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ABSTRACT

BAYESIAN SEMIPARAMETRIC MODELS FOR NONIGNORABLE MISSING DATA
MECHANISMS IN LOGISTIC REGRESSION

Öztürk, Olcay

M.S., Department of Statistics

Supervisor : Assist. Prof. Dr. Zeynep Işıl Kalaylıoğlu

May 2011, 69<pages

In this thesis, Bayesian semiparametric models for the missing data mechanisms of nonignor-

ably missing covariates in logistic regression are developed. In the missing data literature,

fully parametric approach is used to model the nonignorable missing data mechanisms. In

that approach, a probit or a logit link of the conditional probability of the covariate being

missing is modeled as a linear combination of all variables including the missing covariate

itself. However, nonignorably missing covariates may not be linearly related with the probit

(or logit) of this conditional probability. In our study, the relationship between the probit

of the probability of the covariate being missing and the missing covariate itself is modeled

by using a penalized spline regression based semiparametric approach. An efficient Markov

chain Monte Carlo (MCMC) sampling algorithm to estimate the parameters is established. A

WinBUGS code is constructed to sample from the full conditional posterior distributions of

the parameters by using Gibbs sampling. Monte Carlo simulation experiments under differ-

ent true missing data mechanisms are applied to compare the bias and efficiency properties of

the resulting estimators with the ones from the fully parametric approach. These simulations

show that estimators for logistic regression using semiparametric missing data models main-
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tain better bias and efficiency properties than the ones using fully parametric missing data

models when the true relationship between the missingness and the missing covariate has a

nonlinear form. They are comparable when this relationship has a linear form.

Keywords: Computational Bayesian statistics, emprical Bayes, Gibbs sampler, nonignorably

missing covariate, penalized spline regression
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ÖZ

LOJİSTİK REGRESYONDA İHMAL EDİLEMEYEN KAYIP VERİ MEKANİZMALARI
İÇİN BAYESCİ YARI-PARAMETRİK MODELLER

Öztürk, Olcay

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Zeynep Işıl Kalaylıoğlu

Mayıs 2011, 69<sayfa

Bu tez çalışmasında, lojistik regresyonda ihmal edilemeyen kayıp veriye sahip ortak değişken-

lerin kayıp veri mekanizmaları için Bayesci yarı-parametrik modeller geliştirilmiştir. Kayıp

veri literatüründe, ihmal edilemeyen kayıp veri mekanizması tam parametrik yaklaşım ile

modellenmiştir. Bu yaklaşımda, ortak değişkendeki verinin kayıp olma koşullu olasılığının

probit veya logit bağlantısı, kayıp veri olan ortak değişken dâhil tüm değişkenlerin doğrusal

birleşimi ile modellenir. Ancak, bu koşullu olasılığın probit (veya logit) bağlantısı ile ih-

mal edilemeyen kayıp veriye sahip ortak değişkenler arasındaki ilişki doğrusal olmayabilir.

Bizim çalışmamızda, kayıp verili ortak değişkenin kendisi ile bu değişkende kayıp veri olma

olasılığının probit bağlantısı arasındaki ilişki, yarı-parametrik bir yaklaşım kullanılarak cezalı

yiv regresyonu ile modellenmiştir. Parametreleri tahmin etmek için etkili Markov zinciri

Monte Carlo (MZMC) örnekleme algoritması kurulmuştur. Gibbs örnekleyicisi kullanılarak

parametrelerin tam koşullu sonsal dağılımlarından örneklem çekilebilmesi için WinBUGS

kodu oluşturulmuştur. Farklı gerçek kayıp veri mekanizmaları altında, önerilen tahmin edi-

cileri yanlılık ve etkinlik özellikleri açısından tam-parametrik yaklaşımla elde edilen tahmin

edicilerle karşılaştırabilmek için Monte Carlo benzetim denemeleri yapılmıştır. Bu benzetim
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denemeleri şu sonuçları vermektedir. Kayıp veriye sahip ortak değişken ile bu değişkendeki

verinin kayıp olması arasındaki gerçek ilişkinin doğrusal olmayan formda olduğu durumlarda,

yarı-parametrik kayıp veri modelleri kullanılarak elde edilen lojistik regresyon tahmin edici-

leri yanlılık ve etkinlik özellikleri açısından tam parametrik kayıp veri modelleri kullanılarak

elde edilen tahmin edicilere göre daha iyidir. Bu ilişkinin doğrusal formda olduğu durumlarda

ise tahmin edicilerin yanlılık ve etkinlik özellikleri benzerdir.

Anahtar Kelimeler: Hesaplamaya dayalı Bayesci istatistik, deneysel Bayes, Gibbs örnekleyicisi,

ihmal edilemeyen kayıp verili ortak değişken, cezalı yiv regresyonu

vii



To my beloved family and friends for their everlasting support...

viii



ACKNOWLEDGMENTS

First of all, I would like to express my deepest appreciation to my supervisor Assist. Prof.
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CHAPTER 1

INTRODUCTION

1.1 Overview

For any statistical analysis, the researchers generally need to use a data matrix to make an

inference about the situation. In many applications such as biological, social and economical

studies, some of the entries of the data matrix may not be observed because of nonresponse

or technical reasons, which constitutes the missing data problem. In general, missing data

can disrupt the representativeness of the sample and severely affect the conclusions drawn

from the data depending on the missing percentage. The reason why the data is missing is

an important question to deal with since the methods used in the analysis vary considerably

depending on the type of missingness. For example, if the values are missing at random,

missing observations can be simply excluded from the analysis or replaced by using the simple

imputation methods in most of the cases; however if the values are missing systematically,

those observations can not be simply ignored and analyst should need to make more complex

analyses which are more robust to missingness. In the missing data literature, the statistical

methodologists try to develop data analysis methods that produce as little bias as possible on

statistical inference.

In order to handle the missing data problem more systematically, Little and Rubin [1] define

mainly three different types of missingness; missing completely at random (MCAR), missing

at random (MAR) and not missing at random (NMAR). If the reason for missingness does

not depend on the observed or missing components of the data, the missing variable (response

or covariate) is said to be MCAR. If it depends only on the observed components of the data,

the missingness is classified as MAR. The missing variable is called NMAR if the reason for

missingness depends on the missing components of the data. To account for the underlying
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nature of the missingness in the analysis, the mechanism leading to missingness is included

in the model. The missing data mechanism is ignorable for the classes of MCAR and MAR

but nonignorable for the NMAR cases. In the real life situations, the probability of the

variable being missing can be highly associated with its actual value that is missing. For

example, respondents in a study may be unwilling to report the annual income due to the fact

that it is too high or too low. In this case the information about the pattern of missingness

should be accounted in the analysis by using the missing data mechanism. On the other hand,

in a biological experiment, some results can be missing because of technical reasons which

are unrelated to the experimental process. Thus, analyst can directly exclude those missing

observations from the analysis without losing information or introducing bias.

In this thesis, noningorable missing data mechanisms for NMAR covariates in logistic re-

gression analysis are considered. In general, parametric approaches are used to model the

missing data mechanisms in the analysis of the generalized linear models (GLMs). In such

parametric approaches, the relationship between the missingness and NMAR covariates is as-

sumed to have a linear form. However, the actual relationship might have a nonlinear form.

For instance, consider a study on dietary habits evaluating the probability of person being

vegetarian depending on the person’s sex, age and weight. Anorectic or obese subjects can

be much more likely to refuse to report any weight related information compared to the sub-

jects with rather normal weight. That is, the probability of nonresponse is high for low or

high values of weight. Since the probability of the weight information being missing is not

directly proportional with the person’s weight, there can exists serious biases in the estimates

of the parameters if the missing data mechanism is constructed by using the linear paramet-

ric model. The semiparametric models are more flexible to capture any possible nonlinear

functional relationship between the response and covariates (see Ruppert et al. [2]). Due to

this fact, penalized spline regression based semiparametric approach is considered to model

the missing data mechanisms. In this context, a fully Bayesian procedure is developed to

efficiently estimate the parameters of interest. To compare the bias and efficiency properties

of the resulting estimators with the ones from the fully parametric approach, Monte Carlo

simulation experiments under different true missing data mechanisms are performed.
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1.2 Literature Review

For the analysis of the GLMs with nonignorable missing data models, first maximum likeli-

hood (ML) methods are established in the missing data literature, and then fully Bayesian pro-

cedures are developed. Ibrahim and Lipsitz [4] developed an Expectation-Maximization (EM)

algorithm based ML procedure with weights, which is originated from the work of Ibrahim [3]

for ignorable missing data models, for binomial regression models with nonignorably missing

response and fully observed covariates. They modeled the missingness probability of the non-

ignorably missing response as a logistic regression. In Ibrahim et al. [5], multinomial model

is considered for the missing data mechanism by writing the joint distribution of missing data

indicators as a sequence of one-dimensional conditional distributions. Each one-dimensional

conditional distribution for missing data indicators is modeled via logistic regression again.

In their study, the GLMs with fully observed response and NMAR continuous covariates are

considered, and the Monte Carlo based EM algorithm is used to estimate the parameters via

the Gibbs sampler.

Huang et al. [6] developed a fully Bayesian method for estimation in GLMs with NMAR co-

variates, and examined the properties of the priors used for the coefficients of the multinomial

missing data models under various conditions. It is shown in that paper that if the improper

uniform prior is used for the parameters of the missingness mechanism, the joint posterior

distribution of the parameters would be also improper. On the other hand, they also showed

that using noninformative proper priors for these parameters would result in slow convergence

in the posterior calculations because of poor mixing. In order to provide proper posterior in-

ference that is insensitive to the choice of hyperparameters, empirical Bayes based priors are

proposed for the parameters of missing data mechanism. This is accomplished by specify-

ing the hyperparameters of the proper prior according to the information that is conveyed

about these parameters in the observed dataset as well as the other sets of data that could

have been observed from the considered model. The deviance information criterion (DIC) of

Spiegelhalter et al. [7] is also extended in that paper for determining whether the missing data

mechanism is ignorable or nonignorable.

The four common ways of dealing with the missing data problem in GLMs are discussed

in a comparative review by Ibrahim et al. [8]. The comparative simulation study for the

maximum likelihood (ML), multiple imputation (MI), fully Bayesian (FB) and weighted esti-
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mating equations (WEEs) methods is carried out. The procedures using the EM algorithm in

Ibrahim [3], and Ibrahim and Lipsitz [4] are considered for ML method. The techniques for

creating complete datasets by filling the missing values in Little and Rubin [1] are considered

for MI method. Approaches proposed by Ibrahim et al. [5] and Huang et al. [6] are consid-

ered for FB method. The techniques developed by Robins et al. [9] are considered for WEEs

method. The simulations show that the four methods give practically same results when the

covariate models are specified correctly.

To avoid the effect of outliers in the GLMs with missing covariates, a robust method that

downweights the influential observations is proposed by Sinha [10]. The robust method based

ML estimation for fitting the GLMs when the missing data mechanism is nonignorable is

demonstrated. The Monte Carlo simulation under different patterns having various percentage

of outliers is also carried out to compare the proposed robust ML method with the ML method

proposed by Ibrahim [3]. It is shown that robust ML method for estimating the parameters

of the GLMs with noningorably missing covariates has good robustness properties under the

data with outliers, and is comparable to the ML method under the data without outliers.

Recently, missing data mechanism for NMAR covariates in GLMs is modeled by using the

semiparametric model in Chen and Ibrahim [11]. To determine the shape of possibly nonlin-

ear functional relationship between the missing data indicator and the covariates, penalized

spline regression based semiparametric approach is used in the missing data mechanism. In a

penalized spline regression, possibly nonlinear functional relationship between the response

and the covariates is modeled through a smooth function of each covariate. In their article,

they used smooth function for the covariates that are suspected to be nonlinearly related with

the missingness and improved the ML based parameter estimation via the EM algorithm for

the proposed semiparametric missing data model. To investigate the performance of proposed

semiparametric model for the missing data mechanism, Monte Carlo simulations are carried

out under the various true missing data mechanism. In their simulations, they focused on

modeling the fully observed covariates nonparametrically (as an unspecified smooth function

which is assumption free functional formwise) while they modeled the covariates that are sub-

ject to missingness parametrically (as a strictly linear function which is a strong assumption)

in the missingness model. The downside of this simulation experiment is that it may not well

accommodate the situations that are encountered in real life studies. In reality it is quite dif-

ficult to determine empirically the nature of the relationship between the missingness status
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and the values of the covariate that is missing. Thus, unless there is a strong ground or reliable

literature to safely assume linearity, one should avoid making such a strong assumption about

the functional form of the relationship between them.

1.3 Objectives and Scope of the Study

As mentioned before, the missing data mechanisms for NMAR covariates in the GLMs are

modeled by using parametric approaches in general. That is, the conditional probability of

the covariate being missing depend on all covariates and response is modeled by using logis-

tic or probit regression. In this approach, the relationship between the logit (or probit) of that

probability and the missing covariate is assumed to be linear. However, the actual relationship

might be a nonlinear type as in the study on dietary habits. If the actual relationship does not

have linear form, choosing the true parametric model is not so easy in many applications. At

this point, semiparametric models are more attractive than the parametric ones since they can

detect the form of functional relationship between the missingness and the missing covariates.

Consequently, we propose a semiparametric model to scrutinize the effect of NMAR covari-

ates, that are nonlinearly associated with the missingness, on estimating the parameters of the

main interest.

Chen and Ibrahim [11] also considered a semiparametric model for the missing data mech-

anism and derived ML estimation via the EM algorithm. Our work differs from their work

mainly in the following aspects: i) they propose a semiparametric model in which the smooth

function is used for the covariates having possibly nonlinear effect on the missingness status

and the linear form is used for all the other covariates; we, on the other hand, consider smooth

function for all the NMAR covariates (not only the ones that might have a nonlinear effect

on the missingness status), ii) they investigated the performance of the model in which the

fully observed covariates have nonlinear and the NMAR covariates have strictly linear true

effect on the missingness status while we focus on the performance of the model with NMAR

covariates having nonlinear true effect on the missingness status, iii) they used the EM algo-

rithm based ML estimation and we considered the fully Bayesian approach to estimate the

parameters of interest, iv) they did not consider the usage of different number of knots in

the semiparametric missing data model; however, we showed the effect of various number of

knots selection on the inference of main model.
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Through this thesis, we made the following contributions in logistic regression analysis with

nonignorably missing covariates:

i) Nonparametric modeling for all the nonignorably missing covariates (see Section 2.1):

we proposed the use of spline regression in the missingness model.

ii) Knot determination in the presence of nonignorably missing values (see Section 2.1):

we developed an iterative method to determine the knots in the presence of nonignor-

ably missing covariates.

iii) Empirical Bayes based prior for σ2
b (see Section 2.2.1): we proposed robust prior for

σ2
b based on empirical Bayesian where σ2

b is the variance of the latent random effects

in the resulting mixed model.

iv) Knot analysis (see Section 3.1): we assessed sensitivity of the estimation procedure to

the number of knots in the spline regression.

v) WinBUGS code (see Section 2.2.3): we provided a simple yet effective way of im-

plementing the Bayesian estimation by Gibbs sampling in WinBUGS (Speigelhalter,

Thomas, and Best [12]).

This thesis is organized as follows. Chapter 2 explains the methodology consists of model

construction and Bayesian estimation. The models for each component of the missing data

problem and our proposed semiparametric model for the missing data mechanism are de-

scribed in Section 2.1. The Bayesian procedure to estimate the parameters including prior

construction, posterior construction and Bayesian inference using Gibbs sampling via Win-

BUGS is described in Section 2.2. Chapter 3 gives our simulation study conducting extensive

investigation on the performance of the proposed model and the accompanying estimation

procedure. Chapter 4 concludes the study with some discussion.
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CHAPTER 2

METHODOLOGY

In the analysis of generalized linear models (GLMs) with nonignorably missing covariates,

the Expectation-Maximization (EM) algorithm based maximum likelihood (ML) procedure or

fully Bayesian approach can be used to make an inference on the parameters of the main inter-

est. Bayesian hierarchical modeling provides a flexible approach in modeling as it can easily

accommodate in its theory any distributional assumption which is not necessarily Normal. It

has been an attractive alternative to frequentist approaches in that sense and yet the use of it

had been hindered by the difficulties in deriving the posterior distributions. Today, modern

sampling methods provide an efficient computational way of obtaining the posterior densities.

Models with nonignorably missing covariates are hierarchical in nature and thus can be easily

handled with Bayesian approaches. Additionally, more information can be extracted from the

data using the empirical Bayes based priors in addition to the model based likelihood and this

is especially important in missing data problems in which the likelihood of missingness alone

usually contains insufficient information about the parameters of missingness mechanism. To

obtain the Bayesian estimates of the parameters, the joint posterior distribution of the param-

eters based on the model based likelihood and the prior distributions is required. First, each

component of the hierarchical model including the proposed semiparametric missing data

model is described in Section 2.1, and then prior and accompanying posterior construction

for the Bayesian inference using Gibbs sampling are explained in Section 2.2.
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2.1 Model

In the missing data problems, if the variable is missing completely at random (MCAR) or

missing at random (MAR), missing data mechanism is not required in the model; however, it

is necessary to construct a model for the missingness as well as for the data themselves if the

variable is not missing at random (NMAR). In the missing data context, the model framework

is hierarchical in nature with components response model, covariate distribution and missing

data model. The main focus in this hierarchy is the response model as its parameters are the

main parameters of interest.

Let {(yi,xi), i = 1, ..,n} be the set of observations obtained from the subjects selected in-

dependently for the study. Here yi denotes the response variable and xi denotes the vector

of p correlated continuous or categorical covariates measured on the ith subject. That is

xi = (xi1, ...,xip). For instance, in a study on dietary habits, yi can be an indicator for a person

being vegetarian and xi can be the factors associated with the person’s dietary habits. In such

datasets, some of the covariates might be missing for some i’s. We can rearrange the order

of subjects so that i = 1, ...,m correspond to the subjects with completely observed yi and

xi, and i = m+ 1, ...,n correspond to the subjects with at least one missing covariate value.

Let s be the number of covariates that are subject to missingness and xmiss denote the n× s

matrix of such covariates where xmiss
i = (xi1, ...,xis) is the ith row vector of this matrix. In

this thesis, it is assumed that all possibly missing covariates are continuous and NMAR. Also,

p− s is the number of covariates that are observable for every subject in the sample and let

xobs denote the n× (p− s) matrix of the covariates that are observed for every subject where

xobs
i = (xi,s+1, ...,xip) is the ith row vector of this matrix. Thus, the covariates of the ith sub-

ject can be defined as xi = (xmiss
i ,xobs

i ). When the data contain missing observations, missing

data indicator for each missing covariate is needed to construct the missing data model that

represents the underlying mechanism of missingness. We take rik = 1 when xik is missing and

rik = 0 when xik is observed for i = 1, ...,n and k = 1, ...,s. Consequently, the complete data

can be denoted by Dc = (r,y,xmiss,xobs) and the complete data likelihood can be written by

using the selection model approach as follows.

L(φ ,β ,α|Dc) = f (r,y,x|φ ,β ,α)

= f (r|y,x,φ) f (y|x,β ) f (x|α) (2.1)
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where β , α and φ are the parameters of the response, covariate and missingness models

respectively. By using the selection model approach, we can specify the joint distribution

of each component separately. Note that, if the missingness status of each possibly missing

covariate is related to only always observed covariates, not to covariates that are subject to

missingness, missing data mechanism f (r|y,x,φ) is not needed to be specified at all and in

this case we say that the missingness mechanism is ignorable. Each component of these

probabilistic models are described below, and the last part combines these components into a

hierarchical format.

Response Model

When the response variable takes only two possible outcomes {0,1} (e.g.,an indicator for a

person being vegetarian or not), logistic regression (sometimes called the logit model) can be

used to predict the probability of the response variable being 1 depending on the covariates

of interest. Logistic regression is a special case of the GLMs in which the logit link function

is used. To define the relationship between yi and xi, the probability distribution function of

yi conditional on a given value xi can be defined by a Bernoulli distribution in the following

form.

f (yi|xmiss
i ,xobs

i β ) = µ
yi
i (1−µi)

1−yi ; µi = E(yi|xmiss
i ,xobs

i ,β ) = P(yi = 1|xmiss
i ,xobs

i ,β ) (2.2)

in which

logit(µi) = log
[

µi

1−µi

]
= [1 xi] β = β0 +β1xmiss

i1 + ...+βsxmiss
is +βs+1xobs

i,s+1 + ...+βpxobs
ip

(2.3)

where logit is a link function that explains how expected response is related with a linear

predictor [1 xi] β . Also, β = (β0,β1, ...,βp)
T is the vector of regression coefficients including

the intercept, which are the parameters of the main interest. For the simulation study in

Chapter 3, we consider a logistic regression model with two continuous covariates one of

which is possibly missing and the other one is fully observed. Then the response model used

in the simulation study is defined by

logit [E(yi|xi,β )] = β0 +β1xi1 +β2xi2 (2.4)

where we assume that response variable yi and covariate xi2 are fully observed, and covariate

xi1 is nonignorably missing.
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Covariate Distribution

In a model including nonignorably missing covariates, the covariate distribution is also needed

to be specified due to the random feature of the missing covariates. Additionally, if the co-

variates are correlated with each other, this correlation can be accounted in the covariate

distribution. Let f (xi|α) denote the joint distribution of (xi1, ...,xip) for i = 1, ...,n where α

denoting the set of parameters specifying this joint distribution. Then

f (xi|α) = f (xmiss
i ,xobs

i |α)

= f (xmiss
i |xobs

i ,α(1)) f (xobs
i |α(2)) (2.5)

where α1 is the set of parameters specifying the distribution of xmiss
i conditional on xobs

i and

α2 is the set of parameters specifying the distribution of xobs
i . In this thesis, it is assumed that

all fully observed covariates xobs
i are fixed. Thus, the joint distribution f (xobs

i |α(2)) in (2.5)

can be ignored. To reduce the number of nuisance parameters in the covariate distribution,

Lipsitz and Ibrahim [13] wrote the joint distribution function of xmiss
i conditional on xobs

i as

a product of piecewise conditional distributions. Let xmiss
ik denote the kth missing covariate

for k = 1, ...,s. Then the joint distribution f (xmiss
i |xobs

i ,α(1)) can be written as a product of s

piecewise conditional distributions as follows:

f (xmiss
i |xobs

i ,α(1)) = f (xmiss
i1 , ...,xmiss

is |xobs
i ,α(1))

= f (xmiss
is |xmiss

i1 , ...,xmiss
i,s−1,x

obs
i ,α(1)s) f (xmiss

i,s−1|xmiss
i1 , ...,xmiss

i,s−1,x
obs
i ,α(1)s−1)

... f (xmiss
i2 |xmiss

i1 ,xobs
i ,α(1)2) f (xmiss

i1 |xobs
i ,α(1)1) (2.6)

where α(1)k denotes the set of parameters specifying the conditional distribution of xmiss
ik for

k = 1, ...,s. Each conditional distribution can be written in the form of a GLM density which

defines the relationship between xmiss
ik and (xmiss

i1 , ...,xmiss
i,k−1,x

obs
i ). For instance for continuous

missing covariates a Normal distribution can be considered. Let the set of parameters α(1)k

consists of the coefficients α∗(1)k and the variance component σ2
X(k) for k = 1, ...,s. Then kth

conditional distribution of xmiss
ik can be defined as follows:

xmiss
ik |

(
xmiss

i1 , ...,xmiss
i,k−1,x

obs
i

)
∼ N

[
α
(∗,0)
(1)k +

k−1

∑
j=1

α
(∗, j)
(1)k xmiss

i j +
p

∑
j=s+1

α
(∗, j)
(1)k xobs

i j , σ
2
X(k)

]
(2.7)

where α
(∗, j)
(1)k is the jth component of the coefficients α∗(1)k in the kth conditional distribution of

xmiss
ik for k = 1, ...,s and j = 0, ...,k−1,s+1, ..., p. In the simulation study, since there are two

continuous covariates one of which is possibly missing and the other one is fully observed
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in the logistic regression, covariate distribution used in the simulation study is specified as

follows:

xi1| xi2 ∼ N(α0 +α1xi2,σ
2
x ) (2.8)

where the parameters are redefined as (α(∗,0)
(1)1 ,α

(∗,1)
(1)1 ,σ2

X(1)) = (α0,α1,σ
2
x ) for simplicity.

Proposed Semiparametric Missing Data Model

For each missing covariate, if the probability that xmiss
ik being missing depends on the values

of observed variables (e.g. yi or xobs
i ) but not on the values of possibly missing covariates, the

covariate xmiss
ik is said to be missing at random (MAR) and missing data model can be ignored

in the analysis. On the other hand, if the missingness on xmiss
ik is related with the values

of missing covariates including itself and not necessarily with the values of the observed

variables, the covariate xmiss
ik is said to be not missing at random (NMAR) and missing data

model is nonignorable. Thus, it is necessary to model the missing data mechanism for all

the missing covariates since each one is NMAR in this thesis. Let ri = (ri1,ri2, ...,ris) be the

vector of missing value indicator that corresponds to xmiss
i . Each rik (k = 1, ...,s) is a binary

variable whose distribution depends on the values of xmiss
i that would have been observed if

the missingness occurred not at random. Also the distribution of rik may possibly depend

on the values of the fully observed covariates as well as the response variable. One possible

way of modeling the missingness mechanism is to use a multinomial model (e.g. a joint log-

linear model) for the joint distribution of ri. Alternatively, Ibrahim et al. [5] represent the joint

distribution of ri for subject i as a product of s piecewise conditional distributions as

f (ri|yi,xmiss
i ,xobs

i ,φ) = f (ri1, ...,ris|yi,xmiss
i ,xobs

i ,φ)

= f (ris|(ri1, ...,ri,s−1),yi,xmiss
i ,xobs

i ,φ(s))

... f (ri,s−1|(ri1, ...,ri,s−2),yi,xmiss
i ,xobs

i ,φ(s−1))

... f (ri2|ri1,yi,xmiss
i ,xobs

i ,φ(2)) f (ri1|yi,xmiss
i ,xobs

i ,φ(1)) (2.9)

where φ = (φ(1), ...,φ(s)) and each φ(k) is the set of parameters associated with the conditional

distribution of rik for k = 1, ...,s. Each one-dimensional conditional distribution of rik can

be modeled by logistic or probit regression. Note that each rikis a Bernoulli random variable

with success probability pik = P(rik = 1|r∗ik,yi,xmiss
i ,xobs

i ) where r∗ik = (ri1, ...,ri,k−1) is the set

of missing data indicators on the condition part. Then the probability distribution function of
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rik depending on (r∗ik,yi,xmiss
i ,xobs

i ) can be defined by a Bernoulli distribution in the following

form.

f (rik|r∗ik,yi,xmiss
i ,xobs

i ,φ(k)) = prik
ik (1− pik)

1−rik ; pik = P(rik = 1|r∗ik,yi,xmiss
i ,xobs

i ,φ(k))

(2.10)

in which

h(pik) = φ(k,0)+ r∗ikφ(k,1)+ yiφ(k,2)+ xmiss
i φ(k,3)+ xobs

i φ(k,4) (2.11)

where h is a chosen link function as logit or probit. Also, φ(k,.) are partitions of φ(k); φ(k,0) and

φ(k,2) are scalars, φ(k,1), φ(k,3) and φ(k,4) are (k−1)×1, s×1 and (p−s)×1 parameter vectors

associated with r∗ik, xmiss
i and xobs

i , respectively.

In the missing data literature, each missing data indicator rik is generally modeled by a logis-

tic or probit regression where it is assumed that all covariates (r∗ik,yi,xmiss
i ,xobs

i ) have a linear

effect on the missingness status as in (2.11). The linearity assumption in this model can be

dangerous in most cases due to the fact that the data may not contain sufficient information

about the true relationship between the missingness and missing covariates. For instance, let

the weight of a person be the covariate in the logistic regression analysis and it is observed

that some of the covariates are missing for some subjects. Also, let the true probability of

this covariate being missing is high for its extreme values compared to its midrange values.

Suppose that this true relationship is not known by the analyst, the linearity assumption can

be constructed incorrectly by considering only the observed subjects of this missing covari-

ate. In that case, parametric missing data model ignores the nonlinear true relationship that

exists between the actual value of the covariate and its missingness status. To detect the true

functional relationship (e.g. nonlinear or linear) between the missingness and the missing co-

variates, we modeled the covariates that are subject to missingness nonparametrically in the

missing data mechanism by using an unspecified smooth function which is assumption free

functional formwise. We considered separate smooth functions for each missing covariate by

using the generalized additive model (GAM) approach. The possible relationship between

rik and xmiss
ik that might have a nonlinear form can be modeled by using this approach. The

missing data model we consider is represented as follows:

h(pik) = φ(k,0)+ r∗ikφ(k,1)+ yiφ(k,2)+
s

∑
k=1

m(xmiss
ik )+ xobs

i φ(k,4) (2.12)

where m(.) is an unspecified smooth function. The model is semiparametric in the sense

that h(pik) is made to be linearly dependent on the covariates (r∗ik,yi,xobs
i ) and the relation-
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ship between them is expressed in fully parametric terms (i.e. in terms of the parameters

(φ(k,1),φ(k,2),φ(k,4))) whereas the interpretation of the relationship between h(pik) and xmiss
i

does not depend on parameters. We can model the smooth function by using natural cubic

splines, B-splines, truncated polynomials etc. In this thesis, the smooth functions m(.) are

approximated by low-rank thin-plate splines which is a special case of thin-plate splines. The

reason for this choice is that they have good computational properties. For example, low-rank

thin-plate splines have better mixing properties for the Markov chain Monte Carlo (MCMC)

chains than other basis (e.g. truncated polynomials) since there exists small posterior correla-

tion for the parameters of the thin-plate splines (e.g. see Crainiceanu et al. [14]).

Before constructing the semiparametric missing data model, let’s first consider the properties

of smooth function and corresponding low-rank thin-plate splines approximation. To detect

the functional relationship between yi and xi in a flexible way (i = 1, ...,n), an unspecified

smooth function yi = m(xi) can be found by minimizing the following function.

n

∑
i=1

(yi−m(xi))
2 +λ

∫
m
′′
(x)dx (2.13)

where λ is the smoothing parameter and
∫

m
′′
(x)dx measures the ”wiggliness” of the func-

tion f . The wiggliness gives the total roughness of function in the domain of x. For example,

the wiggliness is zero when the function is linear; however nonlinear functions produce wig-

gliness value bigger than zero. To avoid the overfitting problem, the wiggliness of function

which is the penalty term in (2.13) is minimized as well as the sum of residual squares. The

smoothing parameter λ controls the trade-off between the goodness of fit to the data and

roughness of the function estimate. Larger values of λ force m(x) to be smoother whereas

m(x) is detecting too much detail for smaller values of λ which causes the overfitting prob-

lem. For example, the number of fixed knots in the low-rank thin-plate splines is selected

according to the smoothing parameter λ . For any value of λ , the minimizer of (2.13) is a

natural cubic spline which is a piecewise third-order polynomial. On the other hand, the low-

rank thin-plate splines can also be used to approximate the smooth function in the following

form.

m(xi,ψ,u) = ψ0 +ψ1xi +
D

∑
d=1

ud |xi−κd |3 (2.14)

where ψ = (ψ0,ψ1)
T and u = (u1, ...,uD)

T are unknown coefficients, and κ1 < κ2 < ... < κD

are fixed (known) knots suitably determined for x. Here D is the number of knots which should

be chosen large enough to provide the desired flexibility, and fixed knot κd can be the sample
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quantile of x’s corresponding to probability d/(D+1). To estimate the unknown coefficients

in the smooth function by avoiding overfitting, the following quantity is minimized as in

(2.13).
n

∑
i=1

(yi−m(xi,ψ,u))2 +λ uT
Ω u (2.15)

where Ω is a known D×D penalty matrix whose (l,k)th entry is |κl −κk|3. An appropriate

number of knots can be chosen so that it minimizes the penalty introduced by the coefficients

of |xi−κd |3 as well as the total residual squares.

Let Y = (y1,y2, ...,yn)
T be a n×1 vector for the response values and define X and Z∗ matrices

as

X =


1 x1

1 x2
...

...

1 xn

 and Z∗ =


|x1−κ1|3 |x1−κ2|3 · · · |x1−κD|3

|x2−κ1|3 |x2−κ2|3 · · · |x2−κD|3
...

...
. . .

...

|xn−κ1|3 |xn−κ2|3 · · · |xn−κD|3

 (2.16)

If the penalized spline fitting criterion (2.15) is divided by the error variance σ2
ε , one can

obtain the following fitting criterion.

1
σ2

ε

‖Y −Xψ−Z∗u‖2 +
λ

σ2
ε

uT
Ω u (2.17)

Let define σ2
u = σ2

ε /λ and let consider the vector u as a set of random parameters distributed

as MN(0,σ2
u Ω−1) where u and ε are independent vectors. Brumback et al. [15] have shown

that one can obtain an equivalent representation of the penalized spline regression in the form

of linear mixed model (LMM) since the fitting criterion (2.15) is equal to the best linear

unbiased predictor (BLUP) criterion in the LMM. Then the model explaining the functional

relationship between yi and xi becomes

y = Xψ +Z∗u+ ε ; cov

 u

ε

=

 σ2
u Ω−1 0

0 σ2
ε In

 (2.18)

Consider the reparametrization b = Ω1/2u and define Z = Z∗Ω−1/2. Then the linear mixed

model in 2.18 takes the form

y = Xψ +Zb+ ε ; cov

 b

ε

=

 σ2
b ID 0

0 σ2
ε In

 (2.19)
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where b is a D× 1 vector of random effects distributed as MN(0,σ2
b ID) and Z is a n×D

data matrix calculated for the spline part. The details of the reparametrization used here is

given in Crainiceanu et al. [14]. The parameters in the mixed model 2.19 can be estimated by

using frequentist approach using Best Linear Unbiased Predictor (BLUP) or Penalized Quasi-

Likelihood (PQL) estimation. We fitted this mixed model in the missing data mechanism of

defined hierarchical model based on Bayesian approach. Note that the representation for the

low-rank thin-plate spline regression in terms of linear mixed model is also appropriate for

the binary regression model with the logit or probit link function (e.g. see Crainiceanu et

al. [14]).

After all these derivations for the penalized spline regression by using low-rank thin-plate

splines, the proposed semiparametric missing data mechanism defined in (2.12) takes the fol-

lowing mixed form.

h(pik) = φ(k,0)+ r∗ikφ(k,1)+ yiφ(k,2)+ xmiss
i φ(k,3)+

s

∑
k=1

Z(k)b(k)+ xobs
i φ(k,4) (2.20)

where Z(k) is a n×D data matrix calculated for the penalized spline regression with D knots

and b(k) is a D×1 vector of random effects distributed as MN(0,σ2
b(k)ID) corresponding to the

missing covariate xmiss
ik for k = 1, ...s. Also, Z(k) = Z∗(k)Ω

−1/2
(k) in which Z∗(k) is an n×D matrix

and Ω(k) is a known D×D penalty matrix as follows.

Z∗(k) =


|xmiss

1k −κ1(k)|3 |xmiss
1k −κ2(k)|3 · · · |xmiss

1k −κD(k)|3

|xmiss
2k −κ1(k)|3 |xmiss

2k −κ2(k)|3 · · · |xmiss
2k −κD(k)|3

...
...

. . .
...

|xmiss
nk −κ1(k)|3 |xmiss

nk −κ2(k)|3 · · · |xmiss
nk −κD(k)|3

 (2.21)

and

Ω(k) =


|κ1(k)−κ1(k)|3 |κ1(k)−κ2(k)|3 · · · |κ1(k)−κD(k)|3

|κ2(k)−κ1(k)|3 |κ2(k)−κ2(k)|3 · · · |κ1(k)−κD(k)|3
...

...
. . .

...

|κD(k)−κ1(k)|3 |κD(k)−κ2(k)|3 · · · |κD(k)−κD(k)|3

 (2.22)

where κ1(k) < κ2(k) < ... < κD(k) are fixed knots suitably determined for each missing covari-

ate xmiss
ik . Since some of the observations in xmiss in reality are unknown, to obtain the fixed

knots, we consider the following procedure based on ML estimation. Let xmiss
(1) and xmiss

(2) be the

15



missing and observed components of xmiss respectively and let Xobs denote the observed data

for the covariates where Xobs = (xmiss
(2) ,x

obs). The natural way to fill these missing observations

is to sample from f (xmiss|xobs,α(1)). To do so, we need to find the appropriate estimate of α(1)

denoted by α̂(1). Since we have m completely observed subjects, we can simply choose α̂(1)

so that it maximizes the likelihood function L(α(1)|Xobs) = f (xmiss
(2) |x

obs,α(1)) based on the

completely observed subjects. Then, we independently generate xmiss
(1),q ∼ f (xmiss|xobs, α̂(1)) for

q = 1, ...,Q. By using those generated values for xmiss
(1) , we can obtain D× 1 vectors of fixed

knots κ
q
(k) = (κq

1(k), ...,κ
q
D(k)) calculated by the sample quantiles of (xmiss

k(2),x
miss
k(1),q) correspond-

ing to probability d/(D+ 1) for d = 1, ...D where xmiss
k(2) is the observed observations for the

missing covariate xmiss
ik and xmiss

k(1),q is the qth imputed missing observations for the covariate

xmiss
ik for k = 1, ...,s and q = 1, ...Q. Then, we can obtain the fixed knots for each missing co-

variate xmiss
ik by using the following formula which averages the each components of the vector

of fixed knots κ
q
(k) calculated empirically by using different imputed missing observations for

the covariate xmiss
ik .

κd(k) =
1
Q

Q

∑
q=1

κ
q
d(k) (2.23)

where κd(k) is the dth fixed knot for the missing covariate xmiss
ik for d = 1, ...,D and k = 1, ...,s.

In the simulation study, logistic regression model contains one NMAR covariate, namely xi1

and one fully observed covariate, namely xi2. Then, we denote ri as the missing data indicator

of the covariate xi1 where ri = 1when xi1 is missing and ri = 0 when xi1 is observed. Then,

the semiparametric missing data mechanism used in the simulation study by using the low-

rank thin-plate splines with D knots is specified by a binary regression model in the following

form.

f (ri|yi,xi1,xi2,Z,φ ,b) = pri
i (1− pi)

1−ri ; pi = P(ri = 1|yi,xi1,xi2,Z,φ ,b) (2.24)

in which

h(pi) = φ0 +φ1yi +φ2xi1 +Zb+φ3xi2 (2.25)

where Z is a n×D data matrix calculated for the penalized spline regression with D knots and

b is a D×1 vector of random effects distributed as MN(0,σ2
b ID) corresponding to the missing

covariate xi1. The matrix Z are calculated by using the same procedure in (2.20). Note that

parameters in (2.25) are redefined for the simplicity. The link function in (2.20) are chosen

as probit in the simulation study since it has better computational properties than logit link

function. The details of why the probit link function is used are given in Section 2.2.
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Hierarchical Model

As a summary, the hierarchical model including proposed semiparametric missing data model

to estimate the parameters of logistic regression with nonignorably missing covariates has the

following three components:

1. f (yi|xmiss
i ,xobs

i β ) = µ
yi
i (1−µi)

1−yi ; µi = E(yi|xmiss
i ,xobs

i ,β ) = P(yi = 1|xmiss
i ,xobs

i ,β )

logit(µi) = β0 +β1xmiss
i1 + ...+βsxmiss

is +βs+1xobs
i,s+1 + ...+βpxobs

ip (2.26)

2.

xmiss
ik |

(
xmiss

i1 , ...,xmiss
i,k−1,x

obs
i

)
∼ N

[
α
(∗,0)
(1)k +

k−1

∑
j=1

α
(∗, j)
(1)k xmiss

i j +
p

∑
j=s+1

α
(∗, j)
(1)k xobs

i j , σ
2
X(k)

]

(2.27)

for k = 1, ...s

3. f (rik|r∗ik,yi,xmiss
i ,xobs

i ,Z,φ(k),b) = prik
ik (1− pik)

1−rik

h(pik) = φ(k,0)+ r∗ikφ(k,1)+ yiφ(k,2)+ xmiss
i φ(k,3)+

s

∑
k=1

Z(k)b(k)+ xobs
i φ(k,4)

b(k)| σ2
b(k) ∼MN(0,σ2

b(k)ID) (2.28)

for k = 1, ...s

where xmiss
i = (xmiss

i1 , ...,xmiss
is ) and xobs

i = (xobs
i,s+1, ...,x

obs
ip ) are continuous NMAR covariates and

fully observed covariates respectively, and Z = {Z(k);k = 1, ...s} and b = {b(k);k = 1, ...,s}.

Chen and Ibrahim [11] also considered a semiparametric model for the missing data mecha-

nism in the same spirit of model 2.20. However, our work is different from their work in the

following aspects: i) they considered the smooth functions for the covariates having possibly

nonlinear effect on the missingness status; however we considered the smooth functions for

all the missing covariates since the relationship between the missingness probability and the

missing covariate is not identifiable from the observed data or the data may not contain suffi-

cient information for the underlying missingness condition, ii) they investigated the efficiency

properties of semiparametric missing data model under the assumption that the missing co-

variates have linear effect on the missingness probability while we focused on the model in

which missing covariates have possibly nonlinear effect on the missingnees status, iii) They
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did not conduct a sensitivity analysis for the different number of knots while we investigated

the effect of number of knots in our proposed semiparametric model on the estimation of β .

In this thesis, we investigate the effect of the proposed semiparametric missing mechanism

in (2.28) on estimating the β , the parameters of the main interest.

2.2 Bayesian Estimation

When we have a complex model for the data analysis (e.g. hierarchical modeling), the es-

timation techniques based on frequentist approach may be difficult to deal with due to the

challenging derivations in the estimation procedure. For instance, the maximum likelihood

(ML) estimation requires minimizing the likelihood function based on the observed data over

the domain of the parameter which is sometimes a complicated procedure. However, Bayesian

estimation techniques using the modern sampling methods provide many advantages for such

a statistical modeling. In the past, statistical analysis based on the Bayesian approach was

not so applicable because of computational incompetence. The recent developments on the

computer-intensive sampling algorithms have improved the utilization of Bayesian estimation

techniques since they have made possible to estimate the parameters of the complex models

containing high-dimensional numerical integrations in the estimation procedure. It is well

known that the Bayesian approaches are different from the frequentist approaches in philos-

ophy. The extra information about the parameters can be incorporated to the analysis using

the prior structure in Bayesian paradigm whereas frequentist methods depend on only the ob-

served data. While estimating the parameters, the information from the likelihood based on

the data and the apriori knowledge about the parameters are combined together to obtain pos-

terior estimates. On the other hand, prior construction has an important role on the estimation

of parameters in the Bayesian analysis since the estimates of the parameters may be sensi-

tive to the choice of priors and convergence problem may exist for the sampling algorithms

of posterior distribution due to the improper priors. Specifically, the posterior distribution of

parameters related with the missing data mechanism are improper if improper uniform priors

are used. In such situations, statistical methodologists propose the empirical Bayes based

priors for the parameters. In this approach, the hyperparameters (the parameters of the prior

distributions) are obtained based on the sampled data itself as well as the possible datasets

that could be observed from the considered model. In addition, Bayesian estimation based on
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the sampling methods allows us the exact hypothesis tests on the parameters that are valid not

only in large samples but also in finite samples.

In the Bayesian inference, unknown quantities such as parameters (whether fixed or ran-

dom), hierarchical parameters, latent random effects and missing data are treated as ran-

dom (see Gelman and Rubin [16]). The basic idea behind the Bayesian estimation based

on sampling methods is simple yet requires care: after observing the data y, empirical den-

sity for the each component of parameter set θ = (θ1, ...,θd) is obtained by drawing a set

of random observations for the parameter θ j from its full conditional posterior distribution

f (θ j|θ1, ...,θ j−1,θ j+1, ...,θp,y), then statistical inference on the parameter θ j can be accom-

plished by using those empirical densities providing the distributional characteristics (e.g.

moments, quantiles etc.) of the parameters. The novel Markov chain Monte Carlo (MCMC)

sampling methods are very crucial tools to obtain a set of random draws for the parameter

θ j. However, the Bayesian procedure and accompanying sampling methods can be dangerous

due to the inappropriate modeling, improper priors and convergence issues.

Let θ = (θ1, ...,θd) be the parameter sets of any statistical model and f (θ) be the joint prior

distribution for the parameters. Then, the joint posterior distribution which is the updated

knowledge on the parameters can be simply obtained by combining the information from the

prior knowledge which is put into a model format by f (θ), and the likelihood of the data

f (y|θ) as follows.

f (θ |y) = f (y|θ) f (θ)/ f (y)

∝ f (y|θ) f (θ) (2.29)

where f (y) is the marginal likelihood of the data which is a function of only observations

but not a function of θ and considered as a normalizing constant for the posterior distribution

f (θ |y). To obtain the marginal posterior distribution of the parameter θ j, we need to integrate

out all the other parameters:

f (θ j|y) =
∫

...
∫

f (θ1, ...,θd |y) dθ1...dθ j−1dθ j+1...dθd (2.30)

Mostly, integration in (2.30) is very complicated (and sometimes impossible) to perform.

To deal with the situation, the Gibbs sampler algorithm is constructed to obtain the random

samples from the marginal posterior distribution of each parameter in the multiparameter

models (see Gelfand and Smith [17]; Gilks et al. [18]; Casella and George [19]). At the tth
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iteration of this iterative algorithm, each parameter is updated by using the corresponding full

conditional posterior distribution as follows.

1. θ
(t)
1 ∼ f1(θ1|θ (t−1)

2 ,θ
(t−1)
3 , ...,θ

(t−1)
d ,y)

2. θ
(t)
2 ∼ f2(θ2|θ (t)

1 ,θ
(t−1)
3 , ...,θ

(t−1)
d ,y)

...

d. θ
(t)
d ∼ fd(θd |θ

(t)
1 ,θ

(t)
2 , ...,θ

(t)
d−1,y)

where each θ
(t)
j can be sampled from f j(θ j|θ (t)

1 , ...,θ
(t)
j−1,θ

(t−1)
j+1 , ...,θ

(t−1)
d ,y) by using the ap-

propriate sampling algorithms (e.g. Metropolis-Hastings (M-H) algorithms, direct sampling

algorithms etc.) for t = 1, ...,T , and θ (0) = (θ
(0)
1 , ...,θ

(0)
d ) is the initial points. After obtain-

ing a large number of T observations θ
(1)
j ,θ

(2)
j , ...,θ

(T )
j for each parameter, we can simply

estimate the E (g(θ j)|y) =
∫

g(θ j) f (θ j|y)dθ j by

gT = E (g(θ j)|y) =
1
T

T

∑
t=1

g(θ (t)
j ) (2.31)

where gT is the Bayesian estimate of the parameter θ j (i.e. the estimated expected value

based on the posterior distribution) when g is the identity function. Note that full conditional

posterior distribution f j(θ j|θ1, ...,θ j−1,θ j+1, ...,θd ,y) in the Gibbs sampler algorithm can be

easily derived from the joint posterior distribution of the parameters simply by extracting the

terms corresponding to θ j. The main motivation behind the Gibbs sampler algorithm is to

reduce the number of iterations by using the parameter-by-parameter updating and to avoid

calculating the marginal posterior distribution of the each parameter which is very compli-

cated as in (2.30). Note also that, there is no need to use additional sums in (2.31) in terms

of the observations for the other parameters (θ (t)
1 , ...,θ

(t)
j−1,θ

(t)
j+1, ...,θ

(t)
d ) for t = 1, ...,T since

those parameters have already converge to their expected values in the long run due to the

parameter-by-parameter updating.

In the hierarchical models (e.g. missing data models), unobserved quantities such as latent

random effects and missing data can be also treated as random besides the parameters. To

estimate the parameters of such models including latent random effects or missing data by

using the fully Bayesian approach, Tanner and Wong [20] propose the Data Augmentation

(DA) algorithm which is a special case of the Gibbs sampler and considered as the stochastic
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version of the EM algorithm. Let y be the observed data and y∗ be the latent data such as latent

random effects or missing data, and ycom denotes the complete data. That is ycom = (y,y∗).

Note that ycom is the dataset augmented by y∗. The joint conditional distribution of all the

unknown quantities conditional on the observed data can be written as

f (θ ,y∗|y) = f (y∗,y|θ) f (θ)
f (y)

∝ f (y∗,y|θ) f (θ) (2.32)

where f (y∗,y|θ) = f (ycom|θ) is the likelihood based on the complete data and f (θ) is the

joint prior distribution of the parameters. To obtain the posterior estimates of the parameters

θ = (θ1, ...,θd), one needs to integrate out y∗ from f (θ ,y∗|y). Then

f (θ |y) =
∫

f (θ ,y∗|y)dy∗ =
∫

f (θ |y∗,y) f (y∗|y)dy∗ where f (y∗|y) =
∫

f (θ ,y∗|y)dθ

(2.33)

Here f (y∗|y) is the joint predictive density of y∗ given the observed data and f (θ |y∗,y) =

f (θ |ycom) is the joint posterior distribution of the parameters based on the complete data.

Most of the time, the integrals in (2.33) are analytically difficult to obtain. However, the

random draws from f (θ |y) and f (y∗|y) can be obtained by using the Gibbs sampler algorithm

as defined above. Then, the DA algorithm has the following two steps at the tth iteration:

1. y∗(t) ∼ f (y∗|θ (t−1),y) =⇒ Imputation-Step

2. θ (t) ∼ f (θ |y∗(t),y) =⇒ Posterior-Step

where y∗(t) and θ (t) can be sampled from those conditional distributions by using the appro-

priate sampling algorithms (e.g. Gibbs sampler, M-H and direct sampling algorithms) for

t = 1, ...,T . In the missing data problems, missing components can be treated as random and

filled up by using the DA algorithm based on the fully Bayesian approach.

In the following sections, proposed Bayesian methodology is explained for the hierarchical

modeling whose components are given in (2.26), (2.27) and (2.28) to estimate the parameters

of logistic regression with nonignorably missing covariates. The prior construction for all

the parameters including the fixed coefficients of each model and variance components are

described in Section 2.2.1. The posterior construction including the employed Gibbs sampler

algorithm for the proposed hierarchical model is explained in Section 2.2.2, and then the way

of posterior calculations by using the WinBUGS is explained in Section 2.2.3.
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2.2.1 Prior Construction

In the Bayesian analysis, prior knowledge on the parameters is also accounted as well as the

likelihood information based on the sampled data. The effect of the prior distribution on the

parameter estimation depends on the how informative the prior is and the size of the data.

For example, noninformative priors lead to posterior estimates that are very close to the ML

estimates since posterior knowledge about the parameters is not considerably influenced by

these priors. On the other hand, informative priors have a greater influence on the estimation

especially for the smaller samples. The prior selection is an important issue due to the follow-

ing problems: i) the posterior estimate for the parameter may not be robust to the choice of

the hyperparameters of prior, ii) improper priors can lead to improper posterior distribution,

and iii) the choice of prior may result in poor mixing and hence slow convergence in MCMC

framework. Thus, the choice of an appropriate prior requires care to avoid these problems.

If there is no existing information about the parameters, noninformative proper priors with

large variance can also be used instead of noninformative improper priors (e.g. improper uni-

form prior). Using conjugate proper prior is advantageous as it results in direct sampling to

construct the posterior distribution in MCMC. In some circumstances, it is better to use infor-

mative priors (e.g. the empirical Bayes based priors) instead of noninformative ones to extract

more information from the data since the likelihood alone may not contain sufficient informa-

tion about the parameters as in missing data models. To construct the empirical Bayes based

prior, the information from the data itself and the possible datasets that could be observed

from the considered model is used to set the hyperparameters of this prior. For usefulness on

empirical Bayesian methods one can refer to Carlin and Louis [21].

In the hierarchical modeling whose components are given in (2.26), (2.27) and (2.28), the pa-

rameter space consists of (β ,α∗(1),σ
2
X ,φ ,σ

2
b ) where β = {β j; j = 1, ..., p} , α∗(1) = {α

(∗, j)
(1)k ; j =

0, ...,k− 1,s+ 1, ..., p; k = 1, ...,s} , σ2
X = {σ2

X(k);k = 1, ...,s} , φ = {φ(k, j);k = 1, ...s; j =

1, ...4} and σ2
b = {σ2

b(k);k = 1, ...,s}. The prior distributions for all these parameters are to be

constructed for the Bayesian inference. The prior construction for the parameters is summa-

rized in Table 2.1.
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Table 2.1: The prior specification corresponding to each parameter set

Parameter Set Prior Explanation

β β j ∼ U(−∞,∞) improper uniform prior

α∗(1)k ; k = 1, ...,s α
(∗, j)
(1)k ∼ U(−∞,∞) improper uniform prior

σ
−2
X(k) ; k = 1, ...,s σ

−2
X(k) ∼ Gamma(0.01,0.01) noninformative gamma prior

φ(k) ; k = 1, ...,s φ(k) ∼MN(φ̂(k),c0Σ̂φ(k))
empirical Bayes based
multivariate normal prior

σ
−2
b(k) ; k = 1, ...,s σ

−2
b(k) ∼ Gamma(τ̂σb(k)2

, ϕ̂σb(k)2
)

empirical Bayes based
gamma prior

Huang et al. [6] showed for the models with nonignorably missing covariates that the use of

improper uniform priors for β (the parameters of the response model) and α∗(1) (the location

parameters of the missing covariate model) results in proper posterior. Therefore, we sim-

ply took an improper uniform prior for each β j and α
∗, j
(1)k. For the inverse of each variance

component σ
−2
X(k), we used gamma prior with large variance. They also showed that the joint

posterior distribution of (β ,α∗(1),σ
2
X ,φ) is always improper whenever prior for φ is taken to

be improper, and posterior inference on β and α∗(1) is highly sensitive to the hyperparameters

of prior for φ . They proposed the empirical Bayes based priors for the coefficients φ which

provide proper joint posterior. In addition, it is also shown in that paper that these empiri-

cal Bayes based priors for φ result in accelerated convergence in the posterior calculations.

Considering these facts, we used empirical Bayes based method to construct proper priors

for φ .

The empirical Bayes based procedure proposed by Huang et al. [6] for constructing proper

priors for their missing data model coefficients is adapted for the coefficients φ in our pro-

posed semiparametric missing data model (2.28). The prior of the fixed parameters in each

model for missing indicator rik is set as φ(k) ∼MN(φ̂(k),c0Σ̂φ(k)) where φ̂(k) = (φ̂(k,0), ..., φ̂(k,4))

is an estimate of (p+k+1)×1 mean vector and Σ̂φ(k) is an estimate of (p+k+1)×(p+k+1)

variance-covariance matrix, and c0 is a constant used to account for the variation introduced

by estimating the parameters. Huang et al. [6] conducted a sensitivity analysis investigating

the effect of c0 on the posterior distribution, and showed that posterior estimates of the pa-

rameters of the main interest β are not affected by the choice of c0. Posterior estimates of
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β by using our proposed semiparametric missing data model are also robust to the choice

of c0, and we set c0 = 10 for the simulation study in Chapter 3. Remember that xmiss
(1) and

xmiss
(2) are defined as the missing and observed components of xmiss respectively, and then

Xobs = (xmiss
(2) ,x

obs) is defined as the observed data for the covariates in Section 2.1. Also,

define Dobs = (r,y,xmiss
(2) ,x

obs) as the observed data for all variables. The following procedure

can be used to obtain the hyperparameters of the multivariate normal prior.

1. Obtain α̂(1) which maximizes the likelihood function L(α(1)|Xobs) = f (xmiss
(2) |x

obs,α(1))

based on the m completely observed subjects.

2. Generate Q independent samples xmiss
(1),q∼ f (xmiss|xobs, α̂(1)) to obtain the imputed datasets

Dimp
q = (r,y,xmiss

(1),q,x
miss
(2) ,x

obs) for q = 1, ...,Q.

3. Obtain φ̂
q
(k) which maximizes the likelihood function Lq

(k)(φ(k)|D
imp
q )= f (r(k)|r∗(k),y,x

miss
(1),q,

xmiss
(2) ,φ(k)) corresponding to each missing indicator r(k). Note that each r(k) is fitted

by the model f (r(k)|r∗(k),y,x
miss
(1),q,x

miss
(2) ,φ(k)) = p

r(k)
(k) (1− p(k))

1−r(k) in which h(p(k)) =

φ(k,0)+ r∗(k)φ(k,1)+ yφ(k,2)+ xmissφ(k,3)+ xobsφ(k,4) for k = 1, ...,s and q = 1, ...,Q.

4. Denote Lq
(k)(φ(k)|D

imp
q ) as the imputed likelihood function for φ(k). Then compute the in-

formation matrix Iq
(k)(φ̂

q
(k)) for each φ̂

q
(k) which maximizes the likelihood Lq

(k)(φ(k)|D
imp
q )

where the information matrix can be calculated as I(φ) = −∂ 2lnL(φ)
∂φ∂φ T .

Then φ̂(k) and Σ̂φ(k) which specify the hyperparameters of the empirical Bayes based prior of

φ(k) are calculated as

φ̂(k) =
1
Q

Q

∑
q=1

φ̂
q
(k) and Σ̂φ(k) =

1
Q

Q

∑
q=1

[
Iq
(k)(φ̂

q
(k))
]−1

(2.34)

In our proposed missing data model (2.28), D×1 vector of random effects b(k) is distributed as

MN(0,σ2
b(k)ID). We, at first, considered a noninformative gamma prior for the inverse of each

variance component σ
−2
b(k) for k = 1, ...,s. For the missing data model in the simulation study,

we observed that posterior estimate of σ2
b(k) was quite sensitive to the choice of the hyperpa-

rameters of this gamma prior. We, for instance, used different gamma priors for σ
−2
b(k) such

as Gamma(0.1,0.1), Gamma(0.01,0.01) and Gamma(0.001,0.001). Alternatively, we used

noninformative uniform prior distributions for the standard deviations σb(k) as recommended

by Gelman [22]. However, constructing a noninformative uniform prior such as U(0.1,100)
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resulted in severe numerical overflow in Gibbs sampling. On the other hand, constructing a

more informative uniform prior with narrower range such as U(0.1,10) would introduce too

much informativeness on the parameters σ2
b(k) even there was no any existing prior knowl-

edge about those parameters. Also one should note that σ2
b(k) is induced in the model by

transformation of semiparametric models into mixed models and thus they are not part of the

primary model. Therefore, the data lacks sufficient information about them. Accordingly, we

proposed an empirical Bayes based gamma priors for each σ
−2
b(k). In the simulation study, we

also observed that using empirical Bayes based gamma priors for σ
−2
b(k) results in accelerated

convergence in the posterior calculations of b(k) and σ
−2
b(k) (see the corresponding Brooks-

Gelman-Rubin’s convergence diagnostics and autocorrelation plots in Appendix D.1). To

calculate the hyperparameters of the empirical based Gamma(τ̂σb(k)−2 , ϕ̂σb(k)−2 ) prior for each

σ
−2
b(k), we proposed the use of following procedure.

1. Obtain α̂(1) which maximizes the likelihood function L(α(1)|Xobs) = f (xmiss
(2) |x

obs,α(1))

based on the m completely observed subjects.

2. Generate Q independent samples xmiss
(1),q∼ f (xmiss|xobs, α̂(1)) to obtain the imputed datasets

F imp
q = (r,Zq) where Zq = {Z(k),q;k = 1, ...,s} and Z(k),q’s are n×D data matrices for

the nonparametric part of missing data model calculated from (xmiss
(1),q,x

miss
(2) ) as in (2.28)

for k = 1, ..,s and q = 1, ...,Q.

3. Obtain b̂q
(k) which maximizes the likelihood function Lq

(k)(b(k)|F
imp

q ) = f (r(k)|Z,b) cor-

responding to each missing indicator r(k). Note that each r(k) is fitted by the model

f (r(k)|Z,b) = p
r(k)
(k) (1− p(k))

1−r(k) in which h(p(k)) = c(k),q +∑
s
k=1 Z(k),qbq

(k) where c(k),q

is the intercept coefficients for k = 1, ...,s and q = 1, ...,Q.

4. Denote Lq
(k)(b(k)|F

imp
q ) as the imputed likelihood function for b(k). Then compute the in-

formation matrix Iq
(k)(b̂

q
(k)) for each b̂q

(k) which maximizes the likelihood Lq
(k)(b(k)|F

imp
q )

where the information matrix can be calculated as I(b) = −∂ 2lnL(b)
∂b∂bT .

5. Calculate the estimated variance-covariance matrix for each D×1 parameter vector bq
(k)

where D is the number of knots by using Σ̂
q
b(k)

=
[
Iq
(k)(b̂

q
(k))
]−1

.

6. Then we determined the shape τ̂σb(k)2
and scale ϕ̂σb(k)2

parameters of the gamma prior for

each σ
−2
b(k) so that the mean of this prior is equal to the averages of

[
diag

(
1
Q ∑

Q
q=1 Σ̂

q
b(k)

)].−1

and variance is equal to 1. Here, [].−1 denotes the elementwise inverse.
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2.2.2 Posterior Construction

Let Dobs = (r,y,xmiss
(2) ,x

obs) denote the observed dataset where xmiss
(1) and xmiss

(2) denote missing

and observed components of xmiss respectively. Note that n×D data matrices Z = {Z(k);k =

1, ...,s} for the nonparametric part of the missing data model are not included in Dobs since

Z(k)’s are the function of xmiss
(k) . Let also Dcom = (Dobs,xmiss

(1) ,b) denotes the complete dataset

which is augmented by the unobserved covariates xmiss
(1) and the latent random effects b. Then

the joint conditional distribution of all the unknown quantities based on the observed data

Dobs is represented as

f (β ,α∗(1),σ
2
X ,φ ,σ

2
b ,x

miss
(1) ,b|Dobs) =

f (xmiss
(1) ,b,Dobs| β ,α∗(1),σ

2
X ,φ ,σ

2
b ) f (β ,α∗(1),σ

2
X ,φ ,σ

2
b )

f (Dobs)

∝ f (Dcom| β ,α∗(1),σ
2
X ,φ ,σ

2
b ) f (β ,α∗(1),σ

2
X ,φ ,σ

2
b ) (2.35)

where f (Dcom |β ,α∗(1),σ
2
X ,φ ,σ

2
b ) and f (β ,α∗(1),σ

2
X ,φ ,σ

2
b ) are the complete likelihood and

the joint prior distribution of the parameters respectively. To conduct a posterior inference on

the parameters, the desired joint posterior distribution f (β ,α∗(1),σ
2
X ,φ ,σ

2
b |Dobs) and the joint

predictive density f (xmiss
(1) ,b|Dobs) are defined as

f (β ,α∗(1),σ
2
X ,φ ,σ

2
b |Dobs) =

∫ ∫
f (β ,α∗(1),σ

2
X ,φ ,σ

2
b ,x

miss
(1) ,b|Dobs) dxmiss

(1) db

=
∫ ∫

f (β ,α∗(1),σ
2
X ,φ ,σ

2
b |Dcom) f (xmiss

(1) ,b|Dobs) dxmiss
(1) db

(2.36)

and

f (xmiss
(1) ,b|Dobs) =

∫
f (β ,α∗(1),σ

2
X ,φ ,σ

2
b ,x

miss
(1) ,b|Dobs) dθ (2.37)

where θ = (β ,α∗(1),σ
2
X ,φ ,σ

2
b ) is the set of all parameters. Note that the multiple integrals in

(2.36) and (2.37) are analytically difficult to obtain. Therefore, the data augmentation (DA)

algorithm based on the Gibbs sampling approach can be performed to sample random draws

from the desired joint posterior distribution f (β ,α∗(1),σ
2
X ,φ ,σ

2
b |Dobs) and the joint predictive

density f (xmiss
(1) ,b|Dobs) based on the observed data. Accordingly, the unobserved quantities
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xmiss
(1) and b are to be sampled from the joint conditional distribution f (xmiss

(1) ,b| β ,α
∗
(1),σ

2
X ,φ ,

σ2
b ,Dobs), and the unknown parameters (β ,α∗(1),σ

2
X ,φ ,σ

2
b ) are to be sampled from the joint

posterior distribution f (β ,α∗(1),σ
2
X ,φ ,σ

2
b | xmiss

(1) ,b,Dobs) based on the complete data at each

iteration of DA algorithm. By using the Gibbs sampling algorithm within the DA algorithm,

each of the unknown quantities β , α∗(1), σ2
X , φ , σ2

b , xmiss
(1) and b can be sampled from the cor-

responding full conditional distributions to obtain the random draws from the joint posterior

distribution f (β ,α∗(1),σ
2
X ,φ ,σ

2
b |Dobs) based on the observed sample. After obtaining the ran-

dom draws from this joint posterior distribution, we can easily conduct a posterior inference

on all of the parameters. Thus, at the tth iteration of this iterative algorithm, the missing com-

ponents xmiss
(1) , the latent random effects b and the parameters are sampled from the following

full conditional distributions.

xmiss
(1)(t) ∼ f (xmiss

(1) | β(t−1),α
∗
(1)(t−1),σ

2
X(t−1),φ(t−1),b(t−1),Dobs)

b(t) ∼ f (b| φ(t−1),σ
2
b(t−1),x

miss
(1)(t),Dobs)

β(t) ∼ f (β | xmiss
(1)(t),Dobs)

α
∗
(1)(t) ∼ f (α∗(1)| σ

2
X(t−1),x

miss
(1)(t),Dobs)

σ
2
X(t) ∼ f (σ2

X | α∗(1)(t),x
miss
(1)(t),Dobs)

φ(t) ∼ f (φ | xmiss
(1)(t),b(t),Dobs)

σ
2
b(t) ∼ f (σ2

b | b(t))

The functional forms of each full conditional distribution of parameters and latent variables

can be easily derived from (2.35) by extracting the terms corresponding to the associated

parameter. The joint prior distribution of the parameters can be assumed independent apriori

and the complete data likelihood can be written as

f (Dcom| β ,α∗(1),σ
2
X ,φ ,σ

2
b ) = f (r,y,xmiss

(1) ,x
miss
(2) ,x

obs,b| β ,α∗(1),σ
2
X ,φ ,σ

2
b )

= f (r| y,xmiss
(1) ,x

miss
(2) ,x

obs,φ ,b) f (y| xmiss
(1) ,x

miss
(2) ,x

obs,β )×

f (xmiss
(1) ,x

miss
(2) | x

obs,α∗(1),σ
2
X) f (b| σ2

b ) (2.38)

The appropriate MCMC sampling algorithms (e.g. M-H algorithm) or direct sampling algo-

rithms can be used within the Gibbs sampling algorithm to sample from these full conditional

distributions. In this thesis, WinBUGS(Speigelhalter, Thomas, and Best [12]), a flexible and

user-friendly software for the Bayesian analysis using MCMC methods, is used to carry out
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the sampling from the full conditional distributions and ultimately attain the joint posterior

distribution in (2.36).

We, at first, considered the logit link function in the proposed semiparametric missing data

model (2.28). However, the tedious trap messages were often appeared in WinBUGS due

to the computational difficulties in sampling from the full conditional distribution of b. Note

that the full conditional distribution of b is specified by f (r| y,xmiss
(1) ,x

miss
(2) ,x

obs,b) f (b| σ2
b ).

When the logit link function is used, the kernels of this full conditional distribution belong

to different distributions which lead to inconvenient sampling for the b’s. As a remedy for

this ill condition, we considered the probit link function for the semiparametric missing data

model. For the analysis of binary response data, Albert and Chib [23] proposed the use of

probit link and augmenting the data by suitably constructed latent variables. We adopted this

approach and latent Wik’s are introduced for each missing data indicator rik for k = 1, ...,s and

i = 1, ...,n such that

rik =

 1 ; Wik ≥ 0

0 ; Wik < 0

 (2.39)

Wik ∼ N(µWik ,1) (2.40)

µWik = φ(k,0)+ r∗ikφ(k,1)+ yiφ(k,2)+ xmiss
i φ(k,3)+

s

∑
k=1

Z(k)b(k)+ xobs
i φ(k,4) (2.41)

Then

f (rik|Wik) = Φ(Wik)
rik(1−Φ(Wik))

(1−Wik) and Wik| (r∗ik,yi,xmiss
i ,xobs

i ,Z,φ(k),b)∼ N(µWik ,1)

(2.42)

where Φ is the cumulative distribution function of standard normal distribution. Let Wi =

(Wi1, ...,Wis)
T be the vector of latent Wik’s and µWi = (µWi1 , ...,µWis)

T be the vector of µWik ’s

for i = 1, ...,n. Then Wi ∼MN(µWi , Is). To apply this approach, we used the complete dataset

denoted by Dcom∗ = (Dobs,xmiss
(1) ,b,W ). To obtain the joint posterior distribution based on

the observed data, W also needs to be integrated out in (2.36). Accordingly, the parameters,

missing components xmiss
(1) , and latent variables b and W are sampled from the following full

conditional distributions at the tth iteration of the Gibbs sampling algorithm.
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xmiss
(1)(t) ∼ f (xmiss

(1) | β(t−1),α
∗
(1)(t−1),σ

2
X(t−1),φ(t−1),b(t−1),W(t−1),Dobs)

b(t) ∼ f (b| φ(t−1),σ
2
b(t−1),x

miss
(1)(t),W(t−1),Dobs)

W(t) ∼ f (φ(t),x
miss
(1)(t),b(t),Dobs)

β(t) ∼ f (β | xmiss
(1)(t),Dobs)

α
∗
(1)(t) ∼ f (α∗(1)| σ

2
X(t−1),x

miss
(1)(t),Dobs)

σ
2
X(t) ∼ f (σ2

X | α∗(1)(t),x
miss
(1)(t),Dobs)

φ(t) ∼ f (φ | xmiss
(1)(t),b(t),W(t),Dobs)

σ
2
b(t) ∼ f (σ2

b | b(t))

where the likelihood based on the complete data in (2.38) becomes

f (Dcom∗| β ,α∗(1),σ
2
X ,φ ,σ

2
b ) = f (r,y,xmiss

(1) ,x
miss
(2) ,x

obs,b,W | β ,α∗(1),σ
2
X ,φ ,σ

2
b )

= f (r|W ) f (W | y,xmiss
(1) ,x

miss
(2) ,x

obs,φ ,b) f (y| xmiss
(1) ,x

miss
(2) ,x

obs,β )×

f (xmiss
(1) ,x

miss
(2) | x

obs,α∗(1),σ
2
X) f (b| σ2

b ) (2.43)

Notice that the full conditional distribution for b is specified by the product of the two dis-

tributions, namely f (W | y,xmiss
(1) ,x

miss
(2) ,x

obs,φ ,b) and f (b| σ2
b ) when the probit link used in

the missing data model. Since both distributions have normal kernels, the full conditional

distribution for b is also normal which is very easy to sample from. As a result, the trap

messages vanished and sampling was accomplished. For the specified hierarchical model in

the simulation study, the functional forms of the full conditional distributions to be used in

the Gibbs sampling algorithm are given in Appendix A.

2.2.3 Bayesian Inference using Gibbs Sampling via WinBUGS

In the previous sections, the general methodology for the Bayesian analysis of logistic re-

gression with NMAR covariates is explained. As described previously, the model framework

consists of three components, namely response model, covariate distribution and missing data

model, and we proposed a semiparametric approach to model the underlying missing data

mechanism for each missing indicator rik to provide a flexible way of modeling the true rela-

tionship between the missingness and the missing covariates, linear or nonlinear. In Chapter 3,
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the simulation study is designed to investigate the effect of the proposed semiparametric miss-

ing data model under the different true missing data mechanism on the parameters of main

interest. Specifically, in these simulations, a logistic regression response model with two

continuous explanatory variables xi = (xi1,xi2) is considered where xi1 is possibly nonignor-

ably missing and xi2 is fully observed. Thus, the hierarchical model with the following three

components is considered to estimate the parameters of logistic regression in the simulation

study.

1. f (yi|xi1,xi2,β ) = µyi(1−µi)
1−yi ; µi = E(yi|xi1,xi2,β ) = P(yi = 1|xi1,xi2,β )

logit(µi) = β0 +β1xi1 +β2xi2 (2.44)

2. xi1| xi2 ∼ N(α0 +α1xi2, σ2
x )

(2.45)

3. f (ri|Wi) = Φ(Wi)
ri(1−Φ(Wi))

(1−ri)

Wi |(yi,xi1,xi2,Z,φ ,b)∼ N(µWi ,1) and µWi = φ0 +φ1yi +φ2xi1 +Zb+φ3xi2

b∼MN(0,σ2
b ID) (2.46)

where all parameters and variables are as explained in Section 2.1 and Section 2.2.2. In

this section, we use this hierarchical model to illustrate how to create a WinBUGS code to

carry out Gibbs sampling for the proposed semiparametric approach. We also shed light

onto how WinBUGS update the Markov chain in each iteration of Gibbs algorithm for our

model. To computationally obtain the posterior distributions of the all parameters via Gibbs

sampling, the latent variables and the parameters are to be sampled from the corresponding

full conditional distributions. All the components of the hierarchical model and the prior

distributions of the parameters are needed to be defined in the WinBUGS interface, and then

WinBUGS constructs automatically all the full conditional distributions corresponding to the

all unknown quantities (e.g. the parameters, the missing components xmiss
(1) and the latent

variables b and W in our model) and determine the appropriate sampling algorithm to sample

from these full conditional distributions. However, it is a great advantage for the user to

obtain the functional forms of these full conditional distributions by hand for such complex

analyses in order to construct appropriate priors that result in Gibbs samplings performed
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efficiently. In WinBUGS interface, the tedious trap messages were observed while running

the simulation study due to the inappropriate prior construction. The functional forms of these

full conditional distributions which are derived in Appendix A have very important role on the

appropriate prior construction and the appropriate link function choice for the missing data

model. To sample from the full conditional distribution of each parameter and latent variable,

WinBUGS choose the appropriate sampling algorithm which are defined in Appendix B. In

Table B.1, the kernels of the full conditional distributions, and the corresponding sampling

algorithms within the Gibbs sampling are explained.

Table 2.2: The kernels of the full conditional distributions and corresponding sampling algo-
rithms

Latent/ Full Conditional
Parameter Kernels Sampling Method Explanation

xmiss
(1) Normal, Logistic

Metropolis Hastings method for real non-linear
with normal proposal function

b Normal Direct sampling

w Truncated Normal
Derivative-Free Adaptive for log-concave

Rejection sampling function

β Logistic Slice sampling
for logistic
regression

α Normal Direct sampling

φ Multivariate Normal Direct sampling

σ−2
x and σ

−2
b Normal, Gamma

Direct sampling conjugate gamma
from Gamma prior

In WinBUGS, the initial points for each latent variables and parameters are needed to be

determined to start the corresponding Markov chain. The initial points are arbitrarily chosen

for the parameters of response model and covariate distribution, namely (β0,β1,β2), (α0,α1)

and σ2
x . However, arbitrarily chosen initials for the parameters (φ0,φ1,φ2,φ3) and σ2

b lead

to the trap messages in WinBUGS since the possibly inappropriate initials do not allow

to start sampling from the corresponding full posterior distributions. The calculated means

for the empirical Bayes based multivariate normal priors of φ proposed in Section 2.2.1 are

used for the initial points of these parameters. Also, initial points for the missing components

xmiss
1(1) are chosen from the simulation based imputed datasets described in the procedure for the

empirical Bayes based priors. The starting points for the random effects b are chosen as the

averages of the ML estimations b̂q from the imputed datasets (see the procedure for calculating
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the hyperparameters of the empirical Bayes based gamma priors of σ
−2
b,(k) in Section 2.2.1).

The initial points are chosen arbitrarily for the latent variables W .

The following WinBUGS code is created for posterior calculations based on the proposed

hierarchical model in Section 2.1. This code can be specifically used for logistic regression

model with two continuous covariates one of which is possibly missing(NMAR) and the other

one is fully observed. However, it can be used for different GLMs having NMAR covariates

with just minor adjustments. The likelihood part is specified in WinBUGS as follows:

for(i in 1:N)

{ # model for covariate subject to missingness(X1)

X[i,1] ∼ dnorm(mu[i],invsigma2x)

mu[i]<-alpha[1]+alpha[2]*X[i,2]

# model for response

Y[i] ∼ dbern(piY[i])

logit(piY[i])<-beta[1]+beta[2]*X[i,1]+beta[3]*X[i,2]

# model for missing data model

for(j in 1:k)

{ znknots[i,j]<-pow(X[i,1]-knots[j],3) }

for(j in 1:k)

{ z[i,j]<-inprod(znknots[i,],invsqrtomega[,j]) }

W[i] ∼ dnorm(wmean[i],1) I(lb[R[i]+1],ub[R[i]+1])

wmean[i]<-phi[1]+phi[2]*Y[i]+phi[3]*X[i,2]+mfixed[i]+mrand[i]

mfixed[i]<-phi[4]*X[i,1]

mrand[i]<-inprod(b[],z[i,]) }

In WinBUGS, user should load the data: total sample size N, n× 1 response vector Y, n× 1

missing indicator vector R, n× 2 design matrix X[,], number of knots k, k× 1 fixed knots

vector knots for x1 and n× k matrix invsqrtomega for calculating the random effect

design matrix z. WinBUGS is called from within MATLAB using mat2bugs.m function

to run the simulations in Chapter 3. These fixed values are calculated by using MATLAB,

and sent to WinBUGS via mat2bugs.m function. Note that random effect design matrix

z is calculated in WinBUGS since we want to update this matrix at every iteration of Gibbs

sampling, which means that updated missing xmiss
(1) values at each iteration are considered in

the random effect desing matrix z. Probit link in the code is specified by defining truncated

normal distribution with lower bound lb[R[i]+1] and upper bound ub[R[i]+1] where

lb=(-50,0) and ub=(0,50) are fixed constants with arbitrarily chosen large values in
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magnitude. The priors of parameters and the distribution of the random coefficients b are

specified in WinBUGS as follows:

# Priors for Parameters of Response and Covariate Models

for(j in 1:2){ alpha[j] ∼ dflat() }

for(j in 1:3){ beta[j] ∼ dflat() }

invsigma2x ∼ dgamma(0.01,0.01)

# Distribution of the random coefficients

for(j in 1:k)

{ b[j] ∼ dnorm(0,invsigma2b) }

# Priors for Missingness Part

phi[1:4] ∼ dmnorm(phipriormean[1:4],phipriorcov[1:4,1:4])

invsigma2b ∼ dgamma(invsigma2b1,invsigma2b2)

The parameters of the priors for φ and σ
−2
b are determined in MATLAB using the empir-

ical Bayesian method described in Section 2.2.1 and sent to WinBUGS via mat2bugs.m

function again. In WinBUGS code, phipriormean and phipriorcov are empirical

Bayesian based mean vector and variance-covariance matrix of multivariate normal prior of

φ . Also, invsigma2b1 and invsigma2b2 are emprical Bayesian based shape and scale

parameters of gamma prior of σ
−2
b .
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CHAPTER 3

SIMULATION STUDY

To assess the performance of the proposed hierarchical model and the accompanying estima-

tion procedure for estimating the parameters of the main interest β , we designed Monte Carlo

simulations under the various true missing data mechanisms. In the previous chapters, we

explained the general methodology to estimate the parameters of the logistic regression with

the proposed semiparametric missing data model in order to capture any functional relation-

ship between the missingness and the missing covariates more flexibly. To investigate the bias

and efficiency properties of the resulting estimators, a logistic regression with two continuous

covariates is considered as a specific example of this estimation procedure in all simulations,

and we assume that one of the covariates namely xi1 is not missing at random (NMAR) and

the other one namely xi2 is completely observed. We considered mainly three different true

missingness mechanisms where each of them constitutes 15% and 35% missingness for the

missing covariate xi1. Under all true missingness mechanisms, we fitted three hierarchical

models one of which has our proposed semiparametric missing data model and the others

have the fully parametric missing data model. The all simulated datasets and the fixed values

(e.g. fixed knots vector knots) used by WinBUGS are constructed in MATLAB, and Win-

BUGS is called from within MATLAB using mat2bugs.m function to fit each hierarchical

model for the analysis of each simulated dataset. The sample simulation.m function to

run the simulation study for the specified true missingness mechanism and the missing per-

centage (e.g. for the true missingness mechanism II and 15% missing percentage) is given in

Appendix C. The data generation procedures for the simulations are explained in Section 3.1.

The fitted hierarchical models for the analysis of the simulated datasets are explained and the

MCMC diagnostic checks for these fitted models are carried out in Section 3.2. The results

obtained by the simulations are given and discussed in Section 3.3.
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3.1 Simulated Dataset

For all subsequent simulations, we use N = 100 replicates including n= 250 response variable

yi and covariates (xi1,xi2). The binary response variables are independently generated from

the following logistic regression model

f (yi|xi1,xi2,β ) = µ
yi
i (1−µi)

1−yi ; µi = E(yi|xi1,xi2,β )

logit(µi) = β0 +β1xi1 +β2xi2 (3.1)

where we assume that response variable yi and covariate xi2 are always completely observed,

and covariate xi2 is NMAR. Our main goal is estimating β1, the parameter representing the

association between the response and the NMAR covariate while the full observed covariate

is an adjusting factor. The values (β0,β1,β2) = (2,1,−1) are chosen as logistic regression

coefficients which gives approximately equal number of cases (yi = 1) and controls (yi = 0)

for each simulated dataset if the covariates have the following properties. For the simulated

dataset, the covariates (xi1,xi2) are independently generated from the following normal distri-

butions

xi2 ∼ N(1,1) and xi1 ∼ N(α0 +α1xi2,σ
2
x ) (3.2)

where (α0,α1,σ
2
x ) = (−1.5,0.5,0.752). Since we assume that covariate xi2 is fully observed

and covariate xi1 is subject to missingness, we consider the following missingness construc-

tion for the simulated possibly missing covariate xi1. Let ri be the missing value indicator

corresponding to xi1 and is 1 for missing xi1. For the missing data generation process, we

consider the missingness models of the following form:

f (ri| yi,xi1,xi2,φ) = pri
i (1− pi)

1−ri

h(pi) = φ0 +φ1yi +φ2xi2 +φ3xi1 +φ3m(xi1) (3.3)

where h is a probit link function and m is a smooth nonlinear function of xi1. Specifically we

consider the true missingness mechanisms (TMMs) below and use these to generate ri’s:

TMM 0 : h(pi) = φ0 +φ1yi +φ2xi2 +φ3xi1 (3.4)

TMM I : h(pi) = φ0 +φ1yi +φ2xi2 +φ3xi1 +φ4x2
i1 (3.5)

TMM II : h(pi) = φ0 +φ1yi +φ2xi2 +φ3xi1 +φ4

(
0.5− 1

1+(xi1 +1)4

)
(3.6)
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With TMM 0, we want to determine the risk of using the proposed semiparametric missing

data model when in fact the underlying true missingness mechanism indicates exact linear

relationship between the NMAR covariate and its missingness probability. With TMM I and

TMM II, we want to see how effective the proposed semiparametric missing data model when

the NMAR covariate and its missingness probability is indeed nonlinearly related. We used

(φ1,φ2,φ3) = (1,1,1) and (φ1,φ2,φ3,φ4) = (1,1,1,3) as parameters of TMM 0 and TMM I

respectively. For TMM II, the parameters (φ1,φ2,φ3,φ4) = (1,1,0,5) are chosen so that it

represents a common real life situation in which the nonresponse (hence the missing infor-

mation on the covariate) is more likely to occur if the true measurements are extreme. For

instance, anorectic or obese people can be much more likely to refuse to report any weight

related information compared to the people with rather normal weight. The functional rela-

tionship between the missing covariate xi1 and its missingness probability pi for TMM II is

given in Figure 3.1. For all the true missingness mechanisms considered, φ0 is chosen to have

15% or 35% missing xi1. The sample Phi0.m function to calculate φ0 for the specified true

missingness mechanism and the missing percentage (e.g. for the true missingness mechanism

II and 15% missing percentage) is given in Appendix C.
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Figure 3.1: The functional relationship between the missing covariate xi1 and its missingness
probability pi for TMM II
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3.2 Model Fitting

To investigate the performance of the proposed semiparametric missingness model, we con-

sider the following three hierarchical models for the analysis of each simulated dataset.

Model I :


logit(P(yi = 1|xi1,xi2,β )) = β0 +β1xi1 +β2xi2

xi1|xi2 ∼ N(α0 +α1xi2,σ
2
x )

h(P(ri = 1|yi,xi1,xi2,φ)) = φ0 +φ1yi +φ2xi2 +φ3xi1



Model II :


logit(P(yi = 1|xi1,xi2,β )) = β0 +β1xi1 +β2xi2

xi1|xi2 ∼ N(α0 +α1xi2,σ
2
x )

h(P(ri = 1|yi,xi1,xi2,φ)) = φ0 +φ1yi +φ2xi2 +φ3xi1 +φ4xi1xi2



Model III :


logit(P(yi = 1|xi1,xi2,β )) = β0 +β1xi1 +β2xi2

xi1|xi2 ∼ N(α0 +α1xi2,σ
2
x )

h(P(ri = 1|yi,xi1,xi2,φ)) = φ0 +φ1yi +φ2xi2 +φ3xi1 +∑
D
j=1 b jZi j


where h is probit link function, b j is the jth unobserved random effect distributed as N(0,σ2

b ),

and zi j is the (i, j)th element of the random effect design matrix Z calculated based on xi1 as

in (2.28) for j = 1, ...,D. For Model III, we consider the number of knots (D) from 2 to 8

to assess the effect of different number of knots selection on the inference of main model.

To calculate the jth fixed knot ( j = 1, ...,D) from the missing covariate xi1, we consider our

proposed procedure based on ML estimation given in Section 2.1 to fill missing components

of xi1 and attain the fixed knots based on the incomplete covariate xi1. The imputation process

in this procedure is repeated Q = 100 times.

For Models I&II, we also use improper uniform priors for αs and β s, noninformative gamma

prior for σ−2
x and the empirical Bayes based prior for φ with c0 = 10 as in Model III (see the

prior construction for our proposed hierarchical model in Section 2.2.1). In order to deter-

mine the burn-in point and the size of the Markov chain for the inferential purposes, we cre-

ated three chains starting from three dispersed sets of initial points and used the convergence

diagnostic tools available in WinBUGS. Accordingly, Brooks-Gelman-Rubin’s convergence

diagnostics indicate that about first 1000 iterations for Models I&II and about 6000 iterations

for Model III should be burnt (i.e. left out of the Bayesian inference). The Brooks-Gelman-

37



Rubin’s convergence diagnostics for the proposed hierarchical model (Model III) are given in

Appendix D.2. Also, the size of the Markov chain is set to be 4000 iterations for Models I&II,

and 12000 iterations for Model III so that Monte Carlo standard errors of the means delivered

by WinBUGS are all about the same magnitude. To alleviate the autocorrelation observed

in some parameters, we selected every 3rd and 5th iterations for Models I&II and Model III

respectively. The computation time for Model III (e.g. with D = 5) was approximately 145

seconds while estimation for Models I&II took approximately 15 seconds on a PC (2.0 GB

RAM, 2.80 GHz Pentium Dual-Core GPU).

3.3 Results

To evaluate the efficiency of our proposed semiparametric missing data model in terms of

estimating the parameter of our main interest namely β1, simulation based bias and mean

squared error (MSE) estimates of each parameter in the logistic regression are calculated.

Besides the bias and MSE we also include simulation based standard error (SE) estimates of

the parameters in the following tables as it is useful to see how MSE is decomposed between

bias and SE.

Table 3.1: Simulation Results for TMM 0

Bias (SE) MSE

Missing # of
Perc.(φ0) Model knots (D) β0 = 2 β1 = 1 β2 =−1

15%(-2.55)

I - -0.105 (0.430) 0.196 -0.062 (0.223) 0.054 0.081 (0.195) 0.044

II - -0.114 (0.428) 0.196 -0.068 (0.220) 0.053 0.083 (0.197) 0.045

III

2 -0.108 (0.413) 0.198 -0.064 (0.222) 0.053 0.076 (0.197) 0.044
3 -0.124 (0.427) 0.198 -0.074 (0.219) 0.053 0.076 (0.194) 0.043
4 -0.131 (0.426) 0.199 -0.079 (0.219) 0.054 0.078 (0.195) 0.044
5 -0.136 (0.418) 0.193 -0.082 (0.215) 0.053 0.081 (0.190) 0.043
6 -0.139 (0.421) 0.197 -0.084 (0.217) 0.054 0.079 (0.196) 0.044
7 -0.136 (0.422) 1.196 -0.084 (0.216) 0.053 0.078 (0.194) 0.044
8 -0.139 (0.422) 1.197 -0.084 (0.217) 0.054 0.079 (0.196) 0.047

35%(-1.25)

I - -0.154 (0.495) 0.269 -0.134 (0.283) 0.098 0.153 (0.221) 0.072

II - -0.175 (0.505) 0.285 -0.149 (0.289) 0.105 0.158 (0.221) 0.074

III

2 -0.223 (0.506) 0.305 -0.179 (0.305) 0.125 0.193 (0.215) 0.084
3 -0.303 (0.527) 0.369 -0.230 (0.308) 0.148 0.224 (0.222) 0.099
4 -0.243 (0.535) 0.346 -0.192 (0.306) 0.131 0.187 (0.243) 0.094
5 -0.292 (0.518) 0.353 -0.222 (0.297) 0.137 0.210 (0.241) 0.102
6 -0.293 (0.463) 0.301 -0.221 (0.273) 0.124 0.211 (0.227) 0.096
7 -0.325 (0.495) 0.351 -0.247 (0.281) 0.140 0.230 (0.228) 0.105
8 -0.306 (0.520) 0.365 -0.232 (0.307) 0.148 0.216 (0.230) 0.099
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The bias estimate for the jth component of β is calculated by Bias j =
1
N ∑

N
i=1 β̂

(i)
j −β j where

β̂
(i)
j is the estimate of the jth β parameter based on the ith simulated sample. Simulation

based SE estimate of the β j is then calculated by SE j =
(

1
N−1 ∑

N
i=1(β̂

(i)
j − β̄. j)

2
)1/2

where

β̄. j is the average of the estimates of the β̂ js over N simulations. Then the MSE is defined

as MSE j = Bias2
j +SE2

j . The sample Result.m function to calculate the simulation based

Bias, SE and MSE estimates of the parameters is given in Appendix C.

Based on Table 3.1 we can evaluate how risky it is to use our proposed semiparametric model

for missingness when the true missingness construction has linear missing covariate effect.

For 15% missingness, Model III especially with small number of knots seems to be competing

well with Models I&II in terms of bias and variation. If we increase the missingness amount

to 35%, biases of the estimates of the parameters β0, β1 and β2 increase for Model III. We

think that this increase is due to the fact that true missingness mechanism is indeed linear and

our proposed semiparametric model does not fit as well as parametric model(linear) when the

missing percentage is high. If there is strong belief about a linearity on the NMAR covariates

in the missingness mechanism, it is better to use linear missingness model for severe missing

percentages, however our proposed semiparametric model can be equally preferable when the

missingness amount is around 15%.

Table 3.2: Simulation Results for TMM I

Bias (SE) MSE

Missing # of
Perc.(φ0) Model knots (D) β0 = 2 β1 = 1 β2 =−1

15%(-10.45)

I - -0.133 (0.412) 0.188 0.102 (0.266) 0.081 0.062 (0.189) 0.039

II - -0.091 (0.435) 0.198 0.112 (0.269) 0.085 0.040 (0.196) 0.040

III

2 -0.045 (0.421) 0.179 0.121 (0.258) 0.081 0.025 (0.192) 0.037
3 -0.034 (0.426) 0.183 0.112 (0.253) 0.076 0.010 (0.198) 0.039
4 -0.036 (0.428) 0.185 0.113 (0.252) 0.076 0.015 (0.197) 0.039
5 -0.033 (0.425) 0.182 0.105 (0.248) 0.072 0.016 (0.198) 0.039
6 -0.040 (0.421) 0.178 0.098 (0.240) 0.067 0.021 (0.196) 0.039
7 -0.034 (0.426) 1.182 0.090 (0.242) 0.067 0.020 (0.197) 0.039
8 -0.038 (0.420) 1.178 0.091 (0.243) 0.067 0.022 (0.196) 0.039

35%(-5.90)

I - -0.358 (0.456) 0.336 0.212 (0.390) 0.197 0.142 (0.202) 0.061

II - -0.253 (0.470) 0.285 0.248 (0.386) 0.211 0.076 (0.211) 0.050

III

2 -0.238 (0.474) 0.282 0.249 (0.385) 0.211 0.097 (0.210) 0.053
3 -0.090 (0.469) 0.228 0.242 (0.359) 0.187 0.050 (0.205) 0.044
4 -0.017 (0.493) 0.244 0.260 (0.369) 0.204 -0.003 (0.221) 0.049
5 -0.014 (0.486) 0.237 0.238 (0.371) 0.194 -0.012 (0.219) 0.048
6 -0.022 (0.496) 0.247 0.238 (0.357) 0.184 -0.034 (0.226) 0.052
7 -0.017 (0.509) 0.260 0.220 (0.361) 0.179 -0.038 (0.232) 0.055
8 -0.026 (0.495) 0.246 0.211 (0.357) 0.172 -0.045 (0.228) 0.054
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In Table 3.2 and Table 3.3, we can see the performance of our proposed model when the true

missingness model is non-linear. We define two non-linear true missingness schemes (TMM

I&II). We observe almost similar results in both tables regarding bias, simulation based SE,

and MSE. For 15% missingness, the larger the number of knots used for approximating the

true smooth function, the smaller the bias Model III has. In terms of the SE, our proposed

semiparametric model gives slightly better results for all parameters. When we merge biases

and SE estimates, the resulting MSE for all parameters based on Model III are smaller than

those for Models I&II, which means that our proposed semiparametric model (with number

of knots from 5 to 8) is more efficient than the parametric models. When we increase the

missing percentage to 35%, biases of the estimates of all parameters (especially parameter

of our main interest β1) in Model III with larger number of knots are smaller than those for

Models I&II. In addition, SE of β̂1 decreases for Model III. In terms of MSE of all parameters,

Model III (with number of knots from 6 to 8) gives better results than Models I&II for 35%

missingness. This implies that one is better of fitting Model III containing higher number of

knots when the percentage of missingness is relatively large.

Table 3.3: Simulation Results for TMM II

Bias (SE) MSE

Missing # of
Perc.(φ0) Model knots (D) β0 = 2 β1 = 1 β2 =−1

15%(-2.75)

I - -0.003 (0.491) 0.241 0.040 (0.281) 0.080 0.068 (0.209) 0.048

II - 0.047 (0.492) 0.244 0.061 (0.282) 0.083 0.029 (0.217) 0.048

III

2 0.026 (0.505) 0.256 0.055 (0.289) 0.087 0.041 (0.220) 0.050
3 0.024 (0.486) 0.237 0.051 (0.280) 0.081 0.018 (0.223) 0.050
4 0.016 (0.481) 0.231 0.033 (0.280) 0.080 0.016 (0.219) 0.048
5 0.003 (0.479) 0.230 0.022 (0.278) 0.078 0.018 (0.222) 0.049
6 -0.003 (0.477) 0.228 0.016 (0.278) 0.077 0.016 (0.220) 0.048
7 -0.001 (0.477) 0.227 0.017 (0.276) 0.076 0.014 (0.220) 0.049
8 -0.013 (0.480) 0.230 0.013 (0.277) 0.077 0.015 (0.223) 0.050

35%(-0.95)

I - 0.013 (0.600) 0.360 0.150 (0.416) 0.195 0.175 (0.206) 0.073

II - 0.218 (0.621) 0.434 0.250 (0.412) 0.233 0.046 (0.233) 0.056

III

2 0.070 (0.615) 0.384 0.181 (0.421) 0.210 0.129 (0.218) 0.064
3 0.175 (0.614) 0.408 0.238 (0.402) 0.218 0.027 (0.239) 0.058
4 0.217 (0.607) 0.415 0.187 (0.383) 0.182 -0.046 (0.252) 0.066
5 0.190 (0.607) 0.404 0.162 (0.379) 0.170 -0.053 (0.256) 0.068
6 0.174 (0.606) 0.398 0.146 (0.377) 0.164 -0.058 (0.261) 0.071
7 0.161 (0.601) 0.387 0.137 (0.376) 0.160 -0.062 (0.257) 0.070
8 0.166 (0.586) 0.383 0.140 (0.371) 0.157 -0.065 (0.257) 0.070
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CHAPTER 4

CONCLUSION

To account for the underlying nature of the missingness, the missing data mechanism of the

not missing at random (NMAR) variables is needed to be considered in the analysis of miss-

ing data problems in order to produce as little bias as possible on statistical inference. As a

common practical approach, the missing data mechanism for NMAR covariates in the gen-

eralized linear models (GLMs) is modeled by parametric approaches (e.g. the missingness

probabilities of the nonignorably missing response or covariates are modeled by logistic or

probit regression) in the missing data literature. However, the probability of covariate being

missing may not be linearly related with missing covariate itself. In this study, we modeled

the missing data mechanism using generalized additive model (GAM) approach in which we

included an unspecified smooth function representing the effect of the missing covariate. We

used penalized spline regression to approximate the unspecified smooth function and con-

veniently write the likelihood function. The accompanying semiparametric model for the

missingness mechanism leads to capturing any possible nonlinear functional relationship be-

tween the missingness probability of the covariate and the missing covariate itself in a more

flexible way.

In Section 2.1, we provided the usage of low-rank thin-plate splines to approximate the un-

specified smooth functions in the proposed semiparametric missing data mechanism. Spline

regression is based on regressing the response on the covariate piecewise. The pieces are

determined by what is called knots. The knots can be obtained as the quantiles of the covari-

ate which is nonlinearly associated with the response. We developed an iterative algorithm

to suitably determine the knots in the presence of missing data. The algorithm is based on

multiple imputation of the missing covariate. We also proposed the use of empirical Bayes

based priors for the parameters of the missing data model (see Section 2.2.1). The empirical
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Bayes based priors result in accelerated convergence in the corresponding posterior calcula-

tions. In Section 2.2.2, the steps of Gibbs sampling algorithm are constructed to efficiently

estimate the parameters by using fully Bayesian approach. The WinBUGS code, provided in

Section 2.2.3, is also useful for computationally generating the posterior inference based on

the proposed hierarchical model discussed.

In Chapter 3, we provided a detailed analysis on the performance of penalized spline regres-

sion for the missingness models in logistic regression with NMAR covariates. The analyses

implied that if there is strong belief about a linearity on the NMAR covariates in the miss-

ing data model and the missingness percentage is high, one may use the parametric approach

with fully linear model. However, if missingness percentage is low, one can equally use a

fully linear model or the proposed penalized spline regression for the missingness model.

On the other hand if there is belief about nonlinearity on NMAR covariates in the missing-

ness mechanism, the proposed semiparametric approach for the missing data model seems to

provide a more effective method for estimating the association between the response and the

NMAR covariates regardless of the missing percentage. Overall, simulation results imply that

the method with semiparametric missing data model provides more reliable β estimates com-

pared to the method with parametric missing data model if there is belief about a nonlinearity

on the NMAR covariates in the missingness mechanism.

In the simulation study, we also observed that the performance of penalized spline regression

highly depends on the number of knots especially if there is nonlinear relationship between

the missingness probability and the missing covariate. When the small number of knots is

used in the spline regression, the true nonlinear functional relationship may not be detected

by the unspecified smooth functions. However, there may exist the issue of identifiability for

modeling the missingness status when the number of knots is large since it is well known that

the parameters of the missing data model can be unestimable due to the insufficient infor-

mation contained in the dataset regarding the missingness model parameters. The number of

knots, therefore, should be determined with great care so as not to end up with identifiability

problems. As a future research topic, a specific knot determination method may be developed

for the proposed semiparametric missing data model. Alternatively, one can tune up the knot

number by trying out several different ones before settling on the final one. The deviance

information criterion (DIC) of Spiegelhalter et al. [7] may be helpful for making a choice

among penalized spline regression models with different knots.
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In this thesis, it is assumed that the response variable is fully observed and NMAR covariates

are continuous in the logistic regression. However, the proposed semiparametric missing

data model can also be adopted for the generalized linear models with NMAR response as a

future study. In addition, the semiparametric approach for modeling the missingness can be

extended to other complex model settings, including generalized mixed models, longitudinal

data models and survival models. Also, it can be extended to missing data that occur in

designed experiments.
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APPENDIX A

The Functional Forms of Full Conditional Distributions

The full conditional distribution of each unknown quantity, namely β , α , σ−2
x , φ , σ

−2
b , xmiss

(1) ,

b and W for the following special case of proposed hierarchical model is derived in this

appendix.

1. f (yi|xi1,xi2,β ) = µ
yi
i (1−µi)

1−yi ; µi = E(yi|xi1,xi2,β ) = P(yi = 1|xi1,xi2,β )

logit(µi) = β0 +β1xi1 +β2xi2 (A.1)

2. xi1| xi2 ∼ N(α0 +α1xi2, σ2
x )

(A.2)

3. f (ri|Wi) = [Φ(Wi)]
ri [1−Φ(Wi)]

1−ri

Wi |(yi,xi1,xi2,Z,φ ,b)∼ N(µWi ,1) and µWi = φ0 +φ1yi +φ2xi1 +Zb+φ3xi2

b| σ2
b(k) ∼MN(0,σ2

b ID) (A.3)

where xi1 is a covariate subject to missingness and xi2 is a fully observed covariate, and yi is

a fully observed binary response for i = 1, ...n. The variable ri is a missing data indicator for

the covariate xi1. The variable b = (b1, ...,bD)
T is a D×1 vector of random effects where D

is the number of knots. The matrix Z is a n×D design matrix for the random effects where

Zi = (Zi1, ...,ZiD). The cumulative distribution of standard normal distribution for the probit

link function is denoted by Φ. Let xmiss
i1 and xobs

i1 denote missing and observed components of

xi1, and let first m subjects are missing and remaining n−m subjects are observed for xi1.
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Then the joint conditional distribution of all the unknown quantities conditional on the ob-

served data Dobs = (r,y,xobs
1 ,x2) is written as

f (β ,α,σ−2
x ,φ ,σ−2

b ,xmiss
1 ,b,W |r,y,xobs

1 ,x2) =
f (Dcom| β ,α,σ−2

x ,φ ,σ−2
b ) f (β ,α,σ−2

x ,φ ,σ−2
b )

f (Dobs)

∝ f (Dcom| β ,α∗(1),σ
−2
X ,φ ,σ−2

b )×

f (β ,α∗(1),σ
−2
X ,φ ,σ−2

b ) (A.4)

where Dcom =(r,y,xmiss
1 ,xobs

1 ,x2,b,w) is the complete data set and f (Dcom| β ,α∗(1),σ
−2
x ,φ ,σ−2

b )

is the likelihood based on the complete data. The complete data likelihood for the special case

of the proposed hierarchical model can be written as

f (Dcom| β ,α,σ−2
x ,φ ,σ−2

b ) = f (r,y,xmiss
1 ,xobs

1 ,x2,b,W | β ,α,σ−2
x ,φ ,σ−2

b )

= f (r|W ) f (W | y,xmiss
1 ,xobs

1 ,x2,φ ,b) f (y| xmiss
1 ,xobs

1 ,x2,β )×

f (xmiss
1 ,xobs

1 | x2,α,σ−2
x ) f (b| σ−2

b ) (A.5)

Note that the design matrix Z for the random effects are not included in Dobs since Z is the

function of (xmiss
1 ,xobs

1 ). Then the joint conditional distribution in (A.4) becomes

f (β ,α,σ−2
x ,φ ,σ−2

b ,xmiss
1 ,b,W |r,y,xobs

1 ,x2) ∝ f (r|W ) f (W | y,xmiss
1 ,xobs

1 ,x2,φ ,b)×

f (y| xmiss
1 ,xobs

1 ,x2,β ) f (xmiss
1 ,xobs

1 | x2,α,σ−2
x )×

f (b| σ−2
b ) f (β ,α∗(1),σ

2
X ,φ ,σ

−2
b ) (A.6)

Let’s first construct each component of (A.6) separately as follows

1.

f (r|W ) =
n

∏
i=1

f (ri|wi) =
n

∏
i=1

[Φ(wi)]
ri [1−Φ(wi)]

1−ri (A.7)

2.

f (W | y,xmiss
1 ,xobs

1 ,x2,φ ,b) =
m

∏
i=1

f (Wi| yi,xmiss
i1 ,xi2,φ ,b)

n

∏
i=m+1

f (Wi| yi,xobs
i1 ,xi2,φ ,b)

=
m

∏
i=1

[
1√
2π

e
{
− 1

2(Wi−φ0−φ1yi−φ2xmiss
i1 −Zib−φ3xi2)

2
}]
×

n

∏
i=m+1

[
1√
2π

e
{
− 1

2(Wi−φ0−φ1yi−φ2xobs
i1 −Zib−φ3xi2)

2
}]

(A.8)
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3.

f (y| xmiss
1 ,xobs

1 ,x2,β ) =
m

∏
i=1

f (yi| xmiss
i1 ,xi2,β )

n

∏
i=m+1

f (yi| xobs
i1 ,xi2,β )

=
m

∏
i=1

µ
yi
∗i(1−µ∗i)

1−yi
n

∏
i=m+1

µ
yi
i (1−µi)

1−yi

where µ∗i =
1

1+ e−{β0+β1xmiss
i1 +β2xi2}

and µi =
1

1+ e−{β0+β1xobs
i1 +β2xi2}

(A.9)

4.

f (xmiss
1 ,xobs

1 | x2,α,σ−2
x ) =

m

∏
i=1

f (xmiss
i1 | xi2,α,σ−2

x )
n

∏
i=m+1

f (xobs
i1 | xi2,α,σ−2

x )

=
m

∏
i=1

[
1√

2πσx
e

{
− 1

2σ2x
(xmiss

i1 −α0−α1xi2)
2
}]
×

n

∏
i=m+1

[
1√

2πσx
e

{
− 1

2σ2x
(xobs

i1 −α0−α1xi2)
2
}]

(A.10)

5.

f (b| σ−2
b ) =

D

∏
j=1

f (b j|σ−2
b ) =

D

∏
j=1

[
1√

2πσb
e

{
− 1

2σ2
b

b2
j

}]
(A.11)

6.

f (β ,α,σ−2
x ,φ ,σ−2

b ) = f (β ) f (α) f (σ2
x ) f (φ) f (σ−2

b )

f (β ) =1 −∞ < β < ∞

f (α) =1 −∞ < α < ∞

f (σ−2
x ) =

µr

Γ(r)
(σ−2

x )r−1e−µσ−2
x where r = 0.01,µ = 0.01,σ−2

x > 0

f (φ) =
1

(2π)4/2|Σ̂φ |1/2
e−

1
2 (φ−µ̂φ )

′
Σ̂
−1
φ

(φ−µ̂φ ) −∞ < φ < ∞

f (σ−2
b ) =

µr

Γ(r)
(σ−2

b )r−1e−µσ
−2
b where r = τ̂σb2 ,µ = ϕ̂σb2 ,σ

−2
b > 0 (A.12)

Then the functional form of full conditional distribution of each unknown quantity (e.g pa-

rameters and latent variables) can be obtained by extracting the terms corresponding to the

parameters/ latent variable of specific interest:
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1.

f (xmiss
i1 | β ,α,σ−2

x ,φ ,b,W,xi2) ∝

[
1√
2π

e
{
− 1

2(Wi−φ0−φ1yi−φ2xmiss
i1 −Zib−φ3xi2)

2
}]
×

[
µ

yi
∗i(1−µ∗i)

1−yi
][ 1√

2πσx
e

{
− 1

2σ2x
(xmiss

i1 −α0−α1xi2)
2
}]
(A.13)

which is the nonlinear function of xmiss
i1 consisting of normal and logistic kernels. The Metropo-

lis Hastings algorithm (with normal proposal distribution) is performed to obtain the random

draws from f (xmiss
i1 | β ,α,σ−2

x ,φ ,b,W,xi2) for i = 1, ...,m. Note that the components xmiss
i1 and

xobs
i1 are combined as xi1 for the other full conditional distributions for simplicity.

2.

f (b j| φ ,σ−2
b ,W,y,x1,x2) ∝

[
1√

2πσb
e

{
− 1

2σ2
b

b2
j

}]
×

n

∏
i=1

[
1√
2π

e
{
− 1

2(Wi−φ0−φ1yi−φ2xi1−∑
D
k=1 Zikbk−φ3xi2)

2
}]

(A.14)

which consists of only normal kernels. The direct sampling algorithm (from normal distribu-

tion) is performed to obtain the random draws from f (b j| φ ,σ−2
b ,W,y,x1,x2) for j = 1, ...,D.

3.

f (Wi| φ ,b,ri,yi,x1i,x2i) ∝ [Φ(Wi)]
ri [1−Φ(Wi)]

1−ri

[
1√
2π

e{−
1
2 (Wi−φ0−φ1yi−φ2xi1−Zib−φ3xi2)

2}
]

(A.15)

In Winbugs, Wi’s are defined by truncated normal distributions by the data augmentation

approach proposed by [23] where

Wi| (φ ,b,ri,yi,x1i,x2i)∼ N [φ0 +φ1yi +φ2xi1 +Zib+φ3xi2, 1]

truncated at the left by 0 if ri = 1

truncated at the right by 0 if ri = 0 (A.16)

which consists of only truncated normal kernel. The Derivative Free Adaptive Rejection sam-

pling algorithm is performed to obtain the random draws from f (Wi| φ ,b,ri,yi,x1i,x2i) for

i = 1, ...,n.
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4.

f (β j| y,x1,x2) ∝

n

∏
i=1

µ
yi
i (1−µi)

1−yi where µi =
1

1+ e−{β0+β1xi1+β2xi2}
(A.17)

which consists of only logistic kernels. The Slice sampling algorithm is performed to obtain

the random draws from f (β j| y,x1,x2) for j = 0,1,2.

5.

f (α j| σ−2
x ,x1,x2) ∝

n

∏
i=1

[
1√

2πσx
e

{
− 1

2σ2x
(xi1−α0−α1xi2)

2
}]

(A.18)

which consists of only normal kernels. The direct sampling algorithm (from normal distribu-

tion) is performed to obtain the random draws from f (α j| σ−2
x ,x1,x2) for j = 1,2.

6.

f (φ | b,W,y,x1,x2) ∝

n

∏
i=1

[
1√
2π

e{−
1
2 (Wi−φ0−φ1yi−φ2xi1−Zib−φ3xi2)

2}
]
×

1
(2π)4/2|Σ̂φ |1/2

e−
1
2 (φ−µ̂φ )

′
Σ̂
−1
φ

(φ−µ̂φ ) (A.19)

which consists of only multivariate normal kernel. The direct sampling algorithm (from multi-

variate normal distribution) is performed to obtain the random draws from f (φ | b,W,y,x1,x2).

7.

f (σ−2
x | α,x1,x2) ∝

n

∏
i=1

[
1√

2πσx
e

{
− 1

2σ2x
(xi1−α0−α1xi2)

2
}][

µr

Γ(r)
(σ−2

x )r−1e−µσ−2
x

]
(A.20)

which consists of only normal and gamma kernels. Since the gamma distribution is conjugate

prior for the precision parameter σ−2
x , the direct sampling algorithm (from gamma distribu-

tion) is performed to obtain the random draws from f (σ−2
x | α,x1,x2).

8.

f (σ−2
b | b) ∝

D

∏
j=1

[
1√

2πσb
e

{
− 1

2σ2
b

b2
j

}][
µr

Γ(r)
(σ−2

b )r−1e−µσ
−2
b

]
(A.21)

which consists of only normal and gamma kernels. Since the gamma distribution is conjugate

prior for the precision parameter σ
−2
b , the direct sampling algorithm (from gamma distribu-

tion) is performed to obtain the random draws from f (σ−2
b | b).
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APPENDIX B

MCMC Sampling Algorithms Used by WinBUGS

In WinBUGS, the appropriate sampling method for the specified full conditional distribu-

tion is chosen by the hierarchy given in Table B.1. For instance, if the the full conditional

distribution has a closed form (e.g. if the conjugate prior is used for the parameter) then di-

rect sampling algorithm is used to obtain the random draws, otherwise one of the following

sampling methods is used in the following hierarchy (see Lunn et al.[24]).

Table B.1: The hierarchy used by WinBUGS for the sampling methods

Full Conditional Distribution Sampling Method

Closed form (conjugate) Direct sampling using standard algorithms

Log-concave Derivative-free adaptive rejection sampling

Non-Log-concave (restricted range) Slice sampling

Non-Log-concave (unrestricted range) Metropolis-Hastings method

B.1 Derivative-Free Adaptive Rejection Sampling Method

The standard adaptive rejection sampling algorithm proposed by Gilks and Wild [25] can

be used to sample from the log-concave target distribution f (x) where f (x) is log-concave

function if d2

dx2 log f (x) is negative for all x in the domain. In this algorithm, the derivative of

log f (x) is needed to be calculated at each iteration which is computationally difficult for some

cases. The derivative-free adaptive rejection method is then proposed by Gilks [26] to avoid
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these derivative calculations. Let h(x) = log f (x) such that h(x) is concave everywhere in the

domain. To obtain a random number from f (x), the following procedure can be considered.

Initialization Step

1. Choose at least three points S = {x1 ≤ x2 ≤ ... ≤ xk−1 ≤ xk} such that at least one of

them lies to each side of the mode of f (x). The points are on either side of the mode if

chord Px1Px2 has a positive slope and chord Pxk−1Pxk has a negative slope.

2. Construct the piece-wise linear lower bound u(x) to h(x) from the chords P0Px1 and

Pxk P1.

3. Construct the piece-wise linear upper bound l(x) to h(x) from the chords Px1Px2 and

Pxk−1Pxk .

Sampling Step

4. Construct the envelope function e(x) = eu(x).

5. Sample X from e(x).

6. Sample U from U(0,1).

Squeezing Step

7. Construct the squeezing function s(x) = el(x).

8. If U ≤ s(X)
e(X) then accept X as a sample from f (x).

9. else go to the rejection step.

Rejection Step

10. If U ≤ f (X)
e(X) then accept X as a sample from f (x).

11. else go to the updating step.
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Updating Step

12. Add rejected point X to the set of points S to make use of the information gained in

rejection step, and go back to the initialization step.

Repeat this algorithm until one X is accepted.

B.2 Slice Sampling Method

The slice sampling method proposed by Neal [27] is a type of MCMC algorithm to obtain the

random draws from a target distribution f (x). The advantage of this method is that it does not

require any proposal distribution. Let A = {(x,u) : 0≤ u≤ f (x)} be the area under the graph

f (x), and let (x0,u0) be the starting point in A. Then at the jth iteration of this algorithm, the

following procedure is considered to obtain the sequences of random numbers from f (x) until

we reach the desired sample size.

1. Sample u j from U(0, f (x j−1)).

2. Sample x j from U({x : f (x)≥ u j}).

B.3 Metropolis-Hastings Sampling Method

The Metropolis-Hastings sampling method proposed by Metropolis et al. [28] and Hast-

ings [29] is a type of MCMC algorithm to obtain a sequences of random samples from a target

distribution f (x). At the (t + 1)th iteration, state of the chain Xt+1 is obtained by sampling

a candidate point Y from the proposal distribution q(.|Xt) where the proposal distribution q

should be easy to sample from and the point Y depends on the previous state Xt . The candi-

date point is accepted as Xt+1 with the following probability; otherwise the state Xt+1 remains

same as Xt .

α(Xt ,Y ) = min
(

1,
f (Y )q(Xt |Y )
f (Xt)q(Y |Xt)

)
(B.1)
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Then the following procedure is considered at the (t +1)the iteration to obtain the sequences

of random numbers from f (x) until we reach the desired sample size.

1. Sample a candidate point Y from the proposal distribution q(.|Xt).

2. Sample U from U(0,1).

3. If U ≤ α(Xt ,Y ) then accept Y as Xt+1 else set Xt+1 = Xt .

54



APPENDIX C

MATLAB Codes Used in the Simulation Study

Sample Simulation.m Function

% The sample Simulation.m function runs the simulation study for the true missingness

% mechanism II and 15% missing percentage

function Simulation(mcsize,n,choose,take data)

% Input Arguments:

% mcsize :number of Monte Carlo iterations

% n :sample size

% choose :

% 0 ---> run all models

% 1 ---> run model I(parametric missing data model without interaction)

% 2 ---> run model II(parametric missing model model with interaction)

% 3 ---> run model III(semiparametric missing data model with 2 knots)

% 4 ---> run model III(semiparametric missing data model with 3 knots)

% 5 ---> run model III(semiparametric missing data model with 4 knots)

% 6 ---> run model III(semiparametric missing data model with 5 knots)

% 7 ---> run model III(semiparametric missing data model with 6 knots)

% 8 ---> run model III(semiparametric missing data model with 7 knots)

% 9 ---> run model III(semiparametric missing data model with 8 knots)

% take data :

% 0 ---> write data for one iteration to bugs data 1 i.txt, not continue MC

% 1 ---> do not take data, continue MC

% parameters that are fixed throughout the Monte Carlo simulation study:

% true values of the coefficients in the model for covariate subject to missingness(x1)

alpha = [-1.5 0.5];

sigmax = 0.75;

% true values of the coefficients in the response model

beta0 = 2; % gives 50-50 cases& controls

beta1 = 1;

beta2 =-1;
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% true values of the coefficients in the missing data mechanism

phi0 = -2.75; % depends on missing percentage of x1

phi1 = 1;

phi2 = 1;

phi3 = 1;

phi4 = 5;

% preliminaries for the output files:

fname1 = ’Model I Results.txt’;

fname2 = ’Model II Results.txt’;

fname3 = ’Model III(2) Results.txt’;

fname4 = ’Model III(3) Results.txt’;

fname5 = ’Model III(4) Results.txt’;

fname6 = ’Model III(5) Results.txt’;

fname7 = ’Model III(6) Results.txt’;

fname8 = ’Model III(7) Results.txt’;

fname9 = ’Model III(8) Results.txt’;

fname10 = ’Case Miss Percentage.txt’;

fid1 = fopen(fname1, ’a’);

fid2 = fopen(fname2, ’a’);

fid3 = fopen(fname3, ’a’);

fid4 = fopen(fname4, ’a’);

fid5 = fopen(fname5, ’a’);

fid6 = fopen(fname6, ’a’);

fid7 = fopen(fname7, ’a’);

fid8 = fopen(fname8, ’a’);

fid9 = fopen(fname9, ’a’);

fid10 = fopen(fname10, ’a’);

% Monte Carlo Simulation for mcsize trials:

for mc = 1:mcsize

% Data Generation Process

% generate x1 and x2

x2 = normrnd(1,1,n,1);

x1 = normrnd(alpha(1) + alpha(2)*x2,sigmax);

% sort x1&x2 by x1 in ascending order

[x1,ix] = sort(x1);

x2=x2(ix);

% generate y, fully observed binary response

numpy = exp( beta0+ beta1*x1 + beta2*x2 );

py = numpy./(1+numpy);

y = binornd(1,py);

obs perc case(mc) = mean(y);
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% generate r, binary missing indicator

r = zeros(n,1);

numpr = phi0+phi1*y+phi2*x2+phi4*(0.5-1./(1+(x1+1).ˆ 4));

w = normrnd(numpr,1);

r(find(w>=0)) = 1;

r(find(w<0)) = 0;

obs miss(mc) = mean(r);

% indexes of missing and complete observations in x1

miss id = find(r==1); full id = find(r==0);

% assigning NaN to the missing value in x1

x1(miss id) = NaN;

% covariates of subjects whose x1 are observed

x1 fully obs = x1(full id);

x2 fully obs = x2(full id);

% To be used for determining the hyperparameters of prior

% obtaining mle of parameters of x1|x2 using the fitted x1|x2 model based on

% fully observed subjects

[alpha mle,dev,stats alpha] = glmfit(x2 fully obs,x1 fully obs,’normal’);

% regression imputation for missing x1 by using the fitted model x1|x2

s=100;

Imputed x1=zeros(n,s); % nonmissing observation has zero value in this matrix

mu reg=zeros(n,1); % nonmissing observation has zero value in this vector

for j=1:s

mu reg(miss id) = alpha mle(1)+alpha mle(2)*x2(miss id);

tau=1; % selected by tuning

Imputed x1(miss id,j) = normrnd(mu reg(miss id),tau);

end

updated x1 = zeros(n,s);

updated x1(miss id,:) = Imputed x1(miss id,:);

updated x1(full id,:) = x1(full id)*ones(1,s);

x1 NA initial = zeros(n,1);

x1 NA initial(miss id,:) = mean(updated x1(miss id,:),2);

x1 NA initial(full id,:) = NaN;
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% Modeling Response Y with NMAR Covariate X1 and Always Observed X2:

% For Model I:

if choose == 1||choose == 0

% Constructing a prior distribution for the parameters of r|y,x1,x2 using

% the fully observed and imputed subjects (empirical bayes based prior for phi)

% we find s mle estimators of phi parameter for different imputed x1 subjects

phi mle j = zeros(4,s);

phi cov j = zeros(4,4,s);

for j=1:s

x1 taken = updated x1(:,j);

[B,dev,stats] = glmfit([y x2 x1 taken],[r ones(n,1)],...

’binomial’,’link’,’probit’);

phi mle j(:,j) = B;

phi cov j(:,:,j) = stats.covb;

end

phi prior mean 1 = mean(phi mle j,2);

c = 10;

phi prior cov 1 = (1/c).*inv(mean(phi cov j,3));

% creating initial values

alpha 1 = [0 1]’;

beta 1 = [0 0 0]’;

phi 1 = mean(phi mle j,2);

invsigma2x = 1;

w = zeros(n,1);

w(find(r==1)) = 1;

w(find(r==0)) = -1;

init0 1 = struct(’alpha’,alpha 1,’beta’,beta 1,’phi’,phi 1,...

’X1’,x1 NA initial,’invsigma2x’,invsigma2x,’W’,w);

% create data structure

dataStruct 1 = struct(’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’phipriormean’,phi prior mean 1,’phipriorcovinv’,phi prior cov 1);

if take data = 1

mat2bugs(’bugs data 2 1.txt’,’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’phipriormean’,phi prior mean 1,’phipriorcovinv’,phi prior cov 1);

mat2bugs(’bugs init 2 1.txt’,’alpha’,alpha 1,’beta’,beta 1,’phi’,phi 1,...

’X1’,x1 NA initial,’invsigma2x’,invsigma2x,’W’,w);

return

end
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% Bayesian Analysis

[samples, stats, structArray] = matbugs v2(dataStruct 1, ...

fullfile(pwd, ’modelI.txt’), ...

’init’, init0 1, ...

’nChains’, 1, ...

’view’, 0, ’nburnin’, 1000, ’nsamples’, 4000, ...

’thin’, 3, ’overrelax’, 1, ’DICstatus’, 0, ...

’monitorParams’, ’alpha’, ’beta’, ’phi’, ...

’Bugdir’, ’C:/Program Files/WinBUGS14’);

z1 = [stats.mean.beta ];

fprintf(fid1,’%g %g %g \n’,z1);

end % end for Model I

% For Model II:

if choose == 2||choose == 0

% Constructing a prior distribution for the parameters of r|y,x1,x2 using

% the fully observed and imputed subjects (empirical bayes based prior for phi)

% we find s mle estimators of phi parameter for different imputed x1 subjects

phi mle j = zeros(5,s);

phi cov j = zeros(5,5,s);

for j=1:s

x1 taken = updated x1(:,j);

[B,dev,stats] = glmfit([y x2 x1 taken x1 taken.*x2],[r ones(n,1)],...

’binomial’,’link’,’probit’);

phi mle j(:,j) = B;

phi cov j(:,:,j) = stats.covb;

end

phi prior mean 2 = mean(phi mle j,2);

c = 10;

phi prior cov 2 = (1/c).*inv(mean(phi cov j,3));

% creating initial values

alpha 2 = [0 1]’;

beta 2 = [0 0 0]’;

phi 2 = mean(phi mle j,2);

invsigma2x = 1;

w = zeros(n,1);

w(find(r==1)) = 1;

w(find(r==0)) = -1;

init0 2 = struct(’alpha’,alpha 2,’beta’,beta 2,’phi’,phi 2,...

’X1’,x1 NA initial,’invsigma2x’,invsigma2x,’W’,w);
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% create data structure

dataStruct 2 = struct(’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’phipriormean’,phi prior mean 2,’phipriorcovinv’,phi prior cov 2);

if take data = 1

mat2bugs(’bugs data 2 2.txt’,’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’phipriormean’,phi prior mean 2,’phipriorcovinv’,phi prior cov 2);

mat2bugs(’bugs init 2 2.txt’,’alpha’,alpha 2,’beta’,beta 2,’phi’,phi 2,...

’X1’,x1 NA initial,’invsigma2x’,invsigma2x,’W’,w);

return

end

% Bayesian Analysis

[samples, stats, structArray] = matbugs v2(dataStruct 2, ...

fullfile(pwd, ’modelII.txt’), ...

’init’, init0 2, ...

’nChains’, 1, ...

’view’, 0, ’nburnin’, 1000, ’nsamples’, 4000, ...

’thin’, 3, ’overrelax’, 1, ’DICstatus’, 0, ...

’monitorParams’, ’alpha’, ’beta’, ’phi’, ...

’Bugdir’, ’C:/Program Files/WinBUGS14’);

z2 = [stats.mean.beta stats.std.beta];

fprintf(fid2,’%g %g %g \n’,z2);

end % end for Model II

% For Model III (with 2 knots):

if choose == 3||choose == 0

% finding the knots by using fully observed and imputed subjects

nknots = 2; % number of knots

p=(1:nknots)./(nknots+1);

S knotss = zeros(s,nknots);

for j=1:s

x1 taken = updated x1(:,j);

knotss(j,:)=(quantile(x1 taken,p))’;

end

knots = mean(knotss,1)’; % average value of knots for s different updated x1

omega nknots = zeros(nknots,nknots);

for i=1:nknots for j=1:nknots

omega nknots(i,j) = (abs(knots(i)-knots(j)))ˆ 3;

end end

invsqrtomega knots = (omega nknots)ˆ -1/2;
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% constructing a prior distribution for the parameters of r|y,x2,x1,z

% using the fully and imputed subjects:

% phi: coefficients of intercept,y,x2,x1

% brand: random coefficients of z (Not used for priors, just used for initials and

% prior of the parameter invsigma2b)

% we find s mle estimators for phi and brand parameters

% for different imputed x1 subjects

% emprical bayes based prior for phi

phi mle j = zeros(4,s);

phi cov j = zeros(4,4,s);

for j=1:s

x1 taken = updated x1(:,j); [B,dev,stats] = glmfit([y x2 x1 taken],[r ones(n,1)],...

’binomial’,’link’,’probit’);

phi mle j(:,j) = B;

phi cov j(:,:,j) = stats.covb;

end

phi prior mean 3 = mean(phi mle j(1:4,:),2);

c=10;

phi prior covinv 3 = (1/c).*inv(mean(phi cov j(1:4,1:4,:),3));

% emprical bayes based prior for invsigma2b

brand mle j = zeros(nknots+1,s);

brand cov j = zeros(nknots+1,nknots+1,s);

for j=1:s

x1 taken = updated x1(:,j);

z nknots = zeros(n,nknots);

for i=1:n for zi=1:nknots

z nknots(i,zi) = (abs(x1 taken(i)-knots(zi)))ˆ 3;

end end

z = z nknots*invsqrtomega knots;

[B,dev,stats] = glmfit([z],[r ones(n,1)],’binomial’,’link’,’probit’);

brand mle j(:,j) = B;

brand cov j(:,:,j) = stats.covb;

end

brand mean = mean(brand mle j(2:1+nknots,:),2);

brand cov = mean(brand cov j(2:1+nknots,2:1+nknots,:),3);

invsigma2b prior mean = 1/mean(diag(brand cov));
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invsigma2b prior var = 1;

invsigma2b prior par1 = (invsigma2b prior meanˆ 2)/invsigma2b prior var;

invsigma2b prior par2 = invsigma2b prior mean/invsigma2b prior var;

% creating initial values

alpha 3 = [0 1]’;

beta 3 = [0 0 0]’;

phi 3 = phi prior mean 3;

brand = brand mean;

invsigma2x = 1;

invsigma2b = invsigma2b prior mean;

w = zeros(n,1);

w(find(r==1)) = 1;

w(find(r==0)) = -1;

init0 3 = struct(’alpha’,alpha 3,’beta’,beta 3,’phi’,phi 3,...

’X1’,x1 NA initial,’brand’,brand,’invsigma2x’,invsigma2x,...

’invsigma2b’,invsigma2b,’W’,w);

% creating data structure

dataStruct 3 = struct(’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’nknots’,nknots,’knots’,knots,’invsqrtomega’,invsqrtomega knots,...

’phipriormean’, phi prior mean 3,’phipriorcovinv’,phi prior covinv 3,...

’invsigma2bpriorpar1’,invsigma2b prior par1,’invsigma2bpriorpar2’...

,invsigma2b prior par2);

if take data == 1

mat2bugs(’bugs data 2 3.txt’,’N’,n,’X1’,x1,’X2’,x2,’Y’,y,’R’,r,...

’nknots’,nknots,’knots’,knots,’invsqrtomega’,invsqrtomega knots,...

’phipriormean’, phi prior mean 3,’phipriorcovinv’,phi prior covinv 3,...

’invsigma2bpriorpar1’,invsigma2b prior par1,’invsigma2bpriorpar2’...

,invsigma2b prior par2);

mat2bugs(’bugs init 2 3.txt’,’alpha’,alpha 3,’beta’,beta 3,’phi’,phi 3,...

’X1’,x1 NA initial,’brand’,brand,’invsigma2x’,invsigma2x,’invsigma2b’...

,invsigma2b,’W’,w);

return

end

% Bayesian Analysis

[samples, stats, structArray] = matbugs v2(dataStruct 3, ...

fullfile(pwd, ’modelIII(2).txt’), ...

’init’, init0 3, ...

’nChains’, 1, ...

’view’, 0, ’nburnin’, 6000, ’nsamples’, 12000, ...

’thin’, 5, ’overrelax’, 1, ’DICstatus’, 0, ...

’monitorParams’, ’alpha’, ’beta’, ’phi’, ...

’Bugdir’, ’C:/Program Files/WinBUGS14’);
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z3 = [stats.mean.beta];

fprintf(fid3,’%g %g %g \n’,z3);

end % end for Model III (with 2 knots)

% For Model III (with 3 knots):

if choose == 4||choose == 0
...

end % end for Model III (with 3 knots)

% For Model III (with 4 knots):

if choose == 5||choose == 0
...

end % end for Model III (with 4 knots)

% For Model III (with 4 knots):

if choose == 5||choose == 0
...

end % end for Model III (with 4 knots)

% For Model III (with 5 knots):

if choose == 6||choose == 0
...

end % end for Model III (with 5 knots)

% For Model III (with 6 knots):

if choose == 7||choose == 0
...

end % end for Model III (with 6 knots)

% For Model III (with 7 knots):

if choose == 8||choose == 0
...

end % end for Model III (with 7 knots)

% For Model III (with 8 knots):

if choose == 9||choose == 0
...

end % end for Model III (with 8 knots)

end % end for Monte Carlo simulation

fclose(fid1);

fclose(fid2);

fclose(fid3);

fclose(fid4);

fclose(fid5);

fclose(fid6);
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fclose(fid7);

fclose(fid8);

fclose(fid9);

fclose(fid10);

% average observed missing percentage

avrg obs miss perc = mean(obs miss)

end % end of Simulation.m function

Sample Phi0.m Function

% The sample Phi0.m function calculates the intercept parameter phi0

% for the true missingness mechanism and 15% missing percentage

function Phi0

% True parameters:

beta0 = 2;

beta =[1 -1];

alpha = [-1.5 0.5];

sigma2 = 0.75;

phi =[1 1 1 5];

n = 10000;

missing percentage = 0.15

% generate x1 and x2

x2 = normrnd(1,1,n,1);

x1 = normrnd(alpha(1) + alpha(2) * x2,sigma2);

% generate y, fully observed binary response

numpy = exp( beta0+ beta(1)*x1 + beta(2)*x2 );

py = numpy./(1+numpy);

y = binornd(1,py);

% choosing phi0 by missing percentage

phi0 init = -50:0.05:50;

miss prob = zeros(size(phi0 init));

r = zeros(n,1);

w = zeros(n,1);

for k=1:length(phi0 init)

numpr = phi0 init(k)+phi(1)*y+phi(2)*x2+phi(4)*(0.5-1./(1+(x1+1).ˆ 4));

w = normrnd(numpr,1);

r(find(w>=0)) = 1;

r(find(w<0)) = 0;

miss prob(k) = mean(r);

end
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A = [phi0 init’ miss prob’];

miss prob diff = abs(miss prob-missing percentage);

[Y I] = min(miss prob diff);

phi0 = phi0 init(I)

end % end of Phi0.m function

Sample Results.m Function

% The sample Results.m function calculates the biases and

% mean squared errors (MSEs) of the beta parameters

function Results(text name,n)

% Input Arguments:

% text name = ’Model III(2) Results.txt’

% n : number of samples

true beta = [2 1 -1];

fid text = fopen(text name,’r’)

data = fscanf(fid text,’%f’,[3 n]);

data = data’;

T mean average = zeros(1,3);

T mean std = zeros(1,3);

T bias = zeros(1,3);

T MSE = zeros(1,3);

for j=1:3

T mean average(j) = mean(data(:,j));

T mean std(j) = std(data(:,j));

T bias(j) = T mean average(j)-true beta(j);

T MSE(j) = T bias(j)ˆ 2 + var(data(:,j));

end

T mean average

T bias

T MSE

fclose(fid text);

end % end of Result.m function
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APPENDIX D

Convergence Diagnostics for Gibbs Sampling

D.1 Comparison of Noninformative and Empirical Bayesian Based Gamma

Prior for σ
−2
b

To monitor the convergence of Markov chains within the Gibbs sampling, we used the Brooks-

Gelman-Rubin’s convergence diagnostics by creating three chains starting from three dis-

persed sets of initial points in WinBUGS. In the following figures for the Brooks-Gelman-

Rubin’s convergence diagnostics, red, green and blue lines indicate the Gelman-Rubin statistic

R, the between-chain variance B and the within-chain variance W respectively over iteration-

time. The Gelman-Rubin statistic R is the ratio calculated by

R =
B
W

(D.1)

The ratio R tends to 1 as convergence is approached. Accordingly, we can determine the

burn-in point and the size of the Markov chain by monitoring the Gelman-Rubin statistic R

over iteration-time. For the details of the Brooks-Gelman-Rubin’s convergence diagnostics,

one can refer to Brooks and Gelman [30]. We also observed the autocorrelation plots of the

Markov chains to detect the slow convergence due to the poor mixing.

The following figures are obtained by using the Model III (with 2 knots) in Section 3.2 via

WinBUGS. If we consider the noninformative Gamma(0.01,0.01) prior for the inverse vari-

ance component σ
−2
b , slow convergence is appeared for the latent random effects b and σ

−2
b

due to poor mixing in the corresponding Markov chains as shown in Figure D.1 and Fig-

ure D.3. However, the proposed empirical Bayes based gamma priors for σ
−2
b leads to better

mixing and accelerated convergence for the b and σ
−2
b as shown in Figure D.2 and Figure D.4.
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Figure D.1: The Brooks-Gelman-Rubin’s Convergence Diagnostics and the Autocorrelation
Plots for the random effects b when the noninformative gamma prior is used for σ

−2
b

Figure D.2: The Brooks-Gelman-Rubin’s Convergence Diagnostics and the Autocorrelation
Plots for the random effects b when the empirical Bayes based gamma prior is used for σ

−2
b
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Figure D.3: The Brooks-Gelman-Rubin’s Convergence Diagnostics and the Autocorrelation
Plots for the parameter σ

−2
b when the noninformative gamma prior is used for σ

−2
b

Figure D.4: The Brooks-Gelman-Rubin’s Convergence Diagnostics and the Autocorrelation
Plots for the parameter σ

−2
b when the empirical Bayes based gamma prior is used for σ

−2
b

D.2 Brooks-Gelman-Rubin’s Convergence Diagnostics for the Parameters of

the Proposed Hierarchical Model

The following figures show the Brooks-Gelman-Rubin’s convergence diagnostics (see Ap-

pendix D.1) for the parameters of Model III (with 2 knots) in Section 3.2. The burn-in point

and the size of the Markov chain are determined by using these figures for the proposed hier-

archical model.

Figure D.5: The Brooks-Gelman-Rubin’s Convergence Diagnostics for the parameter α
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Figure D.6: The Brooks-Gelman-Rubin’s Convergence Diagnostics for the parameter β

Figure D.7: The Brooks-Gelman-Rubin’s Convergence Diagnostics for the parameter φ

Figure D.8: The Brooks-Gelman-Rubin’s Convergence Diagnostics for the parameters σ−2
x

and σ
−2
b
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