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ABSTRACT

A NOVEL MOBILE ROBOT NAVIGATION METHOD BASED ON
COMBINED FEATURE BASED SCAN MATCHING AND FASTSLAM
ALGORITHM

Ozgiir, Ayhan
M. Sc. Department of Electrical and Electronics Engineering
Supervisor: Assist. Prof. Dr. Afsar Saranl

Co-Supervisor: Assist. Prof. Dr. ilhan Konukseven

September 2010, 162 pages

The main focus of the study is the implementation of a practical indoor localization and
mapping algorithm for large scale, structured indoor environments. Building an incremental
consistent map while also using it for localization is partially unsolved problem and of prime
importance for mobile robot navigation. Within this framework, a combined method
consisting of feature based scan matching and FastSLAM algorithm using LADAR and
odometer sensor is presented. In this method, an improved data association and localization
accuracy is achieved by feeding the SLAM module with better incremental pose information

from scan matching instead of raw odometer output.

This thesis presents the following contributions for indoor localization and mapping. Firstly
a method combining feature based scan matching and FastSLAM is achieved. Secondly,
improved geometrical relations are used for scan matching and also a novel method based on
vector transformation is used for the calculation of pose difference. These are carefully
studied and tuned based on localization and mapping performance failures encountered in
different realistic LADAR datasets. Thirdly, in addition to position, orientation information
usage in line segment and corner oriented data association is presented as an extension in

FastSLAM module.

v



The method is tested with LADAR and odometer data taken from real robot platforms
operated in different indoor environments. In addition to using datasets from the literature,
own datasets are collected on Pioneer 3AT experimental robot platform. As a result, a real
time working localization algorithm which is pretty successive in large scale, structured

environments is achieved.

Keywords: Scan matching, LADAR based feature extraction, Simultaneous localization and

mapping.



0z

OZNITELIK TABANLI MESAFE ESLEME VE FASTSLAM
ALGORITMALARI BIRLESIiMi OZGUN HARAKETLi ROBOT
NAVIGASYON YONTEMI

Ozgiir, Ayhan
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Assist. Prof. Dr Afsar Saranli
Ortak Tez Y0neticisi: Assist. Prof. Dr {lhan Konukseven

Eyliil 2010, 162 sayfa

Bu caligmadaki temel amag, genis boyutlu detayli i¢ ortamlarda pratik i¢ ortam konumlama
ve haritalama algoritmasi gerceklenmesidir. Biriken tutarli bir harita olustururken bunun
konumlama i¢in kullanilmas: kismen ¢6ziilmemis bir problem olup hareketli robot
navigasyonunda baslica 6neme sahip bir konudur. Bu ¢ati1 altinda, LADAR ve odometre
algilayicilarini kullanilarak oznitelik tabanli mesafe esleme ve FastSLAM algoritmalari
birlesimi bir yontem sunulmaktadir. Bu yontemde, SLAM modiiliine odometre ¢iktisi yerine
daha iyi bir konumlama bilgisi verilerek, iyilestirilmis veri esleme ve konumlama hassasiyeti

saglanmaktadir.

Bu tez i¢ ortamda konumlama ve haritalama ile ilgili su katkilar1 saglamaktadir: Birinci
olarak, Oznitelik tabanli FastSLAM ve mesafe esleme algoritmalarini birlestirmektedir.
Ikinci olarak mesafe esleme igin gelistirilmis geometrik iliskiler kullanilmistir; ek olarak
konum farklari igin de vektdr tasinmasina dayali yeni bir metot Onerilmistir. Bu yontemler
tizerinde dikkatle c¢aligihp farkli gergcek¢i LADAR veri kiimelerinde, konumlama ve

haritalama hassasiyetinde olusan hatalara gore diizenleme yapilmustir. Ugiincii olarak, dogru

vi



parcasi ve kose tabanli veri eslemesi i¢in konuma ek olarak, yon bilgisi kullanimi da

FastSLLAM modiiliine bir eklenti olarak verilmistir.

Algoritmalar farkli i¢ ortamlarda ¢alisan gergek robot platformlarindan alinan LADAR ve
odometre verileri ile test edilmistir. Literatiirdeki bu veri kiimelerine ek olarak, Pioneer 3AT
deney robot platformlariyla alinmis kendi veri kiimelerimiz de kullanilmigtir. Sonug olarak
genis boyutlu detayli alanlarda g¢aligabilen ger¢ek zamanli bir konumlama algoritmasi

olusturulmustur.

Anahtar Kelimeler: Mesafe esleme, LADAR tabanli oOznitelik c¢ikarimi, Es zamanh

konumlama ve haritalandirma
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CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the main issues in robotics is localization. It affects different main areas of robotics,
such as mapping, navigation, path planning. Localization can be classified in two areas:

Indoor and outdoor.

Outdoor localization can be achievable very easily by using a GNSS receiver [1]. GNSS is
so important for outdoor localization, since it continuously gives global position. Nowadays
there are many COTS GNSS products (that have the GNSS carrier signal process ability),
that could provide centimeter level accuracy in position when a fully sky view is provided to
the GNSS antenna. Also when two GNSS antennas are located on the robot with enough
displacement, which is usually more than a meter, good heading accuracy is obtained. When
a GNSS loss is occurred, this problem is mostly solved by using dead reckoning solutions,
such as multi-sensorial solution based on odometer and inertial sensors (magnetometer,
accelerometer and gyro). This kind of multi-sensorial solution is named as INS (Inertial
Navigation Systems) [2]. By adding GNSS receiver to the INS system, a complete solution is
provided for the localization. The accuracy of the given pose mostly depends on the quality

of the sensors used in the solution.

Indoor localization is much harder than outdoor localization, since GNSS receiver does not
work, which means a global reference could not provided for the localization. Again like the
outdoor, INS or a solution based on inertial sensors and odometer can be provided. But this
comes with a cost which is much more then the accuracy it gives. But there is one more point
for indoor localization; it has a solution based on using some low cost sensors, which can not

applicable for outdoor area, except the area is dense structured.



For indoor localization, measurement sensors are used. These measurement sensors are
infrared sensors, ultrasonic sensors, radars and laser scanners. In our solution we have used
laser scanner, which is also known as LADAR (Laser Detection and Ranging) [3]. The
principle of the LADAR is that it sends multiple laser beams to the environment, and finds
the distance from the incoming laser beam reflections. After this process, it gives an output
to the user, known as a range scan, which is a list of points corresponding to the intersection
points of a laser beam with objects in the robot's environment. The laser beam rotates in a
horizontal plane and emanates from a sensor mounted on the robot. Thus a range scan
describes 2D slice of the environment. Points of the range scan can be specified in a polar
coordinate system whose origin is the location of the sensor, and the reference axis for the
laser beam direction is the home orientation of the rotating range sensor. Each scan point is
represented by the laser beam direction, and the range measurement along that direction.
Suppose that the robot starts at pose Pref (which is our reference pose) and takes a scan (call
it the reference scan Sref ). The robot then moves through a static environment to a new pose
Pnew and takes another scan (call it the new scan Snew). The approximate difference of pose
Pnew from pose Pref (i.e. the relative translation and rotation) is usually known from
odometer information. However, this information is often imperfect due to wheel slippage.
Our task is to determine the exact difference of pose Pnew with respect to pose Pref, by

aligning the two scans. This application is known as scan matching.

Scan matching does not form the full solution. The localization obtained by scan matching is
pretty good when it has compared with odometer pose. But this does not mean always a good
localization will be obtained, by the increase in total distance passed the localization
accuracy decreases. In fact during the pose estimation by the integration of pose differences,
also the pose error integrates. As a result of this localization error, after a while the
navigation of the robot and also mapping destroys. When a robot has come to a point that it
has previously passed, the amount of slippage in pose of the robot is seen. To solve this
problem, the area in the robot path is investigated and some unique and easily accessible
features are registered in memory, to remember where you are when you have seen them
again. As a result of this, when a robot has came to previously seen area, again it observes
these features. So it can relocate itself. As a result, the pose error of the robot always stays in
bounds during its navigation making closed loops in a fixed structured indoor environment.
Our task is also to keep the incremental pose error at limits during the navigation of the robot
and create a consistent map, which is known as simultaneous localization and mapping

(SLAM).



1.2 Scope of the Thesis

The scope of this algorithm is, to provide indoor pose estimation for MAGIC 2010
competition robots. Inputs are laser scanner readings, raw odometer (x,y,6) pose estimation .
Outputs are global indoor 2D pose, suitable for replacing GPS inside a building raw local

occupancy grid map.

This algorithm finds the robot pose by using feature based scan matching algorithm.
Algorithm calculates the pose based on LADAR readings and uses odometer data for low
structured environment that scan matching pose output could not take. Algorithm is
improved with deterministic global feature matching techniques and also FastSLAM
algorithm to increase pose accuracy in closed loop path cases. The algorithm provides the
user, the robot pose and raw occupancy grid map. FastSLAM algorithm also gives post

processed corrected path and mapping when it is used as full SLAM..

1.3 Primary Contributions

In this thesis, the following items are given as primary contributions:

e A combined localization method is presented based on feature based scan matching and
FastSLAM algorithms with a joint feature set. Scan matching is given as a novel voting
based algorithm while FastSLAM is given with a novel combined landmark observation and
data association structure.

e The methodology used in scan matching gives the algorithm ability to cope with real
LADAR data.

e Applied criterion based on matching the combination of multiple feature properties
improves the correct matching ability of scan matching algorithm.

e A more accurate method is applied for the translation calculation between cognitive
scans in scan matching.

e A real time working simple deterministic global localization algorithm is presented that
improves scan matching localization in long open loop paths where FastSLAM does not
applicable.

e Line and corner based data association with a validity gating on features is applied and
orientation information of landmarks is added to state vector in EKF and data association

together.



14 Outline of the Thesis

The structure of the thesis can be presented as follows:

In Chapter 2, a survey of work previously done in scan matching and line extraction

algorithms is presented.

In Chapter 3, the theoretical background and the implementation of scan matching algorithm
is presented. This part includes seven sub parts; these are the general structure of scan
matching algorithm, sensor data information, line extraction algorithm, feature and feature

properties extraction, main scan matching, global localization and occupancy grid mapping.
In Chapter 4, the theoretical background and the implementation of FastSLAM algorithm
with the modifications in data association and measurement update parts according to needs

in this thesis is presented.

In Chapter 5, the performance of the algorithms for sensor datasets taken from three different

environments is presented.

In Chapter 6, the current work is summarized and the work done is discussed.



CHAPTER 2

LITERATURE SURVEY

In this section, the knowlcorner in the literature about the subjects in scope of the thesis is
surveyed. These are in order, LADAR based feature extraction algorithms, scan matching
methods and simultaneous localization and mapping methods (SLAM). Feature extraction
methods are mostly based on line extraction algorithms, which form the infrastructure for
scan matching and SLAM algorithms implemented in this thesis. The search in scan

matching and SLAM algorithms is specialized on the algorithms based on LADAR data.

2.1 LADAR Based Feature Extraction

Feature extraction step is a vital part for the feature based scan matching algorithms. For the
feature extraction line extraction and curve extraction methods are necessary components.
Curve extraction and scan matching based on curve matching methods are computationally
costly; therefore in most of the scan matching based algorithms on line extraction methods
are preferred. This approach also gives a unique and dense feature set for scan matching,
which consists of lines, corners, as well as structures formed from the combination of all of
these. The comparison of line extraction algorithms is presented in [17]. The details given
below are based on the results obtained from this paper. Different line extraction algorithms
and their properties are summarized below followed by a comparison from the literature of

their performances [17]:

Split-and-merge [17] is probably the most popular line extraction algorithm which has
originated from computer vision. This algorithm is used for line extraction in our algorithm,

so further information will be given in the next chapter.



Line regression algorithm [18] is proposed for map-based localization. It is based on the
Hough Transform algorithm. The line extraction problem turns into a search problem in
model space the Agglomerative Hierarchical Clustering (AHC) algorithm is applied to
construct adjacent line segments. The main drawback of this approach is that it is

theoretically quite complex and difficult to implement.

RANSAC (Random Sample Consensus) [19] is an algorithm mostly used in computer
vision. It is a robust fitting algorithm in the presence of data outliers. The main advantages
are that it is simple to implement and can be used with many types of features once we have
the feature model. The main disadvantage of this approach is that it is iterative and stops
when maximum number of iterations reached or too few points left, which makes is bad to

use in real time implementations on robots.

Expectation-maximization algorithm (EM) [20] is a probabilistic method and commonly
used in missing variable problems. The main drawback is that it can be trapped in local

minima and needs good initialization points.

Hough transform [21] is mostly used in image processing; it is applied to finding line in
intensity images. To extract line segments from range scan data, it is brought to robotics. It
has two main drawbacks: The first one is that while estimating the line parameters it does not
take noise and uncertainty into account. The other one is that choosing an appropriate grid

size is too difficult.

2.1.1  Comparison of Line Extraction Algorithms

According to the results given in Table 2.1 (the data is borrowed from [17]), Split and
Merge algorithm has minimum complexity and maximum speed according to given table
above. Also we can see that considerably good true and false matching rates. So for line
extraction part implementation of the feature based scan matching algorithm given in next

chapter, Split and Merge Algorithm is used.



Table 2.1: The comparison of line extraction algorithms [17]. The algorithms are compared
based on complexity, speed, correctness and precision criteria.

Spced Correctness Precision
Algorithm Complexity P N.Lines TruePos | FalsePos TAs TAa
[H=] [%] [%] [em] [deg]
Split-Merge + Clus. N x logN 1470 641 86.0 8.9 1.95 0.74
Ineremental S« N2 344 561 77.8 5.9 2.04 0.72
Incremental + Clus. oo 617 567 79.2 5.1 2.04 0.76
Line Regression N x N 364 577 76.4 10.1 1.99 0.80
LR + Clus. : el 334 562 75.8 8.4 1.97 0.79
RANSAC . . . 2 749 75.6 315 1.68 0.77

S x N x N.Trials
RANSAC + Clus. T T 93 547 707 122 137 | 070
Hough Transform . I Y ar o 8 825 82.0 325 1.63 0.76
= SxNxNC+S5x NRxNC

HT - Clus, VRN e 9 500 795 10.0 151 067
~ . . . 3 7 7 2 7
EM S % N1x N2 x N 0.6 1153 8.6 53 2.09 0.97
EM + Clus. 0.7 709 80.3 23.1 1.58 0.73

2.2 Scan Matching

Scan matching is a popular way of recovering a mobile robot’s motion. Given two scans
recorded at two different positions, the translation and the rotation that aligns these scans
give an estimate of the robot’s path between these scans. In fact, the first scan serves as
reference scan and has previously been taken or is stored in a-priori map of scans. The
second scan (called current scan) is matched against the reference scan and its scan position
is determined relatively to the position of the reference scan. The result of this match is a
position correction which can be applied to the current robot position. Such an estimate can
be used as an enhanced odometer, can help to close loops or can be the perceptual basis of
relation-based SLAM in the Lu and Milios style [4]. Many ways to calculate such estimates
have been proposed but all algorithms share on common attribute: They match pairs of

scans.

Scan Matching algorithms based on LADAR data can be divided into two main categories.
These are feature based scan matching algorithms and raw data based scan matching

algorithms.

2.2.1 Raw Data Based Scan Matching Algorithms

Raw data based scan matching techniques are based on directly matching of raw LADAR
data. The other name of this type of matching is point to point matching. These methods can
be categorized as iterative scan matching methods, such as iterative matching range point

(IMPR)[5], iterative dual correspondence (IDC)[5], point-wise scan matching[6], MbICP[7],



histogram based scan matching [8]. Point wise scan matching [6] weights the contribution of
each scan point to the overall matching error according to its uncertainty. Metric-based ICP
(MbICP) [7] presents a metric-based matching algorithm by point-wise matching dense
range scans. It uses geometric distance that takes into account the translation and rotation of
a robot simultaneously. Histogram based approaches [8], use a special representation of the
scanned data for matching of two consecutive scans. Mostly these methods first align the
LADAR data by using the position difference coming from the odometer outputs. Then
iteratively they search for the optimum pose alignment to decrease the distance between the
points of the two following scans. The main drawback of these methods is they iteratively
converge. Minimizing the error is a typical optimization problem with well-known problems.
Generally, gradient descent methods are implemented, transforming the second scan such
that the distance is reduced. Iteration leads to a local minimum of the error function. Also
getting optimum alignment between scans can cause too much time consumption. To solve
this drawback maximum time cycle can be added. In fact, adding time cycle can highly
reduce the performance of the algorithm. Due to the iterative calculations required to obtain
optimal scan matching in these algorithms, computational complexity are high, and in order
of O(n"), in which k >1 and # is the number of scan points [9]. In point-wise approaches, 7 is
approximately two orders of magnitude more than that of feature-based methods. So these

algorithms are mostly preferred for post processing of LADAR data.

2.2.2  Feature Based Scan Matching Algorithms

Feature based scan matching algorithms are based on feature extraction from raw LADAR
data and use them for matching. The main advantage of feature based scan matching
algorithms is they have bounded time cycle. Maximum time consumption for one cycle can
be calculated for any type of range scans given. Since feature based methods uses high level
objects for scan matching, which makes them with less computational complexity then point
to point methods [9]. The dependence on the odometer data is much less in feature based
methods than point to point ones. Mostly point to point methods needs odometer for
initialize their scan pairs (to decrease pose difference between the scans). But there are some
feature based methods, represented without odometer usage [10] [11] [12] [13]. These are
mostly defined as pure scan matching methods. Main drawback in pure scan matching
methods is when the environment is not structured enough, pose calculation could not
obtained. So algorithm fails in these points. In [10], a comprehensive geometric model for

robot mapping based on shape information is presented. Polygonal lines, called polylines,



serve as the basic representation of shape as a structure of boundaries. Matching two shapes
means matching two ordered sets of polylines against each other according to their
similarity. In [11], a method based on geometrical relations on lines and corners is
represented. The method proposed in [12] uses a panorama laser range finder and identifies
line segments representing linear structures in the environment. This is accomplished by
pattern matching and pattern recognition on line segment sets through a dynamic
programming algorithm. The scan matching method proposed in [13] matches two scans by
using geometric features based on line segments, also called Complete Line Segment (CLS)
relationships. The method singles out complete line segments that represent complete linear
structures in the environment and uses them to match between the local and global maps.
The feature based methods that also include odometer information are also presented in [14]
[15] [16]. In [14], a promising algorithm is proposed for high speed robots. This method is
fast, but it mostly fails from the lack of robustness property of feature extraction. In [15],
both scans are replaced by stochastic representations (histograms) and matching is solved by
finding the maximum of a cross correlation function. The main drawback of the algorithm is
especially suited for a perpendicular environment but it is not difficult to modify the
algorithm to work in non-perpendicular environments. In [16], a method known as anchor
point relation matching (APR) method is presented. APR is a pattern matching algorithm
designed for the real-time search of best matching laser scans in a set of given reference
scans. The algorithm's output is a number of weighted hypotheses which makes APR
especially attractive for probabilistic techniques aiming at global localization capabilities.
The algorithm is successful in sampled areas in the map. However a complete localization on

all over the map is not presented.

2.3 Simultaneous Localization and Mapping

SLAM (Simultaneous localization and mapping) problem, also known as Concurrent
Mapping and Localization (CML) problem), searches for whether it is possible for a mobile
to be placed at an unknown location in an unknown environment and for the robot to
incrementally build a consistent map of this environment while simultaneously determining
its location within this map. The main way used for the solution of the SLAM problem can
be given simply with following steps. First, during the motion of the robot through its path, it
continuously predicts its pose. This can be done by using a localization algorithm based on
the sensors available. In fact, inertial sensors can be used for this purpose, such as encoders,

gyro, compass, IMU. As a simple solution example, the integration of encoder outputs in the



direction given by compass can be given. Also as a more complex solution, integration of
pose differences obtained by stereo vision or scan matching can be used. Second, the global
localization of the robot is needed to be achieved. This is done by landmark extraction from
the constructed map, matching of these landmarks when they are seen more than once
(which is known as data association problem) and the correction in the pose of the robot
based on the position and orientation difference between the matching landmarks. In this
step, when the landmark is seen again, the incremental pose error of the robot or the
orientation error of landmark is reduced to the error level which one is smaller from them.
By this, error correction in pose of the robot and also in the landmarks of the map is
achieved, simultaneously. Third, during all these steps a consistent mapping of the
enviroment is achieved. If the error correction is for all path of the robot, this is known as
full SLAM. On the other hand if this correction affects only the current pose than it is known
as online SLAM.

Achieving better localization and mapping, in different environments for different robot and
sensor levels constructs the diversity in the solution of the SLAM problem, which consists of
different solutions in global SLAM method and its sublevels, such as state estimation,
landmark extraction, data association, state update and landmark update. As it is mentioned,
in Section 2.2, the existence of uncertainty in the robot pose estimation and in the
observation data almost obligates the implementation of stochastic algorithms for the
estimation of the map and the vehicle localization. Initial works were presented [24, [25],
[26]. In [25], it is showed that while the robot moves through an unknown environment by
taking relative observations of landmarks, the estimates of these are all correlated with each
other because of common error in estimated vehicle location. This a joint state composed of
the vehicle pose and every landmark position, to be updated by each landmark observation is
required for a consistent full solution to the SLAM problem. In [26], Extended Kalman Filter
solution (EKF) is given which involves a recursive update procedure that comprises
prediction, observation, and update steps. One of the main issues in SLAM is data
association problem. Because of pose and observation data error, the landmarks extracted
can be mismatched with the previously extracted ones. This causes wrong pose estimates,
which diverges the Kalman filter. To reduce the effect of feature detection errors, in [27] and
[28], noval feature management techniques are presented. Also in [28], the idea of

provisional feature lists in SLAM is developed.
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A key limitation of the EKF solution to the SLAM problem lies in the quadratic nature of the

covariance matrix (O(n”), where n is number of landmarks). For this purpose EKF SLAM
algorithms that gain remarkable scalability through decomposing the map into submaps, in
which covariances are held separately are presented [28] [29]. Despite these are efficient,
they do not propagate the information through the matrix of local maps. A numbers of
researchers are developed hybrid SLAM techniques, in these maps are decomposes maps
into local occupancy grid maps and combining these by using expectation maximization
algorithm [30],[31]. The particle filtering method [32] is another important alternative to the
Extended Kalman Filter. In particle filtering, continuous distributions are approximated
by discrete random measures, which are composed of weighted particles, where the
particles are samples of the unknown states from the state space, and the particle weights are
“probability masses” computed by using Bayes theory. Particle filters are used for

localization in [33] representing Monte Carlo Localization for mobile robots.

One of the pioneer methods that combine particle filters with EKF SLAM localization is
FastSLAM [34]. FastSLAM uses particle filters for estimating the robot path. Hence
mapping problem is factored to many separate problems, one for each feature in the map. It

estimates these map feature locations using separate low dimensional EKF for each

individual frame. This gives lower computational complexity ( O(n, *n »)), where 1, is the
number of landmarks and npis the number of particles). FastSLAM can cope with non

linear robot motion models, which is not applicable to previous SLAM methods. Other key
advantage of FastSLAM is data association decisions can be made on a per-particle basis. As
a result, it maintains posteriors over multiple data associations, not just the most likely one
like in EKF SLAM. Another advantage comes from using particle filters which can cope

with non linear robot motion models.

The main drawback of FastSLLAM is that its performance is degraded when high uncertainty
is presented in vehicle estimate (or a high number of particles are necessary which increases
the computational complexity of the algorithm). For this purpose, there are hybrid
approaches that combine some other SLAM approach with scan matching. In [34], a hybrid
algorithm that combines FastSLAM with scan matching to minimize odometer error is
presented (Thereby reducing the number of particles needed to build large-scale maps). In
this paper, the implemented scan matching algorithm is ICP (iterative closest point) and

standard FastSLAM 2.0 algorithm is merged. On the other hand, use scan matching to
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improve the data association robustness of an EKF variant called the geometric projection

filter (GPF) [35].

One of the main areas of SLAM is Active SLAM. This combines the three problems:
exploration, localization and mapping. The robot plans to find actions that reduce uncertainty
both in localization and mapping. Balancing exploration and localization, the paper [46]
describe exploration trajectories that optimize the mean uncertainty in order to build more
accurate maps. In paper [47], active sensing with a particle filter, clustering the particles into
groups and calculating the total expected entropy for the particle filter by a weighted average
of the expected entropy for each group is done. In [47], active SLAM including active loop
closure is presented. The SLAM algorithms applied in Active SLAM papers are investigated.

The information of exploration parts are discarded.

24 Scan Matching and SLAM Applied in Map Merging Algorithms:

Map merging constitutes building a consistent map of the environment from the data
obtained from different robots. If the initial locations of the robots are known it is easier,
which is an extension of single robot mapping [43] [44]. When the robot does not know its
position, the problem becomes more difficult. Since this time the robot’s traces are need to
be connected. This is one of the hardest problems in mapping, which is known as loop
closure. For this purpose different SLAM methods are applied. According to [40], these
methods are scan matching SLAM [35], grid based FastSLAM [45], Rao-Blackwellized
mapping [45]. These methods are overlaps with the research area of us about SLAM
techniques. Since our main intend to improve localization is totally connected with mapping.

Since an improvement in localization is resulted with an improvement in mapping.

In some papers some solutions combining SLAM with scan matching is given. In [39], a
method called as polar scan matching is presented. This method combines scan matching and
EKF-SLAM. A raw LADAR data based scan matching is implemented and it is used just for
matching of landmarks. Polar Scan Matching is applied for map merging in [41][42]. In [40],
the method given in [34] is implemented for the SLAM process of each robot before map
merging. In [35], a scan matching method based on ICP algorithm is merged with
FastSLAM algorithm. In this paper, the decrease in computational complexity, data
association capability in larger scale environments is successfully presented. However it has

some deficiencies. It uses an iterative scan matching algorithm, which has chance to
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converge to local minima. Also it does not have a fixed convergence time. In FastSLAM
part, the algorithm is applied in standard way; no special improvement is added to
FastSLAM. In spite of these, it gives a great localization and mapping capability, which
promotes people to walk through the scope of this paper.

Summary: In this chapter, literature survey about feature extraction, scan matching and
SLAM algorithms is presented. This survey is based on the literature about methods and
algorithms mainly developed on laser scanner information. In feature extraction part,
literature about the line extraction algorithms is presented with a comparison table. In scan
matching part, survey about feature based and raw data based scan matching techniques is
presented. Finally in SLAM algorithms part, all the researches in simultaneous localization
and mapping area are presented. In next chapter; theoretical and practical information about

the implemented feature based scan matching algorithm in this thesis will be given.
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CHAPTER 33

SCAN MATCHING

According to the framework given in literature survey, it is seen that feature based scan
matching algorithms has lower computational complexity and has advance in real time
working applications than point based ones because of their non-iterative approaches. Also,
in this thesis, features extracted in scan matching also constitute the input set of intended
deterministic global localization (DGL) and FastSLAM algorithms. For this purpose feature

based scan matching method is chosen.

In this thesis, the validity of extracted features has a great importance. Since they have been
used as an input for all following algorithms given, they affect the accuracy of the whole
method. Therefore the comparison between line extraction algorithms is carefully examined,

Split and Merge algorithm, which gives the most optimistic results, is implemented.

In main scan matching part, an algorithm calculating the pose difference from the
geometrical relations between line segment and corner features is implemented. The pose of
the robot is calculated from the incoming pose differences of main scan matching part. The
incremental error in pose is eliminated with deterministic global localization (DGL)

approach by using the re-observation of landmark features in closed loop cases.

3.1 Structure of the Scan Matching Algorithm Implemented

In this part, the structure of the scan matching algorithm will be described. In Figure 3.1, the
input output structure is given, in Figure 3.2 the subparts of the general algorithm is given

and in Figure 3.3, the detailed structure of algorithm and its subparts is given.
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LADAR Area Map
_—

G

Scan Matching Algorithm Pose
Odometer Information
—> —>

Figure 3.1:General Input / Output Structure of Scan Matching Algorithm

The scan matching algorithm accepts laser scanner data (180 range readings incoming from
LADAR with 0.5 / 1 degree scan intervals) and odometer data (synchronized estimated pose
information of the robot). As an output, it gives the constructed map of the area (as
occupancy grid map) and the scan matching based estimated pose information of the robot.

Scan matching algorithm consists of four main parts. These are;

SCAN MATCHING ALGORITHM

Line Extraction Feature and Main Scan Fault Correction
Algorithm Feature Matching and
»  Properties » Algorithm [ > Global
Extraction Localisation
Algorithms Algorithms

Figure 3.2: The main parts of the scan matching algorithm implemented

In line extraction part, the raw LADAR range scan is clustered and line segments are fitted.
In feature and feature properties extraction part, features, such as corners, and feature
properties, such as line length, distance between parallel lines, distance between the corners,
line end information ...etc. are found. These outputs are configured according to the needs of
the main scan matching part. In main scan matching part, a matching table is constructed, the
line pairs from the previous and current scan are voted, according the overlapping of their
feature properties. In fault correction and global localization part, the detected errors occur in
the main scan matching part are eliminated. By using global matching techniques in closed
loop cases, the error accumulated in the pose is removed. The detailed structure of the scan

matching algorithm is given as:
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3.2 LADAR Data

Laser scanner is measurement sensor based on the time of flight principle by sending a laser
pulse in a narrow beam toward the object and measuring the time taken by the pulse to be
reflected off the target and returned back to the sender. The types of LADAR’s used in our

tests are given in Figure 3.4.

Figure 3.4: The SICK LMS200 and OEM1000 laser scanners that the range scans are obtained.

In our configuration, LADAR scans a 180 degree area (semi circle) with 1 degree intervals.
So we obtain 181 range scans with 5 Hz update rate. We can define these scans as d[o], d[l],

d[z], ...,d["], d["+1],... , d[lgo], where d[") means the distance obtained between LADAR
and reflecting object and n means the angle of the laser mirror while that measurement has

obtained. Related illustration is given in Figure 3.5.
Implementation Notes:

e The distance obtained from LADAR is in +/- 38 mm accuracy interval.
e Maximum range that can obtain from LADAR is 80 meters. But distance between two

consecutive LADAR beam increases with distance, that is given as,

! = 2d tan(6) G-1)

Where we have [ as the target distance between measurement points at distance d, and 6 is

the angular separation between individual beams.

According to Equation 4.1, for a perpendicular object to laser beam, if §=1 degree, for d=10

meters, 1= 0.35 m, for d=20 meters, 1= 0.7 m.
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e The small changes in roll and pitch of the robot affect the level that LADAR beam
reflects in vertical axis (height). So for long ranges these can be reflected from the ground
level or from the ceiling. For a LADAR set in 50 centimeters height from ground level, 1
degree change in roll and pitch causes the LADAR beam to reflect from the ground from 28

meters, 2 degree change causes from 14 meters.

Also there is an increase in size of the beam by the distance. In our case, LADAR is set to
about 50 centimeters height and maximum +/- 1.5 degree roll and pitch change is observed.
By considering all the notes given above, the maximum range for LADAR is set to 12

meters.

e The LADAR output rate is set to 5 Hz. (Maximum available rate for 115200 baud RS232
message read). This update rate is fast enough for us. Since the maximum speed robot could
have is in translational 50 cm/s and in rotation 60 degree/s (The scan matching algorithm is
tested with diluted LADAR output (1 Hz) and it is seen that no performance loss is seen

about 100 cm translational or 30 degree rotational motions.).

0, which is the angle between two The LADAR scans a
LADAR beams, can be semicircle (180 degree
configurable (0.25,0.5,1 degree). . ___ angle area)
In our tests, 0 is set to 1. T dw) Tl

R ) ™

S d(n), d(n+1),.... : The
distances between the
reflecting object and
LADAR, given by
laser scanner as range
scan output.

Beams that
give Max.
range

Figure 3.5: LADAR working principles. LADAR has uniformly separated beams spanning a
certain angular range (180 degree for our case).

The Effect of Robot Motion to LADAR Scans: The LADAR mirror turn rate is set to
maximum, to prevent distortions of the objects seen while robot rotates. This is 20 Hz for

Sick OEM 1000 LADAR, which is used for the tests in ASELSAN indoor area and the
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scanning frequency is 75 Hz for Sick LMS 200 LADAR which is used in test area Ancona
and test area Intel Research Laboratory. It can be said as for 20 Hz, the time passed for a 180
degree scan is about 1/40 second. Also for 75 Hz one, this is about 1/150 second. For all
these cases, the maximum rotation speed of the robot is set as maximum 60 degree/second.
For the other test areas, the datasets are investigated and a turn rate more than 60
degree/second could not be found. So it can be said for LMS 200, the error in orientation of
the lines from start of the scan to end is about 0.4 degree, for OEM 1000 1.5 degree. In fact
for the continuous turns, the matched line pairs in consecutive scans are about the same
rotation angles of the LADAR, so same error is on the matched line pairs. For example the
ones close end of the scan is matched with the ones close to the end of the scan. Same is
valid for the ones close to start point. As a result, same distortion is seen and this does not
effect scan matching, except the turns including acceleration. However for these ones the

effect is still much smaller with the respect to one between startpoint of scan and endpoint.

33 Line Extraction: Split and Merge Algorithm

Line extraction is a vital part for the feature based scan matching algorithms. In fact, it gives
raw line segments for the construction of high level features in scan matching. Split and
merge algorithm is one of the most preferred line extraction algorithms. It is chosen because
of its high performance between line extraction algorithms given in comparison (in Table

2.1).

3.3.1 The Structure of Split and Merge Algorithm

As the line extraction algorithm, split and merge technique is used. The illustration giving

the structure of Split and Merge algorithm is given in Figure 3.6.
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Figure 3.7: The figure illustrating the steps of Split and Merge Algorithm [17].

In Figure 3.7, four images give the steps of Split and Merge Algorithm.

e In image a, a line is fitted to the cluster and the point that is with maximum distance to
fitting line is found, which is above the threshold parameter, and the cluster is divided into
two from that point.

e In image b, again the points that are with maximum distance to fitting lines are found
and the clusters are divided into two from these points.

e In image c, no more splits are found, since all the points belong to the cluster are below
the threshold parameter.

e In image d, the consecutive clusters that confirm the given conditions (given in Step 4)

are merged.

A range scan describes a 2D slice of the environment. Points of a range scan are specified in
polar coordinate system (Figure 3.5) whose origin is the location of the sensor. It is
common in literature to assume that the noise on range measurement follows a Gaussian

distribution with zero mean, a range variance and negligible angular uncertainty.

A line in polar coordinates is expressed as:

x; cos(a)+y,cos(a) =r

(xiayi)e L ¢
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where —z < a <= 7 is the angle between the x axis and the normal of the line, r >= 0 is the
perpendicular distance of the line to the origin; (x, y) are the Cartesian coordinates of a point

lying on the line. L is the point set that constructs the line.

[
-

X

Figure 3.8: Fitting line parameters: D is the fitting error we aim to minimize expressing a line
with polar parameters (r,a).

The outline for the implemented algorithm based on LADAR data is given below:

Step 1: Create clusters from the given LADAR data according to given cluster threshold
parameter. In this step, the LADAR scans from d(0), ... d(180) are controlled whether

@ = d"ly > Threshold 3-3)
Clusters smaller than minimum cluster points are removed from the cluster set.

Step 2: For each cluster; a line is fitted according to formula given below:

D? = i (r—C (i)cos(a)— C, (i)sin(a)) 3-49

Where m is the total number points in the cluster, C_(7) is the x coordinates of the cluster
elements, C (i) is the y coordinates of the cluster elements. a is the line angle and 7 is the

line radius, which is the distance between fitting line and origin, given in Figure 3.8.

The solution of (7, &) can be found imposing the derivatives of equation by (7, a):
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0 3-5
or oa -5
That is:
X = i Zm: C.(0) (3-6)
mean m l=1 X

1 & .
ymean = z Cy (l) (3-7)

m -

—ﬁmm—x,m,,)(cy(i)—ymm )

1

a=0.5tan""| — ” (3-8)
DUCAi1)= Ve ) =D (Coli) =X )’
i=1 i=1
r = Cos(a)xmean + Sin(a)ymean (3-9)

Step 3: If there are points with a distance to fitting line above the threshold, the point
farthest from the fitting line is chosen and cluster is divided into two smaller clusters from

that point, then pass to Step 2, else pass Step 4.

Step 4: Lines are merged according to given rules below:

e For each line, points continued from the end of the line are controlled whether they
fit the line parameters. If there are some points confirm the specified properties, they are
added to line set, and the line parameters of the line set are calculated again. Two main

factors are controlled for this process.

i. If there are points further from the laser scanner with respect to fitting line, this
means these points belong to a different structure. Therefore the line ends without adding
these points.

ii. If there are points nearer to the laser scanner with respect to fitting line, these
lines prevent us to see additional points of fitting line. If number of preventing points is

below a threshold, the fitting line is lengthened.
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e [f there are two following lines with same slope these lines are controlled whether
they can be belong to same structure. If these lines are decided to be in the same structure

they are merged.

o If there are lines that have length and number of points less than the defined
thresholds, these lines are deleted. Two parameters of the threshold are defined according to

three main factors given below. These are:

i. If a line fitting is far away from the laser scanner it contains less points, however
the distance between these points increases and the length of the line increases.

ii. If slope of the line is close to perpendicular to the laser scanner rays that it
intersects, then the points of the fitting line become much more further from each other.
Therefore while number of points decreases the length increases.

iii. If the fitting line is so close to the laser scanner, number of points increases but

length of the line decreases.

o The lines between two following parallel lines are specially considered. If they
contain small number of points, then the slope of these can easily affected from the noisy
character of the LADAR data. These lines are important to find real corners. So any change
in their slope affects the position of the corner. Therefore they are corrected as they have best

slope estimate.

34 Feature and Feature Properties Extraction Algorithms

In this part, from the line segments coming from the line extraction part, features are
extracted. These features are basically line segments and corners, but also combination of
these are also used, such as parallel line segments, patterns formed from consecutive line
series, patterns formed from consecutive corner series... Also the properties are extracted
from this feature set, such as slopes, line lengths, corner distances.... All these are used as

inputs for the matching process in main scan matching part and global localization part.

34.1 Line Information Extraction

Following feature properties are extracted from each line segment found by using Split and

Merge algorithm:
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1) The slope of line is found. This slope is given as the angular difference of line direction

with start point which is between -180 and +180 in class element C [m].L.Slope .

Y axis )
endpoint
a C(n).L.Slope < 180
»  Xaxis
\ startpoints
endpoint
C(m).L.Slope > 180

Figure 3.9: The figure illustrating the slope of a line. C.L.Slope

2) The Cartesian coordinates of fitting line endpoints are calculated (C [m].x, V).

3) The length of line is found which the distance between the endpoints is

(C['"].L.Length ).

4) 1D’s of points in the cluster are found which is defined as ctml gpl] .They are 0 [i], the

angle of the point in polar coordinates given in range scan raw output (d [i], 0 i ).

5) If the points following an endpoint of the fitting line are further away from the laser

scanner than the line endpoint

d [i] >d (]
]- — C[m].ID[endpuint] (3_10)
i=j+lorj—1landj gc p

or the points following are close to the endpoint,
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(@t — V| < Threshold
j — C[m]'ID[endpoint] (3_11)
i=j+1lorj—1andj gC" D

than this line is ended in that endpoint. The lines are classified as, open, right side ended, left

side ended, both side ended.

-=--»  Endpoints
Open

- Right side ended
dis(2)

A
[ ]

Left side ended

Both side ended

Figure 3.10: The illustration about the definitions given in line information extraction.

Figure 3.11: The lines extracted from the LADAR data.
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When we look at Figure 3.11:

a) We can define Linel as open. We do not know right side of the line, since it is at the end
of our scan range, it can be open or ended. At the left side of the line, after the endpoint there
are points closer to LADAR, which means this line can proceed behind these points so this

endpoint is also open.

b) We can define Line 2 as left side ended. There are points closer to LADAR than the right
endpoint of the line. At left side, there are points closer to LADAR than the left endpoint, but
they start from a position so close to line end. Therefore the line could not proceed behind

these points.

c) We can define Line 3 as both side ended. Since the points in right side are further away
from LADAR then the right endpoint, and the ones in right side is in position so close to the

left line end.

The variable, appointed for line classification information, is given as C "l I LineClass .

6) Deviation of the points for the fitting line is calculated. Since the mean is the position of

the fitting line so o(C ['”]) becomes square root of point to fitting line distances.

o(Ccly = \/lZ(c[m].L.dis [1y2 (-12)
n

i=1

Where CI"|.L.dis""! the distance between the ith cluster point and fitting line is, C (] is the

cluster and m is the ID of the cluster.

3.4.2 Corner Information Extraction

1) The intersection points of the lines are found. These intersection points are defined as

real corners and virtual corners.
e Real corner is defined as the intersection point of two following lines with too close

endpoints.

e Virtual corner defined as the intersection point of the extension of two lines.
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Virtual Corner

/V ‘\ Real Corner

73

Figure 3.12: The illustration that shows how Virtual /Real Corners are defined.

A

The corners are defined by Cnr!™ class. Cnr!™  Class corresponds the information about

whether the corner is real or virtual.

2) The angles between the lines constructing the corner are found. Cnr(m).Angle
corresponds the angle between constructing lines. Since the slope of lines (C [m].L.Slope )

constructing the corner are defined between -180 and 180, than the angle of corner becomes
between -180 and 180, which includes information whether the corner is concave or convex

inside.
3) The positions of corners in three different categories are found. These are;

e Real/Virtual corners belong to long constructing lines
e Allreal corners

e All real/virtual corners

Categorization of corners is important since they have different importance in the scan

matching algorithm part.. Cnr!™ x and Cnrt™. y corresponds the position of the corner.

4) The line pairs that construct the corner are found. Cnr[m].Lpair corresponds the line

pair constructing the corner.
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3.4.3  Corner Angle and Distance Pattern Extraction

Corner angle patterns are constructed from the slope difference of six consecutive lines,

between the first one and other five. Related illustration is given in Figure 3.13.

Figure 3.13: The schema illustrating the angle pattern for the first line

As you can see from Figure 3.13, the angle pattern consists of the first line and the slope

differences between the first line and five consecutive lines. So we can define the pattern as;

Table 3.1: The pseudo code of the algorithm for finding the angle pattern. The pattern consists
of the slope differences between the first and consequent five lines.

Algorithm__Angle Pattern( C)
: foreachj=1,...,5

ifC[i] =¢ or cl/] = ¢ then
Angle P /] =0;

1
2
3
4 else

5: Angle_P[i"/ [y [i].L.slope—C [+ ].L.Slope //the slope difference
6 endif

7: endfor

8: Angle_P[i] = [Angle_P[i’l],..., Angle_P[i’ﬂ]

9: return Angle_P[i]
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Corner distance patterns are constructed from the intersection point distance of 6 consecutive

lines, between the first one and other five. Related illustration is given in Figure 3.14.

N .
" L
" -

'\. .,. d
N "
.\(. corner(ll',é-)

ke '*.‘ ‘corner(1,2)

corner(1,6)

* corner(2,3)
N -
N X N

" IR N

corner(4,5) b: e : o /corner(3,6)

corner(2,5
6

corner(5,6)

Figure 3.14: The schema illustrating the corner pattern.

As you can see from Figure 3.14, the corner distance pattern consists of the first corner and

the differences between the first corner and five consecutive corners. So we can define the

pattern cornerDist!" as;

Table 3.2: The pseudo code defining the corner distance pattern. The pattern consists of the
corner distance differences between the first and consequent five lines.

Algorithm_Corner Distance Pattern( C)

: function corner(L1,L2) // calculates the intersection of line L1 and L2
: foreachj=1,....5

ifC[i] =¢ or cli+] = ¢ then

cornerDist_P[i’j I=p;

cornerDist_P[i’j I- (corner(C Ur clg ) - corner(C Ur, cllyp )
endif
endfor

. cornerDist_P[i] = [cornerDist_P[i’I I cornerDist_P[i’j ] ]

10: return cornerDist_P[i]

1

2

3

4;

5: else
6 .

7

8

9
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3.5 Main Scan Matching Part

In scan matching part, the features and feature properties extracted from the previous and
current scans are compared according to the seven criteria given in next sections. All the
feature information extracted in Section 3.4 is coming from the line segments and their
clusters from Section 3.3: Line Extraction Part. Therefore any overlap between feature
properties shows the overlap between the features they have been belonging. In fact, these
features again shows the overlap between the line segments they have been constructed. As a
result, each comparison made by given criteria in Sections 3.5.2 and 3.5.8 turns as a vote for
the related line segments given in matching table in Section 3.5.1. From the votes in the
matching table predicted line segment matches are found and the resulting pose difference in

translation and rotation between the consecutive scans is found.

3.5.1  Matching Table

While doing feature based scan matching, a matching table has constructed. The columns of
this table consist of the line segments of the previous scan and the rows of this table consist
of the line segments of current scan. Below a matching table sample is given in Table 3.4

during the matching of two scans taken from Radish data [22].

25

05

Figure 3.15: Previous LADAR scan and fitting lines on the LADAR data.
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Figure 3.16: Current LADAR scan and fitting lines on the LADAR data.

Table 3.3: Matching table. This table consists from the rows that are line segments of previous
scan and columns that are line segments of current scan.

[Ip(1,1) Ip(l,2) Ip(l,3) .. Ip(1,n)
Ip2,1) Ip2,2) Ip23) .. Ip(2,n)
| PG 1pB.2)

Ip(m—1,n—1) Ip(m—1,n)
| Ip(m,1) Ip(m,2) w. Ipmn-1) Ip(m,n) |

[]

where Ip(m,n) is the matching score between line pair C [m].L and C .L.mand n are

prev curr

the ID of the cluster extracted from the previous and current LADAR scans.

As you can see from Table 3.3; matching table shows the voting’s of the line pairs. The
columns show extracted lines of current scan and the rows show extracted lines of previous
scan. So the number set in MT(m,n), corresponds the voting (matching score) for the line of

cluster m from the previous scan and line of cluster » from current scan.
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Table 3.4: A sample matching table and the votes between the fitting lines of previous scan and

current scan.

1 -40 -40 -40 -40 -40 -40 -40 -40
z 74 1 -40 -40 3 -40 -40 -40
3 1 a4 -40 -40 5 -40 -40 -40
4 -40 -40 35 4 -40 G -40 -40
5 -40 -40 1 55 -40 3 -40 -40
& 1 4] -40 -40 100 -40 -40 -40
7 -40] -40 G 1 -40 45 -40 -40
& -40 -40 -40 -40 -40 -40 57 1
9 -40 -40 -40 -40 -40 -40 3 a1

Table 3.5: Resulting matching table after the line matches with highest rankings are chosen and
the others are set to zero.

1 2 & 4 5 [} 7 &3
1 1] 0 1] a 1] 1] 1] 1]
2 73 1] 0 a 0 1] 0 1]
3 1] a4 1] a 1] 1] 1] 1]
4 1] 0 iz a 1] 1] 1] 1]
5 1] 0 1] 58 1] 1] 1] 1]
6 1] 0 1] a 100 1] 1] 1]
7 0 1] 0 a 0 45 0 1]
8 1] 0 1] a 1] 1] 57 1]
9 1] 0 1] a 1] 1] 1] a1

In Table 3.5, the resulting matching table is presented after the line matches with highest

rankings are chosen and the others are set to zero. Line 1 from current scan (C m.L ) is

(2]

prev

curr

matched with Line 2 from previous scan (C .L ), Line 2 from current scan is matched

with Line 3 from previous scan and it goes alike. As we can see from the figures given
above, from the two following scans the fitting lines are found and they are voted according
to the voting criteria given in next part. The votes coming from voting criteria are weighted
according to their importance and summed to construct the matching table. The maximum
voted line pairs in matching table are found and these line pairs will be used for the

calculation of pose difference. Voting criteria’s are given below:
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3.5.2  Ciriterion 1: Elimination of Line Pairs with Slope Difference above

Threshold
Ccurr(m).L.Slope.
| Difference 0/1
Cprev(n).L.Slope. Above »
> Threshold1
Ccurr(m).L.ID
5 Difference 0/1
Cprev(n).L.ID Above »
> Threshold2
If input is 1 then
Ceurr(m).L.LineClass OR ¥ MT1(m,n)=Negative
> Is both side 0/1 vote
Cprev(n).L.LineClass ended »
»
»
And l
Ccurr(m).L.Length »
| Difference 0/1
Cprev(n).L.Length Above » MTI1 O
» Threshold3

Figure 3.17: The figure illustrating the scheme of Criterion 1 implemented.

At the beginning of scan matching, the line pairs from the following scans are checked
whether their slope difference are below the threshold, which is given as parametric and set
in configuration file. Deciding this threshold is important, since it means that whether the
robot turns in ¢ degrees between the following scans. If the slope of line in previous scan is
O degrees, so the matched line in next scan has a slope between O-¢ and Q+¢. This means

all the line pairs that do not ensure this interval can be considered as mismatching pairs.

This threshold is decided according to turn limits of the robot between two LADAR scans.
From the Radish data [22] taken it is seem that robot has a turn rate less than 60 degree per
LADAR sample. Therefore it is set to 60 degrees. For any test, it needs to be set according to
LADAR scanning frequency and the robot turning rate.

The negatively voted line pairs feed the other criteria. Therefore any process in other criteria

for a line pair that has no chance to match is prevented, which results with a considerable

decrease in the computational complexity of the algorithm.
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Table 3.6: Sub matching table (MT1) of Criterion 1. The line pairs that do not assure the given
criteria are negatively voted with weighting.

1 2 & 4 5 [} 7 3
1 -40 -40 -40 -40 -40 -40 -40 -40
2 1 1 -40 -40 1 -40 -40 -40
3 1 1 -40 -40 1 -40 -40 -40
4 -40 -40 1 1 -40 1 -40 -40
5 -40 -40 1 1 -40 1 -40 -40
6 1 1 -40 -40 1 -40 -4 -40
7 -40 -40 1 1 -40 1 -40 -40
8 -40 -40 -40 -40 -40 -40 1 1
9 -40 -40 -40 -40 -40 -40 1 1

In Table 3.6, the resulting sub matching table is shown when the Criterion 1 is applied onto
the LADAR range scan given in Figure 3.15 and Figure 3.16. Negatively voted line pairs are
not fed to Criterion 2, 3, 4, 5, 6, 7. This prevents the algorithm not to work on with the non-

matching line pairs, which decreases computational complexity.

3.5.3  Ciriterion 2: For Line Pairs That Has Longer Lengths

MTI1() Ccurr(m).L.Slope
———» | Line pairs ——— ¥ (Slope difference
that are not | CPrev@D-LSlope. Ko bolow Thresh [

Ccurr(m).L _ >
— 5 | voted
Cprev(all).L negatively Ccurr(m).L.ID
—> | by MTI1() ———  » [[D mean —p
are passed Cprev(all).L.ID difference is » AND
below Thresh2
Ccurr(n).L.Length
—— > [Length
Cprev(all).L.Length difference is
" lbelow Thresh3
If counter(m)=1 then Increment
Vote MT2(m,n) , where n is the index in [« counter(m)
Cprev(all).L which increment the counter

Figure 3.18: Sub matching table (MT2) of Criterion 2. The figure illustrating the scheme of
Criterion 2 implemented.

This criterion adds extra voting for line pairs that has longer line lengths. In fact, it helps

matching in case of the area has large line segments and the robot has sharp turns.

36



Especially, this case is seen while robot is going on long corridors and makes sharp turns. In
fact, these areas are low structured, instead of complex criteria that are based on matching
multiple features or feature properties, simple criteria can be advantageous. Since low
numbered line cannot be applicable to a complex criteria. Also checking a few simple but

decisive properties can be enough, as like the given criterion.

In a scan pair, if there is a longer line than the others and the same lines are seems to be seen
in the next scan, this criterion highly votes them, but if these lines are more than one and so
close to each other, this criterion does not vote the line pairs to prevent mismatches. The sub

criteria for this are:

e Line lengths,
e Number of longer lines,

e The slope and midpoint change between the longer lines in the same scan

Table 3.7: Sub matching table (MT2) of Criterion 2. The line pairs that supply the Criterion 2
are voted with weighting.

1 2 & 4 5 & 7 3
1 0 0 1] 1] 1] a a 1]
2 0 0 0 0 0 a 1] 0
3 0 g 1] 1] 1] a a 1]
4 0 0 1] 1] 1] a a 1]
5 0 0 1] 1] 1] 1] 1] 1]
6 0 0 1] 1] 1] a a 1]
7 0 0 0 0 0 a 1] 0
8 0 0 1] 1] 1] a a 1]
9 0 0 1] 1] 1] a a 1]

In Table 3.7, the resulting sub matching table is shown when the Criterion 2 is applied onto

the LADAR range scan given in Figure 3.15 and Figure 3.16. C Bz and . L has

prev curr

considerable longer line length compared with other lines with same slope in their

neighborhood. Therefore this line pair is seems to be unique and highly voted in M72.
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3.54 Criterion 3: For the Lines that Have Real Corners

MT1() : : Corcurr(m) If Cnrcurr(m).Class= Real
—»| Line pairs C—Pmprev(n) corner
Chrcurr(m) that are not | AND
D —— voted. Cnrprev(n).Class= Real corner
Cnrprev(n) negatlvely v v
—» by MT1() . .
Cnrcurr(m).Lpair Cnrprev(n).Lpair
are passed Cnrcurr(m).Angle Cnreurr(n).Angle
v v

If Inputl is 1, vote MT3(the first mputt | If angle difference between ]
line ID’s in Cnr(m).Lpair current | Cnrcurr(m).Angle of Cnrcurr(m).Lpair

and prev) MT3(the second line and Cnrprev(n).Angle of Cnrprev(n).Lpair
MT3() <+ ID’s in Cnr(m).Lpair current and below Threshl
prev) n
Input2

If the resulting angle difference is unique

IfInput2 is 1, vote MT3 (same) (Does not seen in other corner pairs)

A

Figure 3.19: The figure illustrating the scheme of Criterion 3 implemented.

This criterion adds voting to matching table whether the real corners of following scans

match. The rules are;

e If the real corners has same angle (with a given tolerance set in the configfile) between
the lines constructing the corner in both following scans.

e If the real corners in following scans can have chance to be same if the robot makes a
turn in given limits.

e Extra Vote: If the real corner has a unique angle between constructing lines.

Then the line pairs constructing these corners are voted.

38



Table 3.8: Sub matching table (M73) of Criterion 3. The line pairs that supply the Criterion 3
are voted with weighting.

1 2 3 4 5 & 7 &3
1 0 a 1] 1] 1] 1] 1] 1]
2 1] a 0 0 1] 1] 1] 0
3 0 5 1] 1] g 1] 1] 1]
4 0 a 5 1] 1] a 1] 1]
5 0 a 1] g 1] 1] 1] 1]
6 0 5 1] 1] 10 1] 1] 1]
7 1] a 5 0 1] 5 1] 0
8 0 a 1] 1] 1] 1] 1] 1]
9 0 a 1] 1] 1] 1] 1] 1]

In Table 3.8, the resulting sub matching table is shown when the Criterion 3 is applied onto
the LADAR range scan given in Figure 3.15 and Figure 3.16. In the table, the line pairs that

verify the given criterion are voted. The weight of these voting is set low, except that a
unique match is not seen. In fact, in the angles of real corners (Cnr [i].Angle ),

multiplicative of 90 degrees are commonly seen, because of the perpendicular construction
of features, such as corridors, rooms, furniture... However the power of this criterion comes
for low structured environments or environments that has real corner angle that are not
multiplicative of 90 degrees. In this type of environments mostly these corner angles are

unique, so they are highly voted.
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3.5.5 Criterion 4: For Parallel Line Distance between the Lines

Ceurr(all) Find all line pairs in Condition1:
Cpreviall) Ccurr and Cprev that P If slope difference of
»| verifies Condition 1 D C(m) and C(n) below
v v Thresh1
Curr_Set Prev_Set
(Line pair set) (Line pair set)
v v

For each line pair in
Curr_Set / Prev_Set, find
line2 line distance.

v v
L2L distcurr  L2L_distprev
v 4

If the difference between

The lines Ccurr(i).L and Ccurr(j).L that

L2L_distcurr(m) and L2L_distprev(n) | construct L2L_distcurr(m) and the lines
below Threshl Cprev(ii).L and Ccurr(jj).L that construct

L2L distprev(n)

Lines Ccurr(i).L and Ccurr(j).L, Cprev(ii).L
and Ccurr(jj).L are voted

A 4

MT4 1

If L2L distcurr(m) is unique for all

L2L distprev(:) , then

Lines Ccurr(i).L and Ccurr(j).L, Cprev(ii).L
and Ccurr(jj).L are voted

A 4

MT4 2

Overlap type between Ccurr(i).L and

.| Cprev(ii).L and between Ccurr(j).L and
Cprev(jj).L are same then these lines are
voted.

MT4 3

> MT4

Figure 3.20: The figure illustrating the scheme of Criterion 4 implemented.

Distance between parallel lines is an important criterion for scan matching. Since distance
between parallel lines does not depend on the pose of the robot. Depending on noise rate of
distance measurement sensor (in our case this is laser scanner which has very low noise rate
which is below 4 centimeters) and also robustness of the feature extraction algorithm (Since
the line fit averages the measurements , error in position of lines will be the mean of the error

coming from the measurement sensor readings. Also a good line extraction method needs to
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find the slope of the line with minimum error), the tolerances for the distances between the
lines decrease which make the line distances much more specific and distinctive. The

criterion consists of:

e If the distance between the line pairs in following scans are same (with a given tolerance
set in the configfile).

e If the slope between lines in the pairs in following scans are about same (with a given
tolerance set in the configfile).

e If the both line pairs in following scans ensures the conditions given in Criterion 1.

e Extra Vote: If the distance between the lines pair in following scans is so distinct that
none of other distances is close to it (uniqueness) (with a given tolerance set in the
configfile) than extra vote is given to the line pair.

e Extra Vote: If the lines are same overlapping state extra vote is given to the line pairs.

In Figure 3.20, the general schema that describes Criterion 4 is given.

Table 3.9: Sub matching table (MT4) of Criterion 4. The votes of the lines according to the given
Criterion 4 with weighting.

1 2 3 4 5 &} 7 L&}
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In Table 3.9, the resulting sub matching table is shown when the Criterion 4 is applied onto
the LADAR range scan given in Figure 3.15 and Figure 3.16. As we can see from Table 3.9,
some of the line pairs are highly voted. In fact, this comes mostly from extra votes. Since
most of the line to line distances for the given range scans in these figures are unique. Also
for the cases where multiple line pairs are seen with same line to line distance, overlap type
concept is added. This prevents matching of the line pairs with different relative

neighbourhood to each other, such as the ones in a corridor divided by another.
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Overlap Type Calculation

C(m).L
C(k).L
C(m).L
n<m Ve
Py R n>m
s /‘/ ‘ '/./
. s s ././ . Ve
s e NG
s s e
7 e
Overlap C(n).L
C(n).L
Overlap No overlap_first No overlap_second
case case
--------- / ....C(n).L.endpoint(1)

Line orthogonal . y— C(n).L )

from endpoint ! , C(n).L.endpoint(2)
S B
‘\‘./ Line OrthOgOIlal """""

C(m).L.endpoint(1) from startpoint Projection

C(m).L P Line

C(m).L.endpoint(2)

Figure 3.21: The scheme illustrating overlap types defined.

Overlap type is the value that defines whether the projections of two parallel lines on a
parallel line with same slope overlaps. It can take three values: Overlap, no overlap first
case, no overlap second case, which is given in Figure 3.21. Overlap corresponds that when
these lines are projected on a parallel axis, their intervals in that coordinate frame overlaps.
No overlap first case, in this axis the interval of first seen line by laser scanner is higher than
the second one. No overlap second case, in this axis the interval of first seen line by laser

scanner is lower than the second one. The pseudo code for this process is given below:

Table 3.10: The algorithm that calculates the overlap types.

Algorithm Overlap Type Calculation( chlp chlg )

1: function orthogonal line(Linel, Pointl) \\ computes the line passing through
Pointl and orthogonal to Linel

2: function compdist2line(Linel, Pointl) \\ computes the distance between Line 1 and
Pointl
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Table 3.10 Continued

3: C[m].Ort_Line[l] = orthogonal _line( C[m].L,C[m].L.endpoint[l])

4: C"ort Line®! = orthogonal tine(C'™.L,C™ L.endpoint®)

5: if compdist2line (C'™).Ort_Linel! , C™.Lendpoint®) >0 and ...
compdist2line ( C[m].Ort_Line[z] , C[n].L.ende int!?] )>0and...
compdist2line (C™.0rt_Linel'! | CM".L.endpoint™) >0 and...

compdist2line ( C[m].Ort_Line[z] ,C["].L.endpoint[l] ) >0 then

6: result=No_Overlap First

7: elseif compdist2line (C'™.0Ort Linel! | C™.Lendpoint®?!) <0 and...
compdist2line ( C[m].Ort_Line[z] ,C["].L.endpo int®! ) <0and ...
compdist2line ( C[m].Ort_Line[l] , C[n].L.endpoint[l] ) <0 and...
compdist2line (C".0rt_Line®?! | C"l. Lendpoint!! ) <0 then

8: result= No_Overlap Second
9: else

10: result= Overlap

11: endif

12: return result

3.5.6 Criterion 5: For Lines Ended in Both Sides

MTI1()

»| Line pairs Ceurr(m).L. | Jf Ccurr(m).L.Lineclass

that are not e and

Ccurr(m).L voted Cprev(n).L :

» negativelyby | —— | Cprev(n).L.Lineclass are
Cprev(n).L MTI() are both side ended

P passed

Cprev(n).L.length l l Ccurr(m).L.length

If length differences of
lines below the endpoint
tolerance threshold then

vote
Cprev(n).L and Ccurr(n).L.
v
MT5

Figure 3.22: The figure illustrating the scheme of Criterion 5 implemented.
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Some of the lines in the scan are ended in both sides. The information about how a line is

accepted as ended is given in Section 3.4.1. The matching criteria are:

e Ifthe both lines in the following scans are ended in both sides
e If the both lines have the same line length (with a given endpoint tolerance threshold

calculated for each line).

The negative voting criterion is:
e If the both lines in the following scans are ended in both sides but line length difference

is above the threshold (which is set in the config file)

Table 3.11: Sub matching table (M75) of Criterion 5. The votes of the lines according to the
given Criterion S with weighting.

1 2 3 4 5 3] i g
1 a 1] 0 0 0 ] 0 0
2 a 1] 1] 1] 1] 0 1] a
3 a 1] 0 ] 0 0 0 a
4 a 0 0 0 0 0 0 a
5 a 1] 1] a 1] 0 1] a
] a 1] 0 0 g ] 0 0
7 a 1] 1] 1] 1] 0 1] a
8 a 1] 0 ] 0 0 0 a
9 a 0 0 0 0 0 0 a

In Table 3.11, the resulting sub matching table is shown when the Criterion 5 is applied onto

the LADAR range scan given in Figure 3.15 and Figure 3.16

Endpoint Tolerance Threshold Calculation

Endpoint tolerance threshold is the given tolerance value while matching both side ended
lines. The length of a real line segment could change significantly between two consecutive
scans based on the position and slope of the real line segment. Since there is always an error
at the endpoints (we do not know how much more line segment goes after the endpoint
found from LADAR data) based on the divergence between two consecutive range scan
beam at that distance, which is given with Equation 4.11. The illustration of this situation is

given in Figure 3.23:

44



For each line, the angle
h interval effects different for
Error in position \ the orientation of endpoint,
of endpoint -‘ depending on the slope and
v positon of line

P Error in position
Ll of endpoint

Linel
Line3

Error in position
t of endpoint

Angle interval between
lines is set to 1 degree

Figure 3.23: The illustration that is showing the affect of slope and orientation of the line to the
position of an endpoint.

For this purpose a variable threshold is defined for real corner matching criterion. The

formula for this threshold is:

m

l z Ccurr o Xy k]
m

i=1

n

! 1] ol
;Z C o x| | 3-13)

i=1

>

Threshold ") = 2% tan(z /180)* 2 * max(

Where C [k].xy[i] ith x, y Cartesian coordinates of kth cluster of current scan is,

curr

C [l].xy [ is ith X, y Cartesian coordinates of /th cluster of previous scan. m, n are the total

prev
number of scan points . The formula assumes the endpoint error based on the maximum
distance between LADAR and center of line in current and previous scans. The result is

multiplied according to the projection calculation onto the line.

This criteria is simple, but it is good to find and vote the both side ended lines in an
environment. On the other hand, as it is given in endpoint tolerance threshold calculation
part, the length of a both side ended line can still be changed according to the aspect of the
LADAR into this line and also the distance between the line and LADAR. So correctly
calculating this threshold, such as given above, solves the non-matching problems of same

both side ended lines in previous and current data.
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3.5.7

Angle Pcurr (m)
—P>

Angle Pprev (n :

The search includes two
steps:

- If the matched angle
pattern members go in
same order.

- Whether the members of
the angle patterns are same

Decision

Criterion 6: Searching Angle Pattern between the Following Lines

»

Ll
AP_Matched (m,n

If AP_Matched (m,n) ==3
MT(m,n)=Votel;

elseif AP_Matched (m,n) ==
MT(m,n)=Vote2;

elseif AP_Matched (m,n) ==
MT(m,n)=Vote3;

Voting

AP_Matched (m,n):
Number of members

matched between
Angle Pcurr (m) and
Angle Pprev (n)

v ¢ MTI0>0

MT6():
Resulting
matching table
based on
Criterion 6

Figure 3.24: The figure illustrating the scheme of Criterion 6 implemented.

Criterion 6 is based on, by using the angle differences creating an angle pattern between the

following lines in a scan and searching the same pattern in the following scan. This pattern

search is made as:

1) First the slope differences of the lines are found. This is a matrix as given in Table 3.12:

Table 3.12: The structure of slope differences matrix of the lines.

m,-m, m,-m, m,-m, m,-m m,-m,
m,-m m,-m, m,-m m,-m, m,-m,
ms-m, my-m; my-mg ms-m, my-my
m,
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where m; corresponds to C [i].L.Slope, the slope of fitting line to cluster i. These slope
difference values are found for both of the following scans. Each row of this matrix

corresponds to Angle_P[i], which is found with given pseudo code in Table 3.1 .

2) These matrices are voted according to their level they overlap. Each Angle P [i]of the

curr
current scan is compared with Angle P L ].

—" prev

Table 3.13: The slope differences matrix of the previous scan.

t | 2 | 3 | 4 | 5 |
1 1.4085  -37.9693 -55.4311 23443 -39.4927
2| -B9.3777  -89.8395 09365 909011 -180.3647|
3 -0.4618 90.3142 -1.5234| 8909870 -91.8016
4 907780 -1.0816) 908252 -91.3399 ]
g -91.8376) -181.3012) -182.1158 ] 0
6 -39.4636|  -90.27533 0 0 ]
7 0.8147 0 0 0 ]
8 ] ] a 0 a0

Table 3.14: The slope differences matrix of the current scan.

1 | 2 | 3 | 4 | 5 |
1 -91.7365 -90.5958) -181.5675 -181.1587 -89.4536
2 1.1407 -89.8309 -89.4221 2.2829 -90.5593
3| -90.9717 -90 5629 1.1422 -31 7001 -182.5422|
4 0.4085 921138 -0.7284 -91 5705 -89 9596
5 91,7050 -1.1372 -91.9794 -90 3684
3
7
8
g

-92.8423) 1836344 -182.0734 0
-90.8421 -39.2312 0 a
1.6110 ] il 0
0 0 0 a

o T e T s I s

As we can see from the Table 3.13 and Table 3.14, these scans overlap in the dark colored
1x5 rectangles. If the pattern is fully overlaps with the lines that construct than the pattern
takes the maximum voting in the overlap table. If the overlap decreases in the pattern, such
as 4-3 slope differences overlap, then the voting for this pattern decreases. The structure of

the overlapping table is given in Table 3.15:
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Table 3.15: The structure of overlapping table. For a chosen row and column, the first number
gives the row used from Table 3.13 and the second number gives the row used from Table 3.14.

The row in slope (The row in slope difference matrix in previous scan ,The row
difference matrix in in slope difference matrix in current scan)
previous scan
1 (1,1) (1,2) (1,3) (1,4)
2 (2,2) (2,3) (2,4) (2,5)
N (N.N) (NN+1) (NN+2) (NN+3)

In Table 3.15, for a chosen cell, the first number gives the row used in slope difference
matrix in previous scan and the second number gives the row used in slope difference matrix

in current scan. So the overlapping score of these rows is calculated and put into the cell.

For the example LADAR scans given in Figure 3.15 and Figure 3.16 the resulting overlap
table is given in Table 3.16:

Table 3.16: The resulting overlap table in the structure given with Table 3.15 for Figure 3.15
and Figure 3.16.

1 2 3 4
1 2 5 2 2
2 4 5 2 2
3 2 5 3 1
4 4 4 1 2
] 1 3 1 o
& 1 2 0 o
7 a 1 0 o

When we have looked at this overlap table, the maximum points are seen at the second
column on the rows. This means that if we have looked at Nth slope difference matrix in the
previous scan, it overlaps with N+1th slope difference matrix in the current scan. We can see
the overlapping in Table 3.13 and Table 3.14 at the 2™ row and the 2" column (which means

3" slope difference matrix row) of the overlap table in Table 3.16.

3) The maximum points for each row in the overlap table are found and the lines that
construct this pattern are voted by considering their value in overlap table. In fact, when the

maximum point in the overlap table decreases, this means the lines constructing that pattern
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does not fully overlap, for example some of the lines do not seen or detected in one of the

scans. So reliability of that pattern decreases.

4) This criterion is applied to the scan pair twice. One controls the line angle patterns with
the next line angle patterns in the following scan and the other controls the line angle
patterns with the previous line angle patterns in the following scan. This is made twice since

whether pose angle changes left or right, this is not known yet while this criterion is applied.

The resulting addition from this criterion to the matching table is given below:

Table 3.17: Sub matching table (MT76) of Criterion 6. The votes of the lines according to the
given Criterion 6 with weighting.

1 2 3 4 5 & 7 &3
1 0 1 1] 1] 1] 1] 1] 1]
z 6 a 1 1 2 1] 1] 1]
3 0 10 1] 1] 1] 2 1] 1]
4 0 a 14 3 2 1] 1] 1]
5 0 a 1] 16 1] 2 1] 1]
& 0 a 1] 1] 17 1] 1] 1]
7 1] a 0 0 0 14 0 0
& 0 a 1] 1] 1] 2 G 1]
9 1] a 0 0 0 0 2 0

In Table 3.17, the resulting sub matching table (M76) is shown when the Criterion 6 is
applied onto the LADAR range scan given in Figure 3.15 and Figure 3.16. In this criterion, if
the overlapping is high, it means we are pretty sure that all these line pairs are matching, and
voting to these line pairs increases. As mentioned in Section 3.5.4, because of the
perpendicular construction of features, the angle patterns consisting of slope differences that
are multiplicative of 90 degrees are commonly seen. So a wrong overlap between irrelevant
patterns can be seen. As a result, if overlap is less, it means we are not sure about the

matching. Therefore voting is not given to them.
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3.5.8  Ciriterion 7: Searching an Corner Distance Pattern between the
Following Corners

The search includes two If EP_Matched (m,n) ==3
steps: MT(m,n)=Votel;
comerDist Peurr | - If the matched corner
——» distance pattern elseif EP_Matched (m,n) =4
members go in same .| MT(m,n)=Vote2;
cornerDist_Pprev order. EP_Matched (m,n)r .
—  »| - Whether the members elseif EP_Matched (m,n) ==5
of the corner distance MT(m,n)=Vote3;
pattern are same N Voting
Decision
EP_Matched (m,n): . MTI1() >0
Number of members .
matched between AND
cornerDist Angle Pcurr (m)
- Dist Angle_Pprev (n) MT70:
cornerDist Angle Pprev (n Resul ting

MT70 matching
table based
on Criterion 7

Figure 3.25: The figure illustrating the scheme of Criterion 7 implemented.

This criterion is based on searching the distances between all types of following corners. The

steps of the criterion are given below:

1) The intersection points of consecutive lines are found. These intersection points can be
the real corners or virtual corners where the extensions of the line pairs intersect. For each
following line pair which assures the line angle difference above a given threshold, the

corner point is found.

Implementation Notes: The angle difference threshold for the line pairs is important, since
if this difference is smaller, the corner point orientation became much more inaccurate. Since
a small error in the slope of the lines makes the corner point move on the direction of the

resultant vector generated by the lines constructing the corner (Also given in Figure 3.29).

2) The distance between the following corner points are found. According to the found
distances, corner distances table is created for the two following scans. This is a matrix given

in Table 3.18:
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Table 3.18: The structure of corner distances table.

les—es] | lea—en | len-es] | eo-ad | Jen el
Hez,3 - ez,4” Hez,3 € H Hez,3 - ez,a” Hez,3 € H Hez,3 €5 H
lesi—essl | less=essl | lesa—enll | fesimens] | lless el
He‘h5 —. H

Where e, ; corresponds the intersection point of line Cl.L andCM L . Therefore

iis1 — €44 ;| corresponds to cornerDist_P["’ I, Bach row of this matrix corresponds to

|

cornerDist_P[i], which is found with given pseudo code in Table 3.2. The slope difference

values are found for both of the following scans. If the slopes of these line pairs are below
the given threshold, then an corner point could not be defined. So the distances related with
this corner are given as blank in the corner distances table (given as 100 and 200 in Table

3.19 and Table 3.20).

Table 3.19: The corner distances matrix of the previous scan.

1 £ 3 4 5
1 0.4144 27908 29215 19227 27909
z | 23785 2.5273 1.5083 2.37B5 100|
3 0.5a52 0.5650 0.0453 100 100
4 1.2123 08374 100 100 100
5 0.5652 100 100 100 100
& 100 100 100 100 100

Table 3.20: The corner distances matrix of the current scan.

1 Z 3 4 5

1 3.7364 3.4230 24653 16257 26171

z 0.43355 2.8354 29508 1.93595 283594
3| 24056 2.5380 1.5057 2. 4056 200
4 0.5435 0.5959 0.0015 200 200
g 1.22654 0.5451 200 200 200
£ 0.3995 200 200 200 200
7 200 200 200 200 200
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3) According to the corner distance matrices of following scans, an overlap table is created.

The structure of the overlap table is given in Table 3.21:

Table 3.21: Corner distances overlap matrix. For a chosen row and column, the first number
gives the row used from Table 3.19 and the second number gives the row used from Table 3.20.

The row in corner (The row in corner distances matrix in previous scan, The row
distances matrix in in corner distances matrix in current scan)
previous scan

1 (L1) (1,2) (1,3) (1,4)

2 (2,2) (2,3) (2,4) (2,5)

N (NN) (NN+1) (NN+2) (N.N+3)

In Table 3.21, for a chosen cell, the first number gives the row used in corner distances
matrix in previous scan and the second number gives the row used in corner distances matrix
in current scan. So the overlapping score of these rows is calculated and put into the cell. For
example, LADAR scans given in Figure 3.15 and Figure 3.16, the resulting overlap table is

given below as:

Table 3.22: The resulting corner distances overlap table in the structure given with Table 3.21
for Figure 3.15 and Figure 3.16.

1 2 3 4 ]

1 a 10 o 0 0
2 a = 0 a 0
3 a B 2 2 0
4 2 4 1 0 0
5 2 2 0 a 0
& a 0 0 a 0
7 a 0 0 a 0

When we have looked at this overlap table, two maximum points are seen at the second
column on the rows. This means that if we have looked at 2™ row in corner distance matrix
of the previous scan, it overlaps with 3™ row in corner distance matrix of the current scan or
4™ row in corner distance matrix of the previous scan; it overlaps with 5™ corner distance

matrix of the current scan. We can see the overlapping in Table 3.19 and Table 3.20 at the
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2" row and the 2™ column (which means 3™ corner distance matrix row) of the overlap table

in Table 3.22.

The maximum points for each row in the overlap table are found and the lines that construct
this pattern are voted by considering their value in overlap table. In fact, when the maximum
point in the overlap table decreases, this means the lines constructing that pattern does not
fully overlap. So reliability of that pattern decreases. As a result the voting of the lines they

construct also decreases.

This criterion is applied twice from current to next and current to previous, again because of
the same reasons given in Criterion 6. The resulting addition from this criterion to the

matching table is given below:

Table 3.23: Sub matching table (M77) of Criterion 7. The votes of the lines according to the
given Criterion 7 with weighting.

1 2 3 4 5 &} 7 3
1 0 0 0 0 0 0 a 0
z g 1] 1] 1] 1] 1] a 1]
3 1] 12 1] 1] 1] 1] a 1]
4 1] 1] 16 1] 1] 1] a 1]
5 1] 1] 1] 16 1] 1] a 1]
& 0 0 0 0 16 0 a 0
7 1] 1] 1] 1] 1] d a 1]
8 1] 1] 1] 1] 1] 1] a 1]
9 1] 1] 1] 1] 1] 1] a 1]

In Table 3.23, the resulting sub matching table is shown when the Criterion 6 is applied onto

the LADAR range scan given in Figure 3.15 and Figure 3.16.

Implementation Notes: There is an important difference between Criterion 6 and Criterion
7; Criterion 6 looks for the angles between the lines. A pattern consisting of angles is more
easily seen then a pattern consisting of corner distances. Since the intersecting lines mostly
create angles with degrees 0, 90,180,270 in an environment. In fact most of the indoor areas
are in rectangular shape and contains rectangular furniture. But to see same distances
between the corners is hard and to see same distance pattern is much harder. Therefore the

voting values of Criterion 7 need to be higher than Criterion 6.
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3.5.9  Sub Matching Tables Addition with Weighting

In this part, sub matching tables are multiplied with weightings and summed and final
matching table (MTY()) is formed. As you can see from the sub matching tables given, the
affect of these sub matching tables to the final matching table is different. If we evaluate

each criterion by considering its importance with respect to others:

Criterionl: This criterion gives the line pairs that have no chance to match because of the
dynamic limitations of the robot. To remove the effect of these line pairs, they are highly

negatively voted.

Criterion 2: The weighting to this criterion is low, since in spite of the sub criteria which
make mismatching harder, there is still a chance to make a mismatch. But in uniqueness

case, this weight is multiplied with inner weight, which highly increases its voting.

Criterion 3: This criterion is a simple criterion, and open to mismatches, so it is weighted
low. But in low structured environments, number of real corners became so low such as one
or two...Therefore in these cases, since the high inner weight of uniqueness case, the line

pairs are highly voted, which helps the matching table in these environments.

Criterion 4: The weighting of this criterion is neither high nor low. Most of the time, the
voting output depends on the inner weighting. Parallel line pairs can be seen easily, but also
these pairs with equivalent distance can be seen sometimes, which can cause mismatches.
Therefore inner weight of this is taken low. If the line to line distance is different from others
(uniqueness case), the parallel line pair is highly weighted. Also when the overlapping for
the sub criteria increases, inner weighting highly increases. As a result we can see high
voting at Table 3.9, because of high inner weights coming from high degree overlap and

uniqueness case.

Criterion 5: The weighting of this criterion is low. Since length of both sides ended lines
can easily be affected from the line slope seen from LADAR position which is given in
Endpoint Tolerance Threshold Calculation part. Also they are affected from the errors
occurred in the LADAR data, such as multiple line fit to same corridor. Therefore unless the

inner weight is high because of uniqueness, the output is low.
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Criterion 6: The weighting of this criterion is normal. The decision is totally given to inner
weighting. Inner weighting is low, if the overlap between the angle patterns is low, it is zero

for one or two angle overlap, but if it increases the weight also increases.

Criterion 7: The weighting of this criterion is higher than normal. In fact it has same pattern
structure with Criterion 6, but the mismatch becoming chance is much lower. Therefore it

has higher weighting than the one of Criterion 6. The inner weighting is same as Criterion 6.

3.5.10 Important Notes about the Criteria

The main aim in the criteria given between 3.5.2 and 3.5.8 is decreasing the positive votes
for mismatches, also increase the voting of correct matches. For this purpose some methods

in literature are eliminated and some new methods are added. These are;

1) Unique line pairs in a criterion compared are highly voted. This means if a relation
between line pairs does not seen between any different line pairs, these are highly promoted.
For example, this is mostly seen for parallel line distances, most of the distances between
parallel lines are so specific that they could not be equal to each other, because of the low

position error of LADAR data and the fitting line from the least square method.

2) Any criterion directly giving a decision as the given line pairs do not match is not used.
In fact, this kind of rules makes the matching line pairs, which are voted positively from all
other criteria, invalid. Therefore, except the Criterion 1, which makes a direct decision for
just obvious ones by taking into account the vehicle dynamics, no criteria that gives such a

decision is used. All criteria are based on promotion of matching ones.

In the real LADAR data, sometimes information about the given line segment changes. This
could be in different properties of features, such as a change in line length, line endpoint
positions, or line type, also in corner position or existence of a line or corner. In fact, the
reason can be that any slope change in LADAR referenced to the ground plane, that
navigation in a dynamic environment or that the objects reflects the LADAR beams with
changing intensities. An example situation taken from real LADAR data is presented in

Figure 3.26.
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Figure 3.26: The figure illustrating the fitting lines to LADAR data. Left one is from previous
scan and the right one is from current scan.

As it is seen from Figure 3.26, a change in LADAR data between following scans occurs
for the environment around the fitting line numbered 1 (points on its left disappeared).

Therefore the length and the type of the line change.

3) The relations about the type of line ends, such as open or left side ended, right side ended
are not used as individual criterion, also for a decision as the given line pairs do not match.
Since these are easily affected from the wrong fitting lines to the clusters corresponding
same feature in consecutive scans in real LADAR data. The real LADAR data is exposed to
some errors. Therefore the types of endpoints are easily changed. As a result, a definite

decision is not appropriate.
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Figure 3.27: The figure illustrating the fitting lines to LADAR data. Left one is from previous
scan and the right one is from current scan.
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In Figure 3.27, the line numbered with 1 belongs to same fitting line in current and previous
scans. These lines could be defined as both side ended lines. In fact, it is seen that the
endpoint of lines close to (0,0) point is ended with points goes perpendicular to the line,
When we have look at their endpoint further from origin, the line in left figure is ended,
since the consecutive point is too far from the endpoint, which is above the expected
divergence between consecutive scans explained in Figure 3.23. For the line in right figure,
again there are points showing that the line is ended, which are close and right side of the
line. Therefore any comparison could decide as they are not matching. Also with a small

error one of them could be decided as left side ended.

4) Angle pattern and corner distance pattern is specially used. Since going from an array of
feature properties, such as angle difference series of consecutive lines, decides the matching
of line pairs much accurate than the comparison of just one feature property. In fact, the
angle differences of lines are multipliers of 90 degree in most indoor environments, which

could cause mismatches when one by one comparison is made.
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Figure 3.28: The figure illustrating the fitting lines to LADAR data. Left one is from previous
scan and the right one is from current scan.

In some environments the lines constitute mind mixing situations that scan matching should
handle. As you can see from Figure 3.28, there are multiple line pairs with same parallel line
distance and there are multiple angles between lines that are equal and multiple corner
distances that are equal. For this purpose, using criterion that compares the properties of

multiple line pairs gives more accurate results.
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3.5.11 Application Areas of Criteria and Their Benefits:

Each criterion has an importance in the implementation of scan matching. Criterion 1
prevents algorithm from redundant calculation, since it demotes the line pairs which does not
have any chance to match because of the dynamics of the robot (especially maximum
rotation rate of the robot). If the limitations of the criterion are held in dynamics of the

robot, it does not have a chance to make wrong judgment.

Criterion 2 is added to consider low structured environments. This kind of situations is
mostly seen for the LADAR data of real environments, such as long corridors, dead-end
ways. Also these are seen especially when the robot turns in such an area. Since the area is
low structured, the observed features are not enough to apply standard criteria. For this
purpose, the lines that are considerably longer than others in same slope are matched. This
algorithm is simple; gives advantage in low structured environments, and usually could not
find matching in dense structured environments. Also its mismatch chance is highly

degraded by addition of uniqueness.

Criterion 3 is a standard simple matching criterion. It is specially implemented for any case
that has corner intersection angles different from standard ones (90,270). It gives important
advance in these situations. By uniqueness search, its wrong matching capability highly

degraded. Also this criterion is powerful in low structured environments.

Criterion 4 is a standard matching criterion. But it has improved by addition of extra voting
to uniqueness and overlap calculation. In most of the real environments parallel lines are
seen. Mostly these line pair distances are unique. Furthermore, to separate the line pairs with
same line to line distance, overlap information is added. Also to prevent some mismatches,

extra vote to uniqueness is added.

Criterion 5 is a standard matching criterion. But it has improved by addition of endpoint
tolerance concept, which means an uncertainty is added to the length of both side ended line.
Addition of this concept improves the robustness of the criterion; it prevents some of the
potential mismatches happen because of the view angle of LADAR to these lines. On the

other side, by addition of uniqueness, it gives a better correct decision capability.
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Criterion 6 and 7 are novel techniques. They are not so powerful in low structured
environments. On the other side, they have an important advance in an environment with
adequate numbered features. Because of the pattern, comparison between multiple features is
applied, which results with votings to multiple line segments. Also this results with an

important decrease in mismatching chance.

Each criterion has very low computational complexity with respect to all scan matching
algorithm. Also each criterion has a special benefit in the appropriate environments
mentioned above. Also some of them are general and constructing the base of the LADAR
feature based scan matching. Extracting one of them does not give a benefit to algorithm
computationally. Conversely it degrades the robustness of the algorithm. Accordingly a

comparison does not made between the criteria.

3.5.12 Evaluation of Matching Table

After the matching table is constructed, it is need to be evaluated correctly to find pose
difference precisely. The following subsections gives the procedure implemented for the

pose difference calculation.

3.5.12.1 Threshold the Matching Table

The steps for threshold the matching table are:

1) First the values that are below a threshold (which is given in the config file) in the table
are discarded.

2) Then for the rows and columns that contain the maximum points are found.

3) Zeroizing is started from the maximum point in the table by resetting its rows and
columns. It goes to the smaller maximum points in other rows and columns.

4) In this process if column id in finding maximum of the rows and the row id in finding
maximum of the columns do not match, this means for that row there is a conflict. So the
one, which is close to the line passing from maximum points is taken. The resulting

matching table is given in Table 3.24:
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Table 3.24: Final resulting matching table (M7()) . The corresponding row and column of the
cells with values more than zero shows the matched line pairs.

1 2 3 % 5 & 7 &3
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1]
1]
1]
1]

oo o oo oo o

LY u B v B N n R ) I R R N

—_
[}

Notes: As an example, assume the maximum point in column 3 will be 39 in row 4, and if
maximum point in row 3 will be 42 in column 5, then the one closer to line connecting the

maximum points will be chosen.

The line pairs which contain positive number in corresponding row and column of the final

resulting table, are defined as matched LP (matching line pairs). We can define them as:

Table 3.25: The pseudo code giving the calculation of matched LP (matching line pairs).

Algorithm_matched Lines (C C MT)

curr’ prev”’

1: count=1I;
2: while count< ( number of MT()>0)

3: if ZMT(coum‘,i) > 0 where n is the number of columns in MT()
=)

find the Index of MT(count,:)>0
store <LineID["’“"’] = count, LineID'""") = Index> to matched _LPL""

prev curr

4

5

5: count=count+1;
6: endif

7: endwhile

8: return matched LP

where matched LP consists of the line pairs’ cluster ID from the previous and current

scan matched according to M7Y().
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3.5.12.2 Finding the Rotation in the Pose of the Robot

In this part, the rotation in the pose of the robot is calculated. For this purpose; angle
differences of the line pairs (one from previous scan and one from the current scan) are

calculated.

Table 3.26: The angle difference between the lines of previous and current scan.

1 2 3
206224
20,8901
22,4541
21.6135
20,6544
21,6891
23.0676
20,6420
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In Table 3.26, first column consists from the angle difference in degree, second column the
line number in current scan, third column the line number in the previous scan. As you can
see from the angle difference in column 1 given in figure above, the robot has a rotation
about 20 degrees. To find the result much precise a method eliminating the outliers is used.

The steps for this method are given in Table 3.27:

Table 3.27: The pseudo code of the algorithm that finds the rotation in robot pose from the slope
differences between the matched line pairs by using outlier rejection methods.

Algorithm_Rotation Finding(C C . .matched LP, Threshold)

curr’ prev”’

1: function slope_difference (slopel,slope2) // finds the slope difference
© retrieve <Line[Dprev,LineIDmr> from matched LP

: for i=1 to number of LinelD

W

prev
in eID[[)’

] . i
’”'].L.Slope ,C [nenl), ].L.Slope )

. i . L
SlopeDiff g slope_difference(C l[wv -
endfor
deviation=0o0
count= size of translations
while (deviation > Thresholdl and count> Threshold2 )

count= number of members in LinelD

N RN AT

prev
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Table 3.27continued

10:  j=LineIDV]

prev

11:  jj=LineID"]

curr

12: resll = \/ cl] Llength*C L] L.length

prev curr

count

z (SlopeDiff i pog [i])

i=1

13: result rotation =

count

z res [i])

i1

14: C=max(| SlopeDiff - result rotation|) ;

15: find Index of C in max(| SlopeDiff - result rotation|);

16: store...

SlopeDiff " SiopeDiff et [inerD
LinelD [1:/ndex-1] , LinelD [Index+1:count

curr curr

to matched LP
17: count=count-1

18:  deviation=max(| SlopeDiff - result rotation|)

19: endwhile
20: return result rotation

[1:Index—1] . [mdex+1:count
prev 2 LlneIDprev 2

As you can see from the given method; the rotation in the pose is calculated recursively, in
which for each step, the outlier angle which causes the biggest deviation (from the mean of
the slope differences) above the defined threshold is eliminated. Also the rotation is
calculated as a weighted sum of the slope differences by considering the length of the lines

which composes them.

Implementation Notes: Considering the length of the lines is so important. Since, while the
length of the line increases, the accuracy of its slope also increases. This is coming from the

error model of LADAR and the structure of Split and Merge Algorithm.

3.5.12.3 Finding the Translation in the Pose of the Robot

In this part, the translation in the pose of the robot is calculated. For this purpose, the
resulting matching table is controlled whether there are any line pairs which have an angle
difference above the given tolerance from the found rotation result in the pose. The ones
above the given tolerance are set to zero in the matching table. After this step, the line pairs

are divided into two groups to calculate translational difference in X and Y axis.
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The lines with a slope difference below a threshold to the X axis line are found for the
current scan. These lines are grouped two by two with the corresponding ones from the
previous scan as they provide the slope difference between them below the predefined
threshold. A vector is constructed by using the line to line distance and direction information
between these line pairs. Constructed vector dataset is defined as vector x. Same procedure
is applied to for the lines with a slope difference below a threshold to the Y axis line.
Constructed vector dataset is defined as vector y. Vector summation of vector pairs, one
taken from vector x dataset and one taken from the vector y dataset gives a good estimate

for the translation vector of the robot.

This method uses a similar calculation with finding translation from the distance between
matched corners from previous and current scan. However, this method eliminates the error
coming from the composed error in position of corners. Since the distance is taken from the
center of matched lines and also the vectors have a direction difference above a level
between each other. Further information is given in The Details of Proposed Method for
Translation part. The algorithm which finds the translational difference for the line pairs

below slope difference threshold with X axis is given in Table 3.28:

Table 3.28: The algorithm that finds the translation vector from the line pairs below slope
difference threshold with X axis.

Algorithm_Translational_Difference VectorX (C

result rotation, Threshold)

1: function trans_acc2rot(pointl, rotationl) // transfers the cartesien coordinates of
pointl according to given rotation in cylindirical domain

: function comp_dist2line(linel,pointl) // calculates the pointl to linel distance

: retrieve <Line[D LineIDcm> Sfrom matched_LP

C matched LP,

curr’ prev’

N

3 prev?
4: rotation=result rotation

5 count=1;

6: forj= 1 toto size of LinelD,,,,
7 k= LinelD’

8

9

prev

m= LinelD/

curr

if | Cl] L.slope — cll .L.slope + rotation |< Threshl and ...

prev

((C[’"] L.slope <60) or (C[’"] L.slope>300) or (120< cl] L.slope < 240))

curr curr curr

curr

10: LinelDx""") = LineID/ |
11: LineIDx ™) = LineID’
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Table 3.28 continued

12: mid_point=trans_acc2rot ( mean of C I[Bkrlv .L.endpoint, rotation)

13: dist _linx!"" = comp_dist2line ( CC[;"r]r .L ,mid_point)

14: Store <a’ist _lipxlee, LineIDfo,,”et"t] , LineleEffrf”t]> to vector _ xL]
15: Store <Slope  xleemd = € c[u'”,]r L.slope + 90> to vector _x"

16: count=count+1;

17 endif

18: endfor

19: return vector x

Same algorithm is used for the line pairs below slope difference threshold with Y axis. So

the if statement inside the pseudo code became as:

Table 3.29: The algorithm that finds the translation vector from the line pairs below slope
difference threshold with Y axis.

Algorithm_Translational Difference VectorY (C

result rotation, Threshold)

C . .matched LP,

curr ’ prev

11:  if | Cl] L.slope — cll .L.slope + rotation |< Threshl and ...

prev curr
((CL[,ZF], L.slope < 210) .. or (C") L.slope>300) || (30< Cc[,;”r]r L.slope < 150))

curr

14: Store <dist _liny ["0”’"], LinelDyE;fZ:”'] , LinelDyL[,;‘;;’"’]> to vector _ y[c"“”’]
15: Store <Slope_ yleown] - CC[Z;], L.slope + 90> to vector _ y<)

19:return vector y

After vector x and vector y dataset has been found, the translation vector candidates are
calculated by taking one from vecfor x dataset and one from vector y dataset. For the
calculation first the vector pairs that have a direction difference below a given threshold are
eliminated. This is important for the accuracy of translation calculation. From the succeeded
ones, translation vector candidates are calculated with the direction and magnitude

information. The algorithm which finds these is given in Table 3.30:
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Table 3.30: Algorithm calculating the translational motion of the robot from the translation
calculated translation vectors found in Table 3.28 and Table 3.29.

Algorithm_Translational Change(vector x, vector y, C

curr’ prev)

1: function trans_acc2rot(pointl, rotationl) // transfers the cartesien coordinates of
pointl according to given rotation in cylindirical domain
2: function comp_dist2line(linel,pointl) // calculates the pointl to linel distance

3: retrieve <dist_linx,slope_x,LineIDx LineIDxCW> from vector x

prev?

4: retrieve <dist_liny,slope_ v, LinelDy prev,LineIDch> Sfrom vector_y
5: fori=11to size of slope x

6: for j= 1 to size of slope _y
7: diff= slope_x[i] —slope _y['i ]
8: if | diff |> Threshl
dist _limV = dist _linx! * cos(diff)
9: 0 = arctan e
dist _linx"’ *sin(diff")
dist _linx!"
10: const =|————
cos(diff )
11: translation = [const * cos(slope_x[i l+o- 90) const * Sin(slope_x[i l+o- 90)]
12: IDx=[ LineleEJev LineIDxL[,;]W ]
13: IDy=[ Line]DyEfJev LineIDyE’Jrr ]
14: Li=trans_acc2rot ( mean(C gg(”] L.endpoint),...
result rotation)+translation
15: L2=trans_acc2rot (mean( CLIrff(l)].L.endpo int), ...
result rotation)+translation
16: if comp_dist2line (L1, C'>®) [ ) < Threshold] and...
comp_dist2line(L2, C'>* VL) < Thresholdl
17: trans*™ = translation, ID1"! = [Dx, ID2E*] = 1Dy,
18: store <trans[°°“m],ID1[°°”“t],ID2[°°“m]> to translations"
19: count=count+1
20: endif
21: endif
22: endfor
23:endfor

24:return translations

After the translation vector candidates are found, the final translation is calculated like a

method given in Table 3.27. The pseudo-code of the algorithm is:
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Table 3.31: Algorithm calculating the final translation of the robot from the translation vectors
by using outlier rejection methods.

Algorithm_TranslationofTheRobot (C,,, , C
1: deviation=00;
2: retrieve <t1‘ans, IDI,ID2> from translations

translations, Threshold)

prev’

3: count= number of members in ID1
4: while (deviation > Thresholdl and count> Threshold?2 )

5 count= number of members in ID1
. - [i]
6. Jj=ID1,,
7. =D,
8: resll = \/ Cﬂv Llength* Cc[{jr] Llength

count

Z (translation [ e [i])

9: result _translation = = —
D res )
i=1
10: C=max(| translation - result_translation|)
11:  find Index of C in max(| translation - result_translation|)
12: store...

tranSlation [l:Index—l] , tranSlation[]nd@Hl:caum] , ID][I:Index—l] , IDI[Indeerl:caunt] ,

ID2 [l:Index—l] , ID2 [Index+1:counl]

to translations
13: count=count-1
14: deviation=max(| translation - result translation)|),
15: endwhile
16: return result translation

As you can see from the given method in Table 3.31; the translation in the pose is calculated
recursively, in which for each step, the outlier translation which causes the biggest deviation
above the defined threshold is eliminated. Also the translation value is calculated by

considering the length of the lines which composes these translations.

The Details of Proposed Method for Translation

To find the translation in the pose between following scans the translation based on line
distances between matched lines is used. It is seen that using corner points of the matched
lines are easily affected from the small deviations in the slopes of the lines. This affect is

illustrated in Figure 3.29:
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Figure 3.29: The effect of a small error in the slopes of lines constructing the corner point.

As you can see from the figure; small changes in slope of lines highly affect the point they

intersects. This error increases:

e  When the length of the lines decreases
e  When the angle between lines increases
e When extension of the lines increases (If the corner point is at the extensions of these

lines)

As a result, the orientation change calculation based on corner points is influenced to a high
noise. The steps of proposed method to solve this orientation problem are given below:

with a slope difference below a threshold to the Y axis line

1) Group the lines into two classes as the ones with a slope difference below a threshold to
the X axis line (defined as close to X axis). and Y axis line (defined as close to Y axis).

2) Find the distance vector (vecfor x) between the lines close to x-axis in previous and
current scan

3) Find the distance vector (vector y) between the lines close to y-axis in previous and
current scan

4) Find the translation vector candidates from the distance vectors in x and y axis (vector x

and vector y)
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Figure 3.30: The calculation of translation vector.

5) Find the resulting translation, by eliminating the outliers in the translation vectors

matrix, till the deviation is below a threshold value.

3.5.13 The Cases that Pose Difference Could Not Calculate

While the robot is going through an unstructured environment, such as the places where lines
and corners could not found, the places where short and scattered lines are observed or long
corridors..., rotation and translation difference could not be calculated. For these cases two

different solutions are applied:

1) Ifthe rotation and translation in the robot pose could not be found. The pose difference is

taken from the odometer data. The pseudo code that finds this translation is given below:

Table 3.32: The algorithm that finds the robot pose update based on the odometer data.

Algorithm Odometer Pose Update (odometer,robot_pose)
1: translation_odo=odometer.,  -odometer,  (x,y information)

curr prev

2: rotation_odo=odometer., .-odometer. (0 information)

curr prev

3: translation= translation_acc2rot ( || translation_odol|, rotation_odo)
4: rotation= rotation odo; return translation,rotation
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As it is seen from the pseudo code, the change in the ododata between following scans are
calculated. The angle difference between the angle of the robot coming from scan matching
in previous step and the angle of the robot coming from odometer in current step is found.

The change in the ododata is transformed according to found angle difference.

Implementation Notes: Sometimes when the robot starts scan matching, the odometer data
of the robot is not being initialized. So the coordinate axes of odometer and the scan
matching does not overlap. To solve this problem, coordinate transformation is need to be

made, which is also added in the code above.

2) If the robot goes through an environment that consists of lines in the same direction,
such as long corridors, which contain long parallel lines, the rotation in pose of the robot
could easily be calculated. Since all the lines belong to the cluster close to one axis (X-axis
or Y-axis) and there is no line belong to the cluster close to other axis, translation is could

not be calculated.

For this situation the rotation is calculated and translation is calculated from the odometer by

using calculations given in Step 1.

3.5.14 Discussion about the Probabilistic Aspects of Scan Matching

Scan matching applied in this thesis is propagated in a deterministic way. However it has
probabilistic aspects. In fact the matching table, which constructs the baseline of the
algorithm, consist of votings based on the importance of applied criteria and overlap level
between the feature sets in given criteria. Each criterion includes multiple votings inside and
these are multiplied according to the importance of the criterion. Instead of continuous
interval for votings as in probabilistic case, these are discredited in some levels. Also for the
selection of matched line pairs, a gating is applied according to the general distribution of
matched line pairs. The calculation of translation and rotation includes the lengths of line
pairs used. Their effect to the final pose is engaged to the length of their line pairs. This can
be explained in similar way, as a line length based distribution addition to pose calculation in
probabilistic aspects. Furthermore the final pose is calculated recursively by the elimination
of some candidates according to their difference from the mean. Also this elimination is
stopped if the variance is below a given value. This can be interpreted as a probabilistic

gating.
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3.6 Fault Correction and Deterministic Global Localization Algorithm

In this part, some simple methods to solve probable pose update errors encountered during
the navigation of the robot is presented in fault correction part. Also a simple method, which
is tried as an initiate for the SLAM implementation, is given in next chapter. This method is
named as deterministic global localization algorithm. The main aim in this algorithm is to

remove the accumulated error in pose and obtain more consistent mapping.

3.6.1 Fault Correction:

Scan matching algorithms could encounter mismatches. This could be because of a change in
pitch and roll of LADAR orientation, a turn faster than the algorithm could handle,
unstructured environment or non reflective materials observed... In these cases scan
matching algorithm can fails, which is resulted with a wrong pose difference update. In these
cases, after the wrong pose obtained all the localization output and mapping goes on with the
affect of this wrong update. For this purpose, the output of different sensors could be used as
checkpoint for the main scan matching output. In our datasets, odometer output is available.
Therefore, it is used to correct the pose difference if a jump in pose has occurred in main
scan matching algorithm while it is not seen in synchronized odometer data. However the
error tolerance between sensors and scan matching, the situations that correction is applied
are needed to investigate carefully. For example, if a yaw rate gyro is used, whether an error
is occurred in rotation can be checked. For skid steer robots, translation difference in scan
matching can be checked with odometer while the robot is not turning. In fact, a correction is
applied to pose difference according to the accuracy of used sensor. In these datasets, the
fault check and correction based on odometer data is implemented as an option but not used.
The reason is to prevent algorithms to be dependent to odometer data and also to make

improvement process unaffected from odometer data.

3.6.2  Deterministic Global Localization (DGL):

As we know Scan Matching is an algorithm based on the matching of following scans. As
like odometer, the error is accumulated. As the distance the robot has gone increases, the
accumulated error also increases. To solve this, a low level SLAM initiate tried to be added.
If we have able to track some reliable features in these following scans, we can detect the
mismatches in scan matching when it has occurred. For this purpose an algorithm is formed,

which tracks stable features and makes a correction when a jumpy drift has occurred in the
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scan matching. The algorithm consists of two parts, the correction based on real corners and

correction based n both side ended lines.

3.6.2.1 Correction Based on Real Corners

Real corners are good features for tracking and making global corrections on the pose of the

robot. The advantages of these features are:

e The position difference between the matched corners could directly be used for finding
the correction in translation error of the robot.

e Since the real corners consist of constructing line pairs, the difference between the slopes
of matched line pairs could directly be used for finding the correction in rotation error of the
robot.

e Since real corners consist of directly intersection of the line pairs, not from their

extensions, the error in position of the corner is much less.

For this purpose an algorithm is constructed consisting of two parts: Finding stable features
and make correction based on these features. Finding stable features is an important part
since factitious lines could be extracted from line extraction algorithm and these factitious
lines could construct factitious corners. Before sending the real corner to the correction part,
we wait for to be seen multiple times. The pseudo code for finding stable corner features is

given below:
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Table 3.33: The pseudo code that eliminates cognitive real corners.

Algorithm_Stable_Corners(Cnr,

curr’

robot_pose, Threshold)

1: function transform_global( pointl, pose) // trans fer the pointl in local coordinates

according to the given pose information
: retrieve <Cnr _Real Memory,Cnr _ Count> from memory

. Cnr _Real = the members of Cnr,, .Class which equals “Real Corner”

curr

Cnr _Real [ Xy =transform_global(Cnr Real [ Xy, robot_pose)

2
3
4: fori=I to number of members in Cnr _Real
5
6 for j=1 to number of members in Cnr _Real Memory
7

if distance between (Cnr _Re al" xy,Cnr _Real _ Memory[*/] xy) <.
Thresholdl

8: if slope difference between (Cnr _Real 1 slope, ...
Cnr_Real MemorVlslope ) < Threshold?

9: Cnr_ Count™ = Cnr_ Count +1

10: else

11: Add Cnr _Re al™ 1o Cnr _Real Memory

12: endif

13: endif

14: endfor

15: endfor

16: for i=1 to number of members in Cnr _Real _Memory
17: if (Cnr _ Count) = Cnr _ Countc[,’;]r,)

prev
18: Delete (Cnr_Real Memory i )
19: endif
20: endfor

21: store <Cnr _Real Memory,Cnr _ C0unt> to memory

22: stable_Cnr=members of Cnr _Real Memory that verifies

Cnr _ Count'! > Threshold3
23: return stable_Cnr

The steps of pseudo code given in Table 3.33 are:

1) Compare real corners (corners) with corners in memory. If they are not seen in memory,

add them to memory. If they are seen in memory, increment their count.

2) Give the corners as output that have counts above the threshold and do not be decided to

delete in that step.

3) If the corners in memory are not seen in real corners for that step, delete the unseen ones

from memory.
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The pseudo code to make correction based on these corner features is given in Table 3.34:

Table 3.34: The algorithm that calculates global correction for the robot pose if available.

Algorithm_Corrrection (stable Cnr,Threshold)

1: retrieve <dist _traveled,Cnr _Stable _ Memory> from memory
2: fori=I to number of stable Cnr
3: for j=1I to number of Cnr _Stable Memory

4: if distance between (stable _ Cnr!! xy, Cnr _Stable Memory[j] Xy ) <.
Thresholdl
5: if slope difference between (stable _ Cnrl! slope, ...

Cnr _Stable Memory[" ] slope ) < Threshold?2

6: if dist _traveled Ul> Threshold3
7: found Cnyleom] =[stable _ Cnrll Cnr _ Stable Memory["]]
8: reset dist _traveled L

9: count=count+1

10: else

11: found _flag -y

12: endif

13: endif

14: endif

15: endfor

16: endfor

17: for i=1 to number of stable Cnr
18:  if founa’_ﬂag[i] ==(

19: Add stable Cnr! 1o Cnr _ Stable Memory
20: endif
21: endfor

22:dist _traveled = dist _traveled+ || scan _mat _ pose
23: for i=1 to number of found Cnr

24: correction!! = distance between ( found _Cnr'™ | found Cnr")
25: endfor

—Sscan _mat _ pose

curr prev | |

I & T
26: result correction=— Z correction!!
m-

27: return result correction

In the correction part, given in pseudo code in Table 3.34,
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1) The incoming stable corners (stable Cnr ) from finding stable features part are

controlled with the corners in the memory (Cnr _ Stable Memory ) based on

e The distance between the corners.
e The slope difference between the line pairs constructing the corners.
e The slope difference between the lines in same side of the corners.

e The distance travelled (dist_traveled) when the corner in the memory is seen again.

2) If the input corner matches any of the corners in the memory according to the rules given
in Step 1, the position and slope difference is taken and added to the correction matrix. If

not, the corner is added to the corners in memory.

3) If multiple correction values are found the mean of these values is calculated and pose

correction is given as result_correction.

Implementation Notes: Adding the distance travelled (dist traveled) is important. By this
property after a stable corner is first seen it could make correction after the robot goes a
distance above given threshold (Threshold3). Since the corner is seen multiple times in
consecutive scans this property prevents continuous corrections after each time the corner is
seen. The aim is to make a correction after the loop in the robot path is closed. Continuous
corrections based on same corner makes the robot localization oscillatory. In fact, in
continuous correction case the robot pose will be dependent on the correction coming from

an corner instead of total scan matching solution given in 3.5.12.2 and 3.5.12.3.

3.6.2.2 Correction Based on Both Side Ended Lines

Both side ended lines are good features for tracking and making global corrections on the
rotation of the robot. They have a unique length that is not affected from the position of the
robot. Therefore after a long run it can be still easily detected because of its length. For this
purpose, first both side ended lines are tracked in cognitive scans. This is a kind of gating
and it protects the rotation calculation part from the phantom features, which decreases the
wrong matching chance and also the workload on the rotation calculation part. In rotation
calculation part, stable lines incoming are checked with the ones in memory according to

predefined tolerances and in case of matching, corrections in pose is made.
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Table 3.35: The pseudo code that eliminates cognitive both side ended lines.

Algorithm_Stable Lines(C ,robot pose, Threshold)

curr

1: retrieve <L _ BSE _Memory,L Count> from memory

2: L BSE = the members of C,,,,
3: fori= I to number of L _BSE

L.Lineclass which equals “Both Side ended”

4: L Pos [l =transform_global( mean(L _BSE ] L.endpoint ), robot_pose)
5: for j=1 to number of L _BSE _Memory
6: if distance between (L _ Pos 1 and ...
mean(L _BSE _ Memory[j ] .L.endpoint) )< Threshold]l
7: if slope difference between (L _ BSEV] .L.slope and...
L BSE _Memory[j ].L.slope ) < Threshold2
8: L_Count[i] = L_Count[i] +1
9: else
10: Add L _BSE" 10 L _BSE_Memory
11: endif
12: endif
13: endfor
14: endfor

15:for i= 1 to number of L _BSE _Memory
16:  if (L Countll =L _ Countc[;],,,_)

prev

17: Delete (L _BSE Memory[i] )
18: endif
19: endfor

20: store <L _BSE _Memory,L Count> to memory

21: stable Lines= members of L BSE Memory that verifies ...
L Count" > Threshold3

22: return stable Lines

The steps of pseudo code are:

1) Compare both side ended lines with lines in memory.If they are not seen in memory add
to memory.If they are seen in memory increment their count.

2) Give the lines that have count above a threshold and do not be decided to delete.

3) If the lines in memory do not see in both side ended lines, delete the unseen ones from

memory.

The pseudo code to make rotation correction based on these corner features is given below:
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Table 3.36: The algorithm that calculates global rotational correction for the robot pose.

Algorithm_Rotation_Corrrection (stable Lines, Threshold)

1: retrieve <dist _traveled, L _Stable _ Mem07y> from memory

2: for i= I to number of stable Lines
3: for j=1 to number of L _Stable Memory

4: if distance between (mean(stable _Lines [i].endpo int), ..
mean(L _Stable Memorjy[j] .endpoint)) < Thresholdl
5: if slope difference between (stable _Lines ] slope, ...

L Stable Memorjy[j ] slope ) < Threshold?2

6: if dist _traveled Ul 7hresholds

7: found _ [leow] =/ stable _Lines iy _Stable Memorj/["]]
8: reset dist _traveled ]

9: count=count+1

10: endif

11: found _ﬂag[i] =]

12: endif

13: endif

14: endfor

15:  if found _flag =g

16: Add stable_Lines[i] to L _Stable Memory
17: endif

18: endfor

19:dist _traveled = dist _traveled+ || scan _mat _pose
20: fori=1 to number of found L

—Sscan _mat _ pose

curr prev | |

21:  rotation_ correction'] = slope difference between ( found _Cnr[i’l] and ...
found _ Cnrl?)
22: endfor

I & . T
23: result rotation correction=— Z rotation _correction g
mi

24: return result rotation correction

In the correction part, given in pseudo code above,

1) The incoming stable lines (stable Lines ) from finding stable features part are controlled

with the lines in the memory ( Line _Stable Memory ) based on

o The distance between the center point of lines

o The slope difference between the lines
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o The distance traveled (dist traveled) when the line corner in the memory is seen

again.

2) If the input line matches any of the lines in the memory according to the rules given in
Step 1, the slope difference is taken and added to the rotation correction matrix. If not the

corner is added to the lines in memory.

3) If multiple correction values are found the mean these values are calculated and rotation

correction in the pose is given as result rotation_correction.

3.7 Occupancy Grid Mapping

For the demonstration of scan matching results, occupancy grid mapping is used. Brasenham
Line Algorithm [23] is used for the calculation of the empty grid cells before the LADAR
scan hit point. For occupancy grid mapping the hit point of LADAR range scan with a
triangular density function in 2D plane is applied. But it is seen that to use such a function
increase the thickness of the border lines, which makes the analysis of performance of the
algorithm harder. In performance tests, thin border lines are needed, since if any error occurs
it can be observed by the change in position or slope of the border line. Therefore this
mapping process downgraded to the deterministic level. Also the probability of an occupied

cell to be unoccupied is highly degraded.

3.8 Chapter Summary

In this chapter, scan matching algorithm is presented. Scan matching algorithm takes
LADAR and odometer data as an input and gives area map and pose information as an
output. At the beginning, LADAR data is processed by a line extraction algorithm, which is
known as Split and Merge algorithm. Resulting line segments constructs the base for feature
and feature properties set for main scan matching part. These features are line segments and
corners and patterns consist of their multiple sets. As the feature properties, type of line ends,
type of corners, distance between parallel lines, unique lines with longer length, patterns
consisting of consecutive corner distances... etc. are used. These feature set and properties
taken from consecutive LADAR scans are evaluated according to their overlap level by
different criteria. This evaluation is resulted as votings between the initial line pairs
constructing these features from previous and current scan in matching table. By the

evaluation of votes in matching table, matched line pairs are obtained. Between these line
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pairs transformation vectors are defined. By using vector addition the translation and rotation
change between consecutive scans is calculated. Summation of these differences gives the

pose of the robot.

During the incremental pose estimation, also the error in pose is accumulated. For this
purpose a DGL algorithm is added. This algorithm uses both side ended lines and real
corners as landmarks. All these landmark candidates are passed through a gating to prevent
comprising of phantom landmarks. When a landmark is observed again, such as in closed
loop cases, the pose of the robot is updated according the accumulated error between the
initial and last positions of landmarks. This gives an error correction in a considerable level

for the pose of the robot.

During the implementation of global localization part, it is seen that the localization accuracy
utmost descends to the pose error level of landmark that is initially seen. Besides, no
correction is given to estimated position and orientation of landmarks in memory. It results
as the permanence of pose error during all the path of the robot. After an accumulated error
level with the instant one coming from scan matching, it precludes the association of
landmarks and observed landmarks are detected as new landmarks. As a result of evaluation

of these problems, FastSLAM algorithm is chosen to be implemented to solve these.
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CHAPTER 4

SIMULTANEOUS LOCALIZATION AND MAPPING

In this thesis, simultaneous localization and mapping (SLAM) algorithm is also implemented
to yield global localization. From SLAM algorithms, FastSLAM 2.0 is chosen since it solves
the problems coming from DGL implementation mentioned in summary part of Chapter 3.
Furthermore, its advantages to EKF SLAM algorithms are mentioned in Section 2.3 of
Literature Survey part. In this chapter, FastSLAM is added at the output of main scan
matching algorithm. Addition of FastSLAM gives the ability to eliminate the accumulated
pose error coming from scan matching algorithm, on the other hand scan matching algorithm
gives a better pose information (than odometer) which makes the data association problem
easier, rate of wrong associations decreases and as a result, the performance of FastSLAM

increases.

In this part, standard FastSLAM 2.0 algorithm and a modified version are implemented. For
the prediction step, odometer motion model is used. Landmarks are extracted from the
feature set used in scan matching part. In data association, particle weight calculation and
feature update parts, multiple positions of landmark is used to add orientation information of
landmark into calculations. In modified version of FastSLAM algorithm, single position of
landmark is used, but also orientation information of landmark is added as a parameter into

the EKF filter.

4.1 Structure of the FastSLAM Algorithm Implemented

In this part, the structure of the FastSLAM algorithm implemented will be described. The
appropriate illustration describing the general structure of the algorithm is given in Figure

4.1 and pseudo code giving its implementation is given in Table 4.1.
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FastSLAM algorithm is a combination of particle filter and Extended Kalman filter (EKF).
All the information about the localization of the robot and map of the area is kept in
particles. In fact, for each particle EKF estimates the pose of the robot and landmarks with
their covariance. So the structure of particle consist of the current and previous poses of the
robot, the pose error covariance matrix, the orientation of landmarks and their covariance
matrix and the weight of the given particles in pose estimation of the robot. The structure

that particle contains can be given as:

particle" xv = [x [m],yp[m],9 [m]] @“-1

Where x p[m], % p[m],Hp[m] are the pose estimation of the robot for particle m, they can be

defined as vehicle states;

(] Im g 2 gy L Im "]
particle'™ xf = ) R T 1y 11 4-2)
y ’ PR )
Where lmx[m’"] are the pose estimation of landmark » of the particle m. pam’cle['"]. pV is

the pose 3 x 3 covariance matrix of particle[’”].xv and particle[’"].pf "l s the 2 x 2

Im )

l [m.n]
covariance matrix of for each landmark, that is particle ['"].xf [ = { } .
y

The assumed noise in each step for particle[m].xv, which is known as process noise, is

given as:
gmtl 0 0
R=| 0 ¢, 0 (4-3)
0 0 8rot2
Where ¢,,, &,,,, and &,, are the zero order Gaussian noises, in order, for the first

rotation O , the translation Oirans and second rotation Oror2 for the odometer motion

80



o

trans °

o

rot

model given in Section 4.2 . O

rotl >

, are the control inputs. The assumed noise for

each step for particle (], pv, which is known as measurement noise, is given as:

e, 0
0= { } (4-4)

Where ¢, and &, are the zero order Gaussian noises, in order, for distance, and angular

orientation of the landmark referenced to pose of the robot.

0

trans °

In the algorithm, first control inputs (O

rotl >

0,,,) according to odometer motion

model is calculated from the incoming pose difference from scan matching (Ax, Ay, A0) .

[m]

Pose of the robot in each particle ( particle’™.xv) is updated according to control inputs and

assumed pose noise (R). This is known as prediction step of EKF. When a new landmark is

observed, the position of landmark is added ( particle[m].xf 1y with its covariance

( particle['”]. pf ["]). When a landmark is observed again, the pose of the robot (state update)

and landmark positions (landmark update) are corrected, which is known as measurement

(correction) update step of EKF.

In FastSLAM 2.0 algorithm, in the measurement update, first the proposal distribution in
particles is sampled according to the observed landmark, which gives better particle
diversity. Then the weights of the particles are recalculated. This is done according to the
overlap between predicted landmark position and observed landmark. The weight shows the
accuracy of estimated robot path and landmark positions calculated for that particle. The
surviving particles are resampled in proportion to their weights as they give predefined
number of particles. This gives better particle diversity. After this step the landmark
orientations and their covariance are updated same as the measurement update part of EKF.

In Table 4.1, the steps of the FastSLAM algorithm are given as a pseudo code and in Figure

4.1, the general structure of FastSLAM algorithm is given as a schema:

81



Table 4.1: The pseudo code giving the implementation of FastSLLAM algorithm.

C_ L Cnr

curr curr curr)

Algorithm_FastSLAM (particle, robot _pose .., robot pose

prev’

1: take FastSLAM paremeters,threshold and noise values (Q,R) from configuration file
2: [0, ., O

rotl’ trans ’

0,,,,]=inverse_odometer_motion(robot _pose .  robot pose,, )

prev’

3: particle =FastSLAM_Prediction (particle, O, ,, 0,,.., O, O);

4: stable Lines=Stable Lines(C_ .L,robot pose Threshold),

curr curr ’

5: [znL zfL ,idfL]=FastSLAM DataAssociation_Lines (stable Lines, Threshold, ...

robot _pose,,. )

6. stable Corners=Stable_Corners(Cnr

curr’

robot _pose,, . ,Threshold);

curr ’

7: [znC, zfC ,idfC]=FastSLAM DataAssociation_Corners (stable Corners, Threshold,
robot _pose,, )

8: zn=[znL znCJ]; zf=[ zfL zfC]; idf=[ idfL idfC],

9: if zn is not empty

10: particle =Landmark_Initialization (particle, zn, R)

11: endif

12:if =zf'is not empty

13: particle= Sample_Proposal (particle, Hv, Hf, Sf);

14: particle= Feature_Update (particle, Hv, Hf, Sf,0);

15: particle= ComputeWeight (particle, zf, idf, R);

16: particle=Particle Resampling (particle);

17: endif

18: [robot _ pose, . ]= average of robot pose estimated from the most weighted

curr

particles

As it is given in Table 4.1, by using inverse odometer motion function control states are
found and the pose is updated according to control states by FastSLAM Prediction
functions.Stable Lines,FastSLAM _DataAssociation_Lines,Stable Corners,FastSLAM Da
taAssociation_Corners functions form the data association part. For new observed landmark
Landmark_Initialization function is applied. For re-observed landmarks, Sample Proposal,
Feature_Update, ComputeWeight, Particle Resampling functions are applied, which forms

the measurement update part.
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4.2 Inverse Odometer Motion Model

6 . )=robot pose . and

Inverse odometer motion model takes current (X, ,V 0, rev

preVIOuS (xcurr > ycurr > 9

curr

)=robot _ pose,_, pose of the robot (known as vehicle states)

and calculates the rotation and translation parameters. (Previous pose is set in memory for

each step and the current pose is calculated from the previous pose and (Ax, Ay, A@) values

coming from the main scan matching part). The motion of the robot is assumed as a rotation,

a straight line motion and another rotation. Decomposition of the parameters is the first

and second rotation 0

the translation O, 2

trans

rotation &

rotl >

These parameters are enough to

describe the motion of the robot between two steps.

_," drot2

Heading of the robot

oS

Strans

Figure 4.2: Odometer model. The robot motion in the time interval (t-1,t) is approximated by
the first rotation O

rotl ®

and second rotation O

the translation O i

trans

The calculation of given parameters (known as control inputs) can be given with the

equations as:

ycurr _yprev

0, = arctan( )— HW 4-5)
Xewr —X prev
2 2
é‘trcms = \/(ycurr - yprev) + (xcurr - xprev) (4'6)
5r012 = ecurr - eprev - 5rutl (4-7)
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4.3 Prediction Step

In prediction step, the pose of the robot is estimated for each particle according to

[x,.Y, l9p] previous pose values registered in particles.xv and motion parameters [0,

otl?

0

trans

0,,,» - Mean of the pose is predicted according to the odometer motion model. The

equations about the model can be given as:

X :xp+5

p trans

cos(9,,, +6,) (4-8)

rotl

y,=y,+ 0, ums SIN(O

rotl

+6,) (4-9)

0,=0,+6,,+6

rot2

(4-10)

Table 4.2: The prediction step of FastSLAM algorithm.

Algorithm_FastSLAM_Prediction (particle, 8,5 O, Ovorrs Q)

1: for i= I: all particles

2: [x,7,0] =particle[i].xv; pv= particle[i].pv;
x+9,,,cos(d,, +6)
3: XV = y + 5trans Sin(é‘rotl + 6)
5}‘otl + 5rut2 + 0
_1 0 - 5truns Sin(5rotl + 0)
4: Gv=|0 1 94,,,c0s,, +6)
100 1
- 5trans Sin(é‘rotl + 0) COS(§1~()t1 + 0) 0
5: Gu=| J,,,co0s(0,,+0) sind,, +6) 0
i 1 1 1
6: pv=GvpvGy' +Gu pvGu';
7: particle[i].xv =xv; particle[i]. pv =pv;
8: endfor

9: return particle.xv, particle.pv
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The pseudo code for prediction calculation is given in Table 4.2. In Table 4.2, the Jacobian
matrix (Gv), the pose of the robot estimated in particle with respect to vehicle states can be

calculated as:

_pr ox, Ox, ]
ox, oy, 060,
Gv = ZJ;” Zip 2); 4-11)
p p p
o0, o6, a0,
_axp oy, 00, |

And the Jacobian matrix (Gu), the pose of the robot estimated in particle with respect to

control inputs can be calculated as:

[ ox ) ox, ox, |
85}’0[ 1 a5tru}1s 85*’ ot2
0 0 0
Gyl Pr Y Y (4-12)
85}’0[ 1 a5tru}1s 85*’ ot2
00, 00, 09,
6é‘rotl aé‘z‘mns 851’0! 2 ]

4.4 Landmark Extraction and Data Association:

Landmark extraction and data association is one of the hardest steps in SLAM algorithms.
From the feature set created, the landmarks are needed to be carefully defined. In fact, they
should be so unique features that they are not wrongly associated to a previously seen
landmark. Wrong association can be devastating as it means the robot will think it is
somewhere different from where it actually is. As a result, the FastSLAM algorithm

diverges.

In landmark extraction part, same features (both side ended lines and real corners) are used
as landmarks. As a result, same extraction algorithms given for global localization part are
used (given in Table 3.33 and Table 3.35); the one in Table 3.33 is for eliminating cognitive
real corners and the one in Table 3.35 is for eliminating cognitive both side ended lines.

These two steps extract the landmarks that will be used as reference in SLAM. In these steps
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also, the gating rule: A feature is not actually considered as a landmark worthwhile to be
used in SLAM unless it is seen N times, is implemented. This rule eliminates feeding the

algorithm with bad landmarks.

As it is seen from the algorithms, the landmarks include position information and orientation
information. The position information is the center point of the line and the corner positions.
The orientation information is the slope of the line and the slopes of the lines constructing
the corner. In SLAM algorithm implementations based on LADAR data mostly uses just the
position information of landmark, which is associated with the one in memory by using
methods like maximum likelihood , nearest-neighbor approach [37] etc... In our
implementation each landmark is fed to the landmark position matrix of particles
(particles.pf) with two positions. This adds the orientation information of a landmark to

FastSLAM algorithm and improves its performance.

Real Corner

...................................... » Different
Orientations ™
Bearing

Landmark Robot Pose
L

~

<
WSS

~
~
~

' Distancé,

Real Corner ’ Both Side
4

A Ended Line

Virtual Landmarks Landmarks

Figure 4.3: Illustration showing the landmarks and their properties used in FastSLAM
algorithm.

When a landmark is first seen, the pose of the robot in particles ( particle.xv) is sampled
from their proposal distribution ( particle.pv ) and than the landmark is registered in particle

given in equation

x, U rcos@," +b)

particle xfUl= 4-13)

v, 4 rsin@," +b)

where [x, ,» p,Hp] pose values registered in jth feature of ith particle, » is the landmark

range information and b is the bearing information referenced to the robot pose. As a result
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the landmark information registered in particle consists of just the position of the landmark.
Assume the case the robot sees the landmark first and its position is initialized at particles
about the same (low variance in pose of the robot). When the particles see the observed
landmark again, they can be weighted equally while they see it with different poses then
which pose in the particle is close to real robot pose? The situation is illustrated in Figure

4.4

Virtual landmark positions

. |
@ > Observed landmark from
> the pose of Particlel

.......................... — %

Observed landmark Particle2
from the pose of
Particle2 b

Figure 4.4: The robot sees the observed landmark again and for Particlel and Particle2 the
position of the landmark overlaps with the position predicted. Therefore particles take same
weight, which results in with wrong robot pose prediction.

Particlel

To prevent the situation given in Figure 4.4, two landmark positions (landmark and virtual
one) are used, which force the algorithm to calculate the weights for both, which also

promote the particles with the heading information close to real robot pose.

Slope of the lines constructing the landmark are also used in data association to separate
them (which makes the data association robust to failures), but these slopes must also need to
be updated with the position of landmarks to make correct data associations. An updated
position of a landmark does not include any information about the slope of the lines
constructing. By adding a virtual landmark position to FastSLAM module, correction in

slope of the lines is also achieved.

The method using two landmark positions for each landmark gives an improvement when
the environment does not have many landmarks. For the situations when different landmarks
are seen with small steps, the particles with correct heading information are again promoted.

However, for a SLAM algorithm making an association using just the landmark positions
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degrades the performance of the data association. In fact, in such a case algorithm needs
landmarks separated from each other with longer distances, else the chance to make a

mismatch between different ones increases.

In Figure 4.5, the general structure of data association part is given and in Table 4.3: The
pseudo code for the implementation of this part is given. As we can see from Figure 4.5, first
the landmark candidates are extracted from the feature set. These are the real corners
(Cnr.Class: Real) and both side ended lines (C.L.Lineclass: BothSide Ended Lines). These
landmark candidates are controlled whether they are seen multiple times (to prevent burden
on the algorithm with fake landmarks). Also it is controlled whether inside the area the
landmark found; another landmark candidate with about the same properties is seen. If this
happens, both landmark candidates are not accepted. This decreases the chance to make

wrong data association between landmarks with close properties and distances.

The new observed landmarks are compared with previously seen ones, whether they could
be the same feature. For the corners, this is controlled between incoming stable corners
(stable Cnr) from finding stable features part and the corners in the memory

(Cnr_Stable  Memory ) based on:

e The distance between the corners.
e The slope difference between the line pairs constructing the corners.
e The slope difference between the lines in same side of the corners.

e The distance travelled (dist traveled) when the corner in the memory is seen again.
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For the lines, this is controlled between incoming stable lines (stable_Lines ) from finding

stable features part and the lines in the memory ( Line _Stable Memory ) based on :

e The distance between the center point of lines.
e The slope difference between the lines.

e The distance traveled (dist_traveled) when the line corner in the memory is seen again.

If the landmarks are matched than the distance and bearing information ( zf* =/d b]) between
the landmark in memory (L _Stable Memory, Cnr _Stable Memory) and observed
one (stable Lines, stable Corners ) is calculated. This information is given with the ID of
landmark in memory (idf). If a new landmark is observed its position is set into memory, an
ID is assigned and again calculated distance and bearing values (zn =/d b]) referenced to
pose of the robot are given as output. When landmark update information is come to data

association algorithm, all the landmark positions in memory are updated according to the

landmark position estimates of most weighted particle.

Table 4.3: The pseudo code giving the implementation of data association for both side ended

lines.
Algorithm_FastSLAM DataAssociation_Lines (stable_Lines, Threshold, robot _pose,
landmark update flag, particles)
I: [x, ,V,,0. ] =robot_ pose:
2: retrieve <dist _traveled,L Stable Memory> from memory
3: if landmark_update_flag equals to 1
4: Update L _Stable Memory according to particles.xf;
5: endif
6: for i= I to number of stable Lines
7: for j=1 to number of L _Stable Memory
8: if distance between (mean( stable _Lines [i].endpo int), ..
mean(L _Stable Memory[j ] endpoint)) < Thresholdl
9: if slope difference between (stable _Lines [1 .slope, ...
L Stable MemoryV slope ) < Threshold2
10: if dist_traveledV'>Threshold3
11: found 1V =/ stable Lines"]
12: found _IDI) = j
13: reset dist _traveledV!
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Table 4.3 continued

14: count=count+1
15: endif

16: found _ flag i1

17: endif

18: endif

19: endfor

// the step that gives landmark observation to landmarks if a new one is found

20: if found_ﬂag[i] =0

21: Add stable_Lines[i] to L _Stable Memory

22: d= mean(stable _Lines [ ].ena’po int) - x,

23: b= arctan (mean( stable _Lines [ endpoint-x, ) - stable Lines ] .slope;
24: P =rap;

25: Offset= [cos(stable _Lines ] .slope) sin(stable Lines ] .slope)]

26: Extension_Point=d+ x_+Offset

27: d2= Extension_Point - x,

28: nPl=r a2 b

29: endif

30:endfor

// the step that gives landmark observation to landmarks if a one is reobserved
31: for i=1 to number of found L

32:  d=mean( found _L[i].endpo int) - x,
33: b= arctan (mean( found _L[i].endpo int-x, )- found _L[i] slope
34: P V=rapy; idf ¥ = found 1DV

35:  Offset= [cos( found _L[i].slope) sin( found _L[i] .slope)]

36: Extension_Point=d+ x _+Offset;

37:  d2= Extension_Point - x,

38 zfPl=razp); idf® = found _IDW 11

39: endfor

40: dist _traveled = dist _traveled+ || robot _pose

41: return zn,zfidf

s’

—robot _ pose

curr prev

FastSLAM_ DataAssociation_Lines algorithm given in Table 4.3 is also used for data
association of real corners. Because of the high similarity between the algorithms the pseudo
code for real corners is not given. In FastSLAM DataAssociation_Corners algorithm

stable Lines are replaced by stable Corners, L Stable Memoryis replaced by
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Cnr _Stable Memory, found L is replaced by found Cnr. In same manner, the observed

landmarks are given in zf and idf, and new landmarks are given in zn as the output.

4.5 Landmark Observation (Augmentation):

When a landmark is observed for the first time, it is initialized in particles. The pseudo code

of the initialization is given as:

Table 4.4: The pseudo code giving the implementation of landmark initialization.

Algorithm_FastSLAM Landmark_Initialization (particle, zn, R)

1: lenz=number of landmarks set in particle.xf

2: for i=1: all particles
3: [x,y, 49]=particle[i].xv ;

4: for j= 1 to number of landmarks in zn
5: [r,b]=zn  //ris the range and b is the bearing information
p cos(@+b) —rsin(@+b)
N zZ= h
sin(@ +b) rcos(6+b)
: A x+rcos(@+b
7: particlel xfU+er] - , ( ) ;
y+rsin(@ +b)

8: particle! pfU = Gz RGZT
9: endfor
10: endfor

As it is given in Table 4.4; from the distance and bearing information zn, incoming from the
data association part, which is distance and bearing information relative to robot pose
estimated in particle, the landmark position in global coordinates is estimated and registered

in particle.xf of that particle. Also covariance of landmark position is calculated as

particle.pf =Gz RGz" 4-14)
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Where Gz corresponds to the Jacobian of the landmark position with respect to the vehicle

states and R corresponds to measurement noise, Gz can be defined as:

od od od

ox, oy, 00

_ P P P
C=\'op ob ab “-13)

ox, oy, 00,

where Gz shows how much the range and bearing change as [x,,y,, Hp ] change.

4.6 Landmark Re-Observation:

In landmark re-observation part, the predicted landmark observations, the Jacobians of these
observation positions with respect to vehicle states and also with respect to feature states are
need to be taken to be used in further parts. For all observed landmarks, the distance and

bearing information is predicted from estimated positions in particles, given as:

Im -y
zp :[d,m,b,m]z \/(lmx—xp)2+(lmy—yp)2 arctan(ﬁ)—&’p (4-16)

m, »

Where [d,,,b,, ] corresponds the distance and bearing information of the predicted
landmark observation, [x ,, ¥ p,@p] corresponds to the pose estimation in given particle and
[lmx,lmy ] corresponds to the estimated landmark positions in particles. Jacobian of

predicted landmark observation positions with respect to vehicle states is taken as:

od, od, od,
ox oy 00
_ P p P
Hv=\op  ob  ob, (@-17)
ox, oy, 00,

Jacobian with respect to feature states is taken as:
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od, od,,
Olm_. oOlm
_ x y -
A @19)
olm,  oOlm,

Innovation covariance, feature observation given the vehicle uncertainty is calculated as

S, =Hf PfHf +R 4-19)

Where, Pf corresponds to the pose covariance matrix of given particle. The pseudo code

giving the implementation of these Jacobians is given in Table 4.5:

Table 4.5: The pseudo code representing the initial calculations for FastSLAM algorithm.

Algorithm_Compute_Jacobians ( particle[i], zf, idf, R)

I: [X, v, 9] = particle[i] XV
2 [im 1) lmy[idf W= particle xf1;

3: Pf= particle[i]. pf ler].
4: forj=1:all idf

5- d[]] — \/(lmx[/] —)C)2 + (lmy[f] _y)2

// predicted observation

/] 1

: . Im " —
6: zpll =| gl arctan(—y[ ] y) -0|;
Im "' —x
//Jacobian with respect to vehicle states
_x—lm' [/] y _lmy[j] . ]
. dV! V!
y X _ 1
I (d[j])Z (d[j])2 ]
//Jacobian with respect to feature states
_lmx[j] X lmy[j] -y
: [/] 4V
8.' H [J] — d . ] K
f y_lmy[J] lmx[j] —x
I (d[j])Z (d[j])2
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Table 4.5 continued

// innovation covariance

9 Sf[.i] _ Hf[j] Pf[j] (Hf[j])T +R:

10: endfor
zpl! Hyl! U0 0 o
2] ol 2]
1:2p =\ P | =|7V | sr= g S]; 0 g for all idf
Zp[J’] Hyl] 0 0 0 Sf[j]

12: return zp, Hv, Hf, Sf:

After the prediction step, the estimated pose of the robot and covariance is needed to be
updated according to the observed landmark. This part forms the difference between the
FastSLAM 1.0 and FastSLAM 2.0 algorithms. In FastSLAM 2.0, before the measurement
update, sampling poses are updated based on the landmark measurement and control states
which gives better diversity of particles for the weight calculation. The pseudo code for the

implementation is given in Table 4.6:

Table 4.6: The pseudo code for proposal sampling part:

Algorithm_FastSLAM Sample Proposal (particle, Hv, Hf, Sf)

1: N=number of particles

2: fori=lIto N

3: [zp, Hv, Hf, Sf]=Compute_Jacobians( particle[i], zf, idf, R);

4: for j=all idf

5 y=zf U= zpll.

6: particle! py = ((va)T (SFUY v+ (particle!. pvy™ )_l ;

7: particle! xv = particle! xv+ (particle[i]. pv(EVUNT (sFUh v);
8: endfor

9: endfor

10 :sample particle[i].xv from particle[i].xv mean and particle[i]. PV covariance
11:return particle
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The positions of landmarks and their covariance in sampled particles are updated which is
known as measurement update of EKF. From the measurement covariance and its
observation Jacobian with respect to measurement states, the Kalman gain (K) is calculated.
Kalman gain is computed to find out how much the observed landmarks will be trusted and
as such how much to be wanted to gain from the new knowledge they provide. The positions
of landmarks and their covariance is updated according to Kalman gain. The pseudo code for

the implementation is given in Table 4.7:

Table 4.7: The pseudo code representing the feature update part of FastSLAM.

Algorithm_FastSLAM Feature Update (particle, Hv, Hf, Sf,Q)

1: N=number of particles

2: fori=Ito N

3: [zp, Hv, Hf, Sf]=Compute_Jacobians( particle[i], zf, idf, R);
4: for j=all idf

5: v =zl = zpll;

6: K0 = particte xfU) (HFUYT (HFY particie xfU (VYT +0) -
7: particle! xfU= particlel xf U+ k171,

8: particle! prV! = (1 — KW gV partictel prll;

9:  endfor

10:endfor

11: return particle

When a landmark is observed again, the matching probability of the predicted orientation for
the landmark in particle and the observed orientation of the landmark with same ID is
checked. This gives us the information about the validity of pose and landmark orientation

given in that particle. The pseudo code for the calculation of particle weight can be given as:
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Table 4.8: The pseudo code giving the calculation of particle weights.

Algorithm_FastSLAM ComputeWeight (particle, zf, idf, R, Hv, Hf, Sf)

1: for i=1: all particles

2: [zp, Hv, Hf. Sf=Compute Jacobians( particle!, zf, idf, R);
3 v=zf-zp;

4: N=number of elements in v,

5 V=convert v to NxI matrix;

6 S=Hv Pv(Hv) +Sf;

7: den=,/Q2m)" |S|; num=-0.5V"S"V;

T den
8: particle™.w =—-—

e

9: endfor

10:return particle[i].w

From innovation covariance (S) including pose and feature uncertainty and the difference

between observed and predicted landmark distance and bearings (zf - zp) , the consistency of

that particle is calculated, which is known as importance weight ( particle[i].w ).

After the weights are calculated for all particles given in Table 4.8, the particles are
resampled. Resampling before computing proposal permits better particle diversity. In this
step the ones with less weight are eliminated and the ones with more weight are promoted by
expressing them multiple particles, which is known as stratified sampling in statistics. The

resampling step is given as a pseudo code in Table 4.9:
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Table 4.9: The pseudo code representing the particle resampling part.

Algorithm_FastSLAM Particle Resampling (particle)

1: N=number of particles

2: Cumulative_sum=0;

3: fori=1toN
[i] particle[i].w
4: particle® .w=— + Cumulative_sum;
Z particle[j Iw
=1
5: Cumulative_sum= Cumulative_sum+ particle[i].w ;
6: endfor

N

1 1 1
s di =array from—— to| 1——— | with — steps
y Jrom S ( 2Nj NP

8: rand= random N numbers ;

9: fori=ltoN, st =gl 4 Lmnd[i] L ;  endfor;
N 2N

10: keep=null matrix (1 to number of particles)

11: count=1;

12: fori=1:N

13: while count<=len and s

14: keep(count)=i;

15: count=count+1;

16: end

17: end

18: particles= particles(keep);

o] < partictew ;

19: particle[i].w =1/N;

20: return particle

As it is seen from Table 4.9, according to the given weight, the particles are resampled. In
the resampling process, the particles are copied proportional to their weights in total sum of

weights, as they obtain fixed number of particles.

4.7 FastSLAM Algorithm with Landmark Orientation Update:

In this part, FastSLAM algorithm is modified to add the slope of the lines as a parameter to
the algorithm. This part includes the same application with the two landmark position

addition to handle the update for the orientation of landmark inside, given in Section 4.4 and
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in Figure 4.4. This time a landmark is not defined with two positions, instead the slope of its
line is directly added to the filter. All the steps about the operation of the FastSLAM
algorithm are same; some parameters related with landmarks in the algorithm are changed.

When a landmark is seen first time, its parameters are defined as:

[r.b,¢]=zn (4-20)

Where r is the range information, b is the bearing information of the landmark referenced to
robot and ¢ is the orientation of landmark inside (the difference between the slope of the

line constructing the landmark in global coordinate frame and heading of the robot registered

in particle). So its orientation (landmark state) is expressed in particle as:

Im x, +rcos(d, +b)
particlexf = Im, |=|y, +rsin(@, +b) 4-21)
Im, 0,+¢

where /m, is the estimated orientation information of landmark in global frame

according to supposed robot pose in particle. By addition of orientation information, the

jacobian of landmark observation with respect to robot pose estimated in particle becomes:

Cor o or |
5(;‘5 %yg a@ip cos(6, +b) —rsin(@, +b) 0
Gz= =| sin(@, +b) rcos(d,+b) 0 (4-22)
ox, oy, 00, 0 0 {
op 0¢p O¢
_axp oy, 00, |

For landmark re-observation case, the predicted landmark position (expected measurement)

becomes;

) Jum, —x,) +m, —y,)" |
im Im —
zp=|b, |= arctan(y—_j:p) -0, (4-23)
Din "
: I Im, -0, |
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where ¢, corresponds to relative predicted landmark orientation degree based on robot

heading and landmark orientation information in global frame registered in the particle.

Jacobian of predicted landmark observation with respect to vehicle states is taken as:

on,  On, O, x=im M y—im, 0
U1 [
ox, oy, 06, ij] d .
= ob,, ob, ~ob, Im, "=y  x—Im, @24)
ox, v, 00, @hr (@l
a¢lm a¢lm a¢lm O 0 1
i ox, 0oy, 00, | |

Jacobian of predicted landmark

landmark states is taken as:

observation (expected measurement) with respect to

_ - o or, lmx[j] _x lmy[f] —y .
dlm, olm, dlm, av . C[l []j ]
_ Zm J J
Hf _ ab]m 8blm ablm y o y2 lmx n Zx (4-25)
olm, olm, olm, (d") (@)
o 0 o
¢x ¢lm ¢lm O O 1
olm_  olm, olm,

The corresponding formulas in FastSLAM algorithm are updated according to the equations
calculated between Equation 4-20 and 4-25. As a result, with same structure a modified
FastSLAM algorithm that handles the orientation information of landmarks is implemented.

4.8 Chapter Summary:

In this chapter, the implementation of FastSLAM algorithm is presented. This algorithm
takes pose difference from main scan matching part and also uses the feature and feature
properties set extracted in scan matching part. The pose of the robot is relocated by particles.
From the incoming pose difference from scan matching algorithm, by using inverse
odometer model, the control input is calculated. In prediction update step, the pose
estimation in particles is updated according to the control input. Landmark extraction is
made from the feature set extracted in scan matching part. Both side ended lines and real

corners are used as landmark candidates. Confident candidates are sent to data association
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part and registered in memory with an ID. When a new landmark is observed, its position
information and covariance matrix is set. When a landmark is re-observed, the likelihood of
observed landmark information with the estimated one’s information is calculated. The mean
and covariance of pose in particle is updated according to this information, and sampled. The
landmark positions and covariance in resulting particles are updated according to calculated
Kalman gain. According to overlap between predicted and observed landmark information,
weights are calculated. By using the weights the particle set is resampled. In this step, the
ones that landmark prediction does not match with observed one are eliminated and the rate

of surviving ones in particle set is increased in proportion to weights.
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CHAPTER 5

EXPERIMENTAL RESULTS

The performances of main scan matching, scan matching with deterministic global
localization, scan matching with FastSLAM algorithms are tested with different real
LADAR and odometer datasets that are taken from Radish Data Repository and from our
tests with our robots and courses. In the figures below, the performance of the algorithms
with given datasets are presented. In our experiments the performance of the algorithms is

analyzed in two steps:

Maximum Local Distortion: In this step, maps created by scan matching with DGL and
with FastSLAM algorithms are compared inside. We look at areas where the robot passed
multiple times. This gives an insight about the consistency of the algorithm. The distortion
occurred on the features shows the error accumulated on scan matching during all the path

till it comes to the given area. The procedure for the calculations is:

1) Some areas in algorithm map are numbered as check areas.

2) Distortion on the features in position and slope in these areas is checked. In fact, the
accumulated error on the algorithm is seen as a slippage on the features in these areas. Also
instant errors on scan matching can be observed.

3) The distortion as pixel position difference is multiplied with grid size and projected onto

x and y axis.

Maximum Global Distortion: In this step, the maps created by algorithms are checked with
the original map. We take same features from both maps and look at the position difference
between these points. This measure gives us an insight about the accuracy of our algorithm

related to the real map. The procedure for the calculations:
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1) The both maps are set into the same grid size, which is 0.1 meters in our mapping
process. Algorithm map is rotated as the features at the starting point will have the same
slope with the ones at original map.

2) Some areas in maps are numbered as check areas (These areas same as the ones in
maximum local distortion). The area at the startpoint is numbered as reference area (which is
given as R).

3) In these areas, the pixel positions of the same corners in the original map and scan
matching result are compared referenced to the same corner in reference area (given with R).
4) The difference between the pixel positions of these corners in both maps multiplied with
grid size (0.1 meters) , which gives us the distortion in the algorithm map referenced to the
original map in that position.

5) The slopes of the same lines in same numbered area in both maps are found.

6) The slope difference gives us the distortion in the slope of to robot referenced to the

original map.
In Figure 5.11, Figure 5.21, Figure 5.34 the numbered places are checking areas.

Mean Position Error and Mean Orientation Error: In maximum global localization part,
worst position and orientation errors for each area are calculated. From these errors, the

mean position and orientation error is calculated according to the given formulas:

Mean Position Error = ! z\lxl.z + yiz (5-1)
i=1

n“

I n
Mean Orientation Error = — z 0. (5-2)
nz

where x; and y; corresponds to worst position error in Area i and 6. corresponds to worst

orientation error in Area i. n is the number of areas that the given test area is divided.

5.1 Test 1: ASELSAN Indoor Area

The tests are made with

e Pioneer 3AT Robot (Differential Drive)

e SICK OEM1000 Laser Scanner

e 180 degree LADAR scan with 1 degree interval
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Figure 5.2: The occupancy grid map of ASELSAN Indoor Area by using scan matching with
DGL algorithm.
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Figure 5.3: The occupancy grid map of ASELSAN Indoor Area by using scan matching with full
FastSLAM algorithm.

Figure 5.4: The occupancy grid map of ASELSAN Indoor Area by using the raw odometer data.
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Figure 5.5: The real map of ASELSAN indoor area.

In Figure 5.1, the scan matching result is presented that is obtained from the raw LADAR
and odometer data. In Figure 5.2, scan matching result with DGL algorithm is presented. In
Figure 5.3, scan matching result with full FastSLAM algorithm is presented. Figure 5.4,
mapping by using raw odometer output is presented. In Figure 5.5, the real map is presented

from ASELSAN Indoor Area.

In Figure 5.1, a rotational error is observed in mapping, this error is coming from the
incremental error till the area given with number 5 in Figure 5.11 plus the mismatches
occurred in this area. This pose error is corrected by DGL algorithm in Figure 5.2 and

FastSLAM algorithm in Figure 5.3.
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Fose obtained from scan matching
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Figure 5.6: The pose information obtained from main scan matching algorithm.

Pose obtained from scan matching with global localization

meters

Figure 5.7: The pose information obtained from scan matching with DGL algorithm.
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Fose obtained from scan matching with FastSLAM algorithm

meters

meters

Figure 5.8: The pose information obtained from scan matching with full FastSLAM algorithm.

Odometer Data
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Figure 5.9: The raw odometer data taken from the robot.
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In Figure 5.6, the pose information obtained from scan matching algorithm, in Figure 5.7, the
pose information obtained from scan matching algorithm with DGL algorithm is presented.
In Figure 5.8, the pose information obtained from scan matching with FastSLAM algorithm
is presented. In Figure 5.9, the raw odometer data that is taken from the dataset is presented.
As it is seen from Figure 5.6, because of mismatch and accumulated error a rotational error
is occurred. In Figure 5.7, DGL algorithm corrects this error, which is seen as a jump in (-
1,6) coordinates. In Figure 5.8, this correction is spread on previous poses and a smooth path

without a jump is seen

The robot starts from the (0,0) point and goes through the x axis, then it turns right and maps
all the right side area, which could be defined as y<O in odometer data. Then it maps the left
side area, which could be defined as y>0 in odometer data. Then it turns back to (0, 0) point

from the center of total area through X axis in odometer plot.

For considering the error in the map we can compare the slippage on the wall positions

which located on the start and end path of the robot.

f T l— L P e e—— -

" : TR wallt

% Wall2 "
N e
; | b i

Figure 5.10: Zoomed area at the middle of scan matching result given in Figure 5.2.

To find the total error, the slippage on the wall position given with Walll and Wall2 is
looked. The slippage in Walll is below 10 centimeters, because no change in the grids of the
wall is seen. The slippage in Wall2 is 4 grid cell sizes, which is about 40 centimeters. Also

so less error is seen in the rotation of the robot, which is found by subtracting the slopes of
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wall given with Number 1 at the start and end of the path, which is about 0.3 degrees. So we

could not see the error on the wall with 0.1 meters grid size.

As aresult, if we assume Wall Number 1 as X axis and Wall Number 2 as Y axis, we can say
that we have obtained 0.4 meters in X axis, <0.1 meters in Y axis translational error and 0.3
degree rotational error in a distance about 121.5 meters traveled in a path consist of closed

loops with combined method consisting of scan matching and DGL algorithm.

Figure 5.11: The figure showing the check areas that maximum global/local distortions are
calculated between localization algorithms and original map. It also shows the path odf the
robot by arrows.

The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the 6
values is less then 0.3 degree, because of the ratio between the grid size and longest line
observed. The results are given as absolute values. As it is seen from Figure 5.9, all the area
except Area 6 in Figure 5.11, are passed once, so these areas seems to be inappropriate for
local distortion check. However, as it is seen from the distortions in these areas that are in
neighborhood of Area 6, same walls are seen more than once, one is while passing through
area 1, 2, 3, 4, 5 and one is while passing through area 6 as a consequence of high range

capability of LADAR. Consequently, local distortion is calculated for all these areas.
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Table 5.1: This table gives the local distortions obtained inside the scan matching result based
on the numbering given in Figure 5.11.

Maximum Local Distortions for Scan Matching with DGL Algorithm
Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.1 <0.1 0.53
2 0.3 <0.1 0.85
3 0.4 <0.1 1.2
4 0.2 0.1 0.48
5 0.8 0.2 9.4
6 0.4 <0.1 0.51

The results given in Table 5.1 shows that the map we have created by scan matching is
consistent. In Area 5, we observe 9.4 degree rotational error; also it can be seen in Figure
5.11. This error is corrected while the robot is passing from Area 5 to Area 6, since tracked
features by global localization algorithms are observed again. Therefore in Area 6,
localization accuracy increases. Also while passing from Area 3 to Area 6, the accumulated

rotational error is corrected, which is seen in Table 5.1

Table 5.2: This table gives the local distortions obtained inside the scan matching result based
on the numbering given in Figure 5.11.

Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm
Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 <0.1 <0.1 0.30
2 0.1 <0.1 0.27
3 0.2 0.1 0.52
4 0.2 0.1 0.32
5 0.3 0.1 0.87
6 0.1 0.2 0.27

As we can see from the results given in Table 5.2, there is an increase in consistency of the
map when it has compared with scan matching with DGL algorithm. Because of particle
structure of FastSLAM algorithm, for each landmark re-observation the path is optimized
according to the weights that the particles has taken, also the landmark positions are updated.

As a result better translation and rotation accuracy is seen.
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Table 5.3: This table gives the global distortions obtained between the scan matching result and

original map in sampled areas.

Maximum Global Distortions for Scan Matching with DGL Algorithm

Global Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.3 0.1 0.55
2 0.5 0.1 0.85
3 0.6 0.1 1.2
4 0.2 0.2 0.48
5 0.6 0.2 9.4
6 0.4 <0.1 <0.3

The results given in Table 5.3 shows that during the entire path, scan matching algorithm
gives pose output with less than 0.6 meters error in translation. The correction information of

rotational error in Area 5 is given in Maximum Local Distortions part.

Table 5.4: This table gives the local distortions obtained inside the scan matching result based
on the numbering given in Figure 5.11.

Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm
Global Distortions
Area ID X (meters) y (meters) 0 (degree)
1 <0.1 0.2 0.30
2 0.2 <0.1 0.27
3 0.1 0.1 0.52
4 0.2 0.3 0.32
5 0.3 0.1 0.87
6 0.1 0.1 0.27

As we can see from the results given in Table 5.4 and Table 5.2, there is an increase in
consistency of the map when it has compared with scan matching with DGL algorithm. In
full FastSLAM algorithm, the paths of the particles with maximum weight appointed are
survived. This resulted with back propagated correction in previous poses of the robot. As a
consequence of this, the separation in the wall at Area 3 and the inclination in the inner wall

in Area 5 are not observed in Figure 5.3.
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Table 5.5: This table gives the mean position error and orientation error for Test Area 1
according to the equations 5.1 and 5.2.

Mean Position Error Mean Orientation Error
Scan Matching 1.83 5.8
Scan Matching +DGL 0.46 2.13
Scan Matching +FastSLAM 0.23 0.42

Evaluation of Algorithms for Test 1:

In given Area 1 three algorithms are tested. These are scan matching, scan matching with

deterministic global localization (DGL) and scan matching with FastSLAM algorithm.

When they are compared, in order with increase in pose estimation accuracy and map
consistency, main scan matching, scan matching with DGL algorithm, scan matching with
FastSLAM algorithm. As it is seen in Figure 5.1, the scan matching algorithm came across
with an error in Area 6. This comes from the addition of accumulated incremental heading
error till that point and the wrong heading calculation occurred at the given area in scan
matching algorithm. Since any global correction does not occur in scan matching, the
heading error is not corrected in rest of the path. So a great distortion in map has occurred.
The effect of this distortion can be seen in Figure 5.6, the upper half and down half of the
path are consistent inside but the heading error occurred locates them with angular

difference.

Scan matching with DGL algorithm gives better estimate for the path. But since there is no
correction for the previous poses when a landmark is reobserved, it gives worse results than
the scan matching with FastSLAM algorithm. In fact their difference specially can be seen in
Area 6 (the slope of the lines) of Figure 5.2 and Figure 5.3. The rotational error occurred in
scan matching is corrected in both ones. But while the previous mapping and pose error stays
for the one with DGL implementation, this is corrected to a certain extent for the one with
FastSLAM algorithm. This is also seen in joint wall passing through Area 3. In Area 3, right
side of the wall seen first and left side of the wall is seen before the largest cycle in map is
closed. As a result, because of accumulated error, gradient of the wall changes and a fracture

occurs between thsese sides for DGL implementation in Figure 5.2. This is corrected for the
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next mappings when landmarks in right side of Area 3 are seen. However same line seems to

be about straight for FastSLAM algorithm in Figure 5.3.

In Figure 5.4, the mapping for raw odometer is given. This is given to show that a small
error in pose results with a great distortion in mapping. Actually the odometer data given in
Figure 5.9 seems to be correct (This accuracy comes from the driving style, center of
gravity distribution and unweared platform pieces.), but when a mapping is placed on it, the

distortion has come off.

5.2 Test 2: University of Ancona - LADAR and Odometer Data Taken from
RADISH Data Repository

The test is made with;

e Pioneer 3DX Robot (Differential Drive)

e SICK LMS 200 Laser Scanner

e 180 degree LADAR scan with 1 degree interval

Figure 5.12: The occupancy grid map obtained from main scan matching.
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Figure 5.13: The occupancy grid map obtained from scan matching with DGL algorithm.

Figure 5.14: The occupancy grid map obtained from scan matching with full FastSLAM
algorithm.
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Figure 5.15: The real map given by University of Ancona.

In Figure 5.12 the main scan matching result is presented that we have obtained from
LADAR and odometer data. In Figure 5.13, the scan matching with DGL result and in
Figure 5.14, the scan matching with full FastSLAM algorithm is presented. In Figure 5.15,
the real map is presented given by University of Ancone, which is the source of dataset taken

from the Radish Data Repository.

If Figure 5.12 and Figure 5.13 are compared with Figure 5.15, scan matching outputs are so
successful. Both maps are consistent inside and match with real map. When Figure 5.12 is
compared with Figure 5.13, an incremental error in pose is seen. This error is small but it can
be seen as multiple lines at the areas where closed loop case in path occurs. In fact resulting
error at the end is easily seen on the walls between the startpoint and endpoint of the wall
(Start and endpoints of the path and closed loop areas are given in Figure 5.21, R as the area

at startpoint and 7 as the area at endpoint, 2- 4 — 5 are closed loop areas.)
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Pose obtained from scan matching
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Figure 5.16: The pose information obtained from scan matching algorithm.

Pose obtained from scan matching with global localization
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Figure 5.17: The pose information obtained from scan matching with DGL algorithm.
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Pose obtained from scan matching with FastSLAM algonthm
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Figure 5.18: The pose information obtained from scan matching with full FastSLAM algorithm.

Odometer data
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Figure 5.19: The odometer data given while the robot is moving on the map given in Figure 5.15.
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In Figure 5.16, the pose information obtained from scan matching algorithm, in Figure 5.17,
the pose information obtained from scan matching with DGL algorithm and in Figure 5.18
the pose information obtained from scan matching with FastSLAM algorithm is presented. In

Figure 5.19, the raw odometer data that is taken from the dataset is presented.

As you can see from Figure 5.19, the raw odometer data diverges after a movement about 25
meters from the start point. When we have come to the endpoint (settled about (5,-30)
coordinates), there is big error more than 30 meters in translational and about 90 degrees in
rotational. However the odometer data obtained from scan matching in Figure 5.16 and
Figure 5.17 and Figure 5.18 overlap with the map given in Figure 5.15. It is assumed that the
map given by University of Ancona as real map and make comparison between the real map
and the map we have obtained from algorithms. During this test, total distance that is

traveled 1s about 236.8 meters.

Figure 5.20: The two figures given are the zoom in of the maps presented in Figure 1 and 2. The
left image is from Figure 1 and the right one is from Figure 2.

In Figure 5.20, the zoom in area shows both the area the navigation has started and the area
that navigation has ended. The area identified with Number 1 in right image is the room that
the robot has started and the area identified with Number 2 in right image is the corridor that
the robot has ended its navigation. So the Wall 1 between the corridor and the room gives us

idea about the error occurred in axis perpendicular to the wall during this navigation. In our
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scan matching result the wall thickness is found about 5 grids (since our grid size is 10x 10
cm), which is 0.5 meters error if no thickness is assumed for the wall. Wall 2 between the
corridor and the room gives us idea about the error occurred in axis perpendicular to the wall
(this axis is parallel to Wall 1) during this navigation. Wall thickness is found about 3 grids,

which is 0.3 meters error if no thickness is assumed for the wall.

We have look at the slope of the line fitting, looking to the area Number 1 and at the slope of
the line fitting, looking to the area Number 2 to find the error in rotation. The resulted line

slope difference is about 0.8 degrees, which is our rotational error.

As a result, if we assume Wall 1 as y axis and Wall2 as x axis, we can say that we have
obtained 0.5 meters in y axis, 0.3 meters in x axis translational error and 0.8 degree
rotational error in a distance about 236.8 meters traveled in a path consist of small closed

loops with scan matching with DGL algorithm.

Figure 5.21: The figure showing the check areas that maximum global distortions are calculated
between scan matching result and original map.
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The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the 0

values is less then 0.3 degree, because of the ratio of longest line to the grid size. The results

are given as absolute values.

Table 5.6: This table gives the local distortions obtained inside the scan matching with DGL

algorithm result based on the numbering given in Figure 5.21

Maximum Local Distortions for Scan Matching with DGL Algorithm
Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 NA NA NA
2 0.1 <0.1 0
3 <0.1 <0.1 0
4 0.2 0.2 0.17
5 0.4 0.1 1.2
6 NA NA NA
7 0.5 0.3 0.8

In Table 5.6, the method is not applicable to the areas given with ID 1 and ID 6, since the

robot does not pass in these areas more than once. For ID 7, again the robot passes from this

area once, but this area is neighbor with the robot reference area. So a comparison is

available. The results given in Table 5.6, shows that the map created by DGL algorithm, is

consistent.

Table 5.7: This table gives the local distortions obtained inside the scan matching with
FastSLAM result based on the numbering given in Figure 5.21

Maximum Local Distortions for Scan Matching with full FastSLAM Algorithm
Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 NA NA NA
2 0.1 <0.1 0
3 <0.1 <0.1 0
4 0.2 <0.1 0.22
5 0.3 <0.1 0.30
6 NA NA NA
7 0.7 0.4 0.8
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According to given results in Table 5.7, the mapping is consistent. Again same reasons are
valid for the area tagged with NA. As it is seen from the results a consistent map is

constructed.

Table 5.8: This table gives the global distortions obtained between the DGL algorithm result
and original map in sampled areas.

Maximum Global Distortions for Scan Matching with DGL Algorithm
Global Distortions
Area ID X (meters) y (meters) 0 (degree)

1 0.3 0.4 0.96
2 0.6 0.3 1.62
3 0.6 0.2 0.58
4 0.3 0.4 1.57
5 0.6 0.5 1.33
6 0.5 0.1 0.59
7 0.3 0.1 0.20

As we can see from Table 5.8, while the robot goes through the path, pose error occurs with
the original map and this error about 1.6 meters in translational and about 3.6 degree in
rotational. Since the path contains small closed loops and goes totally different place from
the start point, we can see the error accumulation in scan matching. Also the long corridor
between Area 1 and 2 reduces the scan matching performance, since the area is unstructured
scan matching uses odometer data, which also adds the error incoming from odometer.
However the accumulated rotational error in Area 5 is corrected while passing back Area 4,

and resulted correction is seen in Area 6 .

Table 5.9: This table gives the global distortions obtained between the full FastSLAM result and
original map in sampled areas.

Maximum Global Distortions for Scan Matching with FastSLAM Algorithm
Global Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.5 0.1 1.68
2 0.1 0.6 2.44
3 0.3 0.7 1.12
4 0.6 0.2 2.15
5 0.4 0.6 1.03
6 0.4 0.5 0.08
7 0.6 0.2 0.12
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Table 5.10: This table gives the mean position error and orientation error for Test Area 2
according to the equations 5.1 and 5.2.

Mean Position Error Mean Orientation Error
Scan Matching 0.69 1.39
Scan Matching +DGL 0.54 0.97
Scan Matching +FastSLAM 0.64 1.26

Evaluation of Algorithms for Test 2:

In Test Area 2, three algorithms are tested. These are scan matching, scan matching with

deterministic global localization (DGL) and scan matching with FastSLAM algorithm.

If they are compared:, in order with increase in pose estimation accuracy and map
consistency: main scan matching, scan matching with FastSLAM algorithm, scan matching
with DGL algorithm. In this area, scan matching gives very good results, and it calculates the
pose of the robot and makes mapping considerably well. Scan matching with DGL
algorithm, makes corrections in Area 2, 4 and 5. When the loop is closed, DGL algorithm
eliminates the incremental error coming from these areas. Therefore a better accuracy in

pose is obtained than the main scan matching algorithm.

Scan matching with FastSLAM algorithm gives worse results than with DGL algorithm. This
comes from the divergence of the FastSLAM algorithm if any closed loop does not occur.
When the areas in Figure 5.21 are examined a closed loop is seen when the robot goes from
Area 2 to Area 3 and goes back to Area 2. However, since the robot goes a long distance
from the startpoint to Area 2, the particles are scattered in a wide area. When a landmark is
observed its position is set into the particle according to the estimated robot pose in particle.
When this landmark is seen again all the particles are weighted, this will survive the ones
that correct the error between the times when the landmark is observed first and observed
again. However the particles are still scattered because of the error till the landmark is
initially observed. As a result of this, with elimination of some paths by weighting, the
distribution of paths is corrupted and a bias in pose of the robot occurs. This affects the
following pose estimations in particles. As a result, while a correction in closed loops occurs,
because of high diversity in pose of the particles, the path of the robot and mapping is

deteriorated. The result of this situation in mapping is given as:
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Figure 5.22: The occupancy grid map obtained from scan matching with full FastSLAM
algorithm (with high Gaussian noises in poses of particles)

When the values of Gaussian noise in pose of the robot are decreased, the robot path and
mapping quality increase. In fact when the robot comes to Area 2, the diversity of the
particles becomes much smaller. But the important point is whether the increase in diversity
of particles after landmark is initially observed is enough to correct the accumulated error till
the landmark is reobserved. As a result of this the effect of corrections in closed loop cases
decreases. Therefore the result converges to the main scan matching result. Consequently an
accuracy and mapping come into existence between main scan matching and scan matching

with DGL algorithm results, which is given in Figure 5.14.
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5.3 Test 3: Part of the Intel Jones Farms Campus, Oregon - LADAR and
Odometer Data Taken from RADISH Data Repository

The test is made with;

e Pioneer 2DX Robot (Differential Drive)

e SICK LMS 200 Laser Scanner

e 180 degree LADAR scan with 1 degree interval

Figure 5.23: The occupancy grid map obtained from main scan matching.
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Figure 5.24: The occupancy grid map obtained from scan matching with DGL algorithm.

Figure 5.25: The occupancy grid map obtained from scan matching with full FastSLAM output.
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Figure 5.26: The real map given by Intel Lab.

In Figure 5.23 the scan matching result is presented that we have obtained from the raw
LADAR and odometer data. In Figure 5.24, the scan matching with DGL algorithm result is
presented. In Figure 5.25, the scan matching with FastSLAM algorithm result is presented.
In Figure 5.26, the real map is presented given by Part of the Intel Jones Farms Campus,

Oregon, which is the source of dataset taken from the Radish Data Repository [22].

If Figure 5.23 and Figure 5.26 are compared, scan matching seems to suffer from the
incremental error accumulated in pose. This is seen when the robot goes on multiple closed
loops in this situation. This error is about 2 meters in translation and 3 degrees in rotation
(can be seen from Figure 5.28) in 239.6 meters distance traveled, but it is enough to
demolish the map when multiple passes are occurred. But it is still so successful when it is
compared with a map created from raw odometer data. The main scan matching output
without any multiple passes can be seen in Figure 5.27. This figure gives an idea about the

effect of incremental error between one loop and multiple loop cases.
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If Figure 5.24 and Figure 5.26 are compared, as a result of DGL algorithm, the errors in
closed loop paths are corrected and a map very close to the real map is constructed. The pose

error between these can be seen in Table 5.13.

If Figure 5.25and Figure 5.26 are compared, FastSLAM algorithm gives pretty good results,
a better localization and mapping is achieved than DGL algorithm. Most of the doorways are
mapped with less than 0.5 degree rotational error and 0.3 meters translational error, that is
given in Table 5.14. The given errors are occurred when the observed landmarks could not

be matched with the previously seen ones, so they are added as new ones.

Figure 5.27: The scan matching output without multiple loops.

In Figure 5.27, the scan matching result when the robot goes and comes to the startpoint
without making any loop (sample data taken from the total one) is given. The total error
accumulated in pose is less than 0.4 meters in translation and 1.2 degree in rotation for 88.6

meters traveled.
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Figure 5.28: The pose information obtained from scan matching algorithm.

Pose obtained from scan matching with global localization
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Figure 5.29: The pose information obtained from scan matching with DGL algorithm.
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Odarneter data obtained from scan matching with FastSLAM algarithm
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Figure 5.30: The pose information obtained from scan matching with full FastSLAM algorithm.
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Figure 5.31: The odometer data given while the robot is moving on the map given in Figure 5.26.
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In Figure 5.28, the pose information obtained from scan matching algorithm, in Figure 5.29,
the pose information obtained from scan matching algorithm with deterministic global
localization (DGL) is presented. In Figure 5.30, the pose information obtained from scan
matching algorithm with FastSLAM algorithm is presented. In Figure 5.31, the raw

odometer data that is taken from the dataset is presented.

In Figure 5.29, the jumps in the pose data obtained from the scan matching algorithm are
coming from the corrections in global localization part. These are the corrections based on

the features observed more than once.

Sl

@

Figure 5.32: The startpoint and also endpoint of the robot for this dataset is shown with Number
1, which is the zoom in of left part of scan matching obtained given in Figure 5.24.

As you can see from Figure 5.32, the start point and endpoint of the robot is in same place.
The robot has traveled totally about 239.6 meters distance. When we have looked at the
thickness of the walls around the point shown with number 1, it is in 1 grid size thickness,
which means there is no translational and rotational error seen when the robot has come to

the endpoint. But since there are multiple close loops (it can be seen on Figure 5.31), while
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the robot passing through the places that it has seen, it corrects its translation and rotation. So
when it has come to the start point all the error has gone, because of global matching ability

of the algorithm.

For this purpose we can look at the places where the slippage in the orientation of the walls

increases to find the maximum local error during the path.

Figure 5.33: The area that maximum slippage is occurred.

When we look at the Figure 5.33, taken from the top part of Figure 5.24, which is second
corridor from the top, maximum slippage is seen. The two arrows close to Number 1 are the
footprints of the corridor before and after the slippage have occurred. The translational error
occurred in axis perpendicular to the wall during this navigation is about 6 grids, which is
0.6 meters error The local translational error occurred perpendicular to the wall in the area
given with Number 2 is about 4 grids, which is about 0.4 meters. The maximum resulting

local rotational error seen is about 0.7 degree in this area.
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Figure 5.34: The figure showing the check areas that maximum global/local distortions are
calculated between scan matching result and original map.

The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the 0
values is less then 0.3 degree, because of the grid size. The results are given as absolute

values.

Table 5.11: This table gives the local distortions obtained inside the DGL algorithm result based
on the numbering given in Figure 5.34.

Maximum Local Distortions for Scan Matching with DGL Algorithm

Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.3 0.4 0.27
2 0.3 0.4 0.57
3 0.4 0.5 0.34
4 0.3 0.3 0.72
5 0.1 0.1 0.47
6 0.3 0.3 -2.87
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The results given in Table 5.11 shows that the map we have created by DGL algorithm is
consistent. It seems an error occurs in rotation 8 in Area 6, you can also see this rotational
error in the map, but this error corrected by the fault correction and global localization part
of the algorithm. So when the robot goes to the other areas this 6 value again comes below

one degree.

Table 5.12: This table gives the local distortions obtained inside the full FastSLAM result based
on the numbering given in Figure 5.34.

Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm
Local Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.1 0.1 0.24
2 0.1 0.1 0.25
3 0.1 0.1 0.28
4 0.3 0.2 0.34
5 0.2 0.2 0.29
6 0.3 0.1 0.62

As we can see from the table, the distortion always stays below one meter in X and Y axis

and also 0 usually stays below one degree error.

Table 5.13: This table gives the global distortions obtained between the DGL algorithm result
and original map in sampled areas.

Maximum Global Distortions for Scan Matching with DGL Algorithm
Global Distortions
Area ID X (meters) y (meters) 0 (degree)

1 0.1 0.1 0.52
2 0.2 0.4 0.43
3 0.4 0.2 0.28
4 0.2 0.2 0.33
5 0.6 0.1 0.47
6 0.1 0.3 2.95

In Table 5.13, the global worst distortions are given relative to the original map given. As we
can see from the table, the distortion always stays below one meter in X and Y axis. Also we
can say that the 0 usually stays below one degree error. It seems an error occurs in rotation 0

in Area 6, you can also see this rotational error in the map, but this error corrected by the
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fault correction and global localization part of the algorithm. So when the robot goes to the

other areas this 0 value again comes below one degree.

Table 5.14: This table gives the global distortions obtained between the full FastSLAM result
and original map in sampled areas.

Maximum Global Distortions for Scan Matching with Full FastSLAM Algorithm

Global Distortions
Area ID X (meters) y (meters) 0 (degree)
1 0.1 0.2 0.27
2 0.1 0.1 0.30
3 0.2 0.1 0.17
4 0.1 0.3 0.26
5 0.2 0.3 0.28
6 0.2 0.2 0.21

Table 5.15: This table gives the mean position error and orientation error for Test Area 3
according to the equations 5.1 and 5.2.

Mean Position Error Mean Orientation Error
Scan Matching 0.83 3.72
Scan Matching +DGL 0.39 0.81
Scan Matching +FastSLAM 0.26 0.25

Evaluation of Algorithms for Test 3:

In given Test Area 3, three algorithms are tested. These are scan matching, scan matching

with deterministic global localization (DGL) and scan matching with FastSLAM algorithm.

If they are compared, it is seen that scan matching gives a great improvement in pose
estimated when it is compared with raw odometer output. The drawback of scan matching
algorithm is the pose error accumulates through the distance traveled increases. In fact, in
multiple loop cases it can be seen as the distortions on the map. In single loop cases,
accumulated error can be seen when the map created is compared with original map by using

positions of chosen features in both map.

Scan matching with DGL algorithm gives better results than the main scan matching

algorithm. As it is seen the pose error accumulated in scan matching is corrected with re-
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observation of landmarks. The problems about this algorithm are that it corrects itself to the
error level when it has first seen the landmark observed, there is no any correction in
positions of the landmarks observed or the previous path of robot. This causes corruption in
pose when it has re-observed a landmark which has previously seen with bad pose estimate.
However this error never passes the error level that the pose error of the scan matching in
place landmark is observed. Also the pose corrections result as jumps in path of the robot,
which can be seen in Figure 5.29. In fact, these jumps could cause problems in navigation of

the robot (such as for path planning or obstacle avoidance).

Scan matching with FastSLAM algorithm gives better accuracy than with DGL algorithm.
The main advantage of FastSLAM algorithm comes from using particle filter and extended
kalman filter all together. By using multiple particles different robot paths can be
determined, and the optimal path is estimated according to the landmark observations. Also
by using EKF, the pose and landmark positions are updated. As a result, in full SLAM
implementation a map with higher consistency is obtained, which shows better pose

estimation is obtained, given in Figure 5.25 and Figure 5.30.

5.4 Online SLAM and Full SLAM Comparison:

Online SLAM problem involves estimating the posterior over the momentary pose along
with map. On the other hand full SLAM calculates a posterior over the entire path along with
the map instead of just current pose. Thus full SLAM, needs the entire path estimate from
the startpoint in each particle and also when an update comes, the entire map is need to be
updated according to all updated path. For this purpose, online SLAM is applicable as real
time working, while full SLAM is mostly applicable as post processing because of its high
process load. In the thesis, the FastSLAM results are demonstrated as full SLAM results.
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Figure 5.35:Aselsan Indoor Area: The figure in the left belongs to the full FastSLAM result
while the figure in the right belongs to the online FastSLAM result.

Figure 5.36: Ancona Univercity: The figure in the left belongs to the full FastSLAM result while
the figure in the right belongs to the online FastSLAM result.
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Figure 5.37: Intel Research Lab: The figure in the left belongs to the full FastSLAM result while
the figure in the right belongs to the online FastSLAM result.

In Figure 5.35 and Figure 5.37, an illustration giving the online FastSLAM and full
FastSLLAM is presented. As it is seen, in full SLAM, previous poses of robot and all
constructed map till that timestep is updated according to the information registered in the
most weighted particle in loop closing cases. Therefore there is back propagation in
correction of pose error in full SLAM case. However the accumulated error till the landmark
reobservation stays on the map in online SLAM. As a result full SLAM gives better pose
estimate and more consistent map, in the other hand online SLAM gives real time working
ability. In this thesis mapping in full FastSLAM is presented as post processing since
occupancy grid mapping is used and in occupancy grid map, each time about 180 LADAR
scans need to be considered. However, mapping in full FastSLAM can also be used as real
time working when the map consists of high level features like line segments or landmarks

instead of raw laser scans.

5.5 Computational Complexities of Algorithms:

The algorithms are evaluated whether they can be used in real time applications with a robot.
This test is done on the data of Intel Research Area, which is given in Section 5.3. Since this
data is most appropriate one for all three algorithms given. In fact, it has many features to be
used as landmarks and contains many closed loops for FastSLAM and DGL algorithms
(especially to see the process time, in weight calculation and feature update steps). Also it is

well structured, so main scan matching needs to work more feature extraction and matching
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operations. The LADAR data in our tests is taken maximal with 5 Hz frequency. Therefore
0.2 second timestep intervals are enough for the real time application. During our tests, Intel

Core 2 Due T7200 2.00 GHz Mobile Processor is used. The results obtained are presented:
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Figure 5.38: The illustration showing the process time for main scan matching (averaged from
10 trials).

[teration execution time for scan matching with DGL
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Figure 5.39: The illustration showing the process time for scan matching with DGL algorithm
(averaged from 10 trials)..
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lteration execution time for scan matching with F5-2L5-2LP
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Figure 5.40: The illustration showing the process time for scan matching with FastSLAM
algorithm (with 200 particles) (averaged from 10 trials).

Table 5.16: The table showing the mean and maximum timesteps obtained during the execution
of algorithms in Intel Research Area (averaged from 10 trials).

Mean Iteration Exec. Max Iteration Exec. Time
Time (s) (s)
Scan Matching 0.0497 0.1563
Scan Matching with DGL 0.0518 0.1586
Scan Matching with FastSLAM 0.1043 0.3924
(200 particles)

As it is seen from the figures and table, for all the process time in mean, is below 0.2
seconds. For main scan matching and the one with DGL algorithm, the maximum process
time is still below the 0.2 second. However, the one with FastSLAM algorithm (with 200
particles), the instantaneous process time can be about 0.4 second given in Figure 5.38. But
this corresponds to 2 laser scans. In fact, because of low rotational and translational speed of
the robot, the algorithms are still working with 4 laser scan steps in the given datasets.
Therefore we can say that all these algorithms can work real time in given applications. For
the localization performance scan matching with DGL algorithm needs to be chosen. It
contains a low increase in computational complexity referenced to main scan matching,
given in Figure 5.39 and Figure 5.40, and an important improvement in localization. Also for

a better performance, especially for large scale environments with multiple loops, scan
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matching with FastSLAM algorithm needs to be used in spite of its doubled computational

complexity referenced to scan matching with DGL algorithm.

5.6  The Comparison between the FS_2LS 2LP and FS_3LS 1LP
Algorithms:

In this part, scan matching with two different implementation of FastSLAM algorithm is
compared. We can define FastSLAM algorithm with two landmark positions registered in
particles to define a landmark with its orientation as FS_2LS 2LP algorithm. FS 2LS 2LP
means FastSLAM with two landmark states and two landmark positions. Also we can define
FastSLLAM algorithm with orientation information addition to position registered in particles
to define a landmark as FS 3LS 1LP algorithm. FS 3LS 1LP means FastSLAM with three
landmark states and one landmark position. To compare their performances, they are tested

with the given test areas:

Figure 5.41: ASELSAN Indoor Area: The figure in the left belongs to the FS_3LS 1LP result
while the figure in the right belongs to the FS_2LS 2LP result.
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Figure 5.42: Intel Research Lab: The figure in the left belongs to the FS_3LS 1LP result while
the figure in the right belongs to the FS_2LS 2LP result.

As it is seen from Figure 5.41 - Figure 5.42, the distortions on the mapping are about same in
both algorithms. It can be said as scan matching with FS 2LS 2LP and FS 3LS 1LP
algorithms have similar outputs. Also this shows a modified version of FastSLAM, which is
given as FS 3LS 1LP algorithm is successfully implemented. The resulting computational

complexities of these two algorithms can be given as:

Iteration execution time for scan matching with FS-2L5-21P
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Figure 5.43: The illustration showing the iteration execution time for scan matching with
FS_2LS 2LP and FS_3LS_1LP algorithm (with 200 particles) (averaged from 10 trials).
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Table 5.17: The table showing the mean and maximum iteration execution time obtained during
the execution of algorithms in Intel Research Area.

Mean Iteration Exec. Max Iteration Exec. Time

Time (s) (s)
Scan Matching with FS 2LS 2LP 0.1043 0.3924
Scan Matching with FS 3LS 1LP 0.1069 0.3379
Scan Matching with FS 2LS 2LP 0.1015 NA

Excluded Landmark Re-observation
Execution Time
Scan Matching with FS 3LS 1LP 0.1027 NA
Excluded Landmark Re-observation
Execution Time

According to the results given in Figure 5.43 and in Figure 5.14, FS_2LS 2L P algorithm has
a little bit better iteration execution time. However FS 3LS 1LP algorithm has better
maximum iteration execution time. The execution time of these two algorithms is taken,
except the places where landmark re-observation is occurred. It is seen that their mean
execution time difference decreases. This overlaps with the theoretical operation of
FastSLAM algorithm, since in these steps only prediction update occurs, no weight
calculation or measurement update occurs, which means that this part is independent from
the landmarks and landmark related calculations and need to have same mean execution

time.

Maximum iteration execution time is seen in landmark re-observation cases. The difference
between maximum iteration execution times comes from the number of calculations
occurred in the algorithms. In FS 2L.S 2LP algorithm, number of landmark positions is
doubled, so the time in all the relevant parts with landmark re-observation, which are
proposal sampling, the measurement update in EKF algorithm and the weight calculation
part is doubled. However in FS_3LS 1LP algorithm, this time is increased since all the
matrix productions, jacobians, inverse matrix calculations are made with higher dimension

matrices (since the landmark is stated with three parameters).

A definite decision could not be given between the computational complexities of the
algorithms. Since the Matlab is optimized for matrix based calculations, which could give
some more benefit in matrix calculations instead of loops. In the other hand, Cholesky
factorization is used for inverse calculations, which gives an enhancement, but search tree is

not used for data association, which gives an aggravation. As it is seen from the pseudo
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codes of the algorithm, the increase in number of landmarks affects the computational
complexities and total number of parameters linearly, on the other side the increase in
parameters of landmarks affects the computational complexities and total number of

parameters quadratic.

5.7 The Sensitivity Analysis of the Algorithm:

In this part, some most important parameters of the algorithm will be changed in an interval

and their effects to the performance of the algorithm are analyzed:

5.7.1  The Change in Number of Particles for FastSLAM Algorithm:

Number of particles is one of the most important parameter for FastSLAM algorithm, It
decides with how many particles that the given covariance in pose of the robot will be
expressed. This parameter changes for different environments mapped. Since size of the loop
closings, the error incoming from the scan matching algorithm (for standard FastSLAM the
odometer error), the sequence of closed loops in total path... effect the number of particles
needed. For this purpose, Intel Research Lab (Test Area 3 given in Figure 5.34), which is the
most complex environment in datasets for FastSLAM algorithm, is analyzed. The
performance is calculated as the mean and variance of the localization error seen in six areas
given (in Figure 5.34). The mapping of this environment with different number of particles is
presented below for scan matching with full FastSLAM algorithm in Figure 5.44 and Figure
5.45:
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In Figure 5.44, the change in mean positioning error with respect to number of particles is
given. In Figure 5.45, the change in mean orientation error with respect to number of
particles is given. Also for the trials, the worst and best results are given. As it is seen from
the results, the performance of the algorithm increases with increment in number of particles.
Also the the interval between the bounds decreases. In other hand, while the number of
particles decrease, the results obtained from FastSLAM algorithm comes closer to the main
scan matching results, but still for 50 particles FastSLAM has much better results (it is seen
for main scan matching given in Figure 5.23, the mean position error is about 1.1 meters and
mean orientation error is about 2.1 degree. ). After 300 particles, considerable improvement
does not occur in mean position and orientation error; also the results are so close the zero
localization error. However by the increase in particles, mean and maximum iteration
execution time also increases, which has given in Table 5.18. After 300 particles, more than
0.6 maximum iteration execution time is seen, which corresponds to loss of three LADAR

scans.

Table 5.18: The table showing the mean and maximum iteration execution time obtained during
the execution of FS_2LS 2LP in Intel Research Area.

Number of Particles Mean Iteration Exec. | Max Iteration Exec. Time
Time (s) (s)
50 0.0911 0.2084
100 0.0934 0.2670
150 0.0974 0.3324
200 0.1015 0.3924
250 0.1039 0.4519
300 0.1082 0.5115
350 0.1117 0.5796
400 0.1150 0.6433
450 0.1189 0.7235

Mapping results obtained during the trials with maximum and minimum number of particles

is given below in Figure 5.46:
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Figure 5.46: The figure illustrating the mapping performance of FS_2LS 2LP algorithm for 50
and 450 particles. The one on the left for 50 particles, the one on the right is for 450 particles.

5.7.2  The Change in Scan Interval of LADAR:

In this part, the affect of change in scan interval of LADAR to the performance of
localization is tested. For this purpose the scan interval has decreased with 20 degree
intervals, which has resulted with datasets consist of LADAR scan with 160,140, 120,...

degree intervals. These datasets are tested with main scan matching algorithm:

Figure 5.47: Scan matching results with 100 (left) and 120 degree (right) intervals for LADAR
scan.
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As it is seen from Figure 5.47, the performance of scan matching algorithm degrades with
the decrease in number of particles. About 120 degree interval, about 1.2 meters and 0.7
degree mean localization error is seen. When it comes to 100 degree the localization
becomes much worse. Because of the global localization ability of FastSLAM algorithm, a
better performance in spite of the decrement in LADAR scan interval is seen. This is

presented with the following results given in

Figure 5.48: Scan matching results with FastSLAM algorithm result 90 (left) and 100 degree
(right) intervals for LADAR scan (450 particles)( The results are presented as 180 degree
interval LADAR mapping, to visualize the distortions better).

As it is seen from Figure 5.48, scan matching with FastSLAM algorithm still gives
acceptable results when it comes to 90 degree LADAR scan interval. After this interval, it
the algorithm also completely fails. The obtained localization performance results with

respect to change in interval of LADAR scan is given in Figure 5.49 and Figure 5.50:
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Figure 5.49: In figure, the change in mean position error for the change in LADAR scan interval

is presented (averaged from 5 trials).
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Figure 5.50: In figure, the change in mean orientation error for the change in LADAR scan

interval is presented (averaged from 5 trials).
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The Performance Comparison for All Implemented Algorithms

5.7.3

Mean position error versus maximum iteration execution time
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Figure 5.51: Mean position error versus maximum iteration execution time. * corresponds

SM+FastSLAM and increase 50 to 450 from left to right by 50 particles intervals.
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As it is seen from the Figure 5.51 and Figure 5.52, main scan matching algorithm gives
worst results. When the DGL algorithm is added, the computational complexity a little bit
increases, however the performance in localization and mapping increases in a considerable
level. When the FastSLAM algorithm is added to the main scan matching algorithm, it
catches the performance of DGL algorithm after it passes 100 particles. After number of
particles pass about 300 particles, the performance in position and orientation flattens. This
means that increasing number of particles after this level does not bring any contribution to

the performance.

For 200 particles, we can say that FastSLAM algorithm has better performance from all
others and also it has still real time working capability (assumption is, robot has rotation rate
less than 60 degree per second and LADAR works in 5 Hz output rate). All the algorithms
are executed as m file in MATLAB command window. When these algorithms are converted
into .exe or .mex file, the computational complexity is expected to decrease half of the given

in this thesis, according to the results of personal implementations and the analysis given in

[38].
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CHAPTER 6

CONCLUSION

In this thesis, a solution to indoor localization problem for autonomous robot navigation is
presented. The aim is a practical localization algorithm implementation for extensive indoor
environments, which is real time working, robust to the problematic effects coming with the
real LADAR data and also has an acceptable success in different structured environments.
During the research period, the algorithms in the literature are surveyed; the methods
supporting our goals are selected. The start point of this thesis is the scan matching algorithm
presented in the thesis given in [17]. During the implementation period, the algorithm is
tested with a broad training dataset containing real LADAR and odometer data of different
environment and scenarios. In fact, for each time, after the performance outputs obtained for

different test beds, the algorithm is optimized with appended, omitted and revised methods.

Scan matching algorithm given in this thesis consists of four main parts. These are line
extraction, feature and feature properties extraction, main scan matching, fault correction and
global localization part. The line extraction algorithm implementation is based on the
literature survey. The optimum line extraction algorithm is implemented based the
correctness, precision and speed criteria according to given comparisons in papers. The
implemented line extraction algorithm is optimized for potential encountered line fitting
problems in real LADAR data. In feature and feature properties extraction part, conventional
features and properties given in the literature are extracted. On top of them, also a pattern
concept based on the multiple feature set is added. In main scan matching part, the overlap in
these inputs is used for the voting procedure of matching tables constructed from the line
pairs extracted from cognitive scans. Criteria in this part are carefully considered and the
ones that can be adapted to real LADAR data are tried to be considered. In fact, in addition

to the standard comparing techniques as criteria, simple pattern comparing techniques are
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used, promotion to unique features is given, and also some special cases are considered, such
as the ones that adopt the algorithm to low structured environments. As a result an
improvement in the performance of main scan matching part is seen. For pose calculation,
novel precise methods are used. Main aims in main scan matching are to choose these
criteria flexible for different environments and to implement the algorithm tolerable to
mistakes in voting. In fault correction and global localization part, the scan matching outputs
are compared with odometer outputs and also a pose update from odometer is given for the
cases scan matching could not find. Global localization is achieved by tracking of
appropriate features extracted (real corners and both side ended lines as landmark features),
and making correction based on these for the closed loop cases, which is a kind of

deterministic global localization implementation.

In SLAM part, the main scan matching algorithm is combined with FastSLAM algorithm
instead of deterministic global localization methods. In this part, pose differences obtained
from scan matching are used as improved odometer input and passed through the odometer
motion model for this algorithm. Also since scan matching is feature based, landmarks of
FastSLAM algorithm are taken from the feature set extracted. In data association part, as a
contribution, for each landmark observation two landmark positions are added to landmark
set of particles. This gives the algorithm ability to update and resample its particles also
considering the orientation of landmarks in both data association and weight calculation
parts. In fact, in environments with few number of landmarks are available, this property
makes the particles scatter around the correct heading. Furthermore, the feature properties,
dependent and independent from the pose, are applied for comparing the landmarks which

have decreased the wrong association chance for the objects that stay in same likelihood.

The mapping is presented in occupancy grid map. The performance of the algorithms are
compared inside by considering the corruptions on the occupancy map and compared with
the maps given with Radish data [22], if available. As we can see from the experimental
results for long distance traveled and also for different environments given, just by using real
LADAR data and raw odometer (which is used just for the case pose difference could not be
found), the scan matching algorithm still gives promising results in where the odometer data
totally is corrupted. Furthermore in closed loop cases, addition of deterministic global
localization method improves the pose estimation of scan matching, while FastSLAM

improves the pose estimation of global localization.
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In this thesis it is showed that combining the scan matching and SLAM algorithms results as
improvement in pose estimation and mapping. In fact, scan matching gives better pose
estimation than raw odometer output. However it suffers from the error accumulated for long
distances. In other side, SLAM algorithms have pose error correction ability in closed loop
cases. However, because of using raw odometer as pose input, they suffer from the data
association problem, sometimes which ends with divergence of the filter. When these
algorithms are combined, scan matching gives the SLAM algorithm better pose input. As a
result of this, noise levels in SLAM algorithm decreases. This simplifies the data association
problem and also increases the size of the loop that SLAM algorithm works without
divergence. On the other hand, SLAM algorithm reduces the accumulated pose error for scan
matching in closed loop cases. Moreover in full SLAM usage, it gives better estimated path
with previously corrected poses and a map with higher consistency. In specific, Split and
Merge Algorithm is applied in line extraction for its advance referenced to other algorithms.
Feature based scan matching is used because of its better real time working capability and
lower computational complexity referenced to raw LADAR data based algorithms. Also it
decreases the workload of SLAM algorithm, because of joint feature set. FastSLAM
algorithm is used because of its computational advantage and robustness to the data
association problems referenced to EKF-SLAM methods. These algorithms are supported
with improvements in accuracy and matching capability of scan matching and data

association capability of SLAM algorithm.

As a future work, complex line and corner based patterns as landmarks can be used for data
association in SLAM algorithms, which will increase the size of the loop, also will be a good
solution for kidnapped robot problem. Also scan matching part can be improved by adding
matching of curved objects, such as the ones that can be defined as circle or the ones that
does not have a specific shape but arises from the continuity of data points in an order.
Furthermore the given methods in scan matching can be converted into probabilistic
methods. Different sensor outputs can be integrated into algorithm. In fact, according to the
accuracy of the sensors used, the outputs of the given sensors can be applied such as, a
bound in matching of line pairs, correction or direct pose estimate in prediction part of
SLAM algorithm. On the other hand, the algorithm is applied with only LADAR and

minimum level odometer usage, to see the success of algorithmic implementation.
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APPENDIX A

ADDITIONAL INFORMATION

A.1 Data Structures Used to Implement Algorithms:

In the notation class structure is used . The children are set according

.l to which parent class they belong to, such as the parent for Lineclass
C(m) : Cluster ID is Line and for the Line parent is Cluster. If a structure includes same
type of member more then once, it is given as array, such as C(m),
C(m).L m=1: all clusters in range scan
C(m) . L.Lineclass
C(m) . L.dis
C(m) . L.dis(1)
C(m) . x
C(m) . L.dis(2)
C(m) . x(1)
C(m) . x(2) C(m) . L.dis(p)
C(m) . x(n)

Figure A.1: The figure illustrating the class structure defined for scan matching

The class structure created for all variables given in this thesis is:

Class structure is used for the notational definitions that are given in list of symbols. An

illustration is given for this class structure in Figure A.l. In the definitions the main set the
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property is belong to is given first, while the definition goes left, the structure is specialized

for the given property. If we examine an example structure c"l.L.LineClass :

cl] corresponds to the mth ID cluster created from raw LADAR range scan. cl

corresponds to the fitting line to the mth ID cluster created from raw LADAR range scan.

C"l.L.LineClass corresponds to the class of the line fitting (such as both, left, right side

ended or open) to the mth ID cluster created from raw LADAR range scan.

A2 Testbed Platforms:

FigureA.2: Pioneer 2DX differential drive testbed robot with SICK LMS 200 Laserscanner

Figure A.3: Pioneer 3DX differential drive testbed robot with SICK LMS 200 Laserscanner

161



In FigureA.2 and Figure A.3, the testbed robot platforms that raw sensor data is acquired
are presented. These platforms are commercial robots dedicated for robotic applications.
They are three wheeled (one is dummy wheel) differential drive platforms. They provide

directly estimated odometer output as [ x, y,6 ] referenced to the coordinate frame at their

startpoint, which is assumed as [0, 0, 0].
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