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ABSTRACT

KILLING FAMILY OF TENSORS IN CLASSICAL GRAVITATIONAL THEORIES

Menekay, Çağatay

M.S., Department of Physics

Supervisor : Prof. Dr. Bahtiyar Özgür Sarıoğlu

July 2013, 68 pages

In this thesis, the basic properties of the Killing family of tensors (Killing vector, Killing
tensors and Killing-Yano tensors) are considered. Their relationship with integrals of motions
and conserved gravitational charges are also discussed. The fourth constant of motion of a
test particle in Kerr spacetime and its relationship with Killing tensor are reviewed. We have
done a similar analysis for the newly discovered solution of Conformal Gravity. Next, the
use of Killing-Yano tensors in the procedure for defining conserved gravitational charges is
discussed. Finally, a new identity is introduced, and its use in a new approach to overcome a
shortcoming of the former construction is given.

Keywords: Killing Vector, Killing Tensor, Killing-Yano Tensor, Conserved Gravitational
Charge, Fourth Constant of Kerr Spactime
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ÖZ

KLASİK KÜTLEÇKİM TEORİLERİNDE KILLING TENSÖR AİLESİ

Menekay, Çağatay

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bahtiyar Özgür Sarıoğlu

Temmuz 2013 , 68 sayfa

Bu tezde Killing tensör ailesinin (Killing vektörleri, Killing tensörleri ve Killing-Yano tensör-
leri) temel özellikleri incelendi. Bunların hareket sabitleri ve korunan kütleçekimsel yükler
ile ilişkileri araştırıldı. Kerr uzayındaki bir test parçacığının dördüncü hareket sabiti ile Kil-
ling tensörü arasındaki ilişki incelendi. Açıkorur Kütleçekim kuramının çözümü olan yeni bir
metrik için benzer bir analiz yapıldı. Daha sonra, Killing-Yano tensörü ve bununla korunan
kütleçekimsel yük tanımlanması için kullanılan yöntem ele alındı. Son olarak, bulunan yeni
bir özdeşlik verildi ve bunu kullanarak sözü edilen yöntemin bir eksikliğini gidermek için
geliştirilen bir yaklaşım sunuldu.

Anahtar Kelimeler: Killing Vector, Killing Tensor, Killing-Yano Tensor
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NOTATIONS

In this work, we consider the latin letters a,b,c... runs from 0 to n and
the latin letters i, j,k.. runs from 1 to n. Moreover some of the notations
we used throughout the this thesis are given below

ε̃abcd =


+1, if abcd is an even permutation of 0123
−1, if abcd is an od permutation of cde
0, otherwise

δ
abc
cde =


+1, if abc is an even permutation of cd e
−1, if abc is an od permutation o f cd e
0, otherwise

εabcd =
√

gε̃abcd

T [a1,...,an] =
1
n!

δ
a1,...,an
b1,...,bn

T b1,...,bn

T (a1,...,an) =
1
n! ∑

permutations
Ta1,...,an

[∇a,∇b]Tcd = Rabc
eTed +Rabd

eTce

xi
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CHAPTER 1

INTRODUCTION

Almost every physical system has some symmetry and symmetries play an important role in

physics. When one considers gravitational theories that are inherently geometric, one of the

the first things that comes to one’s mine is the Killing vectors, since they are the generators of

the isometries of a given spacetime. Thus they are closely related to the symmetries studied

in that spacetime. Their generalizations are Killing tensors and Killing-Yano tensors, which

are symmetric and antisymmetric generalizations, respectively. The symmetries, which these

tensors are related to, are called the hidden symmetries. Besides giving the symmetries of a

given system, the Killing vectors and the Killing-Yano tensors can also be used to construct

gravitational charges as we will see below. Before explaining the scheme of this work, let us

give a short survey on this matter.

Historically it was the Killing vectors that were defined first and they have been studied and

used extensively in the literature. They can be used to set symmetry restrictions to the so-

lutions of gravitational theories, e.g. restricting solutions to spherically symmetric space-

times, etc. They can also be used to build conserved canonical momenta when examining

the geodesics of a given spacetime, since they correspond to the symmetries of such systems.

Furthermore, conserved gravitational charges can be constructed through them as Abbott and

Deser did in [1] for the solutions of Einstein’s theory with a flat background or Cosmological

Einstein theory with AdS background. It was later extended to the quadratic curvature theo-

ries accepting a flat or an AdS background in [2], and further extended to quadratic curvature

theories with arbitrary backgrounds in [3]. There are, of course, other uses of Killing vectors,

in any system in which isometries of the spacetime under consideration are important.

The relationship between the Killing tensors and separability of the Hamilton-Jacobi equa-
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tion of a test particle in a given spacetime has been known since Eisenhart showed it in [4].

However, Killing tensors became more popular after Carter’s discovery of the fourth constant

of motion of a test particle in Kerr spacetime [5]. In this work, Carter also showed that the

Hamilton-Jacobi equation in the Kerr spacetime is separable while finding this constant. In

[6], Penrose and Walker showed that the fourth constant of motion and the separability of the

Hamilton-Jacobi equation of a massless particle in the Kerr spacetime is related to the exis-

tence of a Killing tensor. They also expressed the Killing tensor in spinor formalism in terms

of the principal null vectors for those spacetimes that are solutions of Einstein’s theory and

of Petrov type D. In [7] and [8], it was shown that any Killing tensor can be expressed as the

square of a Killing-Yano tensor. Additionally, it was shown that this Killing-Yano tensor is

closely related to the separability of the Dirac equation in a rotating background [9]. However,

these are beyond the scope of this work, since we will not consider any quantum aspects here.

In the literature, there are quite a number of spacetimes investigated for the separability of the

corresponding Hamilton-Jacobi equation and the existence of the fourth constant of motion.

The separability of the Hamilton-Jacobi equation of a test particle in Kerr-de Sitter metrics in

all dimensions is given in [10], in the Vaidya spacetime these issues were discussed in [11]

and in the higher dimensional Kerr-NUT-AdS spacetime these were investigated in [12], to

name a few.

The Killing-Yano tensor is the most recent member in the family of all these ‘Killing’ ob-

jects, they were discovered in 1952 in [13]. They are related to the hidden symmetries of a

given system which are meaningful mostly at the quantum level, such as the separability of

the Dirac equation as mentioned previously or the exotic supersymmetries of a spinning par-

ticle system in a curved background [14], [15]. In [16], a conserved gravitational charge was

constructed by using a Killing-Yano tensor in a way similar to how the gravitational charges

are defined through a Killing vector. In this work transverse spacetimes with flat backgrounds

were considered. There is also another work [17] where an analogous charge expression is

given for transverse spacetimes with AdS backgrounds. However, in this work, the current

used in definining a conserved charge has a drawback, even though it gives information about

the spacetime. There are terms in the current which cannot be explained physically as men-

tioned in [16]. Here in an effort to solve this problem, we show that it is possible to generalize

the definition given in [1] simply by changing the Killing vector with a Killing-Yano tensor to

obtain a new gravitational current. On the other hand this new current definition has its own
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shortcomings which will be discussed in detail in Chapter 5.

The scheme of this thesis is as follows. In Chapter 2, general tools which will be needed in

the development of the subject matter is given. It includes a brief review of the Hamiltonian

formalism and the Hamilton-Jacobi method, Stokes’ theorem and the linearization procedure

which are needed in the construction of gravitational charges. Chapter 3, is of a special

importance, since the ideas developed here are later generalized for the Killing tensors and the

Killing-Yano tensors in a way analogous to their generalization from the Killing vectors. In

this chapter we briefly describe the properties of the Killing vectors and derive some identities

which are needed later. Furthermore, we show the use of Killing vectors in the study of

geodesics and review the procedure to construct the gravitational charge, which is also called

the ADT charge. In Chapter 4, we discuss the relationship between the integrability of the

Hamiltonian and the Killing tensor. Later we review the two methods to obtain the fourth

constant of motion of a particle in the Kerr spacetime and equations of motion of the particle.

We also investigate a method to derive the Killing tensor from this constant. Additionally, we

briefly describe two solutions, one neutral and one dyonic, of the four dimensional conformal

gravity whose action contains the Weyl tensor squared and the usual Maxwell terms [18]. We

will also discuss the separability of the Hamilton-Jacobi equation, the existence of a fourth

constant of motion of a particle given in this spacetime, and derive its equations of motion.

Finally, in this Chapter, we find the Killing tensor giving the fourth constant of motion of this

spacetime. In Chapter 5, we review the method of constructing gravitational charge given in

[16] and discuss its results found in [16], [17]. We also discuss the problem mentioned in

[16]. Later, we introduce a new identity which makes it possible to generalize the current

definition as mentioned before. Unfortunately this new current cannot be expressed as the

total divergence of a totally antisymmetric tensor of rank-3, even though in principle this

should be the case. Finally we discuss this new current and the possible reasons for the

problem with this new current definition.

3
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CHAPTER 2

PRELIMINARIES

This chapter is devoted to reviewing briefly the topics which are needed to develop the subject

matter. First we recall the Hamiltonian formalism and the Hamilton-Jacobi method which are

used to obtain equations of motion. The tools developed in this first section are repeatedly

used in Chapter 4, since there the motion of a test particle is studied for finding the fourth

constant of motion, equations of motion and the Killing tensor. Later we state the Stokes’

theorem and define a conservation rule which it leads to. In Chapters 3 and 5, conserved

gravitational charges are discussed and the procedure developed in the second section is what

those conserved charges are based on. Thus it has a crucial importance. Finally the lineariza-

tion process is reviewed and linearization of the Einstein tensor is derived. The methods

developed in this section will be repeatedly used in Chapters 3 and 5.

2.1 Hamilton Formalism and Hamilton-Jacobi method

In this section we will give a brief review of the Hamiltonian formalism, Poisson brackets,

canonical transformations and Hamilton-Jacobi method which will be used extensively in

Chapter 4. We will mostly follow the discussion from the book by Landau and Lifshitz [19].

The methods given here are the classical methods which do not treat time t as a coordinate.

However generalization of these methods to the relativistic case is quite straightforward. Time

has to be considered as a coordinate, since it is no longer a parameter which is the same for

everyone. The parametrization of the coordinates is done with an affine parameter λ , hence

one also should consider the affine parameter instead of time. The use of these methods in

relativistic studies can be seen at Chapters 3 and 4.
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For a system with the phase space coordinates pi, qi and the Hamiltonian H(pi,qi, t) the

Hamilton’s equations are given by

q̇i =
∂ H
∂ pi

, ṗi =−
∂ H
∂qi , (2.1)

where qi are the generalized coordinates and pi are the canonical momenta. Here a dot over

a quantity represents the total time derivative as usual. The time derivative of a function

f = f (p,q, t) is
d f
dt

=
∂ f
∂ t

+∑
k
(

∂ f
∂qk q̇k +

∂ f
∂ pk

ṗk), (2.2)

and by using the Hamilton’s equations of motion the equation can be written in the form

d f
dt

=
∂ f
∂ t

+∑
k
(

∂ f
∂qk

∂ H
∂ pk
− ∂ f

∂ pk

∂ H
∂qk )

=
∂ f
∂ t

+{H, f}, (2.3)

where {H, f} is the Poisson bracket of the function f = f (p,q, t) with the Hamiltonian. Us-

ing the above equation, we can define the Poisson bracket or Poisson commutation of two

functions f = f (p,q, t) and g = g(p,q, t) as

{ f ,g} ≡∑
k
(

∂ g
∂qk

∂ f
∂ pk
− ∂ g

∂ pk

∂ f
∂qk ). (2.4)

There are some basic properties of the Poisson bracket which follow easily from the definition

(2.4). It changes sign when the functions are interchanged,

{ f ,g}=−{g, f}. (2.5)

Moreover it is linear

{ f +g,h}= { f ,h}+{g,h}, (2.6)

and obeys the Leibniz rule of partial derivatives

{ f g,h}= f{g,h}+{ f ,h}g. (2.7)

It also satisfies a very important identity, which is called the Jacobi identity,

{ f ,{g,h}}+{g,{ f ,h}}+{h,{ f ,g}}= 0. (2.8)

It is obvious from the equation (2.3) that if the function f does not depend on time t explicitly,

its time derivative is directly found from its Poisson bracket with the Hamiltonian

d f
dt

= {H, f}. (2.9)
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Integrals of motion are quantities that remain constant during the motion. The Poisson bracket

of an integral of motion K with the Hamiltonian H is indeed zero

0 = {H,K}. (2.10)

The Poisson theorem also states that the Poisson bracket of two integrals of motion is again

an integral of motion. In particular, this can be seen by examining the Jacobi identity of two

of these constants, say K1 and K2 and the Hamiltonian H, i.e.

{K1,{K2,H}}+{K2,{H,K1}}+{H,{K1,K2}}= 0. (2.11)

Since both {K1,H} and {H,K2} are zero, the last term {H,{K1,F2}} must also be equal to

zero and this proves the Poisson theorem.

Moreover, the canonical variables satisfy the following Poisson brackets

{qi,q j}= 0, {pi, p j}= 0, {qi, p j}= δ
i
j. (2.12)

These relations will be used in defining the canonical transformations, since the new canonical

variables should satisfy these Poisson brackets.

Canonical transformations are the transformations that transform the momenta and coordi-

nates to new momenta and coordinates which satisfy the Hamilton’s equations of motion, so

do the Poisson brackets which we have mentioned before. The new variables should satisfy

the Hamilton’s equations

Q̇i =
∂H ′

∂Pi
, Ṗi =−

∂H ′

∂Qi , (2.13)

where H ′ is the new Hamiltonian giving these equations of motion. They should also define

the same system. The actions, whose variations give the relevant Hamilton’s equations of

motion, are

S =
∫
(∑

i
pi q̇i−H )dt, (2.14)

S′ =
∫
(∑

i
Pi Q̇i−H ′ )dt. (2.15)

The integrands of these actions should differ only by a total time derivative. This equivalence

leads one to the generating functions of the canonical transformations. The equivalence of the

two integrands is

∑
i

pi dqi−H dt = ∑
i

Pi dQi−H ′ dt +dF. (2.16)

7



where F is called generating function and is a function of old and new canonical variables

and time t. If we consider a generating function type F1 depending on old coordinates qi, new

coordinates Qi and time t, then it can be cast in the form

dF1 = ∑
i

pi dqi−∑
i

Pi dQi +(H ′−H)dt. (2.17)

Then the generating equations for F1 becomes

pi =
∂ F1

∂qi , Pi =−
∂ F1

∂Qi , H ′ = H +
∂ F1

∂ t
. (2.18)

The first generating function which has been found above depends on the old coordinates

and the new coordinates. By using Legendre transformation, one can find another type of

generating function which is a function of the old coordinates qi, the new momenta Pi and

time t. One just needs to rewrite the second term in the equation (2.18) as a total differential

minus the differential of the momenta Pi, then one gets

dF = ∑
i

pi dqi−∑
i

d(Pi Qi)+∑
i

Qi dPi +(H ′−H)dt,

d(F +∑
i

Pi Qi) = ∑
i

pi dqi +∑
i

Qi dPi +(H ′−H)dt. (2.19)

This is called the generating function of the second kind and is labeled by F2. The equations

it gives for the old and new variables are

pi =
∂ F2

∂qi , Qi =
∂ F2

∂Pi
, H ′ = H +

∂ F2

∂ t
. (2.20)

One can also obtain generating functions of variables F3(p,P) or F4(p,Q) by similar steps. In

the Hamilton-Jacobi formalism, the canonical transformations with a generating function of

the is used as usual, and it will be shown below.

Before describing the Hamilton-Jacobi formalism, we should have a few words on complete

integrability or Liouville integrability. A system with n degrees of freedom can be solved by

quadratures, which means that the general solution can be obtained by more than one integra-

tion, if one is able to find n independent integrals of motion in involution. By involution, it is

meant that the Poisson brackets of the integrals of motion vanish

{Ki,K j}= 0, (2.21)

where Ki (i = 1, ...,n) are integrals of motion. A proof of this theorem can be found in [20].

Therefore, one needs to find n constants of motion to show that a system is completely inte-

grable and this is what the Hamilton-Jacobi equation is actually based on.

8



Now we are ready to derive the Hamilton-Jacobi equation. From the action (2.14), it is easy

to see that the action satisfies

∂ S
∂ t

+H(q1, ...,qn, p1, ..., pn; t) = 0. (2.22)

Moreover, if one considers the action as the generating function of the second kind, then

the partial derivative of the action with respect to the generalized coordinates ∂ S
∂qi

in (2.14)

results in the canonical momenta pi. When one changes the canonical momenta with partial

derivative of the action with respect to the generalized coordinates ∂ S
∂qi

in (2.22), one gets the

Hamilton-Jacobi equation. Thus the Hamilton-Jacobi equation is

∂ S
∂ t

+H(q1, ...,qn,
∂ S
∂q1 , ...,

∂ S
∂qn ; t) = 0. (2.23)

Complete integrability of a system containing n degrees of freedom and time must have n+1

arbitrary constants since there should be n+1 integrations to solve the system. In the above

equation, not the function S itself but only its first partial derivatives appear, therefore one of

the constants will be an integration constant which is added to the general function and solves

the equation (2.23) as

S = F(t,q1, ...,qn;α1, ...,αn)+C, (2.24)

where αi (i = 1, ...,n) are arbitrary constants and C is also the integration constant added to

the last integration. One can use the function F = F(t,qi;αi) as the generating function of

the canonical transformations and look for a solution of the Hamilton-Jacobi equation. The

generating function F is a function of the old coordinates and the new momenta, therefore we

can use the equations found from the generating function of the second kind which have been

derived earlier. The equations yield

pi =
∂ F
∂qi , β

i =
∂ F
∂αi

, H ′ =
∂ F
∂ t

+H, (2.25)

where βi are the new coordinates of the system. Since F differs from the action only by a

constant, it also satisfies the equation (2.22). Hence the new Hamiltonian is simply zero,

H ′ = 0. The Hamilton’s equations of motion for the new variables become

α̇i = {H ′,βi}= 0 and β̇
i = {H ′,α i}= 0. (2.26)

With the help of these equations of motion one can identify the n coordinates by the 2n

constants which have been found. We will discuss a simple example as an application of the

method after we discuss the separability of the action.
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Separation of the action is of great use when solving the Hamilton-Jacobi equation since it

makes easier to find the constants which are needed. Let Φ = Φ(qi, t, ∂S
∂qi ,

∂S
∂ t ) denote the

Hamilton-Jacobi equation. If there exists a coordinate q1 in the Hamilton-Jacobi equation

such that the coordinate q1 and ∂S
∂q1 appear only in a combination which can be represented as

φ = φ(q1, ∂S
∂q1 ), then the Hamilton-Jacobi equation is separable in this coordinate and can be

written as

Φ

(
q j, t,

∂ S
∂q j ,

∂ S
∂ t

,φ(q1,
∂ S
∂q1 )

)
= 0, (2.27)

where j = 2, ...,n. Then one looks for solutions of the action in the form of

S = S′(q j; t)+S1(q1). (2.28)

Substitution of this in (2.27) will result in

Φ

(
q j, t,

∂ S
∂q j ,

∂ S
∂ t

,φ(q1,
d S1

dq1 )
)
= 0. (2.29)

This equation should hold for any value of the coordinate q1, therefore φ must be a constant

to satisfy this condition

φ(q1,
∂ S
∂q1 ) = α1. (2.30)

The equation (2.27) then becomes

Φ

(
q j, t,

∂ S
∂q j ,

∂ S
∂ t

,α1

)
= 0. (2.31)

If one is able to do these steps recursively for all the coordinates, the resulting equation can

be expressed as

S = ∑
i

Si(qi;α1, ...,αn)−E(α1, ...,αn)t. (2.32)

Cyclic coordinates make it even easier to separate the action. Since momentum of a cyclic

coordinate is already a constant, one does not need to bother for looking at the equation (2.23).

Let q1 be a cyclic coordinate and α1 be its momentum, then its action can be written as

S = S′(q j, t)+α1 q1. (2.33)

A simple example will be enlightening to clarify how the machinery developed so far is work-

ing. If one has the Hamiltonian

H =
1
2

(
p2

r +
p2

θ

r2 +
p2

φ

r2 sin2θ

)
+U(r,θ), (2.34)
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then it is separable if the function U has the following form

U(r,θ) = a(r)+
b(θ)

r2 . (2.35)

The variable φ is cyclic and therefore one can write the action as

S = S′+ pφ φ , (2.36)

and the Hamilton-Jacobi equation becomes

1
2m

[
∂S′

∂ r

]2
+a(r)+

1
2mr2

([
∂S′

∂θ

]2
+2mb(θ)

)
+

1
2mr2 sin2θ

p2
φ = E. (2.37)

As we have discussed, one would look for the separable action to be of the form

S = pφ φ +Sr(r)+Sθ (θ). (2.38)

If the action has the desired form as above, the Hamilton-Jacobi equation yields

1
2m

[dSr

dr

]2
+a(r)+

1
2mr2

([dSθ

dθ

]2
+2mb(θ)

)
+

1
2mr2 sin2θ

p2
φ = E. (2.39)

The Hamilton-Jacobi equation became a separable equation and separating this equation will

give another constant [dSθ

dθ

]2
+2mb(θ)+

1
sin2θ

p2
φ = β . (2.40)

Then the Hamilton-Jacobi equation becomes even simpler and it contains three constants

1
2m

[dSr

dr

]2
+a(r)+

β

2mr2 = E. (2.41)

Integrating the differential equations which have been found, one would get the action as

S =−Et + pφ φ +
∫

θ

dθ
′

√
β −2mb(θ ′)−

p2
φ

sin2
θ ′

+
∫ r

dr′
√

2m
(

E−a(r′)− β

r′2

)
(2.42)

Differentiating the action with respect to the constants which have been found and equating

them to constants, one would get the general solutions of the equations of motion as we will

do repeatedly in Chapter 4.
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2.2 Stokes’ Theorem

Stokes’ theorem and the derivation of a conserved charge by employing it will be an important

tool for our study of gravitational charges. In this section we will state Stokes’ theorem with-

out proving it and cast into a form which will be useful in the following chapters. Moreover

we will derive a conservation rule out of Stokes’ theorem for divergenceless tensor fields. We

will mostly follow the discussion given in [21].

Let M be an n-dimensional compact oriented manifold with boundary ∂M and let α be an

(n−1) form on M. Then ∫
M

dα =
∫

∂ M
α. (2.43)

An (n−1) form α can be obtained from a vector field va by Hodge dualization

αa1...an−1 = εba1...an−1vb. (2.44)

where εa1...an is the volume element. Taking the exterior derivative of the above equation will

result in an n form

(dα)ca1...an−1 = n∇[c(ε|b|a1...an−1]v
b)

= nεb[a1...an−1∇c]v
b, (2.45)

where

∇cεba1...an−1 = 0 (2.46)

has been used. On the other hand by using the Hodge dual, an n form can be thought of as

proportional to εca1...an−1 . Hence,

εb [a1...an−1∇c]v
b = hεca1...an−1 . (2.47)

Contracting both sides with εca1...an−1 , we would get

∇bvb = nh. (2.48)

Therefore, it is found that

(dα)a1...an = (∇ava)εa1...an . (2.49)

Then, the Stokes’ theorem becomes∫
M

dnx
√
−g∇b vb =

∫
∂M

dn−1y
√

γ nb vb, (2.50)

12



where nb is the normal to the hypersurface and γ is the determinant of the induced metric on

that hypersurface.

There remains to obtain a conservation rule from divergenceless quantities. In what follows,

we will derive the conservation rule for a vector field, however the generalization to tensor of

any rank is straightforward. Let Ja be a divergence free vector field

∇a Ja = 0. (2.51)

Then, ∮
Σ

JadΣa = 0 (2.52)

for any closed hypersurface Σ, where dΣa = ε na
√

γ d3y, and ε = +1 for timelike hypersur-

faces and −1 for spacelike hypersurfaces. The boundary consists of two spacelike hyper-

surfaces and a timelike hypersurface at spatial infinity. If Ja vanishes at spatial infinity, the

integral becomes ∫
Σ1

JadΣa +
∫

Σ2

JadΣa = 0. (2.53)

Let na = n2a for Σ2, and na = −n1a for Σ1, where n1a and n2a are both future directed. We

then obtain ∫
Σ1

JadΣa =
∫

Σ2

JadΣa. (2.54)

Thus, we conclude that the total charge Q can be defined as

Q≡
∫

Σ

Ja na dΣ, (2.55)

and this is independent of the hypersurface on which it is evaluated, if Ja is a divergenceless

vector. Finally, note that we have found an integral representation of a conserved charge with

the help of Stokes’ theorem which we will be using extensively in Chapters 3 and 5.

2.3 Linearization

Linearization in gravity is the perturbation around the background spacetime . By background

geometry we mean the asymptotical behavior of the spacetime under consideration. In this

work the linearization method is used for the conserved gravitational charges. One tries to find

information about the solution such as energy or angular momentum with the help of these

charges. These quantities can be measured relative to the background in a way analogous

13



to electrical potential where one sets the potential to be zero at infinity and measures the

potential difference with respect to infinity to find the effect of the source. An example may

help one to better understand the idea of background spacetime. The Schwarzschild metric

differs from the Minkowski metruc by 2m
r term, and for the Sun, and it has its maximum at

the surface of the Sun with a value of order o f 10−5 [22]. Here the Minkowski metric is the

background metric ḡab and the effects of the sun is the deviation hab from the background.

With the help of these ideas one can decompose the metric as

gab = ḡab +hab. (2.56)

Since we will be dealing only with first order deviations throughout this work, we will neglect

the higher order terms. Using the definition gabgbc = δ c
a, one finds that the inverse metric is

of the form

gab = ḡab−hab +O(h2). (2.57)

We are interested in linearizing the field equations and to do so, we first need to linearize

the Christoffel symbols on which the curvature tensors and the Ricci scalar are based. The

definition of the Christoffel symbol is

Γ
a

bc ≡
1
2

gad(∂b gcd +∂c gbd−∂d gbc). (2.58)

To linearize the Christoffel symbol, the metric in equation (2.56) is substituted in the definition

Γ
a

bc =
1
2
(ḡad−had)[∂b (ḡcd +hcd)+∂c (ḡbd +hbd)−∂d (ḡbc +hbc)] (2.59)

=
1
2

ḡad(∂b ḡcd +∂c ḡbd−∂d ḡbc)−
1
2

had(∂b ḡcd +∂c ḡbd−∂d ḡbc)

+
1
2

ḡad(∂b hcd +∂c hbd−∂d hbc), (2.60)

the first term in the first line is the Christoffel symbol of the background, Γ̄a
bc, and all the

other terms which are first order in h will be considered as the linearized Christoffel symbol.

Thus the Christoffel symbol becomes

Γ
a

bc = Γ̄
a

bc +(Γa
bc)L +O(h2). (2.61)

These labelings will be used from now on in what follows. The linearized Christoffel symbol

is expressed as

(Γa
bc)L =

1
2

ḡad(∂b hcd +∂c hbd−∂d hbc)−
1
2

had(∂b ḡcd +∂c ḡbd−∂d ḡbc). (2.62)
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This expression can be written in a simpler form if one considers to replace all the partial

derivatives with covariant derivatives and to add the extra terms in the equation. The covariant

derivatives are

∇̄bhcd = ∂bhcd− Γ̄
e

cb hed− Γ̄
e

db hce

∂bhcd = ∇̄bhcd + Γ̄
e

cb hed + Γ̄
e

db hce, (2.63)

and since

∇̄bḡcd = ∂bḡcd− Γ̄
e

cb ḡed− Γ̄
e

db ḡce = 0, (2.64)

one has ∂bḡcd = Γe
cb ḡed +Γe

db ḡce. Substituting these into the equation (2.62), one gets

(Γa
bc)L =

1
2

ḡad [∇̄bhcd + ∇̄chbd− ∇̄dhbc]. (2.65)

The linearized Christoffel symbol is a tensor as is obvious from the above equation, while the

ordinary Christoffel symbols is not a tensor. Having linearized the Christoffel symbol, one

can move further and linearize the Riemann tensor. Riemann tensor is defined as

Ra
bcd = ∂c Γ

a
bd−∂dΓ

a
bc +Γ

a
ceΓ

e
bd−Γ

a
deΓ

e
bc. (2.66)

Substituting (2.61) into the above equation results in

Ra
bcd = ∂c [Γ̄

a
bd +(Γa

bd)L]−∂d [Γ̄
a

bc +(Γa
bc)L]

+ [Γ̄a
ce +(Γa

ce)L][Γ̄
e

bd +(Γe
bd)L]

− [Γ̄a
de +(Γa

de)L][Γ̄
e

bc +(Γe
bc)L]+O(h2) (2.67)

= R̄a
bcd +∂c(Γ

a
bd)L−∂d(Γ

a
bc)L + Γ̄

a
ce(Γ

e
bd)L +(Γa

ce)LΓ̄
e

bd

− Γ̄
a

de(Γ
e

bc)L− (Γa
de)LΓ̄

e
bc +O(h2). (2.68)

Thus, the linearized Riemann tensor is

(Ra
bcd)L = ∂c(Γ

a
bd)L−∂d(Γ

a
bc)L + Γ̄

a
ce(Γ

e
bd)L +(Γa

ce)LΓ̄
e

bd

− Γ̄
a

de(Γ
e

bc)L− (Γa
de)LΓ̄

e
bc. (2.69)

The trick of rewriting the partial derivatives in terms of covariant derivatives and arranging

the terms accordingly can be applied to the linearized Christoffel symbols. Once again this

greatly simplifies the expression and the Riemann tensor becomes

(Ra
bcd)L = ∇̄c(Γ

a
bd)L− ∇̄d(Γ

a
bc)L. (2.70)
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Thus the explicit expression of the linearized Riemann tensor is

(Ra
bcd)L =

1
2

∇̄c[ḡae(∇̄bhde + ∇̄dhbe− ∇̄ehbd)]

− 1
2

∇̄d [ḡae(∇̄bhce + ∇̄chbe− ∇̄ehbc)]. (2.71)

The linearized Ricci tensor can be obtained from (2.70) by contracting the indices a and c.

Then, the linearized Ricci tensor with two lower indices is expressed as

(Rab)L = ∇̄c(Γ
c

ab)L− ∇̄b(Γ
c

ac)L. (2.72)

For what follows we will need to raise one of the indices, however raising indices is not so

straightforward for linearized terms. In order to see this, let us look at the Ricci tensor and

carefully raise one of its indices

gacRbc = (ḡac−hac)[R̄bc +(Rbc)L +O(h2)]

= ḡacR̄bc−hacR̄bc + ḡac(Rbc)L +O(h2). (2.73)

Therefore, we see that raising or lowering an index will bring in an extra term to the linearized

part of the tensor. The linearized part of the Ricci tensor is now

(Ra
b)L =−hacR̄bc + ḡac(Rbc)L, (2.74)

and the explicit form is

(Ra
b)L =−hacR̄bc +

1
2

ḡac(−�̄hbc− ∇̄c∇̄bh+ ∇̄
d
∇̄bhcd + ∇̄

d
∇̄chbd). (2.75)

Contracting the indices of the linearized Ricci tensor will result in the linearized Ricci scalar

as expected. Hence, the linearized Ricci scalar is explicitly

RL = ∇̄a ∇̄b hab− �̄h−habR̄ab. (2.76)

The linearized versions of the curvature tensors and the curvature scalar have been found. We

can now continue and linearize the field equations which will be needed. In this work, only

General Relativity is considered for the conserved gravitational charges. Therefore linearizing

the Einstein tensor will be enough. The Einstein tensor reads

Gab = Rab−
1
2

gabR, (2.77)

and its linearization is easy

Gab = R̄ab +(Rab)L−
1
2

ḡabR̄− 1
2

habR̄− 1
2

ḡabRL +O(h2). (2.78)
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Thus, the linearized version of the Einstein tensor is

(Gab)L = (Rab)L−
1
2

habR̄− 1
2

ḡabRL. (2.79)

The explicit expression in terms of the background metric ḡab and the deviation hab can be

found by substituting the explicit versions of the related linearized terms and this will be

presented in Chapter 5.

We have derived the linearized versions of the related curvature tensors and the Einstein ten-

sor. Obviously one can use similar steps to linearize any field equations.
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CHAPTER 3

KILLING VECTORS

3.1 Introduction

Killing vectors are widely used objects in relativistic theories. Killing vectors of a given met-

ric are generators of the isometries of the geometry described by that metric. They also remain

parallel along any geodesic. With the knowledge of these properties, one naturally expects

Killing vectors to be of great use in the study of geodesic motion. When one considers the

Lagrangian describing the motion of a particle, one can find out that Killing vectors are the

symmetries of the system and lead to conserved canonical momenta analogous to cyclic co-

ordinates in classical mechanics as will be discussed in Section 3.2. One can also try to find

another conserved quantity related to the spacetime itself, if the background metric possesses

globally well defined Killing vectors. This was discussed in [1] and a conserved current was

obtained with the help of a Killing vector for Einstein’s theory in flat background or the cos-

mological Einstein theory in AdS background. Moreover, this current leads to a conserved

charge as discussed in Section 2.2 and it gives the ADM mass or the angular momentum of

the spacetime depending on the Killing vector used in the construction of the charge. There-

fore, it is found that the Killing vectors can also be used to find the ADM mass or angular

momentum of a source under investigation. Later, the current was generalized to quadratic

curvature theories that admit AdS or flat backgrounds in [2]. In [3], the procedure was further

generalized to spacetimes with arbitrary backgrounds. These will also be discussed in detail

in Section 3.3.

The Lie derivative of a tensor T a1...an along a parametrized curve γ calculates the change of

the tensor along the curve γ . Therefore it is a suitable tool to examine the properties of the
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Killing vectors. Definition states that they are the generators of the isometries of the metric.

Therefore the Lie derivative of the metric along the flow of the Killing vector should vanish.

Let ξ a be a vector field. Then the Lie derivative of the metric along its flow is

Lξ gab = ξ
cgab;c +gac ξ

c
;b +gbc ξ

c
;a

= ξa;b +ξb;a

= 2ξ(a;b). (3.1)

The first term in the first line vanishes due to metric compatibility. If this vector ξ a is a Killing

vector, then the above equation must vanish. Therefore, the Killing vectors satisfy

ξ(a;b) = 0, (3.2)

which is called the Killing equation. The vanishing of the Lie derivative of the metric along

the Killing vector is important. This importance can be seen as follows. By using the co-

variance principle, one can choose a coordinate system such that x1,x2 and x3 are all con-

stant while x0 = λ along the integral curve of the Killing vector, where the integral curve is

parametrized by λ . Then, the Killing vector is

ξ
a =

Dxa

dλ

∗
= δ

a
0, (3.3)

where ∗
= means that equality holds for the desired coordinate system and here D

dλ
denotes

absolute differentiation. Then the derivative of the metric along the integral curve of the

Killing vector becomes

Lξ gab
∗
= gab,cξ

c +ξ
c
,agbc +ξ

c
,bgba

∗
= gab,0 (3.4)

∗
= 0. (3.5)

It implies that the metric does not depend on the coordinate x0 in this coordinate system.

Therefore they are the symmetries of the Lagrangian of the geodesic motion and conserved

canonical momenta can be obtained by using them. These will be discussed in detail in the

next section.

It was also stated that the Killing vectors are parallel along any geodesic. Consider a vector

field ua which is parametrized by λ such that

ua =
d xa

dλ
. (3.6)
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If it is a geodesic it should satisfy the geodesic equation

Dua

dλ
= ubua;b = 0. (3.7)

Also the parameter λ is called an affine parameter if the tangent vector ua describes a geodesic.

Assuming ua is the tangent of a geodesic, then its contraction with a Killing vector should be

a constant. This can be seen as

D
dλ

(ua
ξa) = ubua;bξ

a +ξa;buaub (3.8)

= 0. (3.9)

The first term in the right hand side of (3.8) vanishes due to the geodesic equation and the

vanishing of the second term is due to the Killing equation (3.2).

We also need to state and prove some identities which will be necessary later. The first one is

Rbcξ
c =−∇c∇

c
ξb. (3.10)

The uncontracted Bianchi identity should be the starting point

R[abc]d = 0. (3.11)

As a second step, this identity should be contracted with the Killing vector ξ d . Using the

definition of the Riemann tensor, one gets

Rabcd ξ
d +Rbcad ξ

d +Rcabd ξ
d = 0

[∇a ,∇b]ξc +[∇b ,∇c]ξa +[∇c ,∇a]ξb = 0

∇a ∇b ξc−∇b ∇a ξc +∇b ∇c ξa−∇c ∇b ξa +∇c ∇a ξb−∇a ∇c ξb = 0. (3.12)

Using the Killing equation (3.2) in the last line of the equation above yields

∇a ∇b ξc +∇c ∇a ξb−∇b ∇a ξc = 0

[∇a,∇b]ξc =−∇c ∇a ξb

Rabcd ξ
d =−∇c ∇a ξb. (3.13)

The final step in the proof of the identity is the contraction of the a−c indices and the resulting

identity is what has been looked for:

Rbc ξ
c =−∇c ∇

c
ξb. (3.14)
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The second useful identity is Lξ R = 0. Derivation of this identity will be helpful in deriving

yet another identity for Killing-Yano tensors, for which analogous steps will be used. We start

by considering the third order covariant derivatives of the Killing vector

∇a∇b∇cξd−∇b∇a∇cξd = [∇a,∇b]∇cξd . (3.15)

Rewriting the left hand side by using the uncontracted version of the first identity, i.e. (3.13)

reads

−∇a (Rcdbeξ
e)+∇b (Rcdaeξ

e) = Rabce∇
e
ξd +Rabde∇cξ

e. (3.16)

By expanding the derivatives, one gets

(∇bRcdae−∇aRcdbe)ξ
e = Rabde∇cξ

e +Rabce∇
e
ξd +Rcdbe∇aξ

e−Rcdae∇bξ
e. (3.17)

Next, contracting the a−d indices in equation (3.17), one finds the expression

−(∇b Rce +∇
a Rbeca)ξ

e = Rbe (∇c ξ
e)+Rabce (∇

e
ξ

a)+Rcabe (∇
a

ξ
e)+Rce(∇b ξ

e). (3.18)

Using the contracted Bianchi identity,

∇a Rbec
a +∇b Reac

a +∇e Rabc
a = 0, (3.19)

for the second term in the left hand side of (3.18), it becomes

−(∇b Rce +∇e Rbc−∇b Rec)ξ
e = Rbe (∇c ξ

e)+Rabce (∇
e
ξ

a)+Rcabe (∇
a

ξ
e)+Rce(∇b ξ

e).

(3.20)

The first and third terms in the left hand side cancel each other, moreover the second and third

terms in the right hand side also cancel each other due to the antisymmetry of the indices a

and e

0 = ξ
e
∇e Rcb +Rbe ∇c ξ

e +Rce ∇b ξ
e.. (3.21)

By carefully investigating (3.21), this can be written as the Lie derivative of the Ricci tensor,

i.e. simply

Lξ Rbc = ξ
e
∇e Rcb +Rbe ∇c ξ

e +Rce ∇b ξ
e = 0. (3.22)

The final step is the contraction of the free indices (3.22) to arrive at the desired identity

Lξ R = ξe ∇
e R = Rab (∇

a
ξ

b)+Rab(∇
a

ξ
b) = 0. (3.23)
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3.2 Integrals of Motion

In the previous section, we have defined the Killing vectors and mentioned that they lead

to conserved canonical momenta in the study of geodesic motion analogous to the cyclic

coordinates in classical mechanics. In this section, we will discuss these features of the Killing

vectors and we will give a simple example to see that they simplify calculations greatly to find

equations of motion.

Answering the question “what is a symmetry” would be a good point to start the discussion.

Symmetry is any transformation that leaves the system (form) invariant . The system is in-

variant if its Lagrangian is invariant up to a boundary term. Additionally, Noether’s theorem

states that for every continuous global symmetry of a given system, one can write down a con-

served quantity. For the case of classical mechanics, cyclic coordinates are the symmetries of

the Lagrangian as mentioned in Section 2.1 and they lead to conserved canonical momenta.

Moreover, if a change in time t does not affect the system, then the energy of the system is

conserved. However, we are dealing with a relativistic theory, hence we consider time as a

coordinate. Now we show how these are generalized in a relativistic theory.

In the absence of all forces other than gravity, the Lagrangian of a freely falling particle is

L =
1
2

gabẋaẋb, (3.24)

where ẋ ≡ dx
dλ

and λ is an affine parameter. One can easily see that any transformation that

leaves the metric invariant is also a symmetry of the system. It is also known that transforma-

tion along Killing vectors leaves the metric invariant, thus they are symmetries of the system.

Therefore, by using Killing vectors ξ a
(i) one can build conserved quantities Ci = ξ a

(i)ua and here

i labels the Killing vector. If Killing vectors are along the coordinates then the corresponding

conserved quantities can be identified as the canonical momenta of the system. A Killing

vector along the time t leads to a conserved canonical momenta just like other coordinates,

and the component of the momenta corresponding to the time component is energy.

We will look at an example given in [23]. Consider a spherically symmetric static spacetime

whose metric reads

ds2 =−A(r)dt2 +B(r)dr2 + r2(dθ
2 + sin2

θ dφ
2). (3.25)

It is obvious that the metric does not depend on the coordinates t and φ , and the transla-
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tions along them leave the metric invariant for the reasons discussed in the previous section.

Therefore, one can identify the vectors

ξ
a
(t) = δ

a
0

∂

∂ t
, ξ

a
(φ) = δ

a
3

∂

∂φ
, (3.26)

as two of the Killing vectors of the spacetime. One of the Killing vectors is along the coor-

dinate φ , so one can identify the conserved quantity Φ = ξ a
(φ)ua as the angular momentum

about the azimuthal angle by using our experience in classical mechanics. The other Killing

vector is along the time coordinate and the conserved quantity corresponding to that vec-

tor −E = ξ a
(t)ua can be interpreted as the energy of the particle. Killing vectors and their

corresponding constants of motion simplify the work significantly as in the case of classi-

cal mechanics. In order to see this, one starts with the general form of the Hamilton-Jacobi

equation. Here we use the relativistic formulation, therefore time t is no longer a parameter

as mentioned before. Here the Hamilton-Jacobi equation is slightly different from the one

given in (2.23) as we have substituted time with affine parameter λ and time considered a

coordinates of spacetime. The Hamilton-Jacobi equation reads

∂S
∂λ

+
1
2

gab ∂S
∂xa

∂S
∂xb = 0. (3.27)

If there is a separable solution of the action, from the symmetries it must be of the form

S = mλ −Et +Lφ +Sr, (3.28)

where Sr is a function of r only , when the system is on the θ = π

2 plane. If one uses the action

given above in the Hamilton-Jacobi equation, then one gets

0 =
1
2

m− 1
A(r)2 E2 +

1
r2 L2 +

1
f (r)2

(
∂Sr

∂ r

)2

(3.29)(
∂Sr

∂ r

)
=

√
f (r)2

[ 1
A(r)2 E2− 1

2
m− 1

r2 L2
]
. (3.30)

The only function to be determined is Sr and integration of the Hamilton-Jacobi equation

yields

Sr =
∫

dr

√
E2− 1

2
m−L2. (3.31)

In order to find the equations of motion, one should follow the steps described in Section 2.1.

As seen from the example given, the Killing vectors simplified the Hamilton-Jacobi equation

greatly and made equations of motion easier to solve. Moreover, the two constants of motion
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related to Killing vectors and the conservation of the rest mass assures that the system is

completely integrable. However, sometimes Killing vectors are not enough to see that the

system is completely integrable. If this is the case, then one should look for Killing tensors

which will be discussed in Chapter 4.

3.3 Abbott-Deser-Tekin Charge

The Killing vectors are known to be related to the conserved quantities of the geodesic motion,

as we have mentioned in the previous section. In [1], Abbott and Deser showed that the

Killing vectors can also be used to get information about the geometry itself. They found

a conserved quantity as current and they defined a conserved charge by using it. They also

showed that this charge gives the ADM mass or angular momentum of the geometry under

consideration. In [1], they defined the charge for General Relativity with flat background

or Cosmological Einstein theory with AdS background. In [2], the method was extended to

quadratic curvature theories with flat or AdS backgrounds. Later, the procedure was further

generalized to quadratic curvature theories with arbitrary backgrounds in [3].

We are now ready to explain the procedure and we will mostly follow [2]. For a gravitational

theory with a coupled source, varying the action with respect to the metric results in the field

equations. The general form of the gravitational field equation reads

Φ
ab = κ T ab, (3.32)

where T ab is the energy momentum tensor of the source and Φab is the generalized Einstein

tensor. We have mentioned that the procedure has also been extended to quadratic curvature

theories, therefore in that case generalized Einstein tensor is of the form Φab = Φab(g,R,R2).

Moreover, a gravitational theory should be diffeomorphism invariant, and this imposes the

conservation of the field equations Φab through the generalized Bianchi identity

∇aΦ
ab = 0. (3.33)

The whole process is based on measuring the energy of the geometry relative to its asymptot-

ical background spacetime. Therefore one needs to decompose the metric into its background

ḡab and deviation hab as shown in Section 2.3, i.e.

gab = ḡab +hab. (3.34)
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A number of assumptions has to be made at this point for the sake of safety. We assume that

hab vanishes sufficiently rapidly at infinity. We also assume that background metric ḡab solves

the field equations (3.32) when

Φ̄
ab = T̄ ab = 0. (3.35)

Next, if one linearizes the field equations (3.32), one gets

Φ̄
ab +(Φab)L +O(h2) = κ(T̄ ab +(T ab)L +O(h2)). (3.36)

Then by moving every term in the left hand side except for the linearized field equations

(at order h) to the right hand side and using the the background field equations (3.35), this

equation reads

(Φab)L = κ(T ab)L +O(h2). (3.37)

Considering the right hand side as a new source term and renaming it as τab, the equation

(3.37) becomes

(Φab)L = κ τ
ab. (3.38)

We also need to check the conservation of the linearized field equations to see whether it is

conserved or not. Start from the generalized Bianchi identity and linearize it as follows

∇aΦ
ab = 0

∇̄a(Φ̄
ab)+ ∇̄a(Φ

ab)L +(Γa
ca)LΦ̄

cb +(Γb
ca)LΦ̄

ac +O(h2) = 0

∇̄a(Φ
ab)L +O(h2) = 0. (3.39)

Therefore the background covariant derivative of the linearized field equations vanishes to the

desired order in h. Background covariant conservation of the linearized field equations might

tempt one to use it as the current while defining the charge. However, it is not possible, since

(Φab)L is a symmetric object. As discussed in Section 2.2, one needs a totally antisymmetric

object to apply Stokes’ theorem. In [1], this was overcome by reducing one of the indices

of it with a background Killing vector. Here the background Killing vector is assumed to be

globally well defined. Then the new object becomes

Ja = (Φab)L ξ̄b. (3.40)

This is a one index object and can be used safely to define a charge if it is conserved. Exam-
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ining its divergence will give

∇̄a[(Φ
ab)L ξ̄b] = [∇̄a(Φ

ab)L]ξ̄b +(Φab)L ∇̄aξ̄b

= (Φab)L ∇̄[aξ̄b]

= 0. (3.41)

The first term in the first line is zero as shown in (3.39). The vanishing of the second term is

due to the symmetry of the (Φab)L and antisymmetry of the covariant derivative of the Killing

vector.

Then one can use Ja as the current to obtain a conserved charge. The charge can be written as

Qa =
∫

dn−1x
√
−g(Φab)Lξb. (3.42)

With the help of the Poincarè lemma stated before, one then has to express the current as

(Φab)L ξb = ∇̄bF
ab. (3.43)

Substituting the new form of the current into the equation (3.42), the conserved charge be-

comes

Qa =
∫

dn−1x
√
−g ∇̄bF

ab

=
∫

∂Σ

dn−2y
√

γ nbF
ab

=
∫

∂Σ

dΣbF
ab, (3.44)

where ∂Σ is the n− 2 dimensional boundary at spatial infinity whose surface element is
√

γ dn−2x and nb is the normal to that surface. Thus we have simplified the charge expression

significantly. All one needs to do is to find the F ab for the theory under consideration and

use it in (3.44). Here, I ship the details of this since this is outside the scope of this thesis and

refer the interested readers to [24] and [25].

The ADT formalism discussed in this section will be useful in Chapter 5 when we derive the

conserved gravitational charge using Killing-Yano tensors. The steps taken here will be quite

similar to the ones we have just reviewed.
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CHAPTER 4

KILLING TENSORS

4.1 Introduction

Killing tensors are generalizations of Killing vectors to rank n totally symmetric tensors. The

totally antisymmetric generalizations of the Killing vectors are called Killing-Yano tensors

which will be discussed later in Chapter 5. As generalizations of Killing vectors, one would

intuitively expect that Killing tensors are also somewhat related to the symmetries of the

spacetime. This is indeed the case, the symmetries due to Killing tensors are called hidden

symmetries. If there exists any conserved quantity that is higher than first order in momentum,

we say that the theory has a “hidden symmetry”.

In [5], Carter discovered the fourth constant of motion of the Kerr spacetime using the sepa-

rability of the Hamilton-Jacobi equation. Later this constant was called the Carter constant,

which we will from now on mostly refer to as well. In [6], it is shown that this fourth constant

is related to the Killing tensor. The relationship between separability and the Killing tensor is

also discussed in [6], [26], [27] and the references within. In this work, we will only discuss

the classical aspects of certain gravitational theories. So we will only examine the Carter con-

stant, the separability of the Hamilton-Jacobi equation and its relationship with the Killing

tensor.

Let us start with the properties of the Killing tensor. Let Ka1...an be a Killing tensor of rank n.

Being a totally symmetric tensor, it satisfies

Ka1...an = K(a1...an). (4.1)

We have mentioned that it is a generalization of the Killing vector to rank n; thus it must obey
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the Killing equation to be parallel along the geodesic

∇(a1Ka2)...an+1 = 0. (4.2)

Having defined the properties of the Killing tensor we are ready to discuss the relationship

between the Killing tensor and integrability, the Carter constant and how to derive Killing

tensor from Carter constant.

4.2 Killing Tensor and Integrability

We first look at the relationship between integrability and the Killing tensor. As we have

mentioned in Section 2.1, we need integrals of motion or the conserved quantities to have a

complete description of the system. In Chapter 3, we have mentioned the conserved quantities

derived from the Killing vector, however Killing vectors do not reveal all the symmetries of

the spacetime. We may have conserved quantities higher than first order in momentum. In

this section we will follow the procedure given in [28].

We start by assuming that we have a tensor Ka1..as of rank s and a quantity K formed from

this tensor and the momenta

K = Ka1...as pa1 ...pas . (4.3)

To find its time derivative we need to consider its Poisson bracket with the Hamiltonian of the

system. Considering the Lagrangian given in equation (3.24), the Hamiltonian of the system

is

H =
1
2

pa pb gab. (4.4)

From the definition given in Section 2.1, the Poisson brackets of K with the Hamiltonian

read

˙K = {K ,H}

=
∂K

∂qa
∂H
∂ pa
− ∂K

∂ pa

∂H
∂qa

=
∂K

∂qa q̇a− ∂K

∂ pa
ṗa. (4.5)

We can find the quantities q̇i and ṗi by using their Poisson brackets

q̇a = {qa,H}= pa, (4.6)

ṗa = {pa,H}=
1
2

gbc
,a pb pc. (4.7)
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Therefore K becomes

˙K = Ka1...as,c pc pa1 ...pas−
s
2

gbc
,asK

a1...as pa1 ...pas−1 pc pb. (4.8)

This can be written covariantly,

˙K = Ka1...as;c pc pa1 ...pas−
s
2

gbc
;asK

a1...as pa1 ...pas−1 pc pb. (4.9)

The covariant derivative of the metric vanishes, and all the indices in the first expression are

symmetric due to the symmetry of p’s. The final expression for the equation is

˙K = K(a1...as;c)pc pa1 ...pas . (4.10)

If K is a conserved quantity, then it is obvious that the tensor should satisfy the equation

K(a1...as;c) = 0, (4.11)

since equation (4.10) has to be satisfied for any value of p’s.

We have shown that if there is a conserved quantity formed from momenta of the system,

then there exists a Killing tensor whose contraction with the momenta gives that conserved

quantity.

4.3 Carter Constant

In his famous paper [5], Carter found the fourth constant of motion of the Kerr spacetime.

That was an important discovery since it shows that the system of a particle orbiting around the

black hole is completely integrable and therefore solvable due to the Liouville integrability.

In this section we will be discussing two different methods to find the Carter constant.

4.3.1 The first method

The first method is the original one given in [5]. It starts with the Hamiltonian of a particle and

assumes that it has a separable action and is based on the investigation of the Hamilton-Jacobi

equation for separability. The separability of the Hamilton-Jacobi equation leads to the fourth

constant. Let us start by writing the metric for the Kerr-Newmann metric in the standard form

ds2 = ρ
2dθ

2−2asin2
θdrdϕ +2drdu+ρ

−2[(r2 +a2)2−∆a2sin2
θ ]sin2

θdϕ
2

−2aρ
−2(2mr− e2)sin2

θdϕdu− [1−ρ
−2(2mr− e2)]du2. (4.12)
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Here

ρ
2 ≡ r2 +a2cos2

θ , (4.13)

∆≡ r2−2mr+a2 + e2. (4.14)

The associated electromagnetic field tensor of the black hole is

F =−2eρ
−4[(r2−a2cos2

θ)]dr∧du−2a2 rcosθsinθdθ ∧du

−asin2
θ(r2−a2cos2

θ)dr∧dϕ +2ar(r2 +a2)cosθsinθdθ ∧dϕ], (4.15)

where e is the electric charge of the black hole.

Now starting with a particle of mass µ and electric charge ε , the equation of motion of the

particle can be written as
D2xa

dλ 2 =
ε

µ
Fa

b
Dxb

dλ
. (4.16)

The above equation is nothing but the relativistic version of the Lorentz force law. It is

known from classical mechanics that Lagrangian formalism is more suitable for the study

of geodesics. Hence, the Lagrangian for a relativistic charged particle is

L =
1
2

gabẋa ẋb + ε Aaẋa, (4.17)

where

ẋa =
d xa

dλ
. (4.18)

The differentiation is with respect to the affine parameter λ and λ is related to the proper time

with

τ = µλ . (4.19)

Defining the proper time this way guarantees that the conservation of rest mass is already

imposed on the system

gabẋaẋb =−µ
2 ≤ 0. (4.20)

The minus sign in front of µ means that massive particles follow timelike geodesics, and if

the particle is massless, then it follows a null geodesic as desired for a physical system.

The Euler-Lagrange equations for the Lagrangian (4.17) gives the canonical momentum of

the system

pa = gabẋb + εAa. (4.21)
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Having found the canonical momentum, one can easily find that the Hamiltonian of the system

is

H =
1
2

gab(pa− ε Aa)(pb− ε Ab). (4.22)

In terms of the metric tensor, the Hamiltonian is

H =
1
2

gabẋaẋb. (4.23)

The normalization condition we have imposed in (4.23) leads to

H =−1
2

µ
2. (4.24)

Since the Hamiltonian does not depend on the affine parameter λ explicitly, the Hamiltonian

is a conserved quantity. Thus we have found the first conserved quantity of the system.

As well-known from the relativistic electromagnetic theory, the electromagnetic field 2-form

is expressed by the exterior derivative of a vector potential A as F = 2dA, where d is the

exterior derivative. Here the vector potential is not unique as it is in the classical case, and the

simplest choice giving the electromagnetic 2-form (4.15) is

A = eρ
−2 r (du−a2sin2

θ dϕ). (4.25)

It is straightforward to find the explicit expressions for the canonical momentum by using the

result found so far. They are

pu =−
(
[1−ρ

−2(2mr− e2)]u̇−aρ
−2(2mr− e2)sin2

θϕ̇ + ṙ+ eρ
−2 r
)
, (4.26)

pr = u̇−asin2
θϕ̇, (4.27)

pθ = ρ
2

θ̇ , (4.28)

pϕ =−aρ
−2(2mr− e2)sin2

θ u̇+ρ
−2[(r2 +a2)2−∆a2 sin2

θ ]sin2
θϕ̇

−asin2
θ ṙ− eρ

−2 ar sin2
θ . (4.29)

If one writes down the terms in the Hamiltonian and rearranges them, then one finds that the

Hamiltonian takes the form

H =
1

2ρ2

(
∆ p2

r +2[(r2 +a2) pu +a pϕ −2ε er] pr + p2
θ +(asinθ pu + sin−1

θ pϕ)
2
)

(4.30)

Finding the explicit expression for the Hamiltonian, we can move on to the Hamilton-Jacobi

equation. However, before doing that , as a final step we should find the conserved quantities
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coming from the Killing vectors. As a rotating, axisymmetric spacetime, the Kerr spacetime

has two Killing vectors, and these can be read directly from the metric since translations along

them leave the metric invariant

ξ
a
(u) = δ

a
0

∂

∂u
, ξ

3
(ϕ) = δ

a
3

∂

∂ϕ
. (4.31)

These Killing vectors also imply that the coordinates u and ϕ are cyclic, so that the cor-

responding canonical momenta are conserved as shown in Chapter 3. Let these conserved

quantities be represented by

pu =−E, pϕ = Φ. (4.32)

Three of the conserved quantities have been determined so far, however if the system is to be

completely integrable then there should exist another conserved quantity.

If one assumes that the action is separable, then by using the conserved quantities found so

far, one should be able to cast the action in the form

S =
1
2

µ
2

λ −E u+Φϕ +Sθ +Sr, (4.33)

where Sr is only a function of r and Sθ is only a function of θ . The form of the Hamilton-

Jacobi equation is similar to the one examined in Section 2.1

∂ S
∂λ

+
1
2

gab
[(

∂ S
∂xa − ε Aa

)(
∂ S
∂xb − ε Ab

)]
= 0. (4.34)

Writing the explicit form of the Hamilton-Jacobi equation, one would get

0 = µ
2 +

1
2ρ−2

[
∆

(d Sr

dr

)2
+2
(
− (r2 +a2)E +aΦ− ε er

)d Sr

dr

+
(d Sθ

dθ

)2
+[−asinθ E + sin−1

θ Φ]2
]
. (4.35)

A careful investigation of (4.35) shows that the equation is separable. Just separating the two

variables r and θ to the two sides of the equation results in the equation

a2
µ

2 cos2
θ +(aE sinθ −Φsin−1

θ)2 +
(d Sθ

dθ

)2

=−∆

(d Sr

dr

)2
+2[(r2 +a2)E−aΦ+ ε er]

d Sr

dr
−µ

2 r2. (4.36)

The left hand side of the equation depends only on the variable θ , while the right hand side

depends only on r. Thus it must be that both sides should be equal to a constant. Setting the

constant as K , (4.36) can be written as(dSθ

dθ

)2
+(aE sinθ −Φsin−1

θ)2 +a2
µ

2cos2
θ = K

∆

(d Sr

dr

)2
−2[(r2 +a2)E−aΦ+ ε er]

d Sr

dr
+µ

2 r2 =−K . (4.37)
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Thus the fourth constant of motion K of the Kerr spacetime has been found. Having done so,

it has also been shown that the geodesic motion in Kerr spacetime is a completely integrable

system in the sense already discussed.

We have found the Carter constant by using the first method. We are ready to present the

second method in the next subsection.

4.3.2 The second method

There is also another method which Carter developed in [29]. This method helps one find the

fourth constant of motion directly from the Hamiltonian provided that it has the desired form.

It states that if the Hamiltonian is of the form

H =
1
2

(Hr +Hθ

Ur +Uθ

)
, (4.38)

then there exists a fourth constant of motion in the form of

˜K ≡ UrHθ −Uθ Hr

Ur +Uθ

. (4.39)

Here Hr = Hr(r, pr) and Ur = Ur(r) and similar conditions hold for Hθ and Uθ , i.e. Hθ =

Hθ (θ , pθ ) and Uθ =Uθ (θ). Then the Poisson bracket of Hr with the Hamiltonian becomes

{Hr,H}=
1
2
(Hr +Hθ ){Hr,

1
Ur +Uθ

}. (4.40)

Obviously, Uθ commutes with Hr and Ur, so we need the Poisson bracket of Ur with the

Hamiltonian

{Ur,H}=
1

2(Ur +Uθ )
{Ur,Hr}, (4.41)

and the Poisson bracket in the right hand side of the equation (4.40)

{Hr,
1

Ur +Uθ

}=− 1

(Ur +Uθ )
2

∂Hr

∂ pr

dUr

dr
=

1

(Ur +Uθ )
2 {Ur,Hr}. (4.42)

Thus, the Poisson bracket which we are looking for has been found as

{Hr,H}= 2H{Ur,H}. (4.43)

Following similar steps for Hθ , one finds that

{Hθ ,H}= 2H{Uθ ,H}. (4.44)
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Then it follows that the quantities ˜K1 ≡ 2UrH−Hr and ˜K2 ≡ 2Uθ H−Hθ commute with the

Hamiltonian:

{ ˜K1,H} ≡ {2UrH−Hr,H}= 2H{Ur,H}−{Hr,H}

= 2H {Ur,H}−2H {Ur,H}

= 0, (4.45)

and similarly for { ˜K2,H} = 0. Substituting the Hamiltonian (4.38) in ˜K1, one gets the new

representation of the Carter constant

˜K ≡ UrHθ −Uθ Hr

Ur +Uθ

. (4.46)

One can also check that ˜K2 leads to the negative of (4.46). The Carter constant ˜K has now

been constructed and if one wants to find it for the Kerr spacetime, one should start form the

Hamiltonian (4.30) of a particle in Kerr spacetime. It can be easily seen that the quantities Hr,

Hθ , Ur and Uθ for the Kerr spacetime are

Ur = r2, Hr = ∆p2
r +2

[
aΦ−

(
r2 +a2)E−2εer

]
pr, (4.47)

Uθ = a2 cos2
θ , Hθ = p2

θ +
(
aE sinθ −Φ sin−1

θ
)2
. (4.48)

Finally the Carter constant ˜K is found by substituting these in to the equation (4.46)

K =
r2
[
p2

θ
+
(
aE sinθ −Φ sin−1

θ
)]
−a2

(
∆p2

r +2
[
aΦ−

(
r2 +a2

)
E−2ε er

])
cos2 θ

r2 +a2 cos2 θ

(4.49)

for the case of Kerr spacetime.

In order to go further and solve the equations of motion, we need to show that these two

constants are equal to each other i.e. K = ˜K . To do so, we consider the constant K found

in Section 4.3.1 first. The Hamiltonian has the form given in equation (4.38), so we can

express it as

H =
1
2

(Hr +Hθ

Ur +Uθ

)
,

−1
2

µ
2 =

1
2

(Hr +Hθ

Ur +Uθ

)
,

−µ
2(Ur +Uθ ) = Hr +Hθ ,

Hθ +µ
2Uθ =−Hr−µ

2Ur . (4.50)
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The two sides of (4.50) has to be equal for every value of r and θ . Thus we get the fourth

constant K as derived in Section 4.3.1

Hθ +µ
2Uθ = K , Hr−µ

2Ur =−K . (4.51)

Substituting the Hr and Hθ of (4.51) above in (4.46), one finds

˜K =
Ur(K −µ2Uθ )−Uθ (−K −µ2Ur)

Ur +Uθ

= K . (4.52)

Hence, we have shown that both methods actually yield the same constant and one can use

either method depending on which serves better for one’s purposes, without losing any infor-

mation about the system.

The next step to do is to find the equation of motion by using the Hamilton-Jacobi method.

We have assumed that the action is separable and has the form given in equation (4.33). The

fourth constant of motion K was derived in equation (4.37). By integrating these equations,

we can find the functions Sr and Sθ as

Sθ =
∫

θ√
Θdθ , Sr =

∫ r P+
√

R
∆

dr, (4.53)

where

Θ≡K − (aE sinθ −Φsin−1
θ)2−a2

µ
2cos2

θ (4.54)

P≡ E(a2 + r2)−Φa+ εer (4.55)

R≡ P2−∆(µ2 r2 +K ). (4.56)

These help us write down the full action

S =
1
2

µ
2
λ −E u+Φϕ +

∫
θ√

Θdθ +
∫ r P+

√
R

∆
dr. (4.57)

The action can be expressed as S = S(xa,E,Φ,µ,K ). Then one can consider it as the generat-

ing function of the canonical transformations described in Section 2.1, and the four constants

E,Φ,µ,K becomes the new momenta Pa of the system. Next, taking partial derivatives of

the action, which is also the generating function of the canonical transformations at the same

time, with respect to these momenta will give the new canonical coordinates. These new co-

ordinates are also constant as discussed in Section 2.1, and they can be set to zero since they
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can be compensated by integration constants which will result from the integrations in the

action. By doing so, we arrive at the equations∫
θ dθ√

Θ
=
∫ r dr√

R
, (4.58)

λ =
∫

θ a2 cos2θdθ√
Θ

+
∫ r r2 dr√

R
, (4.59)

u =
∫

θ −a(aE sin2θ −Φ)dθ√
Θ

+
∫ r r2 +a2

∆

(
1− P√

R

)
dr, (4.60)

ϕ =
∫

θ −a(aE−Φsin−2θ)dθ√
Θ

+
∫ r a

∆

(
1− P√

R

)
dr. (4.61)

By just taking the derivatives of the coordiates with respect to the affine parameter λ , we can

also find the differentiated forms of the coordinates as

θ̇ =

√
Θ

ρ2 , (4.62)

ṙ =

√
R

ρ2 , (4.63)

u̇ =
1

ρ2 [
(r2 +a2)(

√
R−P)

∆
−a(aE sin2

θ −Φ)], (4.64)

ϕ̇ =
1

ρ2 [
a(
√

R−P)
∆

−a(aE − sin−2
θΦ)]. (4.65)

We should also note that the signs of the
√

Θ and
√

R terms are not relevant. They can be

either plus or minus. However once a specific choice is made for the signs, they should remain

unchanged for all the following calculations.

4.4 The Carter Constant and The Killing Tensor

The Carter constant has been found in the previous section. It played a key role in determining

the equations of motion for a particle in the Kerr spacetime, since it allowed the use of the

Hamilton-Jacobi formalism. In this section we will find the Killing tensor corresponding to

this constant.

In general, determining the Killing tensor of a given spacetime is not an easy task. In [6],

Penrose and Walker investigated the relationship between the fourth constant of motion of

the Kerr spacetime and the Killing tensor leading to it. As a result they developed a method

by using spinor formalism to find the Killing tensor giving the fourth constant of motion.

However, this method is applicable to spacetimes which are solutions of General Relativity
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and of Petrov type D. On the other hand, the spacetime, which the methods reviewed will be

applied to, is a solution of the Conformal Gravity not General Relativity.

Another method which does this and that has been developed in [30]. The method is based on

decomposing the given spacetime to hypersurfaces which are orthogonal to the Killing vec-

tors. However this method does not work for stationary spacetimes since the Killing vector

orthogonality condition does not hold for such geometries. It is useful for less complicated

spacetimes such as static spacetimes. Moreover, the spacetime in question may have more

than one Killing tensor and the Carter constant might be a linear combination of these Killing

tensors. So there is no guarantee that the Killing tensor found will give the Carter constant.

However, there is another method also given in [29] which determines the Killing tensors di-

rectly from the Carter constant. The method is actually quite easy; it just amounts to equating

the Carter constant K to the conserved quantity found from the Killing tensor

K = Kab pa pb. (4.66)

For example, in the case of the Kerr spacetime, this equation gives

Kab pa pb =
1
p2

[
r2 p2

θ + r2 (a2 E2 sin2
θ +Φ sin−2

θ −2aEΦ
)

−a2 cos2
θ
(
∆p2

r +2
(
aΦpr−

(
r2 +a2)E pr

))]
. (4.67)

A careful examination then gives Killing tensor for the Kerr spacetime as

Kab =


r2a2

ρ2 sin2
θ a2 cos2 θ

(
r2 +a2

)
0 ar2

ρ2

a2 cos2 θ
(
r2 +a2

)
−a2 cos2 θ

ρ2 ∆ 0 a3 cos2 θ

ρ2

0 0 r2

ρ2 0
ar2

ρ2
a3 cos2 θ

ρ2 0 r2

ρ2 sin−2
θ

 . (4.68)

Having developed the necessary tools to find the Carter constant of motion and the relevant

Killing tensor, we can now move on to the next step and apply this procedure to find the

analogous objects of the recently found spacetime presented in [18].

4.5 Solution of Conformal Gravity

A theory which is invariant under conformal transformations gab → Ω2(x)gab where Ω(x)

is a function on spacetime is called Conformal Gravity whose action contains square of the
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Weyl tensor. Cosmological Einstein gravity can be obtained from the conformal gravity by

coupling a specified cosmological constant to square of the Weyl tensor in the action [31].

The spacetime which we will investigate in this section is given in [18]. It is a solution of

the four dimensional Conformal Gravity theory with a Maxwell field minimally coupled to it.

The theory is given by the action

S =
∫

d4x
√
−g
(1

2
CabcdCabcd +

1
3

FabFab
)
, (4.69)

where Cabcd is the Weyl (Conformal) tensor and F = dA. Varying the action with respect to

the 1-form vector field A and the metric, one finds the following field equations

∇aFab = 0, (4.70)

(2∇
c
∇

d +Rcd)Cacdb +
2
3
(FacFc

b−
1
4

F2gab) = 0, (4.71)

respectively. In [18], there are two separate solutions found for these equations; one of them

describes a dyonic rotating black hole, which has both an electric and a magnetic charge, and

the other one represents a neutral rotating black hole.

The dyonic rotating black hole with electrical charge p and magnetic charge q is described by

the metric

ds2 = ρ
2
(

dr2

∆r
+

dθ 2

∆θ

)
+

∆θ sin2
θ

ρ2

(
adt−

(
r2 +a2) dφ

Ξ

)2

−∆r

ρ2

(
dt−asin2

θ
dφ

Ξ

)2

, (4.72)

with the associated vector potential given by

A =
qr
ρ2

(
dt−asin2

θ
dφ

Ξ

)
+

pcosθ

ρ2

(
adt−

(
r2 +a2) dφ

Ξ

)
. (4.73)

Here

ρ
2 ≡ r2 +a2 cos2

θ ,

∆r ≡
(
r2 +a2)(1− 1

3
Λr2
)
−2mr+

(
p2 +q2

)
r3

6m
,

Ξ ≡ 1+
1
3

Λa2,

∆θ ≡ 1+
1
3

Λa2 cos2
θ . (4.74)

where m is the mass parameter and Λ is the integration constant. By setting the charge param-

eters p and q to zero, the metric reduces to the Kerr-AdS black hole in four dimensions which
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solves the cosmological Einstein theory. On the other hand, letting the rotation parameter a

to be zero, the solution becomes a static metric with a massive spin-2 hair.

In [18], it was also discussed that neither the Reissner-Nordstorm nor the Kerr-Newman solu-

tions can be embedded into the Conformal theory (4.69) due to the different fall-off behaviors

of the charge parameters p and q in the metric.

The neutral solution cannot be obtained by simply setting the charge parameters to zero.

As mentioned before, the dyonic solution reduces to the Kerr-AdS solution which is not a

solution of the Conformal theory (4.69). To obtain the neutral solution, let p2+q2 be−12mµ

and m be zero. It is claimed in [18] that the solution which was obtained by the described

substitution and the Kerr-AdS metric are mutually exclusive within this ansatz. This can seen

by substituting this ansatz to the equations of motion and letting A be zero and ∆r = ∆r(r) be

a general function of r. By doing so, one will find two different solutions, one of them is the

new neutral solution and the other one is Kerr-AdS. The described substitution leads to the

metric (4.72) where now

∆r =
(
r2 +a2)(1− 1

3
Λr2
)
−2µr3, (4.75)

It is not known whether the Hamilton-Jacobi equations of a particle in these new spacetimes

are separable or not. The existence of a Carter constant and a Killing tensor was also unknown

for these spacetimes beforehand. In this study, we will try to answer these questions. How-

ever, while seeking answers, we will not be considering these spacetimes separately. For the

sake of brevity, we will only be dealing with the dyonic solution. The procedure can easily be

carried on to the neutral solution by applying the ansatz used to obtain the neutral black hole.

The metric reduces to the Kerr-AdS spacetime when both p and q are set to zero, and the sep-

arability of the Kerr-AdS shown in [10]. Therefore one can expect that these new spacetimes

are also separable and this is what we are going to check first. As mentioned above, we will

be dealing with only the dyonic spacetime. Before examining the Hamiltonian, determining

the Killing vectors of the dyonic spacetime would be a wise step to take. By examining the

metric, it is obvious that the two obvious Killing vectors of the metric are the same with the

Kerr spacetime. Their related momenta are also conserved in this case and we can use a

similar labeling with the Kerr spacetime by setting pt =−E and pφ = Φ.

The general form of the Hamiltonian of a charged particle was given in (4.22). Substituting
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the dyonic metric gab and the vector potential Aa in (4.22) will give the explicit form of the

Hamiltonian of the charged particle in the dyonic spacetime. Then the Hamiltonian reads

H =
(pφ Ξ+ sin2θ pt)

ρ2 ∆θ

[
ε p

cosθ

sin2θ
+

pt a
2

+
pφ Ξ

2sin2θ

]
+

ε2 p2cos2θ

2ρ2∆θ sin2θ

− ε2q2r2

2ρ2∆r
−

(pt(a2 + r2)+a pφ Ξ)

∆rρ
2

[ pφ Ξa
2

+
pt(a2 + r2)

2
− ε qr

]
+

∆r p2
r

2ρ2 +
sin2θ ∆θ p2

θ

2ρ2 . (4.76)

A careful investigation of the Hamiltonian reveals that it has the desired form as in equation

(4.38). Therefore, it is guaranteed that the spacetime has the fourth constant of motion, and

we can safely assume that the action has the separable form

S =
1
2

µ
2

λ −E t +Φϕ +Sr(r)+Sθ (θ). (4.77)

Using the action which we have just defined, the Hamilton-Jacobi equation becomes

0 = µ
2 +

(ΦΞ− sin2θ E)
ρ2 ∆θ

[
2ε p

cosθ

sin2θ
−E a+

ΦΞ

sin2θ

]
+

ε2 p2cos2θ

ρ2∆θ sin2θ

− ε2q2r2

ρ2∆r
+

(E(a2 + r2)+aΦΞ)

∆rρ
2

[
ΦΞa−E(a2 + r2)−2ε qr

]
+

∆r (
d Sr
dr )

2

ρ2 +
sin2θ ∆θ (

d Sθ

dθ
)2

ρ2 . (4.78)

It is easy to see that this equation is separable and separating it will result in

µ
2 a2 cos2

θ +
(ΦΞ− sin2θ E)

∆θ

[
2ε p

cosθ

sin2θ
−E a+

ΦΞ

sin2θ

]
+

ε2 p2cos2θ

∆θ sin2θ
+ sin2

θ ∆θ (
d Sθ

dθ
)2

=−µ
2r2 +

ε2q2r2

ρ2∆r

− (E(a2 + r2)+aΦΞ)

∆rρ
2

[
ΦΞa−E(a2 + r2)−2ε qr

]
−

∆r (
d Sr
dr )

2

ρ2 . (4.79)

Both sides of this equation depend only on one variable, and as before they should be both

equal to a constant for this to hold for any value of θ or r. Hence we have determined the

fourth constant of motion of this spacetime. The fourth constant reads

K = µ
2 a2 cos2

θ +
(ΦΞ− sin2θ E)

∆θ

[
2ε p

cosθ

sin2θ
−E a+

ΦΞ

sin2θ

]
+

ε2 p2cos2θ

∆θ sin2θ
+ sin2

θ ∆θ (
d Sθ

dθ
)2, (4.80)

K =−(E(a2 + r2)+aΦΞ)

∆rρ
2

[
ΦΞa−E(a2 + r2)−2ε qr

]
−µ

2r2 +
ε2q2r2

ρ2∆r
−

∆r (
d Sr
dr )

2

ρ2 . (4.81)
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Finding the fourth constant shows that geodesic motion of a test particle is completely inte-

grable and the Hamilton-Jacobi method can be used to derive the equations of motion. One

integrates (4.80) and (4.81) to get the Sθ and Sr, and the resulting integral representations are

Sθ =
∫

θ√
Θdθ , (4.82)

Sr =
∫ r√

Rdr, (4.83)

where

Θ≡
(
K −µ

2 a2 cos2
θ +Q1(θ)+

ε2 p2cos2θ

∆θ sin2θ

) 1
∆θ sin2θ

, (4.84)

R≡−K +µ
2r2− ε2q2r2

ρ2∆r
+

(E(a2 + r2)+aΦΞ)

∆rρ
2 Q2(r), (4.85)

Q1(θ)≡
(ΦΞ− sin2θ E)

∆θ

(
2ε p

cosθ

sin2θ
−E a+

ΦΞ

sin2θ

)
,

Q2(r)≡ [ΦΞa−E(a2 + r2)−2ε qr].

The unknown functions in the action have been determined and the action can be expressed

as

S =
1
2

µ
2

λ −E t +Φϕ +
∫

θ√
Θdθ +

∫ r√
Rdr. (4.86)

Similar steps taken in the case of the Kerr spacetime case now be followed here. The equations

for the coordinates are given below. These have been obtained by differentiating the action

with respect to K , µ , E and Φ, respectively,

∫ r dr
∆r
√

R
=
∫

θ
dθ

∆θ sin2θ
√

Θ
, (4.87)

λ =
∫

θ a2 cot2θ

∆θ

dθ +
∫ r r2

∆r
√

R
dr, (4.88)

t =
∫

θ [
a(ΦΞ− sin2

θ E)+ sin2
θ(

2ε pcosθ

sin2θ
−Ea+

ΦΞ

sin2θ
)
] dθ

∆2
θ

sin2θ
√

Θ

+
∫ r

2[ΦΞa−E(a2 + r2− ε qr)]
(a2 + r2)

∆2
r
√

R
dr, (4.89)

ϕ =
∫

θ [
2ε p

cosθ

sin2θ
−E(a+1)+2

ΦΞ

sin2θ

]
Ξdθ

∆2
θ

√
Θsin2θ

+
∫ r

2[ΦΞa−E(a2 + r2− ε qr)]
aΞ

∆2
r
√

R
dr . (4.90)

Differentiating the above equations with respect to the affine parameter λ , one gets the veloc-
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ity forms of the coordinates. The first order differentiated forms of the equations are

θ̇ =
∆θ sin2θ

√
Θ

ρ2 , (4.91)

ṙ =
∆r
√

R
ρ2 , (4.92)

ṫ =
[
a(ΦΞ− sin2

θ E)+ sin2
θ(

2ε pcosθ

sin2θ
−Ea+

ΦΞ

sin2θ
)
] 2

∆θ ρ2

+[ΦΞε−E(a2 + r2)− ε qr]
2(a2 + r2)

∆r ρ2 , (4.93)

ϕ̇ =
[
2ε p

cosθ

sin2θ
−E(a+1)+2

ΦΞ

sin2θ

]
Ξ

∆θ ρ2 sin2θ

+[ΦΞa−E(a2 + r2− εqr)]
2Ξa
∆rρ

2 . (4.94)

We have found the equations which describe the motion of a test particle. If one has the

knowledge of the initial conditions of the particle, one can in principle learn everything about

the particle’s trajectory by solving these equations using the given initial conditions.

Before deriving the equations of motion, we have mentioned that the Hamiltonian fits the

form presented earlier in (4.38). While deriving the equations of motion, we chose to use

the first method given. This was so, since it gives two separate equations (4.80) and (4.81)

each containing only one coordinate θ and r, respectively. Therefore the equations are easier

to solve than the Carter constant expression given by the second method, since it contains

both coordinates at the same time. The second method on the other hand is more suitable for

finding the Killing tensor. The first method gives two equations for the constant, and each

equation contains either one of the pr or the pθ , so one ends up with two different Killing

tensors. However, in the second method, the constant contains all four momenta in second

order and better serves for finding the Killing tensor of this constant. Moreover, we will take

the charge of the particle ε to be zero, since the Killing tensor gives a scalar which is second

order in momenta, but the terms containing ε are either in zeroth or first order. Hence it is

useful to ignore the charge. According to the formula (4.38), the functions Hr, Hθ , Ur and Uθ

read

Hr = ∆r p2
r −

[pt(a2 + r2)+a pφ Ξ]2

∆r
,

Hθ =
(pφ Ξ+ sin2θ pt)(pt a+ pφ Ξ

sin2θ
)

∆θ

,

Ur = r2,

Uθ = a2 cos2
θ . (4.95)
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The fourth constant is obtained merely by substituting these into (4.46), and the result is

K =
1

ρ2

[
p2

t

(a2 cos2θ(a2 + r2)2

∆r
+

r2 a2 sin2θ

∆θ

)
+ r2 sin2

θ ∆θ p2
θ

+ pt pφ Ξ

(r2 (a+1)
∆θ

+
2a3 cos2θ (a2 + r2)

∆r

)
−a2 cos2

θ ∆r p2
r

+ p2
φ Ξ

( r2

∆θ sin2θ
+

cos2θ a2

∆r

)]
. (4.96)

(4.96) gives the Carter constant found by the second method, and the only thing to do is to

equate K to Kab pa pb for finding the Killing tensor. After doing so, we find the non-vanishing

components of the Killing tensor as

Ktt =
a2

ρ2

( cos2θ(a2 + r2)2

∆r
+

r2 sin2θ

∆θ

)
, (4.97)

Krr =−a2 cos2θ ∆r

ρ2 , (4.98)

Kθθ =
r2 sin2θ ∆θ

ρ2 , (4.99)

Kϕϕ =
Ξ

ρ2

( r2

∆θ sin2θ
+

cos2θ a2

∆r

)
, (4.100)

Ktϕ = Kϕt =
Ξ

2ρ2

(r2 (a+1)
∆θ

+
2a3 cos2θ (a2 + r2)

∆r

)
. (4.101)

In this section, we have shown that the Hamilton-Jacobi equation of the spacetime is separable

and we have found the fourth constant of the spacetime, which is a rotating and charged

solution of four dimensional Conformal Gravity theory (4.69). This constant proves that the

geodesic motion is completely integrable and can be used to solve the equations of motion

by the Hamilton-Jacobi equation. Finally we have derived the Killing tensor of the spacetime

from the fourth constant of motion which we have derived.
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CHAPTER 5

KILLING-YANO TENSORS

5.1 Introduction

Killing-Yano tensors are generalizations of the Killing vectors to higher rank tensors just like

the Killing tensors. The difference between the Killing tensors and the Killing-Yano tensors is

that, while Killing tensors are totally symmetric tensors, the Killing-Yano tensors are totally

antisymmetric. As in the case of Killing tensors, being generalizations of Killing vectors, they

also have to be parallel along a given geodesic. Hence, they correspond to hidden symmetries

of the spinning particle and these issues are discussed extensively in [32]. We have mentioned

in Chapter 4 that Killing tensors of rank-2 are related to the separability of the Hamilton-

Jacobi equation and Carter constant [6]. In [7] and [8], it is argued that a Killing-Yano tensor

fab can be expressed as the square root of a given Killing tensor Kab; i.e. that given Kab there

exists an fab such that

Kab = fac f c
b. (5.1)

This is closely related to the separability of the Dirac equation in the Kerr spacetime [9].

However, these issues are beyond the scope of this work, and here we will be dealing with

another feature of the Killing-Yano tensors. Here, we will examine how they can be used in

constructing new gravitational charges [16], [17].

Let us start by studying the properties of the Killing-Yano tensors. Let fa1...an be a rank-n

Killing-Yano tensor. By definition, it is totally antisymmetric; thus

fa1...an = f[a1...an]. (5.2)
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It must also remain parallel along the geodesics, so it satisfies

∇(a1 fa2)a3...an+1 = 0. (5.3)

Equation (5.3) implies that the covariant derivative of the Killing-Yano tensor is also a totally

antisymmetric object

∇a1 fa2...an+1 = ∇[aa1 fa2...an+1]. (5.4)

Taking the covariant derivative of this equation, one gets

∇a ∇b fc1...cn = (−1)n+1 n+1
2

Rd
a[bc1 fc2...cn]d . (5.5)

This result is given in [16]. To prove this identity, one should express ∇a∇b fc1...cn in terms of

the Riemann tensor, and this should be repeated n+1 times by changing the indices b,c1, ...,cn

in cyclic order. The first order covariant derivative of the Killing-Yano tensor is totally an-

tisymmetric (5.2). Therefore, changing the indices of ∇a∇b fc1...cn in cyclic order results in

an identical expression. Next, summing all the n+1 equations obtained and rearranging the

Riemann terms, one proves the identity. The derivation of this for the rank n = 2 case is given

in Appendix A.2. Its generalization to arbitrary rank is straightforward.

It is also obvious that the Killing-Yano tensor is both traceless and divergenceless

f c
ca1...an−2 = 0, (5.6)

∇a1 f a1...an = 0. (5.7)

A rank-n conserved current was obtained in [16] merely by using these properties of the

Killing-Yano tensors. The current is expressed as

ja1...an =−n−1
4

Rbc
[a1a2 f a3...an]bc +(−1)n+1Rc

a1 f a2...an,c− 1
2n

R f a1...an . (5.8)

In [16], rank-2 case of this current was studied and a conserved charge was constructed using

it for the transverse spacetimes with flat backgrounds. It was later extended for the trans-

verse spacetimes with AdS backgrounds [17]. The charge leads to intrinsic properties of the

spacetime such as ADM mass per unit length or ADM tension per unit time. Even though it

leads to information about spacetime, the terms in the current jab does not have a physical

interpretation as also mentioned in [16]. The current is conserved off-shell, contrary to the

current defined in the ADT procedure. In the next section, the procedure developed in [16]

will be reviewed and these issues will be discussed in detail.
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This problem motivated us to work on gravitational charges constructed by using Killing-

Yano tensors. Along the way, two important identities were obtained. The first identity is

Rac f c
b +Rbc f c

a = 0. (5.9)

We have discovered this identity while studying the properties of the contraction of a Killing-

Yano tensor with curvature tensors. Unfortunately though, we noticed that this identity was

already found in [33], when we stumbled on it by chance afterwards. This identity is used in

simplifying the charge expression and in proving the second identity, which we are about to

mention. The second identity, to our knowledge has not been derived beforehand in spite of

our careful review of the literature. It states that the contraction of the Einstein tensor with a

Killing-Yano tensor is conserved

∇a(Gbc f b
a) = 0. (5.10)

If one carefully examines this identity, then one can see that this is quite similar to the current

used in defining the ADT charge. The only difference is that the Killing vector is replaced with

the Killing-Yano tensor. Therefore, this identity might be an important step in constructing

a new kind of conserved charge expression for spacetimes that possess background Killing-

Yano tensors. This quantity is used as a conserved current to construct such a charge, however

we have, so far, not been able to express it as a total divergence of a totally antisymmetric

tensor. This approach of defining conserved charges and the problem it leads to is discussed

in detail in subsection 5.2.2.

5.2 The Conserved Gravitational Killing-Yano Charge

Killing-Yano tensors were first introduced in [13] and have since been widely studied. It was

mentioned in the previous section that these works were mostly on the hidden symmetries,

the separability of the Dirac equation, etc. However, they had not been studied for the case

of gravitational charges for a long time, even though Killing vectors were used in defining

gravitational charges. Long after the discovery of the Killing-Yano tensors, it was found

that they can be used in defining gravitational charges for transverse spacetimes with flat

backgrounds in [16]. Later, the charge definition was extended to transverse spacetimes with

AdS backgrounds in [17]. This procedure is reviewed in subsection 5.2.1. However, the

current used in this procedure cannot be explained in terms of physical quantities such as the

49



energy momentum tensor. Therefore, generalizing the current used in the ADT procedure by

substituting the Killing vector with a Killing-Yano tensor is discussed in subsection 5.2.2.

5.2.1 The Gravitational Killing-Yano charge

In this section, we will review the procedure developed in [16] to define a gravitational charge

for the transverse spacetimes admitting background Killing-Yano tensors. In [16], a conserved

quantity was found as the contraction of a Killing tensor with a special combination of the

curvature tensors and the Ricci scalar. This quantity is used as a conserved current to construct

the conserved charge expression in a similar way as in the ADT procedure. The conserved

rank-2 antisymmetric current is expressed as

jab =−1
4
(Rab

cd f cd−2 f ac Rb
c +2 f bc Ra

c + f ab R). (5.11)

In fact a generalization of this current to rank-n was given in [16] and it is given in (5.8).

However, in what follows we will only consider the rank-2 current tensor. The tensor is

divergence-free as expected

∇a jab =−1
4

∇a(Rab
cd f cd−2Rb

c f ac +2Ra
c f bc +R f ab)

=
1
4

(
(∇aRab

cd) f cd +Rab
cd∇a f cd−2 f ac

∇aRb
c

+2Ra
c∇a f bc +2(∇aRa

c) f bc + f ab
∇aR

)
=

1
4
[−Rb

acd∇
a f cd−2 f cd

∇
bRcd +2 f cd

∇cRb
d−2 f dc

∇dRb
c

+2Rdc∇
d f bc + f bc

∇cR+ f cb
∇cR] (5.12)

= 0. (5.13)

To arrive at (5.12), we have used the identities

∇aRbcd
a = ∇cRbd−∇bRcd , ∇aRa

b =
1
2

∇bR. (5.14)

We have used the Bianchi identity ∇[aRbc]de = 0 and contracted it to get the first identity in

(5.14). Contracting the indices c and d in the first identity directly leads to the second one. In

(5.12), the first term is automatically zero, thanks to the Bianchi identity R[abc]d = 0, and the

other terms simply cancel each other.

The linearization process is similar to the one described in Sections 2.3 and 3.3, hence the
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linearization of (5.11) is

(Jab)L = kab =−1
4

[
(Rab

cd)L f̄ cd−2(Rb
c)L f̄ ac +2(Ra

c)L f̄ bc +RL f ab
]
, (5.15)

which is divergenceless. The vanishing of the divergence of kab can be seen through lineariz-

ing the Bianchi identities given in (5.14). By linearization, they become

∇̄a(Rbcd
a)L = 2∇̄c(Rbd)L−2∇̄b(Rcd)L, ∇̄a(Ra

b)L =
1
2

∇̄bRL. (5.16)

Therefore, the linearized current is divergenceless

∇̄a kab = 0. (5.17)

The factor 1
4 in the kab is chosen such that the rank-1 Killing-Yano conserved current yields

the current identical to the one used. There is a difference between the ADT current and this

one. The Killing-Yano current is not a vector but a tensor of rank-2, so it should be dealt with

appropriately. We note that

√
−ḡ ∇̄akab = ∂a(

√
−ḡ kab). (5.18)

Thus the charge can be expressed as

Qab =
∫

Σ

dn−2x
√
−ḡ kab. (5.19)

The Poincarè lemma guarantees that locally there is a totally antisymmetric tensor labc which

satisfies

labc = l[abc], ∇c labc = kab. (5.20)

With the help of this tensor, we can go further and write

Qab =
∫

Σ

dn−2x
√
−ḡ kab (5.21)

=
∫

Σ

dn−2x ∇̄clabc (5.22)

=
∫

∂Σ

dΣc labc, (5.23)

where ∂Σ is the n−3 dimensional spacelike hypersurface at spatial infinity,
√

γ is the deter-

minant of the induced metric on the surface and dΣc =
√

γ ncdn−3y is its surface element with

nc normal to its surface. We have again simplified the problem significantly: The only thing

to be explicitly calculated is the labc tensor and the rest is straightforward integration.

51



We are dealing with transverse spacetimes with flat backgrounds. Hence, finding labc is not so

hard in this case. One has the equation kab = ∇̄c labc, and all that is needed is to write down

kab, and then try to express it as a total derivative as shown in the Appendix A.3. The final

expression is

kab = ∇̄c(3! f̄ [c|d|∇̄bha]
d +

3!
2

f̄ [ac
∇̄

b]h+
3!
2

f̄ [ab
∇̄
|d|hc]

d +
3!
2

∇̄
d f̄ [cbha]

d +h∇̄
[c f̄ ab]). (5.24)

It is not hard to identify labc from this expression. It reads

labc = 3! f̄ [c|d|∇̄bha]
d +

3!
2

f̄ [ac
∇̄

b]h+
3!
2

f̄ [ab
∇̄
|d|hc]

d +
3!
2

∇̄
d f̄ [cbha]

d +h∇̄
[c f̄ ab]. (5.25)

Killing-Yano charges are interesting, since they give intrinsic quantities about spacetime. In

[16], the static string in five dimensional spacetime was studied. The string has been found to

have ADM mass and ADM tension M = ρ ∆L, T = −λ∆t, respectively. Here the parameter

ρ stands for the mass per unit length and the other parameter λ represents the tension per unit

time. In the same article, Killing-Yano charge was found as

Q =−(ρ−λ )

3
. (5.26)

The Killing-Yano charge Q describes both the mass per unit length and tension per unit time

of the string. It is quite interesting to observe that the Killing-Yano charge carries information

about the intrinsic quantities of the brane, while ADM charges give information about the

extrinsic quantities. Another study which is in support of this property of the Killing-Yano

charges is [17]. In this work, the spacetime called the “long Weyl rod” is examined. This

spacetime has ADM mass M, and as discussed in [17] if M and L are set to be equal M = L,

where L is the length of the rod, this metric reduces to the celebrated Schwarzschild solution.

The conclusions of [17] are again similar to ones in [16] as expected, and it is found in [17]

that the Killing-Yano charge of the “long Weyl rod” is

Q =
M
L
, (5.27)

which again amounts to the mass per unit length. The Killing-Yano charge found in [17]

also describes an intrinsic quantity of the spacetime, hence one can argue that they reveal the

intrinsic properties of a given spacetime.

The procedure provides interesting results about intrinsic quantities of the spacetime. On the

other hand, there is a problem, as mentioned in [16]. In ADT procedure, the current was
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formed by contracting a Killing vector with the energy momentum tensor, therefore it nat-

urally leads to some information about the mass or the momentum of the solution at hand.

However, here it does not depend on the energy momentum tensor and a physical interpreta-

tion of the current cannot be made. This is not quite surprising, since the current is off-shell

conserved. Only Bianchi identities were used in showing its conservation as shown in (5.13).

Nevertheless, it still leads to valuable information about the given spacetime. One of the

motivations of this work was to better understand this elusive point.

5.2.2 An Alternative Conserved Killing-Yano Current

In the previous subsection, the gravitational charge defined in [16] was discussed. It was men-

tioned that the current used in defining the conserved charge cannot be interpreted physically.

The first thing that comes to one’s mind to overcome this problem, is to generalize the current

used in the ADT procedure by replacing the Killing vector with a Killing-Yano tensor. The

current becomes a second rank object

Jab = Gac fc
b−Gbc fc

a. (5.28)

In fact, this was considered as current in previous versions of [17]. However, its conservation

was not known at that time, so it was retracted in the final version. In this study, we also

consider this quantity as a current after we show its conservation to overcome the problem

stated in [16]. Before checking its conservation, let us try to express it in a simpler form. At

the beginning of this chapter, we have given the identity

Rac f c
b +Rbc f c

a = 0. (5.29)

As mentioned earlier, while studying the older literature, we noticed that it was first derived in

[33]. To derive this equation, one needs to act on the Killing-Yano tensor with the commutator

of two covariant derivatives. This reads

[∇a ,∇b] f ac = Rab
a

d f dc +Rab
c

d f ad . (5.30)

Expanding the commutation in the left hand side, and using ∇a f ab = 0, one gets

∇a ∇b f ac︸ ︷︷ ︸
Ab

c

= Rbd f dc +Rab
c

d f ad . (5.31)
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The left hand side has been renamed as Ab
c. Applying the identity given in (5.5) for the rank-2

Killing-Yano tensor, Ab
c becomes

Ab
c =−1

2
(Rd

ab
a f c

d +Rd
a

c
b f a

d +Rd
a

ac fbd) (5.32)

=−1
2
(Rd

b f c
d +Rd

a
c

b f a
d−Rdc fbd). (5.33)

Substituting this in (5.31), it reads

−1
2
(Rd

b f c
d +Rd

a
c

b f a
d−Rdc fbd) = Rbd f dc +Rab

c
d f ad (5.34)

1
2

Rbd f dc +
1
2

Rd
c f d

b =−
1
2

Rd
a

c
b f a

d−Rab
c

d f ad︸ ︷︷ ︸
Bb

c

. (5.35)

If one renames the right hand side as Bb
c, and applies the Bianchi identity R[abd]c = 0 for the

second term in the left hand side, then Bb
c becomes

Bb
c =−1

2
Rd

a
c

b f a
d +Rda

c
b f ad +Rbd

c
a f ad (5.36)

=
1
2

Rd
a

c
b f a

d +
1
2
(Rbd

c
a−Rba

c
d) f ad . (5.37)

By using the antisymmetry of the a−d indices in the last term, this equation becomes

Bb
c =

1
2

Rd
a

c
b f a

d +
1
2
(Rc

abd +Rc
dab) f ad (5.38)

=
1
2

Rda
c

b f ad− 1
2

Rc
bda f ad (5.39)

= 0. (5.40)

Finally, substituting this in (5.35), one arrives at the desired identity

Rbd f dc +Rd
c f d

b = 0. (5.41)

Moreover, this can be expressed in terms of the Einstein tensor easily. It reads

Ga
c f cb +Gb

c f ca = 0. (5.42)

Therefore the current expression (5.28) can be written also as

Jab = f ac Gc
b. (5.43)

Next, one needs to check its conservation and, to do so, one needs to examine its covariant

divergence as follows

∇aJab = ∇a( fc
a Gbc)

= fc
a
∇aGbc +Gbc

∇a fc
a

= fc
a
∇aGbc. (5.44)
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The first term in the second line vanishes due to the divergenceless property of the Killing-

Yano tensor (5.7). The equation becomes

∇aJab =−(∇aGbc) fc
a. (5.45)

The vanishing of the remaining term is not easy to see. In fact, we have originally proved it in

a similar way used in deriving (3.23). However, after finding (5.42), it is in fact much easier.

Here we will derive the conservation of it from (5.42) and the second way of deriving it will

be given in Appendix A.1. Taking the divergence of (5.42), it becomes

∇a(Ga
c f cb +Gb

c f ca) = 0,

(∇aGa
c) f cb +Ga

c ∇a f cb +(∇aGb
c) f ca +Gb

c ∇a f ca = 0.

(5.46)

The first term vanishes due to the Bianchi identity. The second term is zero since the covariant

derivative of the Killing-Yano tensor is totally antisymmetric and the Einstein tensor is sym-

metric. Vanishing of the final term is due to the divergenceless property of the Killing-Yano

tensor (5.7). Finally, we obtain

(∇aGb
c) f ca = 0. (5.47)

Therefore, the problem which prevented Jab from being used as a current has now been over-

come with the identities shown.

As promised, we take the conserved quantity Jab as current and move on to the next step

of constructing the charge expression. The next step is linearizing the current in the usual

manner. The current can be expanded in the usual fashion as

Gc
a f cb = κTc

a f cb (5.48)

Ḡc
a f̄ cb +(Gc

a)L f̄ cb + Ḡc
a( f cb)L +O(h2)

= κ(T̄c
a f̄ cb +(Tc

a)L f̄ cb + T̄c
a( f cb)L +O(h2)). (5.49)

Here it is again assumed that the background metric ḡab satisfies

Φ̄
ab = κ T̄ ab = 0, (5.50)

and the deviation hab vanishes sufficiently fast at infinity. As shown in the ADT case, moving

every term which is of second or higher order at the left hand side to the right hand side of the
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equation, one can rearrange (5.49) to write in the form

(Gc
a)L f̄ cb = κ{(Tc

a) f cb +O(h2)},

(Gc
a)L f̄ cb = κ τ

ab. (5.51)

The steps to take are quite similar to the ones taken in the previous section to define the charge,

although the current itself is different now. The charge in this case becomes

Qab =
∫

Σ

dn−2x
√
−g(Gc

a)L f̄ cb,

=
∫

Σ

dn−2x ∇̄c labc,

=
∫

∂Σ

dΣc labc. (5.52)

where ∂Σ is the n−3 dimensional spacelike hypersurface at spatial infinity,
√

γ is the deter-

minant of the induced metric on the surface and dΣc =
√

γ ncdn−3y is its surface element with

nc normal to its surface. Again, we have reduced the problem to finding the rank-3 totally an-

tisymmetric tensor labc. We have tried to find this rank-3 tensor for a flat background. Writing

the terms explicitly in the linearized current (5.51) reads

(Gc
a)L f̄ cb = (Rc

a)L f̄ cb− 1
2

RL f̄ ab. (5.53)

We have in fact derived the linearized terms, which are needed in (5.53), already in Section

2.3. Substituting the results found earlier, one finds

(Gc
a)L f̄ cb =

1
2
(− f̄ cb

∇̄d∇̄
dha

c− f̄ cb
∇̄c∇̄

ah+ f̄ cb
∇̄

d
∇̄cha

d + f̄ cb
∇̄

d
∇̄

ahcd)

− 1
2
(− f̄ ab

∇̄
d
∇̄dh+ f̄ ab

∇̄
c
∇̄

dhcd). (5.54)

This current can be written as a total derivative plus some extra terms,

(Gc
a)L f̄ cb =

1
2

∇̄d

(
f̄ ab

∇̄
dh− f̄ ab

∇̄chcd− f̄ cb
∇̄

dha
c− f̄ db

∇̄
ah+ f̄ db

∇̄
cha

c

+ f̄ cb
∇̄

ahd
c

)
− 1

2
(∇̄c f̄ ab)(∇̄ch)+

1
2
(∇̄d f̄ ab)(∇̄chcd)

+
1
2
(∇̄d f̄ cb)(∇̄dhc

a). (5.55)

After some considerable algebra for arranging the terms to make the antisymmetric property

manifest, one finds

(Gc
a)L f̄ cb =

1
2

∇̄d

(
3 f̄ [ab

∇̄
d]h+3 f̄ [db

∇̄
|c|ha]

c +3hc
[a

∇̄
|c| f̄ bd]−h∇̄

[d f̄ ab]
)

− 1
2

f̄ da
∇̄d∇̄

bh− 1
2

f̄ ad
∇̄d∇̄chcb− 1

2
(∇̄c f̄ da)(∇̄dhbc)

+
1
2

∇̄d( f̄ cb
∇̄

ahc
d− f̄ cb

∇̄
dhc

a). (5.56)
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Unfortunately, the linearized current could not be written as the total divergence of a totally

antisymmetric rank-3 current tensor labc. However, this should in principle be possible due

to the Poincaré lemma. This is a serious problem, preventing us from defining a charge

expression. To understand the reason of it, we have compared the two currents jab and Jab.

We have realized that jab can be written in terms of Jab plus some extra terms. The difference

between the two currents is

jab− Jab =−1
4
(Rab

cd f cd− f abR). (5.57)

Obviously, the resulting term is also another conserved quantity! Even though it has no phys-

ical interpretation, we have tried to linearize it and checked whether one can write it as a total

divergence of a totally antisymmetric rank-3 tensor labc or not. The result is again negative:

This is still not possible! The problem of defining a conserved charge has become quite inter-

esting. Even though the Poincaré lemma dictates that there should be a totally antisymmetric

rank-3 tensor labc, these two conserved quantities cannot be expressed as a total divergence

of such a tensor. Thus they cannot be used in defining a conserved charge. However their

sum can be used in defining a charge without any problem! After spending much effort to

solve this problem for a considerable amount of time, we are still not able to come up with

a satisfactory answer. There might still be some undiscovered identities which would lead

to the antisymmetrization of the object, or there might be a problem with the linearization

process itself. Finding this elusive rank-3 totally antisymmetric tensor and discovering what

information it leads to would be quite interesting. We expect to continue on these problems

in the future.
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CHAPTER 6

CONCLUSION

In this work, basic properties of the Killing vectors, Killing tensors and Killing-Yano tensors,

and their use in gravitational theories and geodesic motion have been studied. The main focus

was on the constants of motion in the study of geodesics and the conserved gravitational

charges that can be defined using them.

We briefly stated the properties of the Killing vectors, and derived two identities which were

later used in deriving another important one about the Killing-Yano tensors. We have seen that

they correspond to the symmetries of the Lagrangian of the geodesic motion, and they lead to

conserved canonical momenta as expected from Noether’s theorem. After demonstrating this,

we discussed the ADT charge. The ADT charge is constructed through the current which is

defined by contracting a Killing vector with the energy momentum tensor of the linearized

field equations, and it gives the so-called ADM mass or ADM angular momentum of the

geometry depending on the Killing vector chosen in the construction. The ideas developed

by using the Killing vectors is of crucial importance since they were later generalized to

the Killing tensors and Killing-Yano tensors in a way analogous to their generalization from

Killing vectors. Therefore, appreciation of these ideas is quite important and helpful in the

following sections.

Secondly, we have seen that Killing vectors are not always enough to exploit all the constants

of motion in the study of geodesics of a given spacetime. It was also shown that if a system has

a conserved quantity higher than first order in momentum, then there exists a Killing tensor

corresponding to it. We have discussed the fourth constant of motion for a test particle in

the Kerr spacetime, which was originally derived in [5], and derived the equations of motion

of a charged test particle. Then, the Killing tensor related to the fourth constant was derived
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by the method given in [9]. Next, as a new example, we have investigated a solution to the

Conformal Gravity theory presented in [18], and used the tools, which was developed earlier,

to find the fourth constant of motion and equations of motion of a charged particle in this

geometry. Later, we also found the Killing tensor related to the fourth constant of motion of

this new spacetime.

Finally, we have discussed the Killing-Yano tensors. We were interested in the gravitational

Killing-Yano charges which are constructed similarly to the ADT charge. We have discussed

the method given in [16] and shown that it gives information about the internal quantities

about spacetime, such as ADM mass per unit length or ADM tension per unit time, for trans-

verse spacetimes with flat backgrounds. However, there are terms whose presence in the

current jab cannot be physical, as mentioned in [16]. We have instead considered another

choice for the current, one obtained by direct generalization of the ADT current by replacing

the Killing vector with a Killing-Yano tensor:

Jab = Gac f c
b. (6.1)

Fortunately, we have shown that Jab is indeed a conserved current and it can be considered

in defining conserved charge. However, a new problem arose while defining the charge, and

unfortunately, we were not able to write the linearized version of this current as a total diver-

gence of a totally antisymmetric rank-3 tensor. For the time being, this still remains an open

problem and we intend to come back to this issue in the near future.
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APPENDIX A

IDENTITIES

A.1 Conservation of Jab

In Section 5.2.2, we have shown that the current Jab is conserved by using the first identity

(5.42). There, we also noted that we first showed its conservation by using a similar approach

to derive (3.23). Here we will derive it with the second approach. Therefore, one starts with

∇a ∇b ∇c fde−∇b ∇a ∇c fde = [∇a,∇b]∇c fde (A.1)

∇a ∇b ∇c fde−∇b ∇a ∇c fde = Rabc
k
∇k fde +Rabd

k
∇c fke +Rabe

k
∇c fdk

∇a ∇b ∇c fde−∇b ∇a ∇c fde =−
1
2

∇a(Rk
bcd fek +Rk

bec fdk +Rk
bde fck)

+
1
2

∇b(Rk
acd fek +Rk

aec fdk +Rk
ade fck). (A.2)

Applying (5.5) to the left hand side of this equation, it becomes

LHS =−∇a(Rk
bcd fek)−∇a(Rk

bec fdk)−∇a(Rk
bde fck)

+∇b(Rk
acd fek)+∇b(Rk

aec fdk)+∇b(Rk
ade fck). (A.3)

Now at the left hand side of this equation one only keeps the derivatives of the Riemann

tensors, and moves all the other terms to the right hand side. Doing so, the right and the left

hand sides are given as

LHS =−(∇aRk
bcd) fek− (∇aRk

bec) fdk− (∇aRk
bde) fck

+(∇bRk
acd) fek +(∇bRk

aec) fdk +(∇bRk
ade) fck, (A.4)

RHS = 2Rabc
k
∇k fde +2Rabd

k
∇c fke +2Rabe

k
∇c fdk

+Rk
bcd∇a fek +Rk

bec∇a fdk +Rk
bde∇a fck

−Rk
acd∇b fek−Rk

aec∇b fdk−Rk
ade∇b fck. (A.5)
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Now contracting the a and c indices, one gets

LHS =−(∇aRk
b

a
d) fek− (∇aRk

be
a) fdk− (∇aRk

bde) f a
k− (∇bRk

d) fek

+(∇bRk
e) fdk +(∇bRk

ade) f a
k, (A.6)

RHS = 2Rb
k
∇k fde +2Ra

bd
k
∇a fke +2Ra

be
k
∇a fdk

+Rk
b

a
d∇a fek +Rk

be
a
∇a fdk +Rk

bde∇a f a
k

+Rk
d∇b fek−Rk

e∇b fdk−Rka
de∇b fak. (A.7)

Doing another contraction of the b and e indices, this equation reads

LHS =−(∇aRkba
d) fbk +(∇aRka) fdk− (∇aRk

d) f a
k− (∇bRk

d) f b
k

+(∇bRkb) fdk +(∇bRk
ad

b) f a
k, (A.8)

RHS = 2Rb
k
∇k fd

b +2Rab
d

k
∇a fkb−2Rak

∇a fdk

+Rkba
d∇a fbk−Rka

∇a fdk

+Rk
d∇b fek−Rkb

∇b fdk−Rka
d

b
∇b fak. (A.9)

By using the symmetry of the Ricci tensor and the antisymmetry of the ∇a fbc term, the con-

traction of both pieces yield zero. Moreover, we have (∇a fbc)Rabcd = 0, since R[abc]d = 0.

Therefore, the RHS vanishes and one has the LHS left only :

−(∇aRkba
d) fbk +(∇aRka) fdk− (∇aRk

d) f a
k− (∇bRk

d) f b
k +(∇bRk

e) fdk +(∇bRk
ade) f a

k = 0.

(A.10)

Finally, if one uses the contracted Bianchi identity and the conservation of the Einstein tensor,

one finds

2∇a Rcb f ac +∇c R fb
c = 0 (A.11)

∇a(Rbc−
1
2

gbc R) f ab = 0, (A.12)

∇a(Gbc) f ab = ∇a(Gbc f ab),

= 0. (A.13)

A.2 Second covariant derivative of the Killing-Yano tensor

In [16], the identity (5.5) was given for the Killing-Yano tensor of arbitrary rank. Since it was

used repeatedly, we better give its proof. We will only give its proof for the rank two tensor,
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however generalization to higher ranks can be obtained following similar steps. One needs to

start with

[∇a,∇b] fcd +[∇c,∇a] fbd +[∇b,∇c] fad︸ ︷︷ ︸
≡RHS

= Rabc
e fed +Rabd

e fce +Rcab
e fed

+Rcad
e fbe +Rbca

e fed +Rbcd
e fae. (A.14)

The right hand side of this equation can be written as

RHS = ∇a ∇b fcd−∇b ∇a fcd +∇c ∇a fbd−∇a ∇c fbd

+∇b ∇c fad−∇c ∇b fad ,

= 2(∇a ∇b fcd +∇b ∇c fad−∇c ∇b fad),

= 2(∇a ∇b fcd +Rbca
e fed +Rbcd

e fae). (A.15)

Substituting this in (A.14) will result in

∇a ∇b fcd =
1
2
(Rabc

e fed +Rabd
e fce +Rcab

e fed +Rcad
e fbe

−Rbca
e fed−Rbcd

e fae). (A.16)

Repeating analogous calculations for ∇a∇c fdb and ∇a∇d fbc, one gets

∇a ∇c fdb =
1
2
(Racd

e feb +Racb
e fde +Rdac

e feb +Rdab
e fce

−Rcda
e feb−Rcdb

e fae) (A.17)

∇a ∇d fbc =
1
2
(Radb

e fec +Radc
e fbe +Rbad

e fec +Rbac
e fde

−Rdba
e fec−Rdbc

e fae). (A.18)

If one adds all the three terms at left hand side, and uses the total antisymmetry of the Killing-

Yano tensor, one finds

∇a ∇b fcd +∇a ∇c fdb +∇a ∇d fbc = 3∇a∇b fcd . (A.19)

By writing the left hand side, one gets the desired identity for the rank-2 Killing-Yano tensor:

∇a ∇b fcd =
1
2
(Re

acb fde +Re
abd fce +Re

adc fbe). (A.20)

Generalizing this identity to a Killing-Yano tensor of arbitrary rank is straightforward. Fol-

lowing analogous steps and using the totally antisymmetric structure of the first covariant

derivative of the Killing-Yano tensor, one arrives at (5.5).
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A.3 Killing-Yano current 3-form derivation

In subsection 5.2.1, the gravitational charge constructed through a Killing-Yano tensor, and

kab was written as a covariant divergence of another totally antisymmetric tensor. Here, we

derive this relation. The calculations are quite straightforward. First, one just needs to sub-

stitute the linearized terms found in Section 2.3 in the linearized current (5.15). Then one

gets

kab = f̄ cd (Rcd
ab)L−2 f̄ ac (Rb

c)L +2 f̄ bc Ra
c + f̄ abRL (A.21)

=
1
2

f̄ (∇̄a
∇̄dhb

c− ∇̄
b
∇̄dha

c− ∇̄
a
∇̄chb

d + ∇̄
b
∇̄cha

d)

− f̄ ac(−∇̄
d
∇̄dhb

c− ∇̄c∇̄
bh+ ∇̄

d
∇̄chb

d + ∇̄
d
∇̄

bhcd)

+ f̄ bc(−∇̄
d
∇̄dha

c− ∇̄c∇̄
ah+ ∇̄

d
∇̄cha

d + ∇̄
d
∇̄

ahcd)

+ f̄ ab(∇̄c
∇̄

dhcd− ∇̄
d
∇̄dh), (A.22)

=
1
2

∇̄d

(
f̄ cd

∇̄
ahb

c− f̄ cd
∇̄

bha
c− f̄ dc

∇̄
ahb

c + f̄ dc
∇̄

bha
c +2 f̄ ac

∇̄
dhb

c

+2 f̄ ad
∇̄

bh−2 f̄ ad
∇̄

chb
c−2 f̄ ac

∇̄
bhd

c−2 f̄ bc
∇̄

dha
c−2 f̄ bd

∇̄
ah

+2 f̄ bd
∇̄

cha
c +2 f̄ bc

∇̄
ahc

d +2 f̄ ab
∇̄

chd
c−2 f̄ ab

∇̄
dh
)

− ∇̄d f̄ ac
∇̄

dhb
c + ∇̄d f̄ ac

∇̄
bhc

d + ∇̄d f̄ bc
∇̄

dha
c− ∇̄d f̄ bc

∇̄
ahc

d

− ∇̄d f̄ ab
∇̄

chc
d + ∇̄d f̄ ab

∇̄
dh. (A.23)

This is quite a long expression, however it simplifies greatly. Here the background is flat and

therefore its Riemann tensor is identically zero. Therefore, if one considers (A.20), one sees

that second covariant derivatives of the Killing-Yano tensors in this background vanish. By

using this, if one carefully examines the equations and regroups them patiently, then one gets

kab = ∇̄c

(
3! f̄ [c|d|∇̄bha]

d +
3!
2

f̄ [ac
∇̄

b]h+
3!
2

f̄ [ab
∇̄
|d|hc]

d +
3!
2

∇̄
d f̄ [cbha]

d +h∇̄
[c f̄ ab]

)
. (A.24)
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