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ABSTRACT 
 
 

A NOVEL MOBILE ROBOT NAVIGATION METHOD BASED ON 
COMBINED FEATURE BASED SCAN MATCHING AND FASTSLAM 

ALGORITHM  
 

 

 

Özgür, Ayhan 

M. Sc. Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Afşar Saranlı 

Co-Supervisor: Assist. Prof. Dr. İlhan Konukseven 

 

September 2010, 162 pages 

 

 

The main focus of the study is the implementation of a practical indoor localization and 

mapping algorithm for large scale, structured indoor environments. Building an incremental 

consistent map while also using it for localization is partially unsolved problem and of prime 

importance for mobile robot navigation. Within this framework, a combined method 

consisting of feature based scan matching and FastSLAM algorithm using LADAR and 

odometer sensor is presented. In this method, an improved data association and localization 

accuracy is achieved by feeding the SLAM module with better incremental pose information 

from scan matching instead of raw odometer output.  

 

This thesis presents the following contributions for indoor localization and mapping. Firstly 

a method combining feature based scan matching and FastSLAM is achieved. Secondly, 

improved geometrical relations are used for scan matching and also a novel method based on 

vector transformation is used for the calculation of pose difference. These are carefully 

studied and tuned based on localization and mapping performance failures encountered in 

different realistic LADAR datasets. Thirdly, in addition to position, orientation information 

usage in line segment and corner oriented data association is presented as an extension in 

FastSLAM module. 
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The method is tested with LADAR and odometer data taken from real robot platforms 

operated in different indoor environments. In addition to using datasets from the literature, 

own datasets are collected on Pioneer 3AT experimental robot platform. As a result, a real 

time working localization algorithm which is pretty successive in large scale, structured 

environments is achieved. 

 

Keywords: Scan matching, LADAR based feature extraction, Simultaneous localization and 

mapping. 
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ÖZ 
 
 

ÖZNİTELİK TABANLI MESAFE EŞLEME VE FASTSLAM 

ALGORITMALARI BİRLEŞİMİ ÖZGÜN HARAKETLİ ROBOT 

NAVIGASYON YÖNTEMİ 

 

 

 

Özgür, Ayhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Assist. Prof. Dr Afşar Saranlı 

Ortak Tez Yöneticisi: Assist. Prof. Dr İlhan Konukseven 

 

Eylül 2010, 162 sayfa 

 

 

Bu çalışmadaki temel amaç, geniş boyutlu detaylı iç ortamlarda pratik iç ortam konumlama 

ve haritalama algoritması gerçeklenmesidir. Biriken tutarlı bir harita oluştururken bunun 

konumlama için kullanılması kısmen çözülmemiş bir problem olup hareketli robot 

navigasyonunda başlıca öneme sahip bir konudur. Bu çatı altında, LADAR ve odometre 

algılayıcılarını kullanılarak öznitelik tabanlı mesafe eşleme ve FastSLAM algoritmaları 

birleşimi bir yöntem sunulmaktadır. Bu yöntemde, SLAM modülüne odometre çıktısı yerine 

daha iyi bir konumlama bilgisi verilerek, iyileştirilmiş veri eşleme ve konumlama hassasiyeti 

sağlanmaktadır.  

 

Bu tez iç ortamda konumlama ve haritalama ile ilgili şu katkıları sağlamaktadır: Birinci 

olarak, öznitelik tabanlı FastSLAM ve mesafe eşleme algoritmalarını birleştirmektedir. 

İkinci olarak mesafe eşleme için geliştirilmiş geometrik ilişkiler kullanılmıştır; ek olarak 

konum farkları için de vektör taşınmasına dayalı yeni bir metot önerilmiştir. Bu yöntemler 

üzerinde dikkatle çalışılıp farklı gerçekçi LADAR veri kümelerinde, konumlama ve 

haritalama hassasiyetinde oluşan hatalara göre düzenleme yapılmıştır. Üçüncü olarak, doğru 
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parçası ve köşe tabanlı veri eşlemesi için konuma ek olarak, yön bilgisi kullanımı da 

FastSLAM modülüne bir eklenti olarak verilmiştir. 

 

Algoritmalar farklı iç ortamlarda çalışan gerçek robot platformlarından alınan LADAR ve 

odometre verileri ile test edilmiştir. Literatürdeki bu veri kümelerine ek olarak, Pioneer 3AT 

deney robot platformlarıyla alınmış kendi veri kümelerimiz de kullanılmıştır. Sonuç olarak 

geniş boyutlu detaylı alanlarda çalışabilen gerçek zamanlı bir konumlama algoritması 

oluşturulmuştur. 

 

Anahtar kelimeler: Mesafe eşleme, LADAR tabanlı öznitelik çıkarımı, Eş zamanlı 

konumlama ve haritalandırma 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Motivation 

One of the main issues in robotics is localization. It affects different main areas of robotics, 

such as mapping, navigation, path planning. Localization can be classified in two areas: 

Indoor and outdoor.  

 

Outdoor localization can be achievable very easily by using a GNSS receiver [1]. GNSS is 

so important for outdoor localization, since it continuously gives global position. Nowadays 

there are many COTS GNSS products (that have the GNSS carrier signal process ability), 

that could provide centimeter level accuracy in position when a fully sky view is provided to 

the GNSS antenna. Also when two GNSS antennas are located on the robot with enough 

displacement, which is usually more than a meter, good heading accuracy is obtained. When 

a GNSS loss is occurred, this problem is mostly solved by using dead reckoning solutions, 

such as multi-sensorial solution based on odometer and inertial sensors (magnetometer, 

accelerometer and gyro).  This kind of multi-sensorial solution is named as INS (Inertial 

Navigation Systems) [2]. By adding GNSS receiver to the INS system, a complete solution is 

provided for the localization. The accuracy of the given pose mostly depends on the quality 

of the sensors used in the solution.  

 

Indoor localization is much harder than outdoor localization, since GNSS receiver does not 

work, which means a global reference could not provided for the localization. Again like the 

outdoor, INS or a solution based on inertial sensors and odometer can be provided. But this 

comes with a cost which is much more then the accuracy it gives. But there is one more point 

for indoor localization; it has a solution based on using some low cost sensors, which can not 

applicable for outdoor area, except the area is dense structured.  
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For indoor localization, measurement sensors are used. These measurement sensors are 

infrared sensors, ultrasonic sensors, radars and laser scanners. In our solution we have used 

laser scanner, which is also known as LADAR (Laser Detection and Ranging) [3]. The 

principle of the LADAR is that it sends multiple laser beams to the environment, and finds 

the distance from the incoming laser beam reflections. After this process, it gives an output 

to the user, known as a range scan, which is a list of points corresponding to the intersection 

points of a laser beam with objects in the robot's environment. The laser beam rotates in a 

horizontal plane and emanates from a sensor mounted on the robot. Thus a range scan 

describes 2D slice of the environment. Points of the range scan can be specified in a polar 

coordinate system whose origin is the location of the sensor, and the reference axis for the 

laser beam direction is the home orientation of the rotating range sensor. Each scan point is 

represented by the laser beam direction, and the range measurement along that direction. 

Suppose that the robot starts at pose Pref (which is our reference pose) and takes a scan (call 

it the reference scan Sref ). The robot then moves through a static environment to a new pose 

Pnew and takes another scan (call it the new scan Snew). The approximate difference of pose 

Pnew from pose Pref (i.e. the relative translation and rotation) is usually known from 

odometer information. However, this information is often imperfect due to wheel slippage. 

Our task is to determine the exact difference of pose Pnew with respect to pose Pref, by 

aligning the two scans. This application is known as scan matching. 

 

Scan matching does not form the full solution. The localization obtained by scan matching is 

pretty good when it has compared with odometer pose. But this does not mean always a good 

localization will be obtained, by the increase in total distance passed the localization 

accuracy decreases. In fact during the pose estimation by the integration of pose differences, 

also the pose error integrates. As a result of this localization error, after a while the 

navigation of the robot and also mapping destroys. When a robot has come to a point that it 

has previously passed, the amount of slippage in pose of the robot is seen. To solve this 

problem, the area in the robot path is investigated and some unique and easily accessible 

features are registered in memory, to remember where you are when you have seen them 

again.  As a result of this, when a robot has came to previously seen area, again it observes 

these features. So it can relocate itself. As a result, the pose error of the robot always stays in 

bounds during its navigation making closed loops in a fixed structured indoor environment. 

Our task is also to keep the incremental pose error at limits during the navigation of the robot 

and create a consistent map, which is known as simultaneous localization and mapping 

(SLAM).  
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1.2 Scope of the Thesis 

The scope of this algorithm is, to provide indoor pose estimation for MAGIC 2010 

competition robots. Inputs are laser scanner readings, raw odometer (x,y,θ) pose estimation . 

Outputs are global indoor 2D pose, suitable for replacing GPS inside a building raw local 

occupancy grid map. 

 

This algorithm finds the robot pose by using feature based scan matching algorithm. 

Algorithm calculates the pose based on LADAR readings and uses odometer data for low 

structured environment that scan matching pose output could not take.  Algorithm is 

improved with deterministic global feature matching techniques and also FastSLAM 

algorithm to increase pose accuracy in closed loop path cases. The algorithm provides the 

user, the robot pose and raw occupancy grid map. FastSLAM algorithm also gives post 

processed corrected path and mapping when it is used as full SLAM.. 

1.3 Primary Contributions 

In this thesis, the following items are given as primary contributions: 
 
• A combined localization method is presented based on feature based scan matching and 

FastSLAM algorithms with a joint feature set. Scan matching is given as a novel voting 

based algorithm while FastSLAM is given with a novel combined landmark observation and 

data association structure.  

• The methodology used in scan matching gives the algorithm ability to cope with real 

LADAR data.  

• Applied criterion based on matching the combination of multiple feature properties 

improves the correct matching ability of scan matching algorithm. 

• A more accurate method is applied for the translation calculation between cognitive 

scans in scan matching. 

• A real time working simple deterministic global localization algorithm is presented that 

improves scan matching localization in long open loop paths where FastSLAM does not 

applicable.  

• Line and corner based data association with a validity gating on features is applied and 

orientation information of landmarks is added to state vector in EKF and data association 

together. 
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1.4 Outline of the Thesis 

The structure of the thesis can be presented as follows: 

 

In Chapter 2, a survey of work previously done in scan matching and line extraction 

algorithms is presented.  

 

In Chapter 3, the theoretical background and the implementation of scan matching algorithm 

is presented. This part includes seven sub parts; these are the general structure of scan 

matching algorithm, sensor data information, line extraction algorithm, feature and feature 

properties extraction, main scan matching, global localization and occupancy grid mapping. 

 

In Chapter 4, the theoretical background and the implementation of FastSLAM algorithm 

with the modifications in data association and measurement update parts according to needs 

in this thesis is presented.  

 

In Chapter 5, the performance of the algorithms for sensor datasets taken from three different 

environments is presented. 

 

In Chapter 6, the current work is summarized and the work done is discussed. 
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CHAPTER 2 

2                         LITERATURE SURVEY 

In this section, the knowlcorner in the literature about the subjects in scope of the thesis is 

surveyed. These are in order, LADAR based feature extraction algorithms, scan matching 

methods and simultaneous localization and mapping methods (SLAM). Feature extraction 

methods are mostly based on line extraction algorithms, which form the infrastructure for 

scan matching and SLAM algorithms implemented in this thesis. The search in scan 

matching and SLAM algorithms is specialized on the algorithms based on LADAR data.  

2.1 LADAR Based Feature Extraction  

Feature extraction step is a vital part for the feature based scan matching algorithms. For the 

feature extraction line extraction and curve extraction methods are necessary components. 

Curve extraction and scan matching based on curve matching methods are computationally 

costly; therefore in most of the scan matching based algorithms on line extraction methods 

are preferred. This approach also gives a unique and dense feature set for scan matching, 

which consists of lines, corners, as well as structures formed from the combination of all of 

these. The comparison of line extraction algorithms is presented in [17]. The details given 

below are based on the results obtained from this paper. Different line extraction algorithms 

and their properties are summarized below followed by a comparison from the literature of 

their performances [17]: 

 
Split-and-merge [17] is probably the most popular line extraction algorithm which has 

originated from computer vision. This algorithm is used for line extraction in our algorithm, 

so further information will be given in the next chapter. 
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Line regression algorithm [18] is proposed for map-based localization. It is based on the 

Hough Transform algorithm. The line extraction problem turns into a search problem in 

model space the Agglomerative Hierarchical Clustering (AHC) algorithm is applied to 

construct adjacent line segments. The main drawback of this approach is that it is 

theoretically quite complex and difficult to implement.  

 
RANSAC (Random Sample Consensus) [19] is an algorithm mostly used in computer 

vision. It is a robust fitting algorithm in the presence of data outliers. The main advantages 

are that it is simple to implement and can be used with many types of features once we have 

the feature model. The main disadvantage of this approach is that it is iterative and stops 

when maximum number of iterations reached or too few points left, which makes is bad to 

use in real time implementations on robots. 

 
Expectation-maximization algorithm (EM) [20] is a probabilistic method and commonly 

used in missing variable problems. The main drawback is that it can be trapped in local 

minima and needs good initialization points. 

 
Hough transform [21] is mostly used in image processing; it is applied to finding line in 

intensity images. To extract line segments from range scan data, it is brought to robotics. It 

has two main drawbacks: The first one is that while estimating the line parameters it does not 

take noise and uncertainty into account. The other one is that choosing an appropriate grid 

size is too difficult. 

2.1.1 Comparison of Line Extraction Algorithms 

According to the results given in Table 2.1 (the data is borrowed from [17]), Split and 

Merge algorithm has minimum complexity and maximum speed according to given table 

above. Also we can see that considerably good true and false matching rates. So for line 

extraction part implementation of the feature based scan matching algorithm given in next 

chapter, Split and Merge Algorithm is used. 
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Table 2.1: The comparison of line extraction algorithms [17]. The algorithms are compared 
based on complexity, speed, correctness and precision criteria. 

 

 
 

2.2 Scan Matching 

Scan matching is a popular way of recovering a mobile robot’s motion. Given two scans 

recorded at two different positions, the translation and the rotation that aligns these scans 

give an estimate of the robot’s path between these scans. In fact, the first scan serves as 

reference scan and has previously been taken or is stored in a-priori map of scans. The 

second scan (called current scan) is matched against the reference scan and its scan position 

is determined relatively to the position of the reference scan. The result of this match is a 

position correction which can be applied to the current robot position.  Such an estimate can 

be used as an enhanced odometer, can help to close loops or can be the perceptual basis of 

relation-based SLAM in the Lu and Milios style [4]. Many ways to calculate such estimates 

have been proposed but all algorithms share on common attribute: They match pairs of 

scans. 

 
Scan Matching algorithms based on LADAR data can be divided into two main categories. 

These are feature based scan matching algorithms and raw data based scan matching 

algorithms.  

2.2.1 Raw Data Based Scan Matching Algorithms 

Raw data based scan matching techniques are based on directly matching of raw LADAR 

data. The other name of this type of matching is point to point matching. These methods can 

be categorized as iterative scan matching methods, such as iterative matching range point 

(IMPR)[5], iterative dual correspondence (IDC)[5], point-wise scan matching[6], MbICP[7], 
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histogram based scan matching [8]. Point wise scan matching [6] weights the contribution of 

each scan point to the overall matching error according to its uncertainty. Metric-based ICP 

(MbICP) [7] presents a metric-based matching algorithm by point-wise matching dense 

range scans. It uses geometric distance that takes into account the translation and rotation of 

a robot simultaneously. Histogram based approaches [8], use a special representation of the 

scanned data for matching of two consecutive scans. Mostly these methods first align the 

LADAR data by using the position difference coming from the odometer outputs. Then 

iteratively they search for the optimum pose alignment to decrease the distance between the 

points of the two following scans. The main drawback of these methods is they iteratively 

converge. Minimizing the error is a typical optimization problem with well-known problems. 

Generally, gradient descent methods are implemented, transforming the second scan such 

that the distance is reduced. Iteration leads to a local minimum of the error function. Also 

getting optimum alignment between scans can cause too much time consumption. To solve 

this drawback maximum time cycle can be added. In fact, adding time cycle can highly 

reduce the performance of the algorithm. Due to the iterative calculations required to obtain 

optimal scan matching in these algorithms, computational complexity are high, and in order 

of O(nk), in which k >1 and n is the number of scan points [9]. In point-wise approaches, n is 

approximately two orders of magnitude more than that of feature-based methods. So these 

algorithms are mostly preferred for post processing of LADAR data. 

2.2.2 Feature Based Scan Matching Algorithms 

Feature based scan matching algorithms are based on feature extraction from raw LADAR 

data and use them for matching. The main advantage of feature based scan matching 

algorithms is they have bounded time cycle. Maximum time consumption for one cycle can 

be calculated for any type of range scans given. Since feature based methods uses high level 

objects for scan matching, which makes them with less computational complexity then point 

to point methods [9]. The dependence on the odometer data is much less in feature based 

methods than point to point ones. Mostly point to point methods needs odometer for 

initialize their scan pairs (to decrease pose difference between the scans). But there are some 

feature based methods, represented without odometer usage [10] [11] [12] [13]. These are 

mostly defined as pure scan matching methods.  Main drawback in pure scan matching 

methods is when the environment is not structured enough, pose calculation could not 

obtained. So algorithm fails in these points. In [10], a comprehensive geometric model for 

robot mapping based on shape information is presented. Polygonal lines, called polylines, 
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serve as the basic representation of shape as a structure of boundaries. Matching two shapes 

means matching two ordered sets of polylines against each other according to their 

similarity. In [11], a method based on geometrical relations on lines and corners is 

represented. The method proposed in [12] uses a panorama laser range finder and identifies 

line segments representing linear structures in the environment. This is accomplished by 

pattern matching and pattern recognition on line segment sets through a dynamic 

programming algorithm. The scan matching method proposed in [13] matches two scans by 

using geometric features based on line segments, also called Complete Line Segment (CLS) 

relationships. The method singles out complete line segments that represent complete linear 

structures in the environment and uses them to match between the local and global maps. 

The feature based methods that also include odometer information are also presented in [14] 

[15] [16]. In [14], a promising algorithm is proposed for high speed robots. This method is 

fast, but it mostly fails from the lack of robustness property of feature extraction. In [15], 

both scans are replaced by stochastic representations (histograms) and matching is solved by 

finding the maximum of a cross correlation function. The main drawback of the algorithm is 

especially suited for a perpendicular environment but it is not difficult to modify the 

algorithm to work in non-perpendicular environments.  In [16], a method known as anchor 

point relation matching (APR) method is presented. APR is a pattern matching algorithm 

designed for the real-time search of best matching laser scans in a set of given reference 

scans. The algorithm's output is a number of weighted hypotheses which makes APR 

especially attractive for probabilistic techniques aiming at global localization capabilities. 

The algorithm is successful in sampled areas in the map. However a complete localization on 

all over the map is not presented. 

2.3 Simultaneous Localization and Mapping 

SLAM (Simultaneous localization and mapping) problem, also known as Concurrent 

Mapping and Localization (CML) problem), searches for whether it is possible for a mobile 

to be placed at an unknown location in an unknown environment and for the robot to 

incrementally build a consistent map of this environment while simultaneously determining 

its location within this map. The main way used for the solution of the SLAM problem can 

be given simply with following steps. First, during the motion of the robot through its path, it 

continuously predicts its pose. This can be done by using a localization algorithm based on 

the sensors available. In fact, inertial sensors can be used for this purpose, such as encoders, 

gyro, compass, IMU. As a simple solution example, the integration of encoder outputs in the 
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direction given by compass can be given. Also as a more complex solution, integration of 

pose differences obtained by stereo vision or scan matching can be used. Second, the global 

localization of the robot is needed to be achieved. This is done by landmark extraction from 

the constructed map, matching of these landmarks when they are seen more than once 

(which is known as data association problem) and the correction in the pose of the robot 

based on the position and orientation difference between the matching landmarks. In this 

step, when the landmark is seen again, the incremental pose error of the robot or the 

orientation error of landmark is reduced to the error level which one is smaller from them. 

By this, error correction in pose of the robot and also in the landmarks of the map is 

achieved, simultaneously. Third, during all these steps a consistent mapping of the 

enviroment is achieved. If the error correction is for all path of the robot, this is known as 

full SLAM. On the other hand if this correction affects only the current pose than it is known 

as online SLAM.  

 

Achieving better localization and mapping, in different environments for different robot and 

sensor levels constructs the diversity in the solution of the SLAM problem, which consists of 

different solutions in global SLAM method and its sublevels, such as state estimation, 

landmark extraction, data association, state update and landmark update. As it is mentioned, 

in Section 2.2, the existence of uncertainty in the robot pose estimation and in the 

observation data almost obligates the implementation of stochastic algorithms for the 

estimation of the map and the vehicle localization. Initial works were presented [24, [25], 

[26]. In [25], it is showed that while the robot moves through an unknown environment by 

taking relative observations of landmarks, the estimates of these are all correlated with each 

other because of common error in estimated vehicle location. This a joint state composed of 

the vehicle pose and every landmark position, to be updated by each landmark observation is 

required for a consistent full solution to the SLAM problem. In [26], Extended Kalman Filter 

solution (EKF) is given which involves a recursive update procedure that comprises 

prediction, observation, and update steps. One of the main issues in SLAM is data 

association problem. Because of pose and observation data error, the landmarks extracted 

can be mismatched with the previously extracted ones. This causes wrong pose estimates, 

which diverges the Kalman filter. To reduce the effect of feature detection errors, in [27] and 

[28], noval feature management techniques are presented. Also in [28], the idea of 

provisional feature lists in SLAM is developed.  
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A key limitation of the EKF solution to the SLAM problem lies in the quadratic nature of the 

covariance matrix (O( 2n ), where n is number of landmarks). For this purpose EKF SLAM 

algorithms that gain remarkable scalability through decomposing the map into submaps, in 

which covariances are held separately are presented [28] [29]. Despite these are efficient, 

they do not propagate the information through the matrix of local maps. A numbers of 

researchers are developed hybrid SLAM techniques, in these maps are decomposes maps 

into local occupancy grid maps and combining these by using expectation maximization 

algorithm [30],[31]. The particle filtering method [32] is another important alternative to the 

Extended Kalman Filter. In particle filtering, continuous distributions are approximated 

by discrete random measures, which are composed of weighted particles, where the 

particles are samples of the unknown states from the state space, and the particle weights are 

“probability masses” computed by using Bayes theory. Particle filters are used for 

localization in [33] representing Monte Carlo Localization for mobile robots.  

 

One of the pioneer methods that combine particle filters with EKF SLAM localization is 

FastSLAM [34]. FastSLAM uses particle filters for estimating the robot path. Hence 

mapping problem is factored to many separate problems, one for each feature in the map. It 

estimates these map feature locations using separate low dimensional EKF for each 

individual frame. This gives lower computational complexity ( O( pn*n l )), where ln  is the 

number of landmarks and pn is  the number of particles). FastSLAM can cope with non 

linear robot motion models, which is not applicable to previous SLAM methods. Other key 

advantage of FastSLAM is data association decisions can be made on a per-particle basis. As 

a result, it maintains posteriors over multiple data associations, not just the most likely one 

like in EKF SLAM. Another advantage comes from using particle filters which can cope 

with non linear robot motion models. 

 

The main drawback of FastSLAM is that its performance is degraded when high uncertainty 

is presented in vehicle estimate (or a high number of particles are necessary which increases 

the computational complexity of the algorithm). For this purpose, there are hybrid 

approaches that combine some other SLAM approach with scan matching. In [34], a hybrid 

algorithm that combines FastSLAM with scan matching to minimize odometer error is 

presented (Thereby reducing the number of particles needed to build large-scale maps). In 

this paper, the implemented scan matching algorithm is ICP (iterative closest point) and 

standard FastSLAM 2.0 algorithm is merged. On the other hand, use scan matching to 
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improve the data association robustness of an EKF variant called the geometric projection 

filter (GPF) [35]. 

 

One of the main areas of SLAM is Active SLAM. This combines the three problems: 

exploration, localization and mapping. The robot plans to find actions that reduce uncertainty 

both in localization and mapping. Balancing exploration and localization, the paper [46] 

describe exploration trajectories that optimize the mean uncertainty in order to build more 

accurate maps. In paper [47], active sensing with a particle filter, clustering the particles into 

groups and calculating the total expected entropy for the particle filter by a weighted average 

of the expected entropy for each group is done. In [47], active SLAM including active loop 

closure is presented. The SLAM algorithms applied in Active SLAM papers are investigated. 

The information of exploration parts are discarded.  

2.4 Scan Matching and SLAM Applied in Map Merging Algorithms: 

Map merging constitutes building a consistent map of the environment from the data 

obtained from different robots. If the initial locations of the robots are known it is easier, 

which is an extension of single robot mapping [43] [44]. When the robot does not know its 

position, the problem becomes more difficult. Since this time the robot’s traces are need to 

be connected. This is one of the hardest problems in mapping, which is known as loop 

closure. For this purpose different SLAM methods are applied. According to [40], these 

methods are scan matching SLAM [35], grid based FastSLAM [45], Rao-Blackwellized  

mapping [45]. These methods are overlaps with the research area of us about SLAM 

techniques. Since our main intend to improve localization is totally connected with mapping. 

Since an improvement in localization is resulted with an improvement in mapping. 

 

In some papers some solutions combining SLAM with scan matching is given. In [39], a 

method called as polar scan matching is presented. This method combines scan matching and 

EKF-SLAM. A raw LADAR data based scan matching is implemented and it is used just for 

matching of landmarks. Polar Scan Matching is applied for map merging in [41][42]. In [40], 

the method given in [34] is implemented for the SLAM process of each robot before map 

merging. In [35], a scan matching method based on ICP algorithm is merged with 

FastSLAM algorithm. In this paper, the decrease in computational complexity, data 

association capability in larger scale environments is successfully presented. However it has 

some deficiencies. It uses an iterative scan matching algorithm, which has chance to 
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converge to local minima. Also it does not have a fixed convergence time. In FastSLAM 

part, the algorithm is applied in standard way; no special improvement is added to 

FastSLAM. In spite of these, it gives a great localization and mapping capability, which 

promotes people to walk through the scope of this paper. 

 

 

Summary: In this chapter, literature survey about feature extraction, scan matching and 

SLAM algorithms is presented. This survey is based on the literature about methods and 

algorithms mainly developed on laser scanner information. In feature extraction part, 

literature about the line extraction algorithms is presented with a comparison table. In scan 

matching part, survey about feature based and raw data based scan matching techniques is 

presented. Finally in SLAM algorithms part, all the researches in simultaneous localization 

and mapping area are presented. In next chapter; theoretical and practical information about 

the implemented feature based scan matching algorithm in this thesis will be given. 

 



 
 
 14

CHAPTER 3 

3                                SCAN MATCHING 

According to the framework given in literature survey, it is seen that feature based scan 

matching algorithms has lower computational complexity and has advance in real time 

working applications than point based ones because of their non-iterative approaches. Also, 

in this thesis, features extracted in scan matching also constitute the input set of intended 

deterministic global localization (DGL) and FastSLAM algorithms. For this purpose feature 

based scan matching method is chosen.  

 

In this thesis, the validity of extracted features has a great importance. Since they have been 

used as an input for all following algorithms given, they affect the accuracy of the whole 

method. Therefore the comparison between line extraction algorithms is carefully examined, 

Split and Merge algorithm, which gives the most optimistic results, is implemented. 

 

In main scan matching part, an algorithm calculating the pose difference from the 

geometrical relations between line segment and corner features is implemented. The pose of 

the robot is calculated from the incoming pose differences of main scan matching part. The 

incremental error in pose is eliminated with deterministic global localization (DGL) 

approach by using the re-observation of landmark features in closed loop cases.  

3.1 Structure of the Scan Matching Algorithm Implemented 

In this part, the structure of the scan matching algorithm will be described. In Figure 3.1, the 

input output structure is given, in Figure 3.2 the subparts of the general algorithm is given 

and in Figure 3.3, the detailed structure of algorithm and its subparts is given. 
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Figure 3.1:General Input / Output Structure of Scan Matching Algorithm 
 

 

The scan matching algorithm accepts laser scanner data (180 range readings incoming from 

LADAR with 0.5 / 1 degree scan intervals) and odometer data (synchronized estimated pose 

information of the robot). As an output, it gives the constructed map of the area (as 

occupancy grid map) and the scan matching based estimated pose information of the robot. 

Scan matching algorithm consists of four main parts. These are; 

 

 

 
Figure 3.2: The main parts of the scan matching algorithm implemented 

 

 

In line extraction part, the raw LADAR range scan is clustered and line segments are fitted. 

In feature and feature properties extraction part, features, such as corners, and feature 

properties, such as line length, distance between parallel lines, distance between the corners, 

line end information …etc. are found. These outputs are configured according to the needs of 

the main scan matching part. In main scan matching part, a matching table is constructed, the 

line pairs from the previous and current scan are voted, according the overlapping of their 

feature properties. In fault correction and global localization part, the detected errors occur in 

the main scan matching part are eliminated. By using global matching techniques in closed 

loop cases, the error accumulated in the pose is removed. The detailed structure of the scan 

matching algorithm is given as: 
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Line Extraction 
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3.2 LADAR Data 

Laser scanner is measurement sensor based on the time of flight principle by sending a laser 

pulse in a narrow beam toward the object and measuring the time taken by the pulse to be 

reflected off the target and returned back to the sender. The types of LADAR’s used in our 

tests are given in Figure 3.4. 

 

 

              
 

Figure 3.4: The SICK LMS200 and OEM1000 laser scanners that the range scans are obtained. 
 

 

In our configuration, LADAR scans a 180 degree area (semi circle) with 1 degree intervals. 

So we obtain 181 range scans with 5 Hz update rate. We can define these scans as [ ]0d , [ ]1d , 
[ ]2d , …, [ ]nd , [ ]1d +n ,… , [ ]180d , where [ ]nd  means the distance obtained between LADAR 

and reflecting object and n means the angle of the laser mirror while that measurement has 

obtained. Related illustration is given in Figure 3.5. 

 

Implementation Notes:  

 

• The distance obtained from LADAR is in +/- 38 mm accuracy interval. 

• Maximum range that can obtain from LADAR is 80 meters. But distance between two 

consecutive LADAR beam increases with distance, that is given as,  

 
 )tan(2 θdl =  (3-1) 
 
Where we have l as the target distance between measurement points at distance d, and θ is 

the angular separation between individual beams. 

 
According to Equation 4.1, for a perpendicular object to laser beam, if θ=1 degree, for d=10 

meters, l= 0.35 m, for d=20 meters, l= 0.7 m. 
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• The small changes in roll and pitch of the robot affect the level that LADAR beam 

reflects in vertical axis (height). So for long ranges these can be reflected from the ground 

level or from the ceiling. For a LADAR set in 50 centimeters height from ground level, 1 

degree change in roll and pitch causes the LADAR beam to reflect from the ground from 28 

meters, 2 degree change causes from 14 meters.  

 

Also there is an increase in size of the beam by the distance. In our case, LADAR is set to 

about 50 centimeters height and maximum +/- 1.5 degree roll and pitch change is observed. 

By considering all the notes given above, the maximum range for LADAR is set to 12 

meters.  

 

• The LADAR output rate is set to 5 Hz. (Maximum available rate for 115200 baud RS232 

message read). This update rate is fast enough for us. Since the maximum speed robot could 

have is in translational 50 cm/s  and in rotation 60 degree/s (The scan matching algorithm is 

tested with diluted LADAR output (1 Hz) and it is seen that no performance loss is seen 

about 100 cm translational or 30 degree rotational motions.).  

 

 

 
Figure 3.5: LADAR working principles. LADAR has uniformly separated beams spanning a 

certain angular range (180 degree for our case). 
 
 
 
The Effect of Robot Motion to LADAR Scans: The LADAR mirror turn rate is set to 

maximum, to prevent distortions of the objects seen while robot rotates. This is 20 Hz for 

Sick OEM 1000 LADAR, which is used for the tests in ASELSAN indoor area and the 

d(n), d(n+1),.... : The 
distances between the 
reflecting  object and 
LADAR, given by 
laser scanner as  range 
scan  output. 

 

d(n) 

θ 

θ 

The LADAR scans a 
semicircle (180 degree 
angle area) 

θ, which is the angle between two 
LADAR beams, can be 
configurable (0.25,0.5,1 degree). 
In our tests, θ is set to 1. 

LADAR 

Beams that 
give Max. 
range 

d(n+1)
d(n+2)

d(n+3) .... 
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scanning frequency is 75 Hz for Sick LMS 200 LADAR which is used in test area Ancona 

and test area Intel Research Laboratory. It can be said as for 20 Hz, the time passed for a 180 

degree scan is about 1/40 second. Also for 75 Hz one, this is about 1/150 second. For all 

these cases, the maximum rotation speed of the robot is set as maximum 60 degree/second. 

For the other test areas, the datasets are investigated and a turn rate more than 60 

degree/second could not be found.  So it can be said for LMS 200, the error in orientation of 

the lines from start of the scan to end is about 0.4 degree, for OEM 1000 1.5 degree.  In fact 

for the continuous turns, the matched line pairs in consecutive scans are about the same 

rotation angles of the LADAR, so same error is on the matched line pairs. For example the 

ones close end of the scan is matched with the ones close to the end of the scan. Same is 

valid for the ones close to start point. As a result, same distortion is seen and this does not 

effect scan matching, except the turns including acceleration. However for these ones the 

effect is still much smaller with the respect to one between startpoint of scan and endpoint.  

3.3 Line Extraction: Split and Merge Algorithm 

Line extraction is a vital part for the feature based scan matching algorithms. In fact, it gives 

raw line segments for the construction of high level features in scan matching. Split and 

merge algorithm is one of the most preferred line extraction algorithms. It is chosen because 

of its high performance between line extraction algorithms given in comparison (in Table 

2.1). 

3.3.1 The Structure of Split and Merge Algorithm 

As the line extraction algorithm, split and merge technique is used. The illustration giving 

the structure of Split and Merge algorithm is given in Figure 3.6. 
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Figure 3.7: The figure illustrating the steps of Split and Merge Algorithm [17]. 
 

 

In Figure 3.7, four images give the steps of Split and Merge Algorithm.  

 
• In image a, a line is fitted to the cluster and the point that is with maximum distance to 

fitting line is found, which is above the threshold parameter, and the cluster is divided into 

two from that point. 

• In image b, again the points that are with maximum distance to fitting lines are found 

and the clusters are divided into two from these points. 

• In image c, no more splits are found, since all the points belong to the cluster are below 

the threshold parameter.  

• In image d, the consecutive clusters that confirm the given conditions (given in Step 4) 

are merged.  

 
A range scan describes a 2D slice of the environment. Points of a range scan are specified in 

polar coordinate system (Figure 3.5) whose origin is the location of the sensor. It is 

common in literature to assume that the noise on range measurement follows a Gaussian 

distribution with zero mean, a range variance and negligible angular uncertainty. 

 

A line in polar coordinates is expressed as: 

 

 ( ) Lyx
rayax

ii

ii

∈
=+

,
)cos()cos(

 (3-2) 
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where −π < a <= π is the angle between the x axis and the normal of the line, r >= 0 is the 

perpendicular distance of the line to the origin; (x, y) are the Cartesian coordinates of a point 

lying on the line. L is the point set that constructs the line. 

 

 

 
 

Figure 3.8: Fitting line parameters: D is the fitting error we aim to minimize expressing a line 
with polar parameters (r,α). 

 

 

The outline for the implemented algorithm based on LADAR data is given below: 

 

Step 1: Create clusters from the given LADAR data according to given cluster threshold 

parameter. In this step, the LADAR scans from d(0), … d(180) are controlled whether  

 
 [ ] [ ] Thresholddd nn >−+ )( 1  (3-3) 
 

Clusters smaller than minimum cluster points are removed from the cluster set. 

 
Step 2: For each cluster; a line is fitted according to formula given below: 

 

 ))sin()()cos()((
1

2 aiCaiCrD y

m

i
x −−=∑

=

 (3-4) 

 
Where m is the total number points in the cluster, )(iCx  is the x coordinates of the cluster 

elements, )(iC y  is the y coordinates of the cluster elements. α is the line angle and r is the 

line radius, which is the distance between fitting line and origin, given in Figure 3.8. 

 

The solution of (r, α) can be found imposing the derivatives of equation by (r, α): 



 
 
 24

 0
a

D0
r

D 22

=
∂
∂

=
∂
∂

 (3-5) 

 
That is: 

 

 )(1
1
∑
=

=
m

i
xmean iC

m
x  (3-6) 

 

 )i(C
m
1y

m

1i
ymean ∑

=

=  (3-7) 

 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−
=

∑ ∑

∑

= =

=−
m

1i

m

1i

2
meanx

2
meany

meanymean

m

1i
x

1

)x)i(C()y)i(C(

))y)i(C)(x)i(C((2
tan5.0a  (3-8) 

 
 meanmean yaxar )sin()cos( +=  (3-9) 

 
Step 3: If there are points with a distance to fitting line above the threshold, the point 

farthest from the fitting line is chosen and cluster is divided into two smaller clusters from 

that point, then pass to Step 2, else pass Step 4. 

 
Step 4: Lines are merged according to given rules below: 

 

• For each line, points continued from the end of the line are controlled whether they 

fit the line parameters. If there are some points confirm the specified properties, they are 

added to line set, and the line parameters of the line set are calculated again.  Two main 

factors are controlled for this process. 

 

i. If there are points further from the laser scanner with respect to fitting line, this 

means these points belong to a different structure. Therefore the line ends without adding 

these points. 

ii. If there are points nearer to the laser scanner with respect to fitting line, these 

lines prevent us to see additional points of fitting line. If number of preventing points is 

below a threshold, the fitting line is lengthened. 
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• If there are two following lines with same slope these lines are controlled whether 

they can be belong to same structure. If these lines are decided to be in the same structure 

they are merged.  

 
• If there are lines that have length and number of points less than the defined 

thresholds, these lines are deleted. Two parameters of the threshold are defined according to 

three main factors given below. These are: 

 

i. If a line fitting is far away from the laser scanner it contains less points, however 

the distance between these points increases and the length of the line increases. 

ii. If slope of  the line is close to perpendicular to the laser scanner rays that it 

intersects, then the points of the fitting line become  much more further from each other.  

Therefore while number of points decreases the length increases. 

iii. If the fitting line is so close to the laser scanner, number of points increases but 

length of the line decreases. 

 

• The lines between two following parallel lines are specially considered. If they 

contain small number of points, then the slope of these can easily affected from the noisy 

character of the LADAR data. These lines are important to find real corners. So any change 

in their slope affects the position of the corner. Therefore they are corrected as they have best 

slope estimate. 

3.4  Feature and Feature Properties Extraction Algorithms 

In this part, from the line segments coming from the line extraction part, features are 

extracted. These features are basically line segments and corners, but also combination of 

these are also used, such as parallel line segments, patterns formed from consecutive line 

series, patterns formed from consecutive corner series... Also the properties are extracted 

from this feature set, such as slopes, line lengths, corner distances.... All these are used as 

inputs for the matching process in main scan matching part and global localization part.  

3.4.1 Line Information Extraction 

Following feature properties are extracted from each line segment found by using Split and 

Merge algorithm:  
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1) The slope of line is found. This slope is given as the angular difference of line direction 

with start point which is between -180 and +180 in class element [ ] SlopeLC m .. . 

 

 

 
Figure 3.9: The figure illustrating the slope of a line. Slope.L.C  

 

 

2) The Cartesian coordinates of fitting line endpoints are calculated ( [ ] yxC m ,. ). 

 

3) The length of line is found which the distance between the endpoints is 

( [ ] LengthLC m .. ). 

 

4) ID’s of points in the cluster are found which is defined as [ ] [ ]nID :1m .C .They are [ ]iθ , the 

angle of the point in polar coordinates given in range scan raw output ( [ ]id , [ ]iθ ). 

 

5) If the points following an endpoint of the fitting line are further away from the laser 

scanner than the line endpoint  
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or the points following are close to the endpoint,  

 

C(m).L.Slope > 180 

endpoint 

startpoints 

endpoint 

X axis 
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than this line is ended in that endpoint. The lines are classified as, open, right side ended, left 

side ended, both side ended.  

 

 

 
 
Figure 3.10: The illustration about the definitions given in line information extraction. 

 

 

 
 

Figure 3.11: The lines extracted from the LADAR data. 
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When we look at Figure 3.11: 
 
a) We can define Line1 as open. We do not know right side of the line, since it is at the end 

of our scan range, it can be open or ended. At the left side of the line, after the endpoint there 

are points closer to LADAR, which means this line can proceed behind these points so this 

endpoint is also open. 

 
b) We can define Line 2 as left side ended. There are points closer to LADAR than the right 

endpoint of the line. At left side, there are points closer to LADAR than the left endpoint, but 

they start from a position so close to line end. Therefore the line could not proceed behind 

these points.  

 

c) We can define Line 3 as both side ended. Since the points in right side are further away 

from LADAR then the right endpoint, and the ones in right side is in position so close to the 

left line end. 

.................. 
 

The variable, appointed for line classification information, is given as [ ] LineClassLC m .. . 
 

 
6) Deviation of the points for the fitting line is calculated. Since the mean is the position of 

the fitting line so [ ])( mCσ  becomes square root of point to fitting line distances. 

 

 [ ] [ ] [ ]∑
=

=
n

i

im disL
n

C
1

2m )..C(1)(σ  (3-12) 

 

Where [ ] [ ]ndisL..C m  the distance between the ith cluster point and fitting line is, [ ]mC  is the 

cluster and m is the ID of the cluster.  

3.4.2 Corner Information Extraction 

1) The intersection points of the lines are found. These intersection points are defined as 

real corners and virtual corners.  

 

• Real corner is defined as the intersection point of two following lines with too close 

endpoints.  

• Virtual corner defined as the intersection point of the extension of two lines.  
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Figure 3.12: The illustration that shows how Virtual /Real Corners are defined. 
 

 

The corners are defined by [ ]mCnr   class. [ ]mCnr .Class corresponds the information   about 

whether the corner is real or virtual.  

 

2) The angles between the lines constructing the corner are found. Cnr(m).Angle 

corresponds the angle between constructing lines. Since the slope of lines ( [ ] SlopeLC ..m ) 

constructing the corner are defined between  -180 and 180, than the angle of corner becomes 

between -180 and 180, which includes information whether the corner is concave or convex 

inside. 

 

3) The positions of corners in three different categories are found. These are; 

 

• Real/Virtual corners belong to long constructing lines 

• All real corners  

• All real/virtual corners 

 

Categorization of corners is important since they have different importance in the scan 

matching algorithm part.. [ ] xCnr .m  and [ ] yCnr .m corresponds the position of the corner. 

 
4) The line pairs that construct the corner are found. [ ] LpairCnr .m  corresponds the line 

pair constructing the corner. 

Virtual Corner 

Real Corner 
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3.4.3 Corner Angle and Distance Pattern Extraction 

Corner angle patterns are constructed from the slope difference of six consecutive lines, 

between the first one and other five. Related illustration is given in Figure 3.13. 

 
Figure 3.13: The schema illustrating the angle pattern for the first line 

 

 

As you can see from Figure 3.13, the angle pattern consists of the first line and the slope 

differences between the first line and five consecutive lines. So we can define the pattern as; 

 

 

Table 3.1: The pseudo code of the algorithm for finding the angle pattern. The pattern consists 
of the slope differences between the first and consequent five lines. 

 
Algorithm_ Angle Pattern( C) 
1: for each j=1,…,5 
2:  if [ ] φ=iC  or [ ] φ=+ jiC  then 
3:   [ ]ji,Angle_P =0; 
4:  else 
5:    [ ] =j,iAngle_P [ ] [ ] slope.L.Cslope.L.C jii +−  //the slope difference 
6:  endif 
7: endfor 
8: [ ]iAngle_P = [ ] [ ][ ]i,5i,1 Angle_P,...,Angle_P  
9: return [ ]iAngle_P  
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Corner distance patterns are constructed from the intersection point distance of 6 consecutive 

lines, between the first one and other five. Related illustration is given in Figure 3.14. 

 

 

Figure 3.14: The schema illustrating the corner pattern. 
 

 

As you can see from Figure 3.14, the corner distance pattern consists of the first corner and 

the differences between the first corner and five consecutive corners. So we can define the 

pattern [ ]icornerDist  as; 

 

 

Table 3.2: The pseudo code defining the corner distance pattern. The pattern consists of the 
corner distance differences between the first and consequent five lines. 

 
Algorithm_Corner_Distance_Pattern( C) 
1:  function corner(L1,L2) // calculates the intersection of line L1 and L2 
2:  for each j=1,…,5 
3:  if [ ] φ=iC   or [ ] φ=+ jiC  then 
4:   [ ]ji,_PcornerDist =0; 
5:  else                   
6:   [ ]ji,_PcornerDist = (corner( [ ] L.C i , [ ] L.C 1i+ ) - corner( [ ] L.C i , [ ] L.C ji+ )) 
7:  endif 
8:  endfor 
9: [ ]i_PcornerDist = [ ] [ ][ ]i,5i,1 _PcornerDist,...,_PcornerDist  
10: return [ ]i_PcornerDist              

corner(2,5) 
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corner(3,4)

corner(2,3)

corner(1,4)
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3.5 Main Scan Matching Part 

In scan matching part, the features and feature properties extracted from the previous and 

current scans are compared according to the seven criteria given in next sections. All the 

feature information extracted in Section 3.4 is coming from the line segments and their 

clusters from Section 3.3: Line Extraction Part. Therefore any overlap between feature 

properties shows the overlap between the features they have been belonging. In fact, these 

features again shows the overlap between the line segments they have been constructed. As a 

result, each comparison made by given criteria in Sections 3.5.2 and 3.5.8 turns as a vote for 

the related line segments given in matching table in Section 3.5.1. From the votes in the 

matching table predicted line segment matches are found and the resulting pose difference in 

translation and rotation between the consecutive scans is found.  

3.5.1 Matching Table 

While doing feature based scan matching, a matching table has constructed. The columns of 

this table consist of the line segments of the previous scan and the rows of this table consist 

of the line segments of current scan. Below a matching table sample is given in Table 3.4 

during the matching of two scans taken from Radish data [22]. 

 

 

 
 

Figure 3.15: Previous LADAR scan and fitting lines on the LADAR data. 
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Figure 3.16: Current LADAR scan and fitting lines on the LADAR data. 
 

 
Table 3.3: Matching table. This table consists from the rows that are line segments of previous 

scan and columns that are line segments of current scan. 
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..................

............lp(3,2)lp(3,1)
n)lp(2,......lp(2,3)lp(2,2)lp(2,1)
n)lp(1,......lp(1,3)lp(1,2)lp(1,1)

MT  

 

 

where lp(m,n) is the matching score between line pair [ ] L.C m
prev  and [ ] LC n

curr . . m and n are 

the ID of the cluster extracted from the previous and current LADAR scans. 

 

As you can see from Table 3.3; matching table shows the voting’s of the line pairs. The 

columns show extracted lines of current scan and the rows show extracted lines of previous 

scan. So the number set in MT(m,n), corresponds the voting (matching score) for the line of 

cluster m from the previous scan and line of cluster n from current scan.  
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Table 3.4: A sample matching table and the votes between the fitting lines of previous scan and 
current scan. 

 

 
 

 

Table 3.5: Resulting matching table after the line matches with highest rankings are chosen and 
the others are set to zero.  

 

 
 

 

In Table 3.5, the resulting matching table is presented after the line matches with highest 

rankings are chosen and the others are set to zero. Line 1 from current scan ( [ ] L.C 1
curr  ) is 

matched with Line 2 from previous scan ( [ ] L.C 2
prev  ), Line 2 from current scan is matched 

with Line 3 from previous scan and it goes alike. As we can see from the figures given 

above, from the two following scans the fitting lines are found and they are voted according 

to the voting criteria given in next part. The votes coming from voting criteria are weighted 

according to their importance and summed to construct the matching table. The maximum 

voted line pairs in matching table are found and these line pairs will be used for the 

calculation of pose difference. Voting criteria’s are given below: 
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3.5.2 Criterion 1: Elimination of Line Pairs with Slope Difference above 
Threshold 

 

 
 

Figure 3.17: The figure illustrating the scheme of Criterion 1 implemented. 
 

 

At the beginning of scan matching, the line pairs from the following scans are checked 

whether their slope difference are below the threshold, which is given as parametric and set 

in configuration file. Deciding this threshold is important, since it means that whether the 

robot turns in q degrees between the following scans. If the slope of line in previous scan is 

Q degrees, so the matched line in next scan has a slope between Q-q and Q+q. This means 

all the line pairs that do not ensure this interval can be considered as mismatching pairs.  

 

This threshold is decided according to turn limits of the robot between two LADAR scans. 

From the Radish data [22] taken it is seem that robot has a turn rate less than 60 degree per 

LADAR sample. Therefore it is set to 60 degrees. For any test, it needs to be set according to 

LADAR scanning frequency and the robot turning rate. 

 

The negatively voted line pairs feed the other criteria. Therefore any process in other criteria 

for a line pair that has no chance to match is prevented, which results with a considerable 

decrease in the computational complexity of the algorithm. 

 
 
 

0/1 

0/1 

Ccurr(m).L.Slope. 

0/1 

0/1 

Cprev(n).L.Slope. 

Cprev(n).L.LineClass 

Ccurr(m).L.LineClass 

Cprev(n).L.ID 

Ccurr(m).L.ID 

Difference  
Above 
Threshold1 

Difference  
Above 
Threshold2 

Cprev(n).L.Length 

Ccurr(m).L.Length 
Difference  
Above 
Threshold3 

  
And 

  
 
 
 
 
OR 

If input is 1 then 
MT1(m,n)=Negative 
vote 
         

MT1() 

Is both side 
ended 
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Table 3.6: Sub matching table (MT1) of Criterion 1. The line pairs that do not assure the given 
criteria are negatively voted with weighting. 

 

 
 

 

In Table 3.6, the resulting sub matching table is shown when the Criterion 1 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16. Negatively voted line pairs are 

not fed to Criterion 2, 3, 4, 5, 6, 7. This prevents the algorithm not to work on with the non-

matching line pairs, which decreases computational complexity. 

3.5.3 Criterion 2: For Line Pairs That Has Longer Lengths 

 

 
 

Figure 3.18: Sub matching table (MT2) of Criterion 2. The figure illustrating the scheme of 
Criterion 2 implemented. 

 

 

This criterion adds extra voting for line pairs that has longer line lengths. In fact, it helps 

matching in case of the area has large line segments and the robot has sharp turns. 

Cprev(all).L.Length 

Ccurr(n).L.Length 

MT1() 

Cprev(all).L 

Ccurr(m).L 

Slope difference 
is below Thresh1Cprev(all).L.Slope. 

Cprev(all).L.ID 

Ccurr(m).L.Slope

Ccurr(m).L.ID 
ID mean 
difference is 
below Thresh2

Length 
difference is 
below Thresh3

Increment 
counter(m) 

AND 

If  counter(m)=1 then  
Vote MT2(m,n) , where n is the index in 
Cprev(all).L which increment the counter 

Line  pairs 
that are not 
voted 
negatively 
by MT1() 
are passed      
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Especially, this case is seen while robot is going on long corridors and makes sharp turns. In 

fact, these areas are low structured, instead of complex criteria that are based on matching 

multiple features or feature properties, simple criteria can be advantageous. Since low 

numbered line cannot be applicable to a complex criteria. Also checking a few simple but 

decisive properties can be enough, as like the given criterion.  

 

In a scan pair, if there is a longer line than the others and the same lines are seems to be seen 

in the next scan, this criterion highly votes them, but if these lines are more than one and so 

close to each other, this criterion does not vote the line pairs to prevent mismatches. The sub 

criteria for this are: 

 

• Line lengths, 

• Number of longer lines, 

• The slope and  midpoint change between the longer lines in the same scan 

 

 

Table 3.7: Sub matching table (MT2) of Criterion 2. The line pairs that supply the Criterion 2 
are voted with weighting. 

 

 
 

 

In Table 3.7, the resulting sub matching table is shown when the Criterion 2 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16. [ ] LC prev .3  and  [ ] LCcurr .2  has 

considerable longer line length compared with other lines with same slope in their 

neighborhood. Therefore this line pair is seems to be unique and highly voted in MT2. 
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3.5.4 Criterion 3: For the Lines that Have Real Corners 

 

 
Figure 3.19: The figure illustrating the scheme of Criterion 3 implemented. 

 

 

This criterion adds voting to matching table whether the real corners of following scans 

match. The rules are; 

 

• If the real corners has same angle (with a given tolerance set in the configfile) between 

the lines constructing the corner in both following scans. 

• If the real corners in following scans can have chance to be same if the robot makes a 

turn in given limits. 

• Extra Vote: If the real corner has a unique angle between constructing lines. 

 
Then the line pairs constructing these corners are voted. 

 

 

 

 

 

 

 

MT1() Cnrcurr(m) 

MT3() 

Cnrprev(n).Lpair 
Cnrcurr(n).Angle 
 

Cnrprev(n) 

Cnrcurr(m) 

Line  pairs 
that are not 
voted 
negatively 
by MT1() 
are passed      

Cnrprev(n) 

If Cnrcurr(m).Class= Real 
corner 
AND 
Cnrprev(n).Class= Real corner 

Cnrcurr(m).Lpair 
Cnrcurr(m).Angle 
 

If angle difference between  
Cnrcurr(m).Angle of  Cnrcurr(m).Lpair  
and Cnrprev(n).Angle of  Cnrprev(n).Lpair  
below Thresh1 

If the resulting angle difference is unique 
(Does not seen in other corner pairs) 

Input1 

Input2 

If Input1 is 1, vote MT3(the first 
line ID’s in Cnr(m).Lpair current 
and prev) MT3(the second line 
ID’s in Cnr(m).Lpair current and 
prev) 
 
If Input2 is 1, vote MT3 (same) 
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Table 3.8: Sub matching table (MT3) of Criterion 3. The line pairs that supply the Criterion 3 
are voted with weighting. 

 

 
 

 

In Table 3.8, the resulting sub matching table is shown when the Criterion 3 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16. In the table, the line pairs that 

verify the given criterion are voted. The weight of these voting is set low, except that a 

unique match is not seen. In fact, in the angles of real corners ( [ ] AngleCnr i .  ), 

multiplicative of 90 degrees are commonly seen, because of the perpendicular construction 

of features, such as corridors, rooms, furniture… However the power of this criterion comes 

for low structured environments or environments that has real corner angle that are not 

multiplicative of 90 degrees. In this type of environments mostly these corner angles are 

unique, so they are highly voted. 
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3.5.5 Criterion 4: For Parallel Line Distance between the Lines 

 

 
 

Figure 3.20: The figure illustrating the scheme of Criterion 4 implemented. 
 

 

Distance between parallel lines is an important criterion for scan matching. Since distance 

between parallel lines does not depend on the pose of the robot. Depending on noise rate of 

distance measurement sensor (in our case this is laser scanner which has very low noise rate 

which is below 4 centimeters) and also robustness of the feature extraction algorithm (Since 

the line fit averages the measurements , error in position of lines will be the mean of the error 

coming from the measurement sensor readings. Also a good line extraction method needs to 

MT4_1 

The lines Ccurr(i).L and Ccurr(j).L that 
construct L2L_distcurr(m) and the lines 
Cprev(ii).L and Ccurr(jj).L that construct 
L2L_distprev(n) 

Cprev(all) 

Ccurr(all) Condition1: 
If slope difference of 
C(m) and C(n) below 
Thresh1 

Find all line pairs in 
Ccurr and Cprev that 
verifies Condition 1  

Curr_Set  
(Line pair set) 

Prev_Set 
(Line pair set) 

 
For each line pair in 
Curr_Set / Prev_Set, find 
line2 line distance. 

If the difference between 
L2L_distcurr(m) and L2L_distprev(n) 
below Thresh1 

L2L_distcurr L2L_distprev 

If  L2L_distcurr(m) is unique for all  
L2L_distprev(:) , then 
Lines Ccurr(i).L and Ccurr(j).L, Cprev(ii).L 
and Ccurr(jj).L are voted  

Lines Ccurr(i).L and Ccurr(j).L, Cprev(ii).L 
and Ccurr(jj).L are voted   

Overlap type between Ccurr(i).L and 
Cprev(ii).L and  between Ccurr(j).L and 
Cprev(jj).L are same then  these lines are 
voted. 

MT4_2 

MT4_3 

MT4 
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find the slope of the line with minimum error), the tolerances for the distances between the 

lines decrease which make the line distances much more specific and distinctive. The 

criterion consists of: 

 

• If the distance between the line pairs in following scans are same (with a given tolerance 

set in the configfile). 

• If the slope between lines in the pairs in following scans are about same (with a given 

tolerance set in the configfile). 

• If the both line pairs in following scans ensures the conditions given in Criterion I. 

• Extra Vote: If the distance between the lines pair in following scans is so distinct that 

none of other distances is close to it (uniqueness) (with a given tolerance set in the 

configfile) than extra vote is given to the line pair. 

• Extra Vote:  If the lines are same overlapping state extra vote is given to the line pairs. 

 
In Figure 3.20, the general schema that describes Criterion 4 is given. 

 

 

Table 3.9: Sub matching table (MT4) of Criterion 4. The votes of the lines according to the given 
Criterion 4 with weighting. 

 

 
 
 

 
In Table 3.9, the resulting sub matching table is shown when the Criterion 4 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16. As we can see from Table 3.9, 

some of the line pairs are highly voted. In fact, this comes mostly from extra votes. Since 

most of the line to line distances for the given range scans in these figures are unique. Also 

for the cases where multiple line pairs are seen with same line to line distance, overlap type 

concept is added. This prevents matching of the line pairs with different relative 

neighbourhood to each other, such as the ones in a corridor divided by another.  
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No overlap_first 
case 

C(n).L.endpoint(1)

C(m).L.endpoint(1)
Line orthogonal 
from startpoint 

Line orthogonal 
from endpoint 

C(l).L

C(k).L 

Overlap 

C(m).L

C(n).L

Overlap  No overlap_second 
case 

C(m).L

C(n).L

Projection 
Line C(m).L.endpoint(2)

n<m
n>m

C(n).L

C(m).L 

C(n).L.endpoint(2) 

Overlap Type Calculation 
 

 
Figure 3.21: The scheme illustrating overlap types defined. 

 

 

Overlap type is the value that defines whether the projections of two parallel lines on a 

parallel line with same slope overlaps. It can take three values: Overlap, no overlap first 

case, no overlap second case, which is given in Figure 3.21. Overlap corresponds that when 

these lines are projected on a parallel axis, their intervals in that coordinate frame overlaps. 

No overlap first case, in this axis the interval of first seen line by laser scanner is higher than 

the second one. No overlap second case, in this axis the interval of first seen line by laser 

scanner is lower than the second one. The pseudo code for this process is given below: 

 

 

Table 3.10: The algorithm that calculates the overlap types. 
 
Algorithm Overlap_Type_Calculation( [ ] L.C m , [ ] L.C n ) 
1:  function  orthogonal_line(Line1, Point1)    \\ computes the line passing through 
Point1 and  orthogonal to Line1 
2:  function compdist2line(Line1, Point1) \\ computes the distance between Line 1 and 
Point1 
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Table 3.10 Continued 
 

3: [ ] [ ]1m .Ort_LineC = orthogonal_line( [ ] L.C m , [ ] [ ]1m int..C endpoL ) 

4: [ ] [ ]2m .Ort_LineC = orthogonal_line( [ ] L.C m , [ ] [ ]2m int..C endpoL ) 

5:  if compdist2line ( [ ] [ ]1m .Ort_LineC , [ ] [ ]2n int..C endpoL ) >0  and … 

 compdist2line ( [ ] [ ]2m .Ort_LineC , [ ] [ ]2n int..C endpoL ) >0 and…  

 compdist2line ( [ ] [ ]1m .Ort_LineC , [ ] [ ]1n int..C endpoL ) >0  and… 

  compdist2line ( [ ] [ ]2m .Ort_LineC , [ ] [ ]1n int..C endpoL  ) >0  then 

6:  result=No_Overlap_First 
7:  elseif  compdist2line ( [ ] [ ]1m .Ort_LineC , [ ] [ ]2n int..C endpoL ) <0  and… 

  compdist2line ( [ ] [ ]2m .Ort_LineC , [ ] [ ]2n int..C endpoL ) <0 and … 

 compdist2line ( [ ] [ ]1m .Ort_LineC , [ ] [ ]1n int..C endpoL ) <0  and… 

 compdist2line ( [ ] [ ]2m .Ort_LineC , [ ] [ ]1n int..C endpoL  ) <0  then 

8:  result= No_Overlap_Second 
9:  else 
10: result= Overlap 
11: endif  
12: return result 

 

3.5.6 Criterion 5: For Lines Ended in Both Sides  

 
Figure 3.22: The figure illustrating the scheme of Criterion 5 implemented. 

Cprev(n).L.length 

Ccurr(m).L 

Cprev(n).L 

MT1() 

Cprev(n).L 

Ccurr(m).L 

Line  pairs 
that are not 
voted 
negatively by 
MT1() are 
passed         

If  Ccurr(m).L.Lineclass 
and 
Cprev(n).L.Lineclass are 
both side ended 

Ccurr(m).L.length 

If length differences of 
lines below the endpoint 
tolerance threshold then 
vote 
Cprev(n).L and Ccurr(n).L. 

  MT5 
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Some of the lines in the scan are ended in both sides. The information about how a line is 

accepted as ended is given in Section 3.4.1. The matching criteria are: 

 

• If the both lines in the following scans are ended in both sides 

• If the both lines have the same line length (with a given endpoint tolerance threshold 

calculated for each line). 

 

The negative voting criterion is: 

• If the both lines in the following scans are ended in both sides but  line length difference 

is above the threshold (which is set in the config file) 

 
 
 

Table 3.11: Sub matching table (MT5) of Criterion 5. The votes of the lines according to the 
given Criterion 5 with weighting. 

 

 
 
 
 

In Table 3.11, the resulting sub matching table is shown when the Criterion 5 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16 

Endpoint Tolerance Threshold Calculation 

Endpoint tolerance threshold is the given tolerance value while matching both side ended 

lines. The length of a real line segment could change significantly between two consecutive 

scans based on the position and slope of the real line segment. Since there is always an error 

at the endpoints (we do not know how much more line segment goes after the endpoint 

found from LADAR data) based on the divergence between two consecutive range scan 

beam at that distance, which is given with Equation 4.11. The illustration of this situation is 

given in Figure 3.23: 
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Figure 3.23: The illustration that is showing the affect of slope and orientation of the line to the 
position of an endpoint. 

 

 

For this purpose a variable threshold is defined for real corner matching criterion. The 

formula for this threshold is: 

 

[ ] ( ) [ ] [ ] [ ] [ ]
⎟⎟
⎠

⎞
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⎝

⎛
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==

n

i

il
prev

m

i

ik
curr

lk xyC
n

xyC
m

Threshold
11

, .1,.1max*2*180/tan*2 π  (3-13) 

 
Where [ ] [ ]ik

curr xyC . ith x, y Cartesian coordinates of kth cluster of current scan is, 

[ ] [ ]il
prev xyC .  is ith x, y Cartesian coordinates of lth cluster of previous scan. m, n are the total 

number of scan points . The formula assumes the endpoint error based on the maximum 

distance between LADAR and center of line in current and previous scans. The result is 

multiplied according to the projection calculation onto the line. 

 

This criteria is simple, but it is good to find and vote the both side ended lines in an 

environment. On the other hand, as it is given in endpoint tolerance threshold calculation 

part, the length of a both side ended line can still be changed according to the aspect of the 

LADAR into this line and also the distance between the line and LADAR. So correctly 

calculating this threshold, such as given above, solves the non-matching problems of same 

both side ended lines in previous and current data.    

For each line, the angle 
interval effects different for 
the orientation of endpoint, 
depending on the slope and 
positon of line

Line1 Line2
Line3 

Angle interval between 
lines  is set to 1 degree 

Error in position 
of endpoint 

Error in position 
of endpoint 

Error in position 
of endpoint 
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3.5.7 Criterion 6: Searching Angle Pattern between the Following Lines  

 

 
 

Figure 3.24: The figure illustrating the scheme of Criterion 6 implemented. 
 
 
 

Criterion 6 is based on, by using the angle differences creating an angle pattern between the 

following lines in a scan and searching the same pattern in the following scan. This pattern 

search is made as: 

 

1) First the slope differences of the lines are found. This is a matrix as given in Table 3.12:  

 

 

Table 3.12: The structure of slope differences matrix of the lines. 
 

1m - 2m  1m - 3m  1m - 4m  1m - 5m  1m - 6m  

2m - 3m  2m - 4m  2m - 5m  2m - 6m  2m - 7m  

3m - 4m  3m - 5m  3m - 6m  3m - 7m  3m - 8m  

4m - … …. …. …. …. 
…. …. …. …. …. 

 

  MT6() 

MT6(): 
Resulting 
matching table 
based on 
Criterion 6 

AND 

MT1() >0 
AP_Matched (m,n): 
Number of members 
matched between 
Angle_Pcurr (m) and  
Angle_Pprev (n) 

 

AP_Matched (m,n) 

Angle_Pcurr (m) 

Angle_Pprev (n) 

The search includes  two 
steps: 
- If the matched  angle 
pattern members go in 
same order.  
- Whether the members of 
the angle patterns are same 

If AP_Matched (m,n) ==3 
 MT(m,n)=Vote1;  
 
elseif AP_Matched (m,n) ==4 
MT(m,n)=Vote2;  
 
elseif AP_Matched (m,n) ==5 
MT(m,n)=Vote3;  
 Voting 

Decision
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where im  corresponds to [ ] slopeLC i .. , the slope of fitting line to cluster i. These slope 

difference values are found for both of the following scans. Each row of this matrix 

corresponds to [ ]iAngle_P , which is found with given pseudo code in Table 3.1 . 

 
2) These matrices are voted according to their level they overlap. Each [ ]i

currAngle_P of the 

current scan is compared with [ ]j
prevAngle_P . 

 

 

Table 3.13: The slope differences matrix of the previous scan. 
 

 
 
 
 

Table 3.14: The slope differences matrix of the current scan. 
 

 
 
 
 
As we can see from the Table 3.13 and Table 3.14, these scans overlap in the dark colored 

1x5 rectangles.  If the pattern is fully overlaps with the lines that construct than the pattern 

takes the maximum voting in the overlap table. If the overlap decreases in the pattern, such 

as 4-3 slope differences overlap, then the voting for this pattern decreases. The structure of 

the overlapping table is given in Table 3.15: 
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Table 3.15: The structure of overlapping table. For a chosen row and column, the first number 
gives the row used from Table 3.13 and the second number gives the row used from Table 3.14. 

 
The row in slope 

difference matrix in 
previous scan 

(The row in slope difference matrix in previous scan ,The row 
in slope difference matrix in current scan) 

1 (1,1) (1,2) (1,3) (1,4) 
2 (2,2) (2,3) (2,4) (2,5) 

… … … … … 
N (N,N) (N,N+1) (N,N+2) (N,N+3) 

 
 
 
In Table 3.15, for a chosen cell, the first number gives the row used in slope difference 

matrix in previous scan and the second number gives the row used in slope difference matrix 

in current scan. So the overlapping score of these rows is calculated and put into the cell. 

 
For the example LADAR scans given in Figure 3.15 and Figure 3.16 the resulting overlap 

table is given in Table 3.16: 

 

 

Table 3.16: The resulting overlap table in the structure given with Table 3.15  for Figure 3.15 
and Figure 3.16. 

 

 
 

 
 
When we have looked at this overlap table, the maximum points are seen at the second 

column on the rows. This means that if we have looked at Nth slope difference matrix in the 

previous scan, it overlaps with N+1th slope difference matrix in the current scan. We can see 

the overlapping in Table 3.13 and Table 3.14 at the 2nd row and the 2nd column (which means 

3rd slope difference matrix row) of the overlap table in Table 3.16.  

 
3) The maximum points for each row in the overlap table are found and the lines that 

construct this pattern are voted by considering their value in overlap table. In fact, when the 

maximum point in the overlap table decreases, this means the lines constructing that pattern 
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does not fully overlap, for example some of the lines do not seen or detected in one of the 

scans. So reliability of that pattern decreases.  

 

4) This criterion is applied to the scan pair twice. One controls the line angle patterns with 

the next line angle patterns in the following scan and the other controls the line angle 

patterns with the previous line angle patterns in the following scan. This is made twice since 

whether pose angle changes left or right, this is not known yet while this criterion is applied. 

 
The resulting addition from this criterion to the matching table is given below:  

 

 
Table 3.17: Sub matching table (MT6) of Criterion 6. The votes of the lines according to the 

given Criterion 6 with weighting. 
 

 
 
 
 
In Table 3.17, the resulting sub matching table (MT6) is shown when the Criterion 6 is 

applied onto the LADAR range scan given in Figure 3.15 and Figure 3.16. In this criterion, if 

the overlapping is high, it means we are pretty sure that all these line pairs are matching, and 

voting to these line pairs increases. As mentioned in Section 3.5.4, because of the 

perpendicular construction of features, the angle patterns consisting of slope differences that 

are multiplicative of 90 degrees are commonly seen. So a wrong overlap between irrelevant 

patterns can be seen. As a result, if overlap is less, it means we are not sure about the 

matching. Therefore voting is not given to them. 
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3.5.8 Criterion 7: Searching an Corner Distance Pattern between the 
Following Corners  

 

 
Figure 3.25: The figure illustrating the scheme of Criterion 7 implemented. 

 

 

This criterion is based on searching the distances between all types of following corners. The 

steps of the criterion are given below: 

 
1) The intersection points of consecutive lines are found. These intersection points can be 

the real corners or virtual corners where the extensions of the line pairs intersect. For each 

following line pair which assures the line angle difference above a given threshold, the 

corner point is found.  

 
Implementation Notes: The angle difference threshold for the line pairs is important, since 

if this difference is smaller, the corner point orientation became much more inaccurate. Since 

a small error in the slope of the lines makes the corner point move on the direction of the 

resultant vector generated by the lines constructing the corner (Also given in Figure 3.29). 

 
2) The distance between the following corner points are found. According to the found 

distances, corner distances table is created for the two following scans. This is a matrix given 

in Table 3.18: 

cornerDist_Pcurr 

EP_Matched (m,n) cornerDist_Pprev 

The search includes  two 
steps: 
- If the matched  corner 
distance pattern 
members go in same 
order.  
- Whether the members 
of the corner distance 
pattern are same 

If EP_Matched (m,n) ==3 
 MT(m,n)=Vote1;  
 
elseif EP_Matched (m,n) ==4 
MT(m,n)=Vote2;  
 
elseif EP_Matched (m,n) ==5 
MT(m,n)=Vote3;  
 Voting

EP_Matched (m,n): 
Number of members 
matched between 
cornerDist Angle_Pcurr (m) 
and  
cornerDist Angle_Pprev (n) 

Decision

  MT7() 

MT7(): 
Resulting 
matching 
table  based 
on Criterion 7 

AND 

   MT1() >0 



 
 
 51

Table 3.18: The structure of corner distances table. 
 

3,12,1 ee −  4,12,1 ee −  5,12,1 ee −  6,12,1 ee −  7,12,1 ee −  

4,23,2 ee −  5,23,2 ee −  6,23,2 ee −  7,23,2 ee −  8,23,2 ee −  

5,34,3 ee −  6,34,3 ee −  7,34,3 ee −  8,34,3 ee −  9,34,3 ee −  

...5,4 −e  …. …. …. …. 

…. …. …. …. …. 

 
 
 

Where jie ,  corresponds the intersection point of line [ ] L.C i  and [ ] L.C ji+ . Therefore  

jiiii ee ++ − ,1,  corresponds to [ ]ji,_PcornerDist . Each row of this matrix corresponds to 

[ ]i_PcornerDist , which is found with given pseudo code in Table 3.2. The slope difference 

values are found for both of the following scans. If the slopes of these line pairs are below 

the given threshold, then an corner point could not be defined. So the distances related with 

this corner are given as blank in the corner distances table (given as 100 and 200 in Table 

3.19 and Table 3.20). 

 
 

Table 3.19: The corner distances matrix of the previous scan. 
 

 
 
 

Table 3.20: The corner distances matrix of the current scan. 
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3) According to the corner distance matrices of following scans, an overlap table is created. 

The structure of the overlap table is given in Table 3.21: 

 

 

Table 3.21: Corner distances overlap matrix. For a chosen row and column, the first number 
gives the row used from Table 3.19 and the second number gives the row used from Table 3.20. 

 
The row in corner 
distances matrix in 
previous scan 

(The row in corner distances matrix in previous scan, The row 
in corner distances matrix in current scan) 

1 (1,1) (1,2) (1,3) (1,4) 
2 (2,2) (2,3) (2,4) (2,5) 
… … … … … 
N (N,N) (N,N+1) (N,N+2) (N,N+3) 

 
 
 
In Table 3.21, for a chosen cell, the first number gives the row used in corner distances 

matrix in previous scan and the second number gives the row used in corner distances matrix 

in current scan. So the overlapping score of these rows is calculated and put into the cell. For 

example, LADAR scans given in Figure 3.15 and Figure 3.16, the resulting overlap table is 

given below as: 

 

 

Table 3.22: The resulting corner distances overlap table in the structure given with Table 3.21 
for Figure 3.15 and Figure 3.16. 

 

 
 

 

When we have looked at this overlap table, two maximum points are seen at the second 

column on the rows. This means that if we have looked at 2nd  row in corner distance matrix 

of the previous scan, it overlaps with 3rd  row in corner distance matrix of the current scan or 

4th row in corner distance matrix of the previous scan; it overlaps with 5th  corner distance 

matrix of the current scan. We can see the overlapping in Table 3.19 and Table 3.20 at the 
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2nd row and the 2nd column (which means 3rd corner distance matrix row) of the overlap table 

in Table 3.22. 

 

The maximum points for each row in the overlap table are found and the lines that construct 

this pattern are voted by considering their value in overlap table. In fact, when the maximum 

point in the overlap table decreases, this means the lines constructing that pattern does not 

fully overlap. So reliability of that pattern decreases. As a result the voting of the lines they 

construct also decreases.  

 
This criterion is applied twice from current to next and current to previous, again because of 

the same reasons given in Criterion 6. The resulting addition from this criterion to the 

matching table is given below:  

 

 

Table 3.23: Sub matching table (MT7) of Criterion 7.  The votes of the lines according to the 
given Criterion 7 with weighting. 

 

 
 

 

In Table 3.23, the resulting sub matching table is shown when the Criterion 6 is applied onto 

the LADAR range scan given in Figure 3.15 and Figure 3.16. 

 

Implementation Notes: There is an important difference between Criterion 6 and Criterion 

7; Criterion 6 looks for the angles between the lines. A pattern consisting of angles is more 

easily seen then a pattern consisting of corner distances. Since the intersecting lines mostly 

create angles with degrees 0, 90,180,270 in an environment. In fact most of the indoor areas 

are in rectangular shape and contains rectangular furniture. But to see same distances 

between the corners is hard and to see same distance pattern is much harder. Therefore the 

voting values of Criterion 7 need to be higher than Criterion 6. 
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3.5.9 Sub Matching Tables Addition with Weighting 

In this part, sub matching tables are multiplied with weightings and summed and final 

matching table (MT()) is formed. As you can see from the sub matching tables given, the 

affect of these sub matching tables to the final matching table is different. If we evaluate 

each criterion by considering its importance with respect to others: 

 
Criterion1: This criterion gives the line pairs that have no chance to match because of the 

dynamic limitations of the robot. To remove the effect of these line pairs, they are highly 

negatively voted. 

 

Criterion 2: The weighting to this criterion is low, since in spite of the sub criteria which 

make mismatching harder, there is still a chance to make a mismatch. But in uniqueness 

case, this weight is multiplied with inner weight, which highly increases its voting. 

 

Criterion 3: This criterion is a simple criterion, and open to mismatches, so it is weighted 

low. But in low structured environments, number of real corners became so low such as one 

or two…Therefore in these cases, since the high inner weight of uniqueness case, the line 

pairs are highly voted, which helps the matching table in these environments. 

 

Criterion 4: The weighting of this criterion is neither high nor low. Most of the time, the 

voting output depends on the inner weighting. Parallel line pairs can be seen easily, but also 

these pairs with equivalent distance can be seen sometimes, which can cause mismatches. 

Therefore inner weight of this is taken low. If the line to line distance is different from others 

(uniqueness case), the parallel line pair is highly weighted. Also when the overlapping for 

the sub criteria increases, inner weighting highly increases. As a result we can see high 

voting at Table 3.9, because of high inner weights coming from high degree overlap and 

uniqueness case.  

 

Criterion 5: The weighting of this criterion is low. Since length of both sides ended lines 

can easily be affected from the line slope seen from LADAR position which is given in 

Endpoint Tolerance Threshold Calculation part. Also they are affected from the errors 

occurred in the LADAR data, such as multiple line fit to same corridor. Therefore unless the 

inner weight is high because of uniqueness, the output is low.  
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Criterion 6: The weighting of this criterion is normal. The decision is totally given to inner 

weighting. Inner weighting is low, if the overlap between the angle patterns is low, it is zero 

for one or two angle overlap, but if it increases the weight also increases.  

 

Criterion 7: The weighting of this criterion is higher than normal. In fact it has same pattern 

structure with Criterion 6, but the mismatch becoming chance is much lower. Therefore it 

has higher weighting than the one of Criterion 6.  The inner weighting is same as Criterion 6. 

3.5.10 Important Notes about the Criteria 

The main aim in the criteria given between 3.5.2 and 3.5.8 is decreasing the positive votes 

for mismatches, also increase the voting of correct matches. For this purpose some methods 

in literature are eliminated and some new methods are added. These are; 

 

1) Unique line pairs in a criterion compared are highly voted. This means if a relation 

between line pairs does not seen between any different line pairs, these are highly promoted. 

For example, this is mostly seen for parallel line distances, most of the distances between 

parallel lines are so specific that they could not be equal to each other, because of the low 

position error of LADAR data and the fitting line from the least square method.  

 

2) Any criterion directly giving a decision as the given line pairs do not match is not used. 

In fact, this kind of rules makes the matching line pairs, which are voted positively from all 

other criteria, invalid. Therefore, except the Criterion 1, which makes a direct decision for 

just obvious ones by taking into account the vehicle dynamics, no criteria that gives such a 

decision is used. All criteria are based on promotion of matching ones. 

 

In the real LADAR data, sometimes information about the given line segment changes. This 

could be in different properties of features, such as a change in line length, line endpoint 

positions, or line type, also in corner position or existence of a line or corner. In fact, the 

reason can be that any slope change in LADAR referenced to the ground plane, that 

navigation in a dynamic environment or that the objects reflects the LADAR beams with 

changing intensities. An example situation taken from real LADAR data is presented in 

Figure 3.26. 
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Figure 3.26: The figure illustrating the fitting lines to LADAR data. Left one is from previous 
scan and the right one is from current scan. 

 

 

As it is seen from Figure 3.26, a change in LADAR data between following scans occurs 

for the environment around the fitting line numbered 1 (points on its left disappeared). 

Therefore the length and the type of the line change.  

 

3) The relations about the type of line ends, such as open or left side ended, right side ended 

are not used as individual criterion, also for a decision as the given line pairs do not match. 

Since these are easily affected from the wrong fitting lines to the clusters corresponding 

same feature in consecutive scans in real LADAR data. The real LADAR data is exposed to 

some errors. Therefore the types of endpoints are easily changed. As a result, a definite 

decision is not appropriate.  

 

 

 
 

Figure 3.27: The figure illustrating the fitting lines to LADAR data. Left one is from previous 
scan and the right one is from current scan. 
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In Figure 3.27, the line numbered with 1 belongs to same fitting line in current and previous 

scans. These lines could be defined as both side ended lines. In fact, it is seen that the 

endpoint of lines close to (0,0) point is ended with points goes perpendicular to the line, 

When we have look at their endpoint further from origin, the line in left figure is ended, 

since the consecutive point is too far from the endpoint, which is above the expected 

divergence between consecutive scans explained in Figure 3.23. For the line in right figure, 

again there are points showing that the line is ended, which are close and right side of the 

line. Therefore any comparison could decide as they are not matching. Also with a small 

error one of them could be decided as left side ended.  

 

4) Angle pattern and corner distance pattern is specially used. Since going from an array of 

feature properties, such as angle difference series of consecutive lines, decides the matching 

of line pairs much accurate than the comparison of just one feature property. In fact, the 

angle differences of lines are multipliers of 90 degree in most indoor environments, which 

could cause mismatches when one by one comparison is made.  

 

 

 
 

Figure 3.28: The figure illustrating the fitting lines to LADAR data. Left one is from previous 
scan and the right one is from current scan. 

 

 

In some environments the lines constitute mind mixing situations that scan matching should 

handle. As you can see from Figure 3.28, there are multiple line pairs with same parallel line 

distance and there are multiple angles between lines that are equal and multiple corner 

distances that are equal. For this purpose, using criterion that compares the properties of 

multiple line pairs gives more accurate results.    
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3.5.11 Application Areas of Criteria and Their Benefits: 

Each criterion has an importance in the implementation of scan matching. Criterion 1 

prevents algorithm from redundant calculation, since it demotes the line pairs which does not 

have any chance to match because of the dynamics of the robot (especially maximum 

rotation rate of the robot).  If the limitations of the criterion are held in dynamics of the 

robot, it does not have a chance to make wrong judgment. 

 

Criterion 2 is added to consider low structured environments. This kind of situations is 

mostly seen for the LADAR data of real environments, such as long corridors, dead-end 

ways. Also these are seen especially when the robot turns in such an area. Since the area is 

low structured, the observed features are not enough to apply standard criteria. For this 

purpose, the lines that are considerably longer than others in same slope are matched. This 

algorithm is simple; gives advantage in low structured environments, and usually could not 

find matching in dense structured environments. Also its mismatch chance is highly 

degraded by addition of uniqueness. 

 
Criterion 3 is a standard simple matching criterion. It is specially implemented for any case 

that has corner intersection angles different from standard ones (90,270). It gives important 

advance in these situations. By uniqueness search, its wrong matching capability highly 

degraded. Also this criterion is powerful in low structured environments. 

 

Criterion 4 is a standard matching criterion. But it has improved by addition of extra voting 

to uniqueness and overlap calculation. In most of the real environments parallel lines are 

seen. Mostly these line pair distances are unique. Furthermore, to separate the line pairs with 

same line to line distance, overlap information is added. Also to prevent some mismatches, 

extra vote to uniqueness is added.  

 

Criterion 5 is a standard matching criterion. But it has improved by addition of endpoint 

tolerance concept, which means an uncertainty is added to the length of both side ended line. 

Addition of this concept improves the robustness of the criterion; it prevents some of the 

potential mismatches happen because of the view angle of LADAR to these lines. On the 

other side, by addition of uniqueness, it gives a better correct decision capability. 
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Criterion 6 and 7 are novel techniques. They are not so powerful in low structured 

environments. On the other side, they have an important advance in an environment with 

adequate numbered features. Because of the pattern, comparison between multiple features is 

applied, which results with votings to multiple line segments. Also this results with an 

important decrease in mismatching chance.  

 

Each criterion has very low computational complexity with respect to all scan matching 

algorithm. Also each criterion has a special benefit in the appropriate environments 

mentioned above. Also some of them are general and constructing the base of the LADAR 

feature based scan matching. Extracting one of them does not give a benefit to algorithm 

computationally. Conversely it degrades the robustness of the algorithm. Accordingly a 

comparison does not made between the criteria.   

3.5.12 Evaluation of Matching Table 

After the matching table is constructed, it is need to be evaluated correctly to find pose 

difference precisely. The following subsections gives the procedure implemented for the 

pose difference calculation. 

3.5.12.1 Threshold the Matching Table 

The steps for threshold the matching table are: 

 

1) First the values that are below a threshold (which is given in the config file) in the table 

are discarded.  

2) Then for the rows and columns that contain the maximum points are found.  

3) Zeroizing is started from the maximum point in the table by resetting its rows and 

columns. It goes to the smaller maximum points in other rows and columns. 

4) In this process if column id in finding maximum of the rows and the row id in finding 

maximum of the columns do not match, this means for that row there is a conflict. So the 

one, which is close to the line passing from maximum points is taken. The resulting 

matching table is given in Table 3.24: 
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Table 3.24: Final resulting matching table (MT()) . The corresponding row and column of the 
cells with values more than zero shows the matched line pairs. 

 

 
 

 
 
Notes: As an example, assume the maximum point in column 3 will be 39 in row 4, and if 

maximum point in row 3 will be 42 in column 5, then the one closer to line connecting the 

maximum points will be chosen.  

 

The line pairs which contain positive number in corresponding row and column of the final 

resulting table, are defined as matched_LP (matching line pairs). We can define them as: 

 

 

Table 3.25:  The pseudo code giving the calculation of matched_LP (matching line pairs). 
 
Algorithm_matched_Lines ( currC , prevC , MT) 
1:  count=1;   
2:  while count< ( number of MT()>0) 

3:  if ∑
=

>
n

i

icountMT
1

0),(  where n is the number of columns in MT()  

4:   find the Index of MT(count,:)>0 
5:   store [ ] [ ] IndexLineIDcountLineID count

curr
count

prev == ,  to [ ]countLPmatched _  

5:   count=count+1; 
6:  endif 
7: endwhile 
8: return matched_LP  

 

 

where LPmatched _  consists of the line pairs’ cluster ID from the previous and current 

scan matched according to MT(). 
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3.5.12.2 Finding the Rotation in the Pose of the Robot 

In this part, the rotation in the pose of the robot is calculated. For this purpose; angle 

differences of the line pairs (one from previous scan and one from the current scan) are 

calculated.  

 

  

Table 3.26: The angle difference between the lines of previous and current scan. 
 

 
 
 
 

In Table 3.26, first column consists from the angle difference in degree, second column the 

line number in current scan, third column the line number in the previous scan. As you can 

see from the angle difference in column 1 given in figure above, the robot has a rotation 

about 20 degrees. To find the result much precise a method eliminating the outliers is used. 

The steps for this method are given in Table 3.27: 

 

 

Table 3.27: The pseudo code of the algorithm that finds the rotation in robot pose from the slope 
differences between the matched line pairs by using outlier rejection methods. 

 
Algorithm_Rotation_Finding( currC , prevC ,matched_LP, Threshold) 
1: function slope_difference (slope1,slope2) // finds the slope difference 
2: retrieve currprev LineIDLineID ,   from matched_LP 

3: for i=1 to number of prevLineID  

4:  [ ]iSlopeDiff = slope_difference(
[ ][ ] slopeLC
i

prevLineID
prev .. ,

[ ][ ] slopeLC
i

currLineID
curr .. ) 

5: endfor 
6: deviation=∞ ; 
7: count= size of  translations 
8: while (deviation > Threshold1 and count> Threshold2 ) 
9:  count= number of members in prevLineID  
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Table 3.27continued  
 
10: j= [ ]i

prevLineID  

11: jj= [ ]i
currLineID  

12: [ ] [ ] [ ] lengthLClengthLCres jj
curr

j
prev

i ..*..=  

13: result_

[ ] [ ]

[ ])

)*(

1

1

∑

∑

=

== count

i

i

count

i

ii

res

resSlopeDiff
rotation  

14: C=max(| SlopeDiff - result_rotation|)  ; 

15:  find Index of C in max(| SlopeDiff - result_rotation|); 
16: store… 

 
[ ] [ ] [ ] [ ]

[ ] [ ]countIndex
curr

Index
curr

countIndex
prev

Index
prev

countIndexIndex

DneILiLineID

LineIDLineIDSlopeDiffSlopeDiff
:11:1

:11:1:11:1

,

,,,,
+−

+−+−

 

  to matched_LP 
17: count=count-1 
18: deviation=max(| SlopeDiff - result_rotation|) 
19: endwhile 
20: return result_rotation 

 
 
 
As you can see from the given method; the rotation in the pose is calculated recursively, in 

which for each step, the outlier angle which causes the biggest deviation (from the mean of 

the slope differences) above the defined threshold is eliminated. Also the rotation is 

calculated as a weighted sum of the slope differences by considering the length of the lines 

which composes them.  

 
Implementation Notes: Considering the length of the lines is so important. Since, while the 

length of the line increases, the accuracy of its slope also increases. This is coming from the 

error model of LADAR and the structure of Split and Merge Algorithm.  

3.5.12.3 Finding the Translation in the Pose of the Robot 

In this part, the translation in the pose of the robot is calculated. For this purpose, the 

resulting matching table is controlled whether there are any line pairs which have an angle 

difference above the given tolerance from the found rotation result in the pose. The ones 

above the given tolerance are set to zero in the matching table. After this step, the line pairs 

are divided into two groups to calculate translational difference in X and Y axis.  
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The lines with a slope difference below a threshold to the X axis line are found for the 

current scan. These lines are grouped two by two with the corresponding ones from the 

previous scan as they provide the slope difference between them below the predefined 

threshold. A vector is constructed by using the line to line distance and direction information 

between these line pairs. Constructed vector dataset is defined as vector_x. Same procedure 

is applied to for the lines with a slope difference below a threshold to the Y axis line. 

Constructed vector dataset is defined as vector_y. Vector summation of vector pairs, one 

taken from vector_x dataset and one taken from the vector_y dataset gives a good estimate 

for the translation vector of the robot.  

 

This method uses a similar calculation with finding translation from the distance between 

matched corners from previous and current scan. However, this method eliminates the error 

coming from the composed error in position of corners. Since the distance is taken from the 

center of matched lines and also the vectors have a direction difference above a level 

between each other. Further information is given in The Details of Proposed Method for 

Translation part. The algorithm which finds the translational difference for the line pairs 

below slope difference threshold with X axis is given in Table 3.28: 

 

 

Table 3.28: The algorithm that finds the translation vector from the line pairs below slope 
difference threshold with X axis. 

 
Algorithm_Translational_Difference_VectorX ( currC , prevC , matched_LP, 
result_rotation, Threshold) 
1: function trans_acc2rot(point1, rotation1) //  transfers the cartesien coordinates of 
point1  according to given rotation in cylindirical domain  
2: function  comp_dist2line(line1,point1)  // calculates the point1 to line1 distance 
3: retrieve currprev LineIDLineID ,  from matched_LP 

4:  rotation=result_rotation 
5:  count=1; 
6:  for j= 1 to to size of prevLineID  

7:  k= j
prevLineID  

8:   m= j
currLineID  

9:  if [ ] [ ] 1|....| ThreshrotationslopeLCslopeLC m
curr

k
prev <+−  and ...     

  (( [ ] slopeLC m
curr .. <60) or  ( [ ] slopeLC m

curr .. >300)  or  (120< [ ] slopeLC m
curr .. < 240)) 

10:  [ ] j
prev

count
prev LineIDLineIDx =  

11:  [ ] j
curr

count
curr LineIDLineIDx =                       
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Table 3.28 continued 
 
12:  mid_point=trans_acc2rot ( mean of  [ ] int.. endpoLC k

prev , rotation) 

13:  [ ]countlinxdist _ = comp_dist2line ( [ ] LC m
curr . ,mid_point)         

14:  Store [ ] [ ] [ ]count
curr

count
prev

count LineIDxLineIDxlinxdist ,,_  to [ ]countxvector _  

15:  Store [ ] [ ] 90.._ += slopeLCxslope m
curr

count   to [ ]countxvector _  

16:  count=count+1; 
17: endif 
18: endfor   
19: return vector_x 

 

 

Same algorithm is used for the line pairs below slope difference threshold with Y axis. So 

the if statement inside the pseudo code became as: 

 
 
 

Table 3.29: The algorithm that finds the translation vector from the line pairs  below slope 
difference threshold with Y axis. 

 
Algorithm_Translational_Difference_VectorY ( currC , prevC  ,matched_LP, 
result_rotation, Threshold) 
.................. 
11: if  [ ] [ ] 1|....| ThreshrotationslopeLCslopeLC m

curr
k

prev <+−   and …     

  (( [ ] slopeLC m
curr .. < 210) … or ( [ ] slopeLC m

curr .. >300) || (30< [ ] slopeLC m
curr .. < 150)) 

.................. 
14:  Store [ ] [ ] [ ]count

curr
count

prev
count LineIDyLineIDylinydist ,,_  to [ ]countyvector _  

15:  Store   [ ] [ ] 90.._ += slopeLCyslope m
curr

count  to [ ]countyvector _  

.................. 
19:return vector_y 

 

 

After vector_x and vector_y dataset has been found, the translation vector candidates are 

calculated by taking one from vector_x dataset and one from  vector_y dataset. For the 

calculation first the vector pairs that have a direction difference below a given threshold are 

eliminated. This is important for the accuracy of translation calculation. From the succeeded 

ones, translation vector candidates are calculated with the direction and magnitude 

information. The algorithm which finds these is given in Table 3.30:  
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Table 3.30: Algorithm calculating the translational motion of the robot from the translation 
calculated translation vectors found in Table 3.28 and Table 3.29. 

 

Algorithm_Translational_Change(vector_x, vector_y, currC , prevC ) 
1: function trans_acc2rot(point1, rotation1) //  transfers the cartesien coordinates of 
point1  according to given rotation in cylindirical domain  
2: function  comp_dist2line(line1,point1)  // calculates the point1 to line1 distance 
3:  retrieve currprev LineIDxLineIDxxslopelinxdist ,,_,_  from  vector_x 

4:  retrieve currprev LineIDyLineIDyyslopelinydist ,,_,_  from vector_y 

5:  for i= 1 to size of  xslope _  
6:   for j= 1 to size of yslope _   
7:   diff=  [ ] [ ]ji slope_yslope_x −  
8:   if Thresh1|diff| >  

9:     
[ ] [ ]

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

)sin(*_
)cos(*__

difflinxdist
difflinxdistlinydist

arctan i

ij

θ   

10:    
[ ]

)diffcos(
linx_dist

const
i

=   

11: [ ]( ) [ ]( )[ ]90slope_xsin*const90slope_xcos*constntranslatio ii −+−+= θθ  
12:   IDx=[ [ ]i

prevLineIDx   [ ]i
currLineIDx ] 

13:   IDy=[ [ ]i
prevLineIDy   [ ]i

currLineIDy ] 

14:   L1=trans_acc2rot ( mean( [ ] int..)1( endpoLC IDx
prev ),…      

    result_rotation)+translation 
15:   L2=trans_acc2rot (mean( [ ] int..)1( endpoLC IDy

prev ), …      
    result_rotation)+translation 
16:    if  comp_dist2line (L1, [ ] LC IDx

curr .)2( ) < Threshold1  and… 

      comp_dist2line(L2, [ ] LC IDy
curr .)2( ) < Threshold1   

17:    [ ] [ ] [ ] IDy=== countcountcount ID2IDx,ID1 n,translatiotrans  

18:    store [ ] [ ] [ ]countcountcount ID2,ID1,trans  to [ ]countnstranslatio  

19:     count=count+1 
20:    endif 
21:  endif 
22:  endfor 
23:endfor 
24:return translations 

 

 

After the translation vector candidates are found, the final translation is calculated like a 

method given in Table 3.27. The pseudo-code of the algorithm is: 
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Table 3.31: Algorithm calculating the final translation of the robot from the translation vectors 
by using outlier rejection methods. 

 

Algorithm_TranslationofTheRobot ( currC , prevC , translations, Threshold) 
1:  deviation=∞ ; 
2:  retrieve ID2ID1,trans,  from  translations 
3: count= number of members in ID1 
4: while (deviation > Threshold1  and  count> Threshold2 ) 
5:  count= number of members in ID1 
6:  j= [ ]i

prevID1  

7:  jj= [ ]i
currID1  

8:  [ ] [ ] [ ] lengthLClengthLCres jj
curr

j
prev

i ..*..=  

9:   

[ ] [ ]

[ ])

)*(
_

1

1

∑

∑

=

== count

i

i

count

i

ii

res

resntranslatio
ntranslatioresult  

10: C=max(| ntranslatio - result_translation|) 
11: find Index of C in max(| ntranslatio - result_translation|) 
12: store… 

[ ] [ ] [ ] [ ]

[ ] [ ]countIndexIndex

countIndexIndexcountIndexIndex

IDID

IDIDntranslationtranslatio
:11:1

:11:1:11:1

2,2

,1,1,,
+−

+−+−

 

  to translations 
13:  count=count-1 
14: deviation=max(| ntranslatio - result_translation|); 
15: endwhile 
16: return result_translation 

 

 

As you can see from the given method in Table 3.31; the translation in the pose is calculated 

recursively, in which for each step, the outlier translation which causes the biggest deviation 

above the defined threshold is eliminated. Also the translation value is calculated by 

considering the length of the lines which composes these translations.  

The Details of Proposed Method for Translation 

To find the translation in the pose between following scans the translation based on line 

distances between matched lines is used.  It is seen that using corner points of the matched 

lines are easily affected from the small deviations in the slopes of the lines. This affect is 

illustrated in Figure 3.29: 
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Figure 3.29: The effect of a small error in the slopes of lines constructing the corner point. 

 
 
 
As you can see from the figure; small changes in slope of lines highly affect the point they 

intersects. This error increases: 

 

• When the length of the lines decreases 

• When the angle between lines increases 

• When extension of the lines increases  (If the corner point is at the extensions of these 

lines) 

 
As a result, the orientation change calculation based on corner points is influenced to a high 

noise. The steps of proposed method to solve this orientation problem are given below: 

with a slope difference below a threshold to the Y axis line 

 

1) Group the lines into two classes as the ones with a slope difference below a threshold to 

the X axis line (defined as close to X axis). and Y axis line (defined as close to Y axis). 

2) Find the distance vector (vector_x) between the lines close to x-axis in previous and 

current scan 

3) Find the distance vector (vector_y)  between the lines close to y-axis in previous and 

current scan 

4) Find the translation vector candidates from the distance vectors in x and y axis (vector_x 

and vector_y) 

 

Error in the Slope of the 
Line 

Error in the Slope of 
the Line 

Corner 
Point

Error In the Position of 
the Corner 

Main Line 
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Figure 3.30: The calculation of translation vector. 
 
 
 
5) Find the resulting translation, by eliminating the outliers in the translation vectors 

matrix, till the deviation is below a threshold value.  

3.5.13 The Cases that Pose Difference Could Not Calculate 

While the robot is going through an unstructured environment, such as the places where lines 

and corners could not found, the places where short and scattered lines are observed or long 

corridors…, rotation and translation difference could not be calculated. For these cases two 

different solutions are applied: 

 
1) If the rotation and translation in the robot pose could not be found. The pose difference is 

taken from the odometer data. The pseudo code that finds this translation is given below: 

 

 

Table 3.32: The algorithm that finds the robot pose update based on the odometer data. 
 
Algorithm Odometer_Pose_Update (odometer,robot_pose) 
1: translation_odo= currodometer - prevodometer  (x,y information) 

2: rotation_odo= currodometer - prevodometer  (θ information) 
3: translation= translation_acc2rot ( || translation_odo||, rotation_odo) 
4: rotation= rotation_odo;  return translation,rotation

Y axis The line from 
previous scan 
close to Y axis 

Vector Y

The line from 
previous scan 
close to X axis 

The line from 
current scan 
close to X axis 

Vector X 
Translation 
Vector 

The clusters and the fitting lines are given as 
output  
 
*Close to X / Y axis corresponds  to the 
slope difference between the line and the X / 
Y axis line below a threshold 

X axis 

The line from 
current scan 
close to Y axis 

Vector Y

Vector X 
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As it is seen from the pseudo code, the change in the ododata between following scans are 

calculated. The angle difference between the angle of the robot coming from scan matching 

in previous step and the angle of the robot coming from odometer in current step is found. 

The change in the ododata is transformed according to found angle difference. 

 
Implementation Notes: Sometimes when the robot starts scan matching, the odometer data 

of the robot is not being initialized. So the coordinate axes of odometer and the scan 

matching does not overlap. To solve this problem, coordinate transformation is need to be 

made, which is also added in the code above. 

 

2) If the robot goes through an environment that consists of lines in the same direction, 

such as long corridors, which contain long parallel lines, the rotation in pose of the robot 

could easily be calculated. Since all the lines belong to the cluster close to one axis (X-axis 

or Y-axis) and there is no line belong to the cluster close to other axis, translation is could 

not be calculated.    

 
For this situation the rotation is calculated and translation is calculated from the odometer by 

using calculations given in Step 1.  

3.5.14 Discussion about the Probabilistic Aspects of Scan Matching 

Scan matching applied in this thesis is propagated in a deterministic way. However it has 

probabilistic aspects. In fact the matching table, which constructs the baseline of the 

algorithm, consist of votings based on the importance of applied criteria and overlap level 

between the feature sets in given criteria. Each criterion includes multiple votings inside and 

these are multiplied according to the importance of the criterion. Instead of continuous 

interval for votings as in probabilistic case, these are discredited in some levels. Also for the 

selection of matched line pairs, a gating is applied according to the general distribution of 

matched line pairs. The calculation of translation and rotation includes the lengths of line 

pairs used. Their effect to the final pose is engaged to the length of their line pairs. This can 

be explained in similar way, as a line length based distribution addition to pose calculation in 

probabilistic aspects. Furthermore the final pose is calculated recursively by the elimination 

of some candidates according to their difference from the mean. Also this elimination is 

stopped if the variance is below a given value. This can be interpreted as a probabilistic 

gating. 
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3.6 Fault Correction and Deterministic Global Localization Algorithm  

In this part, some simple methods to solve probable pose update errors encountered during 

the navigation of the robot is presented in fault correction part. Also a simple method, which 

is tried as an initiate for the SLAM implementation, is given in next chapter. This method is 

named as deterministic global localization algorithm. The main aim in this algorithm is to 

remove the accumulated error in pose and obtain more consistent mapping. 

3.6.1 Fault Correction: 

Scan matching algorithms could encounter mismatches. This could be because of a change in 

pitch and roll of LADAR orientation, a turn faster than the algorithm could handle, 

unstructured environment or non reflective materials observed… In these cases scan 

matching algorithm can fails, which is resulted with a wrong pose difference update. In these 

cases, after the wrong pose obtained all the localization output and mapping goes on with the 

affect of this wrong update. For this purpose, the output of different sensors could be used as 

checkpoint for the main scan matching output. In our datasets, odometer output is available. 

Therefore, it is used to correct the pose difference if a jump in pose has occurred in main 

scan matching algorithm while it is not seen in synchronized odometer data. However the 

error tolerance between sensors and scan matching, the situations that correction is applied 

are needed to investigate carefully. For example, if a yaw rate gyro is used, whether an error 

is occurred in rotation can be checked. For skid steer robots, translation difference in scan 

matching can be checked with odometer while the robot is not turning. In fact, a correction is 

applied to pose difference according to the accuracy of used sensor. In these datasets, the 

fault check and correction based on odometer data is implemented as an option but not used. 

The reason is to prevent algorithms to be dependent to odometer data and also to make 

improvement process unaffected from odometer data. 

3.6.2 Deterministic Global Localization (DGL): 

As we know Scan Matching is an algorithm based on the matching of following scans. As 

like odometer, the error is accumulated. As the distance the robot has gone increases, the 

accumulated error also increases. To solve this, a low level SLAM initiate tried to be added. 

If we have able to track some reliable features in these following scans, we can detect the 

mismatches in scan matching when it has occurred. For this purpose an algorithm is formed, 

which tracks stable features and makes a correction when a jumpy drift has occurred in the 
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scan matching. The algorithm consists of two parts, the correction based on real corners and 

correction based n both side ended lines. 

3.6.2.1 Correction Based on Real Corners 

Real corners are good features for tracking and making global corrections on the pose of the 

robot. The advantages of these features are: 

 

• The position difference between the matched corners could directly be used for finding 

the correction in translation error of the robot. 

• Since the real corners consist of constructing line pairs, the difference between the slopes 

of matched line pairs could directly be used for finding the correction in rotation error of the 

robot. 

• Since real corners consist of directly intersection of the line pairs, not from their 

extensions, the error in position of the corner is much less.   

 

For this purpose an algorithm is constructed consisting of two parts: Finding stable features 

and make correction based on these features. Finding stable features is an important part 

since factitious lines could be extracted from line extraction algorithm and these factitious 

lines could construct factitious corners. Before sending the real corner to the correction part, 

we wait for to be seen multiple times. The pseudo code for finding stable corner features is 

given below: 
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Table 3.33: The pseudo code that eliminates cognitive real corners. 
 
Algorithm_Stable_Corners( currCnr , robot_pose, Threshold) 
1: function transform_global( point1, pose)  // trans fer  the point1 in local coordinates 
according to the given pose information 
2: retrieve Count_Cnr,Memory_alRe_Cnr  from memory 

3: alCnr Re_ = the members of ClassCnrcurr .  which equals “Real Corner” 

4:  for i=1 to  number of members in alCnr Re_  
5:  [ ] xyalCnr i .Re_ =transform_global( [ ] xyalCnr i .Re_ , robot_pose) 
6:  for j=1 to number of members in MemoryalCnr _Re_  
7:    if distance between ( [ ]ialCnr Re_ .xy, [ ] xyMemoryalCnr j ._Re_ ) <…  
   Threshold1 
8:    if slope difference between ( [ ] slopealCnr i .Re_ ,…     
    [ ] slopeMemoralCnr j .._Re_ ) <  Threshold2 
9:     [ ]iCountCnr _  =   [ ]iCountCnr _ +1 
10:   else  
11:    Add  [ ]ialCnr Re_  to  MemoryalCnr _Re_  
12:   endif 
13:  endif 
14: endfor  
15: endfor 
16: for  i=1 to  number of members in MemoryalCnr _Re_  

17: if  ( [ ] [ ]i
curr

i
prev CountCnrCountCnr __ = ) 

18:  Delete ( [ ]iMemoryalCnr _Re_ ) 
19: endif 
20: endfor  
21: store CountCnrMemoryalCnr _,_Re_ to memory 

22: stable_Cnr= members of MemoryalCnr _Re_  that verifies 
 [ ] 3_ ThresholdCountCnr i >  
23: return stable_Cnr 

 

 

The steps of pseudo code given in Table 3.33 are: 

 

1) Compare real corners (corners) with corners in memory. If they are not seen in memory, 

add them to memory. If they are seen in memory, increment their count. 

2) Give the corners as output that have counts above the threshold and do not be decided to 

delete in that step. 

3) If the corners in memory are not seen in real corners for that step, delete the unseen ones 

from memory. 
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The pseudo code to make correction based on these corner features is given in Table 3.34: 

 

 

Table 3.34: The algorithm that calculates global correction for the robot pose if available. 
 

Algorithm_Corrrection (stable_Cnr,Threshold) 
1:  retrieve MemoryStableCnrtraveleddist __,_  from memory 

2:  for i=1 to  number of stable_Cnr  
3:  for j=1 to  number of MemoryStableCnr __  
4:    if distance between ( [ ] xyCnrstable i ._ , [ ] xyMemoryStableCnr j .__ ) <…
   Threshold1 
5:    if  slope difference between ( [ ] slopeCnrstable i ._ , …     
    [ ] slopeMemoryStableCnr j .__ ) < Threshold2 
6:     if [ ]jtraveleddist _ >Threshold3 
7:      [ ]countCnrfound _ =[ [ ]iCnrstable _  [ ]jMemoryStableCnr __ ] 
8:       reset [ ]jtraveleddist _  
9:      count=count+1 
10:    else 
11:     [ ]iflagfound _ =1 
12:    endif     
13:   endif 
14:  endif 
15: endfor 
16: endfor 
17: for i=1 to number of stable_Cnr  
18:  if   [ ]iflagfound _ ==0   
19:  Add [ ]iCnrstable _  to MemoryStableCnr __  
20:  endif 
21: endfor 
22: ||____||__ prevcurr posematscanposematscantraveleddisttraveleddist −+=
23: for i=1 to number of  found_Cnr 
24: [ ]icorrection  = distance between ( [ ]1,_ iCnrfound  , [ ]2,_ iCnrfound ) 
25: endfor 

26: result_correction= [ ]∑
=

m

i

icorrection
m 1

1
 

27: return result_correction 
  
 
 
In the correction part, given in pseudo code in Table 3.34,  
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1) The incoming stable corners (stable_Cnr ) from finding stable features part are 

controlled with the corners in the memory ( MemoryStableCnr __ ) based on  

• The distance between the corners.  

• The slope difference between the line pairs constructing the corners.  

• The slope difference between the lines in same side of the corners. 

• The distance travelled (dist_traveled) when the corner in the memory is seen again. 

 
2) If the input corner matches any of the corners in the memory according to the rules given 

in Step 1, the position and slope difference is taken and added to the correction matrix. If 

not, the corner is added to the corners in memory. 

 
3) If multiple correction values are found the mean of these values is calculated and pose 

correction is given as result_correction. 

 

Implementation Notes: Adding the distance travelled (dist_traveled) is important. By this 

property after a stable corner is first seen it could make correction after the robot goes a 

distance above given threshold (Threshold3). Since the corner is seen multiple times in 

consecutive scans this property prevents continuous corrections after each time the corner is 

seen. The aim is to make a correction after the loop in the robot path is closed. Continuous 

corrections based on same corner makes the robot localization oscillatory. In fact, in 

continuous correction case the robot pose will be dependent on the correction coming from 

an corner instead of total scan matching solution given in   3.5.12.2 and 3.5.12.3. 

3.6.2.2 Correction Based on Both Side Ended Lines 

Both side ended lines are good features for tracking and making global corrections on the 

rotation of the robot. They have a unique length that is not affected from the position of the 

robot. Therefore after a long run it can be still easily detected because of its length. For this 

purpose, first both side ended lines are tracked in cognitive scans. This is a kind of gating 

and it protects the rotation calculation part from the phantom features, which decreases the 

wrong matching chance and also the workload on the rotation calculation part. In rotation 

calculation part, stable lines incoming are checked with the ones in memory according to 

predefined tolerances and in case of matching, corrections in pose is made. 
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Table 3.35: The pseudo code that eliminates cognitive both side ended lines. 
 
Algorithm_Stable_Lines( currC ,robot_pose,Threshold) 

1: retrieve CountLMemoryBSEL _,__  from memory 

2:  BSEL _ = the members of LineclassLCcurr ..  which equals “Both Side ended” 
3: for i= 1 to number of BSEL _  
4:  [ ]iPosL _ =transform_global( mean( [ ] int.._ endpoLBSEL i ), robot_pose) 
5:  for j=1 to number of MemoryBSEL __  
6:    if  distance between ( [ ]iPosL _  and …          
   [ ] int)..__( endpoLMemoryBSELmean j )< Threshold1 
7:    if slope difference between  ( [ ]iBSEL _ .L.slope  and…     
    [ ] slopeLMemoryBSEL j ..__ ) <  Threshold2 
8:     [ ]iCountL _  =   [ ]iCountL _ +1 
9:     else  
10:     Add [ ]iBSEL _   to  MemoryBSEL __  
11:   endif 
12:  endif 
13: endfor  
14: endfor 
15:for i= 1 to number of MemoryBSEL __  
16: if  ( [ ] [ ]i

curr
i

prev CountLCountL __ = ) 

17:  Delete ( [ ]iMemoryBSEL __ ) 
18: endif 
19: endfor  
20: store CountLMemoryBSEL _,__ to memory 

21: stable_Lines= members of  MemoryBSEL __  that verifies …
 [ ] 3_ ThresholdCountL i >  
22: return stable_Lines 

 

 

The steps of pseudo code are: 

 

1) Compare both side ended lines with lines in memory.If they are not seen in memory add 

to memory.If they are seen in memory increment their count. 

2) Give the lines that have count above a threshold and do not be decided to delete. 

3) If the lines in memory do not see in both side ended lines, delete the unseen ones from 

memory. 

 

The pseudo code to make rotation correction based on these corner features is given below: 
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Table 3.36: The algorithm that calculates global rotational correction for the robot pose. 
 
Algorithm_Rotation_Corrrection (stable_Lines,Threshold) 
1: retrieve MemoryStableLtraveleddist __,_  from memory 

2:  for  i= 1 to number of esstable_Lin  
3:   for j=1 to number of MemoryStableL __  
4:    if  distance between (mean( [ ] int._ endpoLinesstable i ) , … 
…    mean( [ ] int.__ endpoMemoryStableL j )) < Threshold1 
5:             if  slope difference between ( [ ]iLinesstable _ .slope,… 
    [ ] slopeMemoryStableL j .__ ) < Threshold2 
6:     if  [ ]jtraveleddist _ >Threshold3 
7:      [ ]countLfound _ =[ [ ]iLinesstable _  [ ]jMemoryStableL __ ] 
8:      reset [ ]jtraveleddist _  
9:      count=count+1 
10:     endif 
11:     [ ]iflagfound _ =1 
12:    endif     
13:    endif 
14:  endfor 
15:   if [ ]iflagfound _ =0  
16:    Add [ ]iLinesstable _  to  MemoryStableL __  
17:   endif 
18: endfor 
19: ||____||__ prevcurr posematscanposematscantraveleddisttraveleddist −+=
20:  for i=1 to number of  found_L 
21:  rotation_ [ ]icorrection  = slope difference  between ( [ ]1,_ iCnrfound  and … 
  [ ]2,_ iCnrfound ) 
22: endfor 

23: result_rotation_correction= [ ]∑
=

m

i

icorrectionrotation
m 1

_1
 

24: return result_rotation_correction 
 

 

In the correction part, given in pseudo code above,  

 

1) The incoming stable lines (stable_Lines ) from finding stable features part are controlled 

with the lines in the memory ( MemoryStableLine __ ) based on  

• The distance between the center point of lines  

• The slope difference between the lines  
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• The distance traveled (dist_traveled) when the line corner in the memory is seen 

again. 

 

2) If the input line matches any of the lines in the memory according to the rules given in 

Step 1, the slope difference is taken and added to the rotation_correction matrix. If not the 

corner is added to the lines in memory. 

 
3) If multiple correction values are found the mean these values are calculated and rotation 

correction in the pose is given as result_rotation_correction. 

3.7  Occupancy Grid Mapping 

For the demonstration of scan matching results, occupancy grid mapping is used. Brasenham 

Line Algorithm [23] is used for the calculation of the empty grid cells before the LADAR 

scan hit point. For occupancy grid mapping the hit point of LADAR range scan with a 

triangular density function in 2D plane is applied. But it is seen that to use such a function 

increase the thickness of the border lines, which makes the analysis of performance of the 

algorithm harder. In performance tests, thin border lines are needed, since if any error occurs 

it can be observed by the change in position or slope of the border line. Therefore this 

mapping process downgraded to the deterministic level. Also the probability of an occupied 

cell to be unoccupied is highly degraded. 

3.8 Chapter Summary 

In this chapter, scan matching algorithm is presented. Scan matching algorithm takes 

LADAR and odometer data as an input and gives area map and pose information as an 

output. At the beginning, LADAR data is processed by a line extraction algorithm, which is 

known as Split and Merge algorithm. Resulting line segments constructs the base for feature 

and feature properties set for main scan matching part. These features are line segments and 

corners and patterns consist of their multiple sets. As the feature properties, type of line ends, 

type of corners, distance between parallel lines, unique lines with longer length, patterns 

consisting of consecutive corner distances… etc. are used.  These feature set and properties 

taken from consecutive LADAR scans are evaluated according to their overlap level by 

different criteria. This evaluation is resulted as votings between the initial line pairs 

constructing these features from previous and current scan in matching table. By the 

evaluation of votes in matching table, matched line pairs are obtained. Between these line 
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pairs transformation vectors are defined. By using vector addition the translation and rotation 

change between consecutive scans is calculated. Summation of these differences gives the 

pose of the robot. 

 

During the incremental pose estimation, also the error in pose is accumulated. For this 

purpose a DGL algorithm is added. This algorithm uses both side ended lines and real 

corners as landmarks. All these landmark candidates are passed through a gating to prevent 

comprising of phantom landmarks.  When a landmark is observed again, such as in closed 

loop cases, the pose of the robot is updated according the accumulated error between the 

initial and last positions of landmarks. This gives an error correction in a considerable level 

for the pose of the robot. 

 

During the implementation of global localization part, it is seen that the localization accuracy 

utmost descends to the pose error level of landmark that is initially seen. Besides, no 

correction is given to estimated position and orientation of landmarks in memory. It results 

as the permanence of pose error during all the path of the robot. After an accumulated error 

level with the instant one coming from scan matching, it precludes the association of 

landmarks and observed landmarks are detected as new landmarks.  As a result of evaluation 

of these problems, FastSLAM algorithm is chosen to be implemented to solve these. 
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CHAPTER 4 

4 SIMULTANEOUS LOCALIZATION AND MAPPING 

In this thesis, simultaneous localization and mapping (SLAM) algorithm is also implemented 

to yield global localization. From SLAM algorithms, FastSLAM 2.0 is chosen since it solves 

the problems coming from DGL implementation mentioned in summary part of Chapter 3. 

Furthermore, its advantages to EKF SLAM algorithms are mentioned in Section 2.3 of 

Literature Survey part.  In this chapter, FastSLAM is added at the output of main scan 

matching algorithm. Addition of FastSLAM gives the ability to eliminate the accumulated 

pose error coming from scan matching algorithm, on the other hand scan matching algorithm 

gives a better pose information (than odometer) which makes the data association problem 

easier, rate of wrong associations decreases and as a result, the performance of FastSLAM 

increases.  

 

In this part, standard FastSLAM 2.0 algorithm and a modified version are implemented. For 

the prediction step, odometer motion model is used. Landmarks are extracted from the 

feature set used in scan matching part. In data association, particle weight calculation and 

feature update parts, multiple positions of landmark is used to add orientation information of 

landmark into calculations. In modified version of FastSLAM algorithm, single position of 

landmark is used, but also orientation information of landmark is added as a parameter into 

the EKF filter.  

4.1 Structure of the FastSLAM Algorithm Implemented 

In this part, the structure of the FastSLAM algorithm implemented will be described. The 

appropriate illustration describing the general structure of the algorithm is given in Figure 

4.1 and pseudo code giving its implementation is given in Table 4.1.  
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FastSLAM algorithm is a combination of particle filter and Extended Kalman filter (EKF). 

All the information about the localization of the robot and map of the area is kept in 

particles. In fact, for each particle EKF estimates the pose of the robot and landmarks with 

their covariance. So the structure of particle consist of the current and previous poses of the 

robot, the pose error covariance matrix,  the orientation of landmarks and their covariance 

matrix and the weight of the given particles in pose estimation of the robot. The structure 

that particle contains can be given as: 

 

 [ ] [ ] [ ] [ ][ ]m
p

m
p

m
p

m yxxvparticle θ,,. =  (4-1) 

 

Where [ ] [ ] [ ]m
p

m
p

m
p yx θ,,  are the pose estimation of the robot for particle m, they can be 

defined as vehicle states; 
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Where [ ]nm
xlm ,  are the pose estimation of landmark n of the particle m. [ ] pvparticle m .  is 

the pose 3 x 3 covariance matrix of [ ] xvparticle m .  and [ ] [ ]nm pfparticle .  is the 2 x 2  

covariance matrix of for each landmark, that is  [ ] [ ]
[ ]

[ ]
⎥
⎥
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⎤

⎢
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⎡
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y
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xfparticle ,

,

. .  

 

The assumed noise in each step for [ ] xvparticle m . , which is known as process noise, is 

given as: 

 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2rot

trans

1rot

00
00
00

R
ε

ε
ε

 (4-3) 

 

Where 1rotε , transε  and 2rotε   are the zero order Gaussian noises, in order, for the first 

rotation 1rotδ , the translation transδ  and second rotation  2rotδ  for the odometer motion 



 
 
 81

model given in Section 4.2 . 1rotδ , transδ , 2rotδ  are the control inputs. The assumed noise for 

each step for [ ] pv.particle m , which is known as measurement noise, is given as: 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

θε
ε
0

0dQ  (4-4) 

 

Where dε  and θε  are the zero order Gaussian noises, in order, for distance, and angular 

orientation of the landmark referenced to pose of the robot.  

 

In the algorithm, first control inputs ( 1rotδ , transδ , 2rotδ ) according to odometer motion 

model is calculated from the incoming pose difference from scan matching (Δx, Δy, Δθ) . 

Pose of the robot in each particle ( [ ] xvparticle m . ) is updated according to control inputs and 

assumed pose noise (R). This is known as prediction step of EKF.  When a new landmark is 

observed, the position of landmark is added ( [ ] [ ]nm xfparticle . ) with its covariance 

( [ ] [ ]nm pf.particle ). When a landmark is observed again, the pose of the robot (state update) 

and landmark positions (landmark update) are corrected, which is known as measurement 

(correction) update step of EKF.  

 

In FastSLAM 2.0 algorithm, in the measurement update, first the proposal distribution in 

particles is sampled according to the observed landmark, which gives better particle 

diversity. Then the weights of the particles are recalculated. This is done according to the 

overlap between predicted landmark position and observed landmark. The weight shows the 

accuracy of estimated robot path and landmark positions calculated for that particle. The 

surviving particles are resampled in proportion to their weights as they give predefined 

number of particles. This gives better particle diversity. After this step the landmark 

orientations and their covariance are updated same as the measurement update part of EKF. 

In Table 4.1, the steps of the FastSLAM algorithm are given as a pseudo code and in Figure 

4.1, the general structure of FastSLAM algorithm is given as a schema: 
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Table 4.1: The pseudo code giving the implementation of FastSLAM algorithm. 
 
Algorithm_FastSLAM (particle, prevpose_robot , currpose_robot  , LCcurr . , currCnr ) 

1: take FastSLAM paremeters,threshold and noise values (Q,R) from configuration file  

2:  [ 1rotδ , transδ , 2rotδ ]=inverse_odometer_motion( prevpose_robot , currpose_robot ); 

3:  particle =FastSLAM_Prediction (particle, 1rotδ , transδ , 2rotδ  ,Q); 

4:  stable_Lines=Stable_Lines( LCcurr . , currpose_robot  ,Threshold); 

5:  [znL ,zfL ,idfL]=FastSLAM_DataAssociation_Lines (stable_Lines,Threshold,…

 currpose_robot ) 

6:  stable_Corners=Stable_Corners( currCnr , currpose_robot  ,Threshold); 

7:  [znC, zfC ,idfC]=FastSLAM_DataAssociation_Corners (stable_Corners, Threshold, 

 currpose_robot ); 

8: zn=[ znL  znC]; zf=[ zfL  zfC]; idf=[ idfL  idfC]; 

9: if zn is not empty 

10:   particle =Landmark_Initialization (particle, zn, R) 

11: endif 

12: if  zf is not empty 

13:   particle= Sample_Proposal (particle, Hv, Hf, Sf); 

14:   particle= Feature_Update (particle, Hv, Hf, Sf,Q); 

15:   particle= ComputeWeight (particle, zf, idf, R); 

16:  particle=Particle_Resampling (particle); 

17: endif 

18: [ currpose_robot ]= average of robot pose estimated from the most weighted 

particles  

 

 

As it is given in Table 4.1, by using inverse odometer motion function control states are 

found and the pose is updated according to control states by FastSLAM_Prediction 

functions.Stable_Lines,FastSLAM_DataAssociation_Lines,Stable_Corners,FastSLAM_Da

taAssociation_Corners functions form the data association part. For new observed landmark 

Landmark_Initialization function is applied. For re-observed landmarks, Sample_Proposal, 

Feature_Update, ComputeWeight, Particle_Resampling functions are applied, which forms 

the measurement update part. 
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4.2 Inverse Odometer Motion Model 

Inverse odometer motion model takes current ( prevprevprev ,y,x θ ) prevpose_robot= and 

previous ( currcurrcurr yx θ,, ) currpose_robot=  pose of the robot (known as vehicle states) 

and calculates the rotation and translation parameters. (Previous pose is set in memory for 

each step and the current pose is calculated from the previous pose and ( θΔΔΔ ,, yx ) values 

coming from the main scan matching part). The motion of the robot is assumed as a rotation, 

a straight line motion and another rotation. Decomposition of the parameters is the first 

rotation 1rotδ , the translation transδ  and second rotation 2rotδ . These parameters are enough to 

describe the motion of the robot between two steps. 

 
 

Figure 4.2: Odometer model. The robot motion in the time interval (t-1,t) is approximated by 
the first rotation 1rotδ , the translation transδ  and second rotation  2rotδ . 

 
 

The calculation of given parameters (known as control inputs) can be given with the 

equations as: 

 

 prev
prevcurr

prevcurr
rot xx

yy
θδ −

−

−
= )arctan(1  (4-5) 

 
 22 )()( prevcurrprevcurrtrans xxyy −+−=δ  (4-6) 

 
 12 rotprevcurrrot δθθδ −−=  (4-7) 

 
 
 

δrot1 

δrot2 

δtrans 
Heading of the robot 
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4.3 Prediction Step 

In prediction step, the pose of the robot is estimated for each particle according to 

[ ppp yx θ,, ] previous pose values registered in particles.xv and motion parameters [ 1rotδ , 

transδ , 2rotδ ]. Mean of the pose is predicted according to the odometer motion model. The 

equations about the model can be given as:  

 

 )cos( 1 prottranspp xx θδδ ++=  (4-8) 

 

 )sin( 1 prottranspp yy θδδ ++=  (4-9) 

 

 21 rotrotpp δδθθ ++=  (4-10) 

 

  

Table 4.2: The prediction step of FastSLAM algorithm. 
 
Algorithm_FastSLAM_Prediction (particle, 1rotδ , transδ , 2rotδ , Q) 

1: for  i= 1: all particles  

2:   [ θ,, yx ] = [ ] xvparticle i . ;  pv= [ ] pvparticle i . ; 

3:  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
++
++

=
θδδ
θδδ
θδδ

21

1

1

)sin(
)cos(

xv

rotrot

rottrans

rottrans

y
x

 

4:  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
+−

=
100

)cos(10
)sin(01

Gv 1

1

θδδ
θδδ

rottrans

rottrans

  

5:  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++
++−

=
111
0)sin()cos(
0)cos()sin(

Gu 11

11

θδθδδ
θδθδδ

rotrottrans

rotrottrans

 

6:  TGvpvGvpv = + TGupvGu ; 

7:  [ ] xvparticle i . = xv; [ ] pvparticle i . = pv;  

8: endfor 

9: return particle.xv,  particle.pv 
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The pseudo code for prediction calculation is given in Table 4.2. In Table 4.2, the Jacobian 

matrix (Gv), the pose of the robot estimated in particle with respect to vehicle states can be 

calculated as: 
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  (4-11) 

 

And the Jacobian matrix (Gu), the pose of the robot estimated in particle with respect to 

control inputs can be calculated as: 
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 (4-12) 

 

4.4 Landmark Extraction and Data Association: 

Landmark extraction and data association is one of the hardest steps in SLAM algorithms. 

From the feature set created, the landmarks are needed to be carefully defined. In fact, they 

should be so unique features that they are not wrongly associated to a previously seen 

landmark. Wrong association can be devastating as it means the robot will think it is 

somewhere different from where it actually is. As a result, the FastSLAM algorithm 

diverges.  

 
In landmark extraction part, same features (both side ended lines and real corners) are used 

as landmarks. As a result, same extraction algorithms given for global localization part are 

used (given in Table 3.33 and Table 3.35); the one in Table 3.33 is for eliminating cognitive 

real corners and the one in Table 3.35 is for eliminating cognitive both side ended lines. 

These two steps extract the landmarks that will be used as reference in SLAM. In these steps 
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also, the gating rule: A feature is not actually considered as a landmark worthwhile to be 

used in SLAM unless it is seen N times, is implemented. This rule eliminates feeding the 

algorithm with bad landmarks.  

 
As it is seen from the algorithms, the landmarks include position information and orientation 

information. The position information is the center point of the line and the corner positions. 

The orientation information is the slope of the line and the slopes of the lines constructing 

the corner. In SLAM algorithm implementations based on LADAR data mostly uses just the 

position information of landmark, which is associated with the one in memory by using 

methods like maximum likelihood , nearest-neighbor approach [37] etc… In our 

implementation each landmark is fed to the landmark position matrix of particles 

(particles.pf) with two positions. This adds the orientation information of a landmark to 

FastSLAM algorithm and improves its performance.  

 
 

 
 

Figure 4.3: Illustration showing the landmarks and their properties used in FastSLAM 
algorithm. 

 

 

When a landmark is first seen, the pose of the robot in particles ( xvparticle. ) is sampled 

from their proposal distribution ( pvparticle. ) and than the landmark is registered in particle 

given in equation 

 

 [ ] [ ]ji xfparticle . =
[ ] [ ]

[ ] [ ]
⎥
⎥
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⎢
⎣

⎡

++
++

)sin(
)cos(

bry
brx

i
p

i
p

i
p

i
p

θ
θ

 (4-13) 

 
where [ ppp yx θ,, ] pose values registered in jth feature of ith particle, r is the landmark 

range information and b is the bearing information referenced to the robot pose. As a result 

Real Corner 

Robot Pose 

Bearing 

Distance 

d 
d 

Landmarks 

Both Side 
Ended Line 

Virtual Landmarks 

Landmark 

Different 
Orientations 

Real Corner 
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the landmark information registered in particle consists of just the position of the landmark. 

Assume the case the robot sees the landmark first and its position is initialized at particles 

about the same (low variance in pose of the robot). When the particles see the observed 

landmark again, they can be weighted equally while they see it with different poses then 

which pose in the particle is close to real robot pose? The situation is illustrated in Figure 

4.4: 

 

Figure 4.4: The robot sees the observed landmark again and for Particle1 and Particle2 the 
position of the landmark overlaps with the position predicted. Therefore particles take same 

weight, which results in with wrong robot pose prediction. 
 

 

To prevent the situation given in Figure 4.4, two landmark positions (landmark and virtual 

one) are used, which force the algorithm to calculate the weights for both, which also 

promote the particles with the heading information close to real robot pose.  

 
Slope of the lines constructing the landmark are also used in data association to separate 

them (which makes the data association robust to failures), but these slopes must also need to 

be updated with the position of landmarks to make correct data associations. An updated 

position of a landmark does not include any information about the slope of the lines 

constructing. By adding a virtual landmark position to FastSLAM module, correction in 

slope of the lines is also achieved. 

 
The method using two landmark positions for each landmark gives an improvement when 

the environment does not have many landmarks. For the situations when different landmarks 

are seen with small steps, the particles with correct heading information are again promoted. 

However, for a SLAM algorithm making an association using just the landmark positions 

Particle2 

Particle1 

Observed landmark from 
the pose of  Particle1 

Observed landmark 
from  the pose of  
Particle2 

Virtual landmark positions 



 
 
 89

degrades the performance of the data association. In fact, in such a case algorithm needs 

landmarks separated from each other with longer distances, else the chance to make a 

mismatch between different ones increases. 

 

In Figure 4.5, the general structure of data association part is given and in Table 4.3: The 

pseudo code for the implementation of this part is given. As we can see from Figure 4.5, first 

the landmark candidates are extracted from the feature set. These are the real corners 

(Cnr.Class: Real) and both side ended lines (C.L.Lineclass: BothSide Ended Lines). These 

landmark candidates are controlled whether they are seen multiple times (to prevent burden 

on the algorithm with fake landmarks). Also it is controlled whether inside the area the 

landmark found; another landmark candidate with about the same properties is seen. If this 

happens, both landmark candidates are not accepted. This decreases the chance to make 

wrong data association between landmarks with close properties and distances.  

 

The new observed landmarks are compared with previously seen ones, whether they could 

be the same feature. For the corners, this is controlled between incoming stable corners 

(stable_Cnr) from finding stable features part and the corners in the memory 

( MemoryStableCnr __ ) based on: 

 

• The distance between the corners.  

• The slope difference between the line pairs constructing the corners.  

• The slope difference between the lines in same side of the corners. 

• The distance travelled (dist_traveled) when the corner in the memory is seen again. 
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For the lines, this is controlled between incoming stable lines (stable_Lines ) from finding 

stable features part and the lines in the memory ( MemoryStableLine __ ) based on : 

 

• The distance between the center point of lines.  

• The slope difference between the lines.  

• The distance traveled (dist_traveled) when the line corner in the memory is seen again. 

 

If the landmarks are matched than the distance and bearing information ( zf =[d b])  between 

the landmark in memory ( MemoryStableL __ , MemoryStableCnr __ ) and observed 

one (stable_Lines, stable_Corners ) is calculated. This information is given with the ID of 

landmark in memory (idf). If a new landmark is observed its position is set into memory, an 

ID is assigned and again calculated distance and bearing values ( zn =[d b]) referenced to 

pose of the robot are given as output. When landmark update information is come to data 

association algorithm, all the landmark positions in memory are updated according to the 

landmark position estimates of most weighted particle.  

 

 
Table 4.3: The pseudo code giving the implementation of data association for both side ended 

lines. 
 
Algorithm_FastSLAM_DataAssociation_Lines (stable_Lines, Threshold, robot_ pose, 
landmark_update_flag, particles) 
1: [ ]rrr yx θ,, =robot_ pose:   
2: retrieve MemoryStableLtraveleddist __,_  from memory 
3: if  landmark_update_flag  equals to 1  
4:  Update MemoryStableL __  according to particles.xf; 
5: endif 
6:  for  i= 1 to number of esstable_Lin  
7:   for j=1 to number of MemoryStableL __  
8:    if  distance between (mean( [ ] int._ endpoLinesstable i ) , … 
    mean( [ ] int.__ endpoMemoryStableL j )) < Threshold1 
9:    if  slope difference between ( [ ]iLinesstable _ .slope, … 
    [ ] slopeMemoryStableL j .__ ) < Threshold2 
10:    if  [ ]jtraveleddist _ >Threshold3 
11:     [ ]countLfound _ =[ [ ]iLinesstable _ ] 
12:     [ ] jIDfound count =_  
13:     reset  [ ]jtraveleddist _  
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Table 4.3 continued 
 
14:     count=count+1 
15:    endif    
16:   [ ]iflagfound _ =1  
17:    endif 
18:  endif 
19:   endfor 
 
// the step that gives landmark observation to landmarks if a new one is found 
20:  if [ ]iflagfound _ =0  
21:  Add [ ]iLinesstable _  to  MemoryStableL __  
22:  d= mean( [ ] int)._ endpoLinesstable i - rx   
23:  b= arctan (mean( [ ] int._ endpoLinesstable i - rx ) - [ ]iLinesstable _ .slope; 
24:  [ ]12 −izn =[ d b] 
25:  Offset= [cos( [ ]iLinesstable _ .slope)  sin( [ ]iLinesstable _ .slope)] 
26:  Extension_Point=d+ rx +Offset 
27:  d2= Extension_Point - rx   
28:  [ ]izn 2 =[ d2 b] 
29:  endif 
30:endfor 
 
// the step that gives landmark observation to landmarks if a one is reobserved 
31: for i=1 to number of Lfound _  
32: d= mean( [ ] int)._ endpoLfound i - rx   
33: b= arctan (mean( [ ] int._ endpoLfound i - rx ) - [ ]iLfound _ .slope 
34: [ ]12 −izf =[d b];  [ ] =− 12iidf [ ]iIDfound _  
35: Offset= [cos( [ ]iLfound _ .slope)  sin( [ ]iLfound _ .slope)] 
36: Extension_Point=d+ rx +Offset; 
37: d2= Extension_Point - rx   
38: [ ]izf 2 =[ d2 b];  [ ] =iidf 2 [ ] 1_ +iIDfound  
39: endfor 
40: ||__||__ prevcurr poserobotposerobottraveleddisttraveleddist −+= ; 
41: return zn,zf,idf 

 

 

FastSLAM_DataAssociation_Lines algorithm given in Table 4.3 is also used for data 

association of real corners. Because of the high similarity between the algorithms the pseudo 

code for real corners is not given. In FastSLAM_DataAssociation_Corners algorithm 

stable_Lines are replaced by stable_Corners, MemoryStableL __ is replaced by 
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MemoryStableCnr __ , found_L is replaced by found_Cnr. In same manner, the observed 

landmarks are given in zf and idf, and new landmarks are given in zn as the output. 

4.5 Landmark Observation (Augmentation): 

When a landmark is observed for the first time, it is initialized in particles. The pseudo code 

of the initialization is given as:  

 

 

Table 4.4: The pseudo code giving the implementation of landmark initialization. 
 
Algorithm_FastSLAM_Landmark_Initialization (particle, zn, R) 

1: lenz=number of landmarks set in particle.xf  

2: for  i=1: all particles  

3:  [ θ,, yx ]= [ ] xvparticle i . ;  

4:  for j= 1 to number of landmarks in zn 

5:   [r,b]=zn     // r is the range and b is the bearing information  

6:   Gz= ⎥
⎦

⎤
⎢
⎣

⎡
++
+−+

)cos()sin(
)sin()cos(

brb
brb

θθ
θθ

; 

7:   [ ] [ ]lenzji xfparticle +. = ⎥
⎦

⎤
⎢
⎣

⎡
++
++

)sin(
)cos(

bry
brx

θ
θ

 ; 

8:   [ ] [ ]lenzji pfparticle +. = TGzRGz ; 

9:  endfor 

10: endfor  

 
 
 
As it is given in Table 4.4; from the distance and bearing information zn, incoming from the 

data association part, which is distance and bearing information relative to robot pose 

estimated in particle, the landmark position in global coordinates is estimated and registered 

in xfparticle. of that particle. Also covariance of landmark position is calculated as  

 

 pfparticle. = TGzRGz   (4-14) 
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Where Gz corresponds to the Jacobian of the landmark position with respect to the vehicle 

states and R corresponds to measurement noise, Gz can be defined as: 
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 (4-15) 

 
where Gz shows how much the range and bearing change as [ ppp ,y,x θ ] change. 

4.6 Landmark Re-Observation: 

In landmark re-observation part, the predicted landmark observations, the Jacobians of these 

observation positions with respect to vehicle states and also with respect to feature states are 

need to be taken to be used in further parts. For all observed landmarks, the distance and 

bearing information is predicted from estimated positions in particles, given as: 

 

 [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

−
−+−== p

px

py
pypxlmlm xlm

ylm
ylmxlmbdzp θ)arctan()()(, 22  (4-16) 

 

Where [ lmlm b,d ] corresponds the distance and bearing information of the predicted 

landmark observation, [ ppp ,y,x θ ] corresponds to the pose estimation in given particle and 

[ yx lm,lm ] corresponds to the estimated landmark positions in particles. Jacobian of 

predicted landmark observation positions with respect to vehicle states is taken as: 
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Jacobian with respect to feature states is taken as: 
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Innovation covariance, feature observation given the vehicle uncertainty is calculated as  

 RHfPfHfS f +=  (4-19) 

 
Where, Pf  corresponds to the pose covariance matrix of given particle. The pseudo code 

giving the implementation of these Jacobians is given in Table 4.5: 

 
 

Table 4.5: The pseudo code representing the initial calculations for FastSLAM algorithm. 
 
Algorithm_Compute_Jacobians ( [ ]iparticle , zf, idf, R) 

1: [ ]θ,y,x = [ ] xvparticle i . ;  

2:  [ [ ]idf
xlm [ ]idf

ylm ]= [ ] [ ]idfi xfparticle . ; 

3: Pf= [ ] [ ]idfi pfparticle . ; 

4: for j=1:all idf  

5:  [ ] [ ] [ ] 22 )()( ylmxlmd j
y

j
x

j −+−=  

// predicted observation 

6:  [ ] [ ]
[ ]

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

−
= θ)arctan(

xlm

ylm
dzp j

x

j
yjj ;  

//Jacobian with respect to vehicle states 

7:  [ ]

[ ]

[ ]

[ ]

[ ]
[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=
1

)()(

0

22 j

j
x

j

j
y

j

j
y

j

j
x

j

d
lmx

d
ylm

d
lmy

d
lmx

Hv ; 

//Jacobian with respect to feature states 

8:  [ ]

[ ]

[ ]

[ ]

[ ]
[ ]

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=

22 )()( j
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y

j

j
y

j

j
x

j

d
xlm

d
lmy

d
ylm

d
xlm

Hf ;  
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Table 4.5 continued 

 

// innovation covariance 

9:  [ ] =jSf [ ] [ ] [ ] RHfPfHf Tjjj +)( ; 

10:  endfor 

11: 

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

jzp

zp
zp

zp
....

2

1

 ;

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

jHv

Hv
Hv

Hv
....

2

1

;  

[ ]

[ ]

[ ] ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

jSf

Sf
Sf

Sf

000
0...00
000
000

2

1

  for all idf 

12: return zp,  Hv, Hf, Sf;  

 

 

After the prediction step, the estimated pose of the robot and covariance is needed to be 

updated according to the observed landmark. This part forms the difference between the 

FastSLAM 1.0 and FastSLAM 2.0 algorithms. In FastSLAM 2.0, before the measurement 

update, sampling poses are updated based on the landmark measurement and control states 

which gives better diversity of particles for the weight calculation. The pseudo code for the 

implementation is given in Table 4.6: 

 

 

Table 4.6: The pseudo code for proposal sampling part: 
 
Algorithm_FastSLAM_Sample_Proposal (particle, Hv, Hf, Sf) 

1: N=number of particles  

2:  for i= 1to N 

3:  [zp, Hv, Hf,  Sf]=Compute_Jacobians( [ ]iparticle , zf, idf, R); 

4:   for  j= all idf  

5:   [ ] [ ]jj zpzfv −= ; 

6:   [ ] [ ] [ ] [ ] [ ]( ) 111 ).()()(. −−− += pvparticleHvSfHvpvparticle ijjTji ; 

7:   [ ] [ ] [ ] [ ] [ ]( )vSfHvpvparticlexvparticlexvparticle jTjiii 1)()(... −+= ; 

8:  endfor 
9:  endfor 
10 :sample [ ] xvparticle i .  from [ ] xvparticle i .  mean and [ ] pvparticle i .  covariance 
11:return particle 
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The positions of landmarks and their covariance in sampled particles are updated which is 

known as measurement update of EKF. From the measurement covariance and its 

observation Jacobian with respect to measurement states, the Kalman gain (K) is calculated. 

Kalman gain is computed to find out how much the observed landmarks will be trusted and 

as such how much to be wanted to gain from the new knowledge they provide. The positions 

of landmarks and their covariance is updated according to Kalman gain. The pseudo code for 

the implementation is given in Table 4.7:  

 

 

Table 4.7: The pseudo code representing the feature update part of FastSLAM. 
 
Algorithm_FastSLAM_Feature_Update (particle, Hv, Hf, Sf,Q) 

1: N=number of particles  

2: for i= 1to N 

3:  [zp, Hv, Hf,  Sf]=Compute_Jacobians( [ ]iparticle , zf, idf, R); 

4:   for  j= all idf  

5:   [ ] [ ]jj zpzfv −= ; 

6:   [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1, ))(.()(. −+= QHfxfparticleHfHfxfparticleK TjjijTjjiji ; 

7:    [ ] [ ]ji xfparticle . = [ ] [ ]ji xfparticle . + [ ]jiK , v; 

8:    [ ] [ ] −= Ipfparticle ji (. [ ]jiK , [ ]jHf ) [ ] [ ]ji pfparticle . ; 

9:  endfor 

10:endfor 

11: return particle 

 

 
When a landmark is observed again, the matching probability of the predicted orientation for 

the landmark in particle and the observed orientation of the landmark with same ID is 

checked. This gives us the information about the validity of pose and landmark orientation 

given in that particle. The pseudo code for the calculation of particle weight can be given as: 
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Table 4.8: The pseudo code giving the calculation of particle weights. 
 
Algorithm_FastSLAM_ComputeWeight (particle, zf, idf, R, Hv, Hf, Sf) 

1: for  i=1: all particles  

2:  [zp, Hv, Hf,  Sf]=Compute_Jacobians( [ ]iparticle , zf, idf, R); 

3:  v=zf-zp; 

4:  N=number of elements in v; 

5:  V=convert v to Nx1 matrix; 

6:  =S SfHvPvHv T +)( ; 

7:  ||)2( Sden Nπ= ;   ;5.0 1VSVnum T −−=  

8:   [ ]
num

i

e
denwparticle =. ; 

9: endfor 

10:return [ ] wparticle i .  

 

 

From innovation covariance (S) including pose and feature uncertainty and the difference 

between observed and predicted landmark distance and bearings (zf - zp) , the consistency of 

that particle is calculated, which is known as importance weight ( [ ] wparticle i . ). 

  
After the weights are calculated for all particles given in Table 4.8, the particles are 

resampled. Resampling before computing proposal permits better particle diversity. In this 

step the ones with less weight are eliminated and the ones with more weight are promoted by 

expressing them multiple particles, which is known as stratified sampling in statistics. The 

resampling step is given as a pseudo code in Table 4.9: 
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Table 4.9: The pseudo code representing the particle resampling part. 
 
Algorithm_FastSLAM_Particle_Resampling (particle) 

1: N=number of particles  

2:  Cumulative_sum=0; 

3:  for i= 1 to N 

4:  [ ]
[ ]

[ ]∑
=

= N

j

j

i
i

wparticle

wparticlewparticle

1
.

.. + Cumulative_sum; 

5:  Cumulative_sum= Cumulative_sum+ [ ] wparticle i . ; 

6: endfor 

7: steps
N

with
N

to
N

fromarraydi 1
2
11

2
1

⎟
⎠
⎞

⎜
⎝
⎛ −=  

8:  rand= random N numbers ; 

9:  for i=1 to N ;  [ ] [ ] [ ]

N
rand

N
dis iii

2
11

−+=   ;  endfor; 

10:  keep=null matrix (1 to number of particles) 
11: count=1; 
12: for i=1:N 
13:  while count<=len  and  [ ]counts  < [ ] wparticle i . ; 
14:   keep(count)=i; 
15:   count=count+1; 
16:  end 
17:  end 
18:  particles= particles(keep); 

19: [ ] Nwparticle i /1. = ; 

20:  return particle   

 

 

As it is seen from Table 4.9, according to the given weight, the particles are resampled. In 

the resampling process, the particles are copied proportional to their weights in total sum of 

weights, as they obtain fixed number of particles.  

4.7 FastSLAM Algorithm with Landmark Orientation Update: 

In this part, FastSLAM algorithm is modified to add the slope of the lines as a parameter to 

the algorithm. This part includes the same application with the two landmark position 

addition to handle the update for the orientation of landmark inside, given in Section 4.4 and 
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in Figure 4.4. This time a landmark is not defined with two positions, instead the slope of its 

line is directly added to the filter. All the steps about the operation of the FastSLAM 

algorithm are same; some parameters related with landmarks in the algorithm are changed. 

When a landmark is seen first time, its parameters are defined as: 

 

 [ ] znbr =φ,,  (4-20)  
 

Where r is the range information, b is the bearing information of the landmark referenced to 

robot and φ  is the orientation of landmark inside (the difference between the slope of the 

line constructing the landmark in global coordinate frame and heading of the robot registered 

in particle). So its orientation (landmark state) is expressed in particle as: 
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 (4-21)  

 

where  γlm  is the estimated orientation information of landmark in global frame 

according to supposed robot pose in particle. By addition of orientation information, the 

jacobian of landmark observation with respect to robot pose estimated in particle becomes: 
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 (4-22) 

 

For landmark re-observation case, the predicted landmark position (expected measurement) 

becomes; 
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where lmφ  corresponds to relative predicted landmark orientation degree based on robot 

heading and landmark orientation information in global frame registered in the particle. 

Jacobian of predicted landmark observation with respect to vehicle states is taken as: 
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Jacobian of predicted landmark observation (expected measurement) with respect to 

landmark states is taken as: 
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The corresponding formulas in FastSLAM algorithm are updated according to the equations 

calculated between Equation 4-20 and 4-25. As a result, with same structure a modified 

FastSLAM algorithm that handles the orientation information of landmarks is implemented. 

4.8 Chapter Summary: 

In this chapter, the implementation of FastSLAM algorithm is presented. This algorithm 

takes pose difference from main scan matching part and also uses the feature and feature 

properties set extracted in scan matching part. The pose of the robot is relocated by particles. 

From the incoming pose difference from scan matching algorithm, by using inverse 

odometer model, the control input is calculated. In prediction update step, the pose 

estimation in particles is updated according to the control input. Landmark extraction is 

made from the feature set extracted in scan matching part. Both side ended lines and real 

corners are used as landmark candidates. Confident candidates are sent to data association 
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part and registered in memory with an ID. When a new landmark is observed, its position 

information and covariance matrix is set. When a landmark is re-observed, the likelihood of 

observed landmark information with the estimated one’s information is calculated. The mean 

and covariance of pose in particle is updated according to this information, and sampled. The 

landmark positions and covariance in resulting particles are updated according to calculated 

Kalman gain. According to overlap between predicted and observed landmark information, 

weights are calculated. By using the weights the particle set is resampled. In this step, the 

ones that landmark prediction does not match with observed one are eliminated and the rate 

of surviving ones in particle set is increased in proportion to weights.  

 



 
 
 103

CHAPTER 5 

5                    EXPERIMENTAL RESULTS 

The performances of main scan matching, scan matching with deterministic global 

localization, scan matching with FastSLAM algorithms are tested with different real 

LADAR and odometer datasets that are taken from Radish Data Repository and from our 

tests with our robots and courses. In the figures below, the performance of the algorithms 

with given datasets are presented. In our experiments the performance of the algorithms is 

analyzed in two steps: 

 

Maximum Local Distortion: In this step, maps created by scan matching with DGL and 

with FastSLAM algorithms are compared inside. We look at areas where the robot passed 

multiple times. This gives an insight about the consistency of the algorithm. The distortion 

occurred on the features shows the error accumulated on scan matching during all the path 

till it comes to the given area. The procedure for the calculations is: 

 

1) Some areas in algorithm map are numbered as check areas.  

2) Distortion on the features in position and slope in these areas is checked. In fact, the 

accumulated error on the algorithm is seen as a slippage on the features in these areas. Also 

instant errors on scan matching can be observed.  

3) The distortion as pixel position difference is multiplied with grid size and projected onto 

x and y axis.  

 

Maximum Global Distortion: In this step, the maps created by algorithms are checked with 

the original map. We take same features from both maps and look at the position difference 

between these points. This measure gives us an insight about the accuracy of our algorithm 

related to the real map. The procedure for the calculations: 
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1) The both maps are set into the same grid size, which is 0.1 meters in our mapping 

process. Algorithm map is rotated as the features at the starting point will have the same 

slope with the ones at original map.  

2) Some areas in maps are numbered as check areas (These areas same as the ones in 

maximum local distortion). The area at the startpoint is numbered as reference area (which is 

given as R). 

3) In these areas, the pixel positions of the same corners in the original map and scan 

matching result are compared referenced to the same corner in reference area (given with R). 

4) The difference between the pixel positions of these corners in both maps multiplied with 

grid size (0.1 meters) , which gives us the distortion in the algorithm map referenced to the 

original map in that position. 

5) The slopes of the same lines in same numbered area in both maps are found. 

6) The slope difference gives us the distortion in the slope of to robot referenced to the 

original map. 

 

In Figure 5.11, Figure 5.21, Figure 5.34 the numbered places are checking areas. 

 

Mean Position Error and Mean Orientation Error: In maximum global localization part, 

worst position and orientation errors for each area are calculated. From these errors, the 

mean position and orientation error is calculated according to the given formulas: 

 

 ∑
=

+=
n

1i

2
i

2
i yx

n
1ErrorPositionMean  (5-1) 

 

 ∑
=

=
n

1i
in

1ErrornOrientatioMean θ  (5-2) 

 

where  ix  and iy  corresponds to worst position error in Area i and iθ  corresponds to worst 

orientation error in Area i. n is the number of areas that the given test area is divided. 

5.1  Test 1: ASELSAN Indoor Area 

The tests are made with  
• Pioneer 3AT Robot (Differential Drive) 
• SICK OEM1000 Laser Scanner 
• 180 degree LADAR scan with 1 degree interval 
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Figure 5.1: The occupancy grid map of ASELSAN Indoor Area by using main scan matching. 
 
 
 

 
 

Figure 5.2: The occupancy grid map of ASELSAN Indoor Area by using scan matching with 
DGL algorithm. 
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Figure 5.3: The occupancy grid map of ASELSAN Indoor Area by using scan matching with full 
FastSLAM algorithm. 

 
 
 

 
 

Figure 5.4: The occupancy grid map of ASELSAN Indoor Area by using the raw odometer data. 
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Figure 5.5: The real map of ASELSAN indoor area. 
 
 
 
In Figure 5.1, the scan matching result is presented that is obtained from the raw LADAR 

and odometer data. In Figure 5.2, scan matching result with DGL algorithm is presented. In 

Figure 5.3, scan matching result with full FastSLAM algorithm is presented. Figure 5.4, 

mapping by using raw odometer output is presented. In Figure 5.5, the real map is presented 

from ASELSAN Indoor Area. 

 

In Figure 5.1, a rotational error is observed in mapping, this error is coming from the 

incremental error till the area given with number 5 in Figure 5.11 plus the mismatches 

occurred in this area. This pose error is corrected by DGL algorithm in Figure 5.2 and 

FastSLAM algorithm in Figure 5.3. 
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Figure 5.6: The pose information obtained from main scan matching algorithm. 
 
 
 

 
 

Figure 5.7: The pose information obtained from scan matching with DGL algorithm. 
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Figure 5.8: The pose information obtained from scan matching with full FastSLAM algorithm. 
 
 
 

 
 

Figure 5.9: The raw odometer data taken from the robot. 
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In Figure 5.6, the pose information obtained from scan matching algorithm, in Figure 5.7, the 

pose information obtained from scan matching algorithm with DGL algorithm is presented. 

In Figure 5.8, the pose information obtained from scan matching with FastSLAM algorithm 

is presented. In Figure 5.9, the raw odometer data that is taken from the dataset is presented. 

As it is seen from Figure 5.6, because of mismatch and accumulated error  a rotational error 

is occurred. In Figure 5.7, DGL algorithm corrects this error, which is seen as a jump in (-

1,6) coordinates. In Figure 5.8, this correction is spread on previous poses and a smooth path 

without a jump is seen  

 

The robot starts from the (0,0) point and goes through the x axis, then it turns right and maps 

all the right side area, which could be defined as y<0 in odometer data. Then it maps the left 

side area, which could be defined as y>0 in odometer data. Then it turns back to (0, 0) point 

from the center of total area through X axis in odometer plot.  

 

For considering the error in the map we can compare the slippage on the wall positions 

which located on the start and end path of the robot.  

 

 

 
 

Figure 5.10: Zoomed area at the middle of scan matching result given in Figure 5.2. 
 
 
 
To find the total error, the slippage on the wall position given with Wall1 and Wall2 is 

looked. The slippage in Wall1 is below 10 centimeters, because no change in the grids of the 

wall is seen. The slippage in Wall2 is 4 grid cell sizes, which is about 40 centimeters. Also 

so less error is seen in the rotation of the robot, which is found by subtracting the slopes of 
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wall given with Number 1 at the start and end of the path, which is about 0.3 degrees. So we 

could not see the error on the wall with 0.1 meters grid size.  

 

As a result, if we assume Wall Number 1 as X axis and Wall Number 2 as Y axis, we can say 

that we have obtained 0.4 meters in X axis, <0.1 meters in Y axis translational error and 0.3 

degree rotational error in a distance about 121.5 meters traveled in a path consist of closed 

loops with combined method consisting of scan matching and DGL algorithm. 

 

 

 
 

Figure 5.11: The figure showing the check areas that maximum global/local distortions are 
calculated between localization algorithms and original map. It also shows the path odf the 

robot by arrows.  
 
 
 
The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the θ 

values is less then 0.3 degree, because of the ratio between the grid size and longest line 

observed. The results are given as absolute values. As it is seen from Figure 5.9, all the area 

except Area 6 in Figure 5.11, are passed once, so these areas seems to be inappropriate for 

local distortion check. However, as it is seen from the distortions in these areas that are in 

neighborhood of Area 6, same walls are seen more than once, one is while passing through 

area 1, 2, 3, 4, 5 and one is while passing through area 6 as a consequence of high range 

capability of LADAR. Consequently, local distortion is calculated for all these areas.   
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Table 5.1: This table gives the local distortions obtained inside the scan matching result based 
on the numbering given in Figure 5.11.  

 
Maximum Local Distortions for Scan Matching with DGL Algorithm 
 Local Distortions 

Area ID x (meters) y (meters) θ (degree) 
1 0.1 <0.1 0.53 
2 0.3 <0.1 0.85 
3 0.4 <0.1 1.2 
4 0.2 0.1 0.48 
5 0.8 0.2 9.4 
6 0.4 <0.1 0.51 

 
 
 
The results given in Table 5.1 shows that the map we have created by scan matching is 

consistent. In Area 5, we observe 9.4 degree rotational error; also it can be seen in Figure 

5.11. This error is corrected while the robot is passing from Area 5 to Area 6, since tracked 

features by global localization algorithms are observed again. Therefore in Area 6, 

localization accuracy increases. Also while passing from Area 3 to Area 6, the accumulated 

rotational error is corrected, which is seen in Table 5.1  

 
 
 

Table 5.2: This table gives the local distortions obtained inside the scan matching result based 
on the numbering given in Figure 5.11.  

 
Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm 

 Local Distortions 
Area ID x (meters) y (meters) θ (degree) 

1 <0.1 <0.1 0.30 
2 0.1 <0.1 0.27 
3 0.2 0.1 0.52 
4 0.2 0.1 0.32 
5 0.3 0.1 0.87 
6 0.1 0.2 0.27 

 
 
 
As we can see from the results given in Table 5.2, there is an increase in consistency of the 

map when it has compared with scan matching with DGL algorithm. Because of particle 

structure of FastSLAM algorithm, for each landmark re-observation the path is optimized 

according to the weights that the particles has taken, also the landmark positions are updated. 

As a result better translation and rotation accuracy is seen. 
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Table 5.3: This table gives the global distortions obtained between the scan matching result and 
original map in sampled areas.  

 
Maximum Global Distortions for Scan Matching with DGL Algorithm 
 Global Distortions 

Area ID x (meters) y (meters) θ  (degree) 
1 0.3 0.1 0.55 
2 0.5 0.1 0.85 
3 0.6 0.1 1.2 
4 0.2 0.2 0.48 
5 0.6 0.2 9.4 
6 0.4 <0.1 <0.3 

 
 
 

The results given in Table 5.3 shows that during the entire path, scan matching algorithm 

gives pose output with less than 0.6 meters error in translation. The correction information of 

rotational error in Area 5 is given in Maximum Local Distortions part. 

 
 
 

Table 5.4: This table gives the local distortions obtained inside the scan matching result based 
on the numbering given in Figure 5.11. 

 
Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm 

 Global Distortions 
Area ID x (meters) y (meters) θ  (degree) 

1 <0.1 0.2 0.30 
2 0.2 <0.1 0.27 
3 0.1 0.1 0.52 
4 0.2 0.3 0.32 
5 0.3 0.1 0.87 
6 0.1 0.1 0.27 

 

 

As we can see from the results given in Table 5.4 and Table 5.2, there is an increase in 

consistency of the map when it has compared with scan matching with DGL algorithm. In 

full FastSLAM algorithm, the paths of the particles with maximum weight appointed are 

survived. This resulted with back propagated correction in previous poses of the robot. As a 

consequence of this, the separation in the wall at Area 3 and the inclination in the inner wall 

in Area 5 are not observed in Figure 5.3. 
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Table 5.5: This table gives the mean position error and orientation error for Test Area 1 
according to the equations 5.1 and 5.2. 

 
 Mean Position Error  Mean Orientation Error 

Scan Matching 1.83 5.8 
Scan Matching +DGL 0.46 2.13 

Scan Matching +FastSLAM 0.23 0.42 

 

Evaluation of Algorithms for Test 1:  

In given Area 1 three algorithms are tested. These are scan matching, scan matching with 

deterministic global localization (DGL) and scan matching with FastSLAM algorithm.  

 

When they are compared, in order with increase in pose estimation accuracy and map 

consistency, main scan matching, scan matching with DGL algorithm, scan matching with 

FastSLAM algorithm. As it is seen in Figure 5.1, the scan matching algorithm came across 

with an error in Area 6. This comes from the addition of accumulated incremental heading 

error till that point and the wrong heading calculation occurred at the given area in scan 

matching algorithm. Since any global correction does not occur in scan matching, the 

heading error is not corrected in rest of the path. So a great distortion in map has occurred. 

The effect of this distortion can be seen in Figure 5.6, the upper half and down half of the 

path are consistent inside but the heading error occurred locates them with angular 

difference. 

 

Scan matching with DGL algorithm gives better estimate for the path. But since there is no 

correction for the previous poses when a landmark is reobserved, it gives worse results than 

the scan matching with FastSLAM algorithm. In fact their difference specially can be seen in 

Area 6 (the slope of the lines) of Figure 5.2 and Figure 5.3. The rotational error occurred in 

scan matching is corrected in both ones. But while the previous mapping and pose error stays 

for the one with DGL implementation, this is corrected to a certain extent for the one with 

FastSLAM algorithm. This is also seen in joint wall passing through Area 3. In Area 3, right 

side of the wall seen first and left side of the wall is seen before the largest cycle in map is 

closed. As a result, because of accumulated error, gradient of the wall changes and a fracture 

occurs between thsese sides for DGL implementation in Figure 5.2. This is corrected for the 
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next mappings when landmarks in right side of Area 3 are seen. However same line seems to 

be about straight for FastSLAM algorithm in Figure 5.3. 

 

In Figure 5.4, the mapping for raw odometer is given. This is given to show that a small 

error in pose results with a great distortion in mapping. Actually the odometer data given in 

Figure 5.9 seems to be correct (This accuracy comes from the driving style, center of 

gravity distribution and unweared platform pieces.), but when a mapping is placed on it, the 

distortion has come off. 

5.2 Test 2: University of Ancona - LADAR and Odometer Data Taken from 
RADISH Data Repository  

The test is made with; 
• Pioneer 3DX Robot (Differential Drive) 
• SICK LMS 200 Laser Scanner 
• 180 degree LADAR scan with 1 degree interval 
 
 
 

 
 

Figure 5.12: The occupancy grid map obtained from main scan matching. 
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Figure 5.13: The occupancy grid map obtained from scan matching with DGL algorithm. 

 
 
 

 
 

Figure 5.14: The occupancy grid map obtained from scan matching with full FastSLAM 
algorithm. 
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Figure 5.15: The real map given by University of Ancona. 

 

 

In Figure 5.12 the main scan matching result is presented that we have obtained from 

LADAR and odometer data. In Figure 5.13, the scan matching with DGL result and in 

Figure 5.14, the scan matching with full FastSLAM algorithm is presented. In Figure 5.15, 

the real map is presented given by University of Ancone, which is the source of dataset taken 

from the Radish Data Repository. 

 

If Figure 5.12 and Figure 5.13 are compared with Figure 5.15, scan matching outputs are so 

successful. Both maps are consistent inside and match with real map. When Figure 5.12 is 

compared with Figure 5.13, an incremental error in pose is seen. This error is small but it can 

be seen as multiple lines at the areas where closed loop case in path occurs. In fact resulting 

error at the end is easily seen on the walls between the startpoint and endpoint of the wall 

(Start and endpoints of the path and closed loop areas are given in Figure 5.21, R as the area 

at startpoint and 7 as the area at endpoint, 2- 4 – 5 are closed loop areas.) 
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Figure 5.16: The pose information obtained from scan matching algorithm. 
 
 
 

 
 

Figure 5.17: The pose information obtained from scan matching with DGL algorithm. 
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Figure 5.18: The pose information obtained from scan matching with full FastSLAM algorithm. 
 
 
 

 
 
Figure 5.19: The odometer data given while the robot is moving on the map given in Figure 5.15. 
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In Figure 5.16, the pose information obtained from scan matching algorithm, in Figure 5.17, 

the pose information obtained from scan matching with DGL algorithm and in Figure 5.18 

the pose information obtained from scan matching with FastSLAM algorithm is presented. In 

Figure 5.19, the raw odometer data that is taken from the dataset is presented.  

 

As you can see from Figure 5.19, the raw odometer data diverges after a movement about 25 

meters from the start point. When we have come to the endpoint (settled about (5,-30) 

coordinates), there is big error more than 30 meters in translational and about 90 degrees in 

rotational. However the odometer data obtained from scan matching in Figure 5.16 and 

Figure 5.17 and Figure 5.18 overlap with the map given in Figure 5.15. It is assumed that the 

map given by University of Ancona as real map and make comparison between the real map 

and the map we have obtained from algorithms. During this test, total distance that is 

traveled is about 236.8 meters. 

 
 
 

 
 

Figure 5.20: The two figures given are the zoom in of the maps presented in Figure 1 and 2. The 
left image is from Figure 1 and the right one is from Figure 2. 

 
 
 
In Figure 5.20, the zoom in area shows both the area the navigation has started and the area 

that navigation has ended. The area identified with Number 1 in right image is the room that 

the robot has started and the area identified with Number 2 in right image is the corridor that 

the robot has ended its navigation. So the Wall 1 between the corridor and the room gives us 

idea about the error occurred in axis perpendicular to the wall during this navigation. In our 
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scan matching result the wall thickness is found about 5 grids (since our grid size is 10x 10 

cm), which is 0.5 meters error if no thickness is assumed for the wall. Wall 2 between the 

corridor and the room gives us idea about the error occurred in axis perpendicular to the wall 

(this axis is parallel to Wall 1) during this navigation. Wall thickness is found about 3 grids, 

which is 0.3 meters error if no thickness is assumed for the wall.  

 

We have look at the slope of the line fitting, looking to the area Number 1 and at the slope of 

the line fitting, looking to the area Number 2 to find the error in rotation. The resulted line 

slope difference is about 0.8 degrees, which is our rotational error.    

 

As a result, if we assume Wall 1 as y axis and Wall2 as x axis, we can say that we have 

obtained 0.5 meters in y axis, 0.3 meters in x axis translational error and 0.8 degree 

rotational error in a distance about 236.8 meters traveled in a path consist of small closed 

loops with scan matching with DGL algorithm. 

 

 

 
 

Figure 5.21: The figure showing the check areas that maximum global distortions are calculated 
between scan matching result and original map. 
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The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the θ 

values is less then 0.3 degree, because of the ratio of longest line to the grid size. The results 

are given as absolute values. 

 

 

Table 5.6: This table gives the local distortions obtained inside the scan matching with DGL 
algorithm result based on the numbering given in Figure 5.21 

 
Maximum Local Distortions for Scan Matching with DGL Algorithm 
 Local Distortions 

Area ID x (meters) y (meters) θ  (degree) 
1 NA NA NA 
2 0.1 <0.1 0 
3 <0.1 <0.1 0 
4 0.2 0.2 0.17 
5 0.4 0.1 1.2 
6 NA NA NA 
7 0.5 0.3 0.8 

 

 

In Table 5.6, the method is not applicable to the areas given with ID 1 and ID 6, since the 

robot does not pass in these areas more than once. For ID 7, again the robot passes from this 

area once, but this area is neighbor with the robot reference area. So a comparison is 

available. The results given in Table 5.6, shows that the map created by DGL algorithm, is 

consistent. 

 

 

Table 5.7: This table gives the local distortions obtained inside the scan matching with 
FastSLAM result based on the numbering given in Figure 5.21 

 
Maximum Local Distortions for Scan Matching with full FastSLAM Algorithm 

 Local Distortions 
Area ID x (meters) y (meters) θ  (degree) 

1 NA NA NA 
2 0.1 <0.1 0 
3 <0.1 <0.1 0 
4 0.2 <0.1 0.22 
5 0.3 <0.1 0.30 
6 NA NA NA 
7 0.7 0.4 0.8 
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According to given results in Table 5.7, the mapping is consistent. Again same reasons are 

valid for the area tagged with NA. As it is seen from the results a consistent map is 

constructed. 

 

 
Table 5.8: This table gives the global distortions obtained between the DGL algorithm result 

and original map in sampled areas.  
 

Maximum Global Distortions for Scan Matching with DGL Algorithm 
 Global Distortions 

Area ID x (meters) y (meters) θ  (degree) 
1 0.3 0.4 0.96 
2 0.6 0.3 1.62 
3 0.6 0.2 0.58 
4 0.3 0.4 1.57 
5 0.6 0.5 1.33 
6 0.5 0.1 0.59 
7 0.3 0.1 0.20 

 

 

As we can see from Table 5.8, while the robot goes through the path, pose error occurs with 

the original map and this error about 1.6 meters in translational and about 3.6 degree in 

rotational. Since the path contains small closed loops and goes totally different place from 

the start point, we can see the error accumulation in scan matching. Also the long corridor 

between Area 1 and 2 reduces the scan matching performance, since the area is unstructured 

scan matching uses odometer data, which also adds the error incoming from odometer. 

However the accumulated rotational error in Area 5 is corrected while passing back Area 4, 

and resulted correction is seen in Area 6 . 

 

 

Table 5.9: This table gives the global distortions obtained between the full FastSLAM result and 
original map in sampled areas.  

 
Maximum Global Distortions for Scan Matching with FastSLAM Algorithm 

 Global Distortions 
Area ID x (meters) y (meters) θ  (degree) 

1 0.5 0.1 1.68 
2 0.1 0.6 2.44 
3 0.3 0.7 1.12 
4 0.6 0.2 2.15 
5 0.4 0.6 1.03 
6 0.4 0.5 0.08 
7 0.6 0.2 0.12 



 
 
 124

Table 5.10: This table gives the mean position error and orientation error for Test Area 2 
according to the equations 5.1 and 5.2. 

 
 Mean Position Error  Mean Orientation Error 

Scan Matching 0.69 1.39 
Scan Matching +DGL 0.54 0.97 

Scan Matching +FastSLAM 0.64 1.26 

 

Evaluation of Algorithms for Test 2: 

In Test Area 2, three algorithms are tested. These are scan matching, scan matching with 

deterministic global localization (DGL) and scan matching with FastSLAM algorithm.  

 

If they are compared:, in order with increase in pose estimation accuracy and map 

consistency: main scan matching, scan matching with FastSLAM algorithm, scan matching 

with DGL algorithm. In this area, scan matching gives very good results, and it calculates the 

pose of the robot and makes mapping considerably well. Scan matching with DGL 

algorithm, makes corrections in Area 2, 4 and 5. When the loop is closed, DGL algorithm 

eliminates the incremental error coming from these areas. Therefore a better accuracy in 

pose is obtained than the main scan matching algorithm.  

 

Scan matching with FastSLAM algorithm gives worse results than with DGL algorithm. This 

comes from the divergence of the FastSLAM algorithm if any closed loop does not occur. 

When the areas in Figure 5.21 are examined a closed loop is seen when the robot goes from 

Area 2 to Area 3 and goes back to Area 2. However, since the robot goes a long distance 

from the startpoint to Area 2, the particles are scattered in a wide area. When a landmark is 

observed its position is set into the particle according to the estimated robot pose in particle. 

When this landmark is seen again all the particles are weighted, this will survive the ones 

that correct the error between the times when the landmark is observed first and observed 

again. However the particles are still scattered because of the error till the landmark is 

initially observed. As a result of this, with elimination of some paths by weighting, the 

distribution of paths is corrupted and a bias in pose of the robot occurs. This affects the 

following pose estimations in particles. As a result, while a correction in closed loops occurs, 

because of high diversity in pose of the particles, the path of the robot and mapping is 

deteriorated. The result of this situation in mapping is given as: 



 
 
 125

 
 

Figure 5.22: The occupancy grid map obtained from scan matching with full FastSLAM 
algorithm (with high Gaussian noises in poses of particles)  

 

 

When the values of Gaussian noise in pose of the robot are decreased, the robot path and 

mapping quality increase. In fact when the robot comes to Area 2, the diversity of the 

particles becomes much smaller. But the important point is whether the increase in diversity 

of particles after landmark is initially observed is enough to correct the accumulated error till 

the landmark is reobserved. As a result of this the effect of corrections in closed loop cases 

decreases. Therefore the result converges to the main scan matching result. Consequently an 

accuracy and mapping come into existence between main scan matching and scan matching 

with DGL algorithm results, which is given in Figure 5.14. 
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5.3 Test 3: Part of the Intel Jones Farms Campus, Oregon - LADAR and 
Odometer Data Taken from RADISH Data Repository  

The test is made with; 
• Pioneer 2DX Robot (Differential Drive) 
• SICK LMS 200 Laser Scanner 
• 180 degree LADAR scan with 1 degree interval 
 
 
 

 
 

Figure 5.23: The occupancy grid map obtained from main scan matching. 
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Figure 5.24: The occupancy grid map obtained from scan matching with DGL algorithm. 
 
 
 

 
 

Figure 5.25: The occupancy grid map obtained from scan matching with full FastSLAM output. 
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Figure 5.26: The real map given by Intel Lab. 
 

 

In Figure 5.23 the scan matching result is presented that we have obtained from the raw 

LADAR and odometer data. In Figure 5.24, the scan matching with DGL algorithm result is 

presented. In Figure 5.25, the scan matching with FastSLAM algorithm result is presented. 

In Figure 5.26, the real map is presented given by Part of the Intel Jones Farms Campus, 

Oregon, which is the source of dataset taken from the Radish Data Repository [22]. 

 

If Figure 5.23 and Figure 5.26 are compared, scan matching seems to suffer from the 

incremental error accumulated in pose. This is seen when the robot goes on multiple closed 

loops in this situation. This error is about 2 meters in translation and 3 degrees in rotation 

(can be seen from Figure 5.28) in 239.6 meters distance traveled, but it is enough to 

demolish the map when multiple passes are occurred. But it is still so successful when it is 

compared with a map created from raw odometer data. The main scan matching output 

without any multiple passes can be seen in Figure 5.27. This figure gives an idea about the 

effect of incremental error between one loop and multiple loop cases.  
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If Figure 5.24 and Figure 5.26 are compared, as a result of DGL algorithm, the errors in 

closed loop paths are corrected and a map very close to the real map is constructed. The pose 

error between these can be seen in Table 5.13.  

 

If Figure 5.25and Figure 5.26 are compared, FastSLAM algorithm gives pretty good results, 

a better localization and mapping is achieved than DGL algorithm. Most of the doorways are 

mapped with less than 0.5 degree rotational error and 0.3 meters translational error, that is 

given in Table 5.14. The given errors are occurred when the observed landmarks could not 

be matched with the previously seen ones, so they are added as new ones.  

 

 

 
 

Figure 5.27: The scan matching output without multiple loops. 
 

 

In Figure 5.27, the scan matching result when the robot goes and comes to the startpoint 

without making any loop (sample data taken from the total one) is given. The total error 

accumulated in pose is less than 0.4 meters in translation and 1.2 degree in rotation for 88.6 

meters traveled.  
 
 
 



 
 
 130

 
 

Figure 5.28: The pose information obtained from scan matching algorithm. 
 
 
 

 
 

Figure 5.29: The pose information obtained from scan matching with DGL algorithm. 
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Figure 5.30: The pose information obtained from scan matching with full FastSLAM algorithm. 
 
 
 

 
 

Figure 5.31: The odometer data given while the robot is moving on the map given in Figure 5.26. 
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In Figure 5.28, the pose information obtained from scan matching algorithm, in Figure 5.29, 

the pose information obtained from scan matching algorithm with deterministic global 

localization (DGL) is presented. In Figure 5.30, the pose information obtained from scan 

matching algorithm with FastSLAM algorithm is presented. In Figure 5.31, the raw 

odometer data that is taken from the dataset is presented.  

 

In Figure 5.29, the jumps in the pose data obtained from the scan matching algorithm are 

coming from the corrections in global localization part. These are the corrections based on 

the features observed more than once.  

 
 
 

 
 

Figure 5.32: The startpoint and also endpoint of the robot for this dataset is shown with Number 
1, which is the zoom in of left part of scan matching obtained given in Figure 5.24. 

 

 

As you can see from Figure 5.32, the start point and endpoint of the robot is in same place. 

The robot has traveled totally about 239.6 meters distance. When we have looked at the 

thickness of the walls around the point shown with number 1, it is in 1 grid size thickness, 

which means there is no translational and rotational error seen when the robot has come to 

the endpoint. But since there are multiple close loops (it can be seen on Figure 5.31), while 
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the robot passing through the places that it has seen, it corrects its translation and rotation. So 

when it has come to the start point all the error has gone, because of global matching ability 

of the algorithm.  

 

For this purpose we can look at the places where the slippage in the orientation of the walls 

increases to find the maximum local error during the path.  

 
 
 

 
 

Figure 5.33: The area that maximum slippage is occurred. 
 
 
 
When we look at the Figure 5.33, taken from the top part of Figure 5.24, which is second 

corridor from the top, maximum slippage is seen. The two arrows close to Number 1 are the 

footprints of the corridor before and after the slippage have occurred. The translational error 

occurred in axis perpendicular to the wall during this navigation is about 6 grids, which is 

0.6 meters error The local translational error occurred perpendicular to the wall in the area 

given with Number 2 is about 4 grids, which is about 0.4 meters. The maximum resulting 

local rotational error seen is about 0.7 degree in this area. 
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Figure 5.34: The figure showing the check areas that maximum global/local distortions are 
calculated between scan matching result and original map. 

 

 

The accuracy of the x, y values is 0.1 meters, which is the grid size; also accuracy of the θ 

values is less then 0.3 degree, because of the grid size. The results are given as absolute 

values. 

 

 

Table 5.11: This table gives the local distortions obtained inside the DGL algorithm result based 
on the numbering given in Figure 5.34.  

 
Maximum Local Distortions for Scan Matching with DGL Algorithm  
 Local  Distortions 

Area ID x (meters) y (meters) θ  (degree) 
1 0.3 0.4 0.27 
2 0.3 0.4 0.57 
3 0.4 0.5 0.34 
4 0.3 0.3 0.72 
5 0.1 0.1 0.47 
6 0.3 0.3 -2.87 
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The results given in Table 5.11 shows that the map we have created by DGL algorithm is 

consistent. It seems an error occurs in rotation θ in Area 6, you can also see this rotational 

error in the map, but this error corrected by the fault correction and global localization part 

of the algorithm. So when the robot goes to the other areas this θ value again comes below 

one degree.  

 

 
Table 5.12: This table gives the local distortions obtained inside the full FastSLAM result based 

on the numbering given in Figure 5.34.  
 

Maximum Local Distortions for Scan Matching with Full FastSLAM Algorithm 
 Local Distortions 

Area ID x (meters) y (meters) θ (degree) 
1 0.1 0.1 0.24 
2 0.1 0.1 0.25 
3 0.1 0.1 0.28 
4 0.3 0.2 0.34 
5 0.2 0.2 0.29 
6 0.3 0.1 0.62 

 
 
 
As we can see from the table, the distortion always stays below one meter in X and Y axis 

and also θ usually stays below one degree error.  

 

 
Table 5.13: This table gives the global distortions obtained between the DGL algorithm result 

and original map in sampled areas.  
 

Maximum Global Distortions for Scan Matching with DGL Algorithm 
 Global Distortions 

Area ID x (meters) y (meters) θ (degree) 
1 0.1 0.1 0.52 
2 0.2 0.4 0.43 
3 0.4 0.2 0.28 
4 0.2 0.2 0.33 
5 0.6 0.1 0.47 
6 0.1 0.3 2.95 

 
 
 
In Table 5.13, the global worst distortions are given relative to the original map given. As we 

can see from the table, the distortion always stays below one meter in X and Y axis. Also we 

can say that the θ usually stays below one degree error. It seems an error occurs in rotation θ 

in Area 6, you can also see this rotational error in the map, but this error corrected by the 
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fault correction and global localization part of the algorithm. So when the robot goes to the 

other areas this θ value again comes below one degree.  

 

 

Table 5.14: This table gives the global distortions obtained between the full FastSLAM result 
and original map in sampled areas.  

 
Maximum Global Distortions for Scan Matching with Full FastSLAM Algorithm 

 Global Distortions 
Area ID x (meters) y (meters) θ  (degree) 

1 0.1 0.2 0.27 
2 0.1 0.1 0.30 
3 0.2 0.1 0.17 
4 0.1 0.3 0.26 
5 0.2 0.3 0.28 
6 0.2 0.2 0.21 

 

 

Table 5.15: This table gives the mean position error and orientation error for Test Area 3 
according to the equations 5.1 and 5.2. 

 
 Mean Position Error  Mean Orientation Error 

Scan Matching 0.83 3.72 
Scan Matching +DGL 0.39 0.81 

Scan Matching +FastSLAM 0.26 0.25 
 

Evaluation of Algorithms for Test 3:  

In given Test Area 3, three algorithms are tested. These are scan matching, scan matching 

with deterministic global localization (DGL) and scan matching with FastSLAM algorithm.  

 

If they are compared, it is seen that scan matching gives a great improvement in pose 

estimated when it is compared with raw odometer output. The drawback of scan matching 

algorithm is the pose error accumulates through the distance traveled increases. In fact, in 

multiple loop cases it can be seen as the distortions on the map. In single loop cases, 

accumulated error can be seen when the map created is compared with original map by using 

positions of chosen features in both map.   

 

Scan matching with DGL algorithm gives better results than the main scan matching 

algorithm. As it is seen the pose error accumulated in scan matching is corrected with re-
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observation of landmarks. The problems about this algorithm are that it corrects itself to the 

error level when it has first seen the landmark observed, there is no any correction in 

positions of the landmarks observed or the previous path of robot. This causes corruption in 

pose when it has re-observed a landmark which has previously seen with bad pose estimate. 

However this error never passes the error level that the pose error of the scan matching in 

place landmark is observed. Also the pose corrections result as jumps in path of the robot, 

which can be seen in Figure 5.29. In fact, these jumps could cause problems in navigation of 

the robot (such as for path planning or obstacle avoidance). 

 

Scan matching with FastSLAM algorithm gives better accuracy than with DGL algorithm. 

The main advantage of FastSLAM algorithm comes from using particle filter and extended 

kalman filter all together. By using multiple particles different robot paths can be 

determined, and the optimal path is estimated according to the landmark observations. Also 

by using EKF, the pose and landmark positions are updated. As a result, in full SLAM 

implementation a map with higher consistency is obtained, which shows better pose 

estimation is obtained, given in Figure 5.25 and Figure 5.30. 

5.4 Online SLAM and Full SLAM Comparison: 

Online SLAM problem involves estimating the posterior over the momentary pose along 

with map. On the other hand full SLAM calculates a posterior over the entire path along with 

the map instead of just current pose. Thus full SLAM, needs the entire path estimate from 

the startpoint in each particle and also when an update comes, the entire map is need to be 

updated according to all updated path. For this purpose, online SLAM is applicable as real 

time working, while full SLAM is mostly applicable as post processing because of its high 

process load. In the thesis, the FastSLAM results are demonstrated as full SLAM results.  
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Figure 5.35:Aselsan Indoor Area: The figure in the left belongs to the full FastSLAM result 
while the figure in the right belongs to the online FastSLAM result. 

 
 
 

 
 

Figure 5.36: Ancona Univercity: The figure in the left belongs to the full FastSLAM result while 
the figure in the right belongs to the online FastSLAM result. 
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Figure 5.37: Intel Research Lab: The figure in the left belongs to the full FastSLAM result while 

the figure in the right belongs to the online FastSLAM result. 
 

 

In Figure 5.35 and Figure 5.37, an illustration giving the online FastSLAM and full 

FastSLAM is presented. As it is seen, in full SLAM, previous poses of robot and all 

constructed map till that timestep is updated according to the information registered in the 

most weighted particle in loop closing cases. Therefore there is back propagation in 

correction of pose error in full SLAM case. However the accumulated error till the landmark 

reobservation stays on the map in online SLAM. As a result full SLAM gives better pose 

estimate and more consistent map, in the other hand online SLAM gives real time working 

ability. In this thesis mapping in full FastSLAM is presented as post processing since 

occupancy grid mapping is used and in occupancy grid map, each time about 180 LADAR 

scans need to be considered. However, mapping in full FastSLAM can also be used as real 

time working when the map consists of high level features like line segments or landmarks 

instead of raw laser scans.  

5.5 Computational Complexities of Algorithms: 

The algorithms are evaluated whether they can be used in real time applications with a robot. 

This test is done on the data of Intel Research Area, which is given in Section 5.3. Since this 

data is most appropriate one for all three algorithms given. In fact, it has many features to be 

used as landmarks and contains many closed loops for FastSLAM and DGL algorithms 

(especially to see the process time, in weight calculation and feature update steps). Also it is 

well structured, so main scan matching needs to work more feature extraction and matching 
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operations. The LADAR data in our tests is taken maximal with 5 Hz frequency. Therefore 

0.2 second timestep intervals are enough for the real time application.  During our tests, Intel 

Core 2 Due T7200 2.00 GHz Mobile Processor is used. The results obtained are presented: 

 

 

 
  
Figure 5.38: The illustration showing the process time for main scan matching (averaged from 

10 trials).  
 
 

 
 

Figure 5.39: The illustration showing the process time for scan matching with DGL algorithm 
(averaged from 10 trials).. 
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Figure 5.40: The illustration showing the process time for scan matching with FastSLAM 
algorithm (with 200 particles) (averaged from 10 trials). 

 
 
 
Table 5.16: The table showing the mean and maximum timesteps obtained during the execution 

of algorithms in Intel Research Area (averaged from 10 trials). 
 
 Mean Iteration Exec. 

Time (s) 
Max Iteration Exec. Time 

(s) 
Scan Matching 0.0497 0.1563 
Scan Matching with DGL  0.0518 0.1586 
Scan Matching with FastSLAM  
(200 particles) 

0.1043 0.3924 

 

 

As it is seen from the figures and table, for all the process time in mean, is below 0.2 

seconds. For main scan matching and the one with DGL algorithm, the maximum process 

time is still below the 0.2 second. However, the one with FastSLAM algorithm (with 200 

particles), the instantaneous process time can be about 0.4 second given in Figure 5.38. But 

this corresponds to 2 laser scans. In fact, because of low rotational and translational speed of 

the robot, the algorithms are still working with 4 laser scan steps in the given datasets. 

Therefore we can say that all these algorithms can work real time in given applications. For 

the localization performance scan matching with DGL algorithm needs to be chosen. It 

contains a low increase in computational complexity referenced to main scan matching, 

given in Figure 5.39 and Figure 5.40, and an important improvement in localization. Also for 

a better performance, especially for large scale environments with multiple loops, scan 



 
 
 142

matching with FastSLAM algorithm needs to be used in spite of its doubled computational 

complexity referenced to scan matching with DGL algorithm.  

5.6 The Comparison between the FS_2LS_2LP and FS_3LS_1LP   
Algorithms: 

In this part, scan matching with two different implementation of FastSLAM algorithm is 

compared. We can define FastSLAM algorithm with two landmark positions registered in 

particles to define a landmark with its orientation as FS_2LS_2LP algorithm. FS_2LS_2LP 

means FastSLAM with two landmark states and two landmark positions. Also we can define 

FastSLAM algorithm with orientation information addition to position registered in particles 

to define a landmark as FS_3LS_1LP algorithm. FS_3LS_1LP means FastSLAM with three 

landmark states and one landmark position. To compare their performances, they are tested 

with the given test areas: 

 

 

 
 

Figure 5.41: ASELSAN Indoor Area: The figure in the left belongs to the FS_3LS_1LP result 
while the figure in the right belongs to the FS_2LS_2LP result. 
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Figure 5.42: Intel Research Lab: The figure in the left belongs to the FS_3LS_1LP result while 

the figure in the right belongs to the FS_2LS_2LP result. 
 

 

As it is seen from Figure 5.41 - Figure 5.42, the distortions on the mapping are about same in 

both algorithms. It can be said as scan matching with FS_2LS_2LP and FS_3LS_1LP 

algorithms have similar outputs. Also this shows a modified version of FastSLAM, which is 

given as FS_3LS_1LP algorithm is successfully implemented. The resulting computational 

complexities of these two algorithms can be given as: 

 

 

 
 

Figure 5.43: The illustration showing the iteration execution time for scan matching with 
FS_2LS_2LP and FS_3LS_1LP algorithm (with 200 particles) (averaged from 10 trials). 
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Table 5.17: The table showing the mean and maximum iteration execution time obtained during 
the execution of algorithms in Intel Research Area. 

 
 Mean Iteration Exec. 

Time (s) 
Max Iteration Exec. Time 

(s) 
Scan Matching with FS_2LS_2LP 0.1043 0.3924 
Scan Matching with FS_3LS_1LP 0.1069 0.3379 
Scan Matching with FS_2LS_2LP 
Excluded Landmark Re-observation 
Execution Time 

0.1015 NA 

Scan Matching with FS_3LS_1LP 
Excluded Landmark Re-observation 
Execution Time 

0.1027 NA 

 

 

According to the results given in Figure 5.43 and in Figure 5.14, FS_2LS_2LP algorithm has 

a little bit better iteration execution time. However FS_3LS_1LP algorithm has better 

maximum iteration execution time. The execution time of these two algorithms is taken, 

except the places where landmark re-observation is occurred. It is seen that their mean 

execution time difference decreases. This overlaps with the theoretical operation of 

FastSLAM algorithm, since in these steps only prediction update occurs, no weight 

calculation or measurement update occurs, which means that this part is independent from 

the landmarks and landmark related calculations and need to have same mean execution 

time.  

 

Maximum iteration execution time is seen in landmark re-observation cases. The difference 

between maximum iteration execution times comes from the number of calculations 

occurred in the algorithms. In FS_2LS_2LP algorithm, number of landmark positions is 

doubled, so the time in all the relevant parts with landmark re-observation, which are 

proposal sampling, the measurement update in EKF algorithm and the weight calculation 

part is doubled. However in FS_3LS_1LP algorithm, this time is increased since all the 

matrix productions, jacobians, inverse matrix calculations are made with higher dimension 

matrices (since the landmark is stated with three parameters).  

 
A definite decision could not be given between the computational complexities of the 

algorithms. Since the Matlab is optimized for matrix based calculations, which could give 

some more benefit in matrix calculations instead of loops. In the other hand, Cholesky 

factorization is used for inverse calculations, which gives an enhancement, but search tree is 

not used for data association, which gives an aggravation. As it is seen from the pseudo 
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codes of the algorithm, the increase in number of landmarks affects the computational 

complexities and total number of parameters linearly, on the other side the increase in 

parameters of landmarks affects the computational complexities and total number of 

parameters quadratic. 

5.7 The Sensitivity Analysis of the Algorithm: 

In this part, some most important parameters of the algorithm will be changed in an interval 

and their effects to the performance of the algorithm are analyzed: 

5.7.1 The Change in Number of Particles for FastSLAM Algorithm: 

Number of particles is one of the most important parameter for FastSLAM algorithm, It 

decides with how many particles that the given covariance in pose of the robot will be 

expressed. This parameter changes for different environments mapped. Since size of the loop 

closings, the error incoming from the scan matching algorithm (for standard FastSLAM the 

odometer error), the sequence of closed loops in total path… effect the number of particles 

needed. For this purpose, Intel Research Lab (Test Area 3 given in Figure 5.34), which is the 

most complex environment in datasets for FastSLAM algorithm, is analyzed. The 

performance is calculated as the mean and variance of the localization error seen in six areas 

given (in Figure 5.34). The mapping of this environment with different number of particles is 

presented below for scan matching with full FastSLAM algorithm in Figure 5.44 and Figure 

5.45: 
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Figure 5.44: In figure, the change in mean position error for the change in number of particles is 
presented (averaged from 10 trials). 

 

 

 
 

Figure 5.45: In figure, the change in mean orientation error for the change in number of 
particles is presented (averaged from 10 trials). 
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In Figure 5.44, the change in mean positioning error with respect to number of particles is 

given. In Figure 5.45, the change in mean orientation error with respect to number of 

particles is given. Also for the trials, the worst and best results are given. As it is seen from 

the results, the performance of the algorithm increases with increment in number of particles. 

Also the the interval between the bounds decreases. In other hand, while the number of 

particles decrease, the results obtained from FastSLAM algorithm comes closer to the main 

scan matching results, but still for 50 particles FastSLAM has much better results (it is seen 

for main scan matching given in Figure 5.23, the mean position error is about 1.1 meters and 

mean orientation error is about 2.1 degree. ). After 300 particles, considerable improvement 

does not occur in mean position and orientation error; also the results are so close the zero 

localization error. However by the increase in particles, mean and maximum iteration 

execution time also increases, which has given in Table 5.18. After 300 particles, more than 

0.6 maximum iteration execution time is seen, which corresponds to loss of three LADAR 

scans. 

 
 
 
Table 5.18: The table showing the mean and maximum iteration execution time obtained during 

the execution of FS_2LS_2LP in Intel Research Area. 
 
Number of Particles  Mean Iteration Exec. 

Time (s) 
Max Iteration Exec. Time 

(s) 
50 0.0911 0.2084 
100 0.0934 0.2670 
150 0.0974 0.3324 
200 0.1015 0.3924 
250 0.1039 0.4519 
300 0.1082 0.5115 
350 0.1117 0.5796 
400 0.1150 0.6433 
450 0.1189 0.7235 

 

 

Mapping results obtained during the trials with maximum and minimum number of particles 

is given below in Figure 5.46: 
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Figure 5.46: The figure illustrating the mapping performance of FS_2LS_2LP algorithm for 50 
and 450 particles. The one on the left for 50 particles, the one on the right is for 450 particles. 

 

5.7.2 The Change in Scan Interval of LADAR: 

In this part, the affect of change in scan interval of LADAR to the performance of 

localization is tested. For this purpose the scan interval has decreased with 20 degree 

intervals, which has resulted with datasets consist of LADAR scan with 160,140, 120,… 

degree intervals. These datasets are tested with main scan matching algorithm: 

 

 

 
 

Figure 5.47: Scan matching results with 100 (left) and 120 degree (right) intervals for LADAR 
scan. 
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As it is seen from Figure 5.47, the performance of scan matching algorithm degrades with 

the decrease in number of particles. About 120 degree interval, about 1.2 meters and 0.7 

degree mean localization error is seen. When it comes to 100 degree the localization 

becomes much worse. Because of the global localization ability of FastSLAM algorithm, a 

better performance in spite of the decrement in LADAR scan interval is seen. This is 

presented with the following results given in  

 
 
 

 
 

Figure 5.48: Scan matching results with FastSLAM algorithm result 90 (left) and 100 degree 
(right) intervals for LADAR scan (450 particles)( The results are presented as 180 degree 

interval LADAR mapping, to visualize the distortions better). 
 

 

As it is seen from Figure 5.48, scan matching with FastSLAM algorithm still gives 

acceptable results when it comes to 90 degree LADAR scan interval. After this interval, it 

the algorithm also completely fails. The obtained localization performance results with 

respect to change in interval of LADAR scan is given in Figure 5.49 and Figure 5.50: 
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Figure 5.49: In figure, the change in mean position error for the change in LADAR scan interval 
is presented (averaged from 5 trials). 

 
 
 

 
 

Figure 5.50: In figure, the change in mean orientation error for the change in LADAR scan 
interval is presented (averaged from 5 trials). 
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5.7.3 The Performance Comparison for All Implemented Algorithms: 

 

 
 

Figure 5.51: Mean position error versus maximum iteration execution time. * corresponds 
SM+FastSLAM and increase 50 to 450 from left to right by 50 particles intervals. 

 
 
 

 
 

Figure 5.52: Mean orientation error versus maximum iteration execution time. * corresponds 
SM+FastSLAM and increase 50 to 450 from left to right by 50 particles intervals. 
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As it is seen from the Figure 5.51 and Figure 5.52, main scan matching algorithm gives 

worst results. When the DGL algorithm is added, the computational complexity a little bit 

increases, however the performance in localization and mapping increases in a considerable 

level. When the FastSLAM algorithm is added to the main scan matching algorithm, it 

catches the performance of DGL algorithm after it passes 100 particles. After number of 

particles pass about 300 particles, the performance in position and orientation flattens. This 

means that increasing number of particles after this level does not bring any contribution to 

the performance. 

 

For 200 particles, we can say that FastSLAM algorithm has better performance from all 

others and also it has still real time working capability (assumption is, robot has rotation rate 

less than 60 degree per second and LADAR works in 5 Hz output rate). All the algorithms 

are executed as m file in MATLAB command window. When these algorithms are converted 

into .exe or .mex file, the computational complexity is expected to decrease half of the given 

in this thesis, according to the results of personal implementations and the analysis given in 

[38].  
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CHAPTER 6 

6                               CONCLUSION 

In this thesis, a solution to indoor localization problem for autonomous robot navigation is 

presented. The aim is a practical localization algorithm implementation for extensive indoor 

environments, which is real time working, robust to the problematic effects coming with the 

real LADAR data and also has an acceptable success in different structured environments. 

During the research period, the algorithms in the literature are surveyed; the methods 

supporting our goals are selected. The start point of this thesis is the scan matching algorithm 

presented in the thesis given in [17]. During the implementation period, the algorithm is 

tested with a broad training dataset containing real LADAR and odometer data of different 

environment and scenarios. In fact, for each time, after the performance outputs obtained for 

different test beds, the algorithm is optimized with appended, omitted and revised methods.   

 

Scan matching algorithm given in this thesis consists of four main parts. These are line 

extraction, feature and feature properties extraction, main scan matching, fault correction and 

global localization part. The line extraction algorithm implementation is based on the 

literature survey. The optimum line extraction algorithm is implemented based the 

correctness, precision and speed criteria according to given comparisons in papers. The 

implemented line extraction algorithm is optimized for potential encountered line fitting 

problems in real LADAR data. In feature and feature properties extraction part, conventional 

features and properties given in the literature are extracted. On top of them, also a pattern 

concept based on the multiple feature set is added. In main scan matching part, the overlap in 

these inputs is used for the voting procedure of matching tables constructed from the line 

pairs extracted from cognitive scans. Criteria in this part are carefully considered and the 

ones that can be adapted to real LADAR data are tried to be considered. In fact, in addition 

to the standard comparing techniques as criteria, simple pattern comparing techniques are 
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used, promotion to unique features is given, and also some special cases are considered, such 

as the ones that adopt the algorithm to low structured environments. As a result an 

improvement in the performance of main scan matching part is seen. For pose calculation, 

novel precise methods are used. Main aims in main scan matching are to choose these 

criteria flexible for different environments and to implement the algorithm tolerable to 

mistakes in voting. In fault correction and global localization part, the scan matching outputs 

are compared with odometer outputs and also a pose update from odometer is given for the 

cases scan matching could not find. Global localization is achieved by tracking of 

appropriate features extracted (real corners and both side ended lines as landmark features), 

and making correction based on these for the closed loop cases, which is a kind of 

deterministic global localization implementation.   

 

In SLAM part, the main scan matching algorithm is combined with FastSLAM algorithm 

instead of deterministic global localization methods. In this part, pose differences obtained 

from scan matching are used as improved odometer input and passed through the odometer 

motion model for this algorithm. Also since scan matching is feature based, landmarks of 

FastSLAM algorithm are taken from the feature set extracted. In data association part, as a 

contribution, for each landmark observation two landmark positions are added to landmark 

set of particles. This gives the algorithm ability to update and resample its particles also 

considering the orientation of landmarks in both data association and weight calculation 

parts. In fact, in environments with few number of landmarks are available, this property 

makes the particles scatter around the correct heading. Furthermore, the feature properties, 

dependent and independent from the pose, are applied for comparing the landmarks which 

have decreased the wrong association chance for the objects that stay in same likelihood.  

 

The mapping is presented in occupancy grid map. The performance of the algorithms are 

compared inside by considering the corruptions on the occupancy map and compared with 

the maps given with Radish data [22], if available. As we can see from the experimental 

results for long distance traveled and also for different environments given, just by using real 

LADAR data and raw odometer (which is used just for the case pose difference could not be 

found), the scan matching algorithm still gives promising results in where the odometer data 

totally is corrupted. Furthermore in closed loop cases, addition of deterministic global 

localization method improves the pose estimation of scan matching, while FastSLAM 

improves the pose estimation of global localization.  
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In this thesis it is showed that combining the scan matching and SLAM algorithms results as 

improvement in pose estimation and mapping. In fact, scan matching gives better pose 

estimation than raw odometer output. However it suffers from the error accumulated for long 

distances. In other side, SLAM algorithms have pose error correction ability in closed loop 

cases. However, because of using raw odometer as pose input, they suffer from the data 

association problem, sometimes which ends with divergence of the filter. When these 

algorithms are combined, scan matching gives the SLAM algorithm better pose input. As a 

result of this, noise levels in SLAM algorithm decreases. This simplifies the data association 

problem and also increases the size of the loop that SLAM algorithm works without 

divergence. On the other hand, SLAM algorithm reduces the accumulated pose error for scan 

matching in closed loop cases. Moreover in full SLAM usage, it gives better estimated path 

with previously corrected poses and a map with higher consistency. In specific, Split and 

Merge Algorithm is applied in line extraction for its advance referenced to other algorithms. 

Feature based scan matching is used because of its better real time working capability and 

lower computational complexity referenced to raw LADAR data based algorithms. Also it 

decreases the workload of SLAM algorithm, because of joint feature set. FastSLAM 

algorithm is used because of its computational advantage and robustness to the data 

association problems referenced to EKF-SLAM methods. These algorithms are supported 

with improvements in accuracy and matching capability of scan matching and data 

association capability of SLAM algorithm.  

 

As a future work, complex line and corner based patterns as landmarks can be used for data 

association in SLAM algorithms, which will increase the size of the loop, also will be a good 

solution for kidnapped robot problem. Also scan matching part can be improved by adding 

matching of curved objects, such as the ones that can be defined as circle or the ones that 

does not have a specific shape but arises from the continuity of data points in an order. 

Furthermore the given methods in scan matching can be converted into probabilistic 

methods. Different sensor outputs can be integrated into algorithm. In fact, according to the 

accuracy of the sensors used, the outputs of the given sensors can be applied such as, a 

bound in matching of line pairs, correction or direct pose estimate in prediction part of 

SLAM algorithm. On the other hand, the algorithm is applied with only LADAR and 

minimum level odometer usage, to see the success of algorithmic implementation.  
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APPENDIX A 

8 ADDITIONAL INFORMATION 

A.1 Data Structures Used to Implement Algorithms:  

 

 
 

Figure A.1: The figure illustrating the class structure defined for scan matching 
 
 
 
The class structure created for all variables given in this thesis is: 
 

Class structure is used for the notational definitions that are given in list of symbols. An 

illustration is given for this class structure in Figure A.1. In the definitions the main set  the 

............... 

.............. 

C(m) : Cluster ID 

C(m) . L 

C(m) . x 

C(m) . x(1) 

C(m) . x(2) 

C(m) . x(n) 

C(m) . L.Lineclass 

C(m) . L.dis 

C(m) . L.dis(1) 

C(m) . L.dis(2) 

C(m) . L.dis(p) 

In the notation class structure is used . The children are set according 
to which parent class they belong to, such as the parent  for Lineclass 
is Line and  for the Line parent is Cluster. If a structure includes same  
type of member more then once,  it is given as array, such as C(m), 
m=1: all clusters in range scan 
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property is belong to is given first, while the definition goes left, the structure is specialized 

for the given property. If we examine an example structure [ ] LineClassL..C m : 

 
[ ]mC  corresponds to the mth ID cluster created from raw LADAR range scan. [ ] L.C m  

corresponds to the fitting line  to the mth ID cluster created from raw LADAR range scan. 
[ ] LineClassL..C m corresponds to the class of the  line fitting (such as both, left, right side 

ended or open)  to the mth ID cluster created from raw LADAR range scan.  

A.2  Testbed Platforms: 

 
 

FigureA.2: Pioneer 2DX differential drive testbed robot with  SICK LMS 200 Laserscanner 
 

 

 
 

Figure A.3:  Pioneer 3DX differential drive testbed robot with SICK LMS 200 Laserscanner 
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In FigureA.2 and Figure A.3, the testbed robot platforms that raw sensor data is acquired 

are presented. These platforms are commercial robots dedicated for robotic applications. 

They are three wheeled (one is dummy wheel) differential drive platforms. They provide 

directly estimated odometer output as [ θ,, yx ] referenced to the coordinate frame at their 

startpoint, which is assumed as [0, 0, 0].  


