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ABSTRACT 

 
 

HARMONIC RESPONSE OF LARGE ENGINEERING STRUCTURES WITH 

NONLINEAR MODIFICATIONS 

 

Kalaycıoğlu, Taner 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

 

September 2011, 107 Pages 

 

During the design and development stages of mechanical structures, after each 

modification made in order to satisfy design criteria, dynamic characteristics of the 

structure change and should be determined through reanalyzing the structure 

dynamically. Due to the significance of computational time and cost in design 

processes, it is inevitable for structural modification methods, especially for large 

systems, to become involved in predicting the dynamic behavior of modified 

structures from those of the original and modifying structures. Since most 

engineering structures are inherently nonlinear, linear approach may not be valid no 

more. Therefore, conventional structural modification methods can not be directly 

used, instead a nonlinear structural modification method needs to be employed. 

 

In this thesis, it is aimed to adapt an effective linear structural modification method 

to structures with nonlinear modification or coupling. The amplitude dependencies of 

nonlinearities are modeled by using describing function method. Mathematical 

formulations are embedded in a computer program developed in MATLAB® with a 

graphical user interface. The software uses modal analysis results of ANSYS® for the 

original structure and dynamic stiffness matrix and nonlinearity information that 

belong to the modifying structure in order to calculate dynamic response of the 

modified structure. The approach is verified by applying it to both discrete and real 



v 

test structures previously studied in literature and generated discrete structures, then 

comparing the results with prior ones and ones obtained via time domain integration, 

respectively. Several other case studies are also included in order to demonstrate the 

applicability and to investigate the performance of the method. 

 

It is concluded in this study that the structural modification method proposed can be 

successfully and efficiently used for structures with nonlinear modification or 

coupling. 

 

Keywords: Structural modification, nonlinear structural modification, vibration of 

nonlinear structures, nonlinear structural coupling. 
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ÖZ 

 

 

DOĞRUSAL OLMAYAN YAPISAL DEĞİŞİKLİK İÇEREN BÜYÜK 

SİSTEMLERİN HARMONİK TİTREŞİMİ 

 

Kalaycıoğlu, Taner 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

 

Eylül 2011, 107 Sayfa 

 

Mekanik yapıların tasarım ve geliştirme aşamalarında, tasarım kriterlerini karşılamak 

amacıyla yapılan her değişiklik sonrasında yapının dinamik davranışı değişeceğinden 

yapının davranışı dinamik olarak tekrar analiz edilerek belirlenmelidir. Tasarım 

süreçlerinde hesaplama zaman ve maliyetinin önemi nedeniyle yapısal değişiklik 

yöntemlerinin özellikle büyük sistemler için değişmiş yapının dinamik davranışının, 

esas ve değişiklik yaratan yapıların dinamik davranış bilgileri kullanılarak 

hesaplanması kaçınılmaz olmaktadır. Fakat çoğu mühendislik yapısının özünde 

doğrusal olmamalarından dolayı doğrusal analiz geçerli olmamaktadır. Bu nedenle, 

bilindik yapısal değişiklik yöntemleri doğrudan kullanılamaz. Bunun yerine,  

doğrusal olmayan yapısal değişiklik yöntemlerinin uygulanması gerekir. 

 

Bu tezde, etkili bir doğrusal yapısal değişiklik yönteminin doğrusal olmayan 

değişiklikler ve birleşmeler için geliştirilmesi amaçlanmıştır. Doğrusalsızlıkların 

genlik bağımlılıkları, tanımlama fonksiyonları yöntemi kullanılarak dikkate 

alınmıştır. Matematiksel formülasyonlar MATLAB® ile geliştirilen bir grafik 

kullanıcı arayüzü olan bilgisayar programı içine gömülmüştür. Yazılım esas yapının 

ANSYS® ile elde edilen biçim analizi sonuçları ile değişiklik yaratan yapıya ait 

dinamik direngenlik matrisi ve doğrusalsızlık bilgisini kullanarak değişmiş yapının 
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dinamik cevabını hesaplamaktadır. Yaklaşımı doğrulamak için yaklaşım literatürde 

daha önce incelenmiş toplanmış parametreli ve gerçek test yapıları ile türetilmiş 

toplanmış parametreli yapılara uygulanmış, sonra elde edilen sonuçlar, sırasıyla, 

daha önce elde edilmiş sonuçlar ve zaman düzleminde integrasyon ile elde edilen 

sonuçlarla karşılaştırılmıştır. Yöntemin uygulanabilirliğini göstermek ve 

performansını incelemek için birçok uygulamaya da yer verilmiştir. 

 

Bu çalışmada, önerilen yapısal değişiklik yönteminin doğrusal olmayan değişiklik 

veya birleşme uygulanan yapılara da başarıyla ve etkin olarak uygulanabildiği 

anlaşılmıştır. 

 

Anahtar Kelimeler: Yapısal değişiklik, doğrusal olmayan yapısal değişiklik, 

doğrusal olmayan yapıların titreşimi, doğrusal olmayan birleşim. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Motivation for Nonlinear Structural Modification/Coupling 

 

In mechanical design, in order for engineers to ensure that their design meets wide 

range of requirements and is qualified enough, they must test and analyze each 

prototype constructed. For this purpose, harmonic vibration analyses and tests are to 

be performed as the occasion arises throughout the design process. After each 

analysis and test, if the product does not satisfy design criteria, engineers have to 

make modifications, usually local, on their designs for correction purposes. This 

process cycle is given in Figure 1.1 [1]. 

 

Each modification made on design changes the structural properties such as natural 

frequencies, mode shapes and response of the structure. Therefore, each analysis and  

test have to be repeated for each modified prototype after each modification. In terms 

of computational analysis, a new Finite Element (FE) model for the modified system 

should be reconstructed and vibration analysis under dynamic loads should be 

performed once again. However, in case of various alternatives are to be considered, 

constituting whole analytical model for each alternative and solving them will be 

time consuming and costly, particularly for large ordered systems. Instead using the 

existing analysis results belonging to the original prototype and dynamic properties 

of only the modifying structure, dynamic characteristics of the modified structure can 

be estimated without performing whole analysis, but by employing structural 

modification techniques. 
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Figure 1.1 Verification and validation of design in product lifecycle [1] 

 

On the other hand, most of the engineering structures are naturally nonlinear and thus 

linear approach may not be applicable any more. We know that nonlinearity inherited 

in a structure causes discrepancy between measured and theoretically calculated 

modal properties [2-4]. So, with the increasing demand for high precision mechanical 

components, taking nonlinear effect into account in dynamic analysis becomes 

unavoidable. As a consequence, in cases where time, cost and accuracy are the 

primary concerns, nonlinear structural modification techniques come into picture. 
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1.2 Literature Survey 

 

There is a vast literature on numerous different structural modification techniques 

and on their variations. Generally two different problems are considered [5, 6]: the 

direct structural dynamic modifications problem and the inverse structural dynamic 

modifications problem. The inverse structural dynamic modification problem focuses 

on the determination of the necessary modifications in order to achieve required 

dynamic characteristics. Some of the main literature reviews on this subject are the 

studies performed by Kyprianou et al. [7, 8], Li and He [9], Park [10, 11] and 

Mottershead et al. [12]. On the other hand, direct structural dynamic modification 

problem, basic theory of which was primarily presented by Crowley et al. [13], deals 

with the estimation of dynamic characteristics of a structure after a modification 

takes place. Each problem can be classified into two subgroups: frequency response 

function (FRF) based techniques and modal synthesis techniques.  

 

This thesis focuses on the FRF based direct structural modification techniques. 

Various FRF based direct structural modification methods are developed in previous 

studies. In this work, basically, the matrix inversion method developed by Özgüven 

[14] is used, and it is applied to nonlinear systems. 

 

Özgüven proposed a matrix inversion method [15] for finding receptances of locally 

damped structures from undamped counterparts and combined this method with an 

efficient recursive solution algorithm in order to avoid matrix inversion in a 

subsequent study [16]. In a further work [14], he presented a structural modification 

method that can estimate exact FRFs of the modified structure using FRF matrix of 

the original system and mass, stiffness and damping matrices of the modifying 

structure. In this method, it is required to invert only a matrix of a size equal to the 

total degrees of freedom (DOFs) of the modification. Thus, it is favorable 

particularly for systems with large DOFs modified locally. Moreover, since the 

method uses the FRFs of the original structure during calculation, by including FRF 

information of only the required DOFs of the original structure and deleting 

remaining rows and columns, result computational speed can be increased without 
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losing accuracy. Recently, Hang et al. [17-19] focused on the application of this 

method on distributed structural dynamic modifications with reduced and additional 

DOFs. Later on, the method was applied to real structures by Canbaloğlu and 

Özgüven [20]. 

 

Starting with the same matrix inversion formulation, in order to avoid matrix 

inversion, Şanlıtürk [21] presented a new structural modification method which is 

based on Sherman-Morrison formula [22]. Even though this method is advantageous 

in the sense that modified system FRFs can be calculated exactly without any matrix 

inversion, it is applicable only for modifications that does not introduce new DOFs. 

 

Köksal et al. [23] extended the Successive Matrix Inversion that had previously 

developed by Bae et al. for reanalysis of static systems to dynamic reanalysis of 

structures. In this method, the FRFs of the modified structure are calculated from 

those of the original structure and the system matrices of the modifying structure. 

The formulation begins similarly with the one presented in [14], but avoids matrix 

inversion using power series expansion. 

 

Then in a further study, Köksal et al. [24] compared the three structural modification 

methods ([14], [21] and [23]) with each other in terms of computational efficiency 

point of view. It is concluded in this study that the most powerful one among these 

three methods is the one developed by Özgüven [14] not only in terms of 

computational efficiency but also suitability for structural modifications with 

additional DOFs. 

 

The main problem when dealing with nonlinear elements is their response dependent 

behavior which is overcome by using Describing Function Method (DFM) in this 

study. This method was introduced by Krylov and Bogolyubov [25] in order to 

analyze certain nonlinear control problems based on an earlier work of Van der Pol 

[26]. Taylor [27] defines the describing function approach as modeling and studying 

nonlinear system behavior via replacing each nonlinear element with a quasilinear 

descriptor whose gain is a function of input amplitude. Introduction of DFM into the 
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vibration analysis of multi degree of freedom (MDOF) nonlinear systems took place 

soon after the studies performed by Budak and Özgüven [28, 29]. They suggested 

that nonlinear internal forces can be expressed as a multiplication of so called 

"nonlinearity matrix" by displacement vector, and proposed a method (the Iterative 

Receptance Method) for nonlinear systems where nonlinearities can be expressed as 

polynomials. Later, Tanrıkulu et al. [30, 31] extended this formulation for any type 

of nonlinearity using DFM. Among several applications of DFM in harmonic 

vibration analysis of nonlinear structures, the studies performed by Siller [32] and 

Abat [33] are the ones referred in this thesis. 

 

Several studies, some of which are summarized below, are also concentrated on 

nonlinear structural dynamic modification/coupling. Watanabe and Sato [34] used 

first order describing function and linearized the nonlinear stiffness of a beam 

structure to develop the so-called “Nonlinear Building Block” approach, for coupling 

nonlinear structures with local nonlinearity. 

 

Cömert and Özgüven [35] developed a method for calculating the forced response of 

linear substructures coupled with nonlinear connecting elements. They use FRFs of 

the linear substructures and information regarding nonlinear connection elements in 

order to obtain forced harmonic response of coupled structure. The effect of 

nonlinear internal forces was expressed as a product of nonlinearity matrix, 

introduced by Budak and Özgüven [28, 29], and displacement vector. The elements 

of nonlinearity matrix are written using DFM. 

 

Ferreira and Ewins [36] proposed a new Nonlinear Receptance Coupling Approach 

for fundamental harmonic analysis based on describing functions. They suggested an 

approach that is capable of coupling structures with local nonlinear elements whose 

describing functions are available considering just the fundamental frequency. Then, 

Ferreira [37] extended the approach and introduced Multi-Harmonic Nonlinear 

Receptance Coupling Approach. This approach is able to couple linear and nonlinear 

structures with different types of joints by specifying the multi-harmonic describing 

functions for all nonlinear joints.  
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Chong and İmregün [38] suggested an iterative algorithm for the coupling of 

nonlinear systems with linear ones. They initially obtained the nonlinear modal 

parameter variations of coupled system with profile building approach. Then, using 

nonlinear modal parameters, the response of coupled system at various force levels 

were predicted. 

 

Maliha et al. [39] coupled a nonlinear dynamic model of a spur gear pair with linear 

FE models of shafts carrying them, and with discrete models of bearings and disks. 

They used DFM to express nonlinear elasticity term resulting from backlash and 

included it in the solution by the use of so-called “nonlinearity matrix” of Tanrıkulu 

et al. [30, 31]. In order to avoid matrix inversion, the formulation given in reference 

[16] for nonproportionally damped systems is extended to nonlinear systems and an 

iterative technique is used in the solution. The study presented in this thesis follows a 

similar theoretical approach as that study, but here the structural modification 

technique with additional DOFs given in [14] is extended for nonlinear modifications 

and couplings. 

 

1.3 Objective 

 

In this study, it is aimed to obtain dynamic response of a modified structure from 

those of the linear original structure and nonlinear modification data. This is 

accomplished by simply extending Özgüven’s structural modification method to 

nonlinear modifications [14]. It is also intended in this thesis to develop a computer 

program that can apply the extended nonlinear structural modification method to 

large structures and to verify the proposed approach with several theoretical and 

experimental case studies. In brief, general purpose throughout this thesis is to 

extend the previously proposed structural modification method for nonlinear 

modifications and couplings and to show its success and efficiency with several 

applications. 
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1.4 Scope of the Thesis 

 

The outline of the thesis is given as follows: 

 

In Chapter 2, firstly, the nonlinearities investigated in this thesis and their modeling 

approaches will be presented. The underlying mathematical background in single 

harmonic analysis of MDOF nonlinear structures will also be explained here. 

Secondly, the theory of nonlinear structural dynamic modification and coupling 

method will be given.   

 

In Chapter 3, the computer program developed via MATLAB® will be introduced 

and the basic capabilities of the program will be explained. The user's manual of the 

program will also be given here. 

 

In Chapter 4, verification of the approach will be demonstrated in three groups of 

case studies: the computational results will be compared with (a) those given in 

literature, (b) those obtained via Time Domain Integration (TDI) and (c) those 

obtained experimentally in previous studies. Then, in order to show the applicability 

and performance of the method and the program, several other case studies will be 

presented. 

 

In Chapter 5, brief summary of the work done will be given with discussions and 

conclusions. Finally, suggestions for future studies will be presented. 
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CHAPTER 2 

 

 

THEORY 

 

 

 

2.1 Introduction 

 

In this chapter, the theory of nonlinear structural modification method proposed 

using quasilinearization of structural nonlinearities, which underlies the basis of this 

study, will be presented. In section 2.2, theory of modeling approach for structural 

nonlinearities using Describing Functions Method (DFM) based on the method 

proposed first by Budak and Özgüven [28, 29], and later by Tanrıkulu et al. [30, 31] 

is given. Later, in the same section the types of nonlinearities investigated in this 

study are explained in detail. In section 2.3, the basics of the structural modification 

method that was previously presented by Özgüven [14] and its extended formulation 

for nonlinear modifications are explained. 

 

2.2 Modeling Nonlinearities 

 

Consider the equations of motion for a nonlinear MDOF system excited with 

harmonic external forcing { }f : 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { } { }M x C x i H x K x N f+ + + + =�� �                                                  (2.1) 

  

where [ ]M , [ ]C , [ ]H  and [ ]K  represent the linear mass, viscous damping, 

structural damping and stiffness matrices of the system, respectively. Here, { }x  is the 
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generalized displacement vector and dot stands for the derivation with respect to 

time. Furthermore, { }N  represents internal nonlinear restoring force vector and i is 

the unit imaginary number. The j
th element of vector { }N  can be expressed as a 

series of the form, 

 

1

n

j jk
k

N n
=

= ∑                                                                                                             (2.2) 

  

where 
jk

n  denotes the nonlinear restoring force acting between the coordinates j and 

k for j≠k, and between the ground and the coordinate j for j=k. Note that, 

 

jk kj
n n=                                                                                                                   (2.3) 

 

Here 
jk

n  can be represented as an arbitrary function of intercoordinate displacement 

jk
y  and its derivatives, 

 

( , , ,...)
jk jk jk jk jk

n n y y y= � ��                                                                                       (2.4) 

 

where: 

 

jk j k
y x x for j k= − ≠                                                                                     (2.5) 

 

jk j
y x for j k= =                                                                                     (2.6) 

 

The external harmonic forcing { }f  can be expressed as: 

 

{ } { } i
f F e

ψ=
                                                                                                          

(2.7) 
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where, { }F  is the vector of harmonic excitation amplitudes and generic angle ψ  can 

be defined as the product of angular frequency ω  and time t . Assuming that the 

nonlinear response to the external harmonic forcing is essentially not exactly 

sinusoidal but periodic with the same period, it can be written as a Fourier series of 

the form: 

 

{ } { } { }
0 0

( ) ( ) ip

p p
p p

x t x t X e
ψ∞ ∞

= =
= =∑ ∑                                                                        (2.8) 

 

where, subscript p represents the degree of harmonic order and { }( )
p

x t  indicates the 

displacement response of the pth harmonic. So, the complex displacement response 

amplitude X at coordinate j for the pth harmonic, ( )
j p

X , can be written as: 

 

( )
( )

i j p

j p j p
X X e

φ
=                                                                                              (2.9) 

 

Here, 
j p

X  is the magnitude and ( )
j p

φ  is the phase of the complex displacement 

response 
j

X
 
for the p

th harmonic. Now, let the response of the system, { }( )x t , 

given by Equation 2.8, is approximated by a set of q harmonic terms. Then, the 

approximate response can be written as: 

 

{ } { } { }( )
1

( ) ( ) ( )
q

q p
p

x t x t x t
=

≈ = ∑�                                                                              (2.10) 

 

Note that, the even p values are due to nonlinearities with asymmetrical 

characteristics whereas the odd ones are due to nonlinearities with symmetrical 

characteristics. Using the above formulations obtained for the displacements of the 

main coordinates, the intercoordinate displacement responses between arbitrary two 

coordinates a and b, yab, can be written as: 



11 

0 0
( ) ( ) ( ) ( ) ( ) ( ) ip

ab a b ab p ab p
p p

y t x t x t y t Y e
ψ∞ ∞

= =
= − = =∑ ∑                                           (2.11) 

 

The approximate intercoordinate displacement responses can accordingly be written 

as follows: 

 

{ } { } { }
1 1

( ) ( ) ( ) ( ) ( ) ( )
q q

ip

ab ab q ab p ab p
p p

y t y t y t Y e
ψ

= =
≈ = =∑ ∑�                                      (2.12) 

 

where: 

 

( ) ( ) ( ) , ( )
ab p a p b p

Y X X a b= − ≠                                                                         (2.13) 

 

( )
( ) ( )

i ab p

ab p ab p
Y Y e

φ
=                                                                                        (2.14) 

 

2.2.1 Single Harmonic Formulation for Internal Nonlinear Forces 

 

As written before, differential equations of motion for a nonlinear MDOF structure 

exposed to external sinusoidal excitation can be restated as: 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { } { } i
M x C x i H x K x N F e

ψ+ + + + =�� �                                           (2.15) 

 

Then the steady-state solution can be represented in the form of a Fourier series as: 

 

{ } { } { }
0 0

( ) ( ) ip

p p
p p

x t x t X e
ψ∞ ∞

= =
= =∑ ∑                                                                      (2.16) 

 

Usually, the higher harmonic terms of the response have small amplitudes relative to 

the fundamental harmonic component. In such cases, the steady state response, 
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{ }( )x t , can be formulated with an acceptable numerical error as: 

 

{ } { } { }1 1
( ) ( ) i

x t x t X e
ψ= =                                                                                      (2.17) 

 

The response for an arbitrary coordinate  j, xj, can be written as: 

 

1 1 1( ) ( ) ( ) i

j j j j
x x x X e

ψ≈ = =�                                                                                 (2.18) 

 

where: 

 

( )1
1 1( ) | |

i j

j j
X X e

φ
=                                                                                               (2.19) 

 

Similar to Equation 2.13, the intercoordinate displacement response between 

coordinates a and b, yab, can be expressed as: 

 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i

ab a b a b ab ab
y t x t x t x t x t y t Y e

ψ= − ≈ − = =� � �                           (2.20) 

 

where: 

 

1 1 1( ) ( ) ( ) , ( )
ab a b

Y X X a b= − ≠                                                                         (2.21) 

 

( )1
1 1

( ) ( ) i ab
ab ab

Y Y e
φ

=                                                                                           (2.22) 

 

Accordingly, a complex and periodic nonlinear function, 1[( ) ]
ab ab

n y� , can also be 

represented in the form of Fourier series as:  

 

1 ab
0 0

[( ) ] ( ) ( ) im

ab ab ab m m
m m

n y n e
ψ

∞ ∞

= =
= =∑ ∑� N                                                           (2.23) 
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Assuming that the nonlinear internal force, 1[( ) ]
ab ab

n y� , is dominated by the 

fundamental term similar to the response itself, the formulation for the approximated 

nonlinear force can be reduced to: 

 

1 1 ab 1[( ) ] ( ) ( ) i

ab ab ab
n y n e

ψ≈ =� N                                                                            (2.24) 

 

where: 

 

( )1
ab 1 ab 1

( ) i abe
ξ

=N N                                                                                           (2.25) 

 

2

ab 1 1
0

( ) [( ) ] i

ab ab

i
n y e d

π
ψ ψ

π

−= ∫ �N                                                                          (2.26) 

 

2.2.2 Single Harmonic Describing Functions 

 

Considering a single degree of freedom (SDOF) system subjected to a harmonic 

excitation, equation of motion for such a system can be expressed as: 

 

sinmx cx ihx kx n f tω+ + + + =�� �                                                                             (2.27) 

 

In this equation m, c, h and k are the linear mass, viscous damping, structural 

damping and stiffness values, respectively. x and its derivatives with respect to time t 

are the displacement, velocity and acceleration of the system, and i stands for the unit 

imaginary number. n represents internal nonlinear restoring force, whereas f 

represents external forcing. The restoring force n is assumed to be a function of 

velocity and displacement. Assuming that ( )x t  has the same frequency as the 

excitation, following relation can be written: 

 

1 1( ) sin( ) ( ) sinx X t Xω θ τ≈ + =                                                                            (2.28) 
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where 
1( )X  is complex response amplitude, ω is the excitation frequency and θ is 

the phase angle. The restoring force ( , )n x x�  can be expanded around x through 

Fourier series, neglecting all the higher harmonic terms assuming that it has also a 

sinusoidal nature and little energy is leaked to other frequencies other than the 

fundamental frequency. 

 

*
0 0 1 1 1 1( , ) ( , ) ( ) ( , ( ) ) ( ) ( , ( ) ) ( ) ( , ( ) )n x x v x x x X X x i X xω ω ω≈ = + +� � N N N                (2.29) 

 

where ( , )v x x�  can be defined as the optimum equivalent linear complex stiffness 

representation of the nonlinear restoring force function ( , )n x x� . Here, the bias term 

0( )N  and real and imaginary terms of the fundamental harmonic 
1( )N  and *

1( )N  

can be expanded as: 

 

2

0 1 1
0

1
( ) ((X) sin , (X) cos )d

2

π

= τ ω τ τ∫
π

N N                                                             (2.30) 

 

2

1 1 1
01

1
( ) (( ) sin , ( ) cos )sin

( )
X X d

X

π
τ ω τ τ τ

π
= ∫N N                                              (2.31) 

 

2
*
1 1 1

01

1
( ) (( ) sin , ( ) cos )cos

( )
X X d

X

π
τ ω τ τ τ

π
= ∫N N                                             (2.32) 

 

Note that, if ( , )n x x�  is symmetrical around the origin, then 0( )N  becomes zero. 

Moreover, if the assumption that ( , )n x x�  is dominated by its fundamental term is 

valid, then Equation 2.29 can be simplified as: 

 

*
1 1 1 1 1( ( , )) ( ) ( , ( ) ) ( ) ( , ( ) )v x x x X x i X xω ω= +� N N                                                    (2.33) 
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where 1( ( , ))v x x�  is the first-order describing function which can be defined as: 

 

*
1 1 1( ( , )) ( ) ( )v x x iN N= +�                                                                                       (2.34) 

 

According to the kind of nonlinearity presented by ( , )n x x� , the describing function v 

can be calculated by using Equations 2.31, 2.32 and 2.34. 

 

2.2.3 Nonlinearity Types and Their Corresponding Single Harmonic 

Describing Functions 

 

In this section, the quasilinear representation of nonlinearity types included in this 

thesis, which are commonly encountered ones in structural dynamics, will be listed. 

Structural nonlinearities, in most cases, are displacement, velocity and/or frequency 

dependent and they are usually represented in idealized forms in order to be 

incorporated in the analysis. The representation of such nonlinearities by describing 

function approach, in terms of single harmonic will be summarized below. 

 

2.2.3.1 Cubic Stiffness 

 

This is the most frequently encountered type of nonlinearity in structural dynamics. It 

can be considered as a massless nonlinear spring such that applied force is directly 

proportional to the cube of the displacement. The mathematical model to represent 

the relation between the force and the displacement can be expressed as: 

 

3( , )
c

n x x k x xβ= +�                                                                                               (2.35) 

 

where x represents the elongation of the nonlinear spring. The stiffness coefficients 

kc and β, both of which are not frequency dependent, accounts for the linear and 

nonlinear parts of the spring. 
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In Equation 2.35, β can be either positive or negative. If β>0, as the level of 

excitation increases the restoring force introduced will be cumulatively greater than 

that of a linear spring, in other words, system shows hardening behavior (Figure 2.1). 

Clamped plates and beams can be given as examples of such systems. 

 

 

Figure 2.1 Characteristic of hardening and softening cubic stiffness elements 

 

On the other hand, if β<0, as the level of excitation increases the restoring force 

introduced will be cumulatively lower than that of a linear spring, namely, system 

shows softening behavior. Buckling beams and plates exhibit such a behavior [40]. 

 

Bending of system response around resonant frequency is the characteristic FRF 

distortion due to cubic stiffness nonlinearity. This effect was investigated in many 

studies [31-33, 35, 37, 38, 40-44] and the conclusion reached in all is that resonant 

frequency shifts up for hardening systems and the other way around for softening 

systems as shown in Figure 2.2. 

 

The first order describing function representation of a nonlinear cubic stiffness 

element having cubic stiffness coefficients kc and β can be written as: 

 

2
1

3

4
ab c

v k Xβ= +

                                                                                                 

(2.36) 
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whose detailed derivation can be found in [32]. 

 

 

Figure 2.2 Typical response distortion due to cubic stiffness nonlinearity [40] 

 

2.2.3.2 Coulomb Friction 

 

Coulomb friction, which is particularly prevalent in demountable structures such as 

grandstands, occurs in any situation with interfacial motion [40]. It is nonlinear 

because the direction of kinetic friction force depends on the direction of velocity 

(Equation 2.37).  

 

( , ) sgn( )
f

n x x F x=� �
                                                                                                

(2.37) 

 

where x�  represents the relative velocity and 
f

F  accounts for the friction force. The 

signum function ensures that the restoring force always opposes the direction of 

motion. In Figure 2.3, the behavior of a Coulomb friction element is illustrated. 

 

When external force is smaller than the kinetic friction force, there will not be a 

relative motion between two coordinates of a nonlinear Coulomb friction element. In 

such extreme situations, stick-slip motion can occur; however, such cases will not be 

considered in this work. 
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Figure 2.3 Characteristic of a Coulomb friction element 

 

On the other hand, at high enough levels of excitation where stick-slip motion does 

not occur, an equivalent linear response will be obtained for each forcing level as 

shown in Figure 2.4. The drop in receptance level is more evident at small vibration 

amplitudes as confirmed in previous studies [31-33, 37, 40, 45]. 

 

 

Figure 2.4 Linear and quasilinear receptances 
15

α  and 
15

θ  for Coulomb damping 

type of nonlinearity (Ff = 5 N, F5 = 6 and 8 N): arrow shows the direction of 

increasing external forcing level [31] 
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The describing function of a typical Coulomb friction damper having friction force 

f
F  can be formulated by considering the first harmonics only as given in [31]: 

 

1

4

π
=

f

ab

F
v i

X
                                                                                                           (2.38) 

 

2.2.3.3 Piecewise Linear Stiffness 

 

Basically, geometric discontinuities between interconnected components results in 

this kind of nonlinearity in many mechanical systems. It can be observed in loosely 

jointed structures [46]. It can be modeled as a massless nonlinear spring which shows 

linear behavior but with different proportionality constants at certain elongation 

intervals. The mathematical model to represent the relation between the force and the 

displacement can be expressed as: 

 

1

2 1 2

2 1 2

( , ) ,

( , ) ( )

( , ) ( )

n x x k x for x

n x x k x k k for x

n x x k x k k for x

δ

δ δ

δ δ

= <

= + − ≥

= − − ≤ −

�

�

�

                                                         (2.39) 

 

where k1 and k2 are the proportionality constants at specified elongation intervals, 

and δ is the elongation value corresponding the point of transition from the stiffness 

k1 to the stiffness k2 (Figure 2.5). 

 

Clearance and saturation type of nonlinearities can be taken into account as special 

cases of piecewise linear stiffness type of nonlinearity. Clearance nonlinearity is the 

case when the value of k1 is 0. This type of nonlinearity is encountered in many 

applications such as pylon-store-wing assemblies and backlash in the gearing 

systems. On the other hand, saturation nonlinearity is the case when the value of k2 is 

0. The effect of piecewise linear stiffness nonlinearity on system response was 

investigated in many studies such as [31, 33, 34, 41, 44-47]. 
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Figure 2.5 Characteristic of a piecewise linear stiffness element 

 

From the definition, a frequency response distortion is expected to show an abrupt 

change at the point of transition from the stiffness k1 to the stiffness k2, as shown in 

Figure 2.6 [31]. 

 

 

Figure 2.6 Linear and quasilinear receptances 
15

α  and 
15

θ  for piecewise linear 

stiffness type of nonlinearity (k1 = 1 kN/m, k2 = 25 kN/m, δ = 0.01 m and F5 = 20 N) 

: arrows show the direction of frequency sweep [31] 

-δ 
δ 

k2 

1 

k2 

1 

k1 
1 

k1 

1 
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The single harmonic describing function of a piecewise linear stiffness element 

having system coefficients k1, k2 and δ defined in Equation 2.39, can be formulated 

as follows: 

 

1 1

2
1 2

2 1
1 1 1

,

2( - )
arcsin 1-

δ

δ δ δ
δ

π

= <

 
      = + + ≥           
      

ab

ab

v k for X

k k
v k for X

X X X               

(2.40) 

 

2.2.3.4 Arctan Stiffness 

 

Arctan stiffness type of nonlinearity is usually used to model softening structural 

behavior. However, unlike the softening cubic stiffness nonlinearity, arctan 

nonlinearity approaches a horizontal tangent for large values of displacement. The 

arctan stiffness element having such a softening characteristic can be defined by: 

 

( , ) arctan( )n x x xρ κ=�                                                                                            (2.41) 

 

where the coefficient ρ is the amplification factor and κ is the compression factor. 

The characteristic force-displacement relationship of an arctan stiffness element is 

graphically shown in Figure 2.7. 

 

The effect of arctan stiffness nonlinearity on system response is substantially similar 

to the that of softening cubic stiffness nonlinearity [33, 45, 48]. The first harmonic 

describing function of an arctan stiffness element having system coefficients, ρ and κ 

defined in Equation 2.41, can be written as below: 

 

2
12

1

2
( ( ) 1 -1)

( )

ρ
κ

κ
= +

ab
v X

X
                                                                             (2.42) 
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Figure 2.7 Characteristic of an arctan stiffness element 

 

2.2.3.5 Preloaded Stiffness Element 

 

Intentional pre-compression, unintended manufacturing or heat treatment process 

introduces nonlinearity into mechanical structures and can be modeled by using 

preloaded stiffness element [49]. This type nonlinearity has the characteristic relation 

below, 

 

( , ) 0

( , ) [ ] 0

p

p p

x
n x x F kx for x

x

n x x F F for x

= + >

= − =

�

�

                                                                     (2.43) 

 

where Fp is the preload force value and k is the proportionality constant which is 

shown in Figure 2.8, graphically. 
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Figure 2.8 Characteristic of a preloaded stiffness element 

 

Typical response distortion due to preloaded stiffness nonlinearity is an increase in 

the frequency at which resonance occurs as shown in Figure 2.9. 

 

 

Figure 2.9 Typical response distortion resulting from preloaded stiffness 

nonlinearity [49] 

Fp 

-Fp 

k 

1 

k 
1 
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The single harmonic describing function of a preloaded stiffness element having 

system coefficients Fp and k defined in Equation 2.43 can be expressed as given 

below: 

 

1

4

π
= +

p

ab

F
v k

X
                                                                                                        (2.44) 

 

2.3 Extension of the Structural Modification Method for Nonlinear 

Modifications 

 

For the structural modifications introducing additional DOFs into the system, 

Özgüven [14] developed a formulation based on FRFs. Here, firstly this formulation 

is summarized and then its extension to nonlinear structural modifications will be 

explained. 

 

2.3.1 Özgüven's Formulation 

 

For the structural modifications that introduce additional DOFs to a structure, 

dynamic stiffness matrices of the original and modified structures can be stated as 

follows, respectively: 

 

[ ]

1

1
aa ab

ba bb

α α
α

α α

−

−
 
 =
  

                                                                                        (2.45) 

 

1 1

mod mod

mod mod

0 0 0
0

00

0
0 0 0

aa ab ac
aa ab

bb bcba bb bc
ba bb

cb ccca cb cc

D D

D D

γ γ γ α α

γ γ γ α α

γ γ γ

− −     
          = +          

          

          (2.46)                            

 

In the equations above, the superscript a denotes DOFs that belong to the original 
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structure only, superscript b represents DOFs corresponding to connection nodes 

between the original and the modifying structures, and superscript c represents DOFs 

that belong to modifying structure only as shown in Figure 2.10. 

 

 

Figure 2.10 Structural modification schematic 

 

When Equation 2.46 is premultiplied by 

 

0

0

0 0

aa ab

ba bb

I

α α

α α

  
  
    
  

                                                                                           (2.47) 

 

and postmultiplied by [ ]γ , 

 

[ ] [ ]
mod

mod

0 00 00

0 00 0 0
0 0 0 0 00 0

abaa ab

ba bb bb

DI

I
D

II

αα α

γ γα α α

                  = +                        

                   (2.48) 

 

following equations can be obtained after performing some matrix manipulations 

[14]: 

 

mod

0 0

0 0 0 0

babb ba

ca

I
D

I

γα α

γ

      
 + =        

          
                                                        (2.49) 
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mod

0 0 0

0 0 0 0

bb bcbb bb

cb cc

I
D

I I

γ γα α

γ γ

      
 + =        

          
                                         (2.50) 

 

mod0
ba

aa ab aa

ca
D

γ
γ α α

γ

 
      + =         

                                                             (2.51) 

 

mod0 0
bb bc

ab ac ab ab

cb cc
D

γ γ
γ γ α α

γ γ

 
      + =         

                                     (2.52) 

 

So, receptance matrix of the modified system can be written in the form of its 

submatrices as: 

 

1

mod

0 0

0 0 0 0

ba bb ba

ca

I
D

I

γ α α

γ

−
       

 = +         
         

                                                    (2.53) 

 

1

mod

0 0 0

0 0 0 0

bb bc bb bb

cb cc

I
D

I I

γ γ α α

γ γ

−
       

 = +         
         

                                     (2.54) 

 

mod0
ba

aa aa ab

ca
D

γ
γ α α

γ

 
       = −           

                                                             (2.55) 

 

[ ] mod0
bb bc

ab ac ab

cb cc
I D

γ γ
γ γ α

γ γ

  
      = −           

                                            (2.56) 

 

The above equations indicate that only a single matrix is to be inverted for the 

calculation of the complete receptance matrix of the modified system. Note that the 

order of the aforementioned matrix is equal to the number of DOF related with the 

modified coordinates. For local modifications, order of the matrix to be converted is 
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quite small compared to the total DOF of the system which is usually the case in real 

applications. 

 

2.3.2 Extension of the Formulation for Nonlinear Structural Modifications 

 

Consider the equations of motion of a nonlinear modifying structure. The equations 

of motion for such a structure can be written as given below: 

 

{ } { } { } { } { }mod mod mod ( , )M x i H x K x N x x f     + + + =     �� �                                       (2.57) 

 

where modK   , modM    and modH    represent stiffness, mass and structural 

damping matrices of the modifying structure, respectively. When a harmonic force  

 

{ } { } i t
f F e

ω=                                                                                                        (2.58) 

 

is applied on the system, the system response as an initial approach, can be assumed 

to be harmonic at the same frequency: 

 

{ } { } i t
x X e

ω=                                                                                                       (2.59) 

With regard to this assumption, the internal nonlinear forces can also be assumed to 

be harmonic at the same frequency: 

 

{ } { } i t
N S e

ω=                                                                                                       (2.60) 

 

In their studies, Budak and Özgüven [28, 29] has previously shown that the 

amplitude vector of the internal nonlinear forces, for certain types of nonlinearity, 

can be expressed as: 

 

{ } [ ]{ }S X= ∆                                                                                                         (2.61) 
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where [ ]∆ , called “nonlinearity matrix”, is a function of the unknown displacement 

amplitude vector { }X . The formulation for [ ]∆  was initially suggested by Budak 

and Özgüven [28, 29] for certain types of nonlinearities, and later generalized for any 

type of nonlinearity using DFM by Tanrıkulu et al. [30, 31]. In these studies, the 

elements of nonlinearity matrix were defined as: 

 

1

n

kk km
m

v
=

∆ = ∑                                                                                                         (2.62) 

 

( ),
km km

v k m∆ = − ≠                                                                                             (2.63) 

 

where subscripts k and m represent the general coordinates.  

 

When Equations 2.58, 2.59, 2.60 and 2.61 are substituted into the Equation 2.57, 

nonlinear internal forces can be included in the analysis by considering an additional 

equivalent stiffness matrix in the system which is a function of unknown response 

amplitudes. Then, nonlinear dynamic stiffness matrix of the modifying structure will 

take the form: 

 

[ ]2
mod mod mod modD K M i Hω       = − + + ∆                                                         (2.64)   

 

As mentioned in Section 2.2.3, when the nonlinearity matrix is expressed in terms of 

describing functions defined as a function of unknown response amplitude, { }X , 

only an iterative approach is required for the solution. In this thesis, “Fixed Point 

Iteration” method is applied. 

 

[ ]2
mod mod mod mod1

( 1, 2,3,...)
jj

D K M i H jω
+

       = − + + ∆ =                   (2.64) 

 

In Equation 2.58, mod 1j
D

+
    is the nonlinear dynamic stiffness matrix of the 
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modifying structure at the (j+1)th iteration step, whereas [ ]
j

∆  is the nonlinearity 

matrix determined by using { }
j

X . The initial value of displacement amplitude 

vector { }
j

X
 
is taken as the linear solution of the system at the first frequency value. 

The converged value of { }
j

X  obtained at a previous frequency step is taken as the 

starting value for the succeeding step. The iterations can be repeated until the 

percentage displacement error 

 

{ } { }

{ }
1

| |
100

| |

j j

j

X X
e x

X

+
−

=                                                                                      (2.65) 

 

drops below a certain value. In order to avoid divergence or numerical instability, 

and also to obtain fast convergence,  relaxation is applied to the fixed point iteration 

[50]: 

 

{ } { } { }*
11

(1 ) (0 1)
j jj

X X Xλ λ λ
++

= + − ≤ ≤                                                 (2.66) 

 

where λ is the relaxation coefficient. 

 

2.3.3 Extension of the Formulation for Nonlinear Structural Couplings 

 

The formulation given above for nonlinear modifications is applied for nonlinear 

structural coupling by flexible elements by making a simple trick in the algorithm of 

NLSM/CP. In this section, the approaches used for nonlinear structural coupling with 

linear and nonlinear elements are individually investigated. 

 

2.3.3.1 Nonlinear Structural Coupling with Linear Elements 

 

The formulation given in section 2.3.2 can directly be used by treating the coupling 

problem with linear elements as an equivalent structural modification problem as 
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shown in Figure 2.11. That is, for each connection node of the linear elastic element 

on the original system a massless node is added to the coupled subsystem. 

 

 

Figure 2.11 Treating a structural coupling problem with linear elements 

  

Here, linear coupling connection DOFs on the original system are grouped node by 

node. For each of those nodes, an additional massless node is added to the coupled 

subsystem. Then, the stiffness matrix of the coupled subsystem, modK   , is 

expanded. For example, if p number of massless nodes are added to the coupled 

subsystem where the DOF per node is q, p×q number of rows and columns are added 

to the stiffness matrix of the coupled subsystem. Then, the stiffnesses of linear elastic 

coupling elements are inserted in proper locations of added rows and columns of 

modK   . The mass, nonlinearity, viscous and structural damping matrices of the 

coupled subsystem should also be expanded in the same way. However, just zeros 

will be inserted in their added rows and columns. Finally, by defining additional 

massless nodes as new rigid connection nodes of the coupled subsystem, the problem 

can be taken as a nonlinear structural modification problem as defined in section 

2.3.2. 

 

2.3.3.2 Nonlinear Structural Coupling with Nonlinear Elements 

 

Similarly, the same formulation given in section 2.3.2 can be used by treating the 

coupling problem with nonlinear elements as an equivalent structural modification 

problem as shown in Figure 2.12. That is, for each connection node of the nonlinear 
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element on the original system a massless node is added to the coupled subsystem as 

in the previous case. 

 

Here, linear coupling connection DOFs on the original system are grouped node by 

node. For each of those nodes, an additional massless node is added to the coupled 

subsystem. Accordingly, again; stiffness, mass, nonlinearity, viscous and structural 

damping matrices of the coupled subsystem are expanded by adding p×q number of 

rows and columns, where p is the number of massless nodes added to the coupled 

subsystem and q is the DOF per node. 

 

 

Figure 2.12 Treating a structural coupling problem with nonlinear elements 

 

However this time, the added rows and columns of the nonlinearity matrix [∆] will 

be filled with proper elements representing the nonlinear connection elements. If 

there are linear stiffness counterparts of the connecting elements, these values will 

also be properly inserted into the expanded rows and columns of the stiffness matrix 

of the coupled subsystem. Finally, by defining additional massless nodes as new 

rigid connection nodes of the coupled subsystem, the problem can be taken as a 

nonlinear structural modification problem as defined in section 2.3.2. 
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CHAPTER 3 

 

 

COMPUTER PROGRAM: NLSM/CP  

 

 

 

3.1 Non-Linear Structural Modification/Coupling Program 

 

The theory and the mathematical formulations described in the previous chapters are 

implemented in MATLAB® environment and a computer program, named 

“NLSM/CP” (Non-Linear Structural Modification/Coupling Program), with a user 

friendly graphical user interface (GUI) is constructed. The program predicts the 

response characteristics of nonlinearly modified systems. It is compatible with a 

standard FE program, ANSYS®, and it takes system matrices of modifying system 

and modal data of original structure as an output file of the FE program in the 

preprocessing stage in order to compute the harmonic nonlinear response of modified 

system. In this chapter, basic features of NLSM/CP will be introduced. The user 

manual of the program is given in Appendix A. The logic of the program is 

summarized in the flow chart shown in Figure 3.1. 

 

3.1.1 Program Description 

 

NLSM/CP is a MATLAB® based GUI program which computes the harmonic 

nonlinear response of a nonlinearly modified structure. The preprocessing stage of 

the program basically includes the following tasks: 

 

• Selection of the solution parameters,  

• Description of the rigid, linear and nonlinear connections and variables, 

• Description of the original and modifying systems to be analyzed, 



33 

• Description of response coordinates for output, 

• Description of the nonlinearities in modifying structure, their coordinates and 

parameters, 

• Description of the external forces and coordinates to which they are applied, 

 

The outputs of NLSM/CP are magnitudes of the response and frequency response 

values of selected coordinate at predetermined forcing level over a frequency range. 

Program is capable of analyzing modified systems with the following types of 

nonlinearities: 

 

• Cubic stiffness, 

• Coulomb damping, 

• Piecewise linear stiffness, 

• Preloaded stiffness, 

• Arctan stiffness, 

 

In addition, user can also define linear local viscous dampers between coordinates. 

 

3.1.2 Preprocessing 

 

The preprocessing stage of NLSM/CP involves the preparation of the program for 

the solution procedure. The starting point of the preprocessing stage is to introduce 

the original and modifying systems to be analyzed, namely, the modal data of the 

original system and the system matrices of the modifying system. For the original 

structure, the program uses two different text files which include modal matrix 

information and natural frequency information. These two text files are extracted 

from ANSYS® by using a macro file written in this study. The FRF matrix is 

constructed for the original structure by using following expression:  

 

2 2 2
1

( )
N ir jr

ij
r

r r
i

φ φ
α ω

ω ω ηω=
= ∑

− +
  (3.1) 
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Here, the number of modes used in calculating original system FRF should be 

defined by the user. Note that, the number of nodes, DOF per node and the number 

of mode shapes to calculate FRFs has to match with the information in the files 

created by using ANSYS®. 

 

On the other hand, for the modifying system, the program uses two files which store 

the stiffness and mass matrices of the modifying structure. These files are extracted 

from the output files of ANSYS® modal analysis which has an extension of “*.full”. 

However, in order to have these stiffness and mass matrices, the file named 

“rdfull.f” which is in the ANSYS® installation directory, should be compiled with 

Intel Fortran compiler to create the “rdfull.exe” file. Then by running this 

“rdfull.exe” file with the result file of ANSYS® modal analysis which has an 

extension of “*.full” in a separate folder, these stiffness and mass matrices are 

extracted. Note again that, the number of nodes and DOF per node information has to 

match with the information in the files created by using ANSYS®.  

 

The structural damping is modeled as proportional damping and the loss factor of the 

material can be entered as a constant value input. If structural damping is response 

dependent and any data set about its variation with respect to displacement values are 

available, those can also be loaded to the program. Then, program interpolates a 

polynomial function to this data set and structural damping corresponding to any 

displacement value can be obtained for each iteration at all frequency steps. Initial 

solution parameters such as: 

 

• lower and upper limits of the frequency range of interest 

• number of frequency points  

• allowable percentage error tolerance 

• maximum iteration number  

• relaxation number for converging and diverging solutions 

 

can be entered through the GUI window at the same stage. 
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Rigid connection nodes and linear and nonlinear connection DOFs regarding both 

original and modifying structures should also be entered as the next step in 

preprocessing stage. Nonlinearity types given in Section 2.2 can be easily defined by 

an illustrative GUI window that consists of schematic diagrams and describing 

parameters for different types of nonlinearities (Figure 3.9 and Figure 3.27). 

 

Afterwards, whether the DOF whose direct point FRF and response is desired is on 

the original structure or modifying structure should be decided. The coordinate of 

this DOF should also be defined in the program according to the DOF numbering 

system of the structure to which it belongs. Then using the "Properties are defined!" 

button, program loads all those inputs.  

 

As the next preprocessing step, nonlinearities exist in modifying structure can be 

defined by using an interface similar to the one used in selecting nonlinear 

connections. Last step in preprocessing stage is defining external forces and their 

application coordinates. Here, external forcing coordinates should be defined 

separately both for the original and modifying systems considering their own initial 

(before modification/coupling) coordinate systems. During solution, program 

changes the number of those coordinates by renumbering them into coordinates of 

the modified system.  

 

3.1.3 Solution Algorithm 

 

This section refers to points worth mentioning about the solution algorithm of 

NLSM/CP. To begin with, NLSM/CP needs only the user defined necessary 

coordinates that belong to the original system during calculation, since original 

system data is available in the form of FRFs. These coordinates are the ones having 

rigid, linear or nonlinear connections, on which an external forcing is applied and for 

which response and FRF computations will be performed. The rest of the coordinates 

will not be used in the computation, therefore the program reduces the size of the 

FRF matrix of the original system. This does not affect the accuracy of the results.  
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37 

The calculations in the solution algorithm are performed with predefined constant 

frequency increment. Both low-to-high and high-to-low frequency swept nonlinear 

responses and FRFs are calculated through single harmonic solution. 

 

The converging and diverging relaxation numbers are switched by the program by 

comparing the error obtained at immediate and previous iteration steps [50]. After 

relaxation, the weighted response calculated using the ones obtained in previous and 

immediate iteration steps is taken as initial displacement value for the next iteration 

step (Equation 2.66). When the convergence criterion is eventually satisfied, the 

program stops doing iteration and steps into the next frequency value in the 

frequency range. 

 

3.1.4 Post Processing 

 

The outputs of the program are linear and nonlinear (both low-to-high and high-to-

low frequency sweeps) response and FRF plots regarding modified system. The 

solution time for the calculation is also displayed on the GUI window at the end of 

calculation. 

 

3.2 User's Manual of the Program: NLSM/CP 

 

In this section, the user's manual of the NLSM/CP developed in the study in order to 

apply the approach proposed is given. 

 

3.2.1 Definition of the Files Used in the MATLAB® Program 

 

NLSM/CP is compatible with a standard FE program, so that it uses some input files 

that are extracted from the modal analysis performed in ANSYS®. Furthermore, in 

order to extract these files from ANSYS®, some macro files and “.exe” files are used. 

The definitions of these files are given below. 
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• FREQ_ORG.txt: The text file that stores the natural frequencies of the 

original structure. 

 

• MODAL_ORG.txt: The text file that stores the mode shape vectors of the 

original structure. 

 

• NODENO_ORG.txt: The text file that stores the node numbers of the 

required nodal FRFs of the original structure. 

 

• MASS_MODIF.matrix: The file that stores the mass matrix information of 

the modifying structure. 

 

• STIFFNESS_MODIF.matrix: The file that stores the stiffness matrix 

information of the modifying structure. 

 

• NODE_READ.txt: The text file generated by the user that should be read by 

the ANSYS® after the modal analysis of the original structure in order to 

input ANSYS® the node number information of required nodal FRFs. 

 

• ModalDataExport_Org.txt: Macro file that should be read by the ANSYS® 

after the modal analysis of the original structure in order ANSYS® to extract 

the “FREQ_ORG.txt”, “MODAL_ORG.txt” and “NODENO_ORG.txt” 

files. 

 

• userprog.exe: This is the executable file that should be run after the modal 

analysis of the modifying structure in order ANSYS® to extract the 

“STIFFNESS_MODIF.matrix” and “MASS_MODIF.matrix” files.  

 

3.2.2 Graphical User Interface (GUI) 

 

Before running the NLSM/CP, the following steps should be performed: 
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• In order to extract the “FREQ_ORG.txt”, “MODAL_ORG.txt” and 

“NODENO_ORG.txt” files from the ANSYS®, “NODE_READ.txt”  and 

“ModalDataExport_Org.txt” macro files should respectively be read by the 

ANSYS® after the modal analysis of the original structure, respectively. 

 

• The “*.full” file, obtained through the modal analysis of the modifying 

structure performed in the ANSYS®, should be renamed as “file.full”. By 

running the “userprog.exe” file within the same directory with "file.full" file, 

“STIFFNESS_MODIF.matrix” and “MASS_MODIF.matrix” files should 

be extracted. 

 

Since all these extracted files are read by NLSM/CP, they should be in the same 

directory with the source codes of NLSM/CP. After performing the steps given 

above, NLSM/CP can be run. The application of the program is shown below as a 

self generated preprocessing stage covering all the options of the NLSM/CP step-by-

step. Note that data inputted at each step is circled with red on the following 

snapshots of the GUI window. 
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Set the number of frequency points that will be used in the analysis (Figure 3.2). 

 

 

Figure 3.2 Setting the number of frequency points 

 

Set the lower and upper frequency limits for the analysis (Figure 3.3). 

 

 

Figure 3.3 Setting the lower and upper frequency limits 
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Set the maximum percentage error and iteration number (Figure 3.4). 

 

 

Figure 3.4 Setting the maximum percentage error and iteration number 

 

Set the relaxation coefficients at diverging and converging points (Figure 3.5). 

 

 

Figure 3.5 Setting the relaxation coefficients at diverging and converging points  
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Set the linear elastic connection DOF numbers of the original and modifying 

structures with stiffness values, in matching order (Figure 3.6). 

 

 

Figure 3.6 Setting the linear elastic connection DOF numbers with stiffness values 

 

Set the rigid connection node numbers of the original and modifying structures, in 

matching order (Figure 3.7). 

 

 

Figure 3.7 Setting the rigid connection node numbers 
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Set the nonlinear connection DOF numbers of the original and modifying structures 

and define the type of nonlinear element (Figure 3.8). 

 

 

Figure 3.8 Setting the nonlinear connection DOF numbers and defining types of 

nonlinear elements 

 

Press the “Define Parameters” button each time after entering nonlinear connection 

DOFs and set parameters of the related nonlinear element (Figure 3.9). 

 

 

Figure 3.9 Setting the parameters of the related nonlinear element 



44 

Press the “CONNECTIONS ARE DEFINED” button and so that the program reads 

all the connection data defined by the user (Figure 3.10). 

 

 

Figure 3.10 Letting the program read all the defined connection data 

 

Set the number of nodes of the original system (Figure 3.11).  

 

 

Figure 3.11 Setting the number of nodes of the original system 



45 

Set the number of eigenvectors extracted for the original system (Figure 3.12). 

 

 

Figure 3.12 Setting the number of eigenvectors extracted for the original system 

 

Set the number of nodes of the modifying system (Figure 3.13). 

 

 

Figure 3.13 Setting the number of the nodes of modifying system 



46 

 Choose number of DOF(s) per node (Figure 3.14). 

 

 

Figure 3.14 Choosing number of DOF(s) per node 

 

Choose whether the DOF for which FRF will be calculated is on the original or 

modifying structure (Figure 3.15). 

 

 

Figure 3.15 Choosing whether the response node is on original or modifying 

structure 
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Set the DOF for which FRF will be calculated using the related system's numbering 

(Figure 3.16). 

 

 

Figure 3.16 Setting the response DOF 

 

Choose whether the structural damping is constant or response dependent and press 

"ENTER" button (Figure 3.17). 

 

 

Figure 3.17 Choosing whether the structural damping coefficient is constant or 

response dependent 
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If "Constant Damping" option is chosen, set the constant structural damping 

coefficient of the whole system (Figure 3.18). 

 

 

Figure 3.18 Setting the constant structural damping coefficient 

 

If "Variable Damping" option is chosen, press the "NOT CONSTANT, BROWSE 

DATA" button and browse the Excel file which has this data (Figure 3.19). 

 

 

Figure 3.19 Setting the response dependent structural damping data 
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Press the "PROPERTIES ARE DEFINED" button to accept all the data inputted up 

to here (Figure 3.20). 

 

 

Figure 3.20 Accepting all the data inputted up to here 

 

Choose whether the excitation is on the original or modifying structure (Figure 3.21). 

 

 

Figure 3.21 Choosing whether the excitation is on original or modifying structure 
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Set the coordinate on which an external force is applied (Figure 3.22). 

 

 

Figure 3.22 Setting the external force application coordinate 

 

Set the magnitude of the external force applied (Figure 3.23). 

 

 

Figure 3.23 Setting the magnitude of the external force applied 
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Press the "Load" button to add the amplitude and application DOF of the external 

force to the list of applied forces (Figure 3.24). 

 

 

Figure 3.24 Adding the external force created to the list of applied forces 

 

Set the two coordinates of the nonlinear element involved in the modifying structure 

and define the type of nonlinearity (Figure 3.25).  

 

 

Figure 3.25 Setting the two coordinates and the type of the nonlinear element  
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Press the “Define Parameters” button and set the parameters of the related 

nonlinearity (Figure 3.26). 

 

 

Figure 3.26 Setting the parameters of the nonlinearity 

 

Press the “SOLVE” button in order to solve the problem (Figure 3.27). 

 

 

Figure 3.27 Solving the problem 
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After the green progressing bar fills up for the second time and disappears which 

implies that the solution ends, press the “DRAW” button to plot the response and 

FRFs (Figure 3.28). 

 

 

Figure 3.28 Plotting the response and FRFs
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CHAPTER 4 
 

 

VERIFICATION AND APPLICATION OF THE METHOD AND THE 

PROGRAM 

 

 

 

In this chapter, case studies to demonstrate the validity of the computer program 

developed will be given. The results obtained by using the program will be compared 

with those obtained via different methods and also with the solutions of several case 

studies found in the literature. Then, several other case studies are presented to 

demonstrate the application of the method and the program for various systems and 

for various types of nonlinear elements. The case studies corresponding to the 

verification problems are numbered using letter “V” while case studies 

corresponding to the application problems are numbered using letter “A”. 

 

4.1 Verification of the Method and the Program 

 

In this section, the method and then the program developed are verified through 

several applications. Applications are performed in such a selective way that they 

refer to verification examples for all three cases, namely, structural modification 

without additional DOFs, structural modification with additional DOFs and structural 

coupling with linear and nonlinear elements. 

 

4.1.1 Case Study V.1 : 3 DOF System with Cubic Stiffness - Comparison with 

Results Given in Literature 

 

In this application, case study L.1 given in reference [33] is analyzed by using the 

method suggested in this work. In reference [33], nonlinear FRFs of a system were 
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directly obtained through harmonic analysis. The 3 DOF system considered consists 

of three masses with linear and also nonlinear stiffnesses (Figure 4.1). A structural 

damping with 0.12% loss factor is assumed in the system. 

 

 

Figure 4.1 System schematic for Case Study V.1 [33] 

 

Stiffness and mass matrices of the system considered are given below:

    

                            

 

[ ]
31.6 0 0

0 55.4 0

0 0 24.2

 
 = 
  

M kg                                                                                          (4.1) 

 

[ ]
200491 64921 36279

64921 398118 17503

36279 17503 132578

− − 
 = − − 
 − − 

K N m                                                              (4.2) 

                    

The nonlinearities involved in this system, which are represented in Figure 4.1 by 

bold lines, are defined in Table 4.1. 

 

Table 4.1 Parametric values of nonlinearities for Case Study V.1 

Nonlinear Connection 
Coordinates 

Nonlinearity Type 
Nonlinearity  
Coefficients: 

2-3 Cubic Stiffness kc = 0, β = 7.82e6 

3-Ground Cubic Stiffness kc = 0, β = 1.44e7 
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In order to study this system using proposed approach, the system is first divided into 

two subsystems: The 3 DOF system shown graphically on the left in Figure 4.2 is 

taken as linear main system. The 2 DOF system on the right is taken as a nonlinear 

modifying system. This division is performed such that the modified system after 

coupling will be the same as the system studied previously. 

 

 

Figure 4.2 Nonlinear structural modification diagram for Case Study V.1 

 

System matrices of the main (original) system are as follows: 

 

0

200491 64921 36279

64921 64921 0

36279 0 36279

− − 
   = −   
 − 

K N m                                                               (4.3) 

 

0

31.6 0 0

0 20 0

0 0 10

 
   =   
  

M kg                                                                                    (4.4) 

 

System matrices of the modifying system are also given below: 
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mod

333197 17503

17503 96209

− 
  =    − 
K N m                                                                        (4.5) 

 

mod

35.4 0

0 14.2

 
  =   

 
M kg                                                                                     (4.6) 

 

The natural frequencies and eigenvectors of the original linear system are calculated 

as follows: 

 

{ }
5.628

9.402

14.65

ω

 
 

=  
 
 

r
Hz                                                                                                  (4.7) 

 

[ ]
-0.14928 0.09631 0.00976

0.09258 0.15668 -0.12992

0.11162 0.14698 0.25678

u

 
 =  
  

                                                                   (4.8) 

 

The frequency domain solutions of the modified system subjected to the harmonic 

excitation 

  

0

{ } 12

0

ω
 
 

=  
 
 

i tf e N                                                                                                     (4.9)

 

 

are calculated by using NLSM/CP and the results are shown in Figure 4.3 and Figure 

4.4. The frequency domain solutions of the same system obtained by analyzing the 

whole system [33] are given in Figure 4.5 and Figure 4.6. When solutions obtained 

using two different approaches are compared with each other, it can be clearly seen 

that NLSM/CP solutions show a perfect agreement with the solutions obtained in the 

previous study. 
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Figure 4.3 NLSM/CP solution for Case Study V.1 for (a) the 1st mass, (b) the 2nd 

mass and (c) the 3rd mass 
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Figure 4.4 NLSM/CP solution for Case Study V.1 - zoomed individual resonances 

for (a) the 1st mode of the 1st mass, (b) the 2nd mode of the 2nd mass and (c) the 3rd 

mode of the 3rd mass 
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Figure 4.5 Solution for Case Study V.1 given in [33] for (a) the 1st mass, (b) the 2nd 

mass and (c) the 3rd mass 
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Figure 4.6 Solution for Case Study V.1 given in [33] - zoomed individual resonances 

for (a) the 1st mode of the 1st mass, (b) the 2nd mode of the 2nd mass and (c) the 3rd 

mode of the 3rd mass 
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4.1.2 Case Study V.2 : Modification via Nonlinear Coupling - Comparison 

with Results Given in Literature 

 
In this case, the same system given in section 4.1.1 is considered in an alternative 

manner. This time, the system is decoupled such that when two subsystems are 

connected with linear and nonlinear elements,  they are to construct the system used 

in [33]. During decoupling, it is again intended to obtain two subsystems such that 

one of them is to be original linear system while the other one is to be the modifying 

nonlinear system. And through coupling this two subsystem with pre-extracted linear 

and nonlinear elements, the initial quoted system will be obtained. Coupling is 

summarized graphically in Figure 4.7. 

 

 

Figure 4.7 Nonlinear structural coupling diagram for Case Study V.2 

 

The system matrices of the original system are as follows: 

 

0

164212 64921

64921 380615
K N m

− 
  =    − 

                                                                           (4.10) 
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0

31.6 0

0 55.4

 
  =   

 
M kg                                                                                       (4.11) 

 

The system matrices of the modifying system are also given below: 

 

[ ]
mod 78796  = K N m                                                                                         (4.12) 

 

[ ]mod 24.4  = M kg                                                                                              (4.13) 

 

The stiffnesses, k1 and k2, of linear elastic connection elements are taken as 17503 

N/m and 36279 N/m, respectively. In the same way as the previous application, the 

nonlinear cubic stiffness element coefficients, kc and β, are taken as 0 N/m and 

7.82×106 
N/m

3, respectively. The natural frequencies and eigenvectors of the original 

linear system are calculated as given: 

 

{ }
10.401

14.053
ω

 
=  
 

r
Hz                                                                                              (4.14) 

 

[ ]
-0.15275 0.09116

-0.08381 -0.11536
u

 
=  
 

                                                                                 (4.15) 

 

The frequency domain solutions of modified system subjected to the same harmonic 

excitation given by Equation (4.9) are obtained through NLSM/CP and the results are 

found to be exactly the same as those obtained in Case Study V.1.  

 

4.1.3 Case Study V.3 : 3 DOF Nonlinear System - Comparison with TDI 

Solution  

 

In this case, the approach proposed is applied to a simple linear discrete system with 

nonlinear modifications (Figure 4.8). For the validation of the approach, results 
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obtained via software developed are compared with those calculated by TDI solution 

of the coupled system by using the ordinary differential equation (ODE) integrators 

of MATLAB®. Integrations are performed using several integrators like ODE45, 

ODE113, ODE15s, etc. [51] with regard to stiffness characteristics of the problem 

until steady state is reached.  

 

 

Figure 4.8 Nonlinear structural modification diagram for Case Study V.3 

 

The system matrices of the original system are given below: 

 

11 13 13

0 21 22 23

31 32 33

90000 30000 30000

30000 60000 30000

30000 30000 60000

  − − 
     = = − −    
   − −  

k k k

K k k k N m

k k k

                          (4.16) 

 

11 12 13

21 22 23

31 32 33

0

30 0 0

0 20 0

0 0 10

   
     = =     
      

m m m

M m m m kg

m m m

                                                                (4.17) 
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The system matrices of the modifying structure are also given as follows: 

 

* *
11 12

* *
21 22

mod

60000 30000

30000 60000

k k
K N m

k k

−   
  = =     −  

                                                         (4.18) 

 

* *
11 12

* *
21 22

mod

35 0

0 15

   
  = =    

  

m m
M kg

m m
                                                                               (4.19)   

 

* *
11 12

* *
21 22

mod

25 25

25 50

−   
  = =     −  

c c
C Ns m

c c
                                                                       (4.20)       

    

The nonlinearities inherent in modifying structure, which are represented in Figure 

4.7 with bold lines, are given in Table 4.2. 

 

Table 4.2 Parametric values of nonlinearities for Case Study V.3 

Nonlinear Connections 
(DOF1-DOF2) 

Nonlinearity Type 
Nonlinearity 
Coefficients 

1*- 2* Cubic Stiffness kc = 0, β = 1e11 

2*- Ground Arctan Stiffness ρ = 8, κ = 1750 

 

 

Characteristics of cubic and arctan stiffness elements are shown in Figure 2.1 and 

Figure 2.7, respectively. The definitions of the nonlinearity coefficients given in 

Table 4.2 can be seen in Equations 2.33 and 2.38. 

 

When system is excited with the following harmonic excitation, 

 

1

2

3

0

{ } 12

0

ω

   
   

= =   
   

  

i t

f

f f e N

f

                                                                                                        (4.21) 
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the frequency domain responses can be obtained by using NLSM/CP. FRFs for the 

third mass are given along with the solution obtained via TDI in Figure 4.9 and 

Figure 4.10. 

 

 

Figure 4.9 Comparison of frequency responses obtained by proposed approach and 

TDI solution for the 3rd mass 

 

 

Figure 4.10 Comparison of frequency responses obtained by proposed approach and 

TDI solution for the 3rd mass (zoomed in third mode) 
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From the study of Figure 4.8 and Figure 4.9, it can be observed that there is an 

excellent match between the results obtained by two approaches at all frequencies in 

the frequency range which covers all three resonances. It should also be mentioned 

that the results obtained with time integration coincide with the results found through 

both forward and reverse sweeps. 

 

4.1.4 Case Study V.4 : A Real Structural System - Comparison with 

Experimentally Obtained Results 

 

For the implementation of the nonlinear structural modification approach proposed, a 

nonlinear test rig, which has been originally designed by Chong and İmregün [38], 

and has also been used recently in a previous study [52], is employed in this 

application. 

 

4.1.4.1 Overview of the Referred Experiment and Adaptation for the Nonlinear 

Structural Modification 

 

 

Figure 4.10 Test rig assembly and its dimensions 
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The test rig, whose dimensions and technical details are given in Figure 4.10, 

consists of a linear cantilever beam with its free end held between two thin identical 

beams which create cubic stiffness effect. The model used to represent the nonlinear 

dynamic test rig is shown in Figure 4.11. 

 

 

Figure 4.11 Model of the test rig 

 

Here, the fixed-fixed two thin beams are considered as the modifying structure and 

modeled as a concentrated nonlinear spring in y-direction with a concentrated 

equivalent mass as shown in Figure 4.11. The concentrated nonlinear cubic stiffness 

coefficient, β, is taken as 2.667×108 
N/m

3 which is the value identified 

experimentally [52]. Using the material and geometric properties of the thin beams, 

the linear part of the equivalent spring stiffness and equivalent mass values are 

calculated as 4519 N/m
3 and 45.3 g, respectively. The linear cantilever beam is 

considered as the original structure and modeled by using a standard FE program as 

shown in Figure 4.12. The modal data for the original structure is obtained via Finite 

Element Analysis (FEA).  
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Figure 4.12 The FE model of the cantilever beam 

 

Constructed model is solved using the NLSM/CP for the nonlinear modification. 

Frequency resolution during solution is taken as 0.25 Hz as is the case in the 

previous work [52]. The response amplitude dependent structural damping data set 

identified in [52] is used in the analysis. The direct point FRFs for the tip of the 

cantilever beam are calculated at forcing levels of 0.1, 0.5 and 1 N, and compared in 

Figure 4.13-4.15 with those experimentally measured [52], respectively. 

 

4.1.4.2 Comparison of Results 

 

When Figure 4.13 is investigated, it can be seen that good agreements are obtained 

between experimental and predicted values even at high forcing levels where jump, 

typical response distortion due to cubic stiffness nonlinearity, occurs in the frequency 

response. Slight differences are believed to be due to modeling of the modifying 

structure as a SDOF system and also, partly due to using the values cited in literature 

for the material properties of the original beam in FE model. 
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Figure 4.13 Calculated and measured FRF values for (a) F = 0.1 N, (b) F = 0.5 N 

and (c) F = 1 N 
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4.1.5 Case Study V.5 : FE Model of a Cantilever Beam - Comparison with 

Computational Results Given in Literature 

 

In this application, in order to validate the method and the program also for structural 

modifications with additional DOFs, a cantilever beam whose FE model is given in 

Figure 4.14 is considered. 

 

 

Figure 4.14 The FE model of the original beam 

 

The FE model of the original cantilever beam model (Figure 4.14) consists of 20 

SOLID 185 elements and it has 84 nodes with 3 translational DOF per node yielding 

total DOF of 252. FE model properties of the original cantilever beam are also given 

in Table 4.3. 

 

Table 4.3 FE model properties for Case Study V.5 

Element Type Used in FE model SOLID 185 

Number of Elements 20 

Number of Nodes 84 

Number of DOFs 252 
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The material properties assigned to FE model of the original cantilever beam model 

together with geometrical properties of it are given in Table 4.4.  

 

Table 4.4 Material and geometrical properties for Case Study V.5 

Material and Geometrical Property Value 

Density 7850 kg/m3 

Young’s Modulus 200 GPa 

Poisson’s Ratio 0.3 

Length 200 mm 

Width 10 mm 

Thickness 10 mm 

 

 

Then, the original cantilever beam is modified by attaching a smaller beam whose 

bottom surface is exposed to Coulomb friction as shown in Figure 4.15.  

 

 

Figure 4.15 The FE model of the modified beam 
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An external harmonic excitation of magnitude 15N is applied to the 22nd node of the 

modified structure in x-direction. Also, structural damping with a loss factor of 

0.12% is assumed in the system. Coulomb friction force to which each node of the 

bottom surface, namely, DOF numbers 10, 13, 16, 19, 22 and 25, is exposed in x-

direction is equal to 1 N. 

 

The direct point frequency responses for the 22nd node in x-direction after 

modification is calculated using NLSM/CP and given in Figure 4.16. 

 

 

Figure 4.16 Frequency responses for the 22nd node of the modified structure in x-

direction 

 

From Figure 4.16, the effect of the Coulomb friction nonlinearity on modified system 

response can be clearly observed when linear and nonlinear frequency responses are 

compared with each other. It can be seen that, small drops around natural frequencies 

occur which can be observed more clearly around first natural frequency from Figure 

4.17. Disappearances of antiresonances are also due to Coulomb friction type of 

nonlinearity, the physics behind which is explained in Section 2.2.3.2.  
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Figure 4.17 Zoom around first natural frequency 

 

Note that, when the modified beam is directly analyzed with the computer program 

developed by Abat [33], exactly the same results are obtained when all the 

eigenvectors are taken into consideration in both programs to prevent possible 

differences due to truncation.  

 

4.2 Applications of the Method Using the Program Developed 

 

In this section, applications of the method using the program developed are 

demonstrated. The objective of this part is to show the performance and also the 

advantages of the method and the program developed. These applications are 

presented in three main categories: structural modification with additional DOFs, 

structural coupling with linear elements and structural coupling with nonlinear 

elements. Note that, since structural modification without additional DOFs case is 

well investigated in verification stage, it is not studied further in this section. 
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4.2.1 Application of the Method for Modifications with Additional DOFs 

 

In this category, first a modification analysis using two discrete systems, which are 

also used in coupling analysis with linear and nonlinear elements, is illustrated. Then, 

application of the method to a real engineering structure modeled with FE will be 

given. 

 

4.2.1.1 Case Study A.1 - A Discrete System Modification with Additional DOFs 

 

In this case study, nonlinear structural modification of a linear discrete system is 

considered (Figure 4.18).  

 

 

Figure 4.18 Nonlinear structural modification diagram for Case Study A.1 

 

There exists a cubic stiffness type of nonlinearity between coordinates 4 and 5 of the 

modifying system which shows hardening behavior. Parameters of this nonlinear 

element together with the properties of both subsystems can be given as follows: 

 

 ,

,

= = = = =

= = = = = =

1 2 3 4 5

1 2 3 4 5 6

m m m 1kg  and m m 0.5 kg

k k k k k k 1000 N/m
 

  and  63 3

NL c c
n( x,x ) k x x where k 0 N/m 2x10  N/mβ β= + = =�                          (4.22) 
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Assuming structural damping with a loss factor of 0.0015 in the analysis for all linear 

elastic elements, direct point frequency response of the modified system at the point 

where a harmonic force of magnitude 4 N is applied is calculated and shown in 

Figure 4.19. 

 

 

Figure 4.19 Frequency response of m3 after modification for Case Study A.1 

 

It can be seen from Figure 4.19 that the effect of the nonlinearity involved in the 

modifying system is apparent in all four modes of the modified system which reveals 

the importance of including nonlinearity in this specific case. Although the 

nonlinearity affects the frequency responses around resonances considerably, no 

convergence problem is observed during the solution made via proposed method. 

Note that, since the proposed method is an FRF based method, only the required 

original system FRFs are to be included in the calculation. Those FRFs are the ones 

related with the force application DOFs, the response DOF and the connection 

DOFs. Furthermore, in this example the size of the matrix to be inverted is 2, which 

is the order of the modifying system (and therefore it would still be 2, even though 

the size of the original system were much higher). These are the important features of 

the method which makes it more advantageous for large ordered systems with local 

modification as in the one illustrated in the following application. 
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4.2.1.2 Case Study A.2 - A Real Life Engineering Problem 

 

In this application, a real life engineering structure, a shaft and mirror plate assembly 

usually used in land platforms for optical purposes, is considered (Figure 4.20). 

 

 

Figure 4.20 The shaft and mirror plate assembly 

 

Since the mirror plate is an expensive part due to its well machined reflective 

surface, once it is designed it is avoided to be modified further in the design 

optimization of the assembly depending on the vibration characteristics of the 

platform it is mounted. So, when it is going to be used in several other platforms, it 

may be necessary to modify the shaft and/or bearings, in order to minimize the 

vibration of the mirror plate and thus to improve its reflection performance. In order 

to make a more precise analysis, nonlinearity introduced by the bearings should be 

included into the dynamic analysis, which can easily be considered by the nonlinear 

structural modification analysis method suggested in this thesis.  

 

Solid elements are used in the FE model of the mirror plate with 3 DOF per node 

yielding 2655 total DOFs (Figure 4.21). Similarly, the shaft is also modeled by using 

solid elements with 3 DOF per node resulting in 186 total DOFs (Figure 4.22). 
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Figure 4.21 The FE model of the mirror plate  

 

 

Figure 4.22 The FE model of the shaft  
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FE model and material properties of the aluminum alloy made mirror plate and 

structural steel made shaft are given in Table 4.6. 

 

Table 4.5 Material properties of the mirror plate and the shaft  

 Mirror Plate Shaft 

Young’s Modulus 71 GPa 200 GPa 

Poisson’s Ratio 0.33 0.3 

Density 2770 kg/m3 7850 kg/m3 

Element Type Used in FE model SOLID 185 SOLID 185 

Number of Elements 2261 136 

Number of Nodes 885 62 

Number of DOFs 2655 186 

 

 

Since the mirror plate is not desired to be modified during the design optimization 

phase of the assembly, it is taken to be the original structure. Shaft and bearing 

assembly on the other hand is taken as the nonlinear modifying structure where the 

ball bearings at the two ends of the shaft, shown in Figure 4.20, are modeled as 

nonlinear springs in horizontal and vertical directions connected to the ground. It 

should be noted that in this example the shaft is intentionally taken as the part of 

structural modification, just to increase the number of DOFs of the modifying 

structure. The nonlinear behavior of the ball bearings can be taken to be cubic in 

nature [53]. The nonlinear parameters of the ball bearings are taken as:  

 

  and  3 2 7 3

NL c c
n( x,x ) k x x where k 2x10  N/m 5x10  N/mβ β= + = =�        |          (4.23) 

 

In the analysis, initially, the receptances of the mirror are calculated by using 

standard modal analysis for connection points and for any other point we are 

interested in (i.e., points of which response is required or a force is applied to). Then, 

the nonlinear structural modification method is employed and the receptances of the 
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required points on the modified structure are calculated. Since the response of corner 

points on the mirror have the primary importance due to their reflection performance, 

the direct point FRF of a point near one of the corners of the mirror is calculated to 

which a harmonic force with a magnitude of 2 N is applied. The calculated direct 

point FRF is shown in Figure 4.23 with the linear FRF of the assembly without 

considering bearing nonlinearity. Using nonlinear structural modification method, it 

is very easy and fast to recalculate the response for any design change in the shaft 

and/or bearings. 

 

 

Figure 4.23 The direct point FRF of a point near one of the corners of the mirror 

plate for F = 2 N 

 

Moreover, the FRF values for the resulting nonlinear system will be a function of the 

magnitude of the applied harmonic force, which will require the recalculation of the 

FRFs for each forcing amplitude level, although no modification is made on either of 

the subsystems. In such analyses, the method proposed in this thesis provides a 

considerable computational time saving again, since the FRFs of the linear part of the 

structure (which is usually the major part of the system with much higher DOFs) are 

calculated once and then used to find the FRFs for nonlinear overall system. In the 

later phase of the computations, which requires iterative solution, only the FRFs of 

the points we are interested in (in addition to those of the modifying structure) are 

used, rather than all DOFs (which would be the case if the coupled nonlinear system 
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were to be analyzed with standard approaches). In this case study, FRF of the corner 

point of the mirror is calculated for two more different forcing levels. The results are 

shown in Figures 4.24 and 4.25. The effect of forcing level on the FRF of the corner 

point of the nonlinear assembly can easily be observed by comparing Figures 4.23 to 

4.25.  

 

 

Figure 4.24 The direct point FRF of a point near one of the corners of the mirror 

plate for F = 4 N 

 

 

Figure 4.25 The direct point FRF of a point near one of the corners of the mirror 

plate for F = 6 N 
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4.2.2 Application of the Method for Coupling with Linear Elements 

 

In this category, coupling analysis of the same discrete subsystems is considered. 

The subsystems are coupled with a linear elastic element. In this application the 

effect of the linear elastic coupling element stiffness on the FRF of the modified 

system is examined thoroughly, and advantages of the proposed method for such 

parametric analyses are emphasized. 

 

4.2.2.1 Case Study A.3 - Discrete Subsystems Coupled with Linear Elements 

 

In this case study, nonlinear structural coupling analysis of the linear and nonlinear 

discrete subsystems, considered in Section 4.2.1.1, coupled with a linear elastic 

element is carried out (Figure 4.26). 

 

 

Figure 4.26 Nonlinear structural coupling diagram for Case Study A.3 

 

The stiffness of the linear elastic element is taken as kLC = 200 N/m. Structural 

damping with a loss factor of 0.0015 is again assumed for all linear elastic elements. 

Direct point frequency response of the modified system at the point to which a 

harmonic force with an amplitude of 4 N is applied is calculated and shown in Figure 

4.27. 
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Figure 4.27 Frequency response of m3 after coupling for Case Study A.3 

 

The results show that nonlinearity is more effective on 2nd, 3rd and 5th modes of the 

system compared to the other two modes. Note again that, since the proposed method 

is FRF based, it is sufficient to include only the FRFs related with the required 

DOFs, in addition to the FRFs related the connection DOFs, into the calculations. 

Furthermore, the size of the matrix to be inverted during calculations is again 2 by 2 

in this application. This is the size of the modifying nonlinear subsystem. This saves 

considerable computational time especially in large original systems, as long as the 

modification is of small order. This feature of the method makes it very desirable in 

parametric studies, such as, for instance, investigating the effects of stiffness of the 

linear elastic coupling element on system response. In Figure 4.28, the effect of 

different stiffness values of the linear elastic coupling element on the system 

response around 3rd resonance is examined in detail. It can be seen from the figure 

that increasing values of the stiffness of the linear elastic coupling element will not 

only shift the 3rd natural frequency to higher frequencies, but will also increase the 

effect of nonlinearity on this mode. 
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Figure 4.28 Frequency responses around 3rd resonance for different linear elastic 

coupling elements (a) kLC = 200 N/m, (b) kLC = 400 N/m, (c) kLC = 600 N/m 
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4.2.3 Application of the Method for Coupling with Nonlinear Elements 

 

In this category, coupling analysis of the same discrete subsystems is considered. 

This time two subsystems are coupled with a nonlinear element in addition to the 

linear elastic element used in previous application. The effect of the nonlinear 

coupling element on modified system FRF is examined thoroughly and advantage of 

the proposed method for such parametric analyses is emphasized. 

 

4.2.3.1 Case Study A.4 - Discrete Subsystems Coupled with Nonlinear Elements 

 

In this case study, nonlinear structural coupling analysis of the linear and nonlinear 

discrete subsystems considered in Section 4.2.2.1 is carried out. However, this time 

in addition to the linear elastic coupling element used in the previous case study, an 

additional nonlinear coupling element is considered as shown in Figure 4.29. 

 

 

Figure 4.29 Nonlinear structural coupling diagram for Case Study A.4 

 

As the additional nonlinear coupling element, a linear spring having a stiffness of 

kNLC = 200 N/m with a clearance of δ = 0.02 m is employed between two coupling 

coordinates. Assuming structural damping with a loss factor of 0.0015 again for all 

elastic elements, frequency response of the modified system at the point to which a 
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harmonic force with an amplitude of 4 N is applied is obtained (Figure 4.30). 

 

 

Figure 4.30 Frequency response of m3 after coupling for Case Study A.4 

 

When Figures 4.27 and 4.30 are compared with each other, it can be observed that 

nonlinear coupling element affects 1st and 3rd modes of the system more than it does 

the other modes. Again, using only the FRFs related with the required and 

connection DOFs, which is the FRF related with the 3rd mass in this example, and 

inverting a matrix only in the size equal to the DOF of the modifying system makes 

this method very favorable. Therefore, the method can be used in design analyses 

where, for instance, the effects of using different nonlinear coupling elements on the 

system response are investigated. In Figure 4.31, the effect of different stiffness 

values of nonlinear coupling element on the system response around 3rd resonance is 

examined in detail. 

 

It can be seen from Figure 4.31 that typical response distortion due to clearance type 

of nonlinearity is observed as an abrupt change in the frequency response at the point 

of transition where the clearance gap is closed. As an expected result, the 

displacement value where this abrupt change occurs differs depending on the value 

of the clearance (compare Figure 4.31 (a) and (b)).  
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Figure 4.31 Frequency responses around 3rd resonance for different nonlinear 

coupling elements (a) kNLC = 200 N/m, δ = 0.02 m, (b) kNLC = 200 N/m, δ = 0.04 m, 

(c) kNLC = 400 N/m, δ = 0.02 m 
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On the other hand, for nonlinear spring elements having different stiffness values but 

the same clearance, this abrupt change occurs at the same displacement value but the 

frequency responses after that point show different behaviors due to having different 

additional linear spring stiffnesses (compare Figure 4.31 (a) and (c)).
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CHAPTER 5 

 

 

RESULTS AND CONCLUSIONS 

 

 

 

5.1 Summary of the Results and Conclusions 

 

The main objective of this thesis is to obtain the dynamic response characteristics of 

a modified structure from those of the linear original structure and the system 

matrices of the nonlinear modification or coupled structure by adopting a noble 

structural modification method to nonlinear systems.  

 

In this thesis, Özgüven’s structural modification method with and without additional 

DOFs [14] is extended and applied to structures with local nonlinear modifications. 

Since the formulation is for rigid connection of the nodes of the original and 

modifying systems, for the cases where a nonlinear subsystem is coupled to a linear 

system with elastic elements (linear or nonlinear), the problem is treated as an 

equivalent structural modification problem where at each free end of a connecting 

elastic element a massless node is added and that node is rigidly coupled to the main 

system. The theoretical backgrounds of these methods are presented in Chapter 2. 

 

In order to apply the proposed method to nonlinear modification and coupling 

problems, a computer program, called NLSM/CP, is developed in MATLAB®. 

NLSM/CP has a graphical user interface and is capable of solving nonlinear 

structural dynamic modification and coupling problems. The computer program uses 

natural frequencies and mode shape vectors of the original structure, and mass and 

stiffness matrices of the modifying structure with the information regarding 

nonlinearities present in it. The natural frequencies and the mode shape vectors for 
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the original structure are extracted from the modal analysis results performed in 

ANSYS®. The mass and stiffness matrices of the modifying structure are obtained by 

using the “.full” modal analysis result file of ANSYS®. The experimental results for 

the natural frequencies and the mode shape vectors of the original structure can also 

be used in NLSM/CP. The details and user's manual of the computer program is 

given in Chapter 3.  

 

In the first part of Chapter 4, the computer program developed to solve the nonlinear 

structural modification and coupling problems is validated with several different case 

studies. Firstly, a discrete system which has been analyzed previously in another 

study is considered. By partitioning the whole system into a linear original system 

and a nonlinear modifying system, problem is treated as a nonlinear structural 

modification problem. Then, after solving the problem through NLSM/CP, results 

obtained are compared with those given in literature and a perfect match is observed. 

As the second case study, the same system is partitioned into a linear original system 

and a nonlinear subsystem. This time, some linear and nonlinear elements are 

removed from the system and they are later used to couple two substructures, and 

this analysis is performed via NLSM/CP. Again, results obtained show an exact 

agreement with those given in literature. The approach proposed for coupling of two 

systems (main system is linear and modifying system is nonlinear) with linear and/or 

nonlinear elements is also validated. The performance of the method when applied to 

a real structure is investigated by applying it to a test rig consisting of a linear 

cantilever beam and nonlinear modification in the form of both ends fixed beam 

attached to the tip of the cantilever beam yielding cubic stiffness effect. The FRFs 

calculated by using the proposed method is compared with experimentally measured 

ones given in literature. A pretty good agreement is observed between the predicted 

and measured results even though modifying structure is modeled as a SDOF mass-

nonlinear spring system. Furthermore, the validity of the approach is demonstrated 

by applying it to a lumped MDOF system and comparing the FRFs calculated by 

employing the proposed method with those obtained via time integration solution 

using ODE solvers of MATLAB®. The perfect match observed in this case study also 

demonstrates the validity of harmonic balance methodology used in all applications 
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(at least for the level of nonlinearity considered in the example applications). As the 

last verification case, a cantilever beam modified with a smaller nonlinear beam is 

considered. The main structure is modeled with Finite Element Method (FEM) and 

the dynamic characteristics of the modified structure are obtained by using the 

computer program developed. It is observed that results are in very good agreement 

with those obtained analyzing the whole modified structure. 

 

In the second part of Chapter 4, applications of the method using the program 

developed are given in three main categories in which the advantages and the 

performance of it are examined. Firstly, a discrete linear system modified with 

another discrete nonlinear system is considered. When system response for the 

modified system is studied, the typical effect of cubic stiffness type of nonlinearity in 

modifying structure on all modes of the modified system is observed. In the second 

case study, same subsystems are coupled with a linear elastic coupling element. The 

frequency response of the coupled system is obtained and the effects of subsystem 

nonlinearity on the modified system modes are observed. Furthermore, the effect of 

the stiffness of the linear elastic coupling element on a specific mode of the system is 

investigated. It is seen that increasing values of the linear elastic coupling element 

stiffness will not only shift the investigated resonance to higher frequencies, but will 

also increase the effect of nonlinearity on this mode. Then, same systems are coupled 

with each other using a nonlinear coupling element in addition to the previous linear 

one. As the nonlinear coupling element, a linear spring with a clearance is used. The 

frequency response of the system is obtained and compared with the one obtained in 

previous case. It is observed that nonlinear coupling element affects some of the 

modes of the system more compared to the other modes. It causes an abrupt change 

in frequency response after the response amplitude reaches to the value of clearance. 

In the same example, the effect of this nonlinear coupling element for its varying 

parameters, such as for different clearances and spring stiffnesses, is also studied. As 

expected, the displacement value where the abrupt change occurs depends on the 

value of the clearance, while the behavior of the frequency response after that point 

depends on the additional linear spring stiffness of the coupling element after the 

response amplitude reaches to the value of clearance. As the last case, a real life 
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engineering problem is considered in order to show the applicability of the method to 

large ordered systems. In this problem, structural modification analysis of a mirror 

plate modified with a shaft-bearing assembly, where bearings at the two ends of the 

shaft are modeled as grounded hardening stiffnesses in vertical and horizontal 

directions, is studied. The effect of different amplitudes of external harmonic forcing 

on modified system FRF is investigated. 

 

To conclude, the proposed method is based on the computation of the FRFs of a 

modified system from those of the original system and the dynamic stiffness matrix 

representing the modifications in the system. Due to the nonlinear behavior of the 

modifying system, the dynamic stiffness matrix turns out to be response level 

dependant and thus the solution requires an iterative approach. The iterative 

numerical solution was found to be successful as far as convergence to a solution is 

concerned. It should be noted that since the proposed method is an FRF based 

method, only the FRFs of the original system related with the DOFs we are interested 

in, in addition to the ones at the connection DOFs, are to be included in the 

calculations. Although the formulation includes a matrix inversion, the size of the 

matrix to be inverted is equal to the DOF of the modifying system, and therefore the 

method is most advantages when the modification is local. Especially in the design 

of large main structures which may need to be modified locally, the method is very 

useful and makes it possible for the designer to try various possible design changes 

or to make a parametric study with minimum computational cost. Furthermore, since 

the calculated FRFs are valid only for the level of the force applied, different FRFs 

of the system can be practically obtained for different amplitudes of the external 

harmonic forcing. It is concluded that the nonlinear structural modification/coupling 

method proposed and the computer program developed in this thesis can successfully 

and efficiently be used for nonlinear structural modification and coupling problems. 
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5.2 Recommendations for Future Work 

 

The computer program developed, NLSM/CP, in this thesis is not a stand-alone 

executable file as it can only be run in association with the MATLAB® software 

package (version 5.1, or later). Thus, in order to make it a standalone executable file, 

the program can be written by using different visual programming languages by 

which the graphical user interface of the program can also be improved. 

 

In order to predict the FRFs of the modified system, the computer program uses the 

FEA results of the original system and system matrices of the modifying system by 

also considering nonlinearity present in it. However, instead of using the FEA results 

of the original system, the modal test results of its real model may be used. Thus, 

whenever the original system is available, rather than the response predicted from FE 

model of the original system, more accurate experimental results can be used. In this 

case modal expansion techniques should be used in order to have consistent DOFs 

with the FE of the modifying system. 

 

The method suggested here is capable of reanalyzing a large linear system modified 

locally with a nonlinear subsystem (which can be in the form of a coupled nonlinear 

subsystem) by specifying the fundamental harmonic describing functions for all 

nonlinear elements in modifying/coupled nonlinear subsystem or those used as 

coupling elements. Therefore, in order to improve the accuracy of the results, effect 

of the higher order harmonic terms may be considered as well, by using multi 

harmonic describing function theory. 

 

The algorithm used to handle iterative solution procedure in this study is the Fixed 

Point Iteration Method. In order to obtain faster convergence by spending less time, 

alternative iteration methods may be used instead. 
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