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ABSTRACT

NONLINEAR INTERACTIVE SOURCE-FILTER MODEL FOR VOICED SPEECH

Koç, Turgay

Ph.D., Department of Electrical-Electronics Engineering

Supervisor : Prof. Dr. Tolga Çiloğlu

September 2012, 93 pages

The linear source-filter model (LSFM) has been used as a primary model for speech pro-

cessing since 1960 when G. Fant presented acoustic speech production theory. It assumes

that the source of voiced speech sounds, glottal flow, is independent of the filter, vocal tract.

However, acoustic simulations based on the physical speech production models show that,

especially when the fundamental frequency (F0) of source harmonics approaches to the first

formant frequency (F1) of vocal tract filter, the filter has significant effects on the source due

to the nonlinear coupling between them. In this thesis, as an alternative to linear source-filter

model, nonlinear interactive source-filter models are proposed for voiced speech.

This thesis has two parts, in the first part, a framework for the coupling of the source and the

filter is presented. Then, two interactive system models are proposed assuming that glottal

flow is a quasi-steady Bernoulli flow and acoustics in vocal tract is linear. In these models,

instead of glottal flow, glottal area is used as a source for voiced speech. In the proposed inter-

active models, the relation between the glottal flow, glottal area and vocal tract is determined

by the quasi-steady Bernoulli flow equation. It is theoretically shown that linear source-filter

model is an approximation of the nonlinear models. Estimation of ISFM’s parameters from
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only speech signal is a nonlinear blind deconvolution problem. The problem is solved by a

robust method developed based on the acoustical interpretation of the systems. Experimental

results show that ISFMs produce source-filter coupling effects seen in the physical simu-

lations and the parameter estimation method produce always stable and better performing

models than LSFM model. In addition, a framework for the incorporation of the source-filter

interaction into classical source-filter model is presented. The Rosenberg source model is ex-

tended to an interactive source for voiced speech and its performance is evaluated on a large

speech database. The results of the experiments conducted on vowels in the database show

that the interactive Rosenberg model is always better than its noninteractive version.

In the second part of the thesis, LSFM and ISFMs are compared by using not only the speech

signal but also HSV (High Speed Endocopic Video) of vocal folds in a system identifica-

tion approach. In this case, HSV and speech are used as a reference input-output data for

the analysis and comparison of the models. First, a new robust HSV processing algorithm is

developed and applied on HSV images to extract the glottal area. Then, system parameters

are estimated by using a modified version of the method proposed in the first part. The ex-

perimental results show that speech signal can contain some harmonics of the fundamental

frequency of the glottal area other than those contained in the glottal area signal. Proposed

nonlinear interactive source-filter models can generate harmonics components in speech and

produce more realistic speech sounds than LSFM.

Keywords: Speech Modeling, Source-Filter Interaction, Nonlinear System Modeling, Non-

linear System Identification, High Speed Endoscopic Video Processing
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ÖZ

SESLİ SESLER İÇİN DOĞRUSAL OLMAYAN ETKİLEŞİMLİ KAYNAK-SÜZGEÇ
MODELİ

Koç, Turgay

Doktora, Elektrik - Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Tolga Çilog̈lu

Eylül 2012, 93 sayfa

Doğrusal kaynak-süzgeç modeli (DKSM) Gunnar Fant tarafından önerildiği 1960’dan beri

konuşma işlemede birincil model olarak kullanılmaktadır. Bu model de kaynak glottal akım

ve süzgeç vokal boşluk olup bunların birbirlerinden bağımsız olduğu kabul edilir. Fakat,

konuşma sisteminin fiziksel modelleri ile yapılan simülasyonlar, özellikle ses tellerinin titreşim

frekansı vokal boşluğun birinci rezonans frekansına yaklaştığında, vokal boşluğun glottal

akım üzerinde önemli etkileri olduğunu göstermiştir. Bu tezde klasik doğrusal kaynak-süzgeç

modeline alternatif olarak sesli sesler için kaynak ve süzgecin birbirini bağlı olduğu yeni

doğrusal olmayan etkileşimli kaynak-süzgeç modeli önerilmektedir.

Bu tez iki kısımdan oluşmaktadır. Birinci kısımda kaynak ve süzgeçin etkileşimi için bir

platform sunulmaktadır. Ardından vokal boşluktaki akustiğin doğrusal ve ses tellerindeki

hava akışının durağan-benzeri Bernoulli akımı olduğu kabul edilerek, iki adet doğrusal ol-

mayan etkileşimli kaynak-süzgeç modeli (EKSM) önerilmiştir. Bu modelde klasik modelden

farklı olarak glottal alan kaynak olarak kabul edilmiş, glottal akım, glottal alan ve vokal

boşluk Bernoulli denklemi ile ilişkilendirilmiştir. Teorik olarak DKSM’nin bu modellerin
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bir yaklaşımı olduğu gösterilmiştir.

Önerilen modellerin parametrelerinin sadece konuşma sinyalinden bulunması doğrusal ol-

mayan bir ters evrişim problemidir. Bu problem konuşmanın akustik teorisinden faydalanılarak

geliştirilen güçlü bir algoritma ile çözülmüştür. Yapılan deney sonuçları EKSM’lerinin fizik-

sel sistemlerde gözlenen kaynak-süzgeç etkileşimini üretebildiğini göstermiş ve aynı zamanda

önerilen parametre tahmin algoritması her zaman kararlı, doğrusal modelden daha iyi doğrusal

olmayan modeller üretmiştir. Ayrıca, klasik kaynak modellerini etkileşimli kaynak modeline

dönüştürmek için bir çerçeve sunulmuştur. Konuşma literatüründe yaygın olarak kullanılan

Rosenberg kaynak modeli etkileşimli hale getirilerek büyük bir konuşma veri tabanı üzerinde

etkileşimsiz model ile karşılaştırılmıştır. Ötümlü sesler üzerinde yapılan karşılaştırma sonuçları

etkileşimli kaynak modelinin her zaman etkileşimsiz modelden daha iyi olduğunu göstermiştir.

Tezin ikinci kısmında DKSM ve EKSM modelleri hem konuşma sinyali hemde ses tellerinin

yüksek hızlı endoskopik görüntüleri (YHEG) kullanılarak bir sistem tanıma işlevi biçiminde

karşılaştırılmıştır. Bu bölümde YHEG ve konuşma sinyalleri modellerin giriş ve çıkış veri-

lerini oluşturup analiz ve karşılaştırma için referans olması amacıyla kullanılmıştır. Öncelikle

YHEG’lerden ses telleri arasındaki alanın çıkarılması amacıyla yeni bir resim işleme algo-

ritması geliştirilmiş ve YHEG üzerine uygulanmıştır. Ardından, modellerin parametreleri,

elde edilen glottal alan ve konuşma sinyalleri kullanılarak, daha önce önerilen parametre

kestirim algoritmasında değişiklik yapılarak elde edilmiştir. Yapılan deneylerde konuşma

sinyalinin kaynak sinyalinde olmayan bazı harmonikleri içerdiği gözlenmiştir. Bu durum

konuşma üretim sisteminin doğrusal olmadığını göstermektedir. Doğrusal kaynak süzgeç

modeli veya herhangi bir doğrusal sistem ile yeni harmonikler üretmek mümkün değildir.

Bununla birlikte önerilen EKSM modelleri kaynak sinyalinde olmayıp konuşma sinyalinde

olan harmonikleri kaynak sinyalinin harmoniklerini geliştirerek oluşturmuş ve DKSM’den

daha gerçekci konuşma sinyalleri üretmiştir.

Anahtar Kelimeler: Konuşma modelleme, kaynak-süzgeç etkileşimi, doğrusal olmayan sis-

tem modelleme, doğrusal olmayan sistem tanıma, yüksek hızlı endoskopik görüntü işleme
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CHAPTER 1

INTRODUCTION

Speech is the result of many complex neurological and physiological processes in human

body in order to communicate with the environment. It conveys valuable information about

the identity, the language and the emotional state of the speaker. Hence, it is the information

source in signal processing applications like speech synthesis, coding, enhancement, morph-

ing, speech/speaker recognition, speaker verification and emotion recognition. Currently, in

speech processing, either data-driven or acoustics based models are used to get the desired sig-

nal or information from speech. The most widely used model is the linear source-filter model

(LSFM). It is theoretically based on the acoustics of the speech production [1]. The sound

source, i.e., glottal flow, is generated by the vibration of vocal folds and propagates through

vocal tract and radiates from lips to produce the speech sound. Vocal tract shape determines

the speech sound by spectrally weighting the source spectrum and the mouth increases the

high frequency content of the generated sound.

1.0.1 Motivation

Despite the fact that the research on the physics of speech production has been continuing

for a considerable amount of time, the acquired knowledge have not been utilized extensively

in the development of speech signal models. The linear source-filter model, the simplest

approximation of the speech production system, has been used dominantly for about half

a century. LSFM assumes that the source is independent of the filter. However, acoustic

simulations based on the physical speech production models show that, especially when the

fundamental frequency (F0) of the source harmonics approaches to the first formant frequency

(F1) of vocal tract filter, the filter has significant effects on the source due to the nonlinear
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coupling between them.

The aim of this study is, based on the existing knowledge of the physics of speech production,

to develop an interactive source-filter model that takes the effects of the nonlinear acoustic in-

teraction of the source and the filter into account. In particular, a way of combining the glottal

nonlinearity to the linear model of vocal tract, to produce the glottal flow, is introduced. Mod-

eling the nonlinear source-filter interaction may contribute to model based speech processing

applications.

1.1 The Outline of the Thesis

In this thesis, an interactive nonlinear source-filter model for voiced speech is proposed as an

alternative to linear source-filter model. The approach in the modeling is to use the physical

mechanism of the speech production using the fundamental theory of aerodynamics. In this

context, the interaction is modeled based on the quasi-steady Bernoulli flow assumption, a

specific solution of the Navier-Stokes equation at the glottis. The simulations of the speech

production based on the linear acoustics and nonlinear glottal aerodynamics are presented in

Chapter 2. Typical effects of the interaction for different vowels are illustrated by using areas

extracted from 3D MRI (Magnetic Resonance Images) of vocal tract and a mathematical

model of vocal folds. The source-filter coupling is discussed after presenting the simulation

results.

The derivation of the proposed ISFM models are presented in Chapter 3. There are two

proposed ISFMs in which ISFM2 is an extension of ISFM1. An analysis of the proposed

models is given. Finally, the relation between the LSFM and proposed ISFMs are established.

In fact, the LSFM is an approximation of ISFMs under some conditions. These conditions

are stated at the end of the chapter.

The estimation of the parameters of the suggested ISFMs only from speech is a nonlinear

blind estimation problem. In Chapter 4, a robust parameter estimation algorithm is proposed

in order to solve the problem. The experimental results on a speech signal are presented in

this chapter. The proposed algorithm always produces a stable and better performing model

compared to LSFM.
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A framework for the incorporation of the source-filter coupling into classical LSFM is pre-

sented in Chapter 5. The Rosenberg source model is extended to an interactive source model.

The comparison of the interactive and noninteractive source models are conducted on a large

speech database collected in our laboratuary from various speakers. The results show that the

proposed ISFMs consistently outperform the LSFM.

Investigating the LSFM and the proposed ISFMs on a system identification platform requires

not only the output of the systems but also the input. Due to the location of the glottis,

currently, there is no way to measure the glottal flow on human body. However, it is possible

to monitor vocal fold vibration by high speed endoscopic cameras (HSV). In Chapter 6, a

new robust algorithm is proposed to extract useful information from HSV of vocal folds.

The algorithm is applied to the images from IRCAM HSV database [56] and the results are

presented.

Finally, the proposed ISFM models and LSFM are investigated by using source measurements

obtained from HSV Images in a system identification fashion. The results show that speech

production is nonlinear and it is well modeled by the quasi - steady Bernoulli flow assumption

at the glottis. The proposed nonlinear systems have shown superiour performance compared

to the linear model. ISFMs, like physical simulators, enhance the source harmonics and

produce more realistic speech sounds than the linear source - filter model.
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CHAPTER 2

SPEECH PRODUCTION MODELS

2.1 Introduction

Speech sounds are produced by the motion of tissue and air in human vocal system. There are

two functionally different sections in the human vocal system, vocal folds, vocal tract shown

in Fig. 2.1. The vocal folds work as a sound source by vibrating under the lung pressure

during speaking. The vocal tract is a resonator modifiying the spectral content of the sound

source depending on its shape. The lips radiates the sound waves from the vocal tract to the

atmosphere.

2.2 Vocal Folds

Voiced speech sounds are generated by the vocal folds. The vocal folds are soft tissue struc-

tures and located in the neck. Their ability is to abduct (move apart) during respiration and to

adduct prior to and during voicing. They are the point of division between subglottal (below

the vocal folds) and supraglottal (above the vocal folds) airways. The airspace between the

two vocal folds is called glottis and the the airflow passing through the glottis is called glottal

flow. The structure of vocal folds can be divided into two physiologically different layers,

body and cover. The body layer consists of muscle fiber while the cover is pliable mucosal

tissue. The cover serves as a sheath around the body layer [21]. The vibration of the vocal

folds can be observed by XRAY, high speed videoendoscopy (HSV) or stroboscopy.

The ideal movement of the vocal folds in coronal plane is shown in Fig. 2.3(a). These

movements can be described by eight steps;
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Figure 2.1: Human Vocal System (taken from [15])

 

Figure 2.2: The Vocal Folds (taken from [15])
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(a) The Vocal Folds Movements (Mucosal Wave)

 

(b) The Glottal Flow

Figure 2.3: The movement of vocal folds (a) and corresponding glottal volume velocity (b)

1. Lower margins are opening while upper margins are closed.

2. Lower margins are opened while upper margins are opening.

3. Both lower and upper margins are opened. Vocal folds are apart.

4. The distance between the upper margins getting wider

5. The lower margins are getting closer

6. The lower margins are touching each-other.

7. The maximal closing of vocal folds (GCI).

8. Vocal folds are separating from lower margins towards upper margins.

It is easily seen from Fig. 2.3(a) that there is a phase difference between the movements of

lower and upper portion of each vocal folds. This phase difference leads the folds to move
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(a) Parametric Model

 

(b) Mass Model

 

(c) Continuum Model

Figure 2.4: The vocal fold models

like a wave in the coronal (vertical) plane. This movement is called ”mucosal wave”. The

entire process repeats itself quasi-periodically at the fundamental frequency of vibration (F0).

The vocal fold vibration is initiated and sustained over time by the steady airflow and pressure

supplied by subglottal system, lungs and trachea. As a result of this vibration, quasi-periodic

glottal flow, the sound source, is generated at the vocal folds as shown in Fig. 2.3(b).

The vocal fold models used in simulation of speech production can be classified into three

types as shown in Fig.2.4;

1. Parametric area models

The areas between the upper and lower margins are calculated from a geometric model

of vocal folds. A typical model is shown in Fig. 2.4(a) [10].

2. Mass Models

Each fold is represented by single or multiple masses. The position and the velocity

of each mass under pressure forces are determined by solving second order nonlinear
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equation.

3. Continuum or FEM Model

The vocal fold geometry is approximated in 2 or 3 dimensions by millions of points

shown in Fig. 2.4(c) and the Navier-Stokes equation is solved at each point by the finite

element method. The continuum model is used for the investigation of fluid-structure

interaction between the vocal fold tissue and the airflow in the glottis.

The vocal fold models can also be classified as mathematical (1) and biomechanical models

(2-3). For articulatory speech synthesis, two mass models are usually suggested. Mathemati-

cally the movement of each mass is described by second order nonlinear differential equation.

Therefore, increasing the mass approximation increases the computational complexity for

synthesis applications. Due to this high computational load, despide the huge computational

capacities of current computers, there is no existing real-time articulatory speech synthesizer

yet.

2.3 Vocal Tract

Vocal tract determine the identity of the spoken sounds. It has two functions, generates tur-

bulence by constricting the airflow for unvoiced or mixed speech sounds and filter the sounds

produced at the vocal folds and at the turbulences. It is composed of three cavities, pharnx,

oral and nasal. Each cavity has certain shape depending on the sound to be spoken. Espe-

cially, the oral cavity can create a variety of shapes by adapting the articulators, the tongue,

teeth, lips, and jaw and generates new sound sources. The shapes of the cavities determine

the acoustical properties of the vocal tract. Each cavity has its acoustic resonances and the

vocal tract resonance frequencies, in other words the formants (F1,F2,F3,...), are determined

by the acoustics of combined cavities. For any speech sound, the formants are arranged in a

specific patterns depending on the age and gender of the speaker. These patterns perceptually

allow us to identify the speech sounds.

The vocal tract is usually modeled by 2D or 3D geometry as shown in Fig. 2.5 [27]. The

parameters of the geometric models are obtained from MRI (Magnetic Resonance Image) or

CT (Computer Tomography) images as seen in left part of Fig.2.5. The geometry is approxi-

mated by the concatenation of uniform tubes in order to calculate the acoustics in the model
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Figure 2.5: The Vocal Tract Modeling

calculated by solving wave-equation on the each tube. In general, the vocal tract acoustics

is assumed to be linear except constrictions at which turbulence occurs and one dimensional

which is usually valid for sound waves below 4kHz in vocal tract [34]. By assuming planar

wave, the acoustics in 2D or 3D uniform geometry is calculated from the lengths, cross-

sectional areas and perimeters of each tube in the spacial approximation.

2.4 Acoustic models

The task of the acoustic model is to calculate the time varying airflow and air pressure distri-

bution within the vocal tract model and to calculate the acoustic speech signal radiated from

the mouth and nose or nostril. Considering the current physics based speech synthesizers,

there are three different acoustic models to calculate the sound propagation in vocal system

approximated by the concatenation of uniform tubes.

2.4.1 Wave Reflection Method

Wave reflection method is based on the D’Alembert solution of the wave equation. The for-

ward and backward traveling partial flow and pressure waves are calculated for each vocal

tract tube section in time domain on the basis of scattering equations at the tube junctions.
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The model parameters are either reflection coefficients or acoustic impedances. The main

advantage of this method is that the nonlinear source tract interaction can be easily handled

due to time domain computation. It is computationally efficient but its major drawback is that

frequency dependent loses are approximate [18, 19, 7, 20, 25, 24].

2.4.2 Transmission Line Circuit Analog

Transmission line circuit analog is based on the electrical circuit equivalent of sound wave

propagation in a uniform lossy tube. The vocal tract is considered as a concatenation of uni-

form tubes. The vocal folds are modelled by a time varying nonlinear impedance whose value

depends on the glottal area. Due to the nonlinear glottal impedance, the circuit can only be

simulated in time domain. Simulation of this circuit is conducted via finite difference method,

solving differential equations obtained from Kirchhoff’s laws and aerodynamic equations. It

is computationally complex and currently cannot be simulated in real time [2, 3, 27, 29].

2.4.3 Hybrid Time - Frequency Domain Model

Hybrid method uses combination of time and frequency domain methods. Time domain

model of glottis is coupled with the frequency domain model of vocal tract acoustics. The

vocal tract frequency response is calculated from tube geometries by the chain matrix method

and then vocal tract input impedance impulse response is obtained by inverse Fourier trans-

form. After obtaining the impulse response, the output speech signal is calculated by the con-

volution of impulse response and glottal flow obtained from time domain simulation [34, 30].

Main advantage of this method is that it is possible to use frequency dependent impedance

directly so that vocal tract can be represented more accurately than time domain methods.

However, it is computationally demanding and cannot be simulated in real time.

2.5 Aerodynamic & Acoustic Interactions in Speech Production

Sound is produced at a source and propagates in a medium, solid, fluids or gas. Generation

of sound sources in speech is a subject of biomechanics, aerodynamics and aeroacoustics,

while its propagation is an acoustic process. According to the generation mechanism, there
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Figure 2.6: A global view of aerodynamic and acoustic interactions in human vocal system

are two types of speech sounds, voiced and unvoiced. While the voiced sounds are generated

by the quasi-periodic vibration of vocal folds (aerodynamic process), the unvoiced sounds are

produced at constrictions causing turbulences in vocal tract (aeroacoustic process). Speech

production system can be represented by two interactive systems, aerodynamic and acoustic

system.

The aerodynamic part of the system represents the vibration of vocal folds due to airflow -

tissue structure interaction in the glottis. A kinematic model of vocal fold is excited by lung

pressure and starts to vibrate, then produce glottal flow. In order to investigate the effect of

this tissue structure interaction on the vibration of vocal folds completely, the Navier - Stokes

nonlinear differential equations need to be solved on the complex soft tissue structure of the

vocal folds with a set of appropriate boundary conditions. Due to the nonlinear structure of

Navier Stokes equations, the numerical solution obtained by finite element based methods

might not truly represent the flow - structure interaction. As a result, instead of using nu-

merical simulation, excised canine vocal folds or kinematic solid physical models of vocal

folds become more popular to investigate the aerodynamic system. In addition, the vibration

frequency and the vocal fold geometry can be affected by the acoustic loading of the trachea

and vocal tract. Recently, it is reported that this acoustic-aerodynamic interaction is important

for self-sustained oscillations of vocal folds [23].

The aerodynamic system can be represented by a system whose inputs are lung pressure,

11



elasticity, mass and friction of vocal folds and its output is the glottal area as shown in Fig.

2.7.

 

Figure 2.7: Input - Output Representation of Vocal Fold Aerodynamics

The acoustic system is composed of the supra-glottal (upper airway from glottis to lips), sub-

glottal airways (lower airway from glottis to lungs) and mouth. It represents the transmission

and radiation of sound generated at the vocal folds or at the turbulences in the vocal tract.

Both upper and lower airway has acoustical impedance and the combined impedance affects

the glottal volume velocity at the vocal folds during phonation. This is called as ”acoustic

interaction” or ”source-filter interaction” in speech.

The acoustic system can be represented as an input - output system as shown in Fig. 2.8.

Its inputs are pressure or flow sources, cross-sectional areas, tube lengths and its output is

acoustic pressure distribution in the vocal tract and radiated speech pressure wave.

 

Figure 2.8: Input - Output Representation of Acoustic Models
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2.6 A Review of Source-Filter Coupling

Nonlinear source-filter interaction has been studied by simulation, using acoustic and/or biome-

chanical models of vocal system. Due to the nonlinearity of the glottal impedance it can be

simulated in time domain [20]. The one mass and the two mass models are among the first

models that take into account the source-filter interaction [3]. The transmission line circuit

analog of vocal system is solved by the finite difference method [1, 2, 36, 27]. The results

demonstrate the acoustic interaction effects, skewness of glottal flow and superimposed ripple

on it.

Rothenberg studied the acoustic interaction between the glottal source and vocal tract with

a simple impedance based model of vocal tract linearly coupled to the time-varying glottal

impedance [35]. The results show that the interaction effects are noticeable when the glottal

impedance is comparable to the vocal tract input impedance. In particular, the vocal tract

inertia is responsible for skewness of glottal flow with respect to the glottal area while the

vocal tract resistance changes the amplitude of the glottal flow waveform.

Fant and Ananthapadmanabha used lumped approximation of vocal tract, trachea and glottis

in order to investigate the effects of nonlinear interaction on the glottal flow for different

vowels [36]. They use various configurations for the coupling of the vocal tract and trachea

and solve the nonlinear system of equations by an iterative algorithm. It is concluded that

the waveform of the interactive glottal flow is different for different vowels and depends more

on the vocal tract resonances than subglottal resonances. They also proposed a model that

approximates the nonlinear source filter coupling by varying vocal tract formants and their

bandwidts in accordance with the variation of glottal area in time.

In the hybrid time-frequency articulatory speech synthesis method [30], a different approach

is used. The impulse response at the input of the vocal tract is found from the frequency

response obtained from vocal tract areas (subglottal part is neglected) and then it is combined

with the vocal fold acoustics. However, they report that the impulse response of vocal tract

is very long and it is not always possible to calculate the interactive glottal flow. Hence,

they follow another approach using the input reflectance of the vocal tract (Frequency domain

representation of reflection coefficients) similar to that in the wave-reflection method.

The wave-reflection method works based on particle flow and pressure variations along the
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subglottal, supraglottal tract and glottis [7, 8, 9, 10, 11, 13, 19, 20, 23]. For the coupling at

the glottis, Titze proposed a mathematical model based on the quasi steady Bernoulli flow as-

sumption. It is essentially the glottal flow equation used in other approaches [7, 36], however

it represents the glottal flow in terms of particle velocity (instead of volume velocity).

The simulation of the interactive system model via wave-reflection method is a time-domain

approach. The calculation of the parameter values is easy, and, in particular, the frequency

dependent losses of the vocal tract are calculated recursively. It is considered to be a more

convenient approach compared to other methods [18, 19, 20, 25, 23].

Titze and Story investigated not only the acoustic interaction but also the aerodynamic interac-

tion of the coupling on more complicated models [7, 21, 13, 8, 9]. They show that vocal tract

affects the vibration pattern of vocal folds. Zanartu investigates the acoustic loading effect of

both vocal tract and trachea on a single mass model of the vocal folds under a quasi Bernoulli

flow assumption at the glottis [23]. It is shown that the acoustic loading of vocal tract is dom-

inant against that of trachea in maintaining self-sustained oscillations of vocal folds. Titze

has recently introduced a theory of nonlinear source filter coupling [11]. It is based on the

assumptions of linear vocal tract and a quasi-steady Bernoulli glottal flow. Two levels of in-

teraction effects are demonstrated. The level-I interaction seen in normal speaking consists

of the skewness and the ripple on the glottal flow for F0 < F1 and the level-II interaction

involves instabilities in the vibration pattern of vocal folds when F0 crosses over the formant

frequencies. The level-II effects are demonstrated in human voice by varying F0 [12]. In this

thesis, we focus on the level-I interaction observed in normal speaking conditions.

2.6.1 The effects of interaction on the glottal flow

In this section, the dependence of glottal flow waveform on vocal tract in two different for-

mant vowel cases, high F1 vowel /a/ and low F1 vowel /i/, for a wide F0 frequency range is

demonstrated by using a parametric glottal area model. The vocal system is simulated by the

wave reflection method described in [20, 23] using the areas extracted from 3D MR images

provided by Story in [20, 23] and parametric glottal area model proposed by Fant [36] given

by
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Figure 2.9: Vocal tract input impedance for male vowel /a/

ag [n] =


A

(
0.5 − 0.5 cos

(
π

2NO
n
))

, 0 < n ≤ NO

A cos
(
π

2NC
n
)

, n ≤ N0 − 1
(2.1)

where ag, A, NO and NC are the glottal area, the peak value of the glottal area, the open

phase duration and the closing phase duration, respectively. Particularly, we used the same

glottal flow expression obtained by Titze [7, 11] based on the quasi-steady Bernoulli flow

assumption. It is also equivalent to the interactive glottal flow equation of a single mass

system in terms of volume velocity that was used by Fant for the calculation of true glottal flow

[36]. The source-filter interaction depends on the vocal tract input impedance [35, 36, 11].

Considering the speech production system, there are mainly two different acoustic cavities,

the vocal tract, above the glottis, and trachea, below the glottis. Since the vocal tract has much

smaller crossectional area with respect to subglottal tract, its reactance is much larger than the

subglottal reactance. Hence the reactance of the overall system is slightly different than the

vocal tract reactance. The impedance relating the glottal flow to the transglottal pressure
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Figure 2.10: Time and amplitude based normalized glottal area (black lines) and glottal flow

waveforms (red lines) obtained by the simulation of vowel /a/ with wave-reflection method

for glottal area fundamental frequency, F0 (a) 80 Hz, (b) 120 Hz, (c) 160 Hz, (d) 200 Hz, (e)

240 Hz.

across the glottis is the sum of the subglottal and supraglottal impedances [11].

The vocal tract impedance of vowel /a/ calculated by the impulse response technique using the

wave reflection method is plotted in Fig. 2.9. The magnitude and resistance curves have peaks

at resonance frequencies at which the reactance curve has its zeros. It is seen in the figure that

the vocal tract input impedance is inertive for frequencies below F1, approximately 0.8 kHz,

and between 1.1-1.2 kHz while compliant in the frequency intervals 0.8-1.1 kHz and 1.2-1.7

kHz.

The vocal system is simulated by using constant lung pressure, PL = 0.8 kPa and the max-

imum glottal area A = 0.15 cm2. Since subglottal tract is not used in the simulation, the

subglottal pressure, psub, is set to the lung pressure, PL. The glottal area and glottal flow

waveforms normalized in time and amplitude obtained for F0 frequencies equally spaced by

40 Hz between 80-240 Hz are plotted in Fig. 2.10. It is seen from the figure that the glottal
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Figure 2.11: Vocal tract input impedance for male vowel /i/

flow is skewed to the right with respect to glottal area. This is the first effect of level-I interac-

tion. This behaviour is due to the inertive vocal tract reactance. It increases the spectral slope

of the source harmonic peaks. The second effect of level-I interaction is the ripple on the glot-

tal flow waveforms. The interaction ripples can be easily seen in the glottal flow waveforms in

Fig. 2.10(c)-(e). The intensity of the ripples increases as F0 is increased. On the other hand,

the frequencies of the ripples are not the same in each case. They result from the variations in

the magnitudes of the glottal flow harmonics. The magnitude of each harmonic in the source

spectrum is mainly determined by the vocal tract input impedance. The discussion on the

cause and effect of the interaction ripple requires both spectral and time domain investigation

of the simulated glottal waveforms and output speech signal.

The vocal tract impedance of vowel /i/ calculated by the wave-reflection method is shown in

Fig. 2.11. In this case, the first formant, (F1), calculated approximately as 200 Hz, is smaller

and closer to F0 frequencies used in the simulation. For frequencies between 80-240 Hz, the

simulations are conducted for /i/ and the resulting glottal flow waveforms are plotted in Fig.
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Figure 2.12: Time and amplitude based normalized glottal area (black lines) and glottal flow

waveforms (red lines) obtained by the simulation of vowel /i/ with wave-reflection method for

glottal area fundamental frequency, F0 (a) 80 Hz, (b) 120 Hz, (c) 160 Hz, (d) 200 Hz, (e) 240

Hz.

2.12. As expected, the skewness and ripple effects are observed in each case. However, an

important difference between the flow waveforms of F0 < F1 (Fig.2.12(a)-(c)) and F0 > F1

(Fig.2.12(d)) is that the former waveforms are skewed to the right while the latter is skewed

to the left. This is due to the first source harmonic, when F0 = 240 Hz is inside the negative

reactance region (compliant reactance) of vocal tract input impedance of /i/. Furthermore,

the size of the interaction ripple is much larger than the ripple seen in the case of /a/. The

reason for the large ripple is that the vocal tract impedance has a much stronger effect on the

individual harmonic magnitudes compared to that in the case of vowel /a/.

The glottal source waveform strongly depends on the vocal tract shape. It is due to the loading

effect of the vocal tract on the glottis [11].

The following statements summarize the salient aspects of the source-filter interaction;
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1. There are two major effects of the source-filter interaction on the source, skewness of

glottal flow and ripple on the glottal flow (level - I interaction).

2. Glottal flow is affected by the vocal tract input reactance. Positive reactance increases

the skewing of glottal flow to the right and increase the energy level of corresponding

harmonics [35, 11].

3. The vocal tract input reactance is always positive for frequencies below F1. During

speech activity, most of the time, the frequencies of source harmonics having the largest

energy values are in inertive reactance interval. As a result, the glottal flow is skewed

to the right [11]. The reactance usually increases up to the first vocal tract formant, F1,

except some small variations around the subglottal formants. It may be concluded that

for frequencies below F1, increasing F0 increases vocal tract input reactance so that

skewness is increased.

4. The resistive part of vocal tract input impedance affects the peak value of the flow.

Increasing resistance decreases the amplitude of the glottal flow [35, 11]. The resistance

increases up to F1, then decreases. This implies that the amplitude of the glottal flow

decreases as F0 increases up to F1.

5. The interaction ripple is caused by the variations in the magnitudes of the glottal flow

harmonics strongly effected by the vocal tract input impedance. The size of the inter-

action ripple depends on the magnitudes of the corresponding source harmonics. By

increasing F0, the dominant harmonics get closer to the zero reactance frequency and

the ripple gets larger.

6. For different vowels, the frequency of ripple, the maximum amplitude and the skewness

of the glottal flow are different due to the difference of the input impedance.
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CHAPTER 3

MODELING

3.1 Theoretical Background

In this section, the aerodynamic - acoustic theory of vocal folds and vocal tract is given, then

proposed nonlinear interactive system is developed based on these knowledge about the vocal

system.

3.1.1 Glottal Aerodynamics

The behaviour of airflow is described based on several conservation laws, including conser-

vation of mass, conservation of momentum and conservation of energy. These conservation

laws lead to the well-known dynamical equations of aerodynamics, known as Navier Stokes

equations.

Consider an air particle moving on a streamline with velocity v, according to conservation of

mass law, the continuity equation is

∂ρ

∂t
+ ∇. (ρv) = 0 (3.1)

where ρ and v denote the density of air and the particle velocity, respectively. If the density is

constant, then flow is said to be incompressible. Hence, the equation of continuity reduces to

the divergence of the particle velocity is zero on the streamline, ∇.v = 0. In the aerodynamic

engineering, usually when Mach number (Ma), fluid velocity over sound velocity, is below

to 0.3, the flow is assumed to be incompressible [5]. In the glottis, typical particle velocity is
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3000-5000 cm/s [10] and corresponding Mach number is between 0.08-0.14, hence the glottal

flow can be assumed to be incompressible. Incompressible flow formulation can therefore

be used to derive the velocity and pressure profiles in the glottis. Furthermore, in speech

production a generally one dimensional flow is assumed, parallel streamlines. Hence, the

equation of continuity turn out to be ∂v∂x = 0. For the glottis, the glottal volume velocity, u, is

calculated by the sum of all particles passing through the glottis, u =
∫

a.dv = a.v, where a is

the glottal area.

The momentum of an incompressible airflow is determined by Navier-Stokes equations,

∂v
∂t
+ v
∂v
∂x
= −1
ρ

∂P
∂x
+ Fgravity +

Fviscous

ρ
(3.2)

where P, Fbody, Fviscous are fluid pressure, force due to the gravity and viscosity, respectively.

Eq. (3.2) is nonlinear due to the particle flow velocity term, v. For glottis, there is about

3-5 mm elevation change and it corresponds to a pressure change, ρg(z2 − z1) = 0.068 Pa,

which is negligle in comparison to the typical measured pressures 100−1000 Pa in the glottis.

Furthermore, if the flow is assumed to be inviscid, then the last two terms of Eq. 3.2 vanishes.

For a steady incompressible inviscid flow, the momentum equation turns out to be

v
∂v
∂x
+

1
ρ

∂P
∂x
= 0 (3.3)

Eq. (3.3) is known as Euler’ equation of motion. It is solved by integrating along a streamline

to obtain

v2

2
+

P
ρ
= c (3.4)

where c is a constant that may vary from one streamline to another, but remains the same for

any one streamline. Hence, for two points along the same streamline, it can be written as

v2
1

2
+

P1

ρ
=

v2
2

2
+

P2

ρ
(3.5)

Eq. (3.5) is called as Bernoulli equation. Rewriting Eq. (3.5) to obtain a pressure drop in

terms of velocity change between two points as

21



 
Steady Flow (Open phase) 

Particle 

Velocity 

(v) 

Glottal 

Flow 

(U) 

Period 

Opening 

Closing 

Unsteady Flow (Opening & Closing) 

Figure 3.1: Glottal pulse and particle velocity

P1 − P2 =
1
2
ρ(v2

2 − v2
1) (3.6)

In glottal aerodynamics, the particle velocity changes rapidly before glottal closing and after

glottal opening, but remain more constant over most of the open phase as shown in Fig. 3.1.

Therefore, the steady flow assumption can be valid over most of the open phase, despite the

fact that it is violated in two short time intervals. This behaviour is called as quasi-steady

flow [10]. Especially during the glottal closing, due to unsteady flow behaviour, there may

be turbulent flow due to the separation of the flow from the glottal exit. As well as the flow

viscosity, the turbulence can cause losing of flow energy. To account for these losses, the right

side of Eq. 3.5 is multiplied by an empirical loss coefficient, kt, varying the geometry and the

Reynoulds number. kt is determined by experimentally, measured values are usually between

1.1 - 1.3 interval [10, 11, 36].

Considering the speech production system, the cross-section of trachea is much larger com-

pared to glottis, hence, particle velocity at the input of the glottis, v1, is much smaller than v2

and it can be neglected. Therefore, the pressure-flow relation in the glottis can be written in

terms of glottal flow, ug, as
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pTG = kt
1
2
ρ

ug
2

ag
2 (3.7)

where ug is the glottal flow, PTG is the transglottal pressure (the difference between the sub-

glottal and supraglottal pressures, PTG = Psub − Psup), ag is the minimum glottal area along

the vocal folds, ρ is the density of air and kt is the transglottal pressure recovery coefficient

determined experimentally [14]. If the subglottal acoustic impedance is neglected, then Psub

is equal to the lung pressure PL. Substituting PL into Eq.(3.7) and writing vocal tract input

pressure, pIN , instead of Psup, the glottal flow can be written as

ug = ag

√
2

PL − pIN

ktρ
(3.8)

= agβ
√

PL − pIN (3.9)

where β =
√

2
ktρ

. The experimental results obtained by the simulation of mechanical model of

vocal folds show that the unsteady Bernoulli flow assumption is valid during almost 70% of

a glottal cycle. It has been found that, it is a good approximation of actual glottal flow during

the open phase [16].

The linear source-filter theory [1] assumes that the glottal flow does not depend on the vocal

tract acoustics. Considering Eq.(3.9), this assumption holds if

• The vocal tract input pressure or supraglottal pressure is negligible compared to the

subglottal pressure (Psub >> Psup or PL >> pIN).

• The acoustic impedance of the glottis is very large compared to the vocal tract input

impedance (Zg >> ZIN). It also means that the minimum glottal area, ag, is much

smaller than the equivalent vocal tract area, Aeq defined by Aeq =
AsubAsup

Asub+Asup
(ag << Aeq)

[11].

Noninteractive glottal flow is obtained by neglecting the vocal tract input pressure, pIN , in

Eq.(3.9). It is a linear function of glottal area.

Based on the quasi-steady Bernoulli flow assumption, the glottal flow is related to the vocal

tract input pressure as given by Eq.(3.9). As we aim to develop a coupled speech production
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model, it is needed to have another expression, representing vocal fold dynamics, in terms of

the vocal tract input pressure, pIN , glottal flow and vocal tract output.

In the hybrid synthesis method, pIN , is calculated from vocal tract input impedance obtained

by the chain matrix method [30]. The impulse response of the vocal tract is calculated by

inverse Fourier transform, and it is convolved with the glottal flow to obtain the output speech.

However, it is reported that one drawback of this approach is that when the duration of the

impulse response is very long, calculation of convolution gets hard. Hence, instead of using

convolution directly, input reflectance of the vocal tract is used. In this work, in order to

accomplish the coupling, the input pressure, pIN , is estimated by a recursive filter determined

using the chain matrix method.

3.1.2 Vocal Tract Acoustics

There are three types of acoustic models for vocal tract; transmission line circuit analog, wave-

reflection method and chain matrix method. The first two methods work in time-domain while

the last one works in frequency domain. Since it can model the frequency dependent losses

due to viscosity and wall vibration, the vocal tract formants are estimated more accurately.

Among these methods, the chain matrix method serves as a reference model for the others

[30]. The chain matrix method is reviewed in the following section.

3.1.3 Chain Matrix

The chain or ABCD matrix representation of one uniform tube is written in the frequency

domain as

Uin

Pin

 =
A C

B D


Uout

Pout

 (3.10)

where Pin and Uin are pressure and volume velocity at the input end of the tube. Pout and Uout

are the quantities at the output end of the tube. The A, B,C,D frequency dependent elements

of the matrix represents the propagation of acoustic waves through the tube in frequency

domain. The elements of chain matrix for a single tube section of vocal tract is given in [30].
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It depends on the solution of equation of continuity and equation of motion. The losses of

viscous friction and wall vibration are approximated by modifying the equation of motion and

the equation of continuity. The resulting second order linear partial differential equation has

two independent solutions. For a lossy uniform tube, the matrix is given as,

A C

B D

 =
 coshσl 1

β sinhσl

β sinhσl coshσl

 (3.11)

where σ and β are as follows,

σ2 = (ρs + AR)
(

s
ρc2 +

Y
A

)
(3.12)

β =

√[
Y +

As
ρc2

]
/
[
R +
ρs
A

]
(3.13)

where Y and R represent the wall vibration and viscous losses, l is the length of the tube, c

is the speed of sound, ρ is the air density and A is the cross-sectional area of the tube. For

the vocal tract, the matrix elements are calculated for each tube, then multiplied together with

matrices for the other tubes, builds a matrix for the entire tract as

KTRACT = KN KN−1KN−2...K2K1 =

ATRACT CTRACT

BTRACT DTRACT

 (3.14)

Then, the transfer matrix for vocal tract is written as

UIN

PIN

 =
ATRACT CTRACT

BTRACT DTRACT


ULIP

PLIP

 (3.15)

The frequency response from glottal input to the lip pressure is given by the ratio of lip

pressure to the glottal volume velocity in frequency domain, V (w) = PLIP
UIN

. In terms of lip

volume velocity, the lip pressure is PLIP = ZLULIP where ZL is the radiation impedance.

V(w) can be written from Eq.(3.15) as
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V(w) =
PLIP

UIN
=

ZL

ATRACT +CTRACT ZL
(3.16)

If the transfer function is defined as the ratio of lip volume velocity to glottal volume velocity,

it can be written as

H(w) =
ULIP

UIN
=

1
ATRACT +CTRACT ZL

(3.17)

The vocal tract input impedance can be calculated as the ratio of input pressure to input

volume velocity

ZIN =
PIN

UIN
=

DTRACT ZL + BTRACT

ATRACT +CTRACT ZL
(3.18)

3.1.4 DT-Representation of Chain Matrix for Lossless Vocal Tract

The chain matrix method leads to the classical linear all pole filter representation of the vocal

tract. Consider the vocal tract transfer function H(s) given by

H(s) =
ULIP

UIN
=

1
ATRACT +CTRACT ZL

(3.19)

If the radiation impedance and losses are assumed to be zero, then

H(s) =
1

ATRACT
(3.20)

For the lossless case, R and Y in the ABCD matrix representation are zero, so from Eq.(3.13),

we can calculate that σ = s
c and β = A

ρc .

A C

B D

 =
 cosh s

c l − A
ρc sinh s

c l

−ρcA sinh s
c l cosh s

c l

 (3.21)
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By dividing vocal tract into N = l/∆ equal length concatenated tube sections with length ∆,

choosing sampling period T = 2∆
c , and z = e

2s∆
c to transform to discrete time by impulse

invariance technique, for a single lossless tube with length ∆ it can be written as [34]

cosh
(
∆s
c

)
=

e
s∆
c + e−

s∆
c

2

=
z1/2 + z−1/2

2
= z1/2

(
1 + z−1

2

)
(3.22)

sinh
(
∆s
c

)
=

e
s∆
c − e−

s∆
c

2

=
z1/2 − z−1/2

2
= z1/2

(
1 − z−1

2

)
(3.23)

Substituting Eq.(3.22) and Eq.(3.23) into the chain matrix yields

A C

B D

 = z1/2

 1
2

(
1 + z−1

)
− A

2ρc

(
1 − z−1

)
− ρc2A

(
1 − z−1

)
1
2

(
1 + z−1

)
 (3.24)

Since the matrix for whole tract is the product of all matrices, the elements of KTRACT can be

written as zN/2 times Nth degree polynomial in z−1 as follows

KTRACT = zN/2


N∑

n=0
akz−k

N∑
n=0

ckz−k

N∑
n=0

bkz−k
N∑

n=0
dkz−k

 (3.25)

KTRACT can be used to calculate acoustic input-output transfer function of the vocal tract. For

example, using Eq.(3.25) in Eq.(3.20), the discrete time transfer function from glottis to lips

for the lossless vocal tract is written as

ULIPS (z)
UIN (z)

=
z−N/2

N∑
k=0

akz−k

(3.26)

Here, z−N/2 is a delay term due to time required transmission of the sound from glottis to lips

[34]. If the vocal tract filter, H(z), is defined as H (z) = 1
N∑

k=0
akz−k

, then Eq.(3.26) is written as

ULIPS (z) = z−N/2H (z) UIN (z) (3.27)
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Figure 3.2: Linear Source-Filter Model of Speech Production

By defining ug[n] = uIN [n − N/2] as the glottal flow, in time domain, Eq.(3.27) can be written

as

N∑
k=0

akulips[n − k] = ug[n] (3.28)

It must be noted that Eq.(3.28) is obtained under closed glottis and no lip radiation assump-

tions. In addition, source-filter interaction is neglected, assuming that they are independent.

In general, the lip radiation is approximated by a first order high pass filter, R(z), [37].

Hence, the transfer function from glottal volume velocity to lip pressure can be written as
PLIPS (z)

UG(z) = H (z) R (z). As a result, the linear source-filter model or linear predictive represen-

tation of voiced speech in shown in Fig. 3.2.

In order to properly couple the source and the filter, according to unsteady Bernoulli equation

in Eq.(3.9), the vocal tract input pressure, pIN , is needed. Now, we will obtain the input

impedance of the vocal tract that relates the glottal flow with pIN from chain matrix and then

construct two nonlinear interactive source-filter models for voiced speech.

3.2 Interactive Source-Filter Modeling

We consider two ways to calculate pIN from the chain matrix; from lip velocity and from the

glottal flow. Let us first write PIN in terms of ULIPS using KTRACT assuming that radiation

impedance is zero (PLIP = 0),

PIN

ULIPS
= BTRACT = zN/2

N∑
n=0

bkz−k (3.29)

Defining the transfer function from lip velocity to vocal tract input pressure as B(z) =
N∑

n=0
bkz−k,
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then PIN (z) is

PIN (z) = zN/2B (z) ULIPS (z) (3.30)

In time domain,

pIN [n] =
N∑

k=0

bkuLIPS [n + N/2 − k] (3.31)

Note that in Eq.(3.31), pIN [n] depends on the future values of uLIPS [n] and it is a noncausal

representation for pIN [n].

Combining Eq.(3.26) and (3.30), we can write PIN in terms of Ug as

PIN (z) = B (z) H (z) Ug (z)

=

N∑
n=0

bkz−k

N∑
n=0

akz−k

Ug (z) (3.32)

From Eq.(3.32), the vocal tract input pressure, pIN [n], in terms of glottal flow is

pIN [n] =
1
a0

N∑
k=0

bkug[n − k] − 1
a0

N∑
k=1

ak pIN[n − k] (3.33)

Eq.(3.33) is a causal representation for calculating pIN [n]. In order to calculate interactive

glottal flow, pIN [n] is added into ug [n] expressed by Eq.(3.9) as follows

ug [n] = βag [n]
√

(PL − pIN [n]) (3.34)

There are two alternatives for the inclusion of pIN in Eq.(3.34)

1. pIN in terms of uLips [n]

Substituting equation 3.31 into 3.34, we get

ug [n] = βag [n]

√√√PL −
N∑

k=0

bkuLIPS [n + N/2 − k]

 (3.35)

where uLIPS [n], from Eq.(3.27) is

uLIPS [n] =
1
a0

ug[n − N/2] − 1
a0

N∑
k=1

akuLIPS [n − k] (3.36)
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Note that Eq.(3.36) is a nonlinear noncausal recursive representation for interactive

glottal flow. The current glottal flow, ug[n], depends on future values of the lips flow,

uLIPS [n]. The system representation is not realizable.

2. pIN in terms of ug [n]

Normalizing the filter coefficients, ak and bk by a0, from Eq.(3.33), we can write

pIN [n] =
N∑

k=0

bkug[n − k] −
N∑

k=1

ak pIN[n − k] (3.37)

Substituting Eq.(3.37) into (3.34), we get

ug [n] = βag [n]

√√√
PL −

N∑
k=0

bkug[n − k] +
N∑

k=1

ak pIN[n − k] (3.38)

which can be written as

ug
2[n] + b0β

2ag
2[n]ug [n] − ag

2[n]β2
(
PL −

∧
pIN [n]

)
= 0 (3.39)

where
∧
pIN [n] is

∧
pIN [n] =

N∑
k=1

bkug[n − k] −
N∑

k=1

ak pIN[n − k] (3.40)

= pIN [n] − b0ug[n] (3.41)

Eq.(3.39), a recursive second order function of ug [n], has to be solved to get two solu-

tions for ug [n] at any time instant n. The solution is

ug1,2 [n] =
βag [n]

−b0βag [n] ±
√

b0
2β2ag

2[n] + 4
(
PL −

∧
pIN [n]

)
2

(3.42)

In order to have a real solution, according to Eq.(3.34), it is required that PL ≥ pIN [n].

To avoid any ambiguous solution for ug[n], Eq.(3.42) must have only one positive result.

It is satisfied if ∣∣∣∣∣∣∣
√

b0
2β2ag

2[n] + 4
(
PL −

∧
pIN [n]

)∣∣∣∣∣∣∣ ≥ ∣∣∣b0βag [n]
∣∣∣ (3.43)

b0
2β2ag

2[n] + 4
(
PL −

∧
pIN [n]

)
≥ b0

2β2ag
2[n] (3.44)

PL ≥
∧
pIN [n] (3.45)
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Eq.(3.45) is a required condition for unique ug [n]. By combining PL ≥
∧
pIN [n] and

PL ≥ pIN [n], the required condition for real and unique ug [n] is PL ≥ max(pIN [n] ,
∧
pIN [n]).

If b0 is chosen to be positive (b0 > 0), according to Eq.(3.41), pIN [n] >
∧
pIN [n] and

the condition for real and unique glottal flow, ug [n], turns out to be PL ≥ pIN [n].

The solution of Eq.(3.42), is used for the calculation of pIN [n] in Eq.(3.33). At each

time instant n, calculation of the parameters,
∧
pIN[n], ug[n], and pIN[n] is required.

3.2.1 Modification of Interactive Model

In the previous section, an interactive model considering only vocal tract loading on the source

is obtained for voiced speech. This model is nonlinear and its stability depends on the ampli-

tude of the input, glottal area. In order to have a control over the glottal area amplitude, the

glottal area function βag [n] in Eq.(3.38) is represented as a product of a normalized wave-

form, agUNITY [n], whose maximum value is unity, and an amplitude scale parameter, Amax;

ug [n] = Amax.agUNITY [n]
√

PL − pIN [n] (3.46)

This modification helps to develope a robust parameter estimation algorithm.

The second modification is related with combining the subglottal tract to the model. In the

previous section, we consider only supraglottal tract in calculating the input impedance, ZIN =

PIN
Ug

. It is known that the impedance relating the glottal flow to the transglottal pressure across

the glottis is the sum of the subglottal and supraglottal impedances [11]. In other words, if we

consider both subglottal and supraglottal impedance, the transglottal pressure can be written

as

kt
1
2
ρ

ug
2

ag
2 = PL − Ug ∗ Zsub − Ug ∗ Zsup (3.47)

= PL − Ug ∗ (Zsub + Zsup) (3.48)

By representing Ug ∗ (Zsub + Zsup) in Eq.(3.48) as pIN , we obtain the same glottal flow equa-

tion given by Eq.(3.46). However, in this case, pIN represent the pressure drop due to not

only the supraglottal impedance but also subglottal impedance. Therefore, if the subglottal

impedance is taken into account, overall impedance is the sum of the subglottal and supra-

glottal impedances. It is shown in the previous section that, by using the chain matrix model,

the subglottal and supraglottal impedances can be expressed by rational transfer functions. As
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Figure 3.3: (a) Interactive Source - Filter Model I (ISFM1) (b) Interactive Source - Filter

Model II (ISFM2)

a result, the overall system transfer function is the sum of the two rational functions, which

is a rational function. Let qk’s denote the coefficients of the denominator of input impedance

for the combined system and the order of the transfer function be N. Then,

pIN [n] =
N∑

k=0

bkug [n − k] −
N∑

k=1

qk pIN [n − k] (3.49)

Indeed bk’s in Eq.(3.49) are different than those in Eq.(3.37), however we prefer to keep the

notation.

Based on the way pIN[n] is calculated, we propose two interactive models. The first model

using Eq.(3.37) together with Eq.(3.46) is called as interactive source-filter model I (ISFM1)

and the second model using Eq.(3.49) for pIN[n] in Eq.(3.46) is named as interactive source-

filter model II (ISFM2). The proposed interactive models, ISFM1 and ISFM2, are shown in

Fig. 3.3.(a)-(b), respectively.
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3.2.2 Analysis of ISFMs

The first point in the analysis of the interactive models is the stability. The interactive systems

produce bounded output if the vocal tract filter, H(z), is stable and the interactive glottal flow,

ug[n], is bounded. Since the ISFMs are nonlinear, the stability of the system depends on

the amplitude of the input, particularly the maximum amplitude of glottal area, Amax, and

the other model parameters, PL, bk’s and ak’s. The maximum of the glottal flow amplitude,∥∥∥ug
∥∥∥∞, is expressed by ∥∥∥ug

∥∥∥∞ =
∥∥∥∥AmaxagUNITY

√
PL − pIN

∥∥∥∥∞ (3.50)∥∥∥ug
∥∥∥∞ ≤

∥∥∥AmaxagUNITY
∥∥∥∞∥∥∥∥√

PL − pIN

∥∥∥∥∞ (3.51)

A finite gain [54], γ(H)∞, can be defined for the square root nonlinearity as

γ(H)∞ ≥ max

∥∥∥√PL − pIN
∥∥∥∞

∥PL − pIN∥∞
(3.52)

γ(H)∞ ≥
∥∥∥√PL − pIN

∥∥∥∞
PL − ∥pIN∥∞

(3.53)

γ(H)∞
(
PL − ∥pIN∥∞

) ≥ ∥∥∥∥√
PL − pIN

∥∥∥∥∞ (3.54)

By substituting Eq.(3.54) into Eq.(3.51),
∥∥∥ug

∥∥∥∞ is written as∥∥∥ug
∥∥∥∞ ≤ Amaxγ(H1)∞

(
PL − ∥pIN∥∞

)
(3.55)

∥pIN∥∞ can be expressed by a gain function, Γ(H)∞, as ∥pIN∥∞ = Γ(H)∞
∥∥∥ug

∥∥∥∞, which is

substituted into Eq. (3.55) to get a closed form expression for
∥∥∥ug

∥∥∥∞ as follows,

∥∥∥ug
∥∥∥∞ ≤ Amaxγ(H)∞

(
PL − Γ(H)∞

∥∥∥ug
∥∥∥∞)

∥∥∥ug
∥∥∥∞ + Amaxγ(H)∞Γ(H)∞

∥∥∥ug
∥∥∥∞ ≤ AmaxPLγ(H)∞∥∥∥ug

∥∥∥∞ ≤ AmaxPLγ(H)∞
1 + Amaxγ(H)∞Γ(H)∞

(3.56)

Since ∥pIN∥∞ = Γ(H)∞
∥∥∥ug

∥∥∥∞, the closed form expression for ∥pIN∥∞ can be obtained by

multiplying Eq.(3.56) by Γ(H)∞, ∥pIN∥∞ can be calculated as

∥pIN∥∞ ≤
AmaxPLγ(H)∞Γ(H)∞

1 + Amaxγ(H)∞Γ(H)∞
(3.57)
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Some important limiting conditions obtained from Eq.(3.56) and Eq.(3.57) for
∥∥∥ug

∥∥∥∞ and

∥pIN∥∞ are given in table 3.1,

Table 3.1: The limiting conditions of the model parameters

Limit
∥∥∥ug

∥∥∥∞ ∥pIN∥∞
Amax → 0 0 0
Amax → ∞ PL

Γ(H)∞
PL

PL → 0 0 0
PL → ∞ ∞ ∞
Γ(H)∞ → 0 Amax

√
PL 0

Γ(H)∞ → ∞ 0 PL

The limiting conditions inform about the states of the interactive system. Note that Γ(H)∞ → 0

is the asymptotical condition that the interactive system is in non-interactive mode and equiv-

alent to linear source-filter model. In this mode, glottal flow is a linear function of the

glottal area and vocal tract has no influence on it. Another interesting observation is that

if Γ(H)∞ → ∞,
∥∥∥ug

∥∥∥∞ → 0 and ∥pIN∥∞ is bounded by PL. An unstable pIN filter can produce

bounded glottal flow, ug[n], and pIN[n] due to the nonlinear feedback in the model. However,

in practice when the magnitudes of the poles of the pIN filter are very large and outside the unit

circle, pIN can exceed PL in a small fraction of time and ug[n] becomes complex. To avoid

this problem, a sufficient condition for the pIN filter is Γ (H)
∥∥∥ug

∥∥∥∞ ≤ PL. If we rewrite
∥∥∥ug

∥∥∥∞
as

∥∥∥ug
∥∥∥∞ ≤ Amax

√
PL

∥∥∥∥∥√
1 − pIN

PL

∥∥∥∥∥∞, it is easy to show that the maximum value of
∥∥∥ug

∥∥∥∞ is

less than or equal to Amax
√

2PL when pIN ≤ PL. Substituting it into Γ (H)
∥∥∥ug

∥∥∥∞ ≤ PL,

Γ (H)
∥∥∥ug

∥∥∥∞ ≤ PL

Γ (H) Amax
√

2PL ≤ PL

Γ (H) ≤
√

PL√
2Amax

(3.58)

Eq.(3.58) is a sufficient condition that the interactive system produces real and bounded glottal

flow, ug[n].

According to limiting conditions, if Γ(H)∞ → 0 glottal flow is non-interactive meaning that it

is a function of only glottal area and PL, hence, source and filter are independent. Therefore,

if Γ(H) <<
√

PL√
2Amax

is satisfied, (pIN << PL), the ISFMs run in non-interactive mode and

perform the same as LSFM. Using this property, it is possible to have ISFM performing

always equal or better than LSFM. Amax and PL are the control parameters for the mode of

the ISFMs.
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CHAPTER 4

PARAMETER ESTIMATION

4.1 Introduction

In speech analysis, the estimation of model parameters is a blind deconvolution problem.

Since there is nothing known about either the source, glottal flow, or the filter, vocal tract.

This type of problems can be solved using some a priori informations. The most widely used

information for voiced speech analysis is the glottal closed phase of vocal folds. When the

vocal folds are closed completely, the glottal flow is zero. Therefore, the vocal tract filter can

be estimated accurately from speech signal during closed-phase. Later the estimated filter is

used for glottal flow extraction by inverse filtering speech. The same approach can be used for

estimating the nonlinear interactive source-filter models (ISFMs) since when the vocal folds

are closed, the outputs of both LSFM and ISFMs are the same. The vocal tract is estimated

by using closed-phase data, however estimation of the other parameters, PL, Amax, ak, bk and

qk, make the problem become more complex. In this section, a robust method is developed to

solve this complex nonlinear blind deconvolution problem

4.2 Parameter Estimation

Let s [n] and
∧
s [n] denote speech samples of length M corresponding to a voiced utterance

and its estimate reconstructed by the model respectively. Defining the error as

e [n|θ] = s [n] − ∧s [n|θ] (4.1)
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where θ is the parameter vector of length N. The reconstruction error is a vector in RMand

the size of the error can be measured by any norm, l. The most widely used norm is l2 and it

represents the mean squared error

E (θ) =
1
M

M∑
n=1

(e [n|θ])
2

(4.2)

The parameter estimation problem can be written as

∧
θ = arg min

θ∈RN
(E (θ)) (4.3)

4.3 Estimation of Vocal Tract Filter & Glottal Flow from Speech

The parameters of the linear source - filter model are generally estimated in a two stage pro-

cess, inverse filtering and optimization of the voice source model. It is called as joint source

filter optimization [43]. According to linear source - filter model, after removing the lip radi-

ation effect, the voiced speech signal can be written as

N∑
k=0

ak s [n − k] = ug [n] , where a0 = 1 (4.4)

By inspecting Eq. (4.4), it is seen that accurate vocal tract filter estimates are obtained us-

ing the speech signal corresponding to time interval at which the vocal folds are closed. For

completely closed vocal folds, the glottal flow is zero and according to Eq. (4.4), the covari-

ance analysis of speech signal in the closed phase provides vocal tract filter coefficients, ak

[46, 47, 48]. It is written as

ak = Φ
−1.r (4.5)

where Φ is the covariance matrix of s[n] calculated over the closed phase interval and r is

the vector containing the covariance values from 1 to N [49]. The covariance analysis may

produce unstable vocal tract filter. In this case, the poles of the estimated vocal tract filter
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are reflected to their conjugate reciprocal locations to obtain a stable filter [49]. In addition,

sometimes positive real poles that deteriorate the glottal flow waveform estimate may occur.

These positive real poles are removed from the estimated vocal tract filter [46, 49]. After

estimating the vocal tract filter, the glottal flow waveform is obtained by filtering the speech

signal by A(z),

ug [n] =
N∑

k=0

aks [n − k] (4.6)

4.3.1 Source-Filter Optimization

The inverse filtered speech signal provides glottal flow estimate. It is used as a reference for

the source model of speech production, ugMOD [n].

Let
∧
s [n] denote the reconstructed speech signal by the source model,

∧
ugMOD [n], then the

reconstruction error can be written in terms of glottal flow as

eu [n] =
N∑

k=0

ake [n − k] =
N∑

k=0
ak s [n − k] −

N∑
k=0

ak
∧
s [n − k] (4.7)

= ug [n] −
∧

ugMOD [n] (4.8)

The cost function in terms of glottal flow can be written as

Eu =
1
M

M∑
n=1

(
ug [n] −

∧
ugMOD [n]

)2

(4.9)

The problem is to minimize the error, Eu, between the glottal flow estimate and its model. As a

source model, ugMOD[n], the most widely used models are Liljencrants-Fant (LF) , Rosenberg,

Rosenberg+ and KLGLOTT [31, 43]. Among the all source models, the LF model is used as

a reference model due to its physiological meaning. Estimation of the LF model parameters

is a highly nonlinear nonconvex optimization problem. There are two stage approaches, first

estimate a much simpler model whose global minimum is guaranteed, then use the parameter

of the estimated model for the initial values of LF model. Using trust region type optimization,

more accurate model parameters can be estimated [43].
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4.4 Nonlinear Source-Filter Model Parameter Estimation Algorithm

We follow the steps below to find the model parameters, Amax, PL, ak, bk, qk.

1. Closed - Phase Analysis (CPA)

Estimation of glottal flow waveform by removing the vocal tract and radiation filters

from speech signal using constrained closed phase analysis [49]. In this step, both

glottal flow waveform, ug[n], and vocal tract filter coefficients, ak’s, are estimated from

speech.

2. Glottal parameterization

For pitch synchronous analysis, the glottal closure and the glottal opening instants and,

the location and the amplitude of glottal flow maxima are obtained from glottal flow

estimate.

3. Glottal area model initialization

Using the glottal parameters, the time sequence denoting the samples of glottal area

model, ag [n], is generated. There are parametric glottal area models used for articu-

latory synthesis and acoustic analysis in the literature [36]. It is also possible to use

parametric glottal flow models instead of glottal area model, such as Rosenberg, LF

etc.

4. Multi-parameter optimization

A method is developed to estimate the interactive glottal flow model parameters with

respect to the error between the target glottal flow, ug [n], obtained by inverse filtering

and reconstructed glottal flow,
∧
u g [n; θ], by the interactive system

Eu (θ) =
1

N0

N0∑
n=1

(
ug [n] − ∧ug [n; θ]

)2
(4.10)

where θ denotes the model parameters. Since the interactive glottal flow is a nonlinear

function of the model parameters, Amax, PL, ak and bk, minimization of Eu (θ) is a non-

linear optimization problem. Due to the particular nonlinearity, there is no analytical

solution for the minimization problem. However, by choosing good initial values, it is

possible to solve the problem iteratively.
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Figure 4.1: Parameter estimation algorithm
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4.4.1 Glottal Parameterization

In the glottal parameterization phase, the time and amplitude instants of glottal flow obtained

by CPA is marked to synthesize glottal area model waveform. Some of the parameters of the

most widely used glottal source models are as follows

Np : the time instant at which the glottal flow has a maximum.

NGCI : the time instant at which the glottal flow derivative has negative sharp peak corre-

sponding to glottal closure event of vocal folds

NGCO : the time instant at which the vocal folds start to opening

4.4.2 Nonlinear Model Parameter Optimization

The parameters of the proposed nonlinear models are estimated based on a target signal. It

can be glottal flow or glottal flow derivative estimated from inverse filtering or directly speech

signal. The target is chosen as the glottal flow estimated by inverse filtering since the source-

filter interaction effects are easily tracked on the glottal flow estimates.

The objective in the parameter estimation problem is to minimize the sum of the squared error

between the glottal flow waveform obtained from inverse filtering and glottal flow waveform

produced by the proposed nonlinear system. After obtaining the glottal flow by inverse fil-

tering, the task is to approximate it by using proposed glottal flow model. This requires the

optimization of the nonlinear model parameters Amax, PL, bk, qk with respect to error E,

E =
1
M

M∑
n=1

(
ug [n] − Amax.agUNITY [n]

√
PL − pIN [n]

)2

(4.11)

Since the relation between the error, e[n], and system parameters are nonlinear, it is a nonlin-

ear least squares problem. The nonlinear least squares problems are generally solved by two

types descent algorithms, Gauss-Newton or Levenberg-Marquate [53]. The main feature of

these algorithms is that they do not require Hessian of the cost function by assuming that the

error, e[n], is small. They require the gradient of the cost function with respect to parameters

[53]. Sometimes calculation of analytic gradient may be computationally very high, in that
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case either finite difference approximation for the gradient or non-gradient based optimiza-

tion algorithms like simplex method can be used [55]. The most important problem for the

nonlinear optimization is to find robust initial values for the parameters due to the non-convex

structure of the error surface that may lead to iterations to stuck on a local minimum.

4.5 Optimization of the parameters of ISFMs

The coupled system equations are expressed as

∧
ug [n] = ag [n]

√
PL − pIN [n]

= Amax.agUNITY [n]
√

PL − pIN [n] (4.12)

and

pIN [n] =
N∑

k=1

bk
∧
ug [n − k] −

N∑
k=1

qk pIN [n − k]

=

N∑
k=1

bkag [n − k]
√

PL − pIN [n − k] −
N∑

k=1

qk pIN [n − k] (4.13)

The following sections describe the parameter optimization routines of the ISFM models.

4.5.1 Gradient Based Optimization Algorithm

The sample error in glottal flow can be written as

e [n|θ] = ug [n] − Amax.agUNITY [n]
√

PL − pIN [n|θ] (4.14)

where θ denotes the model parameters Amax, PL, bk and qk. The objective function is the mean

squared error

E(θ) =
1
M

M∑
n=1

e2 [n|θ] = 1
M

M∑
n=1

(
ug [n] − Amax.agUNITY [n]

√
PL − pIN [n|θ]

)2
(4.15)
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Since the model parameters are nonlinearly related with the error function, this is a nonlinear

least squares problem. It can be solved by gradient based iterative algorithms[53]. In vector

form, Eq.(4.15) becomes

E(θ) =
1
M

e
−

T .e
−

(4.16)

where e
−
=

[
e (1|θ) e (2|θ) . . . . e (M|θ)

]T
. The derivative of E(θ) with respect to the

elements, θk, of the parameter vector θ is

∂E (θ)
∂θk

=
2
M

M∑
n=1

e [n]
∂e [n]
∂θk

(4.17)

and the Jacobian is

J
−
=



∂e[1]
∂θ1

∂e[1]
∂θ2

. .

. .

. .

∂e[M]
∂θ1

∂e[M]
∂θ2


(4.18)

Therefore, the gradient can be written in terms of Jacobian and error as follows

∇θE (θ) =
2
M

JT e
−

(4.19)

The entries of the Hessian matrix of the cost function is obtained by taking the derivatives of

the gradient vector with respect to θ as

Hk,l =
∂2E (θ)
∂θk∂θl

=
2
M

M∑
n=1

(
∂e [n]
∂θk

∂e [n]
∂θl

+ e [n]
∂2e [n]
∂θk∂θl

)
(4.20)

in terms of Jacobian

H =
2
M

JT J +
2
M

M∑
n=1

e [n] .
e2 [n]
∂θk∂θl

(4.21)

using S =
M∑

n=1
e [n] . e2[n]

∂θk∂θl
the Hessian matrix can be written as

H =
2
M

JT J +
2
M

S (4.22)

Depending on the size of S , there are two approaches for the calculation of Eq.(4.22), small

residue and large residue algorithms[53]. If S is large with respect to JT J, it has to be calcu-

lated either analyticaly or by using finite difference approximation. This type of approaches
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are called large residue algorithms. However, if the error, e[n], is small enough to neglect

the term S , the Hessian can be calculated by using only the first derivative of the cost func-

tion. Algorithms that use this approximation are called small residue algorithms[53]. The

Gauss-Newton and Levenberg-Marquate are the two algorithms that are based on the small

error assumption. In the Gauss-Newton method, the Hessian is approximated by H ≈ 2
M JT J,

hence during the iterations, the parameters are updated as

θk+1 = θk − ηk
(
Jk

T Jk
)−1

Jk
T ek (4.23)

where η is step size that can be chosen either as a constant or computed using line search[53].

4.5.2 Optimization of the scalar parameter Amax

The system error in glottal flow, e[n], is defined as e[n] = ug [n]− ∧ug [n]. The derivative of the

mean squared error, E, with respect to Amax, ∂E
∂Amax

is

∂E
∂Amax

=
2
M

M∑
n=1

e [n]
∂e [n]
∂Amax

=
2
M

JAmax e−

(4.24)

where JAmax and e
−

are the gradient and error vectors of length M, respectively. Using Eq.(4.12),

the derivative is expressed as

∂E
∂Amax

=

∂

 M∑
n=1

(
ug [n] − ag [n]

√
PL − pIN [n]

)2
∂Amax

(4.25)

=
2
M
.

M∑
n=1

e [n]
∂
(
−ag [n]

√
PL − pIN [n]

)
∂Amax

(4.26)

= − 2
M

M∑
n=1

e [n].

∂ag [n]
∂Amax

√
PL − pIN [n] + ag [n]

∂
( √

PL − pIN [n]
)

∂Amax

 (4.27)

=
2
M

M∑
n=1

e [n].


∧
ug [n]

2 (PL − pIN [n])
∂pIN [n]
∂Amax

−
∧
ug [n]
Amax

 (4.28)
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The elements of JAmax used by Gauss-Newton method in Eq. (4.24) is as follows

JAmax[n] =
∧
ug [n]

2 (PL − pIN [n])
∂pIN [n]
∂Amax

−
∧
ug [n]
Amax

(4.29)

where ∂pIN [n]
∂Amax

can be calculated by taking the derivative of pIN [n] given by Eq.(4.13) with

respect to Amax.

∂pIN [n]
∂Amax

=

∂
N∑

k=0
bkAmaxagUNITY [n − k]

√
PL − pIN [n − k]

∂Amax
−
∂

N∑
k=1

qk pIN [n − k]

∂Amax
(4.30)

=

N∑
k=0

bkagUNITY [n − k]

√PL − pIN [n − k] + Amax
∂
( √

PL − pIN [n − k]
)

∂Amax

 − N∑
k=1

qk
∂pIN [n − k]
∂Amax

(4.31)

∂pIN [n]
∂Amax

=

N∑
k=0

bk
∧
ug [n − k]

Amax
−

bk
∧
ug [n − k]

2 (PL − pIN [n − k])
∂pIN [n − k]
∂Amax

 − N∑
k=1

qk
∂pIN [n − k]
∂Amax

(4.32)

1 + b0
∧
ug [n]

2 (PL − pIN [n])

 ∂pIN [n]
∂Amax

=

N∑
k=0

bk
∧
ug [n − k]

Amax

...
−

N∑
k=1

 bk
∧
ug [n − k]

2 (PL − pIN [n − k])
+ qk

 ∂pIN [n − k]
∂Amax

(4.33)

∂pIN [n]
∂Amax

=
1

1 + b0
∧
ug[n]

2(PL−pIN [n])

 N∑
k=0

bk
∧
ug [n − k]

Amax
−

N∑
k=1

 bk
∧
ug [n − k]

2 (PL − pIN [n − k])
+ qk

 ∂pIN [n − k]
∂Amax


(4.34)

When ak = bk (Γ(H)∞ = 1, see in the parameter estimation algorithm Step-1 in the article),

which is the usual case in the optimization of Amax, PL >> pIN , hence Eq. (4.34) can be

approximated by
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∂pIN [n]
∂Amax

=

N∑
k=0

bk
∧
ug [n − k]

Amax
−

N∑
k=1

qk
∂pIN [n − k]
∂Amax

(4.35)

The gradient vector given by Eq. (4.35) can be considered as an output of a time-invariant

IIR filter. Infact, the output is equal to pIN[n]/Amax. Therefore, JAmax in Eq.(4.24) can be

approximated as

JAmax[n] =
∧
ug [n]

2 (PL − pIN [n])
pIN [n]
Amax

−
∧
ug [n]
Amax

(4.36)

Furthermore, using the same assumption used in Eq.(4.35), JAmax[n] turns out to be

JAmax[n] = −
∧
ug [n]
Amax

(4.37)

Substituting Eq. (4.37) into Eq. (4.24) and equating to zero yields,

∂E
∂Amax

= 0 (4.38)

2
M

JAmax e−
= 0 (4.39)

−
M∑

n=1

∧
ug [n]
Amax

(
ug [n] − ag [n]

√
PL − pIN [n]

)
= 0 (4.40)

M∑
n=1

∧
ug [n] ug [n] =

M∑
n=1

∧
ug [n] ag [n]

√
PL − pIN [n] (4.41)

M∑
n=1

∧
ug [n] ug [n] = Amax

M∑
n=1

∧
ug [n] agUNITY [n]

√
PL − pIN [n] (4.42)

A∗max =

M∑
n=1

∧
ug [n] ug [n]

M∑
n=1

∧
ug [n] agUNITY [n]

√
PL − pIN [n]

(4.43)

The optimal A∗max value is obtained by Eq.(4.43).
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4.5.3 Optimization of the parameter vector bk

The gradient of E with respect to {bl}Nl=0 can be written as

∂E
∂bl

=
2
M
.

M∑
n=1

(
ug [n] − ag [n]

√
PL − pIN [n]

)∂ (−ag [n]
√

PL − pIN [n]
)

∂bl
(4.44)

=
2
M
.

M∑
n=1

e [n]
ag [n]

2
√

PL − pIN [n]

∂pIN [n]
∂bl

(4.45)

then, the elements of Jacobian is

Jbl[n] =
ag [n]

2
√

PL − pIN [n]

∂pIN [n]
∂bl

(4.46)

where ∂pIN
∂bl

is calculated from Eq. (4.13) as follows

∂pIN [n]
∂bl

=
∂

∂bl

 N∑
k=0

bkag [n − k]
√

PL − pIN [n − k] −
N∑

k=1

qk pIN [n − k]


(4.47)

∂pIN [n]
∂bl

=
∧
ug [n − l] −

N∑
k=0

bkag [n − k]

2
√

PL − pIN [n − k]

∂pIN [n − k]
∂bl

...

−
N∑

k=1

qk
∂pIN [n − k]
∂bl

(4.48)1 + b0
∧
ug [n]

2 (PL − pIN [n])

 ∂pIN [n]
∂bl

=
∧
ug [n − l] −

N∑
k=1

bk
∧
ug [n − k]

2 (PL − pIN [n − k])
∂pIN [n − k]
∂bl

...

−
N∑

k=1

qk
∂pIN [n − k]
∂bl

(4.49)

Finaly form of ∂pIN
∂bl

is

∂pIN [n]
∂bl

=
1(

1 + b0
∧
ug[n]

2(PL−pIN [n])

) ∧ug [n − l] −
N∑

k=1

qk +
bk
∧
ug [n − k]

2 (PL − pIN [n − k])

 ∂pIN [n − k]
∂bl


(4.50)
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Closed form solution of Eq.(4.45) does not exist. Optimal parameter bl is estimated for all

l = 0, 1, 2, ..,N by solving Eq.(4.45) together with Eq.(4.50) iteratively.

4.5.4 Optimization of the parameter vector qk

The gradient of E with respect to {ql}Nl=0 can be written as

∂E
∂ql

=
2
M
.

M∑
n=1

(
ug [n] − ag [n]

√
PL − pIN [n]

)∂ (−ag [n]
√

PL − pIN [n]
)

∂ql
(4.51)

=
2
M
.

M∑
n=1

e [n]
ag [n]

2
√

PL − pIN [n]

∂pIN [n]
∂ql

(4.52)

then, the elements of Jacobian is

Jql[n] =
ag [n]

2
√

PL − pIN [n]

∂pIN [n]
∂ql

(4.53)

where ∂pIN
∂ql

is calculated from Eq. (4.13) as follows

∂pIN [n]
∂ql

=
∂

∂ql

 N∑
k=0

bkag [n − k]
√

PL − pIN [n − k] −
N∑

k=1

qk pIN [n − k]


(4.54)

∂pIN [n]
∂ql

= −
N∑

k=0

bkag [n − k]

2
√

PL − pIN [n − k]

∂pIN [n − k]
∂ql

− pIN [n − l]...

−
N∑

k=1

qk
∂pIN [n − k]
∂ql

(4.55)1 + b0
∧
ug [n]

2 (PL − pIN [n])

 ∂pIN [n]
∂ql

= −pIN [n − l] −
N∑

k=1

bk
∧
ug [n − k]

2 (PL − pIN [n − k])
∂pIN [n − k]
∂ql

...

−
N∑

k=1

qk
∂pIN [n − k]
∂ql

(4.56)
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∂pIN [n]
∂ql

=
1(

1 + b0
∧
ug[n]

2(PL−pIN [n])

) −pIN [n − l] −
N∑

k=1

qk +
bk
∧
ug [n − k]

2 (PL − pIN [n − k])

 ∂pIN [n − k]
∂bl


(4.57)

Closed form solution of Eq.(4.52) does not exist. Optimal parameter ql is estimated for all

l = 1, 2, ..,N by solving Eq.(4.52) together with Eq.(4.57) recursively.

4.5.5 Equalization of linear and nonlinear models using initial parameter values

Initial parameter values are critical for the success of the nonlinear optimization. Physical in-

sight about the system would be useful in choosing the initial values. As far as the parameters

Amax and PL are concerned, a ”good” choice can be obtained by setting PL >> pIN and a

small value for Amax. For large PL, the interactive glottal flow can be written as

∧
u g [n] � AmaxagUNITY [n]

√
PL (4.58)

which implies that the maximum value of glottal flow is approximately Amax
√

PL. Hence, the

corresponding initial value for Amax is

Amax0 =
max

(
ug

)
√

PL
(4.59)

PL gives us a flexibility to choose the operating point for ISFMs. We can operate the system

either in interactive or noninteractive mode. This property allows the performance of ISFM

be equal or better than the linear source-filter model. At its worst, ISFM would be performing

like LSFM.

The parameter ak estimated by CPA are the coefficients of the vocal tract filter and its poles de-

fine the vocal tract formants. It can be inferred from the spectrum of the vocal tract impedance

[13] that a zero is located between any two consecutive formants. Hence, a suitable initial

value for bk can be ak. Similarly, for ISFM2, the initial value for qk can be taken as ak so that

ISFM1 and ISFM2 are equivalent before optimizing ISFM2.

4.5.6 Multi-parameter optimization algorithm

The parameter estimation procedure is as follows
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Figure 4.2: Multi-parameter optimization algorithm for the ISFMs
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1. Choose PL as a large positive number, such as 1000 ∗ max
(
ug[n]

)
in a glottal cycle,

so that initially the nonlinear system works in non-interactive mode (Γ(H)∞ = 1 since

bk
0 = ak).

2. Minimize Eu (θ) (Eq.(4.10)) with respect to Amax with initial values Amax0 =
max(ug)√

PL
,

bk
0 = ak and qk

0 = ak, obtain the glottal area maximum, Amax. If the error is larger than

the error of LSFM increase PL and obtain a new value for Amax.

3. Minimize Eu (θ) with respect to bk with initial values bk
0 = ak and qk

0 = ak, obtain bk
∗.

The parameters of ISFM1 are now estimated!

4. Minimize Eu (θ) with respect to qk with the initial value bk
∗ and qk

0 = ak, obtain qk
∗.

5. Minimize Eu (θ) with respect to bk with initial values bk
∗ and qk

∗, obtain bk
∗∗ and then

continue to iterate as it is in steps 4 and 5 until finding a minimum value. Finally, the

parameters of ISFM2 are estimated!

In the first three steps, the parameters of ISFM1 are calculated. After the iterations in the

fourth and the fifth steps, the parameters of ISFM2 are found. The flowchart of the algorithm

is shown in Fig. 4.2.

4.6 Summary

In this section, a parameter estimation algorithm is developed for the nonlinear interactive

source-filter models. Thanks to the algorithm, it is always possible to obtain better ISFMs

compared to LSFM. First, it equalizes ISFM1 to LSFM, by setting the operation mode of

ISFM1 to non-interactive mode by using the control parameters PL and Amax, then decreases

the ISFM1’s error further by optimizing bk. In a similar way, using ISFM1 as an initial model

of ISFM2, the algorithm produces better ISFM2 model compared to ISFM1. In the next sec-

tion, the effectiveness of the proposed algorithm is demonstrated by experiments conducted

on a short speech segment.
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CHAPTER 5

PRELIMINARY EXPERIMENTS

5.1 Introduction

In this section, experiments are conducted to investigate both the parameter estimation algo-

rithm and the glottal flow waveforms produced by ISFM models. The parameter estimation

algorithm described in the previous section is applied on a short speech segment. The glot-

tal flow signal is estimated from speech by inverse filtering, then glottal area model wave-

form is generated. The parameters of the ISFMs are optimized, then interactive glottal flow

waveforms are computed using the optimal parameters. The resulting interactive glottal flow

waveforms are demonstrated.

5.2 Experiments on a short speech segment

A voiced speech segment shown in Fig. 5.1 is used for the first experiment. The first step of

parameter estimation is to estimate the glottal flow waveform from speech signal using closed-

phase analysis. The spectrum of speech signal and estimated vocal tract filter are plotted in

Fig. 5.1(b). Glottal flow and glottal flow derivative waveforms obtained by using the vocal

tract filter are plotted in Fig. 5.1(c) and Fig. 5.1(d), respectively. The glottal flow estimate

is similar to the simulated glottal flows obtained by physical models in Sec. II. There is a

ripple on the glottal flow and derivative estimate due to the interaction between glottal flow

and vocal tract.

The next step is the glottal parameterization in which time instants and amplitude values of

the glottal flow and glottal flow derivative are found for the glottal area model. A set of results
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Figure 5.1: (a) Speech Signal, (b) The spectrum of speech (red line) and estimated vocal tract
(blue line), (c) Glottal flow estimate, (d) Glottal flow derivative
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Figure 5.2: Glottal parameterization step Np- The glottal flow peak instants, NGCI - The glottal
closure instants, NGOI - The glottal opening Instants

are shown in Fig. 5.2.

As a glottal area input, we first use Eq. (2.1) [36]; The parameters of the model are estimated

from glottal flow estimate assuming that the coarse shapes of the glottal area and glottal flow

are close to each other. The glottal area waveform, ag [n], obtained according to Eq. (2.1) and

its derivative are plotted in Fig. 5.3.

The first example interactive glottal flow waveform synthesized by ISFM1 using a non-

optimal Amax and PL is shown in Fig. 5.4 (where Amax = 1, PL = 1000, bk = qk = ak

obtained by inverse filtering ). In the top figure, the blue, red and black lines show target glot-

tal flow, ug [n], reconstructed glottal flow,
∧

ug [n] , and glottal area, ag [n], respectively, while

their derivatives are shown in the bottom. It is seen in both figures that there are two types of

error between the target and reconstructed signals. First type of error is due to the magnitude

mismatch, while the second type is due to the ripples observed on the target flow. Our ap-

proach in the parameter optimization consists of two steps. In the first step, Amax and PL are

optimized so that the first type of error is minimized while the model works in non-interactive

mode. In the second step, the parameters of the pIN filter are optimized to produce the fine

ripples on the interactive glottal flow waveform.

The error surface and contours obtained for optimization of Amax and PL are shown in Fig.
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Figure 5.3: (Top) Calculated glottal area waveform using Fant’s area model (black line) versus
glottal flow estimated by inverse filtering (red line) and (bottom) their derivative waveforms
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Figure 5.4: (Top) Interactive glottal flow produced by ISFM1 (red line), unity glottal area
(black line) and glottal flow estimated by inverse filtering (blue line) and (bottom) their deriva-
tives
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5.5. They are obtained by sampling the cost function at equally spaced values of Amax and PL.

It is seen in the upper figure that the error increases if both parameters are increased. This is

reasonable since both Amax and PL are directly proportional to the amplitude of glottal flow.

The top plot shows that at each PL value there is a minimum that corresponds to one unique

Amax value. These observations are seen much better on the error contour in the bottom plot.

It shows that there is a contour passing through the minimum of the cost function at the middle

of the contours.

The optimal value for Amax is found to be 0.13 as described in Sec. VI by setting PL = 1000

initially. Note that it can be extracted from the error surface and contour plots in Fig. 5.5.

There is a minimum at Amax = 0.13. In this configuration, bk is equal to ak (impulse response

of the pIN filter is an impulse located at zero), hence the gain is Γ(H)∞ = 1, thus it is expected

that the model is in non-interactive mode. Before optimizing the parameter, bk, the resulting

interactive glottal flow and its derivative are plotted in Fig. 5.6. It is seen that there is no

ripple on the interactive glottal flow that is almost the same as the glottal area waveform in

Fig. 5.3. Interactive glottal flow is seem to be an amplitude scaled version of the glottal area,

meaning that glottal flow is a linear function of the glottal area.

By optimizing the parameters bk and qk as described in the optimization algorithm, all the

parameters of the interactive models are obtained. In this case, for ISFM2, Γ(H)∞ is estimated

as 64, less than a half of
√

PL√
2Amax

≈ 165 and interaction ripple is expected on the resulting

interactive glottal flow. The interactive glottal flow produced by ISFM2 is shown in Fig. 5.7.

It is seen from the figure that ISFM2 produces the ripple on the target glottal flow from the

given glottal area. However, there is a large mismatch between the closing phases of the

target glottal flow and the estimated glottal flow. The mismatch is also clearly observed in

Fig. 5.3 and 5.6. The glottal area model is not successful in modeling the closing-phase

and it yields a large modeling error. Since the optimization algorithm attempts to reduce this

error, despide its ability to produce the interaction ripple, estimated interactive glottal flow is

severely affected by this modeling error. Its performance can be increased by avoiding closing

phase or return phase errors in the glottal area model.

In this case, as a glottal area input, we use Rosenberg+ model [45]. It models the closing

phase by an exponential function. After optimizing its time parameters, the resulting glottal

area waveform and its derivative, ag [n], obtained by Rosenberg model, are shown in Fig. 5.8.
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Figure 5.6: (Top) Interactive glottal flow waveform after optimizing Amax (red line), unity
glottal area (black line) and glottal flow estimated by inverse filtering (blue line) and (bottom)
their derivatives (
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Figure 5.7: (Top) Interactive glottal flow produced by ISFM2 (red line), unity glottal area
(black line) and glottal flow estimated by inverse filtering (blue line )and (bottom) their deriva-
tives (Γ(H)∞ = 64)
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Figure 5.8: (Top) Calculated glottal area waveform using Rosenberg+ model (black line)
versus glottal flow estimated by inverse filtering (red line) and (bottom) their derivatives

It is a coarse shape approximation of the glottal flow waveform.

The optimal parameter Amax is estimated as 0.136 when PL = 1000. Since, bk is equal to

ak, the gain is Γ(H)∞ = 1, thus it is expected that the model is in non-interactive mode. The

synthesized interactive glottal flow and its derivative are plotted in Fig. 5.9. Again no ripple

is observed on the interactive glottal flow because the ISFM1 runs in non-interactive mode.

By optimizing the parameters bk and qk as described in the optimization algorithm, all the

parameters of the interactive models are obtained. In this case, for ISFM1, Γ(H)∞ is estimated

as 99, less than
√

PL√
2Amax

≈ 164 and interaction ripple is expected on the resulting interactive

glottal flow. The interactive glottal flow produced by ISFM1 is shown in Fig. 5.10. It is seen

from the figure that ISFM1 produces the ripple on the target glottal flow from the given glottal

area. It is more clearly observable on the glottal flow derivative waveform shown in the lower

part of the figure.

Finally, using ISFM1 as an initial model, ISFM2 is estimated. The interactive glottal flow

generated by ISFM2 is plotted in Fig. 5.11. ISFM2 refines the glottal flow produced by

ISFM1 and decreases the error further. Now Γ(H)∞ is calculated as 89. The results show that

both ISFMs can produce the ripple with fine granularity by working in the interactive mode.
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Figure 5.9: (Top) Interactive glottal flow produced by optimal Amax (red line) (Γ(H)∞ = 1),
unity glottal area (black line) and glottal flow estimated by inverse filtering (blue line) and
(bottom) their derivatives
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Figure 5.10: (Top) Interactive glottal flow produced by ISFM1 (red line), unity glottal area
(black line) and glottal flow estimated by inverse filtering (blue line) and (bottom) their deriva-
tives (Γ(H)∞ = 99)
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Figure 5.11: (Top) Interactive glottal flow produced by ISFM2 (red line), unity glottal area
(black line) and glottal flow estimated by inverse filtering (blue line) and (bottom) their deriva-
tives (Γ(H)∞ = 89)

5.3 Summary

In this section, the parameters of the ISFMs are estimated from a short speech segment and

interactive glottal flow waveforms synthesized by using the estimated model parameters are

presented. During optimization of the model parameters, the error between the interactive

glottal flow waveform produced by the proposed models and the glottal flow estimate ob-

tained from closed-phase analysis decreases further. The glottal area model is important for

obtaining a good interactive glottal flow. If it is not model the glottal flow waveform shape

sufficiently, estimated model may have a large bias. For a good glottal area model, both

ISFM1 and ISFM2 produce the ripple on the target glottal waveform accurately. The results

show that ISFMs can produce the ripples of the glottal flow due to nonlinear source-filter

interaction and the proposed parameter estimation algorithm is powerful enough to estimate

a good model producing fine details of the glottal flow. In the next section, the algorithm is

applied on a large speech database for a comparison of the ISFMs and the LSFM.
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CHAPTER 6

COMPARISON OF LSFM AND ISFM

6.1 Introduction

In order to compare the linear and nonlinear models, an experiment is conducted on a large

speech database. For the experiment, a speech database containing eight sustained Turkish

vowels is formed by recording speech from 12 male and 8 female speakers with electroglotto-

graph signal (EGG). The glottal closure instants (GCI) are marked by first applying the thresh-

old method on EGG signal [51] and then manually corrected. Then, covariance analysis over

closed phase of the speech signal were done for estimating the glottal flow [46, 47, 48, 49, 52].

The Rosenberg model parameters are estimated and applied to both linear - nonlinear systems

as shown in Fig.6.1. The primary objecive is to minimize reconstruction error for the glottal

flow obtained from closed phase covariance analysis.

6.1.1 Comparison of LSFM and ISFMs

To compare the interactive and non-interactive models, we have constructed a special large

speech database containing eight sustained Turkish vowels recorded from 12 male and 8 fe-

male speakers together with the electroglottograph (EGG) signals in anechoic room. Since

inverse filtering requires high quality recording conditions [47], three high quality micro-

phone , two Sennheiser M64 and Studio projects C1, with flatt frequency response down to

30 - 40 Hz, were used to record speech pressure signal with sampling rates 16 kHz and 48

kHz. Simultaneuously corresponding EGG signal were recorded using multichannels audio

recording device, UA-1000.
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Figure 6.1: Experimental setup for LSFM & ISFMs using Rosenberg model

After constructing the database, the glottal closure instants (GCI) of each recording in the

database are marked by thresholding the EGG signal [51] and then by manual correction.

Then, the glottal flow is estimated by covariance analysis over closed phase (CPC) of the

speech signal [46, 52, 47, 48, 49]. One of the problems in estimating the glottal flow waveform

using the CPC is that when the F0 is high, accurate vocal tract filter may not be obtained due

to the limited data in the closed phase. Arroabarren and Carlosena [50] demonstrates this type

of erroneous glottal flow estimates obtained from high pitch voicing. This problem makes it

difficult to use female speech in the experiments. Therefore, we only use the male speech

database. For the comparison of interactive and noninteractive systems, we use Rosenberg

glottal flow model given as

uR[n] =


27AVn2

4(OQ2.N0) −
27AVn3

4(OQ3.N0
2) , 0 ≤ n ≤ OQ.N0

0 , OQ.N0 < n
(6.1)

where AV , OQ and N0 are the amplitude, the open quotient and the fundamental period a

glottal cycle, respectively. The model has two free parameters, AV and OQ. Estimation of

AV is a convex optimization problem, while that of OQ is non-convex [43]. The general

procedure is to first obtain AV by solving a linear LS problem, then to perform a grid search,

over 0 < OQ < 1, on the error surface given by Eq.(6.2) [43].
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Eu (θ) =
1

N0

N0∑
n=1

(
ug [n] − uR [n]

)2
(6.2)

The Rosenberg model parameters are estimated according to Eq. (6.2) and used in interactive

systems as a glottal area waveform, ag[n]. In this way, Rosenberg model is extended to an

interactive glottal flow model.

6.1.2 Results & Discussion

The performance of the systems are compared based on the mean square error (MSE) between

the reconstructed glottal flow and the reference glottal flow estimated from CPC analysis over

each glottal cycle:

MS EUg (model) =
1

N0

N0∑
n=1

(
ug [n] − ∧u g mod el [n]

)2

(6.3)

Table 6.1: The number of glottal flow cycles for each vowel used in the experiments

Vowel # of Glottal Cycles
/a/ 407
/e/ 306
/l/ 375
/i/ 490
/u/ 369
/y/ 293
/o/ 281
/2/ 247

The numbers of analyzed glottal cycles are shown in table 6.1. There are totally 2768 glottal

cycles included in the experiments.

The averages of MSE and error variances calculated for each glottal cycle in the database are

shown in table 6.2 and table 6.3, respectively. The PISMF1 and PISMF2 in table II represent

the percentages of the average errors of ISFM1 and ISFM2, respectively, over the Rosenberg

model. When the Rosenberg model is applied to ISFM1, the reconstruction error decreases

at most by 45 % for /1/ and at least by 19 % for /u/. Similarly, ISFM2 decreases the error of

Rosenberg model between 35 - 59 %. Among the interactive models, ISFM2 performs slightly

better than ISFM1. The results show that the performances of ISFM1 and ISFM2 are much
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better than the performance of the Rosenberg model. Incorporating nonlinear interaction into

Rosenberg model improves the performance.

Table 6.2: Average of MSE calculated over glottal flow cycles for each vowel. For the ISFM1
and ISFM2 the PISFM1 and PISFM2 represents the ratio over Rosenberg model

Vowel Rosenberg ISFM1 PISFM1 ISFM2 PISFM2
/a/ 0.0914 0.0572 62.58 0.0531 58.10
/e/ 0.4187 0.2571 61.40 0.2207 52.71
/l/ 0.2768 0.1538 55.56 0.1162 41.98
/i/ 0.9053 0.5214 57.59 0.3777 41.72
/u/ 0.0534 0.0434 81.27 0.0348 65.17
/y/ 0.2835 0.1636 57.71 0.1239 43.72
/o/ 0.0278 0.0182 65.47 0.0164 58.99
/2/ 0.1212 0.0831 68.56 0.0692 57.10

The cummulative error distributions of the Rosenberg and proposed models are plotted in

Fig. 6.2. The vertical axis is the percentage of the number of the glottal cycles that yield a

smaller MSE than that indicated by the horizontal axis. The dash-dot, dashed and solid curves

represent the MSE distributions of the Rosenberg, ISFM1 and ISFM2, respectively. About 20

% of the glottal cycles by the Rosenberg model produce an MSE of greater than 0.5 while

the glottal cycles with an MSE in the same range is about 7 % for ISFM2. MSE distributions

show that ISFM1 and ISFM2 are far better than the non-interactive Rosenberg model.

Figure 6.3 shows the scatter plot of the MSEs of all vowels based on the ratio of first formant

(F1) and fundamental frequency (F0), F1/F0. It is seen from the scatter plot that the MSE

levels can vary. This level change may occur due to the aspiration noise and small ripples in

the closed phase resulting from erroneous inverse filtering for some cases in the study. The

closed phase ripples are usually reported as a bad inverse filter configuration flag in inverse

Table 6.3: Average Error Variances calculated over glottal flow estimates for each vowel

Vowel Rosenberg Model ISFM1 ISFM2
/a/ 0.0733 0.0432 0.0394
/e/ 0.2777 0.1832 0.1473
/l/ 0.2219 0.1416 0.1049
/i/ 0.7822 0.4754 0.3388
/u/ 0.0396 0.0339 0.0258
/y/ 0.2507 0.1481 0.1108
/o/ 0.0233 0.0147 0.0130
/2/ 0.0989 0.0696 0.0556
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Figure 6.2: (color online) MSE Distributions of the models over all glottal cycles, non-
interactive Rosenberg (dash-dot line), ISFM1 (dashed line), ISFM2 (solid line)

filtering literature and they cannot be eliminated easily [46, 49]. Since we do not use an as-

piration model for closed phase, high noise in this time interval can significantly affect the

total MSE calculated over a glottal cycle. It is observed that all of the vowels in the experi-

ments are enhanced by incorporating the coupling into the non-interactive Rosenberg model.

In the introduction section, based on the acoustical simulation, it is stated that increasing the

F0 towards to F1 increases the nonlinear coupling effects on the glottal flow. Hence, when

F1/F0 is large, the glottal flow can be represented by a coarse shape model more successfully.

However, when it is small, the performance of a coarse shape glottal flow model decreases.

These relationships can be observed on the MSE scatter plot in Fig. 6.3. The figure shows that

when F1/F0 is large, MSE values are very close for ISFMs and Rosenberg models. However,

when F1/F0 decreases, ISFMs reduce the MSE of Rosenberg model and provides significant

improvement.
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Figure 6.4: (a) MSE Distribution on utterance /a/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.5: (a) MSE Distribution on utterance /e/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.6: (a) MSE Distribution on utterance /1/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.7: (a) MSE Distribution on utterance /i/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.8: (a) MSE Distribution on utterance /u/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.9: (a) MSE Distribution on utterance /y/ (b) Scattered MSEs for LSFM & ISFM2
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Figure 6.10: (a) MSE Distribution on utterance /o/ (b) Scattered MSEs for LSFM & ISFM2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50

100

150

200

250

MSE

M
S

E
 D

is
tr

ib
u

ti
o

n
 (

# 
o

f 
C

yc
le

s 
< 

M
S

E
X
)

 

 
NonInteractive
ISFM1
ISFM2

(a)

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1/F0

M
S

E

 

 
Noninteractive
Interactive

ISFM2

(b)

Figure 6.11: (a) MSE Distribution on utterance /2/ (b) Scattered MSEs for LSFM & ISFM2
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CHAPTER 7

EXTRACTION OF GLOTTAL AREA FROM HIGH SPEED

ENDOSCOPIC VIDEO (HSV)

7.1 Introduction

Measuring the source is one of the most difficult tasks in speech processing. Due to the loca-

tion of the glottis, measuring the glottal flow during speaking is not possible at the moment.

However, it is possible to monitor the vocal folds using either stroboscopy or high speed video

cameras. Among the two methods, the stroboscopy is much older while high-speed videoen-

doscopy (HSV) is an increasingly common new technology. A image sequence from HSV

recording for one open cycle of vocal folds is shown in Fig. 7.1. It allows the estimation of

the minimum glottal area. With this estimation it is possible to compare the linear and nonlin-

ear source - filter models. The estimated glottal area samples construct the excitation signal

for both systems, hence a system identification approach is used to evaluate the models. In

this section, a new automatic algorithm for extracting the glottal area waveform from HSV

images is introduced and its results are presented.

7.1.1 Automatic HSV Processing Algorithm

In order to extract the area between the vocal folds in HSV images, an image processing

algorithm has been developed. The HSV data are obtained from IRCAM database[56]. The

algorithm has the following four steps;

1. Mask Calculation

In this step vocal fold locations are determined in the whole image using total varia-
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Consecutive HSV Images in a Open Glottal Cycle

Figure 7.1: Consecutive HSV images corresponding to one glottal cycle

tional norm over the consecutive frames. Total variation norm is defined as

TV (x, y) =
N−1∑
n=1

|I (x, y, n + 1) − I (x, y, n)|∀x,y ∈ I (7.1)

where x,y and n denotes horizontal axis,vertical axis and frame number respectively.

I (x, y, n) is the nth gray level image frame and N is the number of frames. The measure

produces large values for moving objects in the video while small for the background.

Figure 7.2 illustrates the TV measure extracted over 300 consecutive HSV frames. Note

that glottis has the largest TV measure while small noisy measures are seen on the

background.

Using a combination of a threshold, morphologic operation and edge detection oper-

ation, the mask is located on vocal folds boundaries. The TV image is converted to
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TV Measure extracted over 300 consecutive frames
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Figure 7.2: TV Measure extracted from 300 consecutive frames

binary image by a threshold with size T = µTV + σTV , where noisy binary image is

passed through morphologic opening operation in order to reduce the effect of small

connected components in the image. The edge detection operation is applied on the

final image and the boundary corresponding to largest TV norm region is obtained as

shown in figure 7.3.

The final mask is constructed by using the maximum and the minimum location values

of the boundary as follows

Mask (x, y) =

1

0

xmin − δ ≤ x ≤ xmax + δ, ymin − δ ≤ y ≤ ymax + δ

e.w

where xmin and xmax are the minimum and maximum horizontal lines passing through

the boundary while ymin and ymax are vertical extremum points. The parameter δ is a

margin for compensating the boundary errors, in this experiment, δ = 20 is used. The

masked image is calculated by product of original image and the mask
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Glottal Region Determination

Figure 7.3: Glottal Region Determination

IMAS KED (x, y, n) = I (x, y, n) .Mask (x, y) (7.2)

The masked image is shown in the upper part of figure 7.3. It clearly locates the vocal

folds in the corresponding image.

2. GMM Based Histogram Modeling

After masking the image, the next process is to determine the glottal opening. In order

to segment the open glottis from the background, the histogram of the masked image

can be used with a simple thresholding approach. However the masked image contains

intensity information of the glottis only the time at which the photo were taken. A more

robust way is to compute the intensity histograms over horizontal or vertical slices. If

we get a horizontal slice, the resulting image is called kymogram. However, instead of

horizontal, we work with vertical slices due to their compatibility of better representing

the glottis intensity. A vertical slice of the masked video frames arranged in time makes

a new image as follows

VS I (n, y) = IMAS KED (xcenter, y, n) (7.3)
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where xcenter is the horizontal centroid point of the mask. The masked image shown

in Fig. 7.4 corresponds to the intensity changes in the center vertical line of the glottis

during phonation in time. During the glottal opening the intensity of the vertical slice of

the center of the glottis is very small, hence it is dark, while it has high intensity during

the closed phase. Therefore, the histogram of the vertical slice image can provide better

intensity distribution than the intensity of the original unmasked image in distinguishing

the glottis and the vocal fold edges.

Masked Image

Central Vertical Slice of Masked Image

Time

H
or

iz
on

ta
l L

in
es

Figure 7.4: Glottal region determinated by masking(upper figure) and corresponding vertical
slice images(lower figure)

The histogram of the VSI image is shown in Fig. 7.5. It can easily be considered as the

sum of two weighted Gaussian densities. Hence, it can be modeled by a mixture of two

Gaussians (GMM) representing glottal opening (GO) and background(B).
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Figure 7.5: Histogram obtained from vertical slice image (VSI)

The conditional distribution of glottis, P(I|GO), background P(I|B) and the VSI image

intensities,P(I), are written as

P (I|GO) = N (I|µ1, σ1) =
1√

2πσ12
e
− 1

2

(
I−µ1
σ1

)2

(7.4)

P (I|B) = N (I|µ2, σ2) =
1√

2πσ22
e
− 1

2

(
I−µ2
σ2

)2

(7.5)

P (I) =
2∑

i=1

wiN (I|µi, σi) (7.6)

where wi’s are Gaussian weights representing P(GO) and P(B) respectively. The param-

eters of the GMM, µi, σi and wi, are estimated by EM (Expectation and Maximization)

algorithm. The posterior probabilities, P(GO|I) and P(B|I), are written based on the

Total probability theory as follows
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P (i|I) =
wiN (I|µi, σi)

2∑
k=1

wkN (I|µk, σk)
(7.7)

where i = 1, 2 denotes glottal opening (GO) and background(B) respectively. Estimated

GMM for the VSI image is plotted in figure 7.6. Note that the GMM is fitted on the

intensity histogram well.
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Figure 7.6: Estimated GMM model for the VSI

3. Segmentation

The segmentation step is based on the Bayes decision theory. The classifier for intensity

of each pixel in the masked image frame is written as

g (I) = argmax
i

(P (i|I)) =

1

0
f or

P (GO|I) > P (B|I)

else
(7.8)

For the two scalar valued classes, the boundary is a scalar corresponding to the inter-

secting point of the Gaussian densities. This is a threshold, Tcls, for segmenting the
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HSV images. The segmented image is written in terms of decision boundary as

IS (x, y, n) = g (IMasked (x, y, n)) (7.9)

It can be seen in Fig. 7.6 that Tcls is around the intensity 100 for the corresponding VSI.

The segmented VSI image based on the GMM thresholding is shown in Fig. 7.7. The

contours of the segmented image are plotted below the same figure. The results indicate

almost perfect segmentation over the glottal region.
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Figure 7.7: Estimated binary images for VSI

The segmented binary image IS (x, y, n) from HSV images in Fig. 7.1 are shown in

Fig. 7.8. The image shows 25 sequentially concatenated images from left to right with

respect to time or frame number, n. It is seen that the resulting glottal openings are well

defined and clearly extracted from the background. Furthermore, note that the rate of

growth of white region is smaller than its rate of shrink. This behaviour is due to the

fact that the vocal folds generally close faster than they open.
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Consecutive Segmented Binary Images After GMM Based Thresholding

Figure 7.8: Estimated consecutive binary images over open phase

4. Calculation of Glottal Area

The glottal area is the area between the vocal folds edges. It is proportional to the

number of white pixels in the segmented masked image and calculated as

ag [n] =
∑

x∈Mask

∑
y∈Mask

IS (x, y, n) (7.10)
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Figure 7.9: Estimated glottal area signal

The extracted glottal area samples from HSV image series are shown in figure 7.9. It is

a -stationary waveform corresponding to sustained speech signal.

78



CHAPTER 8

HSV BASED

ANALYSIS AND COMPARISON OF LSFM AND ISFMs

8.1 Introduction

In this section, the linear and nonlinear source - filter models are compared with the help of

glottal area waveform extracted from HSV images. LSFM and ISFMs are excited with the

glottal area waveform and the resulting speech signals are compared.

8.2 Experiments

As a source of HSV images, we use data from IRCAM speech, HSV and EGG signal database

[56]. In the database the frame rate of HSV is 4kHz, which is the sampling rate for glottal

area, at a resolution of 256x256 pixels while the speech and EGG signals were recorded at a

sampling frequency 44150 Hz. In order to process the signals it is necessary to synchronize

them, hence the sampling rate of glottal area, speech and EGG signals are converted to 8kHz,

which is a reasonable frequency for speech analysis. The resampled glottal area, electroglot-

tograph and corresponding speech signals are shown in Fig. 8.1. It is seen from the figure that

the voice quality of the speaker is modal with approximately 115 Hz fundamental frequency

(F0).

The spectrum of the glottal area is plotted in Fig. 8.2(a). The HSV images are obtained

at a sampling frequency of 4kHz, hence the frequency spectrum is displayed as 0 - 2kHz

band. Since the glottal area is a quasi-periodic signal, its spectrum consists of harmonics of

fundamental frequency of vocal fold oscillations or pitch which is about 115 Hz. It is seen in
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Figure 8.1: Speech vs Glottal area (Upper) and EGG vs Glottal area (Lower)

the figure that the weigth of the harmonics are not uniform and some of the higher harmonics

are missing due to their low energy. However, harmonics below the 1kHz pronounced well.

The upsampled glottal area spectrum is shown in figure 8.2(b). As it is expected, the spectrum

is almost the same as the original area for frequencies below 2kHz and there is no energy

above 2 kHz due to antialiasing filter used by the resampling process.

The spectrum of the interactive glottal flow for ISFM1 model is shown in Fig. 8.2(c). It is

seen that the harmonic structure of the glottal area is preserved. In fact, it is enhanced by

generating new harmonics of the fundamental frequency. When the harmonic structure is

investigated closely, it can be seen that the 9th and 11th harmonics just above 1kHz missing in

the glottal area is generated by the ISFM1 model. This is a favorable property of the nonlinear

source filter model. It generates new source harmonics in order to produce speech signal as in

the physical system models or articulatory speech synthesizers. This result is expected since

the nonlinear models are based on the physical system approximation of speech production.

The spectrum of interactive glottal flow for ISFM2 model is shown in figure 8.2(d). It is

almost the same with the ISFM1, there are no visible differences in the harmonic structure.

Theoretically, the difference between the ISFM1 and ISFM2 is the addition of subglottal
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(a) Glottal area spectrum
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(b) Upsampled glottal area spectrum
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(c) Interactive glottal flow generated by NLSF1
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(d) Interactive glottal flow generated by NLSF2

Figure 8.2: Interactive glottal flow by generated NLSF Models

impedance, the result implies that the subglottal impedance has no or very little effect on the

glottal flow spectrum for this specific case.

The spectrum of the original and synthesized speech signals are shown in figure 8.3. The

original speech spectrum in part (a) of the figure contains all harmonics of the fundamental

below 2.5kHz, above which the noise spectrum is dominant. The synthesized speech with

the linear source - filter model in part (b) of the figure does not have all harmonics due to

the missing harmonics in the glottal area source illustrated previous figure, hence it is a poor

approximation of the original speech.

The spectrum of synthesized speech with nonlinear source - filter model, ISFM1, is shown

in Fig. 8.3(c). The ISFM1 speech spectrum is a much better approximation of the original

speech. Its spectrum has all harmonics of the original speech spectrum in part (a) except the

two components located just above the frequency 2kHz around fourth formant (F4). Another
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(a) Speech Spectrum
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(b) Spectrum of synthesized Speech by LSFM
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(c) Spectrum of synthesized Speech by ISFM1

0 1000 2000 3000 4000
−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

n
it

u
d

e

(d) Spectrum of synthesized Speech by ISFM2

Figure 8.3: Original and synthesized speech spectrums

difference is that the energy of the harmonics between the frequencies 1.5-2 kHz are small

than the original case. This can be solved by increasing vocal tract gain for those frequencies.

The spectrum for ISFM2 is plotted in Fig. 8.3(d). As it is for the glottal flow, the results are

almost the same and there are no visible differences between the two spectra.

Finally, the synthesized speech waveforms are shown in Fig. 8.4. The LSFM speech shown

in the upper is a very poor approximation of the original speech due to missing harmonic

components in the source. Since the vocal tract formants are not excited enough, the resulting

waveform doesn’t show the all formants except the F1 and F3. The speech synthesized by

ISFM1 shown in the lower part of the figure is much better approximation of the original

speech. Since the ISFM1 glottal flow has almost all the harmonics in the speech, it excites the

vocal tract formants much better. Therefore, resulting speech signal exhibits formants much

better. Since the spectrum of ISFM2 speech is almost the same as ISFM1, its result is not
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Figure 8.4: Synthesized speech by LSF (Top) and ISFM1 (Bottom)

presented.

We have compared the linear and nonlinear source filter models based on the HSV database

recordings. The results show that nonlinearity in the speech production is well modeled by

the quasi - steady Bernoulli flow assumption in the glottis.

8.3 Summary

In this study, we have compared the nonlinear source-filter models with the classic linear

source filter model based on the high speed endoscopic video database (HSV) instead of using

glottal flow estimated by inverse filtering. First, we have presented a novel image processing

algorithm for extracting glottal area from HSV images. Then, the extracted area is used as

an excitation source measure for the systems. The results show that nonlinear systems are

superiour than the linear model. They exhibit the same behaviour observed in the physical
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simulators. ISMFs enhance the source harmonics in order to produce more realistic speech

sounds than the linear source - filter model. As a result, it is shown that the nonlinear source

filter models successfully incorporate the source - filter coupling effects seen in the physical

simulators.
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CHAPTER 9

CONCLUSION

In this work we present a framework for modeling nonlinear source filter coupling in voiced

speech sounds. Based on this framework, two nonlinear interactive source filter models,

ISFM1 and ISFM2, are developed and their relation to the linear source filter model, LSFM,

and each other are exposed. It is shown that LSFM is an approximation of the ISFMs under

certain conditions. The major difference between the ISFMs and LSFM is that, in the LSFM

the source and the filter are assumed to be independent and do not affect each other however

in the ISFMs they nonlinearly interact according to Bernoulli equation.

A parameter estimation algorithm is proposed for estimating the parameters of ISFMs and

tested on speech signals. Experimental results show that proposed nonlinear interactive mod-

els exhibit the source-filter interaction effects seen in speech production. Since ISFMs are

based on physical modeling, they have the capability of producing the fine ripples on the glot-

tal flow waveform observed in the simulation of speech production. They accurately generate

fine ripples on the glottal flow obtained by inverse filtering by the help of the nonlinear in-

teraction between the glottal flow and vocal tract filter. This feature is incorporated into the

Rosenberg model and used to synthesize glottal flow waveforms obtained from a large speech

database. The results indicate that the interactive Rosenberg model is always better than its

non-interactive counterpart.

Proposed interactive model takes the glottal area waveform as its input. A model based glottal

area waveform is synthesized using the glottal flow waveform obtained by inverse filtering as-

suming that the glottal flow and the glottal area waveforms achieve their peaks synchronously.

In this context, the optimization of the skewing quotient of the glottal area can be studied fur-

ther. In generating the glottal area waveform, Rosenberg model has been used mainly due to
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its suitability in the optimization of its parameters. The generation of the glottal area wave-

form can be a branch of future studies. Alternatively, the use of a dynamic system model to

generate the glottal flow waveform can be considered. Another way is to obtain the glottal

area waveform by using High-Speed Endoscopic Video (HSV) of vocal folds. It is the subject

of the second part of this thesis in which the glottal area is extracted from HSV images.

In the second part LSFM and ISFMs are compared by using not only the speech signal but

also HSV images of the vocal folds in a system identification fashion. A new robust HSV

processing algorithm is developed. It is applied on HSV images in order to extract glottal

area waveform. The experimental studies using HSV and speech signal indicate that speech

signal can contain some more harmonics of the fundamental frequency of the glottal area

than the harmonics presented in the glottal area signal. This implies that speech production is

nonlinear if the source is assumed to be a linear function of the glottal area. In the physical

model of speech production, the vocal tract enhances the glottal flow harmonics. ISFMs show

the same behavior and produce the source harmonics necessary for produce more realistic

speech sounds.

One branch of the future studies is that ISFMs can be used in an articulatory speech synthe-

sizer to couple the glottal flow, and sub- and supra-glottal tracts. The transfer function of

the combined sub- and supra-glottal tracts has to be calculated from the time-varying areas.

They can be parameterized by estimating the pIN filter. Hence, instead of areas, the filter

coefficients, bk and qk, can be stored in a codebook to represent the transfer function of the

system.

Another branch of the future studies can be to investigate the inter- and intra-speaker variabil-

ity of the parameters of the ISFMs since they form a ground for the definition of new features

for speaker identification and speech recognition applications.

9.1 Contributions

The major contributions of this thesis can be summarized as follows

1. Nonlinear interactive source-filter models for voiced speech are developed. These

models are extensions of the linear source-filter model with a capability of produc-
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ing source-filter interaction effects. ISFMs can be used in speech signal processing

applications as an alternative to the linear source-filter model.

2. A framework for the incorporation of the interaction into classical source models is

presented. In this context, the Rosenberg model is extended to an interactive model

having capability of fine details of glottal flow waveform.

3. A parameter estimation algorithm for ISFMs is developed. The algorithm can produce

always stable and better ISFMs compared to the LSFM.

4. A new HSV analysis algorithm is developed to extract the glottal area from HSV im-

ages. It is necessary to obtain the glottal area waveform for the evaluation of speech

production models. By the help of the developed algorithm, it is possible to extract

glottal area form HSV images accurately.

5. A system identification platform for HSV based analysis of speech is constructed. This

platform can be used for the investigation of speech models.

6. Multi-channel Turkish speech & EGG databases are constructed. The databases contain

wide variety of Turkish words spoken by both male and female speakers, therefore it

can be used for any speech or speaker based research on Turkish.
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