansı sabit olup ikincisinin frekansı değiştirilebilmektedir. Raman spektroskopisinde kullanılan, alet floresans spektroskopisinde kullanılana çok benzer. Bunların aralarındaki en önemli fark ışık kaynağıdır. Raman spektroskopisinde ışık kaynağı olarak genellikle lazerler kullanılmaktadır.

Raman spektrofotometre üç ana bileşenden oluşur (Şekil 2.14). Bir (ışın) lazer kaynağı, bir numune aydınlatma sistemi ve uygun bir spektrometre. Raman saçılma sinyali Rayleigh saçılma sinyalinden zayıf olduğundan spektrometrenin iyi olması gerekir.

Şekil 2. 14. Raman spektrometresi.

2.7.4. Analitik Uygulamalar

Raman spektroskopisi yöntemi ile katı sıvı ve gaz örnekler incelenebilir. Katı ve sıvı örnekler bir kapiler cam veya kuvartz tüpte tutularak spektrumu çekilir. Lazer ışıması ile temasta olan örnek bozunmuyorsa oluşan yerel sıcaklık artışlarını önlemek için örneğin döndürülmesi veya bir pompadan gönderilen bir sıvı ile soğutulması gerekebilir.

Raman spektroskopisi yöntemi ile daha çok nitel analiz yapılır. Bu amaçla izlenen yol, infrared spektrumlarının yorumunda izlenen yola benzer. Bir molekülün Raman ve infrared spektrumlarının birlikte değerlendirilmesi ile nitel analiz daha kolaylaşır. Moleküllerin yapısında bulunan -C=C-: -C=C-, -N=N-. -S-S-, -C-O-C-türü titreşimler ile halkalı bileşiklerde gözlenen halka daralması-halka genişlemesi

titreşimi oldukça şiddetli Raman hatlarının gözlenmesine yol açar. Böylece infrared spektrumunda şiddeti az olan bu bantlar Raman yöntemi ile rahatça ölçülebilir. İnfrared spektroskopisinde kullanılan CS₂, CCI₄, CHCl₃ gibi organik çözücüler Raman spektroskopisinde de kullanılabilir. Ancak bu çözücülerin kendi Raman kaymaları değerlerinin bilinmesi gereklidir. İnfrared spektroskopisinde çözücü olarak kullanılamayan su, Raman spektroskopisinde sık kullanılır. Su moleküllerinin neden olduğu Raman hatları oldukça zayıftır. Suyun bu yöntemde kullanılabilen bir çözücü olması, birçok biyokimyasal ve farmasotik maddenin nitel analizinde infrared yönteminin aksine büyük bir kolaylık sağlar. Raman spektroskopisi yönteminin infrared spektroskopisi yöntemine göre bir başka üstünlüğü de aynı aletle hem yakın infrared hem normal infrared, hem de uzak infrared bölgelerindeki bilgilerin elde edilebilmesidir. Bilindiği gibi, infrared spektroskopisinde bu üç bölge için aletin parçaların ayrı ayrı özelliklere sahip olması yani farklı spektrometrelerin kullanılması gerekir. Yakın infrared ve uzak infrared spektrofotometrelerinin bulunmadığı laboratuarlarda Raman spektrofotometresi ile gerekli spektroskopik bilgiler edinilebilir.

Normal Raman spektroskopisi yöntemi, nicel analiz için çok yaygın olarak kullanılmaz. Ancak RRS ve yüzey Raman yöntemleri ile duyarlık çok fazla arttırılabildiğinden bu yöntemler nicel analizde uygulama alanı bulmuşlardır. Floresans özelliğe sahip moleküllerin Raman kaymalarının elde edilmesi normal yöntemle mümkün değildir. Ancak, daha önce de vurgulandığı gibi, floresans özelliğe sahip moleküllerin Raman spektrumunu elde etmek için CARS yöntemi kullanılır. Floresans özelliği olan moleküllerin Raman spektrumu floresans etkisinden arınmış olarak Fourier Transform Raman (FTR) spektrometresi ile de elde edilebilir. Floresansa neden olan kısa dalgaboylu lazer yerine daha uzun dalgaboylu bir lazer kullanıldığında saçılmanın şiddeti dalgaboyunun dördüncü kuvveti ile orantılı olarak azalmasına rağmen FTR yönteminin duyarlığı çok fazla olduğundan Raman kaymaları kolayca ortaya çıkartılabilir.

2.7.5. İyon ve Ligand Titreşimleri

Bir molekülün simetrisi, atomlarının uzaydaki geometrik dağılımıyla oluşmaktadır. Molekülün simetrisindeki nokta, eksen ve düzlem gibi geometrik elemanlar bir grup oluşturur ve bunlara simetri işlemi uygulanarak moleküle ait nokta grubu bulunur.

Moleküle ait temel titreşim modların hangi simetri türlerine ait olduğu ve bu titreşimlerin infrared aktif olup olmadığı; grup teori yardımıyla karakter tabloları kullanılarak bulunabilir. Bunun için indirgeme bağıntısından yararlanılır (Gans 1971).

$$n_{i} = \frac{1}{h} \sum_{S} n_{rX}(R) X_{i}(R)$$
(2.10)

Burada

 $n_{i=}$ i. Simetri türündeki titreşim mod sayısı h = grubun derecesi (simetri eleman sayısı) $n_r =$ R sınıfındaki simetri eleman sayısı

 $\chi(R) = R$ simetri elemanına ait indirgenebilir temsilin karakteri

 $\chi(R)$ = i. Simetri türündeki R elemanına ait indirgenemez temsilin karakteri

N tane atomdan oluşan bir molekülde, 3N tane temel titreşim olduğunu, bu titreşimlerden dönme ve öteleme hareketleri molekülün şekline bağlı olarak çıkartıldığını ve molekül doğrusal ise 3N–5, değilse 3N–6 tane temel titreşim sayısı olduğunu daha önce belirtmiştik. İndirgeme formülünden bulunan sonuçlarla moleküle ait temel titreşimlerin toplam sayısı bulunur.

2.8. Moleküler Enerji İçin Kuramsal Hesaplama Metotları

2.8.1. Moleküler Yöntemler

Kuvvet alanı yöntemi olarak da bilinen moleküler mekanik yöntemlerde, moleküllerin özelliklerini ve yapılarını tahmin etmede klasik fizik yasaları kullanılır. Moleküler mekanik hesaplamalarda, moleküler sistemlerin elektronları hesaba katılmazken çekirdek etkileşmeleri esas alınır. Elektronların etkileri dolaylı olarak kuvvet alanlarında parametre olarak yer alır.

Moleküler mekanik hesaplamalar çok büyük ve simetrisi olmayan protein, polimer ve enzimler için de kullanılır. Hesaplanması ucuz, hızlı ve kısıtlı hesaplama kaynaklarıyla mümkündür. Yalnız bir dezavantajı vardır; molekül elektronları hesaba katılmadığı için elektronik etkileşmelerin ağırlıkta olduğu kimyasal problemlerle ilgili hesaplamaları içermez ve parametreleri için Ab-initio veya deneysel verilere ihtiyaç duyar. HYPERCHEM, QUANTA, SYBYL, ALCEMY, AMBER, CHARMM, MMx ve OPLS gibi programlarda kullanılır (Kecel 2005).

2.8.2. Kuantum Mekanik Yöntemler

Kuantum mekanik hesaplamalarda, molekülün elektronik yapısı, kuantum mekanik kurallar kullanılarak ve Schrödinger eşitliğinin çözümü ele alınarak sağlanır. Schrödinger denklemi çözülerek molekülün enerjisinin ve ona bağlı özelliklerinin elde edilmesi sağlanır. Schrödinger denkleminin tam çözümü küçük sistemler dışında mümkün değildir. Çözümün elde edilebilmesi için bazı matematiksel yaklaşımlar kullanılır. Bu yaklaşımlar varyasyon ve pertürbasyon yaklaşıklıklarıdır. Kuantum mekanik metotlar ikiye ayrılır. Bunlara geçmeden önce schrödinger denkleminin çözümüne bakmak da fayda vardır.

2.8.3. Schrödinger Denklemi

Doğadaki her şey hem parçacık hem de dalga karakteri gösterir. Bu durumu açıklamak için klasik yöntemler yetersiz kalır. Enerjinin kesikli olması, parçacıkların girişimi veya tünelleme gibi konuların açıklanmasında kuantum mekaniği ve onun temel denklemi olan Schrödinger denklemine ihtiyaç vardır. Schrödinger denkleminin çözümü ψ dalga fonksiyonunu verir. Sistemin bütün fiziksel özellikleri bu dalga fonksiyonundan çıkarılabilir. Schrödinger denkleminin en genel formu;

$$H\psi = E\psi \tag{2.11}$$

Burada ψ yukarıda belirtildiği gibi dalga fonksiyonu, E sistemin enerjisi ve H Hamiltonien operatörüdür. ∇^2 Laplace operatörü, V potansiyel enerji operatörü ve h, *h* Planck sabitinin 2π 'ye bölümü ($\hbar = h / 2\pi$) olmak üzere Hamiltonien operatörü,

$$H = \left[\frac{-\hbar^2}{2m}\nabla^2 + V\right]$$
(2.12)

olarak tanımlanır. Buna göre V potansiyeli içerisinde hareket eden ve ψ dalga fonksiyonu ile tanımlanan bir parçacık için Schrödinger denklemi şu şekilde verilir;

$$i\hbar\frac{\partial\psi(r,t)}{\partial t} = \frac{-\hbar^2}{2m}\nabla^2\psi(r,t) + V\psi(r,t)$$
(2.13)

Yukarıda verilen denklem bir parçacık için geçerlidir. Eğer birden fazla parçacık için bu denklem yazılmak isteniyorsa Hamiltonien operatörü yeniden tanımlanmalıdır.

Schrödinger denkleminin tam çözümü sadece bir elektronlu atomlar için mümkündür. Bu nedenle Schrödinger denkleminin çok parçacıklı atomlar için çözülebilir kılınabilmesi için bazı yaklaşımların yapılması gerekir. Çok parçacıklı Shrödinger denklemini bir-elektron denklemine dönüştürmek için birçok metot geliştirilmiştir. Yoğunluk Fonksiyon Teorisi (Density Functional Theory, DFT) ve Hartree-Fock (HF) bunlara örnek olarak verilebilir. Bu metotlarda her elektron, çekirdeğin çekici alanı ve diğer elektronlardan ötürü itme etkileşmelerinin ortalama etkisini hesaba katan, bir etkin potansiyelde hareket eden parçacık olarak tanımlanır. Etkin potansiyel diğer elektronların etkileşiminden kaynaklanır ve öz uyumlu diye tanımlanır. DFT için bu öz uyum döngüsü aşağıdaki basamakları içerir:

$$\hat{H}_{lel} = \frac{-\hbar^2}{2m} \nabla^2 + V^{etk}[n](r)$$
(2.14)

$$\hat{H}_{lel}\psi_a(r) = E_a\psi_a(r) \tag{2.15}$$

$$n(r) = \sum_{\varepsilon a < \hat{w}} |\psi_a(r)|^2$$
(2.16)

Denklem (2.35) bir-elektron Hamiltonien'i tanımlar. $\frac{-\hbar^2}{2m}$ kinetik enerjiyi ifade ederken $V^{etk}[n](r)$ elektronların etkin potansiyel enerjisidir. Etkin potansiyel elektron yoğunluğuna, n, bağlıdır. Bir-elektron Hamiltonien'inden (Denklem 2.36) Shrödinger denkleminin çözülmesiyle bir-elektron eş durumları elde edilir (Denklem 2.37). Bütün eşdurumların toplamından elektron yoğunluğu elde edilir, örneğin sistemin kimyasal potansiyelinin altındaki enerjiye sahip bir-elektron durumlar, μ .

2.8.4. Born-Oppenheimer Yaklaşıklığı

Born-Oppenheimer yaklaşımı, Schrödinger denkleminin çözümünde kullanılan yaklaşımlardan ilkidir ve genel moleküler problemi nükleer ve elektronik hareketleri ayırarak basitleştirir. Bir çekirdeğin kütlesi, bir elektronun kütlesinden yaklaşık bin kat daha büyük olduğu için bu yaklaşımı yapmak uygundur. Çekirdek, elektronlara göre çok yavaş hareket eder ve elektronlar, nükleer konumdaki değişimlere o anda tepki gösterirler. Bu nedenle bir moleküler sistemdeki elektron dağılımı, elektronların hızlarına değil de, çekirdeklerin konumuna bağlıdır. Diğer bir görüşe göre; çekirdek elektronlara sabitlenmiş gibi görünür ve elektronik hareket, sabit çekirdek alanı içinde meydana geliyormuş gibi ifade edilebilir. Bu yaklaşıma göre moleküler sistem için Hamiltonnien aşağıdaki gibi yazılır:

$$\hat{H} = Telek(r) + T_{cok}(\vec{R}) + V_{cok} - elek(\vec{R}, \vec{r}) + Velek(\vec{r})$$
(2.17)

Born-Oppenheimer yaklaşımı; problemin iki kısmının birbirinden bağımsız iki çözümüne izin verir. Bu nedenle çekirdekler için kinetik enerji teriminin ihmal edildiği elektronik Hamiltonien oluşturulabilir. Bu Hamiltonien nükleer hareket için Shchrödinger denkleminde kullanılır ve çekirdeğin öteleme, dönü ve titreşim seviyelerini ifade eder. Nükleer Schrödinger denkleminin çözümü, molekülün titreşim spektrumlarının belirlenmesi için gereklidir. Born-Oppenheimer yaklaşıklığına göre molekülün toplam enerjisini $E = E_e + E_{\varsigma}$ şeklinde ifade edilebilir.

Molekülün toplam enerjisi, elektronik ve çekirdek kısımları ayrı ayrı yazılarak gösterilir. Molekülün çekirdek enerjisini de öteleme, dönü ve titreşim olarak üçe ayırabiliriz. Öteleme enerjisi kuantumlu değildir, çünkü molekül herhangi bir hızla hareket edebilir. Bu yüzden ihmal edilebilir. Titreşim enerji seviyeleri aralığı, dönü enerji seviyeleri aralığının yaklaşık 1000 katı olduğu için titreşim-dönü enerjileri etkileşmeleri ihmal edilebilir. Böylece molekülün çekirdek enerjisi $E_{\varsigma} = E_{tit} + E_{dönü}$ şeklinde yazılabilir.

Born-Oppenheimer yaklaşıklığına göre molekülün toplam enerjisi ise aşağıda verildiği gibi ifade edilir.

$$Etop = E_{tit} + E_{dönü} + E_{elek}$$
(2.18)

Ab-initio Metodu

Ab-initio metodu, Schrödinger dalga denkleminin, herhangi bir deneysel parametre kullanılmadan yaklaşık bir çözümüne dayanır. Bunun yerine hesaplamalar ışık hızı, elektron ve çekirdeklerin yükleri ve kütleleri, Planck sabiti gibi fiziksel sabitlere dayandırılır.

Ab-initio hesaplamaları yapılırken, kuantum mekanik hesaplamalarda belirli yaklaşıklıklar yapılır. Yapılan bu yaklaşıklıklar genellikle, bir fonksiyonunu en basit yapısını kullanmak veya bir diferansiyel denklemin çözümünü yaklaşık olarak elde etmektir. Schrödinger denklemini çözmek için varyasyon yaklaşıklığı kullanılır. Yaklaşım biçimlerine göre ab-initio metotları çeşitlilik kazanır. Ab-initio hesaplamalarındaki ikinci bir yaklaşıklığımızda dalga fonksiyonun tek elektronlu sistemler için hesaplanmış fonksiyonlarla tanımlanmış olma zorunluluğudur. Yani dalga fonksiyonu, atomik orbitallerin lineer kombinasyonundan veya baz fonksiyonların lineer kombinasyonundan oluşturulmuş olmasıdır. Gaussian ve diğer ab-initio elektronik yapı programları, baz fonksiyonu olarak Gaussian tipi atomik fonksiyonları kullanırlar. Ab-initio hesaplamalarının avantajı, geniş aralıklı sistemler için kullanışlıdır, deneysel sonuçlara dayanmaz, bozulmuş ya da uyarılmış durumları hesaplar. Birçok sistem için yüksek kalitede sonuçlar sağlar. Kullanılan molekül küçüldükçe doğruluk oranı artar. Dezavantajları; pahalı bir yöntemdir. Bilgisayarda çok büyük miktarda hafıza ve hard disk kaplar.

2.8.5. Hartree Fock Öz Uyumlu Alan Teorisi (SCF)

Hartree-Fock hesaplamalarında molekülün dalga fonksiyonu, baz fonksiyonlarından yaralanarak oluşturulur, Schrödinger dalga denklemi çözülür ve enerji özdeğeri bulunur. Varyasyon yöntemi kullanılarak enerji minimize edilir ve en uygun enerji özdeğerleri ve frekansları saptanır. Bu hesaplamaları Hartree-Fock SCF (Self Consistent Field) "Öz Uyumlu Alan Teorisi" teorisi yardımıyla gerçekleştirebiliriz. Hartree-Fock hesaplamalarında merkezi alan yaklaşıklığı kullanılır. Merkezi alan yaklaşıklığında Coulomb elektron-elektron itmesi ilk başta hesaplara dâhil edilmez ve bu itmenin net etkisi daha sonra düzeltme olarak hesaba katılır. Bu metodun ardındaki varsayım şudur; herhangi bir elektronun, kendisinin dışındaki tüm elektronların ve çekirdeğin oluşturacağı ortalama küresel potansiyel alanı içinde hareket edeceği kabul edilir. Bu teori ilk başta çok elektronlu atomlar için üretilmiş ve daha sonra molekülde de uygulanmıştır. Schrödinger denklemi atom içindeki bir elektron için çözülür ve ortalama küresel potansiyel bulunur. Bu yöntem atomdaki tüm elektronlar için tekrarlanır. Hesaplamaların bir döngüsü sonucunda gelistirilmis dalga fonksiyonlarının bir setine sahip oluruz. Bu geliştirilmiş dalga fonksiyonları da ortalama küresel potansiyel hesabı için kullanılır ve bu çeşit hesaplamalar tekrar tekrar yapılır. Bu döngü, bize minimum enerjiyi verecek dalga fonksiyonunu bulana dek devam eder.

$$H = \sum_{J=1}^{N} H_J + \sum_{j < k} \frac{e^2}{4\pi\varepsilon_0 r_{jk}}$$
(2.19)

İlk terim N elektronlu sistemin CORE hamiltonyenidir. CORE Hamiltonieni elektronların kinetik enerjisi ile elektron-çekirdek arasındaki etkileşim potansiyel enerjisinden oluşur. İkinci terim j ve k elektron çifti arasındaki Coulomb etkileşme enerjisidir.

 $r_{jk;}$ j ve k elektron çifti arasındaki uzaklıktır.

$$H\psi = E\psi \tag{2.20}$$

çözümünü gerçekleştirebilmek için çok elektron problemini tek elektron problemine dönüştürmeliyiz. Tek elektron dalga fonksiyonu aşağıdaki gibi tanımlanır.

$$\psi_{Q_k}(R_j) = \psi_{n,l,m}(r_j) \cdot \Phi_{\uparrow}(j)$$
(2.21)

Burada ψ yörünge hareketini ve Φ spini ifade eder. $\psi_{Q_k}(R_j)$ hem yörünge hem de spin hareketini ifade eden spin orbitalidir. Bir yük yoğunluk dağılımı tek elektron dalga fonksiyonu ile ifade edilir.

$$\rho(\mathbf{r}_{j}) = e |\psi_{\mathcal{Q}}(R)|^{2}$$
(2.22)

r konumundaki bir yük ile bu yük dağılımı arasında bir etkileşme enerjisi meydana gelir. Bu enerji Coulomb etkileşme enerjisidir.

$$V(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{e_\rho(r_j)}{|r-r_j|} d\tau_j$$
(2.23)

$$V(r) = \frac{1}{4\pi\varepsilon_0} \int \frac{e^2 |\psi_Q(R_j)|^2}{|r - r_j|} d\tau_j$$
(2.24)

Hartree-Fock yönteminin temel noktası çok elektron problemini tek elektron problemine indirgemektir. Şimdi tek bir elektron alalım, bu elektron sadece atomun çekirdek alanında hareket etmekle kalmayıp, aynı zamanda diğer elektronların uyguladığı alanda da hareketini sürdürür.

Seçilen bir elektronun dalga fonksiyonunu hesaplamak için hem çekirdeğin Coulomb potansiyelinin hem de diğer tüm elektronların etkileşme enerjilerinin bulunduğu bir Schrödinger eşitliğini çözmeliyiz. k indisli R_k konumundaki elektron için Schrödinger denklemi;

$$\left| -\frac{\hbar^2}{2m_e} \nabla_k^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_k} + V_k^{(0)} \right| \psi_k^{(1)}(R_k) = E \psi_k^{(1)}(R_k)$$
(2.25)

 $V_k^{(0)}$ diğer bütün elektronları içerecek şekildeki Coulomb etkileşme enerjisidir.

$$V_k(r) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^N \int \frac{e^2 |\psi_Q(R_j)|^2}{|r - r_j|} d\mathbf{\tau}_j$$
(2.26)

 ψ_{Q_i} için $\psi_{Q_i}^{(0)}$ dalga fonksiyonunun yerine konulmasıyla $V_k^{(0)}$ potansiyeli elde edilir. (0)üst için kullanılan indisi döngüyü başlatmak bir dalga fonksiyonudur. $V_{k}^{(0)}$ potansiyeli Schrödinger eşitliğinde yerine konarak 1. dereceden geliştirilmiş dalga fonksiyonunu, $\psi^{(1)}$ elde edilir. Bu dalga fonksiyonu kullanılarak geliştirilmiş potansiyel alanını ve 2. dereceden geliştirilmiş dalga fonksiyonunu $\psi^{(2)}$ elde edilir. Molekülün toplam elektronik dalga fonksiyonu ile ortalama potansiyel birbirini iyileştirecek biçimde bir hesaplama döngüsüne sokulduğunda, döngünün geliştirilmiş dalga fonksiyonları arasındaki fark (i. elektronun n. geliştirilmiş hal fonksiyonu ile aynı elektronunun n+1. mertebeden geliştirilmiş hal fonksiyonu arasındaki fark) ihmal edilecek kadar küçük olana dek devam edilir (Haken and Wolf 2000).

$$\psi^{(0)} \to V^{(0)} \to \psi^{(1)} \to V^{(1)} \to \psi^{(2)} \to \dots \to \psi^{(j)} \to \psi$$
(2.27)

Bu teori ilk başta çok elektronlu atamlar için üretilmiş ve daha sonra moleküle de uygulanmıştır. Bu yöntemi önce çok elektronlu atomlar için açıklayalım. Çok elektronlu atomun her elektronuna öncelikle sıfırına yaklaşımda gerçeğe uyumlu bir hal fonksiyonu karşılık getirilir. Böylece sıfırına yaklaşımda N elektronlu sistem için N yaklaşık dalga fonksiyonu ile işe başlanır. Sonra rastgele i. elektron haricindeki diğer elektronların ve çekirdeğin, i. elektron üzerinde oluşturduğu ortalama elektriksel alan hesaplanır. Bu alan i. elektronun içinde hareket ettiği Vi potansiyel alanını verir. Bu ortalama potansiyel Schrödinger eşitliğinde yerleştirilerek i. elektron için 1. mertebe geliştirilmiş dalga fonksiyonu bulunur. Bu sistem tüm elektronlar için tekrarlanır. Yani i. elektron için geliştirilmiş, diğer elektronlar için ise ilkel fonksiyonlar kullanılarak diğer bir elektrona etkiyen ortalama alan hesaplanır ve bu alan Schrödinger denkleminde kullanılarak, bu elektron için de 1. mertebe geliştirilmiş dalga fonksiyonu bulunur ve önceki basamaklarda bulunan tüm 1. mertebe geliştirilmiş dalga fonksiyonlarının hepsinin katılması ile işlemler tekrarlanır. Böylece atomun tüm elektronları için 1. Mertebe geliştirilmiş dalga fonksiyonları bulunur. İşlem tekrarlanarak elektronun ilkel fonksiyonu yerine 1.mertebe geliştirilmiş dalga fonksiyonları konur ve işlemlere geliştirilmiş dalga fonksiyonları arasındaki fark (yani i.elektronun n. Mertebe geliştirilmiş dalga fonksiyonu ile aynı elektronun (n+1). mertebe geliştirilmiş dalga fonksiyonu arasındaki fark) ihmal edilecek kadar küçük olana dek devam edilir, diğer bir deyişle geliştirme daha fazla yapılamayacak hale gelene kadar devam edilir. Molekülün toplam elektronik dalga fonksiyonu ile ortalama potansiyel birbirini iyileştirecek biçimde bir hesaplama döngüsüne sokulduğunda, döngü içinde molekülün temel seviye elektronik enerjisi Hartree-Fock limit değerine ulaştığında döngü sonlandırılır. Döngünün her basamağında ortalama potansiyel alan ve dalga fonksiyonları birbirini düzenlediği için "öz uyumlu" sözcüğü de buradan gelmektedir. İşlemlerin son basamağında atom orbitalleri kümesi (her bir elektron için bulunmuş hal fonksiyonları topluluğu) öz uyumlu duruma gelir. Atomun her elektronunun uzay koordinatlarına bağlı dalga fonksiyonları "Atomik orbitaller" (AO) olarak tanımlanır. "Moleküler Orbitaller" (MO), Atomik Orbitallerin lineer kombinasyonlarından (LCAO) tanımlanırlar. Hartree ve Fock tarafından verilen SCF metodunun en önemli dezavantajı anlık elektron elektron etkileşmelerini göz ardı etmesidir. Bu sebeple Hartree-Fock SCF teorisi anlık elektron-elektron etkileşmelerinin çok önemli olduğu durumlarda yetersiz kalmaktadır. Bu eksiklik çeşitli Ab-initio metodlarda "Elektron Korelasyon Etkisi" biçiminde, anlık elektron-elektron etkileşmelerinin SCF hesaplamalarına dâhil edilmesi ile çözülmeye çalışılır.

Configuration Interraction (CI), Many Body Perturbition Theory (MPn), Density Functional theory (DFT) ve Couplet Cluster(CC) metotları elektron korelasyon etkisini hesaplamalarına dahil eden elektronik yapı hesaplama yöntemlerinden bazılarıdır. Elektron korelasyon etkisini hesaplamalarına dahil eden SCF metotları 'Post SCF' metotları olarak adlandırılır. DFT metotlarının Schrödinger dalga denkleminin çözümünde kullandıkları yaklaşım biçimi diğer post SCF metotlarındaki ile hemen hemen aynıdır. DFT metotlarının dayandığı temel fikir, bir elektron sisteminin enerjisinin ve dalga fonksiyonunun elektron olasılık yoğunluğu terimleri içinde yazılabileceği şeklindedir. DFT yöntemleri elektron korelasyon etkisini hesaplama işlemine, değiş-tokuş ve korelasyon potansiyel enerji terimleri biçiminde dahil eder (Kecel 2005).

2.8.6. Yoğunluk Fonksiyon Teorisi (Density Functional Theory, DFT)

DFT teorisi, 1920'lerdeki Thomas, Fermi, Dirac ve 1950'lerdeki Slater'ın çalışmaları gibi kuantum mekanik çalışmalardan çıkartılan metotlara dayanır. DFT yaklaşımı, elektron yoğunluk fonksiyonu ile elektron korelasyon modelinin ilkelerine dayanır. Bu gibi metotlar var oluşlarını 1964 te yayınlanan Hohenberg-Kohn teoremine borçlulardır (Hohenberg and Kohn 1964). Çünkü bu teorem temel seviye enerjisinin elektron yoğunluğuyla belirtildiği bir fonksiyonunun var olduğunu açıklar.

Kohn ve Sham (Kohn and Sham 1965) çalışmalarında elektronik enerjinin birkaç kısma ayrılabileceğini göstermişlerdir.

$$E = E^T + E^V + E^J + E^{XC} (2.28)$$

E^T: Elektronların hareketinden doğan kinetik enerji terimi.

 E^{V} : Çekirdek çiftleri arasındaki itmeyi ve çekirdek - elektron arasındaki çekimi ifade eden potansiyel enerji terimi

E^J: Elektron- elektron itme terimi (elektron yoğunluğunun Coulomb etkileşim terimi)

E^{XC}: Exchange korelasyon terimi, geriye kalan elektron- elektron etkileşimlerini içerir

Çekirdek-çekirdek itmesi dışındaki tüm terimler ρ elektron yoğunluğunun bir fonksiyonudur.

E^J aşağıdaki gibi ifade edilir.

$$E^{j} = \frac{1}{2} \iint \rho(\vec{r}_{1}) (\Delta r_{12})^{-l} \rho(\vec{r}_{2}) d\vec{r}_{l} d\vec{r}_{2}$$
(2.29)

 $E^T + E^V + E^J$, ρ yük dağılımının klasik enerji ifadesine uyar.

 E^{XC} , "Exchange corelasyon" terimi kuantum mekaniksel dalga fonksiyonunun antisimetrik olmasından doğan Exchange enerjisi ve tek tek elektron hareketlerindeki dinamik korelasyondan oluşur. Hohenberg ve Kohn, E^{XC} 'nin ρ elektron yoğunluğunun bir fonksiyonu gibi ifade edilebileceğini göstermişlerdir. E^{XC} yalnızca spin yoğunluklarının ve bu spinlerin mümkün gradyentlerini içeren bir integral gibi yazılabilir.

$$E^{XC}(\rho) = \int f[\rho_a(\vec{r}), \rho_\beta(\vec{r}), \Delta \rho_a(\vec{r}),]\Delta \rho_\beta(\vec{r}),]d^3\vec{r}$$
(2.30)

 ρ_a ; α spin yoğunluğu

 $ρ_{\beta}$; β spin yoğunluğu

 $\rho_a + \rho_\beta$; elektron yoğunluğudur.

 E^{XC} genelde iki kısma ayrılır. Bunlar aynı spin etkileşmelerini gösteren "Exchange" ve karşıt spin etkileşmelerini gösteren "correlation" kısımlarıdır.

$$E^{XC}(\rho) = E^{X}(\rho) + E^{C}(\rho)$$
(2.31)

Buradaki üç terim de ρ elektron yoğunluğunun fonksiyonlarıdır. Exchange ve Corelation kısımları da "Local fonksiyonlar" ve "Gradient-corrected fonksiyonlar" olmak üzere ikiye ayrılır. Local fonksiyonlar, yalnızca ρ elektron yoğunluğuna bağlı olan fonksiyonlar ve Gradient-corrected fonksiyonlar ise ρ elektron yoğunluğuna ve $\Delta \rho$ gradientine bağlı fonksiyonlardır.

Local Exchange Fonksiyonlar;

$$E_{LDA}^{X} = -\frac{3}{2} (\frac{3}{4\pi})^{\frac{1}{3}} \int \rho^{\frac{4}{3}} d^{3} \vec{r}$$
(2.32)

ρ elektron yoğunluğu *r*'nin bir fonksiyonudur. Bu denklem molekül sistemlerinin tanımının yapılmasında yetersiz kalmaktadır. Becke; 1988'de LDA (Local Density Approximation) Exchange fonksiyonuna dayandırılan gradient-corrected exchange fonksiyonunu formülüze etmiştir.

Gradient-corrected Exchange Fonksiyonları:

$$E_{Becke88}^{X} = E_{LDA}^{X} - \gamma \int \frac{\rho^{\frac{4}{3}} x^{2}}{1 + 6\gamma \sinh^{-1} x} d^{3} \vec{r}$$
(2.33)

$$x = \rho^{\frac{4}{3}} \left| \Delta_{\rho} \right| \tag{2.34}$$

 γ , inert gaz atomlarının bilinen Exchange enerjilerini fit etmek için seçilen bir parametredir. Becke bunun değerini 0,0042 Hartree olarak bulmuştur. Yukarıdaki denkleme bakılırsa Becke fonksiyonunun, LDA exchange fonksiyonuna bir düzeltme gibi olduğu görülür ve bu fonksiyon, LDA fonksiyonun yetersizliğini giderir. Aynı tür fonksiyonların korelasyon fonksiyonları için de verilebilir. korelasyon fonksiyonunun local kısmı;

$$E^{C} = \int \rho \varepsilon_{\rm C} \left[r_{\rm s}(\rho(\vec{r}),\zeta) \right] d^{3}\vec{r}$$
(2.35)

$$r_s = \left[\frac{3}{4\pi\rho}\right]^{\frac{1}{3}} \tag{2.36}$$

$$\zeta = \frac{\rho_a - \rho_b}{\rho_a + \rho_b} \tag{2.37}$$

$$\varepsilon_c(r_s,\zeta) = \varepsilon_c(\rho,0) + a_c(r_s) \frac{f(\zeta)}{f'(0)} (1-\zeta^4) + [\varepsilon_c(\rho,1) - \varepsilon_c(\rho,0)] f(\zeta) \zeta^4$$
(2.38)

- *r_s* : yoğunluk parametresi
- ζ : relative spin polarizasyonu

 $\zeta = 0 : \alpha$ ve β yoğunluklarına uyar.

 $\zeta = 1$: tüm α yoğunluklarına uyar.

 $\zeta = -1$: tüm β yoğunluklarına uyar.

Saf DFT metotları, bir korelasyon fonksiyonu ile bir exchange fonksiyonunun birleşimiyle oluşmaktadır. Örneğin bilinen BLYP fonksiyonu Lee, Yang ve Parr'ın gradient-corrected korelasyon fonksiyonu ile Becke'nin gradient-corrected Exchange fonksiyon çifti ile oluşur. DFT metotları daha etkilidir çünkü elektron korelasyon etkilerini içerir. DFT metotlarının sonuçları, deneysel sonuçlara, Hartree-Fock sonuçlarından daha yakındır.

2.8.7. B3LYP Karma Yoğunluk Fonksiyonu Teorisi

Dalga mekaniğine dayanan HF teorisi değiş tokuş enerjisi için iyi sonuç vermez ve bu metotla korelasyon enerjileri hesaplanamaz. Fakat kinetik enerji için uygun bir ifade verir. DFT modelleri ise değiş tokuş ve korelasyon enerjilerini daha iyi verir ve böylece tam enerji ifadesi için saf HF veya saf DFT modelleri yerine, bu modellerin her ikisinin enerji ifadelerinin, toplam elektronik enerji ifadesinde kullanılmaları sonucu, karma modeller üretilmiştir. Bu modeller toplam enerji, bağ uzunlukları, iyonizasyon enerjileri gibi birçok büyüklükleri saf modellerden daha iyi hesaplamaktadır. Literatürde, Kinetik enerji fonksiyoneli: H28, TF27

Değiş tokuş enerji fonksiyoneli: F30, D30,

Korelasyon enerji fonksiyonelleri: LYP, VWN, ...

gibi enerji fonksiyonelleri çok sık karşılaşılan fonksiyonellerdir (Kurt 2000). Bir karma modelde bu enerji ifadeleri birleştirilerek yeni bir enerji ifadesi elde edilebilir. Becke, değiş tokuş ve korelasyon enerjisi XC için aşağıdaki karma modeli ortaya çıkarmıştır.

$$E_{karma}^{XC} = C_{HF} E_{HF}^X + C_{DFT} E_{DFT}^X$$
(2.39)

Burada C' ler sabitlerdir. Becke'nin önerdiği karma modeller BLYP ve B3LYP dir. Bu karma modellerin en iyi sonuç verenlerinden biri; LYP korelasyon enerjili üç parametreli Becke karma metodu B3LYP dir. Bu modelde değiş tokuş ve korelasyon enerjisi;

$$E_{B3LYP}^{XC} = E_{LDA}^{X} + C_0 (E_{HF}^X - E_{LDA}^X) + C_1 \Delta E_{B88}^X + E_{VWN3}^C + C_2 (E_{LYP}^C - E_{VWN3}^C)$$
(2.40)

ifadesi ile verilmektedir. Burada C_{0} , C_{1} ve C_{2} katsayıları deneysel değerlerden türetilmiş sabitler olup değerleri sırası ile 0.2, 0.7 ve 0.8 dir. Dolayısı ile B3LYP modelinde bir molekülün toplam elektronik enerji ifadesi;

$$E_{B3LYP} = E_V + E_I + E_{B3LYP}^{XC}$$
(2.41)

olarak elde edilir (Becke 1993, Bahat 2000).

2.8.8. Yarı – Ampirik Yöntemler

Yarı-ampirik yöntemler elektron-elektron etkileşmelerine ait iki elektron integrallerini hesaplamazlar. Bu integral ifadeleri için inceleme konusu olan moleküle benzer elektronik yapıdaki moleküllerden, deneysel olarak elde edilen bilgilerden oluşturulmuş parametreleri kullanırlar. Bir başka deyişle yarı ampirik metotlar Schrödinger dalga denklemini deney verilerinden türetilen parametreleri içeren ve çözümü daha kolay olan bir forma dönüştürerek çözerler. Ab-initio hesaplama metotlarının yetersiz kaldığı biyolojik makro moleküller üzerinde yapılacak hesaplamalarda deney verileri ile uyumlu ve oldukça hızlı hesaplamalar gerçekleştirebilmeleri açısından avantajlıdır. Yarı Ampirik metotta deneysel sonuçların yanı sıra kuantum fiziği kullanılır ve çok sayıda yaklaşıklık kullanılmaktadır. Bu metotta Ab-initio metoduna göre daha az veriye ihtiyaç duyulur. Bu nedenle avantaj sağlamaktadır. Fakat deneysel verilere veya ab-initio verilerine ihtiyaç duyar. Ab-initio metodu kadar kesin sonuçlar vermez (Kecel 2005). Yarı Ampirik metotlardan en çok kullanılanları AMİ, MNDO, MNDO/3, INDO, PM3, ZDO, CNDO vb...

2.8.9. LCAO/MO Metodu

Molekül sistemini tanımlayan toplam dalga fonksiyonu ψ anti simetrik olmalıdır. Bir elektronik dalga fonksiyonu için, elektronların fermiyon olmasından kaynaklanan dalga fonksiyonunun anti simetrik olması fiziksel bir gerekliliktir. Moleküldeki her bir elektron için tek elektron dalga fonksiyonunu tanımlamalıyız. Molekül içindeki her elektron (x_i,y_i,z_i) koordinatlarının bir fonksiyonu olan $\Phi_i(x_i,y_i,z_i)$ tek elektron moleküler orbital dalga fonksiyonuyla tanımlanır. Bu moleküler orbitallerden toplam dalga fonksiyonu ψ 'yi oluşturmanın en basit yolu, n elektronlu sistem için tek elektron moleküler orbital dalga fonksiyonlarının Hartree çarpımı ile birbirleriyle çarpılarak bir kombinasyon oluşturulmasıdır (Foresman and Frısch 1995).

$$\psi(\vec{r}) = \varphi_1(\vec{r}_1)\varphi_2(\vec{r}_2)\dots\dots\varphi_n(\vec{r}_n)$$
(2.42)

Hartree çarpımıyla oluşturulan dalga fonksiyonu yetersiz kalmaktadır, çünkü iki elektron orbitallerini değiştirdiğinde dalga fonksiyonunda bir işaret değişimi olmaz. Oysa toplam dalga fonksiyonumuz iki elektronun yer değişimine göre anti simetrik olmalıdır. En basit anti simetrik dalga fonksiyonu moleküler orbitallerin kombinasyonuyla oluşmuş bir determinanttır. Bu determinantı oluşturmadan önce şimdiye dek ihmal edilen elektron spininden bahsetmeliyiz.

Elektronlar spin yukarı (1/2), ve spin aşağı (-1/2) durumlarına sahiptirler. Yukarıdaki denklem her bir moleküler orbitalin yalnızca bir elektron alacağını gösterir, fakat çoğu hesaplama farklı spinli iki elektron tarafından doldurulmuş kapalı kabuk hesaplamalarından oluşmaktadır.

İki spin fonksiyonu α ve β ile gösterilir.

$$\alpha(\uparrow) = 1 \qquad \qquad \alpha(\downarrow) = 0$$

$$\beta(\uparrow) = 0 \qquad \qquad \beta(\downarrow) = 1$$

 α fonksiyonu bir spin yukarı (1/2) elektron için, 1 ve β fonksiyonu bir spin aşağı (-1/2) elektron için 1'dir. Bir spin fonksiyonu ile moleküler orbitalin çarpımı spin orbitalini belirler.

$$\varphi^{a}(x, r) = \varphi(r)\alpha(\uparrow) \operatorname{ve} \varphi \beta(x, r) = \varphi(r)^{\beta}(\downarrow)$$
(2.43)

 φ (*r*) terimi elektronun yer değiştirme vektörünün bir fonksiyonu olan tek elektron molekül orbital fonksiyonudur.

 α (\uparrow) yukarı yönelimli spine sahip bir elektronun spin hareketiyle ilişkili dalga fonksiyonudur.

 β (\downarrow) aşağı yönelimli spine sahip bir elektronun spin hareketiyle ilişkili dalga fonksiyonudur.

Yapılması gereken şey moleküldeki her bir atomun atomik orbitallerinin lineer kombinasyonu şeklinde tek elektron moleküler orbitalleri oluşturmaktır. Bu nedenle bu metodun adı LCAO-MO (Lineer Combination of Atomic Orbitals) olarak adlandırılır (Frisch at.al. 1998).

$$\varphi_i = \sum C_{ik} \Psi_k \tag{2.44}$$

Moleküldeki her bir elektronun moleküler orbital fonksiyonu, atomik orbital

fonksiyonlarının belirli orandaki katkılarıyla oluşturulur. Atomik orbital fonksiyonlarının moleküldeki tek elektron moleküler dalga fonksiyonuna katkısı varyasyon metodu kullanılarak elde edilir. Atomik orbital dalga fonksiyonları iki çeşittir; Slater Tipi Atomik Orbital (STO) ve Gaussian Tipi Atomik Orbital (GTO).

Molekül için en etkili atomik orbitali tanımlayarak, tek elektron moleküler orbitali en iyi biçimde tanımlamış oluruz. Elektronun spin durumlarını da hesaba katarak tek elektron spin-orbital moleküler dalga fonksiyonunun tanımlanmasıyla molekülün toplam elektronik dalga fonksiyonunu oluştururuz.

Antisimetrik özelliğe sahip toplam elektronik dalga fonksiyonu LCAO-MO yaklaşımı ile oluşturulmuş tek elektron spin-orbital moleküler dalga fonksiyonlarının çarpımıyla oluşturulur. Artık N elektronlu bir sistemin N/2 moleküler orbitalinin belirlenmesiyle ve daha sonra elektronların bu orbitallerin içine farklı spinli yerleştirilmeleriyle bir kapalı kabuk dalga fonksiyonunu kurabiliriz. N elektronlu bir sistemin toplam elektronik dalga fonksiyonu *Slater determinantı* formundadır.

$$\Psi_{e} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{1}^{\gamma}(1) & \varphi_{1}^{\beta}(1) & \varphi_{2}^{\gamma}(1) & . & \varphi_{N/2}^{\gamma}(1) & \varphi_{N/2}^{\beta}(1) \\ \varphi_{1}^{\gamma}(2) & \varphi_{1}^{\beta}(2) & \varphi_{2}^{\gamma}(2) & . & . & \varphi_{N/2}^{\gamma}(2) & \varphi_{N/2}^{\beta}(1) \\ . & . & . & . & . \\ \varphi_{1}^{\gamma}(N) & \varphi_{1}^{\beta}(1) & . & . & \varphi_{N/2}^{\gamma}(N) & \varphi_{N/2}^{\beta}(N) \end{vmatrix}$$
(2.45)

n

Determinanta ilk sıranın yer değişimi, iki elektronun yer değişimine uyar ve determinant işaret değiştirir. Toplam elektronik dalga fonksiyonu iki elektronun yer değişimi için anti simetrik olmalıdır ki bu determinant bu kuralı sağlamaktadır. Spin-orbital dalga fonksiyonları normalize edilmiştir. LCAO-MO yaklaşımı kullanılarak molekülün toplam elektronik dalga fonksiyonunu daha da geliştirilerek, molekülün elektronik enerjisini gerçeğe daha yakın değerlerde hesaplanmasına olanak sağlar.

Atomik Orbitaller (AO)

Moleküldeki her bir elektronun moleküler orbital fonksiyonu, atomik orbital fonksiyonlarının lineer kombinasyonu sonucu oluşturulmuştur. Atomik orbitallerin bir diğer adı da baz fonksiyonlarıdır. Molekülde her atoma bir grup baz fonksiyonları karşılık getirilmiş ve baz fonksiyonları oluşturulmuştur (Foresman and Frısch 1995, Frisch at.al. 1998).

Slater Tipi Atomik Orbitaller (STO)

Slater tipi orbitaller genelde iki atomlu moleküllerde kullanılır. Küresel simetriye sahip orbitalleri ifade eder. Yani Hidrojen atomu ve diğer tek elektronlu iyon atomlar için Schrödinger eşitliğinin çözümüyle elde edilen fonksiyonlar kullanarak bu orbitaller oluşturulmuştur.

$$\Psi_{\zeta,n,l,m}(r,\theta,\varphi) = NY_{l,m}(\theta,\varphi)r^{n-1}e^{\zeta r}$$
(2.46)

N normalizasyon sabitidir. $Y_{l,m}(\theta, \varphi)$ hidrojene benzer yapıdaki tek elektronlu bir atomik sistem için küresel harmoniği belirtir. ζ terimi, verilen atomik orbital tipi (s,p,d,f...) için bir sabiti gösterir, n, l, m terimleri kuantum sayılarıdır. Bu atomik orbital hidrojen atomunun orbitaline benzer bir yapıdadır. Slater tipi orbitaller küresel simetrik elektron dağılımına sahip atomik orbitalleri tanımlamada oldukça başarılıdır ancak eksensel simetrideki elektron dağılımına sahip moleküler orbitallerin oluşturulmasında yetersiz kalmaktadır. Bunun yerine bu yetersizlikleri karşılayan Gaussian Tipi Atomik Orbitaller (GTO) kullanılmaya başlanmıştır.

2.8.10. Gaussian Tipi Atomik Orbitaller (GTO)

Gaussian tipi orbitaller eksenel simetrideki elektron dağılımına sahip moleküler orbitallerin oluşturulmasında kullanılmaktadır. Ab - initio metodların kullanıldığı hesaplamalarda bu atomik fonksiyonlar kullanılır. Gaussian tipi orbitaller, primitif gaussian fonksiyonlarından oluşmaktadır. Primitif Gaussian fonksiyonunun genel formu aşağıdaki gibidir.

$$g_{ijk}(r_1 - r_c) = (x_1 - x_c)^i (y_1 - y_c)^j (z_1 - z_c)^k e^{-\alpha(r_1 - r_c)^2}$$
(2.47)

i, j, k pozitif tam sayılardır. x_c , y_c , z_c terimleri koordinat sisteminin merkezi koordinatlarını, x_1 , y_1 , z_1 terimleri elektronun kartezyen koordinatlarını gösterir. Primitif Gaussian fonksiyonları, i, j, k tam sayılarına göre isimlendirilirler.

i + j + k = 0 ise s - tipi Gaussian, i + j + k = 1 ise p - tipi Gaussian i + j + k = 2 ise d - tipi Gaussian

s, p, d, f terimleri s, p, d, f atomik orbitallerin tanımında kullanılan uygun simetri özelliğine sahip primitif Gaussian fonksiyonlarını göstermektedir. Gaussian fonksiyonları, primitif Gaussian fonksiyonlarının lineer kombinasyonu sonucu oluşturulmaktadır. Eğer baz fonksiyonu tek bir primitif Gaussian fonksiyonundan oluşuyorsa *sıkıştırılmamış baz fonksiyonu*, birden çok primitif Gaussian fonksiyonundan oluşuyorsa *sıkıştırılmamış baz fonksiyonu*, birden çok primitif Gaussian fonksiyonundan oluşuyorsa *sıkıştırılmaş baz fonksiyonu*, birden çok primitif Gaussian fonksiyonundan oluşuyorsa *sıkıştırılmaş baz fonksiyonu*, birden çok primitif Gaussian fonksiyonundan oluşuyorsa sıkıştırılmış baz fonksiyonu denir.

$$x_i = \sum_p d_{ip} g_p \tag{2.48}$$

Bu tür fonksiyonlara sıkıştırılmış Gaussian fonksiyonları denir. Primitif Gaussian setlerinden oluşmuş bir sıkıştırılmış Gaussian fonksiyonu yukarıdaki bağıntıdaki gibidir. d_{ip} terimi verilen set için sabit katsayıları, g_p ise verilen set içindeki primitif Gaussian fonksiyonlardan birisini gösterir. x_i sıkıştırılmış Gaussian fonksiyonların lineer kombinasyonu ile atomik orbitaller oluşturulabilir.

$$\Psi_j = \sum_i c_{ji} x_i \tag{2.49}$$

Gaussian baz setleri, atomların kapalı kabuk ve açık kabuk orbitallerinin tanımlanması açısından çeşitlenmektedir. Standart gaussian baz setleri, açık kabuk

orbitallerini tanımlamak için kullandıkları primitif Gaussian baz fonksiyonu sayısına bağlı olarak;

a) İkili Zeta (ζ) Baz Seti (m-npG)
b) Üçlü Zeta (ζ)Baz Seti (m-np1G)

olarak iki grupta incelenir. m, n ve p sıfırdan farklı pozitif tam sayıları, G ise Gaussiani ifade etmektedir.

a) İkili zeta baz setleriyle oluşturulan kapalı kabuk atomik orbitalleri m tane primitif Gaussian fonksiyonundan oluşan bir tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir. Açık kabuk orbitalleri ise, birisi n tane primitif Gaussian fonksiyonundan ve diğeri p tane primitif Gaussian fonksiyonundan oluşturulan iki sıkıştırılmış Gaussian fonksiyonu ile temsil edilir. İkili zeta baz setlere 3 -21G, 4-31G, 6-31G baz setleri örnek verilebilir. Baz seti içinde yer alan primitif Gaussian fonksiyonlarının sayısı ne kadar büyükse atomik orbitallerin tanımlanması da o derece iyi olur.

b) Üçlü zeta baz setleriyle oluşturulan kapalı kabuk atomik orbitalleri yine m tane primitif Gaussian fonksiyonundan oluşan bir tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir. Açık kabuk orbitalleri ise, birincisi n tane, ikincisi p tane ve üçüncüsü 1 tane primitif Gaussian fonksiyonundan oluşturulan üç tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir. Üçlü zeta baz setlere 6-311G, 6-321G baz setleri örnek verilebilir. Polarizasyon ve diffuse fonksiyonlarının dahil edilmesiyle baz kümelerindeki çeşitlilik daha da artmaktadır.

Diffuse fonksiyonlar

Elektronları çekirdekten çok uzakta yer alan moleküllerde atomik orbitaller daha geniş bir uzay bölgesini kaplayacaklarından, yalnızca sıkıştırılmış baz setlerin kullanılması yetersiz kalmaktadır. Genellikle ortaklaşmamış elektron çiftleri içeren moleküllerde, uyarılmış durumdaki sistemlerde bu yetersizlik daha da ön plana çıkmaktadır. Yetersizliklerin giderilebilmesi için baz kümelerine 'diffuse baz kümeleri' eklenir. Diffuse fonksiyonlarının dahil edilmesi '+' veya '++' işaretleriyle olur. Hidrojen dışındaki ağır atomlar için '+' işareti, hem ağır atomlar hem hidrojen atomları için '++' işareti ile gösterilir. 6-31+G ve 6-31++G baz kümeleri örnek olarak verilebilir.

Polarize fonksiyonlar

Molekül içindeki çekirdekler diğer çekirdeklerin etrafındaki polarize elektron yoğunluğunu bozduğundan, serbest atomların s,p,d,f....gibi orbitallerinden daha esnek olan moleküler orbitallerin oluşturulması gerekir. Bunu sağlamanın en iyi yolu baz fonksiyonlarına daha yüksek açısal momentum kuantum sayısı eklemektir. Polarizasyon fonksiyonları baz kümelerine katılarak moleküler orbitalleri, atom orbitallerinin melezleşmesinden elde edilen melez orbitallerinden oluşturulur. Bunlara örnek olarak 631G(d,p) ve 6-31G(d,p) baz fonksiyonları verilebilir. Polarizasyon fonksiyonları karbon atomları için 'd', hidrojen atomları için 'p' ve geçiş metalleri için 'f' isimlerini alırlar. Kullanılan baz kümesi ne kadar çok olursa, hesaplamalar da o kadar hassaslaşacaktır. Temel set göstergesinin sonuna bir yıldız işaretinin (*) eklenmesi p orbitalinin, iki yıldız işaretinin eklenmesi f orbitalinin hesaba katıldığını gösterir. Polarize orbitaller p'ye d'nin vs. eklenmesiyle gösterilir (Şekil 2.15).

Şekil 2. 15. Polarize p ve d kabukları.

2.9. Geometrik Optimizasyon

Bu kısımda kararlı hal (denge durum) geometrisinin nasıl hesaplandığını hakkında bilgiler verilecektir. Kullanılan yöntem gradyent optimizasyonu veya kuvvet metodu olarak bilinir. Bilgisayarlı hesaplama tekniğinde hesaplamalar moleküler sistem belirli bir geometride iken gerçekleştirilir. Moleküllerdeki yapısal değişiklikler molekülün enerjisinde ve diğer birçok özelliklerinde kayda değer değişiklikler gösterir. Molekülün yapısındaki küçük değişiklikler sonucunda oluşan enerjinin koordinata bağımlılığı potansiyel enerji yüzeyi olarak adlandırılır. Potansiyel enerji yüzeyi moleküler yapı ile sonuç enerjisi arasındaki ilişkidir. Bir molekül için potansiyel enerji eğrileri veya yüzeyi bilinirse denge durumundaki geometriye karşılık gelen minimum enerjili nokta bulunabilir. İki atomlu bir molekülde bağ gerilmesine karşılık gelen elektronik enerji grafiği şekil 2.16'da verilmiştir. Burada minimum enerjili nokta E_m ve X_m ile gösterilmektedir.

Şekil 2. 16. İki atomlu bir molekülde elektronik enerjinin atomlar arasındaki mesafeye bağımlılığı.

Gradyent vektörü;

$$\langle g | \equiv g = \left(\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}, \dots\right)$$
 (2.50)

ile verilir. Burada E enerji, x_1 ve x_2 de konumu ifade etmektedir.

Moleküler geometri optimizasyonu bu konumlara karşılık gelen minimum enerjili noktaları bulmak demektir. Bu da ilk aşamada yukarda verilen gradyent vektörünü bulmak, daha sonra da bu vektörü sıfır vektör yapan noktaları bulmaya karşılık gelir.

$$\langle g | = (0, 0, \dots)$$
 (2.51)

Gradyent vektörünün sıfır olduğu noktalar minimum enerjili duruma karşılık gelir ve molekülün bu durumdaki geometrisine de denge durumu geometrisi adı verilir. şekil 2.16'da görüldüğü gibi bir molekül için potansiyel enerji yüzeyinde birçok maksimum ve minimumlar görülür.

Şekil 2. 17. İki boyutta potansiyel enerji yüzeyleri.

Bu maksimum ve minimumların nelere karşılık geldiği irdelenirse; Potansiyel enerji yüzeyindeki minimumlar sistemin dengede olduğu yerdir. Tek bir molekül için farklı minimumlar farklı konfirmasyonlara veya yapısal izomerlere karşılık gelir. Sırtlardaki düşük nokta bir yönde yerel minimum, diğer yönden bir maksimumdur. Bu tür noktalara eyer noktaları denir. Bunlar iki denge yapısı arasındaki geçiş yapısına karşılık gelir (Kurt 2003).

Geometri optimizasyonları genellikle potansiyel enerji yüzeyindeki minimumları araştırır, bunun neticesinde de moleküler sistemlerin denge yapılarını tahmin eder. Optimizasyon aynı zamanda da geçiş yapılarını araştırır. Minimumlarda ve eyer noktalarında enerjinin birinci türevi yani gradyent sıfırdır. Kuvvet de gradyentin negatifidir, bu nedenle bu noktalarda kuvvet de sıfırdır. Potansiyel enerji yüzeyinde gradyent vektörü g' nin sıfır olduğu noktaya kararlı noktalar adı verilir. Tüm başarılı geometri optimizasyonları bu kararlı noktaları bulmayı hedefler. Geometri optimizasyonu giriş (başlangıç) geometrisindeki moleküler yapıdan başlayarak potansiyel enerji yüzeyini dolaşır. Bu noktada enerji ve gradyenti hesaplar ve hangi yöne doğru ne kadar gidileceğine karar verir. Gradyent eğimin dikliğini verdiği kadar yüzey boyunca mevcut noktadan enerjinin çok hızlı düştüğü noktayı da verir. Enerjinin atomik koordinatlara göre ikinci türevi kuvvet sabitini verir. Optimizasyon algoritmalarının çoğu kuvvet sabitleri matrisini de hesaplar. Kuvvet sabitleri bu noktadaki yüzeyin eğriliğini tanımlayarak bir sonraki aşamanın belirlenmesinde ek bilgi verir. Optimizasyon yakınsadığında tamamlanmış olur. Yani hesaplanan geometride g vektörü sıfır ve bir sonraki aşamada hesaplanan geometrik parametrelerin değerleri ile hesaplanan değerler arasındaki fark ihmal edilebilir bir değerde ise optimizasyon tamamlanmış olur (Bahat 2000).

2.10. Gaussian 03 Programi

Gaussian 03 paket programı, bir molekül ile ilgili olan moleküler geometri, kuvvet alanları, IR şiddetleri gibi değerleri kuantum kimyasal olarak hesaplamaya yarayan bir paket programdır. Programda, ab-initio metodlar, ampirik ve yarı ampirik metotlar vardır ve bu metotlar kullanılarak hesaplamalar yapılmaktadır. Gaussian 03 ile birlikte, bir molekülün 3 boyutlu tasarımını yaparak molekülün özelliklerinin görsel olarak tanımlanmasına ve bu değerler üzerinde değişiklik yapılabilmesine ve giriş dataları oluşturarak hesaplamaların başlatılmasına imkan veren 'GaussView' programı da bu programa dâhil edilmiştir. GaussView programı, Gaussian programında çalışılmış bir molekül için hesaplanmış olan sonuçları görselleştirir ve hesaplamalar sonucu elde edilen dalga sayıları ve kiplerin görselleşmesinde yararlanılan bir programdır. Program kullanılırken öncelikle bir teori düzeyi belirlemek gerekmektedir. Gaussian 03 programında pek çok teori düzeyi bulunmaktadır. Bunlardan en çok kullanılanları kısaltmaları ile birlikte aşağıda verilmektedir.

<u>Kısaltma</u>	Metot		
HF	Hartree-Fock Öz Uyumlu Alan Teorisi		
B3LYP	Becke tipi 3-parametreli Yoğunluk Fonksiyon Teorisi		
	(Lee-Yang-Parr korelasyon modelini kullanır)		
MP2	2. derece Moller-Plesset Pertürbasyon Teorisi		
MP4	4. derece Moller-Plesset Pertürbasyon Teorisi		
QCISD(T)	2. derece Konfıgürasyon Etkileşmesi(tekli, ikili, üçlü)		

Bir sonraki adım ise bir baz kümesi belirlemektir.

3. MATERYAL ve METOT

3.1. Deneysel Çalışmada Kullanılan Teknikler

Yaptığımız bu çalışmada kullanılan 2-BrNA ve 6-BrNA molekülleri Acros Organics firmasından temin edildi. Bu moleküller için herhangi bir kimyasal işlem yapılmaksızın deneysel olarak çalışıldı. Bu moleküllerin IR spektrumları KBr disk tekniği ile Perkin Elmer FT-IR System Spectrum BX spektrometresi ile 4000-400 cm⁻¹ aralığında kaydedildi. Aynı şekilde moleküllerin Raman spektrumları ise 4000-0 cm⁻¹ aralığında FRA 106/S spektrometresi kullanılarak kaydedildi. Bu işlemlerden IR spektrumları Afyonkarahisar Kocatepe Üniversitesi, Kimya Bölümü'nün araştırma laboratuarında, Raman spektrumları ise Orta Doğu Teknik Üniversitesi, Merkezi Araştırma Laboratuarı'nda alındı.

3.2. IR Spektrumu Alınması için Numune Hazırlanması

3.2.1. Sıvıların IR spektrumu

Sıvı bileşiklerin IR spektrumları, sıvının uygun bir cözücü içindeki cözeltisinden sıvının doğrudan kendisi üzerinden alınabilir. Genelde çözelti yada dolayı bazı soğurulmalarının kaçamaklarından engellenmeler mümkün olabileceğinden dolayı daha çok saf sıvıdan spektrum almak gerekir. Saf sıvıların IR spektrumunu almak için NaCl, KBr yada AgCl den yapılmış disklerden biri üstüne incelenecek sıvıdan bir damla sıvı damlatılır ilk diskin üstüne ikinci bir disk yerleştirilerek sıvının tabakalar arasına iyice yayılması sağlanır ve dayanıklı biçimde diskler sıkıştırılır ve spektrum almak için bu şekilde kullanılır. Numunenin bir çözeltisinin IR spektrumunu almak için önce karbontetraklorid, karbonsülfid ve kloroform gibi uygun bir çözücüde ~0,2M'lık bir çözelti oluşturulur. Çözeltinin IR spektrumu ya tuz tabakaları arasında çözeltiyi yayarak ince bir film oluşturularak yada bir sıvı IR hücresiyle alınır. Eğer bir IR hücresi kullanılıyorsa hücreye ait bantlarla saf çözeltinin bandları ayrıştırılarak spektrometrenin referans ısınları olarak kabul edilir. Böylece çözeltinin IR bandları elde edilir. Eğer bir referans hücresi kullanılmamışsa çözelti bandları spektrum sonuçlarının yorumlanmasında önemsenmemelidir (Hannan et al, 1974).

3.2.2. Katıların IR spektrumu

Mull Metodu : Bu metotta katı örnek Mull olarak adlandırılan koyu yoğun bir haldeki buharlaşmayan sıvıdan az bir miktar alınarak, katı örnekle beraber havan içerisinde bir bilyeyle dövülür. Oluşan macun bir NaCl tuz tabakası üzerine yayılır ve diğer benzer bir tabakayla örtülür. Numunenin inceliği tabakaların bastırılıp döndürülmesi suretiyle fazla maddeyi dışa atarak ayarlanır. Oluşturulan plakanın spektrumu kaydedilir.

KBr Pellet Metodu: Bu metotta katı örnek kuru KBr ile birlikte saf haliyle toz halinde karıştırılır. Karışım saydam bir pellet halini alacak şekilde hidrolik pres altında sıkıştırılır ve pelletin spektrumu alınır. Pelletler genelde neme sebep olacak hava boşluğunu almak için havası boşaltılabilir özel bir kalıpta preslenir. Bu metodun açık bir üstünlüğü KBr nin 250cm⁻¹ in üstünde IR soğurma bandının olmamasıdır. Koordinasyon bileşikleri için bir dezavantajı Br un sık sık bileşikte ligandın yerine geçmesidir.

KBr pellet hazırlama basamakları:

- i. Bir miktar KBr spatula ile akik havan içine konulur ve ince toz haline gelinceye kadar öğütülür.
- ii. Bir miktar bileşik eklenir ve homojen bir karışım ortaya çıkana kadar KBr ile öğütülür.
- iii. Kurutucudan KBr kalıp alınarak karışım kalıp içine yerleştirilir.
- iv. Bir vakum pompası ile kalıbın havası boşaltılır.
- v. Kalıp pres altına yerleştirilir. ~10 tonluk bir basınç altında sıkıştırılır. 10 saniye pres altında tutulup bırakılır.
- vi. Pellet kalıptan alınarak pellet kalıbı içinde spektrometreye yerleştirilir ve hazırlanan bu diskin spektrumu alınır.(Hannan et al, 1974).

Bu çalışmada numunelerin infrared spektrumlarının alınmasında KBr disk metodu kullanıldı. 2-BrNA ve 6-BrNA moleküllerinin bu teknik kullanılarak kaydedilmiş spektrumları Bulgular bölümünde şekil 4,1 ve 4,4'da verilmiştir.

3.2.3. Raman Spektroskopisi

Raman spektroskopisi bir numunenin görünür bölge veya yakın-IR monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin şiddetli bir monokromatik ışın demeti ile etkileşmesi sırasında ışık absorpsiyonu olayı gerçekleşmiyorsa ışık saçılması olayı meydana gelir. Işık saçılması sırasında saçılan ışığın büyük bir kısmının enerjisi madde ile etkileşen ışığın enerjisine eşit olur ve bu tür elastik saçılma olayına Rayleigh saçılması denir. Elastik saçılma olayının yanı sıra, saçılan ışığın çok az bir kısmı elastik olmayan saçılma olayı ise Raman saçılması adını alır. Rayleigh saçılması olayında Raman saçılmasına göre 104 - 105 kez daha şiddetli bir saçılmış ışık oluşur. Ancak Rayleigh saçılması tek bir pik verir ve titreşim geçişleri hakkında bilgi vermez. Raman saçılması sırasında saçılan ışığın enerjisinde molekül ile etkileşen ışığınkine göre oluşan fazlalık veya azlık ışıkla etkileşen molekülün titreşim enerji düzeyleri arasındaki enerji farkları kadardır. Bu nedenle Raman saçılmasının spektroskopik incelenmesi ile de moleküllerin titresim enerji düzeyleri hakkında bilgi edinilebilir. Bu tür bir spektroskopik yöntem Raman spektroskopisi adını alır. Bu yöntemde molekül ile etkilesen ışığın dalga boyuna göre saçılan ışığın dalga boyunda oluşan farklar ölçülür. Bu farklar Raman kayması olarak adlandırılır. Moleküller ile etkilestirilen ışığın kaynağı olarak son yıllarda genellikle lazer türü kaynaklar kullanıldığından bu yönteme Lazer Raman Spektroskopisi adı da verilir. 2-BrNA ve 6-BrNA moleküllerinin bu teknik kullanılarak kaydedilmiş spektrumları Bulgular bölümünde şekil 4,5'de verilmiştir.

4. BULGULAR

4.1. Bromonikotonik asit (2,4,6-BrNA) Moleküllerinin Simetri Nokta Gruplarının Bulunması

 $C_6H_4BrNO_2$ kapalı formülünde görüldüğü gibi 2, 4 ve 6-BrNA molekülleri 14 atomlu moleküllerdir. Bu molekülle düzlemsel ve lineer olmayan bir yapıda olup 3N-6= 36 tane serbest titreşimi vardır. Bu moleküller E ve σ_h simetri elemanlarına sahip olduklarından C_s nokta grubundadır. N atomlu bir molekül için titreşimlerin 2N-3 tanesi düzlem içi ve N-3 tanesi de düzlem dışıdır. Buna göre 2, 4 ve 6-BrNA moleküllerinin 25 düzlem içi (A') ve 11 düzlem dışı (A") titreşimi bulunmaktadır. Bu 36 temel titreşim 25 A' (IR, Ra) + 11 A" (IR, Ra) olarak dağılmış ve bu titreşimlerin hepsi de Çizelge 4,1'de görüldüğü gibi hem IR aktif hem de Raman aktiftir.

Çizelge 4. 1 C_s nokta grubuna ait karakter tablosu.

Cs	IR aktif	Raman aktif	Е	σ_{\hbar}
A'	Tx, Ty, Tz	x^{2}, y^{2}, z^{2}, xy	1	1
A"	Tz, Rx, Ry	yz, zx	1	-1

4.2. 2 ve 6-BrNA Moleküllerinin Deneysel IR ve Raman Spektrumları

2 ve 6-BrNA moleküllerine ait IR spektrumları 4000-400 cm⁻¹ geçirgenlik ve soğurma türüne göre Şekil 4.1, 4.2, 4.3 ve 4,4'de verilmiştir. Yine aynı şekilde bu moleküllere ait Raman spektrumları Şekil 4.5'de 4000-0 cm⁻¹ aralığında kaydedilmiştir.

Şekil 4. 1. 2-BrNA molekülünün geçirgenlik türünde kaydedilmiş IR spektrumu.

Şekil 4. 2. 2-BrNA molekülünün soğurma türünde kaydedilmiş IR spektrumu.

Şekil 4. 3. 6-BrNA molekülünün geçirgenlik türünde kaydedilmiş IR spektrumu.

Şekil 4. 4. 6-BrNA molekülünün soğurma türünde kaydedilmiş IR spektrumu.

Şekil 4. 5. 2 ve 6-BrNA moleküllerine ait Raman spekturumları.

4.3. 2, 4 ve 6-BrNA Moleküllerinin En Uygun Geometrilerinin Bulunması

2, 4 ve 6-BrNA moleküllerinin her biri için ayrı ayrı C1, C2, C3, C4 ve Dimer C1 yapılarının Gaussian 03 (Frısch and Frısch 1998) programında ab-initio (HF/6-311++G(d,p)) metodu ve DFT (B3LYP/6-311++G(d,p)) metodunu kullanılarak optimize geometrisi elde edildi. Buna göre her bir molekül için atom numaraları ile verilmiş konformasyonu Şekil 4.6, 4.8, 4.9, ve 4.9'da verilmiştir. Elde edilen sonuçlara göre moleküllerin düzlemsel olmadığını, C_s nokta grubunda olduğunu saptandı. Çizelge 4.2'de 2, 4 ve 6- BrNA moleküllerinin HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış enerji ve enerji farkları görülmektedir.

Çizelge 4. 2. 2,4 ve 6-BrNA moleküllerinin 4 farklı yapısı için DFT/B3LYP ve HF teori düzeyind	e
6-311++G(d,p) temel seti kullanılarak hesaplanan enerji ve enerji farkları.	

	HF/6-311	l++G(d,p)	B3LYP /6-311++G(d,p)			
Moleküller	Enerii	Enerji Farkları	D = = = : :	Enerji Farkları		
ve Yapılar	Enerji	(kcal/mol)	Enerji	(kcal/mol)		
2-BrNA						
C1	-3006.20088514	0	-3010.52042877	0		
C2	-3006.20064527	0.151	-3010.51953448	0.561		
C3	-3006.19420659	4.191	-3010.51731627	1.953		
C4	-3006.19420654	4.191	-3010.51731170	1.956		
4-BrNA						
C1	-3006.20093063	0	-3010.51857749	0		
C2	-3006.20024727	0.429	-3010.51857269	0.003		
C3	-3006.19169053	5.798	-3010.51294408	3.535		
C4	-3006.18950245	7.171	-3010.50794804	6.670		
6-BrNA						
C1	-3006.21405128	0	-3010.53068318	0		
C2	-3006.21353766	0.322	-3010.53022852	0.285		
C3	-3006.19940687	9.190	-3010.51855275	7.612		
C4	-3006.19765275	10.290	-3010.51691371	8.640		

C1

C2

Şekil 4.6. 2-BrNA molekülünün C1, C2, C3 ve C4 yapılarının en uygun geometrisi.

Şekil 4.7. 4-BrNA molekülünün C1, C2, C3 ve C4 yapılarının en uygun geometrisi.

Şekil 4.8. 6-BrNA molekülünün C1, C2, C3 ve C4 yapılarının en uygun geometrisi.

Şekil 4.9. 2,4, 6-BrNA moleküllerinin sırasıyla Dimer C1 yapılarının en uygun geometrisi.

4.4. 2, 4 ve 6-BrNA Moleküllerinin Geometrik Parametreleri

Yapılan litaretür taraması sonucunda 2, 4, 6-BrNA molekülleri ile ilgili herhangi bir calışmaya rastlanmamıştır. Bu calışmada sekil 4.6–4.9'da her bir molekül için C1, C2, C3, C4 ve Dimer C1 yapılarının geometrik parametreleri HF ve DFT(B3LYP) teori düzeylerinde 6-311++G(d,p) temel seti kullanılarak hesaplanmıştır. C1, C2, C3 ve C4 yapılarındaki temel fark H atomlarının moleküldeki O atomlarına bağ yapma yerinin farklı olması seklinde tasarlanarak hesaplamalar yapılmıştır. Dimer C1 için ise durum her bir molekülün çiftli ve karşılıklı olacak şekilde tasarlanarak parametrelerin hesaplanması şeklindedir. Hesaplanan teorik geometrik parametrelerin kıyaslandığı deneysel sonuçlar ise Souza ve arkadaşları (de Souza et.al.2005) Long ve arkadaşları (Long et.al.2007) tarafından 2-CNA ve 6-CNA için yaptıkları X-Ray crystallography sonuçlarıdır. Bu moleküllerin çalışılan moleküllerden farkı ise orda ki Cl atomu yerinde Br atomunun bulunmasıdır. Dolayısıyla bu farklılık geometrik parametre çizelgelerinde ve hesaplamalarda göz önünde bulundurulmuştur. Yapılan bu çalışmadaki amaç C1, C2, C3, C4 ve Dimer C1 yapılarından ve kullanılan HF ve B3LYP metotlarından hangilerinin deneysel sonuçlara daha yakın olduğunu saptamaktır. Sonuçların kıyaslanması açısından deneysel değerlerden ne kadarlık sapma olduğunu belirlemek için aşağıda formülle gösterilmiş olan σ (rms) sapma değerleri hesaplanarak çizelgelere kaydedilmiştir.

$$\sigma = \left(\sum_{i}^{N} \left(X_{Hesaplanan,i} - X_{Deneysel,i}\right)^2 / N\right)^{1/2}$$
(4.1)

1,

X : Bağ uzunluğu veya bağ açısı

Deneysel ve hesaplanan geometrik parametreler arasındaki korelasyonu şekil 4.6-4.9'de çizilen grafiklerle gösterilerek korelasyon katsayıları hesaplanmıştır. Hesaplanan bu sonuçlara göre çizelgelere bakıldığında 2-BrNA molekülünün C1 ve Dimer C1 yapısı için bağ uzunluklarında en iyi sonucu sırasıyla 0.093 ve 0.091 değeri ile HF metodu vermiştir. Bunun yanı sıra Dimer C1 yapısının deneysel sonuca daha yakın ve uyum içinde olduğu görülmüştür. Yine aynı şekilde 2-BrNA molekülünün C2, C3 ve C4 yapılarında bağ uzunluklarında yine en iyi sonucu sırasıyla 0.078, 0.095 ve 0.081 değerleriyle HF metodu vermiştir. C1, C2, C3, C4 ve Dimer C1 yapılarının içinde deneysel değere en yakın sonuç ise HF metoduyla hesaplanan, 0.078 bir sapmayla C2 yapısının olduğu görülmektedir. 6-BrNA molekülünün C1 ile Dimer C1 yapıları kıyaslandığında ise bağ uzunluklarının deneysel değerden sapma miktarı en küçük olacak şekilde sırasıyla 0.192 ve 0.193 ile yine HF metodu vermiştir. C2, C3 ve C4 yapılarında bağ uzunluklarında yine en iyi sonucu HF metodunun verdiğini ve bu yapıların hepsinin içinde C3 yapısının HF ve B3LYP metotlarıyla en iyi sonucu verdiği gözlenmiştir. Bağ açılarına baktığımızda da yine genel anlamda 2-BrNA molekülü için tüm yapılarda en iyi sonucu HF metodunun verdiğini çizelgelerde hesaplanarak kaydedilmiş rms değerlerinde gözlemlenebilir. 6-BrNA için ise C1 yapısında 1.055 ile HF metodu, Dimer C1 için 0.868 ile B3LYP metodu C2 yapısı için 3.371 ile HF metodu, C3 yapısı için 2.263 ile B3LYP metodu ve C4 yapısı içinde 3.068 ile yine HF metodunun en iyi sonuçları verdiği görülmektedir. Genel anlamda tüm yapılar içinde deneysele en yakın sonucu 6-BrNA molekülü için 0.868 değeri ile tam bir uyum sağlayan Dimer C1 yapısının olduğu görülmektedir.

Bilindiği gibi HF metodu bağ uzunluklarını gerçek değerlerinin altında hesaplar (Kurt ve Yurdakul 2003). 2 ve 6-BrNA için verilen çizelgelerden C-N bağ uzunluklarına ait değerlere bakıldığında HF metodunun B3LYP metoduna göre deneysel verilerden daha küçük sonuçlar verdiği görülmektedir. Bu metodun kullanımıyla *pyridine* (Jensen 2002), *methyl pyridine* (Bene 1979), *phthalazine* (Fischer and Wormel 1995) ve 2-chlorolepidine (Kurt ve Yurdakul 2005) molekülleri için de C-N bağları için benzer sonuçlar bulunmuştur.

Johnson ve arkadaşlarına göre (Johnson et.al. 1993) DFT metodu, özellikle C-H bağı olmak üzere, bağ uzunluklarını gerçekten daha büyük hesaplamaktadır. Bu durum 2 ve 6-BrNA için yapılan hesaplamalarda da görülmektedir (Çizelge 4.3, 4.4, 4.7, 4.8). Örneğin C-H bağları deneysel olarak 0.95 Å olarak bulunurken hesaplanan değerlerin hepsi 1 Å'un üzerinde çıkmıştır.

6-311++G(d,p)		C1		Dimer(C	21)
Parametreler	X-Ray	HF	B3LYP	HF	B3LYP
Bağ Uzunlukları (Å)					
C1-C2	1.39	1.397	1.409	1.398	1.411
C1-N10	1.32	1.305	1.318	1.305	1.319
C1-Br14	1.73*	1.899	1.922	1.898	1.920
C2-C3	1.40	1.388	1.399	1.389	1.400
C2-C7	1.51	1.496	1.496	1.495	1.495
C3-C4	1.38	1.380	1.388	1.380	1.387
C3-H11	0.95	1.074	1.083	1.074	1.083
C4-C5	1.39	1.380	1.390	1.380	1.390
C4-H6	0.95	1.073	1.083	1.073	1.083
C5-N10	1.35	1.321	1.336	1.321	1.336
C5-H13	0.95	1.076	1.086	1.076	1.086
C7-O8	1.20	1.317	1.345	1.296	1.312
C7-O9	1.33	1.185	1.208	1.199	1.230
O8-H12	0.84	0.947	0.970	0.960	1.000
σ (rms)		0.093	0.101	0.091	0.099
Bağ Açıları (⁰)					
C2 C1 N10	102.0	102.27	100 55	102.00	102.20
C2- $C1$ - $N10$	123.9	123.37	123.55	123.28	123.38
C2-C1-Br14	122.2	122.88	122.43	125.08	122.95
NIO-CI-BrI4	113.8	113.67	113.92	113.56	113.61
C1-C2-C3	116.1	116.61	116.43	116.62	116.38
C1-C2-C7	124.3	127.75	127.90	127.55	127.78
C3-C2-C7	119.6	115.63	115.66	115.83	115.84
C2-C3-C4	120.8	120.25	120.33	120.30	120.47
С2-С3-Н11	119.6	118.65	118.25	118.65	118.14
C4-C3-H11	119.6	121.10	121.42	121.05	121.39
C3-C4-C5	119.6	117.45	117.81	117.42	117.74
С3-С4-Н6	120.8	121.53	121.33	121.54	121.36
С5-С4-Н6	120.8	121.01	120.86	121.04	120.90
C4-C5-N10	121.5	123.17	122.87	123.19	122.88
С4-С5-Н13	119.3	121.00	121.26	121.00	121.27
N10-C5-H13	119.3	115.82	115.87	115.80	115,85
C2-C7-08	124.6	114.78	114.19	115.73	119.08
C2-C7-O9	111.9	122.31	122,86	120.64	115.95
08-07-09	123.5	122.82	122.87	123.56	123.81
C7-08-H12	109.5	108.73	107.10	110.70	110.22
CI-NI0-C5	119.2	119.09	118.93	119.15	119.08
σ (rms)		3.613	3.807	3.235	2.255

Çizelge 4. 3. 2-BrNA molekülünün C1 ve Dimer C1 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

*C-Cl bağları ile C-C-Cl, N-C-Cl açılarının deneysel X-Ray sonucu (de Souza et. al. 2005).

Çizelge 4. 4. 2-BrNA molekülünün C2, C3 ve C4 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler ve optimum enerjileri.

6-311++G(d,p)			C2		C3	C4	
Parametreler	X-Ray	HF	B3LYP	HF	B3LYP	HF	B3LYP
Bağ Uzunlukları (Å)	•						
C1-C2	1.39	1.400	1.411	1.395	1.407	1.395	1.408
C1-N10	1.32	1.305	1.318	1.303	1.313	1.303	1.313
C1-Br14	1.73*	1.895	1.917	1.911	1.948	1.911	1.948
C2-C3	1.40	1.389	1.400	1.392	1.403	1.392	1.403
C2-C7	1.51	1.494	1.493	1.513	1.522	1.513	1.522
C3-C4	1.38	1.381	1.388	1.379	1.387	1.379	1.387
C3-H11	0.95	1.073	1.082	1.073	1.083	1.073	1.083
C4-C5	1.39	1.379	1.390	1.380	1.390	1.380	1.390
C4-H6	0.95	1.073	1.083	1.073	1.083	1.073	1.083
C5-N10	1.35	1.321	1.336	1.320	1.336	1.320	1.336
C5-H13	0.95	1.076	1.086	1.075	1.085	1.075	1.085
C7-O8	1.20	1.179	1.203	1.318	1.338	1.179	1.205
C7-O9	1.33	1.332	1.361	1.179	1.205	1.318	1.338
O8-H12	0.84	0.946	0.969	0.943	0.974	0.943	0.974
σ (rms)		0.078	0.087	0.095	0.105	0.081	0.092
Bağ Açıları (⁰)							
C2-C1-N10	123.9	123.28	123.47	124.43	125.04	124.43	125.05
C2-C1-Br14	122.2*	122.98	122.41	122.66	122.76	122.66	122.77
N10-C1-Br14	113.8	113.70	114.08	112.89	112.20	112.89	112.18
C1-C2-C3	116.1	116.56	116.45	115.61	114.81	115.61	114.81
C1-C2-C7	124.3	124.58	124.43	129.52	130.70	129.54	130.70
C3-C2-C7	119.6	118.84	119.09	114.86	114.49	114.85	114.49
C2-C3-C4	120.8	120.29	120.30	120.58	121.07	120.58	121.07
C2-C3-H11	119.6	119.21	118.86	118.29	117.25	118.28	117.25
C4-C3-H11	119.6	120.49	120.83	121.14	121.68	121.14	121.68
C3-C4-C5	119.6	117.48	117.85	117.68	118.02	117.67	118.02
C3-C4-H6	120.8	121.48	121.28	121.39	121.18	121.39	121.18
C5-C4-H6	120.8	121.05	120.87	120.93	120.79	120.93	120.79
C4-C5-N10	121.5	123.20	122.92	122.87	122.32	122.87	122.32
C4-C5-H13	119.3	121.00	121.24	121.21	121.68	121.21	121.68
N10-C5-H13	119.3	115.80	115.84	115.92	116.00	115.92	116.00
C2-C7-O8	124.6	126.36	126.58	119.62	119.84	119.82	119.97
C2-C7-O9	111.9	111.56	111.27	119.81	119.97	119.61	119.84
O8-C7-O9	123.5	122.05	122.13	120.48	120.19	120.48	120.19
C7-O8-H12	109.5	108.23	106.60	113.80	112.21	113.79	112.20
C1-N10-C5	119.2	119.18	118.97	118.82	118.74	118.82	118.74
σ (rms)		1.285	1.392	3.094	3.232	3.055	3.208

^{*}C-Cl bağları ile C-C-Cl, N-C-Cl açılarının deneysel X-Ray sonucu (de Souza et. al. 2005).

6-311++G(d,p)		C1	Dimer(C1)			
Parametreler	HF	B3LYP	HF	B3LYP		
Bağ Uzunlukları ((Å)					
C1-C2	1.396	1.408	1.396	1.408		
C1-N12	1.315	1.330	1.314	1.329		
C1-H13	1.073	1.083	1.073	1.084		
C2-C3	1.395	1.404	1.395	1.404		
C2-C8	1.493	1.492	1.492	1.491		
C3-C4	1.382	1.392	1.382	1.392		
C3-Br14	1.889	1.905	1.890	1.906		
C4-C5	1.382	1.391	1.382	1.391		
C4-H6	1.072	1.082	1.072	1.082		
C5-H7	1.076	1.086	1.076	1.086		
C5-N12	1.318	1.336	1.318	1.336		
C8-O9	1.330	1.358	1.307	1.323		
C8-O10	1.180	1.204	1.194	1.224		
O10-H11	0.946	0.969	0.960	0.998		
Bağ Acıları (⁰)						
C2-C1-N12	124.76	124.88	124.76	124.88		
C2-C1-H13	118.95	118.64	118.85	118.50		
N12-C1-H13	116.29	116.47	116.39	116.62		
C1-C2-C3	116.80	116.78	116.80	116.80		
C1-C2-C8	118.84	119.12	118.36	118.40		
C3-C2-C8	124.36	124.08	124.83	124.78		
C2-C3-C4	118.77	118.87	118.76	118.85		
C2-C3-Br14	124.56	124.11	124.78	124.28		
C4-C3-Br14	116.66	117.00	116.45	116.84		
C3-C4-C5	118.61	118.82	118.62	118.82		
C3-C4-H6	120.80	120.59	120.81	120.60		
C5-C4-H6	120.58	120.59	120.57	120.58		
C4-C5-H7	119.75	119.85	119.73	119.84		
C4-C5-N12	123.74	123.72	123.76	123.73		
H7-C5-N12	116.51	116.43	116.51	116.43		
C2-C8-O9	112.03	111.67	112.87	113.09		
C2-C8-O10	125.94	126.21	124.12	123.38		
O9-C8-O10	122.03	122.11	123.01	123.53		
C8-O10-H11	108.28	106.66	110.50	110.03		
C1-N12-C5	117.32	116.92	117.31	116.91		

Çizelge 4. 5 4-BrNA molekülünün C1 ve Dimer C1 yapıları için teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

6.211 + C(4m)		<u>C2</u>		C2		<u></u>
0-311++O(0,p)	ПЕ	D21 VD	ПЕ			
	ΗΓ	BOLIP	ΠΓ	BSLIP	нг	BOLIP
Bag Uzuniukiari (A)	1 205	1 407	1 207	1 410	1 200	1 402
CI-C2	1.395	1.407	1.397	1.410	1.390	1.403
CI-NI2	1.313	1.328	1.313	1.328	1.316	1.331
CI-HI3	1.074	1.085	1.074	1.084	1.0//	1.087
C2-C3	1.391	1.401	1.388	1.399	1.390	1.399
C2-C8	1.495	1.494	1.508	1.515	1.505	1.505
C3-C4	1.383	1.392	1.382	1.390	1.380	1.390
C3-Br14	1.893	1.909	1.901	1.928	1.888	1.904
C4-C5	1,382	1.391	1.382	1.391	1.385	1.393
C4-H6	1.072	1.082	1.072	1.082	1.072	1.082
C5-H7	1.076	1.086	1.076	1.086	1.076	1.086
C5-N12	1.319	1.337	1.319	1.336	1.317	1.335
C8-O9	1.184	1.208	1.177	1.202	1.332	1.359
C8-O10	1.319	1.347	1.323	1.345	1.173	1.196
O10-H11	0.9465	0.9697	0.942	0.970	0.9421	0.9656
Bağ Açıları (⁰)						
C2-C1-N12	124.75	124.93	124.62	125.24	124.52	124.63
C2-C1-H13	118.37	118.01	118.41	117.51	119.50	119.35
N12-C1-H13	116.88	117.06	116.96	117.25	115.97	116.01
C1-C2-C3	116.87	116.81	116.40	115.66	117.09	117.05
C1-C2-C8	115.24	115.24	115.28	114.55	118.79	119.06
C3-C2-C8	127.88	127.95	128.30	129.78	124.04	123.79
C2-C3-C4	118.80	118.88	119.66	120.18	118.94	119.07
C2-C3-Br14	124.51	124.25	123.25	123.79	122.56	122.21
C4-C3-Br14	116.64	116.81	117.06	116.02	118.47	118.69
C3-C4-C5	118.54	118.78	118.06	118.26	118.34	118.52
C3-C4-H6	120.87	120.67	121.13	121.06	121.02	120.85
С5-С4-Н6	120.59	120.55	120.81	120.68	120.63	120.63
C4-C5-H7	119.74	119.84	119.83	119.90	119.79	119.87
C4-C5-N12	123.73	123.70	123.59	123.47	123.68	123.72
H7-C5-N12	116.53	116.46	116.58	116.63	116.53	116.41
C2-C8-O9	122.68	123.20	120.79	120.71	115.12	115.03
C2-C8-O10	114.59	114.03	118.44	119.16	123.69	124.19
O9-C8-O10	122.68	122.73	120.68	120.09	121.14	120.73
C8-O10-H11	108.62	106.97	113.46	112.15	112.34	110.66
C1-N12-C5	117.29	116.88	117.65	117.19	117.42	117.01

Çizelge 4. 6. 4-BrNA molekülünün C2, C3 ve C4 yapıları için teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

Çizelge 4. 7. 6-BrNA molekülünün C1 ve Dimer C1 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

6-311++G(d,p)			C1	Din	ner (C1)
Parametreler	X-Ray	HF	B3LYP	HF	B3LYP
Bağ Uzunlukları (Å))				
C1-C2	1.39	1.384	1.397	1.384	1.397
C1-N10	1.34	1.323	1.337	1.323	1.337
C1-H11	0.95	1.073	1.083	1.073	1.083
C2-C3	1.40	1.391	1.400	1.391	1.400
C2-H7	1.48	1.485	1.485	1.483	1.484
C3-C4	1.38	1.376	1.385	1.376	1.385
C3-H12	0.95	1.074	1.083	1.074	1.083
C4-C5	1.32	1.390	1.398	1.390	1.398
C4-H6	1.74	1.071	1.081	1.072	1.081
C5-N10	1.32	1.303	1.316	1.303	1.317
C5-Br14	1.74^{*}	1.897	1.920	1.896	1.919
C7-O8	1.32	1.325	1.354	1.303	1.320
C7-O9	1.23	1.184	1.208	1.199	1.229
O8-H13	0.84	0.946	0.969	0.960	0.999
σ (rms)		0.192	0.194	0.193	0.195
Bağ Açıları (⁰)					
C2-C1-N10	123.2	123.05	122.91	123.04	122.92
C2-C1-H11	118.4	120.75	120.74	120.66	120.60
N10-C1-H11	118.4	116.21	116.35	116.30	116.48
C1-C2-C3	118.5	118.12	118.16	118.13	118.19
C1-C2-C7	121.4	122.71	122.83	122.21	122.09
C3-C2-C7	120	119.17	119.01	119.65	119.72
C2-C3-C4	118.9	119.17	119.29	119.16	119.25
C2-C3-C12	120.5	119.69	119.41	119.76	119.52
C4-C3-H12	120.5	121.14	121.30	121.08	121.23
C3-C4-C5	117.2	117.02	117.12	117.02	117.14
C3-C4-H6	121.4	121.99	121.85	121.99	121.85
C5-C4-H6	121.4	120.99	121.03	120.98	121.01
C4-C5-N10	125.4	124.86	124.86	124.87	124.86
C4-C5-Br14	118.9	118.66	118.52	118.65	118.53
N10-C5-Br14	115.6	116.48	116.62	116.48	116.61
C2-C7-O8	113.8	113.26	112.78	114.13	114.29
C2-C7-O9	122.3	124.02	124.55	122.32	121.85
O8-C7-O9	123.9	122.73	122.67	123.55	123.85
C7-O8-H13	109.5	108.79	107.16	110.86	110.42
C1-N10-C5	116.6	117.79	117.66	117.78	117.64
σ (rms)		1.055	1.243	0.910	0.868

*C-Cl bağları ile C-C-Cl, N-C-Cl açılarının deneysel X-Ray sonucu (de Souza et. al. 2005).

Çizelge 4. 8. 6-BrNA molekülünün C2, C3 ve C4 yapıları için deneysel ve teorik olarak HF, DFT(B3LYP) teori düzeyinde 6-311++G(d,p) temel seti kullanılarak hesaplanmış optimize geometrik parametreler.

6-311++G(d,p)			C2	(23	C4	
Parametreler	X-Ray	HF	B3LYP	HF	B3LYP	HF	B3LYP
Bağ Uzunlukları(Å)							
C1-C2	1.39	1.385	1.397	1.382	1.395	1.389	1.400
C1-N10	1.34	1.321	1.336	1.323	1.336	1.320	1.335
C1-H11	0.95	1.074	1.084	1.077	1.088	1.073	1.084
C2-C3	1.40	1.390	1.400	1.395	1.402	1.390	1.400
C2-H7	1.48	1.485	1.485	1.500	1.501	1.500	1.501
C3-C4	1.38	1.378	1.387	1.374	1.384	1.378	1.387
C3-H12	0.95	1.073	1.082	1.073	1.083	1.076	1.086
C4-C5	1.32	1.388	1.397	1.390	1.399	1.386	1.396
C4-H6	1.74	1.071	1.081	1.072	1.081	1.071	1.081
C5-N10	1.32	1.304	1.317	1.301	1.317	1.304	1.317
C5-Br14	1.74^{*}	1.897	1.919	1.894	1.917	1.894	1.917
C7-O8	1.32	1.184	1.207	1.328	1.355	1.178	1.201
C7-O9	1.23	1.327	1.356	1.178	1.201	1.329	1.357
O8-H13	0.84	0.946	0.969	0.940	0.964	0.939	0.963
σ (rms)		0.197	0.198	0.192	0.193	0.197	0.199
Bağ Açıları (⁰)							
C2-C1-N10	123.2	123.20	123.09	123.76	123.69	123.58	123.51
C2-C1-H11	118.4	120.05	119.99	122.37	122.31	119.64	119.49
N10-C1-H11	118.4	116.75	116.93	113.87	114.00	116.78	117.00
C1-C2-C3	118.5	118.08	118.14	117.23	117.26	117.15	117.23
C1-C2-C7	121.4	118.86	118.70	125.01	124.96	117.36	117.32
C3-C2-C7	120	123.06	123.17	117.77	117.78	125.48	125.45
C2-C3-C4	118.9	119.05	119.13	119.57	119.70	119.74	119.81
C2-C3-C12	120.5	120.46	120.25	119.28	118.93	122.45	122.30
C4-C3-H12	120.5	120.49	120.62	121.15	121.37	117.80	117.89
C3-C4-C5	117.2	117.14	117.25	117.20	117.28	117.11	117.18
С3-С4-Н6	121.4	121.86	121.74	121.86	121.74	121.74	121.68
С5-С4-Н6	121.4	121.00	121.01	120.94	120.98	121.15	121.15
C4-C5-N10	125.4	124.83	124.83	124.45	124.48	124.45	124.51
C4-C5-Br14	118.9^{*}	118.70	118.55	118.92	118.81	118.86	118.66
N10-C5-Br14	115.6^{*}	116.46	116.61	116.63	116.71	116.69	116.83
C2-C7-O8	113.8	124.43	124.90	118.13	117.91	122.01	122.66
C2-C7-O9	122.3	112.93	112.52	121.63	122.36	117.84	117.72
O8-C7-O9	123.9	122.63	122.57	120.24	119.73	120.15	119.62
C7-O8-H13	109.5	108.70	107.05	113.85	112.13	113.79	112.02
C1-N10-C5	116.6	117.70	117.56	117.80	117.58	117.97	117.76
σ (rms)		3.371	3.547	2.3876	2.263	3.068	3.081

*C-Cl bağları ile C-C-Cl, N-C-Cl açılarının deneysel X-Ray sonucu (de Souza et. al. 2005).

Şekil 4. 10. 2-BrNA molekülünün C1, C2, C3 ve C4 yapılarının deneysel ve teorik olarak hesaplanan bağ uzunluklarının korelasyon grafikleri.

Şekil 4. 11. 2-BrNA molekülünün C1, C2, C3 ve C4 yapılarının deneysel ve teorik olarak hesaplanan bağ açılarının korelasyon grafikleri.

Şekil 4. 12. 6-BrNA molekülünün C1, C2, C3 ve C4 yapılarının deneysel ve teorik olarak hesaplanan bağ uzunluklarının korelasyon grafikleri.

4.5. 2, 4 ve 6-BrNA Molekülerinin Titreşim Frekansları ve İşaretlemeleri

Bu aşamada 2,4 ve 6-BrNA moleküllerinin C1, C2, C3, C4 ve Dimer C1 yapıları için 6-311++G(d,p) temel seti kullanılarak HF ve DFT(B3LYP) teori düzeyinde titreşim frekansları hesaplanarak deneysel frekans değerleriyle karşılaştırılması ve TED programı yardımıyla belirlenen işaretlemeleri çizelgeler halinde verilmiştir.

Bir önceki bölümde 2 ve 6-BrNA molekülüne ait deneysel IR ve Raman spektrumlarının grafikleri verilmişti. 2, 4 ve 6-BrNA moleküllerinin ait HF ve B3LYP teori düzeylerinde 6-311++G(d,p) setiyle hesaplanan IR ve Raman değerleri için spektrum grafikleri ise C1, C2, C3 ve C4 yapıları için ayrı ayrı çizilerek Şekil 4.14 - 4.16'da sırasıyla verilmiştir. Aşağıda verilen çizelgelerde ise (çizelge 4.9-4.22) sırasıyla 2, 4 ve 6-BrNA moleküllerinin C1, C2, C3, C4 ve Dimer C1 yapıları için hesaplanan frekans, IR ve Raman değerleri verilmiştir. Burada 2 ve 6-BrNA molekülü için hesaplanan değerler deneysel sonuçlarla kıyaslaması yapılmıştır. 4-BrNA molekülü için ise deneysel sonuçlar olmadığından dolayı kıyaslama yapılmamış tablolarda sadece teorik değerler verilmiştir. Çizelge 4.23'de ham frekans değerlerinde görüldüğü gibi C3 ve C4 yapılarının frekans değerlerinde HF ve B3LYP metotları için negatif çıkmıştır ki bu da yapıların kararsız olduğunu göstermektedir.

Tablolarda verilen frekans değerleri hesaplanan frekansların ölçeklendirme katsayıları ile çarpılmış halidir. Hesaplanan frekanslar ise ham frekanslar adı ile çizelge 4.13, 4.18 ve 4.23'de her molekülün her bir yapısı için ayrı ayrı verilmiştir. Ölçeklendirme katsayıları 6-311++G(d,p) seti HF metodu için 0.905 ile B3LYP metodu içinse 4000-1700 cm⁻¹ aralığında 0.983, 1700 cm^{-1,} den küçük değerler içinse 0.958 şeklindedir (Sundaraganesan et. al. 2007). Tablolarda belirtilen titreşim ve işaretlemelerde aşağıdaki şekilde yorumlanmıştır.

Karboksil Grubunun O-H Gerilme Titreşimleri

OH gerilme titreşimleri asitlerin farklı türleri için geniş bir şekilde araştırıldığı yapılan literatür taraması sonucunda görülmüş ve gaz fazlarında 3550 cm⁻¹ civarında pik verdiği gözlenmiştir. Piridin karboksilik asit türevlerinde pik, IR spektrumlarında pikolinik asit için 3417 cm⁻¹, nikotinik asit için 3447 cm⁻¹ ve izonikotinik asit için 3417 cm⁻¹ de orta şiddetli bir pik olarak gözlenmiştir (Kozcon et. al. 2003). Bu pik aminosaliyslik asit için 3398-3770 cm⁻¹ aralığında (Akyüz et. al. 2006), 2-kloronikotonik asit için ise 3544-3736 cm⁻¹'de gözlenmiştir (Karabacak et. al. 2008). Yapılan bu çalışma için tablo ve grafikleri incelediğimizde O-H gerilme titreşimleri için teorik olarak hesaplanan frekanslara karşılık deneysel sonuç görülmemektedir. Bu nedenle deneysel kıyaslama yapılamamıştır. Hesaplanan teorik frekanslar ise bu 3 molekülün 5 farklı yapısı için 3529-3818 cm⁻¹ aralığındadır. Bu değerler ise literatüre yakın sonuçlar olduğundan önem arz etmektedir.

Karboksil grubunun C=O gerilme titreşimleri

Asitlerin türüne ve özelliklerine bağlı olarak değişmekle birlikte, karbonil frekanslarının gözlenebileceği en geniş aralık 1680–1790 cm⁻¹ aralığıdır. Pridin karboksilik asitler için bu bant pikolinik, nikotinik ve izonikotinik asit için sırasıyla 1717, 1708 ve 1712 cm⁻¹ de gözlenmiştir (Kozcon et. al. 2003). İzonikotinik asit N-oksit için ise Costa ve Paulizzi (Costa and Paulizzi 1987) tarafından C=O titreşimleri 1708 ve 1720 cm⁻¹ de yarılmalı bir bant olarak görülmüş, aynı molekül için Bardak (Bardak 2005) tarafından bu pik 1703 cm⁻¹ de şiddetli bir pik olarak kaydedilmiştir. Aynı şekilde 2kloronikotonik asit için ise bu pik 1721-1682 cm⁻¹ aralığında gözlenmiştir (Karabacak et. al. 2008). Bu çalışmada ise 2-BrNA molekülü için hesaplanan teorik sonuçlardan en küçük olanı 1751 cm⁻¹ ile B3LYP metodu C1 yapısı için hesaplamıştır. 2-BrNA molekülünde çoklu yapı olan Dimer C1 içinse bu değerler 1709 ve 1743 cm⁻¹ HF metodu, 1604 ve 1698 cm⁻¹ ile de B3LYP metodu vermiştir. Bu moleküller için denevsel IR değeri ise tabloda görüldüğü gibi 1718 cm⁻¹ seklinde ölcülmüstür. 2-BrNA molekülünün diğer yapıları için ise teorik (C2, C3 ve C4) sonuçlar 1800 cm⁻¹ üstünde cıkmıştır. 6-BrNA molekülü için tablolar incelendiğinde ise C1 yapısı için bu pik minimum 1716 cm⁻¹ ile B3LYP metodu, maxsimum ise 1819 cm⁻¹ ile C3 ve C4 yapıları için HF metodu vermiştir.

Pridin Halkası C-H Gerilme Titreşimleri

Pridin türevleri için bu bantlar nikotinamid için 3060 cm⁻¹ de tek bir bant (Bayarı vd. 2003) izonikotinik asit N-oksit icin 3033-3120 cm⁻¹ arasında ikisi cok siddetli ikisi orta şiddetli olmak üzere dört pik halinde kaydedilmiştir (Gelfand et.al. 1980). Bardak (Bardak 2005) izonikotinik asit N-oksit için bu pikleri 3029, 3065 ve 3113 cm⁻¹ de orta şiddette üç pik olarak kaydetmiş ve bu pikleri C-H gerilme pikleri olarak işaretlemiştir. 2-CNA molekülü için 3063 (IR)-3065(Ra), 3074(IR)-3077(Ra) ve 3097(IR)-3098(Ra) pikleri ve 6-CNA molekülü için 3058(IR), 3062(Ra) ve 3092(IR)-3077(Ra) pikleri C-H gerilme pikleri olarak isaretlenmistir (Karabacak et. al. 2008). Yapılan bu çalışmada 2 -BrNA molekülleri için 3092 cm⁻¹ (IR) 3057 cm⁻¹ (Ra) ve 3060(IR)-3090(Ra) şeklinde deneysel sonuçları elde edilmiştir. 6-BrNA molekülü içinde deneysel olan bu sonuç 3044 cm^{-1} (IR)- 3044 cm^{-1} (RA) ve 3075 cm^{-1} (RA) olarak 3 pik seklinde gözlenmistir. Tablolarda teorik sonuçlar incelendiğinde ise 2-BrNA molekülü ve C1, C2, C3, C4 ve Dimer C1 yapıları icin deneysele en yakın sonucları 3020-3062 cm⁻¹ aralığındaki cesitli pikler ile HF metodu vermiştir. B3LYP metodu ile belirlenen sonuçlara bakıldığında ise 3111-3160 cm⁻¹ aralığına dağılmış olduğu ve deneysel sonuçlara biraz daha uzak olduğu saptanmıştır.

Pridin Halkası Titreşimleri

Pridin türevleri için, araştırmacılar tarafından halka titreşimlerinin tümü bir grup titreşimi olarak adlandırılmaktan çok, daha incelikli bir şekilde C=C ya da C=N titreşim türleri de belirtilerek sunulmuştur (Gelfand at.al. 1980, Bayarı vd. 2003, Yurdakul vd. 2003). 2-CNA için 1452(IR), 1569(Ra) ve 1581(IR)-1584(Ra) pikleri, 6-CNA için ise 1463(IR) ve 1582(IR)-1584(Ra) pikleri literatürde belirtilen bölgede kaydedilmiş ve işaretlenmiştir (Karabacak et. al. 2008). Yaptığımız bu çalışmada ise deneysel olarak bu pikler 2-BrNA molekülü için 1449(IR), 1565(IR)-1580(RA), 1579(IR) şeklinde işaretlenmiş ve bu molekül için teorik hesaplamada en iyi sonucu yine tüm yapılar için (C1, C2, C3, C4 ve Dimer C1) HF metodu vermiştir. 6-BrNA molekülü içinse deneysel bu işaretlenmiştir. Yine teorik olarak hesaplanan sonuçlar için de tablolar da görüldüğü gibi en iyi sonucu bütün yapılar için (C1, C2, C3, C4 ve Dimer C1) HF metodu vermiştir.

Flett (Flett 1951) 60 karboksilik asitin 45 tanesinde 1400 cm⁻¹ yakınlarında C-O piklerini kaydetmiş ve bant şiddetinin asitin bulunduğu fazın ve diğer özelliklerinin sonucu olarak değişebileceği sonucuna varmıştır. Hatta bazı durumlarda bu bandın kaybolduğu da gözlenmiştir. Bu bant 1375–1440 cm⁻¹ aralığında gözlenebilmekle birlikte Hadzi ve Sheppard'ın (Hadzi and Sheppard 1953) 50 karboksilik asitte gözlediği gibi en muhtemel frekans değeri 1430 cm⁻¹ yakınlarındaki bölgedir. İzonikotinik asit N-oksit için C-O gerilme bandı Costa ve Paulizzi (Costa and Paulizzi 1987) tarafından 1439 cm⁻¹ de, Bardak (Bardak 2005) tarafından ise 1437 cm⁻¹ de siddetli bir pik olarak kaydedilmistir. Bu calısmada ise literatüre yakın olarak bu pik 2-BrNA molekülü için 1310(Ra) ve 1123(IR), 1059(Ra) değerlerindeki pikler olarak gözlenmistir. Teorik sonucları incelediğimizde ise tüm yapılar için (C1, C2, C3, C4) deneysele en yakın sonuçları 1293 – 1318 cm⁻¹ aralığında B3LYP metodunun verdiğini görmekteyiz. HF metodu ise bu pikleri 1335 – 1365 cm⁻¹ aralığında hesaplamıştır. 6-BrNA molekülü için deneysel olarak bu pik 1298(Ra) seklinde gözlenmiştir. Çizelgelere bakıldığında deneysel sonuçlara en yakın değeri 1304 cm⁻¹ B3LYP teori düzeyiyle C2 yapısının olduğu görülmektedir.

Pridin üst ton titreşimleri

Pridin halkasının azot atomu CH grupları ile izoelektroniktir ve komşu atomlarla bağ gerilmelerinde ya da kütlesinde çok küçük farklılıklar vardır. Temel titreşimlerin büyük çoğunluğunun benzenin temel titreşimleri ile çok yakın olması beklenir. Aralarındaki fark; hidrojen atomlarının kolektif hareketlerinin oluşmasını sağlayan titreşimler arası bağlılıkta artış vardır. Bu durum Klein ve Turkevitch (Kleine and Turkevitch 1944) tarafından incelenmiştir. C-H açı bükülme titreşimleri aromatik yapılarda 1000 – 1300 cm⁻¹ aralığında, düzlem dışı olarak da 750 - 1000 cm⁻¹ gözlenir (Sundaraganesan at. al. 2007). 6-CNA molekülü için ise C-H düzlem içi açı bükülme titreşimleri (1286 – 1248 – 1143) cm⁻¹, düzlem dışı olarak da (993 – 830) cm⁻¹ pikleri şeklinde gözlenmiştir (Karabacak at. al. 2008). Yapılan bu çalışmada ise deneysel olarak 2-BrNA molekülü

için bu pikler 1123 (IR) ve 1059 (Ra) şeklinde düzlem içi açı bükülme titreşimleri şeklinde gözlenmiştir. C-H düzlem dışı açı bükülme pikleri ise 818(IR) - 818(Ra), 965(IR), 980(IR) şeklinde gözlenmiştir. Teorik olarak da bu pikler tüm yapılar için (C1, C2, C3, C4) 1063-1121 cm⁻¹ aralığında HF teori düzeyinde hesaplanarak literatüre geçmiştir. B3LYP teori düzeyinde ise bu titreşimler tüm yapılar için 1074 – 1101 cm⁻¹ aralığında işaretlenmiştir.

C-N gerilme titreşimleri 2- amino 5-iodopyridine için 1381 cm⁻¹ ile literatüre geçmiştir (Sundraganeson at.al. 2007). Bu titreşimler 6-CNA için 1374 cm⁻¹ (IR), 1376 (RA) olarak belirlenmiştir (Karabacak at.al. 2008). Bu çalışmada ise 2-BrNA için 1227(Ra), 1272(IR) olarak işaretlenmiştir. Bu molekül için teorik olarak ise tüm yapılarda (C1, C2, C3, C4) ikişer tane pik gözlenmiş HF teori düzeyinde bu pikler 1199 -1249 cm⁻¹ aralığında, B3LYP teori düzeyinde ise 1212 – 1318 cm⁻¹ aralığında hesaplanmıştır.

C-Br bükülme ve gerilme titreşimleri ise 232(Ra), 307 (Ra) şeklinde pikler vermiştir. Teorik olarak ise bu değerleri tüm yapılar için HF metodu 271-297 cm⁻¹ aralığında B3LYP metodu ise 265-287 cm⁻¹ aralığında hesaplamıştır.

Çizelge 4. 9. 2-BrNA molekülünün C1 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri.[Frekans (cm⁻¹), IR şiddetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C1		HF			B3LYP)	Deneysel	TED ^b (%)
	Frek ¹	I(IR)	I(RA)	Frek ²	I(IR)	I(RA)	IR(RA)	
1	36	2.5	0.9	34	2.1	1.4		τCCCO (87)
2	105	1.8	1.9	94	1.8	2.1	(110)	Ring τ(55)+Ring-COOH τ(15)+(w 2BrNA) (90)
3	156	0.2	0.6	153	0.2	0.9	(136)	δC-COOH (45)+δCBr (30)
4	193	4.1	1.7	185	3.6	1.9	(180)	w Pyridine Ring def.(75) +τCOOH (10)
5	271	5.3	0.5	265	4.6	0.6	(232)	δCBr (44)+Ring-δCOOH (30)
6	288	0.3	5.0	277	1.3	4.9	(307)	vCBr (60)+δC-COOH (20)+ δCBr (15)
7	392	11.6	8.4	382	12.0	8.1		υC-COOH (28)+υCBr (21)+δOCO (11)
8	412	1.1	1.4	401	2.1	1.5	423(415)	γCCCC (24)+γCCCN (20)+γCCCO (11)
9	480	0.4	0.2	463	0.3	0.3	485(490)	γCCCC (48) +γCCCN (32)
10	531	31.8	0.9	520	17.9	1.1	545(525)	δC-COOH (40)+δCCO(28)
11	569	92.2	1.5	575	82.3	2.3		γOH (82)+γCCCN (10)
12	618	18.4	3.6	604	14.2	3.8	653(697)	δ COC (24)+i.p. Pyridine Ring def.(83)
13	677	50.3	9.4	659	40.6	8.4	704	δCOC (33)+vCBr (20)+δCCC (16)+δCCN (12)
14	733	1.0	1.6	707	2.6	1.2		γCCCC (40) +γCCNC (40)+γCCCO (18)
15	780	90.8	0.7	746	66.3	0.4	767(778)	γСССН (45)+γОСОН (42)+γСССО(28)
16	785	39.0	3.7	765	36.9	4.8		δCCC (40)+δC-COOH (21)(CCN 16)
17	838	4.1	1.3	802	7.6	0.7	818(818)	γCH (85)+γCCCO (18)
18	997	0.1	0.2	938	0.1	0.1	965	γCH (91)
19	1010	0.3	0.9	959	0.7	0.3	980	γCH (93)
20	1039	4.8	23.5	1014	39.8	1.8		δCCC (27)+δCNC (25)+υCO (10)+(yıldız80)
21	1041	45.5	21.3	1028	27.2	39.8	1060	Ring breating (80) v(CC+CN)
22	1065	21.4	11.2	1085	68.8	4.7	1123(1059)	δCH (37)+vCO (26)+vCC (17)+vCN (10)
23	1131	70.7	0.5	1104	109.8	0.9	1160(1092)	υCC (24)+υCO (17)+υCN (11) +δCCH (30)
24	1141	35.4	1.9	1154	85.9	11.2	1226	δOH (35)+δCCH (16)+υC-COOH (12)
25	1200	105 5		1010	25.5	12.0	1070	$vCC (20)+vCN (20)+\delta CCH (18)+\delta NCH$
25	1208	135.7	6.6	1212	35.5	13.9	1272	$(13)+\delta COH(12)$
26	1244	48.6	5.2	1232	5.8	4.8	(1227)	$vCN(41)+vCC(37)+\delta CCH(13)$
27	1365	183.2	4.3	1318	116.2	7.4	(1310)	$\delta OH (28) + vCC (14) + vCO (21) + \delta COC (14)$
28	1407	142.1	2.9	1367	132.9	4.4	1405	$vCN (26)+vCC (21)+\delta CCH (21)+\delta HCN (16)$
29	1453	14.0	2.8	1410	12.6	8.0	1449	vCH (48)+ vCC (21)+ vCN (13)
30	1579	48.1	17.0	1518	29.4	17.7	1565(1580)	$vCC (56) + \delta CH (15) + \delta CN (14)$
31	1606	162.9	43.3	1551	107.2	43.9	1579	$vCC (50) + vCN \delta(22) + CH \delta(15)$
32	1785	584.5	26.4	1751	45.4	53.4	1718	vC=O (90)
33	3020	10.5	85.4	3112	11.5	118.5	3092	vCH (100)
34	3041	5.5	79.0	3139	2.7	78.2	(3057)	vCH (100)
35	3054	5.1	156.1	3152	5.0	199.5	3160(3090)	vCH (100)
36	3721	169.6	94.6	3691	99.8	143.9		vOH (100)
σ	45.0026			35.08				

Çizelge 4. 10. 2-BrNA molekülünün C2 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C2		HF			B3LYF)	Deneysel	TED ^b (%)
	Frek ¹	I(IR)	I(RA)	Frek ²	I(IR)	I(RA)	IR(RA)	
1	32	1.3	0.4	30	1.0	0.8		τCCCO (87)
2	104	1.1	1.8	93	1.0	1.9	(110)	Ring τ(55)+Ring-COOH τ(15)+(W 2BrNA) (90)
3	156	1.1	0.5	152	1.0	0.8	(136)	δC-COOH (45)+δCBr (30)
4	200	3.8	1.5	190	3.4	1.6	(180)	W Pyridine Ring def.(75) +tCOOH (10)
5	275	0.9	0.4	269	1.6	0.8	(232)	δCBr (44)+Ring-δCOOH (30)
6	292	1.4	5.6	281	1.8	5.0	(307)	vCBr (60)+δC-COOH (20)+ δCBr (15)
7	401	3.6	7.9	393	4.1	8.1		υC-COOH (28)+υCBr (21)+δOCO (11)
8	415	1.2	0.7	400	0.6	0.6	423(415)	γCCCC (24)+γCCCN (20)+γCCCO (11)
9	481	1.8	0.4	463	1.4	0.3	485(490)	γCCCC (48) +γCCCN (32)
10	524	21.2	2.0	513	15.5	2.3	545(525)	δC-COOH (40)+δCCO(28)
11	563	111.3	1.5	572	95.0	2.2		γOH (82)+γCCCN (10)
12	624	14.7	2.1	610	15.8	1.0	653(697)	δCOC (24)+i.p. Pyridine Ring def.(83)
13	671	79.0	10.6	652	56.3	11.1	704	δCOC (33)+υCBr (20)+δCCC (16)+δCCN (12)
14	728	0.4	0.7	702	3.7	0.6		γCCCC (40) +γCCNC (40)+γCCCO (18)
15	778	89.8	0.5	744	61.7	0.9	767(778)	γCCCH (45)+γOCOH (42)+γCCCO(28)
16	786	31.3	3.8	767	31.7	4.6		δCCC (40)+δC-COOH (21)(CCN 16)
17	836	2.4	1.5	799	6.3	0.5	818(818)	γCH (85)+γCCCO (18)
18	997	0.3	0.1	938	0.4	0.0	965	γCH (91)
19	1010	0.7	0.6	957	1.7	0.2	980	γCH (93)
20	1039	94.4	2.5	1004	162.1	1.9		δCCC (27)+δCNC (25)+vCO (10)+(yıldız80)
21	1043	8.0	40.5	1030	16.1	42.1	1060	Ring breating (80) v(CC+CN)
22	1063	54.2	16.9	1074	122.7	0.6	1123(1059)	δCH (37)+vCO (26)+vCC (17)+vCN (10)
23	1120	62.2	0.6	1104	51.4	3.8	1160(1092)	vCC (24)+vCO (17)+vCN (11) +δCCH (30)
24	1154	16.6	2.6	1151	135.8	17.0	1226	δOH (35)+δCCH (16)+υC-COOH (12)
25	1100	252 7	0.6	1010	2.4	6.0	1070	$vCC (20)+vCN (20)+\delta CCH (18)+\delta NCH$
25	1199	252.7	9.6	1212	3.4	6.8	1272	$(13)+\delta COH(12)$
20	1243	5.8	1.8	1233	10.5	8.2	(1227)	DCN(41)+DCC(37)+OCCH(13)
27	1335	102.9	3.4	1293	/1.2	5.8	(1310)	$\delta OH(28) + \theta CC(14) + \theta CO(21) + \delta COC(14)$
28	1415	1//.0	1.8	13/2	147.3	4.0	1405	$v_{\rm CN}$ (26)+ $v_{\rm CC}$ (21)+ $v_{\rm CCH}$ (21)+ $v_{\rm HCN}$ (16)
29	1446	6.1	1.4	1406	1.2	4.7	1449	vCH (48)+ vCC (21)+ vCN (13)
30	1581	97.7	21.6	1520	54.7	25.0	1565(1580)	$vCC (56) + \delta CH (15) + \delta CN (14)$
31	1604	129.4	43.3	1548	97.5	42.1	1579	$vCC (50)+vCN \delta(22)+CH \delta(15)$
32	1816	493.7	27.9	17/8	325.7	60.0	1718	vC=O(90)
33	3020	10.6	86.2	3111	11.6	119.7	3092	vCH (100)
34	3043	8.8	120.5	3143	6.2	136.7	(3057)	vCH (100)
35	3062	2.3	120.3	3160	2.1	142.9	3160(3090)	vCH (100)
36	3728	173.5	91.1	3704	106.0	141.7		vOH (100)

Çizelge 4. 11. 2-BrNA molekülünün C3 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C3		HF			B3LYF	,	Deneysel	TED ^b (%)
	Frek ¹	I(IR)	I(RA)	Frek ²	I(IR)	I(RA)	IR(RA)	
1	34	7.7	1.0	26	3.4	0.3		τCCCO (87)
2	106	7.4	1.8	92	5.9	1.5	(110)	Ring τ(55)+Ring-COOH τ(15)+(w 2BrNA) (90)
3	172	1.2	0.9	191	1.2	1.8	(136)	δC-COOH (45)+δCBr (30)
4	203	2.6	1.9	201	0.1	1.8	(180)	w Pyridine Ring def.(75) +tCOOH (10)
5	278	3.7	2.7	266	4.0	5.3	(232)	δCBr (44)+Ring-δCOOH (30)
6	290	17.3	3.5	287	20.8	1.9	(307)	vCBr (60)+δC-COOH (20)+ δCBr (15)
7	396	4.3	12.0	394	6.6	13.2		vC-COOH (28)+vCBr (21)+δOCO (11)
8	414	40.2	1.0	413	11.3	0.4	423(415)	γCCCC (24)+γCCCN (20)+γCCCO (11)
9	443	88.7	0.4	469	19.1	0.1	485(490)	γCCCC (48) +γCCCN (32)
10	481	0.8	0.3	493	1.3	3.6	545(525)	δC-COOH (40)+δCCO(28)
11	534	0.9	1.2	510	58.0	0.9		γOH (82)+γCCCN (10)
12	624	3.2	4.3	613	2.0	3.0	653(697)	δCOC (24)+i.p. Pyridine Ring def.(83)
13	692	33.1	4.9	673	27.0	3.5	704	δCOC (33)+vCBr (20)+δCCC (16)+δCCN (12)
14	721	2.7	1.2	685	0.7	0.0		γCCCC (40) +γCCNC (40)+γCCCO (18)
15	770	57.2	0.8	726	25.2	0.8	767(778)	γCCCH (45)+γOCOH (42)+γCCCO(28)
16	794	17.4	3.2	772	16.0	2.5		δCCC (40)+δC-COOH (21)(CCN 16)
17	834	7.6	1.0	800	20.9	0.3	818(818)	γCH (85)+γCCCO (18)
18	998	0.1	0.1	945	0.0	0.0	965	γCH (91)
19	1012	0.2	0.8	974	0.6	0.3	980	γCH (93)
20	1034	27.4	6.8	1003	40.9	2.3		δCCC (27)+δCNC (25)+υCO (10)+(yıldız80)
21	1037	32.7	31.3	1028	18.3	34.8	1060	Ring breating (80) v(CC+CN)
22	1068	7.1	13.4	1081	2.0	2.4	1123(1059)	δCH (37)+vCO (26)+vCC (17)+vCN (10)
23	1121	22.0	0.7	1101	45.0	0.2	1160(1092)	vCC (24)+vCO (17)+vCN (11) +δCCH (30)
24	1137	21.4	1.4	1169	6.1	18.7	1226	δOH (35)+δCCH (16)+υC-COOH (12)
25	1202	6.0	10	1220	15.8	16.8	1272	vCC (20)+vCN (20)+δCCH (18)+δNCH (13)+δCOH(12)
25	1202	7.5	ч.) 37	1220	20.2	4 9	(1272)	$nCN (41) \pm nCC (37) \pm \delta CCH (13)$
20	1342	525.2	79	1301	368.3	ч.) 5 8	(1227) (1310)	$\delta OH (28) \pm nCC (14) \pm nCO (21) \pm \delta COC (14)$
27	1403	147.3	3.8	1361	149.1	5.0	1405	$n_{\rm CN} (26) + n_{\rm CC} (21) + \delta_{\rm CCH} (21) + \delta_{\rm HCN} (16)$
20	1405	14.8	2.1	1404	15.2	6.2	1405	$nCH (48) \pm nCC (21) + nCN (13)$
30	1577	46.3	15.2	1515	23.0	12.8	1565(1580)	$nCC (56) \pm \delta CH (15) \pm \delta CN (14)$
31	1605	149.6	38.5	1549	00.0	41.2	1505(1500)	$nCC (50) + nCN \delta(22) + CH \delta(15)$
32	1831	543.6	31.3	1769	305.3	52.5	1718	nC=0 (90)
32	3024	87	80.7	3118	80	108 7	3002	nCH (100)
34	3045	67	113.1	3143	4 5	114 5	(3057)	nCH (100)
35	3060	2.9	1193	3156	6.0	159.1	3160(3090)	pCH (100)
36	3748	180.4	34.9	3530	377.3	69.7	2100(2070)	vOH (100)

Çizelge 4. 12. 2-BrNA molekülünün C4 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri.[Frekans (cm-¹), IR şidetleri (K m mol-1), Raman saçılmaları (Å amu-1)].

C4		HF			B3LYF)	Deneysel	TED ^b (%)
	Frek ¹	I(IR)	I(RA)	Frek^2	I(IR)	I(RA)	IR[RA]	
1	34	7.7	1.0	26	3.4	0.3		τCCCO (87)
2	106	7.4	1.8	93	5.9	1.5	(110)	Ring $\tau(55)$ +Ring-COOH $\tau(15)$ +(w2BrNA) (90)
3	172	1.2	0.9	191	1.2	1.8	(136)	δC-COOH (45)+δCBr (30)
4	203	2.6	1.9	202	0.1	1.8	(180)	w Pyridine Ring def.(75) +tCOOH (10)
5	278	3.6	2.7	266	4.1	5.3	(232)	δCBr (44)+Ring-δCOOH (30)
6	290	17.3	3.5	287	20.8	1.9	(307)	vCBr (60)+δC-COOH (20)+ δCBr (15)
7	396	4.3	12.0	394	6.6	13.2		υC-COOH (28)+υCBr (21)+δOCO (11)
8	414	40.5	1.0	413	11.2	0.4	423(415)	γCCCC (24)+γCCCN (20)+γCCCO (11)
9	443	88.4	0.4	469	18.5	0.1	485(490)	γCCCC (48) +γCCCN (32)
10	481	0.8	0.3	493	1.2	3.6	545(525)	δC-COOH (40)+δCCO(28)
11	534	0.9	1.2	512	58.8	0.9		γOH (82)+γCCCN (10)
12	624	3.1	4.3	613	2.0	3.0	653(697)	δCOC (24)+i.p. Pyridine Ring def.(83)
13	692	33.1	4.9	673	27.0	3.5	704	δCOC (33)+υCBr (20)+δCCC (16)+δCCN (12)
14	721	2.7	1.2	685	0.7	0.0		γCCCC (40) +γCCNC (40)+γCCCO (18)
15	770	57.2	0.8	726	25.2	0.8	767(7789	үСССН (45)+үОСОН (42)+үСССО(28)
16	794	17.4	3.2	772	16.0	2.5		δCCC (40)+δC-COOH (21)(CCN 16)
17	834	7.6	1.0	800	20.9	0.3	818(818)	γCH (85)+γCCCO (18)
18	998	0.1	0.1	945	0.0	0.0	965	γCH (91)
19	1012	0.2	0.8	974	0.6	0.3	980	γCH (93)
20	1034	27.7	6.7	1003	40.9	2.3		δCCC (27)+δCNC (25)+υCO (10)+(yıldız80)
21	1037	32.5	31.4	1028	18.3	34.8	1060	Ring breating (80) v(CC+CN)
22	1068	7.1	13.4	1081	2.0	2.4	1123(1059)	δCH (37)+vCO (26)+vCC (17)+vCN (10)
23	1120	22.1	0.7	1101	44.9	0.2	1160(1092)	υCC (24)+υCO (17)+υCN (11) +δCCH (30)
24	1137	21.4	1.4	1169	6.3	18.7	1226	δOH (35)+δCCH (16)+υC-COOH (12)
25	1000	6.0	5.0	1000	16.0	16.0	1070	$vCC (20)+vCN (20)+\delta CCH (18)+\delta NCH$
25	1202	0.9	5.0	1220	10.2	10.9	1272	(13)+0COH(12)
20	1249	1.5	3.7 7.0	1240	20.4	4.9 5 7	(1227)	O(14) + O(14
27	1342	147.4	7.9	1261	140.0	5.7	(1310)	OOH (28) + OCC (14) + OCO (21) + OCOC (14)
20 20	1405	147.4	5.0 2.1	1404	140.0	5.9	1405	CH(20)+UCC(21)+0CCH(21)+0HCN(10)
29	1440	14.0	2.1	1404	13.5	12.0	1449	CC(46)+UCC(21)+UCN(13)
30	15//	40.5	15.2	1515	23.8	12.8	1505(1580)	UCC (50) + 0CH (15) + 0CN (14)
31 22	1005	149.0 542.7	38.5	1549	99.9 205.2	41.2	1579	$V_{\rm CC} = 0.000$
32 22	2024	0 7	31.3 80.6	2110	393.3	32.3 109.0	1/18	uC=0 (90)
33 24	3024 2045	8.1 6.7	80.0	2142	8.9 4.6	108.9	3092 (2057)	UCH (100)
54 25	2045 2040	0./	112.8	2156	4.0 6.0	114./	(3037)	исп (100) гсц (100)
33 26	3060	3.U	119.0	3130	0.0	158./	5100(3090)	UCH (100)
36	3/48	180.2	34.9	3529	311.2	69.7		UOH (100)

Çizelge 4. 13. 2-BrNA molekülünün C1, C2, C3 ve C4 yapılarının HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti ile hesaplanmış ham frekans değerleri.

	C1		С	2	(23	C4		
	HF	B3LYP	HF	B3LYP	HF B3LYP		HF	B3LYP	
	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	
1	40	35	36	32	37	27	37	27	
2	116	98	115	98	117	97	117	97	
3	172	160	173	159	190	200	190	199	
4	213	193	221	198	224	210	224	210	
5	299	276	304	281	308	278	308	278	
6	318	289	322	294	321	300	321	300	
7	434	398	443	410	437	412	437	411	
8	455	418	459	418	458	431	458	431	
9	531	483	532	483	489	489	489	489	
10	587	543	579	535	532	514	532	514	
11	629	600	622	597	590	533	590	534	
12	683	631	690	637	689	640	689	640	
13	748	688	742	681	765	703	765	703	
14	810	738	804	733	797	715	797	715	
15	862	778	859	776	850	758	850	758	
16	868	799	869	800	877	805	877	805	
17	925	837	924	834	921	835	921	835	
18	1101	980	1102	980	1103	987	1103	987	
19	1116	1001	1116	999	1119	1017	1119	1017	
20	1148	1059	1148	1048	1142	1047	1142	1047	
21	1150	1073	1153	1075	1146	1073	1146	1073	
22	1177	1132	1174	1121	1180	1128	1180	1128	
23	1249	1152	1237	1152	1238	1149	1238	1149	
24	1261	1204	1275	1201	1256	1220	1256	1220	
25	1335	1265	1325	1265	1328	1274	1328	1274	
26	1375	1286	1373	1287	1380	1294	1380	1294	
27	1508	1376	1475	1349	1483	1358	1483	1358	
28	1555	1427	1564	1432	1550	1421	1550	1421	
29	1605	1472	1598	1467	1600	1465	1600	1465	
30	1745	1585	1747	1587	1742	1582	1742	1582	
31	1775	1618	1772	1616	1773	1617	1773	1617	
32	1973	1782	2006	1809	1198	1799	1998	1799	
33	3338	3165	3337	3165	3341	3172	3341	3172	
34	3360	3193	3363	3197	3364	3198	3364	3198	
35	3374	3206	3383	3215	3382	3211	3381	3211	
36	4112	3755	4119	3768	4141	3591	4141	3590	

Çizelge 4. 14. 4-BrNA molekülünün C1 yapısı için teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri.[Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C1		HF			B3LYP		TED ^b (%)
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	
1	27	1.6	0.3	30	1.2	0.6	τCCCO(89)
2	114	1.4	2.4	108	1.4	2.6	w4BrNA (80) (ring torsion+ring-COOH)
3	157	1.1	0.4	153	1.0	0.6	δC-COOH (43)+δCBr (36)
4	198	0.2	0.8	187	0.2	0.8	w piridin ring(70)+rCOOH(13)
5	268	1.1	0.9	262	1.1	1.0	δCBr (45)+ring-δCOOH (35)
6	287	1.1	4.7	283	0.9	4.4	υCBr (50)+δC-COOH (24)
7	398	5.4	0.5	374	4.0	0.4	γCCCC (30)+γCCCN (22)+γCCCO (15)
8	405	6.5	8.2	399	4.7	7.7	δC-COOH (32)+υOCO (20)+υCBr (15)
9	492	7.9	1.2	475	7.8	0.8	γCCCC (40)+γCCCN (25)
10	522	10.2	1.7	511	10.5	1.8	δССО (30)+δС-СООН (30)
11	559	131.6	2.0	566	109.2	2.7	γOH (78)+γCCCN (10)
12	655	77.9	2.6	632	60.4	4.1	i.p.pyridine ring def.(60)+δCOC (30)
13	665	29.6	7.6	657	28.5	6.5	δCCN (32)+δCCC (26)+vCBr (18)
14	710	0.6	0.3	690	2.3	0.4	γCCCC (40)+γCCNC (35)+γCCCO (19)
15	780	21.9	7.3	757	30.9	1.8	γCCCO (35)+γOCOH (21)
16	799	62.5	0.9	763	26.0	7.6	υC-COOH (24)+δCCN (21)+δCCC (20)+δOCO (10)
17	849	14.9	0.6	814	14.9	0.2	γCH (83)
18	970	0.5	0.6	918	2.2	0.6	γCH (88)
19	1018	1.1	0.1	957	1.1	0.1	γCH (90)
20	1037	26.1	7.0	1009	58.2	2.5	δCCC (33)+δCNC (28)(yıldız)+υCO (11)
21	1058	24.1	31.5	1039	26.6	35.9	ring bending (83)(CC+CN)
22	1072	20.0	30.0	1069	167.1	0.7	vCO (37)+vCC (24)+δCH (23)
23	1121	113.8	1.6	1145	130.4	20.3	δOH (25)+vCC (20)+vC-COOH (12)
24	1188	7.4	5.1	1169	31.1	1.8	δCCH (32)+vCN (25)+δOH (14)+vCC (11)
25	1208	235.2	14.7	1221	5.0	21.5	vCC ger(46) + vCN ger.(40)
26	1277	30.1	1.2	1249	23.8	3.6	vCH (52)+vCC (30)
27	1346	125.4	5.5	1303	80.5	6.2	vOH (30)+vCO (21)+δCH (15)+vCC (14)+δCOC (12)
28	1399	43.5	0.2	1366	30.3	0.3	δHCN (32)+vCC(16)+vCN (16)+δCCH (16)
29	1475	61.8	0.3	1431	43.9	1.8	δCH (55)+vCC (25) +vCN (10)
30	1575	107.5	7.1	1512	73.5	4.0	υCC (50)+υCN (23)+δCH (17)
31	1559	142.2	39.7	1537	113.8	44.8	vCC (38)+vCN (25)+δCCH (10)
32	1809	504.2	35.3	1771	332.4	65.0	vC=O (90)
33	3016	15.6	112.6	3106	13.2	143.1	vCH (99)
34	3057	2.5	26.3	3140	1.0	78.2	vCH (100)
35	3060	0.8	141.2	3155	1.0	114.8	vCH (98)
36	3729	178.7	91.6	3705	110.4	140.5	vOH (100)

¹⁻²Ölçeklendirme kat sayıları; ¹ 0.905 ² 4000-1700 cm⁻¹ aralığı için 0.983, 1700 cm⁻¹, den küçük değerler için 0.958 ^b Toplam enerji dağılımı, v;gerilme, δ;düzlem içi açı bükülme, γ; düzlem dışı açı bükülme, τ; burulma, w;dalgalanma

Çizelge 4. 15. 4-BrNA molekülünün C2 yapısı için teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C2		HF			B3LYP		TED ^b (%)
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	
1	35	2.2	0.8	34	1.8	1.2	τCCCO(89)
2	114	1.4	2.5	107	1.4	2.7	w4BrNA (80) (ring torsion+ring-COOH)
3	156	0.1	0.6	151	0.1	0.8	δC-COOH (43)+δCBr (36)
4	192	0.3	1.1	184	0.2	1.1	w piridin ring(70)+ τ COOH(13)
5	263	0.3	0.7	257	0.3	0.7	δCBr (45)+ring-δCOOH (35)
6	283	0.2	4.0	276	0.1	4.0	υCBr (50)+δC-COOH (24)
7	387	5.5	3.7	368	3.6	1.7	γCCCC (30)+γCCCN (22)+γCCCO (15)
8	404	9.3	5.7	395	9.7	6.5	δC-COOH (32)+υOCO (20)+υCBr (15)
9	490	6.1	1.0	472	4.7	0.9	γCCCC (40)+γCCCN (25)
10	532	20.3	1.3	522	9.4	1.0	δССО (30)+δС-СООН (30)
11	572	112.5	1.7	577	99.1	2.5	γOH (78)+γCCCN (10)
12	651	57.7	3.2	631	43.4	4.6	i.p.pyridine ring def.(60)+δCOC (30)
13	667	28.4	7.9	657	28.7	6.7	δCCN (32)+δCCC (26)+vCBr (18)
14	714	0.5	0.6	693	2.1	0.6	γCCCC (40)+γCCNC (35)+γCCCO (19)
15	780	36.3	6.4	758	39.0	1.6	γCCCO (35)+γOCOH (21)
16	799	58.0	1.2	763	25.7	6.7	υC-COOH (24)+δCCN (21)+δCCC (20)+δOCO (10)
17	846	17.3	0.6	811	16.2	0.2	γCH (83)
18	970	0.6	0.4	919	1.6	0.6	γCH (88)
19	1017	1.0	0.3	957	0.7	0.2	γCH (90)
20	1036	4.5	4.8	1006	14.5	1.8	δCCC (33)+δCNC (28)(yıldız)+υCO (11)
21	1054	45.3	36.9	1037	32.4	33.8	ring bending (83)(CC+CN)
22	1061	28.4	25.5	1086	144.7	1.6	υCO (37)+υCC (24)+δCH (23)
23	1146	62.4	6.0	1146	96.5	13.1	δOH (25)+vCC (20)+vC-COOH (12)
24	1178	51.8	0.9	1171	24.6	13.8	δCCH (32)+vCN (25)+δOH (14)+vCC (11)
25	1212	124.2	11.5	1217	2.4	13.1	vCC ger(46) + vCN ger.(40)
26	1272	25.8	0.9	1244	16.5	3.2	vCH (52)+vCC (30)
27	1359	135.9	5.3	1315	93.9	9.1	vOH (30)+vCO (21)+δCH (15)+vCC (14)+δCOC (12)
28	1411	74.9	2.1	1371	38.7	2.4	δHCN (32)+vCC(16)+vCN (16)+δCCH (16)
29	1471	36.4	1.5	1428	32.0	1.5	δCH (55)+vCC (25) +vCN (10)
30	1575	56.9	3.1	1511	63.8	5.4	υCC (50)+υCN (23)+δCH (17)
31	1606	189.0	41.9	1538	118.3	46.3	υCC (38)+υCN (25)+δCCH (10)
32	1788	590.8	24.7	1755	411.2	53.0	vC=O (90)
33	3017	15.2	110.8	3107	13.0	140.9	vCH (99)
34	3046	1.1	64.2	3127	0.5	84.3	vCH (100)
35	3058	1.7	100.2	3157	1.0	110.3	vCH (98)
36	3721	170.2	93.5	3690	98.2	149.2	vOH (100)

Çizelge 4. 16. 4-BrNA molekülünün C3 yapısı için teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C3		HF			B3LYP		TED ^b (%)
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	
1	41	8.1	1.3	35	4.1	1.0	τCCCO(89)
2	115	1.2	3.0	105	0.4	2.6	w4BrNA (80) (ring torsion+ring-COOH)
3	155	1.2	0.5	174	1.4	1.1	δC-COOH (43)+δCBr (36)
4	190	6.9	1.5	193	5.5	1.3	w piridin ring(70)+τCOOH(13)
5	261	2.1	1.4	261	0.1	3.0	δCBr (45)+ring-δCOOH (35)
6	289	11.8	3.5	284	9.1	3.3	vCBr (50)+δC-COOH (24)
7	381	10.5	3.3	372	4.6	1.2	γCCCC (30)+γCCCN (22)+γCCCO (15)
8	393	21.6	8.4	396	2.6	10.5	δC-COOH (32)+υOCO (20)+υCBr (15)
9	429	98.6	1.2	469	74.8	0.9	γCCCC (40)+γCCCN (25)
10	489	24.5	0.7	485	31.2	0.8	δCCO (30)+δC-COOH (30)
11	555	5.6	0.9	518	4.1	1.8	γOH (78)+γCCCN (10)
12	662	19.7	5.4	651	13.4	4.4	i.p.pyridine ring def.(60)+δCOC (30)
13	672	34.4	2.8	655	29.6	2.3	δCCN (32)+δCCC (26)+vCBr (18)
14	711	1.9	0.6	677	3.6	0.4	γCCCC (40)+γCCNC (35)+γCCCO (19)
15	785	24.7	1.5	737	12.2	0.9	үСССО (35)+үОСОН (21)
16	789	13.4	6.3	769	8.0	4.7	vC-COOH (24)+δCCN (21)+δCCC (20)+δOCO (10)
17	843	20.9	0.4	804	18.9	0.1	γCH (83)
18	965	0.6	0.5	918	1.7	0.5	γCH (88)
19	1013	0.8	0.5	955	0.8	0.1	γCH (90)
20	1029	7.9	3.6	995	7.3	1.4	δCCC (33)+δCNC (28)(yıldız)+vCO (11)
21	1047	46.0	29.0	1032	29.6	28.2	ring bending (83)(CC+CN)
22	1056	16.5	23.4	1086	37.5	4.7	vCO (37)+vCC (24)+δCH (23)
23	1136	14.3	3.8	1146	14.1	10.8	δOH (25)+vCC (20)+vC-COOH (12)
24	1176	2.4	2.5	1178	2.1	17.5	δCCH (32)+vCN (25)+δOH (14)+vCC (11)
25	1204	26.5	9.5	1219	6.6	16.0	vCC ger(46) + vCN ger.(40)
26	1270	34.3	1.8	1245	5.2	1.0	vCH (52)+vCC (30)
27	1334	444.5	6.7	1283	381.6	7.8	vOH (30)+vCO (21)+δCH (15)+vCC (14)+δCOC (12)
28	1403	69.7	0.7	1363	35.1	1.8	δHCN (32)+vCC(16)+vCN (16)+δCCH (16)
29	1469	37.0	2.0	1424	35.7	1.7	δCH (55)+vCC (25) +vCN (10)
30	1576	67.5	4.1	1507	80.4	10.4	vCC (50)+vCN (23)+δCH (17)
31	1604	157.6	32.4	1537	89.1	37.6	vCC (38)+vCN (25)+δCCH (10)
32	1819	522.3	26.5	1777	381.6	51.5	vC=O (90)
33	3020	13.2	107.6	3109	10.6	140.2	vCH (99)
34	3046	0.8	66.4	3137	0.4	75.9	vCH (100)
35	3058	1.5	102.3	3157	0.7	114.2	vCH (98)
36	3776	104.4	29.1	3623	211.3	69.6	vOH (100)

C4		HF			B3LYP		TED ^b (%)
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	
1	40	4.1	1.3	39	3.7	1.9	τCCCO(89)
2	111	0.9	3.6	105	0.6	3.9	w4BrNA (80) (ring torsion+ring-COOH)
3	132	4.9	0.5	127	4.1	0.9	δC-COOH (43)+δCBr (36)
4	180	6.7	1.5	170	6.5	1.7	w piridin ring(70)+τCOOH(13)
5	252	3.7	0.6	246	2.7	0.5	δCBr (45)+ring-δCOOH (35)
6	303	9.1	5.1	295	8.3	4.6	υCBr (50)+δC-COOH (24)
7	375	3.5	0.6	355	3.4	0.7	γCCCC (30)+γCCCN (22)+γCCCO (15)
8	394	4.2	9.8	386	2.5	8.9	δC-COOH (32)+υOCO (20)+υCBr (15)
9	453	105.3	0.9	455	31.6	0.6	γCCCC (40)+γCCCN (25)
10	481	11.9	0.3	484	63.5	0.9	δССО (30)+δС-СООН (30)
11	577	3.7	1.0	561	3.2	1.4	γOH (78)+γCCCN (10)
12	665	22.4	4.0	647	8.3	1.7	i.p.pyridine ring def.(60)+δCOC (30)
13	671	20.9	3.9	658	30.4	6.0	δCCN (32)+δCCC (26)+vCBr (18)
14	724	0.7	0.9	699	1.6	0.6	γCCCC (40)+γCCNC (35)+γCCCO (19)
15	780	27.7	2.4	744	14.5	0.9	үСССО (35)+үОСОН (21)
16	789	26.4	6.3	765	26.8	6.9	υC-COOH (24)+δCCN (21)+δCCC (20)+δOCO (10)
17	850	23.8	0.4	813	20.7	0.2	γCH (83)
18	962	0.9	0.2	908	2.1	0.4	γCH (88)
19	1012	0.9	0.0	953	0.6	0.1	γCH (90)
20	1032	9.9	8.6	1006	34.5	3.8	δCCC (33)+δCNC (28)(yıldız)+vCO (11)
21	1054	25.5	14.9	1038	24.4	29.5	ring bending (83)(CC+CN)
22	1068	16.6	32.9	1063	44.9	2.3	υCO (37)+υCC (24)+δCH (23)
23	1108	35.1	1.6	1148	12.7	20.5	δOH (25)+vCC (20)+vC-COOH (12)
24	1186	3.6	2.7	1166	5.3	1.6	δCCH (32)+vCN (25)+δOH (14)+vCC (11)
25	1199	29.1	7.7	1214	67.1	10.5	vCC ger(46) + vCN ger.(40)
26	1276	73.6	2.5	1244	146.2	5.8	vCH (52)+vCC (30)
27	1319	497.4	5.3	1261	263.6	6.6	vOH (30)+vCO (21)+δCH (15)+vCC (14)+δCOC (12)
28	1400	22.9	0.3	1367	18.6	0.1	δHCN (32)+υCC(16)+υCN (16)+δCCH (16)
29	1474	63.8	0.8	1429	44.7	0.6	δCH (55)+vCC (25) +vCN (10)
30	1578	80.1	6.9	1512	72.9	9.6	vCC (50)+vCN (23)+δCH (17)
31	1605	117.6	21.9	1536	79.1	26.8	vCC (38)+vCN (25)+δCCH (10)
32	1845	427.7	22.4	1811	284.7	41.0	vC=O (90)
33	3006	11.1	86.2	3092	8.7	96.5	vCH (99)
34	3019	11.9	111.0	3110	10.0	142.4	vCH (100)
135	3057	1.6	94.4	3156	0.9	110.9	vCH (98)
36	3775	96.9	32.3	3737	50.2	54.6	vOH (100)

Çizelge 4. 17. 4-BrNA molekülünün C4 yapısı için teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

¹⁻²Ölçeklendirme kat sayıları; ¹ 0.905⁻² 4000-1700 cm⁻¹ aralığı için 0.983, 1700 cm⁻¹'den küçük değerler için 0.958

	(C1		C2	(23	C4		
	HF	B3LYP	HF	B3LYP	HF	B3LYP	HF	B3LYP	
	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	
1	30	31	39	35	46	37	44	40	
2	126	113	126	111	127	110	122	110	
3	174	159	172	158	171	182	146	133	
4	219	195	212	192	210	201	199	178	
5	296	273	290	268	289	273	278	257	
6	317	295	313	288	320	297	334	308	
7	439	390	427	384	421	388	414	370	
8	448	417	446	412	435	413	435	403	
9	544	496	541	492	474	489	501	475	
10	577	534	588	545	540	506	531	505	
11	618	591	632	603	613	541	638	585	
12	723	660	719	659	732	680	734	675	
13	735	685	737	686	743	684	741	687	
14	785	721	789	724	786	707	800	729	
15	862	791	862	792	867	769	862	777	
16	883	797	883	797	872	802	872	799	
17	938	849	935	847	931	839	939	849	
18	1072	958	1071	959	1066	958	1063	948	
19	1125	999	1124	999	1119	997	1119	995	
20	1146	1053	1145	1051	1137	1039	1141	1050	
21	1169	1084	1164	1082	1157	1077	1164	1084	
22	1185	1116	1173	1134	1166	1134	1181	1110	
23	1238	1195	1266	1197	1255	1196	1224	1198	
24	1312	1220	1302	1223	1299	1230	1310	1217	
25	1335	1274	1339	1270	1330	1272	1325	1267	
26	1411	1304	1405	1299	1404	1299	1410	1299	
27	1488	1360	1502	1373	1474	1339	1458	1316	
28	1546	1426	1559	1431	1550	1422	1547	1427	
29	1629	1494	1626	1491	1623	1486	1629	1492	
30	1741	1578	1740	1577	1742	1573	1744	1578	
31	1722	1605	1775	1606	1772	1604	1773	1603	
32	1998	1802	1975	1785	2010	1807	2039	1843	
33	3333	3159	3334	3161	3337	3163	3321	3145	
34	3378	3194	3366	3181	3366	3191	3336	3164	
35	3381	3210	3379	3212	3379	3212	3377	3211	
36	4121	3769	4111	3753	4173	3685	4171	3802	

Çizelge 4. 18. 4-BrNA molekülünün C1, C2, C3 ve C4 yapılarının HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti ile hesaplanmış ham frekans değerleri.

Çizelge 4. 19. 6-BrNA molekülünün C1 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm ⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C1		HF		Е	3LYP		Deneysel	TED ^b (%)
	Frek ¹	I-IR	IRA	Frek ²	I-IR	I RA	IR(RA)	
1	67	4.0	0.2	63	3.2	0.2		τCCCO (98)
2	75	0.0	0.1	68	0.0	0.0	(83)	w6-BrNA (94)
3	149	1.6	0.4	147	1.4	0.4	(122)	δC-COOH (62)+δCBr (31)
4	244	0.7	6.1	233	0.0	0.8	(200)	w6-BrNA (98)
5	245	0.0	1.0	236	2.1	5.2		vCBr (46)+vC-COOH (16)+δCCN (12)
6	282	2.1	0.6	276	1.3	0.2	(276)	δCBr (55)+δCCC (33)
7	415	4.8	0.2	398	6.1	0.2	404	γCCCN (38)+γCCCC (22)+γCCCH (20)
8	447	36.5	0.5	435	41.2	0.1		vCBr (28)+δOCO (25)+vC-COOH (21) γCCCN (33)+γCCCH (21)+γCCCO (13)+γCCCC
9	469	35.3	0.3	451	20.7	0.4	464	(13)
10	493	8.4	0.4	483	8.3	0.8	474	vC-COOH (51)+δCCC (20)
11	550	89.5	2.0	554	79.2	2.9	542	γOH (86)
12	622	2.9	6.2	610	3.2	6.4	630(631)	Pyridine ring def (85)
13	668	35.2	0.9	646	20.7	0.5		δOCO (48)+δCCC (13)+υCBr (10)
14	726	3.2	0.1	699	9.7	0.0	712	γCCNC (52)+δC-COOH (22)+γCCCC (11)
15	785	93.2	0.9	748	56.3	0.1	767	γCCCO (36)+ γCCCH (30)+γOCOH (19)
16	785	53.8	28.0	770	46.5	24.5	812	vCC (22)+δCNC (18)+δCCC (15)+vC-COOH (15)
17	860	6.6	0.6	825	9.1	0.4	848(809)	γCH (88)
18	983	1.3	1.1	925	2.3	0.7	952	γCH (93)
19	1012	19.3	1.4	964	0.3	0.1		γCH (90)
20	1016	0.0	0.0	989	16.8	2.0	1015	δCH (22)+δCNC (21)+δCCC (19)+υCC (15)
21	1063	61.0	9.0	1052	112.6	32.6		breating(75)(CC+CN)
22	1092	34.5	12.6	1067	290.2	3.3	1089(1092)	vCC (15)+vCO (50)+δCH (10)
23	1111	193.9	0.3	1101	4.0	4.0	1139	δCH (62)+υCC (20)
24	1146	32.3	12.7	1157	167.7	48.6	1244	δOH (48)+υC-COOH (16)+υCH (10)
25	1208	208.7	20.1	1241	3.1	1.5	1258	vCC (49)+vCN (42)
26	1282	9.6	3.9	1256	3.7	4.6	1282	δCH (60)+υCN (25)
27	1358	134.2	9.5	1313	147.8	23.6	1298	vOH (30)+vCO (22)+vCC(17)+δCOC (14)
28	1365	194.3	7.6	1333	93.5	8.6	1372	δCH (38)+vCC (23)+vCN (20)
29	1470	65.1	3.3	1426	58.3	8.2	1461	vCH (50)+vCC (20)+vCN (15)
30	1579	67.8	4.6	1523	25.4	4.5	(1583)	vCC (64)+vCN (15)
31	1613	243.6	103.2	1552	211.5	144.2	1579(1646)	vCC (51)+vCN (18)+δCH (18)
32	1795	619.8	69.3	1716	423.9	156.7	1850	vCO (93)
33	3045	0.2	48.0	3062	1.8	73.5	3044(3044)	vCH (99)
34	3055	3.1	64.6	3063	1.2	52.6		vCH (100)
35	3065	0.0	94.7	3082	0.2	109.6	(3075)	vCH (100)
36	3728	190.4	102.2	3611	120.7	153.3		vOH (100)
σ	32.7876			41.2893				

 $^{1-2}$ Ölçeklendirme kat sayıları; 1 0.905 2 4000-1700 cm⁻¹ aralığı için 0.983, 1700 cm⁻¹'den küçük değerler için 0.958

Çizelge 4. 20. 6-BrNA molekülünün C2 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

C2		HF			B3LYP		Deneysel	TED ^b (%)
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	IR(RA)	
1	66	0.1	0.2	61	0.0	0.2		τCCCO (98)
2	75	0.1	0.0	68	0.1	0.0	(83)	w6-BrNA (94)
3	150	0.9	0.4	146	0.6	0.4	(122)	δC-COOH (62)+δCBr (31)
4	244	0.7	6.3	233	0.0	0.8	(200)	w6-BrNA (98)
5	246	0.0	1.0	236	2.0	5.2		vCBr (46)+vC-COOH (16)+δCCN (12)
6	281	0.2	0.0	274	0.2	0.1	(276)	δCBr (55)+δCCC (33)
7	416	1.8	0.2	398	2.1	0.2	404	γCCCN (38)+γCCCC (22)+γCCCH (20)
8	447	29.2	0.7	434	35.3	0.1		vCBr (28)+δOCO (25)+vC-COOH (21)
9	469	31.0	0.3	450	20.2	0.4	464	γCCCN (33)+γCCCH (21)+γCCCO (13)+γCCCC(13)
10	496	14.8	0.7	487	10.7	1.0	474	vC-COOH (51)+δCCC (20)
11	555	93.6	2.4	557	81.7	3.2	542	γOH (86)
12	622	2.0	5.2	610	3.0	4.9	630(631)	Pyridine ring def (85)
13	667	35.7	2.2	644	21.8	2.3		δOCO (48)+δCCC (13)+vCBr (10)
14	725	3.0	0.3	698	9.2	0.3	712	γCCNC (52)+δC-COOH (22)+γCCCC (11)
15	784	94.5	0.9	746	57.2	0.2	767	γСССО (36)+ γСССН (30)+γОСОН (19)
16	785	55.8	27.4	770	46.1	24.1	812	vCC (22)+δCNC (18)+δCCC (15)+vC-COOH (15)
17	857	6.6	0.8	820	8.3	0.4	848(809)	γCH (88)
18	988	1.1	1.1	934	2.5	0.7	952	γCH (93)
19	1011	34.9	1.3	958	0.0	0.1		γCH (90)
20	1012	0.0	0.1	987	51.9	1.6	1015	δCH (22)+δCNC (21)+δCCC (19)+υCC (15)
21	1069	78.6	4.6	1049	53.9	25.5		breating(75)(CC+CN)
22	1082	37.0	21.5	1069	333.0	9.1	1089(1092)	vCC (15)+vCO (50)+δCH (10)
23	1114	166.1	0.4	1110	6.5	1.5	1139	δCH (62)+υCC (20)
24	1155	12.7	2.2	1153	187.0	50.5	1244	δOH (48)+υC-COOH (16)+υCH (10)
25	1201	288.3	26.1	1240	14.0	3.7	1258	vCC (49)+vCN (42)
26	1278	16.2	4.5	1251	12.7	6.8	1282	δCH (60)+vCN (25)
27	1343	153.1	8.8	1304	142.2	21.6	1298	vOH (30)+vCO (22)+vCC(17)+δCOC (14)
28	1382	83.2	4.2	1343	22.5	1.5	1372	δCH (38)+vCC (23)+vCN (20)
29	1465	97.7	1.9	1422	81.4	5.1	1461	vCH (50)+vCC (20)+vCN (15)
30	1579	39.0	5.3	1523	27.5	20.4	(1582)	vCC (64)+vCN (15)
31	1613	271.9	109.5	1551	206.9	148.7	1579(1646)	vCC (51)+vCN (18)+δCH (18)
32	1796	604.1	60.1	1765	417.7	146.8	1850	vCO (93)
33	3050	0.3	48.1	3136	1.0	66.5	3044(3044)	vCH (99)
34	3052	1.2	60.7	3149	0.0	50.7		vCH (100)
35	3066	0.0	99.5	3164	0.2	116.8	(3075)	vCH (100)
36	3727	188.4	102.5	3704	116.6	160.4		vOH (100)

¹⁻²Ölçeklendirme kat sayıları; ¹ 0.905 ² 4000-1700 cm⁻¹ aralığı için 0.983, 1700 cm⁻¹'den küçük değerler için 0.958 ^b Toplam enerji dağılımı, v;gerilme, δ;düzlem içi açı bükülme, γ ; düzlem dışı açı bükülme, τ ; burulma, w;dalgalan
		HF			B3LYP	,	Deneysel	TED(%)
	Frek ¹	I-IR	I-RA	Frek ²	I-IR	I RA	IR(RA)	
1	-73	30.2	0.1	-72	21.3	0.0		τCCCO (98)
2	74	4.0	0.1	66	3.8	0.0	(83)	u6-BrNA (94)
3	157	8.6	0.7	152	8.2	0.7	(122)	δC-COOH (62)+δCBr (31)
4	237	37.5	1.7	228	16.0	1.6	(200)	u6-BrNA (98)
5	245	1.7	6.8	237	3.8	5.8		υCBr (46)+υC-COOH (16)+δCCN (12)
6	286	49.6	0.2	285	13.6	0.3	(276)	δCBr (55)+δCCC (33)
7	293	16.0	0.4	305	46.8	0.2	404	γCCCN (38)+γCCCC (22)+γCCCH (20)
8	413	17.9	0.3	401	23.8	0.4		vCBr (28)+δOCO (25)+vC-COOH (21) γCCCN (33)+γCCCH (21)+γCCCO
9	449	6.0	0.2	436	8.3	0.2	464	$(13)+\gamma CCCC(13)$
10	477	14.6	0.0	459	15.5	0.0	474	υC-COOH (51)+δCCC (20)
11	490	8.1	0.9	479	6.2	1.9	542	γOH (86)
12	624	1.1	5.6	612	1.1	5.7	630(631)	Pyridine ring def (85)
13	688	3.1	2.2	665	5.3	0.6		δOCO (48)+δCCC (13)+υCBr (10)
14	719	0.4	0.0	688	1.6	0.1	712	γCCNC (52)+δC-COOH (22)+γCCCC (11)
15	762	51.5	1.4	727	23.4	0.5	767	γСССО (36)+ γСССН (30)+γОСОН (19)
16	793	38.3	23.5	773	34.7	18.7	812	vCC (22)+δCNC (18)+δCCC (15)+vC-COOH (15)
17	860	16.0	0.5	826	18.4	0.5	848(809	γCH (88)
18	942	2.2	0.8	877	2.8	0.4	952	γCH (93)
19	1010	20.3	1.1	972	0.4	0.0		γCH (90)
20	1020	0.0	0.0	987	17.3	1.5	1015	δCH (22)+δCNC (21)+δCCC (19)+υCC (15)
21	1057	33.1	6.5	1048	16.2	10.0		breating(75)(CC+CN)
22	1095	28.4	0.7	1062	190.8	28.9	1089(1092)	vCC (15)+vCO (50)+δCH (10)
23	1101	101.5	13.6	1102	2.5	4.3	1139	δCH (62)+vCC (20)
24	1151	0.9	15.2	1146	55.3	28.8	1244	δOH (48)+vC-COOH (16)+vCH (10)
25	1186	88.2	5.9	1238	153.5	11.3	1258	vCC (49)+vCN (42)
26	1310	14.5	8.1	1262	397.7	32.5	1282	δCH (60)+vCN (25)
27	1323	597.1	23.9	1281	6.4	16.8	1298	vOH (30)+vCO (22)+vCC(17)+δCOC (14)
28	1363	138.1	3.4	1328	103.6	7.5	1372	δCH (38)+vCC (23)+vCN (20)
29	1478	64.7	1.5	1433	52.9	5.0	1461	vCH (50)+vCC (20)+vCN (15)
30	1577	77.9	8.1	1520	31.1	3.0	(1582)	vCC (64)+vCN (15)
31	1614	202.8	84.7	1549	183.4	128.1	1579(1646)	υCC (51)+υCN (18)+δCH (18)
32	1819	529.9	66.1	1786	348.5	132.7	1850	vCO (93)
33	3003	30.2	82.3	3068	31.2	94.0	3044(3044)	vCH (99)
34	3051	0.8	39.9	3146	1.7	48.1		vCH (100)
35	3066	0.4	92.2	3162	0.5	108.0	(3075)	vCH (100)
36	3813	75.2	24.6	3756	36.6	42.1		vOH (100)

Çizelge 4. 21. 6-BrNA molekülünün C3 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri. [Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)].

 $^{1-2}$ Ölçeklendirme kat sayıları; 1 0.905 2 4000-1700 cm $^{-1}$ aralığı için 0.983, 1700 cm $^{-1}$ 'den küçük değerler için 0.958

^b Toplam enerji dağılımı, v;gerilme, δ ;düzlem içi açı bükülme, γ ; düzlem dışı açı bükülme, τ ; burulma, w;dalgalan

Çizelge 4. 22. 6-BrNA molekülünün C4 yapısı için deneysel (FT-IR ve FT-RA) ve teorik olarak 6-311++G(d,p) temel setinde hesaplanan frekans değerlerinin karşılaştırılması ve işaretlemeleri.[Frekans (cm⁻¹), IR şidetleri (K m mol⁻¹), Raman saçılmaları (Å amu⁻¹)]

	HF B3LYP		Deneysel	TED ^b (%)				
	Frek ¹	I-IR	I RA	Frek ²	I-IR	I RA	IR	
1	-100	27.5	0.0	-105	250.4	0.0		τCCCO (98)
2	74	3.7	0.1	67	2.9	0.0	(83)	uu6-BrNA (94)
3	157	7.5	0.8	153	6.5	0.8	(122)	δC-COOH (62)+δCBr (31)
4	225	82.1	0.9	223	32.7	1.3	(200)	uu6-BrNA (98)
5	245	1.1	6.6	237	3.1	5.6		vCBr (46)+vC-COOH (16)+δCCN (12)
6	255	14.8	0.9	253	44.9	0.4	(276)	δCBr (55)+δCCC (33)
7	292	9.6	0.1	284	9.0	0.1	404	γCCCN (38)+γCCCC (22)+γCCCH (20)
8	415	0.0	0.2	400	0.1	0.3		υCBr (28)+δOCO (25)+υC-COOH (21)
0	1.10	•	0.5	105	5.0	0.5	161	γ CCCN (33)+ γ CCCH
9	449	2.8	0.5	435	5.9	0.5	464	$(21)+\gamma CCCO(13)+\gamma CCCC (13)$
10	474	15.5	0.0	457	16.8	0.0	474	υC-COOH (51)+δCCC (20)
11	492	22.4	1.3	481	14.0	1.8	542	γOH (86)
12	623	2.2	5.3	611	3.3	5.1	630(631)	Pyridine ring def (85)
13	687	4.7	2.6	664	6.0	1.4		δOCO (48)+δCCC (13)+υCBr (10)
14	716	0.9	0.2	684	3.1	0.2	712	γCCNC (52)+δC-COOH (22)+γCCCC (11)
15	761	57.1	1.5	723	28.2	0.6	767	γ CCCO (36)+ γ CCCH (30)+ γ OCOH (19)
16	793	28.8	24.2	773	25.3	193	812	COOH(15)
17	838	15.8	0.7	793	18.1	0.5	848(809)	vCH (88)
18	971	0.2	0.6	916	0.2	0.2	952	vCH (93)
19	994	1.4	0.2	939	2.6	0.3	202	vCH (90)
20	1008	36.8	1.1	983	43.8	1.0	1015	$\delta CH(22) + \delta CNC(21) + \delta CCC(19) + v CC(15)$
21	1062	36.0	5.3	1041	16.9	11.4	1010	breating(75)(CC+CN)
22	1074	59.7	14.6	1067	191.4	24.2	1089(1092)	$vCC (15)+vCO (50)+\deltaCH (10)$
23	1110	79.4	5.8	1121	4.8	8.4	1139	$\delta CH (62) + v CC (20)$
24	1155	13.2	3.1	1155	37.6	34.7	1244	δOH (48)+vC-COOH (16)+vCH (10)
25	1193	51.3	16.7	1234	4.8	2.7	1258	vCC (49)+vCN (42)
26	1281	97.1	6.0	1245	485.3	47.2	1282	δCH (60)+vCN (25)
27	1312	538.3	21.9	1258	103.0	10.0	1298	vOH (30)+vCO (22)+vCC(17)+δCOC (14)
28	1381	100.2	1.7	1344	35.2	0.4	1372	δCH (38)+vCC (23)+vCN (20)
29	1468	91.6	1.6	1422	79.1	5.7	1461	vCH (50)+vCC (20)+vCN (15)
30	1579	39.2	8.1	1520	40.0	31.2	(1582)	vCC (64)+vCN (15)
31	1613	243.9	93.7	1550	172.1	112.6	1579(1646)	vCC (51)+vCN (18)+δCH (18)
32	1819	529.2	60.7	1788	350.6	130.2	1850	vCO (93)
33	3009	16.1	75.0	3097	13.8	83.5	3044(3044)	vCH (99)
34	3061	0.2	40.5	3142	0.3	61.5		vCH (100)
35	3065	0.2	96.3	3162	0.1	95.6	(3075)	vCH (100)
36	3818	73.2	27.9	3764	34.5	44.9	</td <td>vOH (100)</td>	vOH (100)

 $^{1\text{-2}}$ Ölçeklendirme kat sayıları; 1 0.905 2 4000-1700 cm $^{-1}$ aralığı için 0.983, 1700 cm $^{-1}$ 'den küçük değerler için 0.958

^b Toplam enerji dağılımı, v;gerilme, δ ;düzlem içi açı bükülme, γ ; düzlem dışı açı bükülme, τ ; burulma, w;dalgalan

Çizelge 4. 23. 6-BrNA molekülünün C1, C2, C3 ve C4 yapılarının HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti ile hesaplanmış ham frekans değerleri.

	C	21	C	22	C	23	C4	
	HF	B3LYP	HF	B3LYP	HF	B3LYP	HF	B3LYP
	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans
1	74	66	73	63	-80	-75	-110	-110
2	83	71	83	71	82	69	82	70
3	165	153	165	152	173	159	174	160
4	270	243	270	243	262	238	249	233
5	271	246	272	247	271	247	271	247
6	312	288	311	287	316	297	282	264
7	458	415	459	416	324	318	323	297
8	494	454	494	453	457	418	458	418
9	518	471	519	470	497	455	496	454
10	545	505	548	508	527	479	524	477
11	608	578	613	581	542	500	543	503
12	687	636	687	637	689	638	689	638
13	738	674	736	672	760	694	759	693
14	802	730	802	728	794	719	791	714
15	867	781	866	779	842	758	840	755
16	868	804	868	804	876	807	876	807
17	950	861	946	856	950	862	926	828
18	1086	966	1091	975	1041	915	1073	956
19	1118	1007	1117	1000	1116	1014	1098	980
20	1123	1033	1119	1030	1127	1030	1113	1026
21	1174	1098	1181	1095	1167	1094	1173	1086
22	1207	1113	1195	1116	1210	1109	1187	1114
23	1227	1149	1231	1159	1217	1151	1226	1170
24	1267	1207	1276	1203	1271	1197	1276	1206
25	1335	1296	1327	1294	1310	1292	1318	1288
26	1417	1311	1412	1306	1448	1317	1415	1299
27	1500	1370	1484	1361	1462	1337	1449	1313
28	1509	1392	1527	1401	1506	1386	1526	1403
29	1625	1488	1619	1484	1633	1496	1622	1484
30	1745	1589	1745	1590	1743	1587	1745	1587
31	1782	1620	1783	1619	1783	1617	1782	1617
32	1983	1791	1984	1796	2010	1817	2010	1819
33	3365	3197	3370	3190	3318	3121	3325	3151
34	3376	3197	3372	3204	3372	3201	3382	3197
35	3387	3218	3388	3219	3388	3217	3386	3216
36	4119	3769	4118	3768	4213	3821	4219	3830

Çizelge 4. 24. 2, 4ve 6-BrNA moleküllerinin Dimer C1 yapılarının HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti ile hesaplanmış ham frekans değerleri.

	2-BrNA Dir	mer C1	4-BrNA Dir	ner C1	6-BrNA Dimer C1	
	HF	B3LYP	HF	B3LYP	HF	B3LYP
	Frekans	Frekans	Frekans	Frekans	Frekans	Frekans
1	86	77	29, 80	33, 77	73, 97	61, 76
2	123, 134	88, 96	130, 136	115, 122	87, 110	38, 77
3	182, 202	177, 189	189, 205	171	201, 208	200, 202
4	236, 237	221, 231	229, 234	122, 209	270	251, 259
5	312, 319	303, 332	303, 309	275	277, 284	247, 278
6	329, 337	287, 299	331, 346	300, 326	324, 334	304, 324
7	440, 452	410, 445	447, 449	381, 387	456, 456	412, 413
8	468, 472	418	452, 469	403, 428	502, 512	465, 481
9	534, 535	551, 569	549, 555	480, 487	528, 529	479, 481
10	602, 610	543	587, 594	525, 539	554, 567	519, 547
11	645	600	612	566	851, 852	884
12	689, 691	642, 645	745, 752	663, 676	687, 688	637, 637
13	765, 771	711, 723	734, 734	655, 656	761, 770	708, 724
14	801, 803	731, 733	779, 781	687, 688	795, 797	723, 725
15	851, 853	777, 779	878, 881	761, 763	851, 851	777, 780
16	881, 885	818, 827	866, 866	783, 791	881, 884	821, 829
17	920, 930	983, 984	936, 938	814, 814	950	861, 861
18	1103, 1103	1004, 1005	1075, 1075	922, 922	1088, 1088	969, 970
19	1119, 1119	1008, 1008	1127, 1127	959, 959	1118, 1119	1005, 1005
20	1150, 1150	1064, 1066	1149, 1149	1014, 1016	1122, 1122	1033, 1034
21	1165	1075, 1076	1168, 1168	1038, 1038	1177, 1177	1099, 1100
22	1180, 1181	1173, 1175	1185, 1186	1114	1207, 1207	1324, 1331
23	1201	1152	1263, 1263	1115	1249, 1251	1149, 1149
24	1260	1205	1313, 1313	1164, 1165	1268, 1268	1160, 1163
25	1335	1254, 1254	1407, 1408	1208, 1210	1419, 1422	1287, 1289
26	1364, 1365	1286, 1286	1414, 1415	1249, 1249	1415, 1416	1311, 1311
27	1547, 1568	1329, 1331	1539, 1561	1383, 1406	1550, 1570	1324, 1331
28	1551	1425, 1426	1545, 1545	1365, 1366	1507, 1508	1391, 1392
29	1613, 1617	1448, 1458	1631, 1631	1432, 1434	1628, 1628	1493, 1494
30	1743, 1744	1583, 1583	1740, 1741	1511, 1512	1743	1587, 1588
31	1774, 1775	1618, 1619	1771, 1771	1538, 1538	1781, 1781	1589, 1620
32	1888, 1926	1674, 1727	1919, 1952	1676, 1718	1898, 1935	1689, 1736
33	3338, 3338	3165, 3165	3333, 3333	3106, 3106	3366, 3366	3197, 3197
34	3361, 3361	3196	3379, 3379	3140, 3140	3377, 3377	3199, 3199
35	3376, 3376	3209, 3209	3382, 3382	3156, 3156	3387, 3387	3218, 3218
36	3804, 3845	3102	3814, 3854	3092, 3178	3802, 3843	3112

Çizelge 4. 25. 2, 4ve 6-BrNA moleküllerinin Dimer C1 yapılarının HF ve B3LYP teori düzeyinde 6-311++G(d,p) temel seti ile hesaplanmış ve ölçeklendirilmiş frekans değerleri.

	2-BrNA Di	mer C1	4-BrNA D	imer C1	6-BrNA Dimer C1		
	HF	B3LYP	HF	B3LYP	HF	B3LYP	
	Frek ¹	Frek ²	Frek ¹	Frek ²	Frek ¹	Frek ²	
1	78	74	26, 72	33, 77	66, 88	58,73	
2	111, 121	84, 92	118, 123	115, 122	79, 100	36, 74	
3	165, 183	170, 181	171, 186	171	182, 188	192, 194	
4	214, 214	212, 181	207, 212	122, 209	244	240, 248	
5	282, 289	290, 318	274, 280	275	251, 257	237, 266	
6	298, 305	275, 286	300, 313	300, 326	293, 302	291, 310	
7	398, 409	393, 426	405, 406	381, 387	413, 413	395, 396	
8	424, 427	400	409, 424	403, 428	454, 463	445, 461	
9	483, 484	528, 545	497, 502	480, 487	478, 479	459, 461	
10	545, 552	520	531, 538	525, 539	501, 513	497, 524	
11	584	575	554	566	770, 771	846	
12	624, 625	615, 618	674, 681	663, 676	622, 623	610, 610	
13	692, 698	681, 693	664, 664	655, 656	689, 697	678, 694	
14	725, 727	700, 702	705, 707	687, 688	719, 721	693, 695	
15	770, 772	744, 746	795, 797	761, 763	770, 770	774, 747	
16	797, 801	784, 792	784, 784	783, 791	797, 800	787, 794	
17	833, 801	942, 943	847, 849	814, 814	860	825, 825	
18	998, 998	962, 963	973, 973	922, 922	977, 977	928, 929	
19	1013, 1013	966, 966	1020, 1020	959, 959	1012, 1013	963, 963	
20	1041, 1041	1019, 1021	1040, 1040	1014, 1016	1015, 1015	990, 991	
21	1054	1030, 1031	1057, 1057	1038, 1038	1065, 1065	1053, 1054	
22	1068, 1069	1124, 1126	1072, 1073	1114	1092, 1092	1268, 1275	
23	1087	1104	1143, 1143	1115	1130, 1132	1101, 1101	
24	1140	1154	1188, 1188	1164, 1165	1148, 1148	1111, 1114	
25	1208	1201, 1201	1273, 1274	1208, 1210	1284, 1287	1233, 1235	
26	1234, 1235	1232, 1232	1280, 1281	1249, 1249	1281, 1282	1256, 1256	
27	1400, 1419	1273, 1275	1392, 1413	1383, 1406	1403, 1421	1268, 1275	
28	1404	1365, 1366	1398, 1398	1365, 1366	1364, 1365	1333, 1334	
29	1460, 1463	1387, 1397	1476, 1476	1432, 1434	1473, 1473	1430, 1431	
30	1577, 1578	1517, 1517	1575, 1576	1511, 1512	1577	1520, 1521	
31	1605, 1606	1550, 1551	1603, 1603	1538, 1538	1612, 1612	1522, 1551	
32	1709, 1743	1604, 1698	1738, 1767	1676, 1718	1718, 1751	1618, 1706	
33	3021, 3021	3111, 3111	3016, 3016	3106, 3106	3046, 3046	3143, 3143	
34	3042, 3042	3142	3058, 3058	3140, 3140	3056, 3056	3145, 3145	
35	3055, 3055	3154, 3154	3061, 3061	3156, 3156	3065, 3065	3163, 3163	
36	3443, 3480	3049	3451, 3488	3092, 3178	3440, 3478	3059	

 $^{1-2}$ Ölçeklendirme kat sayıları; 1 0.905 2 4000-1700 cm $^{-1}$ aralığı için 0.983, 1700 cm $^{-1}$ 'den küçük değerler için 0.958

Şekil 4. 14 . a) 2-BrNA molekülüne ait teorik IR- Raman spektrumları

Şekil 4. 15 . b) 2-BrNA molekülüne ait teorik IR- Raman spektrumu

Şekil 4. 16. a) 4-BrNA molekülüne ait teorik IR - Raman spektrumları.

Şekil 4. 17. b) 4-BrNA molekülüne ait teorik IR - Raman spektrumları.

Şekil 4. 18. a) 6-BrNA molekülüne ait teorik IR- Raman spektrumları.

Şekil 4. 19. b) 6-BrNA molekülüne ait teorik IR- Raman spektrumları

Şekil 4. 20. 2-BRNA molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri.

Şekil 4. 21. 6-BrNA molekülünün deneysel ve teorik olarak hesaplanan titreşim frekanslarının korelasyon grafikleri.

5. TARTIŞMA ve SONUÇ

Yapılmış bu çalışmada 2, 4 ve 6-BrNA moleküllerinin farklı C1, C2, C3, C4 ve Dimer C1 yapılarının konfigurasyonu GaussView paket programına tanıtılarak HF(Hartree- Fock) ve DFT(B3LYP) metotları ile 6-311++G(d,p) temel seti ile bu moleküllerin geometrik parametreleri ve titreşim frekansları hesaplanmıştır. Ayrıca hesaplanan bu titreşim frekanslarının (% TED) toplama enerji dağılımları belirlenerek titreşim kipleri çizelgelerde de görüldüğü gibi saptandı. Yapılan bu hesaplamalar deneysel sonuçlarla kıyaslandığında geometrik parametreler için en iyi sonucu HF metodunun verdiği belirlenmiştir. Frekans değerleri çizelgelerine bakıldığında ise deneysele en yakın sonuçları DFT (B3LYP) metodunun verdiği görülmektedir. Bu sonuçlar bölüm 4.4 ve 4.5'de ayrıntılı bir şekilde yorumlanmıştır. 2- ve 6 kloronikotonik asit için yapılan çalışma sonuçlarında geometrik parametreler için HF metodunun bağ frekansları içinde B3LYP teori düzeyinin daha iyi sonuçlar verdiği hesaplamalar sonucunda görülmüştür (Çınar 2007).

Sonuç olarak daha önce yapısı hiçbir şekilde aydınlatılmamış olan 2, 4 ve 6-BrNA moleküllerinin geometrik parametreleri titreşim dalga sayıları ve kipleri 4-BrNA için teorik, 2 ve 6-BrNA molekülleri içinde hem teorik hem de deneysel olarak belirlenmiş ve molekül yapıları aydınlatılmıştır. Karşılaştırma sonucunda geometrik parametrelerde HF, titreşim frekanslarında ise B3LYP teori düzeyinin en iyi sonucu verdiği gözlemlenmiş ve sonuçlar belirlenerek literatüre geçmiştir.

KAYNAKÇA

- Albert N.L., Keiser., W.E. and Szymanski., H.A., 1970, IR theory and pratica of infrared Spectroscopy. 2nd ed., Plenum, New York.
- Becke A.E., J. Chem. Phys. 98 (1993) 5648.
- Bardak F., Yüksek Lisans Tezi, Celal Bayar Ünv. Fen Bilimleri Ens., 2005, Manisa.
- Bardak F., Yüksek Lisans Tezi, Celal Bayar Ünv. Fen Bilimleri Ens., 2005, Manisa.
- Barrow.,G.M.,1962,Molecular spectroscopy., Mc.Graw-Hill, New York. ISBN:0070859043.

Booner and Hofstadder, J.Chem. Phys., 1938, 20, 1627.

Botschvina P., Bleicher W., 1979, Mol, Phys., 30,1029.

Bakiler M., I. V. Maslov, S. Akyüz, J. Mol. Struct. 475 (1999) 83.

- Bakiler M., I. V. Maslov, S. Akyüz, J. Mol. Struct. 482-483 (1998) 379.
- Broadhurst CL., W.F. Schmidt, J.B. Reeves, M.M. Polansky, K. Gautschi, et al., J. Inorg. Biochem. 668(1997) 119.
- Bayarı S., A.Ataç, Ş. Yurdakul, Jornal of Molecular Structure, 2003, 655, 163-170.
- Can A., 2004, Yüksek lisans Tezi, İstanbul Ü. Fen bilimleri Enstitüsü. İstanbul.

Chang, R., 1971, Basic Principles of Spectroscopy, Mc Graw-Hill, New York.

Cook and Church, J.Phys. Chem., 1957, 61, 458.

Chen C., S.-F. Shyu, J. Mol. Struct. (Theochem) 536 (2001) 25-39

Csizmadia G. L., Computational Adv. in İnorganic Chem. Molecular Str. and Reactivity, Ed.by Öğretir C., Csizmadia G.L., NATO ASI series, Kluver Academic Publisher.

- Çınar M., 2007, Yüksek lisans Tezi, A. K. Ü. Fen Bilimleri Enstitüsü. Afyonkarahisar.
- Del Bene J.E., J. Am. Chem. Soc. 101 (1979) 6184.
- Devlin F.J., J.W. Finley, P.J. Stephens, M.J. Frish, J. Phys. Chem. 99 (1995) 16883.
- Ditcfield R., Hehre W. J. Pople J. A., 1971, Self-consistent molecular orbital methods. IX. An extended Gaussian-type basis for molecular orbital studies of organic molecu- les, J. Chem. Phys., 54(2), 724.
- Frisch A., Frisch M. J., 1998, Gaussian 98 User's Reference, Gaussian Inc., Pittsburgh.
- Frisch E., Nielsen A.B., Holdre A.J., 2000, *Gauss View User's Reference*, Version 2. Gaussian Inc., U.S.A., ISBN:09636769-5-4.
- Ferraro R.J. and Ziomek S.J., Introductory Group Theory, Plenum Pres, New York and London.
- Foresman, J.B. and Frisch, A.E., 1995-96, Exploring Chemistry with Electronic Structure Methods, Gaussian, Pittsburgh, p, 261 ISBN:0-9636769-3-8.
- Fischer G., P. Wormel, Chem. Phys. 198 (1995) 183.
- Frisch A., A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian Inc., Pittsburg.
- Gao S., J. Liu, L. Huo, Z. Sun, J. Gao, S. Weng Ng, Acta Cryst. (2004) m363– m365.
- Gans, P., 1971, Vibrating Molecules, Chapman and Hall, London.
- Gelfand L.S., L.L.Pytlewski, A.N. Speca, C.M. Mikulski, N.M. Karayannis, Inorganic Nucleer Chemistry, 42 (1980), 209-218.
- Gowda B.T., et. al., Acta Cryst., E63, o2967, (2007) and references cited herein.
- Gao H., G.A. Jeffrey, J.R. Ruble, R.K. McMullan, Acta Crystallogr. B47 (1991) 742.
- Humbert B., M. Alnot, F. Quiles, Spectrochim. Acta PartA 54 (1998) 465-476.

- Haken.H and Wolf, H.C, Atom ve Kuantum Fiziği Deneyler ve Teoriye Giriş. Değişim yayınları p:345, 350.
- Hariharan P. C., Pople J. A., 1973, The influence of polarization functions on molecular orbital hydrogenation energies, Theoret. Chim. Acta, 28, 213.
- Handy N.C., C.W. Murray, R.D. Amos, J. Phys. Chem. 97 (1993) 4392.
- Handy N.C., P.E. Maslen, R.D. Amos, J.S. Andrews, C.W. Murray, G. Laming, Chem. Phys. Lett. 197 (1992) 506.

Johnson B.G., P.M. Gill, J.A. Pople, J. Chem. Phys. 98 (1993) 5612. Jensen J.O., Vib. Spectrosc. 30 (2002) 191.

Kurt M., Ş. Yurdakul, J. Mol. Structure: Theochem 730 (2005) 59-67

Kurt M., M. Yurdakul, Ş. Yurdakul, J. Mol. Struct. 711 (2004) 25-32.

Kurt M., Ş. Yurdakul, J. Mol. Struct. 654 (2003) 1-9.

Karabacak M., M.Çınar, M. Kurt, J. Mol. Struct.(2007)

Kecel, S., 2005, Yüksek Lisans Tezi, İstanbul Ünv., Fen Bilimleri Ens., İstanbul.

Kurt. M., 2003, Doktora Tez. Gazi Üniv. Fen Bil. Enst. Ankara.

Keskin. H., 2006 Yüksek lisans Tezi. Anadolo Ünv., Fen. Bil. Ens., Eskişehir.

Kutoglu A., C. Scheringer, Acta Cryst. C39 (1983) 232-234.

- Koczon P., J.Cz. Dobrowolski, W. Lewandowski, A.P. Mazurek, J. Mol. Struct. 655 (2003) 89–95
- Michalska D., R. Wysoki'nski, Chem. Phys. Lett. 403 (2005) 211-217.
- Nyquist, R.A.; Putzig, C.L.; and Leugers, M.A. Infrared and Raman Spectral Atlas of Inorganic Copounds and Organic Salts: Raman Spect.
- Nogueira H.I.S., Spectrochim. Acta Part A 54 (1998) 1461–1470.
- Ozel A.E., S. Kecel, S. Akyuz, Vib. Spectrosc. 42 (2006) 325.
- Panicker C.Y., H.T. Varghese, A. John, D. Philip, K. Istvan, G. Keresztury, Spectrochi Part A 58 (2002) 281-287.

Rai A.K., S. Kumar, A. Rai, Vib. Spectrosc. 42 (2006) 397.

- Sala O., N.S. Gonçalves, L.K. Noda Journal of Molecular Structure 565-566 (2001) 412 411- 416.
- Süzgün. E. Ö., 2006, Yüksek lisans Tezi. Gazi Ünv., Fen. Bil. Ens., Ankara.
- Spinner E., J. Phys. Chem. 92 (1988) 3379.
- Wang C., M. Zhao, J. Yang, S. Peng, Steroids 66 (2001) 811.
- Yurdakul Ş., A.Ataç, E.Şahin, S.İde, Vibrational Spectroscopy, 2003, 31, 41-49.
- Yıldız, A., Genç, Ö. and Bektaş S., 1997, Enstrümental Analiz, Hacettepe Üniversitesi Yayınları A-64

ÖZGEÇMİŞ

Adı Soyadı	Şahin ERMEÇ
Doğum Yeri	MALATYA
Doğum Tarihi	10.04.1983
Medeni Hali	Bekâr
Yabancı Dili	İngilizce

<u>Eğitim Durumu</u>

Yüksek Lisans	Afyonkarahisar	Kocatepe	Üniversitesi,	Afyonkarahisar	
2006-2008					
Lisans	Afyonkarahisar	Kocatepe	Üniversitesi,	Afyonkarahisar	
2002-2006					
Lise	Kubilay Lisesi, Malatya 1997-2000				