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ABSTRACT

THREE DIMENSIONAL FRACTURE ANALYSIS OF ORTHOTROPIC MATERIALS

Akgil, Gorkem
M. Sc., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Serkan Dag

June 2012, 104 pages

The main objective of this study is to examine the three-dimensional surface crack
problems in orthotropic materials subjected to mechanical or thermal loading. The
cracks are modeled and embedded in the orthotropic material by considering semi-
elliptical crack front geometry. In the model special elements are embedded in the
crack front region, in this way it is possible to include crack tip singular fields along
the crack front. Three-dimensional finite element analyses are conducted to obtain
mode | stress intensity factors. The stress intensity factor is calculated by using the
displacement correlation technique. In the analysis, collapsed 20-node iso-parametric
elements are utilized to simulate strain singularity around the semi-elliptical crack
front. The surface crack problem is analyzed under both mechanical and thermal
stresses. In the case of mechanical loading, uniform tension and fixed grip tension
loading cases are applied on the model. In thermal analysis, thermal boundary
conditions are defined. Comparisons of the results generated to those available in

the literature verify the developed techniques.

Keywords: Fracture mechanics, semi-elliptical crack, orthotropic materials, stress

intensity factors, thermal stresses
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ORTOTROPIK MALZEMELERIN UC BOYUTLU KIRILMA ANALIzZi

Akgil, Gorkem
Yiiksek Lisans, Makina Mihendisligi Bolim

Tez Yoneticisi: Dog. Dr. Serkan Dag

Haziran 2012, 104 sayfa

Bu c¢alismanin temel amaci, mekanik veya isil yiklemeye maruz kalan ortotropik
malzemelerin U¢ boyutlu ylizey catlak sorunlarini incelemektir. Catlaklar, yari-eliptik
geometriye sahip olacak sekilde modellenerek ortotropik malzeme icine
yerlestirilmistir. Modelde 6zel elemanlar kullanmak, catlak ucu boélgesi boyunca tekil
alan ¢6ziimlerini de elde edebilmeyi mimkiin kilmaktadir. Gerilme siddet faktorini
hesaplamak igin ¢ boyutlu sonlu eleman ¢6ziim teknikleri uygulanmistir. Gerilim
siddeti faktorl, deplasman korelasyon teknigi kullanilarak hesaplanmistir. 20-
digumli izo-parametrik elemanlar yari eliptik catlak ucu ¢éziimlerinde kullanilmistir.
Yizey catlaklari, hem mekanik, hem 1sil gerilme etkisi altinda analiz edilmistir.
Mekanik ylkleme analizlerinde, sabit noktadan gerilme ylikleme ve sabit gerginlik
durumlari uygulanmistir. Isil yiiklemede ise sinir kosullari tanimlanmistir. Literatiirde
bulunan, dogrulugu ispatlanmis sonuglar, gelistirilen yéntemin dogrulanmasinda

kullanilacaktir.

Anahtar Kelimeler: Kirilma mekanigi, yari eliptik catlak, ortotropik malzemeler,

gerilme siddeti faktoru
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the present study, three-dimensional semi elliptic crack problems are studied for
orthotropic materials. There are nine independent characterizing variables of
orthotropic materials, which means that there are three planes of elastic symmetry

in the structure.

In order to obtain asymptotic stress and displacement fields of a crack in a three-
dimensional orthotropic material, stress and displacement fields close to the tip of a
straight crack in a generally rectilinear anisotropic elastic body are resolved. As in
the isotropic analysis, the stress singularity r'/2, where r is the distance from the tip,
is handled in a complicated way because of the angular changes due to the
anisotropy around the crack front. In some special cases, where some elements of
the compliance matrix are zero, the asymptotic stress and displacement fields
should be redefined for these special cases. These cases are called degeneracy cases
such as anti plane shear and plane strain decoupling case and x-y plane isotropy case.
As a result of the material used for the analysis is not fully anisotropic in this study,
the degeneracy cases are used to obtain asymptotic field expressions. The crack front
in a three dimensional orthotropic medium is modeled using these anisotropic

asymptotic field expressions [1].



Composites have wide application areas in the world. Due to their advantageous
mechanical and thermal properties in engineering applications, composites are
preferred. Their high stiffness to weight ratios, low thermal conductivity constants
and design flexibilities make the composite structures comparable with traditional

materials. These materials generally possess anisotropic or orthotropic materials.

Different numerical methods can be used to conduct fracture analysis. Boundary
Element Method (BEM) and Finite Difference Method (FDM) are two of these
solution techniques. Moreover, there is also meshless method to solve the structure
model numerically, different from BEM and FDM. But the most popular method is
the Finite Element Method (FEM). By using this method, most of the problems can be
modeled and solved by defining boundary conditions and the physics of the
environment. However, the elements at the crack faces should be handled in a
different way compared to the other elements. In order to simulate and solve the
crack propagation using the fracture mechanics approach, re-meshing techniques
and prediction methods for singular stress field around a crack tip should be applied.
Due to the difficulties in modeling these singular stress fields around a crack tip by
using finite element method, in certain cases the Extended Finite Element Method
(XFEM) could be preferred to solve the problems, which contain singular fields and
discontinuities in material and geometry. The XFEM method is originally applied by
Belytschko and Black [2]. They use the advantages of the conventional FEM and

improve the method by modeling the discontinuities.

In analysis based on fracture mechanics, the most important parameter is the stress
intensity factor. Therefore, in fracture mechanics based finite element analyses it is

important to calculate the stress intensity factors accurately.



In fracture mechanics, the three-dimensional crack problems have been considered
as important problems to be solved analytically and numerically. For three
dimensional anisotropic and orthotropic materials, there exists very limited research.
Therefore, in this study, these materials will be studied in detail, and finally three-
dimensional orthotropic materials will be modeled and meshed in order to compute

stress intensity factors for certain configurations.

There are several finite element analysis programs available. These programs are
used for commercial and academic purposes. Because of the large variety of
approaches and finite element analysis software programs for three-dimensional
structures, crack geometries in three-dimensional bodies have been studied with
great interest in recent years. However, finite element techniques are not capable of
solving crack geometries accurately without considering the crack faces, asymptotic
fields and stress fields around crack tips [3]. Therefore, some modifications should be
applied to the software program by embedding the asymptotic field expressions
using parametric design language of the program. The use of the asymptotic field
expressions allows the evaluation of the stress intensity factors from stress and
displacement values around the crack front. Asymptotic fields for plane strain
configurations of anisotropic materials can be used also for three-dimensional
problems involving such materials [4]. In the present study, we employ plane strain
fields to generate the stress intensity factors for cracks located in three-dimensional

structures.

The rl/2 stress singularity method is used in 3D fracture analyses. In this method mid
side nodes are placed at the quarter of the element size from the crack front
location, thus this method is also known as quarter point technique. Although this
method is highly dependent on the mesh quality, it can be successfully used to solve
three-dimensional problems. Ozkan [5], illustrated that quarter point technique can

be applied to both three-dimensional isotropic materials and three-dimensional



anisotropic materials. Disadvantages of this method are the necessity of using wedge

elements along the crack front and dependence of the solutions on mesh refinement.

1.2 Literature Survey

The goal of this study is to develop a method to carry out fracture analyses of
orthotropic materials. Mode | stress intensity factor for three-dimensional
composite structures is calculated by applying the displacement correlation
technique. In the past, various researchers studied surface crack problems. However,
these crack problems are handled for two dimensional planar structures or three-
dimensional isotropic structures, or three-dimensional FGM coating materials, in
which the material properties change continuously as a function of thickness
dimension of the structure. This study can be considered as one of the first studies in
the literature, dealing with three-dimensional fracture problems in orthotropic

materials.

Although the literature related to three-dimensional analysis on orthotropic
materials is very limited, in previous studies numerous results have been reported for
three-dimensional cracks in an isotropic media. Hence, certain methods to solve
these have been developed in literature. Especially, three-dimensional homogenous
isotropic materials have been considered in the FEM analysis. There are large
number of techniques available to obtain stress intensity factors for three-
dimensional isotropic crack fronts [3],[6],[7]. Semicircular cracks in semi-infinite
structures are considered under different types of mechanical loading cases, such as
tension and bending by Smith et al. [8]. The stress intensity factors are also
calculated under thermal loading situation [9]. There are also empirical solutions for
semi elliptic cracks in the literature. Raju and Newman [10] derived expressions to
obtain stress intensity factors. In this research, they derived the empirical stress

intensity factor equations of a semi-elliptical surface crack by using FEA.



Due to the complex nature of material behavior of anisotropic materials, most of the
researchers focused on the two-dimensional formulations. Sih et al. [11] extended
the isotropic local crack tip stress fields for general plane problems to the rectilinear
anisotropic case. Hoenig [1], Embley [12], and Sih [13], extended the analysis of crack
tip stress fields to the case of generalized plane deformation for an anisotropic body.
Stress and strain fields for plane strain configurations of anisotropic materials can be
used also for three-dimensional problems involving such materials [4]. Ozkan [14]
observed the asymptotic stress and displacement fields around crack tip for three-
dimensional cracks on both isotropic and homogeneous anisotropic materials. A
valuable research on cracks in anisotropic materials using ANSYS and 3DFAS has
prepared by Ozkan et al. [5]. In this research, it is proved that quarter point
technique can be applied for both three-dimensional isotropic materials and three-

dimensional anisotropic materials.

There are also other studies related to the analysis of three-dimensional crack
problems. These problems are examined by various researchers in the past
[4],[14],[15]. In these studies, it is demonstrated that the enriched finite element
method is a useful technique for obtaining stress intensity factors for general three-
dimensional crack problems. This method gives accurate results for cracks in isotropic
or anisotropic materials. The engineering fracture mechanics parameters are
calculated by the help of the known parameters obtained from the finite element
solution results, such as displacements of the nodes at the crack front. For this

reason, this method can be used for various types of crack singularity fields [4].

Kirilyuk [16] has studied static equilibrium problems for a three-dimensional elastic
orthotropic material with an internal circular (penny-shaped) crack. In this research,
to solve the problem, Willis” approach is used and the influence of anisotropy on the
stress intensity factors is studied. In this paper, this approach is based on the triple
Fourier transform, the Fourier-transformed Green’s function for an orthotropic

medium, and Cauchy’s residue theorem.



1.3 Goal of the Study

The goal of this study is to develop a method to conduct three-dimensional fracture
analysis of orthotropic materials. Firstly, the three-dimensional orthotropic material
structure is modeled by finite element analysis. In this study, ANSYS Parametric
Design Language is used to create the geometry of the model. Moreover, this
software is used to mesh the geometry, to load the model structurally and thermally;
and to calculate the fracture mechanics parameters. By using ANSYS, parametric
design language complex geometries with different type of crack geometries and
orientation are possible to be worked on. In this study surface crack geometry is
modeled in a three-dimensional orthotropic material. Considering the crack front

1/2 stress singularities. The

location, quarter point technique is used to simulate the r
material properties can be considered as isotropic, orthotropic or anisotropic
material. Hence, the asymptotic crack tip stress and displacement fields become
crucial. The fracture mechanics based expressions are different for different type of
materials. After creating, meshing, defining the material, and setting the boundary
conditions finite element model is solved in the software. Displacements are
obtained for the cracked three-dimensional orthotropic materials. After that,

displacement correlation technique is used to obtain fracture mechanics parameters,

such as stress intensity factors.

In this study, three-dimensional orthotropic materials are analyzed using asymptotic
fields for plane strain configurations of anisotropic materials. Three-dimensional
finite element analyses are conducted to obtain mode | stress intensity factors. The
stress intensity factor is calculated by using the displacement correlation technique.
In addition to these, comparisons of the results generated to those available in the

literature verify the developed techniques.

This study consists of five chapters. Chapter | contains the following sections:
introduction, literature survey and the goal of the study. In Chapter 2, constitutive

relations of anisotropic materials are given. In Chapter 3, finite element method,
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asymptotic stress and strain fields at the crack tip and displacement correlation
technique are studied. In Chapter 4, problem is defined. Moreover, three-
dimensional fracture analysis techniques, geometry of the problem and loading
types, results and discussion are given in this section. Finally, an outcome of the

results and concluding remarks are given in Chapter 5.



CHAPTER 2

CONSTITUTIVE RELATIONS FOR ANISOTROPIC MATERIALS

2.1 Mechanical Behavior of Anisotropic Materials

The stress strain relations for anisotropic materials are more complex than the
relation for isotropic materials. There are also more independent material constants
compared to the linear elastic and isotropic material. The general stress and strain

relationship is given in Cartesian coordinate system as follows:

€1 S11 S12 S13 S1a Sis S16] p 01
€2 S21 S22 S2z Saa S5 S| | 02
€3 | _ 531 S32 S3z Sz S3zs Sze|) 03
Y23 Sa1 Saz Saz Sas Sas Sue|| 723
Y13 Ss1 Ss2 Ssz Ssa Sss Ssel 713
Y12 lS61 Se2 Se3 Sea Ses 566J T12 (2.1)

6x6 [S] matrices are called compliance matrix. The compliance matrix has 36
constants. However, due to the symmetry of the compliance matrix, the numbers of
material constants are reduced to 21 [17]. Nonzero engineering constants for
monoclinic, orthotropic, transversely isotropic and isotropic materials are tabulated

in Table 2.1.



Table 2 . 1 The nonzero engineering constants [17]

Nonzero engineering constants

Material Independent Dependent
Monoclinic Ei, E; E;
GZ 3 Gl3 ’ GIZ

V12,V13,V23
V16, V26, Va5, V36

Orthotropic E|, E; E;
G23,G13,G12
V12,V13,V23
Transversely E, E, Es =E;, Gi3 = Gy3
isotropic Gz Con = E;
23T 570 N
V12,V23 2(1 + vy3)
V13 = V12
Isotropic E, (=E) E;, =E; =FE, 013 =Vy3 =V
vz (=) Ey

Ga3 = G13 = G13 =m

Considering the nonzero engineering constants for monoclinic, orthotropic,
transversely isotropic, and isotropic materials the compliance matrices can be

tabulated in Table 2.2.




Table 2 . 2 Compliance matrices [18]

The compliance matrices in terms of the engineering constants for monoclinic,

orthotropic, transversely isotropic, and isotropic materials

S
1/E; —uv3/E; —v31/E;3 0 0 Vs1/G12]
—v3/E; 1/E; —V3;/E3 0 0 Vs2/G12
_|~v13/E1 —v23/E; 1/E3 0 0 Vg3/G12 o
= 0 0 0 1/Gys —0g4/Gos 0 Monoclinic
0 0 0 —U45/G23 1/Gy3 0
0 0 0 0 0 1/Gq5
1/E; —vy1/E;  —v31/E3 0 0 0
—V12/E; 1/E, —v32/E3 0 0 0
_|7v13/E1 —va3/E; 1/E;5 0 0 0 .
S = 0 0 0 1/Gys 0 0 Orthotropic
0 0 0 0 1/Gq3 0
0 0 0 0 0 1/Gq5]
i V21 V31 1
1/E, —— ——
/E1 E, E, 0 0 0
V12 1 U32
E, E, E, 0 0 0
8 V) 1
B e 0 0 0
Eq E; E; . :
S= 2(1 + vy3) Transversely isotropic
0 0 0 2 0
E;
0 0 0 0 ! 0
Gi3
0 0 0 0 0 !
G13_
r1/E  —v/E —v/E 0 0 0
-v/E 1/E —vu/E 0 0 0
_|-v/E —vu/E 1/E 0 0 0 .
=1 o 0 0  2(1+v)/E 0 0 Isotropic
0 0 0 0 2(1+v)/E 0
0 0 0 0 0 2(1+v)/El
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2.1.1 Generally Anisotropic Materials

When the fibers are oriented in a non-symmetrical manner in the matrix medium,
the material has 21 independent elastic constants. This material is called generally
anisotropic material. An example of a generally anisotropic material is shown in
Figure 2.1. The properties of that anisotropic material are found at a particular point
and the relationships for stress and strains are derived considering that point.
Furthermore, for non-homogeneous anisotropic material the properties can be
different from one point to another in the structure. If it is assumed that the material
is homogenous, the 21 independent elastic constants should be found analytically or

experimentally [17].

Figure 2 . 1 Example of a generally anisotropic material [19]

Considering fiber reinforced materials, the structure is assumed anisotropic when the

fibers are oriented in three non-orthogonal directions [18].

2.1.2 Monoclinic Materials

In monoclinic materials, there is a symmetry plane with respect to the alignment of
the fibers. If there is a one plane of symmetry, the independent elastic constants of
the compliance matrix are reduced to 13. Material symmetry indicates that the

material and its mirror images about the plane of symmetry are identical [17].
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Figure 2 . 2 lllustrations of Fiber-Reinforced Monoclinic Materials [19]

In Figure 2.2(a), fibers are oriented parallel to the x;-x, plane, which is the plane of
symmetry. In Figure 2.2(b), fibers are oriented parallel to the plane of symmetry and
in Figure 2.2(c) the fibers are in the plane of symmetry and perpendicular to the

plane of symmetry [18].

The compliance matrix for monoclinic materials is obtained by reducing the
compliance matrix of generally anisotropic materials. Because of the symmetry plane
the out of plane shear strains does not exist, therefore the S41, S42, Ss2, S43, S53,
Se4 , Ses elements of the compliance matrix is zero. Similarly, due to the symmetry of
the compliance matrix, the Sy1, S42 , Ss2, Saz, Ss3, Sea ,» Ses elements are also

equal to zero. Then, the compliance matrix can be rewritten as follows:
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511 512 513 0
512 522 523 0 0 526
513 SZ3 533 0

510 0 0 Sy Sis O

0
IS, Sye Ss¢ 0 0  Seel (2.2)

2.1.3 Orthotropic Materials

Orthotropic materials have three mutually perpendicular planes of symmetry with
respect to the orientation of the material. For orthotropic materials, the compliance

matrix has nine independent elastic constant as seen following compliance matrix:

Sty Sz Sz 0 0 0
Sz Sz Sz 0 00
R A
0 0 0 Su 0 0
0 0 0 0 S 0
0 0 0 0 0 Sel (2.3)

Fibers oriented in a rectangular array in a single lamina constitute an example of an

orthotropic material.

2.1.4 Transversely Isotropic Materials

A transversely isotropic material has a plane of material isotropy in one of the planes
of an orthotropic material. This situation can occur when the unidirectional fibers are
oriented in the x; direction. Because of the material isotropy, the compliance matrix
for transversely isotropic materials has five independent elastic constants.

Furthermore, the following simplifications can be valid because of the isotropy.

E, =E; (2.4)
G13 = G12 (2-5)
V13 = V12 (2.6)

Since, for the isotropic material, the shear modulus is expressed as:
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_E
T 214 v) (2.7)

G
Therefore, the shear modulus for a material that shows isotropic in the plane x, and
X3, is written as follows:

Gpg = 2

By applying the simplification to the compliance matrix for transversely isotropic

material, the compliance matrix takes the following form:

Si1 Siz Sio 0 0 o0
Sz Sy Sis 0 0 0
g[Sz Sz Sz 0 0 o0
0 0 0 2(S5-S3) 0 0
0 0 0 0 Ses O
0 0 0 0 0  See (2.9)

2.1.5 Isotropic Materials

For isotropic materials, every plane is a plane of symmetry. Material symmetry

planes are shown in Figure 2.3.

»
it

xi.e—"' = T a

Figure 2 . 3 Material with three planes of symmetry [19]
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Due to the symmetry planes, engineering constants can be simplified as follows:

E,=E,=E;=E (2.10)

Gp3=G13=01, =G (2.11)

Va3 = Vi3 = V12 =V (2.12)
E

C=2a (2.13)

The compliance matrix for isotropic materials has 3 independent elastic constants

and can be written as follows:

i1 Siz Siy 0 0 0
S, Sii Sis 0 0 0
S, Sip Sis 0 0 0
5=[0 0 0 2(54-S) 0 0
0 0 0 0 2(S11 — Si3) 0
0 0 o 0 0 2(S11 — Sip)] (2.14)

2.2 Plane Strain Condition

In engineering problems, there are situations considering the change in the stress
and strains. For plane strain condition, along direction xs;-axis or z-axis the stresses
and strains do not change. However, the stresses and strains can still vary in planes
perpendicular to the xs-axis or z-axis. This circumstance is called the plane strain
condition. For instance, the plane strain condition for isotropic structures creates
planes perpendicular to the xs;-axis or z-axis. This situation may occur also
considerably far from the boundary of a large homogenous body exposed to uniform

load along the longitudinal axis.
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Figure 2 . 4 Surface and body forces that may be applied under plane-strain
condition. The applied forces must be uniform along the longitudinal axis and must

be in equilibrium for each segment [19]

From the definition of the plane strain condition, the strains do not change along the

longitudinal axis. Therefore, following expressions are valid for the plane stain

condition.

Exx=Exx (X,¥) (2.15)
Exy=€Exy (X, ¥) (2.16)
€yy=€yy (X, ) (2.17)
€=VYrz=Vxz=0 (2.18)

2.3 Plane Stress Condition

Under plane stress condition, normal stresses in z-direction and out of plane shear
stresses in the x-y plane are zero. Plane stress condition can be used for thin plates.
An example of this situation occurs in fiber-reinforced materials. If the fibers are
parallel to the x-y plane and the plate is loaded along the edges, plane stress

condition can be applied. This results from the fact that the forces are parallel to the

16



plane of plate and distributed uniformly over the thickness [19]. Figure 2.5 shows the

stresses under plane stress conditions and the zero stress values are as follows:

0, =0 (2.19)
Ty, =0 (2.20)
To, =0 (2.21)

Figure 2 .5 The stresses under plane-stress condition [19]

2.4 Bases Change Formulas

Material properties are usually used in a basis with coordinate axes aligned with the
material symmetry planes. While dealing with the anisotropic materials it is
frequently required to transform compliance matrices to a coordinate system that is
oriented to the boundaries of the structure. In this study, the compliance matrices
are recalculated considering the crack front location in the three dimensional
orthotropic body by using these bases change formulas. Following formulation can

be used to change the basis of the material properties [20].

Supposing that compliance tensors are given in a basis, {e;,e;,e3} , and the
transformation is applied to the second basis, {m;,m,, ms}. The transformation

tensor Q in matrix form can be written as follows:
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[Q] = [moer mpe; mye3

mge; Mmze; Mges

mieq mie, mle3]

(2.22)

The basis change expressions for the elasticity tensor in matrix form can be written in

the following form:

cM = Kc@KT (2.23)

Where the basis change matrix can be defined as

@ 2@
K:[K 2K ]

K® K® (2.24)
L _
K’ = Qi (2.25)
Ki(jZ) = Qimod(j+1,3) Qimod(j+2,3) (2.26)
Ki(jg) = Qmod(i+1,3)j Qmod(i+2,3)j (2.27)
K% =q . . Q . .
ij — **mod(i+1,3)mod(j+1,3) **mod(i+2,3)mod(j+2,3)
+ Qmod(i+1,3)mod(j+2,3) Qmod(i+2,3)mod(j+1,3) (2-28)
The expressions are for i,j = 1..3 and the modulo function yields
. i I3
mod(i,3) = {i —3 >3 (2.29)
For compliance tensor, the basis change expression is as follows:
s = g-1g(e)g-1 (2.30)
where,
KT = KO g@
T 2k® K@ (2.31)

For a special case of rotation through an angle 8, in a counterclockwise sense about
the eq, e,, e3 axes, respectively, the rotation matrix can be defined as the following

form:
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1 0 0 0 0 01
0 c¢? s? 2cs 0 0
0 s2 ¢ —=2¢s 0 O
0 —cs ¢s c>—s> 0 O
0 0 0 0 c -S
L0 0 0 0 s c
1 0 0 0 0 017
0 c¢? s? 2cs 0 0
0 s2 ¢*> —=2c¢s 0 O
0 —cs ¢s ¢c>—=s> 0 O
0 0 0 0 c -S
L0 0 0 0 s c-
1 0 0 0 0 01
0 c¢? s? 2cs 0 0
0 s2 ¢ —=2¢s 0 O
0 —cs ¢s c>—s> 0 O
0 0 0 0 c -S
0 0 o 0 s ¢ (2.32)

where ¢ = cosf and s =siné6.

In this study, the compliance matrices are recalculated taking into account the crack

front location in the orthotropic body by using these bases change formulas.
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CHAPTER 3

FINITE ELEMENT METHOD, THE ASYMPTOTIC FIELD EXPRESSIONS
AND THE DISPLACEMENT CORRELATION TECHNIQUE

3.1 The Finite Element Method

The finite element model is generated step by step ANSYS analysis procedure. The
three-dimensional model is created with the help of the ANSYS Parametric Design
Language (APDL). The Mechanical APDL application is very useful, especially when
working with linked analysis (e.g., thermal-mechanical analysis, substructuring of

submodeling, etc.)

Figure 3 .1 Polar coordinates at the crack front region [21]

Fracture mechanics provides a tool to evaluate the criticality of the cracks in

structures. The main attainment in the theoretical foundation of linear elastic
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fracture mechanics was the introduction of the stress intensity factor (K) as a
parameter for the intensity of stresses close to the crack tip and this parameter is

related to the energy release rate [22].

The wide range of structural configurations, loading conditions and crack geometries
with the material property changes make the analytical prediction of the stress

intensity factors (SIFs) complicated.

Load Surface

Free
Surface

Symmetry

Figure 3. 2 Finite element model of the three-dimensional structure

In this study, analysis of the three-dimensional fracture problems is carried out to
obtain linear elastic fracture mechanics parameter, namely mode-| stress intensity
factors. Stress intensity factors (SIFs) can be calculated in the ANSYS APDL software
and other computer programs. To evaluate the stress intensity factors, there are a

number of methods available for cracked bodies.
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Figure 3 . 3 Elements at the crack front region (Surface crack geometry, quarter
model)

Figure 3 . 4 Elements at the crack front region (Internal penny-shaped geometry, half
model)

There are two ways of creating the model in the finite element programs. First of
them is to have the two-dimensional and three-dimensional solid model of the
geometry. It is possible to mesh this solid model and to generate nodes and elements
for this geometry. The other method is to create the model directly from the nodes.
In this method after generating the nodes, the elements are created from these
nodes and the body is created by merging these elements together. In this study,

second method is preferred to generate the model of the geometry. The generated
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finite element model of the three dimensional structure is shown in Figure 3.2. The

generated meshes are given in Figure 3.3 and in Figure 3.4.

Second step is to mesh the model to obtain the elements in order to compute the
displacements. Meshing is the important step in the analysis; the crack front region,
which is the most critical region in the analysis, is defined in the meshing procedure.
Since small deformations are taken into account in the calculations, fine mesh should
be used in the crack front region to obtain reliable results. There are three steps to
mesh the model. Firstly, element attributes are defined. Secondly, mesh controls are

specified and lastly mesh is generated.

Element attributes are characteristics of the finite element model that have to be

established prior to meshing. These element attributes include:

-Element types
-Real constants
-Material properties

-Section properties

The element type is important selection that determines the degree of freedom set
and element shape. ANSYS has a library of over 170 element types. In this study, as

an element type MESH200, SOLID87 and SOLID92 are used.

MESH200 is a “mesh-only” element, and it does not include in the solution. It is used
for temporary storage elements when the analysis physics has not been defined. It is

also used for multistep meshing operations. In extrusion process, the lower
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dimensionality mesh is needed for the creation of a higher dimensionality mesh;

MESH200 is required for these type operations.

SOLID87 is a three-dimensional 10-node tetrahedral thermal solid element type and
this element type is preferred to model irregular meshes. This type of element has
one degree of freedom. At each node of the element, temperatures can be defined.
The element is suitable for three-dimensional steady state or transient thermal
analysis. In this study, the model is analyzed both thermally and structurally;
therefore, the element type is changed from SOLID87 to SOLID92, which is the

equivalent structural element. They are shown in Figure 3.5.

Figure 3.5 SOLID87 and SOLID92 Geometry [23]

SOLID92 is three-dimensional 10 node tetrahedral structural solid element type and
is well suited with irregular meshes. Different from the SOLID87 type, it has three
degrees of freedom at each nod. Translations of nodes in x, y and z directions can be
defined at each node. The element type shows quadratic displacement behavior and

has plasticity, creep, swelling and stiffening capabilities.
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3.2 The Asymptotic Fields at the Crack Tip

In this section, asymptotic fields for the orthotropic materials are studied. The solid
body is considered as a plane, therefore, the formulation depends only on the x and y

coordinates. These asymptotic field expressions can be used for orthotropic materials

[1].

Considering the Hook’s Law, the equilibrium equations can be written by taking the
body forces equal to zero. Linear operators L,, L; and L, can be expressed in terms
of material constants. Two coupled partial differential equations give the solution
such that:

(L,Ly —L2)F=0 (3.1)

Closely associated with these operators are four polynomials:

12 (X) = Sszz - 2845X + S4_4 (3.2)
I3(x) = Sy5%® — (S14 + Ss56)x* + (S5 + Sa6)X — S4 (3.3)
14(X) = 511X4 - 2816X3 + (2812 + S66)X2 - 2526X + Szz (34)
le(x) = L)1) = [13(x)]? (3.5)

The characteristic roots of the l4(x) function govern the structure of the stress
functions. The roots are expressed with pu and they are always complex numbers,
which will occur in pairs of complex conjugates [24]. There are six roots (u), three
distinct roots are chosen; such that imaginary parts of the roots are greater than

zero. (Im(p) > 0)

By defining A; = _13(“1)/12(“1)' the displacement and stress equations along the
crack tip can be obtained as explained in [1]. The coordinate system at the crack

front region is given in Figure 3.6.
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P (n,b)

Crack faces

N\ 8

Figure 3 . 6 The semi-infinite crack and associated coordinate system [1]

The stress and strain displacements can now be written in terms of the stress
intensity factor, pj; and Nj;, since the mode-| stress intensity factor is studied and the
direction is taken in the direction of b axis, which is the direction of the tensile mode

where the crack surfaces move directly apart.

In this study, only the mode | stress intensity factor (K;) will be examined, therefore,
mode Il and mode Il stress intensity factors will be assumed as zero. (Ky =
0 and Kjj; = 0). There are also some special cases where these results are
inapplicable. For these cases, the formulations and the solution method will be

explained.

3.2.1 Anisotropic Degeneracy Cases

There are several ways, which make the above formulations inapplicable. One of

them occurs when any two roots of the characteristic equation (uj) are equal to

each other. Therefore, the inverse of the Nij matrix does not exist. The other

situation occurs when the 1,34 4(x) functions are identically zero. These types of
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situations, where the results for anisotropic case vanish, are called anisotropic

degeneracy situations [1].

3.2.1.1 Anti-Plane Shear and Plane Strain Decoupling Case

Degeneracy occurs if the anti-plane shear and plane strain displacements decouple.
This situation exists where the following compliance matrix expressions are equal to
zero [1]:

S14 =S4 = S15 = S35 = S46 = S56 = 0 (3-6)

In anti-plane shear and plane strain displacements decouple situation, matrix form of

the compliance matrix is as follows:

Sll Slz Sl3 0 0 516
521 SZZ 523 0 0 526
S31 S32 S33 S34 S35 S36
0 0 Sg Si Ssc O
0 0 Ss3 Ss4 Sss5 O
1Sy Sez Ses 0 0  Sel (3.7)

S =

In this situation 13(x), and consequently, L; are equal to zero. Therefore the

characteristic roots u, and p, are taken from the equation 1,(x) =0 such

that Im(ul'z) > 0.

The pj; matrix, which depends on the material properties and the characteristic root,

is defined as follows:

P1a = S11MZ + S12 — Sisbl, (3.8)
P2a = S12Mg + S22/Hy — S26 (3.9)
P33 = Sa5 — Saa/Hy, (3.10)
P31 = P32z = P13 = P23 =0 (3.11)

Matrix form of p;; and Njj,which consists of the characteristics roots, are in the

following manner:
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pi1 Pz O
p=|pP21 P2z O

o 0 P (3.12)
1 1 0
N= _Ul _HZ O ]
o0 0 - (3.13)
Open forms of the displacement equation for mode | type of loading is given as:
u, = (g) Re {p21(N11_1K1+N12_1KI)\/(cos6 + W, sin 6)}
" ' (3.14)

Because of anti-plane shear and plane strain displacement decoupling the above
formulation should be used in calculation of the stress intensity factors. The

anisotropic expressions are no longer valid [1].

3.2.1.2 The x-y Plane Isotropy Case

The other case for anisotropic degeneracy situation occurs when the body is isotropic
in the x and y planes. There are actually additional situations occurred, such as the
anti-plane shear and the plane strain displacement case. The two of roots of the
characteristic equation are equal to each other (ul =W, = 0), therefore, the
inverse of the Nj; does not exist. Considering the x-y plane isotropy, the elastic
constants should be defined. There are five independent elastic constants, namely
elastic modulus, Poisson ratios, and shear modulus. (E, E,, v, v, and G, ) The

relationship between the elastic constants and the compliance matrix is as follows

[1]:

S14 = S24 = S15 = S5 = S16 = Sz6 = S46 = Ss6 = Sa5 = 0 (3.15)
1
S11= S_z‘f ~E (3.16)
S12 =+ (3.17)
2(1+v)
66 =" | (3.18)
1
Sip=Sce = —
44 55 Gz (3_19)
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1
513 =75, (3.20)

S13 = Sz3 = E_Z (321)

Considering above relation, compliance matrix for a transversely isotropic body can

be written as follows:

it -V =V,
E E 0 0 0
-V 1 -v,
T £ 5 °° 0
-V, =V, 1
| B E (1’ ° 0
0 0 0 G, 0 0
1
0 0 0 o0 G, 0
2(1+v)
(o0 0 0 0 = (3.22)

The asymptotic expressions for displacements and stress components are same for

the isotropic case, and they are given in the [25] for mode | stress intensity factor as

follows:
[ul] _ ﬁ\/z [COS(G/Z)(K — 1+ 25sin?(0/2))
uzl ™ 26N 2nlsin(8/2)(k + 1 — 2 cos?(6/2)) (3.23)

In the above displacement expression, k value is k = (3 — 4v) for plane strain and
kK = (3 —v)/(1+v) for plane stress. In addition, shear modulus can be expressed in
terms of modulus of elasticity. Then, the displacement formulation can be rewritten
for plane strain condition [1].

[ul] _(1+v) gK cos(6/2)(1 — 2v) + sin(8/2))
wl™ E n o |sin(8/2)(2(1 — v) — cos2(8/2)) (3.24)
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3.3 The Displacement Correlation Technique (DCT)

In the finite element analysis, displacements of the nodes are computed in both
mechanical and thermal loading cases. The coordinates of the nodes of the deformed
geometry and undeformed geometry are used as inputs for the displacement
correlation technique (DCT). The displacement correlation technique can be used to

compute mode |, mode Il and mode lll, stress intensity factors.

A three-dimensional crack front, which is embedded in the composite medium, is
given in Figure 3.7. Arc length of the crack front is given as s, and the local coordinate
axes are located at point P, the components of the local coordinate axes are given in
the figure with parameters tangential (t), normal (n) and binormal (b) directions. In
addition to these, parameters (r) and (6) are the polar coordinates in the normal

plane.

Figure 3 . 7 Local coordinate system at the crack front region [26]

The displacement component u, (7, ) is evaluated at point P on the deformed shape
of the crack surface. For mode | type SIF calculations, the displacement component is
required. C(6) is function of (8) and also contains material properties. The

displacement parameters can be expressed as follows:

2r
up(r,8) = C(O) K (s) |— (3.25)
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For isotropic material, the C(8) value can be replaced with the following expression:

(o) = Wsin (g) [2(1 — Vyp) — coS? (g)] (3.26)

For orthotropic materials, C(8) value should be calculated as follows:

C(0) = Re {pu(Nll_l)\/(cos 6 + p,sin6)

+ pzz(N21_1)\/ (cos® + “zSine)} (3.27)

The material properties are taken from where the point P is located. Considering the
crack front, a section is taken parallel to the normal plane, which consists of normal
and binormal axes. In Figure 3.8, three nodes constitute the edge of a collapsed 20-
node quarter point brick element. These points that are taken along the deformed
crack surface placed with a space ratio, R, = R3/4. At the point, where, 8 =T,

Equation 3.25 can be expressed as

2r
u, (r,m) = C(m) ?KI (3.28)

Figure 3 . 8 Deformed shape of the crack surface (symmetric)[26]
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The mode | stress intensity factor can be calculated by using the above equation and
can be expressed as

_m/2 [lim {ub (r, n)}]
r—0

K=Tw =

(3.29)

In the Equation 3.29, suppose that limit term is linear, therefore, it can be written as

follows:

up(r,m)
—\/; = A+ Br (3.30)

There are two conditions: uy = up, at r = R, and u, = uyz at r = R3. After

applying these conditions to the Equation 3.30, one can obtain below equations.

u
A+BR, =22
JRa (3.31)
u
A+BRy; =2
JRs (3.32)

By using above equations the constant A can be expressed as

3/2 3/2
Ry upy; — Ry " ups

A=
JR2/R3(R; — R;) (3.33)

Finally, the mode | stress intensity factor can be computed at the crack tip, where r
goes to zero. (r - 0)

/2

~cn)

3/2 3/2
Ry upy; — Ry "up3

VR2[R3(R; — R,)

K;

(3.34)

The above equation can be used if the crack region is symmetric. The mode | stress
intensity factor can now be computed by using Equation 3.34, after obtaining the

displacements of the crack front nodes.
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For unsymmetrical cases, such as the fully anisotropic materials and unsymmetrical
loading cases, full model is used for mode | stress intensity factor calculations. Figure

3.9 shows a complete crack model to apply the displacement correlation technique.

Figure 3 . 9 Deformed shape of the crack surface (non symmetric)[27]

For unsymmetrical case, substituting & = —m into Equation 3.25 yields

2r
up(r,—m) = C(=m) | —K (3.35)

Subtracting Equation 3.28 from Equation 3.35 the below expression is obtained.

2
(1) = up(r, =) = [C() = C(-m)] | =K,

(3.36)
Since C (m)expression is equal to —C(—m), following expression is obtained
/2| (up(r,m) —u,(r, —m)
K; = lim
2C(m) |r-0 T (3.37)

Similarly, the mode | stress intensity factor can be computed at the crack tip, where r

goes to zero (r — 0) as follows.
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K — Jm/2 RS/Z(uqu — Upzq) — R23/2 (Up3u — Up3a)
"7 2cm) JR2y/R3(R; — Ry) (3.38)

The mode | stress intensity factor can be evaluated for non-symmetrical cases by

using Equation 3.38, after obtaining the displacements of the crack front nodes.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, sample results generated are presented and compared to the

corresponding results in the literature.

First, the code for three-dimensional model is verified comparing with the results of
Walters et al. [24]. After this verification, present study percent differences are
determined comparing with Newman and Raju equations [28]. Thus, the accuracy of
the numerical solution technique is checked out. After obtaining results and checking
the accuracy of finite element solution method, the code is used to obtain
normalized mode-l stress intensity factors for three-dimensional structures.
Anisotropic asymptotic stress and strain fields are embedded to the code for three
dimensional model. The three-dimensional edge crack problem is solved for various
orthotropic material properties. These results are obtained for orthotropic materials
under mechanical loading conditions such as uniform tension and fixed grip tension.
Another analysis is done for polystal material under thermal loading condition. Three

dimensional transient thermal analysis results are also presented in this section.

4.2 Comparisons to Results of Walters et al.

In this section, the results of uniform tension on three-dimensional isotropic

structure analysis are compared to the results given by Walters et al. [24]. These
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comparisons are made to verify the three-dimensional surface semi-elliptical edge
crack model. Therefore, the crack geometry parameters such as, crack depth,
thickness of the plate, exponentially varying Young’s modulus and Poisson’s ratios
are taken same with the reference values. The selected ranges of specimen and crack
geometries are exposed to mechanical loading. In this type of loading, the body is
exposed to uniform stress o; at the edge of the end of longitudinal axis of the
structure, i.e. stress is applied at the ends y = %1. In Figure 4.1 - 4.2 the geometry of
the model is given. Presented results show normalized mode-I stress intensity factors
for a/c = 2 semi elliptical crack geometry with variable crack depth to thickness
(a/h =0.2,0.4,0.6 and 0.8). As a material property, the Poisson’s ratio is taken as
0.25. Furthermore, exponentially varying Young’s moduli are used such as,

E(h)/E; = 0.2,1.0 and 5.0. Elastic modulus variation in the structure is given as

E(x) = E;exp (Bx) (3.39)

As a result of these analyses, percent differences are found and the accuracy of finite

element solution procedures is verified.

— — < 21
—>|a |« | 2c>
/
< h 3 < 2b o
v
h l l l l \‘f W R l l l l \|f' i hd
T; Ty

Figure 4 . 1 Material subjected to uniform tension at the ends
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Figure 4 . 2 Top view of the material
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Results of the present study, the results of reference [24] and the percent differences

are given in Table 4.1 - 4.10.

Table 4 . 1 Comparison of the normalized mode | stress intensity factors for uniform
tension

29/ a/h=0.2, a/c=2, E(h)/E;=0.2
Walters et al. (2004) Present study % Diff.
0.000 0.612 0.642 4.947
0.125 0.623 0.629 0.982
0.250 0.608 0.615 1.211
0.375 0.595 0.602 1.214
0.500 0.574 0.582 1.456
0.625 0.547 0.554 1.241
0.750 0.516 0.521 0.914
0.875 0.486 0.492 1.244
1.000 0.473 0.480 1.408
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Table 4 . 2 Comparison of the normalized mode | stress intensity factors for uniform

tension
2¢/m a/h=0.2, a/c=2, E(h)/E;=1

Walters et al. (2004) Present study % Diff.
0.000 0.763 0.782 2.552
0.125 0.755 0.754 0.177
0.250 0.716 0.713 0.379
0.375 0.677 0.676 0.105
0.500 0.637 0.637 0.014
0.625 0.595 0.594 0.145
0.750 0.554 0.551 0.494
0.875 0.516 0.517 0.200
1.000 0.499 0.503 0.745

Table 4 . 3 Comparison of the normalized mode | stress intensity factors for uniform

tension
2¢ /1 a/h=0.2, a/c=2, E(h)/E;=5.0
Walters et al. (2004) Present study % Diff.

0.000 0.615 0.646 5.008
0.125 0.636 0.638 0.305
0.250 0.625 0.627 0.241
0.375 0.610 0.612 0.380
0.500 0.588 0.591 0.555
0.625 0.561 0.562 0.220
0.750 0.529 0.529 0.000
0.875 0.499 0.500 0.243
1.000 0.484 0.488 0.776
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Table 4 . 4 Comparison of the normalized mode | stress intensity factors for uniform
tension

2¢/m a/h=0.5, a/c=2, E(h)/E;=0.2
Walters et al. (2004) Present study % Diff.
0.000 0.736 0.772 4.925
0.125 0.746 0.753 0.891
0.250 0.719 0.727 1.106
0.375 0.690 0.698 1.115
0.500 0.651 0.659 1.172
0.625 0.606 0.612 0.913
0.750 0.561 0.564 0.457
0.875 0.522 0.526 0.709
1.000 0.506 0.510 0.801

Table 4 . 5 Comparison of the normalized mode | stress intensity factors for uniform
tension

29/ a/h=0.5, a/c=2, E(h)/E;=1.0
Walters et al. (2004) Present study % Diff.

0.000 | 0.782 0.807 3.162
0.125 | 0.774 0.775 0.092
0.250 | 0.731 0.730 0.157
0.375 | 0.689 0.689 0.029
0.500 | 0.646 0.647 0.144
0.625 | 0.603 0.602 0.185
0.750 | 0.560 0.557 0.468
0.875 0.521 0.522 0.221
1.000 | 0.504 0.507 0.691
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Table 4 . 6 Comparison of the normalized mode | stress intensity factors for uniform

tension
2¢/m a/h=0.5, a/c=2, E(h)/E;=5.0
Walters et al. (2004) Present study % Diff.

0.000 0.596 0.647 8.492
0.125 0.656 0.661 0.687
0.250 0.677 0.680 0.413
0.375 0.685 0.688 0.429
0.500 0.679 0.682 0.402
0.625 0.659 0.659 0.074
0.750 0.629 0.627 0.289
0.875 0.595 0.596 0.194
1.000 0.580 0.582 0.393

Table 4 . 7 Comparison of the normalized mode | stress intensity factors for uniform

tension
29/ a/h=0.8, a/c=2, E(h)/E;=0.2
Walters et al. (2004) Present study % Diff.

0.000 0.849 0.875 3.01
0.125 0.836 0.837 0.13
0.250 0.775 0.779 0.46
0.375 0.712 0.716 0.50
0.500 0.643 0.647 0.63
0.625 0.577 0.579 0.43
0.750 0.519 0.519 0.05
0.875 0.475 0.477 0.33
1.000 0.457 0.460 0.59
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Table 4 . 8 Comparison of the normalized mode | stress intensity factors for uniform
tension

2¢/m a/h=0.8, a/c=2, E(h)/E;=1.0
Walters et al. (2004) Present study % Diff.
0.000 0.823 0.841 2.164
0.125 0.806 0.803 0.365
0.250 0.755 0.751 0.587
0.375 0.707 0.705 0.343
0.500 0.659 0.658 0.137
0.625 0.612 0.610 0.392
0.750 0.566 0.562 0.713
0.875 0.525 0.525 0.047
1.000 0.507 0.509 0.460

Table 4 . 9 Comparison of the normalized mode | stress intensity factors for uniform
tension

29/ a/h=0.8, a/c=1/3, E(h)/E;=1
Walters et al. (2004) Present study % Diff.

0.000 1.378 1.305 5.272
0.125 1.244 1.271 2.198
0.250 1.300 1.319 1.436
0.375 1.380 1.395 1.121
0.500 1.441 1.456 1.053
0.625 1.476 1.489 0.863
0.750 1.485 1.505 1.354
0.875 1.483 1.500 1.153
1.000 1.481 1.497 1.091
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Table 4 . 10 Comparison of the normalized mode | stress intensity factors for uniform
tension

2¢/m a/h=0.8, a/c=2, E(h)/E;=5.0

Walters et al. (2004) Present study % Diff
0.000 0.602 0.665 10.448
0.125 0.698 0.700 0.266
0.250 0.748 0.749 0.098
0.375 0.774 0.776 0.215
0.500 0.772 0.775 0.392
0.625 0.746 0.744 0.295
0.750 0.700 0.694 0.804
0.875 0.648 0.648 0.061
1.000 0.625 0.627 0.355

Taking into account the results of the Table 4.1-4.10, the largest percent difference is
2.198% excluding the differences at the free surface ¢ = 0. Since the square root
singularity is not valid at the free surface, where the crack front intersects with outer
surface. In the previous researches, it is substantiated that free surface effect is
crucial only in a small zone around the crack front [29]. Hence, the free surface effect
is not taken into account. Instead, the mesh of crack region is refined. Because of this
phenomenon percent differences at the crack tips are high, considering other crack
parametric polar angles. Considering the tabulated results, normalized mode | stress
intensity factors of the three-dimensional surface crack problems are given in Figure
4.3- Figure 4.11. In these figures, the variation of the normalized mode | stress
intensity factors are presented with respect to normalized polar angle (2¢/m) for

different crack to thickness ratios and varying elastic modulus.
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Figure 4 . 4 Uniform tension for a/h=0.2, a/c=2, E(h)/E1=1.0
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Figure 4 . 5 Uniform tension a/h=0.2, a/c=2, E(h)/E1=5.0
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Figure 4 . 6 Uniform tension for a/h=0.5, a/c=2, E(h)/E1=0.2
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Figure 4 . 8 Uniform tension for a/h=0.5, a/c=2, E(h)/E1=5.0
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Figure 4 . 10 Uniform tension for a/h=0.8, a/c=2, E(h)/E1=1.0
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Figure 4 . 11 Uniform tension for a/h=0.8, a/c=2, E(h)/E1=5.0

In all geometries, all of the percent differences between the results of [24] and the
present study, the accuracy of the three-dimensional finite element model and the

numerical implementation of the asymptotic field expressions are acceptable.

4.3 Comparisons to Newman and Raju Equations

In this type of loading, there dimensional isotropic body exposed to uniform stress a;
at the edge of the end of longitudinal axis of the structure, i.e. stress is applied at the
ends y = +l. Elastic modulus of the isotropic material is taken as 105.8 GPa and the
Poisson’s ratio is taken as 0.298. These properties are taken at a temperature of 300
K for metallic alloy (Ti-6Al-4V). Because of this uniform stress at the edges,
deformation and the strain displacements are calculated to obtain normalized stress
intensity factors. The structure subjected to uniform tension is shown in Figure 4.12

and Figure 4.13.

47



a; / T,
N Y I R
T
l Isotropic Material
E=105.8 GPa
: v=0.298 '
% 1 - — 21
>la |« l&2¢ >
I
< h > < 2h >
hd
b bhddad LELELddd
a0, a;

Figure 4 . 12 Isotropic material subjected to uniform tension at the ends y = +1
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Figure 4 . 13 Parametric angle (¢) and the corresponding point P on the semi elliptical
crack front.

The Mode | type normalized stress intensity factors are tabulated and percent
differences between the reference results [30] are presented. In order to verify the
three-dimensional model and the accuracy of the results, normalized mode-I stress
intensity factors of the homogeneous isotropic structure are compared to the
reference results. Present study results are obtained from the isotropic degeneracy

case of the anisotropic asymptotic field expressions given in Chapter 3.2. Sample
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calculation steps are given in Appendix A. Asymptotic field displacement constant

C(0) is calculated and this value is used in the finite element code.

Results of the present study, the results of reference [30] and the percent differences

are given in Table 4.11 — Table 4.12.

Table 4 . 11 Comparison of the normalized mode | stress intensity factors for three-
dimensional homogeneous plate subjected to uniform tension

2¢ /1 a/h=0.4, a/c=1
Present study results Newman and Raju (1981) % Diff
0.0000 1.120 1.146 2.226
0.1250 1.146 1.109 3.339
0.1875 1.124 1.094 2.739
0.2500 1.107 1.081 2.400
0.3125 1.094 1.070 2.230
0.3750 1.084 1.061 2.126
0.4375 1.076 1.055 2.015
0.5000 1.070 1.050 1.894
0.5625 1.065 1.046 1.785
0.6250 1.061 1.044 1.644
0.6875 1.058 1.042 1.497
0.7500 1.055 1.041 1.330
0.8125 1.053 1.041 1.179
0.8750 1.052 1.041 1.051
0.9375 1.051 1.041 0.956
1.0000 1.050 1.041 0.916
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Table 4 . 12 Comparison of the normalized mode | stress intensity factors for three-
dimensional homogeneous plate subjected to uniform tension

2¢ /7 a/h=0.8, a/c=1

Present study results Newman and Raju (1981) % Diff
0.0000 1.109 1.152 3.678
0.1250 1.148 1.113 3.152
0.1875 1.126 1.098 2.553
0.2500 1.110 1.084 2.354
0.3125 1.098 1.073 2.303
0.3750 1.084 1.064 1.885
0.4375 1.074 1.057 1.583
0.5000 1.069 1.052 1.631
0.5625 1.065 1.049 1.608
0.6250 1.062 1.046 1.539
0.6875 1.059 1.044 1.402
0.7500 1.057 1.044 1.331
0.8125 1.057 1.043 1.319
0.8750 1.054 1.043 1.049
0.9375 1.053 1.043 1.010
1.0000 1.056 1.043 1.299

In Tables 4.11 and 4.12 three-dimensional crack models and numerical solution
technique are verified. The stress intensity factors of the models are compared with
the Raju et al. [3]. The percent differences can indicate that the three-dimensional
finite element model appropriate to calculate stress intensity factor of three-

dimensional structures with semi-elliptical surface cracks.

Considering Table 4.11, for this crack dimensions maximum percent difference is
3.339% at the polar angle ¢ = 1.250. Taking into account Table 4.12 results,
maximum percent difference is 3.678% and it is calculated at the free surface. These
results are acceptable results. Thus, verification of the three-dimensional finite
element model is accomplished. Furthermore, the asymptotic expressions are also

verified with the result presented in Table 4.11 and in Table 4.12.
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With these comparisons not only the finite element models are verified, but also the
asymptotic expressions are also verified with the result presented in Table 4.11 and
Table 4.12. Therefore, analysis for orthotropic materials can be accomplished with

this model and asymptotic field constant embedded in the finite element software.

Tabulated results are shown in Figure 4.14 and Figure 4.15.
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Figure 4 . 14 Uniform tension for a/h=0.4, a/c=1
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Figure 4 . 15 Uniform tension for a/h=0.8, a/c=1

4.4 Comparisons to Kirilyuk

In this section, three-dimensional orthotropic model and asymptotic field expressions
are verified comparing with the internal three-dimensional penny-shaped crack in an
infinite orthotropic medium as stated in the reference [16]. The geometry of the

model is given in Figure 4.16.

The stress intensity factors are analyzed for an orthotropic material with a circular
crack in the x-y plane in an infinite medium. In the analysis, four types of materials
are considered with the elastic properties given in Table 4.13. In this case, only the

half of the geometry is modeled.
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Figure 4 . 16 Orthotropic infinite medium subjected to uniform tension at the ends
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Table 4 . 13 Orthotropic material properties used in numerical examples (elastic

moduli units given in Pa) [16]

Mat. |

Mat. Il Mat. Il Mat. IV
. 55.90 x10° 36.10 x10° 35.21 x10° 17.55 x10°
E, 13.73 x10° 26.28 x10° 28.73 x10° 12.85 x10°
a 13.73 x10° 10.79 x10° 17.95 x10° 4.22 x10°
sy 0.28 0.11 0.18 0.15
Vyz 0.40 0.43 0.37 0.31
Vxz 0.07 0.41 0.16 0.08
Gy 5.59 x10° 4.90 x10° 7.45 x10° 2.75 x10°
Gy, 4.90 x10° 4.02 x10° 6.18 x10° 2.35 x10°
2 5.59 x10° 4.41x10° 6.47 x10° 2.35 x10°

Tabulated results are given in Table 4.14 — Table 4.17.
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Table 4 . 14 Comparison of penny-shaped crack in orthotropic medium results with
Kirilyuk [16]

Angle (deg.) Mat. | -
Present Study K, [16] % Diff
0.0 1.298 1.250 3.862
3.2 1.294 1.249 3.571
15.6 1.235 1.220 1.248
28.0 1.175 1.180 0.465
40.4 1.134 1.130 0.344
52.8 1.107 1.090 1.520
65.2 1.086 1.060 2.785
77.6 1.117 1.045 3.646
90.0 1.134 1.040 4.403

Table 4 . 15 Comparison of penny-shaped crack in orthotropic medium results with
Kirilyuk [16]

Angle (deg.) Mat. I -
Present Study K, [16] % Diff
0.0 1.095 1.090 0.449
3.2 1.093 1.089 0.3787
15.6 1.059 1.070 1.0303
28.0 1.036 1.055 1.793
40.4 1.027 1.050 2.156
52.8 1.039 1.055 2.188
65.2 1.065 1.090 2.278
77.6 1.195 1.210 1.266
90.0 1.453 1.440 0.917
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Table 4 . 16 Comparison of penny-shaped crack in orthotropic medium results with
Kirilyuk [16]

Angle (deg.) Mat. Il -
Present Study K, [16] % Diff
0 1.155 1.165 0.781
3.2 1.154 1.164 0.858
15.6 1.129 1.145 1.356
28 1.106 1.128 1.960
40.4 1.094 1.118 2.181
52.8 1.088 1.110 1.986
65.2 1.089 1.111 1.988
77.6 1.100 1.116 0.143
90 1.112 1.119 0.666

Table 4 . 17 Comparison of penny-shaped crack in orthotropic medium results with
Kirilyuk [16]

Angle (deg.) Mat. IV -
Present Study K, [16] % Diff
0.0 1.124 1.156 2.757
3.2 1.123 1.1555 2.856
15.6 1.092 1.148 4.840
28.0 1.073 1.128 4919
40.4 1.065 1.116 4.541
52.8 1.065 1.112 4.227
65.2 1.071 1.118 4.156
77.6 1.092 1.125 2.981
90.0 1.116 1.129 1.155

The numerical analysis results of penny-shape crack model show that the numerical
solution technique gives acceptable results. The maximum percent error values are
calculated for material IV. The figures of the tabulated stress intensity factor results

are given in Figure 4.17 and Figure 4.18.
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Figure 4 . 18 Uniform tension for internal penny-shape crack
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4.5 Comparisons for Thermal Loading

In this section, three-dimensional homogeneous isotropic structure with semi-
elliptical surface crack subjected to thermal loading is analyzed. The results are

compared with the results given in literature [9].

In this type of loading condition, material is assumed as stress free at a temperature
of 1273 K. Then, the material is exposed to an environment with a temperature of
300 K. For this type of loading condition, the surface of the structure at which the
crack exists, exposed to a forced convection. At the surface, x = h, the convection
coefficient is h = 10000 W/(mzK). At the other surfaces, there are free convection
with a convection coefficient h = 5 W/(m’K). For this type of loading, material

properties calculated at the mid temperature, T,;, = 786.5 K.

The boundary conditions and the loading case are given in the Figure 4.19.

Free convection, h=5W/(m“K)

To=300K \

-",P Tosw= 1273 K

Forced convection
h=10000 W/(mK) _
—
To=300K
x -
— — ﬁ"“—\.ﬁ
>la |€ Free comvection, h= 5 W/(m'K)
To= 300K

s h

To= 300K \

Free convection, b= 5 W/(m‘K)

b

Figure 4 . 19 The boundary conditions for transient thermal loading [9]
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The stress intensity factors are analyzed for homogeneous isotropic material with a
semi-elliptical surface crack. Comparisons of the results are shown in Figure 4.20 and

4.21.
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Figure 4 . 20 Temperature versus normalized time for thermal loading (¢ = m/4)
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Figure 4 . 21 Temperature versus normalized time for thermal loading (¢ = 1 /2)
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4.6 Present Study Results

4.6.1 Mechanical Loading on the Three-Dimensional Orthotropic Material

In this study, semi-elliptical cracks in three-dimensional orthotropic materials are
investigated. The orthotropic homogeneous body is shown in Figure 4.22. The
thickness of the orthotropic material is taken as h. The semi-elliptical crack length is
taken as 2c and the half-length is taken as a, which is the length for the depth of the
surface semi-elliptic crack. The orthotropic material dimensions used in this study are
as follows h = 12.5 mm, b = 20 mm and [ = 20 mm. These dimensions are chosen

as same as the dimensions given by Lee and Erdogan [31].

Three-dimensional finite element model for mechanical loading cases are verified in
the previous sections. After verification of the geometry of the model and the
anisotropic expressions for the degeneracy case, the finite element solution is
applied to the orthotropic materials. In this section present study results are
presented. Material properties for orthotropic materials are taken as same as
properties given in the reference study [32]. The material properties are tabulated in
Table 4.18. The various anisotropic materials are subjected to mechanical loading

such as uniform tension and fixed grip tension.

In finite element analysis anisotropic asymptotic field expressions and constants are

used to obtain stress intensity factor.
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Figure 4 . 22 Orthotropic body subjected to uniform tension at the ends y = +I

Table 4 . 18 Orthotropic material properties used in numerical examples (Elastic
moduli units given in Pa) [31]

Mat. A Mat. B Mat. C Mat. D
E, 55.16x10’ 171.0 x10° 128.9 x10° 173.1x10°
E, 171.0x10° 55.16x10° 128.9 x10° 122.0x10°
E, 55.16 x10° 171.0 x10° 128.9 x10° 173.1 x10°
Vyy 0.036 0.111 0.380 0.370
Vy, 0.111 0.036 0.380 0.262
Vyey 0.036 0.111 0.380 0.370
Gy 4.826 x10° 4.826 x10° 127.6 x10° 124.8 x10°
Gy, 4.826 x10° 4.826 x10° 127.6 x10° 124.8 x10°
Gy 26.61 x10° 76.53 x10° 127.6 x10° 63.02 x10°

4.6.1.1 Uniform Tension on the Three-Dimensional Orthotropic Material

In this section, stress intensity factors are calculated for three-dimensional
orthotropic and isotropic materials under uniform tension. The anisotropy effect is

shown by using different type of materials. The materials are chosen as same as with
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the numerical reference solution [32]. The properties are given in Table 4.18. In
addition to these materials for isotropic case, the elastic modulus is chosen as
E = 206.84x10° Pa (30x10%psi) and Poisson’s ratio v = 0.25. Tensile loading is
applied by amount stress value g, = 1. The width of the strip is 2a and the crack

depthis a.

After obtaining the stress intensity factors for the structure, normalized mode | stress

intensity factors are calculated using the formula:

NN (4.1)

where a; is the applied uniform stress, a is the depth of the crack and Q is the shape
factor for semi-elliptical crack. The shape factor is calculated with the formula
expressed in the reference [24]. The semi elliptic surface cracked body is given in

Figure 4.7.

{1 + 1.464 (a/c)'®® for (a/c) <1
1+ 1.464 (c/a)'®> for (a/c)>1 (4.2)

Tabulated results are given in Table 4.19 - 4.24.
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(b)
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€ — o~

Figure 4 . 23 Plan view of the semi-elliptic cracked structure by Walters et al. (2004),
(a)a/c<1 and (b)a/c>1

Normalized mode | stress intensity factors for three-dimensional orthotropic

materials subjected to uniform tension are given in Table 4.19 - 4.24.
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Table 4 . 19 Normalized mode | stress intensity factors Kin for three-dimensional

models subjected to uniform tension.

a/h=0.2, a/c=2/3

a/h=0.4, a/c=2/3

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
0.05 | 1,075 |0.939 | 0.997 | 0.985 | 0.999 | 1.228 | 1.080 | 1.105 | 1.119 | 1.129
0.10 | 0,944 | 0.862 | 1.044 | 1.014 | 0.994 | 1.074 | 0.989 | 1.189 | 1.169 | 1.139
0.15 1 0.886 | 0.774 | 1.031 | 1.004 | 0.973 | 1.004 | 0.887 | 1.171 | 1.153 | 1.110
0.20 | 0.845 | 0.700 | 1.021 | 1.002 | 0.959 | 0.955 | 0.802 | 1.156 | 1.146 | 1.090
02> 10.810 | 0.638 | 1.018 | 1.008 | 0.951 | 0.913 | 0.733 | 1.149 | 1.148 | 1.077
030 10,778 | 0.586 | 1.021 | 1.022 | 0.949 | 0.876 | 0.675 | 1.148 | 1.158 | 1.071
03> 10,750 | 0.544 | 1.029 | 1.041 | 0.952 | 0.841 | 0.626 | 1.153 | 1.174 | 1.069
040 10,723 | 0.509 | 1.039 | 1.065 | 0.957 | 0.809 | 0.585 | 1.161 | 1.197 | 1.071
045 10,700 | 0.480 | 1.051 | 1.093 | 0.965 | 0.781 | 0.552 | 1.171 | 1.223 | 1.076
050 | 0678 | 0.456 | 1.063 | 1.124 | 0.975 | 0.757 | 0.525 | 1.182 | 1.254 | 1.084
055 1 0.659 | 0.435 | 1.075 | 1.157 | 0.986 | 0.734 | 0.502 | 1.192 | 1.287 | 1.093
060 | 0642 |0.419 | 1.086 | 1.192 | 0.997 | 0.715 | 0.483 | 1.202 | 1.321 | 1.103
065 | 0.627 | 0.404 | 1.095 | 1.226 | 1.009 | 0.698 | 0.467 | 1.209 | 1.356 | 1.113
0.70 1 0.615 | 0.393 | 1.103 | 1.260 | 1.020 | 0.684 | 0.454 | 1.213 | 1.389 | 1.123
0.75 1 0.605 | 0.384 | 1.109 | 1.292 | 1.032 | 0.673 | 0.444 | 1.217 | 1.420 | 1.134
080 | 0598 | 0.376 | 1.113 | 1.321 | 1.043 | 0.664 | 0.436 | 1.220 | 1.449 | 1.144
08> 10592 |0.371 | 1.117 | 1.347 | 1.054 | 0.658 | 0.430 | 1.223 | 1.475 | 1.155
090 10590 | 0.367 | 1.119 | 1.368 | 1.064 | 0.656 | 0.426 | 1.224 | 1.497 | 1.165
095 10591 |0.365 | 1.121 | 1.384 | 1.072 | 0.657 | 0.424 | 1.225 | 1.514 | 1.174
1.00 10596 | 0.365 | 1.122 | 1.394 | 1.078 | 0.662 | 0.423 | 1.225 | 1.524 | 1.180
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Table 4 . 20 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to uniform tension.

a/h=0.2, a/c=1

a/h=0.4, a/c=1

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 11292 1.183|1.156 | 1.141 | 1.169 | 1.402 | 1.301 | 1.208 | 1.217 | 1.245
010 11141 |1.062 |1.232 | 1.193 | 1.180 | 1.235 | 1.165 | 1.325 | 1.294 | 1.275
015 11,062 |0.937 | 1.216 | 1.182 | 1.150 | 1.147 | 1.026 | 1.304 | 1.279 | 1.240
020 11,001 |0.834|1.196 | 1.172 | 1.124 | 1.078 | 0.910 | 1.280 | 1.265 | 1.208
025 10947 | 0.747 | 1.179 | 1.168 | 1.102 | 1.017 | 0.815 | 1.260 | 1.256 | 1.182
030 |1 0.896 | 0.675 | 1.167 | 1.169 | 1.084 | 0.960 | 0.736 | 1.243 | 1.253 | 1.159
03> 10.848 | 0.614 | 1.156 | 1.174 | 1.070 | 0.907 | 0.670 | 1.229 | 1.255 | 1.141
040 |0.803 | 0.563 | 1.148 | 1.183 | 1.058 | 0.858 | 0.614 | 1.217 | 1.261 | 1.126
045> 10763 | 0.520 | 1.141 | 1.195 | 1.049 | 0.814 | 0.568 | 1.208 | 1.271 | 1.114
050 10726 | 0.485 | 1.134 | 1.210 | 1.042 | 0.775 | 0.530 | 1.199 | 1.283 | 1.104
055 1 0.694 | 0.455 | 1.127 | 1.226 | 1.037 | 0.740 | 0.498 | 1.189 | 1.297 | 1.097
060 | 0666 | 0.430 | 1.120 | 1.244 | 1.033 | 0.710 | 0.471 | 1.179 | 1.313 | 1.091
065 | 0642 | 0.410 | 1.112 | 1.263 | 1.031 | 0.684 | 0.449 | 1.169 | 1.330 | 1.086
070 1 0.622 | 0.393 | 1.104 | 1.281 | 1.031 | 0.663 | 0.431 | 1.159 | 1.346 | 1.084
0.75 1 0.605 | 0.379 | 1.096 | 1.299 | 1.031 | 0.645 | 0.416 | 1.150 | 1.363 | 1.083
080 | 0592 | 0.368 | 1.089 | 1.317 | 1.033 | 0.631 | 0.405 | 1.142 | 1.379 | 1.084
0.85 1 0.582 | 0.359 | 1.083 | 1.332 | 1.036 | 0.620 | 0.396 | 1.134 | 1.394 | 1.086
090 | 0576 | 0.353 | 1.078 | 1.345 | 1.039 | 0.614 | 0.389 | 1.129 | 1.406 | 1.089
095 10574 | 0.349 | 1.074 | 1.354 | 1.043 | 0.612 | 0.384 | 1.125 | 1.415 | 1.092
1.00 | 0,577 | 0.347 | 1.072 | 1.360 | 1.046 | 0.615 | 0.383 | 1.122 | 1.421 | 1.095
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Table 4 . 21 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to uniform tension.

a/h=0.2, a/c=3/2

a/h=0.4, a/c=3/2

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
0.05 11,031 | 0.987 | 0.907 | 0.899 | 0.924 | 1.075 | 1.036 | 0.910 | 0.919 | 0.945
0.10 1 0,922 | 0.881 | 0.970 | 0.945 | 0.939 | 0.960 | 0.923 | 1.004 | 0.985 | 0.977
0.15 1 0.858 | 0.771 | 0.954 | 0.934 | 0.914 | 0.893 | 0.808 | 0.986 | 0.972 | 0.950
0.20 | 0.807 | 0.680 | 0.933 | 0.923 | 0.889 | 0.838 | 0.712 | 0.963 | 0.959 | 0.922
02> 10,759 | 0.605 | 0.913 | 0.914 | 0.866 | 0.787 | 0.632 | 0.942 | 0.948 | 0.897
0.30 | 0.712 | 0.541 | 0.895 | 0.907 | 0.845 | 0.737 | 0.565 | 0.922 | 0.940 | 0.874
03> 1 0.667 | 0.486 | 0.878 | 0.902 | 0.826 | 0.690 | 0.508 | 0.904 | 0.934 | 0.853
040 | 0.625 | 0.441 | 0.862 | 0.900 | 0.809 | 0.646 | 0.459 | 0.886 | 0.929 | 0.834
04> 10586 | 0.402 | 0.846 | 0.898 | 0.792 | 0.605 | 0.419 | 0.869 | 0.926 | 0.816
050 10550 | 0.369 | 0.830 | 0.898 | 0.777 | 0.568 | 0.385 | 0.852 | 0.924 | 0.799
055 10.518 | 0.341 | 0.814 | 0.898 | 0.762 | 0.535 | 0.355 | 0.834 | 0.922 | 0.783
060 | 0.489 | 0.317 | 0.797 | 0.898 | 0.748 | 0.505 | 0.331 | 0.816 | 0.921 | 0.767
065 | 0.464 | 0.297 | 0.779 | 0.897 | 0.735 | 0.478 | 0.310 | 0.797 | 0.919 | 0.753
0.70 1 0.442 | 0.279 | 0.761 | 0.897 | 0.722 | 0.455 | 0.292 | 0.778 | 0.917 | 0.740
075 10.423 | 0.265 | 0.744 | 0.896 | 0.712 | 0.436 | 0.278 | 0.760 | 0.915 | 0.728
0.80 | 0.407 | 0.253 | 0.727 | 0.894 | 0.702 | 0.420 | 0.266 | 0.743 | 0.913 | 0.718
085> 10.394 | 0.244 | 0.713 | 0.893 | 0.695 | 0.407 | 0.256 | 0.728 | 0.911 | 0.710
0.50 | 0.385 | 0.236 | 0.701 | 0.891 | 0.689 | 0.398 | 0.249 | 0.716 | 0.909 | 0.704
095> 10.380 | 0.231 | 0.693 | 0.890 | 0.686 | 0.393 | 0.244 | 0.707 | 0.907 | 0.700
1.00 1 0.380 | 0.228 | 0.687 | 0.889 | 0.684 | 0.393 | 0.241 | 0.702 | 0.906 | 0.698
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Table 4 . 22 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to uniform tension.

a/h=0.6, a/c=2/3

a/h=0.8, a/c=2/3

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat.B | Mat. C | Mat. D. | Isotropic
005 | 1625 |1.482 |1.419 | 1.457 | 1.468 | 2.614 | 2.543 | 2.140 | 2.200 | 2.239
0.10 | 1,407 | 1.337 | 1.540 | 1.524 | 1.480 | 2.215 | 2.222 | 2.314 | 2.276 | 2.226
015 11298 |1.185 | 1.504 | 1.490 | 1.428 | 1.990 | 1.912 | 2.227 | 2.185 | 2.105
020 11220 1.062 | 1.473 | 1.466 | 1.387 | 1.826 | 1.678 | 2.148 | 2.114 | 2.005
025> 11,155 |0.964 | 1.451 | 1.455 | 1.357 | 1.687 | 1.498 | 2.082 | 2.060 | 1.923
030 11,098 |0.885 | 1.439 | 1.454 | 1.336 | 1.569 | 1.357 | 2.028 | 2.024 | 1.857
035 11,046 | 0.818 | 1.433 | 1.462 | 1.322 | 1.466 | 1.244 | 1.983 | 1.999 | 1.803
040 11,000 |0.763 | 1.431 | 1.477 | 1.313 | 1.375 | 1.147 | 1.948 | 1.987 | 1.759
04> 10959 | 0.717 | 1.432 | 1.498 | 1.309 | 1.296 | 1.065 | 1.915 | 1.983 | 1.723
050 10923 |0.679 | 1.435 | 1.523 | 1.308 | 1.227 | 0.995 | 1.886 | 1.985 | 1.693
055 10.891 | 0.647 | 1.436 | 1.551 | 1.309 | 1.168 | 0.935 | 1.860 | 1.992 | 1.669
060 | 0864 |0.621 | 1.437 | 1.581 | 1.312 | 1.118 | 0.885 | 1.829 | 1.999 | 1.648
065 | 0.840 | 0.599 | 1.435 | 1.610 | 1.316 | 1.075 | 0.844 | 1.797 | 2.008 | 1.630
0.70 1 0.820 | 0.581 | 1.432 | 1.639 | 1.321 | 1.040 | 0.809 | 1.766 | 2.016 | 1.616
0.75 10.805 | 0.567 | 1.428 | 1.667 | 1.328 | 1.012 | 0.780 | 1.731 | 2.023 | 1.605
080 10,793 | 0.556 | 1.423 | 1.692 | 1.335 | 0.991 | 0.758 | 1.697 | 2.028 | 1.597
085> 10783 | 0.547 | 1.419 | 1.714 | 1.343 | 0.975 | 0.741 | 1.669 | 2.034 | 1.591
090 10,779 | 0.541 | 1.414 | 1.731 | 1.350 | 0.967 | 0.729 | 1.643 | 2.037 | 1.588
095 10780 | 0.538 | 1.411 | 1.745 | 1.357 | 0.966 | 0.724 | 1.627 | 2.042 | 1.588
1.00 | 0,785 | 0.537 | 1.407 | 1.753 | 1.362 | 0.972 | 0.722 | 1.615 | 2.043 | 1.588
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Table 4 . 23 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to uniform tension.

a/h=0.6, a/c=1

a/h=0.8, a/c=1

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 | 1649 | 1.580 | 1.362 | 1.404 | 1.436 | 2.092 | 2.104 | 1.648 | 1.717 | 1.764
0.10 | 1445 | 1.404 | 1.515 | 1.500 | 1.475 | 1.803 | 1.831 | 1.832 | 1.827 | 1.799
015 11329 |1.224 | 1.484 | 1.473 | 1.426 | 1.633 | 1.575 | 1.781 | 1.776 | 1.719
020 11240 | 1.079 | 1.449 | 1.447 | 1.379 | 1.509 | 1.381 | 1.723 | 1.729 | 1.647
025 11,162 | 0.963 | 1.419 | 1.428 | 1.339 | 1.398 | 1.221 | 1.669 | 1.690 | 1.583
030 11,091 |0.868 |1.392 | 1.416 | 1.306 | 1.300 | 1.093 | 1.622 | 1.658 | 1.527
03> 11.026|0.788 | 1.369 | 1.409 | 1.277 | 1.211 | 0.988 | 1.580 | 1.634 | 1.478
040 | 0967 | 0.722 | 1.349 | 1.407 | 1.253 | 1.133 | 0.901 | 1.543 | 1.616 | 1.436
045 10,914 | 0.666 | 1.331 | 1.408 | 1.233 | 1.064 | 0.828 | 1.509 | 1.602 | 1.399
050 10867 | 0.621 | 1.314 | 1.413 | 1.215 | 1.004 | 0.768 | 1.476 | 1.593 | 1.368
055 10.826 | 0.583 | 1.296 | 1.420 | 1.200 | 0.952 | 0.717 | 1.447 | 1.588 | 1.341
060 | 0,791 | 0.551 | 1.279 | 1.428 | 1.188 | 0.906 | 0.674 | 1.415 | 1.584 | 1.317
065 | 0,761 | 0.525 | 1.260 | 1.438 | 1.178 | 0.869 | 0.639 | 1.382 | 1.581 | 1.297
0.70 10,736 | 0.504 | 1.244 | 1.449 | 1.171 | 0.837 | 0.609 | 1.352 | 1.579 | 1.280
0.75 10,715 | 0.487 | 1.230 | 1.460 | 1.166 | 0.811 | 0.585 | 1.326 | 1.579 | 1.267
080 10699 | 0.473 | 1.217 | 1.470 | 1.163 | 0.791 | 0.567 | 1.301 | 1.577 | 1.257
08> | 0.687 | 0.462 | 1.204 | 1.480 | 1.163 | 0.776 | 0.551 | 1.276 | 1.575 | 1.249
090 | 0679 | 0.454 | 1.195 | 1.488 | 1.164 | 0.766 | 0.540 | 1.256 | 1.572 | 1.244
095 10677 | 0.449 | 1.189 | 1.494 | 1.165 | 0.763 | 0.534 | 1.242 | 1.571 | 1.242
1.00 1 0.680 | 0.447 | 1.184 | 1.498 | 1.167 | 0.766 | 0.530 | 1.233 | 1.570 | 1.241
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Table 4 . 24 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to uniform tension.

a/h=0.6, a/c=3/2

a/h=0.8, a/c=3/2

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 | 1175 |1.152 | 0.964 | 0.989 | 1.018 | 1.324 | 1.336 | 1.047 | 1.089 | 1.124
010 11,044 |1.019 | 1.076 | 1.065 | 1.056 | 1.171 | 1.177 | 1.176 | 1.175 | 1.166
0.15 10965 | 0.886 | 1.053 | 1.047 | 1.021 | 1.072 | 1.011 | 1.146 | 1.149 | 1.121
020 10901 | 0.777 | 1.025 | 1.028 | 0.987 | 0.994 | 0.880 | 1.112 | 1.122 | 1.078
02> 10.843 | 0.687 | 0.999 | 1.012 | 0.957 | 0.925 | 0.778 | 1.080 | 1.100 | 1.039
0.30 | 0.787 | 0.612 | 0.975 | 0.999 | 0.928 | 0.858 | 0.689 | 1.050 | 1.080 | 1.002
03> 10.734 | 0.549 | 0.953 | 0.989 | 0.903 | 0.796 | 0.616 | 1.021 | 1.063 | 0.969
040 | 0.685 | 0.497 | 0.932 | 0.980 | 0.879 | 0.740 | 0.556 | 0.994 | 1.048 | 0.938
04> 1 0.641 | 0.453 | 0.911 | 0.973 | 0.857 | 0.688 | 0.505 | 0.968 | 1.035 | 0.910
050 1 0.600 | 0.416 | 0.891 | 0.967 | 0.836 | 0.643 | 0.464 | 0.941 | 1.022 | 0.883
055 1 0.564 | 0.385 | 0.869 | 0.962 | 0.817 | 0.603 | 0.429 | 0.913 | 1.011 | 0.858
060 10532 |0.359 | 0.848 | 0.956 | 0.798 | 0.567 | 0.399 | 0.887 | 1.000 | 0.835
0.65 | 0.504 | 0.337 | 0.825 | 0.951 | 0.781 | 0.536 | 0.375 | 0.859 | 0.989 | 0.814
0.70 1 0.480 | 0.319 | 0.804 | 0.946 | 0.766 | 0.510 | 0.355 | 0.833 | 0.979 | 0.795
0.75 10.459 | 0.303 | 0.783 | 0.940 | 0.752 | 0.488 | 0.337 | 0.808 | 0.969 | 0.777
080 | 0.442 | 0.291 | 0.764 | 0.935 | 0.740 | 0.469 | 0.323 | 0.785 | 0.958 | 0.762
085> 10.429 | 0.281 | 0.748 | 0.930 | 0.730 | 0.455 | 0.313 | 0.765 | 0.948 | 0.751
090 10419 | 0.274 | 0.734 | 0.926 | 0.723 | 0.446 | 0.305 | 0.748 | 0.939 | 0.742
095 10.414 | 0.269 | 0.724 | 0.923 | 0.719 | 0.441 | 0.300 | 0.735 | 0.932 | 0.736
1.00 1 0.414 | 0.266 | 0.718 | 0.920 | 0.716 | 0.441 | 0.297 | 0.727 | 0.927 | 0.732

Tabulated results for uniform tension case are shown in Figure 4.24 — Figure 4.35.
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4.6.1.2 Fixed Grip Tension on the Three-Dimensional Orthotropic Material

In this section, stress intensity factors are calculated for three-dimensional

orthotropic and isotropic materials under fixed grip tension.

The materials are chosen same with the numerical reference solution [32]. The
properties are given in Table 4.18. For isotropic case elastic modulus is chosen as

E = 206.84x10° Pa (30x10°psi) and Poisson’s ratio v = 0.25.

The edge crack is embedded in the orthotropic medium. Fixed grip tension loading
type is applied by amount normal displacement v,. The displacement is applied at
the ends y = +I[ as shown in Figure 4.36. The uniform normal displacement is taken

as 0.0001 mm. The width of the strip is 2a and the crack depth is a.

\'l::) M V.:. V-j ‘u’:)
T - T
¥
1
Orthotropic
X, Material z 2
Msla |< | 2¢ > |
i
< 2b =]
< h > ¥

W ah

4]

vy i I Yo

Figure 4 . 36 Orthotropic body subjected to fixed grip tension at the ends y = I

For fixed grip tension, normalized mode | stress intensity factor can be defined in the
below expression. The elastic modulus is used parallel to the direction of the applied

load for crack opening type of loading.
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y (Vo/l) T (43)

Normalized mode | stress intensity factors for three-dimensional orthotropic

materials subjected to fixed grip tension are given in Table 4.25 — Table 4.30.

Table 4 . 25 Normalized mode | stress intensity factors K, for three-dimensional
models subjected to fixed grip tension.

a/h=0.2, a/c=2/3 a/h=0.4, a/c=2/3

2¢/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic

0.05 | 1,056 | 0.919 | 0.986 | 0.970 | 0.982 | 1.089 | 0.941 | 1.022 | 0.999 | 1.007

0.10 | 0.927 | 0.844 | 1.033 | 0.997 | 0.978 | 0.954 | 0.863 | 1.102 | 1.046 | 1.018

015 | 0.871 | 0.758 | 1.020 | 0.988 | 0.957 | 0.894 | 0.775 | 1.086 | 1.033 | 0.994

0.20 | 0.831 | 0.685 | 1.010 | 0.986 | 0.943 | 0.851 | 0.701 | 1.074 | 1.029 | 0.977

0.25 | 0.797 | 0.624 | 1.008 | 0.992 | 0.936 | 0.815 | 0.640 | 1.069 | 1.032 | 0.968

030 | 0.765 | 0.574 | 1.011 | 1.006 | 0.935 | 0.783 | 0.589 | 1.070 | 1.043 | 0.964

035 | 0.737 | 0.532 | 1.018 | 1.025 | 0.937 | 0.753 | 0.546 | 1.076 | 1.060 | 0.964

040 | 0.711 | 0.498 | 1.028 | 1.049 | 0.943 | 0.726 | 0.511 | 1.085 | 1.082 | 0.967

045 | 0.688 | 0.470 | 1.040 | 1.077 | 0.951 | 0.702 | 0.482 | 1.096 | 1.108 | 0.974

050 | 0.667 | 0.446 | 1.053 | 1.108 | 0.960 | 0.680 | 0.458 | 1.107 | 1.137 | 0.982

055 | 0.648 | 0.426 | 1.065 | 1.140 | 0.971 | 0.661 | 0.438 | 1.118 | 1.169 | 0.991

060 | 0.631 | 0.409 | 1.075 | 1.174 | 0.982 | 0.643 | 0.421 | 1.128 | 1.201 | 1.002

065 | 0.617 | 0.396 | 1.085 | 1.209 | 0.994 | 0.628 | 0.407 | 1.136 | 1.234 | 1.012

0.70 | 0.605 | 0.384 | 1.092 | 1.242 | 1.005 | 0.616 | 0.395 | 1.141 | 1.265 | 1.022

0.75 1 0.595 | 0.375 | 1.098 | 1.273 | 1.017 | 0.606 | 0.386 | 1.145 | 1.295 | 1.033

080 | 0.588 | 0.368 | 1.103 | 1.302 | 1.028 | 0.599 | 0.379 | 1.149 | 1.323 | 1.044

085 |0.583|0.363 | 1.106 | 1.328 | 1.039 | 0.593 | 0.373 | 1.152 | 1.348 | 1.054

090 | 0.581|0.359 | 1.109 | 1.349 | 1.049 | 0.591 | 0.370 | 1.154 | 1.368 | 1.064

095 | 0.582|0.357 | 1.110 | 1.364 | 1.057 | 0.592 | 0.368 | 1.155 | 1.384 | 1.072

1.00 | 0586 | 0.356 | 1.112 | 1.374 | 1.062 | 0.597 | 0.367 | 1.155 | 1.393 | 1.077
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Table 4 . 26 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to fixed grip tension.

a/h=0.2, a/c=1 a/h=0.4, a/c=1
2¢p/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 |1.279|1.168 | 1.149 | 1.131 | 1.159 | 1.306 | 1.193 | 1.160 | 1.144 | 1.169
010 | 1,129 |1.049 | 1.224 | 1.182 | 1.169 | 1.151 | 1.070 | 1.273 | 1.218 | 1.198
015 11,051 |0.926 | 1.209 | 1.171 | 1.140 | 1.070 | 0.943 | 1.255 | 1.204 | 1.167
020 | 0,991 |0.823 | 1.189 | 1.162 | 1.114 | 1.007 | 0.838 | 1.232 | 1.192 | 1.138
025 10.938|0.738 | 1.173 | 1.158 | 1.093 | 0.951 | 0.751 | 1.214 | 1.186 | 1.114
030 | 0.887 | 0.667 | 1.160 | 1.159 | 1.075 | 0.899 | 0.679 | 1.198 | 1.184 | 1.095
035 1 0.839 | 0.607 | 1.150 | 1.164 | 1.061 | 0.851 | 0.618 | 1.186 | 1.187 | 1.079
040 | 0.795 | 0.556 | 1.142 | 1.173 | 1.049 | 0.806 | 0.567 | 1.176 | 1.194 | 1.066
045 1 0.755 | 0.514 | 1.135 | 1.185 | 1.040 | 0.766 | 0.525 | 1.168 | 1.205 | 1.055
050 | 0.720 | 0.479 | 1.128 | 1.200 | 1.034 | 0.729 | 0.490 | 1.160 | 1.218 | 1.047
055 | 0.688 | 0.449 | 1.122 | 1.216 | 1.029 | 0.697 | 0.460 | 1.151 | 1.232 | 1.041
060 | 0.660 | 0.425 | 1.114 | 1.234 | 1.025 | 0.670 | 0.436 | 1.143 | 1.248 | 1.036
065 | 0.637 | 0.405 | 1.107 | 1.253 | 1.023 | 0.646 | 0.416 | 1.134 | 1.265 | 1.033
070 | 0.616 | 0.388 | 1.099 | 1.271 | 1.022 | 0.626 | 0.399 | 1.124 | 1.282 | 1.032
075 | 0.600 | 0.374 | 1.091 | 1.289 | 1.023 | 0.609 | 0.386 | 1.116 | 1.299 | 1.032
080 | 0.586 | 0.363 | 1.084 | 1.306 | 1.025 | 0.596 | 0.375 | 1.109 | 1.316 | 1.033
085 | 0.577 | 0.355 | 1.078 | 1.321 | 1.028 | 0.587 | 0.367 | 1.102 | 1.330 | 1.036
090 | 0.571|0.349 | 1.073 | 1.334 | 1.031 | 0.581 | 0.361 | 1.097 | 1.342 | 1.039
095 | 0.569 | 0.344 | 1.069 | 1.344 | 1.035 | 0.579 | 0.357 | 1.093 | 1.352 | 1.042
1.00 | 0.572 | 0.343 | 1.067 | 1.350 | 1.038 | 0.582 | 0.356 | 1.091 | 1.357 | 1.045
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Table 4 . 27 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to fixed grip tension.

a/h=0.2, a/c=3/2

a/h=0.4, a/c=3/2

2¢p/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 | 1.025|0.980 | 0.904 | 0.895 | 0.919 | 1.034 | 0.987 | 0.892 | 0.891 | 0.915
010 | 0.916 | 0.874 | 0.967 | 0.941 | 0.934 | 0.924 | 0.880 | 0.985 | 0.955 | 0.946
015 1 0.853 | 0.766 | 0.951 | 0.930 | 0.910 | 0.859 | 0.771 | 0.968 | 0.944 | 0.920
020 | 0.802 | 0.676 | 0.930 | 0.919 | 0.885 | 0.807 | 0.680 | 0.946 | 0.931 | 0.894
025 | 0.754 | 0.601 | 0.910 | 0.910 | 0.862 | 0.759 | 0.605 | 0.925 | 0.921 | 0.871
030 | 0.708 | 0.537 | 0.892 | 0.903 | 0.841 | 0.712 | 0.540 | 0.906 | 0.914 | 0.849
035 | 0.663 | 0.483 | 0.875 | 0.899 | 0.822 | 0.667 | 0.486 | 0.889 | 0.908 | 0.829
040 | 0.621 | 0.438 | 0.859 | 0.896 | 0.805 | 0.625 | 0.440 | 0.872 | 0.905 | 0.811
045 1 0.583 | 0.399 | 0.844 | 0.895 | 0.789 | 0.586 | 0.402 | 0.855 | 0.902 | 0.794
050 | 0.548 | 0.367 | 0.828 | 0.894 | 0.773 | 0.550 | 0.369 | 0.839 | 0.901 | 0.778
055 10.516 | 0.339 | 0.812 | 0.894 | 0.759 | 0.518 | 0.341 | 0.822 | 0.900 | 0.763
060 | 0.487 | 0.315 | 0.795 | 0.894 | 0.745 | 0.489 | 0.318 | 0.804 | 0.899 | 0.748
065 | 0.462 | 0.295 | 0.777 | 0.894 | 0.732 | 0.464 | 0.298 | 0.785 | 0.898 | 0.735
070 | 0.440 | 0.278 | 0.759 | 0.893 | 0.720 | 0.442 | 0.281 | 0.767 | 0.896 | 0.722
075 | 0.421|0.263 | 0.742 | 0.892 | 0.709 | 0.423 | 0.267 | 0.750 | 0.895 | 0.711
080 | 0.405 | 0.252 | 0.726 | 0.891 | 0.700 | 0.408 | 0.256 | 0.733 | 0.893 | 0.702
085 1 0.392 | 0.242 | 0.712 | 0.889 | 0.692 | 0.396 | 0.247 | 0.719 | 0.891 | 0.694
090 | 0.383|0.235|0.700 | 0.888 | 0.687 | 0.387 | 0.240 | 0.707 | 0.889 | 0.688
095 1 0.379 | 0.230 | 0.691 | 0.886 | 0.683 | 0.382 | 0.235 | 0.698 | 0.888 | 0.685
1.00 | 0.378 | 0.227 | 0.686 | 0.886 | 0.681 | 0.382 | 0.233 | 0.693 | 0.887 | 0.683
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Table 4 . 28 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to fixed grip tension.

a/h=0.6, a/c=2/3

a/h=0.8, a/c=2/3

2¢p/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 | 1,137 |0.984 | 1.111 | 1.043 | 1.047 | 1.209 | 1.042 | 1.216 | 1.077 | 1.089
010 | 0.991 | 0.895 | 1.213 | 1.097 | 1.062 | 1.040 | 0.932 | 1.332 | 1.129 | 1.099
015 1 0.922 | 0.798 | 1.190 | 1.079 | 1.032 | 0.954 | 0.820 | 1.298 | 1.101 | 1.055
020 | 0.874|0.718 | 1.172 | 1.069 | 1.009 | 0.895 | 0.732 | 1.268 | 1.082 | 1.023
025 1 0.833|0.653 | 1.161 | 1.068 | 0.994 | 0.845 | 0.661 | 1.246 | 1.072 | 0.999
030 | 0.798 | 0.601 | 1.158 | 1.075 | 0.986 | 0.802 | 0.603 | 1.231 | 1.072 | 0.983
035 | 0.765 | 0.556 | 1.159 | 1.088 | 0.983 | 0.764 | 0.556 | 1.222 | 1.078 | 0.972
040 | 0.736 | 0.519 | 1.164 | 1.106 | 0.983 | 0.729 | 0.515 | 1.218 | 1.089 | 0.966
045 1 0.709 | 0.488 | 1.171 | 1.129 | 0.985 | 0.698 | 0.481 | 1.216 | 1.106 | 0.963
050 | 0.685|0.463 | 1.179 | 1.155 | 0.991 | 0.670 | 0.452 | 1.216 | 1.126 | 0.962
055 | 0.664 | 0.442 | 1.187 | 1.182 | 0.997 | 0.645 | 0.428 | 1.216 | 1.147 | 0.963
060 | 0.646 | 0.424 | 1.193 | 1.211 | 1.004 | 0.623 | 0.407 | 1.214 | 1.168 | 0.965
065 | 0.630 | 0.409 | 1.196 | 1.239 | 1.012 | 0.604 | 0.389 | 1.209 | 1.190 | 0.968
070 | 0.616 | 0.397 | 1.198 | 1.266 | 1.020 | 0.587 | 0.374 | 1.203 | 1.210 | 0.971
075 1 0.605 | 0.387 | 1.199 | 1.292 | 1.028 | 0.574 | 0.361 | 1.194 | 1.229 | 0.974
080 | 0.597 | 0.379 | 1.199 | 1.316 | 1.037 | 0.564 | 0.351 | 1.184 | 1.245 | 0.979
085 | 0.590 | 0.372 | 1.198 | 1.336 | 1.045 | 0.556 | 0.343 | 1.176 | 1.260 | 0.983
090 | 0.587 | 0.367 | 1.196 | 1.353 | 1.053 | 0.552 | 0.337 | 1.167 | 1.272 | 0.987
095 | 0.587 | 0.365 | 1.195 | 1.366 | 1.060 | 0.552 | 0.333 | 1.164 | 1.281 | 0.992
1.00 | 0.592 | 0.364 | 1.193 | 1.373 | 1.064 | 0.555 | 0.332 | 1.159 | 1.287 | 0.995
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Table 4 . 29 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to fixed grip tension.

a/h=0.6, a/c=1 a/h=0.8, a/c=1
2¢p/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 |1.338|1.222|1.207 | 1.172 | 1.194 | 1.362 | 1.238 | 1.275 | 1.189 | 1.212
010 | 1,176 | 1.092 | 1.347 | 1.257 | 1.232 | 1.185 | 1.094 | 1.429 | 1.277 | 1.248
015 11,087 | 0.958 | 1.324 | 1.239 | 1.195 | 1.086 | 0.954 | 1.400 | 1.253 | 1.204
020 | 1,020 |0.849 | 1.297 | 1.223 | 1.162 | 1.017 | 0.847 | 1.365 | 1.231 | 1.165
025 1 0.961|0.761 | 1.274 | 1.212 | 1.133 | 0.954 | 0.757 | 1.332 | 1.216 | 1.132
030 | 0.907 | 0.688 | 1.254 | 1.206 | 1.110 | 0.899 | 0.683 | 1.306 | 1.206 | 1.105
035 | 0.857 | 0.626 | 1.238 | 1.206 | 1.091 | 0.847 | 0.622 | 1.283 | 1.201 | 1.081
040 | 0.811 | 0.576 | 1.224 | 1.209 | 1.075 | 0.801 | 0.571 | 1.263 | 1.200 | 1.063
045 1 0.770 | 0.533 | 1.211 | 1.216 | 1.062 | 0.760 | 0.529 | 1.246 | 1.203 | 1.047
050 | 0.734|0.498 | 1.199 | 1.225 | 1.051 | 0.723 | 0.494 | 1.229 | 1.208 | 1.034
055 1 0.702 | 0.469 | 1.187 | 1.236 | 1.043 | 0.691 | 0.465 | 1.215 | 1.216 | 1.024
060 | 0.674 | 0.445 | 1.174 | 1.248 | 1.036 | 0.663 | 0.440 | 1.197 | 1.225 | 1.015
065 | 0.650 | 0.425 | 1.161 | 1.261 | 1.031 | 0.640 | 0.420 | 1.178 | 1.234 | 1.008
070 | 0.630 | 0.408 | 1.149 | 1.274 | 1.028 | 0.619 | 0.403 | 1.161 | 1.243 | 1.002
075 | 0.614 | 0.396 | 1.138 | 1.288 | 1.026 | 0.603 | 0.388 | 1.146 | 1.252 | 0.999
080 | 0.601 | 0.385| 1.128 | 1.300 | 1.026 | 0.591 | 0.378 | 1.131 | 1.260 | 0.998
085 | 0.591|0.377 | 1.119 | 1.311 | 1.027 | 0.581 | 0.369 | 1.116 | 1.266 | 0.997
090 | 0.586 | 0.371 | 1.111 | 1.321 | 1.030 | 0.575 | 0.362 | 1.103 | 1.271 | 0.997
095 | 0.584|0.367 | 1.106 | 1.328 | 1.033 | 0.574 | 0.358 | 1.093 | 1.274 | 0.999
1.00 | 0,587 | 0.365 | 1.103 | 1.332 | 1.035 | 0.576 | 0.356 | 1.088 | 1.276 | 1.000
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Table 4 . 30 Normalized mode | stress intensity factors K, for three-dimensional

models subjected to fixed grip tension.

a/h=0.6, a/c=3/2

a/h=0.8, a/c=3/2

2¢p/m | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic | Mat. A | Mat. B | Mat. C | Mat. D. | Isotropic
005 | 1.048 | 1.000 | 0.910 | 0.903 | 0.926 | 1.051 | 0.999 | 0.929 | 0.906 | 0.927
010 | 0.934|0.888 | 1.017 | 0.975 | 0.963 | 0.934 | 0.887 | 1.049 | 0.983 | 0.968
015 1 0.865|0.774 | 0.997 | 0.961 | 0.934 | 0.861 | 0.769 | 1.026 | 0.967 | 0.936
020 | 0.811 | 0.682 | 0.973 | 0.946 | 0.905 | 0.804 | 0.676 | 1.000 | 0.950 | 0.905
025 | 0.761 | 0.605 | 0.950 | 0.933 | 0.879 | 0.755 | 0.603 | 0.976 | 0.936 | 0.879
030 | 0.713 | 0.541 | 0.929 | 0.924 | 0.856 | 0.706 | 0.538 | 0.953 | 0.925 | 0.853
035 | 0.667 | 0.487 | 0.909 | 0.916 | 0.834 | 0.661 | 0.485 | 0.932 | 0.916 | 0.831
040 | 0.625 | 0.442 | 0.891 | 0.911 | 0.815 | 0.619 | 0.440 | 0.911 | 0.909 | 0.810
045 | 0.586 | 0.404 | 0.873 | 0.907 | 0.796 | 0.580 | 0.403 | 0.890 | 0.903 | 0.790
050 | 0.551 | 0.372 | 0.855 | 0.903 | 0.779 | 0.546 | 0.372 | 0.870 | 0.898 | 0.772
055 10.519 | 0.346 | 0.836 | 0.900 | 0.763 | 0.515 | 0.346 | 0.848 | 0.893 | 0.755
060 | 0.491|0.323 | 0.816 | 0.897 | 0.748 | 0.487 | 0.324 | 0.826 | 0.888 | 0.739
065 | 0.466 | 0.304 | 0.796 | 0.894 | 0.733 | 0.463 | 0.306 | 0.804 | 0.883 | 0.724
070 | 0.445 | 0.288 | 0.776 | 0.891 | 0.720 | 0.443 | 0.291 | 0.783 | 0.878 | 0.710
075 | 0.426 | 0.275 | 0.757 | 0.888 | 0.708 | 0.425 | 0.278 | 0.762 | 0.873 | 0.698
080 | 0.411 | 0.264 | 0.740 | 0.884 | 0.698 | 0.410 | 0.268 | 0.742 | 0.867 | 0.687
085 1 0.399 | 0.255 | 0.724 | 0.881 | 0.690 | 0.399 | 0.260 | 0.725 | 0.862 | 0.678
090 | 0.391|0.249 | 0.712 | 0.878 | 0.684 | 0.391 | 0.254 | 0.711 | 0.856 | 0.672
095 1 0.386 | 0.244 | 0.703 | 0.875 | 0.680 | 0.388 | 0.250 | 0.700 | 0.852 | 0.668
100 |1 0.386 | 0.242 | 0.697 | 0.874 | 0.678 | 0.388 | 0.248 | 0.693 | 0.849 | 0.665

Tabulated results for fixed grip tension case are shown in Figure 4.37 — Figure 4.48.
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Figure 4 . 38 Fixed grip tension, K, versus ¢ for a/h=0.2, a/c=1
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Figure 4 . 39 Fixed grip tension, K, versus ¢ for a/h=0.2, a/c=3/2
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Figure 4 . 40 Fixed grip tension, K, versus ¢ for a/h=0.4, a/c=2/3
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Figure 4 . 41 Fixed grip tension, K, versus ¢ for a/h=0.4, a/c=1
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Figure 4 . 42 Fixed grip tension, K, versus ¢ for a/h=0.4, a/c=3/2
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Figure 4 . 44 Fixed grip tension, K, versus ¢ for a/h=0.6, a/c=1
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Figure 4 . 45 Fixed grip tension, K, versus ¢ for a/h=0.6, a/c=3/2
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Figure 4 . 46 Fixed grip tension, K, versus ¢ for a/h=0.8, a/c=2/3
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Figure 4 . 48 Fixed grip tension, K, versus ¢ for a/h=0.8, a/c=3/2

87



4.6.2 Thermal Loading on the Three-Dimensional Orthotropic Material

In this type of loading condition, orthotropic medium is Polystal. It is glass fiber
woven fabric reinforced PA-6. For this type of material seven thermal properties are
given, namely, the specific heat capacity c,, the thermal conductivity in the three
principal material directions, k4, k, and k5, and similarly three thermal expansion
coefficients, a,, a, and a;. To characterize an orthotropic material it is required to
define nine mechanical properties, namely Elastic moduli, E;1, E;, and E33, the
Poisson’s ratio v;5, V33 and vy3, and the shear moduli G;,, G,3 and G413 [33]. The

material properties are given in Table 4.31.

Table 4 . 31 Properties of Polystal vs. Temperature

Model Temperature (C)

20 80 120 220
E11 (MPa) Fiber Undulation 24 20 29 19
E22 (MPa) Mosaic Series 19 13 12 12
E33(MPa) Inv rom 6.1 3.2 2.6 2.4
G1,(GPa) Fiber Undulation 31 1.6 1.3 1.2
G,3(GPa) Assumed 25 15 14 1.2
G13(GPa) Assumed 2.5 1.5 1.4 1.2
120 Mosaic Series 0.16 0.11 0.10 0.11
Vs Assumed 0.25 0.25 0.25 25
Vi3 Assumed 0.25 0.25 0.25 25
a1x106/C Experiment 14 14 13 13
a, x10%/C Experiment 13 13 13 12
as x106/C Rule of Mixtures 53 53 53 53
k(W /mK) Knappe/Martinez 0.53 0.57 0.60 0.60
ko, (W /mK) Knappe/Martinez 0.50 0.53 0.56 0.56
ks(W/mK) | Knappe/Martinez 0.51 0.54 0.57 0.57
cp(k]/kg K) | Rule of Mixtures 1.2 1.2 1.2 2.9

In this type of loading condition, material is assumed as stress free at a temperature
of 493 K. Then, the material is exposed to an environment with a temperature of 293
K. For this type of loading condition, the surface of the structure at which the crack

exists, exposed to a forced convection. At the surface, x = h, the convection
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coefficientis h = 100 W/(mzK). At the other surfaces, there are free convection with
a convection coefficient h = 5 W/(m?K). For this type of loading, material properties

calculated at the mid temperature, T;,,, = 393 K.

In transient problem, firstly, the temperature distribution is computed. These
computed temperatures are used as an input for structural problem. The
deformations and the displacements are computed to obtain stress intensity factors

at the crack front.

The boundary conditions and the loading case are given in the Figure 4.49.

. B . _
Free convection, h =5 W/(m“K) 3 T = 493 K
To=293K \ T

Forced convection

h=100 W/(m'K) -
N
To= 293K
x
- — S
—>|a |« Free convection, h= 5 W/(m°K)
To= 293 K

< h >

To= 293K \

Free convection, h =5 W/(m?K)

Figure 4 . 49 The boundary conditions for transient thermal loading

The geometry of the crack is semi-elliptic with an aspect ratio of a/c = 1/2. The
crack depth to thickness ratio is chosen as a/h = 0.4. Material properties are given

in Table 4.31.
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After obtaining the stress intensity factors for the structure, normalized mode | stress

intensity factors are calculated for transient thermal loading type by using the

formula:
K;
Kip = —a
S i
Q (4.4)

where S is the normalization stress and described by

S=ayEyTn (4.5)

where a and E are the thermal expansion coefficient and elastic modulus in the
crack opening direction (y- direction), respectively. T,, is the mid temperature at
which the mechanical and thermal propertieOs, that are given in Table 4.31,are used.
For the transient part of the problem, to define normalized mode-I stress intensity

factors, normalized time is defined by

Dt
=07 (4.6)

where t is the time and the thickness of the structure is h. In addition to these, D is

the thermal diffusivity coefficient of the material defined by

p = v
P Cxy (4.7)

where k, p and c are the thermal diffusivity coefficients of the orthotropic material.

In the finite element code, anisotropic asymptotic field expressions and constants are
used to obtain stress intensity factors. The variation of the normalized temperature
and the normalized mode | stress intensity factor for at a given point around the
crack front (¢ = /4 and ¢ = m/2) with respect to normalized time are shown in

Figure 4.50 — Figure 4.53.
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Figure 4 . 50 Temperature versus normalized time for thermal loading (¢ = 7/2)
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Figure 4 . 51 Temperature versus normalized time for thermal loading (¢ = /4)
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Figure 4 . 52 Normalized stress intensity factor vs. normalized time (¢ = t/2)

Normalized Stress Intensity Factor x 100

20 40

60 80 100

Normalized Time

Figure 4 . 53 Normalized stress intensity factor vs. normalized time (¢ = 1 /4)

The tabulated results are given in Table 4.32.
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Table 4 . 32 Normalized mode | stress intensity factors K, for polystal material

subjected to transient thermal load at 7= 0.0625 and 7= 0.125

2¢/m | a/h=0.4,a/c=0.5 | a/h=0.4, a/c=0.5
at 7= 0.0625 at 7= 0.125
Polystal (K»x10?)
0.00 0.1988 0.3131
0.10 0.1727 0.2791
0.20 0.1535 0.2554
0.30 0.1359 0.2320
0.40 0.1199 0.2094
0.50 0.1084 0.1932
0.60 0.1012 0.1829
0.70 0.0925 0.1694
0.80 0.0870 0.1604
0.90 0.0857 0.1580
1.00 0.0850 0.1578

The stress intensity factors around the semi-elliptical surface crack for = 0.0625,

and r= 0.125 are presented in Figure 4.54.

— 77— 77— 77— T— T

7= 0.0625
— 7=0.125

Normalized Stress Intensity Factor x 100

0,0 0,2 0,4 0,6 0,8 1,0
2¢/m

Figure 4 . 54 Normalized mode | stress intensity factor vs. normalized time
distribution around the crack front for thermal loading, a/h=0.4, a/c=0.5
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CHAPTER 5

CONCLUSION

In the present study, three-dimensional semi elliptic crack problems are
studied for orthotropic materials and stress intensity factors around crack
front are numerically calculated. The numerical code is written in the

software, ANSYS parametric design language (APDL).

The crack is observed under several loading conditions for different type of
materials. Displacement correlation technique gives accurate results for
orthotropic and isotropic materials. It is an effective and accurate technique

to obtain stress intensity factors around the crack front.

In the calculation of the stress intensity factors both displacement correlation
techniques and anisotropic asymptotic stress and strain field expressions are
used. The geometries of the models are created as same as in the reference
models and the asymptotic stress and strain field expressions are verified with
the results provided in the literature. Then, the percent differences are
observed. Since results have small percent differences for all crack
dimensions, loading types and material properties, it is accomplished that the
numerical solution technique to solve the stress intensity factors of the

orthotropic materials is satisfactorily accurate.
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Considering the results of the finite element analysis results, it is seen that
stress intensity factors at the surfaces where the crack intersects the free
surface cannot be determined accurately. Due to the fact that stress
singularity is different at these free surfaces. Therefore, the stress intensity
factors cannot be found accurately, due to the negligence of the boundary
zone effect near these surfaces. However, the results at the crack front
regions are also approximate and applicable for the semi-elliptic surface

cracks at the free surfaces.

For orthotropic material analysis, properties are given in tables as same as the
reference values. Furthermore, the asymptotic stress and strain field
expressions, used for anisotropic materials and the derivation, are given in
Chapter 3. Considering the degeneracy cases, the correct formulation and
expressions are used in the numerical analysis. In fact, in this study, fully
anisotropic material is not analyzed; instead, it is focused on the degeneracy
situations. For these cases, such as anti plane shear and plane strain
decoupling case and the x-y plane isotropy case, different type of materials
are investigated under various loading conditions, such as uniform tension,

fixed grip tension, transient thermal loading etc.

Considering the mechanical loading cases, the stress intensity factors are
higher at the free surface regions. For uniform tension loading type, the value
of the stress intensity factor generally decreases when the thickness and polar
angle increase. This leads to the conclusion that for three-dimensional surface
edge cracks, the propagation of the crack front is slower in the direction of

the thickness. However, in some loading types, the maximum and the
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minimum points are altering while crack length and material thicknesses are

changing.

In transient thermal loading, due to the boundary conditions the temperature
of the free surface drops instantaneously. For polystal material, in transient
thermal analysis stress intensity factor has the minimum value where the
polar angle is z/2. This leads to the conclusion that the crack propagation is
larger where the crack intersects the free surface and smaller in the thickness

direction.

As a future work, extension of this present study, three-dimensional fracture
analysis of the semi elliptical crack can be studied in a fully anisotropic
structure subjected to thermal and mechanical loading. Another extension
can be the mixed mode loading of the anisotropic structure. For this task,
mixed mode stress intensity factors can be obtained, and after developing
reliable models, inclined surface cracks can be embedded to the material,
which is orthotropic or anisotropic. Moreover, the model and the code can be
modified considering the crack closure methods to obtain accurate results for

negative stress intensity factors.
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APPENDIX A

A. SAMPLE ANISOTROPIC ASYMPTOTIC FIELD EXPRESSION CALCULATION FOR
THE ORTHOTROPIC-1 MATERIAL

Material properties are given as follows:

E, = 55.16x10° v, = 0.036 Gyp = 4.83x10°

E, = 171.0x10° Vs = 0.111 G,z = 4.83x10°

E; = 55.16x10° v,5 = 0.036 Gsy = 26.61x10°
(A1)

Due to symmetry, following simplifications can be applied.

Vy1 = Vip, V3p = Va3, V31 = V13, Gog = Gyp, G3p = Ga3, G31 = Gy3 (A2)

The elements of compliance matrices can be written in terms of material

properties.
1
511 = E_ (A3)
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S, = A4
12="F (A%)
—U3q
Sz = A5
1= (45)
Sop = - A6
n=F (46)
—Us2
Soz = A7
n=F (A7)
Saz = - A8
5= (48)
Sis = 1 A9
“=g (49)
Sis = 1 (A10)
44 Gis
Sis = 1 Al1
“=g (A1)

S14 = S15 = S16 = S24 = S5 = S26 = S34 = S35 = S36 = S45 = Su6 = Ss6
= (A12)
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S43 = S34, Ss3 = S35, Se3 = S36 (A13)

1.81x107'1  —2.11x1071® —6.53x10713 0 0 0
—2.11x1071® 5.85x1071? 2.01x1071? 0 0 0
—653)(10'13 2.01x10712 1.83x10711 0 0 0
0 0 2.07x1071° 0 0
0 0 0 3.78x10711 0
0 0 0 0 2.07x1071°
(A14)

If the plane stress conditions exists material matrix elements calculated by the

following expressions.

M3 M3
M::=M;: — A15
ij ij Mas ( )
Iz(X) = M22x2 - 2M4,5x + M44 (A16)
I3(x) = Mysx® — (Myy + Msg)x? + (Mas + Myg)x — My (A17)

I4(X) - M11x4 - 2M16x3 + (2M12 + M66)x2 - 2M26x + Mzz (A18)

Characteristic roots of these polynomials are calculated as:

—1.16525i

116525
~3.37291; (A19)

3.37291i

roots of I,(x) =
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—6.067101’)

roots of I,(x) = ( 6.06710i

(A20)

Characteristics roots are chosen such that, imaginary parts are positive.

1 1 0 1 1 0
1v=<—u1 — i, 0)=(—1.165i —3.373i 0) (421)

0 0 -1 0 0 -1

The inverse matrix is calculated as given

1.052 —0.312i 0
N1'=[-0052 0312i 0 (A22)

0 0 -1

“w_n

The values of “p” are defined as follows:

P11 = My ® + Myy — Mgy (A23)

D12 = My1pp* + My, — Mygpy (A24)
2 M22

P21 = Myapy® +—— — My (A25)
Uy
2 M22

P22 = Miu° + /1_ — My, (A26)
2
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My,
P33 = <M45 + _ﬂ ) (A27)
3

P23 =0, p31 =0, p3, =0, p13=0 (A28)

The calculation result for p matrix is given

P11 Piz P13
p=(P21 D22 P23>

P31 P32 P33
—7.774x1071%  —2.063x1071° 0
=|—-3.408ix10711 —2.622x10712 0 (A29)
0 0 3.412x10~11

For mode-I loading the asymptotic displacement expression is given.

u,(r,0) = /zn—rl( (Re (p21N11\/cos(0) + Uy sin(@))

+ Re (pzzNzﬂ/cos(H) + Uy sin(H))

+ Re (p23N31\/cos(0) + Uz sin(B)))

= 2.849x10~ 11 (A30)
As@ »mandr -0
u, (r, ) = 2.0144x10711/2rK (431)
Then the coefficient C () is calculated as

C = 3.51x10° (432)
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