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ABSTRACT 

THREE DIMENSIONAL FRACTURE ANALYSIS OF ORTHOTROPIC MATERIALS 

 

Akgül, Görkem 

M. Sc., Department of Mechanical Engineering 

Supervisor: Assoc. Prof. Dr. Serkan Dağ 

June 2012, 104 pages 

 

The main objective of this study is to examine the three-dimensional surface crack 

problems in orthotropic materials subjected to mechanical or thermal loading.  The 

cracks are modeled and embedded in the orthotropic material by considering semi-

elliptical crack front geometry. In the model special elements are embedded in the 

crack front region, in this way it is possible to include crack tip singular fields along 

the crack front. Three-dimensional finite element analyses are conducted to obtain 

mode I stress intensity factors. The stress intensity factor is calculated by using the 

displacement correlation technique. In the analysis, collapsed 20-node iso-parametric 

elements are utilized to simulate strain singularity around the semi-elliptical crack 

front. The surface crack problem is analyzed under both mechanical and thermal 

stresses. In the case of mechanical loading, uniform tension and fixed grip tension 

loading cases are applied on the model. In thermal analysis, thermal boundary 

conditions are defined. Comparisons of the results generated to those available in 

the literature verify the developed techniques. 

 

Keywords: Fracture mechanics, semi-elliptical crack, orthotropic materials, stress 

intensity factors, thermal stresses 
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ÖZ 

ORTOTROPİK MALZEMELERİN ÜÇ BOYUTLU KIRILMA ANALİZİ 

 

Akgül, Görkem 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Serkan Dağ 

 

Haziran 2012, 104 sayfa 

 

Bu çalışmanın temel amacı, mekanik veya ısıl yüklemeye maruz kalan ortotropik 

malzemelerin üç boyutlu yüzey çatlak sorunlarını incelemektir. Çatlaklar, yarı-eliptik 

geometriye sahip olacak şekilde modellenerek ortotropik malzeme içine 

yerleştirilmiştir. Modelde özel elemanlar kullanmak, çatlak ucu bölgesi boyunca tekil 

alan çözümlerini de elde edebilmeyi mümkün kılmaktadır. Gerilme şiddet faktörünü 

hesaplamak için üç boyutlu sonlu eleman çözüm teknikleri uygulanmıştır. Gerilim 

şiddeti faktörü, deplasman korelasyon tekniği kullanılarak hesaplanmıştır. 20-

düğümlü izo-parametrik elemanlar yarı eliptik çatlak ucu çözümlerinde kullanılmıştır. 

Yüzey çatlakları, hem mekanik, hem ısıl gerilme etkisi altında analiz edilmiştir. 

Mekanik yükleme analizlerinde, sabit noktadan gerilme yükleme ve sabit gerginlik 

durumları uygulanmıştır. Isıl yüklemede ise sınır koşulları tanımlanmıştır. Literatürde 

bulunan, doğruluğu ispatlanmış sonuçlar, geliştirilen yöntemin doğrulanmasında 

kullanılacaktır. 

 

Anahtar Kelimeler: Kırılma mekaniği, yarı eliptik çatlak, ortotropik malzemeler, 

gerilme şiddeti faktörü 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In the present study, three-dimensional semi elliptic crack problems are studied for 

orthotropic materials. There are nine independent characterizing variables of 

orthotropic materials, which means that there are three planes of elastic symmetry 

in the structure. 

 

In order to obtain asymptotic stress and displacement fields of a crack in a three-

dimensional  orthotropic material,  stress and displacement fields close to the tip of a 

straight crack in a generally rectilinear anisotropic elastic body are resolved.  As in 

the isotropic analysis, the stress singularity r�/�, where r is the distance from the tip, 

is handled in a complicated way because of the angular changes due to the 

anisotropy around the crack front. In some special cases, where some elements of 

the compliance matrix are zero,  the asymptotic stress and displacement fields 

should be redefined for these special cases. These cases are called degeneracy cases 

such as anti plane shear and plane strain decoupling case and x-y plane isotropy case. 

As a result of the material used for the analysis is not fully anisotropic in this study, 

the degeneracy cases are used to obtain asymptotic field expressions. The crack front 

in a three dimensional orthotropic medium is modeled using these anisotropic 

asymptotic field expressions [1]. 
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Composites have wide application areas in the world. Due to their advantageous 

mechanical and thermal properties in engineering applications, composites are 

preferred. Their high stiffness to weight ratios, low thermal conductivity constants 

and design flexibilities make the composite structures comparable with traditional 

materials. These materials generally possess anisotropic or orthotropic materials. 

 

Different numerical methods can be used to conduct fracture analysis. Boundary 

Element Method (BEM) and Finite Difference Method (FDM) are two of these 

solution techniques. Moreover, there is also meshless method to solve the structure 

model numerically, different from BEM and FDM. But the most popular method is 

the Finite Element Method (FEM). By using this method, most of the problems can be 

modeled and solved by defining boundary conditions and the physics of the 

environment. However, the elements at the crack faces should be handled in a 

different way compared to the other elements. In order to simulate and solve the 

crack propagation using the fracture mechanics approach, re-meshing techniques 

and prediction methods for singular stress field around a crack tip should be applied. 

Due to the difficulties in modeling these singular stress fields around a crack tip by 

using finite element method, in certain cases the Extended Finite Element Method 

(XFEM) could be preferred to solve the problems, which contain singular fields and 

discontinuities in material and geometry. The XFEM method is originally applied by 

Belytschko and Black [2]. They use the advantages of the conventional FEM and 

improve the method by modeling the discontinuities.  

 

In analysis based on fracture mechanics, the most important parameter is the stress 

intensity factor. Therefore, in fracture mechanics based finite element analyses it is 

important to calculate the stress intensity factors accurately.  
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In fracture mechanics, the three-dimensional crack problems have been considered 

as important problems to be solved analytically and numerically. For three 

dimensional anisotropic and orthotropic materials, there exists very limited research. 

Therefore, in this study, these materials will be studied in detail, and finally three-

dimensional orthotropic materials will be modeled and meshed in order to compute 

stress intensity factors for certain configurations.  

 

There are several finite element analysis programs available. These programs are 

used for commercial and academic purposes. Because of the large variety of 

approaches and finite element analysis software programs for three-dimensional 

structures, crack geometries in three-dimensional bodies have been studied with 

great interest in recent years. However, finite element techniques are not capable of 

solving crack geometries accurately without considering the crack faces, asymptotic 

fields and stress fields around crack tips [3]. Therefore, some modifications should be 

applied to the software program by embedding the asymptotic field expressions 

using parametric design language of the program. The use of the asymptotic field 

expressions allows the evaluation of the stress intensity factors from stress and 

displacement values around the crack front. Asymptotic fields for plane strain 

configurations of anisotropic materials can be used also for three-dimensional 

problems involving such materials [4]. In the present study, we employ plane strain 

fields to generate the stress intensity factors for cracks located in three-dimensional 

structures.  

 

The  r�/� stress singularity method is used in 3D fracture analyses. In this method mid 

side nodes are placed at the quarter of the element size from the crack front 

location, thus this method is also known as quarter point technique. Although this 

method is highly dependent on the mesh quality, it can be successfully used to solve 

three-dimensional problems. Ozkan [5], illustrated that quarter point technique can 

be applied to both three-dimensional isotropic materials and three-dimensional 
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anisotropic materials. Disadvantages of this method are the necessity of using wedge 

elements along the crack front and dependence of the solutions on mesh refinement.  

 

1.2 Literature Survey 

The goal of this study is to develop a method to carry out fracture analyses of 

orthotropic materials.  Mode I stress intensity factor for three-dimensional 

composite structures is calculated by applying the displacement correlation 

technique. In the past, various researchers studied surface crack problems. However, 

these crack problems are handled for two dimensional planar structures or three-

dimensional isotropic structures, or three-dimensional FGM coating materials, in 

which the material properties change continuously as a function of thickness 

dimension of the structure. This study can be considered as one of the first studies in 

the literature, dealing with three-dimensional fracture problems in orthotropic 

materials. 

 

Although the literature related to three-dimensional analysis on orthotropic 

materials is very limited, in previous studies numerous results have been reported for 

three-dimensional cracks in an isotropic media. Hence, certain methods to solve 

these have been developed in literature. Especially, three-dimensional homogenous 

isotropic materials have been considered in the FEM analysis. There are large 

number of techniques available to obtain stress intensity factors for three-

dimensional isotropic crack fronts [3],[6],[7]. Semicircular cracks in semi-infinite 

structures are considered under different types of mechanical loading cases, such as 

tension and bending by Smith et al. [8]. The stress intensity factors are also 

calculated under thermal loading situation [9].  There are also empirical solutions for 

semi elliptic cracks in the literature. Raju and Newman [10] derived expressions to 

obtain stress intensity factors. In this research, they derived the empirical stress 

intensity factor equations of a semi-elliptical surface crack by using FEA.  
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Due to the complex nature of material behavior of anisotropic materials, most of the 

researchers focused on the two-dimensional formulations. Sih et al. [11] extended 

the isotropic local crack tip stress fields for general plane problems to the rectilinear 

anisotropic case. Hoenig [1], Embley [12], and Sih [13], extended the analysis of crack 

tip stress fields to the case of generalized plane deformation for an anisotropic body. 

Stress and strain fields for plane strain configurations of anisotropic materials can be 

used also for three-dimensional problems involving such materials [4]. Ozkan [14] 

observed the asymptotic stress and displacement fields around crack tip for three-

dimensional cracks on both isotropic and homogeneous anisotropic materials. A 

valuable research on cracks in anisotropic materials using ANSYS and 3DFAS has 

prepared by Ozkan et al. [5]. In this research, it is proved that quarter point 

technique can be applied for both three-dimensional isotropic materials and three-

dimensional anisotropic materials. 

 

There are also other studies related to the analysis of three-dimensional crack 

problems. These problems are examined by various researchers in the past 

[4],[14],[15].  In these studies, it is demonstrated that the enriched finite element 

method is a useful technique for obtaining stress intensity factors for general three-

dimensional crack problems. This method gives accurate results for cracks in isotropic 

or anisotropic materials. The engineering fracture mechanics parameters are 

calculated by the help of the known parameters obtained from the finite element 

solution results, such as displacements of the nodes at the crack front. For this 

reason, this method can be used for various types of crack singularity fields [4]. 

 

Kirilyuk [16] has studied static equilibrium problems for a three-dimensional elastic 

orthotropic material with an internal circular (penny-shaped) crack. In this research, 

to solve the problem, Willis’ approach is used and the influence of anisotropy on the 

stress intensity factors is studied. In this paper, this approach is based on the triple 

Fourier transform, the Fourier-transformed Green’s function for an orthotropic 

medium, and Cauchy’s residue theorem. 
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1.3 Goal of the Study 

The goal of this study is to develop a method to conduct three-dimensional fracture 

analysis of orthotropic materials. Firstly, the three-dimensional orthotropic material 

structure is modeled by finite element analysis. In this study, ANSYS Parametric 

Design Language is used to create the geometry of the model. Moreover, this 

software is used to mesh the geometry, to load the model structurally and thermally; 

and to calculate the fracture mechanics parameters.  By using ANSYS, parametric 

design language complex geometries with different type of crack geometries and 

orientation are possible to be worked on. In this study surface crack geometry is 

modeled in a three-dimensional orthotropic material. Considering the crack front 

location, quarter point technique is used to simulate the r�/� stress singularities. The 

material properties can be considered as isotropic, orthotropic or anisotropic 

material. Hence, the asymptotic crack tip stress and displacement fields become 

crucial. The fracture mechanics based expressions are different for different type of 

materials.  After creating, meshing, defining the material, and setting the boundary 

conditions finite element model is solved in the software. Displacements are 

obtained for the cracked three-dimensional orthotropic materials. After that, 

displacement correlation technique is used to obtain fracture mechanics parameters, 

such as stress intensity factors. 

 

In this study, three-dimensional orthotropic materials are analyzed using asymptotic 

fields for plane strain configurations of anisotropic materials. Three-dimensional 

finite element analyses are conducted to obtain mode I stress intensity factors. The 

stress intensity factor is calculated by using the displacement correlation technique. 

In addition to these, comparisons of the results generated to those available in the 

literature verify the developed techniques. 

 

This study consists of five chapters. Chapter I contains the following sections: 

introduction, literature survey and the goal of the study. In Chapter 2, constitutive 

relations of anisotropic materials are given. In Chapter 3, finite element method, 
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asymptotic stress and strain fields at the crack tip and displacement correlation 

technique are studied.  In Chapter 4, problem is defined. Moreover, three-

dimensional fracture analysis techniques, geometry of the problem and loading 

types, results and discussion are given in this section. Finally, an outcome of the 

results and concluding remarks are given in Chapter 5. 
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CHAPTER 2 

CONSTITUTIVE RELATIONS FOR ANISOTROPIC MATERIALS 

2  

2.1 Mechanical Behavior of Anisotropic Materials 

The stress strain relations for anisotropic materials are more complex than the 

relation for isotropic materials.  There are also more independent material constants 

compared to the linear elastic and isotropic material. The general stress and strain 

relationship is given in Cartesian coordinate system as follows: 

 

89:
9; <�<�<=>�=>�=>��?9@

9A =
BC
CC
CD-�� -�� -�= -�E -�F -�G-�� -�� -�= -�E -�F -�G-=� -=� -== -=E -=F -=G-E� -E� -E= -EE -EF -EG-F� -F� -F= -FE -FF -FG-G� -G� -G= -GE -GF -GGHI

II
IJ

89:
9; &�&�&=0�=0�=0��?9@

9A
 

(2.1) 

              

6x6 [S] matrices are called compliance matrix. The compliance matrix has 36 

constants. However, due to the symmetry of the compliance matrix, the numbers of 

material constants are reduced to 21 [17]. Nonzero engineering constants for 

monoclinic, orthotropic, transversely isotropic and isotropic materials are tabulated 

in Table 2.1. 
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Table 2 . 1 The nonzero engineering constants [17] 

  Nonzero engineering constants 

Material InIndependent Dependent 

Monoclinic ��, ��, �=  L�=, L�=, L�� ���, ��=, ��= ��G, ��G, �EF, �=G 

  

Orthotropic ��, ��, �=  L�=, L�=, L�� ���, ��=, ��= 

 

Transversely  

isotropic 

��, �� L�� ���, ��= 

�= = ��, L�= = L�� L�= = ��2(1 + ��=) 

 ��= = ��� 

Isotropic ��     (= �) ���    (= �) 
 

�� = �= = �, ��= = ��= = � L�= = L�= = L�� = ��2(1 + �) 

 

Considering the nonzero engineering constants for monoclinic, orthotropic, 

transversely isotropic, and isotropic materials the compliance matrices can be 

tabulated in Table 2.2. 
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Table 2 . 2 Compliance matrices [18] 

The compliance matrices in terms of the engineering constants for monoclinic, 

orthotropic, transversely isotropic, and isotropic materials 

S
=

BC
CC
CD 1 E�⁄ −υ�=/E� −υ=�/E= 0 0 υG�/G��−υ=�/E� 1/E� −υ=�/E= 0 0 υG�/G��−υ�=/E� −υ�=/E� 1/E= 0 0 υG=/G��0 0 0 1/G�= −υFE/G�= 00 0 0 −υEF/G�= 1/G�= 00 0 0 0 0 1/G�� HI

II
IJ Monoclinic 

S =
BC
CC
CD 1 E�⁄ −υ��/E� −υ=�/E= 0 0 0−υ��/E� 1/E� −υ=�/E= 0 0 0−υ�=/E� −υ�=/E� 1/E= 0 0 00 0 0 1/G�= 0 00 0 0 0 1/G�= 00 0 0 0 0 1/G��HI

II
IJ    Orthotropic 

S =

BC
CC
CC
CC
CC
CC
CD1 E�⁄ −υ��E� −υ=�E� 0 0 0
−υ��E�

1E� −υ=�E� 0 0 0
−υ�=E� −υ�=E�

1E� 0 0 0
0 0 0 2(1 + υ�=)E� 0 0
0 0 0 0 1G�= 0
0 0 0 0 0 1G�=HI

II
II
II
II
II
IJ

  Transversely isotropic 

S =
BC
CC
CD 1 E⁄ −υ/E −υ/E 0 0 0−υ/E 1/E −υ/E 0 0 0−υ/E −υ/E 1/E 0 0 00 0 0 2(1 + υ)/E 0 00 0 0 0 2(1 + υ)/E 00 0 0 0 0 2(1 + υ)/EHI

II
IJ   Isotropic 

 

 



 

2.1.1 Generally Anisotropic Materials

When the fibers are oriented in a non

the material has 21 independent elastic constants

anisotropic material.

Figure 2.1. The properties of that anisotropic material are found at a particular point 

and the relationships for stress and strains are derived considering that point. 

Furthermore, for non

different from one point to another in the structure. If it is assumed that the material 

is homogenous, the 21 independent elastic constants should be found analytically or 

experimentally [17].   

 

Figure 2 . 

 

Considering fiber reinforced materials, the structure is assumed 

fibers are oriented in three non

 

2.1.2 Monoclinic Materials

In monoclinic materials, there is a symmetry plane with re

the fibers. If there is a one plane of symmetry, the independent elastic constants of 

the compliance matrix are reduced to 13. Material symmetry indicates that the 

material and its mirror images about the plane of symmetry are ide
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Generally Anisotropic Materials 

When the fibers are oriented in a non-symmetrical manner in the matrix medium, 

material has 21 independent elastic constants. This material is

anisotropic material. An example of a generally anisotropic material is shown in 

The properties of that anisotropic material are found at a particular point 

he relationships for stress and strains are derived considering that point. 

Furthermore, for non-homogeneous anisotropic material the properties can be 

different from one point to another in the structure. If it is assumed that the material 

the 21 independent elastic constants should be found analytically or 

.    

 

Figure 2 . 1 Example of a generally anisotropic material

Considering fiber reinforced materials, the structure is assumed anisotropic

fibers are oriented in three non-orthogonal directions [18]. 

Monoclinic Materials 

In monoclinic materials, there is a symmetry plane with respect to the alignment of 

the fibers. If there is a one plane of symmetry, the independent elastic constants of 

matrix are reduced to 13. Material symmetry indicates that the 

material and its mirror images about the plane of symmetry are identical

symmetrical manner in the matrix medium, 

material is called generally 

An example of a generally anisotropic material is shown in 

The properties of that anisotropic material are found at a particular point 

he relationships for stress and strains are derived considering that point. 

homogeneous anisotropic material the properties can be 

different from one point to another in the structure. If it is assumed that the material 

the 21 independent elastic constants should be found analytically or 

Example of a generally anisotropic material [19] 

anisotropic when the 

spect to the alignment of 

the fibers. If there is a one plane of symmetry, the independent elastic constants of 

matrix are reduced to 13. Material symmetry indicates that the 

ntical [17]. 



 

 

Figure 2 . 2  

 

In Figure 2.2(a), fibers are oriented parallel to the x

symmetry. In Figure 2.2(b), fibers are oriented parallel to the plane of symmetry and 

in Figure 2.2(c) the fibers are in the plane of symmetry and perpendicular to the 

plane of symmetry [18]

 

The compliance matrix for monoclinic materials is obtained by reducing the 

compliance matrix of generally anisotropic materials. Because of the symmetry plane 

the out of plane shear strains does not exist, therefore the-GE , -GF elements of the compliance matrix is zero. Similarly, due to the symmetry of 

the compliance matrix, the

equal to zero. Then, the compliance matrix can be rewritten as follows:
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  Illustrations of Fiber-Reinforced Monoclinic Materials

In Figure 2.2(a), fibers are oriented parallel to the x1-x2 plane, which is the plane of 

symmetry. In Figure 2.2(b), fibers are oriented parallel to the plane of symmetry and 

in Figure 2.2(c) the fibers are in the plane of symmetry and perpendicular to the 

[18]. 

compliance matrix for monoclinic materials is obtained by reducing the 

compliance matrix of generally anisotropic materials. Because of the symmetry plane 

the out of plane shear strains does not exist, therefore the -E� , -E�
elements of the compliance matrix is zero. Similarly, due to the symmetry of 

the compliance matrix, the -E� , -E� , -F� , -E= , -F= , -GE , -GF elements  are also 

equal to zero. Then, the compliance matrix can be rewritten as follows:

 

Reinforced Monoclinic Materials [19] 

plane, which is the plane of 

symmetry. In Figure 2.2(b), fibers are oriented parallel to the plane of symmetry and 

in Figure 2.2(c) the fibers are in the plane of symmetry and perpendicular to the 

compliance matrix for monoclinic materials is obtained by reducing the 

compliance matrix of generally anisotropic materials. Because of the symmetry plane 

E� , -F� , -E= , -F= , 

elements of the compliance matrix is zero. Similarly, due to the symmetry of 

elements  are also 

equal to zero. Then, the compliance matrix can be rewritten as follows: 
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- =
BC
CC
CD-�� -�� -�= 0 0 -�G-�� -�� -�= 0 0 -�G-�= -�= -== 0 0 -=G0 0 0 -EE -EF 00 0 0 -EF -FF 0-�G -�G -=G 0 0 -GGHI

II
IJ
 

(2.2) 

 

2.1.3 Orthotropic Materials 

Orthotropic materials have three mutually perpendicular planes of symmetry with 

respect to the orientation of the material. For orthotropic materials, the compliance 

matrix has nine independent elastic constant as seen following compliance matrix: 

- =
BC
CC
CD-�� -�� -�= 0 0 0-�� -�� -�= 0 0 0-�= -�= -== 0 0 00 0 0 -EE 0 00 0 0 0 -FF 00 0 0 0 0 -GGHI

II
IJ
 

(2.3) 

 

Fibers oriented in a rectangular array in a single lamina constitute an example of an 

orthotropic material. 

 

2.1.4 Transversely Isotropic Materials 

A transversely isotropic material has a plane of material isotropy in one of the planes 

of an orthotropic material. This situation can occur when the unidirectional fibers are 

oriented in the x1 direction. Because of the material isotropy, the compliance matrix 

for transversely isotropic materials has five independent elastic constants. 

Furthermore, the following simplifications can be valid because of the isotropy. 

�� = �= (2.4) L�= = L�� (2.5) ��= = ��� (2.6) 

 

Since, for the isotropic material, the shear modulus is expressed as: 



 

L = �2(1 + �) 

 

Therefore, the shear modulus for a material that shows isotropic in the plane x

x3, is written as follows:

L�= = ��2(1 + ��=) 

 

By applying the simplification to the compliance matrix for transversely isotropic 

material, the compliance 

- =
BC
CC
CD-�� -�� -��-�� -�� -�=-�� -�= -��0 0 00 0 00 0 0

 

2.1.5 Isotropic Materials

For isotropic materials, every plane is a plane of symmetry. 

planes are shown in Figure 2.3.

 

Figure 2 . 
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Therefore, the shear modulus for a material that shows isotropic in the plane x

is written as follows: 

By applying the simplification to the compliance matrix for transversely isotropic 

material, the compliance matrix takes the following form: 

�� 0 0 0�= 0 0 0
�� 0 0 02(-�� − -�=) 0 00 -GG 00 0 -GGHI

II
IJ
 

Isotropic Materials 

For isotropic materials, every plane is a plane of symmetry. Material symmetry 

planes are shown in Figure 2.3. 

Figure 2 . 3 Material with three planes of symmetry [19]

(2.7) 

Therefore, the shear modulus for a material that shows isotropic in the plane x2 and 

(2.8) 

By applying the simplification to the compliance matrix for transversely isotropic 

(2.9) 

Material symmetry 

 

[19] 
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Due to the symmetry planes, engineering constants can be simplified as follows: 

�� = �� = �= = � (2.10)L�= = L�= = L�� = L (2.11)��= = ��= = ��� = � (2.12)L = �2(1 + �) 
(2.13)

 

The compliance matrix for isotropic materials has 3 independent elastic constants 

and can be written as follows: 

- =
BC
CC
CD-�� -�� -�� 0 0 0-�� -�� -�� 0 0 0-�� -�� -�� 0 0 00 0 0 2(-�� − -��) 0 00 0 0 0 2(-�� − -��) 00 0 0 0 0 2(-�� − -��)HI

II
IJ
 

(2.14)

 

2.2 Plane Strain Condition 

In engineering problems, there are situations considering the change in the stress 

and strains. For plane strain condition, along direction x3-axis or z-axis the stresses 

and strains do not change. However, the stresses and strains can still vary in planes 

perpendicular to the x3-axis or z-axis. This circumstance is called the plane strain 

condition. For instance, the plane strain condition for isotropic structures creates 

planes perpendicular to the x3-axis or z-axis. This situation may occur also 

considerably far from the boundary of a large homogenous body exposed to uniform 

load along the longitudinal axis.  

 



 

Figure 2 . 4 Surface and body forces that may be applied under plane

condition. The applied forces must be uniform along the longitudinal axis and must 

From the definition of the plane 

longitudinal axis. Therefore, following expressions are valid for the plane stain 

condition. 

∈ee=∈ee (f, 	) ∈eg=∈eg (f, 	) ∈gg=∈gg (f, 	) ∈h= >ij = >kj = 0
 

2.3 Plane Stress Condition

Under plane stress condition, normal stresses in z

stresses in the x-y plane are zero.  Plane stress condition can be used for thin plate

An example of this situation occurs in fiber

parallel to the x-y plane and the plate is loaded along the edges, plane stress 

condition can be applied. This results from the fact that the forces are parallel to the 
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Surface and body forces that may be applied under plane

. The applied forces must be uniform along the longitudinal axis and must 

be in equilibrium for each segment [19] 

 

From the definition of the plane strain condition, the strains do not change along the 

longitudinal axis. Therefore, following expressions are valid for the plane stain 

0 

Plane Stress Condition 

Under plane stress condition, normal stresses in z-direction and out of plane shear 

y plane are zero.  Plane stress condition can be used for thin plate

An example of this situation occurs in fiber-reinforced materials. If the fibers ar

y plane and the plate is loaded along the edges, plane stress 

condition can be applied. This results from the fact that the forces are parallel to the 

 

Surface and body forces that may be applied under plane-strain 

. The applied forces must be uniform along the longitudinal axis and must 

strain condition, the strains do not change along the 

longitudinal axis. Therefore, following expressions are valid for the plane stain 

(2.15)

(2.16)

(2.17)

(2.18)

direction and out of plane shear 

y plane are zero.  Plane stress condition can be used for thin plates. 

reinforced materials. If the fibers are 

y plane and the plate is loaded along the edges, plane stress 

condition can be applied. This results from the fact that the forces are parallel to the 



 

plane of plate and distributed uniformly over the thickness

stresses under plane stress conditions and the zero stress values are as follows:

&h = 0 0gh = 0 0eh = 0 

Figure 2 . 

2.4 Bases Change Formulas

Material properties are usually used in a basis with coordinate axes aligned with the 

material symmetry planes. While dealing with the anisotropic materials it is 

frequently required to transform compliance matrices to a co

oriented to the boundaries of the structure. 

are recalculated considering the crack front location in the three dimensional 

orthotropic body by using these bases change formulas. 

be used to change the basis of the material 

 

Supposing that compliance

transformation is applied to the second basis, 

tensor Ω in matrix form can be written as follows
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plane of plate and distributed uniformly over the thickness [19]. Figure 2.5 shows the 

stresses under plane stress conditions and the zero stress values are as follows:

Figure 2 . 5 The stresses under plane-stress condition [19]

 

Bases Change Formulas 

Material properties are usually used in a basis with coordinate axes aligned with the 

material symmetry planes. While dealing with the anisotropic materials it is 

frequently required to transform compliance matrices to a coordinate system that is 

oriented to the boundaries of the structure. In this study, the compliance matrices 

are recalculated considering the crack front location in the three dimensional 

orthotropic body by using these bases change formulas. Following form

be used to change the basis of the material properties [20].  

compliance tensors are given in a basis, lm�, m
transformation is applied to the second basis, ln�, n�, n=o. The transformation 

in matrix form can be written as follows: 

Figure 2.5 shows the 

stresses under plane stress conditions and the zero stress values are as follows: 

(2.19)

(2.20)

(2.21)

 

[19] 

Material properties are usually used in a basis with coordinate axes aligned with the 

material symmetry planes. While dealing with the anisotropic materials it is 

ordinate system that is 

In this study, the compliance matrices 

are recalculated considering the crack front location in the three dimensional 

Following formulation can 

l m�, m=o , and the 

. The transformation 
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pΩr = sn�m� n�m� n�m=n�m� n�m� n�m=n=m� n=m� n=m=t 
(2.22)

 

The basis change expressions for the elasticity tensor in matrix form can be written in 

the following form: 

u(,) = !u(v)!w (2.23)

 

Where the basis change matrix can be defined as 

! = x!(�) 2!(�)!(=) !(E) y (2.24)!45(�) = Ω45�  (2.25)!45(�) = Ω4,z{(5|�,=) Ω4,z{(5|�,=) (2.26)!45(=) = Ω,z{(4|�,=)5 Ω,z{(4|�,=)5 (2.27)!45(E) = Ω,z{(4|�,=),z{(5|�,=) Ω,z{(4|�,=),z{(5|�,=)+ Ω,z{(4|�,=),z{(5|�,=) Ω,z{(4|�,=),z{(5|�,=) (2.28)

 

The expressions are for }, ~ =  1. .3 and the modulo function yields 

n��(}, 3) = � } , } ≤ 3} − 3 , } > 3� (2.29)

 

For compliance tensor, the basis change expression is as follows: -(,) = !��-(v)!�� (2.30)

where, 

!�w = x !(�) !(�)2!(=) !(E)y (2.31)

 

For a special case of rotation through an angle 3, in a counterclockwise sense about 

the m�, m�, m= axes, respectively, the rotation matrix can be defined as the following 

form: 
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BC
CCC
D1 0 0 0 0 00 �� �� 2�� 0 00 �� �� −2�� 0 00 −�� �� �� − �� 0 00 0 0 0 � −�0 0 0 0 � � HI

III
J
 . 

BC
CCC
D1 0 0 0 0 00 �� �� 2�� 0 00 �� �� −2�� 0 00 −�� �� �� − �� 0 00 0 0 0 � −�0 0 0 0 � � HI

III
J
 . 

BC
CCC
D1 0 0 0 0 00 �� �� 2�� 0 00 �� �� −2�� 0 00 −�� �� �� − �� 0 00 0 0 0 � −�0 0 0 0 � � HI

III
J
 

(2.32)

where  � = cos 3 and  � = sin 3. 

 

In this study, the compliance matrices are recalculated taking into account the crack 

front location in the orthotropic body by using these bases change formulas.



 

FINITE ELEMENT METHOD, THE ASYMPTOTIC FIELD EXPRESSIONS 
AND THE DISPLACEMENT CORREL

3.1 The Finite Element Method

The finite element model is generated step by step ANSYS analysis procedure. The 

three-dimensional model is created with the help of the ANSYS Parametric Design 

Language (APDL). The Mechanical APDL application is 

working with linked analysis (e.g., thermal

submodeling, etc.) 

 

Figure 3 . 

 

Fracture mechanics provides a tool to evaluate the criticality of the cracks in 

structures. The main attainment in the theoretical foundation of linear elastic 
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3  

The Finite Element Method 

The finite element model is generated step by step ANSYS analysis procedure. The 

dimensional model is created with the help of the ANSYS Parametric Design 

Language (APDL). The Mechanical APDL application is very useful, especially when 

working with linked analysis (e.g., thermal-mechanical analysis, substructuring of 

 

 

Figure 3 . 1 Polar coordinates at the crack front region 

cture mechanics provides a tool to evaluate the criticality of the cracks in 

structures. The main attainment in the theoretical foundation of linear elastic 

FINITE ELEMENT METHOD, THE ASYMPTOTIC FIELD EXPRESSIONS 
ATION TECHNIQUE 

The finite element model is generated step by step ANSYS analysis procedure. The 

dimensional model is created with the help of the ANSYS Parametric Design 

very useful, especially when 

mechanical analysis, substructuring of 

 [21] 

cture mechanics provides a tool to evaluate the criticality of the cracks in 

structures. The main attainment in the theoretical foundation of linear elastic 



 

fracture mechanics was the introduction of the stress intensity factor 

parameter for the intensity of stresses close to the crack tip and this parameter is 

related to the energy release rate 

 

The wide range of structural configurations, loading conditions and crack geometries 

with the material property changes make the analytical prediction of the stress 

intensity factors (SIFs) complicated. 

 

Figure 3 . 2

 

In this study, analysis of the three

obtain linear elastic fracture mechanics parameter, 

factors. Stress intensity factors (SIF

and other computer programs. To evaluate the stress intensity factors, there are a 

number of methods available for cracked bodies.
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fracture mechanics was the introduction of the stress intensity factor 

intensity of stresses close to the crack tip and this parameter is 

related to the energy release rate [22].   

The wide range of structural configurations, loading conditions and crack geometries 

with the material property changes make the analytical prediction of the stress 

intensity factors (SIFs) complicated.  

2 Finite element model of the three-dimensional structure

In this study, analysis of the three-dimensional fracture problems is carried out to 

obtain linear elastic fracture mechanics parameter, namely mode

factors. Stress intensity factors (SIFs) can be calculated in the ANSYS APDL software 

and other computer programs. To evaluate the stress intensity factors, there are a 

number of methods available for cracked bodies. 

fracture mechanics was the introduction of the stress intensity factor (!) as a 

intensity of stresses close to the crack tip and this parameter is 

The wide range of structural configurations, loading conditions and crack geometries 

with the material property changes make the analytical prediction of the stress 

 

dimensional structure 

dimensional fracture problems is carried out to 

mode-I stress intensity 

s) can be calculated in the ANSYS APDL software 

and other computer programs. To evaluate the stress intensity factors, there are a 



 

Figure 3 . 3 Elements 

 

Figure 3 . 4 Elements 

 

There are two ways of creating the model in the finite element programs. First of 

them is to have the two

geometry. It is possible to mesh this solid model and to generate nodes and elements 

for this geometry. The other method is to create the model directly from the nodes. 

In this method after generating the nodes, the elements are created from these 

nodes and the body is created by merging these elements together. In this study, 

second method is preferr
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lements at the crack front region (Surface crack geometry

model) 

 

lements at the crack front region (Internal penny-shaped geometry

model) 

There are two ways of creating the model in the finite element programs. First of 

them is to have the two-dimensional and three-dimensional solid model of the 

geometry. It is possible to mesh this solid model and to generate nodes and elements 

metry. The other method is to create the model directly from the nodes. 

In this method after generating the nodes, the elements are created from these 

nodes and the body is created by merging these elements together. In this study, 

second method is preferred to generate the model of the geometry. 

 

(Surface crack geometry, quarter 

 

shaped geometry, half 

There are two ways of creating the model in the finite element programs. First of 

dimensional solid model of the 

geometry. It is possible to mesh this solid model and to generate nodes and elements 

metry. The other method is to create the model directly from the nodes. 

In this method after generating the nodes, the elements are created from these 

nodes and the body is created by merging these elements together. In this study, 

ed to generate the model of the geometry. The generated 
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finite element model of the three dimensional structure is shown in Figure 3.2. The 

generated meshes are given in Figure 3.3 and in Figure 3.4. 

 

Second step is to mesh the model to obtain the elements in order to compute the 

displacements. Meshing is the important step in the analysis; the crack front region, 

which is the most critical region in the analysis, is defined in the meshing procedure. 

Since small deformations are taken into account in the calculations, fine mesh should 

be used in the crack front region to obtain reliable results. There are three steps to 

mesh the model. Firstly, element attributes are defined. Secondly, mesh controls are 

specified and lastly mesh is generated.  

 

Element attributes are characteristics of the finite element model that have to be 

established prior to meshing. These element attributes include: 

 

-Element types 

-Real constants 

-Material properties 

-Section properties 

 

The element type is important selection that determines the degree of freedom set 

and element shape. ANSYS has a library of over 170 element types. In this study, as 

an element type MESH200, SOLID87 and SOLID92 are used. 

 

MESH200 is a “mesh-only” element, and it does not include in the solution. It is used 

for temporary storage elements when the analysis physics has not been defined. It is 

also used for multistep meshing operations. In extrusion process, the lower 



 

dimensionality mesh is needed for the creation of a higher dimensionality mesh; 

MESH200 is required for these type operations.

 

SOLID87 is a three-dimensional 10

this element type is preferred to model irregular meshes. This type of element has 

one degree of freedom. At each node of the element, te

The element is suitable for three

analysis. In this study, the model is analyzed both thermally and structurally; 

therefore, the element type is changed from SOLID87 to SOLID92, which

equivalent structural element.

 

Figure 3 . 

SOLID92 is three-dimensional 10 node tetrahedral structural solid element type

is well suited with irregular meshes. Different from the SOLID87 type, it has three 

degrees of freedom at each nod. Translations of nodes in x, y and z directions can be 

defined at each node. The element type shows quadratic displacement behavior and 

has plasticity, creep, swelling and stiffening capabilities.
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dimensionality mesh is needed for the creation of a higher dimensionality mesh; 

required for these type operations. 

dimensional 10-node tetrahedral thermal solid element type and 

this element type is preferred to model irregular meshes. This type of element has 

one degree of freedom. At each node of the element, temperatures can be defined. 

The element is suitable for three-dimensional steady state or transient thermal 

analysis. In this study, the model is analyzed both thermally and structurally; 

therefore, the element type is changed from SOLID87 to SOLID92, which

equivalent structural element. They are shown in Figure 3.5. 

Figure 3 . 5 SOLID87 and SOLID92 Geometry [23] 

 

dimensional 10 node tetrahedral structural solid element type

is well suited with irregular meshes. Different from the SOLID87 type, it has three 

degrees of freedom at each nod. Translations of nodes in x, y and z directions can be 

defined at each node. The element type shows quadratic displacement behavior and 

has plasticity, creep, swelling and stiffening capabilities. 

dimensionality mesh is needed for the creation of a higher dimensionality mesh; 

node tetrahedral thermal solid element type and 

this element type is preferred to model irregular meshes. This type of element has 

mperatures can be defined. 

dimensional steady state or transient thermal 

analysis. In this study, the model is analyzed both thermally and structurally; 

therefore, the element type is changed from SOLID87 to SOLID92, which is the 

 

 

dimensional 10 node tetrahedral structural solid element type and 

is well suited with irregular meshes. Different from the SOLID87 type, it has three 

degrees of freedom at each nod. Translations of nodes in x, y and z directions can be 

defined at each node. The element type shows quadratic displacement behavior and 
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3.2 The Asymptotic Fields at the Crack Tip 

In this section, asymptotic fields for the orthotropic materials are studied. The solid 

body is considered as a plane, therefore, the formulation depends only on the x and y 

coordinates. These asymptotic field expressions can be used for orthotropic materials 

[1]. 

 

Considering the Hook’s Law, the equilibrium equations can be written by taking the 

body forces equal to zero. Linear operators  L�, L= and LE  can be expressed in terms 

of material constants. Two coupled partial differential equations give the solution 

such that: 

�L�LE − L���F = 0 (3.1) 

 

Closely associated with these operators are four polynomials: l�(x) = S��x� − 2SEFx + SEE (3.2) l=(x) = S�Fx= − (S�E + SFG)x� + (S�F + SEG)x − S�E (3.3) lE(x) = S��xE − 2S�Gx= + (2S�� + SGG)x� − 2S�Gx + S�� (3.4) lG(x) = lE(x)l�(x) − pl=(x)r� (3.5) 

 

The characteristic roots of the lG(x) function govern the structure of the stress 

functions. The roots are expressed with μ and they are always complex numbers, 

which will occur in pairs of complex conjugates [24]. There are six roots (μ), three 

distinct roots are chosen; such that imaginary parts of the roots are greater than 

zero. (Im(μ) > 0) 

 

By defining   λ� = −l=�μ��/l��μ��, the displacement and stress equations along the 

crack tip can be obtained as explained in [1].  The coordinate system at the crack 

front region is given in Figure 3.6. 

 



 

Figure 3 . 6 The semi

 

The stress and strain displacements can now be written in terms of the stress 

intensity factor, p�� and

direction is taken in the direction of b axis, which is the direction of the tensile mode 

where the crack surfaces move directly apart.

 

In this study, only the mode I stress intensity factor 

mode II and mode III stress intensity factors will be assumed as zero. 0 and K��� = 0). There are also some special cases where these results are 

inapplicable. For these cases, the formulations and the solution method will be 

explained. 

 

3.2.1 Anisotropic Degeneracy Cases

There are several ways, which make the above formulations inapplicable. One of 

them occurs when any two roots of the characteristic equation 

each other. Therefore,

situation occurs when the 
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The semi-infinite crack and associated coordinate system

The stress and strain displacements can now be written in terms of the stress 

and  N��, since the mode-I stress intensity factor is studied and the 

direction is taken in the direction of b axis, which is the direction of the tensile mode 

where the crack surfaces move directly apart. 

In this study, only the mode I stress intensity factor (K�) will be examined, there

mode II and mode III stress intensity factors will be assumed as zero. 

. There are also some special cases where these results are 

inapplicable. For these cases, the formulations and the solution method will be 

ic Degeneracy Cases 

There are several ways, which make the above formulations inapplicable. One of 

them occurs when any two roots of the characteristic equation (
Therefore, the inverse of the N�� matrix does not exist. The oth

situation occurs when the l�,=,E,G(x)  functions are identically zero. These types of 

 

infinite crack and associated coordinate system [1] 

The stress and strain displacements can now be written in terms of the stress 

intensity factor is studied and the 

direction is taken in the direction of b axis, which is the direction of the tensile mode 

will be examined, therefore, 

mode II and mode III stress intensity factors will be assumed as zero. (K�� =
. There are also some special cases where these results are 

inapplicable. For these cases, the formulations and the solution method will be 

There are several ways, which make the above formulations inapplicable. One of (μ�)  are equal to 

matrix does not exist. The other 

functions are identically zero. These types of 
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situations, where the results for anisotropic case vanish, are called anisotropic 

degeneracy situations [1]. 

 

3.2.1.1 Anti-Plane Shear and Plane Strain Decoupling Case 

Degeneracy occurs if the anti-plane shear and plane strain displacements decouple. 

This situation exists where the following compliance matrix expressions are equal to 

zero [1]: S�E = S�E = S�F = S�F = SEG = SFG = 0 (3.6) 

 

In anti-plane shear and plane strain displacements decouple situation, matrix form of 

the compliance matrix is as follows: 

S =
BC
CC
CDS�� S�� S�= 0 0 S�GS�� S�� S�= 0 0 S�GS=� S=� S== S=E S=F S=G0 0 SE= SEE SEF 00 0 SF= SFE SFF 0SG� SG� SG= 0 0 SGGHI

II
IJ
 

(3.7) 

 

In this situation  l=(x), and consequently, L= are equal to zero. Therefore the 

characteristic roots μ� and μ�  are taken from the equation lE(x) = 0  such 

that   Im�μ�,�� > 0. 

 

The p�� matrix, which depends on the material properties and the characteristic root, 

is defined as follows: p�α = S��μα
� + S�� − S�Gμα (3.8) p�α = S��μα + S��/μα − S�G (3.9) p== = SEF − SEE/μα (3.10)p=� = p=� = p�= = p�= = 0 (3.11)

 

Matrix form of  p��  and N�� ,which consists of the characteristics roots, are in the 

following manner: 
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p = sp�� p�� 0p�� p�� 00 0 p==t 
(3.12)

N = s 1 1 0−μ� −μ� 00 0 −1t 
(3.13)

 

Open forms of the displacement equation for mode I type of loading is given as: 

u� = ��2r
π

� Re �p���N����K�+N����K����cos θ + μ�sin θ�� 
(3.14)

 

Because of anti-plane shear and plane strain displacement decoupling the above 

formulation should be used in calculation of the stress intensity factors. The 

anisotropic expressions are no longer valid [1]. 

 

3.2.1.2 The x-y Plane Isotropy Case 

The other case for anisotropic degeneracy situation occurs when the body is isotropic 

in the x and y planes. There are actually additional situations occurred, such as the 

anti-plane shear and the plane strain displacement case. The two of roots of the 

characteristic equation are equal to each other  �μ� = μ� = 0� , therefore, the 

inverse of the N�� does not exist. Considering the x-y plane isotropy, the elastic 

constants should be defined. There are five independent elastic constants, namely 

elastic modulus, Poisson ratios, and shear modulus. (E, E�, v, v�  and G� ) The 

relationship between the elastic constants and the compliance matrix is as follows 

[1]: S�E = S�E = S�F = S�F = S�G = S�G = SEG = SFG = SEF = 0 (3.15)S�� = S�� = 1E (3.16)S�� = −vE  (3.17)SGG = 2(1 + v)E  (3.18)SEE = SFF = 1G� 
(3.19)
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S== = 1G� 
(3.20)S�= = S�= = −v�E�  
(3.21)

 

Considering above relation, compliance matrix for a transversely isotropic body can 

be written as follows: 

S =

BC
CC
CC
CC
CC
CC
CD 1E −vE −v�E� 0 0 0−vE 1E −v�E� 0 0 0−v�E�

−v�E�
1E� 0 0 0

0 0 0 1G� 0 0
0 0 0 0 1G� 0
0 0 0 0 0 2(1 + v)E HI

II
II
II
II
II
IJ

 

(3.22)

 

The asymptotic expressions for displacements and stress components are same for 

the isotropic case, and they are given in the [25] for mode I stress intensity factor as 

follows: 

�u�u�� = K�2G �� r2π
� xcos(θ 2⁄ )(κ − 1 + 2 sin�(θ 2⁄ ))sin(θ 2⁄ )(κ + 1 − 2 cos�(θ 2⁄ ))y 

(3.23)

 

In the above displacement expression, κ value is κ = (3 − 4v) for plane strain and 

κ = (3 − v) (1 + v)⁄  for plane stress. In addition, shear modulus can be expressed in 

terms of modulus of elasticity. Then, the displacement formulation can be rewritten 

for plane strain condition [1]. 

�u�u�� = (1 + v)E ��2r
π

� K� � cos(θ 2⁄ )(1 − 2v) + sin�(θ 2⁄ ))sin(θ 2⁄ )(2(1 − v) − cos�(θ 2⁄ ))� 
(3.24)

 



 

3.3 The Displacement Correlation Technique (DCT)

In the finite element analysis, displacements of the nodes are computed in both 

mechanical and thermal loading cases. The coordinates of the nodes of the deformed 

geometry and undeformed geometry are used as inputs for the displacement 

correlation technique (DCT). The disp

compute mode I, mode II and mode III, stress intensity factors. 

 

A three-dimensional crack front, which is embedded in the composite medium, is 

given in Figure 3.7. Arc length of the crack front is given as 

axes are located at point 

the figure with parameters tangential 

addition to these, parameters 

plane. 

Figure 3 . 

The displacement component 

of the crack surface

required. u(3) is function of 

displacement parameters can be expressed as follows: 

1((2, 3) = u(3) !"(
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The Displacement Correlation Technique (DCT) 

ment analysis, displacements of the nodes are computed in both 

mechanical and thermal loading cases. The coordinates of the nodes of the deformed 

geometry and undeformed geometry are used as inputs for the displacement 

correlation technique (DCT). The displacement correlation technique can be used to 

compute mode I, mode II and mode III, stress intensity factors.  

dimensional crack front, which is embedded in the composite medium, is 

. Arc length of the crack front is given as s, and the

axes are located at point P, the components of the local coordinate axes are given in 

the figure with parameters tangential (t), normal (n) and binormal 

addition to these, parameters (r) and (Ѳ) are the polar coordinates in the normal 

Figure 3 . 7 Local coordinate system at the crack front region 

 

he displacement component 1((2, 3) is evaluated at point P on the 

crack surface. For mode I type SIF calculations, the displacement component is 

is function of (3) and also contains material properties. 

displacement parameters can be expressed as follows:  

(�)�22�  

ment analysis, displacements of the nodes are computed in both 

mechanical and thermal loading cases. The coordinates of the nodes of the deformed 

geometry and undeformed geometry are used as inputs for the displacement 

lacement correlation technique can be used to 

dimensional crack front, which is embedded in the composite medium, is 

and the local coordinate 

the components of the local coordinate axes are given in 

and binormal (b) directions. In 

coordinates in the normal 

 

Local coordinate system at the crack front region [26]  

on the deformed shape 

calculations, the displacement component is 

and also contains material properties. The 

(3.25)



 

 

For isotropic material, the 

u(3) = 1 + �'4 �'4  �}¡
 

For orthotropic materials, 

u(3) = ¢m �����£��
+ �

 

The material properties are taken from where the point P is located. Considering the 

crack front, a section is taken parallel to the normal plane, which consists of normal 

and binormal axes. In Figure 3.8

node quarter point brick element. These points that are taken along the deformed 

crack surface placed with a space ratio,

Equation 3.25 can be expressed as

1((2, �) = u(�)�2�

Figure 3 . 
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For isotropic material, the u(3) value can be replaced with the following expression:

�}¡ �32� x2�1 − �'4 � − ���� �θ2�y 

For orthotropic materials, u(3)  value should be calculated as follows:

� �������cos 3 + μ�sin 3�
����£�������cos 3 + μ�sin 3�¤ 

The material properties are taken from where the point P is located. Considering the 

crack front, a section is taken parallel to the normal plane, which consists of normal 

and binormal axes. In Figure 3.8, three nodes constitute the edge of a collapsed 20

node quarter point brick element. These points that are taken along the deformed 

crack surface placed with a space ratio,  ¢� = ¢= 4⁄ . At the point, where,

can be expressed as 

)�22� !" 

 

Figure 3 . 8 Deformed shape of the crack surface (symmetric)

value can be replaced with the following expression: 

(3.26)

value should be calculated as follows: 

(3.27)

The material properties are taken from where the point P is located. Considering the 

crack front, a section is taken parallel to the normal plane, which consists of normal 

edge of a collapsed 20-

node quarter point brick element. These points that are taken along the deformed 

. At the point, where,  3 = �, 

(3.28)

 

Deformed shape of the crack surface (symmetric)[26] 
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The mode I stress intensity factor can be calculated by using the above equation and 

can be expressed as 

!" = ¥�/2u(�) �lim¦→) �1((2, �)√2 �� 
(3.29)

 

In the Equation 3.29, suppose that limit term is linear, therefore, it can be written as 

follows: 1((2, �)√2 = © + ª2 
(3.30)

 

There are two conditions: 1( = 1(� at 2 = ¢� and  1( = 1(= at  2 = ¢=. After 

applying these conditions to the Equation 3.30, one can obtain below equations. 

© + ª¢� = 1(�¥¢� 
(3.31)© + ª¢= = 1(=¥¢= 
(3.32)

 

By using above equations the constant A can be expressed as 

© = ¢==/�1(� − ¢�=/�1(=¥¢�¥¢=(¢= − ¢�) 
(3.33)

 

Finally, the mode I stress intensity factor can be computed at the crack tip, where 2 

goes to zero. (2 → 0) 

!" = ¥�/2u(�) s¢==/�1(� − ¢�=/�1(=¥¢�¥¢=(¢= − ¢�)t 
(3.34)

 

The above equation can be used if the crack region is symmetric. The mode I stress 

intensity factor can now be computed by using Equation 3.34, after obtaining the 

displacements of the crack front nodes. 

 



 

For unsymmetrical cases, such as the fully anisotropic materials and unsymmetrical 

loading cases, full model is used for mode I stress intensity

3.9 shows a complete crack model to apply the displacement correlation technique.

 

Figure 3 . 9 

 

For unsymmetrical case, substituting 

1((2, −�) = u(−�)
 

Subtracting Equation 3.28 from Equation 3.35

1((2, �) − 1((2, −�
 

Since u(�)expression is equal to 

!" = ¥�/22u(�) �lim¦→) �1
 

Similarly, the mode I stress intensity factor can be computed at the crack tip, where 

goes to zero (2 → 0
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For unsymmetrical cases, such as the fully anisotropic materials and unsymmetrical 

loading cases, full model is used for mode I stress intensity factor calculations. 

shows a complete crack model to apply the displacement correlation technique.

 Deformed shape of the crack surface (non symmetric)

cal case, substituting 3 = −� into Equation 3.25 yields

( )�22� !" 

Equation 3.28 from Equation 3.35 the below expression is obtained. 

( �) = pu(�) − u(−�)r�22� !" 

expression is equal to −u(−�), following expression is obtained

�1((2, �) − 1((2, −�)√2 �� 

Similarly, the mode I stress intensity factor can be computed at the crack tip, where 0) as follows.  

For unsymmetrical cases, such as the fully anisotropic materials and unsymmetrical 

factor calculations. Figure 

shows a complete crack model to apply the displacement correlation technique. 

 

Deformed shape of the crack surface (non symmetric)[27] 

yields 

(3.35)

the below expression is obtained.  

(3.36)

following expression is obtained 

(3.37)

Similarly, the mode I stress intensity factor can be computed at the crack tip, where 2 
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!" = ¥�/22u(�) s¢==/�(1(�« − 1(�{) − ¢�=/�(1(=« − 1(={)¥¢�¥¢=(¢= − ¢�) t 
(3.38)

 

The mode I stress intensity factor can be evaluated for non-symmetrical cases by 

using Equation 3.38, after obtaining the displacements of the crack front nodes. 
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CHAPTER 4 

4 RESULTS AND DISCUSSION  

4.1 Introduction 

In this chapter, sample results generated are presented and compared to the 

corresponding results in the literature.  

 

First, the code for three-dimensional model is verified comparing with the results of 

Walters et al. [24]. After this verification, present study percent differences are 

determined comparing with Newman and Raju equations [28]. Thus, the accuracy of 

the numerical solution technique is checked out. After obtaining results and checking 

the accuracy of finite element solution method, the code is used to obtain 

normalized mode-I stress intensity factors for three-dimensional structures. 

Anisotropic asymptotic stress and strain fields are embedded to the code for three 

dimensional model.  The three-dimensional edge crack problem is solved for various 

orthotropic material properties. These results are obtained for orthotropic materials 

under mechanical loading conditions such as uniform tension and fixed grip tension.  

Another analysis is done for polystal material under thermal loading condition. Three 

dimensional transient thermal analysis results are also presented in this section. 

 

4.2 Comparisons to Results of Walters et al.  

In this section, the results of uniform tension on three-dimensional isotropic 

structure analysis are compared to the results given by Walters et al. [24]. These 
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comparisons are made to verify the three-dimensional surface semi-elliptical edge 

crack model. Therefore, the crack geometry parameters such as, crack depth, 

thickness of the plate, exponentially varying Young’s modulus and Poisson’s ratios 

are taken same with the reference values. The selected ranges of specimen and crack 

geometries are exposed to mechanical loading. In this type of loading, the body is 

exposed to uniform stress &' at the edge of the end of longitudinal axis of the 

structure, i.e. stress is applied at the ends  	 = ±�. In Figure 4.1 - 4.2 the geometry of 

the model is given. Presented results show normalized mode-I stress intensity factors 

for �/� = 2 semi elliptical crack geometry with variable crack depth to thickness 

(�/ℎ = 0.2, 0.4, 0.6 �¡� 0.8). As a material property, the Poisson’s ratio is taken as 

0.25. Furthermore, exponentially varying Young’s moduli are used such as, �(ℎ)/�� = 0.2, 1.0 �¡� 5.0. Elastic modulus variation in the structure is given as 

�(f) = ��exp (­f) (3.39)

 

As a result of these analyses, percent differences are found and the accuracy of finite 

element solution procedures is verified. 

 

Figure 4 . 1 Material subjected to uniform tension at the ends 
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Figure 4 . 2 Top view of the material 

 

Results of the present study, the results of reference [24] and the percent differences 

are given in Table 4.1 - 4.10. 

 

Table 4 . 1 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 
  

a/h=0.2, a/c=2, E(h)/E1=0.2 

Walters et al. (2004) Present study % Diff. 

0.000 0.612 0.642 4.947 

0.125 0.623 0.629 0.982 

0.250 0.608 0.615 1.211 

0.375 0.595 0.602 1.214 

0.500 0.574 0.582 1.456 

0.625 0.547 0.554 1.241 

0.750 0.516 0.521 0.914 

0.875 0.486 0.492 1.244 

1.000 0.473 0.480 1.408 
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Table 4 . 2 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 
  

a/h=0.2, a/c=2, E(h)/E1=1 

Walters et al. (2004) Present study % Diff. 

0.000 0.763 0.782 2.552 

0.125 0.755 0.754 0.177 

0.250 0.716 0.713 0.379 

0.375 0.677 0.676 0.105 

0.500 0.637 0.637 0.014 

0.625 0.595 0.594 0.145 

0.750 0.554 0.551 0.494 

0.875 0.516 0.517 0.200 

1.000 0.499 0.503 0.745 

 

Table 4 . 3 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.2, a/c=2, E(h)/E1=5.0 

Walters et al. (2004) Present study % Diff. 

0.000 0.615 0.646 5.008 

0.125 0.636 0.638 0.305 

0.250 0.625 0.627 0.241 

0.375 0.610 0.612 0.380 

0.500 0.588 0.591 0.555 

0.625 0.561 0.562 0.220 

0.750 0.529 0.529 0.000 

0.875 0.499 0.500 0.243 

1.000 0.484 0.488 0.776 
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Table 4 . 4 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.5, a/c=2, E(h)/E1=0.2 

Walters et al. (2004) Present study % Diff. 

0.000 0.736 0.772 4.925 

0.125 0.746 0.753 0.891 

0.250 0.719 0.727 1.106 

0.375 0.690 0.698 1.115 

0.500 0.651 0.659 1.172 

0.625 0.606 0.612 0.913 

0.750 0.561 0.564 0.457 

0.875 0.522 0.526 0.709 

1.000 0.506 0.510 0.801 

 

Table 4 . 5 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.5, a/c=2, E(h)/E1=1.0 

Walters et al. (2004) Present study % Diff. 

0.000 0.782 0.807 3.162 

0.125 0.774 0.775 0.092 

0.250 0.731 0.730 0.157 

0.375 0.689 0.689 0.029 

0.500 0.646 0.647 0.144 

0.625 0.603 0.602 0.185 

0.750 0.560 0.557 0.468 

0.875 0.521 0.522 0.221 

1.000 0.504 0.507 0.691 
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Table 4 . 6 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 
  

a/h=0.5, a/c=2, E(h)/E1=5.0 

Walters et al. (2004) Present study  % Diff. 

0.000 0.596 0.647 8.492 

0.125 0.656 0.661 0.687 

0.250 0.677 0.680 0.413 

0.375 0.685 0.688 0.429 

0.500 0.679 0.682 0.402 

0.625 0.659 0.659 0.074 

0.750 0.629 0.627 0.289 

0.875 0.595 0.596 0.194 

1.000 0.580 0.582 0.393 

 

Table 4 . 7 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.8, a/c=2, E(h)/E1=0.2 

Walters et al. (2004) Present study % Diff. 

0.000 0.849 0.875 3.01 

0.125 0.836 0.837 0.13 

0.250 0.775 0.779 0.46 

0.375 0.712 0.716 0.50 

0.500 0.643 0.647 0.63 

0.625 0.577 0.579 0.43 

0.750 0.519 0.519 0.05 

0.875 0.475 0.477 0.33 

1.000 0.457 0.460 0.59 
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Table 4 . 8 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.8, a/c=2, E(h)/E1=1.0 

Walters et al. (2004) Present study  % Diff. 

0.000 0.823 0.841 2.164 

0.125 0.806 0.803 0.365 

0.250 0.755 0.751 0.587 

0.375 0.707 0.705 0.343 

0.500 0.659 0.658 0.137 

0.625 0.612 0.610 0.392 

0.750 0.566 0.562 0.713 

0.875 0.525 0.525 0.047 

1.000 0.507 0.509 0.460 

 

Table 4 . 9 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.8, a/c=1/3, E(h)/E1=1 

Walters et al. (2004) Present study % Diff. 

0.000 1.378 1.305 5.272 

0.125 1.244 1.271 2.198 

0.250 1.300 1.319 1.436 

0.375 1.380 1.395 1.121 

0.500 1.441 1.456 1.053 

0.625 1.476 1.489 0.863 

0.750 1.485 1.505 1.354 

0.875 1.483 1.500 1.153 

1.000 1.481 1.497 1.091 
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Table 4 . 10 Comparison of the normalized mode I stress intensity factors for uniform 

tension 2
/� 

  

a/h=0.8, a/c=2, E(h)/E1=5.0 

Walters et al. (2004) Present study % Diff 

0.000 0.602 0.665 10.448 

0.125 0.698 0.700 0.266 

0.250 0.748 0.749 0.098 

0.375 0.774 0.776 0.215 

0.500 0.772 0.775 0.392 

0.625 0.746 0.744 0.295 

0.750 0.700 0.694 0.804 

0.875 0.648 0.648 0.061 

1.000 0.625 0.627 0.355 

 

Taking into account the results of the Table 4.1-4.10, the largest percent difference is 

2.198% excluding the differences at the free surface  
 = 0. Since the square root 

singularity is not valid at the free surface, where the crack front intersects with outer 

surface. In the previous researches, it is substantiated that free surface effect is 

crucial only in a small zone around the crack front [29]. Hence, the free surface effect 

is not taken into account. Instead, the mesh of crack region is refined. Because of this 

phenomenon percent differences at the crack tips are high, considering other crack 

parametric polar angles. Considering the tabulated results, normalized mode I stress 

intensity factors of the three-dimensional surface crack problems are given in Figure 

4.3- Figure 4.11. In these figures, the variation of the normalized mode I stress 

intensity factors are presented with respect to normalized polar angle (2
/�) for 

different crack to thickness ratios and varying elastic modulus.  
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Figure 4 . 3 Uniform tension for a/h=0.2, a/c=2, E(h)/E1=0.2 
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Figure 4 . 4 Uniform tension for a/h=0.2, a/c=2, E(h)/E1=1.0 
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Figure 4 . 5 Uniform tension a/h=0.2, a/c=2, E(h)/E1=5.0 
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Figure 4 . 6 Uniform tension for a/h=0.5, a/c=2, E(h)/E1=0.2 
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Figure 4 . 7 Uniform tension for a/h=0.5, a/c=2, E(h)/E1=1.0 
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Figure 4 . 8 Uniform tension for a/h=0.5, a/c=2, E(h)/E1=5.0 
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Figure 4 . 9 Uniform tension for a/h=0.8, a/c=2, E(h)/E1=0.2 
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Figure 4 . 10 Uniform tension for a/h=0.8, a/c=2, E(h)/E1=1.0 
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Figure 4 . 11 Uniform tension for a/h=0.8, a/c=2, E(h)/E1=5.0 

 

In all geometries, all of the percent differences between the results of [24] and the 

present study, the accuracy of the three-dimensional finite element model and the 

numerical implementation of the asymptotic field expressions are acceptable. 

 

4.3 Comparisons to Newman and Raju Equations  

In this type of loading, there dimensional isotropic body exposed to uniform stress &' 

at the edge of the end of longitudinal axis of the structure, i.e. stress is applied at the 

ends  	 = ±�. Elastic modulus of the isotropic material is taken as 105.8 GPa and the 

Poisson’s ratio is taken as 0.298. These properties are taken at a temperature of 300 

K for metallic alloy (Ti-6Al-4V). Because of this uniform stress at the edges, 

deformation and the strain displacements are calculated to obtain normalized stress 

intensity factors. The structure subjected to uniform tension is shown in Figure 4.12 

and Figure 4.13. 
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Figure 4 . 12 Isotropic material subjected to uniform tension at the ends 	 = ±� 
 

 

Figure 4 . 13 Parametric angle (φ) and the corresponding point P on the semi elliptical 
crack front. 

 

 The Mode I type normalized stress intensity factors are tabulated and percent 

differences between the reference results [30] are presented. In order to verify the 

three-dimensional model and the accuracy of the results, normalized mode-I stress 

intensity factors of the homogeneous isotropic structure are compared to the 

reference results. Present study results are obtained from the isotropic degeneracy 

case of the anisotropic asymptotic field expressions given in Chapter 3.2. Sample 
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calculation steps are given in Appendix A. Asymptotic field displacement constant u(3) is calculated and this value is used in the finite element code.  

 

Results of the present study, the results of reference [30] and the percent differences 

are given in Table 4.11 – Table 4.12.  

 

Table 4 . 11 Comparison of the normalized mode I stress intensity factors for three-

dimensional homogeneous plate subjected to uniform tension 2
/� a/h=0.4, a/c=1 

  Present study results Newman and Raju (1981) % Diff 

0.0000 1.120 1.146 2.226 

0.1250 1.146 1.109 3.339 

0.1875 1.124 1.094 2.739 

0.2500 1.107 1.081 2.400 

0.3125 1.094 1.070 2.230 

0.3750 1.084 1.061 2.126 

0.4375 1.076 1.055 2.015 

0.5000 1.070 1.050 1.894 

0.5625 1.065 1.046 1.785 

0.6250 1.061 1.044 1.644 

0.6875 1.058 1.042 1.497 

0.7500 1.055 1.041 1.330 

0.8125 1.053 1.041 1.179 

0.8750 1.052 1.041 1.051 

0.9375 1.051 1.041 0.956 

1.0000 1.050 1.041 0.916 
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Table 4 . 12 Comparison of the normalized mode I stress intensity factors for three-

dimensional homogeneous plate subjected to uniform tension 2
/� a/h=0.8, a/c=1 

  Present study results Newman and Raju (1981) % Diff 

0.0000 1.109 1.152 3.678 

0.1250 1.148 1.113 3.152 

0.1875 1.126 1.098 2.553 

0.2500 1.110 1.084 2.354 

0.3125 1.098 1.073 2.303 

0.3750 1.084 1.064 1.885 

0.4375 1.074 1.057 1.583 

0.5000 1.069 1.052 1.631 

0.5625 1.065 1.049 1.608 

0.6250 1.062 1.046 1.539 

0.6875 1.059 1.044 1.402 

0.7500 1.057 1.044 1.331 

0.8125 1.057 1.043 1.319 

0.8750 1.054 1.043 1.049 

0.9375 1.053 1.043 1.010 

1.0000 1.056 1.043 1.299 

 

In Tables 4.11 and 4.12 three-dimensional crack models and numerical solution 

technique are verified. The stress intensity factors of the models are compared with 

the Raju et al. [3]. The percent differences can indicate that the three-dimensional 

finite element model appropriate to calculate stress intensity factor of three-

dimensional structures with semi-elliptical surface cracks. 

 

Considering Table 4.11, for this crack dimensions maximum percent difference is 

3.339% at the polar angle  
 = 1.250. Taking into account Table 4.12 results, 

maximum percent difference is 3.678% and it is calculated at the free surface. These 

results are acceptable results. Thus, verification of the three-dimensional finite 

element model is accomplished. Furthermore, the asymptotic expressions are also 

verified with the result presented in Table 4.11 and in Table 4.12. 
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With these comparisons not only the finite element models are verified, but also the 

asymptotic expressions are also verified with the result presented in Table 4.11 and 

Table 4.12. Therefore, analysis for orthotropic materials can be accomplished with 

this model and asymptotic field constant embedded in the finite element software. 

 

Tabulated  results are shown in Figure 4.14 and Figure 4.15. 
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Figure 4 . 14 Uniform tension for a/h=0.4, a/c=1 
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Figure 4 . 15 Uniform tension for a/h=0.8, a/c=1 

 

4.4 Comparisons to Kirilyuk 

In this section, three-dimensional orthotropic model and asymptotic field expressions 

are verified comparing with the internal three-dimensional penny-shaped crack in an 

infinite orthotropic medium as stated in the reference [16]. The geometry of the 

model is given in Figure 4.16. 

 

The stress intensity factors are analyzed for an orthotropic material with a circular 

crack in the x-y plane in an infinite medium. In the analysis, four types of materials 

are considered with the elastic properties given in Table 4.13.  In this case, only the 

half of the geometry is modeled. 



 

Figure 4 . 16 Orthotropic infinite 

 

Table 4 . 13 Orthotropic material properties used in numerical examples (elastic 

moduli units given in Pa) 

  Mat. I�e 55.90 x10�g 13.73 x10�h 13.73 x10�eg 0.28�gh  0.40�eh 0.07Leg  5.59 x10Lgh  4.90 x10Leh 5.59 x10

 

Tabulated results are given in Table 4.14 
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Orthotropic infinite medium subjected to uniform tension at the ends  	 = ±� 

Orthotropic material properties used in numerical examples (elastic 

moduli units given in Pa) [16] 

Mat. I Mat. II Mat. III 

55.90 x109 36.10 x109 35.21 x109 

13.73 x109 26.28 x109 28.73 x109 

13.73 x109 10.79 x109 17.95 x109 

0.28 0.11 0.18 

0.40 0.43 0.37 

0.07 0.41 0.16 

5.59 x109 4.90 x109 7.45 x109 

4.90 x109 4.02 x109 6.18 x109 

x109 4.41 x109 6.47 x109 

Tabulated results are given in Table 4.14 – Table 4.17. 

 

subjected to uniform tension at the ends 

Orthotropic material properties used in numerical examples (elastic 

Mat. IV 

17.55 x109 

12.85 x109 

4.22 x109 

0.15 

0.31 

0.08 

2.75 x109 

2.35 x109 

2.35 x109 
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Table 4 . 14 Comparison of penny-shaped crack in orthotropic medium results with 

Kirilyuk [16] 

Angle (deg.) 
Mat. I 

Present Study Kln [16] % Diff 

0.0 1.298 1.250 3.862 

3.2 1.294 1.249 3.571 

15.6 1.235 1.220 1.248 

28.0 1.175 1.180 0.465 

40.4 1.134 1.130 0.344 

52.8 1.107 1.090 1.520 

65.2 1.086 1.060 2.785 

77.6 1.117 1.045 3.646 

90.0 1.134 1.040 4.403 

 

Table 4 . 15 Comparison of penny-shaped crack in orthotropic medium results with 

Kirilyuk [16] 

Angle (deg.) 
Mat. II 

Present Study Kln [16] % Diff 

0.0 1.095 1.090 0.449 

3.2 1.093 1.089 0.3787 

15.6 1.059 1.070 1.0303 

28.0 1.036 1.055 1.793 

40.4 1.027 1.050 2.156 

52.8 1.039 1.055 2.188 

65.2 1.065 1.090 2.278 

77.6 1.195 1.210 1.266 

90.0 1.453 1.440 0.917 
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Table 4 . 16 Comparison of penny-shaped crack in orthotropic medium results with 

Kirilyuk [16] 

Angle (deg.) 
Mat. III 

Present Study Kln [16] % Diff 

0 1.155 1.165 0.781 

3.2 1.154 1.164 0.858 

15.6 1.129 1.145 1.356 

28 1.106 1.128 1.960 

40.4 1.094 1.118 2.181 

52.8 1.088 1.110 1.986 

65.2 1.089 1.111 1.988 

77.6 1.100 1.116 0.143 

90 1.112 1.119 0.666 

 

Table 4 . 17 Comparison of penny-shaped crack in orthotropic medium results with 

Kirilyuk [16] 

Angle (deg.) 
Mat. IV 

Present Study Kln [16] % Diff 

0.0 1.124 1.156 2.757 

3.2 1.123 1.1555 2.856 

15.6 1.092 1.148 4.840 

28.0 1.073 1.128 4.919 

40.4 1.065 1.116 4.541 

52.8 1.065 1.112 4.227 

65.2 1.071 1.118 4.156 

77.6 1.092 1.125 2.981 

90.0 1.116 1.129 1.155 

 

The numerical analysis results of penny-shape crack model show that the numerical 

solution technique gives acceptable results. The maximum percent error values are 

calculated for material IV.  The figures of the tabulated stress intensity factor results 

are given in Figure 4.17 and Figure 4.18.  
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Figure 4 . 17 Uniform tension for internal penny-shape crack 
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Figure 4 . 18 Uniform tension for internal penny-shape crack 
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4.5 Comparisons for Thermal Loading 

In this section, three-dimensional homogeneous isotropic structure with semi-

elliptical surface crack subjected to thermal loading is analyzed. The results are 

compared with the results given in literature [9]. 

 

In this type of loading condition, material is assumed as stress free at a temperature 

of 1273 K. Then, the material is exposed to an environment with a temperature of 

300 K. For this type of loading condition, the surface of the structure at which the 

crack exists, exposed to a forced convection. At the surface,  f = ℎ, the convection 

coefficient is ℎ = 10000 W/(m2K). At the other surfaces, there are free convection 

with a convection coefficient ℎ = 5 W/(m2K). For this type of loading, material 

properties calculated at the mid temperature, �, = 786.5 K. 

 

 The boundary conditions and the loading case are given in the Figure 4.19. 

 

 

Figure 4 . 19 The boundary conditions for transient thermal loading [9] 
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The stress intensity factors are analyzed for homogeneous isotropic material with a 

semi-elliptical surface crack. Comparisons of the results are shown in Figure 4.20 and 

4.21. 
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Figure 4 . 20 Temperature versus normalized time for thermal loading (
 = �/4)  
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Figure 4 . 21 Temperature versus normalized time for thermal loading (
 = �/2) 
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4.6 Present Study Results 

4.6.1 Mechanical Loading on the Three-Dimensional Orthotropic Material 

In this study, semi-elliptical cracks in three-dimensional orthotropic materials are 

investigated. The orthotropic homogeneous body is shown in Figure 4.22. The 

thickness of the orthotropic material is taken as h. The semi-elliptical crack length is 

taken as  2� and the half-length is taken as  �, which is the length for the depth of the 

surface semi-elliptic crack. The orthotropic material dimensions used in this study are 

as follows ℎ = 12.5 mm, � = 20 mm and  � = 20 mm. These dimensions are chosen 

as same as the dimensions given by Lee and Erdogan [31]. 

 

Three-dimensional finite element model for mechanical loading cases are verified in 

the previous sections. After verification of the geometry of the model and the 

anisotropic expressions for the degeneracy case, the finite element solution is 

applied to the orthotropic materials. In this section present study results are 

presented. Material properties for orthotropic materials are taken as same as 

properties given in the reference study [32]. The material properties are tabulated in 

Table 4.18. The various anisotropic materials are subjected to mechanical loading 

such as uniform tension and fixed grip tension. 

 

In finite element analysis anisotropic asymptotic field expressions and constants are 

used to obtain stress intensity factor.  



60 

 

 

Figure 4 . 22 Orthotropic body subjected to uniform tension at the ends  	 = ±� 

 

Table 4 . 18 Orthotropic material properties used in numerical examples (Elastic 

moduli units given in Pa) [31] 

 Mat. A  Mat. B Mat. C Mat. D �e 55.16x109 171.0 x109 128.9 x109 173.1 x109 �g 171.0 x109 55.16x109 128.9 x109 122.0 x109 �h 55.16 x109 171.0 x109 128.9 x109 173.1 x109 �eg 0.036 0.111 0.380 0.370 �gh  0.111 0.036 0.380 0.262 �eh 0.036 0.111 0.380 0.370 Leg  4.826 x109 4.826 x109 127.6 x109 124.8 x109 Lgh  4.826 x109 4.826 x109 127.6 x109 124.8 x109 Leh 26.61 x109 76.53 x109 127.6 x109 63.02 x109 

 

4.6.1.1 Uniform Tension on the Three-Dimensional Orthotropic Material 

In this section, stress intensity factors are calculated for three-dimensional 

orthotropic and isotropic materials under uniform tension. The anisotropy effect is 

shown by using different type of materials. The materials are chosen as same as with 
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the numerical reference solution [32]. The properties are given in Table 4.18. In 

addition to these materials for isotropic case, the elastic modulus is chosen as   � = 206.84f10¯ +� (30f10G��}) and Poisson’s ratio  � = 0.25. Tensile loading is 

applied by amount stress value &) = 1. The width of the strip is  2� and the crack 

depth is �. 
 

After obtaining the stress intensity factors for the structure, normalized mode I stress 

intensity factors are calculated using the formula: 

!#$ = !"&'�� �%  

(4.1) 

 

where  &' is the applied uniform stress, � is the depth of the crack and % is the shape 

factor for semi-elliptical crack. The shape factor is calculated with the formula 

expressed in the reference [24]. The semi elliptic surface cracked body is given in 

Figure 4.7. 

% =  �1 + 1.464 (�/�)�.GF    °�2   (� �⁄ ) ≤ 11 + 1.464 (�/�)�.GF    °�2   (� �⁄ ) > 1� 
(4.2) 

 

Tabulated results are given in Table 4.19 - 4.24. 
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Figure 4 . 23 Plan view of the semi-elliptic cracked structure by Walters et al. (2004), 

(a) a/c < 1  and   (b) a/c >1 

 

Normalized mode I stress intensity factors for three-dimensional orthotropic 

materials subjected to uniform tension are given in Table 4.19 - 4.24.  
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Table 4 . 19 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

  a/h=0.2, a/c=2/3 a/h=0.4, a/c=2/3 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.075 0.939 0.997 0.985 0.999 1.228 1.080 1.105 1.119 1.129 
0.10 0.944 0.862 1.044 1.014 0.994 1.074 0.989 1.189 1.169 1.139 
0.15 0.886 0.774 1.031 1.004 0.973 1.004 0.887 1.171 1.153 1.110 
0.20 0.845 0.700 1.021 1.002 0.959 0.955 0.802 1.156 1.146 1.090 
0.25 0.810 0.638 1.018 1.008 0.951 0.913 0.733 1.149 1.148 1.077 
0.30 0.778 0.586 1.021 1.022 0.949 0.876 0.675 1.148 1.158 1.071 
0.35 0.750 0.544 1.029 1.041 0.952 0.841 0.626 1.153 1.174 1.069 
0.40 0.723 0.509 1.039 1.065 0.957 0.809 0.585 1.161 1.197 1.071 
0.45 0.700 0.480 1.051 1.093 0.965 0.781 0.552 1.171 1.223 1.076 
0.50 0.678 0.456 1.063 1.124 0.975 0.757 0.525 1.182 1.254 1.084 
0.55 0.659 0.435 1.075 1.157 0.986 0.734 0.502 1.192 1.287 1.093 
0.60 0.642 0.419 1.086 1.192 0.997 0.715 0.483 1.202 1.321 1.103 
0.65 0.627 0.404 1.095 1.226 1.009 0.698 0.467 1.209 1.356 1.113 
0.70 0.615 0.393 1.103 1.260 1.020 0.684 0.454 1.213 1.389 1.123 
0.75 0.605 0.384 1.109 1.292 1.032 0.673 0.444 1.217 1.420 1.134 
0.80 0.598 0.376 1.113 1.321 1.043 0.664 0.436 1.220 1.449 1.144 
0.85 0.592 0.371 1.117 1.347 1.054 0.658 0.430 1.223 1.475 1.155 
0.90 0.590 0.367 1.119 1.368 1.064 0.656 0.426 1.224 1.497 1.165 
0.95 0.591 0.365 1.121 1.384 1.072 0.657 0.424 1.225 1.514 1.174 
1.00 0.596 0.365 1.122 1.394 1.078 0.662 0.423 1.225 1.524 1.180 
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Table 4 . 20 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

  a/h=0.2, a/c=1 a/h=0.4, a/c=1 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.292 1.183 1.156 1.141 1.169 1.402 1.301 1.208 1.217 1.245 
0.10 1.141 1.062 1.232 1.193 1.180 1.235 1.165 1.325 1.294 1.275 
0.15 1.062 0.937 1.216 1.182 1.150 1.147 1.026 1.304 1.279 1.240 
0.20 1.001 0.834 1.196 1.172 1.124 1.078 0.910 1.280 1.265 1.208 
0.25 0.947 0.747 1.179 1.168 1.102 1.017 0.815 1.260 1.256 1.182 
0.30 0.896 0.675 1.167 1.169 1.084 0.960 0.736 1.243 1.253 1.159 
0.35 0.848 0.614 1.156 1.174 1.070 0.907 0.670 1.229 1.255 1.141 
0.40 0.803 0.563 1.148 1.183 1.058 0.858 0.614 1.217 1.261 1.126 
0.45 0.763 0.520 1.141 1.195 1.049 0.814 0.568 1.208 1.271 1.114 
0.50 0.726 0.485 1.134 1.210 1.042 0.775 0.530 1.199 1.283 1.104 
0.55 0.694 0.455 1.127 1.226 1.037 0.740 0.498 1.189 1.297 1.097 
0.60 0.666 0.430 1.120 1.244 1.033 0.710 0.471 1.179 1.313 1.091 
0.65 0.642 0.410 1.112 1.263 1.031 0.684 0.449 1.169 1.330 1.086 
0.70 0.622 0.393 1.104 1.281 1.031 0.663 0.431 1.159 1.346 1.084 
0.75 0.605 0.379 1.096 1.299 1.031 0.645 0.416 1.150 1.363 1.083 
0.80 0.592 0.368 1.089 1.317 1.033 0.631 0.405 1.142 1.379 1.084 
0.85 0.582 0.359 1.083 1.332 1.036 0.620 0.396 1.134 1.394 1.086 
0.90 0.576 0.353 1.078 1.345 1.039 0.614 0.389 1.129 1.406 1.089 
0.95 0.574 0.349 1.074 1.354 1.043 0.612 0.384 1.125 1.415 1.092 
1.00 0.577 0.347 1.072 1.360 1.046 0.615 0.383 1.122 1.421 1.095 
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Table 4 . 21 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

  a/h=0.2, a/c=3/2 a/h=0.4, a/c=3/2 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.031 0.987 0.907 0.899 0.924 1.075 1.036 0.910 0.919 0.945 
0.10 0.922 0.881 0.970 0.945 0.939 0.960 0.923 1.004 0.985 0.977 
0.15 0.858 0.771 0.954 0.934 0.914 0.893 0.808 0.986 0.972 0.950 
0.20 0.807 0.680 0.933 0.923 0.889 0.838 0.712 0.963 0.959 0.922 
0.25 0.759 0.605 0.913 0.914 0.866 0.787 0.632 0.942 0.948 0.897 
0.30 0.712 0.541 0.895 0.907 0.845 0.737 0.565 0.922 0.940 0.874 
0.35 0.667 0.486 0.878 0.902 0.826 0.690 0.508 0.904 0.934 0.853 
0.40 0.625 0.441 0.862 0.900 0.809 0.646 0.459 0.886 0.929 0.834 
0.45 0.586 0.402 0.846 0.898 0.792 0.605 0.419 0.869 0.926 0.816 
0.50 0.550 0.369 0.830 0.898 0.777 0.568 0.385 0.852 0.924 0.799 
0.55 0.518 0.341 0.814 0.898 0.762 0.535 0.355 0.834 0.922 0.783 
0.60 0.489 0.317 0.797 0.898 0.748 0.505 0.331 0.816 0.921 0.767 
0.65 0.464 0.297 0.779 0.897 0.735 0.478 0.310 0.797 0.919 0.753 
0.70 0.442 0.279 0.761 0.897 0.722 0.455 0.292 0.778 0.917 0.740 
0.75 0.423 0.265 0.744 0.896 0.712 0.436 0.278 0.760 0.915 0.728 
0.80 0.407 0.253 0.727 0.894 0.702 0.420 0.266 0.743 0.913 0.718 
0.85 0.394 0.244 0.713 0.893 0.695 0.407 0.256 0.728 0.911 0.710 
0.90 0.385 0.236 0.701 0.891 0.689 0.398 0.249 0.716 0.909 0.704 
0.95 0.380 0.231 0.693 0.890 0.686 0.393 0.244 0.707 0.907 0.700 
1.00 0.380 0.228 0.687 0.889 0.684 0.393 0.241 0.702 0.906 0.698 
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Table 4 . 22 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

  a/h=0.6, a/c=2/3 a/h=0.8, a/c=2/3 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.625 1.482 1.419 1.457 1.468 2.614 2.543 2.140 2.200 2.239 
0.10 1.407 1.337 1.540 1.524 1.480 2.215 2.222 2.314 2.276 2.226 
0.15 1.298 1.185 1.504 1.490 1.428 1.990 1.912 2.227 2.185 2.105 
0.20 1.220 1.062 1.473 1.466 1.387 1.826 1.678 2.148 2.114 2.005 
0.25 1.155 0.964 1.451 1.455 1.357 1.687 1.498 2.082 2.060 1.923 
0.30 1.098 0.885 1.439 1.454 1.336 1.569 1.357 2.028 2.024 1.857 
0.35 1.046 0.818 1.433 1.462 1.322 1.466 1.244 1.983 1.999 1.803 
0.40 1.000 0.763 1.431 1.477 1.313 1.375 1.147 1.948 1.987 1.759 
0.45 0.959 0.717 1.432 1.498 1.309 1.296 1.065 1.915 1.983 1.723 
0.50 0.923 0.679 1.435 1.523 1.308 1.227 0.995 1.886 1.985 1.693 
0.55 0.891 0.647 1.436 1.551 1.309 1.168 0.935 1.860 1.992 1.669 
0.60 0.864 0.621 1.437 1.581 1.312 1.118 0.885 1.829 1.999 1.648 
0.65 0.840 0.599 1.435 1.610 1.316 1.075 0.844 1.797 2.008 1.630 
0.70 0.820 0.581 1.432 1.639 1.321 1.040 0.809 1.766 2.016 1.616 
0.75 0.805 0.567 1.428 1.667 1.328 1.012 0.780 1.731 2.023 1.605 
0.80 0.793 0.556 1.423 1.692 1.335 0.991 0.758 1.697 2.028 1.597 
0.85 0.783 0.547 1.419 1.714 1.343 0.975 0.741 1.669 2.034 1.591 
0.90 0.779 0.541 1.414 1.731 1.350 0.967 0.729 1.643 2.037 1.588 
0.95 0.780 0.538 1.411 1.745 1.357 0.966 0.724 1.627 2.042 1.588 
1.00 0.785 0.537 1.407 1.753 1.362 0.972 0.722 1.615 2.043 1.588 
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Table 4 . 23 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

  a/h=0.6, a/c=1 a/h=0.8, a/c=1 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.649 1.580 1.362 1.404 1.436 2.092 2.104 1.648 1.717 1.764 
0.10 1.445 1.404 1.515 1.500 1.475 1.803 1.831 1.832 1.827 1.799 
0.15 1.329 1.224 1.484 1.473 1.426 1.633 1.575 1.781 1.776 1.719 
0.20 1.240 1.079 1.449 1.447 1.379 1.509 1.381 1.723 1.729 1.647 
0.25 1.162 0.963 1.419 1.428 1.339 1.398 1.221 1.669 1.690 1.583 
0.30 1.091 0.868 1.392 1.416 1.306 1.300 1.093 1.622 1.658 1.527 
0.35 1.026 0.788 1.369 1.409 1.277 1.211 0.988 1.580 1.634 1.478 
0.40 0.967 0.722 1.349 1.407 1.253 1.133 0.901 1.543 1.616 1.436 
0.45 0.914 0.666 1.331 1.408 1.233 1.064 0.828 1.509 1.602 1.399 
0.50 0.867 0.621 1.314 1.413 1.215 1.004 0.768 1.476 1.593 1.368 
0.55 0.826 0.583 1.296 1.420 1.200 0.952 0.717 1.447 1.588 1.341 
0.60 0.791 0.551 1.279 1.428 1.188 0.906 0.674 1.415 1.584 1.317 
0.65 0.761 0.525 1.260 1.438 1.178 0.869 0.639 1.382 1.581 1.297 
0.70 0.736 0.504 1.244 1.449 1.171 0.837 0.609 1.352 1.579 1.280 
0.75 0.715 0.487 1.230 1.460 1.166 0.811 0.585 1.326 1.579 1.267 
0.80 0.699 0.473 1.217 1.470 1.163 0.791 0.567 1.301 1.577 1.257 
0.85 0.687 0.462 1.204 1.480 1.163 0.776 0.551 1.276 1.575 1.249 
0.90 0.679 0.454 1.195 1.488 1.164 0.766 0.540 1.256 1.572 1.244 
0.95 0.677 0.449 1.189 1.494 1.165 0.763 0.534 1.242 1.571 1.242 
1.00 0.680 0.447 1.184 1.498 1.167 0.766 0.530 1.233 1.570 1.241 
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Table 4 . 24 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to uniform tension. 

 a/h=0.6, a/c=3/2 a/h=0.8, a/c=3/2 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.175 1.152 0.964 0.989 1.018 1.324 1.336 1.047 1.089 1.124 
0.10 1.044 1.019 1.076 1.065 1.056 1.171 1.177 1.176 1.175 1.166 
0.15 0.965 0.886 1.053 1.047 1.021 1.072 1.011 1.146 1.149 1.121 
0.20 0.901 0.777 1.025 1.028 0.987 0.994 0.880 1.112 1.122 1.078 
0.25 0.843 0.687 0.999 1.012 0.957 0.925 0.778 1.080 1.100 1.039 
0.30 0.787 0.612 0.975 0.999 0.928 0.858 0.689 1.050 1.080 1.002 
0.35 0.734 0.549 0.953 0.989 0.903 0.796 0.616 1.021 1.063 0.969 
0.40 0.685 0.497 0.932 0.980 0.879 0.740 0.556 0.994 1.048 0.938 
0.45 0.641 0.453 0.911 0.973 0.857 0.688 0.505 0.968 1.035 0.910 
0.50 0.600 0.416 0.891 0.967 0.836 0.643 0.464 0.941 1.022 0.883 
0.55 0.564 0.385 0.869 0.962 0.817 0.603 0.429 0.913 1.011 0.858 
0.60 0.532 0.359 0.848 0.956 0.798 0.567 0.399 0.887 1.000 0.835 
0.65 0.504 0.337 0.825 0.951 0.781 0.536 0.375 0.859 0.989 0.814 
0.70 0.480 0.319 0.804 0.946 0.766 0.510 0.355 0.833 0.979 0.795 
0.75 0.459 0.303 0.783 0.940 0.752 0.488 0.337 0.808 0.969 0.777 
0.80 0.442 0.291 0.764 0.935 0.740 0.469 0.323 0.785 0.958 0.762 
0.85 0.429 0.281 0.748 0.930 0.730 0.455 0.313 0.765 0.948 0.751 
0.90 0.419 0.274 0.734 0.926 0.723 0.446 0.305 0.748 0.939 0.742 
0.95 0.414 0.269 0.724 0.923 0.719 0.441 0.300 0.735 0.932 0.736 
1.00 0.414 0.266 0.718 0.920 0.716 0.441 0.297 0.727 0.927 0.732 

 

Tabulated results for uniform tension case are shown in Figure 4.24 – Figure 4.35. 
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Figure 4 . 24 Uniform tension, Kln versus φ for a/h=0.2, a/c=2/3 
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Figure 4 . 25 Uniform tension, Kln versus φ for a/h=0.2, a/c=1 
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Figure 4 . 26 Uniform tension, Kln versus φ for a/h=0.2, a/c=3/2 
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Figure 4 . 27 Uniform tension, Kln versus φ for a/h=0.4, a/c=2/3 
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Figure 4 . 28 Uniform tension, Kln versus φ for a/h=0.4, a/c=1 
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Figure 4 . 29 Uniform tension, Kln versus φ for a/h=0.4, a/c=3/2 
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Figure 4 . 30 Uniform tension, Kln versus φ for a/h=0.6, a/c=2/3 
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Figure 4 . 31 Uniform tension, Kln versus φ for a/h=0.6, a/c=1 
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Figure 4 . 32 Uniform tension, Kln versus φ for a/h=0.6, a/c=3/2 
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Figure 4 . 33 Uniform tension, Kln versus φ for a/h=0.8, a/c=2/3 
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Figure 4 . 34 Uniform tension, Kln versus φ for a/h=0.8, a/c=1 
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Figure 4 . 35 Uniform tension, Kln versus φ for a/h=0.8, a/c=3/2 
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4.6.1.2 Fixed Grip Tension on the Three-Dimensional Orthotropic Material 

In this section, stress intensity factors are calculated for three-dimensional 

orthotropic and isotropic materials under fixed grip tension.  

 

The materials are chosen same with the numerical reference solution [32]. The 

properties are given in Table 4.18. For isotropic case elastic modulus is chosen as 

� = 206.84f10¯ +� (30f10G��}) and Poisson’s ratio  � = 0.25. 

 

The edge crack is embedded in the orthotropic medium. Fixed grip tension loading 

type is applied by amount normal displacement  �). The displacement is applied at 

the ends  	 = ±� as shown in Figure 4.36. The uniform normal displacement is taken 

as 0.0001 mm. The width of the strip is  2� and the crack depth is �. 
 

 

Figure 4 . 36 Orthotropic body subjected to fixed grip tension at the ends  	 = ±� 
 

For fixed grip tension, normalized mode I stress intensity factor can be defined in the 

below expression. The elastic modulus is used parallel to the direction of the applied 

load for crack opening type of loading. 
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!#$ = !"�g (�) �)⁄ �� �%  

(4.3) 

 

Normalized mode I stress intensity factors for three-dimensional orthotropic 

materials subjected to fixed grip tension are given in Table 4.25 – Table 4.30.  

 

Table 4 . 25 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.2, a/c=2/3 a/h=0.4, a/c=2/3 2
/� Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.056 0.919 0.986 0.970 0.982 1.089 0.941 1.022 0.999 1.007 
0.10 0.927 0.844 1.033 0.997 0.978 0.954 0.863 1.102 1.046 1.018 
0.15 0.871 0.758 1.020 0.988 0.957 0.894 0.775 1.086 1.033 0.994 
0.20 0.831 0.685 1.010 0.986 0.943 0.851 0.701 1.074 1.029 0.977 
0.25 0.797 0.624 1.008 0.992 0.936 0.815 0.640 1.069 1.032 0.968 
0.30 0.765 0.574 1.011 1.006 0.935 0.783 0.589 1.070 1.043 0.964 
0.35 0.737 0.532 1.018 1.025 0.937 0.753 0.546 1.076 1.060 0.964 
0.40 0.711 0.498 1.028 1.049 0.943 0.726 0.511 1.085 1.082 0.967 
0.45 0.688 0.470 1.040 1.077 0.951 0.702 0.482 1.096 1.108 0.974 
0.50 0.667 0.446 1.053 1.108 0.960 0.680 0.458 1.107 1.137 0.982 
0.55 0.648 0.426 1.065 1.140 0.971 0.661 0.438 1.118 1.169 0.991 
0.60 0.631 0.409 1.075 1.174 0.982 0.643 0.421 1.128 1.201 1.002 
0.65 0.617 0.396 1.085 1.209 0.994 0.628 0.407 1.136 1.234 1.012 
0.70 0.605 0.384 1.092 1.242 1.005 0.616 0.395 1.141 1.265 1.022 
0.75 0.595 0.375 1.098 1.273 1.017 0.606 0.386 1.145 1.295 1.033 
0.80 0.588 0.368 1.103 1.302 1.028 0.599 0.379 1.149 1.323 1.044 
0.85 0.583 0.363 1.106 1.328 1.039 0.593 0.373 1.152 1.348 1.054 
0.90 0.581 0.359 1.109 1.349 1.049 0.591 0.370 1.154 1.368 1.064 
0.95 0.582 0.357 1.110 1.364 1.057 0.592 0.368 1.155 1.384 1.072 
1.00 0.586 0.356 1.112 1.374 1.062 0.597 0.367 1.155 1.393 1.077 
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Table 4 . 26 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.2, a/c=1 a/h=0.4, a/c=1 ±²/³ Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.279 1.168 1.149 1.131 1.159 1.306 1.193 1.160 1.144 1.169 
0.10 1.129 1.049 1.224 1.182 1.169 1.151 1.070 1.273 1.218 1.198 
0.15 1.051 0.926 1.209 1.171 1.140 1.070 0.943 1.255 1.204 1.167 
0.20 0.991 0.823 1.189 1.162 1.114 1.007 0.838 1.232 1.192 1.138 
0.25 0.938 0.738 1.173 1.158 1.093 0.951 0.751 1.214 1.186 1.114 
0.30 0.887 0.667 1.160 1.159 1.075 0.899 0.679 1.198 1.184 1.095 
0.35 0.839 0.607 1.150 1.164 1.061 0.851 0.618 1.186 1.187 1.079 
0.40 0.795 0.556 1.142 1.173 1.049 0.806 0.567 1.176 1.194 1.066 
0.45 0.755 0.514 1.135 1.185 1.040 0.766 0.525 1.168 1.205 1.055 
0.50 0.720 0.479 1.128 1.200 1.034 0.729 0.490 1.160 1.218 1.047 
0.55 0.688 0.449 1.122 1.216 1.029 0.697 0.460 1.151 1.232 1.041 
0.60 0.660 0.425 1.114 1.234 1.025 0.670 0.436 1.143 1.248 1.036 
0.65 0.637 0.405 1.107 1.253 1.023 0.646 0.416 1.134 1.265 1.033 
0.70 0.616 0.388 1.099 1.271 1.022 0.626 0.399 1.124 1.282 1.032 
0.75 0.600 0.374 1.091 1.289 1.023 0.609 0.386 1.116 1.299 1.032 
0.80 0.586 0.363 1.084 1.306 1.025 0.596 0.375 1.109 1.316 1.033 
0.85 0.577 0.355 1.078 1.321 1.028 0.587 0.367 1.102 1.330 1.036 
0.90 0.571 0.349 1.073 1.334 1.031 0.581 0.361 1.097 1.342 1.039 
0.95 0.569 0.344 1.069 1.344 1.035 0.579 0.357 1.093 1.352 1.042 
1.00 0.572 0.343 1.067 1.350 1.038 0.582 0.356 1.091 1.357 1.045 
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Table 4 . 27 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.2, a/c=3/2 a/h=0.4, a/c=3/2 ±²/³ Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.025 0.980 0.904 0.895 0.919 1.034 0.987 0.892 0.891 0.915 
0.10 0.916 0.874 0.967 0.941 0.934 0.924 0.880 0.985 0.955 0.946 
0.15 0.853 0.766 0.951 0.930 0.910 0.859 0.771 0.968 0.944 0.920 
0.20 0.802 0.676 0.930 0.919 0.885 0.807 0.680 0.946 0.931 0.894 
0.25 0.754 0.601 0.910 0.910 0.862 0.759 0.605 0.925 0.921 0.871 
0.30 0.708 0.537 0.892 0.903 0.841 0.712 0.540 0.906 0.914 0.849 
0.35 0.663 0.483 0.875 0.899 0.822 0.667 0.486 0.889 0.908 0.829 
0.40 0.621 0.438 0.859 0.896 0.805 0.625 0.440 0.872 0.905 0.811 
0.45 0.583 0.399 0.844 0.895 0.789 0.586 0.402 0.855 0.902 0.794 
0.50 0.548 0.367 0.828 0.894 0.773 0.550 0.369 0.839 0.901 0.778 
0.55 0.516 0.339 0.812 0.894 0.759 0.518 0.341 0.822 0.900 0.763 
0.60 0.487 0.315 0.795 0.894 0.745 0.489 0.318 0.804 0.899 0.748 
0.65 0.462 0.295 0.777 0.894 0.732 0.464 0.298 0.785 0.898 0.735 
0.70 0.440 0.278 0.759 0.893 0.720 0.442 0.281 0.767 0.896 0.722 
0.75 0.421 0.263 0.742 0.892 0.709 0.423 0.267 0.750 0.895 0.711 
0.80 0.405 0.252 0.726 0.891 0.700 0.408 0.256 0.733 0.893 0.702 
0.85 0.392 0.242 0.712 0.889 0.692 0.396 0.247 0.719 0.891 0.694 
0.90 0.383 0.235 0.700 0.888 0.687 0.387 0.240 0.707 0.889 0.688 
0.95 0.379 0.230 0.691 0.886 0.683 0.382 0.235 0.698 0.888 0.685 
1.00 0.378 0.227 0.686 0.886 0.681 0.382 0.233 0.693 0.887 0.683 
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Table 4 . 28 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.6, a/c=2/3 a/h=0.8, a/c=2/3 ±²/³ Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.137 0.984 1.111 1.043 1.047 1.209 1.042 1.216 1.077 1.089 
0.10 0.991 0.895 1.213 1.097 1.062 1.040 0.932 1.332 1.129 1.099 
0.15 0.922 0.798 1.190 1.079 1.032 0.954 0.820 1.298 1.101 1.055 
0.20 0.874 0.718 1.172 1.069 1.009 0.895 0.732 1.268 1.082 1.023 
0.25 0.833 0.653 1.161 1.068 0.994 0.845 0.661 1.246 1.072 0.999 
0.30 0.798 0.601 1.158 1.075 0.986 0.802 0.603 1.231 1.072 0.983 
0.35 0.765 0.556 1.159 1.088 0.983 0.764 0.556 1.222 1.078 0.972 
0.40 0.736 0.519 1.164 1.106 0.983 0.729 0.515 1.218 1.089 0.966 
0.45 0.709 0.488 1.171 1.129 0.985 0.698 0.481 1.216 1.106 0.963 
0.50 0.685 0.463 1.179 1.155 0.991 0.670 0.452 1.216 1.126 0.962 
0.55 0.664 0.442 1.187 1.182 0.997 0.645 0.428 1.216 1.147 0.963 
0.60 0.646 0.424 1.193 1.211 1.004 0.623 0.407 1.214 1.168 0.965 
0.65 0.630 0.409 1.196 1.239 1.012 0.604 0.389 1.209 1.190 0.968 
0.70 0.616 0.397 1.198 1.266 1.020 0.587 0.374 1.203 1.210 0.971 
0.75 0.605 0.387 1.199 1.292 1.028 0.574 0.361 1.194 1.229 0.974 
0.80 0.597 0.379 1.199 1.316 1.037 0.564 0.351 1.184 1.245 0.979 
0.85 0.590 0.372 1.198 1.336 1.045 0.556 0.343 1.176 1.260 0.983 
0.90 0.587 0.367 1.196 1.353 1.053 0.552 0.337 1.167 1.272 0.987 
0.95 0.587 0.365 1.195 1.366 1.060 0.552 0.333 1.164 1.281 0.992 
1.00 0.592 0.364 1.193 1.373 1.064 0.555 0.332 1.159 1.287 0.995 
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Table 4 . 29 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.6, a/c=1 a/h=0.8, a/c=1 ±²/³ Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.338 1.222 1.207 1.172 1.194 1.362 1.238 1.275 1.189 1.212 
0.10 1.176 1.092 1.347 1.257 1.232 1.185 1.094 1.429 1.277 1.248 
0.15 1.087 0.958 1.324 1.239 1.195 1.086 0.954 1.400 1.253 1.204 
0.20 1.020 0.849 1.297 1.223 1.162 1.017 0.847 1.365 1.231 1.165 
0.25 0.961 0.761 1.274 1.212 1.133 0.954 0.757 1.332 1.216 1.132 
0.30 0.907 0.688 1.254 1.206 1.110 0.899 0.683 1.306 1.206 1.105 
0.35 0.857 0.626 1.238 1.206 1.091 0.847 0.622 1.283 1.201 1.081 
0.40 0.811 0.576 1.224 1.209 1.075 0.801 0.571 1.263 1.200 1.063 
0.45 0.770 0.533 1.211 1.216 1.062 0.760 0.529 1.246 1.203 1.047 
0.50 0.734 0.498 1.199 1.225 1.051 0.723 0.494 1.229 1.208 1.034 
0.55 0.702 0.469 1.187 1.236 1.043 0.691 0.465 1.215 1.216 1.024 
0.60 0.674 0.445 1.174 1.248 1.036 0.663 0.440 1.197 1.225 1.015 
0.65 0.650 0.425 1.161 1.261 1.031 0.640 0.420 1.178 1.234 1.008 
0.70 0.630 0.408 1.149 1.274 1.028 0.619 0.403 1.161 1.243 1.002 
0.75 0.614 0.396 1.138 1.288 1.026 0.603 0.388 1.146 1.252 0.999 
0.80 0.601 0.385 1.128 1.300 1.026 0.591 0.378 1.131 1.260 0.998 
0.85 0.591 0.377 1.119 1.311 1.027 0.581 0.369 1.116 1.266 0.997 
0.90 0.586 0.371 1.111 1.321 1.030 0.575 0.362 1.103 1.271 0.997 
0.95 0.584 0.367 1.106 1.328 1.033 0.574 0.358 1.093 1.274 0.999 
1.00 0.587 0.365 1.103 1.332 1.035 0.576 0.356 1.088 1.276 1.000 
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Table 4 . 30 Normalized mode I stress intensity factors Kln for three-dimensional 

models subjected to fixed grip tension. 

 a/h=0.6, a/c=3/2 a/h=0.8, a/c=3/2 ±²/³ Mat. A Mat. B Mat. C Mat. D. Isotropic Mat. A Mat. B Mat. C Mat. D. Isotropic 

0.05 1.048 1.000 0.910 0.903 0.926 1.051 0.999 0.929 0.906 0.927 
0.10 0.934 0.888 1.017 0.975 0.963 0.934 0.887 1.049 0.983 0.968 
0.15 0.865 0.774 0.997 0.961 0.934 0.861 0.769 1.026 0.967 0.936 
0.20 0.811 0.682 0.973 0.946 0.905 0.804 0.676 1.000 0.950 0.905 
0.25 0.761 0.605 0.950 0.933 0.879 0.755 0.603 0.976 0.936 0.879 
0.30 0.713 0.541 0.929 0.924 0.856 0.706 0.538 0.953 0.925 0.853 
0.35 0.667 0.487 0.909 0.916 0.834 0.661 0.485 0.932 0.916 0.831 
0.40 0.625 0.442 0.891 0.911 0.815 0.619 0.440 0.911 0.909 0.810 
0.45 0.586 0.404 0.873 0.907 0.796 0.580 0.403 0.890 0.903 0.790 
0.50 0.551 0.372 0.855 0.903 0.779 0.546 0.372 0.870 0.898 0.772 
0.55 0.519 0.346 0.836 0.900 0.763 0.515 0.346 0.848 0.893 0.755 
0.60 0.491 0.323 0.816 0.897 0.748 0.487 0.324 0.826 0.888 0.739 
0.65 0.466 0.304 0.796 0.894 0.733 0.463 0.306 0.804 0.883 0.724 
0.70 0.445 0.288 0.776 0.891 0.720 0.443 0.291 0.783 0.878 0.710 
0.75 0.426 0.275 0.757 0.888 0.708 0.425 0.278 0.762 0.873 0.698 
0.80 0.411 0.264 0.740 0.884 0.698 0.410 0.268 0.742 0.867 0.687 
0.85 0.399 0.255 0.724 0.881 0.690 0.399 0.260 0.725 0.862 0.678 
0.90 0.391 0.249 0.712 0.878 0.684 0.391 0.254 0.711 0.856 0.672 
0.95 0.386 0.244 0.703 0.875 0.680 0.388 0.250 0.700 0.852 0.668 
1.00 0.386 0.242 0.697 0.874 0.678 0.388 0.248 0.693 0.849 0.665 

 

Tabulated results for fixed grip tension case are shown in Figure 4.37 – Figure 4.48. 
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Figure 4 . 37 Fixed grip tension, Kln versus φ for a/h=0.2, a/c=2/3 
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Figure 4 . 38 Fixed grip tension, Kln versus φ for a/h=0.2, a/c=1 
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Figure 4 . 39 Fixed grip tension, Kln versus φ for a/h=0.2, a/c=3/2 
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Figure 4 . 40 Fixed grip tension, Kln versus φ for a/h=0.4, a/c=2/3 



84 

 

0,2 0,4 0,6 0,8 1,0

N
o
rm
a
liz
e
d
 S
tr
e
s
s
 I
n
te
n
s
it
y 
F
a
c
to
rs

0,2

0,4

0,6

0,8

1,0

1,2

1,4

Mat. A

Mat. B

Mat. C

Mat. D

Isotropic

πφ2  

Figure 4 . 41 Fixed grip tension, Kln versus φ for a/h=0.4, a/c=1 
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Figure 4 . 42 Fixed grip tension, Kln versus φ for a/h=0.4, a/c=3/2 



85 

 

0,2 0,4 0,6 0,8 1,0

N
o
rm
a
liz
e
d
 S
tr
e
s
s
 I
n
te
n
s
it
y 
F
a
c
to
rs

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Mat. A

Mat. B

Mat. C

Mat. D

Isotropic

πφ2
 

Figure 4 . 43 Fixed grip tension, Kln versus φ for a/h=0.6, a/c=2/3 
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Figure 4 . 44 Fixed grip tension, Kln versus φ for a/h=0.6, a/c=1 
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Figure 4 . 45 Fixed grip tension, Kln versus φ for a/h=0.6, a/c=3/2 
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Figure 4 . 46 Fixed grip tension, Kln versus φ for a/h=0.8, a/c=2/3 
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Figure 4 . 47 Fixed grip tension, Kln versus φ for a/h=0.8, a/c=1 
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Figure 4 . 48 Fixed grip tension, Kln versus φ for a/h=0.8, a/c=3/2 
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4.6.2 Thermal Loading on the Three-Dimensional Orthotropic Material 

In this type of loading condition, orthotropic medium is Polystal. It is glass fiber 

woven fabric reinforced PA-6. For this type of material seven thermal properties are 

given, namely, the specific heat capacity � , the thermal conductivity in the three 

principal material directions, ��, �� and �=, and similarly three thermal expansion 

coefficients, ��, �� and �=. To characterize an orthotropic material it is required to 

define nine mechanical properties, namely Elastic moduli, ���, ��� and �==, the 

Poisson’s ratio ���, ��= and ��=, and the shear moduli L��, L�= and L�= [33]. The 

material properties are given in Table 4.31. 

 

Table 4 . 31 Properties of Polystal vs. Temperature 

                            Model Temperature (C) 

20 80 120 220 ��� (´+�) Fiber Undulation 24 20 29 19 ���(´+�) Mosaic Series 19 13 12 12 �==(´+�) Inv rom 6.1 3.2 2.6 2.4 L��(L+�) Fiber Undulation 3.1 1.6 1.3 1.2 L�=(L+�) Assumed 2.5 1.5 1.4 1.2 L�=(L+�) Assumed 2.5 1.5 1.4 1.2 ��� Mosaic Series 0.16 0.11 0.10 0.11 ��= Assumed 0.25 0.25 0.25 2.5 ��= Assumed 0.25 0.25 0.25 2.5 ��f10G/u Experiment 14 14 13 13 �� f10G/u Experiment 13 13 13 12 �= f10G/u Rule of Mixtures 53 53 53 53 ��(µ n!⁄ ) Knappe/Martinez 0.53 0.57 0.60 0.60 ��(µ n!⁄ ) Knappe/Martinez 0.50 0.53 0.56 0.56 �=(µ n!⁄ ) Knappe/Martinez 0.51 0.54 0.57 0.57 � (�¶ �· !⁄ ) Rule of Mixtures 1.2 1.2 1.2 2.9 

 

In this type of loading condition, material is assumed as stress free at a temperature 

of 493 K. Then, the material is exposed to an environment with a temperature of 293 

K. For this type of loading condition, the surface of the structure at which the crack 

exists, exposed to a forced convection. At the surface,  f = ℎ, the convection 
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coefficient is ℎ = 100 W/(m2K). At the other surfaces, there are free convection with 

a convection coefficient ℎ = 5 W/(m2K). For this type of loading, material properties 

calculated at the mid temperature, �, = 393 K. 

 

In transient problem, firstly, the temperature distribution is computed. These 

computed temperatures are used as an input for structural problem. The 

deformations and the displacements are computed to obtain stress intensity factors 

at the crack front. 

 

The boundary conditions and the loading case are given in the Figure 4.49. 

 

 

Figure 4 . 49 The boundary conditions for transient thermal loading 

 

The geometry of the crack is semi-elliptic with an aspect ratio of �/� = 1/2.  The 

crack depth to thickness ratio is chosen as �/ℎ = 0.4. Material properties are given 

in Table 4.31.   

 



90 

 

After obtaining the stress intensity factors for the structure, normalized mode I stress 

intensity factors are calculated for transient thermal loading type by using the 

formula:  

!#$ = !"-�� �%  

(4.4) 

 

where - is the normalization stress and described by 

- = ¹g �g �, (4.5) 

 

where ¹ and �  are the thermal expansion coefficient and elastic modulus in the 

crack opening direction (y- direction), respectively.  �, is the mid temperature at 

which the mechanical and thermal propertie0s, that are given in Table 4.31,are used. 

For the transient part of the problem, to define normalized mode-I stress intensity 

factors, normalized time is defined by 

0 = . /ℎ�  (4.6) 

 

where / is the time and the thickness of the structure is ℎ. In addition to these, . is 

the thermal diffusivity coefficient of the material defined by 

. = �eg� �eg 
(4.7) 

 

where �, � and � are the thermal diffusivity coefficients of the orthotropic material.  

 

In the finite element code, anisotropic asymptotic field expressions and constants are 

used to obtain stress intensity factors. The variation of the normalized temperature 

and the normalized mode I stress intensity factor for  at a given point around the 

crack front (
 = �/4 and 
 = �/2) with respect to normalized time are shown in 

Figure 4.50 – Figure 4.53.  
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Figure 4 . 50 Temperature versus normalized time for thermal loading (
 = �/2) 
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Figure 4 . 51 Temperature versus normalized time for thermal loading (
 = �/4) 
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Figure 4 . 52 Normalized stress intensity factor vs. normalized time (
 = �/2) 
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Figure 4 . 53 Normalized stress intensity factor vs. normalized time (
 = �/4) 

 

 

The tabulated results are given in Table 4.32. 
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Table 4 . 32 Normalized mode I stress intensity factors Kln for polystal material 

subjected to transient thermal load at τ = 0.0625 and τ = 0.125 

2
/� a/h=0.4, a/c=0.5 

at τ = 0.0625 

a/h=0.4, a/c=0.5 

at τ = 0.125 

 Polystal (Klnx102) 

0.00 0.1988 0.3131 

0.10 0.1727 0.2791 

0.20 0.1535 0.2554 

0.30 0.1359 0.2320 

0.40 0.1199 0.2094 

0.50 0.1084 0.1932 

0.60 0.1012 0.1829 

0.70 0.0925 0.1694 

0.80 0.0870 0.1604 

0.90 0.0857 0.1580 

1.00 0.0850 0.1578 

 

The stress intensity factors around the semi-elliptical surface crack for τ = 0.0625 , 

and τ = 0.125 are presented in Figure 4.54. 
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Figure 4 . 54 Normalized mode I stress intensity factor vs. normalized time 

distribution around the crack front for thermal loading, a/h=0.4, a/c=0.5 
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CHAPTER 5 

CONCLUSION 

In the present study, three-dimensional semi elliptic crack problems are 

studied for orthotropic materials and stress intensity factors around crack 

front are numerically calculated. The numerical code is written in the 

software, ANSYS parametric design language (APDL).  

 

The crack is observed under several loading conditions for different type of 

materials. Displacement correlation technique gives accurate results for 

orthotropic and isotropic materials. It is an effective and accurate technique 

to obtain stress intensity factors around the crack front. 

 

In the calculation of the stress intensity factors both displacement correlation 

techniques and anisotropic asymptotic stress and strain field expressions are 

used. The geometries of the models are created as same as in the reference 

models and the asymptotic stress and strain field expressions are verified with 

the results provided in the literature. Then, the percent differences are 

observed. Since results have small percent differences for all crack 

dimensions, loading types and material properties, it is accomplished that the 

numerical solution technique to solve the stress intensity factors of the 

orthotropic materials is satisfactorily accurate. 
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Considering the results of the finite element analysis results, it is seen that 

stress intensity factors at the surfaces where the crack intersects the free 

surface cannot be determined accurately. Due to the fact that stress 

singularity is different at these free surfaces. Therefore, the stress intensity 

factors cannot be found accurately, due to the negligence of the boundary 

zone effect near these surfaces. However, the results at the crack front 

regions are also approximate and applicable for the semi-elliptic surface 

cracks at the free surfaces. 

 

For orthotropic material analysis, properties are given in tables as same as the 

reference values. Furthermore, the asymptotic stress and strain field 

expressions, used for anisotropic materials and the derivation, are given in 

Chapter 3. Considering the degeneracy cases, the correct formulation and 

expressions are used in the numerical analysis. In fact, in this study, fully 

anisotropic material is not analyzed; instead, it is focused on the degeneracy 

situations. For these cases, such as anti plane shear and plane strain 

decoupling case and the x-y plane isotropy case, different type of materials 

are investigated under various loading conditions, such as uniform tension, 

fixed grip tension, transient thermal loading etc. 

 

Considering the mechanical loading cases, the stress intensity factors are 

higher at the free surface regions. For uniform tension loading type, the value 

of the stress intensity factor generally decreases when the thickness and polar 

angle increase. This leads to the conclusion that for three-dimensional surface 

edge cracks, the propagation of the crack front is slower in the direction of 

the thickness. However, in some loading types, the maximum and the 
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minimum points are altering while crack length and material thicknesses are 

changing. 

 

In transient thermal loading, due to the boundary conditions the temperature 

of the free surface drops instantaneously.  For polystal material, in transient 

thermal analysis stress intensity factor has the minimum value where the 

polar angle is π/2. This leads to the conclusion that the crack propagation is 

larger where the crack intersects the free surface and smaller in the thickness 

direction. 

 

As a future work, extension of this present study,  three-dimensional fracture 

analysis of the semi elliptical crack  can be studied in a fully anisotropic 

structure subjected to thermal and mechanical loading. Another extension 

can be the mixed mode loading of the anisotropic structure. For this task, 

mixed mode stress intensity factors can be obtained, and after developing 

reliable models, inclined surface cracks can be embedded to the material, 

which is orthotropic or anisotropic. Moreover, the model and the code can be 

modified considering the crack closure methods to obtain accurate results for 

negative stress intensity factors. 

 



97 

 

REFERENCES 

 

[1] Near Tip Behavior of a Crack in a Plane Anisotopic Elastic Body. Hoenig, Alan., 

Engineering Fracture Mechanics, Vol. 16, pp. 393-403, 1982 

[2] Elastic Crack Growth In Finite Elements with Minimal Remeshing. Belytschko, T. 

and Black, T. s.l. : International Journal for Numerical Methods in Engineering,  

International Journal for Numerical Methods in Engineering, Vol. 45, pp. 601-620, 

1999 

[3] Crack-Mounth Displacements for Semielliptical Surface Cracks Subjected to 

Remote Tension and Bending Loads. Raju, I. S., Newman, J. C. and Atluri, S. N., 

Engineering Fracture Mechanics, Vol. 2, pp. 297-316, 1992 

[4] Three Dimensional Contact Fracture Problems Using Enriched Finite Elements. 

Özkan, Ümit., Phd. Thesis Lehigh University, 2006 

[5] Analysis of Cracks In Anisotropic Materials Using ANSYS and 3DFAS. Özkan, Ümit, 

et al. s.l. : Proceeding of IMECE2006, ASME, 2006. 

[6] A Critical Review of Crack Tip Stress Intensity Factors for Semi-Elliptic Cracks. 

Scott, P. M. and Thorpe, T. W. 4,  Fatigue and Fracture of Engineering Materials and 

Structures, Vol. 4, pp. 291-309, 2007 

[7] A Finite Element Alternating Method for Evaluation of Stress Intensity Factors for 

Part Circular Cracks Subjected to Arbitrary Loadings. Liao, C. Y. and Atluri, S. N., 

Engineering Fracture Mechanics, Vol. 91, pp. 1253-1270, 1991 

[8] Stress Intensity Factors for Semi-Circular Cracks Part-2 Semi-Infinite Solid. Smith, F. 

W., Emery, A. F. and Kobayashi, A. S., International Journal of Applied Mechanics, Vol. 

34, pp. 947-952, 1967 

[9] Three Dimensional Fracture Analysis of FGM Coatings under Thermo-Mechanical 

Loading. Yıldırım, B., Dag, S. and Erdogan, F., International Journal of Fracture 

Mechanics, Vol. 132, pp. 369-395, 2005 



98 

 

[10] Stress Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in 

Finite Thickness Plates. Raju, I. S. and Newman, J. C., Engineering Fracture Mechanics, 

Vol. 11, pp. 817-829, 1979 

[11] On Cracks in Rectilinearly Anisotropic Bodies. Sih, G. C., Chen and Paris, P. C., 

International Journal of Fracture Mechanics, Vol. 1, pp. 189-203, 1965 

[12] Cracks in Anisotropic Bodies in a State of Generalized Plane Deformation. 

Embley, G., M.S. Thesis, Lehigh University, 1981 

[13] Cracks in Composite Materials. Sih, G. C. and Chen. London : Martinus Nijhoff 

Publishers,  EP Mechanics of Fracture 6, 1981 

[14] Stress Intensity Factors for Cracks in Anisotropic Materials Using Enriched Finite 

Elements. Özkan, Ümit. PA. : s.n.,  M.S. Thesis, Lehigh University, 2003 

[15] Analysis of Three Dimensional Interface Cracks Using Enriched Finite Elements. 

Ayhan, A. O., Kaya, A. C. and Nied, H. F., Engineering Fracture Mechanics, 2006 

[16] The Stress State of an Elastic Orthotropic Medium with a Penny-Shaped Crack. 

Kirilyuk, V. S. 12,  International Applied Mechanics, Vol. 40, pp. 1371-1377, 2004 

[17] Kaw and Autar, K. Mechanics of Composite Materials. Fla. : Boca Raton. pp. 79-

109. Vol. 29, 2003 

[18] Jones, Robert M. Mechanics of Composite Materials. 2nd. s.l. : CRC Press., 1998. 

[19] Springer, G. S. Mechanics of Composite Structures. Cambridge : U.P., 2003. 

[20]. Bower, Alan F. Applied Mechanics of Solids. USA : CRC Press, 2009. 

[21] Wikipedia. [Online] http://en.wikipedia.org/wiki/stress_intensity_factor. 

[22] Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Bazant, Z. 

P. and Planas, J. FL : CRC Press , Boca Raton, 1998. 

[23] Library/Solid87, ANSYS Users Manual (Element Reference/I.Element. [prod.] 

ANSYS 12.1. 2010. 



99 

 

[24] Stress Intensity Factors for Surface Cracks in Functionally Grade Materials Under 

Mode-I Thermomechanical Loading. Walters, M. C., Glaucio, H. Paulino and Doods, H. 

Robert., International Journal of Solids and Structures, Vol. 41, pp. 1081-1118, 2004 

[25] Mathematical Analysis in the Mechanics of Fracture. Rice, J. R. [ed.] H. Liebowitz. 

NY : Academic Press,  Vol. 2, 1968 

[26] Three Dimensional Fracture Analysis of FGM Coatings. İnan, Özgür. 2004. 

[27] Three Dimensional Mixed Mode Fracture Analysis of Functionally Graded 

Materials. Köşker, Sadık. 2007. 

[28] An Empirical Stress-Intensity Factor Equation for the Surface Crack. Newman, J. 

C. and Raju, I. S., Engineering Fracture Mechanics, Vol. 15, pp. 185-192, 1981 

[29] Stress Intensity Factor for Three Dimensional Surface Cracks Using Enriched Finite 

Elements. Ayhan, A. O. and Nied, H. F., International Journal for Numerical Methods 

in Engineering, Vol. 54, pp. 889-921, 2002 

[30] Stress Intensity Factors and COD in an Orthotropic Strip. Kaya, A. C. and Erdogan, 

F. 2,  International Journal of Fracture Mechanics, Vol. 16, pp. 171-190, 1980 

[31] Interface Cracking of FGM Coatings Under Steady State Hear Flow. Lee, Y. D. and 

Erdogan, F. 3,  Engineering Fracture Mechanics, Vol. 59, pp. 361-380, 1998 

[32] Fracture Analysis of Anisotropic Materials Using Enriched Crack Tip Elements. 

Özkan, Ümit, Nied, H. F. and Kaya, A. C., Engineering Fracture Mechanics, Vol. 77, pp. 

1191-1202, 2010 

[33] Use of Micromechanical Modelling in the Material Characterisation of 

Overinjected Thermoplastic Composites. Harte, A. M. and Mc. Namara, J. F. Galway, 

Ireland : s.n.,  Journal of Materials Processing Technology, Vol. 173, pp. 376-383, 

2005 

[34] Theory of an Anisotropic Elastic Body. Lekhnitskii, S. G. San Francisco : Holden 

Day, 1953. 

 



100 

 

 

APPENDIX A 

 

A. SAMPLE ANISOTROPIC ASYMPTOTIC FIELD EXPRESSION CALCULATION FOR 

THE ORTHOTROPIC-I MATERIAL  

 

Material properties are given as follows: 

 

�� = 55.16f10¯  ��� = 0.036   L�� = 4.83f10¯ 

�� = 171.0f10¯          ��= = 0.111   L�= = 4.83f10¯ 

�= = 55.16f10¯          ��= = 0.036   L=� = 26.61f10¯   

                                                                                                                                (©1)   

 

Due to symmetry, following simplifications can be applied. 

 

��� = ��� , �=� = ��=, �=� = ��=, L�� = L��, L=� = L�=, L=� = L�=   (©2) 

 

The elements of compliance matrices can be written in terms of material 

properties. 

 

-�� = 1��                                                                                                             (©3) 
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-�� = −�����                                                                                                        (©4) 

 

-�= = −�=��=                                                                                                        (©5) 

 

-�� = 1��                                                                                                             (©6) 

 

-�= = −�=��=                                                                                                        (©7) 

 

-== = 1�=                                                                                                             (©8) 

 

-EE = 1L�=                                                                                                           (©9) 

 

-EE = 1L�=                                                                                                         (©10) 

 

-EE = 1L��                                                                                                         (©11) 

 

-�E = -�F = -�G = -�E = -�F = -�G = -=E = -=F = -=G = -EF = -EG = -FG= 0                                                                                        (©12) 
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-E= = -=E,  -F= = -=F,  -G= = -=G                                                              (©13) 

 

S =

BC
CC
CD 1.81x10��� −2.11x10��= −6.53x10��= 0 0 0−2.11x10��= 5.85x10��� 2.01x10��� 0 0 0−6.53x10��= 2.01x10��� 1.83x10��� 0 0 00 0 0 2.07x10��) 0 00 0 0 0 3.78x10��� 00 0 0 0 0 2.07x10��)HI

II
IJ
               

     (©14) 

 

If the plane stress conditions exists material matrix elements calculated by the 

following expressions. 

4́5 = 4́5 − 4́= 5́=´==                                                                                     (©15) 

 

º�(f) = ´��f� − 2´EFf + ´EE                                                                (©16) 

 

º=(f) = �́Ff= − ( �́E + ´FG)f� + (´�F + ´EG)f − ´�E                (©17) 

 

ºE(f) = �́�fE − 2 �́Gf= + (2 �́� + ´GG)f� − 2´�Gf + ´��       (©18) 

 

Characteristic roots of these polynomials are calculated as: 

 

2��/� �° º�(f) = »−1.16525}1.16525}−3.37291}3.37291} ¼                                                             (©19) 
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2��/� �° ºE(f) = ½−6.06710}6.06710} ¾                                                               (©20) 

 

Characteristics roots are chosen such that, imaginary parts are positive. 

£ = ¿ 1 1 0−6� −6� 00 0 −1À = ¿ 1 1 0−1.165} −3.373} 00 0 −1À                  (©21) 

 

The inverse matrix is calculated as given 

£�� = ¿ 1.052 −0.312} 0−0.052 0.312} 00 0 −1À                                                         (©22) 

 

The values of “p” are defined as follows: 

 

��� = �́�6�� + �́� − �́G6�                                                                   (©23) 

 

��� = �́�6�� + �́� − �́G6�                                                                   (©24) 

 

��� = �́�6�� + ´��6� − ´�G                                                                       (©25) 

 

��� = �́�6�� + ´��6� − ´�G                                                                       (©26) 
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�== = �´EF + ´EE6= �                                                                                     (©27) 

 

��= = 0,  �=� = 0,  �=� = 0,  ��= = 0                                                     (©28) 

 

The calculation result for p matrix is given 

� = ¿��� ��� ��=��� ��� ��=�=� �=� �==À
= ¿ −7.774f10��= −2.063f10��) 0−3.408}f10��� −2.622f10��� 00 0 3.412f10���À                     (©29) 

 

For mode-I loading the asymptotic displacement expression is given. 

1�(2, 3) = �22� ! �¢m ½���£��¥cos(3) + 6� sin(3)¾
+ ¢m ½���£��¥cos(3) + 6� sin(3)¾
+ ¢m ½��=£=�¥cos(3) + 6= sin(3)¾�
= 2.849f10���                                                                  (A30) 

As 3 → � and 2 → 0 

1�(2, �) → 2.0144f10���√22!                                                               (©31) 

Then the coefficient u(�) is calculated as 

u = 3.51f10�)                                                                                              (©32) 


