
AN FPGA BASED HIGH PERFORMANCE OPTICAL FLOW HARDWARE
DESIGN FOR AUTONOMOUS MOBILE ROBOTIC PLATFORMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN KORAY GÜLTEKİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2010

Approval of the thesis:

AN FPGA BASED HIGH PERFORMANCE OPTICAL FLOW
HARDWARE DESIGN FOR AUTONOMOUS MOBILE ROBOTIC

PLATFORMS

submitted by GÖKHAN KORAY GÜLTEKİN in partial fulfillment of the re-
quirements for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering

Asst. Prof. Dr. Afşar Saranlı
Supervisor, Electrical and Electronics Engineering Dept.,
METU

Examining Committee Members:

Prof. Dr. M. Kemal Leblebicioğlu
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Afs.ar Saranlı
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Melik Dölen
Mechanical Engineering Dept., METU

Date:

1

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: GÖKHAN KORAY GÜLTEKİN

Signature :

iii

ABSTRACT

AN FPGA BASED HIGH PERFORMANCE OPTICAL FLOW HARDWARE
DESIGN FOR AUTONOMOUS MOBILE ROBOTIC PLATFORMS

Gültekin, Gökhan Koray

M.S., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Afşar Saranlı

September 2010, 91 pages

Optical flow is used in a number of computer vision applications. However, its use in

mobile robotic applications is limited because of the high computational complexity

involved and the limited availability of computational resources on such platforms.

The lack of a hardware that is capable of computing optical flow vector field in real

time is a factor that prevents the mobile robotics community to efficiently utilize some

successful techniques presented in computer vision literature. In this thesis work, we

design and implement a high performance FPGA hardware with a small footprint and

low power consumption that is capable of providing over-realtime optical flow data

and is hence suitable for this application domain. A well known differential optical

flow algorithm presented by Horn & Schunck is selected for this implementation. The

complete hardware design of the proposed system is described in details. We also

discuss the design alternatives and the selected approaches together with a discussion

of the selection procedure. We present the performance analysis of the proposed hard-

ware in terms of computation speed, power consumption and accuracy. The designed

hardware is tested with some of the available test sequences that are frequently used

iv

for performance evaluations of the optical flow techniques in literature. The proposed

hardware is capable of computing optical flow vector field on 256x256 pixels images

in 3.89ms which corresponds to a processing speed of 257 fps. The results obtained

from FPGA implementation are compared with a floating-point implementation of

the same algorithm realized on a PC hardware. The obtained results show that the

hardware implementation achieved a superior performance in terms of speed, power

consumption and compactness while there is minimal loss of accuracy due to the fixed

point implementation.

Keywords: FPGA, embedded vision for mobile robotics, optical flow, real time image

processing, Horn and Schunck algorithm

v

ÖZ

OTONOM GEZGİN ROBOTİK PLATFORMLARI İÇİN FPGA TABANLI
YÜKSEK PERFORMANSLI BİR OPTİK AKIŞ DONANIM TASARIMI

Gültekin, Gökhan Koray

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Afşar Saranlı

Eylül 2010, 91 sayfa

Optik akış, birçok bilgisayar ile görme uygulamalarında kullanılmaktadır. Ancak,

yüksek işlem karmaşıklığı ve kısıtlı işlem kaynakları sebebiyle gezgin robot uygula-

malarında kullanımı limitli olmaktadır. Gerçek zamanda optik akış hesaplayan do-

nanımların eksikliği, bilgisayar ile görme literatüründe sunulan birçok başarılı çalışma-

nın gezgin robot araştırmalarında kullanılmasını kısıtlayan bir etmendir. Bu tez

çalışmasında, gezgin robot uygulamaları için, gerçek zaman üstü optik akış verisi

sağlayabilen küçük boyutlarda ve düşük güç tüketen yüksek performanslı bir FPGA

donanım tasarımı yapılmaktadır. Horn ve Schunck tarafından sunulan tanınmış bir

diferansiyel optik akış algoritmasının uygulaması yapılmıştır. Önerilen donanım tasarı-

mının tamamı detaylı bir şekilde açıklanmıştır. Ayrıca, tasarım alternatifleri ve seçilen

yöntemler gerekçekçeleriyle birlikte tartışılmıştır. Önerilen donanımın performans

analizleri; işlem hızı, güç tüketimi ve doğruluk bakımından sunulmuştur. Tasar-

lanan donanım, literatürde optik akış yöntemlerinin performans değerlendirmesinde

sıklıkla kullanılan mevcut bazı test dizileri ile sınanmıştır. Önerilen donanım, 256x256

pikselden oluşan görüntüler üzerinde optik akış hesabını saniyede 257 kare işlemeye

vi

karşılık gelen 3.89ms sürede hesap edebilmektedir. FPGA uygulamasından elde edilen

sonuçlar, aynı algoritmanın PC donanımı üzerinde kayan nokta uygulamasından elde

edilen sonuçlarla karşılaştırılmıştır. Elde edilen sonuçlar donanım uygulamasının,

sabit nokta gösterim uygulamasından kaynaklanan doğruluktaki makul bir azalmaya

karşılık, hız, güç tüketimi ve az yer kaplama bakımından üstün bir performans göster-

diğini ortaya koymuştur.

Anahtar Kelimeler: FPGA, gezgin robotik için gömülü bilgisayar görme, optik akış,

gerçek zamanlı görüntü işleme, Horn ve Schunck algoritması

vii

to my loving mother, dear father and brother

viii

ACKNOWLEDGMENTS

I would like to express my deep appreciation and sincere gratitude to my supervisor

Dr. Afşar Saranlı for his leading guidance, encouragement, and continuous support

from beginning to the end of my M.S. study. His suggestions during our research

meetings played a tremendous role in helping me to broaden my view and knowledge.

He showed me different ways to approach a research problem and the need to be

persistent to accomplish any goal. He let me take part in the SensoRHex project

which was a great opportunity for me to extend my academic and technical skills. He

also made the Rolab (Laboratory of Robotics and Autonomous Systems) a wonderful

workplace by providing us many new equipments we need.

I wish to express my deep sense of gratitude to Dr. Uluç Saranlı for his guidance

and being a source of inspiration for me in the conduct of my thesis work and our

research project. I also would like to thank Dr. Kemal Leblebicioğlu for conducting

the ULİSAR project in the Rolab which added much to my experience. I should also

extend my sincere thanks to Dr. Hamit Erdem. I learnt a lot from him, which I am

sure will be useful in different stages of my life. I thank to Engin Çiftçi from Karel

and Hakan Aydın from Linera for their help on pointing out the problems occurred

during the FPGA design.

I literally consider myself a lucky person to work with the amazing group of people

in Rolab. I am very thankful to Mert Ankaralı, Emre Ege, Orkun Öğücü, Ferit

Üzer, Emre Akgül, Ege Saygıner and all other members for sharing me their time

and knowledge. Further thanks should also go to the all members of BDRL (Bilkent

Dexterous Robotics and Locomotion), especially Ömür Arslan and Tolga Özaslan.

I would like to thank the Scientific and Technological Research Council of Turkey

(TÜBİTAK) for awarding me their prestigious master of science studies scholarship.

I apologize from the people who I should also have included their names here for their

contributions but may forgot because of the rush I am in. I send my thanks to all

ix

individually.

Finally, yet the most importantly, nothing is adequate to express my heartfelt feelings

to my beloved family forever. None of this would have been even possible without

the love and patience of them. I owe a great many thanks to my loving mother(Elif

Gültekin), my dear father(Mahmut Gültekin) and my sweetie brother(Korcan Emre

Gültekin) for their undying love, unconditional support, encouragement and their

trust in me.

x

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Literature Survey . 3

1.3 Contributions . 6

1.4 Outline of the Thesis . 7

2 BACKGROUND ON OPTICAL FLOW COMPUTATION 9

2.1 Optical Flow . 9

2.2 Differential Optical Flow Computation Methods 9

2.2.1 Horn-Schunck Optical Flow Computation Algorithm 10

2.2.1.1 Pre-Assumptions 10

2.2.1.2 Optical Flow Constraint Equation 11

2.2.1.3 Horn & Schunck Smoothness Constraint . 12

2.2.1.4 The Numerical Solution 14

xi

3 FPGA HARDWARE PLATFORM FOR VISION 17

3.1 Requirements of the FPGA Hardware Platform 17

3.2 FPGA Development Platform Specifications 19

3.3 FPGA Architecture . 23

3.3.1 Logic Elements . 25

3.3.2 Embedded Memory Blocks 26

3.3.3 Embedded Multipliers 26

3.4 FPGA Development Environment and Design Flow 27

3.4.1 Quartus II . 27

3.5 FPGA Design Flow . 27

4 PROPOSED FPGA HARDWARE DESIGN FOR OPTICAL FLOW . 30

4.1 High Level Block Diagram . 30

4.2 Reset Circuitry . 33

4.3 Clocking Circuitry . 34

4.4 Memory . 36

4.4.1 SSRAM Memory Controller 37

4.4.2 Direct Memory Access Module 38

4.4.2.1 FIFO Buffers 44

4.5 Spatiotemporal Gradient and Optical Flow Vectors Local Av-
erage Computation . 45

4.6 Optical Flow Computation . 50

4.7 PC Communication . 52

4.7.1 UART Controller . 53

4.7.2 RS232 to SSRAM Data Transfer Module 53

4.7.3 SSRAM to RS232 Data Transfer Module 56

5 HARDWARE DESIGN PERFORMANCE ANALYSIS AND TEST RE-
SULTS . 58

5.1 Tests With Standard Image Sequences 58

5.1.1 Description of Standard Data Set 58

5.1.2 Performance Measure 59

5.1.3 Results . 60

xii

5.1.3.1 Rubik’s Cube Sequence 60

5.1.3.2 Hamburg Taxi Sequence 67

5.1.3.3 Translating Tree Sequence 70

5.2 Performance Analysis of Designed Hardware 73

5.2.1 Resource Usage . 73

5.2.2 Power Consumption 77

5.2.3 Computation Time 81

5.3 Comments on Analysis & Results 82

6 CONCLUSION . 85

6.1 Future Work . 87

REFERENCES . 89

xiii

LIST OF TABLES

TABLES

Table 3.1 Cyclone II FPGA family features[2]. The development board we use

includes EP2C70 device which has the highest resources available in the

Cyclone II family. 23

Table 4.1 Operating clock frequencies of modules. 200MHz is used for the

modules that access SSRAM memory to reduce memory bottleneck. 50MHz

is used for the rest. 35

Table 4.2 Properties of memories available on DE2-70 board. SSRAM is pre-

ferred because of its higher bandwidth although its capacity is lower than

the SDRAM memory. 36

Table 4.3 Maximum data rates of some communication protocols. 52

Table 5.1 Total error rates of Rubik’s cube sequence 65

Table 5.2 Partial error rates of Rubik’s cube sequence caused by the approxi-

mation in computation of local averages of optical flow vectors. 65

Table 5.3 Error rates of Rubik’s cube sequence versus number of fraction bits

used to represent the optical flow vector values. 65

Table 5.4 Maximum operating frequency of a signed division operation versus

the word length of its operands. 67

Table 5.5 Error rates of Hamburg Taxi sequence caused by the fixed point

implementation. 68

Table 5.6 Error rates of Translating Tree sequence 71

Table 5.7 Resource usage of the overall design and available resources on the

FPGA device. 73

xiv

Table 5.8 Resource usage of individual design modules 75

Table 5.9 Total power dissipation . 77

Table 5.10 Current drawn from supply pins . 78

Table 5.11 Power consumption of individual modules 79

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Numerical computation of Ex using first order difference of 8 pixels. 15

Figure 2.2 Numerical computation of Ey using first order difference of 8 pixels. 15

Figure 2.3 Numerical computation of Et using first order difference of 8 pixels. 16

Figure 2.4 Weight matrix for estimating local averages of optical flow vectors . 16

Figure 3.1 The FPGA product portfolio of Altera with a comparison of their

available resources, performances, power consumptions and costs. 20

Figure 3.2 Altera DE2-70 FPGA development board[1] 21

Figure 3.3 General hardware architecture of FPGA devices[21]. Functional

plane is used to implement logic functions defined by user by logic cells and

routing channels. Programming plane stores the LUT values in SRAMs for

configuration of functional plane at start up. 24

Figure 3.4 Components of a logic element block[2]. Each logic element can be

used to implement combinational, sequential logic functions and arithmetic

operations. 25

Figure 3.5 FPGA Design Flow Diagram . 28

Figure 4.1 Block diagram of the designed system 31

Figure 4.2 Data flow diagram of the designed system 32

Figure 4.3 Reset signal generator module. Two reset signals are generated with

different release times. They are used to synchronize the start up of modules

designed. 34

xvi

Figure 4.4 Phase Locked Loop (PLL) module generates the required clock sig-

nals for the operation of designed modules. There are two clocks generated

which are 200MHz and 50MHz from the input clock of 50MHz. 35

Figure 4.5 SSRAM memory controller module terminals. 37

Figure 4.6 Direct Memory Access (DMA) module terminals. DMA is used to

handle memory read/write operations required for the operation of optical

flow computations. It helps increasing the bus utilization and reduces the

memory bottleneck. 39

Figure 4.7 Layout of stored data in SSRAM for two frames of 256x256 pixels.

Image frames are stored starting from the first address location and optical

flow vectors are stored beginning from the 200,000th address location of

SSRAM. 40

Figure 4.8 Layout of pixel FIFO buffers. Each location of FIFO buffers is 32

bits in width and stores 2 consecutive pixels from frame 1, and 2 consecutive

pixels from frame 2. 41

Figure 4.9 Layout of optical flow vectors in FIFO buffers. There is a phase

difference of 1 line of vectors between three FIFO buffers. 42

Figure 4.10 DMA module FSM states . 43

Figure 4.11 Dual clock FIFO buffer module terminals. 44

Figure 4.12 Spatiotemporal gradient computation module terminals. This mod-

ule computes both spatiotemporal gradient values and the local averages of

optical flow vectors. 45

Figure 4.13 Spatiotemporal gradients data representation in 11 bits fixed point

format. 2 bits fraction is enough for representing the gradient results with-

out any accuracy lost. 46

Figure 4.14 The weight matrix used for estimating local averages of optical flow

vectors on FPGA. The weights given in Fig. 2.4 are modified to simplify

the division operation and increase the accuracy. 46

Figure 4.15 Optical flow vector local average data representation in 11 bits fixed

point format. 3 bits fraction is enough for representing the vector local

average results without any accuracy lost. 47

xvii

Figure 4.16 Spatiotemporal gradient computation module FSM states 49

Figure 4.17 Optical flow computation module 50

Figure 4.18 Optical flow computation module data flow diagram 51

Figure 4.19 RS232 controller module terminals. 53

Figure 4.20 RS232 to SSRAM data transfer module terminals. This module acts

as an interface for transferring image frames read from RS232 controller and

written to SSRAM memory. 54

Figure 4.21 RS232 to SSRAM data transfer module FSM states 55

Figure 4.22 SSRAM to RS232 data transfer module 56

Figure 4.23 SSRAM to RS232 data transfer module FSM states 57

Figure 5.1 Output of the Ex gradient computation on FPGA hardware. The

pixel values are inverted to get better visualization. White represents the

lowest value and black represents the highest value. 61

Figure 5.2 Output of the Ey gradient computation on FPGA hardware. The

pixel values are inverted to get better visualization. White represents the

lowest value and black represents the highest value. 61

Figure 5.3 Output of the Et gradient computation on FPGA hardware. The

pixel values are inverted to get better visualization. White represents the

lowest value and black represents the highest value. 62

Figure 5.4 1st frame of Rubik’s cube sequence. The turntable rotates counter-

clockwise with the Rubik’s cube on top of it. 62

Figure 5.5 Optical flow vectors computed on FPGA hardware for Rubik’s cube

sequence. 63

Figure 5.6 Error histogram of optical flow vectors for Rubik’s cube sequence.

Error values indicate the center points of ±0.005 error intervals 64

Figure 5.7 Angular error rate versus number of fraction bits used to represent

the optical flow vector values. 66

Figure 5.8 Endpoint error rate versus number of fraction bits used to represent

the optical flow vector values. 66

xviii

Figure 5.9 13th frame of Hamburg Taxi sequence. There are 4 moving objects.

The car on the left and the van on the right are driving in their way, the

taxi in the middle is turning the corner and the pedestrian is walking on

the pavement. 68

Figure 5.10 OF vectors computed on FPGA hardware for Hamburg Taxi sequence. 69

Figure 5.11 Error histogram of optical flow vectors for Hamburg Taxi sequence.

Error values indicate the center points of ±0.005 error intervals. 69

Figure 5.12 8th frame of synthetic Translating Tree sequence. The camera is

moving from right to left while looking at a constant scene including a tree

in the front side. The motion field has a velocity ranging from 1.73 and

2.26 pixels/frame. 70

Figure 5.13 Error histogram of optical flow vectors for Translating Tree sequence.

Error values indicate the center points of ±0.005 error intervals. 71

Figure 5.14 Optical flow vectors computed on FPGA hardware for Translating

Tree sequence. Four regions are zoomed in to provide a closer view of the

optical flow field computed on FPGA. 72

Figure 5.15 LE usage percentage of modules . 74

Figure 5.16 Memory usage percentage of modules 75

Figure 5.17 Floorplan of the designed hardware fitted on a EP2C70 device. The

schematic shows the layout of the resources on the chip that are used to

implement the design. The color legend is given next to the figure. The

darker color of a particular resource indicates the higher usage ratio of that

resource. 76

Figure 5.18 Pie chart represents the total power consumption partitioned among

the design modules according to their percentages. More than half of the

total power is consumed by the DMA module because of its high operating

frequency and high resource usage. It is followed by the OF function and

the Gradient computation modules. 80

xix

Figure 5.19 Pie chart represents the dynamic and static power consumption par-

titioned among the design modules according to their percentages. Nearly

3/4 of this power type is consumed by the DMA module because of its

high operating frequency and high resource usage. It is followed by the OF

function and the Gradient computation modules. 80

Figure 5.20 Pie chart represents the total routing power consumption partitioned

among the design modules according to their percentages. Nearly half of the

routing power is consumed by the DMA module because of its high memory

usage. It is followed by the OF function and the Gradient computation

modules. 81

xx

LIST OF ABBREVIATIONS

AAE Average Angular Error
AE Angular Error
AEE Average Endpoint Error
ASIC Application Specific Integrated Circuit
DMA Direct Memory Access
DSP Digital Signal Processor
EE Endpoint Error
EEPROM Electrically Erasable Programmable Read Only Memory
FIFO First In First Out
FIP Fixed Point
FLP Floating Point
FPGA Field Programmable Gate Array
fps Frames per second
FSM Finite State Machine
GPU Graphical Processing Unit
HDL Hardware Description Language
IC Integrated Circuit
IP Intellectual Property
JTAG Joint Test Action Group
LAB Logic Array Block
LE Logic Element
LUT Look Up Table
OF Optical Flow
PC Personal Computer
PLL Phase Locked Loop
PROM Programmable Read Only Memory
RTL Register Transfer Level
SDRAM Synchronous Dynamic Random Access Memory
STD Standard Deviation
SRAM Static Random Access Memory
SSRAM Synchronous Static Random Access Memory
TS Test Sequence
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VHDL Very High Speed Integrated Circuit Hardware Description

Language

xxi

CHAPTER 1

INTRODUCTION

1.1 Motivation

Optical flow computation is one of the computer vision algorithms that have a high

computational complexity. Although it has many application areas such as collision

detection, motion segmentation, tracking, background subtraction, visual odometry,

video compression and many more, these applications generally suffer from insufficient

computational power. There is a huge amount of data to be processed in image

sequences and optical flow computations involves complex, time consuming operations.

Unlike the applications where offline computation is possible, robotic applications

generally require the computation of optical flow in real time. Moreover, in most of

the applications, optical flow is computed as a pre-processing step and then it is fed

to other high level vision algorithms as input which requires even extra computational

power for those tasks.

The architecture of microprocessors is poorly suited to the structure of image pro-

cessing algorithms. The demanded computational power generally exceeds the power

supplied by todays conventional general purpose desktop computers and digital sig-

nal processors[14]. In addition, because of their high clock rates, they consume a

huge amount of electrical power which also causes a high heat dissipation. To cool

down the hardware, they have extra cooling equipments that increase their sizes and

weights. Unfortunately, in aerial and mobile robotic platforms, available amount of

power, space and weight is limited. Also, high clock rates of processors prevent them

to be used in some areas such as space robotics where they are more susceptible to

radiation[25]. So, these high end processors are usually not feasible to operate on

1

these robotic platforms. It is observed that, many available optical flow computation

methods in literature can not be utilized on mobile robots for real-time applications

because of these weaknesses of computational hardware.

There have been many studies made in literature on developing new methods for

accurate and efficient computation of optical flow. The available methods are also

compared in terms of their accuracy, density and computational complexity in some

studies[10, 11]. Although there are very accurate methods proposed, they still require

a high computational power.

While new methods on optical flow computation continue to appear, recently there has

been a noticeable interest on application specific alternative computation platforms[25].

Application specific integrated circuits(ASIC) are designed to maintain the needs of

that specific application in terms of computational power, space and power consump-

tion. They can be designed to process chunks of data at once in parallelized and

pipelined structures whereas, general purpose sequential processors require multiple

processor cycles. This property of ASICs make them much more efficient than con-

ventional processors. However, ASIC design and manufacturing is a long and difficult

process. Once an ASIC is manufactured it is impossible to make any changes on it

any more. So ASIC design and manufacturing is a costly process and it is only advan-

tageous in mass production. Although their numerous advantages mentioned above,

ASICs can not be utilized in academic studies.

For the solution to the static structure of ASICs, field programmable gate arrays

(FPGAs) are developed. Having similar performance with ASICs in terms of compu-

tational power, size and power dissipation, they can also be programmed in field. This

property makes FPGAs a flexible platform which enables to make modifications to the

design in a matter of hours. These advantages of FPGAs attract academic interests

to them nowadays. Although FPGAs are in use since 1980s they are newly used in

academic studies. There are even some recent publications made on the suitability of

FPGAs in vision systems which claim that FPGAs have an important potential to be

utilized in vision research[25].

At robotics laboratory of Electrical and Electronics Engineering Department in METU,

we came up with the need to do some computer vision operations on our highly mo-

2

bile legged robot platform SensoRhex for higher level tasks. However, we faced with

the shortage of computational power on our robot and searched for a feasible solu-

tion. Being motivated by our needs and encouraged by a few successful applications

and suggestions presented in literature, we designed a custom hardware solution for

computing optical flow which is subject to this thesis work.

We would like to clearly state here that the scope of this thesis work is related with

the high performance and efficient hardware design to compute an optical flow compu-

tation algorithm that is already available in computer vision literature. We focus our

efforts not on the performance of the algorithm itself but on developing the hardware

that fulfills the aforementioned objectives for robotics platforms.

1.2 Literature Survey

Studies in optical flow calculation dates back to 80’s and up to now, there are many

methods proposed for optical flow computation. These methods can be mainly grouped

as gradient based, correlation based, energy based and phase based methods [11].

Gradient-based methods depend on the evaluation of spatio-temporal derivatives. The

earliest two gradient based methods are presented by Horn & Schunck [23] and Lu-

cas & Kanade [24]. Horn and Schunck presents a method assuming that the optical

flow field is smooth which introduces a global smoothness term to constrain the es-

timated velocity field. Lucas & Kanade’s method depends on an assumption that

a point’s neighboring pixels move with it, meaning that the flow is constant locally.

This introduces additional equations to determine optical flow vectors by utilizing

a least squares estimate. Since gradient based methods are rather popular, there

are many other gradient based methods presented later in [28], [12] and [31]. The

Horn & Schunck’s method have relatively less computational complexity over many

other methods and provide high density optical flow vectors with a reasonable error

rate. This method is also suitable for high performance FPGA hardware implemen-

tations. The computations can be done using fixed point representations with small

word lengths. They can be implemented using parallel and pipelined structures which

yields a high throughput.

3

The matching based approaches depends on the determination of correspondences

between consecutive frames. These correspondences can be found by correlating small

patches in the images at different times to find the best fit. The first matching based

method is presented by Anandan which is based on an SSD based matching technique

[4]. A region including 5x5 pixels is searched around 3 pixels displacement for a

suitable match.

Energy based(also called frequency based) methods utilizes the output energy of ve-

locity tuned filters. Heeger’s method [22] can be considered for one of the methods

in this group. In this method, 3D Gabor filters are used to sample the power spec-

trum. Then a least squares estimate is utilized to minimize the difference between the

predicted and the measured motion energies.

Phase based methods are similar to the energy based techniques. The method is

first presented by Fleet & Jepson given in [20]. They use the outputs of velocity-

tuned filters. However, they utilize the phase information instead of the amplitude

component utilized in energy based methods. Their method yields a dense flow field

with high accuracy in expense of high computational cost.

The authors of the presented optical flow techniques, implement and test their methods

on general purpose computers. The first reason is to achieve comparable performance

evaluation of the methods with each other. Although the clock rates vary from PC to

PC, this measure roughly gives a benchmark. The other reason is probably the ease

of implementation on a general purpose computer. Although the presented computa-

tional performances of their methods implemented on a PC are a disappointment for

many realtime application, the chosen test platforms are general purpose computers

for the reasons we mentioned.

On the other hand, the performance evaluation of methods on sequential general

purpose computers gives no clear idea about their performances on parallelized and

pipelined architectures such as implementations on ASICs, FPGAs or GPUs. It

is known that in many computer vision algorithms, parallelized and pipelined im-

plementations on FPGAs can produce better performances than in general purpose

computers[25]. To be able to enhance the computation performance of optical flow

methods, some FPGA implementations are presented in literature in [5, 7, 8, 9, 29, 34].

4

FPGA implementation of Horn & Schunck method is first peresented in [7] with a per-

formance of processing 19 fps of 50x50 pixels images. To decrease the calculation time,

they run the algorithm for 3 iterations which yields enough precision for many ap-

plications. Another implementation of the same authors uses the Camus correlation

method [15] yielding an output of 25 fps at 100x100 pixels images[8]. They also im-

plement a method presented in [32]. None of their publications gives quantitative

measures on the accuracy or make comparisons with other studies. Later, they pre-

sented new studies on utilizing their implementations on real time applications such

as lane departure detection[6].Another hardware implementation of Horn & Schunck

method is presented in [26]. They claimed processing 256x256 pixels images at 60 fps.

However, there is no information, discussion or comparison on the power consump-

tion, error rates and accuracy of the implemented system. A recent work is presented

in [17] which uses census transformation. They achieve a processing time of 22ms on

images with 640x480 resolution..

Lucas & Kanade’s method is implemented in hardware by Diaz et al. two times in

2004 [19] and in 2008 [18]. In [19], they claim to achieve a performance of processing

320x240 pixels images at 24 fps operating in real-time. Their implementation yield

100% density because of the absence of error thresholding. However, the resultant

flow field has a high average angular error rate of 18◦ where software implementation

can yield only 4.3◦ on the same image sequence. In [18], they present an improved

version of their previous work which is capable of processing 800x600 images at 170

fps. They also present a detailed accuracy analysis. They achieve an angular error

rate of 18.3◦ with 92% density and 3.5◦ with 36% density.

There are also alternative computation platforms other than FPGAs that can be used

for high performance optical flow computation. GPUs (Graphical Processing Units)

are one of these platforms. There are a few studies in literature that reports the per-

formance of optical flow computation on GPUs. A study on optical flow computation

using GPU is given in [33]. They implement a tensor based method and achieve a 2.8

times speed-up compared to a Pentium4 2.8 GHz PC implementation. However, there

is no discussion on accuracy of the computed flow field. The only GPU implementation

of Horn & Schunck’s method is presented in [27]. They use multiresolution method

with 2 levels. The computation of 316x252 images takes 443ms in multi-scale and 3ms

5

in single-scale. In [16], there is a comparison between an FPGA and a GPU imple-

mentation of optical flow computation. They use a tensor based optical flow method

and claim a processing 320x240 images at 538 frames per second. They discuss the

advantages and drawbacks of GPUs over FPGAs. The most important drawback of

FPGAs is the complexity of design process. They claim that FPGAs require a 12x

more development time. However, GPUs consume much more power than FPGAs and

requires a host PC for operation where FPGAs can be placed on stand-alone plat-

forms. Therefore, the high power consumption and high space occupation properties

of GPUs make them unfeasible to be utilized on mobile robotic platforms. A more

detailed version of this study in [16] can be found in the thesis work given in [13].

As far as we know, there is no work presenting the accuracy, power consumption and

logic resource usage of Horn & Schunck’s method implemented on FPGA. Mentioned

studies on this method concentrates on the computation speed. However, it is known

that, it is disadvantages to implement floating point operations on FPGAs[25]. The

workaround is often to use fixed point operations which decreases the accuracy of the

computations. Along with the speed, accuracy is also a key parameter to determine

the feasible application areas of the presented method.

1.3 Contributions

The lack of a hardware that is capable of processing optical flow in real time is a

factor that prevents the robotics research to utilize many studies presented in computer

vision literature. Having the ability to implement available computer vision techniques

in robotic platforms has a high potential to achieve great improvements in robotics

research.

Unfortunately, it is not possible to obtain the required hardware off the shelf. Al-

though there are some hardware mpeg coding chips that compute optical flow for

video compression applications, they do not allow hardware reconfiguration to adapt

to new situations. There is no such configurable commercial product for the time be-

ing as far as we know. In the literature, we came across a few universities that claim

to design their own hardware but none of them provide the source HDL code for their

design. Even if they provided the source code, it is still not easy to implement the

6

code unless having the same or similar FPGA hardware. At the end of this thesis

work, we obtain a high performance hardware with low power consumption that is

capable of providing over-realtime optical flow data to be used on our current robotic

platform SensoRHex and other robotic platforms to be used further on.

As far as we know, none of the presented hardware implementations of Horn & Schunck

optical flow in literature, report the accuracy, power consumption and resource usage

of their hardware. There is an absence of this kind of knowledge in the literature.

This thesis work also provides us the mentioned information. We think that the

achievements of this thesis work will be appreciated by the related research society

and so have a high potential for publication of these results.

1.4 Outline of the Thesis

In this chapter, we stated our motivation for this thesis work and a literature survey

on the related publications. The contributions of this thesis work is presented. We

finish this chapter after giving an outline of the thesis. The reminder of this thesis is

organized as follows.

Chapter 2 presents a brief summary on the background of optical flow computation.

We explain the mathematical derivation of the optical flow algorithm used and its

numerical computation on digital hardware.

Chapter 3 explains the hardware requirements to implement a computer vision al-

gorithm on an FPGA. We also introduce the properties of the FPGA platform used

to implement the designed hardware and a short description of the FPGA structure.

Then we complete this chapter with explaining the development tools utilized and the

top down design methodology used to design the proposed hardware on FPGA.

Chapter 4 describes the complete hardware design of the proposed system in details.

We also discuss the design alternatives and the selected approaches with providing

the reasons.

Chapter 5 presents the performance analysis of the proposed design by stating the

performance measures. The designed system is tested with some of the available

7

test sequences that are frequently used for performance evaluations of the optical

flow techniques in literature. The results obtained from FPGA implementation are

compared with the PC implementation of the same algorithm.

Finally, we conclude this thesis study in Chapter 6, by presenting our comments

on the results and discussing the future plans and the possible improvements and

modifications that can be done on the proposed design. We also summarize some

important points learned from this research.

8

CHAPTER 2

BACKGROUND ON OPTICAL FLOW

COMPUTATION

2.1 Optical Flow

Optical flow is defined as the distribution of apparent velocities of brightness patterns

in an image[23]. This motion can be induced due to the relative movement of the

objects in the scene or the observer(camera) itself. To determine the motion flow of

a scene, it is needed an image sequence including at least two image frames taken

from a camera consecutively of that scene. However, an image of a scene is just a

2D representation of a 3D world. Since the optical flow calculation is based on the

2D images, the computed optical flow field is a projection of 3D motion field of the

scene. There are a number of methods presented in literature to compute the optical

flow vector field on 2D images. Within this chapter, we give a brief summary on the

background of optical flow computation and the Horn & Schunck’s method [23] which

is implemented on hardware.

2.2 Differential Optical Flow Computation Methods

There are various methods for computation of optical flow as mentioned in Section 1.2.

Differential methods are rather popular among those methods. They depend on the

use of spatio-temporal intensity gradients. They have relatively less computational

complexity over other methods and provide high density optical flow vectors with a

reasonable error rate. These methods are also suitable for high performance FPGA

9

hardware implementations. The computations can be done using fixed point repre-

sentations with small word lengths. They can be implemented using parallel and

pipelined structures which yields a high throughput. In this thesis work, we use a

well known differential method for hardware implementation which is proposed by

Horn & Schunck[23]. We follow the suggestions of Horn & Schunck’s original paper

on numerical computation of the algorithm.

2.2.1 Horn-Schunck Optical Flow Computation Algorithm

2.2.1.1 Pre-Assumptions

The differential optical flow methods have some pre-assumptions. The first main

assumption is the so called ”brightness constancy” which comes from the nature of

the problem itself. This assumption states that the apparent brightness of the moving

objects in the scene are approximately constant under motion for at least a short

duration over time. If this assumption is violated, the correspondence of a pixel in

the first image can not be matched correctly in the second image, since it does not

have the same brightness as before anymore.

The second assumption requires the motion flow not to be large between consecu-

tive frames. This means the changes should be gradual over time. The nature of

the problem requires the brightness patterns in the first image to be found inside

the second image also. However, the maximum displacement allowed, changes from

algorithm to algorithm. Differential methods generally require the motion vectors to

have very small velocities. For cases when the motion vectors have large velocities,

multiresolution method can be used which computes flow vectors at different scales.

Generally the optical flow algorithms including the one we will utilize takes the in-

put images to be processed to have pixel values represented with grayscale levels.

Generally, the brightness data has enough information about the scene to be able to

calculate the optical flow field. So the input image data is assumed to be represented

by pixel brightness values.

10

2.2.1.2 Optical Flow Constraint Equation

Starting from the brightness constancy assumption, the constancy of image brightness

pattern over time can be formulated as,

dE

dt
= 0 (2.1)

Here E(x, y, t) denotes the image brightness at pixel location (x, y) at time t. If we

consider a patch of brightness pattern that moves δx horizontally and δy vertically

along a time period δt, the following equation holds for brightness constancy. Using

chain rule, equation (2.1) can be rewritten as,

E(x, y, t) = E(x + δx, y + δy, t + δt) (2.2)

The Taylor series expansion about the point (x, y, t) is expressed in equation (2.3).

E(x, y, t) = E(x, y, t) + δx
∂E

∂x
+ δy

∂E

∂y
+ δt

∂E

∂t
+ HOT (2.3)

For a sufficiently small δt, higher order terms can be neglected. Rearranging the

equation accordingly yields,

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
+

∂E

∂t
= 0 (2.4)

If we denote optical flow vectors as,

u =
dx

dt
v =

dy

dt
(2.5)

and partial derivatives of E as,

Ex =
∂E

∂x
Ey =

∂E

∂y
Et =

∂E

∂t
(2.6)

then equation (2.4) can be rewritten as,

11

Exu + Eyv + Et = 0 (2.7)

Here we get the so called optical flow constraint equation,

(Ex, Ey)(u, v) = −Et (2.8)

It can be seen from the above equation that there are two unknown optical flow vectors

u and v in one single linear equation. This is an ill-posed problem and in its current

form it is impossible to find a unique solution for the optical flow vectors. To take

the problem into a well defined one, Horn & Schunck introduces a second constraint

which is the so called smoothness constraint equation. The following section describes

the smoothness constraint definition.

2.2.1.3 Horn & Schunck Smoothness Constraint

Horn & Schunck observes that in most of the cases, the neighboring pixels make

similar movements, in other words, have similar velocities which change gradually[23].

This results in a smooth vector field. Considering this observation, they introduce a

smoothness constraint term which minimizes the sum of squares of the optical flow

vectors’ gradients,

(
∂u

∂x

)2

+
(

∂u

∂y

)2

(
∂v

∂x

)2

+
(

∂v

∂y

)2

(2.9)

Instead, the sum of the squares of the Laplacians of x and y components of the optical

flow vectors can be used as another measure of the smoothness as,

∇2u =
∂2u

∂x2
+

∂2u

∂y2

∇2v =
∂2v

∂x2
+

∂2v

∂y2
(2.10)

12

The Laplacians of u and v can be approximated using the expressions given in (2.11).

∇2u = (ūi,j,k − ui,j,k)

∇2v = (v̄i,j,k − vi,j,k) (2.11)

The problem can be formulated as a minimization of a cost function given in equation

(2.12).

E2 =
∫ ∫ (E2

b + α2E2
s

)
dx dy (2.12)

The error terms Eb and Es are defined as in equations (2.13), (2.14) and α is a coefficient

used to adjust the weights of the two terms in the cost function.

Eb = Exu + Eyv + Et (2.13)

E2
s =

(
∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

(2.14)

It may seem strange to include brightness constancy equation in the cost function

since, a nonzero value of this equation means that the brightness constancy assumption

is violated. However in real cases, the brightness values may change because of the

noise or quantization errors. The coefficient α2 is a weighting factor that adjusts the

dominance of the error terms in the cost function.

The value of (u,v) pair that minimizes the cost function given in (2.12) is the optical

flow vector. The equation can be reformulated as in (2.15) using calculus of variations

method.

E2
xu + ExEyv = α2∇2u−ExEt

ExEyu + E2
yv = α2∇2v − EyEt (2.15)

13

Replacing the Laplacians of u and v with their approximation given in (2.11), the

equations in (2.15) can be rewritten as in (2.16).

(α2 + E2
x)u + ExEyv = (α2ū−ExEt)

ExEyu + (α2 + E2
y)v = (α2v̄ − EyEt) (2.16)

Solving for u and v the equations in (2.17) are obtained.

(α2 + E2
x + E2

y)u = (α2 + E2
y)ū−ExEyv̄ −ExEt

(α2 + E2
x + E2

y)v = −ExEyū + (α2 + E2
x)v̄ −EyEt (2.17)

u =
(α2 + E2

y)ū− ExEyv̄ − ExEt

(α2 + E2
x + E2

y)

v =
−ExEyū + (α2 + E2

x)v̄ − EyEt

(α2 + E2
x + E2

y)
(2.18)

2.2.1.4 The Numerical Solution

The optical flow calculation method proposed by Horn & Schunck includes the gra-

dient and Laplacian calculations. These derivatives should be estimated from a set

of discrete image brightness measurements available. So, they should be estimated

numerically. It is possible to estimate these derivatives in a number of different ways.

Horn & Schunck suggest to utilize the first order difference of 8 pixel values given

in Fig. 2.1, Fig. 2.2 and Fig. 2.3. The i , j , k subscripts represents the row, column

and frame number respectively. The corresponding difference formulas given in equa-

tions (2.19), (2.20) and (2.21) are used to compute Ex, Ey spatial and Et temporal

derivative estimations respectively[23].

Ex ≈ 1
4

(Ei,j+1,k − Ei,j,k + Ei+1,j+1,k − Ei+1,j,k

+ Ei,j+1,k+1 − Ei,j,k+1 + Ei+1,j+1,k+1 −Ei+1,j,k+1) (2.19)

14

1/4

-1/4

-1/4

1/4

1/4

-1/4

-1/4

1/4

j j+1

i

i+1

i

i+1

j j+1

Frame (k)Frame (k+1)

Figure 2.1: Numerical computation of Ex using first order difference of 8 pixels.

1/4

-1/4

-1/4

1/4

1/4

-1/4

-1/4

1/4

j j+1

i

i+1

i

i+1

j j+1

Frame (k)Frame (k+1)

Figure 2.2: Numerical computation of Ey using first order difference of 8 pixels.

Ey ≈ 1
4

(Ei+1,j,k −Ei,j,k + Ei+1,j+1,k −Ei,j+1,k

+ Ei+1,j,k+1 − Ei,j,k+1 + Ei+1,j+1,k+1 − Ei,j+1,k+1) (2.20)

Et ≈ 1
4

(Ei,j,k+1 − Ei,j,k + Ei+1,j,k+1 − Ei+1,j,k

+ Ei,j+1,k+1 −Ei,j+1,k + Ei+1,j+1,k+1 − Ei+1,j+1,k) (2.21)

The Laplacians of u and v should also be estimated numerically. Horn & Schunck

uses the following approximation to calculate the Laplacians terms:

∇2u ≈ (ūi,j,k − ui,j,k)

∇2v ≈ (v̄i,j,k − vi,j,k) (2.22)

ū and v̄ are called the local averages of u and v respectively which are defined as,

15

1/4

-1/4

-1/4

1/4

1/4

-1/4

-1/4

1/4

j j+1

i

i+1

i

i+1

j j+1

Frame (k)Frame (k+1)

Figure 2.3: Numerical computation of Et using first order difference of 8 pixels.

ūi,j,k =
1
6

(ui−1,j,k + ui,j+1,k + ui+1,j,k + ui,j−1,k)

+
1
12

(ui−1,j−1,k + ui−1,j+1,k + ui+1,j+1,k + ui+1,j−1,k) (2.23)

v̄i,j,k =
1
6

(vi−1,j,k + vi,j+1,k + vi+1,j,k + vi,j−1,k)

+
1
12

(vi−1,j−1,k + vi−1,j+1,k + vi+1,j+1,k + vi+1,j−1,k) (2.24)

1/6

1/6

1/6 1/6

1/121/12

1/12 1/12

-1

Figure 2.4: Weight matrix for estimating local averages of optical flow vectors

To solve the Horn & Schunck optical flow equation numerically, they utilize iterative

Gauss-Seidel method. The optical flow vector estimates calculated at each iteration

is formulated as,

un+1 = ūn −Ex
Exūn + Eyv̄

n + Et

α2 + E2
x + E2

y

(2.25)

vn+1 = v̄n −Ey
Exūn + Eyv̄

n + Et

α2 + E2
x + E2

y

(2.26)

16

CHAPTER 3

FPGA HARDWARE PLATFORM FOR VISION

3.1 Requirements of the FPGA Hardware Platform

To be able to implement a designed digital hardware circuit, an appropriate develop-

ment board should be obtained. The selected board provides the hardware infrastruc-

ture including required peripheral devices and an FPGA chip with sufficient resources

on it. According to the application area of the development board, these peripheral

devices and resources available on board varies. For example, a transceiver design for

high speed communication applications needs different resources than an image pro-

cessing hardware design. Moreover, the amount of required resources differ according

to the complexity of the design.

FPGA development boards are available in a wide range of sizes with different feature

sets. Different FPGA boards have a different feature set of logic, I/O interfaces,

memory and other assorted hardware. As long as an FPGA board has enough logic

resources and it has the required peripheral devices, a project can be implemented

on any of the boards. In general, FPGAs with more logic, more I/O pins, higher

speed, more memory and more peripheral devices are more expensive. While making

selection, choosing the right board with peripheral devices and an FPGA chip having

the proper feature set at the lowest cost is an important design consideration. The

selected board should have low power consumption and moderate performance since

it is designed to be used on robotic platforms. Another important point that should

also be considered is the capacity of the board to meet future improvements and

modifications of the design. The board and FPGA chip should have sufficient resources

for potential additions to the design.

17

Each FPGA has a different number of logic elements (LE) that are used to implement

user logic. They also contain various amounts of both internal embedded memory

blocks and external memory devices such as RAM and ROM memory chips. The use

of internal and external memory resources differ according to the required capacity

and speed. Capacities of external memory are much larger than the internal memory,

but they have a lower bandwidth and slower access times. Like many algorithms

in computer vision, the implementation of optical flow algorithm processes a huge

amount of data. Algorithms, that processes single image frame at a time step can be

implemented easily in hardware that processes input data sequences without storing

the whole data in memory. However, optical flow algorithm uses 2 image frames

from consecutive time steps. This requires the whole image frames to be stored in

memory before processing. The massiveness amount of data prevents it to be stored in

internal memory blocks that are insufficient. So, external memories such as SSRAM or

SDRAM should be utilized, although they have lower bandwidth. The bottleneck of

these systems are generally caused by the memory accesses. In terms of performance,

SSRAMs are faster but has lower capacity comparing SDRAMs. However, to prevent

memory bottleneck, SSRAMs should be preferred for frame buffering.

Optical flow algorithm computation includes multiplication operations. The imple-

mentation of multiplication by programmable logic is not preferable both in terms

of performance and its high resource usage. Instead, there are some FPGAs avail-

able which support Digital Signal Processing (DSP) applications, so they also contain

hardware integer multipliers which have much higher performances and use no logic

resources.

The performance of the design is proportional with the clock frequency it operates

at. The limiting factor of the clock rate is the highest delay between the registers,

called the critical path. To decrease the limiting effect of the critical path, the parts of

the design with lower delays are clocked at higher rates and higher delayed paths are

clocked at lower rates. This technique is called the multiple clock domain design. So,

the design needs multiple clock frequencies. Each board contains a crystal controlled

clock circuit that is normally used as the master clock for the user’s digital logic

circuit. Phase Locked Loop(PLL) circuits can be used to scale the crystal controlled

clock to provide other clock frequencies. On some FPGAs, there are multiple PLLs

18

that are used to divide or multiply the clock frequencies and shift the phase of clock

signals to generate different clock signals.

To send and receive data between PC and the FPGA board, there should be some

communication interfaces available on board. This communication can generally be

established through either RS232, USB or Ethernet protocols. Development boards

which have these interfaces should be preferred.

FPGAs provide a wide variety of I/O features in terms of pin count, I/O voltage and

pin drive strength. The number of pins should be sufficient to interface the external

devices. It is generally helpful to have general purpose I/O pins for user access.

Some of the peripheral devices need controllers for interface with FPGA logic. It

is also advantageous if the hardware controllers are provided on board. Else, logic

that provides a device interface circuit or controller will need to be constructed by

the user using the FPGA’s internal logic resources. Push buttons, switches, LEDs,

seven segment and LCD displays, although not compulsory, are really helpful both for

FPGA user interface and for debugging through the hardware design process.

3.2 FPGA Development Platform Specifications

Selection of the FPGA hardware development board is done according to the require-

ments explained in Section 3.1. There are a couple of suitable boards provided by

companies such as Altera and Xilinx. There are two categories of FPGAs of each

vendor called the “high end” and “low cost” devices. We mostly considered suitable

boards that include FPGA chips classified as low cost devices(low power, moderate

performance). The FPGA product portfolio of Altera is shown in Fig. 3.1 with a

comparison of their available resources, performances, power consumptions and costs.

Although they provide a high performance operation, high end FPGA devices such

as Stratix V are not feasible for our needs because of their high power consumptions

and power constraints of mobile robotic platforms. Therefore, we have to choose a

device that is in the low power devices category. Altera calls its low power devices as

Cyclone family. We choose a Cyclone II device because of its low power consumption,

sufficient amount of resources and low cost.

19

--0.2 Mb20 K130 nm

2501501.1 Mb68 K90 nm

2902883.8 Mb120 K65 nm

2903606.3 Mb150 K60 nm

3507368.5 Mb90 K90 nm

350104016.4 Mb350 K40 nm

350567.3 Mb80 K130 nm

4503849.0 Mb180 K90 nm

55076816.2 Mb338 K65 nm

550128823.1 Mb820 K40 nm

550351050 Mb1087 K28 nm

DSP

(MHz)

DSP

Blocks
MemoryLEProcessDevice

--0.2 Mb20 K130 nm

2501501.1 Mb68 K90 nm

2902883.8 Mb120 K65 nm

2903606.3 Mb150 K60 nm

3507368.5 Mb90 K90 nm

350104016.4 Mb350 K40 nm

350567.3 Mb80 K130 nm

4503849.0 Mb180 K90 nm

55076816.2 Mb338 K65 nm

550128823.1 Mb820 K40 nm

550351050 Mb1087 K28 nm

DSP

(MHz)

DSP

Blocks
MemoryLEProcessDevice

Figure 3.1: The FPGA product portfolio of Altera with a comparison of their available
resources, performances, power consumptions and costs.

Peripheral devices such as memory are also important in choosing a hardware plat-

form. To prevent memory access bottleneck, we selected SSRAM as primary external

frame buffer since SDRAMs have lower bandwidths and harder to design interface.

For PC communication, we preferred RS232 for its easy interface. However, for fu-

ture improvements a faster communication protocol such as USB or Ethernet is also

beneficial. The most suitable FPGA development board to our needs is selected as

the DE2-70 board which is also used widely in many of the universities in the world

for both education and research. The top view of DE2-70 board is given in Fig. 3.2.

20

F
ig

ur
e

3.
2:

A
lt

er
a

D
E

2-
70

F
P

G
A

de
ve

lo
pm

en
t

bo
ar

d[
1]

21

The following hardware is provided on the DE2-70 board:

• Altera Cyclone II EP2C70F896 FPGA device

• Altera Serial Configuration device - EPCS16

• USB Blaster (on board) for programming; both JTAG and Active Serial

• 50-MHz oscillator and 28.63-MHz oscillator for clock sources

• 2-Mbyte SSRAM

• Two 32-Mbyte SDRAM

• 8-Mbyte Flash memory

• SD Card socket

• IrDA transceiver

• RS-232 transceiver and 9-pin connector

• 10/100 Ethernet Controller with a connector

• USB Host/Slave Controller with USB type A and type B connectors

• PS/2 mouse/keyboard connector

• VGA DAC (10-bit high-speed triple DACs) with VGA-out connector

• 2 TV Decoder (NTSC/PAL/SECAM) and TV-in connector

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• Two 40-pin Expansion Headers with diode protection

• 1 SMA connector

• 4 pushbutton switches

• 18 toggle switches

• 9 green user LEDs

• 18 red user LEDs

22

• 2x16 character LCD display

• 8 seven segment displays

The FPGA chip included in DE2-70 board is the one that has the highest resources

available in the Cyclone II family named as EP2C70. It provides sufficiently high logic

elements, memory blocks, embedded multipliers, PLLs and I/O pins required for our

current and future design needs. The Cyclone II family features are given in Table 3.1.

Table 3.1: Cyclone II FPGA family features[2]. The development board we use in-
cludes EP2C70 device which has the highest resources available in the Cyclone II
family.

3.3 FPGA Architecture

Field Programmable Gate Arrays (FPGA) are integrated circuits that have config-

urable structures to implement user defined logic circuits. An FPGA contains a large

number of identical “logic elements”(LEs) that can be wired according to a logic func-

tion specified by a user defined code. Each elements are interconnected by a matrix of

wires and programmable switches. A user’s design is implemented by specifying the

logic function for each logic element and selectively closing the switches in the inter-

connect matrix. This is done by means of a user program that defines the function

of the circuit, usually written in a hardware description language such as Verilog or

VHDL. The user defined function is first converted to “register transfer level” (RTL)

23

by a synthesizer tool. Then the configuration for implementing the RTL structure by

FPGA logic elements is generated by the fitter tool according to the FPGA device

used.

The general architecture of FPGA’s are given in Fig. 3.3. They consist of two planes

called the functional plane and the programming plane. Logic elements and inter-

connect routing channels are located in functional plane. This plane is configured

according to the values stored in SRAM structures in programming plane. These

structures define the look-up table values and interconnect switch states. They also

configure the I/O blocks for pin direction whether they are input or output.

Figure 3.3: General hardware architecture of FPGA devices[21]. Functional plane is
used to implement logic functions defined by user by logic cells and routing channels.
Programming plane stores the LUT values in SRAMs for configuration of functional
plane at start up.

FPGAs contain a two-dimensional row and column-based architecture to implement

user logic. A column and row interconnection network provides signal connections

between Logic Array Blocks (LABs) and embedded memory blocks. To perform more

complex operations, logic elements can be automatically connected to other logic

elements on the chip using a programmable interconnection network.

The Cyclone II device is configured by loading the configuration program to internal

24

static random access memory(SRAM). Because of the usage of SRAM is used in

FPGAs, the configuration will be lost whenever power is removed. In actual systems,

a small external low-cost serial flash memory or programmable read only memory

(PROM) is normally used to automatically load the FPGA’s programming information

when the device powers up.

3.3.1 Logic Elements

An LE is a small unit of logic providing efficient implementation of user logic functions.

Fig. 3.4 shows a Cyclone II device logic element. Each logic element consists of a four

input look-up table(LUT), a register and a carry in/out logic for use in arithmetic

mode. Logic elements can be used either for combinational or sequential functions.

Each LE’s programmable register can be configured for D, T, JK, or SR operation.

Each register has data, clock, clock enable, and clear inputs. Logic functions are

implemented using a look-up table in logic elements instead of using actual logic gates.

LUTs are consisted of a high-speed 16 by 1 SRAM. Four inputs are used to address

the LUT’s memory. The truth table for the desired gate network is loaded into the

LUT’s SRAM during programming. A single LUT can therefore model any network

of gates defining a combinational logic function with four inputs and one output. For

combinational functions, the LUT output bypasses the register and drives directly

to the LE outputs. For implementing more complex logic functions, more than one

logic elements are connected to each other properly in “logic array blocks”(LABs)

through local interconnect channels. Each LAB includes 16 logic elements. When a

logic function needs even more logic resources, the LABs can also be connected using

the interconnect routing channels[2].

Figure 3.4: Components of a logic element block[2]. Each logic element can be used
to implement combinational, sequential logic functions and arithmetic operations.

25

Each logic element can be configured to operate in standard logic mode(normal mode)

or arithmetic mode[2]. Normal mode is used to implement combinational or sequential

logic functions. For efficient implementation of arithmetic functions the logic element

operates in arithmetic mode. In arithmetic mode, a logic element implements a 2-

bit full adder and basic carry chain. The arithmetic mode is ideal for implementing

adders, counters, accumulators, and comparators.

3.3.2 Embedded Memory Blocks

Embedded memory blocks are internal random access memories that provides a low

capacity data storage with high performance data access. The embedded memory

in Cyclone II devices consists of columns of M4K memory that can operate up to

250MHz. Each M4K block has a capacity to store 4608 bits including parity bits

for error correction. They can be used to implement various types of memory with

or without parity, including true dual-port, simple dual-port, and single-port RAM,

ROM, and first-in first-out (FIFO) buffers. The word length can be adjusted between

1 and 36 bits. The memory content can be initialized by a user defined memory

initialization file in programming state.

3.3.3 Embedded Multipliers

Multiplication operations are involved in many digital signal processing(DSP) applica-

tions. However, implementing a multiplication operation on an FPGA using standard

logic blocks is not efficient both in terms of performance and resource usage. To allow

implementation of high performance multiplication operations, some FPGA families,

including Cyclone II, have embedded hardware multiplier blocks. These hardware

blocks can be used to multiply both signed and unsigned operands up to 250MHz

performance. Each embedded multiplier can be used in one of two operational modes

which are single 18x18 bits mode or two 9x9 bits mode depending on the application

needs. The multiplication on operands with any word length can also be done using

multiple embedded multiplier blocks.

26

3.4 FPGA Development Environment and Design Flow

Increasing design complexity and higher gate densities are forcing digital designs to

change the design methods used. Rapid prototyping using hardware description lan-

guages (HDLs), IP cores, and logic synthesis tools has replaced the traditional gate

level design using a schematic editor. These new HDL-based logic synthesis tools can

be used for both ASIC and FPGA-based designs. The two most widely used HDLs

are VHDL and Verilog.

The hardware design process is known as a complicated and time consuming task.

However, to simplify the design process, FPGA manufacturers are providing software

packages including some useful design tools. These tools are integrated in a user

friendly FPGA design environment. This environment supports behavioral description

based design using an HDL.

3.4.1 Quartus II

The computer aided design software provided by Altera for FPGA designs is called

the Quartus II software. This tool provides designer a number of tools that are

used in FPGA design process. All of the tools are included in an integrated design

environment with easy to use interfaces. The details for the usage of these tools can

be found in [3]. We utilized the following tools in designing the proposed hardware:

- HDL Editor, Analysis & Synthesis, Fitter Tools

- Classic & TimeQuest Timing Analyzer

- Signaltap II Embedded Logic Analyzer

- Powerplay II Power Analyzer

3.5 FPGA Design Flow

A design in an FPGA is actually nothing but a digital logic design. The aim is to

design a logic circuitry that performs the desired function. The designed circuitry can

27

be defined in a number of ways. The conventional method is drawing the schematic

diagram of the circuitry. However, for large designs, the schematic diagram of the

circuitry becomes very complicated. So, this method is not very functional for large

designs. Another method which is generally preferred is using a hardware description

languages (HDL) to define the logic circuitry. Verilog and VHDL languages are the

two most popular HDL’s that are used today. In this design, we use Verilog as our

hardware description language.

Problem Definition

Design Requirements

Top Level Design

Hardware modules design and

implementation using an HDL

Analysis and Synthesis

of HDL Code

Fitter

(Place & Route)

Timing Analysis

Physical I /O Pin Assignment

Programming on FPGA

FPGA Hardware Selection

Met Timing

Requirements ?

1st

2nd

No

Yes

3rd

Figure 3.5: FPGA Design Flow Diagram

In designing of the hardware, we used the top-down design methodology. Top-down

28

design is the design method where high level functions are defined first, and the lower

level implementation details are filled in later. This methodology simplifies the design

task and allows the partitioning of the whole design into easily manageable subparts.

The top level block represents the entire hardware structure and each lower level block

represents major functions.

A typical FPGA design process using an HDL with top-down design methodology is

shown in Fig. 3.5. The first step is to make the problem definition properly. In this

step the main function of the design, inputs and outputs of the system should be de-

termined. In the next step, the designer should state the design requirements clearly.

There may be constraints on the power consumption, system throughput, clock rate,

memory size, weight and volume of the hardware. According to the requirements,

designer should determine a suitable hardware. Having defined the design require-

ments, the design is divided into functional sub-design blocks. Then these blocks are

designed, implemented using an HDL language and tested individually. The written

HDL code is analyzed and converted into low level representation which is called reg-

ister transfer level(RTL) description by synthesis tools. Then the generated netlist

should be reformed to place into the specified hardware. This process is carried out

by the fitter tools. Fitter tools optimize the logic according to the hardware resources

available. After the design is placed and routed for the device, the timing require-

ments such as setup&hold times, clock delays etc. should be checked. This process is

called timing analysis. If the timing requirements were not met, the first action should

be to revise the hardware design. If alternative design approaches do not solve the

problem then the second action is moving to another device with higher speed grade.

If there is no device that is capable of implementing the design, then it means that

the designing with current specifications is impossible. So the design requirements

should be lowered and checked if they can be satisfied. When the timing requirements

are met then the next step is to assign the physical device pins to the design inputs

and outputs. The last step is the programming of the device. Most of the current

FPGA architectures don’t include any on chip program memory. The configuration is

generally stored in external EEPROM memories and loaded into the FPGA SRAMs

on every power up.

29

CHAPTER 4

PROPOSED FPGA HARDWARE DESIGN FOR

OPTICAL FLOW

This chapter includes the details of the proposed hardware design. The hardware is

designed using a top down design methodology. First, the top level design blocks

and the data flow between these blocks are determined. Then the sub-modules such

as Direct Memory Access module, Gradient Computation module etc. are designed

individually following the design, implement and test cycles. Then each functional

sub-block is connected to each other using the top level design file. Finally, design is

completed after the functional operation of the whole design is verified.

4.1 High Level Block Diagram

For large design projects, a logical way to design the system is by utilizing the divide

and conquer methodology. The overall system is divided into sub-design parts that

are performing a specific function. This design methodology is called top-down design

approach in which high level functions are defined first and the lower level implemen-

tation details are filled in later. The high level block diagram of the hardware modules

of our designed system is shown in Fig. 4.1.

The required data to compute optical flow vectors are read from the appropriate loca-

tions of SSRAM by the Direct Memory Access (DMA) module and stored temporarily

in fifo line buffers. These buffers increases performance by reducing the number of

memory accesses. The gradient and average computation module reads required data

from DMA and computes spatiotemporal gradients and local averages of optical flow

30

PC
(Matlab)

RS232
Controller

RS232 Buffer

Read

SSRAM

SSRAM

DMA

SSRAM

Read Results

Gradient &

Average
Computer

OF

Computer

FPGA

SSRAM

Controller

Figure 4.1: Block diagram of the designed system

vectors. Then computed values are used by optical flow computation module to pro-

duce optical flow vectors. The results are written back to the SSRAM by DMA

module. Finally, after the computation is finished, the results are read from SSRAM

by SSRAM read module and written to RS232 controller to be sent to the PC.

The system is designed using multiclock domains and in a highly pipelined structure

which increases the system throughput dramatically. The memory interfaces oper-

ates at higher clock rates than the computation modules. This helps overcoming the

memory bottleneck in the design. The optical flow computation modules are designed

in a pipelined structure to reduce computation time. At every stage in the pipe, the

data is exposed to a specific operation. After a while the first input data produces

the first output at the end of the pipe. Then with one clock cycle intervals, the re-

sults corresponding the input sequence are taken. Each of the individual sub-blocks

are realized following the, design, implement and test cycles. After testing each of

the individual design blocks for timing requirements, they are connected according to

the data flow sequence given in Fig. 4.2. Overall system is tested for verification of

functional operation and the design is completed.

31

E
x

1
1

1
1

1
1

1
1

1
1

S
p

a
ti
o

te
m

p
o

ra
l

G
ra

d
ie

n
t

&

V
e

c
to

r
A

v
e

ra
g

e

C
o

m
p

u
ta

ti
o

n

O
p

ti
c
a

l
F

lo
w

C
o

m
p

u
ta

ti
o

n

E
y

E
t

U
a

v
g

V
a

v
g

S
S

R
A

M

D
M

A

3
2

3
2

3
2

3
2

3
2

S
S

R
A

M

C
o

n
tr

o
lle

r

P
ix

e
l

L
in

e
1

P
ix

e
l

L
in

e
2

V
e

c
to

r
L

in
e

1

V
e

c
to

r
L

in
e

2

V
e

c
to

r

L
in

e
3

S
S

R
A

M

R
e

a
d

R
S

2
3

2

R
e

a
d

R
S

2
3

2

C
o

n
tr

o
lle

r

S
S

R
A

M

3
2

3
2

(u
,v

)

S
S

R
A

M

M
U

X

3
2

3
2

3
2

3
2 3
2

3
2

S
S

R
A

M

W
ri
te

d
a

ta

S
S

R
A

M

R
e

a
d

d
a

ta

P
C

(M
a

tl
a

b
)

1 1

R
S

2
3
2

R
e

a
d

d
a

ta

8

R
S

2
3
2

W
ri
te

d
a

ta

8

S
R

A
M

_
D

Q

R
X

R
X

T
X

T
X

3
2

3
2

Read Buffer

W
ri
te

 B
u

ff
e
r

F
ig

ur
e

4.
2:

D
at

a
flo

w
di

ag
ra

m
of

th
e

de
si

gn
ed

sy
st

em

32

4.2 Reset Circuitry

Reset circuitry is one of the most important parts of the digital circuits. Stable

operation of a circuit depends firstly on the errorless initialization of that circuit. The

main purpose of the reset circuitry is to ensure the digital circuit to start operating

normally. Another usage is to manually restart the operation of the circuit because

of its unexpected behavior.

When the digital circuit is powered up, the electrical lines are in an unstable state for

a short time. The supply voltages fluctuate outside the operating range and crystal

oscillators generate unstable waves. This is a transient state and stabilizes after a

while. The circuit should not start operating until this transient period ends. The

reset circuitry holds the circuit in reset state for a predetermined time period that is

long enough for the electrical lines to stabilize.

Most of the digital circuits include some memory elements which are used to hold some

values or the states of a finite state machine. These memories are in an undetermined

state when the circuit is powered up. Most of the registers are required to be loaded

with a predetermined value at the beginning of the operation. Reset circuitry loads

the initial values to the registers at the beginning of the operation.

Another issue is the asynchronous reset signals in synchronous designs. At syn-

chronous designs all signals should be ready at the inputs of the registers at a certain

time interval, called setup time, in order the register to latch the signal errorless. Oth-

erwise timing problems may occur and the circuit works unexpectedly. Reset circuitry

is also responsible with synchronizing asynchronous reset signal to the system clock.

Reset circuitry consists of two parts. The first part, as given in Fig. 4.3, generates the

active low reset signals for a predetermined period of time to hold the circuit in reset

state. There are two reset signals generated by the circuitry. The difference between

two signals is the duration of the reset time. The reset time period is generated by

a 32 bit counter. After power up or when the reset button is pressed, reset signals

are deasserted and the counter starts from zero and increments at every rising edge of

50MHz clock. When the counter reaches the first predetermined count the first reset

signal is asserted. The second one remains low until the counter reaches to the second

33

predetermined value. Then the second signal is asserted and counter is disabled until

the next reset or power up situation.

The second part of the reset circuitry is included in every design module. This part

initializes the finite state machine states and loads the initial values to the registers

when the reset signal is asserted. The operation is synchronous to the modules own

clock. Initialization is done at the first rising edge of the clock that comes after the

reset signal is asserted. The circuit starts its normal operation at the second rising

edge of the clock and goes on.

iCLK

iRST oRST_1

Reset_Delay:u2

oRST_0

Figure 4.3: Reset signal generator module. Two reset signals are generated with
different release times. They are used to synchronize the start up of modules designed.

4.3 Clocking Circuitry

Every module in the designed system needs a clock signal to operate. The most com-

mon approach is using only a single clock signal called system clock for all sequential

logic in the design. This approach simplifies the design and shortens the design pro-

cess. However, the maximum clock frequency that can be applied to every module

in the design is different. If a single clock is used, the designer should consider the

signal path with the highest delay called the critical path. The system clock rate

should be lower than the clock rate of the module that has the critical path. So, sin-

gle clock usage introduces a performance penalty for the design. The workaround to

this problem is often to use more than one clock signal. These are called designs with

multiclock domains. In this approach, modules with higher delay are clocked with

lower frequency and faster modules are clocked with higher frequency. Although this

technique yields a boost in the performance, the design procedure becomes more com-

plicated. The signal transmission between different clock domains should be handled

carefully, otherwise synchronization and timing problems may arise easily. Despite

the complicated design process, we designed using two clock domains for the sake of

34

performance.

inclk0
c0

c1

PLL_200MHz:PLL_200MHz_inst

Figure 4.4: Phase Locked Loop (PLL) module generates the required clock signals for
the operation of designed modules. There are two clocks generated which are 200MHz
and 50MHz from the input clock of 50MHz.

The designed circuit needs two clock sources to operate which are 50MHz and 200MHz.

Operating frequencies of the design modules are given in Table 4.1. The main clock

source of the system is the external 50MHz crystal oscillator. The 50MHz and 200MHz

clocks are generated internally by “Phase Locked Loop” (PLL) circuits. PLLs are used

to generate different clock frequencies with adjustable phase shifts from a source clock.

The Cyclone II FPGA on our development board has four PLL blocks. Each PLL

block can generate up to three different clocks. Block diagram of PLL block in the

design is given in Fig. 4.4. In our design both 50MHz and 200MHz clock sources

are generated by PLLs from the input clock of 50MHz. The signal transmissions

between two clock domains are handled by using dual clock FIFO buffers and some

synchronization stages to prevent timing problems.

Table 4.1: Operating clock frequencies of modules. 200MHz is used for the modules
that access SSRAM memory to reduce memory bottleneck. 50MHz is used for the
rest.

Module Name Frequency

SSRAM Controller
200MHz

SSRAM DMA

Optical Flow Computer

50MHz
Gradient & Average Computer
RS232 Controller
SSRAM Read
RS232 Buffer Read

35

4.4 Memory

The nature of the optical flow algorithms require pixel data from two frames to be

processed at the same time. The frames should be stored in a memory prior to the

processing stage. So there is a big amount of storage needed to store frame data. When

the pixel values are processed, the results should be stored in the memory also. Then

the results are read back from memory and send to the PC. During processing stage

the stored data is accessed from random addresses of memory and written to FIFO

buffers. This requires a random access memory to be used for temporary storage.

The available random access memory devices available on DE2-70 development board

are SDRAM and SSRAM. The advantage of dynamic memories(SDRAM) are their

higher storage capacities. However they store the data in capacitors which need pe-

riodic refresh cycles. During refresh cycles, read or write operations could not be

performed. So this reduces their data transfer bandwidth. Other option is to use

SSRAMs. SSRAMs can provide more bandwidth than the SDRAMs. They store the

data in flip flops. Unlike SDRAMs, they do not need to be refreshed. However, their

storage capacities are lower than the SDRAMs.

Table 4.2: Properties of memories available on DE2-70 board. SSRAM is preferred
because of its higher bandwidth although its capacity is lower than the SDRAM
memory.

Memory Type Capacity(Mb) Frequency(MHz) Word Length(bits)

SSRAM 18 200 32
SDRAM 512 166 16x2

In digital image processing hardware designs where the data is stored in external

memory, the bottleneck of the system is generally caused by the low memory access

bandwidths. To increase the system throughput, high bandwidth memories should

be used. For medium resolution images, SSRAMs can provide both required capacity

and speed. In this design, external 18 Mb SSRAM is used for main memory.

36

4.4.1 SSRAM Memory Controller

The data transfers from/to the SSRAM are regulated by an SSRAM controller. The

controller we use in our design is an IP core provided within the university program of

Altera to be used with the SSRAM device on our development board. The controller

adjusts the data and control lines to perform error free read and write operations.

The block diagram of the controller module is given in Fig. 4.5.

chipselect

clk

read

reset

write

address[18..0]

byteenable[3..0]

writedata[31..0]

SRAM_ADSC_N

SRAM_ADSP_N

SRAM_ADV_N (VCC)

SRAM_CE1_N

SRAM_CE2

SRAM_CE3_N

SRAM_CLK

SRAM_GW_N (VCC)

SRAM_OE_N

SRAM_WE_N

readdata[31..0]

SRAM_A[18..0]

SRAM_BE_N[3..0]

SRAM_DPA[3..0]

SRAM_DQ[31..0]

Altera_UP_Avalon_SSRAM:SSRAM_2MB

Figure 4.5: SSRAM memory controller module terminals.

The controller is designed to control an SSRAM organized as 36 bits of 512k address

locations. The address bus is represented with 19 bits. At each address location, 32

bits are used for data storage and the remaining 4 bits are used internally for error

correction. The data bus is 32 bits in width. There is a single data bus to be used

both for read and write data operations. The controller multiplexes data bus for read

and write operations. For a read operation, the pins of the FPGA becomes tristated.

Write operation has 1 cycle and read operation has 2 clock cycles latencies. During

read and write operations the “waitrequest” port is pulled high for the specified clock

cycles long. The write operation can be done in two ways. An address location(32

bits) can be written all at once or in any individual bytes combination. Write mode

can be controlled by the “byteenable” port.

The controller has one read and one write port. However, in our design two modules

37

should have accesses to the ram. This case is called multi-mastered bus structure where

more than one masters need ram access. The bus is shared between the masters by

a bus arbiter. The first master which is the “DMA module” has the highest priority.

So, we simplified the arbitration task by granting the bus to the first master as long

as it requests bus access. Otherwise the bus is granted to the second master which is

the RS232 to SSRAM data transfer module.

4.4.2 Direct Memory Access Module

The optical flow algorithm requires 8 pixel values and 8 optical flow vector values,

which we refer as one data packet, to compute one optical flow vector in the image.

In our previous design, these data were read, the gradient and optical flow vectors are

computed and written back to the SSRAM by the same module. The drawback of this

design was its low throughput. The optical flow computation part has mathematical

operations which introduces a long delay time and could operate at 50MHz, whereas

SSRAM read/write operations are fast and could operate at 200MHz. When the same

module does all this tasks, it could operate at 50MHz at most. Therefore, the optical

flow computation had to wait for the data to be read from the SSRAM.

To increase the efficiency, the memory access bottleneck was solved by designing a

Direct Memory Access Module (DMA) given in Fig. 4.6. This module operates at 200

MHz and fetches the required data in the order of process. Then the fetched data

is stored in dual clock FIFO buffers to be read by the gradient and the optical flow

computation modules. When the optical flow computation module computes the flow

vector, it puts the result to the write FIFO buffer. The DMA module reads results

from write FIFO and writes to the determined address location of SSRAM. The layout

of the stored data in SSRAM is given in Fig. 4.7.

The DMA module has five read ports and one write port. For every port there is a

FIFO buffer. Two read ports are used to read pixels from the consecutive two lines

of the image frames. The other three read ports are used to read optical flow vectors

from the consecutive three lines of the optical flow vector field. In Fig. 4.8, the pixel

FIFO buffers filled with pixels to be processed can be seen. The FIFO buffers are 32

bits wide so they can store one data packet at each location for computation of one

38

iCLK

iFIFO_RST_n

iRD1_FIFO_RD_CLK

iRD1_FIFO_RD_REQ

iRD2_FIFO_RD_CLK

iRD2_FIFO_RD_REQ

iRD3_FIFO_RD_CLK

iRD3_FIFO_RD_REQ

iRD4_FIFO_RD_CLK

iRD4_FIFO_RD_REQ

iRD5_FIFO_RD_CLK

iRD5_FIFO_RD_REQ

iRST_n

iTRIGGER

iWR1_FIFO_WR_CLK

iWR1_FIFO_WR_REQ

iWR1_FIFO_DATA_IN[31..0]

iSSRAM_READDATA[31..0]

oRD1_FIFO_RD_EMPTY

oRD2_FIFO_RD_EMPTY

oRD3_FIFO_RD_EMPTY

oRD4_FIFO_RD_EMPTY

oRD5_FIFO_RD_EMPTY

oSSRAM_READ

oSSRAM_WRITE

oRD1_FIFO_DATA_OUT[31..0]

oRD2_FIFO_DATA_OUT[31..0]

oRD3_FIFO_DATA_OUT[31..0]

oRD4_FIFO_DATA_OUT[31..0]

oRD5_FIFO_DATA_OUT[31..0]

oSSRAM_ADDRESS[18..0]

oSSRAM_WRITEDATA[31..0]

SSRAM_DMA:DMA1

Figure 4.6: Direct Memory Access (DMA) module terminals. DMA is used to handle
memory read/write operations required for the operation of optical flow computations.
It helps increasing the bus utilization and reduces the memory bottleneck.

optical flow vector. The length of the buffers vary according to the read port assigned.

The first pixel read buffer is filled with the pixels starting from the first line of the

image. The second pixel read buffer is filled with the pixels starting from the second

line. So there is a phase difference of 1 row between the first and second pixel read

FIFO buffers.

To reduce the memory accesses, we only read pixels for the first read FIFO. When the

pixels from the second line of the image are read from SSRAM, they are also copied

to the second FIFO. However, in this method the pixels required to compute the first

optical flow vector can be computed only after all the first line of the image is read

from memory. So the gradient and vector average computation module can start with

a latency equal to the time required to read 1 row of two frames from the memory.

This phase difference also requires the length of the first read buffer to be 1 row more

than the second read buffer.

The same idea for pixel read buffers is also applied to optical flow vector read buffers.

However, to compute their average, 8 flow vectors from three consecutive rows of

39

F2256,254 F2256,253 F1256,254 F1256,253

F2256,256 F2256,255 F1256,256 F1256,255

31 24 16 8 0

0

1

2

32766

32767

v1,2 v1,1 u1,2 u1,1

v1,4 v1,3 u1,4 u1,3

v1,6 v1,5 u1,6 u1,5

v256,254 v256,253 u256,254 u256,253

v256,256 v256,255 u256,256 u256,255

31 24 16 8 0

200000

200001

200002

232766

232767

F21,2 F21,1 F11,2 F11,1

F21,4 F21,3 F11,4 F11,3

F21,6 F21,5 F11,6 F11,5

Figure 4.7: Layout of stored data in SSRAM for two frames of 256x256 pixels. Image
frames are stored starting from the first address location and optical flow vectors are
stored beginning from the 200,000th address location of SSRAM.

vector field is required. This time, there should be three FIFO buffers with 1 row of

difference for each of them. The first FIFO buffer has length to hold three rows of

optical flow vectors. The second FIFO can hold two rows and the third one can hold

one row of vector data. In Fig. 4.9, the optical flow vector FIFO buffers filled with

vectors to be processed can be seen.

The DMA module consists mainly of a finite state machine(FSM) operating at 200MHz

and the read/write dual clock FIFO buffers. FSM states and state transition diagram

is given in Fig. 4.10. The state machine serves the FIFO buffers using the round robin

scheduling method. Since read operations are more than the write operations, read

buffers has higher priority than the write buffer. The optical flow computation process

starts with a trigger signal. The FSM is at idle state until the trigger signal comes.

Then FSM puts the read address of the pixel data for the first FIFO and controls

whether the FIFO is full or not. If the FIFO is not full, it initiates the read command

to the SSRAM controller. After three wait cycles, the data becomes ready on the

write port of the read FIFO buffer. At the same time, FSM initiates write signal for

the first read buffer to latch the pixel data. If the address of the read pixel data is

not from the first row of the images, the write command for the second read FIFO is

also initiated. The same procedure is also applied for other read FIFOs. After serving

the read FIFOs, FSM checks the write FIFO buffer if it is empty or not. If the write

FIFO is not empty, FSM puts the data and the SSRAM address for the data to be

40

F21,2 F21,1 F11,2 F11,1

F21,4 F21,3 F11,4 F11,3

F21,6 F21,5 F11,6 F11,5

F21,256 F21,255 F11,256 F11,255

F22,2 F22,1 F12,2 F12,1

F22,4 F22,3 F12,4 F12,3

F22,254 F22,253 F12,254 F12,253

F22,256 F22,255 F12,256 F12,255

31 24 16 8 0

1

2

256

3

128

129

130

255

F22,2 F22,1 F12,2 F12,1

F22,4 F22,3 F12,4 F12,3

F22,254 F22,253 F12,254 F12,253

F22,256 F22,255 F12,256 F12,255

31 24 16 8 0

1

2

127

128

READ FIFO 1 READ FIFO 2

Figure 4.8: Layout of pixel FIFO buffers. Each location of FIFO buffers is 32 bits
in width and stores 2 consecutive pixels from frame 1, and 2 consecutive pixels from
frame 2.

written and initiates a write command to the SSRAM controller. After one cycle the

write operation completes. Then FSM either continues to serve from the read buffers

or switches to the idle state. If the address of the last data written is equal to the

last element of the optical flow vector field, then the FSM stays in idle state, else it

continues to serve the FIFO buffers.

41

v
1
,2

5
6

v
1

,2
5

5
u

1
,2

5
6

u
1

,2
5

5

v
2
,2

v
2
,1

u
2
,2

u
2
,1

v
2
,4

v
2
,3

u
2
,4

u
2
,3

v
3
,2

5
4

v
3

,2
5

3
u

3
,2

5
4

u
3

,2
5

3

v
2
,2

5
6

v
2

,2
5

5
u

2
,2

5
6

u
2

,2
5

5

3
1

2
4

1
6

8
0

1 2

2
5
7

3

1
2
8

1
2
9

1
3
0

2
5
6

3
1

2
4

1
6

8
0

1

1
2
7

1
2
8

v
1
,2

v
1
,1

u
1
,2

u
1
,1

v
1
,4

v
1
,3

u
1
,4

u
1
,3

v
1
,6

v
1
,5

u
1
,6

u
1
,5

v
3
,2

v
3
,1

u
3
,2

u
3
,1

3
8
4

3
8
3

v
3
,2

5
6

v
3

,2
5

5
u

3
,2

5
6

u
3

,2
5

5

v
2
,2

v
2

,1
u

2
,2

u
2
,1

v
2
,4

v
2

,3
u

2
,4

u
2
,3

v
3

,2
5

4
v

3
,2

5
3

u
3
,2

5
4

u
3
,2

5
3

v
2

,2
5

6
v

2
,2

5
5

u
2
,2

5
6

u
2
,2

5
5

1 2

1
2
9

1
2
8

v
3
,2

v
3

,1
u

3
,2

u
3
,1

2
5
6

2
5
5

v
3

,2
5

6
v

3
,2

5
5

u
3
,2

5
6

u
3
,2

5
5

3
1

2
4

1
6

8
0

2
5
8

v
3
,4

v
3
,3

u
3
,4

u
3
,3

1
3
0

v
3
,4

v
3

,3
u

3
,4

u
3
,3

2

v
3
,2

5
4

v
3

,2
5

3
u

3
,2

5
4

u
3
,2

5
3

v
3
,2

v
3
,1

u
3
,2

u
3

,1

v
3
,2

5
6

v
3

,2
5

5
u

3
,2

5
6

u
3
,2

5
5

v
3
,4

v
3
,3

u
3
,4

u
3

,3

R
E

A
D

 F
IF

O

3

R
E

A
D

 F
IF

O

4

R
E

A
D

 F
IF

O

5

F
ig

ur
e

4.
9:

L
ay

ou
t

of
op

ti
ca

l
flo

w
ve

ct
or

s
in

F
IF

O
bu

ffe
rs

.
T

he
re

is
a

ph
as

e
di

ffe
re

nc
e

of
1

lin
e

of
ve

ct
or

s
be

tw
ee

n
th

re
e

F
IF

O
bu

ffe
rs

.

42

ID
L
E

T
R

IG
G

E
R

P
U

T
_

D
A

T
A

1
F

IN
A

L
W

R
IT

E
_

D
A

T
A

1
R

E
A

D
_

D
A

T
A

1

W
A

IT
_

D
A

T
A

1

R
E

A
D

_

D
A

T
A

2
L
A

T
C

H
_

D
A

T
A

1
W

A
IT

1
A

W
A

IT
1
B

W
A

IT
2
A

W
A

IT
2
B

L
A

T
C

H
_

D
A

T
A

2

Res
et

W
A

IT
_

D
A

T
A

2

F
ig

ur
e

4.
10

:
D

M
A

m
od

ul
e

F
SM

st
at

es

43

4.4.2.1 FIFO Buffers

A first in first out(FIFO) buffer is a memory to hold the data and then output in the

order of arrival. Fifo buffers are frequently used to increase the efficiency in most of

the digital circuits which have parts operating at different speeds. The FIFO buffers

have two types which are the ones with single or dual clocks. When the modules

that are writing to or reading from the FIFO have same synchronous clocks the single

clock FIFO buffers are used. But, when the writing module’s clock is different than

the reading module’s clock, then dual clock FIFO buffers should be used. They can

also have different data widths and lengths according to the needs. In this design, the

FIFO buffers are utilized in the DMA module and in RS232 communication controller.

The FIFO buffer used in the DMA module is a dual clock FIFO buffer. The ports of

the DMA FIFO buffer is given in Fig. 4.11. For read data FIFOs, the write operation

is done by the DMA module at 200MHz and read operation is done by the gradient

and average computation module at 50MHz clock rates. All the FIFOs have 32 bits

width but have different lengths as explained in Section 4.4.2.

aclr

rdclk

rdreq

wrclk

wrreq

data[31..0]

rdempty

wrfull

q[31..0]

DC_Fifo:SSRAM_Read1

Figure 4.11: Dual clock FIFO buffer module terminals.

RS232 FIFO buffers are used both for received and transmitted data. The RS232

communication bandwidth is low with respect to the reading and writing modules.

Both the reading and writing modules of FIFO operates at 50MHz, so single clock

FIFO memories are used. The buffers are 8 bits in width and 256 bytes in depth.

The buffers operates in show-ahead mode. In this mode the data in the front of

the buffer is continuously held in readdata port and can be read any time. After

reading the data, the read command should be initiated. One clock cycle after the

read command, the current data is removed and the next data in FIFO is put to the

44

read port. Before initiating the read command, the empty flag should be controlled

to be low, else a random data appears on the readdata bus.

4.5 Spatiotemporal Gradient and Optical Flow Vectors Local Aver-

age Computation

iCLK_50

iOF_DATA1_EMPTY

iOF_DATA2_EMPTY

iOF_DATA3_EMPTY

iPIX_DATA1_EMPTY

iPIX_DATA2_EMPTY

iRST_n

iTRIGGER

iPIX_DATA1[31..0]

iPIX_DATA2[31..0]

iOF_DATA1[31..0]

iOF_DATA2[31..0]

iOF_DATA3[31..0]

oGRAD_DATA_VAL

oOF_DATA1_RD_REQ

oOF_DATA2_RD_REQ

oOF_DATA3_RD_REQ

oPIX_DATA1_RD_REQ

oPIX_DATA2_RD_REQ

oEx[10..0]

oEy[10..0]

oEt[10..0]

oU_AVERAGE[10..0]

oV_AVERAGE[10..0]

Ex_computer_DMA:Gradient_Ex

Figure 4.12: Spatiotemporal gradient computation module terminals. This module
computes both spatiotemporal gradient values and the local averages of optical flow
vectors.

The optical flow computation algorithm requires spatiotemporal image gradients and

local averages of optical flow vectors to be computed. Horn and Schunck’s algorithm

approximates the numerical computation of spatiotemporal gradients using the for-

mula given in equations (2.19), (2.20) and (2.21). This module computes the terms

that are required to compute the optical flow vectors. Each pixel data used in compu-

tations are grayscale intensity values represented with unsigned 8 bits. The required

pixel data are read from the FIFO buffers of the DMA module that are connected to

the iPIX DATA1 and iPIX DATA2 ports. Spatiotemporal derivative computation in-

cludes the summation of 8 pixel values that are read from the pixel buffers. The pixels

with minus sign are converted to signed two’s complement format and summed. The

result of this summation requires 11 bits to prevent overflow. Then the summation

should be divided by 4. The division by 4 operation can be done using the arithmetic

right shift by 2 bits. However, since the data is represented in integer format, this

45

operation causes to lose precision on the result of the division. To prevent precision

lost, we decided to represent the spatiotemporal gradients in 11 bits fixed point for-

mat with 2 bits fraction. So, division by 4 is represented by putting the fraction point

between the second and third bits as shown in Fig. 4.13.

B0B1B2B3B4B5B6B7B8 B-1 B-2

Figure 4.13: Spatiotemporal gradients data representation in 11 bits fixed point for-
mat. 2 bits fraction is enough for representing the gradient results without any accu-
racy lost.

Another computation made by this module is the optical flow vectors average calcula-

tion. Horn and Schunck proposes the numerical approximation of optical flow vectors

local averages using equations (2.23) and (2.24). The computation of this equations on

FPGA requires divide by 6 and divide by 12 operations. However, FPGA implemen-

tation of division operation has drawbacks both because of its high resource usage and

low operation performance. The workaround can be to use a sequence of multiplica-

tion, shifting and addition operations to implement a division by a constant number.

Another approach is often to approximate the division operation. There are many

approximation methods used, such as look-up table or divide by powers of two. We

preferred to use the division by powers of two method. The error introduced by this

approximation is given in Table 5.2. The found results show that the approximation

error is far less than the error introduced by implementation of operations in fixed

point format. Therefore, we modified Horn and Schunck’s numerical approximation

for local averages of optical flow vectors given in equations (2.23) and (2.24) as seen

in equations (4.1) and (4.2) respectively.

1/8

1/8

1/8 1/8

1/81/8

1/8 1/8

-1

Figure 4.14: The weight matrix used for estimating local averages of optical flow
vectors on FPGA. The weights given in Fig. 2.4 are modified to simplify the division
operation and increase the accuracy.

46

ūi,j,k =
1
8

(ui−1,j,k + ui,j+1,k + ui+1,j,k + ui,j−1,k)

+
1
8

(ui−1,j−1,k + ui−1,j+1,k + ui+1,j+1,k + ui+1,j−1,k) (4.1)

v̄i,j,k =
1
8

(vi−1,j,k + vi,j+1,k + vi+1,j,k + vi,j−1,k)

+
1
8

(vi−1,j−1,k + vi−1,j+1,k + vi+1,j+1,k + vi+1,j−1,k) (4.2)

The implementation of divide by 8 operation on FPGA is a simple arithmetic right

shift operation by three bits. The summation of the 8 vectors are computed using

two’s complement signed representation similar to the computation of gradients as

explained above. Again, the division operations are conducted using fixed point rep-

resentation because of the precision considerations as explained above. The fixed point

representation of optical flow vector averages are done using 11 bits word length with

3 bits fraction as seen in figure Fig. 4.15.

B0B1B2B3B4B5B6B7 B-1 B-2 B-3

Figure 4.15: Optical flow vector local average data representation in 11 bits fixed
point format. 3 bits fraction is enough for representing the vector local average results
without any accuracy lost.

The computations and data flow is managed by a finite state machine. The state

diagram of the designed FSM is given in Fig. 4.16. The FSM first initializes the

registers such as pixel counters, read/write address counters, state variables, data

valid and control registers after reset is occurred. The FSM stays in the idle state

until the trigger signal comes. The trigger signal is generated by another module called

the trigger delay module. This module generates trigger signals with predetermined

delay times to start the modules in an order. For example, the DMA module should

be triggered earlier than the gradient and vector average computation module to fill

data buffers in advance for the gradient and vector average computation module to

start operating.

47

Prior to the computation, the buffers are controlled if they are empty or not and

the required data is captured from appropriate buffers. Computation of results cor-

responding to the first column of each row requires more data than the rest of the

columns. The gradient computation of first columns need 8 pixels and the vector

average computation needs 9 pixels to be read from buffers. The other columns uses

a part of the previous data read from buffers. So, the gradient computation requires

4 new pixel values and vector average requires 3 new vector values to be read from

buffers for the rest of the columns. This flow is regulated by the FSM using data

counters. When a result is computed, it is put on the output ports with appropriate

valid signals. The results are transferred to the optical flow computation module from

these ports.

48

T
R

IG
G

E
R

F
IN

A
L

L
A

T
C

H
1

L
A

T
C

H
2

W
A

IT
1

W
R

IT
E

_

R
E

S
U

L
T

2

W
R

IT
E

_

R
E

S
U

L
T

1
W

A
IT

2
W

R
IT

E
_

R
E

S
U

L
T

3
W

A
IT

3

ID
L

E

Reset

A
 t
ra

n
s
ie

n
t
s
ta

te
 f
o

r

re
s
ta

rt
in

g
 t
h

e
 c

o
m

p
u
ta

ti
o

n

o
n

 n
e
w

 l
in

e
 o

f
p

ix
e

ls
.

C
h

e
c
k
s
 i
f
th

e
 l
in

e
 e

n
d
 o

r

fr
a

m
e
 e

n
d
 h

a
s
 b

e
e

n

re
a

c
h
e

d
,
th

e
n
 s

w
it
c
h

e
s
 t
o

ID
L
E

 i
f
fr

a
m

e
 e

n
d

,
L
A

T
C

H
1

if
 l
in

e
 e

n
d
 o

r
L
A

T
C

H
2
 e

ls
e

.

L
a

tc
h

e
s
 t
h

e
 d

a
ta

 a
v
a
ila

b
le

in
 t
w

o
 i
P

IX
_

D
A

T
A

 a
n

d

th
re

e
 i
O

F
_
D

A
T

A
 b

u
ff
e

rs
.

R
e

q
u

e
s
ts

 n
e
x
t
d

a
ta

.

S
h
if
ts

 p
re

v
io

u
s
 d

a
ta

 a
n

d

la
tc

h
e
s
 t
h

e
 n

e
w

 d
a

ta

a
v
a

ila
b

le
 i
n
 t
w

o
 i
P

IX
_
D

A
T

A

a
n

d
 t
h

re
e

 i
O

F
_

D
A

T
A

b
u

ff
e
rs

.
R

e
q

u
e

s
ts

 n
e

x
t
d
a
ta

.

W
a
it
 s

ta
te

.
R

e
le

a
s
e

d
a

ta
 r

e
q
u

e
s
t
s
ig

n
a
ls

.

C
o

m
p
u

te
s
 g

ra
d

ie
n
ts

 a
n

d

lo
c
a
l
a

v
e
ra

g
e

s
 o

f
v
e
c
to

rs
.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l
.

S
h
if
ts

 u
s
e
d

 d
a
ta

.

C
o

m
p
u

te
s
 g

ra
d

ie
n
ts

 a
n

d

lo
c
a
l
a

v
e
ra

g
e

s
 o

f
v
e
c
to

rs

fo
r

fi
rs

t
p

ix
e

l
o
f
a

 l
in

e
.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l
.

S
ta

rt
s
 f

ro
m

ID
L

E
 s

ta
te

 a
ft
e

r
re

s
e
t

a
n

d

in
it
ili

z
e

 r
e

g
is

te
rs

.
S

w
it
c
h
e
s
 t
o
 T

R
IG

G
E

R

s
ta

te
 a

t
ri

s
in

g
 e

d
g

e
 o

f
th

e
 T

R
IG

G
E

R

s
ig

n
a

l,
 o

th
e
rw

is
e

 s
ta

y
s
 a

t
ID

L
E

.

W
a
it
 s

ta
te

.
R

e
le

a
s
e

d
a

ta
 v

a
lid

 s
ig

n
a

ls
.

C
o

m
p
u

te
s
 g

ra
d

ie
n
ts

 a
n

d

lo
c
a
l
a

v
e
ra

g
e

s
 o

f
v
e
c
to

rs
.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l.

W
a
it
 s

ta
te

.
R

e
le

a
s
e

d
a

ta
 v

a
lid

 s
ig

n
a

ls
.

F
ig

ur
e

4.
16

:
Sp

at
io

te
m

po
ra

l
gr

ad
ie

nt
co

m
pu

ta
ti

on
m

od
ul

e
F
SM

st
at

es

49

4.6 Optical Flow Computation

The final stage of optical flow computation is carried out in this module. This module

computes the equations of optical flow vectors given in equations (2.25) and (2.26).

The I/O ports of the optical flow computation module is given in Fig. 4.17.

iCLK_50

iGRAD_VAL

iRST_n

iEx[10..0]

iEy[10..0]

iEt[10..0]

iU_AVERAGE[10..0]

iV_AVERAGE[10..0]

oOF_DATA_VAL

oOF_DATA[31..0]

OF_computer_DMA:OF_HS

Figure 4.17: Optical flow computation module

The optical flow computation module is designed with a high performance pipelined

structure that operates at 50MHz clock frequency. The terms that are required to

compute these equations, spatiotemporal gradients and local optical flow vector av-

erages, are taken as inputs to the pipeline. These signals are applied the operations

that are given in Fig. 4.18 during their flow in the pipeline. The data valid signals

corresponding to the input data also flow in the pipeline stages but without being

exposed to any operation.

The pipeline consists of 15 stages. The first stage is the only stage that no mathemat-

ical operations are computed. At this stage the input terms of the pipeline stages are

registered to prevent glitches that may appear on the input signal lines and guarantee

the stable operation of the pipeline. At the next stage, the squares of spatial gradients

E2
x and E2

y are computed. In parallel to this operation, Ex ū and Ey v̄ multiplica-

tions are also computed at this stage. At the third stage, both the summations of

Ex ū + Ey v̄ + Et and α2 + E2
x + E2

y are computed. At fourth stage, the results of

the summations are exposed to a multiplication operation with operands Ex and Ey

respectively. The fifth stage consists of two division operations which compute the

expressions given in (4.3) and (4.4).

50

Ex

Ey

Et

uavg

vavg

x
2

x
2

a

b

a

b

a

b

a

b

2

11

11

11

19

19

11

22

22

11

8

8

11

21

24

32

32

32

32

u

v

32

32

Figure 4.18: Optical flow computation module data flow diagram

Ex (Exū + Eyv̄ + Et)
α2 + E2

x + E2
y

(4.3)

Ey (Exū + Eyv̄ + Et)
α2 + E2

x + E2
y

(4.4)

As discussed in Section 4.5, the division operation is costly in terms of delay it in-

troduce to the circuit. The 32 bits division operation can only work at a maximum

frequency of 9 MHz. It is not possible to include this division operation in our pipeline

that operates at 50 MHz. So each division operation is divided into 10 pipeline stages.

This increases the maximum clock rate that can be applied to the division module to

55 MHz. So, the division operation with 10 pipeline stages can be included to our

main pipeline design. The division operation starts in the fifth stage and the result of

this operation comes out at the 14th stage of the pipeline. At 15th stage, the optical

flow vectors u and v are computed by a subtraction operation. Subtracting the result

of the division operation given in (4.3) from ū gives u vector and similarly, subtracting

the result of the division operation given in (4.4) from v̄ gives v vector values. The

51

data valid signal of the corresponding result comes out from the end of the pipeline

together with the resultant vector values. Finally, the computed vectors are written

to the write FIFO buffer and then written back to the optical flow vector locations in

the SSRAM by the DMA module explained in Section 4.4.2.

4.7 PC Communication

The FPGA implementation of the optical flow computation is tested on some sample

image sequences available. To be able to compute the optical flow for these sequences

on FPGA, the frames should be send to the FPGA to be stored in SSRAM. When

the computation process on FPGA is finished, the results stored in SSRAM should

be send back to the computer to visualize and compare with the PC implementation.

So, a two way communication should be established between PC and the FPGA.

RS232, USB and Ethernet connectors are available on our FPGA development board

for communication use with the PC. The maximum data rates of these protocols are

listed in Table 4.3.

Table 4.3: Maximum data rates of some communication protocols.

Communication Protocol Maximum Data Rate

RS232 (Practical) 920 kb/s

Ethernet (Theoretical) 100 Mb/s

USB (Theoretical) 480 Mb/s

Although the interfaces of the listed communication protocols are available on our

fpga board, the hardware controllers should be designed in order to send and receive

data which is a highly time consuming task. Altera provides RS232 controller free

of charge with the development board. The drawback of RS232 communication over

others is its low data rate. Although the amount of data to be transferred between

the PC and the FPGA is large, the transfer can be done offline for testing purposes.

So, despite its low data rate, we preferred to use RS232 communication to be able to

put our efforts more on developing the performance of the design.

52

4.7.1 UART Controller

The RS232 UART controller used in the design is provided by Altera. The controller

signal interface is compatible with Altera specific bus structure called the Avalon bus.

The sent and received data are stored in 128 byte single clock FIFO buffers. The

maximum baud rate was adjustable up to 115200. To increase the data throughput

we modified the module to work at 460800. Along with the baud rate increase, the

128 byte FIFO buffers are also increased to 256 bytes to prevent data losses caused by

buffer underrun occurrence. At this baud rate the transmission of a 256x256 pixels

image from PC(Matlab) to FPGA takes about 1.4 seconds which is reasonable for

offline testing purposes. We also tested module at 921600 baud rate but saw that

the error rate increases substantially. The block diagram of the controller is given in

Fig. 4.19.

UART_RXD

address

chipselect

clk

read

reset

write

byteenable[3..0]

writedata[31..0]

UART_TXD

readdata[31..0]

write_space[7..0]

Altera_UP_Avalon_RS232:Serial1

Figure 4.19: RS232 controller module terminals.

4.7.2 RS232 to SSRAM Data Transfer Module

The computation of optical flow algorithm requires two image frames to be processed.

In our design the image frames are assumed to be stored in predefined address locations

of SSRAM and read from there by the DMA module. This makes the design flexible to

process images from different sources. The images can be written to the SSRAM that

are, captured from a camera, copied from another mass storage device or transferred

from a PC. In this design we implemented a module that receives the image frames

from PC through RS232 communication and stores them in the SSRAM for further

53

processing. We also designed a module to capture images from a camera and store to

SSRAM that we plan to use in our future work.

The image sequence is sent frame by frame from RS232 channel by a routine written in

Matlab. The received data is written to the RX FIFO buffer by the RS232 controller

module. The RS232 to SSRAM transfer module periodically polls the RS232 receive

buffer counter to check if there is data available. The polling period is determined by

the polling clock divider as shown in Fig. 4.20. The buffer counter signal has a latency

of 2 clock cycles. So, the polling period should be more than two clock cycles, else the

buffer counter may indicate wrong number of data available in the buffer.

iCLK_50

iRST_n

iPOLLING_CLK_DIV[15..0]

iRS232_READDATA[7..0]

iRS232_RXBUFFER_CNT[18..0]

iMAX_CNT[18..0]

oDATA_VALID

oRS232_READNEXT

oRS232_RXDATA[7..0]

oRXDATA_CNT[18..0]

oPACKET_CNT[15..0]

RS232_Rx_Buffer_Read:RxRead

Figure 4.20: RS232 to SSRAM data transfer module terminals. This module acts as
an interface for transferring image frames read from RS232 controller and written to
SSRAM memory.

The module runs a FSM with a state diagram given in Fig. 4.21. FSM starts at idle

state when the the module recovers from reset. At the rising edge of the polling clock,

FSM switches to the polling state to check the RS232 receive buffer counter. If there

is data available in the buffer, it is latched and the read command is send to the

RS232 controller to delete that data from the buffer. Then the received data counter

increments by one and the data is put on the output data port with data valid signal

asserted. When the received data counter is equal to the defined maximum counter

value, the packet count increments by one, indicating that one data packet(one frame

in our case) is completely received. The packet count and the received data count are

also used as the address location of the data to be written in SSRAM. The layout of

the frame data stored in SSRAM is given in Fig. 4.7 of Section 4.4.2.

54

S
ta

rt
s
 f

ro
m

ID
L

E
 s

ta
te

a
ft
e
r

re
s
e

t
a

n
d
 i
n

it
ili

z
e

re
g

is
te

rs
.
S

w
it
c
h
e

s
 t
o

P
O

L
L
IN

G
 s

ta
te

 a
t
ri
s
in

g

e
d

g
e

 o
f
th

e
 p

o
lli

n
g
 c

lo
c
k

o
th

e
rw

is
e
 s

ta
y
s
 a

t
ID

L
E

.

C
h

e
c
k
s
 t
h

e
 R

S
2
3

2

re
c
e

iv
e

 b
u
ff
e

r
c
o

u
n

te
r

.
If

th
e
re

 a
re

 m
o
re

 t
h
a

n

2

b
y
te

s
 t
h
e
n

 s
w

it
h
e

s
 t
o

R
E

A
D

 s
ta

te
 e

ls
e

s
w

it
c
h

e
s
 b

a
c
k
 t
o
 I
D

L
E

.

A
s
s
e
rt

s
 t
h
e

 d
a
ta

 v
a
lid

fl
a
g

 a
n
d

 r
e

q
u

e
s
ts

n
e

x
t
d
a

ta
 f
ro

m
 R

S
2
3

2

re
c
e

iv
e

 b
u
ff
e

r
.

L
a

tc
h

e
s
 d

a
ta

 f
ro

m

F
IF

O
 b

u
ff
e
r
.
C

a
lc

u
la

te
s

th
e
 p

ix
e
l
a

n
d

 f
ra

m
e

n
u

m
b
e

r
.

L
a

tc
h

e
s
 d

a
ta

 f
ro

m
 F

IF
O

b
u

ff
e
r.

 C
a
lc

u
la

te
s
 t
h
e

p
ix

e
l
a

n
d

 f
ra

m
e

 n
u
m

b
e

r
.

P
u
ts

 f
ir

s
t
d

a
ta

 t
o

o
R

S
2
3

2
_
R

X
D

A
T

A
 p

o
rt

;

p
ix

e
l
a

n
d

 f
ra

m
e

 n
u
m

b
e

r

to
 t
h

e
 o

R
X

D
A

T
A

_
C

N
T

a
n

d
 o

P
A

C
K

E
T

_
C

N
T

p
o

rt
s
.

A
s
s
e
rt

s
 t
h
e

 d
a
ta

 v
a
lid

fl
a
g

 a
n
d

 d
e
le

te
s
 d

a
ta

fr
o

m
 R

S
2

3
2

 r
e
c
e

iv
e

b
u

ff
e
r.

 S
w

it
c
h
e
s
 t
o
 I
D

L
E

s
ta

te
.

ID
L
E

P
O

L
L
IN

G
N

E
X

T
P

U
T

_
A

D
R

2
R

E
A

D
P

U
T

_
A

D
R

W
R

IT
E

_
A

D
R

2
R

e
s
e

t

F
ig

ur
e

4.
21

:
R

S2
32

to
SS

R
A

M
da

ta
tr

an
sf

er
m

od
ul

e
F
SM

st
at

es

55

4.7.3 SSRAM to RS232 Data Transfer Module

After the optical flow computation process is terminated, the optical flow data stored

in SSRAM is transfered to the PC (Matlab) through RS232 communication. The

interface between the SSRAM controller and the RS232 controller is handled by this

module. The I/O port diagram of the module can be seen in Fig. 4.22.

The module is designed using a FSM with 13 states. The state transition diagram of

the FSM is given in Fig. 4.23. After the reset signal, the FSM starts from idle state

and stays until the trigger signal comes. Then the given address interval is started

to be read from SSRAM. Each address location of SSRAM stores 4 bytes of data,

so the read operation fetches all of the 4 bytes at once. Then the bytes selected by

the “byteenable” port of the module are written to the RS232 buffer. In our design

all of the 4 bytes are used to store optical flow data. So, every read command from

SSRAM is followed by 4 write command to the RS232 controller. Before initiating the

write command to the RS232 buffer, the write space available in the buffer should be

checked. One important point is to consider that the write space signal has a latency

of 2 clock cycles. The buffer may be full when write space signal tell that there are

two spaces available. So, the write space signal should be checked to be more than two

spaces available in the buffer to prevent buffer overflow. The FSM continues to read

and send the data until the last address location of SSRAM in the specified interval is

written to the RS232 buffer. Then it swithes to the idle state until next trigger signal

comes.

iCLK_50

iRST_n

iTRIGGER

iSSRAM_READDATA[31..0]

iRS232_WRITE_SPACE[7..0]

iMIN_ADR[18..0]

iMAX_ADR[18..0]

iBYTE_ENABLE[3..0]

oDATA8_VAL_PULSE

oSSRAM_READ

SSRAM_Read:toRS232tx

oSSRAM_READDATA8[7..0]

oSSRAM_READ_ADR[18..0]

Figure 4.22: SSRAM to RS232 data transfer module

56

C
h

e
c
k
s
 t
h

e
 R

S
2
3

2

b
u

ff
e
r

s
p
a

c
e

.
If
 n

o
t

fu
ll

s
w

it
c
h
e

s
 t
o
 R

E
A

D

s
ta

te
 e

ls
e

 I
D

L
E

.

In
c
re

m
e

n
ts

 S
S

R
A

M

a
d

d
re

s
s
.
If
 e

n
d

 a
d
d

re
s
s
 i
s

re
a

c
h
e

d
 s

w
it
c
h

e
s
 t
o

 I
D

L
E

e
ls

e
 T

R
IG

G
E

R
 s

ta
te

.

M
a
s
k
s
 t
h

e
 s

e
c
o

n
d

 b
y
te

a
n

d
 p

u
ts

 i
t
to

 d
a

ta
 b

u
s

.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l

fo
r

th
e

 s
e

c
o
n

d
 b

y
te

.

M
a
s
k
s
 t
h

e
 t
h

ir
d

 b
y
te

a
n

d
 p

u
ts

 i
t
to

 d
a

ta
 b

u
s

.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l

fo
r

th
e

 t
h
ir

d
 b

y
te

.

M
a
s
k
s
 t
h

e
 f
o

u
rt

h
 b

y
te

a
n

d
 p

u
ts

 i
t
to

 d
a

ta
 b

u
s

.

S
ta

rt
s
 f

ro
m

ID
L

E
 s

ta
te

 a
ft
e

r

re
s
e

t
a

n
d

 i
n
it
ili

z
e
 r

e
g

is
te

rs
.

S
w

it
c
h

e
s
 t
o

 T
R

IG
G

E
R

 s
ta

te
 a

t

ri
s
in

g
 e

d
g

e
 o

f
th

e
 T

R
IG

G
E

R

s
ig

n
a

l,
 o

th
e
rw

is
e

 s
ta

y
s
 a

t
ID

L
E

.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

 s
ig

n
a
l

fo
r

th
e

 f
o
u

rt
h

 b
y
te

.

M
a
s
k
s
 t
h

e
 f
ir

s
t
b
y
te

 a
n

d

p
u

ts
 i
t
to

 d
a
ta

 b
u
s

.

A
s
s
e
rt

s
 d

a
ta

 v
a
lid

s
ig

n
a

l
fo

r
th

e
 f
ir

s
t
b

y
te

.

T
R

IG
G

E
R

A
D

R
_

IN
C

R
E

M
E

N
T

B
Y

T
E

2
B

Y
T

E
2

_

V
A

L
ID

B
Y

T
E

3
B

Y
T

E
3

_

V
A

L
ID

B
Y

T
E

4

ID
L

E

Reset

L
A

T
C

H

B
Y

T
E

1
B

Y
T

E
1

_

V
A

L
ID

B
Y

T
E

4
_

V
A

L
ID

R
E

A
D

A
s
s
e
rt

s
 r

e
a
d

s
ig

n
a

l
to

 S
S

R
A

M
.

L
a

tc
h

e
s
 3

2
 b

it
s
 o

f
d
a

ta

re
a

d
 f
ro

m
 S

S
R

A
M

.

F
ig

ur
e

4.
23

:
SS

R
A

M
to

R
S2

32
da

ta
tr

an
sf

er
m

od
ul

e
F
SM

st
at

es

57

CHAPTER 5

HARDWARE DESIGN PERFORMANCE ANALYSIS

AND TEST RESULTS

In this chapter we present the performance analysis of the proposed hardware design

in terms of computation speed, power consumption and accuracy. The performance

of the proposed hardware is analyzed both in terms of individual module and overall

performance evaluations. The designed system is tested with some of the available

test sequences that are frequently used for performance evaluations of the optical

flow techniques in literature. Finally, we discuss the performance outcomes and make

comments on the results to guide future improvements of the proposed design and

similar hardware implementations.

5.1 Tests With Standard Image Sequences

5.1.1 Description of Standard Data Set

Standard test image sequences are used for evaluating the performance of the hardware

implementation. We used three different real and synthetic image sequences that are

frequently used in literature. The test sequences are selected from the ones that has

a resolution lower than the QVGA(320x240) format. The descriptions of the selected

sequences are described below according to the specifications given in [11].

The first test sequence is called “Rubik’s cube” sequence given in Fig. 5.4. This real

image sequence set consists of 20 image frames with 256x256 pixels resolution. In this

set of images there is a motion based on the counter-clockwise rotation of a Rubik’s

58

cube on a turntable. The motion field induced by the rotation of the cube generates

pixel velocities of less than 2 pixels/frame. The velocities of the pixels on the edge of

the turntable is between 1.2 to 1.4 pixels/frame and the ones on the cube are between

0.2 and 0.5 pixels/frame.

The second real image sequence is called “Hamburg Taxi” sequence whose 13th frame

is given in Fig. 5.9. The images have a resolution of 256x190 pixels. The images are

recorded by a fixed camera looking at a street scene with three moving cars and one

walking pedestrian. A car in the left is driving to the right and a van in the right is

driving to the left at a speed of 3 pixels/frame. The taxi in the middle is turning the

corner at a speed of 1 pixel/frame and there is a pedestrian walking at 0.3 pixel/frame.

The last sequence is a synthetic one called “Translating Tree” sequence. It includes 40

image frames with 150x150 pixels resolution. The 8th frame of this sequence can be

seen in Fig. 5.12. In this sequence the motion is based on the movement of a camera

from right to left while looking at a constant scene including a tree in the front side.

This movement yields a motion field between 1.73 and 2.26 pixels/frame.

5.1.2 Performance Measure

In evaluating the results obtained from the hardware computation of standard image

sequences, we used a well known set of performance measures presented by Barron

et al. given in [11] and a measure given in [30]. The first error measure is called

“angular error” (AE) defined by Barron et al. This measure defines the angular error

between a test flow vector v = (u, v) and the reference flow vector vr = (ur, vr). These

vectors can be defined in space-time representation as (u, v, 1) and (ur, vr, 1) in units

of (pixel, pixel, frame). The angular error between the two vectors can be computed

by equation given in (5.1).

AE = arccos

(
1 + u ur + v vr√

1 + u2 + v2
√

1 + u2
r + v2

r

)
(5.1)

This measure is applied to all vectors in the vector field of an image sequence. Av-

eraging the angular errors for all vectors gives a measure for the whole vector field

called “average angular error” (AAE). The standard deviation of the angular error of

59

vectors is also used for evaluation.

Another criteria of accuracy is the “endpoint error” (EE) defined in [30] that compares

the distances between the endpoints of the flow vectors. It can be calculated using

equation (5.2).

EE =
√

(u− ur)2 + (v − vr)2 (5.2)

We would like to clearly state here that we use this measures to compare the errors

between the fixed point FPGA hardware implementation with the floating point PC

implementation. The errors between the computed flow field and the ground truth

of an image sequence is related with the performance of the algorithm itself and it is

outside of the scope of this thesis. So, the reference vectors correspond to the vector

field computed by a floating point implementation on PC and test vectors correspond

to the fixed point FPGA implementation.

5.1.3 Results

We tested our hardware design using the standard test sequences explained in Sec-

tion 5.1.1. The output optical flow vector field and corresponding error rates with

respect to the floating point implementation on a PC is presented.

5.1.3.1 Rubik’s Cube Sequence

We used the first and second frames of Rubik’s cube sequence as an input. In the

design, it is possible to capture the outputs of the sub-modules for debugging and

evaluation purposes. In Fig. 5.1, Fig. 5.2 and Fig. 5.3, the outputs of spatiotemporal

gradient computation module is given. The computation of Ex, Ey and Et on hardware

is done using a fixed point representation with 11 bits word length and 2 bits fraction.

This representation is selected to compute the gradients without any errors or accuracy

lost. The gradient outputs are transferred to Matlab and compared to the double

precision floating point computation case. The results are confirmed to have no errors.

60

Figure 5.1: Output of the Ex gradient computation on FPGA hardware. The pixel
values are inverted to get better visualization. White represents the lowest value and
black represents the highest value.

Figure 5.2: Output of the Ey gradient computation on FPGA hardware. The pixel
values are inverted to get better visualization. White represents the lowest value and
black represents the highest value.

61

Figure 5.3: Output of the Et gradient computation on FPGA hardware. The pixel
values are inverted to get better visualization. White represents the lowest value and
black represents the highest value.

Figure 5.4: 1st frame of Rubik’s cube sequence. The turntable rotates counter-
clockwise with the Rubik’s cube on top of it.

62

The computed error-free spatiotemporal gradients are input to the optical flow func-

tion computation module. The optical flow field output of this module for Rubik’s

cube sequence is given in Fig. 5.5. Throughout the computations in this module, the

word lengths are readjusted at every operation to preserve the accuracy. The division

operation at the end is computed using 32 bits numerator and 24 bits denominator.

However, the result has finite fraction and it stores the real error-free result only if

the remainder is zero. If the remainder is nonzero, the result is rounded to the nearest

fixed point number.

Figure 5.5: Optical flow vectors computed on FPGA hardware for Rubik’s cube se-
quence.

The FPGA computation of Rubik’s cube optical flow field is subtracted from the

reference flow field computed in Matlab. The histogram of the erroneous flow vectors

63

are shown in Fig. 5.6. The bar graphs indicate the number of flow vectors that

are within the error intervals specified at the underside of it. The shown error values

correspond to the center points of error intervals that are within±0.005 of the specified

values. As shown from the graph, the histogram is piled mostly around the zero error.

The maximum error is ±0.03125 which corresponds to the fixed point resolution of 4

bits fraction and the result rounding.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Error

N
um

be
r

of
 V

ec
to

rs

u
v

Figure 5.6: Error histogram of optical flow vectors for Rubik’s cube sequence. Error
values indicate the center points of ±0.005 error intervals

The accuracy measures given in Section 5.1.2 is calculated for the Rubik’s cube se-

quence. The total error results are listed in Table 5.1. This table presents the angular

error and end point error rates compared to the reference vector field. This results

should be read as the deficiency caused by the approximations and precision lost

between the fixed point hardware computation and the floating point PC computa-

tion. The errors in FPGA implementation over the PC implementation are caused

by the approximation made in computation of local averages of optical flow vectors

as explained in Section 4.5. The errors introduced by this approximation alone is

given in Table 5.2. It can be easily seen that the contribution of this approximation

is negligible with respect to the total error. Therefore, the main source of error in

the computations originate from the fixed point implementation of division operation

64

explained in Section 4.6 in detail.

Table 5.1: Total error rates of Rubik’s cube sequence

Error Measure Mean STD

Angular Error 1.002◦ 0.546◦

Endpoint Error 0.018 0.010

Table 5.2: Partial error rates of Rubik’s cube sequence caused by the approximation
in computation of local averages of optical flow vectors.

Error Measure Mean STD

Angular Error 0.079◦ 0.234◦

Endpoint Error 0.002 0.007

The optical flow vectors are represented by a fixed point number with 4 bits fraction

and with rounding. We analyzed the error rates when the vectors are represented by

less number of fraction bits or in integer. Table 5.3 shows the error rates of Rubik’s

cube sequence versus number of fraction bits used for fixed point representation. Ref-

erencing the error rates listed in Table 5.3, one can decide on the number of fraction

bits to be used in the design according to the application and the required accuracy.

Although some sensitive applications may require more accurate results, we think that

the achieved accuracy is enough for most of the applications.

Table 5.3: Error rates of Rubik’s cube sequence versus number of fraction bits used
to represent the optical flow vector values.

Fraction 0 bits 1 bit 2 bits 3 bits 4 bits 4 bits +

(Int.) rounding

Angular Error(Mean) 32.211◦ 19.290◦ 10.223◦ 5.149◦ 2.563◦ 1.002◦

Angular Error(STD) 20.170◦ 12.058◦ 6.169◦ 2.857◦ 1.246◦ 0.546◦

Endpoint Error(Mean) 0.765 0.381 0.189 0.094 0.047 0.018

Endpoint Error(STD) 0.495 0.236 0.110 0.050 0.034 0.010

65

0 bits 1 bit 2 bits 3 bits 4 bits 4 bits+rounding
0

10

20

30

40

50

60

Fraction

A
ng

ul
ar

 E
rr

or

Figure 5.7: Angular error rate versus number of fraction bits used to represent the
optical flow vector values.

0 bits 1 bit 2 bits 3 bits 4 bits 4 bits+rounding
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fraction

E
nd

po
in

t E
rr

or

Figure 5.8: Endpoint error rate versus number of fraction bits used to represent the
optical flow vector values.

66

The graph of error rates versus fraction bits are shown in Fig. 5.7 and Fig. 5.8. As

seen from the graphs, integer representation yields high error rates on the results

because, most of the optical flow vectors are generally smaller than 1 pixel/frame. As

expected, the increasing number of fraction bits decreases the error rates. It can be

seen that error increases exponentially for every bits of fraction. However, the number

of fraction bits has an upper limit. The larger word lengths with more fraction bits

requires more memory to be stored in. In our case, we are constrained by the storage

of data in SSRAM. On the other hand, operands with increasing number of word

lengths also increases the required time for an arithmetic operation to produce the

result. This will decreases the computation performance of the hardware. An example

table of maximum operating speed versus operands’ word lengths of a signed division

operation is given in Table 5.4. Given values correspond to operating frequencies

without pipelined operation.

Table 5.4: Maximum operating frequency of a signed division operation versus the
word length of its operands.

Word Length Maximum Frequency

8 bits 56.09 MHz

12 bits 46.56 MHz

14 bits 34.80 MHz

16 bits 28.18 MHz

18 bits 23.71 MHz

20 bits 17.43 MHz

26 bits 13.21 MHz

32 bits 9.05 MHz

5.1.3.2 Hamburg Taxi Sequence

This is a real test sequence. The 13th frame of the sequence is given in Fig. 5.9.

The optical flow field results obtained from the FPGA implementation is given in

Fig. 5.10. and the error histogram of the optical flow vectors can be seen in Fig. 5.11.

The error values are larger than the previous test sequence results in this case. This

67

Table 5.5: Error rates of Hamburg Taxi sequence caused by the fixed point implemen-
tation.

Error Measure Mean STD

Angular Error 1.319◦ 0.509◦

Endpoint Error 0.024 0.009

sequence includes comparatively smaller and larger motion vectors with respect to

the previous Rubik’s cube sequence. So, flow vectors with small magnitude yields

more error in the computation because of the limited resolution of the fixed point

representation. The corresponding angular error and endpoint error results are listed

in Table 5.5.

Figure 5.9: 13th frame of Hamburg Taxi sequence. There are 4 moving objects. The
car on the left and the van on the right are driving in their way, the taxi in the middle
is turning the corner and the pedestrian is walking on the pavement.

68

Figure 5.10: OF vectors computed on FPGA hardware for Hamburg Taxi sequence.

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Error

N
um

be
r

of
 V

ec
to

rs

u
v

Figure 5.11: Error histogram of optical flow vectors for Hamburg Taxi sequence. Error
values indicate the center points of ±0.005 error intervals.

69

5.1.3.3 Translating Tree Sequence

The last test sequence we use is a synthetic one called Translating Tree sequence. The

8th frame of this sequence is given in Fig. 5.12.

In this sequence the camera translates at a constant distance and speed with respect to

the scene. This yields a uniform motion field with small velocity variations. The flow

vectors of translating tree sequence are close to integer displacements. This reduces

the error caused by fixed point representation of vectors. Therefore, the resultant

angular error and end point error results for this sequence are lower than the previous

Hamburg Taxi sequence. The angular and endpoint error rates are shown in Table 5.6.

The error histogram graph of the flow vectors are given in Fig. 5.13.

Figure 5.12: 8th frame of synthetic Translating Tree sequence. The camera is moving
from right to left while looking at a constant scene including a tree in the front side.
The motion field has a velocity ranging from 1.73 and 2.26 pixels/frame.

70

Because of the purely translational motion field at x direction, the apparent motion

at y direction is zero. Therefore, the error rates of v vectors are lower than the u

vectors. Ideally, if the algorithm could estimate the ground truth motion, then all

the computed v vectors should be zero. Since, the representation of zero in our fixed

point format has no error, the error rates corresponding to v vectors are expected to

be zero also. However, the computed v vectors have representation errors since the

algorithm yields nonzero values for some v vectors.

Table 5.6: Error rates of Translating Tree sequence

Error Measure Mean STD

Angular Error 1.045◦ 0.550◦

Endpoint Error 0.023 0.009

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Error

N
um

be
r

of
 V

ec
to

rs

u
v

Figure 5.13: Error histogram of optical flow vectors for Translating Tree sequence.
Error values indicate the center points of ±0.005 error intervals.

71

Figure 5.14: Optical flow vectors computed on FPGA hardware for Translating Tree
sequence. Four regions are zoomed in to provide a closer view of the optical flow field
computed on FPGA.

72

5.2 Performance Analysis of Designed Hardware

5.2.1 Resource Usage

The resource usage of a design is one of the performance measures of the hardware.

The proposed design can only be realized if the technology of the day is able to

supply the required resources of the design. On the other hand, even if there are

hardware platforms that has more resources than the required resources, the price of

the hardware platform is directly related with the resource it provides. Since optical

flow computation is generally a pre-processing step of a computer vision system, it

is even better if there is enough resources left for the implementation of further high

level tasks.

The resource usage of an FPGA hardware design implies the use of programmable logic

elements for implementing logic functions, the embedded memory blocks for storage

of data to be processed, the embedded DSP blocks such as hardware multipliers for

the implementation of arithmetic operations, PLL blocks to generate the required

clock signals for the operation of synchronous design modules and the I/O pins used

for interfacing with devices outside the FPGA chip. The floorplan of the designed

hardware fitted on a EP2C70 device is given in Fig. 5.17.

In Table 5.7, the resource usage of the proposed hardware is listed with the corre-

sponding resources available on the FPGA device included in the development board

we used. The device resource utilization percentages are also given at the last column

of the table.

Table 5.7: Resource usage of the overall design and available resources on the FPGA
device.

Design usage EP2C70 Resources Utilization

Logic Elements 8,086 68,416 11.9 %

Embedded Memory bits 151,772 1,152,000 13.2 %

Hardware Multipliers 6 150 4.0 %

PLL Blocks 1 4 25.0 %

I/O Pin Count 262 622 42.1 %

73

As seen from Table 5.7, our proposed design utilize far less than the half of the

resources available on EP2C70. Low resource usage is beneficial to implement high

level tasks on the same device. Also, another option may be to select a cheaper device

with less resources and lower power consumption.

The overall resource usage, is partitioned according to the amount of resources utilized

by individual design modules. The resource usage of modules is analyzed in terms

of the number of Logic Elements (LE), registers, look up tables (LUT), embedded

memory bits and I/O pins used and their percentages to the the whole design. In

Table 5.8, resource utilization of individual design modules are listed. In Fig. 5.15

and Fig. 5.16 the distribution of utilization percentages are shown on a pie chart.

The highest number of logic elements are used by the optical flow function computation

module. It consumes nearly half of the LEs used by the whole design. As we explained

in Section 4.6, this module includes many arithmetic operations. Since the word

lengths of operands are kept large to preserve accuracy, the mathematical operations

need a high amount of logic resources to be implemented.

Embedded memory bits are mostly used by the fifo buffers of DMA module for storing

data that is read from and written to the SSRAM. The hardware multipliers are used

by arithmetic operations in computation of the optical flow equation. Most of the

I/O pins of the device are used by the SSRAM chip. The rest is used by RS232

communication, clock inputs, LEDs, switches and push-buttons.

LE Usage

11%

49%
22%

1%3% 2%
1%

6%

5%

Optical Flow Computer

Gradient Computer

SSRAM DMA

RS232 Controller

RS232 to SSRAM

SSRAM to RS232

Glue Logic

Reset

SSRAM Controller

Figure 5.15: LE usage percentage of modules

74

Table 5.8: Resource usage of individual design modules

Module Name
LE Register LUT Memory Pins

Usage Usage Usage Usage Usage

1 Optical Flow Comp.
3,976 1,282 2,694 220 0

(49.2%) (40.2%) (55.0%) (0.1%)

2 Gradient Computation
1,754 424 1,330 0 0

(21.7%) (13.3%) (27.2%) (0.0%)

3 SSRAM DMA
874 662 212 147,456 0

(10.8%) (20.8%) (4.3%) (97.2%)

4 RS232 Controller
468 332 136 4,096 2

(5.8%) (10.4%) (2.8%) (2.7%)

5 RS232 to SSRAM
424 202 222 0 0

(5.2%) (6.3%) (4.5%) (0.0%)

6 SSRAM to RS232
250 156 94 0 0

(3.1%) (4.9%) (1.9%) (0.0%)

7 Glue Logic
162 58 104 0 160

(2.0%) (1.8%) (2.1%) (0.0%)

8 Reset
96 66 30 0 1

(1.2%) (2.1%) (0.6%) (0.0%)

9 SSRAM Controller
82 6 76 0 69

(1.0%) (0.2%) (1.6%) (0.0%)
TOTAL 8,086 3,188 4,898 151,772 232

Memory Usage

97.2%
0.1%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

2.7%

Optical Flow Computer

Gradient Computer

SSRAM DMA

RS232 Controller

RS232 to SSRAM

SSRAM to RS232

Glue Logic

Reset

SSRAM Controller

Figure 5.16: Memory usage percentage of modules

75

Figure 5.17: Floorplan of the designed hardware fitted on a EP2C70 device. The
schematic shows the layout of the resources on the chip that are used to implement
the design. The color legend is given next to the figure. The darker color of a particular
resource indicates the higher usage ratio of that resource.

76

5.2.2 Power Consumption

Power consumption is an important performance measure of an hardware for utiliza-

tion in mobile robotic platforms. In this section, we present the power consumption of

the proposed design. The power usage of hardware is analyzed in terms of dynamic,

static and I/O blocks power dissipation.

Dynamic power consumption is caused by the transition of signals. To change a logic

state of a wire, the parasitic capacitance should be charged to the new voltage level of

the logic state by drawing the required current from the supply. So, dynamic power

consumption is higher on nodes with high switching rates. On the contrary, static

power consumption is independent from the switching behavior of the circuit. It is

mainly caused by the leakage currents and remains constant even when the circuit

is not switching(idle). It is only affected by the number of logic used in the circuit.

More resource usage yields an increase in the static power consumption too.

Table 5.9: Total power dissipation

Core Dynamic Thermal Power Dissipation 216.55 mW

Core Static Thermal Power Dissipation 165.79 mW

I/O Thermal Power Dissipation 462.04 mW

Total Thermal Power Dissipation 844.38 mW

The power consumption is related with the voltage level of the power supplies and

the currents drawn from them. There are two different supply voltages used by the

hardware. To decrease the power consumption, lower voltage levels are used for in-

ternal logic and to interface other devices to the FPGA higher voltage levels are used

for I/O pins. The voltage levels and the currents drawn by the designed hardware is

listed in Table 5.10.

As seen from Table 5.9 and Table 5.10, more than half of the power consumption is

caused by the I/O terminals of the FPGA. This is mainly caused by the high supply

voltage level of the I/O pins and the number of I/O channels utilized for connection

interface of external devices such as SSRAM. To reduce the power consumption, the

77

Table 5.10: Current drawn from supply pins

VCC Core (1.2V) VCC I/O (3.3V)

Dynamic Current Drawn 189.63 mA 118.95 mA

Static Current Drawn 148.43 mA 13.59 mA

TOTAL Current Drawn 338.06 mA 132.54 mA

number of I/O pins used should be decreased. The use of an SSRAM memory with 16

bits interface instead of 32 bits can decrease the power consumption. However, there

is again a trade off between the power consumption and the computation performance.

This will decrease the memory bandwidth and eventually the computation time will

increase too.

The overall power consumption is partitioned between the sub-design modules in Ta-

ble 5.11 and the percentages are visualized on pie charts given in Fig. 5.18, Fig. 5.19

and Fig. 5.20. Table 5.11 indicates the dominant modules effecting the whole power

consumption the most. As seen from the table, DMA module has the highest power

consumption both in terms of dynamic, static and routing power consumptions. Al-

though it does not use the highest resources amongst the other modules, the main

reason of its high dynamic power consumption is its high operating frequency of 200

MHz. The high static power consumption is caused by the high resource usage of this

module. Although its LE usage is not as much as some other modules, it utilizes lots

of memory resources. The main reason of static power consumption of this module

is the high leakage currents of embedded memory blocks. Using that much memory

resource also causes many routing connections to be made between the module and

the memory blocks. This results in a high amount of routing power consumption

together with the high operating frequency.

Another module that operates at 200 MHz is the SSRAM controller. However, it can

be seen from the table that it has the lowest dynamic and static power consumption.

This is because of the small amount of combinational and sequential structures used.

This module mostly include routing interfaces between SSRAM ports and the modules

accessing the SSRAM. So this results in a high routing power consumption when

78

Table 5.11: Power consumption of individual modules

Module Name
Total Power Dynamic&Static Routing Pow.
Consumption Consumption Consumption

1 SSRAM DMA
236.88 mW 179.49 mW 57.39 mW

(61.9%) (72.0%) (43.1%)

2 Optical Flow Comp.
55.90 mW 29.44 mW 26.46 mW
(14.6%) (11.8%) (19.9%)

3 Gradient Comp.
37.73 mW 20.28 mW 17.46 mW

(9.9%) (8.1%) (13.1%)

4 Glue Logic
17.50 mW 5.73 mW 11.77 mW

(4.6%) (2.3%) (8.6%)

5 Reset
13.68 mW 0.69 mW 12.99 mW

(3.6%) (0.3%) (9.8%)

6 RS232 Controller
9.87 mW 7.61 mW 2.26 mW
(2.6%) (3.1%) (1.7%)

7 RS232 to SSRAM
4.55 mW 2.87 mW 1.68 mW
(1.2%) (1.1%) (1.2%)

8 SSRAM to RS232
4.12 mW 2.91 mW 1.21 mW
(1.1%) (1.2%) (0.9%)

9 SSRAM Controller
2.54 mW 0.32 mW 2.22 mW
(0.7%) (0.1%) (1.7%)

TOTAL 382.77 mW 249.33 mW 133.44 mW

compared to its dynamic and static power consumption.

The rest of the modules in the design operates at 50 MHz. The gradient and opti-

cal flow function computation modules are the two most power consuming modules

amongst them. Although they operate at lower frequency, the high resource usage in

both combinational and sequential structures is an effect to increase the static and dy-

namic consumption. The main difference between other modules is their considerable

amount of arithmetic resources used. This dramatically increases the consumption of

these modules in all three power types.

79

Total Power Consumption

0.7%

1.2%2.6%

1.1%

14.6%

61.9%

9.9%

3.6%

4.6%

SSRAM DMA

Optical Flow Func.

Gradient Computer

Glue Logic

Reset

RS232 Controller

RS232 to SSRAM

SSRAM to RS232

SSRAM Controller

Figure 5.18: Pie chart represents the total power consumption partitioned among the
design modules according to their percentages. More than half of the total power
is consumed by the DMA module because of its high operating frequency and high
resource usage. It is followed by the OF function and the Gradient computation
modules.

Dynamic and Static Power Consumption

2.3%

3.1%
8.1% 72.0%

11.8%

0.3%
1.2% 1.1%

0.1%

SSRAM DMA

Optical Flow Func.

Gradient Computer

RS232 Controller

Glue Logic

SSRAM to RS232

RS232 to SSRAM

Reset

SSRAM Controller

Figure 5.19: Pie chart represents the dynamic and static power consumption parti-
tioned among the design modules according to their percentages. Nearly 3/4 of this
power type is consumed by the DMA module because of its high operating frequency
and high resource usage. It is followed by the OF function and the Gradient compu-
tation modules.

80

Routing Power Consumption

0.9%

1.7%

1.7%

1.2%

19.9%

43.1%

13.1%

9.8%

8.6%

SSRAM DMA

Optical Flow Func.

Gradient Computer

Reset

Glue Logic

RS232 Controller

SSRAM Controller

RS232 to SSRAM

SSRAM to RS232

Figure 5.20: Pie chart represents the total routing power consumption partitioned
among the design modules according to their percentages. Nearly half of the routing
power is consumed by the DMA module because of its high memory usage. It is
followed by the OF function and the Gradient computation modules.

5.2.3 Computation Time

In the beginning of this thesis work our aim was to design a hardware that can

compute optical flow fast enough to be utilized in robotics applications. In mobile

robotic vision applications, low resolution cameras that has resolutions of QVGA or

QCIF format are frequently used because of computational considerations. In some

applications, image resolutions down to 100x100 pixels are still enough for gathering

the required information from the image sequence. However, even these low resolutions

are a problem to process in realtime on the mobile robotic platforms. In many cases

realtime operation requires 30 frames to be processed in one second which corresponds

to approximately 33ms of processing time. However, optical flow should be computed

much faster in applications where optical flow data is used in computations of other

high level tasks. The required computation time of optical flow data depends on the

application. We determined our success measure in computation time as achieving a

minimum frame rate of twice the realtime operation which corresponds to processing

an image sequence with a resolution lower than QVGA format at a minimum of 60

fps.

81

For testing the computation time of the designed hardware, we utilized a standard

image sequence given in Fig. 5.4 called “Rubik’s Cube” which is frequently used in

literature. The first and second frames with a resolution of 256x256 pixels are used

to measure the computation time. After transferring of the test image frames from

Matlab to the FPGA is completed, the optical flow computation process is started with

a button pressed. While the computation is in progress a register flag is pulled high.

The time elapsed during the computation process is measured by an oscilloscope that

is connected to the corresponding I/O pin of the flag register. The width of the pulse

captured by the oscilloscope gives the total computation time. For the mentioned test

image frames the computation is finished in 3.89ms. This corresponds to processing

of 257 fps which is much higher than the aimed frame rate of 60fps.

5.3 Comments on Analysis & Results

The accuracy of the designed hardware is tested using three different test sequences

including real and synthetic data. The implementation method used in arithmetic

operations affects the accuracy dramatically. We tested different hardware implemen-

tations using integer representation to fixed point implementations using 1 to 4 bits

fraction and different word lengths. The word length adjustments are done with or

without result rounding. Each method has many consequences that effect accuracy,

computation time, power consumption, memory and other resource usage. However,

there is no optimal set of configuration to be used. The best design configuration,

depends on the requirements of the application that the hardware is planned to be

used for. The presented results in this chapter can be taken as a design guide for

determining the most suitable approaches.

The floating point representation of the mathematical operations improves the accu-

racy but increases both the memory and logic elements usage at the same time. More

memory usage also increases the computation time and more logic element resource

usage increases the power consumption.

The multi clock design method we used boosts the performance dramatically. In

the design, the higher clock frequency(200MHz) that is used for memory accesses

is one of the main factors that cuts down the memory read/write times and so as

82

the computation time. However, increase in clock rate directly increases the power

consumption.

The DMA usage introduces a trade off between the memory usage and the computation

time. An alternative and simpler method is performing memory access operations

by the gradient and optical flow equation computation modules without using large

fifo buffers which saves a lot of internal memory resource. However, these modules

operates at 50MHz and each read operation from memory takes 3 clock cycles. Each

optical flow computation needs 8 pixel values and 8 vector values to compute the

resultant optical flow vectors. The operations can only be carried out after all required

values are read from the memory. This method reduces the SSRAM bus utilization

and increases the computation time dramatically. So, we suggest utilizing a DMA

operation whenever there is no strict memory constraints.

It can be seen from the results that there is a trade off between resource usage,

power consumption, computation time and accuracy. There are also other constraints

on these parameters. These constraints are both introduced by the specifications of

the hardware platform we used to implement the proposed design and the minimum

performance objectives we set at the beginning of this thesis work.

Besides these trade offs, the main advantage of the hardware design comes from the

parallelized and pipelined implementations of the functions. The hardware can com-

pute a number of operations at once. Moreover, the consecutive operations can be

done in a pipelined structure. When these operations are applied to a large amount

of data, the pipelined structure yields a high data throughput.

The floating point PC implementation of the algorithm shows a low performance as

expected. The PC platform has an Intel Core2 processor operating at 1.66 GHz and

1GB memory at 667MHz clock rate. The processor has a power rating of 34 watts as

stated in the datasheet. The operating system is Windows XP and the implementation

of the algorithm is done in Matlab R2008b. The computation of optical flow field on

a 256x256 pixels images on this platform takes 0.571 seconds which can only achieve

approximately 2 fps.

As stated in Section 5.2.3, the proposed hardware needs only 3.89ms to compute the

83

flow field on the same image sequence. This corresponds to 146 times increase in the

computation performance. The power rating of the design is 844.38 mW which is only

the 1/40 of the power consumed by the 1.66 GHz processor.

In addition to the high performance, the resource usage of the design is very low.

This leaves a large amount of resources unused. These resources may be used for

further computations or the FPGA device can be replaced with a cheaper one. There

are smaller devices available in the same Cyclone II family as EP2C70 as listed in

Fig. 3.1. If a custom PCB is to be designed then the use of smaller devices such as

EP2C15 to EP2C35 would be beneficial in terms of cost and power consumption but

still providing sufficient resources.

If the design is wanted to be modified or improved to suit different applications, some

constraints should be considered. For example, when one requires a higher frame rate

operation, a straightforward approach would be to increase the operating frequencies of

synchronous modules. However, the design operates near to the maximum achievable

clock frequencies. The design can be modified to increase the frequency by using more

pipeline stages. Or, to increase the maximum achievable clock frequency without any

change in the design, a higher speed grade device can be used. In both ways it should

be noted that higher clock rates will eventually introduce a power penalty.

Another need may be to increase the image size to be processed. In current implemen-

tation, the image size is constrained with the available memory resources on board.

To increase the image size, a higher capacity memory should be used. Dynamic mem-

ories(DRAMs) can provide the required memory space, however, the low bandwidth

of them may cause a decrease in maximum achievable frame rate.

It can also be required to process images taken from multiple cameras. In this scenario,

the design can be easily duplicated as much as the FPGA device meets the required

resources. However, since there is a single memory, the memory accesses should be

multiplexed for each camera. Being already the bottleneck of the design, further

multiplexing of memory will decrease the frame rate dramatically. Therefore, we

suggest using dedicated memories for processing images taken from each camera.

84

CHAPTER 6

CONCLUSION

In this thesis, we presented the design and implementation of a high performance

FPGA hardware with a small footprint and low power consumption that is capable

of providing over-realtime optical flow data. The motivation behind this work was

the lack of a suitable hardware for mobile robotic platforms that is capable of com-

puting optical flow vector field in real time which is a factor that prevents the mobile

robotics community to efficiently utilize some successful techniques presented in com-

puter vision literature. Our motivation and similar studies presented in literature are

explained in the first chapter. The results and weaknesses are discussed to state the

possible improvements.

We implemented a well known optical flow algorithm proposed by Horn & Schunck

which is briefly explained in Chapter 2. It yields a high density optical flow vector

field with reasonable accuracy. This method is suitable for implementation on hard-

ware using low logic and memory resources and delivering a high performance. The

arithmetic operations involved in the computation can be implemented using fixed

point representation with small word lengths.

In Chapter 3, we discuss the requirements of the hardware platform in terms of re-

sources that will be used in implementation of the optical flow computation. We

explained the selection criteria and the specifications of the DE2-70 FPGA devel-

opment board. The DSP blocks provide an efficient implementation of arithmetic

operations involved in the optical flow computation and SSRAM is a suitable memory

for massive data transfers such as image frames. RS232 communication provides an

easy to use interface, however it is only suitable for offline transfer of test sequences.

85

The use of HDLs and software design tools in hardware design simplifies the design

procedure and debugging.

The proposed hardware design is explained in details using data flow charts and state

machine diagrams in Chapter 4. In designing of the hardware, we used the top-down

design methodology which simplifies the design task and allows the partitioning of the

whole design into easily manageable subparts. We also discuss the design alternatives

and the selected approaches together with a discussion of the selection procedure.

The main advantage of the hardware design comes from the parallelized and pipelined

implementations of the functions.

In Chapter 5, the proposed hardware design is tested using one synthetic and two real

test sequences that are frequently used for performance evaluations of optical flow

methods in the literature. The error between the proposed hardware implementation

and floating point PC implementation is compared using angular error rate and end

point error rate measures. We achieved a relative 1.319◦ average angular error rate

with 0.509◦ standard deviation and 0.024 endpoint error at most. The analysis of

the proposed hardware implementation is done in terms of resource usage, power

consumption and computation time. The overall ratings are partitioned between the

sub-design modules indicating the dominant modules effecting the whole performance

criteria the most. At the end of the chapter, we make comments on the results and

compare the computation time and power consumption results of our design with a

software implementation on a PC of the day. The hardware can compute optical flow

vector field on a 256x256 image pair in 3.89ms which is 146 times faster than software

implementation while consuming only 844.38 mW of power which is 1/40 of the power

consumed by the 1.66 GHz processor of the PC.

The comparison between the hardware implemented and a software implemented

(Matlab) system using the same algorithm showed that the hardware implementa-

tion achieved a superior performance in terms of speed, power consumption and com-

pactness in charge of a reasonable decrease in accuracy. In conclusion, the FPGA

implementation of optical flow computation can provide hardware acceleration to vi-

sion applications on robotic platforms while delivering real-time speeds, low power

consumption and reasonable accuracy at an affordable cost.

86

6.1 Future Work

The presented hardware implementation on DE2-70 board enables processing image

frames up to a size of 256k pixels. The constraint on the image size is caused by

the low capacity of SSRAM available on board. Processing images with larger sizes

requires a higher capacity memory. One option is to use 64MB SDRAM in trade of a

noticeable performance decrease.

The FPGA development board we utilized is a general purpose board designed for

education and research purposes by TerASIC. So there are many capabilities and

interfaces available on-board such as AC97 sound codec. Although it can be used

for a wide application area, the unused devices take up space and causes the board

to be larger. They also consume power even they are not in use. It is possible to

overcome these disadvantages by designing a custom PCB with required components

and devices only.

The proposed hardware is designed to take input image sequences from PC for testing

purposes. An interface to take image sequences from a CMOS camera in high speed is

being designed currently. However, it is not mentioned in the scope of this thesis and

planned to be used for applications on our robotic platform. With some modifications,

the same hardware can also compute realtime optical flow data on images taken from

a stereo camera.

There are also some techniques available to compute a more accurate optical flow field.

One of them is the multi-resolution approach that is frequently used with differential

techniques. This technique can yield a more accurate optical flow estimation even

in large displacement cases. However, our hardware development board has limited

memory resources to store the required data. The use of fast and more capacity DDR

SDRAMs may enable the implementation of multi-resolution method. On the other

hand, the addition of multiresolution computations will introduce an additional delay

to the optical flow computation and the maximum achievable frame rate will decrease

eventually. If we assume that the speed of the motion field is constant, processing

at lower frame rate will correspond to more displacements in consecutive frames.

Although, multiresolution method can handle large displacements of pixels, the delay

87

of computations increases the displacements even more. Therefore, the advantages

and drawbacks of implementing multiresolution method should be analyzed carefully.

Before optical flow computation, the input images are generally subject to some pre-

filtering process to increase the accuracy of the algorithm. Since filtering takes less

time compared to optical flow computation, this hardware design excludes the imple-

mentation of a filtering algorithm. The filtering algorithm can also be implemented

in hardware to get a complete system on a chip.

We used the spatiotemporal gradient estimates presented in the original paper of Horn

& Schunck. Alternative methods that yield better estimates are presented in literature.

However, those methods require more computational power than the original one.

Alternative methods can also be implemented if a more accurate flow field is required

in trade of performance.

To increase the accuracy of the fixed point implementation, the division operation can

be implemented using a fixed point representation with larger word length than the

current 32 bits representation. However, it should also be considered that, this will

inevitably introduce an increase in the computation time.

Finally, the achieved results motivates us to implement more computer vision algo-

rithms on hardware. There are still many computer vision tasks that can not be uti-

lized in mobile robotic applications because of the mentioned performance concerns.

Although the hardware design is more complicated and requires much more effort

than the software design, the academic studies seem to utilize even more hardware in

the future.

88

REFERENCES

[1] Altera. DE2-70 User Manual, v1.01 edition, 2007.

[2] Altera. Cyclone II Handbook, February 2008.

[3] Altera. Quartus II Handbook, July 2010.

[4] P. Anandan. A unified perspective on computational techniques for the measure-
ment of visual motion. In International Conference on Computer Vision (ICCV),
pages 219–230, 1987.

[5] P. Arribas and F.-H. Macia. Fpga board for real time vision development systems.
In Proceedings of the Fourth IEEE International Caracas Conference on Devices,
Circuits and Systems, pages T021–1–T021–6, 2002.

[6] P. C. Arribas and F. J. Alonso. Fpga real time lane departure warning hardware
system. In Computer Aided Systems Theory (EUROCAST), pages 725–732, 2007.

[7] P. C. Arribas and F. M. H. Maciá. Fpga implementation of the horn&shunk
optical flow algorithm for motion detection in real time images. In Design of
Circuits and Integrated Systems Conference, pages 616–621, 1998.

[8] P. C. Arribas and F. M. H. Maciá. Fpga implementation of camus correlation
optical flow algorithm for real time images. In Vision Interface Proceedings, pages
7–9, 2001.

[9] P. C. Arribas and F. M. H. Macia. Fpga implementation of santos-victor opti-
cal flow algorithm for real-time image processing: an useful attempt. In VLSI
Circuits and Systems, volume 5117, pages 23–32, 2003.

[10] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database
and evaluation methodology for optical flow. In IEEE 11th International Con-
ference on Computer Vision (ICCV)., pages 1–8, Oct. 2007.

[11] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques.
International Journal of Computer Vision (IJCV), 12(1):43–77, February 1994.

[12] M. Black and P. Anandan. A framework for the robust estimation of optical
flow. In Fourth International Conference on Computer Vision, pages 231–236,
May 1993.

[13] J. M. Bodily. An optical flow implementation comparison study. Master’s thesis,
Brigham Young University, April 2009.

[14] T. Browne, J. Condell, G. Prasad, and T. McGinnity. An investigation into
optical flow computation on fpga hardware. In International Machine Vision
and Image Processing Conference, IMVIP ’08, pages 176–181, Sept. 2008.

89

[15] T. A. Camus. Real-Time Optical Flow. PhD thesis, Brown University, Provi-
dence, RI, USA, 1994.

[16] J. Chase, B. Nelson, J. Bodily, Z. Wei, and D.-J. Lee. Real-time optical flow calcu-
lations on fpga and gpu architectures: A comparison study. In 16th International
Symposium on Field-Programmable Custom Computing Machines, FCCM ’08,
pages 173–182, April 2008.

[17] C. Claus, A. Laika, L. Jia, and W. Stechele. High performance fpga based optical
flow calculation using the census transformation. pages 1185 –1190, jun. 2009.

[18] J. Diaz, E. Ros, R. Agis, and J. L. Bernier. Superpipelined high-performance
optical-flow computation architecture. Computer Vision and Image Understand-
ing, 112(3):262 – 273, 2008.

[19] J. Diaz, E. Ros, S. Mota, and R. Agis. Real time optical flow processing sys-
tem. In International Conference on Field Programmable Logic and Applications
(FPL), pages 617–626, 2004.

[20] D. J. Fleet and A. D. Jepson. Computation of component image velocity from
local phase information. International Journal of Computer Vision, 5(1):77–104,
1990.

[21] H. Haussecker and P. Geissler. Handbook of computer vision and applications,
volume 3. Academic Press, 1999.

[22] D. Heeger. Model for the extraction of image flow. Journal of the Optical Society
of America A, 4:1455–1471, Aug. 1987.

[23] B. Horn and B. Schunck. Determining optical flow. 17(1-3):185–203, August
1981.

[24] B. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of Imaging Understanding Workshop,
pages 121–130, 1981.

[25] W. MacLean. An evaluation of the suitability of fpgas for embedded vision sys-
tems. In Workshops, 2005. CVPR Workshops. IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, pages 131–131, June 2005.

[26] J. Martin, A. Zuloaga, C. Cuadrado, J. Lazaro, and U. Bidarte. Hardware im-
plementation of optical flow constraint equation using fpgas. Computer Vision
and Image Understanding Journal, 98(3):462–490, June 2005.

[27] Y. Mizukami and K. Tadamura. Optical flow computation on compute unified
device architecture. pages 179–184, 2007.

[28] H.-H. Nagel. On a constraint equation for the estimation of displacement rates
in image sequences. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 11(1):13–30, Jan 1989.

[29] H. Niitsuma and T. Maruyama. High speed computation of the optical flow.
In International Conference on Image Analysis and Processing (ICIAP), pages
287–295, 2005.

90

[30] M. Otte and H.-H. Nagel. Optical flow estimation: advances and comparisons.
In ECCV ’94: Proceedings of the third European conference on Computer vision
(vol. 1), pages 51–60, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[31] M. Proesmans, L. van Gool, E. Pauwels, and A. Oosterlinck. Determination
of optical flow and its discontinuities using non-linear diffusion. In ECCV ’94:
Proceedings of the third European conference on Computer Vision (Vol. II), pages
295–304, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[32] J. Santos-Victor and J. S. victor Giulio S. Uncalibrated obstacle detection using
normal flow. Technical report, University of Genova, Italy, 1996.

[33] R. Strzodka and C. Garbe. Real-time motion estimation and visualization on
graphics cards. In VIS ’04: Proceedings of the conference on Visualization ’04,
pages 545–552, Washington, DC, USA, 2004. IEEE Computer Society.

[34] Z. Wei, M. Martineau, D.-J. Lee, and M. Martineau. A fast and accurate tensor-
based optical flow algorithm implemented in fpga. In Applications of Computer
Vision, 2007. WACV ’07. IEEE Workshop on, pages 18–18, Feb. 2007.

91

