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ABSTRACT

HARMONIC RESPONSE OF LARGE ENGINEERING STRUCTURES WITH
NONLINEAR MODIFICATIONS

Kalaycioglu, Taner
M.Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. H. Nevzat Ozgiiven
September 2011, 107 Pages

During the design and development stages of mechanical structures, after each
modification made in order to satisfy design criteria, dynamic characteristics of the
structure change and should be determined through reanalyzing the structure
dynamically. Due to the significance of computational time and cost in design
processes, it is inevitable for structural modification methods, especially for large
systems, to become involved in predicting the dynamic behavior of modified
structures from those of the original and modifying structures. Since most
engineering structures are inherently nonlinear, linear approach may not be valid no
more. Therefore, conventional structural modification methods can not be directly

used, instead a nonlinear structural modification method needs to be employed.

In this thesis, it is aimed to adapt an effective linear structural modification method
to structures with nonlinear modification or coupling. The amplitude dependencies of
nonlinearities are modeled by using describing function method. Mathematical
formulations are embedded in a computer program developed in MATLAB® with a
graphical user interface. The software uses modal analysis results of ANSYS® for the
original structure and dynamic stiffness matrix and nonlinearity information that
belong to the modifying structure in order to calculate dynamic response of the

modified structure. The approach is verified by applying it to both discrete and real

Y



test structures previously studied in literature and generated discrete structures, then
comparing the results with prior ones and ones obtained via time domain integration,
respectively. Several other case studies are also included in order to demonstrate the

applicability and to investigate the performance of the method.

It is concluded in this study that the structural modification method proposed can be
successfully and efficiently used for structures with nonlinear modification or

coupling.

Keywords: Structural modification, nonlinear structural modification, vibration of

nonlinear structures, nonlinear structural coupling.
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DOGRUSAL OLMAYAN YAPISAL DEGISIKLIK ICEREN BUYUK
SISTEMLERIN HARMONIK TIiTRESIMi

Kalaycioglu, Taner
Yiiksek Lisans, Makine Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. H. Nevzat Ozgiiven

Eyliil 2011, 107 Sayfa

Mekanik yapilarin tasarim ve gelistirme asamalarinda, tasarim kriterlerini karsilamak
amaciyla yapilan her degisiklik sonrasinda yapinin dinamik davranisi degiseceginden
yapmin davranmisi dinamik olarak tekrar analiz edilerek belirlenmelidir. Tasarim
siireclerinde hesaplama zaman ve maliyetinin énemi nedeniyle yapisal degisiklik
yontemlerinin 6zellikle bilyiik sistemler icin degismis yapinin dinamik davranisinin,
esas ve degisiklik yaratan yapilarin dinamik davranig bilgileri kullanilarak
hesaplanmas1 ka¢inilmaz olmaktadir. Fakat cogu miihendislik yapisinin 6ziinde
dogrusal olmamalarindan dolay1 dogrusal analiz gecerli olmamaktadir. Bu nedenle,
bilindik yapisal degisiklik yontemleri dogrudan kullanilamaz. Bunun yerine,

dogrusal olmayan yapisal degisiklik yontemlerinin uygulanmasi gerekir.

Bu tezde, etkili bir dogrusal yapisal degisiklik yonteminin dogrusal olmayan
degisiklikler ve birlesmeler icin gelistirilmesi amaclanmistir. Dogrusalsizliklarin
genlik bagimliliklari, tanimlama fonksiyonlar1 yontemi kullanilarak dikkate
almmustir. Matematiksel formiilasyonlar MATLAB® ile gelistirilen bir grafik
kullanict arayiizii olan bilgisayar programi icine gdmiilmiistiir. Yazilim esas yapinin
ANSYS® ile elde edilen bi¢im analizi sonuglari ile degisiklik yaratan yapiya ait

dinamik direngenlik matrisi ve dogrusalsizlik bilgisini kullanarak degismis yapinin
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dinamik cevabin1 hesaplamaktadir. Yaklagimi dogrulamak icin yaklasim literatiirde
daha Once incelenmis toplanmis parametreli ve gercek test yapilar ile tiiretilmis
toplanmis parametreli yapilara uygulanmis, sonra elde edilen sonuclar, sirasiyla,
daha once elde edilmis sonuclar ve zaman diizleminde integrasyon ile elde edilen
sonuclarla  kargilagtinlmistir.  Yontemin  uygulanabilirligini  gostermek — ve

performansini incelemek i¢in bircok uygulamaya da yer verilmistir.
Bu calismada, onerilen yapisal degisiklik yonteminin dogrusal olmayan degisiklik
veya birlesme uygulanan yapilara da basariyla ve etkin olarak uygulanabildigi

anlasilmustir.

Anahtar Kelimeler: Yapisal degisiklik, dogrusal olmayan yapisal degisiklik,

dogrusal olmayan yapilarin titresimi, dogrusal olmayan birlesim.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Nonlinear Structural Modification/Coupling

In mechanical design, in order for engineers to ensure that their design meets wide
range of requirements and is qualified enough, they must test and analyze each
prototype constructed. For this purpose, harmonic vibration analyses and tests are to
be performed as the occasion arises throughout the design process. After each
analysis and test, if the product does not satisfy design criteria, engineers have to
make modifications, usually local, on their designs for correction purposes. This

process cycle is given in Figure 1.1 [1].

Each modification made on design changes the structural properties such as natural
frequencies, mode shapes and response of the structure. Therefore, each analysis and
test have to be repeated for each modified prototype after each modification. In terms
of computational analysis, a new Finite Element (FE) model for the modified system
should be reconstructed and vibration analysis under dynamic loads should be
performed once again. However, in case of various alternatives are to be considered,
constituting whole analytical model for each alternative and solving them will be
time consuming and costly, particularly for large ordered systems. Instead using the
existing analysis results belonging to the original prototype and dynamic properties
of only the modifying structure, dynamic characteristics of the modified structure can
be estimated without performing whole analysis, but by employing structural

modification techniques.
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Figure 1.1 Verification and validation of design in product lifecycle [1]

On the other hand, most of the engineering structures are naturally nonlinear and thus
linear approach may not be applicable any more. We know that nonlinearity inherited
in a structure causes discrepancy between measured and theoretically calculated
modal properties [2-4]. So, with the increasing demand for high precision mechanical
components, taking nonlinear effect into account in dynamic analysis becomes
unavoidable. As a consequence, in cases where time, cost and accuracy are the

primary concerns, nonlinear structural modification techniques come into picture.



1.2 Literature Survey

There is a vast literature on numerous different structural modification techniques
and on their variations. Generally two different problems are considered [5, 6]: the
direct structural dynamic modifications problem and the inverse structural dynamic
modifications problem. The inverse structural dynamic modification problem focuses
on the determination of the necessary modifications in order to achieve required
dynamic characteristics. Some of the main literature reviews on this subject are the
studies performed by Kyprianou et al. [7, 8], Li and He [9], Park [10, 11] and
Mottershead et al. [12]. On the other hand, direct structural dynamic modification
problem, basic theory of which was primarily presented by Crowley et al. [13], deals
with the estimation of dynamic characteristics of a structure after a modification
takes place. Each problem can be classified into two subgroups: frequency response

function (FRF) based techniques and modal synthesis techniques.

This thesis focuses on the FRF based direct structural modification techniques.
Various FRF based direct structural modification methods are developed in previous
studies. In this work, basically, the matrix inversion method developed by Ozgiiven

[14] is used, and it is applied to nonlinear systems.

Ozgiiven proposed a matrix inversion method [15] for finding receptances of locally
damped structures from undamped counterparts and combined this method with an
efficient recursive solution algorithm in order to avoid matrix inversion in a
subsequent study [16]. In a further work [14], he presented a structural modification
method that can estimate exact FRFs of the modified structure using FRF matrix of
the original system and mass, stiffness and damping matrices of the modifying
structure. In this method, it is required to invert only a matrix of a size equal to the
total degrees of freedom (DOFs) of the modification. Thus, it is favorable
particularly for systems with large DOFs modified locally. Moreover, since the
method uses the FRFs of the original structure during calculation, by including FRF
information of only the required DOFs of the original structure and deleting

remaining rows and columns, result computational speed can be increased without



losing accuracy. Recently, Hang et al. [17-19] focused on the application of this
method on distributed structural dynamic modifications with reduced and additional
DOFs. Later on, the method was applied to real structures by Canbaloglu and
Ozgiiven [20].

Starting with the same matrix inversion formulation, in order to avoid matrix
inversion, Sanlitiirk [21] presented a new structural modification method which is
based on Sherman-Morrison formula [22]. Even though this method is advantageous
in the sense that modified system FRFs can be calculated exactly without any matrix

inversion, it is applicable only for modifications that does not introduce new DOFs.

Koksal et al. [23] extended the Successive Matrix Inversion that had previously
developed by Bae et al. for reanalysis of static systems to dynamic reanalysis of
structures. In this method, the FRFs of the modified structure are calculated from
those of the original structure and the system matrices of the modifying structure.
The formulation begins similarly with the one presented in [14], but avoids matrix

inversion using power series expansion.

Then in a further study, Koksal et al. [24] compared the three structural modification
methods ([14], [21] and [23]) with each other in terms of computational efficiency
point of view. It is concluded in this study that the most powerful one among these
three methods is the one developed by Ozgiiven [14] not only in terms of
computational efficiency but also suitability for structural modifications with

additional DOFs.

The main problem when dealing with nonlinear elements is their response dependent
behavior which is overcome by using Describing Function Method (DFM) in this
study. This method was introduced by Krylov and Bogolyubov [25] in order to
analyze certain nonlinear control problems based on an earlier work of Van der Pol
[26]. Taylor [27] defines the describing function approach as modeling and studying
nonlinear system behavior via replacing each nonlinear element with a quasilinear

descriptor whose gain is a function of input amplitude. Introduction of DFM into the



vibration analysis of multi degree of freedom (MDOF) nonlinear systems took place
soon after the studies performed by Budak and Ozgiiven [28, 29]. They suggested
that nonlinear internal forces can be expressed as a multiplication of so called
"nonlinearity matrix" by displacement vector, and proposed a method (the Iterative
Receptance Method) for nonlinear systems where nonlinearities can be expressed as
polynomials. Later, Tanrikulu et al. [30, 31] extended this formulation for any type
of nonlinearity using DFM. Among several applications of DFM in harmonic
vibration analysis of nonlinear structures, the studies performed by Siller [32] and

Abat [33] are the ones referred in this thesis.

Several studies, some of which are summarized below, are also concentrated on
nonlinear structural dynamic modification/coupling. Watanabe and Sato [34] used
first order describing function and linearized the nonlinear stiffness of a beam
structure to develop the so-called “Nonlinear Building Block™ approach, for coupling

nonlinear structures with local nonlinearity.

Comert and Ozgiiven [35] developed a method for calculating the forced response of
linear substructures coupled with nonlinear connecting elements. They use FRFs of
the linear substructures and information regarding nonlinear connection elements in
order to obtain forced harmonic response of coupled structure. The effect of
nonlinear internal forces was expressed as a product of nonlinearity matrix,
introduced by Budak and Ozgiiven [28, 29], and displacement vector. The elements

of nonlinearity matrix are written using DFM.

Ferreira and Ewins [36] proposed a new Nonlinear Receptance Coupling Approach
for fundamental harmonic analysis based on describing functions. They suggested an
approach that is capable of coupling structures with local nonlinear elements whose
describing functions are available considering just the fundamental frequency. Then,
Ferreira [37] extended the approach and introduced Multi-Harmonic Nonlinear
Receptance Coupling Approach. This approach is able to couple linear and nonlinear
structures with different types of joints by specifying the multi-harmonic describing

functions for all nonlinear joints.



Chong and Imregiin [38] suggested an iterative algorithm for the coupling of
nonlinear systems with linear ones. They initially obtained the nonlinear modal
parameter variations of coupled system with profile building approach. Then, using
nonlinear modal parameters, the response of coupled system at various force levels

were predicted.

Maliha et al. [39] coupled a nonlinear dynamic model of a spur gear pair with linear
FE models of shafts carrying them, and with discrete models of bearings and disks.
They used DFM to express nonlinear elasticity term resulting from backlash and
included it in the solution by the use of so-called “nonlinearity matrix” of Tanrikulu
et al. [30, 31]. In order to avoid matrix inversion, the formulation given in reference
[16] for nonproportionally damped systems is extended to nonlinear systems and an
iterative technique is used in the solution. The study presented in this thesis follows a
similar theoretical approach as that study, but here the structural modification
technique with additional DOFs given in [14] is extended for nonlinear modifications

and couplings.

1.3 Objective

In this study, it is aimed to obtain dynamic response of a modified structure from
those of the linear original structure and nonlinear modification data. This is
accomplished by simply extending Ozgiiven’s structural modification method to
nonlinear modifications [14]. It is also intended in this thesis to develop a computer
program that can apply the extended nonlinear structural modification method to
large structures and to verify the proposed approach with several theoretical and
experimental case studies. In brief, general purpose throughout this thesis is to
extend the previously proposed structural modification method for nonlinear
modifications and couplings and to show its success and efficiency with several

applications.



1.4 Scope of the Thesis
The outline of the thesis is given as follows:

In Chapter 2, firstly, the nonlinearities investigated in this thesis and their modeling
approaches will be presented. The underlying mathematical background in single
harmonic analysis of MDOF nonlinear structures will also be explained here.
Secondly, the theory of nonlinear structural dynamic modification and coupling

method will be given.

In Chapter 3, the computer program developed via MATLAB® will be introduced
and the basic capabilities of the program will be explained. The user's manual of the

program will also be given here.

In Chapter 4, verification of the approach will be demonstrated in three groups of
case studies: the computational results will be compared with (a) those given in
literature, (b) those obtained via Time Domain Integration (TDI) and (c) those
obtained experimentally in previous studies. Then, in order to show the applicability
and performance of the method and the program, several other case studies will be

presented.

In Chapter 5, brief summary of the work done will be given with discussions and

conclusions. Finally, suggestions for future studies will be presented.



CHAPTER 2

THEORY

2.1 Introduction

In this chapter, the theory of nonlinear structural modification method proposed
using quasilinearization of structural nonlinearities, which underlies the basis of this
study, will be presented. In section 2.2, theory of modeling approach for structural
nonlinearities using Describing Functions Method (DFM) based on the method
proposed first by Budak and Ozgiiven [28, 29], and later by Tanrikulu et al. [30, 31]
is given. Later, in the same section the types of nonlinearities investigated in this
study are explained in detail. In section 2.3, the basics of the structural modification
method that was previously presented by Ozgiiven [14] and its extended formulation

for nonlinear modifications are explained.

2.2 Modeling Nonlinearities

Consider the equations of motion for a nonlinear MDOF system excited with

harmonic external forcing {f} :

[M N5} +[CI{a}+i[H{x}+[K[{x} +{N} ={f} 2.1)

where [M], [C], [H] and [K] represent the linear mass, viscous damping,

structural damping and stiffness matrices of the system, respectively. Here, {x} is the



generalized displacement vector and dot stands for the derivation with respect to

time. Furthermore, {N} represents internal nonlinear restoring force vector and i is
the unit imaginary number. The 7™ element of vector {N} can be expressed as a

series of the form,

2.2)

=

I
s

S

Jjk

where i denotes the nonlinear restoring force acting between the coordinates j and

k for j#k, and between the ground and the coordinate j for j=k. Note that,

= 2.3)

Here n.

& can be represented as an arbitrary function of intercoordinate displacement

Y and its derivatives,

My =Ny (yjk,yjk,j}jk,...) 2.4
where:

Vi =X =% for j#k (2.5)
Vi =% for j=k (2.6)

The external harmonic forcing { f} can be expressed as:

{r1={F}e” 2.7



where, {F } is the vector of harmonic excitation amplitudes and generic angle ¥ can

be defined as the product of angular frequency @ and time ¢. Assuming that the
nonlinear response to the external harmonic forcing is essentially not exactly
sinusoidal but periodic with the same period, it can be written as a Fourier series of

the form:
{x(n)} = io{x(t)}p - io{x}p R 2.8)
p= p=

where, subscript p represents the degree of harmonic order and {x(t)}p indicates the

th

displacement response of the p™* harmonic. So, the complex displacement response

amplitude X at coordinate j for the pth harmonic, (X .) , can be written as:
ji’p

(X)), = ‘Xj‘ &00r (2.9)
P

Here, ‘X j‘ is the magnitude and (¢j)p is the phase of the complex displacement

p

response X i for the p” harmonic. Now, let the response of the system, {x(r)},

given by Equation 2.8, is approximated by a set of g harmonic terms. Then, the

approximate response can be written as:

o} ={30}, = 3 {0}, 2.10)

p=l

Note that, the even p values are due to nonlinearities with asymmetrical
characteristics whereas the odd ones are due to nonlinearities with symmetrical
characteristics. Using the above formulations obtained for the displacements of the
main coordinates, the intercoordinate displacement responses between arbitrary two

coordinates a and b, y,p, can be written as:

10



Y =x5,0-5,0= 3 (3,) O=3 ¥,) @.11)
p=0 p=0

The approximate intercoordinate displacement responses can accordingly be written

as follows:

q q .
{0} =100, 0} = {04, 0} = pALAR (2.12)
where:
(Y,),=(X,),=(X,),, (a#b) (2.13)
X))y = \<Yab>\,, 0 (2.14)

2.2.1 Single Harmonic Formulation for Internal Nonlinear Forces

As written before, differential equations of motion for a nonlinear MDOF structure

exposed to external sinusoidal excitation can be restated as:
[M{}+[CHt+i[ ]+ [K{x}+{N} ={F} ¥ (2.15)
Then the steady-state solution can be represented in the form of a Fourier series as:

{x(n)} = io{x(z)}p - Eo{x}pew (2.16)
p= p=

Usually, the higher harmonic terms of the response have small amplitudes relative to

the fundamental harmonic component. In such cases, the steady state response,

11



{x(#)} , can be formulated with an acceptable numerical error as:

{x} ={x@)}, ={x}, ¢ (2.17)

The response for an arbitrary coordinate j, x;, can be written as:

X =) =) =(X, )" (2.18)
where:

i(9j
(X ) =Xl (2.19)

Similar to Equation 2.13, the intercoordinate displacement response between

coordinates a and b, y,;, can be expressed as:

V., (=X (O =x, (1) = (&), () ~(%),(1)=(5,,), () = (¥, ), ¥ (2.20)
where:

(¥,),=(X ), ~(X,),, (a#b) (2.21)
(¥, = |, €% (2.22)

Accordingly, a complex and periodic nonlinear function, nab[(f’ab)l], can also be

represented in the form of Fourier series as:

M= T (), = T (), 6™ 2.23)

12



Assuming that the nonlinear internal force, nab[(jiab)l], is dominated by the

fundamental term similar to the response itself, the formulation for the approximated

nonlinear force can be reduced to:

Ml 1= (1) = (N ) (2.24)

where:

(N )y =[N | € (2.25)
j 27 p

(N_), = (I) n,[(5,),le " dy (2.26)

2.2.2 Single Harmonic Describing Functions

Considering a single degree of freedom (SDOF) system subjected to a harmonic

excitation, equation of motion for such a system can be expressed as:

mi+cx+ihx+kx+n= fsinwr (2.27)

In this equation m, ¢, h and k are the linear mass, viscous damping, structural
damping and stiffness values, respectively. x and its derivatives with respect to time ¢
are the displacement, velocity and acceleration of the system, and i stands for the unit
imaginary number. n represents internal nonlinear restoring force, whereas f
represents external forcing. The restoring force n is assumed to be a function of

velocity and displacement. Assuming that x(z) has the same frequency as the

excitation, following relation can be written:

X = (X)1 sin(ax +0) = (X)1 sint (2.28)

13



where (X), is complex response amplitude, o is the excitation frequency and 6 is

the phase angle. The restoring force n(x,x) can be expanded around x through

Fourier series, neglecting all the higher harmonic terms assuming that it has also a
sinusoidal nature and little energy is leaked to other frequencies other than the

fundamental frequency.
n(x, x) = v(x, )x =(N),(@,(X),)+(N),(@,(X),)x+ i(N)T(a), (X),)x (2.29)

where v(x,%) can be defined as the optimum equivalent linear complex stiffness

representation of the nonlinear restoring force function n(x,x). Here, the bias term

(N )O and real and imaginary terms of the fundamental harmonic (N )1 and (N )T

can be expanded as:

2n
(N)O = i f N((X)] sSin T, co(X)] cosT)dt (2.30)
21 0
2z
(N), = | N((X),sin7,@(X), cos7)sin7dz (2.31)
7r(X)1 0
2
(N)T = j N((X)1 sinz, a)(X)1 cost)costdt (2.32)
7(X), o

1

Note that, if n(x,x) is symmetrical around the origin, then (N)O becomes zero.

Moreover, if the assumption that n(x,x) is dominated by its fundamental term is

valid, then Equation 2.29 can be simplified as:

(0 0),x = (N, (@, (X)) )x +i(N); (@,(X))x (2.33)

14



where (v(x, )'c))1 is the first-order describing function which can be defined as:

(v(x, %)), = (N), +i(N), (2.34)

According to the kind of nonlinearity presented by n(x, x), the describing function v

can be calculated by using Equations 2.31, 2.32 and 2.34.

2.2.3 Nonlinearity Types and Their Corresponding Single Harmonic

Describing Functions

In this section, the quasilinear representation of nonlinearity types included in this
thesis, which are commonly encountered ones in structural dynamics, will be listed.
Structural nonlinearities, in most cases, are displacement, velocity and/or frequency
dependent and they are usually represented in idealized forms in order to be
incorporated in the analysis. The representation of such nonlinearities by describing

function approach, in terms of single harmonic will be summarized below.

2.2.3.1 Cubic Stiffness

This is the most frequently encountered type of nonlinearity in structural dynamics. It
can be considered as a massless nonlinear spring such that applied force is directly
proportional to the cube of the displacement. The mathematical model to represent

the relation between the force and the displacement can be expressed as:
n(x,%) =k x+ fx’ (2.35)

where x represents the elongation of the nonlinear spring. The stiffness coefficients
k. and S, both of which are not frequency dependent, accounts for the linear and

nonlinear parts of the spring.
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In Equation 2.35, f can be either positive or negative. If >0, as the level of
excitation increases the restoring force introduced will be cumulatively greater than
that of a linear spring, in other words, system shows hardening behavior (Figure 2.1).

Clamped plates and beams can be given as examples of such systems.

Hardening Cubic Stiffness Softening Cubic Stiffhess

Force
Force

Displacement Displacement
Figure 2.1 Characteristic of hardening and softening cubic stiffness elements

On the other hand, if <0, as the level of excitation increases the restoring force
introduced will be cumulatively lower than that of a linear spring, namely, system

shows softening behavior. Buckling beams and plates exhibit such a behavior [40].

Bending of system response around resonant frequency is the characteristic FRF
distortion due to cubic stiffness nonlinearity. This effect was investigated in many
studies [31-33, 35, 37, 38, 40-44] and the conclusion reached in all is that resonant
frequency shifts up for hardening systems and the other way around for softening

systems as shown in Figure 2.2.

The first order describing function representation of a nonlinear cubic stiffness

element having cubic stiffness coefficients k. and f can be written as:

3 2
v =k 4= X, (2.36)
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whose detailed derivation can be found in [32].

[
Hardening cobic stiflness '

Hiw) Hiw)

Soltening cubig stifness

w (rad/s)  (rad/s)

Figure 2.2 Typical response distortion due to cubic stiffness nonlinearity [40]

2.2.3.2 Coulomb Friction

Coulomb friction, which is particularly prevalent in demountable structures such as
grandstands, occurs in any situation with interfacial motion [40]. It is nonlinear
because the direction of kinetic friction force depends on the direction of velocity

(Equation 2.37).

n(x, x)= Ff sgn(x) 2.37)

where X represents the relative velocity and F | accounts for the friction force. The

signum function ensures that the restoring force always opposes the direction of

motion. In Figure 2.3, the behavior of a Coulomb friction element is illustrated.

When external force is smaller than the kinetic friction force, there will not be a
relative motion between two coordinates of a nonlinear Coulomb friction element. In
such extreme situations, stick-slip motion can occur; however, such cases will not be

considered in this work.
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Coulomb Friction

F,

Force

— F-:
Velocity

Figure 2.3 Characteristic of a Coulomb friction element

On the other hand, at high enough levels of excitation where stick-slip motion does
not occur, an equivalent linear response will be obtained for each forcing level as
shown in Figure 2.4. The drop in receptance level is more evident at small vibration

amplitudes as confirmed in previous studies [31-33, 37, 40, 45].

—-95
9.4 9.6 9.8 100 102 104 106 108

Frequency (Hz)
Figure 2.4 Linear and quasilinear receptances ¢, and ¢, for Coulomb damping

type of nonlinearity (Fr=5 N, Fs = 6 and 8 N): arrow shows the direction of

increasing external forcing level [31]
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The describing function of a typical Coulomb friction damper having friction force

F » can be formulated by considering the first harmonics only as given in [31]:

S (2.38)

2.2.3.3 Piecewise Linear Stiffness

Basically, geometric discontinuities between interconnected components results in
this kind of nonlinearity in many mechanical systems. It can be observed in loosely
jointed structures [46]. It can be modeled as a massless nonlinear spring which shows
linear behavior but with different proportionality constants at certain elongation
intervals. The mathematical model to represent the relation between the force and the

displacement can be expressed as:

n(x, x) =k, x, for |x| <o
n(x, X) =k, x+(k, — k2)5 for x>0 (2.39)
n(x, x) = k,x—(k, —k2)5 for x<-0

where k; and k; are the proportionality constants at specified elongation intervals,
and ¢ is the elongation value corresponding the point of transition from the stiffness

k; to the stiffness k, (Figure 2.5).

Clearance and saturation type of nonlinearities can be taken into account as special
cases of piecewise linear stiffness type of nonlinearity. Clearance nonlinearity is the
case when the value of k; is 0. This type of nonlinearity is encountered in many
applications such as pylon-store-wing assemblies and backlash in the gearing
systems. On the other hand, saturation nonlinearity is the case when the value of k; is
0. The effect of piecewise linear stiffness nonlinearity on system response was

investigated in many studies such as [31, 33, 34, 41, 44-47].
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Piecewise Linear Stiffness

kll

3

Force

B

-——

Ky |

Displacement

Figure 2.5 Characteristic of a piecewise linear stiffness element
From the definition, a frequency response distortion is expected to show an abrupt
change at the point of transition from the stiffness k; to the stiffness k,, as shown in

Figure 2.6 [31].

=55

—80

9.4 9.6 93 10.0 10.2 10.4 106 10.8
Frequency (Hz)

Figure 2.6 Linear and quasilinear receptances ¢, and 6, for piecewise linear

stiffness type of nonlinearity (k; = 1 kN/m, k, =25 kN/m, 8 = 0.01 m and Fs=20 N)

: arrows show the direction of frequency sweep [31]
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The single harmonic describing function of a piecewise linear stiffness element
having system coefficients k;, k; and J defined in Equation 2.39, can be formulated

as follows:

X <0
for X, (2.40)

2.2.3.4 Arctan Stiffness

Arctan stiffness type of nonlinearity is usually used to model softening structural
behavior. However, unlike the softening cubic stiffness nonlinearity, arctan
nonlinearity approaches a horizontal tangent for large values of displacement. The

arctan stiffness element having such a softening characteristic can be defined by:
n(x,x) = parctan(xx) (2.41)

where the coefficient p is the amplification factor and x is the compression factor.
The characteristic force-displacement relationship of an arctan stiffness element is

graphically shown in Figure 2.7.

The effect of arctan stiffness nonlinearity on system response is substantially similar
to the that of softening cubic stiffness nonlinearity [33, 45, 48]. The first harmonic
describing function of an arctan stiffness element having system coefficients, p and x

defined in Equation 2.41, can be written as below:

v = 2P S((xX )7 +1-1) (2.42)

k(X))
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Arctan Stiffness

Force

Displacement

Figure 2.7 Characteristic of an arctan stiffness element

2.2.3.5 Preloaded Stiffness Element

Intentional pre-compression, unintended manufacturing or heat treatment process
introduces nonlinearity into mechanical structures and can be modeled by using
preloaded stiffness element [49]. This type nonlinearity has the characteristic relation

below,

nx,x)=F —+kx for |x|>0
X (2.43)

n(x,)‘c):[—Fp Fp] for |x|=0

where F), is the preload force value and k is the proportionality constant which is

shown in Figure 2.8, graphically.
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Preloaded Stiffness

Force

Displacement

Figure 2.8 Characteristic of a preloaded stiffness element

Typical response distortion due to preloaded stiffness nonlinearity is an increase in

the frequency at which resonance occurs as shown in Figure 2.9.

20 . -
| |
| |
| |
15 F !
| |
| |
| |
10 1 !
| |
: max(x) :
5 L | | _-
- nrgig“‘lmm@‘ﬂ’&@&;_ﬁr: xox XX
| |
0 T
minG)
I !
| |
| l
10 b ‘
| |
} l
-15 t '
0.4 0.6 0.8 1 1.2 1.4 1o

Figure 2.9 Typical response distortion resulting from preloaded stiffness

nonlinearity [49]
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The single harmonic describing function of a preloaded stiffness element having

system coefficients F), and k defined in Equation 2.43 can be expressed as given

below:
4F

v, = 7”+ k (2.44)
T

2.3 Extension of the Structural Modification Method for Nonlinear

Modifications

For the structural modifications introducing additional DOFs into the system,
Ozgiiven [14] developed a formulation based on FRFs. Here, firstly this formulation
is summarized and then its extension to nonlinear structural modifications will be

explained.

2.3.1 Ozgiiven's Formulation

For the structural modifications that introduce additional DOFs to a structure,
dynamic stiffness matrices of the original and modified structures can be stated as

follows, respectively:

-1
[ ]_1 aaa aab (2 45)
(04 = .
o o
-1 B
7a a ;/a b 7a ¢ aaa aab 1 0 0 0 0
SO el I | R 0l+|0 [Dﬁﬁ)d Dﬁfod] (2.46)
"a b °C cb cc
7L 7C 7L 0 00 0 Dmod Dmod

In the equations above, the superscript a denotes DOFs that belong to the original
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structure only, superscript b represents DOFs corresponding to connection nodes
between the original and the modifying structures, and superscript ¢ represents DOFs

that belong to modifying structure only as shown in Figure 2.10.

X

Modifying Original Modified
Structure Structure Structure

Figure 2.10 Structural modification schematic

When Equation 2.46 is premultiplied by

a® a,ab 0
o g 0 (2.47)
0 0 I
and postmultiplied by [7],
| ab !
a® aab 0 I 0 0O 0 : |:a : O:H:Dmod:'
00 O : DmOd:I

following equations can be obtained after performing some matrix manipulations

[14]:

[o SH 7]
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[0 S o] 2

[Vaa}{“ab i O:H:Dmod}[;}m_ :[“m} 2.51)

Vlb | 7“}{““]) EO:|[Dmod:|_7;Z jﬁ]{aab 50} (2.52)

So, receptance matrix of the modified system can be written in the form of its

submatrices as:

2 o e ][] ot
7 T ] [ oss

7 = - @[Dmod][}/m] 2.55)

bl e b ! S
)=l 0}[[1]—[%@]{ ' ” 250
Y
The above equations indicate that only a single matrix is to be inverted for the
calculation of the complete receptance matrix of the modified system. Note that the
order of the aforementioned matrix is equal to the number of DOF related with the

modified coordinates. For local modifications, order of the matrix to be converted is
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quite small compared to the total DOF of the system which is usually the case in real

applications.

2.3.2 Extension of the Formulation for Nonlinear Structural Modifications

Consider the equations of motion of a nonlinear modifying structure. The equations

of motion for such a structure can be written as given below:
(M Ha+i[ H b+ K o HN G} ={ ) (2.57)

where [Kmo d:l’ [Mmod] and [Hmo d:l represent stiffness, mass and structural

damping matrices of the modifying structure, respectively. When a harmonic force
{fr={F} (2.58)

is applied on the system, the system response as an initial approach, can be assumed

to be harmonic at the same frequency:

{x}={x}e (2.59)
With regard to this assumption, the internal nonlinear forces can also be assumed to

be harmonic at the same frequency:
{N}={s}e (2.60)

In their studies, Budak and Ozgiiven [28, 29] has previously shown that the
amplitude vector of the internal nonlinear forces, for certain types of nonlinearity,

can be expressed as:

{s}=[A){ x} (2.61)
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where [A] , called “nonlinearity matrix”, is a function of the unknown displacement

amplitude vector {X } The formulation for [A] was initially suggested by Budak

and Ozgiiven [28, 29] for certain types of nonlinearities, and later generalized for any
type of nonlinearity using DFM by Tanrikulu et al. [30, 31]. In these studies, the

elements of nonlinearity matrix were defined as:

n
Ag=2v

m=

(2.62)

A, = —vkm,(k * m) (2.63)

km
where subscripts k and m represent the general coordinates.

When Equations 2.58, 2.59, 2.60 and 2.61 are substituted into the Equation 2.57,
nonlinear internal forces can be included in the analysis by considering an additional
equivalent stiffness matrix in the system which is a function of unknown response
amplitudes. Then, nonlinear dynamic stiffness matrix of the modifying structure will

take the form:

|:Dm0d:| Z[Kmod:'_wz [Mmod:l+i|:Hmod:|+[A] (2.64)

As mentioned in Section 2.2.3, when the nonlinearity matrix is expressed in terms of

describing functions defined as a function of unknown response amplitude, {X},

only an iterative approach is required for the solution. In this thesis, “Fixed Point

Iteration” method is applied.

[Dmod]jﬂ :[Kmod]—wz [Mmod]+i[Hm0d]+[A]j (j=1,2,3,.) (2.64)

In Equation 2.58, [Dmod],

» is the nonlinear dynamic stiffness matrix of the
j

28



modifying structure at the (j+1)th iteration step, whereas [A]j is the nonlinearity

matrix determined by using {X }j . The initial value of displacement amplitude
vector {X }j is taken as the linear solution of the system at the first frequency value.
The converged value of {X }j obtained at a previous frequency step is taken as the

starting value for the succeeding step. The iterations can be repeated until the

percentage displacement error

~ |{X}j+1 —{X}j |

I{X}J.I

x100 (2.65)

drops below a certain value. In order to avoid divergence or numerical instability,
and also to obtain fast convergence, relaxation is applied to the fixed point iteration

[50]:

{x }j+l=/1{X}j+1+(l—/1){X}j 0<A<1 (2.66)

where A is the relaxation coefficient.

2.3.3 Extension of the Formulation for Nonlinear Structural Couplings

The formulation given above for nonlinear modifications is applied for nonlinear
structural coupling by flexible elements by making a simple trick in the algorithm of
NLSMY/CP. In this section, the approaches used for nonlinear structural coupling with
linear and nonlinear elements are individually investigated.

2.3.3.1 Nonlinear Structural Coupling with Linear Elements

The formulation given in section 2.3.2 can directly be used by treating the coupling

problem with linear elements as an equivalent structural modification problem as
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shown in Figure 2.11. That is, for each connection node of the linear elastic element

on the original system a massless node is added to the coupled subsystem.

rigid
connections

A

massless
nodes

Figure 2.11 Treating a structural coupling problem with linear elements

Here, linear coupling connection DOFs on the original system are grouped node by

node. For each of those nodes, an additional massless node is added to the coupled

subsystem. Then, the stiffness matrix of the coupled subsystem, [Kmo d], is

expanded. For example, if p number of massless nodes are added to the coupled
subsystem where the DOF per node is ¢, pxg number of rows and columns are added
to the stiffness matrix of the coupled subsystem. Then, the stiffnesses of linear elastic

coupling elements are inserted in proper locations of added rows and columns of

[K ] The mass, nonlinearity, viscous and structural damping matrices of the
mod

coupled subsystem should also be expanded in the same way. However, just zeros
will be inserted in their added rows and columns. Finally, by defining additional
massless nodes as new rigid connection nodes of the coupled subsystem, the problem
can be taken as a nonlinear structural modification problem as defined in section

2.3.2.

2.3.3.2 Nonlinear Structural Coupling with Nonlinear Elements
Similarly, the same formulation given in section 2.3.2 can be used by treating the

coupling problem with nonlinear elements as an equivalent structural modification

problem as shown in Figure 2.12. That is, for each connection node of the nonlinear
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element on the original system a massless node is added to the coupled subsystem as

in the previous case.

Here, linear coupling connection DOFs on the original system are grouped node by
node. For each of those nodes, an additional massless node is added to the coupled
subsystem. Accordingly, again; stiffness, mass, nonlinearity, viscous and structural
damping matrices of the coupled subsystem are expanded by adding pxg number of
rows and columns, where p is the number of massless nodes added to the coupled

subsystem and ¢ is the DOF per node.

ﬁgiq
tions
! = M
pYLATASS pYLATASS
massless

nodes

Figure 2.12 Treating a structural coupling problem with nonlinear elements

However this time, the added rows and columns of the nonlinearity matrix [A] will
be filled with proper elements representing the nonlinear connection elements. If
there are linear stiffness counterparts of the connecting elements, these values will
also be properly inserted into the expanded rows and columns of the stiffness matrix
of the coupled subsystem. Finally, by defining additional massless nodes as new
rigid connection nodes of the coupled subsystem, the problem can be taken as a

nonlinear structural modification problem as defined in section 2.3.2.
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CHAPTER 3

COMPUTER PROGRAM: NLSM/CP

3.1 Non-Linear Structural Modification/Coupling Program

The theory and the mathematical formulations described in the previous chapters are
implemented in MATLAB® environment and a computer program, named
“NLSM/CP” (Non-Linear Structural Modification/Coupling Program), with a user
friendly graphical user interface (GUI) is constructed. The program predicts the
response characteristics of nonlinearly modified systems. It is compatible with a
standard FE program, ANSYS®, and it takes system matrices of modifying system
and modal data of original structure as an output file of the FE program in the
preprocessing stage in order to compute the harmonic nonlinear response of modified
system. In this chapter, basic features of NLSM/CP will be introduced. The user
manual of the program is given in Appendix A. The logic of the program is

summarized in the flow chart shown in Figure 3.1.

3.1.1 Program Description

NLSM/CP is a MATLAB® based GUI program which computes the harmonic
nonlinear response of a nonlinearly modified structure. The preprocessing stage of

the program basically includes the following tasks:
e Selection of the solution parameters,

e Description of the rigid, linear and nonlinear connections and variables,

e Description of the original and modifying systems to be analyzed,
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e Description of response coordinates for output,
e Description of the nonlinearities in modifying structure, their coordinates and
parameters,

e Description of the external forces and coordinates to which they are applied,

The outputs of NLSM/CP are magnitudes of the response and frequency response
values of selected coordinate at predetermined forcing level over a frequency range.
Program is capable of analyzing modified systems with the following types of

nonlinearities:

e Cubic stiffness,

¢ Coulomb damping,

e Piecewise linear stiffness,
e Preloaded stiffness,

e Arctan stiffness,

In addition, user can also define linear local viscous dampers between coordinates.

3.1.2 Preprocessing

The preprocessing stage of NLSM/CP involves the preparation of the program for
the solution procedure. The starting point of the preprocessing stage is to introduce
the original and modifying systems to be analyzed, namely, the modal data of the
original system and the system matrices of the modifying system. For the original
structure, the program uses two different text files which include modal matrix
information and natural frequency information. These two text files are extracted
from ANSYS® by using a macro file written in this study. The FRF matrix is

constructed for the original structure by using following expression:

o (@)= 3 —
ij - 2 2, 2
o - +ino,

(3.1)
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Here, the number of modes used in calculating original system FRF should be
defined by the user. Note that, the number of nodes, DOF per node and the number
of mode shapes to calculate FRFs has to match with the information in the files

created by using ANSYS®.

On the other hand, for the modifying system, the program uses two files which store
the stiffness and mass matrices of the modifying structure. These files are extracted
from the output files of ANSYS® modal analysis which has an extension of “* full”.
However, in order to have these stiffness and mass matrices, the file named
“rdfull f” which is in the ANSYS® installation directory, should be compiled with
Intel Fortran compiler to create the “rdfull.exe” file. Then by running this
“rdfull.exe” file with the result file of ANSYS® modal analysis which has an
extension of “*full” in a separate folder, these stiffness and mass matrices are
extracted. Note again that, the number of nodes and DOF per node information has to

match with the information in the files created by using ANSYS®.

The structural damping is modeled as proportional damping and the loss factor of the
material can be entered as a constant value input. If structural damping is response
dependent and any data set about its variation with respect to displacement values are
available, those can also be loaded to the program. Then, program interpolates a
polynomial function to this data set and structural damping corresponding to any
displacement value can be obtained for each iteration at all frequency steps. Initial

solution parameters such as:

e lower and upper limits of the frequency range of interest
¢ number of frequency points

e allowable percentage error tolerance

® maximum iteration number

¢ relaxation number for converging and diverging solutions

can be entered through the GUI window at the same stage.
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Rigid connection nodes and linear and nonlinear connection DOFs regarding both
original and modifying structures should also be entered as the next step in
preprocessing stage. Nonlinearity types given in Section 2.2 can be easily defined by
an illustrative GUI window that consists of schematic diagrams and describing

parameters for different types of nonlinearities (Figure 3.9 and Figure 3.27).

Afterwards, whether the DOF whose direct point FRF and response is desired is on
the original structure or modifying structure should be decided. The coordinate of
this DOF should also be defined in the program according to the DOF numbering
system of the structure to which it belongs. Then using the "Properties are defined!"

button, program loads all those inputs.

As the next preprocessing step, nonlinearities exist in modifying structure can be
defined by using an interface similar to the one used in selecting nonlinear
connections. Last step in preprocessing stage is defining external forces and their
application coordinates. Here, external forcing coordinates should be defined
separately both for the original and modifying systems considering their own initial
(before modification/coupling) coordinate systems. During solution, program
changes the number of those coordinates by renumbering them into coordinates of

the modified system.

3.1.3 Solution Algorithm

This section refers to points worth mentioning about the solution algorithm of
NLSM/CP. To begin with, NLSM/CP needs only the user defined necessary
coordinates that belong to the original system during calculation, since original
system data is available in the form of FRFs. These coordinates are the ones having
rigid, linear or nonlinear connections, on which an external forcing is applied and for
which response and FRF computations will be performed. The rest of the coordinates
will not be used in the computation, therefore the program reduces the size of the

FRF matrix of the original system. This does not affect the accuracy of the results.
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Figure 3.1 Flow diagram of nonlinear structural modification/coupling algorithm
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The calculations in the solution algorithm are performed with predefined constant
frequency increment. Both low-to-high and high-to-low frequency swept nonlinear

responses and FRFs are calculated through single harmonic solution.

The converging and diverging relaxation numbers are switched by the program by
comparing the error obtained at immediate and previous iteration steps [50]. After
relaxation, the weighted response calculated using the ones obtained in previous and
immediate iteration steps is taken as initial displacement value for the next iteration
step (Equation 2.66). When the convergence criterion is eventually satisfied, the
program stops doing iteration and steps into the next frequency value in the

frequency range.

3.1.4 Post Processing

The outputs of the program are linear and nonlinear (both low-to-high and high-to-
low frequency sweeps) response and FRF plots regarding modified system. The
solution time for the calculation is also displayed on the GUI window at the end of

calculation.

3.2 User's Manual of the Program: NLSM/CP

In this section, the user's manual of the NLSM/CP developed in the study in order to

apply the approach proposed is given.

3.2.1 Definition of the Files Used in the MATLAB® Program

NLSM/CP is compatible with a standard FE program, so that it uses some input files
that are extracted from the modal analysis performed in ANSYS®. Furthermore, in
order to extract these files from ANSYS®, some macro files and “.exe” files are used.

The definitions of these files are given below.
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3.2.2

FREQ_ORG.txt: The text file that stores the natural frequencies of the

original structure.

MODAL_ORG.txt: The text file that stores the mode shape vectors of the

original structure.

NODENO_ORG.txt: The text file that stores the node numbers of the

required nodal FRFs of the original structure.

MASS MODIF.matrix: The file that stores the mass matrix information of

the modifying structure.

STIFFNESS _MODIF.matrix: The file that stores the stiffness matrix

information of the modifying structure.

NODE_READ.txt: The text file generated by the user that should be read by
the ANSYS® after the modal analysis of the original structure in order to

input ANSYS® the node number information of required nodal FRFs.

ModalDataExport_Org.txt: Macro file that should be read by the AN SYS®
after the modal analysis of the original structure in order ANSYS® to extract
the “FREQ_ORG.txt”, “MODAL_ORG.txt’ and “NODENO_ORG.txt”’

files.

userprog.exe: This is the executable file that should be run after the modal
analysis of the modifying structure in order ANSYS® to extract the

“STIFFNESS MODIF .matrix”’ and “MASS_MODIF .matrix” files.

Graphical User Interface (GUI)

Before running the NLSM/CP, the following steps should be performed:
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e In order to extract the “FREQ_ORG.txt”, “MODAL_ORG.txt” and
“NODENO_ORG.txt” files from the ANSYS®, “NODE_READ.txt” and
“ModalDataExport_Org.txt” macro files should respectively be read by the

ANSYS® after the modal analysis of the original structure, respectively.

e The “*full” file, obtained through the modal analysis of the modifying
structure performed in the ANSYS®, should be renamed as “file.full”. By
running the “userprog.exe” file within the same directory with "file.full” file,
“STIFFNESS_MODIF .matrix” and “MASS_MODIF.matrix” files should

be extracted.

Since all these extracted files are read by NLSM/CP, they should be in the same
directory with the source codes of NLSM/CP. After performing the steps given
above, NLSM/CP can be run. The application of the program is shown below as a
self generated preprocessing stage covering all the options of the NLSM/CP step-by-
step. Note that data inputted at each step is circled with red on the following
snapshots of the GUI window.
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Set the number of frequency points that will be used in the analysis (Figure 3.2).

INITIAL INPUT.

Number of Frequency Points :
Lower Frequency Limit [Hz] :
Upper Frequency Limit [Hz] :

Maximum Percentage Error [%] :
Maximum teration Number :
Relaxation at Converging Points :

Relaxation at Diverging Points :

STRUCTURAL DAMPING

Constant Damping

Variable Damping

On Modifying Structure

On Original Structure

FINITE ELEMENT DATA.

Load

1 3 s | e NONLINEARITIES ON MODIFYING STRUC TURE ey
| original modifying |
CPU TIME: = I
CONNECTIONS. e FINALIZING
Nonlinear C ion DOF: Rigid C:
DOFon  DOFon B Nodes on Original System :
Original:  Modifying :
Legendsin TR
— Corresponding Nodes on Modifying System :
Nonlinearity Type : Legends in ENG
ikt it 2 CONNECTIONS ARE DEFINED! J ‘ DRAW ‘
Linear Elastic Connection DOF: ‘ INFO ‘
DOFs on Original Structure : Linear Elastic resp Iy
Corresponding DOFs on Modifying Structure : ‘ EXIT ‘

Figure 3.2 Setting the number of frequency points

Set the lower and upper frequency lim

INITIAL INPUT.

its for the analysis (Figure 3.3).

Number of Frequency Points :

2000

Lower Frequency Limit [Hz] :
Upper Frequeney Limit [Hz] :
Maximum Percentage Error [%] :
Maximum Iteration Number :
Relaxation at Converging Points :

Relaxation at Diverging Points :

STRUCTURAL DAMPING,

Constant Damping

Variable Damping

FORCE

FINITE ELEMENT DATA.

2 5 = ‘ pee NONLINEARITIES ON MODIFYING STRUC T URE ey
I original modifying |
CPUTIME: i)
CONNECTIONS. e FINAL IZING s
Nonlinear C. ion DOF: Rigid C S —
DOF on DOF on - Nodes on Original System : R
Original:  Modifying :
Legendsin TR
o Corresponding Nodes on Modifying System :
LOIELL W08 Legends in ENG
BenieiReramcters = CONNECTIONS ARE DEFINED! | ‘ DRAW ‘
Linear Elastic C: 1 DOF: ‘ — ‘
DOFs on Original Structure : Linear Elastic P v
Corresponding DOFs on Modifying Structure : ‘ EXIT ‘

Figure 3.3 Setting the lower and upper frequency limits
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Set the maximum percentage error and iteration number (Figure 3.4).

INITIAL INPUT STRUCTURAL DAMPING

Number of Frequency Points : 2000 LT

Lower Frequency Limit [Hz] : 0 Varisbls Damslng

Upper Frequency Limit [Hz] :

Maximuth Percentage Error [%] :

Mazimum lteration Number : FORCE

Relaxation at Gonverging Points :
On Modifying Structure

Relaxation at Diverging Points :
On Original Structure

e F INITE ELEMENT DATA,

Load - -

| | p———NONLINEARITIES ON MODIFYING STRUC TURE

e o]
original modifying ‘
CPU TIME: PROPERTIES ARE DEFINE U
CONNECTIONS e FINALIZING
@ ion DOF Rigid C
DOFon  DOFon - Nodes on Qriginal System :

Original:  Modifying : —
Legends in TR

=i Corresponding Nodes on Modifying System :
rdlinoends o & Legends in ENG

Define Parameters - CONNECTIONS ARE DEFINED! \ ‘ DRAW ‘

Linear Elastic Connection DOF:
DOFs on Original Structure : Linear Elastic

INFO

Corresponding DOFs on Modifying Structure : ‘ EXIT |

Figure 3.4 Setting the maximum percentage error and iteration number

Set the relaxation coefficients at diverging and converging points (Figure 3.5).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 .
Lower Frequency Limit [Hz] : 0 VarihlelDambing
Upper Frequency Limit [Hz] : 500 = NOT € VSE DATA
Maximum Percentage Error [%] : 001 :
Maximum lteration Number : 1000 FORCE.

Relaxation at Converging Points : 1
On Modifying Structure

Relaxation at Diverging Points :

On Original Structure

FINITE ELEMENT DATA.
B 5 6 | pees NONLINEARITIES ON MODIFYING STRUC TURE s
original modifying |
CPU TIME: = eI )
CONNECTIONS: e FINALIZING s
Nonlinear C ion DOF: Rigid C L
DOFon  DOFon B Nodes on Original System :
Original :  Modifying :
Legendsin TR
e Corresponding Nodes on Modifying System :
DIIceTEs) 108 Legends in ENG
Benhe/Rerameters = CONNECTIONS ARE DEFINED! J ‘ DRAW ‘
Linear Elastic Connection DOF: ‘ INFO ‘
DOFs on Original Structure : Linear Elastic St pectively:
Corresponding DOFs on Modifying Structure : EXIT

Figure 3.5 Setting the relaxation coefficients at diverging and converging points
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Set the linear elastic connection DOF numbers of the original and modifying

structures with stiffness values, in matching order (Figure 3.6).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 2000 ECTITI arip
Lower Frequency Limit [Hz] 0 ariatih Dataping
Upper Frequency Limit [Hz] 500 S— NoT
Maximum Percentage Error [%]: 00t
Maximu iteration Number : 1000 FORCE.
Relaxation at Converging Points : 07 ST
Relaxation at Diverging Points : o1 o0 Ortinat St ‘
FINITE ELEMENT DATA
Load | -
1 s ‘ e NONLINEARITIES ON MODIFYING STRUC TURE sy
“ n © original modifying |
CPUTIME: = coe
ONNECTIC g FINALIZING sy
c ion DOF: Rigid C
DOFon  DOFon - Nodes on Original System :
Original:  Modifying :
Legends in TR
= Corresponding Nodes on Modifying System :
Nonlinearty Type e
Define Fatamefars i CONNECTIONS ARE DEFINED! J ‘ DRAW ‘
Linear Elastic C ion DOF ‘ — ‘
DOFs on Original Structure : Linear Elastic pectively:
Corresponding DOFs on Modifying Structure : ‘ EXIT ‘

Figure 3.6 Setting the linear elastic connection DOF numbers with stiffness values

Set the rigid connection node numbers of the original and modifying structures, in

matching order (Figure 3.7).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 2000 Constant Darmping
Lower Frequency Limit [Hz] : a Variable Damping
Upper Frequency Limit [Hz] : 500 ENTE
Maximum Percentage Error [%] : 001
Maximum Iteration Number : 1000 FORCE
Relaxation at Converging Points : 07
Relaxation at Diverging Points : 01 e ‘
FINITE ELEMENT DATA.
Load & 5
1 3 G e NONLINEARITIES ON MODIFYING S TRUC TURE ey
original modifying |
CPU TIME: PROPERTIES ARE DEFINEI ad
CONNECTIONS. = FINALIZING =y
BT e Rigid C i =
DOFon  DOFon | Nodes on Original System : U
Original:  Modifying : ‘@
Legendsin TR
=4 Corresponding Nod Modifying System :
Wiy Iis Legends in ENG
Ll P o CONNECTIONS ARE DEFINED! J [ DRAW ‘
Linear Elastic C ion DOF: ‘ e ‘
DOFs on Original Structure : 258 Linear Elastic 8
Corresponding DOFs on Modifying Structure: | 811,14 1000,2000,1500 ‘ EXIT ‘

Figure 3.7 Setting the rigid connection node numbers
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Set the nonlinear connection DOF numbers of the original and modifying structures

and define the type of nonlinear element (Figure 3.8).

INITIAL INPUT. STRUCTURAL DAMPING.

Number of Frequency Points : 2000 &G T Structural Damping Coefficient

Lower Frequency Limit [H2] : 0 Variabis Damping

Upper Frequency Limit [Hz] : 500 NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : 001

Maximum Iteration Number : 1000 FORCE.

Relaxation at Converging Points : 07 - | | FORGESAPPLIEDTO, | FORCESAPPLIEDTO
On Modifying Structure ORIGINAL STRUCTURE MODIFYING STRUCTURE
Relaxation at Diverging Points : o1
On Original Structure ] =

FINITE ELEMENT DAT A e Goordinate [Value NI

Nurmberiof Nodes of the Original System

Nimber, of Eigenyectors Extracted Load
ad

Number of Nodes of the Modifying|System

Number of DOF perNode:

1 0 s s NONLINEARITIES ON MODIFYING STRUC TURE sy

ity Between) B

Response node is on © original /  modifying structure. DOFRGTEETET EF

The DOF forshich direct point FRFwilllbe Nonlinearity Type
calculated Using the related system’s numbering

CPUTIME: PE Define Parameters -
g FINALIZING ey
Nonlinear C DOF: Rigid C
e SOLVE
DOFon  DOFon B Nodes on Original System :
Original : ~ Modifying : 5585
5 N o Legends in TR
orresponding Nodes on Modifying System :
Nonlinearity Type : 812 S Legends in ENG
2 CONNECTIONS ARE DEFINED! ‘ l DRAW

Linear Elastic C ion DOF:
i al Structure : 258 Linear Elastic 3 M50
4 Modifying Structure : 1000,2000,1500
Linear Viscous Damper SRS 8.11.14 EXIT

Figure 3.8 Setting the nonlinear connection DOF numbers and defining types of

nonlinear elements

Press the “Define Parameters” button each time after entering nonlinear connection

DOFs and set parameters of the related nonlinear element (Figure 3.9).

INITIAL INPUT. STRUCTURAL DAMPING:
Number of Frequency Points : 2000 G Striictural Damping|Cosfficient
Lower Frequency Limit [Hz] : 0 Veriabla Damaping
Upper Frequency Limit [Hz] : 500 - NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : T

B oot

Maximum Iteration Number :

Relaxation at Converging Points :

Relaxation at Diverging Points :

Cubic Stiffness

FINITE ELEMENT DATA

Number of Nodes of the Original Systen

Force
Number of Eigenvectors Extracted):

Number/of Nodes of the Modifying Syster

L 5
Number of DOF perNode Force = Ko + B«
E

Fesponsenodeisoh original /  modifyinj

The DOF forwhich direct point FRE will be
calculated using the related|system's numberii Displacement

CPUTIME: PROPERTEE

3 > 0(Hardening)
3 < 0(Softening)

Nonlinear Connection DOFs—|
DOFon  DOF on
Original :  Modifying :
1 1

Nonlinearity Type :
Cubic Stiffness - p= o

Linear Elastic Connection DOFs.
DOFs on Original Structure : 258 Linear Elastic

(EntersExiD

INFO

Corresponding DOFs on Modifying Structure: | 511,14 1000,2000,1500 l =

Figure 3.9 Setting the parameters of the related nonlinear element
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Press the “CONNECTIONS ARE DEFINED” button and so that the program reads

all the connection data defined by the user (Figure 3.10).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 o Coraan i Daneing
Lower Frequency Limit [Hz] : 0 Variable Damping
Upper Frequency Limit [Hz] : 500 = NOT CONSTANT, BROWS
Maximum Percentage Error [%] : 0.01 ]
Maximum Iteration Number : 1000 FORCE
Relaxation at Converging Points : 07 T :
Relaxation at Diverging Points : 01 DRl ‘

pr—— FINITE ELEMENT DATA.
Number of Nodes of the Original System :

Number of Eigenvectors Extracted :

Number of Nodes of the Modifying System :
Number of DOF per Node : 1 @3 6 ‘ e NONLINEARITIES ON MODIFYING STRUC TURE

Response node is on © original J © modifying structure.‘

The DOF for which direct point FRF will be
calculated using the related system's numbering :

CPUTIME: [ PRoPERTES ARE DEFINED! |

CONNECTIONS: e FINALIZING ey
Rigid C

DOFon  DOFon Nodes on Original System :

Original:  Modifying : 5586

Legendsin TR
Corresponding Nodes on Modifying System :

Nonlinearity Type : 812 Legends inENG

_Define parameters | |- E € CONNECTIONS ARE DEFINEDL. ‘ DRAW

Linear Elastic Connection DOF: ‘
DOFs on Original Structure : 258 Linear Elastic Stif pectively :

INFO ‘

Corresponding DOFs on Medifying Structure : g 11 14 1000,2000,1500 ‘ EXIT

Figure 3.10 Letting the program read all the defined connection data

Set the number of nodes of the original system (Figure 3.11).

INITIAL INPUT STRUCTURAL DAMPING

Number of Frequency Points : 2000 e

Lower Frequency Limit [Hz] : 0 Variable Damping

Upper Frequency Limit [Hz] 500

Maximum Percentage Error [%] : 001
Maximum Iteration Number : 1000 FORCE
Relaxation at Converging Points : 07 i
g Structure

Relaxation at Diverging Points : 01 g
On Original Structure

FINITE ELEMENT DATA.
Number of Nodes of the Qriginal System :

Number of Eigenvectors Extracted : Load ! I
Number of Nodes of the Modifying System :
Number of DOF per Node : [ J e NONLINEARITIES ON MODIFYING STRUC TURE sy

‘ °3

Responsenode is on @ original / _ modifying structure. |

The DOF for which direct point FRF will be
calculated using the related system's numbering :

CPUTIME: | PROPERTIES ARE DEFINED! |

CONNECTIC e FINALIZING =

Rigid C

C
DOF on [1e/ XTI Cubic Stiffness I Nodes on Original System :
Original:  Modifying : 55668

Legendsin TR
Corresponding Nodes on Modifying System :

Nonlinearity Type : 512 Legends in ENG

(LI FETIICEIE | iy " Fi CONNECTIONS ARE DEFINED! J ‘ DRAW ‘

Linear Elastic Connection DOF: ‘
DOFs on Original Structure 258 Linear Elastic Sti ively :

Corresponding DOFs on Modifying Structure : 3 {1 14 1000,2000,1500 | EXIT

Figure 3.11 Setting the number of nodes of the original system
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Set the number of eigenvectors extracted for the original system (Figure 3.12).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 T o O I
Lower Frequency Limit [Hz] : 0 Variahls Damping
Upper Frequency Limit [Hz] : 500 T ENTER | A
Maximum Percentage Error [%] : 001 —_—
Maximum [teration Number : 1000 FORCE,
Relaxation at Converging Points : 07 |
Relaxation at Diverging Points : 01 . —
FINITE ELEMENT DATA.
Number of Nodes of the Original System : 2356
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CONNECTIC s FINALIZIN G e
Nonlinear C: Rigid Connectior
DOFon  DOF on Nodes on Original System :
Original:  Modifying : E568 —
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= - Corresponding Nodes on Modifying System :
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Figure 3.12 Setting the number of eigenvectors extracted for the original system

Set the number of nodes of the modifying system (Figure 3.13).

INITIAL INPUT STRUCTURAL DAMPING
Number of Frequency Points : 2000 [ S ConniDamaing
Lower Frequency Limit [Hz] : 0 .
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Maximum Percentage Error [%] : 001 -
Maximum Iteration Number : 1000 FORCE
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Relaxation at Diverging Points : 01 P ‘
nal Structure
FINITE ELEMENT DATA.
Number of Nodes of the Original System : 2356
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Nonlinear Connection DOF: Rigid Conr
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Corresponding DOFs on Modifying Structure : o 11 14 1000,2000,1500 ‘

Figure 3.13 Setting the number of the nodes of modifying system
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Choose number of DOF(s) per node (Figure 3.14).

INITIAL INPUT

STRUCTURAL DAMPING

FORCE

Number of Frequency Points : 2000 o Constant Damping
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Number of Nodes of the Original System : 2356
Number of Eigenvectors Extracted : 500
Number of Nodes of the Modifying System : 123
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Load % g
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The DOF for which direct point FRF will be
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Define Parameters | | . v CONNECTIONS ARE DEFINED! ] ‘ DRAW ‘
Linear Elastic C: DOF: ‘ P ‘
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Corresponding DOFs on Modifying Structure: 511,14 1000,2000,1500 ‘ EXIT ‘

Figure 3.14 Choosing number of DOF(s) per node

Choose whether

modifying structure (Figure 3.15).

INITIAL INPUT.

the DOF for which FRF will be calculated is on the

Number of DOF per Node : ‘

—
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original or

Figure 3.15 Choosing whether the response node is on original or modifying

structure
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Set the DOF for which FRF will be calculated using the related system's numbering
(Figure 3.16).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 2000

Structural Damping C

© Constant Damping

Lower Frequency Limit [H2] : 0 VanebisDamplng

Upper Frequency Limit [Hz2] : 500 ‘W} NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : 001 ]

Maximum Iteration Number : 1000

FORCE.
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Number of Eigenvectors Extracted : 500 Load )
Number of Nodes of the Modifying System : 123 — —
Number of DOF per Node : 1 @3 6 e NONLINEARITIES ON MODIFYING STRUC TURE sy
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:Responsenode ison © original / _ modifying structure. DOF NifBars B
The DOF for which direct point FRF will be Nornlinearity Type

calculated using the related system's numbering :

PROPERTIES ARE DEFINED! Define Parameters

CPU TIME:

ONNECTIC

e FINALIZING ey

Nonli Rigid C: coLve
DOFon  DOF on Nodes on Original System :
Original:  Modifying: s

Lopends inTR
1L - Corresponding Nodes on Modifying System : o
TSy e 8,12 Legends in ENG
Define Parameters ||| < i v | [ CONNECTIONS ARE DEFINED! J ‘ DRAW
Linear Elastic C: ion DOF: —"
DOFs on Original Structure : 258 Linear Elastic Sti ively :

Corresponding DOFs on Modifying Structure:  6,11,14 1000,2000,1500 l =

Figure 3.16 Setting the response DOF

Choose whether the structural damping is constant or response dependent and press

"ENTER" button (Figure 3.17).

INITIAL INPUT — =S TRUCTURAL DAMPING
Number of Frequency Points : 2000 /° Gy N Structural Damping Coefficient :
Lower Frequency Limit [Hz] : [ Variable Damping
Upper Frequency Limit [Hz] : 500 ENTER] HOSEORSTAR BRI HURTA
Maximum Percentage Error [%] : 0.01 \\ e I/
Maximum Iteration Number : 1000 FORCE.
Relaxation at Converging Points : [ BPPUIEDTO) APPLIED IO
g Structure STRUCTURE STRUCTURE
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SR O L] On Original Structure
FINITE ELEMENT DATA. Coordinate: [Value [N
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Number of Eigenvectors Extracted : 500 Load ) i
Number of Nodes of the Modifying System : 123
Number of DOF per Node : 9 o8 s pee NONLINEARITIES ON MODIFYING STRUC TURE sy
Nonlinearity Between =
Responsenode is on © original /  modifying structure. ‘ DBEAORBETE T
The DOF for which direct point FRF will be Nonlingarity Types,
calculated using the related system's numbering: 1202
CPUTIME: PROPERTIES ARE DEFINED! Define Parameters s
ONNECTIC p= FINALIZING ey
Nonlinear C: Rigid C
nection DOF jols SOLVE
DOFon  DOFon Nodes on Original System :
Original:  Modifying : 55,85

Legendsin TR

Corresponding Nodes on Modifying System :
Nonlinearity Type : P £l ifying Sy:

312 Logends inENG
Define Paramoters i}« i v CONNECTIONS ARE DEFINED! DRAW ‘
Linear Elastic C DOF: [ wro ‘
DOFs on Original Structurs : 258 Linear Elastic B
Corresponding DOFs on Modifying Structure : 11,14 1000,2000,1500 [ ‘

Figure 3.17 Choosing whether the structural damping coefficient is constant or

response dependent
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If "Constant Damping" option is chosen, set the constant structural damping

coefficient of the whole system (Figure 3.18).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 2000 o o
Lower Frequency Limit [Hz] : 0 N aranie g
Upper Frequency Limit [Hz] : 500 \W NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : 001 D —
Maximum Iteration Number : 1000
Relaxation at Converging Points : 07 |
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On Original Structure ‘

FINITE ELEMENT DATA
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Number of Nodes of the Modifying System : 123
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Responsenodeis on © original / _ modifying structure.‘

The DOF for which direct point FRF will be
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Corresponding DOFs on Modifying Structure : | 511 14 1000,2000,1500 l EXIT ‘

Figure 3.18 Setting the constant structural damping coefficient

If "Variable Damping" option is chosen, press the "NOT CONSTANT, BROWSE
DATA" button and browse the Excel file which has this data (Figure 3.19).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 20 E— Structural Damping Coef
Lower Frequency Limit [Hz] : 0 et Noion
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DOFs on Original Structure : 258 Linear Elastic
Corresponding DOFs on Modifying Structure: | 51114 1000,2000,1500 l EXIT |

Figure 3.19 Setting the response dependent structural damping data
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Press the "PROPERTIES ARE DEFINED" button to accept all the data inputted up
to here (Figure 3.20).

INITIAL INPUT STRUCTURAL DAMPING.
Number of Frequency Points : 2000 i Structural Damping Coefficient :
o § B2, 0002
Lower Frequency Limit [Hz] : 0 S
Upper Frequency Limit [Hz] : 500 E—=—— ANT, BR
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Maximum Iteration Number : 1000 FORCE.
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Relaxation at Diverging Points : o o Ortinal St ‘

pr—— F [NITE ELEMENT DATA.

Number of Nodes of the Original System : 2356
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Number of DOF per Node : ‘ﬁ e NONLINEARITIES ON MODIFYING STRUCTURE—

Responsenode is on © original / . modifying structure.‘

The DOF for which direct point FRF will be
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Figure 3.20 Accepting all the data inputted up to here

Choose whether the excitation is on the original or modifying structure (Figure 3.21).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 & G Structural Damping Coefficient :
Lower Frequency Limit [Hz] : 0 Warishle Dainpinng 0o
Upper Frequency Limit [Hz] : 500 ~ ENTER |
Maximum Percentage Error [%] : 0.01
Maximum Iteration Number : 1000 FORCE.
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Nurmber of Eigenvectors Extracted : 500 LeEr] R
Number of Nodes of the Modifying System : 123 oo
Number of DOF per Node : 1 @3 s | e NONLINEARITIES ON MODIFYING STRUC TURE e
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Responsenode s on © original / _ modifying structure. | DOF Numbers : and
The DOF for which direct point FRF will be Nonlinearity Type :
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Legends in TR
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Corresponding DOFs on Modifying Structure : | 5 11 14 1000,2000,1500 ‘ EXIT ‘

Figure 3.21 Choosing whether the excitation is on original or modifying structure
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Set the coordinate on which an external force is applied (Figure 3.22).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 (o) Conmtant Damein Structural Damping Coefficient :
s LB 0.002
Lower Frequency Limit [Hz] : 0 Veriable Dacping
Upper Frequency Limit [Hz] : 500 T ENTER | . A
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On Modifying Structure ORIGINAL STRUCTURE  MODIFYING STRUCTURE
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Figure 3.22 Setting the external force application coordinate

Set the magnitude of the external force applied (Figure 3.23).

INITIAL INPUT STRUCTURAL DAMPING.
Number of Frequency Points : 2000 = T Structural Damping Ceefficient :
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Maximuth Percentage Error [%] : 0.01
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Figure 3.23 Setting the magnitude of the external force applied
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Press the "Load" button to add the amplitude and application DOF of the external

force to the list of applied forces (Figure 3.24).

INITIAL INPUT. STRUCTURAL DAMPING.
Number of Frequency Points : 2000 e a— Structural Damping Coefficient :
Lower Frequency Limit [Hz] : 0 \ariable Damping B
Upper Frequency Limit [Hz] : 500  ENErR | NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : 001
Maximum Iteration Number : 1000 FORCE.
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Figure 3.24 Adding the external force created to the list of applied forces

Set the two coordinates of the nonlinear element involved in the modifying structure

and define the type of nonlinearity (Figure 3.25).

INITIAL INPUT. STRUCTURAL DAMPING
Number of Frequency Points : 2000 R, Structural Damping Coefficient :
sim— g 0002
Lower Frequency Limit [Hz] : 0 Variable Damp
Upper Frequency Limit [Hz] : 500 = NOT CONSTANT, BROWSE DATA
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Figure 3.25 Setting the two coordinates and the type of the nonlinear element
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Press the “Define Parameters” button and set the parameters of the related

nonlinearity (Figure 3.26).

STRUCTURAL DAMPING.

INITIAL INPUT.
Number of Frequency Points : 2000 o Structural Dn?g;r;g Coefficient :
Lower Frequency Limit [Hz] : 0 Se——
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Figure 3.26 Setting the parameters of the nonlinearity

Press the “SOLVE” button in order to solve the problem (Figure 3.27).

INITIAL INPUT. STRUCTURAL DAMPING,
Number of Frequency Points : 2000 e — Structural Damping Coefficient :
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Figure 3.27 Solving the problem
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After the green progressing bar fills up for the second time and disappears which
implies that the solution ends, press the “DRAW?” button to plot the response and
FRFs (Figure 3.28).

INITIAL INPUT STRUCTURAL DAMPING
Number of Frequency Peints : 2000 o D Structural Da;ng:]l;g Coefficient :
Lower Frequency Limit [Hz] : 0 Variable Damping
Upper Frequency Limit [Hz] : 500 T NOT CONSTANT, BROWSE DATA
Maximum Percentage Error [%] : 0.01
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Figure 3.28 Plotting the response and FRFs
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CHAPTER 4

VERIFICATION AND APPLICATION OF THE METHOD AND THE
PROGRAM

In this chapter, case studies to demonstrate the validity of the computer program
developed will be given. The results obtained by using the program will be compared
with those obtained via different methods and also with the solutions of several case
studies found in the literature. Then, several other case studies are presented to
demonstrate the application of the method and the program for various systems and
for various types of nonlinear elements. The case studies corresponding to the
verification problems are numbered using letter “V” while case studies

corresponding to the application problems are numbered using letter “A”.

4.1 Verification of the Method and the Program

In this section, the method and then the program developed are verified through
several applications. Applications are performed in such a selective way that they
refer to verification examples for all three cases, namely, structural modification
without additional DOFs, structural modification with additional DOFs and structural

coupling with linear and nonlinear elements.

4.1.1 Case Study V.1 : 3 DOF System with Cubic Stiffness - Comparison with

Results Given in Literature

In this application, case study L.1 given in reference [33] is analyzed by using the

method suggested in this work. In reference [33], nonlinear FRFs of a system were
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directly obtained through harmonic analysis. The 3 DOF system considered consists
of three masses with linear and also nonlinear stiffnesses (Figure 4.1). A structural

damping with 0.12% loss factor is assumed in the system.

H’J] m: m.% :I

X1 X2 =3

Figure 4.1 System schematic for Case Study V.1 [33]

Stiffness and mass matrices of the system considered are given below:

36 0 0
[M]=| 0 554 0 |ke “.1)
0 0 242

200491 —64921 -36279
[K]=|-64921 398118 —17503 | N/m 4.2)
-36279 -17503 132578

The nonlinearities involved in this system, which are represented in Figure 4.1 by

bold lines, are defined in Table 4.1.

Table 4.1 Parametric values of nonlinearities for Case Study V.1

Nonlinear Connection Nonlinearitv Tvpe Nonlinearity
Coordinates ylyp Coefficients:
2-3 Cubic Stiffness k.=0, p=7.82e6
3-Ground Cubic Stiffness k.=0, p=1.44¢e7
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In order to study this system using proposed approach, the system is first divided into
two subsystems: The 3 DOF system shown graphically on the left in Figure 4.2 is
taken as linear main system. The 2 DOF system on the right is taken as a nonlinear
modifying system. This division is performed such that the modified system after

coupling will be the same as the system studied previously.

iwt
—>F,e”
| rigid connection ] |
| | m, m, m, m, m,
| I rigid connection
;—> L L I Ly
X1 X2 X3 X2 X3
ORIGINAL STRUCTURE MODIFYING STRUCTURE
A J
Y
eria}t
|
m mz m3
X1 X2 X3

MODIFIED STRUCTURE

Figure 4.2 Nonlinear structural modification diagram for Case Study V.1
System matrices of the main (original) system are as follows:

200491 —64921 -36279
[K,|=|-64921 64921 0 |N/m 4.3)
-36279 0 36279

316 00
[My]=] 0 20 0 |ke (44)
0 0 10

System matrices of the modifying system are also given below:
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333197 —17503
[ Kinoa |= N/m (4.5)
mod ] 7| _17503 96209

M, ]- 35407, we)
mod T\ o 140" '

The natural frequencies and eigenvectors of the original linear system are calculated

as follows:
5.628

{o}=49.402} Hz 4.7)
14.65

-0.14928 0.09631 0.00976
[u]=] 0.09258 0.15668 -0.12992 (4.8)
0.11162 0.14698 0.25678

The frequency domain solutions of the modified system subjected to the harmonic

excitation
0

(fy={12t™ N (4.9)
0

are calculated by using NLSM/CP and the results are shown in Figure 4.3 and Figure
4.4. The frequency domain solutions of the same system obtained by analyzing the
whole system [33] are given in Figure 4.5 and Figure 4.6. When solutions obtained
using two different approaches are compared with each other, it can be clearly seen
that NLSM/CP solutions show a perfect agreement with the solutions obtained in the

previous study.
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Figure 4.3 NLSM/CP solution for Case Study V.1 for (a) the 1 mass, (b) the 2™

mass and (c) the 3™ mass
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Figure 4.4 NLSM/CP solution for Case Study V.1 - zoomed individual resonances
for (a) the 1% mode of the 1* mass, (b) the 2" mode of the 2" mass and (c) the 3™

mode of the 3™ mass
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Figure 4.5 Solution for Case Study V.1 given in [33] for (a) the 1* mass, (b) the 2
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mode of the 3™ mass
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4.1.2 Case Study V.2 : Modification via Nonlinear Coupling - Comparison

with Results Given in Literature

In this case, the same system given in section 4.1.1 is considered in an alternative
manner. This time, the system is decoupled such that when two subsystems are
connected with linear and nonlinear elements, they are to construct the system used
in [33]. During decoupling, it is again intended to obtain two subsystems such that
one of them is to be original linear system while the other one is to be the modifying
nonlinear system. And through coupling this two subsystem with pre-extracted linear
and nonlinear elements, the initial quoted system will be obtained. Coupling is

summarized graphically in Figure 4.7.
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Figure 4.7 Nonlinear structural coupling diagram for Case Study V.2

The system matrices of the original system are as follows:

164212 64921
(K, = N/m (4.10)
—64921 380615
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- 31607, Wi
01| o 554" '

The system matrices of the modifying system are also given below:

[ K, oq |=178796] N/m (4.12)

(M0 |=[244] ke (4.13)

The stiffnesses, k; and k», of linear elastic connection elements are taken as 17503
N/m and 36279 N/m, respectively. In the same way as the previous application, the
nonlinear cubic stiffness element coefficients, k. and f, are taken as 0 N/m and
7.82x10° N/m’, respectively. The natural frequencies and eigenvectors of the original

linear system are calculated as given:

10401
@)= {14 053} e 1

(4.15)

= -0.15275 0.09116
~1-0.08381 -0.11536

The frequency domain solutions of modified system subjected to the same harmonic
excitation given by Equation (4.9) are obtained through NLSM/CP and the results are

found to be exactly the same as those obtained in Case Study V.1.

4.1.3 Case Study V.3 : 3 DOF Nonlinear System - Comparison with TDI

Solution

In this case, the approach proposed is applied to a simple linear discrete system with

nonlinear modifications (Figure 4.8). For the validation of the approach, results
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obtained via software developed are compared with those calculated by TDI solution
of the coupled system by using the ordinary differential equation (ODE) integrators
of MATLAB®. Integrations are performed using several integrators like ODE45,
ODE113, ODE15s, etc. [51] with regard to stiffness characteristics of the problem

until steady state is reached.
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Y
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Figure 4.8 Nonlinear structural modification diagram for Case Study V.3

The system matrices of the original system are given below:

ki ks k| [90000 -30000 -30000
[Ko]=|ky Ky kyy [=| 30000 60000 —30000 | N/m (4.16)
ky ks kyy| [—30000 -30000 60000

[My]=|my my, my|=| 0 20 0|k (4.17)
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The system matrices of the modifying structure are also given as follows:

[K ]z ki ki |_| 60000 —30000 N/m “.18)
mod I\ ko ks, | | —30000 60000 '
“om, | [35 0
(Mo ]=| ™ " = kg (4.19)
my, My, 0 15
|:C }: CZI C;:Z _ 25 25 Ns/m (420)
mo Cy Cp -25 50

The nonlinearities inherent in modifying structure, which are represented in Figure

4.7 with bold lines, are given in Table 4.2.

Table 4.2 Parametric values of nonlinearities for Case Study V.3

Nonlinear Connections Nonlinearity Tvpe Nonlinearity
(DOF1-DOF2) y Lyp Coefficients
122 Cubic Stiffness k=0, p=1ell
2°- Ground Arctan Stiffness p=28,x=1750

Characteristics of cubic and arctan stiffness elements are shown in Figure 2.1 and
Figure 2.7, respectively. The definitions of the nonlinearity coefficients given in

Table 4.2 can be seen in Equations 2.33 and 2.38.

When system is excited with the following harmonic excitation,

JARN(
(fY=1fir=112:" N (4.21)
fs 0
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the frequency domain responses can be obtained by using NLSM/CP. FRFs for the
third mass are given along with the solution obtained via TDI in Figure 4.9 and

Figure 4.10.
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Figure 4.9 Comparison of frequency responses obtained by proposed approach and

TDI solution for the 3™ mass
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Figure 4.10 Comparison of frequency responses obtained by proposed approach and

TDI solution for the 3™ mass (zoomed in third mode)

66



From the study of Figure 4.8 and Figure 4.9, it can be observed that there is an
excellent match between the results obtained by two approaches at all frequencies in
the frequency range which covers all three resonances. It should also be mentioned
that the results obtained with time integration coincide with the results found through

both forward and reverse sweeps.

4.1.4 Case Study V.4 : A Real Structural System - Comparison with
Experimentally Obtained Results

For the implementation of the nonlinear structural modification approach proposed, a
nonlinear test rig, which has been originally designed by Chong and Imregiin [38],
and has also been used recently in a previous study [52], is employed in this

application.

4.1.4.1 Overview of the Referred Experiment and Adaptation for the Nonlinear

Structural Modification

3 mm 13 mm

ZANC
\ I \ 8 mm|
NN

/A,

12[111111

Figure 4.10 Test rig assembly and its dimensions
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The test rig, whose dimensions and technical details are given in Figure 4.10,
consists of a linear cantilever beam with its free end held between two thin identical
beams which create cubic stiffness effect. The model used to represent the nonlinear

dynamic test rig is shown in Figure 4.11.

Figure 4.11 Model of the test rig

Here, the fixed-fixed two thin beams are considered as the modifying structure and
modeled as a concentrated nonlinear spring in y-direction with a concentrated
equivalent mass as shown in Figure 4.11. The concentrated nonlinear cubic stiffness
coefficient, f, is taken as 2.667x10% N/m’ which is the value identified
experimentally [52]. Using the material and geometric properties of the thin beams,
the linear part of the equivalent spring stiffness and equivalent mass values are
calculated as 4519 N/m’ and 45.3 g, respectively. The linear cantilever beam is
considered as the original structure and modeled by using a standard FE program as
shown in Figure 4.12. The modal data for the original structure is obtained via Finite

Element Analysis (FEA).
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Figure 4.12 The FE model of the cantilever beam

Constructed model is solved using the NLSM/CP for the nonlinear modification.
Frequency resolution during solution is taken as 0.25 Hz as is the case in the
previous work [52]. The response amplitude dependent structural damping data set
identified in [52] is used in the analysis. The direct point FRFs for the tip of the
cantilever beam are calculated at forcing levels of 0.1, 0.5 and 1 N, and compared in

Figure 4.13-4.15 with those experimentally measured [52], respectively.

4.1.4.2 Comparison of Results

When Figure 4.13 is investigated, it can be seen that good agreements are obtained
between experimental and predicted values even at high forcing levels where jump,
typical response distortion due to cubic stiffness nonlinearity, occurs in the frequency
response. Slight differences are believed to be due to modeling of the modifying
structure as a SDOF system and also, partly due to using the values cited in literature

for the material properties of the original beam in FE model.
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Figure 4.13 Calculated and measured FRF values for (a) F=0.1 N, (b)) F=0.5N
and (c)F=1N
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4.1.5 Case Study V.5 : FE Model of a Cantilever Beam - Comparison with

Computational Results Given in Literature

In this application, in order to validate the method and the program also for structural
modifications with additional DOFs, a cantilever beam whose FE model is given in

Figure 4.14 is considered.

i

ELEMENTS
DEC 4 2010

U 14:16:44

Figure 4.14 The FE model of the original beam

The FE model of the original cantilever beam model (Figure 4.14) consists of 20
SOLID 185 elements and it has 84 nodes with 3 translational DOF per node yielding
total DOF of 252. FE model properties of the original cantilever beam are also given

in Table 4.3.

Table 4.3 FE model properties for Case Study V.5

Element Type Used in FE model SOLID 185
Number of Elements 20
Number of Nodes 84
Number of DOFs 252
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The material properties assigned to FE model of the original cantilever beam model

together with geometrical properties of it are given in Table 4.4.

Table 4.4 Material and geometrical properties for Case Study V.5

Material and Geometrical Property Value
Density 7850 kg/m’
Young’s Modulus 200 GPa
Poisson’s Ratio 0.3
Length 200 mm
Width 10 mm
Thickness 10 mm

Then, the original cantilever beam is modified by attaching a smaller beam whose

bottom surface is exposed to Coulomb friction as shown in Figure 4.15.

ELEMENTS
: DEZ 5 2010

U 14:56:16

Figure 4.15 The FE model of the modified beam
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An external harmonic excitation of magnitude 15N is applied to the 22" node of the
modified structure in x-direction. Also, structural damping with a loss factor of
0.12% is assumed in the system. Coulomb friction force to which each node of the
bottom surface, namely, DOF numbers 10, 13, 16, 19, 22 and 25, is exposed in x-

direction is equal to 1 N.

The direct point frequency responses for the 22" node in x-direction after

modification is calculated using NLSM/CP and given in Figure 4.16.
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Figure 4.16 Frequency responses for the 22" node of the modified structure in x-

direction

From Figure 4.16, the effect of the Coulomb friction nonlinearity on modified system
response can be clearly observed when linear and nonlinear frequency responses are
compared with each other. It can be seen that, small drops around natural frequencies
occur which can be observed more clearly around first natural frequency from Figure
4.17. Disappearances of antiresonances are also due to Coulomb friction type of

nonlinearity, the physics behind which is explained in Section 2.2.3.2.
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Figure 4.17 Zoom around first natural frequency

Note that, when the modified beam is directly analyzed with the computer program
developed by Abat [33], exactly the same results are obtained when all the
eigenvectors are taken into consideration in both programs to prevent possible

differences due to truncation.
4.2 Applications of the Method Using the Program Developed

In this section, applications of the method using the program developed are
demonstrated. The objective of this part is to show the performance and also the
advantages of the method and the program developed. These applications are
presented in three main categories: structural modification with additional DOFs,
structural coupling with linear elements and structural coupling with nonlinear
elements. Note that, since structural modification without additional DOFs case 1is

well investigated in verification stage, it is not studied further in this section.
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4.2.1 Application of the Method for Modifications with Additional DOF's

In this category, first a modification analysis using two discrete systems, which are
also used in coupling analysis with linear and nonlinear elements, is illustrated. Then,
application of the method to a real engineering structure modeled with FE will be

given.

4.2.1.1 Case Study A.1 - A Discrete System Modification with Additional DOFs

In this case study, nonlinear structural modification of a linear discrete system is

considered (Figure 4.18).
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ks
kr k> ks kq —AAMAN—

m;  |—WW— my; VW m3 me  |WW—  ms /\7I/
n(x, %),

ORIGINAL SYSTEM MODIFYING SYSTEM
N v J
—> Fyejot

ks
§ k; ks ks ky WE
— AW m; VWWN— m2 WA mztmy P VWWN— s ﬁ

n(x, X)
MODIFIED SYSTEM

Figure 4.18 Nonlinear structural modification diagram for Case Study A.1

There exists a cubic stiffness type of nonlinearity between coordinates 4 and 5 of the
modifying system which shows hardening behavior. Parameters of this nonlinear
element together with the properties of both subsystems can be given as follows:

m

,=m, =m,=1kg and m,=m;=0.5kg,

k, =k, =k, =k, =k; =k, =1000 N/m,

nx, %)y, = kcx+,[)’x3 where k, =0 N/m and f§ = 2x10° N/m® (4.22)
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Assuming structural damping with a loss factor of 0.0015 in the analysis for all linear
elastic elements, direct point frequency response of the modified system at the point
where a harmonic force of magnitude 4 N is applied is calculated and shown in

Figure 4.19.
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Figure 4.19 Frequency response of mj3 after modification for Case Study A.1

It can be seen from Figure 4.19 that the effect of the nonlinearity involved in the
modifying system is apparent in all four modes of the modified system which reveals
the importance of including nonlinearity in this specific case. Although the
nonlinearity affects the frequency responses around resonances considerably, no
convergence problem is observed during the solution made via proposed method.
Note that, since the proposed method is an FRF based method, only the required
original system FRFs are to be included in the calculation. Those FRFs are the ones
related with the force application DOFs, the response DOF and the connection
DOFs. Furthermore, in this example the size of the matrix to be inverted is 2, which
is the order of the modifying system (and therefore it would still be 2, even though
the size of the original system were much higher). These are the important features of
the method which makes it more advantageous for large ordered systems with local

modification as in the one illustrated in the following application.
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4.2.1.2 Case Study A.2 - A Real Life Engineering Problem

In this application, a real life engineering structure, a shaft and mirror plate assembly

usually used in land platforms for optical purposes, is considered (Figure 4.20).

Figure 4.20 The shaft and mirror plate assembly

Since the mirror plate is an expensive part due to its well machined reflective
surface, once it is designed it is avoided to be modified further in the design
optimization of the assembly depending on the vibration characteristics of the
platform it is mounted. So, when it is going to be used in several other platforms, it
may be necessary to modify the shaft and/or bearings, in order to minimize the
vibration of the mirror plate and thus to improve its reflection performance. In order
to make a more precise analysis, nonlinearity introduced by the bearings should be
included into the dynamic analysis, which can easily be considered by the nonlinear

structural modification analysis method suggested in this thesis.
Solid elements are used in the FE model of the mirror plate with 3 DOF per node

yielding 2655 total DOFs (Figure 4.21). Similarly, the shaft is also modeled by using
solid elements with 3 DOF per node resulting in 186 total DOFs (Figure 4.22).
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Figure 4.21 The FE model of the mirror plate

1 ANSYS
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Figure 4.22 The FE model of the shaft

78



FE model and material properties of the aluminum alloy made mirror plate and

structural steel made shaft are given in Table 4.6.

Table 4.5 Material properties of the mirror plate and the shaft

Mirror Plate Shaft
Young’s Modulus 71 GPa 200 GPa

Poisson’s Ratio 0.33 0.3

Density 2770 kg/m® 7850 kg/m®

Element Type Used in FE model SOLID 185 SOLID 185
Number of Elements 2261 136
Number of Nodes 885 62
Number of DOFs 2655 186

Since the mirror plate is not desired to be modified during the design optimization
phase of the assembly, it is taken to be the original structure. Shaft and bearing
assembly on the other hand is taken as the nonlinear modifying structure where the
ball bearings at the two ends of the shaft, shown in Figure 4.20, are modeled as
nonlinear springs in horizontal and vertical directions connected to the ground. It
should be noted that in this example the shaft is intentionally taken as the part of
structural modification, just to increase the number of DOFs of the modifying
structure. The nonlinear behavior of the ball bearings can be taken to be cubic in
nature [53]. The nonlinear parameters of the ball bearings are taken as:

n(x,% )y, =kx+px’ where k, =2x10° N/m and f=>5x10" N/m’ (4.23)

In the analysis, initially, the receptances of the mirror are calculated by using
standard modal analysis for connection points and for any other point we are
interested in (i.e., points of which response is required or a force is applied to). Then,

the nonlinear structural modification method is employed and the receptances of the
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required points on the modified structure are calculated. Since the response of corner
points on the mirror have the primary importance due to their reflection performance,
the direct point FRF of a point near one of the corners of the mirror is calculated to
which a harmonic force with a magnitude of 2 N is applied. The calculated direct
point FRF is shown in Figure 4.23 with the linear FRF of the assembly without
considering bearing nonlinearity. Using nonlinear structural modification method, it
is very easy and fast to recalculate the response for any design change in the shaft

and/or bearings.
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Figure 4.23 The direct point FRF of a point near one of the corners of the mirror

plate for F=2 N

Moreover, the FRF values for the resulting nonlinear system will be a function of the
magnitude of the applied harmonic force, which will require the recalculation of the
FRFs for each forcing amplitude level, although no modification is made on either of
the subsystems. In such analyses, the method proposed in this thesis provides a
considerable computational time saving again, since the FRFs of the linear part of the
structure (which is usually the major part of the system with much higher DOFs) are
calculated once and then used to find the FRFs for nonlinear overall system. In the
later phase of the computations, which requires iterative solution, only the FRFs of
the points we are interested in (in addition to those of the modifying structure) are

used, rather than all DOFs (which would be the case if the coupled nonlinear system
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were to be analyzed with standard approaches). In this case study, FRF of the corner
point of the mirror is calculated for two more different forcing levels. The results are
shown in Figures 4.24 and 4.25. The effect of forcing level on the FRF of the corner

point of the nonlinear assembly can easily be observed by comparing Figures 4.23 to
4.25.
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Figure 4.24 The direct point FRF of a point near one of the corners of the mirror

plate for F=4 N
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Figure 4.25 The direct point FRF of a point near one of the corners of the mirror

plate for F=6 N
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4.2.2 Application of the Method for Coupling with Linear Elements

In this category, coupling analysis of the same discrete subsystems is considered.
The subsystems are coupled with a linear elastic element. In this application the
effect of the linear elastic coupling element stiffness on the FRF of the modified
system is examined thoroughly, and advantages of the proposed method for such

parametric analyses are emphasized.

4.2.2.1 Case Study A.3 - Discrete Subsystems Coupled with Linear Elements

In this case study, nonlinear structural coupling analysis of the linear and nonlinear
discrete subsystems, considered in Section 4.2.1.1, coupled with a linear elastic

element is carried out (Figure 4.26).
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Figure 4.26 Nonlinear structural coupling diagram for Case Study A.3

The stiffness of the linear elastic element is taken as ki = 200 N/m. Structural
damping with a loss factor of 0.0015 is again assumed for all linear elastic elements.
Direct point frequency response of the modified system at the point to which a
harmonic force with an amplitude of 4 N is applied is calculated and shown in Figure

4.27.
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Figure 4.27 Frequency response of mj3 after coupling for Case Study A.3

The results show that nonlinearity is more effective on 2“d, 3" and 5™ modes of the
system compared to the other two modes. Note again that, since the proposed method
is FRF based, it is sufficient to include only the FRFs related with the required
DOFs, in addition to the FRFs related the connection DOFs, into the calculations.
Furthermore, the size of the matrix to be inverted during calculations is again 2 by 2
in this application. This is the size of the modifying nonlinear subsystem. This saves
considerable computational time especially in large original systems, as long as the
modification is of small order. This feature of the method makes it very desirable in
parametric studies, such as, for instance, investigating the effects of stiffness of the
linear elastic coupling element on system response. In Figure 4.28, the effect of
different stiffness values of the linear elastic coupling element on the system
response around 3™ resonance is examined in detail. It can be seen from the figure
that increasing values of the stiffness of the linear elastic coupling element will not
only shift the 3" natural frequency to higher frequencies, but will also increase the

effect of nonlinearity on this mode.
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4.2.3 Application of the Method for Coupling with Nonlinear Elements

In this category, coupling analysis of the same discrete subsystems is considered.
This time two subsystems are coupled with a nonlinear element in addition to the
linear elastic element used in previous application. The effect of the nonlinear
coupling element on modified system FRF is examined thoroughly and advantage of

the proposed method for such parametric analyses is emphasized.

4.2.3.1 Case Study A.4 - Discrete Subsystems Coupled with Nonlinear Elements

In this case study, nonlinear structural coupling analysis of the linear and nonlinear
discrete subsystems considered in Section 4.2.2.1 is carried out. However, this time
in addition to the linear elastic coupling element used in the previous case study, an

additional nonlinear coupling element is considered as shown in Figure 4.29.
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Figure 4.29 Nonlinear structural coupling diagram for Case Study A.4

As the additional nonlinear coupling element, a linear spring having a stiffness of
knze = 200 N/m with a clearance of 6 = 0.02 m is employed between two coupling
coordinates. Assuming structural damping with a loss factor of 0.0015 again for all

elastic elements, frequency response of the modified system at the point to which a
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harmonic force with an amplitude of 4 N is applied is obtained (Figure 4.30).
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Figure 4.30 Frequency response of ms after coupling for Case Study A.4

When Figures 4.27 and 4.30 are compared with each other, it can be observed that
nonlinear coupling element affects 1* and 3 modes of the system more than it does
the other modes. Again, using only the FRFs related with the required and
connection DOFs, which is the FRF related with the 3" mass in this example, and
inverting a matrix only in the size equal to the DOF of the modifying system makes
this method very favorable. Therefore, the method can be used in design analyses
where, for instance, the effects of using different nonlinear coupling elements on the
system response are investigated. In Figure 4.31, the effect of different stiffness
values of nonlinear coupling element on the system response around 3" resonance is

examined in detail.

It can be seen from Figure 4.31 that typical response distortion due to clearance type
of nonlinearity is observed as an abrupt change in the frequency response at the point
of transition where the clearance gap is closed. As an expected result, the
displacement value where this abrupt change occurs differs depending on the value

of the clearance (compare Figure 4.31 (a) and (b)).
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On the other hand, for nonlinear spring elements having different stiffness values but
the same clearance, this abrupt change occurs at the same displacement value but the
frequency responses after that point show different behaviors due to having different

additional linear spring stiffnesses (compare Figure 4.31 (a) and (c)).
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CHAPTER 5

RESULTS AND CONCLUSIONS

5.1 Summary of the Results and Conclusions

The main objective of this thesis is to obtain the dynamic response characteristics of
a modified structure from those of the linear original structure and the system
matrices of the nonlinear modification or coupled structure by adopting a noble

structural modification method to nonlinear systems.

In this thesis, Ozgiiven’s structural modification method with and without additional
DOFs [14] is extended and applied to structures with local nonlinear modifications.
Since the formulation is for rigid connection of the nodes of the original and
modifying systems, for the cases where a nonlinear subsystem is coupled to a linear
system with elastic elements (linear or nonlinear), the problem is treated as an
equivalent structural modification problem where at each free end of a connecting
elastic element a massless node is added and that node is rigidly coupled to the main

system. The theoretical backgrounds of these methods are presented in Chapter 2.

In order to apply the proposed method to nonlinear modification and coupling
problems, a computer program, called NLSM/CP, is developed in MATLAB®.
NLSM/CP has a graphical user interface and is capable of solving nonlinear
structural dynamic modification and coupling problems. The computer program uses
natural frequencies and mode shape vectors of the original structure, and mass and
stiffness matrices of the modifying structure with the information regarding

nonlinearities present in it. The natural frequencies and the mode shape vectors for
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the original structure are extracted from the modal analysis results performed in
ANSYS®. The mass and stiffness matrices of the modifying structure are obtained by
using the “.full” modal analysis result file of ANSYS®. The experimental results for
the natural frequencies and the mode shape vectors of the original structure can also
be used in NLSM/CP. The details and user's manual of the computer program is

given in Chapter 3.

In the first part of Chapter 4, the computer program developed to solve the nonlinear
structural modification and coupling problems is validated with several different case
studies. Firstly, a discrete system which has been analyzed previously in another
study is considered. By partitioning the whole system into a linear original system
and a nonlinear modifying system, problem is treated as a nonlinear structural
modification problem. Then, after solving the problem through NLSM/CP, results
obtained are compared with those given in literature and a perfect match is observed.
As the second case study, the same system is partitioned into a linear original system
and a nonlinear subsystem. This time, some linear and nonlinear elements are
removed from the system and they are later used to couple two substructures, and
this analysis is performed via NLSM/CP. Again, results obtained show an exact
agreement with those given in literature. The approach proposed for coupling of two
systems (main system is linear and modifying system is nonlinear) with linear and/or
nonlinear elements is also validated. The performance of the method when applied to
a real structure is investigated by applying it to a test rig consisting of a linear
cantilever beam and nonlinear modification in the form of both ends fixed beam
attached to the tip of the cantilever beam yielding cubic stiffness effect. The FRFs
calculated by using the proposed method is compared with experimentally measured
ones given in literature. A pretty good agreement is observed between the predicted
and measured results even though modifying structure is modeled as a SDOF mass-
nonlinear spring system. Furthermore, the validity of the approach is demonstrated
by applying it to a lumped MDOF system and comparing the FRFs calculated by
employing the proposed method with those obtained via time integration solution
using ODE solvers of MATLAB®. The perfect match observed in this case study also

demonstrates the validity of harmonic balance methodology used in all applications
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(at least for the level of nonlinearity considered in the example applications). As the
last verification case, a cantilever beam modified with a smaller nonlinear beam is
considered. The main structure is modeled with Finite Element Method (FEM) and
the dynamic characteristics of the modified structure are obtained by using the
computer program developed. It is observed that results are in very good agreement

with those obtained analyzing the whole modified structure.

In the second part of Chapter 4, applications of the method using the program
developed are given in three main categories in which the advantages and the
performance of it are examined. Firstly, a discrete linear system modified with
another discrete nonlinear system is considered. When system response for the
modified system is studied, the typical effect of cubic stiffness type of nonlinearity in
modifying structure on all modes of the modified system is observed. In the second
case study, same subsystems are coupled with a linear elastic coupling element. The
frequency response of the coupled system is obtained and the effects of subsystem
nonlinearity on the modified system modes are observed. Furthermore, the effect of
the stiffness of the linear elastic coupling element on a specific mode of the system is
investigated. It is seen that increasing values of the linear elastic coupling element
stiffness will not only shift the investigated resonance to higher frequencies, but will
also increase the effect of nonlinearity on this mode. Then, same systems are coupled
with each other using a nonlinear coupling element in addition to the previous linear
one. As the nonlinear coupling element, a linear spring with a clearance is used. The
frequency response of the system is obtained and compared with the one obtained in
previous case. It is observed that nonlinear coupling element affects some of the
modes of the system more compared to the other modes. It causes an abrupt change
in frequency response after the response amplitude reaches to the value of clearance.
In the same example, the effect of this nonlinear coupling element for its varying
parameters, such as for different clearances and spring stiffnesses, is also studied. As
expected, the displacement value where the abrupt change occurs depends on the
value of the clearance, while the behavior of the frequency response after that point
depends on the additional linear spring stiffness of the coupling element after the

response amplitude reaches to the value of clearance. As the last case, a real life
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engineering problem is considered in order to show the applicability of the method to
large ordered systems. In this problem, structural modification analysis of a mirror
plate modified with a shaft-bearing assembly, where bearings at the two ends of the
shaft are modeled as grounded hardening stiffnesses in vertical and horizontal
directions, is studied. The effect of different amplitudes of external harmonic forcing

on modified system FRF is investigated.

To conclude, the proposed method is based on the computation of the FRFs of a
modified system from those of the original system and the dynamic stiffness matrix
representing the modifications in the system. Due to the nonlinear behavior of the
modifying system, the dynamic stiffness matrix turns out to be response level
dependant and thus the solution requires an iterative approach. The iterative
numerical solution was found to be successful as far as convergence to a solution is
concerned. It should be noted that since the proposed method is an FRF based
method, only the FRFs of the original system related with the DOFs we are interested
in, in addition to the ones at the connection DOFs, are to be included in the
calculations. Although the formulation includes a matrix inversion, the size of the
matrix to be inverted is equal to the DOF of the modifying system, and therefore the
method is most advantages when the modification is local. Especially in the design
of large main structures which may need to be modified locally, the method is very
useful and makes it possible for the designer to try various possible design changes
or to make a parametric study with minimum computational cost. Furthermore, since
the calculated FRFs are valid only for the level of the force applied, different FRFs
of the system can be practically obtained for different amplitudes of the external
harmonic forcing. It is concluded that the nonlinear structural modification/coupling
method proposed and the computer program developed in this thesis can successfully

and efficiently be used for nonlinear structural modification and coupling problems.
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5.2 Recommendations for Future Work

The computer program developed, NLSM/CP, in this thesis is not a stand-alone
executable file as it can only be run in association with the MATLAB® software
package (version 5.1, or later). Thus, in order to make it a standalone executable file,
the program can be written by using different visual programming languages by

which the graphical user interface of the program can also be improved.

In order to predict the FRFs of the modified system, the computer program uses the
FEA results of the original system and system matrices of the modifying system by
also considering nonlinearity present in it. However, instead of using the FEA results
of the original system, the modal test results of its real model may be used. Thus,
whenever the original system is available, rather than the response predicted from FE
model of the original system, more accurate experimental results can be used. In this
case modal expansion techniques should be used in order to have consistent DOFs

with the FE of the modifying system.

The method suggested here is capable of reanalyzing a large linear system modified
locally with a nonlinear subsystem (which can be in the form of a coupled nonlinear
subsystem) by specifying the fundamental harmonic describing functions for all
nonlinear elements in modifying/coupled nonlinear subsystem or those used as
coupling elements. Therefore, in order to improve the accuracy of the results, effect
of the higher order harmonic terms may be considered as well, by using multi

harmonic describing function theory.
The algorithm used to handle iterative solution procedure in this study is the Fixed

Point Iteration Method. In order to obtain faster convergence by spending less time,

alternative iteration methods may be used instead.
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ABSTRACT: In a structural design, the structure may need to be modified and for each modification its dynamic characteristics
may need to be determined by reanalyzing the structure dynamically. Since computational time and cost are very critical in
design processes, structural modification methods become decisive, particularly for large systems, in predicting the dynamic
behavior of modified structures from those of the original and modifying structures. Due to nonlinearity in most engineering
structures, linearity assumption may not be applicable to all cases. Then, well known structural modification methods can not be
directly used, and it is required to employ a nonlinear structural modification method. In this paper, a structural
modification/coupling method proposed in an earlier study is extended for nonlinear modification/coupling. The nonlinearities
are quasilinearised using describing function method, and thus nonlinear internal force vector is expressed in terms of a
response-dependent matrix which can be regarded as a response level dependent “equivalent stiffness matrix”, called
“nonlinearity matrix”. Then the method developed for linear structural modification/coupling is employed by using an iterative
solution procedure. Three case studies are presented in this paper. In the first case study, a nonlinear test structure used in an
earlier study is employed and the frequency responses of the system at different forcing levels are calculated by using the
approach suggested. Then they are compared with experimental results. Secondly, a simple discrete system is analyzed to
demonstrate the accuracy of the approach proposed. Lastly, a large scale model is considered to illustrate the applicability of the
approach proposed to large order systems.

KEY WORDS: Structural modification, nonlinear structural modification, vibration of nonlinear structures, nonlinear structural
coupling

1 INTRODUCTION different problems are considered [1, 2]: the direct structural
modification problem and the inverse structural modification
problem. The first one intends to calculate the dynamic
behavior of a modified structure once a set of changes has
been established. On the other hand, in inverse structural
modification problems optimum modifications are sought to
accomplish the desired dynamic behavior. Each problem can
be divided into two subgroups: frequency response function
(FRF) based techniques and modal synthesis techniques. The
problem considered in this work is FRF based direct structural
problem.

Various FRF based direct structural modification methods
are developed in order to predict dynamic response of a
modified structure. These methods can also be grouped among
themselves considering the general approaches used. In this

During mechanical design, usually, each prototype and final
product have to be tested for qualification. Harmonic vibration
test, via which behavior of a structure is examined under
dynamic loads, is also among these qualification tests. Each
modification made in order to satisfy design criteria changes
structural properties such as natural frequencies, mode shapes
and response of the structure. Therefore, tests should be
repeated for each modified prototype. In such cases, using a
mathematical model instead of the structure itself prevents
costly modification and test procedures. For example, when
additional stores are to be mounted on an aircraft, its dynamic
properties will change and the modification will result in a
considerably different dynamic response of the system under
the same external forces. This new dynamic response can be 2T L
calculated by reconstituting a new finite element model sludy,l structural modification method deve[oped by Ozgiiven
(FEM) for the modified system, and performing harmonic 3] 1S used and extended for nonlinear structural
vibration analysis again. However, if several alternatives are modlhcallf)t}/couplmg. The melhod is capable of finding ,FRFS
10 be considered, constituting FEM for each alternative and ~©f @ modified structure by using the FREs of the original
solving them will be expensive and time consuming. On the stmc.tglr.e and the mass, stiffness zlmd damping matrices of the
other hand, using the existing analysis of the original structure ~ Medifying structure. Recently, this method was extended and
and dynamic properties of only the modifying structure, applied to distributed modifications [4-6] and then applled“lo
dynamic response of a modified structure can be estimated real structures' [7]' The‘same appran:h was, useq by Sanlitiirk
without performing the dynamic analysis of the whole [8], but matrix inversion was avoided by using Sherman-

structure, but instead, by employing structural modification Morrl.son_formuia.llon. However, this method is limited to
and structural coupling techniques modifications which do not add new degrees of freedom

There is a vast literature on numerous different structural (DOF)_' Koksal et al. [9] e%tended t_he Successive Math
modification techniques and on their variations. Usually two ~ Lnversion method to dynamic analysis of structures. This

+ Published in the Proceedings of the 8™ International Conference on Structural Dynamics, Leuven, Belgium, 2011.
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method uses again the same approach, but avoids matrix
inversion by using power series expansion. Comparison of the
three structural modification methods using similar
approaches is made by Koksal at al. [10], and it is concluded
that the structural modification method proposed by Ozgiiven
[3] is the most efficient one among these three methods.

Since most engineering structures are often very complex
and intrinsically nonlinear, in the analysis of such structures
linear approach may not be applicable at all. In fact,
inconsistency observed in some studies between the measured
modal properties and modal properties theoretically calculated
with linear assumption is found to be due to the nonlinearity
involved in the structure [11, 12]. Hence, in problems where
accuracy is the primary concern, taking the nonlinear effects
into account becomes inevitable. Among several methods
suggested for structural modification/coupling analysis
including nonlinearity, the methods proposed by Cémert and
Ozgiiven [13], Ferreira and Ewins [14] and Chong and
[mregiin [15] are among the ones worth mentioning.

In this paper, firstly, theory of the structural modification
method for nonlinear modifications is summarized. Then,
applications of the approach proposed are given with three
case studies. In the first application, the method proposed is
applied on a test structure and thus the applicability of the
approach to real life structures is demonstrated. Secondly, a
simple discrete system is analyzed and results are compared
with those obtained by time integration solution in order to
study the accuracy of the approach. Lastly, a large scale
model is considered to show the applicability of the method to
large order systems.

2 THEORY

The structural modification method suggested by Ozgiiven [3]
has been successfully used in various applications for linear
systems. For local modification, where the total DOF of the
original system does not change after modification, the FRFs
of the modified system can be expressed in terms of those of
the original system and the dynamic stiffness matrix of the
modifying structure as shown below [3]:

IARIUECH CRINCN )
[711]T=[721]=[azl]l:[[]’[Dn][;’/ll]] (2)
[7:2]=[a2z]_[a1|][Du][7wz] 3)

where [a] and [y] represent receptance matrices of the

()

original and modified systems, respectively, [D] shows

dynamic stiffness matrix of the modifying structure, and
superscripts / and 2 denote the coordinates on which
modification is applied and the remaining coordinates,
respectively.

However, when the modification is in the form of coupling
a subsystem to the original system, the equations take the

form [3]:
[ ton, ] tof] ] Tla]
Eﬂ%m“mmwﬂm}(”

M sl
V%wmwmwgﬂ ©)

o gl 7
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where superscript a denotes DOFs that belong to the original
structure only, superscript » denotes DOFs corresponding to
connection nodes, and superscript ¢ denotes DOFs that belong
to modifying structure only.

Now, let us consider the equations of motion of a modifying
structure which shows nonlinear behavior. The equations of
motion for such a structure can be written as follows:

(Mo ] 13 +1{ Hy -4} +[ Koo |- {3 +H{V G D) = £} ®)

Here [K, ], [Mye] and [H,,] represent stiffness, mass

and structural damping matrices of the modifying structure,
respectively. When a harmonic force

{Fy={F}-e"" ©

is applied on the system, the system response as a first
approximation, can be assumed to be harmonic at the same
frequency:

{x}:{X}»e”’" (10)

Based on this assumption, the internal nonlinear forces can
also be assumed to be harmonic at the same frequency:

{NV} = (s} an

It has been shown by Budak and Ozgiiven [16] that the
amplitude vector of the internal nonlinear forces, for a wide
variety of nonlinearity, can be expressed as

{8} =[a].{x}
where [A], named as “nonlinearity matrix”, is a function of

The

12)

the unknown displacement amplitude vector {X}.
formulation for [A] is first introduced by Budak and Ozgiiven

[16,17] for certain types of nonlinearities, and later extended
for any type of nonlinearity using Describing Function
Method (DFM) by Tanrikulu et al. [18]. The elements of
nonlinearity matrix are defined as:

n
Ay = kam

m=1

(13)

14

where subscripts £ and m represent the general coordinates.

If equations (9), (10), (11) and (12) are substituted into
equation (8), it can be seen that nonlinear internal forces can
be included in the analysis by considering an additional

A = *vm’(k # m)
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equivalent stiffness matrix in the system which is function of
unknown response amplitudes. So, for such a nonlinear
modification dynamic stiffness matrix for the modifying
structure will take the form:

[Duca ] =[Koa |~ @ [M o 1+ i[ Hooa ] +[A] (15)

Note that the size of the matrices to be inverted in this method
is equal to the DOF of the modifying structure only. So the
method is very efficient for local modifications, which is
usually the case in real applications. Furthermore, as the
formulation is given in terms of FRFs; except for connection
nodes, only the FRFs of the required DOFs can be kept in the
above equations by deleting rows and columns of the matrices
corresponding to DOFs which are not our concern. This
would reduce computational effort drastically, and is an
another advantage of the method.

When the method is used for nonlinear modifications,
solution can be obtained by using an iterative approach, due to
the response dependent nonlinearity matrix in [D,]

expression. Convergence is checked by calculating the error
between two successive solutions:

1}, -1 |

e=—>—————x100
{3,

In the iterative solution, Fixed Point Iteration Method is
applied. Number of iterations made is reduced considerably

described below,

(16)

by using average displacement {X } |

instead of {.Y}

j+t

{x., Gl Pt an

2

In order to avoid divergence or numerical instability, and also
to obtain fast convergence, relaxation is applied to fixed point
iteration approach as given below:

{x }I =(1-{x},, -A{X},,0<A<)  (19)
where 1 is the relaxation coefficient. Calculations are
performed by sweeping from low to high frequency and then
in reverse direction in the desired frequency range, and thus
multiple solutions that could result from nonlinearities are
obtained. Linear response obtained by omitting nonlinearity in
modifying structure is taken as the initial value of
displacement vector {X }]. For the following iterations, the

converged value of {X}j for a previous frequency value is

taken as the initial value.

3 CASE STUDIES

In this section, three case studies are presented to demonstrate
the application of the approach proposed for nonlinear
modifications. First a real structure is considered and the
accuracy of the approach when applied to real systems is
demonstrated. In the other two case studies lumped parameter
systems are considered, and first the results obtained by the
method are compared with time integration results for a small

order system. Later, a large order discrete system is analyzed
with the method proposed.

3.1 Case Study 1 - Real structure

For the implementation of the nonlinear structural
modification method suggested here, a nonlinear test rig,
which has been originally designed by Chong and Imregiin
[15], and has also been used recently in a previous study [19],
is employed. The test rig consists of a linear cantilever beam
with its free end held between two thin identical beams
(Figure 1). The model used to represent the nonlinear dynamic
test rig is shown in Figure 2.

3mm 13 mm

2K

22

12 mm

Figure 1. Test rig assembly and its dimensions.

Figure 2. Model of the test rig.

Here, the fixed-fixed two thin beams are considered as the
modifying structure and modeled as a concentrated nonlinear
spring in y-direction with a concentrated equivalent mass as
shown in Figure 2. The concentrated nonlinear cubic stiffness
coefficient, f, is taken as 2.667x10° N/m’ which is the value
identified experimentally [19]. From the material and
geometric properties of the thin beams used [19], the linear
part of the equivalent spring stiffness and equivalent mass
values are calculated as 4519 N/m’ and 45.3 g, respectively.
The linear cantilever beam is considered as the original
structure and modeled by using a standard FE program as
shown in Figure 3. The modal data for the original structure is
obtained via FE analysis.
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Figure 3. The FE model of the cantilever beam.

Constructed model is solved using the program developed for
nonlinear modification. Frequency resolution during solution
is taken as 0.25 Hz just as in the experiment [19]. The
response amplitude dependent structural damping value
identified in [19] is used in the analysis. The direct point FRFs
for the tip of the cantilever beam are calculated at forcing
levels of 0.1, 0.5 and 1 N, and they are compared with the
experimental values measured by Arslan et al. [19], in Figures
4-6, respectively.
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Figure 4. Calculated and measured FRF values at F = 0.1 N.
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Figure 5. Calculated and measured FRF values at F = 0.5 N.

As can be seen in Figures 4-6, good agreements are obtained
between experimental and predicted values even at high
forcing levels where jump, typical response distortion due to
cubic stiffness nonlinearity, occurs in the frequency response.

Slight differences are believed to be due to modeling the
modifying structure as a SDOF mass-nonlinear spring system
and also, partly due to using the values cited in literature for
the material properties of the original beam in FE model.
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Figure 6. Calculated and measured FRF values at F =1 N.

3.2 Case Study 2 - Discrete system

In this part, nonlinear structural medification method is
applied to a simple discrete system with nonlinear
modifications (Figure 7). In order to verify the approach,
results obtained are compared with the ones calculated by
time domain solution using the ODE integrators of MATLAB.
According to stiffness characteristics of the problem,
integrations are performed using several integrators like
ODE45, ODEIl13, ODEIlS5s, etc. [20]. Integrations are
continued until steady state is reached.

tigid connection

rigid connection

MODIFIED STRUCTURE

Figure 7. System used in Case Study 3.

System matrices of the original system are given as follows:

90000  -30000 -30000
[Ky]=|-30000 60000 30000 %
~30000 -30000 60000

19

30 0 0
[M,]=0 20 0 |kg
0 0 10

20)

System matrices of the modifying structure are as follows:

60000

~30000
= N
[ ] {—30000 60000 } Vm @l
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The nonlinearities in the system shown are defined in Table 1.
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Table 1. Nonlinearity definitions. g5y

5 3
Nonlinear Connections | Nonlinearity Nonlinearity g i

(DOF1-DOF2) Type Coefficients 3

a 4
o Cubic - g,

22 Stiffness #= el =
s

. Arctan p=8
3 - Ground Stiffness x=1750

Typical behaviors of cubic and arctan stiffness elements are
shown in Figures 8 and 9, respectively. Definitions of the
nonlinearity coefficients in Table 1 are also given in these
figures.

Force

Foree Bt

Figure 8. Force-displacement behavior of a typical cubic
stiffness element.

Force

Force = p.arctan(xax)

Figure 9. Force-displacement behavior of a typical arctan
stiffness element.

The system response at mj is obtained by the method
presented, and compared with the solution found by time
domain integration in Figures 10 and 11 for the following
harmonic excitation;

— Non-linear response — Forward sweep
—— Non-linear response — Reverse sweep
# Time integration solution

i
2 4 8 8 10 12 14 16
Frequency [Hz]

Figure 10. Comparison of frequency responses obtained by
method proposed and time domain integration for 3 mass.
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Figure 11. Comparison of frequency responses obtained by
method proposed and time domain integration for 3" mass
(zoom around third mode).

In Figures 10 and 11, there is an excellent agreement between
the results obtained by two approaches at all frequencies in
the frequency range which covers all three resonances. It
should also be noted here that the results obtained with time
integration coincide with the results found in reverse sweep.

3.3 Case Study 3 - Large scale structure

In this application, a large scale system is analyzed via
nonlinear structural modification program developed in order
to show the application of the method to large order systems,
such as finite element models.

In this example, the cantilever plate shown in Figure 12 is
modified by attaching the plate shown in Figure 13 to the free
edge of the original structure that constitutes the modified
structure given in Figure 14.

Original plate was divided into 144 shell elements with 6
DOF per node yielding total DOF of 1014. The modifying
structure was divided into 24 shell elements with 6 DOF per
node giving total DOF of 234 as shown in Table 2. The
geometrical and material properties of the original and
modifying plates are given in Table 3. Structural damping
with a loss factor of 0.5% is assumed. Nonlinearities in the
modifying system are defined in Table 4 and Figure 15.
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Figure 12. The FE model of the original plate.

Figure 14. The FE model of the modified plate.

Table 4. Nonlinearity definitions.

Nonlinear Connections | Nonlinearity Nonlinearity
(DOF1-DOF2) Type Coefficients
Piecewise k'=0
45 - Ground Linear = led
Stiffness 6=1e3
Piecewise K'=0
51 - Ground Linear 1= led
Stiffness 8=1le-3
Figure 13. The FE model of the modifying plate.
Force
Table 2. FE information of original and modifying plates. A .
Original Plate | Modifying Plate
Number of Elements 144 24 K
Number of Nodes 169 39 5 <
v > D
DOF 1014 234 : 4
Table 3. Geometrical and material properties of original and
modifying plates. Force — 1 /\'Illr *|,‘ < ,‘i! o
Original Plate | Modifying Plate e = 10— () B0
Young’s Modulus 71 GPa 71 GPa Figure 15. Force-displacement behavior of a typical piecewise
Poisson’s Ratio 0.33 0.33 linear stiffness element.
Density 2770 kg/m® 2770 kg/m’
Length 300 mm 50 mm . RESPONSE v& FREQUENCY
Width 300 mm 300 mm . ' — Hovines esporse - Fovrd suesp| |
Thickness 2 mm 2 mm R ‘\“ :::::,":ﬂ::emwmm e
/
A harmonic excitation of magnitude 10 N is applied to the 17" £ A
node of the modifying plate in z-direction, and frequency £ 2 4N
response at node 170 in z-direction is predicted for the & M
modified structure by employing the method proposed. The & 3~
result is shown in Figure 16. It can clearly be seen in Figure 35 o e
16 that nonlinearities become effective on system response ; ‘\‘\k\\
after a displacement of le-3 m as expected from the definition 4 3 E « 50 60 0 8
Frequency [Fz]

of the nonlinearity present in the system. Although the
nonlinearity changes the frequency response around resonance
considerably causing a jump, no problem is observed in
convergence when the method proposed is used.

Figure 16. Frequency domain response at 170" node of the
modified plate in z-direction.
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4 DISCUSSIONS

In this paper, the method proposed in an earlier study for
structural dynamic modifications with additional degrees of
freedom [3] is applied to structures with nonlinear
modifications. In the method proposed, the frequency
response functions of the modified structure are calculated
from those of the original structure and the system matrices,
including the nonlinearity matrix, of the modifying structure.

The performance of the method when applied to a real
structure is investigated by applying it to a test rig consisting
of a linear cantilever beam and nonlinear modifications in the
form of both ends fixed beam attached to the tip of it yielding
cubic stiffness. The FRFs calculated by using the proposed
method is compared with experimentally measured ones [19].
A very good agreement is observed between the predicted and
measured results even though modifying structure is modeled
as a SDOF mass-nonlinear spring system. In the second case
study, the validity of the approach is demonstrated by
applying it to a lumped multi degree of freedom system. The
FRFs calculated by employing the method proposed are
compared with those obtained via time integration solution
using ODE solvers of MATLAB, and a perfect match is
observed. Thus validity of the approach suggested is
demonstrated. In order to show the applicability of the method
to large order systems, the program developed is used to
analyze the finite element model of a plate coupled to another
one showing nonlinear behavior. Although more than 1200
DOFs are used in the model, nonlinear responses are
calculated through an iterative process without any
convergence problem.

It is concluded in this study that the structural modification
method proposed can be successfully and efficiently used for
structures with nonlinear modifications.
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