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ABSTRACT

CONTRIBUTION TO THE DEVELOPMENT OF IMPLICIT LARGE EDDY
SIMULATIONS METHODS FOR COMPRESSIBLE TURBULENT FLOWS

Karaca, Mehmet

Ph.D., Department of Aerospace Engineering

Supervisor : Prof. Dr. I. Sinan Akmandor

Supervisor : Asst. Prof. Dr. Ivan Fedioun

December 2011, 157 pages

This work is intended to compare Large Eddy Simulation and Implicit Large Eddy Simulation

(LES and ILES) for a turbulent, non-reacting or reacting high speed H2 jet in co-flowing air,

typical of scramjet engines. Numerical simulations are performed at resolutions ranging from

32×32×128 to 256×256×1024, using a 5th order WENO scheme. Physical LES are carried

out with the Smagorinsky and the Selective Structure Function models associated to molecular

diffusion. Implicit LES are performed with and without molecular diffusion, by solving either

the Navier-Stokes or the Euler equations. In the nonreacting case, the Smagorinsky model is

too dissipative. The Selective Structure Function leads tobetter results, but does not show any

superiority compared to ILES, whatever the grid resolution. In the reacting case, a molecular

viscous cut-off in the simulation is mandatory to set a physical width for thereaction zone

in the ILES approach, hence to achieve grid-convergence. Itis also found that ILES/LES

are less sensitive to the inlet conditions than the RANS approach. The first chapter is an

introduction to the context of this study. In the second chapter, the governing equations for

multispecies reacting flows are presented, with emphasis onthe thermodynamic and transport

models. In the third chapter, physical LES equations and explicit sub-grid modeling strategies
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are detailed. Some properties of the numerical scheme are also investigated. In chapter four,

the numerical scheme and some aspects of the solver are explained. Finally, non-reacting and

reacting numerical experiments are presented and the results are discussed.

Keywords: turbulent, combustion, LES, implicit, compressible
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ÖZ

SIKIŞTIRILABÍL ÍR VE TEPḰIMEL Í TÜRBÜLANSLI AKIMLAR ÍÇÍN ZIMNI B ÜYÜK
GÍRDAP BENZET́IM Í YÖNTEMLERI GEĹIŞ TÍRÍLMESINE KATKI

Karaca, Mehmet

Doktora, Havacılık ve Uzay Mühendisli Bölümü

Tez Yöneticisi : Prof. Dr. I. Sinan Akmandor

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Ivan Fedioun

Aralık 2011, 157 sayfa

Bu çalışmada scramjet motorlarına özgü yüksek hızda,türbülanslı, tepkimesiz veya tep-

kimeli, eş-hava akışında H2 jeti için uygulanan BüyükGirdap Benzetimi ve Zımni Büyük

Girdap Benzetimi (BGB ve ZBGB) metodlarının karşılaştırılması amaçlanmaktadır. Sayısal

sımülasyonlar, 5. seviye WENO şemasını kullanarak, 32× 32 × 128 , 256× 256× 1024

arasında degişen çözünürlüklerde yapılmıştır. Fiziksel BGB, Smagorinsky ve Seçici Yapısal

Fonksiyonu modelleriyle bilikte moleküler difüzyon uygulanılarak yansıtılmaktadır.̈Ortülü

BGB, moleküler difüzyon eklenip çıkarılarak elde edilen Navier-Stokes veya Euler denklem-

leri çözülerek yapılmıştır. Tepkimesiz durumda, Smagorinsky modeli çok tüketimlidir. Seçici

Yapısal Fonksiyonu daha iyi sonuçlar vermektadir, ancak ZBGB ile karşılaştırıldıgında, ag

çözünür- lügü ne olursa olsun herhangi bir üstünl¨uk göstermez. Tepkimeli durumda, ZBGB

yaklaşımı için reaksiyon bölgesinde fiziksel bir et kalınlıgı ve ag yakınsaması saglayan

moleküler viskozite zorunludur. Ayrıca, BGB ve ZBGB metodlarının giriş şartlarına RANS

yaklaşımına görece daha az duyarlı oldugu görülmüştür. Ìlk bölümde, bu çalısma baglaminda

bir giriş yapılmaktadır.̀Ikinci bölümde, çok türlü tepkimeli akışları temsileden denklemler,

termodinamik ve taşıma modelleri üzerinde durularak sunulmustur. Üçüncü bölümde, fizik-
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sel BGB denklemler ve ag-altı modelleme stratejileri ayrıntılı olarak verilmektedir, sayısal

şemanın bazı özellikleri de incelenmistir. Dördüncübölümde, sayısal şema ve çözücünün

bazı yönleri açıklanmıştır. Son olarak, tepkimesiz ve tepkimeli sayısal deneylerin sonuçları

tartışılmaktadır.

Anahtar Kelimeler: türbülanslı, yanma, ZBGB, Zımni, sıkıştırılabilir
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I am deeply indebted to Dr. Iskender Gökalp for offering me the opportunity to do my PhD

work at ICARE of CNRS and supporting me in every sense, duringmy stay in France.

I would like to thank the French Embassy in Turkey for providing the funds for my stay in

France and TUBITAK for the support during my stay in Turkey.

I also express my sincere thanks to all the ICARE colleagues for their support, encouragement

and camaraderie.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

The mankind’s desire to fly higher, faster and farther sustained the development of propulsion

systems since the first powered flight of Wright brothers in 1903. In the early years of aviation,

René Lorin patented an air-breathing device which compresses the incoming air by its inlet

(diffuser) and expands it by its exhaust (nozzle) without any moving parts. This engine was

the first ramjet concept. At that time, this concept would notbe realized since a ramjet can

not produce thrust at zero speed. Similar independent concepts were developed in different

countries.

This initial interest in ramjets seemed to be reduced in favor of the sustained development

of gas turbine engine, the concept of which was first patentedin 1791, by John Barber (UK

patent no. 1833). Sir Frank Whittle (England) ran the W2/700 engine, and in 1936 Von

Ohain (Germany) ran his engine with H2. During the second world war (WWII), German

flew the first operational ramjet, ground launched V-1 Bomb Flyer which was launched by

a solid propellant booster. The first ramjet powered aircraft Leduc 0.10 (Figure 1.1) which

was carried aloft by a mother airplane was launched in 1947, in France. Later, after WWII,

operational ground launched ramjets were developed as missiles like Talos in US and VEGA

in France.

Access to space gave a big impetus for hypersonic flight. The first hypersonic manned rocket

powered aircraft called X-15 (Figure 1.2) was built in 60’s by North American Society on be-

half of NASA. The X-15 was flying at≈15 km and reached Mach 6.7 in 1967. This airplane

was used to collect experimental data at hypersonic flight regimes at high altitude and to make

component tests. The engines driving high-speed flight vehicles had limitations imposed by

propulsion: air-breathing engines (turbojet, ramjet) do not reach hypersonic speeds and rocket

1



 

Figure 1.1: Leduc 010, 1949, 680 km/h. Figure 1.2: The rocket-powered X-15
(M=6.7 in 1967).

engines have the disadvantage of requiring the carriage of oxidant. The scramjet (supersonic

combustion ramjet) development which has begun in 1955s permitted to remove these draw-

backs. In a ramjet, the flow is subsonic since there is a throaton the flow path. Multi-shocks

at the inlet cause high amount of losses at flow velocities higher than Mach 6 (Figure 1.3). On

the contrary, in a scramjet, the flow remains supersonic throughout the combustion process,

resulting in more efficient operation at hypersonic speeds of the airplane. Figure 1.4 shows

Figure 1.3: Schematic of a scramjet [3].

the specific impulse vs operating condition of various engine concepts. Rocket engines spe-

cific impulse values are about 400 s which is less compared to scramjet. Figure 1.5 shows the

altitude limitation vs Mach number and the so-called flight corridor of scramjets. As seen in

the Figure, the optimal altitude for scramjet flight at Mach=6 is around 25 km. United States

having the hypersonic test capability of X-15, started the NASA hypersonic research engine

HRE (hypersonic research engine) program in 1964, and France launched ESOPE (Etude de
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Figure 1.4: Specific impulse vs. flight condi-
tions for various engine concepts. Red : H2,
Blue : Kerosene
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Figure 1.5: Flight envelop of different engine
concepts.

Statoréacteur comme Organe de Propulseur Evolué) program in 1966. However, these at-

tempts terminated due to limited technology and interest focused on integrated rocket ramjet

(IRR) technology.

In the mid 1980’s, the NASP (National AeroSpace Plane) program was initiated with the

goal of flying a reusable launch vehicle, the X-30, powered bya single stage combined cycle

engine to Mach 25. Also, at the same time, the PREPHA (Programme de REcherche en

Propulsion Hypersonique Avancée) program was launched inFrance. Considering the state

of technology, the goals of these projects were aggressive;eventually these projects were

abandoned leaving extensive experience and significant contributions behind. Research in

Europe continued with the JAPHAR project (Joint Airbreathing Propulsion for Hypersonic

Application Research) co-directed by ONERA (France) and DLR (Germany). These studies

have been conducted from 1997 to 2002 as the preliminary study of a dual-mode ramjet

hypersonic vehicle.

At the same time, the Hyper-X program launched in the United States aimed to fly a small

scale scramjet powered demonstrator at Mach 10. This targetwas reached in November 2004

by the X-43A (Figure 1.6). Later, the X-51 Waverider programwas initiated to demonstrate

sustained flight of 300 s with a scramjet powered aircraft. The X-51 was planned to accelerate

from Mach 4.7 to beyond Mach 6. The first powered flight test wasconducted on 26 May 2010

over 200 s at Mach 5 (Figure 1.7). In Europe, after JAPHAR, thePROMETHEE program and
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Figure 1.6: The X43 in the NASA LaRC
M=10 wind tunnel.

Figure 1.7: The Boeing X51-A.

 

Figure 1.8: The CAD view of the
LEA vehicle.

 

Figure 1.9: The LEA flight test mission.

now LEA (Figure 1.8) program is aimed to develop and launch anexperimental hypersonic

test vehicle by ONERA-MBDA. The first flight planned to be at 20-30 km altitude from Mach

4 to beyond Mach 8. This experimental vehicle is planned to bedelivered to proper altitude

and accelerated to the required Mach number by Russian Tu-22aircraft and Volna launcher

(Figure 1.9).

In the present review, some of the hypersonic flight projectswere listed. More thorough

information about history may be found in references [22, 38, 37, 99, 77, 45, 124].

In a scramjet, the main design considerations are:

• The forebody and the intake act as a diffuser capturing and compressing air with the

highest possible efficiency. They contribute to the moment and drag of the vehicle. The

flow includes leading bow shock and isentropic or oblique turning shock waves. The

transition on the forebody is highly important due to high heating involved.

• The pressure is increased in the isolator which acts as a component of the diffuser.
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Oblique shocks penetrating into the combustion chamber areformed in the isolator.

• In the combustion chamber, the fuel is delivered into the flow, mixes and burns in

the available chamber length. The (turbulent) mixing and chemical reactions in the

supersonic flow conditions have to be complete within less than one millisecond.

• Finally, expansion occurs in the exhaust nozzle and aftbody. The design of the expan-

sion system contributes to the propulsive efficiency and the moments on the vehicle.

The context of this work is the numerical simulation of turbulent mixing and reacting flow in

scramjet combustion chamber. Shock waves are inherently present in the flow and require the

use of dissipative numerical schemes for stable simulations, whatever the approach retained to

model turbulence. Until quite recently, Reynolds averagedcalculations (RANS) have been the

standard approach to the problem (e.g. [74]). However, turbulence models extended to highly

compressible flows and large heat release must be finely tuned, with some uncertainty when

extrapolated to different configurations [23, 22]. Direct Numerical Simulation(DNS) of such

complex flows is not feasible and may probably never be. LES isa more attractive technique

[50] now at hand thanks to the increase in computing power. The purpose of the present thesis

is the comparison of the Large Eddy Simulations (LES) and Monotone Integrated Large Eddy

Simulation (MILES) numerical approaches in the context of high speed jets. In the former

the contribution of the sub-grid motions are modeled based on flow physics and in MILES

algorithms designed to satisfy the physical requirements of positivity and causality, in effect

have a matching sub-grid model built in[11].

At ICARE the studies related to this topic were initiated by the thesis of Lardjane [80] in

which 1D and 2D analysis of numerical methods for turbulent mixing in high density ratio

binary systems have been conducted. Later, in the thesis by Gougeon [59], 2D numerical

simulations are developed for compressible reacting flows.In the present study, the 2D sim-

ulations are extended to full 3D. Closure models for the filtered set of equations are applied

for LES and different LES strategies are compared.

The thesis is organized as follows. Chapter 2 presents the governing equations for multicom-

ponent compressible reacting flows, with emphasis on the thermodynamic and transport mod-

els. In chapter 3, physical LES equations are detailed; the explicit SGS modeling strategies

are explained and dissipation and dispersion characteristics of different numerical approaches
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are discussed. In the same chapter, a simple 1D linear analysis of the interaction between

the WENO scheme and SGS model is also proposed. Chapter 4 is devoted to numerics. The

details of the numerical scheme and some aspects of the solver are explained in this chapter.

In chapter 5, both the non-reacting (section 5.1) and reacting (section 5.2) test cases and the

results are presented. Finally, conclusions of this study are given in chapter 6.
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CHAPTER 2

CONSERVATION LAWS FOR COMPRESSIBLE

MULTICOMPONENT REACTING FLOWS

In this study, high speed non-reacting and reacting flows aresimulated. The cases are high

Reynolds number flows near atmospheric conditions, hence the Knudsen number is small

and the continuum assumption holds. The system is assumed tobe in local thermodynamic

equilibrium, having a single temperature. The Navier-Stokes equations for three-dimensional

multi-species flows are considered as the governing equations. Perfect gas equation of state

is applied for the relation between pressure, temperature and density.

The description of coupled, time dependent, partial differential equations governing the con-

vective flow, diffusion of species and source terms for chemical reactions is presented in this

chapter. This set of equations is well known and can be found in many popular textbooks

[78, 98, 104, 125, 128]. The purpose of this chapter is to state precisely the notations and

definitions used in this study and to establish references for the following chapters.

2.1 CONSERVATION OF MASS AND CHEMICAL SPECIES

2.1.1 STATIC VARIABLES FOR A MIXTURE

Let consider an homogeneous mixture ofNsp speciesα = 1, ...,Nsp. The density of the

mixture may be computed as the sum of partial densitiesρα

ρ(p,T,Yα) =
Nsp∑

α=1

ρα(p,T) (2.1)

Species mass fractionsYα are
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Yα =
ρα

ρ
;

Nsp∑

α=1

Yα = 1 (2.2)

Species can also be characterized with their molar concentrations and mole fractions. Molar

concentration of speciesα in the mixture is expressed in the following way

Cα =
ρα

Mα
=
ρYα
Mα

(2.3)

Mα is the molar mass of the speciesα. The overall molar concentration of the mixture is

C =
Nsp∑

α=1

Cα (2.4)

Mole fractions can be directly computed from molar concentrations as

Xα =
Cα
C

;
Nsp∑

α=1

Xα = 1 (2.5)

A simple relation between mass fractions, mole fractions and molar mass is

XαMα = YαM (2.6)

Average molar mass of the mixture may be computed using both variablesXα andYα as

M =
ρ

C
=

Nsp∑

α=1

XαMα =


Nsp∑

α=1

Yα
Mα



−1

(2.7)

2.1.2 CONSERVATION OF SPECIES AND MASS

In an infinitesimal control volume, the change of species mass fractions, for chemically react-

ing flows, is due to convection, diffusion of species and source terms of reactions.

∂ρYα
∂t
+
∂[ρYα(u j + Vα j)]

∂x j
= ω̇α (2.8)

In this relationu j is the convective velocity,Vα j is the diffusion velocity of speciesα in

directionx j andω̇α is the source term for speciesα. The diffusion velocity in equation (2.8)

may be used to express the species mass flux

Jα j = ρYαVα j (2.9)

The species conservation equation (2.8) turns out to be

∂ρYα
∂t
+
∂ρu jYα
∂x j

= −
∂Jα j

∂x j
+ ω̇α (2.10)
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Both the sum of the source terms ˙ωα and species mass fluxJα j must be zero to satisfy conser-

vation of mass.
Nsp∑

α=1

ω̇α = 0 ;
Nsp∑

α=1

YαVα j = 0 (2.11)

The sum of species equations gives conservation of mass. Thechange of mass in the control

volume is due to convection
∂ρ

∂t
+
∂ρu j

∂x j
= 0 (2.12)

2.1.3 MOLECULAR DIFFUSION OF SPECIES

The species diffusion velocityVα j in equation (2.8) can be expressed according to kinetic

theory of gases [16, 36, 44, 66].

Vα j = −
Nsp∑

β=1

(
DT
α

∂ ln T
∂x j

+ Dαβdβ j

)
(2.13)

The first term on the r.h.s. is the thermal diffusion also known as the Soret effect [95]. In

reacting flows, since temperature gradients take large values, Soret effect may be significant.

However, in this study, it is neglected for simplicity.

In the second term on the r.h.s.,dα j is the diffusion driving force of speciesα in directionx j.

This term can be derived by elementary analysis [104, 128].

dα j =
∂Xα
∂x j
+ (Xα − Yα)

∂ ln p
∂x j

+
ρ

p

Nsp∑

β=1

YβYα(bβ j − bα j) (2.14)

Dαβ is the coefficient for the inter-diffusion of speciesα andβ in the presence of any num-

ber of other species. The diffusion coefficients take the name “binary diffusion coefficients”

with notationDαβ, when there exists two species only.Dαβ can be computed algebraically

[16, 66]. In equation (2.13) the diffusion velocities are explicit. However, the multicompo-

nent diffusion coefficientsDαβ are not (asNsp > 2) . They can be approximated in terms

of Sonine polynomial expansion as a function of the primitive variables and binary diffusion

coefficients. A system of equations for the coefficients needs to be solved [36]. This pro-

cedure is explained in detail by Dixon-Lewis [27] and Coffee & Heimerl [18]. This task is

computationally expensive.

An alternative method can be derived using the dual formulation of equation (2.13), neglecting
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the Soret effect.

dα j = −
Nsp∑

β=1

∆αβVα j (2.15)

The dual multicomponent diffusion coefficients∆αβ are not known but can be approximated

using the first term of a Sonine polynomial expansion. The Stefan-Maxwell diffusion equa-

tions are then obtained [55, 95].

dα j =

Nsp∑

β=1α,β

XαXβ
Dαβ

Vβ j −


Nsp∑

β=1α,β

XαXβ
Dαβ

Vα j (2.16)

Dαβ denotes the usual binary diffusion coefficient for two component mixing. The difficulty

of computing diffusion coefficients,Dαβ (for Nsp > 2) is avoided in this formulation. Even

so, solving this system of equations is still computationally expensive [54].

In this work, Fick’s law is applied for computing diffusion velocities. Fick’s law provides

close approximations at low computational cost when compared to the two methods that are

explained above [25, 35, 65]. The diffusion coefficient Dαm is assumed to be the proportion-

ality factor between the diffusion velocity of each species and the gradient of species mole

fraction in the diffusion direction.

Vα j = −
Dαm
Xα

Xα, j (2.17)

This formulation can be obtained from the Stefan-Maxwell equation (2.16) assuming the body

force per unit massbα j to be equal for each species and the barotropic (pressure gradient

driven) diffusion is negligible [128].

The multicomponent diffusion coefficient of each species in the mixture is computed applying

the simple approximation suggested by Hirschfelder-Curtiss [1, 66].

Dαm =
1− Yα∑

β=1α,β Xβ/Dαβ
(2.18)

This approximation is obtained as follows :

• Relation betweenDαβ andDαβ is obtained using the following algebraic relation with

the physical constraints
∑
β YβDβα = 0 for α = 1, ..,Nsp to solve the Stefan-Maxwell

system.

∆D = I − Y ⊗ U
< U,Y >

(2.19)

whereU = T {1, 1, 1, .., 1}. Both ∆ andD are assumed to be symmetric and positive

definite onU⊥ andY⊥ respectively.
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Here, the dual diffusion coefficients are approximated as the first term of the Sonine

series expansion

∆αβ =
XαXβ
Dαβ

(2.20)

• Later, this relation is substituted in equation (2.13) assuming pressure is constant, body

force per unit mass for each species are equal and thermal diffusion is negligible.

• The approximation (2.18) is obtained substitutingDαβ into Fick’s Law (2.17).

The binary (Dαβ = Dβα) diffusion coefficients for speciesα andβ are defined in terms of

temperature and pressure. The values are computed applyingpower law interpolation over

the CHEMKIN model [73].

Dαβ =
1
P

aαβ0Tbαβ (m2/s) (2.21)

The coefficientsaαβ0 andbαβ for the variation ofDαβ with temperature at atmospheric pres-

sure are tabulated in appendix A. The subscript0 stands for atmospheric conditions.

The species mole fractions are considered as independent variables since the diffusion ve-

locities are approximated using Fick’s law (2.17). However, this method causes violation of

global mass conservation [54, 97]. The sum of species equations by definition must necessar-

ily result in conservation of mass, in conservative formulation. This condition is not satisfied

for Fick’s assumption, unless all diffusion coefficients are equal.

One approach for this problem is discarding one of the species equations from the system.

The mass fraction of this final species is calculated fulfilling the sum of the species mass frac-

tions to unity. Also, there are many reasons for the existence of inaccuracies in the solution

of Navier-Stokes equations. This last species is chosen to be a diluent in order to absorb the

inconsistencies. It is chosen as N2 in the present work since it is an inert species. However, in

case of diffusion flames all the species are deficient either in the fuel oroxidizer side. Since

the mass fractions of each species are critical at shear layer, this method will result in loss of

accuracy. Another approach for preventing the violation ofconservation of mass is introduc-

ing an artificial correction velocity for all species, whichforces the sum of diffusion fluxes to

be zero.

Vc
j = −

Nsp∑

β=1

YβVβ j (2.22)

The correction velocity is related to the molecular diffusion. It is more convenient to write it

on the right hand side of equation (2.10). The corrected massflux is written as

Jc
α j = ρYα

(
Vα j + Vc

j

)
(2.23)
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So, the final form of the species conservation equation is

∂ρYα
∂t
+
∂
(
ρYαu j

)

∂x j
= −Jc

α j, j + ω̇α (2.24)

2.1.4 CHEMICAL KINETICS

The source term in (2.24) is calculated assuming finite rate chemistry, using Arrhenius laws

for the reaction rates. The system ofNreac reversible chemical reactions occurring in the flow

may be symbolized as follows

Nsp∑

α=1

ν′α jAα ⇄

Nsp∑

α=1

ν′′α jAα j = 1, ...,Nreac (2.25)

whereAα is the chemical symbol of speciesα, andν′ andν′′ are the stoichiometric coefficients

of reactants and products. The chemical scheme gives for each reversible reactionj, the

forward K f j and backwardKb j reaction rates, as the coefficients (A, b,Eact) of the Arrhenius

law

K = ATb exp
(
−Eact

RT

)
(2.26)

These coefficients are related by the equilibrium constantKe j of the reaction

Ke j =
K f j

Kb j
=

(Patm

RT

)∑Nsp
α=1 ν

′′
α j−ν′α j

exp


∆S0

j

R −
∆H0

j

RT

 (2.27)

In (2.26) Eact is the activation energy of the reaction, andR = 8314.51 (J/K.kmol) is the

universal gas constant. The production rate of speciesα due to theNreac reversible reactions

is computed with the following relation.

ω̇α = Mα

Nreac∑

j=1

(
ν′′α j − ν′α j

)
K f j

Nsp∏

β=1

(
ρYβ
Mβ

)ν′α j

− Kb j

Nsp∏

β=1

(
ρYβ
Mβ

)ν′′α j

 (2.28)

Detailed chemistry has a valuable effect on flow simulation. However, each additional species

increases the number of equations and the amount of data to handle. The reaction of H2/air

mixtures which may be considered to be well known [65] was studied in this work. The 7

species, 14 reactions mechanism of ONERA, which was tested by Davidenko [22], is used for

the calculations. The mechanism with coefficients for equation (2.26) is tabulated in appendix

B.
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2.2 EQUATION OF MOTION

The momentum equation, which is the same for reacting and non-reacting cases, represents

the dynamics of the flow, in the Navier-Stokes system

∂ρui

∂t
+
∂
(
ρuiu j + pδi j

)

∂x j
= ρ fi +

∂τi j

∂x j
(2.29)

Body forcesfi are neglected in this work. Pressurep is calculated applying Dalton’s law

p =
Nsp∑

α=1

pα (2.30)

2.2.1 THE EQUATION OF STATE

Each species satisfies the equation of state for ideal gases

pα = ρα
R

Mα
T = ραrαT (2.31)

rα = R/Mα (J.kg−1.K−1) is the gas constant of speciesα. The mixture constant and its equa-

tion of state are derived using equations (2.7), (2.30) and (2.31).

r = R
Nsp∑

α=1

Yα
Mα

; p = ρRT
Nsp∑

α=1

Yα
Mα
= ρrT (2.32)

2.2.2 MOLECULAR DIFFUSION OF MOMENTUM

The stress tensor of fluid flowσi j , in terms of the inviscid (p:pressure) and the viscous (τi j )

contributions, is

σi j = −pδi j + τi j (2.33)

The viscous stress for a Newtonian fluid (the stress is linearly proportional to the strain rate)

is assumed to be symmetric and may be written as

τi j = λδi j uk,k + 2µS∗i j ; S∗i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
(2.34)

Stokes assumption which states that pressure forms the trace and viscous part forms the devi-

atoric part of the stress tensor (τii = 0) is applied, resulting inλ = −2/3µ

τi j = µSi j = µ

(
ui, j + u j,i −

2
3

uk,kδi j

)
(2.35)
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S∗i j is one half of the rate of strain tensorSi j , for an incompressible flow. The viscosityµ

of the mixture is computed as a function of mole fractions andpartial viscosities applying

Wilke’s empirical formula [127]

µ =

Nsp∑

α=1

Xαµα
∑Nsp

β=1 Xβφαβ
; φαβ =

(
1+

√
µα
µβ

( Mβ
Mα

)1/4)2

√
8
(
1+ Mα

Mβ

) (2.36)

Molecular viscosityµα of speciesα are computed using second order polynomials depending

on temperature which were generated over the CHEMKIN model

µα = µα0 + µα1T + µα2T2 (kg/m.s) (2.37)

The coefficientsµα0, µα1 andµα2 for each speciesα are tabulated in appendix A.

2.3 ENERGY EQUATION

The energy equation may be written in terms of total energy, internal energy, enthalpy or

temperature. Total energy is chosen as the variable of the energy equation since this is the

only variable to write the energy equation in conservation form. In total energy, the potential

part is neglected

et = e+
1
2

uiui = h− p
ρ
+ k (2.38)

Here,e is the internal energy,h is the enthalpy andk is the kinetic energy of the mixture per

unit mass. The total energy equation for an infinitesimal control volume, neglecting the work

done by body forces and assuming there is no heat source term (i.e. electric spark, magnetic

energy ...) is as follows

∂ρet

∂t
+
∂
[
u j (ρet + p)

]

∂x j
= −
∂q j

∂x j
+
∂τi j ui

∂x j
(2.39)

2.3.1 INTERNAL ENERGY, ENTHALPY AND SPECIFIC HEATS

Internal energy per unit masseα, enthalpy per unit masshα = eα + pα/ρα, and the specific

heatsCpα andCvα of speciesα depend on temperature only, according to the perfect gas

assumption

deα = Cvα(T)dT (2.40)

dhα = Cpα(T)dT (2.41)
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The enthalpy of speciesα is obtained by integration of equation (2.41) from a reference tem-

peratureT0. This represents the summation of the sensible enthalpyhsα and of the enthalpy

of formation∆h0
f ,α where superscript0 represents reference conditions

hα(T) = hsα(T) + ∆h0
f ,α

=

∫ T

T0

Cpα(θ)dθ + ∆h0
f ,α (2.42)

The specific heats of species satisfy Mayer relation

rα = Cpα(T) −Cvα(T) (2.43)

and the ratio of specific heats depends on temperature

γα(T) =
Cpα(T)
Cvα(T)

(2.44)

Specific heats of the mixture are approximated with mass weighted formulas

Cp(Yα,T) =
Nsp∑

α=1

Cpα(T)Yα ; Cv(Yα,T) =
Nsp∑

α=1

Cvα(T)Yα (2.45)

Specific heatsCpα are tabulated as fourth order polynomials (CHEMKIN format tables),

for two different temperature ranges of (Tmin-1000) and (1000-Tmax). The data for specific

heats at constant pressureCpα (J/kg.K) and enthalpy of formation∆h0
f ,α taken from Burcat

polynomial database [14], are presented in Appendix B.2. The speed of sound in the mixture

is

c2 = γrT = γ
p
ρ

(2.46)

The internal energy and enthalpy of the mixture are computedby mass weighted averaging

e=
Nsp∑

α=1

eαYα ; h =
Nsp∑

α=1

hαYα (2.47)

The final form of the total energy in equation (2.39) is

et =

Nsp∑

α=1

(
∆h0

fα +

∫ T

T0

Cpα(θ)dθ

)
Yα − rT +

1
2

uiui (2.48)

2.3.2 MOLECULAR DIFFUSION OF HEAT AND ENTHALPY

Kinetic theory suggests the heat flux expression ˙q j , in directionx j as

q̇ j =

Nsp∑

α=1

hαJc
α j − λT, j − p

Nsp∑

α=1

DT
αdα j (2.49)
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wheredα j is the diffusion driving force of specieα given in equation (2.14). The terms of

equation (2.49), from left to right, are :

• Partial enthalpy flux of specieα.

• Heat transfer by conduction computed by Fourier law.λ is the coefficient of thermal

conductivity. It is approximated likeµ in equation (2.36). Also, the coefficient of partial

conductivityλα of speciesα is computed over CHEMKIN model as

λα = λα0 + λα1T + λα2T2 (W/m.K) (2.50)

The constantsλα0, λα1 andλα2 are tabulated in appendix A.

• The third term, which is assumed to be negligible compared toconductive heat flux,

refers to the heat transfer that is induced by concentrationgradients (Dufour effect)

[36].

2.3.3 TEMPERATURE EVALUATION

Since the species enthalpyhα in total energy depends on temperature non-linearly, analyti-

cal derivation is not possible. Temperature field may be computed from the total energyet,

iteratively. Newton-Raphson iteration is applied for temperature calculations [59, 80].

f (T) = et −


Nsp∑

α=1

hαYα − rT +
1
2

uiui

 (2.51)

Given a value foret, temperature is iterated for convergence off (T) to zero

T it+1 = T it − f (T it )
f ′(T it )

(2.52)

whereit is the iteration step. The temperature iteration is initialized with the value from the

previous step.

2.4 SUMMARY OF SYSTEM OF EQUATIONS

In summary, the system equations which serves as the basis for the simulations presented in

this work is
∂ ~U
∂t
+
∂~F
∂x
+
∂ ~G
∂y
+
∂ ~H
∂z
= ~V + ~S (2.53)
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The vector of dependent variables~U, the convective flux vectors~F, ~G, ~H, the vector of viscous

stress~V and the vector of source terms~S are given as follows

~U =



ρ

ρu

ρv

ρw

ρet

ρY1

...

ρYNsp−1



~F =



ρu

ρu2 + p

ρuv

ρuw

(ρet + p)u

ρuY1

...

ρuYNsp−1



~G =



ρv

ρvu

ρv2 + p

ρvw

(ρet + p)v

ρvY1

...

ρvYNsp−1



~H =



ρw

ρwu

ρwv

ρw2 + p

(ρet + p)w

ρwY1

...

ρwYNsp−1



~V =



0

τxx,x + τxy,y + τxz,z

τyx,x + τyy,y + τyz,z

τzx,x + τzy,y + τzz,z

−qx,x + (uτxx),x +
(
vτyx

)
,x
+ (wτzx),x

−qy,y +
(
uτxy

)
,y
+

(
vτyy

)
,y
+

(
wτzy

)
,y

−qz,z+ (uτxz),z+
(
vτyz

)
,z
+ (wτzz),z



−Jc
1x,x − Jc

1y,y − Jc
1z,z

...

−Jc
(Nsp−1)x,x − Jc

(Nsp−1)y,y − Jc
(Nsp−1)z,z



; ~S =



0

0

0

0

0

ω̇α
...

ω̇Nsp−1



(2.54)
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CHAPTER 3

LARGE EDDY SIMULATION

Turbulent flow problems in the context of this thesis are at high Reynolds numbers and the

range of flow scales is fairly wide. Resolution of all scales in realistic or industrial configu-

rations is impossible and it seems to remain so in near futuredespite the drastic improvement

in computational capabilities. Large Eddy Simulation (LES) is suitable and affordable for the

simulation of the problems concerned.

Before putting forward the arguments that support the idea of LES one may ask the question:

what is being resolved during LES calculations? As Pope [107] does, a clear distinction

between real and resolved flow fields have to be carried out. When a field of any turbulent

flow variableU(x, y, z, t) is considered, the resolved field of this variableW(x, y, z, t) is the

numerical solution of the set of filtered Navier-Stokes equations over a grid. In the context

of LES, W is intended to be statistically related to the filtered fieldŪ which is obtained

by applying a low pass filter of characteristic width∆ to U. As the filter width is reduced

down to the smallest scales (Kolmogorov microscaleη), the statistics of the solution obtained

by applying an accurate numerical method and proper boundary conditions converge to a

condition where all energy containing contribution may be represented byW. This is the DNS

level which is obtained when the oscillations with smaller wavelengths than the grid cut-off

have no energy. The statistics at DNS level match those ofŪ. The resolved variables for

LES are commonly considered as ”filtered” forms of the solution at the DNS level, ina priori

tests. This filter is not precisely defined for numerical schemes having dissipation property,

linked to the resolving efficiency. In appropriate LES the statistics achieve an intermediate

asymptote as∆ is in the inertial sub-range.

After four decades of intensive developments [87, 109, 110,115] and from a theoretical point

of view, LES is now a well-established technique for incompressible flows,. Intricate interac-
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tions between numeric and sub-grid modeling are well understood in academic configurations

[43, 52, 76]. Multilevel/multiresolution approaches like Detached-Eddy Simulations (DES)

have been developed (see [111] for review), allowing robustand efficient simulations for in-

dustrial configurations. Nevertheless, certain aspects ofLES such as those in complex physics

-shocked flows, multi-component, multiphase, reacting flows, or in complex geometries, re-

main unclear despite some outstanding achievements [9, 13]. Following S.B. Pope [107], one

should first make the distinction between pure physical LES and pure numerical LES.

In the former, filtered equations are solved for the large scales of motion, and the effect of the

unresolved turbulent scales, or sub-grid scales (SGS) on the resolved ones is taken into ac-

count via a physically sound explicit sub-grid model. Higher-order non-dissipative numerics

are needed to avoid interactions between numerical errors and sub-grid modeling. Solving

the filtered Navier-Stokes equations in Fourier space with spectral methods is ideal for aca-

demic flows. In this case, the low-pass filter is a sharp Fourier cutoff, and spectral sub-grid

eddy viscosity closures can be derived from analytical theories [17, 96]. This ideal situation

is forcefully limited to homogeneous turbulence in cubic computational domains. High accu-

racy can also be achieved in physical space on more general configurations (though still very

simple) with higher-order centered compact finite difference schemes [83] that include Struc-

ture Function models, either standard [96], selective [21]or filtered [30]. Nevertheless, none

of these methods can handle sharp gradients or shocked flows without any numerical filtering

or artificial viscosity, which already raises the question of competition between numerics and

models. If multi-species, reacting variable density flows are considered, the situation is more

complicated.

In pure numerical LES, shock-capturing methods are used to solve the Navier-Stokes or Eu-

ler equations without any explicit filtering. There is no explicit sub-grid model: small scale

fluctuations are damped by the numerical diffusion. This approach which is denoted -highly

controversial in the combustion community- is called implicit LES (ILES), or Monotone In-

tegrated LES (MILES) [60, 91]. High-resolution methods arerequired to avoid a significant

impact of the numerics on the turbulent flow statistics. An evaluation of the effects of numer-

ical diffusion on the DNS and LES of compressible turbulence (non-reacting) has been done

by E. Garnier [46, 47] for mainly academic demonstrational flows. Several shock-capturing

schemes were tested, and the 5th order WENO scheme [69, 88, 112] was found to perform

well. This approach has been widely used since. A recent successful MILES has been re-
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ported for the simulation of multicomponent Richtmyer-Meshkov turbulent mixing carried

out with the Euler equations [119], surprisingly, there arevery few attempts to apply this

technique to reacting flows [15, 117].

Intermediate between pure physical and pure numerical LES are all other situations, where

both explicit sub-grid modeling and robust dissipative schemes are used –although this was

not recommended by E. Garnier [47]. Many, if not all, LES of practical (or industrial) interest

are carried out that way on irregular or even unstructured grids, with old RANS solvers up-

graded for SGS modeling. Hybrid methods have also been developed (e.g. [31, 56]), where

the flow solver switches from a second or a fourth-order central scheme away from disconti-

nuities to a shock-capturing scheme, depending on an empirically designed stiffness sensor.

Whatever the method, in most of practical physical LES, someSGS terms are systematically

neglected, or crudely modeled. As such, irregular grids induce a second-order commutation

error [53], and the physically sound part of the SGS model that mimics the small-scale mixing

and scalar dissipation rate interacts with the numerical diffusion: both (grid and SGS model)

smooth out the flow field. In summary, firstly, filtered conservative variables are introduced

which are so-called resolved variables. Then, the set of governing equations satisfied by fil-

tered variables are presented. Finally, two different physical LES modeling strategies are ex-

plained, and the dissipation and dispersion characteristics of different schemes for numerical

LES are discussed.

3.1 FILTERING THE NAVIER-STOKES EQUATIONS

A filter operation makes the distinction between the large scales f̄ and the small scalesf ′ of

a continuous functionf , i.e. f = f̄ + f ′. It is considered that the projection of functionf on

a coarse grid acts as an implicit filtering operation, due to the Nyquist cut-off wavelength.

The filtered part for a homogeneous filter may be standardly defined as

f̄ (x) =
∫

Ω

G∆ (x− ξ) f (ξ) dξ (3.1)

wherex andξ are coordinates in the domainΩ and∆ is the “filter width” associated with the

filter kernelG∆ which necessarily satisfies
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∫

Ω

G∆ (ξ) dξ = 1 (3.2)

Filtering and derivative commute if the filter is homogeneous [53, 122].

The multicomponent compressible LES equations are similarto the mono-species form given

by C.G. Speziale and co-workers [34, 116], but thermodynamics is different. As in the mono-

species case, filtered multicomponent equations can be castin different ways, leading to dif-

ferent SGS modeling strategies ([84, 122, 123] and Garnier et al.[48] for a review). The

derivations done in several ways are presented in the literature with more or less details

[56, 104, 121]. The way to display LES mathematically is to define the resolved variables

(computable quantities) then state the governing equations with separate resolved and SGS

terms. This separation enables introduction of models for SGS terms. Primary computable

quantities are the resolved field variables
−→
W advanced in time.

−→
W = T{W1,W2, . . . ,W5+Nsp} (3.3)

In the compressible formulation, if a Reynolds-like decomposition is introduced, filtering the

continuity equation (2.12) will lead to an uncomputable variableρui .

ui = ui + u′i ; ρ = ρ + ρ′ ⇒ ρui = ρ̄ūi + (ρ̄ūi − ρ̄ūi) → Leonard term

+(ρ̄′u′i + ρ
′ū′i ) → cross term

+ρ′u′i → Reynolds term (3.4)

The Reynolds term in RANS formulation and all three extra terms in LES formulation are

non-zero so thatρui , ρ̄ūi . Favre introduced the concept of mass weighted filtering for

compressible RANS equations [39, 40].

ui = ũi + u′′i ũi =
ρui

ρ̄
(3.5)

Favre variables are only mathematical definitions which eliminate some of the SGS terms

in the LES equations. Despite the loss of physics, Favre variables introduce mathematical

simplicity. Theoretically, the set of NS equations (2.53) are filtered and Favre variables are

introduced in these equations. The variables obtained solving the filtered set of equations also
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include numerical errors.

−→
W =



ρ

ρu

ρv

ρw

ρet

ρY1

...

ρYNsp−1



=



ρ

ρũ

ρ̃v

ρw̃

ρẽt

ρỸ1

...

ρỸNsp−1



Given theW
′s
j one can obtain directly the Favre-filtered valuesũi , ẽt andỸα which are sec-

ondary computable quantities. However, temperature and pressure fields are also needed

during the simulation. Temperature may be deduced from W5 and pressure through ideal gas

equation of state. Particular attention will be given on this term at the end of this section.

Filtered equations with Favre variables are presented hereafter. The filtered quantitiesφ or φ̃

are split into the sum of a part̂φ computable out of primary or secondary quantities plus an

uncomputable parťφ (SGS).

φ = φ̂ + φ̌ (3.6)

3.1.1 CONSERVATION OF MASS

Consider the continuity equation (2.12) in conservative form, filtered with a linear filter which

may commute with derivatives

∂ρ

∂t
+

(
ρu j

)
, j
= 0 (3.7)

The convective term (ρui ) is uncomputable so Favre variable is introduced for a straightfor-

ward filtered equation (3.7)

∂W1

∂t
+

(
ρũ j

)
, j
= 0 (3.8)

Since Favre filtering does not commute with derivatives, Favre variables are introduced after

commuting the “bar-filter” with partial differential operator.
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3.1.2 CONSERVATION OF CHEMICAL SPECIES

The species conservation equation (2.24) after filtering operation is

∂ρYα
∂t
+

(
ρu jYα

)
, j
= −Jc

α j , j
+ ω̇α (3.9)

Introducing Favre variables into (3.9) yields

∂W5+α

∂t
+

(
ρũ jỸα

)
, j
= −Jc

α j , j
+ ω̇α −

[
ρ
(
ũ jYα − ũ jỸα

)]
, j

(3.10)

The filtered corrected species mass flux term can be split intocomputable and uncomputable

components, as explained in relation (3.6)

Jc
α j = Ĵc

α j + J̌c
α j (3.11)

The resolved corrected mass fluxĴc
α j of speciesα in the directionx j is computed from equa-

tions (2.17)- (2.23) using resolved variables.

Ĵc
α j = ρ

(
D̃αmX̃α, j

Mα

M̃
+ Ṽc

j Ỹα

)
(3.12)

J̌c
α j = ρ

(
DαmXα, j

Mα
M
+ Vc

j Yα
)
− ρ

(
D̃αmX̃α, j

Mα

M̃
+ Ṽc

j Ỹα

)
(3.13)

So the filtered species conservation equation reads

∂W5+α

∂t
+

(
ρũ jỸα

)
, j
= −Ĵc

α j, j +
ˆ̇ωα +

(
C1α j +C2α j

)
, j
+C3α (3.14)

where

C1α j = −ρ
(
ũ jYα − ũ jỸα

)
(3.15)

C2α j = −J̌c
α j (3.16)

C3α = ˇ̇ωα (3.17)

In a priori LES tests presented in appendix H it has been shown that theC2α j term is generally

negligible. On the other hand, theC3α term is the cornerstone of reacting LES [42, 80, 81].

3.1.3 EQUATION OF MOTION

Filtering equation of motion (2.29) and commuting the filterwith partial derivative gives

∂ρui

∂t
+

(
ρuiu j

)
, j
= −p̄, j + τi j , j (3.18)
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Filtered viscous stress and pressure need special attention.

In the viscous stress , viscosity is not constant

µ = µ(Yα,T) (3.19)

As a result, the filtered viscous stress is uncomputable and may be split into uncomputable

and computable parts

τ̄i j = τ̂i j + τ̌i j (3.20)

τ̂i j = µ̃S̃i j ; µ̃ = µ(Ỹα, T̂) (3.21)

τ̌i j = µSi j − µ̃S̃i j (3.22)

whereT̂ is the computable temperature (will be explained in detail in the section for W5) and

the filtered strain tensor for compressible flow is

S̃i j = ũi , j + ũ j ,i −
2
3

ũk,kδi j (3.23)

Since the pressure is calculated using the temperature via the equation of state, it has an

uncomputable part like the temperature. Specific to multicomponent flows, the uncomputable

filtered pressure reads

p = p̂+ p̌ (3.24)

p̂ = ρ̃rT̂ = ρ

R
Nsp∑

α=1

1
Wα

Ỹα

 T̂ (3.25)

p̌ = ρ
(
r̃T − r̃ T̂

)
(3.26)

Considering (3.20) and (3.24), the Favre variable introduced equation of motion yields

∂W1+i

∂t
+

(
ρũi ũ j + p̂δi j

)
, j
= τ̂i j, j +

(
A1i j + A2i j + A3δi j

)
, j

(3.27)

A1i j = −ρ
(
ũiu j − ũi ũ j

)
(3.28)

A2i j = τ̌i j (3.29)

A3 = −p̌ (3.30)

The A1i j term is the most important one and is common to mono-species compressible LES

equations. It reduces to Germano’s central moments [51] in the incompressible limit. TheA2i j

term appears because the filtered viscous stress is uncomputable as explained and neglected

in most compressible LES [122, 123]. It was shown ina priori tests presented in appendix

H that theA3,i term may overcomeA1i j, j in some cases. This is never considered in any

multicomponent, non-reacting or reacting LES.
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3.1.4 ENERGY EQUATION

Filtering and commuting the filter with derivative for the energy equation (2.39) gives

∂ρet

∂t
+ (ρu jet), j + (puj ), j = −q j , j + (τi j ui), j (3.31)

Then, introducing Favre variables in the filtered total energy equation (3.31) yields

∂W5

∂t
+

[
(ρẽt + p̂) ũ j

]
, j
=

(
ũi τ̂i j

)
, j
− q̂ j, j +

(
B1 j + B2 j + B3 j + B4 j

)
, j

(3.32)

B1 j = −ρ
(
ẽtu j − ẽtũ j

)
(3.33)

B2 j = −
(
puj − p̂ũ j

)
(3.34)

B3 j = uiτi j − ũi τ̂i j (3.35)

B4 j = −q̌ j (3.36)

Equation (3.32) and termB4 j involve respectively the resolved and SGS parts of the uncom-

putable filtered heat flux. As explained in section 2.3.3, temperature can not be deduced

directly but it is computed out ofet

q j = q̂ j + q̌ j (3.37)

q̂ j = −λ̃T̂, j +
∑

α

ĥα Ĵc
α j (3.38)

q̌ j = −
(
λT, j − λ̃T̂, j

)
+

∑

α

(
hαJc

α j − ĥα Ĵc
α j

)
(3.39)

In (3.38),λ̃ is uncomputable and is obtained the same way as (3.19).

3.1.5 SPECIAL ATTENTION FOR W 5 AND IDEAL GAS EQUATION

The total energy is used for construction of the conservative variable in the energy equation.

Temperature and pressure are computed from this term. Hencethe W5 term deserves particu-

lar attention.

ρet = ρ(e+
1
2

uiui)

= ρ̃h− p+ ρ̃k (3.40)
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The filtered pressure, the Favre-filtered static enthalpy and the Favre-filtered kinetic energy

per unit mass are uncomputable.

ρet = ρẽt = ρêt + ρět (3.41)

ρêt = ρĥ− p̂+ ρk̂ (3.42)

ρět = ρȟ− p̌+ ρǩ (3.43)

The split uncomputable pressure is given in equation (3.24). The Favre-filtered static enthalpy

is written as

h̃ = ĥ+ ȟ (3.44)

ĥ =
∑

α

ĥαỸα (3.45)

ȟ =
∑

α

(
h̃αYα − ĥαỸα

)
(3.46)

where

ĥα = ∆h0
α +

∫ T̂

T0

Cpα(θ)dθ (3.47)

The Favre-filtered kinetic energy is :

k̃ = k̂+ ǩ (3.48)

k̂ =
1
2

ũi ũi (3.49)

ǩ =
1
2

(
ũiui − ũi ũi

) ≡ ksgs (3.50)

In equation (3.25), and at the upper integration limit in (3.47), the resolved temperaturêT

has been used instead of the Favre-filtered temperatureT̃. Given numbers for theW
′s
j , T̃

could theoretically be obtained by finding iteratively (e.g. via a Newton-Raphson procedure)

the value which produces a posteriori the proper W5 value from equation (3.40). In practice,

since (3.43) is seldom (if ever) explicitly modeled in multicomponent LES, only the analytic

expression of the computable partρêt, equation (3.42), is used to find the resolved temperature

T̂ such that

W5 = ρ


∑

α

∆h0
α +

∫ T̂

T0

Cpα(θ)dθ

 Ỹα − r̃ T̂ +
1
2

ũi ũi

 (3.51)

So, unless the uncomputable total energy per unit volumeρět is properly modeled, the Favre-

filtered temperature is uncomputable.
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3.2 EXPLICIT SUB-GRID MODELING

In the present study, as in most physical compressible/multicomponent LES, the SGS terms

which do not emanate from convective parts of hyperbolic governing equations
[
A2i j , A3,

B3 j, B4 j and C2α j

]
will not be explicitly modeled. One can consider that they are simply

neglected, or put together with the dominant dynamic termsA1i j , B1 j andC1α j . For the main

A1i j sub-grid term in equation (3.27), a classical sub-grid eddy-viscosity assumption is made

for the deviatoric part of the SGS tensor

AD
1i j = A1i j −

1
3

A1kkδi j = µ
t
sgsS̃i j (3.52)

so that

ρ
(
ũiu j − ũi ũ j

)
− 2

3
ρksgsδi j = −µt

sgsS̃i j (3.53)

Two SGS models are implemented : the Smagorinsky (SM) model [115] extended to com-

pressible flows, and the Selective Structure Function (SSF)model [21, 96].

3.2.1 CLOSING THE FILTERED EQUATION OF MOTION

3.2.1.1 THE SMAGORINSKY MODEL

The first known application of the idea of physical LES is by Joseph Smagorinsky [115]. The

turbulent viscosityµt
sgs is dimensionally equal to ¯ρul. The velocity may be approximated

by assuming the energy dissipation is equal to the energy transfered to small scales, with no

backscattering.

ǫ ≈ ρu3

l
≈ ρu3

∆
(3.54)

In this relation, the characteristic length is taken as the filter width∆

µt
sgs= ρ̄

(
∆ǫ

ρ

)1/3

∆ (3.55)

The main assumption for the model states that productionPksgs is equal to dissipation for the

sub-grid kinetic energy

Pksgs = AD
1i j ũi , j = µ

t
sgsS̃i j ũi , j (3.56)

When one substitute the production into equation (3.55) fordissipation, the turbulent viscosity

reads

µt
sgs= ρ̄

2/3
(
µt

sgs̃Si j ũi , j

)1/3
∆4/3 (3.57)
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The usual form of the compressible SM model is [34, 49]

µt
sgs= ρ(CS∆)2|S̃∗| (3.58)

|S̃∗| =
(
2S̃∗i j S̃

∗
i j

)1/2
(3.59)

It is common to apply the equation (3.59) for construction ofSM model which is only valid

for incompressible case. However, considering the sub-grid scale production termAD
1i j ũi , j

[56], the traceless closure (3.53) leads rather to

|S̃∗| =
(
S̃i j S̃∗i j

)1/2
(3.60)

This is the expression implemented in the present study. In the SM model, the filter width,

or turbulence resolution length scale∆, is multiplied by the model constant. The product

CS∆ can be written asλ∆c where∆c = (∆x1∆x2∆x3)1/3 is the geometrical mean local grid

resolution. Various derivations which result in different values for the constantCS are possible

(p.587 in [106]). In the numerical experiments presented insection 5.1, simulations with the

SM model are done forλ2=0.01 andλ2=0.02. Taking the constantCS = 0.1, this may be

interpreted as varying the numerical accuracy from∆/h = 1 to∆/h =
√

2. This is the usual

range for physical LES using dissipative numerical schemes(question 7 in [107]).

3.2.1.2 THE YOSHIZAWA MODEL

The isotropic part

AI
1i j =

1
3

A1kkδi j = −
2
3
ρksgsδi j (3.61)

can be represented by the Yoshizawa model [129] as

ρksgs= ρCI∆
2|S̃∗|2 (3.62)

However, it may be neglected if the sub-grid Mach number M2
sgs= ρksgs/γp is small [86, 34].

The sub-grid Mach number will be verifieda priori later in section 5.1.5.
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3.2.1.3 THE SELECTIVE STRUCTURE FUNCTION MODEL

The SSF model is based on the standard structure function (SF) model [85] forµt
sgs in AD

1i j .

In the SF model, the second order velocity structure function F2(−→x ,∆) is used

F2
(
~x,∆x

)
=

〈∥∥∥~̃u(~x, t) − ~̃u(~x+ ~r, t)
∥∥∥2

〉

‖~r‖=∆x
(3.63)

In practice, the velocity structure function is computed over differences in the resolved veloc-

ity field at adjacent grid points. The SF on uniform grid∆xi =Const. in directionxi with unit

vector−→ei is

F(i)
2 = ||

−→
ũ (−→x ) −

−→
ũ (−→x + ∆xi

−→ei )||2 (3.64)

+ ||
−→
ũ (−→x ) −

−→
ũ (−→x − ∆xi

−→ei )||2

The model may be modified for non-uniform rectilinear grid [86]

F2(−→x ,∆) =
1
6

3∑

i=1

F(i)
2

(
∆c
∆xi

)2/3

(3.65)

The SF model gives good results for flows in which turbulence in small scales is close to

isotropy, but it is too dissipative for shear layers. The SSFmodel is an improved version of

SF model[21]. It allows to switch-off the model in regions where sharp gradients are present

but where the flow is not three-dimensional enough. This is typically the case in the core

region of high-speed jets, where transition to turbulence has not yet occurred. The measure

of three dimensionality is chosen as the angleθ between the local vorticity and the space

averaged value of the vorticity over the six closest neighboring points. The SSF model reads

µt
sgs= fθ0(θ)CS F∆ρ

[
F2(−→x ,∆)

]1/2
(3.66)

where

fθ0(θ) =


1 if θ ≥ θ0 = 20◦

0 else
(3.67)

The model constant is taken as

CS F = 0.105C−3/2
K = 0.0634 (3.68)

whereCK = 1.4 is the Kolmogorov constant. The choice of theCS F value is discussed in

[21, 30, 31, 85].
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3.2.2 CLOSING THE FILTERED ENERGY EQUATION

In the filtered energy equation, the sum of the major sub-gridtermsB1 j + B2 j is modeled as

whole with a gradient assumption, using a constant Prsgs= µ
t
sgsCp/λt

sgsnumber.

B1 j + B2 j = −
µt

sgsCp

Prsgs
T̂, j = −λt

sgsT̂, j (3.69)

in which the thermal conductivity for energy is connected tothe eddy viscosity through unity

Prsgs.

3.2.3 CLOSING THE FILTERED SPECIES EQUATION

The same is done for theC1α j term of the species equations, equation (3.14), using a constant

sub-grid Schmidt number

C1α j = −
µt

sgs

Scsgs
Ỹα, j = −ρDt

sgs̃Yα, j (3.70)

This is quite a crude -although commonly used- modeling compared, for example, to the

dynamic methodology proposed in [56] which closes the majorpart (3.50) of (3.43) leading

to T̂ ≈ T̃. However, it is sufficient to assess the aim of this study, which is to compare

LES and MILES for high speed shear flows. In this state of mind,it will simply taken that

Prsgs= Scsgs= 1.

Modeling the sub-grid chemical source termC3α is the cornerstone of LES of reacting flows.

Most of the models for non-premixed combustion rely on a conserved scalar like the mixture

fraction, for which a filtered (joint)probability density function (FPDF) has to be prescribed

(usually aβ-function). Examples are flamelet models [20], progress-variable models [101])

and conditional moment closure (CMC) models [75]. These models also require the variance

of the mixture fraction and/or its dissipation rate at the smallest turbulent scales, which is

difficult to achieve in implicit LES [103]. Hence, in the framework of the present study, the

C3α reaction term is left to the numerical diffusion.

3.3 Implicit LES

In the simulations, a set of non-linear PDEs is being solved.In order to satisfy stability and

monotonicity of solutions including discontinuities, specially designed schemes are applied.
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These schemes, by their nature, cause the waves speed and amplitude of the solution to devi-

ate from theoretical exact solution. In “numerical LES” approach, the deformation due to the

numerical scheme, linked to the resolving efficiency of the derivation scheme, contributes as

SGS motions. This argument is equivalent to what is indicated by Boris:“monotone CFD al-

gorithms readily have built-in filter, and corresponding built-in SGS model”[12]. The numer-

ical deformation of wave speeds and amplitudes due to the numerical schemes are dispersive

and dissipative errors respectively. The dissipative and dispersive errors may be separated an-

alytically, applying the modified wave number (MWN) spectral analysis. This analysis may

be done analytically for linear numerical schemes.

3.3.1 MWN ANALYSIS

Consider the one-dimensional scalar functionFk(x), x ∈ [0, 2π] for simplicity, containing

a single Fourier modek. On a regular gridxi = i∆x, ∆x = 2π/N, i = 0, . . . ,N, k must

stay within the numerical cutoff |k| ≤ N/2, |k∆x| ≤ π to avoid aliasing errors. The discrete

projection ofFk(x) is

Fk(xi) = F̂ke
jkxi ≡ Fk,i (3.71)

Linear MWN analysis

A linear scheme produces a numerical derivative at the single modek

δFk

δx

∣∣∣∣∣
L

i
=
δ̂Fk

δx
(k)ejkxi = jk′(k)F̂ke

jkxi (3.72)

wherek′(k∆x) is the MWN of the scheme, whose real and imaginary parts are associated

respectively with dispersive and dissipative errors. The analysis of response produced by

some linear schemes on modek may be demonstrated as follows.

• Second order centered scheme

∂Fk

∂x

∣∣∣∣∣
i
=

Fk,i+1 − Fk,i−1

2 ∆x
=

N/2∑

k=−N/2

F̂k

(
ejk∆x − e− jk∆x

2∆x

)
ejkxi

k′(k∆x) =
sin(k∆x)
∆x

(3.73)
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• First order upwind scheme

∂Fk

∂x

∣∣∣∣∣
i
=

Fk,i − Fk,i−1

∆x
=

N/2∑

k=−N/2

F̂k

(
1− e− jk∆x

∆x

)
e− jkxi

k′(k∆x) =
sin(k∆x)
∆x

− j

(
1− cos(k∆x)

∆x

)
(3.74)

• Second order upwind scheme

∂Fk

∂x

∣∣∣∣∣
i
=

3Fk,i − 4Fk,i−1 + Fk,i−2

2∆x
=

N/2∑

k=−N/2

F̂k

(
3− 4e− jk∆x + e− jk2∆x

2∆x

)
ejkxi

k′(k∆x) =
1

2∆x
[4 sin(k∆x) − sin(2k∆x)] − j

2∆x
[3 − 4 cos(k∆x) + cos(2k∆x)] (3.75)

Non-linear MWN analysis

In this study, the non-linear WENO procedure, which will be detailed in the next chapter, is

applied to compute reconstructed vectors~̂Fi+1/2. Separation of dissipative and dispersive er-

rors of non-linear schemes is not possible analytically. However, the numerical error analysis

which will be presented in this section, may be done for any scheme.

In the present case of WENO, at a point{xi = i∆x} of a structured cartesian grid, the conser-

vative approximation to the first derivative at fifth-order

∂~F
∂x

∣∣∣∣∣∣
i

=
~̂Fi+1/2 − ~̂Fi−1/2

∆x
+ O(∆x5) (3.76)

applies in smooth regions of the flow. The following spectralanalysis of the non-linear WENO

scheme (4.14) was introduced by N. Lardjane [80] and furtherdeveloped by S. Pirozzoli [102].

A non-linear scheme will produce a response at other frequencies which may be separated

applying the modified wave number (MWN) analysis numerically.

δFk

δx

∣∣∣∣∣
NL

i
=

N/2∑

n=−N/2

δ̂Fk

δx
(n)ejnxi (3.77)

The MWNk′k of the non-linear scheme is introduced, such that

δFk

δx

∣∣∣∣∣
NL

i
= jk′kF̂ke

jkxi (3.78)

in which one can separate the contribution to modek from the contribution to other modes

jk′kF̂ke
jkxi =

δ̂Fk

δx
(k)ejkxi +

N/2∑

n=−N/2
n,k

δ̂Fk

δx
(n)ejnxi (3.79)
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By analogy with (3.72),k′k = k′L(k) + k′NL(k) is written with

k′L(k) =
− j

F̂k

δ̂Fk

δx
(k) (3.80)

and

k′NL(k) = −− j

F̂k

N/2∑

n=−N/2
n,k

δ̂Fk

δx
(n)ej(n−k)xi (3.81)

The linear MWN (3.80) has been computed on a grid of sizeN = 1024, without (smooth

function) and with the non-linear WENO weights. In the former case, the WENO scheme

simply becomes linear. Figure 3.1 displays the real and imaginary parts of the scaled linear

MWN, ω′(ω) = ∆xk′L(k∆x), for each case. The effective spectral properties of the WENO

scheme are very different from the theoretical ones, and the peaks intentionally kept on the

curves show that the stiffness sensors may be put in default for some specific frequencies on

a given grid. An analysis of the non-linear MWN (3.81) can be found in [80].
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Figure 3.1: Linear Modified Wave Number without (top) and with (bottom) non-linear WENO
weight. Left : real part, right : imaginary part. (a) 3rd order WENO, (b) 5th order WENO, (c)
7th order WENO, (d) 9th order WENO, (e) 11th order WENO, (f) 1st order upwind FD, (g)
2nd order upwind FD
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3.3.2 THE INTERACTION BETWEEN NUMERICAL ERRORS AND EXPLICI T

SUB-GRID MODELING

The following 1D Fourier analysis simply demonstrates the interaction of SGS model with

numerical errors. As the MWN analysis, this analysis may be conducted for any numerical

scheme. Consider the viscous linear wave equation

∂u
∂t
+ c
∂u
∂x
= ν
∂2u

∂x2
(3.82)

whose dispersion relation isΩ(k) = kc− jνk2 for a single Fourier modeu(x, t) = û(k, t)ejkx.

A “physical LES” for equation (3.82) may be considered, in which the advection term is

computed with a WENO scheme, and the diffusion term with a central FD scheme for first

order derivative, applied twice. Introducing the scaled MWN of both schemes, the numerical

LES dispersion relation can be written

ΩLES
num(k) = kc

(
ω′L
ω

)
− jνtsgsk

2
(
ω′FD

ω

)2

(3.83)

whereω′FD(ω) = 1
6(8 sin(ω) − sin(2ω)) for the 4th order central FD scheme.

In 1D, the Smagorinsky model reads

νt, S M
sgs =

√
2 C2

S ∆
2
∣∣∣∣∣
∂u
∂x

∣∣∣∣∣ ≈
√

2 C2
S ∆x ω′FD|û| (3.84)

The second order structure function in the SSF model is

F2(x, t) =< ||u(x, t) − u(x+ r, t)||2 >|r |=∆x≈ ∆x2 ∂u
∂x

∣∣∣∣∣
2

FD
(3.85)

hence

νt, S S F
sgs ≈ CS F ∆x ω′FD|û| (3.86)

SettingC = CSGS|û|/c with CSGS=
√

2C2
S (SM model) orCSGS= CS F (SSF model) yields

1
kc
ΩLES

num(ω) =
ω′L
ω
− j
ω
′3
FD

ω
C (3.87)

to be compared with
1
kc
ΩLES

exact(ω) = 1− jω2C (3.88)

for exact derivatives. The departure from 1 (resp. 0) of the real (resp. imaginary) part of the

ratio

η = ΩLES
num/Ω

LES
exact (3.89)
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indicates the frequency range, depending on the value ofC, for which numerical errors begin

to interact with the sub-grid model. For a given frequencyω , 0, whenC = 0, η = ω′L/ω, and

whenC → ∞, η →
(
ω′FD/ω

)3
. Figure 3.2 shows the real and imaginary parts of (3.89) for

the 5th order WENO scheme, associated with the 4th order central FD scheme. About 20% of

the frequencies that the grid can capture are not affected by numerics.
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Figure 3.2: Interaction indicator eq. (3.89) forC = 0, 0.1, 1 and 10. Left: real part, right:
imaginary part.
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CHAPTER 4

THE WENO SOLVER

The vector representation of the Navier-Stokes equations for multi-species flows(2.53) is

given by

∂
~̃U
∂t
+
∂
~̃F
∂x
+
∂
~̃G
∂y
+
∂
~̃H
∂z
= ~V + ~S (4.1)

In this chapter,˜ indicates the conservative variables, and not Favre variables.

~̃U = T
[
ρ, ρu, ρv, ρw, ρet, ρY1, ..., ρYNsp−1

]
(4.2)

The Euler equations (~V = ~0, ~S = ~0) are a set of hyperbolic PDEs in each plane (x, t), (y, t) and

(z, t)

∂
~̃U
∂t
+
∂
~̃F
∂x
+
∂
~̃G
∂y
+
∂
~̃H
∂z
= ~0 (4.3)

In order to illustrate the WENO method, consider a 1D hyperbolic problem

∂ ~̃U
∂t
+
∂ ~̃F
∂x
= ~0 (4.4)

The finite difference spatial derivative of the conservative flux (~̃F) is computed to advance the

solution in time. Use of the conservative form guarantees discontinuities to move at the cor-

rect speed satisfying Rankine-Hugoniot conditions. WENO method with Lax Friedrichs flux

splitting is applied for ensuring stability of the scheme. The 1D system (4.4) is diagonalized

then flux splitting and WENO reconstruction are applied on characteristic fields. Derivatives

at grid points are computed using reconstructed fluxes at cell interfaces for each direction,

separately.

In this chapter, firstly transformations between conservative ~̃U, primitive ~U and characteris-

tic ~W variables are explained. Then, the conservative finite difference scheme is defined. In
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the third part, the WENO reconstruction with Lax-Friedrischs flux splitting algorithm is ex-

plained. The time integration and boundary conditions are presented in sections 4.4 and 4.5.

Finally, some specificities of the numerical tool are listed.

4.1 TRANSFORMATION BETWEEN CONSERVATIVE, PRIMITIVE AND

CHARACTERISTIC FORMS

The notations for transformations between conservative, primitive and characteristic forms of

the EULER system, inx direction is presented in this section. The system in conservative

form is written as
∂
~̃U
∂t
+

[
Ã
] ∂~̃U
∂x
= ~0 ;

[
Ã
]
i j
=
∂
~̃F i

∂
~̃U j

(4.5)

Conservative variables are transformed into primitive form using matrix [P] = ∂~̃U/∂ ~U

∂ ~U
∂t
+ [A]

∂ ~U
∂x
= ~0 where [A] = [P−1][ Ã] [ P] (4.6)

The vector of primitive variables is

~U = T
[
ρ, u, v,w,T,Y1, ...,YNsp−1

]
(4.7)

Matrix [A] is diagonalized with left and right eigenmatrices, [L] and [R] respectively.

[Λ] = [L] [A] [R] (4.8)

Explicitly, the terms of the system with size (Nsp + 4) with the eigenvalues ordered~λ =
T [u− c, u, u, u, u+ c, ..., u] are as follows

[L] = T
[
~l(1),~l(2), ...,~l(Nsp+4)

]
(4.9)

where~l(i) are the left eigenvectors of primitive jacobian matrix [A] (Figure 4.1) related to the

eigenvalueλ(i)

~l(i) [A] = λ(i)~l(i) for i = 1, ...,Nsp+ 4 (4.10)

Diagonalization is done on primitive form since it is difficult to obtain [̃L] and [̃R] which are

left and right eigenmatrices of the conservative jacobian matrices [̃A].

∂ ~W
∂t
+ [Λ]

∂ ~W
∂x
= ~0 where ~W = [L] ~U (4.11)

The definitions and notations are summarized in Figure 4.1 The transformation matrices
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Figure 4.1: Transformations between different forms for the Euler system of equations.

[R̃] and [̃L] are given in appendix D. Although the derived transformation matrices are of

size Nsp + 5, the mass fraction of the last speciesYNsp is computed out of the others. The

same derivation for the characteristic boundary conditions is conducted forNsp+ 4 system of

equations, presented in appendix E.

4.2 CONSERVATIVE FORM FOR DIFFERENTIAL OPERATOR

The objective of the finite difference spatial discretization scheme is to compute the spatial

derivative of any function.f is the flux function of a non-linear PDE

∂u
∂t
+
∂ f
∂x

= 0

u(x, 0) = u0(x) (4.12)

Then the solution may be advanced in time with an integrationscheme like a TVD Runge

Kutta method. Consider pointwise functionf ≡ f (xi) defined on a grid (x0, ..., xi, ..., xN). A

conservative approximation for equation (4.12) is of the form

d f
dx

∣∣∣∣∣
i
=

1
∆x

(
f̂i+1/2 − f̂i−1/2

)

where,

f̂i+1/2 = f̂i+1/2 ( fi−r , ..., fi+s) i = 0, ...,N (4.13)
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r andsare positive integers. Conservative approximation for derivative of flux function yields

discontinuities in the solution to move at physically correct speed [126]. However, stability is

not ensured by conservative schemes.

4.3 WENO SCHEME

The importance of the numerical solutions to the Navier-Stokes equations increases due to

improvements enabling solutions for real problems of concern. One side of this improvement

is in computational capacity. The growth in understanding of PDE theory and development of

new numerical techniques, is the other side. Godunov’s “order barrier theorem” is one of the

milestones for numerical solution of flow problems including discontinuities [57], in 1959.

After this early work, in the 80’s Lax, Van Leer, Harten and many others published on ap-

proximate solution methods for the Riemann problem [108, 120]. Harten presented his work

on total variation diminishing (TVD) schemes. This work opens the door for higher order

“monotonicity preserving” schemes that do not contravene Godunov’s theorem [61]. Later,

Harten introduced the “essentially non-oscillatory” (ENO) scheme with his colleagues [62].

ENO scheme is based on the choice of the smoothest shifted stencil for flux reconstruction

near discontinuities. ENO schemes are successful for shockcapturing. Shu and Osher sug-

gested TVD Runge-Kuta time discretization and applicationof ENO procedure directly on

flux values rather than on the variables [113]. These modifications enhance the accuracy of

ENO schemes for lower cost. Later, in a second paper they introduced ENO-Roe, ENO-LLF

(local Lax-Friedrichs flux splitting) methods for improvement [113]. Weighted essentially

non oscillatory scheme (WENO) which is applied in the numerical method of this thesis is

developed by Liu, Osher and Chan [88]. Recently, modifications to improve the accuracy of

WENO method, in the literature. Mapped WENO schemes achieving (2r−1)th order accuracy

near discontinuities [64], more accurate band-width optimized WENO scheme [93, 118] and

low cost WENO-Z schemes [10] are some examples. These improvements are not considered,

since the scope is not related to achieve higher accuracy.

The key idea in WENO is constructing flux values using the weighted average of approx-

imate flux values at cell interfaces. Normalized weights aredetermined depending on the

smoothness of the ENO approximations at shifted sub-stencils shown in Figure 4.2.

In the WENO procedure,̂fi+1/2 in equation (4.13) is reconstructed using ENO approximations
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on different sub-stencils (S(r)
i in Figure 4.2) includingxi+1/2. The overall stencil (Si) size for

kth order reconstruction of̂fi+1/2 by WENO scheme is 2k− 1. Weighted average ofk number

of approximationsf̂ (r)
i+1/2 for r = 0, ..., k− 1 gives reconstructed flux

f̂i+1/2 =

k−1∑

r=0

wr f̂ (r)
i+1/2 (4.14)

As an example for the fifth order WENO reconstruction Figure 4.2 the approximationŝf (0−2)
i+1/2

are computed on sub-stencilsS(0−2) of sizek (Figure 4.2).

f̂i+1/2 = f̂ (0)
i+1/2w0 + f̂ (1)

i+1/2w1 + f̂ (2)
i+1/2w2 (4.15)

and f̂ (r)
i+1/2 is obtained fromkth order ENO approximation.  
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+
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Figure 4.2: 5th order WENO stencil demonstration.

4.3.1 ENO APPROXIMATION

f̂ (r)
i+1/2 are values of the interpolating polynomials, the coefficients of which are derived on

following grid, cells and grid points

a = x1/2 < x3/2 < .... < xN−1/2 < xN+1/2 = b (4.16)

I i = [xi−1/2, xi+1/2]; xi =
1
2

(
xi−1/2 + xi+1/2

)

At the cell Ii , f̂ (r)
i+1/2 which iskth order accurate approximation is based on stencil S(r)

i of length

k cells, r cells to the right, and s cells to the left, withr + s+ 1 = k

S(r)
i ≡ {I i−r , ..., I i+s} (4.17)
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The approximations are constrained by the integral equality for conservative schemes

f j ≡
1
∆x j

∫ xj+1/2

xj−1/2

f (ξ)dξ ≡ 1
∆x j

∫ xj+1/2

xj−1/2

f̂ (r)(ξ)dξ j = i − r, ..., i + s (4.18)

There exists a unique polynomial approximation of degreek − 1, on nodes of stencil S(r)
i

matching f j values in the sub-stencil. So, there exists linear set of coefficients cr j depending

on left shift for f̂ (r)
i+1/2.

f̂ (r)
i+1/2 =

k−1∑

j=0

cr j fi−r+ j (4.19)

The linear coefficients which are derived starting from the Lagrange form of approximate

polynomials by Shu are

cr j =


k∑

m= j+1

∑k
l=0l,m

∏k
q=0q,m,l

(xi+ 1
2
− xi−r+q− 1

2
)

∏k
l=0l,m

(xi−r+m− 1
2
− xi−r+l− 1

2
)

∆xi−r+ j (4.20)

If the grid is uniform, the coefficients do not depend oni (∆xi = ∆x)

cr j =

k∑

m= j+1

∑k
l=0l,m

∏k
q=0q,m,l

(r − q+ 1)
∏k

l=0l,m
(m− l)

(4.21)

The constantscr j are listed in Table at appendix G fork = 1,...,6.

4.3.2 1D WENO RECONSTRUCTION PROCEDURE

The reconstruction procedure to computef̂i+1/2 using fi is as follows.

• At xi+1/2, k approximate valueŝf (r)
i+1/2 of kth order accuracy are computed over sub-

stencilS(r)
i .

f̂ (r)
i+1/2 =

k−1∑

j=0

cr j fi−r+ j ; S(r)
i = {xi−r , ., xi−r+k−1} (4.22)

• The reconstruction is done by weighted averaging off̂ (r)
i+1/2 as seen in equation (4.14).

• The normalized weightswr are related to smoothness.wr are used to increase the

contribution of the approximation at the sub-stencilS(r)
i where interpolated polynomial

is smoother.

wr =
αr∑k−1

s=0 αs
r = 0, .., k− 1 αr =

dr

(ǫ + βr )2
(4.23)
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βr is called the smoothness indicator which is a measure of discontinuity (stiffness)

of the solution. ǫ is a positive small coefficient to avoid division by zero. The ideal

weightsdr which generate (2k− 1)th order upwind scheme are tabulated in appendix G

for k = 1, ..., 6. If the function is smooth in the stencilS(r)
i the value of the smoothness

indicator βr = O(∆x2) so thatwr = O(1). When there exists a discontinuity in the

stencilβr = O(1) so thatwr = O(∆x4). The numerical formulation suggested by Shu is

presented in appendix G fork = 1, ..., 6.

4.3.3 FLUX SPLITTING

Application of Lax-Friedrichs flux splitting is suggested by Shu to enhance the stability char-

acteristics of ENO [114]. The same enhancement is extended to WENO schemes. In ICASE

report, Shu states that the flux splitting algorithm is cost effective and improves stability char-

acteristics [112]

f (u) = f +(u) + f −(u) (4.24)

where for Lax-Friedrichs flux splitting,

f ±(u) =
1
2

( f (u) ± αu) α = maxu
∣∣∣ f ′(u)

∣∣∣ (4.25)

The range of relevantu for taking maximum may be chosen at the overall domain or locally

as the stencilSi. Depending on the choice, the method is named “local LF” or “global LF”.

In application, WENO procedure is applied on split fluxesf +i+1/2 and f −i+1/2. Note that, in

thecr j Table which is presented in appendix G,r takes the value−1. The transformation of

coefficientsc̃r j = cr−1, j is for f̂ +i−1/2 as,cr j is for f̂ −i+1/2. After WENO procedure, fluxes are

reconstructed

f̂i+1/2 = f̂ +i+1/2 + f̂ −i+1/2 (4.26)

Lax-Friedrichs flux splitting is the less expensive but one of the most dissipative flux splitting

algorithms. However, as the order of the scheme increases, this dissipation effect decreases

[2].
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4.3.4 SOLUTION FOR SYSTEM OF EQUATIONS

It is explained in the introduction of this chapter, that the1D flux derivative is computed

in x direction and this formulation is used fory and z directions. Application of WENO

scheme directly to the coupled system of equations is possible. However, this is reported to

cause spurious oscillations for higher order approximations [112]. 1D characteristic system

of variable is
∂ ~W
∂t
+

[
L̃
] ∂~̃F
∂x
= ~0 ;

[
L̃
] ∂~̃F
∂x
=
∂~g
∂x

(4.27)

which may be written in component form as

∂Wk

∂t
+
∂gk

∂x
= 0 ; k = 1, ...,Nsp+ 5 (4.28)

where~g is the flux for the characteristic system. The overall procedure of WENO scheme for

flux derivative computation having the conservative variables ~̃U i and the flux values~̃F i at grid

points, is as follows.

• Transformation matrices from conservative to characteristic variables [̃R], [ L̃] and [Λ],

are constructed atxi+1/2. Matrices are given analytically in appendix D.

[R̃] = [R̃]
(
~Ui+1/2

)
[L̃] = [L̃]

(
~Ui+1/2

)
[Λ] = [Λ]

(
~Ui+1/2

)
(4.29)

• These matrices are assumed to be constant in the stencil of concernSi. The cell in-

terface values of the primitive variables~Ui+1/2 in equations (4.29) are deduced from

conservative variables~̃U i+1/2 which are computed by simple averaging.

~̃U i+1/2 =
1
2

(
~̃U i +

~̃U i+1

)
(4.30)

• Having obtained the left eigenvectors~̃l ( lines of left eigenmatrice [̃L]) the characteristic

system flux values are computed.

gk =

5+Nsp∑

p=1

l̃(k)
p F̃p = λ

(k)Wk

k = 1, ...,Nsp+ 5 (4.31)

• Lax-Friedrichs flux splitting is applied ongk as

gk = g+k + g−k (4.32)
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g±k =
1
2

[
gk( ~W) ± αkWk

]

αk = max
∣∣∣∣∣
∂gk

∂Wk

∣∣∣∣∣ = max
∣∣∣λ(k)

∣∣∣ (4.33)

• WENO procedure is applied to obtain reconstructed fluxes at cell interfaces ˆg±k,i+1/2

ĝ±(r)
k,i+1/2 =

k−1∑

j=0

cr j g
±
k,i−r+ j

ĝ±k,i+1/2 =

k−1∑

r=0

ωr ĝ
±(r)
k,i+1/2 (4.34)

• Back transformation is applied from characteristic to conservative flux.

~̂̃F±i+1/2 =
[
R̃
]
i+1/2
~̂g±i+1/2 (4.35)

• Finally, the overall reconstructed numerical fluxes are evaluated as

~̂
F̃i+1/2 =

~̂
F̃+i+1/2 +

~̂
F̃−i+1/2 (4.36)

4.4 TIME DISCRETIZATION

Having computed the flux derivative in space, the solution isadvanced using explicit Runge-

Kutta time discretization.

4.4.1 RKP TVD TIME STEPPING

General form of Runge-Kutta methods to solve initial value problem of ODE:ut = L(u),

which is obtained from spatial discretization of PDE:ut = f (u)x, is

u(p) =

p−1∑

k=0

(αpku
(k) + ∆tβpkL(u(k))), p = 1, ...,m

u(0) = un, u(m) = un+1 (4.37)

Considering an ODE (in time), the total variationTV(u) =
∑

j |u j+1−u j | for first order in time

Euler forward stepping, does not increase under the restriction

∆t ≤ ∆tFE (4.38)
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Time integration is stable provided that∆t ≤ c ∆tFE wherec is the CFL coefficient. It is

proved, higher order explicit Runge-Kutta time discretization (eq. 4.37) is TVD under the

CFL-like condition [113]

c = mini,k
αik

βik
αik > 0, βik > 0 (4.39)

The third order TVD Runge Kutta method withc= 1 is

u(1) = un + ∆tL(un)

u(2) =
3
4

un +
1
4

u(1) +
1
4
∆tL(u(1))

un+1 =
1
3

un +
2
3

u(2) +
2
3
∆tL(u(2)) (4.40)

4.4.2 CALCULATING THE TIME STEP

A non dimensional CFL condition is used to calculate the timestep for time integration. CFL

value less than unity guaranties the stability of the time integration.

∆tmax=
C ∆xmin

|λx|max
(4.41)

whereλx is the set of eigenvalues of the system (λx = {u+ c, u, u− c}) that correspond to the

wave speed. In application, three time steps considering stability of hydrodynamics, viscous

terms and chemical reaction mechanism are determined. The minimum time step for stability

of time integration is chosen.

∆t = min
(
∆thydro,∆tvisc,∆tchem

)
(4.42)

The hydrodynamic time step is computed applying CFL condition [70] as

∆thydro =
C∣∣∣∣ λx

∆x

∣∣∣∣
max
+

∣∣∣∣ λy

∆y

∣∣∣∣
max
+

∣∣∣∣ λz
∆z

∣∣∣∣
max

(4.43)

The CFL number is chosen to be 0.7 for the computations. The time step determined for

viscous stability criteria is computed (for Navier-Stokessolutions) as

∆tvisc =
1

2µ
(

1
∆2

x
+ 1
∆2

y
+ 1
∆2

z

) (4.44)

∆x, ∆y and∆z are the grid spacing in directionsx, y andz.

The chemical source terms are highly non-linear. Maximum time step for the reacting cases

(∆tchem) to prevent instability due to mechanism is determined conducting 0D, constant vol-

ume H2/air mixture ignition tests. These tests are presented with the results since they are

specific to the reaction mechanism and the conditions.
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4.5 BOUNDARY CONDITIONS

Boundary conditions (BC) are of critical importance in numerical simulations. Indeed they

are necessary to implement the physical requirements of theproblem and to prevent unphys-

ical wave reflections at the boundaries of the domain. BCs must assure the system to be

“well-posed”. The system constrained by the BCs must reveala unique outcome. The first

way of constraining boundaries is direct implementation ofphysical values at the bound-

aries of the domain. This forcing is applied repeatedly at every time step. Secondly, “ghost

cells” which are virtual cells prolongated outside at the domain boundaries may be utilized

like boundary nodes. The presence of ghost cells is unavoidable for the spatial discretization

stencils of nodes at the boundaries. However, forcing all conditions will generate unphys-

ical waves to reflect at the boundaries. As a result, a method based on 1D characteristic

analysis along the direction perpendicular to the boundaryis applied. The first systematic

work on non-reflecting inlet, outlet, slip and no-slip wall boundary conditions implemented

on subsonic and supersonic inviscid flow problems is published by Kevin Thompson [79], to

the author’s knowledge. The system for derivation of BC’s iscalled “local one-dimensional

inviscid” (LODI) system of equations. Thompson refers to Heldstrom, who developed charac-

teristic boundary conditions for one-dimensional, nonlinear and hyperbolic PDE solutions, on

rectangular domain [63]. Thompson states his work is application of Hedstrom’s method on

multidimensional Euler equations on non-rectangular domains with transformed coordinates.

Later, Poinsot and Lele presented LODI system BC’s modified for Navier-Stokes equations

[105]. Baum, Poinsot and Thévenin expanded the BC’s to multispecies reacting cases for

gases with realistic thermodynamic properties [5]. Explanation of applied BCs and details of

application are expressed in two classifications. The physical BCs are the ones implementing

known physical properties at the boundaries. When the physically definite conditions are not

enough to constrain the equations at the boundaries, numerical BCs are applied. The LODI

system for application of BCs on characteristic basis is as follows.

4.5.1 LODI SYSTEM

When the number of definite physical BCs are not enough for well posedness of the solution,

BCs may be applied on wave amplitude variations~L in characteristic form.The idea is based

on the fact the solution is not only governed by the state of the problem but the waves entering
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to the domain also[79].

One-dimensional (normal direction to the boundary), inviscid, characteristic form is used for

~L formulation. The effect of waves in tangential directions and viscous terms on the bound-

aries are neglected for the test cases studied. This type of BCs are called Euler Characteristic

Boundary Conditions (ECBC).

∂ ~W
∂t
+ ~L = ~0 ; ~L = [Λ]

∂ ~W
∂x
= [Λ] [ L]

∂ ~U
∂x

(4.45)

~L vector is written explicitly as

Li = λ(i)
Nsp+4∑

j=1

l(i)j

∂U j

∂x

i = 1, ...,Nsp+ 4 (4.46)

The components ofL in x, y and z are presented in appendix F. Once all components of

wave amplitude variations are computed, time derivatives of conservative variables to advance

in time, may be obtained applying transformation. Firstly,it is necessary to determine the

direction of the waves related toLi ’s, as explained in Figure 4.5 depending on

• nature of the flow, supersonic or subsonic

• direction of the flow,u < 0 or u > 0

 
 
 
 
 
  

L1(u-c) 

L2(u) 

LN+3(u) 

LN+4(u+c) 

Figure 4.3: ECBC subsonic flux directions

 

L1(u-c) 

L2(u) 

LN+3(u) 

LN+4(u+c) 

Figure 4.4: ECBC supersonic flux directions

Figure 4.5: Direction of the waves for subsonic and supersonic conditions for bothu > 0
(black arrows) andu < 0 (red arrows) cases.

Amplitude variationsLi of the waves which leave the domain are computed applying equation

(4.46), using one-sided derivatives based on interior data. Li ’s of waves which enter the
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domain can not be computed this way. Depending of the type of boundary, these amplitude

variations are

• either set tozero: numerical BC.

• or related to outgoing waves by physical restrictions applied on time derivatives of

primitive variables : physical BC.

[R]
∂ ~W
∂t
+ [R] ~L = ~0

∂ ~U
∂t
+ ~d = ~0 ; ~d = [R] ~L (4.47)

This system which relates wave amplitude variations to timederivatives of primitive variables

is called local one-dimensional inviscid (LODI) system. Detailed formulations of~L and

~d for each directionx, y and z are presented in appendix F. Having explained the basis

and definitions for ECBC, specific implementations depending on the type of BC will be

presented.

4.5.2 FREE NON-REFLECTING BCS

At free boundaries none of the primitive variables may be implemented explicitly.Li ’s for

incoming waves are equated tozero.

4.5.3 PHYSICAL NON-REFLECTING INLET BOUNDARY CONDITIONS

Physical non-reflecting boundary conditions are applied atx = 0 inlet only. The incoming

wave amplitude variations for subsonic and supersonic caseare computed as follows.

4.5.3.1 SUBSONIC FORCED NON-REFLECTING INLET

All characteristic waves, exceptL1 related to eigenvalue (u − c), enter the domain.L1 is

computed from interior points. Other wave amplitude variations are expressed in terms ofL1

solving the LODI system (4.47). The physical BC for a subsonic inlet atx = 0 are constant

velocity components (u = uinlet, v = 0,w = 0), temperature (T = Tinlet) and mass fractions
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(
{
Y1,Y2, ...,YNsp

}
= Const). The wave amplitude variationsLi are deduced equating time

derivatives of these primitive variables which are presented in appendix F.2 tozero.

L2 = 0

L3 = 0

L4 = −2L1

Lα+3 = 0 α = (2, ...,Nsp− 1)

LNsp+3 = − ρ
T
L4

LNsp+4 = L1 (4.48)

4.5.3.2 SUPERSONIC FORCED NON-REFLECTING INLET

In supersonic flow case, all the waves enter into the domain. All time derivatives of primitive

variables are equated tozero.

4.6 SOME SPECIFICITIES

4.6.1 THE LARROUTUROU METHOD

As mentioned early in section 2.1, numerical simulation of multi-species flows with the con-

servative form of equations poses difficulty to keep species mass fractions positive. This

problem is especially encountered for reacting flows involving large numbers of species. The

positivity problem which has been the subject of many works [4, 82] are related to the res-

olution of Navier-Stokes equations in conservation form. Larrouturou method is applied for

preserving positivity of the species mass fractions

4.6.1.1 IDEA OF LARROUTUROU

The mass fraction of speciesα is computed as the ratio of two conservative variables

Yα,i =
(ρYα)i

ρi
α = 1, ...,Nsp− 1 (4.49)

Due to the numerical scheme employed, the mass fractions obtained do not respect the discrete

maximum principle(0 ≤ Yα ≤ 1). Larrouturou proposed to use the same discrete mass flux
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for continuity (f ρi+1/2) and species mass fraction (f αi+1/2) fluxes

f αi+1/2 = f ρi+1/2


Yα,i if ui+1/2 > 0

Yα,i+1 if ui+1/2 < 0
(4.50)

This modification guaranties maximum principle with suitable CFL condition [82].

4.6.1.2 APPLICATION TO WENO SOLVER

Larrouturou suggests to advance the numerical solution forwhole system as coupled flow

and species equations, then apply the method for species mass fluxes f̂ α
±
i+1/2. It is intended

to keep the accuracy of approximation at the same order for both flow and species variables.

The method is applied as follows

f̂ αi+1/2 = f̂ ρi+1/2


Ŷ−
α,i+1/2 if f̂ ρi+1/2 > 0

Ŷ+
α,i+1/2 if f̂ ρi+1/2 < 0

(4.51)

The conservation of mass as sum of species mass fractions (
∑Nsp

α=1 Ŷα,i+1/2 = 1) is satisfied

applying the same weights for all species. It corresponds tothe maximum of all the weights

of WENO reconstruction for the species.

4.6.2 STRUCTURE OF THE CODE

The structure for single processor case is presented in Figure (4.6). In parallel case each

processor follows this task and communicates at each time step for ghost cells on interior

faces.

4.6.3 THE QUESTION OF DH0

The energy is expressed in terms of the total energy which is computed with a reference to

temperatureT0 that is chosen asT0 = 298.15K. This the energy variable which is zero at this

reference temperatureT = T0, is called sensible energy. The conservative variable for energy

equation is given in (2.48)
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ρet = ρ

Nsp∑

α=1

(∫ T

0
Cpα(θ)dθ

)
Yα − p+

1
2
ρuiui + ρDH0 (4.52)

with

ρDH0 = ρ

Nsp∑

α=1

(
∆h0

f ,α −
∫ T0

0
Cpα(θ)dθ

)
Yα

Since solution is concerned with variation in total energy,it is suitable to carry on calculations

for sensible energy, adding and subtractingρDH0 to ρet every time step.

4.6.4 THE METRICS

At some regions of the domain where the flow is turbulent and mixing and reactions take

place, high resolution is necessary. However there are regions where the solution is smooth,

so there is no need for high resolution. The grid is clusteredintroducing geometric transfor-

mation in each direction in order to reduce the computational cost

 

0 1 ∆X ∆X 
X 

∆xmin 

xN-1 

xN=Lx 

∆xmax 

x 

Figure 4.7: Coordinate transformation for clustering the grid

x = L
X

√
1− X2

,
dX
dx
=

L2

(X2 + L2)3/2
(4.53)

The capitalX stands for numerical coordinates,x is for physical coordinates andL is a con-

stant for the ratio of minimum physical to numerical grid spacing. Spatial derivatives are

transformed by chain rule.
∂

∂x
=
∂

∂X
dX
dx

(4.54)

The filtering operation explained in chapter 3 does not commute with differential operator.

It is shown that the commutation error is significant when thetruncation error is higher than

second order [53]. In this work the commutation errors are assumed to be negligible, since
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Figure 4.8: A. Speedup curves for WENO code on clusters VARGAS and Phoebus, B. 2D
MPI cartesian topology.

the clustering is mostly effective at the region of smooth solution [92]. It is also applied by

Lardjane [80] and Gougeon [59].

4.6.5 PARALLEL IMPLEMENTATION

Parallelization of the code is achieved by domain decomposition in all directions. Standard

MPI routines for cartesian topology are used for parallelization.

The parallel efficiency may be represented in terms of scalability curves in Figure 4.8.A.

Speed-up is calculated dividing wall time for a task for sequential processing by wall time for

the same task processed with N processors.

SN =
T 1 proc

T N procs
(4.55)

The speed-up curves presented are for clusters VARGAS/IDRIS and Phoebus/CCRC (Centre

de Calcul en région Centre).

• Phoebus : 42 nodes of 4 Intel XEON E5450 3.00 Ghz cores with 25Gb for each node.

• Vargas :

– 112 nodes of 32 core Power 6 4.7 Ghz core with 128 Gb memory

– 84 nodes and 256 Gb memory 28 nodes.

AR: the ratio of long edge to short edge for the square prism sub-domain blocks. AR is

an indicator of ratio of communication (at surfaces) to computation (within volume) of each

node.

53



4.6.6 LES STRATEGIES

The set of governing LES equations (3.8)(3.27)(3.32)(3.14) can be written in the following

form, including the contribution of the sub-grid scales

∂
~̃U
∂t
+
∂
~̃F
∂x
+
∂
~̃G
∂y
+
∂
~̃H
∂z
= ~V + ~τ + ~S (4.56)

where ~̃F, ~̃G and ~̃H are the inviscid fluxes in thex, y andz direction, respectively,~V is the

vector of viscous fluxes,~S is the vector of chemical source terms, and~τ represents the vector

of explicit sub-grid terms. The different approaches are characterized by:

LES SM : ~V , ~0 ; ~τ : SM model

LES SSF : ~V , ~0 ; ~τ : SSF model

MILES NS : ~V , ~0 ; ~τ = ~0

MILES EULER : ~V = ~0 ; ~τ = ~0

In the non-reacting cases,~S , ~0, and in the reacting ones,

~S = T{0, 0, 0, 0, 0, ˆ̇ωα ; α = 1, . . . ,Nsp}
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CHAPTER 5

NUMERICAL EXPERIMENTS

In this thesis, experiments are presented focused on the following questions by S.B. Pope

[107]; –“Is LES a physical model, a numerical procedure or a combination of both?” and –

“How are different LES models to be appraised?”. Different LES strategies are evaluated and

compared for the numerical simulation of high-speed non-reacting and reacting air/H2 jets.

Widely studied simple turbulent jet case is chosen as the flowprototype. The complexities

like multi-injection or chamber geometry are excluded. Thefocus is shifted to the behavior

of the numerical approaches on the main problems of mixing, transition and interaction of

turbulence with chemistry [28].

The simple turbulent jet is a good flow prototype for the evaluation of MILES and LES,

indeed;

• High-speed compressible flows do usually involve shocks. Consequently, it is manda-

tory to apply dissipative numerical methods for the simulation of these flows.

• The time scales are at the order less than one millisecond. Considering that the turbulent

mixing and chemical reaction are included in the problem, the parameters questioned in

the simulation (potential core length, ignition length ...) are sensitive to the molecular

transport.

The conditions for the test cases are based on the experimental data published in the literature.

The non-reacting case is taken from the experiments of J.M. Eggers [32], and the reacting one

is from the experiments conducted at LAERTE supersonic combustion chamber of ONERA

[19, 90]. These free shear flows are selected at first because Kelvin-Helmholtz instabilities,

primarily responsible for large scale turbulent mixing, are not much influenced by diffusion,
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and because large scale turbulent mixing is determinant fornon-premixed combustion which

occurs at the molecular level due to micro-mixing or diffusion of reactants. The non-reacting

test case isolates the first aspect and the reacting one includes both aspects.

In both cases, complete inlet profiles, necessary for constructing a simulation, are not avail-

able. Also, in the available data significant inconsistencies are reported. Therefore, approxi-

mate profiles that include assumptions are applied for the inlet conditions. It is pragmatically

assumed that LES method (of dissipative schemes) is not sensitive to the accuracy of the inlet

conditions as much as RANS approach does [22].

Numerical simulations are performed using a 5th order WENO scheme1, with resolutions

ranging from 32× 32× 128 to 256× 256× 1024, with (LES) and without (MILES) explicit

sub-grid model. MILES simulations are carried out for the Navier-Stokes equations and for

the Euler equations, i.e. without any molecular transport terms. LES simulations include

molecular transport terms.

The sensitivities of different numerical approaches to initial and boundary conditions are also

assessed. It is intended to obtain experience in solving high speed reacting flows like those

existing in scramjet engines, beyond the purpose of qualitative comparison.

In this chapter, LES solutions of non-reacting and reactingcompressible H2/air jets for dif-

ferent approaches are presented. In each case, first the flow problem is explained in detail

including available experimental data and parameters for numerical simulations. Later, re-

sults showing interpretation of flow structure for straightforward visualization and statistical

results for more thorough analysis are presented. The simulation results are also compared

with the published experimental data.

5.1 NON-REACTING CASE

5.1.1 TEST CASE DESCRIPTION

The first simulated test case is a non-reacting transonic round H2 jet which is in a co-flowing

supersonic round air jet. This coaxial mixing experiment was conducted in 1971 by Eggers

[32]. The simple schematic diagram of the experiment is shown in Figure 5.1. The internal

1 Although WENO schemes are not monotone, MILES will be used todesignate numerical LES in this thesis.
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and external diameters of hydrogen injector are 11.6 mm and 12.7 mm, respectively. The

diameter of the co-flowing air nozzle is 152 mm. Mixing occursin unconfined region, so the

flow static pressure is close to atmospheric pressure. The dimensions of the flow domain to

be simulated areLy × Lz× Lx = 70 × 70 × 700 mm3, x being the axial direction of the jet

starting from the injector exit. The inner shear layer is assumed not to be affected by the outer

shear layer for the region of interest.

Primary variables which have been measured by Eggers are pitot pressure, total temperature

Figure 5.1: Schematic diagram of Eggers jet.

and the volume concentration of hydrogen (H2) at different locations. Radial measurements

were taken atx =0, x =6.39 cm,x =11.11 cm,x =17.91 cm,x =29.23 cm andx =49.65

cm axial locations of the domain. A measurement rake containing static and pitot pressure

probe was used. Static pressure measurements were discarded by Eggers, since they were

found to be biased because of the presence of shock waves. H2 concentrations were measured

over collected samples with a gas chromatograph. The Mach number was computed from the

Rayleigh pitot formula for supersonic flow

Ptot

P
=

[
(γ + 1)

2
M2

] γ
γ−1

[
γ + 1

2γM2 − (γ − 1)

] 1
γ−1

(5.1)

and from the basic isentropic relations for a subsonic flow. The local values of the total

temperature are computed knowing the total temperatures inthe pure H2 and in the pure air

streams, using an energy balance as

Ttot =
CpH2YH2Ttot,H2 +Cpair (1− YH2)Ttot,air

CpH2YH2 +Cpair (1− YH2)
(5.2)
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The static temperature was then deduced from the total temperature and the Mach number.

Finally, the velocity was obtained from the local Mach number and the speed of sound. Eg-

gers indicated a [-16%,+4%] uncertainty in the integrated H2 mass flow rate over transverse

planes. The reliability of the velocity data is also affected by experimental uncertainity. The

results of this experiment are frequently used in the literature for the validation of compress-

ible RANS solvers [22, 28, 33].

5.1.2 PHYSICAL AND NUMERICAL PARAMETERS

Physical parameters of the flow are gathered in Table 5.1. Thesubscript jet stands for H2

Table 5.1: Physical parameters for the non-reacting air/H2 jet. In bold, data from Eggers [32],
other values are computed.

H2 jet air co-flow
U (m/s) 1074 394

Tstat/Ttot (K) 260/300+6
−12 222/300+3

−2
Pstat/Ptot (kPa) 100/167 100/285

Mach 0.886 1.32
µ (kg.m−1.s−1) 0.878 10−5 1.687 10−5

ρ(kg.m−3) 0.093 1.563
Reu (1/m) 11.6 106 36.6 106

Rejet 1.34 105

Mc 0.44

jet conditions. Reu in the Table is the Reynolds number per meter. Data taken fromreport of

Eggers are written in bold. The other parameters of the initial field are computed assuming

a constant static pressure of 100 kPa and using the thermodynamic properties explained in

chapter 2. A guess-and-try technique is used to find the static temperature that gives the ex-

perimental total temperature, knowing the Mach number in both streams. The characteristics

of the flow may be estimated depending on parameters as density (ρ jet/ρco− f low) and veloc-

ity (U jet/Uco− f low) ratios. The convective Mach number Mc is suggested by Bogdanoff [8]

for parametrization of compressibility. It is the Mach number of the free streams adjacent to

the shear layer, relative to the coherent structures velocity Uc (Figure 5.2). The convection

velocity Uc is given as

Uc =
c2 U1 + c1 U2

c1 + c2
(5.3)
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Figure 5.2: Shear layer convective velocity and Mach numbers[8].

The shear layer convective Mach number is calculated by equating the convective Mach num-

bers of adjacent flows assuming constant specific heat ratio (γ1 = γ2)

U1 − Uc

c1
=

Uc − U2

c2
⇒ Mc =

U1 − U2

c1 + c2
(5.4)

As in the current case of low convective Mach numbers, the assumption for the equality of

Mc1 and Mc2 is relatively accurate [100]. It is important to note that convective Mach num-

ber is one of the parameters for characterization of jet but not the only one. It is shown by

Fedioun and Lardjane that temperature and density ratio differentiate the characteristics of

binary temporal shear layer even if the convective Mach number is constant [41].

It is interesting to have an estimate, or at least an order of magnitude of the range of turbulent

scales to be resolved. Large scales of the flow are produced byinitial Kelvin-Helmholtz inflex-

ional instability at the jet/co-flow interface, as illustrated in Figure 5.3. From experimental
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Figure 5.3: Inlet velocity profile for the non-reacting air/H2 Eggers jet.

velocity profiles, the end of the potential core is at about 5.5 jet diameters, i.e.x − x0 ≈ 64

mm. At this location, the estimated shear layer widthδ(x) = δ0 + δ′(x − x0) is about 8mm

59



(Figure 11 (a) of [32]), giving the scale of the largest eddies. This value corresponds to a

growth rateδ′ ≈ 0.12, coherent with the literature [26] for compressible, high density ratio

shear layers. The velocity scale of the largest eddies is typically half the velocity difference,

∆U/2 = 170 m/s. Taking an average viscosity and an average density for thevalues listed in

Table 5.1, one finds the large-scale Reynolds number as

Re(∆U/2, δ) =
ρ∆U/2 δ
µ

≈ 88000 (5.5)

Hence, the Kolmogorov scale is aboutη ≈ δ×Re−3/4
(∆U/2, δ) ≈ 0.0015 mm and the Taylor micro-

scale is aboutλ ≈ δ × Re−1/2
(∆U/2, δ) ≈ 0.027 mm.

The grid resolution is indicated asNy× Nz× Nx. Simulations are performed for 4 different

grids namely 32×32×128, 64×64×256, 128×128×512 and 256×256×512. In the latter case,

the computational domain is shorten to half length, i.e.Lx = 350 mm. The grid is refined in

the transverse direction toward the jet centerline, using analytical metrics explained previously

in section 4.6.4 withz ∈ [−Lz/2,+Lz/2] for Z ∈ ] − 1,+1[. The size parameterL is chosen

such that the ratio of the longest to the shortest cell is 5. The grid is also refined in the axial

direction toward the inlet, with a ratio of 6. The 2D views of 32×32×128 resolution grid

are shown in Figure 5.4. For the fine grid, the shortest grid cell is ∆xmin = 0.323 mm and

Figure 5.4: Grid for the Eggers jet of resolution 32×32×128

∆ymin = ∆zmin = 0.160 mm. Assuming∆ ≈ ∆ymin, gives∆/η ≈ 100 and∆/λ ≈ 6. Hence,

even on the fine grid, the simulation is far from a DNS. The numerical cut-off is probably in

the inertial range. The approximations of the scales for allgrid resolutions are listed in Table

5.1.2.

The inlet velocity profiles for all grids are shown in Figure 5.5. The profiles are fitted to the
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Table 5.2: Ratios of approximate Kolmogorov scale and Taylor microscale to the minimum
grid spacing.

Grid ∆ xmin ∆ ymin ∆/η ∆/λ

32×32×128 0.303×10−2 0.132×10−2 880 49
64×64×256 0.151×10−2 0.612×10−3 408 23

128×128×512 0.754×10−3 0.322×10−3 215 12
256×256×512 0.323×10−3 0.161×10−3 107 6

Eggers experimental results using hyperbolic tangent equation 5.6

f =
fmax

2

{
1+ tanh

[
A

(( B
rC

)E

+
1

rC − D

)]}

r =
(
y2 + z2

)1/2
(5.6)

The coefficients for the velocity profiles (co-flow/jet) and for the air mass fraction profile

are listed in Table 5.3. Air is assumed to be composed of N2 and O2 in the atmospheric

concentration ratio. Hydrogen mass fraction is computed full-filing the sum of all species

mass fractions to unity. While adopting the hyperbolic tangent profiles the following issues

Table 5.3: Coefficients which are used for the
inlet velocity profile.

var: U jet Uco− f low Yair

fmax 1074 394 1
A 10 4 12
B 0.2 1.428 1
C 0.2 -0.525 -0.9
D 1 -1 0
E 1 1 -1
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Figure 5.5: Inlet velocity profile for the non-
reacting air/H2 Eggers jet.

are considered:

• The H2 jet and air jet profile must be distinct at pitot region of nozzle. As there exists

high density and velocity ratio. Otherwise, air at the speedof hydrogen jet may cause

significant momentum injection at shear layer.

• At the pitot region, as the gradients of inlet profiles are high, the number of nodes
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must be more then the WENO sub-stencil size. Otherwise the scheme will smooth the

profiles and even out the effect of pitot at inlet.

This slight modification of the initial field causes some error in the volumetric flow rate which

is 6×10−2 (m3/s) (computed by trapezoidal rule) for the experimental profiles. The error is at

most 10% for the 64×64×256 grid and around 5% for the other resolutions. This is within the

uncertainity limits of Eggers data.

In order to trigger the transition to turbulence, a random noise is applied for theyandzvelocity

components. First, for each line 20 random values are generated using the portable random

number generator presented in the literature [68, 89]. By applying back Fourier transform a

function is obtained using these random numbers. The noise which is confined by Gaussian

distribution in the H2 central jet, vanishes in the air co-flow (Figure 5.6) The normalized

weight of the Gaussian distribution Conf is computed as

Conf= a e
− r2

2(bL)2 (5.7)

The amplitudea and parameterb controlling the Gaussian shape are respectively taken to be

10 m/s and 0.04.L is the size of the window for Gaussian shape (diagonal lengthof the YZ

surface where the bruit is applied.). No other tunable parameter is introduced in the initial
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Figure 5.6: Radial distribution of confinement function, samples of generated ’random’ field
and the noise applied on transverse velocity components.

field. Non-reflecting boundary conditions are applied for open boundaries.

At the co-flow velocity, one crossing of the full computational domain takes 1.8 ms. At the

three lowest resolutions, time averaging of the flow variables are computed for 0.7 ms after

the simulation is allowed to progress for 2 ms from the initial field. Simulation with the finer
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grid (half domain) is progressed for 0.82 ms before averaging for 0.15 ms only, due to the

high computational cost (see appendix I).

5.1.3 FLOW STRUCTURE

In Figures 5.7 - 5.11, results of LESSM, LES SSF, MILESNS and MILESEULER simu-

lations are shown from top to bottom. Vertical and horizontal contour maps are the projec-

tions of the instantaneous pressure fields and the instantaneous H2 mass fraction fields in the

corresponding symmetry planes, respectively. For a bettervisualization,y andz scales are

magnified by a factor of two. These figures allow a straightforward comparison of the behav-

ior of LES and MILES at different grid resolutions. Mixing and pressure fluctuations may be

observed from the hydrogen mass fraction and the pressure contours, respectively.

The structure of the flow is displayed at all resolutions as the Q-criterion [29, 67] iso-surface

which is commonly used for coherent structure identification. Q-criterion is the measure of

domination of the strainS∗i j by the rotationΩi j which are the symmetric and the antisymmetric

parts of the velocity gradient tensor, respectively.

Q =
1
2

(
Ωi jΩi j − S∗i j S

∗
i j

)
(5.8)

where

Ωi j =
1
2

(
ui, j − u j,i

)
(5.9)

Q-criterion is also related to the Lagrangian of pressure for incompressible formulation, by

the well known Poisson equation.

Q = −1
ρ
∆p (5.10)

Results for 32×32×128 grid resolution (Figure 5.7) :

The SM model introduces excessive (more than physical) amount of sub-grid viscosity. This

results in the damping of flow shear and also delays transition to downstream locations where

the stretching of the grid may even out the linear instabilities. These solutions are not consid-

ered to be physical since the flow field is not resolved.

Results for 64×64×256 grid resolution (Figure 5.8) :

Although the spatial resolution is still not adequate at this grid level, the obtained results are

more amended for physical interpretation. The difference of the LESSM result compared to
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the other solutions is apparent. Coherent structures for LES SSF solution are of larger inten-

sity since the explicit sub-grid model damps the small perturbations. For the LESSSF solu-

tion, the large scale structures disappear approximately at the end of concentration potential

core. MILESEULER and MILESNS simulations generate similar results. In the MILESNS

solution the light turbulent structures are further dampedout. Disturbances which are present

in the pressure field are associated with the flow instabilities can be called as Mach waves

[94]. Hydrogen mixing starts to be observed at this resolution. The concentration potential

core lengths for MILESEULER, MILES NS and LESSSF are close.
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Figure 5.7: Eggers jet results on 32×32×128 grid. Instantaneous structure of the flow visual-
ized using iso-Q. Pressure and Hydrogen mass fraction in thesymmetry planes for different
approaches.
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Figure 5.8: Eggers jet results on 64×64×256 grid. Instantaneous structure of the flow visual-
ized using iso-Q. Pressure and Hydrogen mass fraction in thesymmetry planes for different
approaches.
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Results for 128×128×512 grid resolution (Figure 5.10) : The solutions at the initial core

of the jet for MILESEULER, MILES NS and LESSSF are identical at 128×128×512 res-

olution. After the transition, the structures displayed asQ-criterion iso-surfaces are damped

along the axial direction earlier in the LESSSF solution. The sensor (3.67) initially switch

off the SSF model in the initial core of the jet where the gradients are naturally high and later,

when the flow is 3D enough, model is switched on to diffuse turbulence effectively. Con-

centration potential core lengths of all numerical approaches are identical and shorter than

the ones for 64×64×256 grid solution. LESSM solution is observed to be more dissipative

at this resolution. This solution is more comparable with lower resolution of 64×64×256

grid MILES EULER, MILES NS solutions in Figure 5.8. Simulation for lower Smagorin-

sky constant (half) is conducted for understanding the effect of the SM model (Figure 5.9).

The solution at the initial core region became identical to the solutions for other numerical

approaches and coherent structures propagate downstream for the LESSM solution which is

sensitive to the Smagorinsky constant.

Results for 256×256×512 grid resolution (Figure 5.11) :

Figures at fine grid resolution are almost identical to the solutions for 128×128×512. The

LES SM solution is closer to the solutions of the other approaches however the flow field at

the beginning of the shear layer is still very much affected by the model. The pressure waves

are more clustered compared to the results obtained with lower grid resolutions.

 

Figure 5.9: Eggers jet result on 128×128×512 grid with reduced Smagorinsky constant. In-
stantaneous structure of the flow visualized using iso-Q. Pressure and Hydrogen mass fraction
in the symmetry planes for different approaches.
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Figure 5.10: Eggers jet results on 128×128×512 grid. Instantaneous structure of the flow
visualized using iso-Q. Pressure and Hydrogen mass fraction in the symmetry planes for
different approaches.
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Figure 5.11: Eggers jet results on 256×256×512 grid. Instantaneous structure of the flow
visualized using iso-Q. Pressure and Hydrogen mass fraction in the symmetry planes for
different approaches.
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5.1.4 STATISTICAL RESULTS

The center-line, time-averaged,x-velocity distribution (axial decay) is shown in Figure 5.12,

for the different simulations. Clockwise from top-left, sub-figures display LESSM, LES SSF,

MILES NS and MILESEULER results for different resolutions. The lowest resolution
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Figure 5.12: Eggers jet : axial velocity decay. Clockwise from top-left : LESSM, LES SSF,
MILES NS and MILESEULER

32×32×128 is physically inadequate for all numerical approaches.Increasing the resolution

to 64×64×256 improves slightly the results, but the grid is still too coarse to capture the ini-

tial development of shear instabilities. They are damped bythe numerical dissipation, and

the transition is delayed far downstream. The worst case is observed for LESSM (top-left)

because the Smagorinsky model, can not distinguish the meanflow gradients from turbulent

structures. Hence, the model is active and introduces additional dissipation in the laminar,

high-shear, jet entrance region. Increasing again the gridresolution up to 128×128×512 im-

proves dramatically the results. Except for LESSM with λ2 = 0.02 which is still too dissipa-

tive, all the simulations show convergence toward the experimental results. MILESEULER

(bottom-left) and MILESNS (bottom-right) are very close to each other, but MILESNS is a

little closer to the experiment at the end of the computational domain. The LES with explicit
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SSF sub-grid model does not show any improvement compared tothe MILES. At the highest

resolution 256×256×512, results are further closer to the experimental data andgrid conver-

gence is almost achieved, even with MILESEULER although there is no physical cutoff in

this calculation. As mentioned above, the curves are a little wavy because time statistics are

not perfectly converged. Transverse velocity profiles at four specific downstream locations

investigated by Eggers are shown on the 128×128×512 and 256×256×512 grids in Figures

5.13 and 5.14 respectively. With the exception of LESSM with λ2 = 0.02, all numerical ap-

proaches under-predicts qualitatively, the spreading of the jet. On the finer grid 256×256×512

(Figure 5.14), results are further closer to the experimental data.
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Figure 5.13: Eggers jet : transverse velocity profiles atx =0.06, 0.11, 0.18 and 0.29 m from
the exit. Resolution 128×128×512

Figure 5.15 shows the hydrogen mass fraction along the centerline. Although the agreement

is not so good as for the dynamic field, most of the previous conclusions can still be observed

again, here. One may have to keep in mind the uncertainty in the experimental data as well.

In order to evaluate the axial variation of a quantityQ(x, y, z, t), it is appropriate to look at the

variation of time averaged variable (Q̄(x, y, z)) at the centerline (Q0(x)) (Figure 5.17). The

subscripts0 and∞ are respectively the centerline and far-field average values of the quantity
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Figure 5.14: Eggers jet : transverse velocity profiles atx =0.06, 0.11, 0.18 and 0.29 m from
the exit. Resolution 256×256×512

(Figure 5.16). x0 is the fictitious center of the jet. Considering the above definitions the

definition for an inverse normalized time averaged quantity[106] at the centerline is

Q∗ =
Q jet − Q∞

Q0(x) − Q∞
≈ x− x0

BQ d
(5.11)

BQ is the spreading rate of quantity after the initial region ofthe jet. The variations of the

inverse of quantities eventually appear to show a linear trend as shown in Figure 5.18. The

axial normalized inverse of velocity and hydrogen mass fraction profiles are shown in Figure

5.19 for all grids except 32×32×128 grid. TheB and x0 values for the axial velocity and

for the hydrogen mass fraction are listed respectively in Tables 5.4 and 5.5. These results

show that at low resolution of 64×64×256, the potential core estimated far downstream and

the spreading rate are larger. At low resolution the gradients of the inlet profile are smoother

since there are few points at the pitot region of the inlet. High numerical diffusion, because of

the very low resolution, enlarges the spreading angle. It isobserved in the profiles shown on

Figure 5.19 that the Smagorinsky model is not able to resolvemost physical properties related

to the problem. The velocity decay for MILESEULER is one of the fastest which has an
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Figure 5.15: Eggers jet : H2 mass fraction axial decay. Clockwise from top-left : LESSM,
LES SSF, MILESNS and MILESEULER
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Figure 5.16: Definitions for inverse normalized time averaged quantity.

early plateau around x=0.5 m. The hydrogen concentration shows similar behavior. At higher

resolutions of 128×128×512 and 256×256×1024 the simulations give similar results except

for the Smagorinsky model. The Smagorinsky model causes transition delay by smoothing

the gradients which are present in the initial region. However the velocity decay slopes of

the solutions of Smagorinsky model are close to the MILESNS and LESSSF results. At

64×64×256 Smagorinsky gives unrealistic results as stated earlier in section 5.1.3. At high
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Figure 5.18: Variation of the inverse
normalized quantities Q∗ on the axis
of turbulent jet.

resolution all cases give similar behavior as shown in Figure 5.19 and tabulated data (Table

5.4).

The H2mass fraction potential core values for all cases are smaller than the velocity potential

core values, by a factor of %4± 2. The diffusion of momentum is more than the diffusion of

species so that the overal Schmidt Sc number is less than unity.
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Figure 5.19: The inverse normalized velocity Q∗ U(left) and the inverse normalized H2 mass
fraction Q∗YH2

(right) for 64×64×256, 128×128×512 and 256×256×512 resolutions (from up-
per to lower).
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Table 5.4: The slope and fictitious center of inverse normalized time averaged ve-
locity.

64×64×256 128×128×512 256×256×512
BUd x0u BUd x0u BUd x0u

MILES EULER 6.12 0.215 4.45 0.129 3.97 0.105
MILES NS 3.72 0.206 6.08 0.136 4.12 0.109
LES SSF 3.49 0.219 5.43 0.138 4.15 0.113

LES SM 01 - - 5.29 0.153 - -
LES SM 0.38 0.298 4.30 0.203 2.80 0.128

Table 5.5: The slope and fictitious center of inverse normalized time averaged hy-
drogen mass fraction.

64×64×256 128×128×512 256×256×512
BYH2

d x0YH2
BYH2

d x0YH2
BYH2

d x0u

MILES EULER 5.53 0.222 3.98 0.133 3.10 0.109
MILES NS 2.74 0.214 5.32 0.144 4.22 0.118
LES SSF 2.88 0.220 4.60 0.132 3.37 0.114

LES SM 01 - - 4.71 0.162 - -
LES SM 2.46 0.472 3.34 0.211 2.45 0.134

5.1.5 VARIATION OF VELOCITY, SPECIES MASS FRACTION AND PRES SURE

The variation of velocity, hydrogen mass fraction and pressure are computed and stored once

these flow statistics have reached steady state, for different axial locations of the jet flow field.

The numerical probe locations are indicated over the instantaneous velocity contours on the

symmetry axis (figures 5.25 and 5.26), the time variation of velocity at these locations and

spectra of velocity data are also given on the same figures.

In the coarser grid, core flow tends to persist for a longer time downstream the computa-

tional domain. In figure 5.25, the coherent structures in theflow are more pronounced in

MILES NS and LESSSF. Amplitude variation of oscillations for MILES EULER islarge

especially in the jet core region. This leads to an earlier end up of the velocity potential core

before reaching two third of the computational domain. The end of velocity potential core

for MILES NS solution is in the second half of the domain. LESSSF results are similar to

MILES NS results. The velocity spectra of LESSSF and MILES NS also carry the same

slope characteristics. This is also true for the solution onhigh resolution grid given in figure

5.26. The velocity data of MILESEULER shows high amplitude fluctuations which is also
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reflected in the corresponding velocity spectra. In LESSM solution (figure 5.25) higher rate

of dissipation is observed and oscillations are damped. Whenever the resolution increases,

this effect disappears.

The passage frequency of linear instability waves are recognized in time variation figures.

The size of the coherent structures is approximately 8 mm based on the observation of in-

stantaneous velocity histogram along the shear region (figure 5.20). The convective velocity

of these structuresUc is calculated to be approximately∼518.2 m/s (equation 5.3). So the

passage frequency of the linear instabilities is roughly∼70 kHz in accordance with the peak

frequencies of the velocity spectra displayed in figures 5.26.

Next two figures 5.27 and 5.28 relate to the hydrogen mass fraction time variations for two
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Figure 5.20: Instantaneous axial velocity component on thejet axis at 256×256×512.

highest resolutions of 128×128×512 and 256×256×512. The concentration related results

which are obtained by MILESNS and LESSSF are similar for both resolutions. Whereas

the concentration potential core for MILEEULER is shorter. It persists longer in LESSM

results at 128×128×512 grid resolution. Higher resolution results also show that the jet core

persists for larger distance in LESSSF and MILESNS. Larger structures are present for

LES SM and MILESEULER results.

Low resolution LESSM does not capture the pressure wave fluctuations which do appear for

higher resolution shown in figure 5.30. The LES SSF, MILES EULER and MILES NS show
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a higher much resolved Mach wave clustering near the jet inlet. As a result, relatively smaller

eddies and smaller fluctuations are present in the flow domain. The velocity spectra for all

high resolution solutions look alike.

In figures for pressure (figure 5.29 and 5.30) there exists twopeaks in time variation spectra.

The frequency of the first peak is at the order of the linear instability passage frequency. This

is related to the Mach waves radiated by the growth and decay of linear instability waves [94].

The frequency of these waves is the same for all numerical approaches.

The time series taken are used to compute second order moments for the resolved velocity

field ũi and the Nitrogen mass fractioñYN2, at the probe locations. The resolved kinetic energy

k̂(−→x , t) in (3.48) written using the Reynolds decomposition, e.g.ũi =< ũi > +ũi
′ is

k̂(−→x , t) = 1
2
< ũi >< ũi > +ũi

′ < ũi > +
1
2

ũi
′ũi
′ (5.12)

where< ·̃ > represents time average. The values of numerically resolved turbulent kinetic

energy k̂′ = 1
2 < ũi

′ũi
′ > and the Nitrogen mass fraction variance< Ŷ′N2

> are plot in

Figures 5.21-5.22 and Figures 5.23-5.24, respectively for128×128×512 and 256×256×512

grid solutions. Decay of turbulent kinetic energy observedin Figure 5.21. As the resolution

increase the results make more sense. MILES produces highersecond order statistics than

LES in the early development of turbulent processes (probe at x =0.11 m, Figures 5.23 and

5.24). Mixing in LESSM, associated with the peak in< Ŷ′N2
>, is delayed downstream

compared to other simulations. Since small-scales are dissipated by the SM model, large

energy-containing eddies dominate in LESSM. Hence, botĥk′ and< Ŷ′N2
> overtake the

values of other solutions in the downstream region of the jet. The peak turbulent Mach number

MRANS = (ρk̂′/γp)1/2 is about 0.1 in the H2 jet. This result justifies the assumption that the

isotropic part (3.61) of the SGS term (3.28) is negligible since the isotropic term can be written

asAI
1i j = γM

2
sgsp̄ [34].
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Figure 5.21: Eggers jet: Resolved turbulent
kinetic energy, resolution 128×128×512.
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Figure 5.22: Eggers jet: Nitrogen mass frac-
tion variance, resolution 128×128×512.
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Figure 5.23: Eggers jet: Resolved turbulent
kinetic energy, resolution 256×256×512.
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Figure 5.24: Eggers jet: Nitrogen mass frac-
tion variance, resolution 256×256×512.
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MILES - EULER - 128 x 128 x 512 Ux (m/s) 
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MILES - NS - 128 x 128 x 512 Ux (m/s) 
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Figure 5.25: Sub-figures demonstrating from top : instantaneous velocity over symmetry axis,
sampled time variation and spectra of sampled data of 128×128×512 grid solutions (velocity
in m/s and frequency in kHz).
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LES - SSF - 256 x 256 x 512 Ux (m/s) 
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MILES - EULER - 256 x 256 x 512 Ux (m/s) 
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Figure 5.26: Sub-figures demonstrating from top : instantaneous velocity over symmetry axis,
sampled time variation and spectra of sampled data of 256×256×512 grid solutions (velocity
in m/s and frequency in kHz).
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Figure 5.27: Sub-figures demonstrating from top : instantaneous hydrogen mass fraction over
symmetry axis, sampled time variation and spectra of sampled data of 128×128×512 grid
solutions (frequency in kHz).
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MILES - EULER - 256 x 256 x 512 Y H2 
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Figure 5.28: Sub-figures demonstrating from top : instantaneous hydrogen mass fraction over
symmetry axis, sampled time variation and spectra of sampled data of 256×256×512 grid
solutions (frequency in kHz).
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Figure 5.29: Sub-figures demonstrating from top : instantaneous pressure over symmetry axis,
sampled time variation and spectra of sampled data of 128×128×512 grid solutions (pressure
in Pa and frequency in kHz).
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Figure 5.30: Sub-figures demonstrating from top : instantaneous pressure over symmetry axis,
sampled time variation and spectra of sampled data of 256×256×512 grid solutions (pressure
in Pa and frequency in kHz).
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5.1.6 IS THE DNS LEVEL REACHED ?

The question that naturally arises is to know if the explicitsub-grid model is still active at the

finest grid resolution. An appropriate numerical indicatoris the eddy-viscosity ratioµt
sgs/µ.

In a free shear flow, one can consider that forµt
sgs/µ . 1, the model is no more active.

This would not be the case in the boundary layer for a wall-bounded flow where the flow

exhibits large gradients. Figures 5.31 and 5.32 show respectively the instantaneous distribu-

tion of µt
sgs/µ for LES SM and LESSSF. At resolutions 64×64×256 and 128×128×512,

Figure 5.31: Eddy-viscosity ratio, LESSM.

the models are very pronounced in both LESSM and LESSSF. The effect of the laminarity

sensor (3.67) in the SSF model is apparent, and the model is globally less dissipative than

the Smagorinsky model, although instantaneous and local peak values may be higher. At the

highest resolution 256×256×512, the SM model is still active whereas the SSF model is al-

most vanished. Although the DNS limit is far from being reached as the ratio of minimum

grid spacing to Taylor microscale is 6 (Table 5.1.2). This means that the numerical dissipation

of the WENO scheme is responsible for most of the sub-grid modeling on the finer grid.
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Figure 5.32: Eddy-viscosity ratio, LESSSF.

5.1.7 CONCLUSIONS

The main conclusion for this non-reacting test-case is thatconventional LES does not show

any superiority compared to MILES. The Smagorinsky model deteriorates the results due to

its over-dissipative behavior. The SSF model is less dissipative, but does not improve the

results, whatever the grid resolution is. MILESEULER and MILESNS give almost similar

results, the molecular dissipation being far below the numerical one. This means that the com-

putational effort involved in highly accurate transport models is simply wasted, when shock

capturing schemes are used to solve the compressible Navier-Stokes equations. The results

of MILES EULER surprisingly seem to show grid convergence toward theexperimental data

although no physical cutoff is present in the simulation. This is an open question for further

research.
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5.2 REACTING CASE

5.2.1 TEST CASE DESCRIPTION

Having investigated the mixing problem of a compressible H2/air jet, the experimental results

from LAERTE combustion chamber of ONERA [50, 86] are chosen as the reacting flow test

case. This test facility is designed for the fundamental study of supersonic combustion and is

intended to develop background data material on hypersonicair-breathing propulsion.

The experimental setup consists of;

• an initial section of the air pre-heater and the supersonic air nozzle for co-flow,

• the supersonic injector for nitrogen or fuel (H2),

• the combustion chamber.

A sketch demonstrating the setup is given in Figure 5.33.

 

500 mm divergent (1.15°) section 337 mm constant section 
supersonic 

injector ø = 6 mm 

vitiated air   
45x45 mm section 

computational domain 
350 mm 

45 mm 

Figure 5.33: Schema of the LAERTE experiment.

Co-flowing air is first heated by a primary heater up to 850 K then a secondary hydrogen flame

heater is used to elevate the temperature up to 1850 K. Beforeentering into the chamber, the

co-flow is enriched with oxygen to the atmospheric concentration (%21). The supersonic air

nozzle accelerates the flow to Mach 2. The vitiation of the co-flow with water, by the flame

heater, is around %16 (molar fraction). Total flow rate of vitiated air is 0.65 kg/s and the static

pressure is around 80 kPa. Hydrogen is injected through a round supersonic injector of inner

and outer diameters of 6 mm and 10 mm, respectively. The fuel flow rate is 6.2 g/s at Mach 2

and the static pressure is also around 80 kP. The combustion chamber starts with a 45x45 mm
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constant section part of 370 mm then the section diverges at an angle of 1.15◦ equal at upper

and lower surfaces for 500 mm along the axis. Optical access is provided on the sides of the

chamber using silica windows for measurements.

Since the injector and the air nozzle are subject to elevatedtemperatures, they are cooled with

water. The experiment can be conducted for short durations at the order of seconds (15 s for

H2 combustion [22]).

Available experimental results which are obtained within the combustion chamber are listed

below [19]:

• pressure measurements are taken at different axial locations on both upper and lower

wall surfaces.

• radial temperature profiles are measured at atx = 10mm,x = 72mm,x = 210mm and

x = 288mm.

• radial OH concentration distribution is measured by planarlaser induced florescence

(PLIF) technique atx = 210mm.

• velocity measurements are taken applying LDA or PIV methodsat x = 10mm, x =

210mm andx = 288mm.

• the ignition position is reported to be roughly atx = 17cm

The data available are shown in Figure 5.34. In the present study, only the first constant
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Figure 5.34: Experimental data available. From left to right: temperature, velocity and OH
molar concentration.

section part is simulated.
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Computations are performed over a domain with the dimensions 45×45×350 mm3. The do-

main is the section of the combustion chamber located after the end of hydrogen injector. The

following assumptions are applied on the computational domain for the sake of simplicity.

• Slip wall (symmetric) boundary conditions are applied on the sides of the domain, to

avoid the necessity of resolving wall boundary layers.

• Divergent section at the last 13 mm of the computational domain is not considered.

The purpose is not to reproduce strictly the experimental data numerically, so simplifications

are applied despite their significant effect.

5.2.2 INLET FIELD

There exists no detailed quantitative experimental flow field measurement at the inlet. It is

reasonable to fit a hyperbolic tangent profile for the velocity of the pure hydrogen injection

that satisfies the mass flow rate measurement. However, the initial field of variables for the

co-flow, especially the species mass fractions are not easy to predict. Davidenko simulated

the hydrogen heater and the co-flow nozzle in his work in orderto generate inlet BCs for the

combustion chamber problem [22]. 1D profiles (Figure 5.35) for the radial distribution of the

primitive variables, at the inlet of the combustion chamberare taken from these solutions.
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Figure 5.35: Initial field data taken from RANS solutions Davidenko [22]; from left to right
radial profiles for temperature, velocity and species concentrations.

This RANS simulation was conducted with the initial flow composition of 0.542 kg/s air, 0.1

kg/s O2 and 8 g/s H2 at total temperature of 850 K at the inlet of the hydrogen heater. Calcu-

lated profiles by Davidenko for the inlet field are in good agreement with the total temperature
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data measured very near the inlet, located at x=10 mm (shown in Figure 5.35). Also, the esti-

mated co-flow inlet oxygen concentration is at atmospheric level (%21), showing agreement

with reported experimental data [24]. Therefore, it is assumed that the inlet conditions applied

in this secttion are adequate.

Two set of initial fields are deduced from the results of Davidenko. The simulations with first

simple profile intended to the comparison of numerical approaches. The second inlet profile

is more complex, including the radial velocity and pressureprofiles. These complexities

induce strong shocks within the flow which are reflected at thewalls and affect the flowfield.

Sensitivity of the solution to the inlet field conditions is investigated with this improved inlet.

5.2.2.1 SIMPLE PROFILE

Using a simplified initial field is generated fitting hyperbolic tangent profiles over the given

initial conditions, (equation 5.6) similar to the Eggers jet. The walls are subject to sudden
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Figure 5.36: Simplified initial field data deduced from RANS solutions by Davidenko [22];
from left to right radial profiles for temperature, velocityand species concentrations.

temperature change and also the wall boundary layer can havesignificant effect on the flow

inside. Therefore, Davidenko applied various conditions for the walls. The profiles considered

in this study are corresponding to adiabatic wall boundary conditions for the cooled nozzle and

hydrogen injector. However, to be able to include wall effects a high resolution is necessary

around such flow domain. As an alternative, symmetric boundary conditions are applied on

wall at low resolution and the velocity gradients at the wallboundaries are removed. As such,

the profiles are modified to be normal at the wall boundaries. Also, the radial component

of the velocity and the pressure profiles which lead to strongshock patterns are neglected.

This also allows to single out the analysis of turbulent flamewithout occurrence of shock
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turbulence interaction effects.

The simple profiles of temperature, velocity and species concentrations (except radicals) are

shown in Figure 5.36. The chemical composition of the vitiated air co-flow also includes rad-

icals (not shown in Figure 5.36) : YOH=2.285×10−4, YO=1.8×10−4 which have an important

effect on ignition.

The coefficients for hyperbolic tangent profiles used in equation 5.6 for the jet and the co-flow

are given in Table 5.6. In the Figure 5.37, the jet core regioninlet velocity profiles are shown

with different resolutions. The shear layer is shown to be highly resolved especially with the

fine grid.

Table 5.6: LAERTE inlet hyperbolic
tangent profile coefficients for equation
5.6.

var: Ujet Uco− f low Yair

fmax 1970 1400 1
A 9 0.8 12
B 10 0.75 1
C 10 -1.33 -1.11
D 1 -1 0
E 1 -1 -1

0
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2000

-10 -5 0 5 10

y (mm)
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RANS simulation
64 x 64 x 256 
256 x 256 x 512
128 x 128 x 512

Figure 5.37: Inlet velocity profile for the react-
ing air/H2 LAERTE jet.

5.2.2.2 IMPROVED PROFILE

The simulations are conducted with more realistic conditions that also include radial velocity

and pressure profiles at the inlet. These additional profilesgenerate strong shocks through the

flow. The resolution of the wall shear layer is not tractable even with the fine grid spacing so

the velocity decay on the walls is not included in these simulations. The additional radial flow

field and pressure profiles computed by Davidenko normal to the axis of the jet is shown on

the set of Figures 5.38. The concentrations of the radicals (not shown in the Figure) in the

co-flow are taken to be: YOH=2.285×10−4, YO=1.8×10−5 and YH = 8.2×10−7.

92



 0

 600

 1200

 1800

-0.03  0  0.03
0.0×10

0

5.0×10
4

1.0×10
5

1.5×10
5

T
(K

)

p(
P

a)

y(m)

ONERA (x=0.010 m)
improved profile T(K)

improved profile p(Pa)

 0

 1000

 2000

 3000

-0.03  0  0.03

-200

 0

 200

 400

U
x(

m
/s

)

U
r(

m
/s

)

y(m)

ONERA (x=0.010 m)
improved profile (Ux)
improved profile (Ur)

 0

 0.4

 0.8

 1.2

-0.03  0  0.03

Y

y(m)

YH2
,YO2

,YH2O,YN2

Figure 5.38: Initial field data deduced from Davidenko RANS solutions [22] including shock
patterns at inlet; from left to right radial profiles for temperature, velocity and species con-
centrations
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5.2.3 NUMERICAL PARAMETERS

5.2.3.1 FLOW PARAMETERS

The flow conditions at the inlet of the chamber are summarizedin Table 5.7.

Table 5.7: LAERTE experimental conditions.

H2 jet air co-flow

U (m/s) 1970 1336

Tstat/Ttot (K) 160/300 1200/1850

Pstat/Ptot (kPa) 80/680 80/720

Mach 2 2

q̇ (g/s) 6.2 650

µ (kg.m−1.s−1) 0.729 10−5 0.729 10−5

ρ(kg.m−3 0.104 0.283

Rejet 2.05 105

Mc 0.39

The variables that are written in bold are taken from experiments while the remaining ones

are calculated.

5.2.3.2 SPATIAL PARAMETERS

Grid resolutions are 64×64×256, 128×128×512 and 256×256×1024 with the same clustering

characteristics of grid nodes as for the Eggers jet (equation (4.53)). The size of the smallest

cell for the fine grid is∆xmin = 0.216 mm and∆ymin = ∆zmin = 0.110 mm. Assuming the

size of the large scales to be approximately 5 mm in the mixingregion, a calculation similar

to equation (5.5) givesRe(∆U/2, δ) ≈ 1300, a Kolmogorov scaleη ≈ 0.023 mm and a Taylor

micro-scaleλ ≈ 0.14 mm. The resolution characteristics for all grids are listed in Table 5.8.

Comparing non-reacting Eggers and reacting LAERTE test cases, it is seen that the flow field

is more resolved for reacting test case on the fine grids.
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Table 5.8: Ratios of approximate Taylor micro-scale and Kolmogorov scale to the minimum
grid spacing.

Grid ∆ xmin ∆ ymin ∆/η ∆/λ

64×64×256 0.865×10−2 0.450×10−3 20 3.2
128×128×512 0.430×10−3 0.223×10−3 10 1.6
256×256×512 0.226×10−3 0.110×10−3 5 0.8

5.2.3.3 TIME PARAMETERS

The chemical source terms are non-linear, so that it is not possible to deduce analytical re-

striction for time step. The maximum time step constraint∆tchem is validated by numerical

0D tests. Since the current problem is in more or less atmospheric conditions, it is proper to

conduct the tests for constant pressure (dp/dt = 0). Time derivative of pressure is related to

the enthalpy

ρ
dh
dt
=

dp
dt

(5.13)

When the enthalpy is written explicitly, it yields

ρCp
∂T
∂t
= −

Nsp∑

α=1

(
∆h0
α +

∫ T

T0

Cpα(θ)dθ

)
ω̇α (5.14)

0D tests are conducted by iterating the time step for pure stoichiometric and vitiated stoi-

chiometric (YH2O=0.1124) mixtures. Initial pressure and temperature valuesare taken to be
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Figure 5.39: 0D constant pressure tests for stoichiometricH2/air (left) and stoichiometric
vitiated H2/air (right) mixtures. The dashed lines refer to the stable solutions and the solid
lines to the unstable ones.

respectively 80 kPa and 1500 K. Third order Runge-Kutta method is applied for time inte-

gration. The variation of temperature and species mass fractions are shown in Figure 5.39 s.
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The dashed lines refer to stable solutions. The solid lines refer to the unstable solutions. The

maximum time step for both pure and vitiated H2-air mixtures is∆tchem=1.3×10−7.

However, the 0D calculations with constant volume conditions are more severe than constant

pressure. Also, it is more representative of the flow enclosed with walls including pressure

jumps due to shocks. 0D constant volume (dν/dt = 0) conditions refer to constant energy

condition

dν
dt
= 0 ⇒ de

dt
= 0 (5.15)

When the enthalpy is written explicitly, it yields

ρCv
dT
dt
= −

Nsp∑

α=1

(
∆h0
α +

∫ T

T0

Cpα(θ)dθ −
RT
Mα

)
ω̇α (5.16)

0D constant volume tests (Figure 5.40) are conducted with the same conditions of constant

pressure tests. Both constant volume computations for stoichiometric H2/air (left) and stoi-

chiometric vitiated H2/air (right) mixtures are stable with the maximum time step constraint

of ∆tchem =0.6×10−7 s. Considering that∆tchem reduces by increasing initial pressure and

 1000

 1500

 2000

 2500

 3000

 3500

 0×10
0

 7×10
-5

 1×10
-4

 2×10
-4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

T
(K

)

Y

t(s)

Temperature
YH2

, YO2
, YH2O, YOH, YO

 1000

 1500

 2000

 2500

 3000

 3500

 0×10
0

 7×10
-5

 1×10
-4

 2×10
-4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

T
(K

)

Y

t(s)

Temperature
YH2

, YO2
, YH2O, YOH, YO

Figure 5.40: 0D constant volume tests for stoichiometric H2/air (left) and stoichiometric viti-
ated H2/air (right) mixtures. The dashed lines refer to the stable solutions and the solid lines
to the unstable one.

temperature, the chemical constraint for time step is chosen to be∆tchem =0.2×10−7 s [58].

In application, at high resolution of 256×256×1024,∆thydro which is computed out of CFL

condition, is less than the chemical time step limit.
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5.2.4 RESULTS

5.2.4.1 RESULTS FOR SIMPLE INLET PROFILE

The LAERTE chamber simulation results, with the simple inlet field (section 5.2.2.1), are

presented in this section. In summary, the inlet radial velocity and the inlet pressure profiles,

estimated numerically by Davidenko for the experiment, arenot applied for the simulations

that are presented here. All the inlet profiles are smoothed and mass fraction of the radical O

is taken to be more than the numerical estimations by one order. Because of poor performance

of Smagorinsky model in non-reacting case, only LESSSF, MILESNS and MILESEULER

are considered.

5.2.4.1.1 FLAME STRUCTURE

The flame structure is analyzed from the fuel/oxidizer mixture fraction

z=
Z − Zco-flow

Zjet − Zco-flow
(5.17)

Z = sYH2 − YO2 (5.18)

Z is the first of the three Schwab-Zeldovitch variables for a single-step reaction (e.g. [104]

p.84), ands= YO2/YH2 |st = 8 is the mass stoichiometric ratio for the H2/O2 chemistry. Hence,

in the pure H2 central jet

Yjet
H2
= 1 ; Yjet

O2
= 0 ; Zjet = s= 8 ; z= 1 (5.19)

and in the vitiated air co-flow

Yco-flow
H2

= 0 ; Yco-flow
O2

= 0.2447 ; Zco-flow = −Yco-flow
O2

; z= 0 (5.20)

Introducing boundary conditions (5.19)(5.20) for Z in equation 5.17, and making use of the

flame equivalence ratioφ0 yields

φ0 = s
Yjet

H2

Yco-flow
O2

= 32.69 (5.21)

z obtained by mixing the same amount mass of fluid taken in the fuel stream and in the

oxidizer stream with incorporated equation 5.17 becomes

z=
s
(
YH2/Y

co-flow
O2

)
−

(
YO2/Y

co-flow
O2

)
+ 1

1+ φ0
(5.22)
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The flame front is supposed to be whereYH2 = YO2 = 0, i.e. at stoichiometric locations where

zst =
1

1+ φ0
= 0.0297 (5.23)

This value follows from the assumption of a unitary Lewis number in both fuel and oxidizer

streams.

The distribution of fuel/oxidizer mixture fraction is showing over 128×128×512 resolution

MILES NS solution data to have an idea of the distribution, in Figure 5.41. In Figures 5.42-

X0 0.1 0.2 0.3

z: 0.2 0.4 0.6 0.8

Figure 5.41: Fuel/oxidizer mixture fraction distribution.

5.44, 3D instantaneous iso-surface of the mixture fraction(zst) at the stoichiometric value are

plotted for LESSSF, MILESNS and MILESEULER on different grid resolutions. The mix-

ture fraction definition given in equation 5.22 is derived for one-step infinitely fast chemistry.

When finite rate chemistry is considered, other passive scalar derivations may be constructed

using

• the atomic mass fractions [6, 7]

z=
0.5(ZH − ZH,Ox)/WH − (ZO − ZO,Ox)

0.5(ZH, f − ZH,Ox)/WH − (ZO, f − ZO,Ox)/WO
(5.24)

where Z is the elemental mass fraction

• the mass fraction of an inert species, if there exists any. Incurrent study, N2 is the inert

species.

z=
YN2 − YN2

∣∣∣
jet

YN2

∣∣∣
co− f low

− YN2

∣∣∣
jet

(5.25)

A lifted diffusion flame can then be traced using passive scalar definitionbased on atomic

mass fractions (equation 5.24). However, since the co-flow includes combustion products,
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equations 5.24, 5.25 and 5.41 are giving similar stoichiometric iso-surfaces at the shear layer.

The first definition is (equation 5.22) kept for mixture fraction definition for visualization.

Vertical and horizontal contour maps are the projections ofthe instantaneous temperature field

and water mass fractions in the corresponding symmetry planes, respectively.

Increasing the grid resolution produces a more wrinkled flame. But for a given resolution,

there are apparently no major differences between LES and MILES. Some subtle differences

are present however. The solution at coarse grid of 64×64×256 (Figure 5.42) is reasonable,

even though the gradients at shear region of inlet profiles are poorly resolved. Although there

is no molecular transport except for the numerical diffusion the MILESEULER solution gives

qualitatively similar results when compared to MILESNS and LESSSF. The flame region is

designated as the warm color areas in the temperature and water mass fraction contour plots.

It consists of a diffusion layer surrounding the reactive layer, embedded in thestoichiometric

surface. The reactive layer at the jet/co-flow interface is wrinkled by large-scale turbulent

eddies, which bring in contact reactants and mix them at the turbulent level. During that time,

the finite-rate chemistry proceeds.
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Figure 5.42: Instantaneous iso-surfaces of the stoichiometric mixture fraction, temperature
contours and water mass fraction contours on the symmetry planes for 64×64×256 grid. From
top to bottom : LESSSF, MILESNS, MILES EULER.
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Figure 5.43: Instantaneous iso-surfaces of the stoichiometric mixture fraction, temperature
contours and water mass fraction contours in the symmetry planes for 128×128×512 grid.
From top to bottom : LESSSF, MILESNS, MILES EULER.
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Figure 5.44: Instantaneous iso-surfaces of the stoichiometric mixture fraction, temperature
contours and water mass fraction contours in the symmetry planes for 256×256×1024 grid.
From top to bottom : LESSSF, MILESNS, MILES EULER.
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5.2.4.1.2 STATISTICAL RESULTS

In the MILES NS 256×256×1024 simulation, the turbulent time scale can be estimated from

Figure 5.45. The Figure shows the instantaneous distribution of Ux along two longitudinal

lines one located on the jet axis (r=0 mm) and the other in the shear region (r=3.2 mm,

wake of jet nozzle). At the end of the potential core, the turbulent length scale deduced

from the mean distance between major peaks is about 1 cm or less. Applying the so-called

Taylor hypothesis with a mean velocity of about 1500 m/s gives a turbulent time scaleτt ≈

5.10−6 s. Figures 5.39 and 5.40 show the time evolution of the species mass fractions and the

temperature in a premixed stoichiometric 0D air/H2 flame at constant volume and at constant

pressure conditions, respectively. In both cases the ignition delay is around 3.10−5s, and the

time for the reaction to complete isτc ≈ 5.10−5s. Hence, there is a strong interaction between

chemistry and turbulence in a thick flame region since the estimated the Damköhler number

is around

Da=
τt

τc
≈ 0.1 (5.26)

As in the non-reacting case, the grid spacing is mostly influencing the amount of turbulent
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Figure 5.45: Instantaneous axial velocity component on thejet axis and in the main shear
region. MILESNS, 256×256×1024.

mixing. The finer is the grid spacing, the lower is the sub-grid scale dissipation. This is

either present as numerical dissipation in MILES or numerical and explicit dissipation in LES.
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Increased grid resolution also leads to more finer turbulentstructures in the flow field. The

residual numerical diffusion combines with molecular transport -except in MILESEULER-

to finally shape the mixture fraction across the diffusion layer and control the reaction rate.

Further insight can be gained from the scatter-plots of Figures 5.46 and 5.47. The most

dissipative simulation is the top-left sub-figure and the less dissipative one is the bottom-right

sub-figure. In the scatter plots the mixture fraction definition is chosen as the normalized

nitrogen mass fraction (equation 5.25). In order to indicate the position of points on scatter

plots relative to the flame front, color that represent an index related to the water concentration

is used

cH2O =

∣∣∣∣∣∣∣∣


YH2O − YH2O

∣∣∣
jet

YH2O

∣∣∣
max− YH2O

∣∣∣
jet




YH2O − YH2O

∣∣∣
co− f low

YH2O

∣∣∣
max− YH2O

∣∣∣
co− f low



∣∣∣∣∣∣∣∣
(5.27)

cH2O is an index indicating the relative mass fraction of water which is the main product of

chemical reactions. By definitioncH2O takes the value 1 in the flame and 0 elsewhere. The

points colored in green correspond to flow regions close to the flame front. Finite-rate,

reversible full chemistry is clearly felt since the flame structure departs strongly from infinitely

fast, irreversible one-step chemistry (straight lines). The temperature mixing line is curved

and is below the theoretical linear mixing line (Figure 5.46). This is due to the cold hydrogen

stream at 160K (see Table 5.7) which has a very high heat capacity (13200 J/kg.K at 160K)

when compared to that of air (1170 J/kg.K at 1200K). The dark blue color points are at high

mixture fraction region, indicate the initial core, far from the flame front. When hydrogen

mixes with surrounding air, it takes heat from the oxidizer stream and lowers the mixture

temperature below the self-ignition limit (≈ 1000K at stoichiometry).

On the coarse grid (left columns of Figures 5.46 and 5.47), the flame structure is almost the

same for all simulations. The points are clustered close to the equilibrium states, indicating

a relatively fast chemistry compared to large-eddies turbulent time scale (higher Damköhler

number). Few points are close to the mixing line atz ≈ zst indicating “mixed is burned”

behavior : the high level of numerical diffusion artificially brings reactants together at the

molecular level and reactions are completed.

On the intermediate grid 128×128×512 (central columns), a stronger departure from irre-

versible infinitely fast chemistry is observed. Diagrams are more “filled” because turbulent

mixing is more intense and the reactive mixture can be found in various intermediate states

combining reactants and products, especially in LESSSF due to the explicit sub-grid turbu-
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Figure 5.46: Scatter plots of temperature. Top to bottom : LES SSF, MILESNS,
MILES EULER. Left to right : 64×64×256, 128×128×512, 256×256×1024.

lent diffusion. More points can also be found near stoichiometry where reaction does not

occur (highYO2, low T) due to a “lack of time”. Physical LES and MILES are close to each

other indicating that the contributions of the explicit sub-grid model and the numerical diffu-

sion in MILES are at the same level.

On the fine grid, the scatter plots for the flame are slightly different. More points can be found

close the mixing lines, mainly in the H2 stream (z→ 1) where O2 is present without reaction,

because of the low temperature. This is due to fast and efficient turbulent mixing relative to the

chemistry. This is mainly true for the MILESEULER simulation (bottom-right sub-figure in

Figure 5.47) which differs clearly from LESSSF and MILESNS : the low level of numerical

diffusion and the absence of viscous model restrict the small scale molecular mixing, hence

the reaction rates are reduced.

The velocity, temperature and H2 mass fractions of the average fields at the center line and
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Figure 5.47: Scatter plots of O2 mass fraction. Top to bottom : LESSSF, MILESNS,
MILES EULER. Left to right : 64×64×256, 128×128×512, 256×256×1024.

the maximum temperature value on transverse planes alongx axis are plotted for different

resolutions in Figure 5.48. The average profiles are approaching each other for high grid

resolutions. Both velocity potential core and concentration potential core lengths are longer

for low resolution of 64×64×512, regardless of numerical approach. At this initial region of

the flow shear layer instabilities are mostly responsible ofmixing and transition to turbulence.

At low resolution since the sharp gradients are smoothed dueto large amount of dissipation,

transition and mixing are delayed. At low resolutions high level oscillations are noticed at

the location where jet is entering the computational domain. This may be attributed to the

sharpness of the oblique shock forming immediately around the inlet region. At the two higher

resolutions potential core lengths for the solutions are the same (four sub-figures top right).

The dynamics of the flow is resolved for 128×128×512 and higher resolution. Although the

resolution is increased, the potential core length remainsthe same.
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The maximum temperature distribution along the jet axis on the normal planes are plot-

ted to denote the ignition location along the axis as the temperature jump (bottom sub-

figures in 5.48). As the resolution is increased, the jump in the maximum temperature for

MILES EULER slightly deviates to an upstream axial position (bottom right sub-figure in

5.48). As diffusion is enhanced with molecular transport and physical LES, this jump can
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Figure 5.48: Average profiles of velocity, H2 mass fraction and temperature at the center line
of the jet and maximum temperature at the transverse sections alongx axis. Left to right :
64×64×256, 128×128×512, 256×256×1024.
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be expected to be earlier for MILESNS and LESSSF. However, further analysis shows that

after the occurrence of ignition, the penetration of the high temperature zones associated with

transverse diffusion is prevented by the cold hydrogen flow close to the inlet. Taking into ac-

count the fact that the molecular transport enhances cooling, the temperature jump rise along

the axis is delayed. Temperature jumps for MILESNS and LESSSF are exactly at the same

axial positions for all resolutions.

Radial profiles of axial velocity and temperature atx = 210 mm are shown in Figure 5.49, with

experimental measurements of ONERA. For these measurements, temperature is obtained

with CARS (Coherent Anti-Stokes Raman Scattering) and velocity with the LDA technique.

The computed velocity that is overestimated compared to experiments, is probably because

particles cannot follow perfectly the fast and low-densityflow. Computations underestimate

the mean experimental temperature in the center because thejet is flapping and the points of

measurement are alternatively in the central jet or in the surrounding reaction zone. Also,

the high temperature wall boundary layer which is not considered may lead temperature to

increase in the actual flow.
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Figure 5.49: Tranverse profiles of axial velocity (left) andtemperature (right) atx = 210 mm.
Top to bottom : 64×64×256, 128×128×512, 256×256×1024.
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Figure 5.50: Eddy-viscosity, LESSSF

Figure 5.50 displays the instantaneous distribution of sub-grid eddy-viscosity ratioµt/µ in the

vertical symmetry plane, for the different resolutions. On the 256×256×1024 grid, the SSF

model is barely active within the flame. The turbulent oscillations which emanate from the

inlet noise clustered at the jet center are laminarized while passing through the flame surface.

The SSF model is not active outside the flame.

5.2.4.2 RESULTS FOR IMPROVED INLET PROFILE

In the previous part the behavior of numerical approaches MILES and LES are investigated

using a simplified initial field with weak shocks which is deduced from simulation results

of Davidenko for the LAERTE chamber [22]. In this section, the improved inlet conditions

explained in section 5.2.2.2 are applied. The inlet field is improved adding the pressure and

radial velocity profiles calculated in the work by Davidenko. So that strong shock patterns

which do emanate from the inlet are included in the solution.Also, the concentration of rad-
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ical O is reduced to the level of numerical estimations by Davidenko whereas in previous

section 5.2.4.1 O mass fraction were calculated as (1−∑
Yα,O). The effect of radical O mass

fraction is showing itself as a late ignition. MILESEULER and MILESNS simulations are

conducted at 128×128×512 and 256×256×1024 resolutions. LESSSF simulation is not per-

formed since it is shown that it converges to the same statistics with MILES NS for reacting

and non-reacting flows.

5.2.4.2.1 FLAME STRUCTURE

Flame structure for the LAERTE solution is shown as the mixture fraction stoichiometric

value iso-surfaces together with temperature and water concentration contours on the corre-

sponding symmetry axis, in Figure 5.51. When compared with the previous simulations of

simple BCs (presented in section 5.2.4.1), MILESEULER has larger structures especially in

the second half of the computational domain. The MILESEULER solution is more wrinkled

compared to the MILESNS solution. Considering both temperature and water mass fraction

contours, it is observed that ignition occurs at a later axial location as the radical O concentra-

tion in the co-flow is less than the value in previous simulations with a simplified initial field.

Instantaneous pressure contours on the axis of the jet are shown on Figure 5.52. The resolved

shock patterns are almost the same for both MILESNS and MILESEULER solutions. As

the stoichiometric iso-surfaces are passing across the shock, the corresponding surface is con-

tracted. Thin layers of quenching can be observed on temperature and water mass fraction

contours which occur at these contraction regions.

When comparing medium and high resolution solutions, it is seen that ignition occurs at the

same axial location. Higher temperatures occur after ignition. More pronounced quenching

effect is also seen. This may be due to the increase in the sharpness of the shocks on the high

resolution grid. The shock patterns for the medium and high resolution solutions look alike.

Even though, in the solution on high resolution grid, much sharper shocks are resolved. As a

result, the radial extent of higher pressure zones along theoblique shocks is increased. The

turbulent structures in the first diamond shape shock structure near the inlet are also more

pronounced and sharper.
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Figure 5.51: Flame structure of LAERTE chamber with preciseinitial field, including strong
shock patterns.
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Figure 5.52: Pressure contours on the symmetry axis, of LAERTE chamber with precise initial
field.
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5.2.4.2.2 STATISTICAL RESULTS

The experimental pressure measurements over the chamber wall are compared with time av-

eraged numerical results on Figure 5.53. The statistical results of these simulations are also

compared to the numerical results obtained by RANS and adaptive mesh refinement (AMR)

methods. The AMR simulation results are taken from Eude. Since wall boundaries are not

considered in the MILESNS and MILESEULER computations, the experimental pressure

growth is larger than that computed. As in RANS calculationsthese wall boundary conditions

are considered, agreement with the experimental data is apparent. The experimental pressure

growth is reasonably higher due to velocity decay on the boundaries. There exists quite good

agreement in shock reflection positions despite the stretched grid at the boundaries.

In the Figure 5.54, maximum temperature distribution over YZ planes along thex axis is
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Figure 5.53: Wall pressure axial distribution
numerical results and experimental data.
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planes.

shown. Although results of MILESNS MILES EULER and AMR are similar for pressure

(Figure 5.53), they differ with each other for maximum temperature. The ignition location

which is denoted as the temperature jump in this Figure 5.54,occurs earlier in MILESNS

solution. This delay is also observed in flame structure Figures. In the LAERTE experiment

the ignition point is given roughly at 10 diameters along theaxis form the jet entrance. This

location is in good agreement with the axial temperature profile jump location computed by

MILES EULER MILES NS and AMR methods.

114



The radial distribution of OH molar concentration measurements are compared with the nu-

merical results in Figure 5.55. Both AMR and MILES solutionsgive quantitatively good

agreement with the experimental results. On the other hand RANS simulation results overes-

timate OH concentrations.

Both transverse velocity and temperature distributions atdifferent axial locations on the sym-
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Figure 5.55: Transverse OH concentration profiles atx=0.21 m along the axis.

metry axis of the domain are shown on Figure 5.56. At the far-field (x = 288 mm) both set of

results deviate from the experimental measurements. This may be attributed at the neglect of

the temperature and the velocity gradients near the wall. Furthermore, there may exist some

errors in the measurements due to flame flapping and insufficient transport of PIV particles in

low density flows. When comparing Figure 5.49 (simplified inlet field) and Figure 5.56 it is

seen that transverse profiles of average temperature and velocity are not much affected at the

far-field by the change of inlet field conditions. Despite thereduced scalar concentration (YO)

and radial inlet pressure and velocity profiles which generate strong shocks, the transverse

profiles are identical to the results of the previous section.

5.2.5 CONCLUSIONS

In this section, reacting tests conducted for the LAERTE chamber, are simulated. At first,

a simplified initial field is used for the comparative evaluation of the numerical approaches.

Later, a more precise initial condition is applied in order to enhance flow physics. In conclu-
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Figure 5.56: Experimental transverse profiles of axial velocity (left) and temperature (right)
at x=10 mm,x=72 mm,x=210 mm andx=288 mm.

sion for the first case, flow statistics converge to physical results as the resolution is increased

for both MILES NS and LESSSF computations. However at high resolution MILESEULER
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results differ from those of MILESNS and LESSSF. The achieved LES asymptotes for the

statistics also explained in the paper by Pope are similar tothese two approaches. The more

precise inlet conditions are applied in the second case. Both MILES NS and MILESEULER

simulation results are in good agreement. Even if the inlet profiles are improved, the average

field results are similar to the solutions for simplified inlet profiles. Present results are also

compared with the AMR results with precise initial conditions and they are in good agree-

ment.
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CHAPTER 6

CONCLUSIONS

In this study three dimensional computations are performedfor reacting and non-reacting

compressible H2/air jets. In the computations, fifth order WENO scheme is used. The

main objective is to investigate the respective performance of LES and MILES numerical

approaches in the context of high speed reacting flows. It wasalso the intention of this work

to determine the sensitivities of a high speed reacting jet flow simulations to various physical

models. In the non-reacting case, the time step is limited bythe CFL condition. In the react-

ing case the time step is limited to 2×10−8 s as dictated by the chemistry. The relative cost of

the different simulations is presented at Table I.1 in appendix I.

The following conclusions are derived from the simulation of non-reacting Eggers jet [71]:

• The Smagorinsky model is found to be over-dissipative, hence inhibiting the initial

development of instabilities. The three-dimensionality sensor in the Selective Structure

Function model fixes the problem.

• In particular, LES solutions do not show superiority compared to MILES, Navier-

Stokes or Euler, considering the statistics related to the mixing and the dynamics of

the flow.

• In the non-reacting case, calculation of the molecular transport model in MILESNS

represents an extra cost around 18%. The cost of introducingthe Smagorinsky model

in LES SM is hardly felt because the velocity derivatives requiredin the model are

already computed in viscous terms. The SSF model is a little more expensive due to

the calculation of velocity differences and of the three-dimensionality sensor, (equation

3.67), but is also negligible.
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• MILES EULER simulations are showing grid convergence although there exists no

physical cutoff in the simulation. This is an open question for further research.

In the reacting LAERTE chamber case, the main conclusions are [72]:

• The trend is the same as in the Eggers jet, but depending on thegrid resolution, chem-

istry can be faster or slower relatively to the flow dynamics.

• One of the most sensitive parameter to the molecular transport is the ignition point.

When comparing the maximum temperature change on the normalplanes along the

axis, a slight shift of temperature jump is observed at the order of jet diameter between

EULER and NS solutions.

• When comparing MILESNS and LESSSF average field results, no significant differ-

ences are found. This similarity is valid even in the scatterplots of temperature (Figure

5.46) and O2 mass fraction (Figure 5.47) which are representing the interactions at the

molecular level.

• The high sensitivity to the inlet profiles of RANS method is not found in LES.

• The 7 species, 14 reactions chemistry in the reacting MILESEULER represent 85%

of the WENO effort, although the routines for source terms are thoroughly optimized.

In conclusion, the non-linear WENO scheme is self-adaptingto the flow gradients, and a bal-

ance is achieved between the explicit sub-grid scale hyperviscosity in physical LES and the

numerical dissipation of the scheme. In a physical LES on a coarse grid, the proper model-

ing of the sub-grid chemical source term is important, but the molecular transport is not. In

a numerical LES however, a molecular viscous cut-off in the simulation is mandatory. The

choice of whether to introduce or not an explicit sub-grid model in the simulation is not a

matter of computational cost. MILES-Navier-Stokes performed with “clever” dissipative nu-

merics provides almost the same grid-independent flow statistics as physical LES. Quoting

S.B. Pope’s conclusion [107]“The most that an LES calculation can hope to achieve, is to

obtain an accurate estimate of the intermediate asymptote [...]” . This is achieved for the two

finest grids used in this study, with and without explicit sub-grid model.
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[96] O. Métais and M. Lesieur. Spectral large-eddy simulation of isotropic and stably-
stratified turbulence.Journal of Fluid Mechanics, 239:157–194, 1992.

[97] E.S. Oran and Boris J.P. Detailed modeling of combustion systems.Progress in Energy
and Combustion Science, 7(1):1–71, 1981.

[98] E.S. Oran and Boris J.P.Numerical Simulation of Reactive Flow. Elsevier, 1987.
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APPENDIX A

TRANSPORT COEFFICIENTS

In this appendix the constants for the curve fits of viscosity, thermal conductivity versus tem-

perature and binary diffusion coefficients versus temperature and pressure are tabulated.

Table A.1: Thermal conductivity coefficients for second order polynomial fit (i.e. equation
2.50).

α λα0 λα1 λα2
H2 8.252657E−02 3.571108E−04 -1.065945E−08
O2 7.823695E−03 6.765939E−05 -4.206463E−09
H 1.324366E−01 6.079185E−04 -5.378665E−08
O 2.463573E−02 8.861247E−05 -7.426621E−09

OH 2.303120E−02 1.220661E−04 -5.555844E−09
H2O -2.298272E−02 1.501943E−04 -2.770068E−09
N2 8.124867E−03 6.467204E−05 -4.751436E−09

Table A.2: Coefficients of viscosity for second order polynomial fit (i.e. equation 2.37).

α µα0 µα1 µα2
H2 4.817404E−06 1.558606E−08 -1.263024E−12
O2 1.005179E−05 3.965070E−08 -3.402360E−12
H 4.281418E−06 1.965283E−08 -1.738818E−12
O 1.264157E−05 4.547059E−08 -3.810896E−12

OH 1.303709E−05 4.687465E−08 -3.927133E−12
H2O -1.447952E−06 4.034792E−08 -2.764521E−12
N2 8.959686E−06 3.408293E−08 -2.898343E−12
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Table A.3: Power law fitted diffusion coefficients for P0(=1bar), T (i.e. equation 2.21).

α β aαβ0 bαβ
H2 H2 1.169336E−08 1.655943
O2 H2 6.491853E−09 1.660466
O2 O2 1.567353E−09 1.672389
H H2 1.700467E−08 1.662801
H O2 9.259134E−09 1.683814
H H 2.165726E−08 1.685359
O H2 8.765136E−09 1.657728
O O2 2.533007E−09 1.668124
O H 1.338447E−08 1.675000
O O 3.908707E−09 1.664289

OH H2 8.738485E−09 1.657728
OH O2 2.481736E−09 1.668088
OH H 1.336130E−08 1.675031
OH O 3.850414E−09 1.664290
OH OH 3.791110E−09 1.664289
H2O H2 5.802656E−09 1.697037
H2O O2 1.267896E−09 1.737231
H2O H 6.695257E−09 1.750332
H2O O 2.362321E−09 1.711888
H2O OH 2.325140E−09 1.711866
H2O H2O 3.499347E−10 1.926722
N2 H2 6.277844E−09 1.659863
N2 O2 1.579563E−09 1.670803
N2 H 8.972560E−09 1.681871
N2 O 2.502788E−09 1.666851
N2 OH 2.454388E−09 1.666818
N2 H2O 1.294409E−09 1.731984
N2 N2 1.591546E−09 1.669076
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APPENDIX B

THERMODYNAMIC DATA

The thermodynamic data used in the calculation are presented in Table B.2, following the

format given in Table B.1. It is assumed that the pressure is not elevated so thermodynamic

properties are function of temperature only. The data are the coefficients of fitted polynomials

on the temperature functions of heat capacitiesCpα andCvα of speciesα.

Cpα
R
= Cp0α + TCp1α +Cp2αT

2 +Cp3αT
3 +Cp4αT

4 (B.1)

EnthalpyH◦/RTand entropyS◦/RT of species are computed using this data. There exists two

sets of coefficients referring to two different polynomials for low temperature [Tmin− 1000K]

and high temperature [1000K − Tmax] intervals. The coefficientsCp5 andCp6 are used to

compute the enthalpy∆H0 and the entropy∆S0of system.

Table B.1: Thermodynamic property data format.

species Tmin (K) Tmax (K) M (g.mol−1)
Cp0,H Cp1,H Cp2,H Cp3,H Cp4,H

Cp5,H Cp6,H Cp0,L Cp1,L Cp2,L

Cp3,L Cp4,L Cp5,L Cp6,L
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Table B.2: Thermodynamic properties. (Burcat [14]).

H 300 5000 1,00794
0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00
0.02547163E+06 -0.04601176E+01 0.02500000E+02 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.02547163E+06 -0.04601176E+01

H2 300 5000 2.01588
0.02991423E+02 0.07000644E−02 -0.05633829E−06 -0.09231578E−10 0.01582752E−13

-0.08350340E+04 -0.01355110E+02 0.03298124E+02 0.08249442E−02 -0.08143015E−05
-0.09475434E−09 0.04134872E−11 -0.01012521E+05 -0.03294094E+02

O 300 5000 15.99940
0.02542060E+02 -0.02755062E−03 -0.03102803E−07 0.04551067E−10 -0.04368052E−14
0.02923080E+06 0.04920308E+02 0.02946429E+02 -0.01638166E−01 0.02421032E−04

-0.01602843E−07 0.03890696E−11 0.02914764E+06 0.02963995E+02
O2 300 5000 31.99880

0.03697578E+02 0.06135197E−02 -0.01258842E−05 0.01775281E−09 -0.01136435E−13
-0.01233930E+05 0.03189166E+02 0.03212936E+02 0.01127486E−01 -0.05756150E−05
0.01313877E−07 -0.08768554E−11 -0.01005249E+05 0.06034738E+02

OH 300 5000 17.00734
0.02882730E+02 0.01013974E−01 -0.02276877E−05 0.02174684E−09 -0.05126305E−14
0.03886888E+05 0.05595712E+02 0.03637266E+02 0.01850910E−02 -0.01676165E−04
0.02387203E−07 -0.08431442E−11 0.03606782E+05 0.01358860E+02

H2O 300 5000 18.01528
0.02672146E+02 0.03056293E−01 -0.08730260E−05 0.01200996E−08 -0.06391618E−13

-0.02989921E+06 0.06862817E+02 0.03386842E+02 0.03474982E−01 -0.06354696E−04
0.06968581E−07 -0.02506588E−10 -0.03020811E+06 0.02590233E+02

N2 300 5000 28.01348
0.02926640E+02 0.01487977E−01 -0.05684761E−05 0.01009704E−08 -0.06753351E−13

-0.09227977E+04 0.05980528E+02 0.03298677E+02 0.01408240E−01 -0.03963222E−04
0.05641515E−07 -0.02444855E−10 -0.01020900E+05 0.03950372E+02
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APPENDIX C

CHEMICAL KINETICS

The chemical kinetics data used for source term calculationare presented in Table C.2. The

rate constantKr is computed applying Arrhenius law :

Kr = ArT
br exp

(
− Er

RT

)

where for ther th reaction:

• Ar is the pre-exponential factor.

• Er is the activation energy.

• br constant for pre-exponential factor Tbr .

The efficiencies of the species included in the H2/Air chemical kinetics mechanism is :

Table C.1: Efficiency of the species for the ONERA scheme.

H H2 H2O O OH O2 N2 Ar
ONERA 1,0 2,5 12 1,0 1,0 1,00 1,0
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Table C.2: H2/air Chemical reaction mechanism by ONERA.

r Reaction Ar (cm.mol.s) br Er (kJ.mol−1)
1 H2 + O2 −→ OH + OH 1.70E+13 0.0 199.9122
2 OH + OH −→ H2 + O2 4.03E+10 0.3168 121.0074
3 H + O2 −→ OH + O 1.99E+14 0.0 70.3043
4 O + OH −→ H + O2 8.93E+11 0.3383 -0.9778
5 H2 + OH −→ H2O+ H 1.02E+08 1.6 13.8008
6 H + H2O −→ H2 + OH 7.96E+08 1.528 77.3248
7 H2 + O −→ OH + H 5.12E+04 2.67 26.3016
8 OH + H −→ H2 + O 2.70E+04 2.649 18.6212
9 OH + OH −→ H2O+ O 1.51E+09 1.14 0.4142
10 H2O+ O −→ OH + OH 2.22E+10 1.089 71.6144
11 H + OH + M −→ H2O+ M 2.21E+22 -2.0 0.0
12 H2O+ M −→ H + OH+M 8.94E+22 -1.835 496.7304
13 H + H + M −→ H2 + M 9.79E+16 -0.6 0.0
14 H2 + M −→ H + H +M 5.09E+16 -0.3624 433.2265
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APPENDIX D

TRANSFORMATION MATRICES FOR SYSTEM OF N S P+5

EQUATIONS

The following matrices are used for finite difference characteristic discretization. The vector

of conservative variables is :

~̃U =
[
ρ, ρu, ρv, ρw, ρet, ρY1, . . . , ρYNsp

]T

and the vector of primitive variables is considered as :

~U =
[
ρ, u, v, w, T, Y1, . . . , YNsp

]T

Here the matrices for transformation between conservativevariables to characteristic variables

are presented, for the spatial discretizationR̃et L̃. These can be directly obtained diagonaliz-

ing the conservative jacobian matricesÃ but the easier way is using the relationsR̃= PRand

L̃ = LP−1.

with

1. K = 1
2uiui

2. ǫα = hα − rαT

3. ǫ =
∑Nsp

α=1 hαYα − rT
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R̃=



ρ ρ 0 0 ρ ρ r−r1
r . . . . . . . . . ρ

r−rNsp

r

ρ(u− c) ρu 0 0 ρ(u+ c) ρu r−r1
r . . . . . . . . . ρu

r−rNsp

r

ρv ρv ρ 0 ρv ρvr−r1
r . . . . . . . . . ρv

r−rNsp

r

ρw ρw 0 ρ ρw ρwr−r1
r . . . . . . . . . ρw

r−rNsp

r

ρet + P− ρuc ρet − P
γ−1 ρv ρw ρet + P+ ρuc ρet

r−r1
r + ρ(ǫ1 − ǫ) . . . . . . . . . ρet

r−rNsp

r + ρ(ǫNsp − ǫ)

ρY1 ρY1 0 0 ρY1 ρY1
r−r1

r + ρ ρY1
r−r2

r . . . . . . ρY1
r−rNsp

r

ρY2 ρY2 0 0 ρY2 ρY2
r−r1

r

. . .
. . .

...

...
...

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

. . .
. . .

...

ρYNsp ρYNsp 0 0 ρYNsp ρYNsp

r−r1
r . . . . . . ρYNsp

r−rNsp−1

r ρYNsp

r−rNsp

r + ρ



(D.1)

and
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L̃ =



c2+γuc+γ(γ−1)(K−ǫ)
2γρc2 − (γ−1)u−c

2ρc2 − (γ−1)v
2ρc2 − (γ−1)w

2ρc2
γ−1
2ρc2

(γ−1)(ǫ−ǫ1)+(r1−r)T
2ρc2 . . . . . .

(γ−1)(ǫ−ǫNsp)+(rNsp−r)T

2ρc2

γ−1
γρc2 (c2 − γ(K − ǫ)) (γ−1)u

ρc2
(γ−1)v
ρc2

(γ−1)w
ρc2 −γ−1

ρc2 (γ − 1)(r1−r)T−(ǫ−ǫ1)
ρc2 . . . . . . (γ − 1)

(rNsp−r)T−(ǫ−ǫNsp)

ρc2

− v
ρ 0 1

ρ 0 0 0 . . . . . . 0

−w
ρ

0 0 1
ρ

0 0 . . . . . . 0
c2−γuc+γ(γ−1)(K−ǫ)

2γρc2 − (γ−1)u+c
2ρc2 − (γ−1)v

2ρc2 − (γ−1)w
2ρc2

γ−1
2ρc2

(γ−1)(ǫ−ǫ1)+(r1−r)T
2ρc2 . . . . . .

(γ−1)(ǫ−ǫNsp)+(rNsp−r)T

2ρc2

−Y1
ρ 0 0 0 0 1

ρ 0 . . . 0

−Y2
ρ

0 0 0 0 0 1
ρ
. . . 0

... . . . . . . . . . . . .
. . .

. . .
. . .

...

... . . . . . . . . . . . . . . .
. . .

. . . 0

−YNsp

ρ 0 . . . . . . . . . . . . . . . 0 1
ρ



(D.2)
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APPENDIX E

TRANSFORMATION MATRICES FOR SYSTEM OF N S P+4

EQUATIONS

Matrices for the transformation between conservative, primitive and characteristic forms of

governing equations are presented in this appendix. The derivations for these matrices were

held over equations for Nsp-1 species.

E.1 TRANSFORMATION MATRICES BETWEEN THE PRIMITIVE VARI-

ABLES AND THE CONSERVATIVE VARIABLES

The vector of conservative variable is :

~̃U = T
[
ρ, ρu, ρv, ρw, ρet, ρY1, . . . , ρYNsp−1

]

and primitive variable vector is considered as :

~U = T
[
ρ, u, v, w, T, Y1, . . . , YNsp−1

]
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The transformation matrices of the conservative variablesto primitive variables and vice versa

are given below respectivelyP andP−1.

P =



1 0 0 0 0 0 0 · · · · · · 0

u ρ 0 0 0 0 0 · · · · · · 0

v 0 ρ 0 0 0 0 · · · · · · 0

w 0 0 ρ 0 0 0 · · · · · · 0

P5,1 ρu ρv ρw ρCv P5,6 P5,7 · · · · · · P5,Nsp+4

Y1 0 0 0 0 ρ 0 · · · · · · 0

Y2 0 0 0 0 0 ρ 0 · · · 0
...

...
...
...

...
... 0

. . .
...

...
...
...
...

...
...

...
. . . 0

YNsp−1 0 0 0 0 0 0 · · · 0 ρ



with

• P5,1 = h− rT + 1/2uiui

• P5,5+α = ρ[hα − hNsp − (rα − rNsp)T] avecα=1,...,Nsp-1

P−1 =



1 0 0 0 0 0 0 · · · · · · 0

−u/ρ 1/ρ 0 0 0 0 0 · · · · · · 0

−v/ρ 0 1/ρ 0 0 0 0 · · · · · · 0

−w/ρ 0 0 1/ρ 0 0 0 · · · · · · 0

P−1
5,1

−u
ρCv

−v
ρCv

−w
ρCv

1
ρCv P−1

5,6 P−1
5,7 · · · · · · P−1

5,Nsp+4

−Y1/ρ 0 0 0 0 1/ρ 0 · · · · · · 0

−Y2/ρ 0 0 0 0 0 1/ρ 0 · · · 0
...

...
...

...
...

... 0
. . .

...

...
...

...
...

...
...

...
. . . 0

−YNsp−1/ρ 0 0 0 0 0 0 · · · 0 1/ρ



avec

• P−1
5,1 =

1
ρCv[rNspT − hNsp + 1/2uiui ]

• P−1
5,5+α =

1
ρCv[(rα − rNsp)T − (hα − hNsp−)] avecα=1,...,Nsp-1
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E.2 TRANSFORMATION MATRICES BETWEEN THE PRIMITIVE VARI-

ABLES AND THE CHARACTERISTIC VARIABLES

The system for multispecies compressible flow equations maybe identified with the matrices

A. Considering the x direction, the matixA associated with the primitive variables defined in

the previous section is

A =



u ρ 0 0 · · · · · · · · · · · · 0

RT
ρM u 0 0 R

M A2,6 A2,7 · · · A2,Nsp+4

0 0 u 0 · · · · · · · · · 0

0 0 0 u 0 · · · · · ·
...

0 RT
CvM 0 0 u 0 · · ·

...

0 0 0
. . .

. . .
. . .

. . .
...

...
. . .

. . . 0 u 0
...

...
. . .

. . . 0 u 0

0 · · · · · · · · · · · · 0 0 0 u



with A2,5+i = R(1/Mα − 1/M) i=1,...,Nsp− 1.
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The jacobian for primitive variablesA is diagonalized using the derivation of left and right

eigenvector matricesRandL ( this definition is implemented for the derivation of characteris-

tic boundary conditions§ 4.5.1) asA = RΛL. Diagonal matrice of eigenvaluesΛ is as follows

: 

u− c 0 0 · · · · · · · · · · · · 0

0 u 0
...

... 0 u 0
...

... 0
. . .

. . .
...

...
. . .

. . .
. . .

...

... 0 u 0
...

... 0 u 0

0 · · · · · · · · · · · · · · · 0 u+ c



Matricies for right and left eigenvectors are given below

L =



ρCp
c2 0 0 0 0 · · · · · · 0 1 ρCp

c2

−Cp
c 0 0 0 0 · · · · · · 0 0 Cp

c

0 1 0 0 0 · · · · · · 0 0 0

0 0 1 0 0 · · · · · · 0 0 0

1 0 0 1 1 · · · · · · 1 0 1

0 0 0 −r
(r1−rNsp)T 0 · · · · · · 0 −r

(r1−rsp)ρ
0

0 0 0 0 −r
(r2−rNsp)T 0 · · · 0 0 0

...
...
...

... 0
. . .

...
...

...

...
...
...

...
...

. . .
...

...
...

0 0 0 0 · · · · · · 0 −r
(rNsp−1−rNsp)T 0 0



R=



(
γ−1
2γ

)
T
ρ

− c
2Cp 0 0

(
γ−1
2γ

) (
γ−1
2γ

) r1−rNsp

r T
(
γ−1
2γ

) r2−rNsp

r T . . . . . .
(
γ−1
2γ

) rNsp−1−rNsp

r T

0 0 1 0 0 0 0 . . . . . . 0

0 0 0 1 0 0 0 . . . . . . 0

−
(
γ−1
γ

)
T
ρ

0 0 0 1
γ

−
(
γ−1
γ

) r1−rNsp

r T
r2−rNsp

γr T . . . . . .
rNsp−1−rNsp

γr T

0 0 0 0 0 0 − r2−rNsp

r T 0 . . . 0
...

...
...
...

...
... 0

. . . 0
...

...
...

...
...

...
...

... 0
. . . 0

0 0 0 0 0 0 0 . . . 0
rNsp−1−rNsp

r T
γ−1
γ

0 0 0 − ρ
γT − ρ

γ

r1−rNsp

r − ρ
γ

r2−rNsp

r . . . . . . − ρ
γ

rNsp−1−rNsp

r(
γ−1
2γ

)
T
ρ

c
2Cp 0 0

(
γ−1
2γ

) (
γ−1
2γ

) r1−rNsp

r T
(
γ−1
2γ

) r2−rNsp

r T . . . . . .
(
γ−1
2γ

) rNsp−1−rNsp

r T


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E.3 TRANSFORMATION MATRICES BETWEEN THE CONSERVATIVE

VARIABLES AND THE CHARACTERISTIC VARIABLES

Here the matrices for transformation between conservativevariables and characteristic vari-

ables are presented, for the spatial discretizationR̃et L̃. These can be directly obtained diago-

nalizing the conservative jacobian matricesÃ but the easier way is using the relationsR= PR

andL̃ = LP−1.
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R̃=



ρCp

c2 0 0 0 0 . . . . . . 0 1
ρCp

c2

ρCp

c2 (u− c) 0 0 0 0 . . . . . . 0 u
ρCp

c2 (u+ c)
ρCp

c2 v ρ 0 0 0 . . . . . . 0 v
ρCp

c2 v
ρCp

c2 w 0 ρ 0 0 . . . . . . 0 w
ρCp

c2 w
ρCp

c2 (h+ K − uc) ρv ρw R5,4 R5,5 . . . . . . R5,Nsp+3 h− r
h1−hNsp

r1−rNsp
+ K

ρCp

c2 (h+ K + uc)
ρCp

c2 Y1 0 0 − ρr
(r1−rNsp)T 0 . . . . . . 0 Y1 − r

r1−rNsp

ρCp

c2 Y1

ρCp

c2 Y2 0 0 0 − ρr
(r2−rNsp)T . . . . . . 0 Y2

ρCp

c2 Y2

...
...
...

... 0
. . .

. . .
...

...
...

...
...
...

...
... 0

. . . 0
...

...

ρCp

c2 YNsp−1 0 0 0 . . . . . . 0 − ρr
(rNsp−1−rNsp)T YNsp−1

ρCp

c2 YNsp−1


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and

L̃ =



R−1
1,1 − c+(γ−1)u

2ρCp
− v(γ−1)

2ρCp
−w(γ−1)

2ρCp

γ−1
2ρCp

R−1
1,6 R−1

1,7 . . . . . . R−1
1,Nsp+4

− v
ρ

0 1
ρ

0 0 0 0 . . . . . . 0

−w
ρ

0 0 1
ρ

0 0 0 . . . . . . 0

R−1
4,1 − u

ρCp
− v
ρCp

− w
ρCp

1
ρCp

− h1−hNsp

ρCp

(r2−rNsp)T
ρr − h2−hNsp

ρCp
. . . . . .

(rNsp−1−rNsp)T
ρr − hNsp−1−hNsp

ρCp

(r2−rNsp)T
ρr Y2 0 0 0 0 0 − r2−rNsp

ρr T 0 . . . 0
...

...
...

...
...

... 0
. . .

...

...
...

...
...

...
...

...
. . . 0

(rNsp−1−rNsp)T
ρr YNsp−1 0 0 0 0 0 0 . . . 0 − (rNsp−1−rNsp)T

ρr
r−rNsp

r − −hNsp+K

CpT
u

CpT
v

CpT
w

CpT − 1
CpT − r1−rNsp

r +
h1−hNsp

CpT . . . . . . . . . − rNsp−1−rNsp

r +
hNsp−1−hNsp

CpT

R−1
Nsp+4,1

c−(γ−1)u
2ρCp

− v(γ−1)
2ρCp

−w(γ−1)
2ρCp

γ−1
2ρCp

R−1
Nsp+4,6 R−1

Nsp+4,7 . . . . . . R−1
Nsp+4,Nsp+4


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with

• K = 1/2uiui

• R5,α+3 = ρCp −
ρr(hα−hNsp)
T(rα−rNsp)

• R−1
1,1 =

γrNspT+(γ−1)(−hNsp+K)+uc
2ρCp

• R−1
4,1 =

1
ρCp

[
Tγ
γ−1

∑Nsp

α=2(rNsp − rα)Yα − hNsp + K
]

• R−1
1,α+5 =

γT(rα−rNsp)−(γ−1)(hα−hNsp)
2ρCp

with α = 1, . . . ,Nsp− 1

• R−1
Nsp+4,1 =

γrNspT+(γ−1)(−hNsp+K)−uc
2ρCp

• R−1
Nsp+4,α+5 = R−1

1,α+5 with α = 1, . . . ,Nsp− 1
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APPENDIX F

WAVE AMPLITUDES AND LODI SYSTEM IN TERMS OF

PRIMITIVE VARIABLES

LODI system wave amplitudes in x direction :

L1 =
u− c
2 ρCp

(
∂P
∂x
− ρc∂u
∂x

)

L2 = u
∂v
∂x

L3 = u
∂w
∂x

L4 = u T

[
1
ρ

(
1
c2

∂P
∂x
− ∂ρ
∂x

)
−

( r1 − rNsp

r

)
∂Y1

∂x

]

Lα+3 = −u T
( rα − rNsp

r

)
∂Yα
∂x

; α = (2, ...,Nsp− 1)

LNsp+3 = u

(
∂ρ

∂x
− ∂P
∂x

1
c2

)

LNsp+4 =
u+ c
2 ρCp

(
∂P
∂x
+ ρ c

∂u
∂x

)
(F.1)

LODI system primitive derivatives in x direction :

d1 =
∂ρ

∂t
=
ρCp

c2
(L1 +LNsp+4) +LNsp+3

d2 =
∂u
∂t

=
Cp

c
(LNsp+4 − L1)

d3 =
∂v
∂t
= L2

d4 =
∂w
∂t

= L3

d5 =
∂T
∂t

= L1 +L4 +

Nsp−1∑

α=2

Lα+3 +LNsp+4

d6 =
∂Y1

∂t
= −

(
r

r1 − rNsp

) (LNsp+3

ρ
+
L4

T

)

d5+α =
∂Yα
∂t

= −
(

r
rα − rNsp

)
Lα+3

T
α = (2, ...,Nsp− 1) (F.2)
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LODI system wave amplitudes in y direction :

L1 =
v− c

2 ρCp

(
∂P
∂y
− ρc∂v
∂y

)

L2 = v
∂u
∂y

L3 = v T

[
1
ρ

(
1
c2

∂P
∂y
− ∂ρ
∂y

)
−

( r1 − rNsp

r

)
∂Y1

∂y

]

L4 = v
∂w
∂y

Lα+3 = −v T
( rα − rNsp

r

)
∂Yα
∂y

; α = (2, ...,Nsp− 1)

LNsp+3 = v

(
∂ρ

∂y
− ∂P
∂y

1
c2

)

LNsp+4 =
v+ c

2 ρCp

(
∂P
∂y
+ ρ c

∂v
∂y

)
(F.3)

LODI system primitive derivatives in y direction :

d1 =
∂ρ

∂t
=
ρCp

c2
(L1 +LNsp+4) +LNsp+3

d2 =
∂u
∂t

= L2

d3 =
∂v
∂t
=

Cp

c
(LNsp+4 − L1)

d4 =
∂w
∂t

= L4

d5 =
∂T
∂t

= L1 +L3 +

Nsp−1∑

α=2

Lα+3 +LNsp+4

d6 =
∂Y1

∂t
= −

(
r

r1 − rNsp

) (LNsp+3

ρ
+
L3

T

)

d5+α =
∂Yα
∂t

= −
(

r
rα − rNsp

)
Lα+3

T
α = (2, ...,Nsp− 1) (F.4)
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LODI system wave amplitudes in z direction :

L1 =
w− c
2 ρCp

(
∂P
∂z
− ρc∂w

∂z

)

L2 = w T

[
1
ρ

(
1
c2

∂P
∂z
− ∂ρ
∂z

)
−

( r1 − rNsp

r

)
∂Y1

∂z

]

L3 = w
∂u
∂z

L4 = w
∂v
∂z

Lα+3 = −w T
( rα − rNsp

r

)
∂Yα
∂z

; α = (2, ...,Nsp− 1)

LNsp+3 = w

(
∂ρ

∂z
− ∂P
∂z

1
c2

)

LNsp+4 =
w+ c
2 ρCp

(
∂P
∂z
+ ρ c

∂u
∂z

)
(F.5)

LODI system primitive derivatives in z direction :

d1 =
∂ρ

∂t
=
ρCp

c2
(L1 +LNsp+4) +LNsp+3

d2 =
∂w
∂t

=
Cp

c
(LNsp+4 − L1)

d3 =
∂u
∂t

= L3

d4 =
∂v
∂t
= L4

d5 =
∂T
∂t

= L1 +L2 +

Nsp−1∑

α=2

Lα+3 +LNsp+4

d6 =
∂Y1

∂t
= −

(
r

r1 − rNsp

) (LNsp+3

ρ
+
L2

T

)

d5+α =
∂Yα
∂t

= −
(

r
rα − rNsp

)
Lα+3

T
α = (2, ...,Nsp− 1) (F.6)
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APPENDIX G

WENO COEFFICIENTS

Table G.1: Coefficientscr j for k=1 to 6.

k r j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

1 0 1
2 0 1/2 1/2

1 -1/2 3/2
3 0 1/3 5/6 -1/6

1 -1/6 5/6 1/3
2 1/3 -7/6 11/6

4 0 1/4 13/12 -5/12 1/12
1 -1/12 7/12 7/12 -1/12
2 1/12 -5/12 13/12 1/4
3 -1/4 13/12 -23/12 25/12

5 0 1/5 77/60 -43/60 17/60 -1/20
1 -1/20 9/20 47/60 -13/60 1/30
2 1/30 -13/60 47/60 9/20 -1/20
3 -1/20 17/60 -43/60 77/60 1/5
4 1/5 -21/20 137/60 -163/60 137/60

6 0 1/6 29/20 -21/20 37/60 -13/60 1/30
1 -1/30 11/30 19/20 -23/60 7/60 -1/60
2 1/60 -2/15 37/60 37/60 -2/15 1/60
3 -1/60 7/60 -23/60 19/20 11/30 -1/30
4 1/30 -13/60 37/60 -21/20 29/20 1/6
5 -1/6 31/30 -163/60 79/20 -71/20 49/20
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Table G.2: Coefficientsdr for k=1 to 6.

K r=0 r=1 r=2 r=3 r=4 r=5
1 1
2 2/3 1/3
3 3/10 3/5 1/10
4 4/35 18/35 12/35 1/35
5 5/126 40/126 60/126 20/126 1/126
6 1/77 25/154 100/231 25/77 5/77 1/462

The coefficientsβ necessary for computation of the smoothness indicatorsβr , for different

stencils presented for reconstruction for k= 1 to 6.

k=1

There exist single stencil for reconstruction :S0 = (i).

β0 = fi fi

k=2

There exist two stencils for reconstruction :S0 = (i, i + 1) S1 = (i − 1, i).

β0 = ( fi+1 − fi)2

β1 = ( fi − fi−1)2

k=3

There exist three stencils for reconstruction :S0 = (i, i + 1, i + 2) S1 = (i − 1, i, i + 1) S2 =

(i − 2, i − 1, i).

β0 =
13
12

( fi − 2 fi+1 + fi+2)2 +
1
4

(3 fi − 4 fi+1 + fi+2)2

β1 =
13
12

( fi−1 − 2 fi + fi+1)2 +
1
4

( fi−1 − fi+1)2

β2 =
13
12

( fi−2 − 2 fi−1 + fi)
2 +

1
4

( fi−2 − 4 fi−1 + 3 fi)
2

K=4

There exist four stencils for reconstruction :S0 = (i, i + 1, i + 2, i + 3) S1 = (i − 1, i, i + 1, i +
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2) S2 = (i − 2, i − 1, i, i + 1) S3 = (i − 3, i − 2, i − 1, i).

β0 = 2107f 2
i − 9402fi+1 fi + 7042fi+2 fi − 1854fi+3 fi + 11003f 2

i+1 − 17246fi+2 fi+1

+ 4642fi+3 fi+1 + 7043f 2
i+2 − 3882fi+3 fi+2 + 547f 2

i+3

β1 = 547f 2
i−1 − 2522fi fi−1 + 1922fi+1 fi−1 − 494fi+2 fi−1 + 3443f 2

i − 5966fi+1 fi

+ 1602fi+2 fi + 2843f 2
i+1 − 1642fi+2 fi+1 + 267f 2

i+2

β2 = 267f 2
i−2 − 1642fi−1 fi−2 + 1602fi fi−2 − 494fi+1 fi−2 + 2843f 2

i−1 − 5966fi fi−1

+ 1922fi+1 fi−1 + 3443f 2
i − 2522fi+1 fi + 547f 2

i+1

β3 = 547f 2
i−3 − 3882fi−2 fi−3 + 4642fi−1 fi−3 − 1854fi fi−3 + 7043f 2

i−2 − 17246fi−1 fi−2

+ 7042fi fi−2 + 11003f 2
i−1 − 9402fi fi−1 + 2107f 2

i

K=5

There exist five stencils for reconstruction :S0 = (i, i + 1, i + 2, i + 3, i + 4) S1 = (i − 1, i, i +

1, i + 2, i + 3) S2 = (i − 2, i − 1, i, i + 1, i + 2) S3 = (i − 3, i − 2, i − 1, i, i + 1) S4 =

(i − 4, i − 3, i − 2, i − 1, i).

β0 = 107918f 2
i − 649501fi+1 fi + 758823fi+2 fi − 411487fi+3 fi + 86329fi+4 fi

+ 1020563f 2
i+1 − 2462076fi+2 fi+1 + 1358458fi+3 fi+1 − 288007fi+4 fi+1 + 1521393f 2

i+2

− 1704396fi+3 fi+2 + 364863fi+4 fi+2 + 482963f 2
i+3 − 208501fi+4 fi+3 + 22658f 2

i+4

β1 = 22658f 2
i−1 − 140251fi fi−1 + 165153fi+1 fi−1 − 88297fi+2 fi−1 + 18079fi+3 fi−1

+ 242723f 2
i − 611976fi+1 fi + 337018fi+2 fi − 70237fi+3 fi + 406293f 2

i+1

− 464976fi+2 fi+1 + 99213fi+3 fi+1 + 138563f 2
i+2 − 60871fi+2 fi+3 + 6908f 2

i+3

β2 = 6908f 2
i−2 − 51001fi−1 fi−2 + 67923fi fi−2 − 38947fi+1 fi−2 + 8209fi+2 fi−2

+ 104963f 2
i−1 − 299076fi fi−1 + 179098fi+1 fi−1 − 38947fi+2 fi−1 + 231153f 2

i

− 299076fi+1 fi + 67923fi+2 fi + 104963f 2
i+1 − 51001fi+2 fi+1 + 6908fi+2

β3 = 6908f 2
i−3 − 60871fi−2 fi−3 + 99213fi−1 fi−3 − 70237fi fi−3 + 18079fi+1 fi−3

+ 138563f 2
i−2 − 464976fi−1 fi−2 + 337018fi fi−2 − 88297fi+1 fi−2 + 406293f 2

i−1

− 611976fi fi−1 + 165153fi+1 fi−1 + 242723f 2
i − 140251fi+1 fi + 22658f 2

i+1

β4 = 22658f 2
i−4 − 208501fi−3 fi−4 + 364863fi−2 fi−4 − 288007fi−1 fi−4 + 86329fi fi−4

+ 482963f 2
i−3 − 1704396fi−2 fi−3 + 1358458fi−1 fi−3 − 411487fi fi−3 + 1521393f 2

i−2

− 2462076fi−1 fi−2 + 758823fi fi−2 + 1020563f 2
i−1 − 649501fi−1 fi + 107918f 2

i
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K=6

There exist six stencils for reconstruction :S0 = (i, i + 1, i + 2, i + 3, i + 4, i + 5) S1 =

(i − 1, i, i + 1, i + 2, i + 3, i + 4) S2 = (i − 2, i − 1, i, i + 1, i + 2, i + 3) S3 = (i − 3, i − 2, i −
1, i, i + 1, i + 2) S4 = (i − 5, i − 4, i − 3, i − 2, i − 1, i) S5 = (i − 4, i − 3, i − 2, i − 1, i).

β0 = 6150211f 2
i − 47460464fi+1 fi + 76206736fi+2 fi − 63394124fi+3 fi + 27060170fi+4 fi

− 4712740fi+5 fi + 94851237f 2
i+1 − 311771244fi+2 fi+1 + 262901672fi+3 fi+1 − 113206788fi+4 fi+1

+ 19834350fi+5 fi+1 + 260445372f 2
i+2− 444003904fi+3 fi+2 + 192596472fi+4 fi+2

− 33918804fi+5 fi+2 + 190757572f 2
i+3− 166461044fi+4 fi+3 + 29442256fi+5 fi+3

+ 36480687f 2
i+4 − 12950184fi+5 fi+4 + 1152561f 2

i+5

β1 = 1152561f 2
i−1 − 9117992fi fi−1 + 14742480fi+1 fi−1 − 12183636fi+2 fi−1 + 5134574fi+3 fi−1

− 880548fi+4 fi−1 + 19365967f 2
i − 65224244fi+1 fi + 55053752fi+2 fi − 23510468fi+3 fi

+ 4067018fi+4 fi + 56662212f 2
i+1 − 97838784fi+2 fi+1 + 42405032fi+3 fi+1 − 7408908fi+4 fi+1

+ 43093692f 2
i+2 − 37913324fi+3 fi+2 + 6694608fi+4 fi+2 + 8449957f 2

i+3− 3015728fi+4 fi+3

+ 271779f 2
i+4

β2 = 271779f 2
i−2 − 2380800fi−1 fi−2 + 4086352fi fi−2 − 3462252fi+1 fi−2 + 1458762fi+2 fi−2

− 245620fi+3 fi−2 + 5653317f 2
i−1 − 20427884fi fi−1 + 17905032fi+1 fi−1 − 7727988fi+2 fi−1

+ 1325006fi+3 fi−1 + 19510972f 2
i − 35817664fi+1 fi + 15929912fi+2 fi − 2792660fi+3 fi

+ 17195652f 2
i+1 − 15880404fi+2 fi+1 + 2863984fi+3 fi+1 + 3824847fi+2− 1429976fi+3 fi+2

+ 139633f 2
i+3

β3 = 139633f 2
i−3 − 1429976fi−2 fi−3 + 2863984fi−1 fi−3 − 2792660fi fi−3 + 1325006fi+1 fi−3

− 245620fi+2 fi−3 + 3824847f 2
i−2 − 15880404fi−1 fi−2 + 15929912fi fi−2 − 7727988fi+1 fi−2

+ 1458762fi+2 fi−2 + 17195652f 2
i−1 − 35817664fi fi−1 + 17905032fi+1 fi−1 − 3462252fi+2 fi−1

+ 19510972f 2
i − 20427884fi+1 fi + 4086352fi+2 fi + 5653317f 2

i+1 − 2380800fi+2 fi+1

+ 271779f 2
i+2

β4 = 271779f 2
i−4 − 3015728fi−3 fi−4 + 6694608fi−2 fi−4 − 7408908fi−1 fi−4 + 4067018fi fi−4

− 880548fi+1 fi−4 + 8449957f 2
i−3 − 37913324fi−2 fi−3 + 42405032fi−1 fi−3 − 23510468fi fi−3

+ 5134574fi+1 fi−3 + 43093692f 2
i−2 − 97838784fi−1 fi−2 + 55053752fi fi−2 − 12183636fi+1 fi−2

+ 56662212f 2
i−1 − 65224244fi fi−1 + 14742480fi+1 fi−1 + 19365967f 2

i − 9117992fi+1 fi

+ 1152561f 2
i+1

(G.1)
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β5 = 1152561f 2
i−5 − 12950184fi−4 fi−4 + 29442256fi−3 fi−4 − 33918804fi−2 fi−4

+ 19834350fi−1 fi−4 − 4712740fi fi−4 + 36480687f 2
i−4 − 166461044fi−3 fi−3

+ 192596472fi−2 fi−3 − 113206788fi−1 fi−3 + 27060170fi fi−3 + 190757572f 2
i−3

− 444003904fi−2 fi−2 + 262901672fi−1 fi−2 − 63394124fi fi−2 + 260445372f 2
i−2

− 311771244fi−1 fi−1 + 76206736fi fi−1 + 94851237f 2
i−1 − 47460464fi fi + 6150211f 2

i
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APPENDIX H

COMPRESSIBLE TEMPORAL MIXING LAYER A PRIORI

TESTS

The a priori tests which were conducted by Lardjane and Fedioun, for the sub-grid terms

of NS equations in the framework of a temporal binary mixing layer are presented in this

appendix.

The effect of physical parameters (density ratio, temperature, compressibility...) on the fol-
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	��
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���� !�" #$% ���� !�" #$%
& &'��()�"*�+� #$%

,-.

Figure H.1: Computational box for the temporal direct nu-
merical simulation

lowing sub-grid terms which were derived filtering the multicomponent compressible NS

equations in convective form was investigated.
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• filtered equation of motion

A1i = −[ρ(ũiu j − ũi ũ j)], j

A2i = (µSi j − µ̃S̃i j ), j (H.1)

A3i = −[ρ
(
r̃T − r̃ T̃

)
],i (H.2)

• filtered energy equation

B1 =
(
λT, j − λ̃T̃, j

)
, j

B2 = −
(
puj, j − p̃u j, j

)
(H.3)

B3 = ui, jτi j − ũi, jτi j

• filtered species equation

Cα1 = −[ρ
(
Ỹαu j − Ỹαũ j

)
], j (H.4)

Cα2 = [ρ
(
D̃αmYα, j − D̃αmỸα, j

)
], j

The field of sub-grid terms was rebuilt out of D.N.S. flow variables by means of explicit

S.O.C.F. box filtering of flow variables [53]. The DNS solutions were obtained applying 6th

order compact scheme for spatial discretization and 3rd order time integration and accurate

transport model. The physical and numerical parameters forseveral DNS computations are

gathered in Tables H.1 and H.2. The sub-grid terms were quantified as r.m.s. of transverse

Table H.1: D.N.S. physical and numerical parameters for theO2/N2 pair.

O2/N2 #1 #2 #3 #4 #5

Rere f 100 100 200 400 100
Mc 0.293 0.586 0.880 0.293 0.246

U (m/s) ±100 ±200 ±300 ±100 ±100
T2/T1 (K) 300/300 300/300 300/300 300/300 600/300
Lx×Ly×Lz 40×40×80 same as #1 40×40×40 28×28×40 same as #1
Nx×Ny×Nz 181×181×245 same as #1 255×255×257 same as #3 same as #1

profiles obtained averaging variables in homogeneous streamwise x and spanwise y direc-

tions. The relative magnitudes of sub-grid terms are presented in Figures H.2 - H.7. It is seen

that, when the indexi corresponds to the cross-flow direction,A3,i becomes non-negligible

when the N2 stream is heated relatively to the O2 stream and may overcomeA1i j, j in some

cases.
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Table H.2: D.N.S physical and numerical parameters for the O2/H2 pair.

O2/H2 #1 #2 #3 #4 #5

Rere f 100 100 200 200 100
Mc 0.121 0.243 0.607 0.121 0.113

U (m/s) ±100 ±200 ±500 ±100 ±100
T2/T1 (K) 300/300 300/300 300/300 300/300 600/300
Lx×Ly×Lz 33×33×60 20×20×60 same as #2 same as #1 same as #2
Nx×Ny×Nz 199×199×485 same as #1 same as #1 same as #1 same as #1
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Figure H.2: Subrid terms (H.1). Relative
magnitude: O2/N2
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Figure H.3: same as Figure H.2: O2/H2
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Figure H.4: Subrid terms (H.3). Relative
magnitude: O2/N2

H2/O2 - Energie

0.0E+00

8.0E-03

1.6E-02

2.4E-02

#1 t=100 #2 t=100 #3 t=100 #4 t=65 #5 t=100

B1
B2
B3

 

Figure H.5: same as Figure H.4: O2/H2
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Figure H.6: Subrid terms (H.4). Relative
magnitude: O2/N2
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APPENDIX I

COMPUTATIONAL HOURS

Non-Reacting Reacting
wall time CPU/step cost wall time CPU/step cost

MILES EULER 14238 s 508.4 s 1 73314 s 938.0 s 1.845
MILES NS 16581 s 599.2 s 1.178 88540 s 1132.9 s 2.228
LES SSF 16482 s 625.1 s 1.229 90284 s 1155.2 s 2.272
LES SM 15680 s 603.6 s 1.187 — — —

Table I.1: Relative cost of LES and MILES, non-reacting and reacting.
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