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ELECTROMAGNETIC SCATTERING FROM CLUSTER OF 

SPHERES USING DIAGONALIZED VECTOR ADDITION 

THEOREM  

 

ATASOY, Halil İbrahim 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. S. Sencer KOÇ 

 

September 2014, 83 pages 

 

Our aim is to implement an FMM (Fast Multipole Method) solver using the 

approach given by Chew [35] for diagonalization of vector addition theorem. 

Scatterer bodies will be modeled as ensemble of smaller spheres with same 

constitutive properties and then will be analyzed using the FMM solver.  

 

For general scattering problems, it is hard to obtain an analytical solution. 

There are only some special cases where exact solutions are possible. Hence, for the 

investigation of problems where numbers of scatterers are high, numerical methods 

like FMM are necessary. For the analysis of scattering problem, FMM is an effective 

tool. Hence, mathematical background of the method is investigated. Addition 

theorem is examined for the expression of the wave functions in distinct coordinate 

systems.  Starting from the scalar addition theorem, vector addition theorem in 

spherical coordinates is investigated. Since, computation period spent for the 

calculation of the translation coefficients is high; recursive methods for the 

calculations are also analyzed.    
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VEKTÖR TOPLAMA YÖNTEMİNİN KÖŞEGENLEŞTİRİLMESİ İLE 

KÜRE KÜMESİNDEN ELEKTROMANYETİK YANSIMA 

HESAPLANMASI  

 

ATASOY, Halil İbrahim 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. S. Sencer KOÇ 

 

Eylül 2014, 83 sayfa 

 

Bu çalışmadaki amacımız, Chew’ın [35] gösterdiği vektör toplam yönteminin 

köşegenleştirilmesini uygulayarak HÇKY(Hızlı Çok Kutuplama Yöntemi) 

çözücüsünün gerçekleştirilmesidir. Yansıtıcı cisimler aynı özelliklerde daha küçük 

kürelerin birleşimi olarak modellenip HÇKY çözücüsü ile analiz edilecektir. 

 

Genel saçınım problemlerinde analitik çözüme ulaşmak sadece birkaç özel 

durum için mümkün olmaktadır. Bu nedenle yansıtıcı cisim sayısının yüksek olduğu 

durumlarda HÇKY benzeri nümerik yöntemlerin kullanımı gerekli olmaktadır. 

Saçınım problemlerinin çözümünde HÇKY yöntemi etkili bir yöntemdir. Bu nedenle 

bu metodun matematiksel altyapısı incelenmiştir. Dalga fonksiyonlarının farklı 

koordinat düzlemlerinde ifade edilmesini sağlamak için toplama teoremi 

incelenmiştir. Yönsüz toplam yöntemi ile başlanıp, küresel koordinat düzleminde 

yönlü toplama teoremi incelenmiştir.  Dalga fonksiyonlarının farklı koordinatlara 

ötelenmesi için kullanılan katsayıların hesabı uzun sürdüğünden, tekrarlamalı 

yöntemler de incelenmiştir.   

 

Anahtar kelimeler: Elektromanyetik Saçınım, Hızlı Çok Kutuplama Yöntemi, 

Toplam Teoremi, BiCGSTAB. 

        ÖZ 
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CHAPTER 1 

 

1.  

INTRODUCTION 

 
 

1.1 Background and Scope 

Purpose of this dissertation is to form a fast electromagnetic solver in order to 

analyze multiple interactions between clusters of scatterers. Hence, solver should 

cope with near and far field interactions among scatterers. Even though particles 

smaller than a wavelength are considered, solver should be able to address scatterers 

with variable sizes. Moreover, materials used for scattering bodies could be changed. 

Hence, scatterers with variable radius, permittivity, permeability and non-penetrable 

bodies should be handled with the algorithm. It is assumed that the scatterer centers 

are well defined with linear, homogeneous and isotropic electrical properties. Same 

assumptions also hold for background material. 

 

Since solution of a general scattering problem cannot be handled analytically 

for most of the cases, numerical methods are used to solve electrostatic, 

electromagnetic and acoustic scattering problems. Several methods proposed in 

literature for the formulation and analysis of scattering problems, and these can be 

categorized according to their discretization methods [1]. Finite element method 

(FEM) [2], finite difference time domain method (FDTD) [3], and volume integral 

equation method (VIE) [4]-[6] are among the volume discretization methods. Also, 

surface discretization methods such as MOM take place in literature. Volume 

equivalence theorems favour broadband operation, suitability to complex geometry 

and capability of handling inhomogeneous media. Burden of the volume equivalence 

theorems include increased matrix size compared to surface equivalence theorems. 

FEM and FDTD methods yield sparse interaction matrices. Hence, solver should be 

capable of handling sparse matrices. For the surface discretization methods, 
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interaction matrix is dense. Hence, computational cost is higher due to increased 

matrix vector multiplications [1].  

 

Acoustic scattering by two spheres is studied by New and Eisler [7]. 

Electromagnetic scattering from two spheres is investigated by Liang and Lo [8]. 

However, particles are constrained on z axis. With the work of Brunning and Lo [9] 

[10] scattering is examined for particles with arbitrary locations and directions. 

Scattering from spheres is extended to cluster of spheres with a variety of methods. 

Electromagnetic scattering from cluster of scatterers is handled by Hamid [11]-[13], 

Mackowski [14] and Daran [15] using iterative computations. Matrix solution 

approach is used by Borghese[16]-[19]. However, numbers of scattering bodies are 

restricted to four spheres. Quinted and Krebig [20] also used the same approach and 

modeled scattering from small scatterer groups.  Electromagnetic or acoustic 

scattering from random scatterer geometries are handled with T-matrix method 

introduced by Waterman [21]-[24]. However, with increasing number of elements, 

this method suffers from matrix inversion.  

 

Due to electrically large problems, highly inhomogeneous media or increased 

frequencies under consideration, number of unknowns could be quite high. Hence, in 

order to solve such problems with classical methods, even sources of a super 

computer can be exhausted. Hence, “faster” algorithms are required. “Fast” for an 

electromagnetic solver implies, particle interactions are computed with less than O 

(N
2
) operations. With the use of fast solvers, interactions can be completed with O 

(N) operations. 

 

When an electromagnetic wave impinges upon a single spherical scatterer, 

due to the spherical symmetry of the scatterer body, it may be wise to express the 

incoming and outgoing waves in spherical coordinates. Solutions of the Helmholtz 

equation can be represented by vector spherical wave functions in spherical 

coordinates, since they form a basis for the expansion of the radiating fields. Hence, 

any incoming and outgoing field can be represented in terms of vector spherical 

wave functions. Since, we have incoming and outgoing waves, which are expressed 
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in spherical coordinates; it will be easier to apply boundary conditions on the 

spherical scatterer. However, scattering problems generally include more than single 

scatterer body. Therefore, we have to apply the boundary conditions not only on a 

single sphere but also on a cluster of scatterers. The purpose of the use of spherical 

functions is to apply boundary conditions without much effort. Nevertheless, when 

more than single scatterer is present, boundary conditions cannot be expressed in 

spherical coordinates for all scatterers. Here, use of an intermediate step is required 

to translate expansion centers of the fields. If one can express the incoming and 

outgoing fields at different coordinate frames then boundary conditions can be used 

without much effort.  

 

It is possible to express incident fields in terms of vector spherical wave 

functions. Then, we should be able to express vector wave functions at different 

coordinate frames. Required tool for this task is vector addition theorem, where 

vector spherical wave functions at one coordinate frame can be expressed as 

summation of infinitely many vector spherical wave functions in any other 

coordinate frame. Hence, basis sets in a coordinate frame can be expressed as infinite 

summation of a basis set at different location by the use of addition theorems. Basis 

set for electromagnetic case are the vector spherical wave functions. 

 

T-Matrix formulation (or extended boundary condition method) was 

introduced by Waterman [21]-[24], and used for the solution of the electrostatic, 

electromagnetic, acoustic and elastodynamic scattering problems. For an arbitrary 

shaped scatterer, T-matrix method correlates incoming fields to outgoing fields by 

use of boundary conditions. Method uses expansion of the internal and external 

solutions of boundary integral equations on the scattering surface. For 

electromagnetic scattering, spherical vector wave functions are used to express the 

fields. Then, integral equations can be represented as summations of vector spherical 

wave functions (VSWF); hence field interactions can be expressed as matrices. T-

matrix relates the coefficients of the outgoing fields to the coefficients of incoming 

fields. However, expansion includes infinitely many terms and for computational 



 4   

purposes one should truncate the expansion at a predefined value. Therefore, instead 

of actual values, approximations of the fields are used.  

 

Throughout this dissertation, scatterers will be treated as small spheres. Size 

of the spheres will depend on the size of the discretization steps. Calculation of the 

T-matrix for a spherical scatterer is a trivial step and can be implemented with 

analytical means. Then, aim is to find the coefficients of the incoming and outgoing 

vector spherical wave functions. 

 

FMM (Fast Multipole Method) method was introduced by Greengard and 

Rokhlin [25] and acclaimed as one of the top ten algorithms of 20
th

 century [26]. 

FMM is developed for the fast summation of the multipole solution of Laplace 

equation and reduces the computation cost of matrix-vector products of a solver. 

Scatterers are grouped and interactions between the electrically far groups are treated 

as if there is a single scatterer in center of each group. Hence, instead of computing 

the pair wise interactions between the scatterers, interactions between the groups are 

analyzed. Direct calculation of the interactions for N body problem gives rise to 

O(N
2
) operations, whereas calculation of group interactions will be completed with 

considerably fewer operations. With multilevel fast multipole method (MLFMM) 

algorithm computational complexity can be reduced down to O(NlogN) [27], since 

particle interactions are not formed explicitly.  

 

Direct methods provide exact solution in N number of steps and O(N
2
) matrix 

operations at each step, as in the case of Gaussian elimination. In order to apply 

direct methods to matrices, they must be stored. Since matrices must be stored, direct 

methods suffer from increased memory requirement for large systems. On the other 

hand, iterative algorithms like Bi-Conjugate Gradient Method (BiCG) or Generalized 

Minimum Residual Method (GMRES), require lower memory. Instead of generating 

exact solution in N steps, they provide approximate solution in Niter steps. For smaller 

problems, where matrix inversion is possible, direct methods outperforms since 

iterative method should be repeated Niter steps to converge with desired accuracy. 

However, for larger problems, if properly conditioned, Niter can be much less than N. 
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Also, direct solvers consume excessive amount of memory and for very large 

problems iterative methods are the only possible option. Iterative solutions generate 

an approximate solution to a matrix equation. However, with sufficient iteration steps 

error of the solution can be reduced down to machine precision as in the case of 

FMM solution. 

1.2 Advantages of the Fast Multipole Method  

FMM is primarily developed for the accelerated solution of the Laplace 

equation and based on expansion of the fundamental solution over a basis function. 

This new method attempts to solve the original problem in an approximate fashion 

instead of the analytical solution. However, with the proper truncation of the 

approximation, error levels down to machine precision could be achieved.  

 

Despite the fact that it is developed for the solution of Laplace equation, it 

can be used in a diversity of scientific computation applications such as solution of 

electrostatic, magnetostatic, electrodynamics, and particle dynamic problems.  

 

In classical methods, computation cost of pairwise interactions between N 

scatters is O(N
2
), whereas cost reduces to O(NlogN) or O(N) with MLFMM 

algorithms. Hence, for large clusters of particles, there is a significant reduction in 

the computation cost of the scattering problems. With the use of iterative algorithms, 

FMM offers reduced computation duration and memory requirement, compared to 

classical algorithms like MOM and FEM. Hence substantially larger numerical 

problems can be solved. Problems which exhaust computer resources with other 

algorithms can be handled easily with the use of FMM algorithm. 

1.3 Diagonalization of Translation Operators in FMM 

Translation of the multipoles from the source location to the observation 

point is accomplished with the use of three addition theorems in FMM rather than a 

single translation. These are called as aggregation, translation, and disaggregation 

steps. Prerequisite for such a translation to be possible is that the source and 

observation points are well separated. Each translation step can be visualized as a 

matrix-vector multiplication, with a dense matrix. Without proper diagonalization of 
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the matrix prefactor of O(N) complexity can be high and efficiency of the FMM 

solver can be degraded. Increased complexity results from the translation of the 

outgoing fields generated by the sources to the observation points as incoming fields. 

Hence, proper modifications to the translation matrices are required. 

 

With the use of diagonalization, matrix vector multiplication required for the 

translation step can be diagonalized. However, computation cost related with 

aggregation and disaggregation steps are not altered with this modification.       

1.4 Organization of the Thesis 

In chapter 2, vector spherical wave functions are reviewed. With the use of 

scalar addition theorem, a derivation of vector addition theorem is presented. For the 

acceleration of the calculation of the vector addition theorem, recurrence relations 

are also presented. A plane wave is expressed in terms of vector spherical wave 

functions. 

 

In chapter 3, extended boundary condition method is briefly introduced. T-

matrix method and iterative methods are given in this chapter. 

 

In chapter 4, diagonalization of the vector addition theorem is derived. Error 

sources during the diagonalization process are presented. Finally, numerical results 

obtained from the implemented code are given.  Throughout this thesis e
jωt

 time 

convention is used.  
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CHAPTER 2 

 

2.                                                                                         

VECTOR SPHERICAL WAVE FUNCTIONS, SCALAR 

AND VECTOR ADDITION THEOREM 

 

 

2.1 Introduction 

This section intends to give the reader basic knowledge of the functions and 

theorems given in FMM steps. Addition theorem is one of the core tools for the 

FMM algorithm.  

 

Translation of the spherical waves from one coordinate system to another is 

accomplished using addition theorem. Addition theorem is a tool for expressing the 

basis set in one coordinate system in terms of basis set of another coordinate system. 

Basis set here is the vector spherical wave functions.  

2.2 Vector Spherical Wave Functions 

A scalar wave function    is defined as the solution of Helmholtz equation in 

spherical coordinates where   is the position vector and k is the wave number. 

          (2-1) 

Using the definitions given in [28], for spherical coordinates scalar wave 

function    is given as, 

         
              (2-2) 

where   is the radial distance from origin,   and   are the spherical polar angles.  
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According to the value of  ,   
 
 is selected as one of Bessel or Hankel 

functions. 1 is for Bessel function of first kind, 2 is for Bessel function of second 

kind, 3 is for the Hankel function of first kind and 4 is for the Hankel function of 

second kind. 

 

The electric and magnetic fields in a source-free homogeneous medium are 

divergence-free and satisfies the vector wave function of the form, 

 

            (2-3) 

where k is the propagation constant. Relation between two independent solutions can 

be expressed as  

        

       (2-4) 

Then we construct the following vectors     and    , 

                 (2-5) 

                 (2-6) 

If   or   is substituted in vector Helmholtz equation, equality holds.  

 

Ynm is the spherical harmonic function. Definition of Ynm is given in (2-7), 

and modification for negative m given in (2-8) as: 

          
    

  
 

      

      
  

            
(2-7) 

                    
       (2-8) 
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and   
  is the associated Legendre function. Explicit expressions are provided in 

[29] for   and  . Both of them can be stored as 3x1 complex matrices. 

       
  

      
  
                  

     
         

  
   (2-9) 

       
      

  
  
                

 

  
    

      
         

  
  

 
  

        

 

  
    

                

(2-10) 

             given in above equations denotes the unit vectors in spherical coordinates. 

 

 

 

Figure 2.1 Vector representation of   fields. (From top to bottom  10,  20,  30 are shown)   
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Figure 2.2 Vector representation of   fields. From top to bottom  10,  20,  30 are shown)   

 

 

Figure 2.3 Vector representation of  11 field.  
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Figure 2.4 Vector representation of  11 field.  

 

Instead of differentiations given in (2-9) and (2-10), analytical 

formulations are provided in [28], for the radial derivative, as given in (2-11), 

where prime defines differentiation with respect to    and can be computed 

using recurrence relations for Bessel functions (2-12).       denotes any of 

Bessel or Hankel functions. 

 

  
    

         
          

       


(2-11) 

 

 
      

 

  
              (2-12) 

Using (2-11) and (2-12) following formula is obtained. 

 

  

 

  
          

   

  
                (2-13) 

 Also, recurrence relations for the derivatives of spherical harmonics are 

given as, 

         

  
  

 

 
                     

  

                     
     

(2-14) 

where for negative m formulation is modified as,  
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 (2-15) 

Another issue related to computation is the sin  dependency in 

denominators of (2-9) and (2-10). For      where n is an integer, computation 

can end up with ambiguous results. For          following equation can be 

used. 

        

    
  

 

      
                     

   

                     
    

(2-16) 

Recursion formulas for the derivative of the Associated legendre function can 

be written as, 

   
 

  
  

 

 
               

      
     (2-17) 

2.3 Scalar and Vector Translational Addition Theorems 

Consider a scatterer located at a point in space with coordinates  

       . In order to apply boundary conditions easily to a spherical scatterer located 

at this point we should translate the fields to this new coordinate axes. Define the 

new coordinate axes such that center is located at        . Also, orient the new axes 

such that               is parallel to the previous axes            . This 

type of translation is called a rigid translation. 
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Figure 2.5 Translation of the coordinate axes to new coordinate frame located at          

 

According to [29], solution of the scalar Helmholtz equation can be expressed in a 

different coordinate frame as: 

 

  
                         

 

     

 

    

   

                     (2-18) 

where         .    is selected according to the magnitudes of r  and r″. For r >r″ 

    . Otherwise,   =1.     is the vector from the center of the unprimed coordinate 

system to the center of the primed coordinate system, i.e., it is the vector that defines 

the translation. 

 

Scalar addition theorem is not used in electromagnetic problems and we are 

primarily concerned with vector translational addition theorem [28]. Scalar addition 

theorem will be used for recursion formulas of the vector addition theorem. 

 

The translational addition theorem for the vector case can be written as:  

 

 

x 

y 

z 

x' 

y' 

z' 
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       (2-19) 

 

   
               

 

     

 

    

     

                    

       (2-20) 

 

   is selected according to the magnitudes of r  and r″. For r > r″,     . Otherwise, 

    .  

 

Constants given in above equations are defined as: 

 

         
        

 

        
 (2-21) 

         
 

                  
                 

   

    
                           

(2-22) 

This case    has the reverse order of   . For r > r″   =1. Otherwise,     . 

                   

                 

                              

(2-23) 

 

                

                       

        
      
   

  
      
        

  

(2-24) 

 

where  
      

      
  are the Wigner 3-j coefficients [29]. 
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(2-25) 

 

         

                                        

   

    
                           

(2-26) 

For r > r″      and otherwise,     . 

 

Since there are too many terms to be calculated in each translation, translation 

procedure consumes high CPU time. Therefore, efficiency of the calculation of the 

translation coefficients plays significant role both in the scalar case and in the vector 

translational addition theorems. Hence, translation of the vector waves constitutes the 

major computation time of the electromagnetic solver. Recurrence relations are used 

for reducing the calculation speed of the translation coefficients.   

 

2.4 Recurrence Relations for Vector Addition Theorem 

Recurrence relations for the computation of translation coefficients reduce the 

complexity of the calculations and decrease the simulation time several orders of 

magnitude. 

 

Recurrence relations exist for the scalar case. A detailed procedure for the 

computation of the scalar coefficients are presented in [48]. Using similar procedure 

and equations given in [28], we may construct the necessary vector recurrence 

translation coefficients. Explanation of this procedure is given in [28]. 

 

Scalar addition theorem can be expressed as: 
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        (2-27) 

where        are the scalar translation coefficients. Notice that scalar translation 

coefficients are the regular parts of the vector translation coefficients that are given 

in (2-18). Initial values of these scalar coefficients are provided in [48] as: 

 

 
     

                  
         

 
       (2-28) 

Starting with the given initial scalar coefficients, rest of the coefficients for 

the scalar addition theorem can be calculated recursively. The recursive relations for 

the coefficients of the vector addition theorem are also derived in the literature. Since 

detailed derivations are provided in [28], only the results of the derivations are 

presented here. 

                
  

        
       

  
        

  
(2-29) 

             
  

      
 

(2-30) 

   
  

  

      
 

(2-31) 

   
  

   
 

 
 

(2-32) 

   
   

   
 

   
 

(2-33) 

   
   

          

            
 

 
 

 (2-34) 
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 (2-35) 

         
 

 
  

         
  

          
  

         
  

          
  (2-36) 

         
 

 
 

        
  

        
 (2-37) 

 
      
  

              

      
 (2-38) 

 

 
      
   

      
 

   
 

(2-39) 

 
      
  

      
 

 
 (2-40) 

      
    

              

            
 

 
 

 (2-41) 

      
    

            

            
 

 
 

 (2-42) 

Two more sets of initial equations are required in order to compute every 

element with recursion formulas. Derivations are not given in [28], nevertheless, 

derivation is simple and only the results will be provided here.  

         
 

 
  

         
  

          
  

         
  

          
  (2-43) 

 

         
 

 
 

        
  

        
 (2-44) 
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After completing calculation of the initial values given by (2-29), (2-30), 

(2-36), (2-37), (2-43),and (2-44), to generate higher order terms we need to have 

recursion formulas for        and       . 

 
  
             

 
       
              

       
             

 
     
           

 
(2-45) 

 

 
  
             

 
       
              

       
             

 
     
           

 
(2-46) 

 
   
  

              

      
 

(2-47) 

 
   
  

   

 
      

  
(2-48) 

 
   
  

 

   
      

  
(2-49) 

   
              

              
       

       
                  

               
        

(2-50) 

 

   
              

              
       

       
                  

               
        

(2-51) 

 

   
  

  

      
 

(2-52) 

   
  

   

 
   
  

(2-53) 
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(2-54) 

Similar formulas for negative subscripts can also be generated. Although their 

derivations are not given in [28], it is straightforward and only the results are 

provided here: 

 
   
               

 
 
          
               

          
              

 
        
            

 
(2-55) 

 

 
   
               

 
 
          
               

          
              

 
        
            

 
(2-56) 

where we define new constants as: 

 

 
    
  

   

 
    

  (2-57) 

 

 

 
    
  

 

   
    

  (2-58) 

 

 

 
    
  

              

      
 (2-59) 

 

Recursion formulas (2-45) and (2-46) are used for recursive calculations 

where n and m increase together. Hence using initial values and recursion 

formulas        ,        ,        , … can be calculated. Same is also true for       . In 

Figure 2.6 effect of the recursion formula is demonstrated as a vector along the 

diagonal.   
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Figure 2.6 Translation coefficient calculation for increasing n and m. Translation coefficients along 

the diagonal shown in figure with vector R1 is calculated using the initial values        and recursion 

formulas (2-45) and (2-46).  

 

Recursion formulas (2-55) and (2-56) are used for recursive calculations 

where n and -m increase together. Hence using initial values and recursion 

formulas         ,         ,         , … can be calculated. Same is also true for 

      . In Figure 2.7 effect of the recursion formulas (2-55) and (2-56) is 

demonstrated as a vector along the diagonal.   

 

Figure 2.7 Translation coefficient calculation for increasing n and m. Translation coefficients along 

the diagonal shown in figure with vector R2 is calculated using the initial values        and recursion 

formulas (2-55) and (2-56).  

 

With the use of the given recursion formulas (2-45), (2-46), (2-55) and (2-56) 

it is only possible to move along the diagonals as shown in Figure 2.6 and Figure 2.7. 

Hence, another set of recursion formula is used for moving along the columns of the 

translation coefficients which are given in (2-50) and (2-51). With the use of final set 

 
.       . .       . . 

(4,1) (4,2)(4,3) (4,4) 

 (3,1) (3,2)(3,3) 

(2,1) (2,2)    A 

(1,1)  

n 

  

m 

 
.       . .       . . 

(4,-1) (4,-2)(4,-3) (4,-4) 

 (3,-1) (3,-2)(3,-3) 

(2,-1) (2,-2)    R2 

(1,-1)  

n 

  

-m 

R1 
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of equations, starting from the diagonal element of the same column, required 

translation coefficients can be recursively computed.  

 

Figure 2.8 Translation coefficient calculations for increasing n and constant m. Column vector shown 

in figure with vector R3 is calculated by the recursion formulas (2-50) and (2-51) with the use of the 

initial values along the diagonal vectors R1 and R2.  

 

As an example, to compute the translation coefficient          following steps 

should be applied. 

i) Use recursion formulas (2-55) and (2-56) to obtain          and 

        . 

ii) Use recursion formulas (2-50) and (2-51) to obtain         ,          

and         . 

In order to compute translation coefficient         following steps should be 

applied. 

iii) Use recursion formulas (2-45) and (2-46) to obtain        ,         and 

       . 

iv) Use recursion formulas (2-50) and (2-51) to obtain         and        .  

2.4.1 Multipole Expansion of a Plane Wave 

Consider an x polarized plane wave propagating in the z direction, where    is 

the unit vector along x axis. 

 
.       . .       . . 

(4,1) (4,2)(4,3) (4,4) 

(3,1) (3,2)(3,3) 

(2,1) (2,2)     

(1,1)  A  

n 

  

m 
R3 
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     (2-60) 

We can expand the field in terms of      and      functions since E    is 

divergence free. Also, since incoming field is regular at the origin, we can use   
  

which is the spherical Bessel function of first kind. Hence express the incoming 

waves as: 

 

              
          

 

 

   

 (2-61) 

In order to find the unknown      and      coefficients one should use the 

orthogonality of the spherical vector wave functions and results are given in equation 

(2-62).  

               
       

      

 

   

     
          

         
    

      
      

(2-62) 

  For simplicity define a new function: 

 

                 (2-63) 

and rewrite the equation (2-62) as: 

 

              (2-64) 

where   is the matrix representation of the coefficients for the expansion. 
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CHAPTER 3 

3.  

T-MATRIX FORMULATION  

 

3.1 Introduction 

This section intends to give the reader detailed information on the 

electromagnetic scattering from arbitrary scatterers. T-matrix method will be used for 

the scattering calculation, which is a consequence of the extended boundary 

condition method. 

 

For an arbitrary scatterer, T-matrix method correlates the incident and 

scattered waves. Vector integral equations representing internal and external fields 

are evaluated on spheres close to the surface of the scatterer. Since the spherical 

vector wave functions are a complete set, fields can be represented by a summation 

of vector spherical wave functions.  

 

T-Matrix formulation (or extended boundary condition method) is used for 

the solution of the electrostatic, electromagnetic, acoustic and elastodynamic 

scattering problems. This method uses an expansion of the internal and external 

solutions of boundary integral equations on the scattering surface.  

 

T-matrix method is a powerful tool for the solution of problems with 

electrically large scattering problems. For the solution of electrically large problems, 

we will approximate the scatterer body by a conglomerate of small dielectric spheres. 

Size of the spheres depends on the size of the discretization steps. Thus, since 

scatterer is a sphere, its T-matrix can be easily computed. Then, aim is to find the 

coefficient of the incoming and outgoing spherical vector wave functions. 
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3.2 Surface Integral Equations 

Surface integral equations are used for the solution of electromagnetic field 

analysis of arbitrarily shaped scatterers. Scatterers can be metallic or dielectric. With 

the use of divergence theorem, surface integral equations reduce the dimension of the 

problem. For 3 dimensional electromagnetic problems, instead of volume 

integrations, we deal with surface integrals on the boundaries of the object [30]. 

3.2.1 Surface Integral Equations for the Electromagnetic Problems 

Consider the problem geometry given in Figure 3.1. Constitutive parameters 

of the body are given as 2, 2, and 2. Surrounding material has constitutive 

parameters of 1, 1, and 1. 

 

Figure 3.1 Electromagnetic scattering problem from an object with arbitrary shape and surface S.  

 

Vector electromagnetic fields in the region denoted by    satisfy the vector equation 

given in (3-1). 

 

            
                (3-1) 

Vector electromagnetic fields in region denoted by V2 satisfy the vector 

equation given in (3-2). 

 

            
         (3-2) 

Green’s functions defined in each region satisfy the following equations: 

 

V1 

k1 

E1 

 

V2 

k2 

E2 

 

n 

 

S 

J 
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                     (3-3) 

 

                
                     (3-4) 

Taking the dot product of (3-3) with       and (3-1) with          , 

subtracting the two equations and then integrating over a volume V1 yields: 

 

   
  

                  
                    

    

        
  

              
       

   

(3-5) 

Using the dyadic identities given below in (3-5) , 

 

                         

                       

(3-6) 

and using divergence theorem results in, 

 

    
 

                      
                    

    

       
       

   

 

(3-7) 

where      is the field due to sources      radiating in the absence of the scattering 

object with the assumption that       is the free space Green’s function and   is the 

surface normal vector. 

 
      

          
  

             
   

 

(3-8) 

Rearranging the terms given in (3-7),  
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(3-9) 

Substituting the following equations in (3-9), 

 

                     
            

        ω         (3-10) 

 

                    
                

             (3-11) 

 

    
              

     (3-12) 

 

           
             

     (3-13) 

we can rewrite equation (3-9) as, 

 

    
         

  

               
             

 

          
                      

 

 

(3-14) 

Left hand side of the equation given in (3-14) is equal to zero if it is evaluated 

outside the volume V1. Hence, after interchanging    and  , complete equation 

system will be,  
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(3-15) 

Similar set of equations can be formed for the case in (3-2) and (3-4) yielding, 

 

           
              

       
          

             

          
              

 
 

  

 

(3-16) 

Another set of equations comes from the boundary conditions for a dielectric 

scatterer on S as, 

 

                (3-17) 

 

                (3-18) 

Hence using (3-17) and (3-18), in null parts of the equations (3-16) and 

(3-15), we finally obtain integral field equations as, 

 

         

              
                       

                
  

 

(3-19) 

     
 

              
         

     

–            
          

     

 

(3-20) 

Once (3-19) and (3-20) are solved for the unknowns, fields inside the volumes can be 

computed using equations (3-16) and (3-15). For other types of scatterers, with the 

use of appropriate boundary conditions, necessary integral equations can be obtained.  
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3.3 Extended Boundary Condition Method 

Surface integral equations involved in previous section don’t have closed 

form expressions, unless they can be expressed in a curvilinear coordinate frame. 

Hence, the surface involved need to be meshed and problem should be solved 

numerically. Possible candidates for numerical solution could be MOM or FEM. 

Another method was proposed by Waterman [21]-[24], which is called extended 

boundary condition method or null-field approach for the solution of given surface 

integral equations. In the extended boundary conditions method, boundary conditions 

are not imposed on the surface of S but on two hypothetical spherical surfaces, S1 

and S2 shown in Figure 3.2, in order to simplify the integral equations. Hence, 

method provides not the exact solution but an approximation of it. However, it has 

been shown that the solution is exact if the Rayleigh hypothesis holds [30]. 

 

Figure 3.2 Spherical surfaces defined for the interior (S2) and exterior (S1) boundaries for the scatterer 

defined with boundary S. V1 defines exterior to S and V2 defines interior to S. 

 

As given in (2-64), the incident field can be expressed as summation of 

regular spherical vector wave functions.   

 

Unbounded homogeneous-medium Green’s function can be written as [31]: 

 

               
    

 

   
      (3-21) 

Hence, (3-19) and (3-20) can be re-expressed as: 

 

S 

S2 

S1 

V2 

V1 V1 

V2 S2 

S1 
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    –         
              

   
(3-22) 

     
 

         
             

    –         
              

   (3-23) 

where    is the spherical expansion coefficients for a plane wave given in (3-19).    

and   are the electric and magnetic field components of the incident field. 

 

A possible choice to express unknowns in (3-22) and (3-23) will be the use of 

spherical harmonics. 

       
  =          

      (3-24) 

           
  =            

      (3-25) 

Proof of       is given in [30]. 

Substituting (3-24) and (3-25) in (3-22) and (3-23) yields, 

          

 

 
(3-26) 

 
         

 

  
  

  
          

         
        

    
            

      

(3-27) 

3.4 T-matrix Formulation 

Incident fields can be expanded in terms of vector spherical wave functions 

and coefficients can be expressed as   . Using (3-26), we can obtain    and surface 

unknowns are solved. Hence, we can determine the fields everywhere in space. 

Using (3-15), scattered fields      can be calculated using the vector spherical wave 

functions. 
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 (3-28) 

In [30] scattering coefficients     are given as, 

               

 

 
(3-29) 

where         denotes the regular part of    . Hence, we obtain required equation 

set in order to solve scattering problem with given incident fields. Representing 

(3-26) and (3-29) as matrix equation gives, 

 

        (3-30) 

 

             (3-31) 

 

                 (3-32) 

 

      (3-33) 

            are the matrix representations of the                  . Hence, by 

using (3-33) for a specific scatterer, just by knowing the incident fields, one can find 

scattered field using its T-matrix. 

 

In order to use T-Matrix formulation we should properly define the incoming 

and outgoing fields in terms of the basis functions where spherical vector wave 

functions are used in our case.  

 

In the presence of N scatterers we can write the total field as: 



 31   

 

                                     (3-34) 

 

             
               

        

 

   

 (3-35) 

where first term on the right side stands for the incoming plane wave and second 

term is for the scattered field due to N scatterers present in the medium.      is the 

matrix representation of coefficients of the incoming fields and    is the matrix 

representation of coefficients of the field scattered by the i
th

 scatterer. Our aim is to 

determine the    coefficients. In order to find N unknown    coefficients, we have to 

construct N linearly independent equations. In the coordinate frame of each scatterer 

we can use the boundary condition of the scatterer to form N linearly independent 

equations. 

 

For the j
th

 element, we should translate the fields to the j
th

 coordinate frame. 

Using the addition theorem to translate the multipole coefficients: 

 

   
              

                   (3-36) 

and for     

 

   
            

                 (3-37) 

 where        and        coefficients stand for the translation coefficients in matrix 

form. Total field for j
th

 element can be expressed as: 

               
                 

     
               

 

       

    
         

(3-38) 

 

First two terms represent the field incident on the j
th

 scatterer and third term 

denotes the fields scattered by the j
th

 scatterer. Since, third term represents radiating 
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fields,   
  is to satisfy the radiating boundary conditions. We can relate the incoming 

fields to the outgoing fields using the T-matrix.  

 

                               
       ) (3-39) 

Rearranging the terms: 

 

                

 

       

                (3-40) 

 

If we repeat this procedure for each of the scatterers, we will obtain the 

required number of independent equations. 

3.4.1 T-Matrix Coefficients 

Using the boundary conditions on a dielectric sphere we can easily generate 

the necessary T-matrix coefficients. Since, scattering object is a sphere; T-matrix will 

be a diagonal matrix. 

 

                 
          

 

 

   

 (3-41) 

 

 

                       
          

 

 

   

 (3-42) 

 

 

                   
          

 

 

   

 (3-43) 

 

Since boundary conditions on a dielectric sphere with a radius of r are given 

as: 

 

                                     (3-44) 
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                                     (3-45) 

Substituting the multipole terms in equations (3-44) and (3-45), we will 

obtain 4 independent equations [31]. Since time convention used in reference is 

different than used in here, there are slight modifications in equations: 

 

  
           

           
       (3-46) 

 

 
  

 
 

  
       

  

 
 

    
       

  

 
 

    
       (3-47) 

 

  

  

 

  
     

        
 

  
  

 

  
     

       

 
 

  
  

 

  
     

        

(3-48) 

 

  

 
 

 

  
     

        
 

 
 

  

 

  
     

       

 
 

 
 

  

 

  
     

        

(3-49) 

 

Solution of these four equations yield: 

 

  
   

 
 
  
      

 
  

     
         

 
  
      

 
  

     
       

 
 
  
      

 
  

     
         

 
  
      

 
  

     
       

 

   

  (3-50) 

 

   

   
 

 
  
      

 
  

     
         

 
 
  

  
    

      
 
  

     
       

 
 
  

      
 
  

     
         

 
 
  

  
    

      
 
  

     
       

 

   

 
(3-51) 
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where   ,     and,  
 
 are constitutive parameters of free space and    ,     and,  

 
 are 

constitutive parameters of dielectric sphere of radius a. Using (3-44) and (3-45) one 

can obtain the scattered field coefficients      and     . 

 

            (3-52) 

 

            (3-53) 

 

3.4.2 Iterative Methods 

Matrix equation given in (3-40) contains N particles and 2(p+1)
2
 unknowns 

for each particle where p is the truncation number of scattered multipole coefficients. 

Total number of unknowns is 2N(p+1)
2
 for this problem. To be able to store         

       , required memory is O(N
2
p

4
). With several thousand particles, resources 

of an ordinary computer are inadequate. Also, computational complexity of the 

Gaussian elimination is O(N
3
p

6
) floating point operations(flops).   

 

Iterative methods generate a sequence that approximates to the solution of a 

linear system with reducing error at each successive step. Direct methods generate 

the exact solution with predefined number of steps by generating the matrix inverse, 

whereas iterative methods start with an initial guess to the solution and continues till 

any one of the termination criteria is met.  

 

Main stationary iterative methods are Jacobi, Gauss-Seidel, successive 

overrelaxation and symmetric successive overrelaxation methods. These methods 

perform same matrix operations at each step so they are called stationary. However, 

these methods converge for limited class of matrices. 

 

Non-stationary methods provide better convergencecompared to stationary 

methods. They converge to the exact solution in N steps, however converge (within a 
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specified tolerance) is usually achieved in a few steps depending on the spectrum of 

the coefficient matrix. 

 

Conjugate gradient method is an elementary non-stationary method. Several 

variants like biconjugate gradient and generalized minimal residual methods are 

presented in literature [32], [33]. Due to its simplicity and convergence for non-

symmetric matrices, biconjugate gradient stabilized (BICGSTAB) method is 

commonly used. Details of the algorithm will not be provided here since it is an 

easily accessible algorithm [32]. In literature different algorithms have also been 

proposed like preconditioned GMRES [34]. Despite the fact that preconditioning and 

alternative solvers may improve the performance of FMM solvers, they are not used 

in the present work and left as a future work. 

 

BICGSTAB algorithm is provided below [32]: 

1. Compute             
  arbitrarily selected. 

2.        

3.                                  

4.          
          

   

5.             

6.                       

7.                   

8.               

9.    
         

  

       
  

 
  

  
 

10.                        

11.        

The procedure is repeated till the norm of the residuals calculated in the 8
th

 

step drops below a certain threshold.   
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CHAPTER 4 

4.  

              

 DIAGONALIZATION OF THE VECTOR 

ADDITION THEOREM  

 

 

4.1 Introduction 

FMM (Fast Multipole Method) method was invented by Rokhlin and 

Greengard [25] and announced as one of the best ten algorithms of 20
th

 century [26]. 

FMM is developed for the fast summation of the multipole solution of Laplace 

equation and reduces the computation time of matrix-vector products of a solver. 

Elements are grouped and interactions between the electrically far groups are treated 

as if they were a single scatterer. Thus, space should be divided into two groups, 

which are called near and far groups. Hence, instead of computing the pairwise 

interaction, interactions between the groups are analyzed. Therefore, due to the N 

elements computational work during the calculation of the interactions is N instead 

of N
2
. Treating a group of a scatterer as a single scatterer also reduces the memory 

requirement significantly, since interaction matrix between the elements is not 

explicitly formed.  

 

Assume that we have N elements grouped within a sphere. Using addition 

theorem, total scattered fields can be represented as summation of vector spherical 

wave functions expressed in a coordinate frame having its origin at the center of this 

sphere. Consider another sphere where M elements are located in it. In order to 

calculate interactions between the elements of two spheres, we have to carry out 

O(NM) operations. Instead of calculating the pairwise interactions directly, multipole 

coefficients of the total field due to N spheres expressed in a coordinate frame 

centered at first sphere can be translated to the elements of the second sphere.  
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Figure 4.1 Field scattered from each element shown of N is translated to group’s center and then 

interactions with elements of M are calculated from the center of N once. Hence, interaction count 

between groups of elements could be reduced with the use of multipole elements. (Only several 

interactions are demonstrated due to clarity) 

 

Then, for translating multipoles of the first sphere we have to carry out 

N(p+1)
2
 operations, where (p+1)

2
 denotes the number of multipoles and p denotes 

truncation number. Then, interaction between the (p+1)
2
 multipoles of each of the M 

elements can be calculated in M(p+1)
2
 operations. Hence, total operation count is 

(N+M)(p+1)
2
. For N and M larger than (p+1)

2
 we have an advantage compared to the 

direct algorithm. 

 

Assume that we have two groups of scatterers with N and M elements as 

shown in Figure 4.1. In the following, we will name the groups by their element 

numbers. We first translate the outgoing multipole coefficients of each scatterer to 

the center of the group as shown in Figure 4.1. By summing up the translated 

coefficients we obtain the multipole expansion of the group and this step is called 

aggregation. Therefore, only (p+1)
2
 multipoles are available at the center, 

independent of element count of N. In Figure 4.1 interactions are calculated directly 

after this step. However, when there are many groups as shown in Figure 4.2, it will 

be wiser to translate multipoles centered at group N to the center of each group 

denoted by M. This step is called translation since multipoles are translated from one 

group center to another. Final step is called disaggregation. In this step, multipoles 

 

N 

M 
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translated to the center of the groups M are distributed again on to the particles in the 

same group. Hence, particle to particle interaction is computed in three steps.    

 

Figure 4.2 Calculation of particle interaction amongst particle located in N and particles distributed in 

space and demonstrated with M. (Only several interactions are demonstrated due to clarity) 

 

 

The advantage of describing the algorithm in three steps, namely, 

aggregation, translation and disaggregation steps can be more easily explained, if we 

consider the distribution of particles shown in Figure 4.3. Particles are first grouped 

according to their location as shown in the figure. Near elements are collected in a 

group. Fields outgoing from each group are aggregated to group center. Then 

aggregated fields are translated to the other groups.  

 

 

N 

M 

M 

M 

M 

M 

M 
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When we consider a single group as shown in the right bottom corner of 

Figure 4.3, aggregated fields are translated to the center of this group (Demonstrated 

with long arrows). Then, all translated fields are summed. The result is an expression 

of the field scattered by all such groups at the center of this particular group.  

  

Figure 4.3 Computational space is divided into groups. Scattered fields in each group are translated to 

group center. From the far groups, aggregated fields are translated to target groups one by one (long 

vectors). At disaggregation step, summation of translated fields is translated to particle location of 

target group.  

 

Final step is disaggregation. Fields at the center of the sphere has to be 

translated to the center of each scatterer. If the size of the scatterers in each group is 

of the same order, the same number of multipole coefficients, i.e., only (p+1)
2
 

multipole coefficients will be enough for T-matrix formulations. Hence, all of the far 

field interactions are completed.  
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Due to convergence problems in vector addition theorem, some of the interactions 

should be omitted in these three steps. If the norm of the vector used for aggregation 

and disaggregation is equal to or bigger than the vector used for translation, then 

vector addition theorem fails. For such scatterers, interactions between the elements 

should be calculated using the traditional methods. In Figure 4.3, aggregation step of 

the touching spheres are not shown intentionally, since vector addition theorem 

cannot be applied in neighboring groups. Particle interactions in these groups should 

be calculated directly.   

 

4.2 Diagonalization of the Spherical Translation Operators  

Procedure given in section 4.1 is required for the acceleration of the pairwise 

interactions. However, this method still can be improved with the diagonalization of 

the translation operator. Hence, with diagonalization, faster algorithms can be 

implemented. 

 

During the calculation of the pair wise interactions of the scatterers, we have 

to compute the expression in equation (3-37), where L is a shorthand notation for 

n,m.  

 

   
         

             (4-1) 

Instead of translating the multipole coefficients in single operation, we can 

perform the translation of the coordinate frame in three steps. Hence, instead of 

computing        which is the matrix representation of the translation coefficients, 

we compute three translation coefficients where 

 

                            (4-2) 

Then we can re-express equation (3-40) as: 
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(4-3) 

 

Scatterers are divided into groups.   shows the number of the group and   

stores the neighbouring groups of   and   itself. G stands for the elements in the 

group  . Hence, first sum shows the near field interactions and second sum is for the 

far field interactions where FMM will be used. 

4.3 Diagonalization of Vector Addition Theorem  

Vector addition theorem is presented in the second chapter. In this section, 

the diagonalization of the vector addition theorem is described [35]. This  

diagonalization of the vector addition theorem and its application to scattering 

problems is the core of this thesis. 

 

According to [35], plane wave can be expanded as, where L is a shorthand for 

(l,m): 

 

                
 

 

     
       

      
        (4-4) 

  is a 3x3 diadic, whose first two components can be found by adding     to the 

  and   of k respectively. Third component is simply the 0 vector. Hence       

(In [35] definition of   is inadequate) 

 

Definitions of the operators and functions are given below: 

 

      
           

       
 (4-5) 

 

               (4-6) 

where the   operator is defined as: 
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    (4-7) 

Define a new variable: 

 

                   (4-8) 

Then equation (4-4) can be written as: 

 

            

 

   
       

     (4-9) 

Using these expressions, plane wave expansion of    
  can be written as an 

integral over a unit sphere: 

 

   
     

 

    
                 (4-10) 

Using the scalar addition theorem to expand       : 

 
              

   

 
   
        

     (4-11) 

Since 

 

                      (4-12) 

where        . Substituting (4-9) and (4-11) into (4-10) we obtain:  

 

   
     

 

    
          

       
    

    

  

 (4-13) 

 

 

 
    

                  
   
                

   

 (4-14) 
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        (4-15) 

where integration is over an unit sphere and  
    

 is the translation coefficients of the 

vector addition theorem. 

 

Different forms of vector addition theorem can be generated similarly. As 

given in equation (4-14), where   is the regular part of the  ,   coefficients can be 

obtained by: 

 

                       
   
                

   

 (4-16) 

Hence we have three sets of equations 

 

   
     

 

    
          

       
    

    

  

 (4-17) 

 

 

   
     

 

    
          

               

  

           (4-18) 

 

 

   
     

 

    
          

       
    

    

  

           (4-19) 

4.3.1 An Orthogonality Identity 

We know from equation (4-9) that 

 

            

 

   
       

     (4-20) 

and from equation (4-10) 

 

   
     

 

    
                 (4-21) 
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where integration is over unit sphere. Using (4-21) in (4-20) 

 

                        
    

 

    (4-22) 

Hence we can say 

 

         
    

 

 δ        (4-23) 

4.3.2 Diagonalization 

Using (4-11) we can rewrite (4-14) as: 

 

 
    

                    
             (4-24) 

As can be seen in (4-2)   can be expressed in three steps 

 

                            (4-25) 

Substituting (4-24) in (4-25) and making suitable exchange of operators, we 

have: 

 
                        

            

          
   

     

      
          

             
            

(4-26) 

We define a new function to replace double summation in (4-26) as: 

 
                        

   

     

      
          

      (4-27) 

which can be simplified to: 

       
       

               
   
        

   

         

         
         

       
(4-28) 

 

Use (4-28) in (4-27) 
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(4-29) 

Also using (4-23) we obtain the diagonalized form as  

                 
                                            

(4-30) 

and 

 

                 
   
            

          

   

 (4-31) 

4.4 Error Sources 

There are several error sources in the formulation of the scattering problem. 

Error can be reduced up to some extent. Due to modeling of scatterer volume as 

cluster of spheres, electromagnetic model in simulator and actual geometry have 

some discrepancies. Error coming from the discretization of body is minimized with 

selection of smaller spheres compared to wavelength. All of the particles used for 

simulations have a diameter of 0.1 or smaller. For metallic objects, diameters of 

spheres reduced down to 0.04.   

Another source of error is coming from the expression given in (2-62). Since 

it is not possible to extend summations up to infinity, it has to be truncated to a 

certain value. [34] suggests use of error maps based on solution of a scattering 

problem, that consists of two scatterers excited with a plane wave. Since solution will 

be fast just for two scattering elements, construction of such a table will be an easy 

task. In this work importance of particle radius and particle separation ratio is 

emphasized. For touching spheres, truncation number increases substantially. 

Truncation number according to the radius of the spheres are given by [34]: 

 

                 (4-32) 
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Equation given in (4-32) is used for determination of truncation number for a 

given scatterer. k is the wave number and      is the radius of scatterer. p0 can be 

found using  Figure 4.4.   denotes accuracy of the solution, δ is defined by the ratio 

of distance between the scatterer center and closest point on surface of nearest 

scatterer to the radius of the scatterer. Hence δ is equals to one when two scatterers 

are touching to each other. For our case δ is less than one. Hence, spheres are 

overlapping. This case is not considered in literature since it is a hypothetical case 

and does not have a physical counterpart.  

 

Figure 4.4 According to required accuracy  and given δ due to distribution of the scatterers required 

shift p0 can be found using error maps obtained using scattering calculation of two spheres. Filled 

markers demonstrates δ=1.5 condition and hollow markers are for δ=2 condition. Objects under 

consideration are sound hard spheres with equal dimensions. (Figure is obtained from [34]) 

 

[36] also addresses the same problem. While the scatterers approach each 

other, field interaction becomes effective around the contact point. Hence, higher 

number of terms should be used for the representation of the gradient in field. 
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However, due to increased number of terms, with densely distributed scatterers and 

increased number of interacting multipole coefficients, solution time can be 

dominated by the near field interactions. For such cases, near field interactions could 

be several orders of magnitude higher than far field interactions. [37] sets truncation 

number as L  /2, since outgoing fields are rapidly decaying for multipoles with higher 

orders. 

[38] defines FMM as an approximate tool for the evaluation of particle 

interactions, due to errors in truncation of expansions and numerical integrations. 

Detailed error analysis is also presented. Truncation number    for L’’ in (4-31) is 

bounded due to oscillation characteristics of the Hankel function and given by,  

 

         (4-33) 

Here, D is the group size. However, it should be high enough for the 

convergence of the expansion with desired accuracy. In order to have a desired 

accuracy, an empirical formula for    is given in [39] as, 

 

            
   

         (4-34) 

where d0=log(1/ ), the number of digits accuracy and     is the radius of scatterers. 

At the final stage of the FMM implementation integration given in (4-30) has 

to be implemented. Since it is not straightforward to implement the integration 

analytically, numerical techniques are used for the implementation. For the 

numerical evaluation of the integral quadrature rule is used. Quadrature rule can be 

implemented as 

 

       
 

  

     

 

   

       (4-35) 

Hence, integration of      over the interval [-1,1] can be approximated as 

weighted sum    of the function at specific points   . If Gauss quadrature is used, 

approximation given in (4-35) is exact for polynomials with degrees equals or less 

than 2n-1. Numerical errors are also investigated in [40] and [41]. Since integral 
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given in (4-30) is a double integral over   and  , integral over   is implemented with 

   Gauss-Legendre points and integral over   is implemented with equally spaced 

2   points over the interval [- , ]. Weighting functions for   is  /  . Such 

implementation is exact for harmonics n<2N . Selection of    as 

 

         (4-36) 

will provide exact results with the assumption of  

 

      (4-37) 

With the condition given in (4-36), integration error is below the truncation 

error, hence it can be ignored and for the error analysis only truncation error can be 

used [41]. 

 

Figure 4.5 Relative error of FMM with respect to truncation number    and group size D. [42] 

proposes the use of FMM for group size larger than 0.2 due to increased relative error of the 

translation step.  For smaller group sizes low frequency FMM is recommended. (Figure is obtained 

from [42]) 

For plane wave based algorithms [42] suggests the minimum of ~0.2 group 

size, which is the point of interest due to diagonalization in terms of the plane waves. 
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Figure 4.5 demonstrates the relative error of the plane wave based FMM algorithm 

with respect to group size. 

 

As stated by [34] minimum D set by validity of multipole expansions at the 

surface of the scatterers are given by, 

 

          (4-38) 

Again D is the group size and     is the common radius of the scatterers. Due 

to translation of the expansions, a tighter requirement given by [34] is, 

 

          (4-39) 

4.5 Numerical Results 

Using the methods presented in Chapter 2, 3 and 4, we have implemented a 

FMM solver in MATLAB. MATLAB as a development environment can speed up 

development process due to readily available algorithms and availability of 

multidimensional arrays. However, in the subsequent steps, performance of 

MATLAB degrades due to the increased particle count. Hence, as an alternative to 

MATLAB, code is implemented in C++. However, since C++ is a low level 

language, most of the algorithms are not available. Hence, they have to be 

implemented separately. Since a functional FMM comde has been developed in 

MATLAB, a similar syntax is preferred. Due to its speed and ease of use, Armadillo 

Linear Algebra libraries are used in conjunction with the subroutines like Basic 

Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK). With 

some modifications, code is implemented in C++. Speed improvement is drastic. 

However, code debugging is a time consuming step in C++ development. Armadillo 

libraries can generate unexpected errors and code has to be implemented with great 

care. For the initial development stage, one should prefer high level languages. 

However, for speed improvement, low level languages like C++ or FORTRAN is 

mandatory. 



 51   

4.5.1 Scattering Calculations of Dielectric Bodies 

For verification purposes, a dielectric sphere is illuminated by a plane wave 

and back scattering of the object is calculated. Selection of a sphere is useful since 

scattering from spherical scatterers are investigated in detail and results are widely 

available [43]. 

 

For the investigation of the dielectric scattering case, a dielectric scatterer’s 

normalized radar cross section is evaluated with Mie’s series. For comparison, 

dielectric sphere is meshed with smaller spheres and backscattering is computed 

using FMM algorithm. 

 

 

 

Figure 4.6 Dielectric sphere is represented as cluster of smaller spheres. Each sphere in cluster has 

same radius. Total volume of the large scattering body is represented with a number of smaller 

spheres. 

 

Meshing of the dielectric body is implemented along x, y and z coordinate 

axes. Hence, every scatterer center is located at (x·Δm, y·Δm, z·Δm). Δm is the mesh 

size of the problem and x, y and z are integer numbers. Also, center of the dielectric 
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body should be closer than R, to the center of coordinate frame. Volume of each 

scatterer is selected such that it can represent the volume of a corresponding cube 

with side length of Δm. Hence, radius of the sphere can be chosen as   

 

   
 

  

 

   (4-40) 

Dielectric constants (r) of smaller spheres are selected to be same as the 

original dielectric sphere. For various dielectric scatterer radii, geometry is meshed 

and FMM results are compared with Mie series’ solution. Figure 4.7 depicts FMM 

results and Mie series’ solution. Horizontal axis denotes simulated spheres’ radius. 

Vertical axis is normalized monostatic radar cross section as defined in [42].  

Simulations are in agreement with theoretical results.  

 

Figure 4.7 For various dielectric scatterer radiuses, normalized monostatic RCS is calculated and 

compared with Mie series solution. (Dots represent the FMM solver results)  

 

While sphere radius is increasing, number of small spheres that represents the 

actual sphere also increases. Hence, number of unknowns is increasing with larger 

dielectric spheres. As can be seen in Figure 4.8, in order to properly represent the 

original scatterer volume, number of small spheres has to be increased in a cubical 
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law fashion. Since volume increases with r
3
, number of elements increases with 

O(r
3
). 

 

Figure 4.8 In order to represent dielectric sphere with increasing radius, number of particles should 

also enhanced. Mesh size is kept constant with increasing dielectric scatterer size. Hence due to O(r
3
) 

increase in volume, mesh count should increase with O(r
3
). 

 

Since number of unknowns is increasing computation time of the FMM code 

also increases. This is due to increased number of far field and near field interactions 

between the particles. While particle count increases, number of near field 

interactions increases with O(N). However, far field interactions increases with 

O(N
2
) in single level FMM.  
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Figure 4.9 For various dielectric scatterer radius normalized monostatic RCS is calculated and 

compared with Mie series solution. 

 

Basic assumption in O(N) and O(N
2
) interaction count is that particle density 

is kept constant while meshing the object. Hence, due to constant particle density, 

near field interaction count will not increase with increased mesh size. Since, near 

field interactions are limited with a defined radius. Due to increased particle count, 

near field interactions increases linearly. However, this is not the case for far field 

interactions. Particles are distributed with a specific distance between each other. 

Hence, every group has approximately same number of scatterers. Hence, with 

increasing scatterer count, group count increases linearly. Due to interactions 

between the groups O(N
2
) interactions has to be calculated. Hence, far field 

interactions in single level FMM is O(N
2
). As can be seen from Figure 4.9, iteration 

time increases linearly with the number of unknowns. Therefore one can conclude 

that, for single iteration cycle, simulation time of the near field interactions 

dominates the simulation process. This is due to matrix-vector multiplications carried 

out with FMM operates faster than near field interactions. FMM operates on vectors 

and vector multiplications can be operated on groups of elements. However, for the 
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near interactions “for loops” in the program reduces the operation speed, since each 

element is operated sequentially. Due to random distribution of particles, near field 

interactions consume vast majority of the computation time. Actually, this is due to 

formulation of the problem. Since, dielectric body is finely meshed as closely fitted 

spheres; number of near interactions is considerably high. Since, computation space 

is dense; computation time that is spent on the near field interactions is several orders 

of magnitude higher than the time spent on the far field interactions in the 

electromagnetic solver.  

 

Figure 4.10 As the dielectric scatterer radius increases, number of unknowns also increases. Hence, 

with increased number of unknowns iteration count for required converge increases.  

 

Total computation time depends on the iteration time, convergence rate of the 

iterative solver, and iteration count. With increased number of particles, iteration 

count increases. Increase in the iteration count with respect to increase in unknown 

number is given in Figure 4.10. As can be seen from the graph, as the dimension of 

the problem grows, iterative solver requires more steps in order to reach desired 

accuracy levels.  For the dielectric scattering problem, solver converges with the 

desired accuracy as can be seen in Figure 4.13.  
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Due to the increased iteration count and longer iteration period, total 

simulation time increases with increased unknown count as expected. Total 

simulation time is given in Figure 4.11. Because of increased iteration count given in 

Figure 4.10 and increased simulation period given in Figure 4.9, total simulation time 

increases. Figure 4.11 demonstrates the total simulation time with varying number of 

unknowns. 

 

Figure 4.11 With increasing scatterer’s radius, simulation time can be modeled as a second order 

polynomial. Simulation period is O(N) due to near field interactions. Iteration count also increases 

with N. 

 

As can be seen from the Figure 4.11, computation time dependency is not 

linear as in the case of iteration period due to nonlinear increase in the iteration 

count. Hence iteration count is dependent on the dimension of the problem. 

Dependency of total computation time on number of unknowns can be modeled as a 

second order polynomial.  

 

Memory used in the computations increases with increasing number of 

unknowns as can be seen in Figure 4.12. This is due to iterative methods used for 
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matrix inversion. Without the need of storing all matrix vector interactions, only 

vectors required for matrix multiplications are generated during the FMM process. 

Hence, instead of O(N
2
) storage requirement, which is the case for direct solvers, 

iterative solvers requires O(N) memory allocation. Hence, using an ordinary personal 

computer, large electromagnetic problems can be attempted. All of the simulations 

given in this dissertation are performed on an Intel i5 M480 @2.67 GHz computer 

with 4GB of installed memory. Operation platform is Windows 7 Home Basic. 

Hence, using an ordinary computer, problems involving several hundred thousand 

unknowns can be solved. 

 

Figure 4.12 With increased number of unknowns, required memory size increases linearly. For direct 

solvers memory increases with O(N
2
). Due to BiCGStab algorithm utilized, increase in memory is 

O(N). 

 

In Figure 4.13 the convergence of iterative solver is given. The problem is the 

calculation of the RCS of a sphere located at the center of coordinate frame. 

Dielectric constant is 2.25 and radius is 0.75λ. The original problem is discretized as 

shown in Figure 4.6. Hence, results of the original problem and FMM solution can be 

compared. Total number of spheres used for representation of large sphere is 5137. 

Each sphere is described by 16 unknowns. Hence, total number of unknowns is 
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82192. Desired error threshold is set to be 1e-10. After 80 iteration steps error is 

reduced down to 5.6e-11, hence iteration stopped. Although desired accuracy is 

achieved, this error threshold is just for demonstration of the iterative solver. With 

increased iteration counts, error level can be further reduced. Error threshold can be 

determined according to the required accuracy of the computation and numerical 

precision used. 

 

Figure 4.13 Simulation results of dielectric sphere with r of 2.25 and radius of 0.75λ. Residual error 

gradually decreases below 1e-10 at 80
th

 iteration. Normalized monostatic RCS of cluster of spheres 

are calculated as 1.7238. For residual errors below 1e-3, error in normalized monostatic RCS 

calculation is below 1%. Hence, 1e-3 can be used as an error threshold value. 

 

As can be seen from Figure 4.13, reducing the error level down to 1e-10 is 

not necessary. At each iteration also normalized monostatic RCS of problem is 

calculated. Difference between the 1e-3 residual error and 1e-10 residual error is less 

than 1%. Hence error threshold can be increased to 1e-3 for this problem. Hence, 

simulation time can be improved by 75% for this particular case. 

 

In Figure 4.14, residual errors for the dielectric spheres with 0.4, 0.5 , 0.6, 

and 0.75 are demonstrated. Each problem is meshed with 0.07. Hence, Δm given 
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in equation (4-40) is selected as 0.07. Therefore, diameter of each small sphere is 

approximately 0.087. With this assumption, spheres are touching each other hence 

vector addition theorem is violated. However, as can be seen in Figure 4.14, 

convergence can be achieved despite of this violation. Also, as can be seen in Figure 

4.7, simulation results are very close to the theoretical results. Hence, this violation 

does not pose a problem for dielectric scatterers with low dielectric constants. 

However, this is not the case for higher dielectric constants and metallic scatterers. 

 

Figure 4.14 Residual error with respect to iteration count for various dielectric scatterers. With 

increasing diameter of scatterers, number of unknowns also increases. Hence, for higher number of 

unknowns, iteration count increases as well.   

 

Performance parameters of the dielectric scattering problems are summarized 

in Table 4.1, Table 4.2, and Table 4.3. In each table, corresponding scatterer with 

radius identified in ‘Dielectric size’, is meshed with total number of ‘# of Particles’ 

elements. For each mesh 16 unknowns are allocated and hence total unknown count 

is given by ‘# of Unknowns’. Peak memory requirement of the C++ code is provided 

in ‘RAM’ section.  

 

As explained previously, iterative solvers generate a sequence that 

approximates to the solution of a linear system with reducing error at each successive 
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step. Hence, in order to reach an “acceptable” result, residual error of the solver 

should be below certain threshold provided by the programmer. Thus, instead of 

single solution cycle as in the case of direct solvers, convergence to solution is 

achieved in several steps. Hence, “Iteration Time” given in tables defines 

computation time of a single iteration. For a given error threshold of 1e-10, “Iteration 

Count” defines the required number of iteration in order to have error level less than 

given threshold. “Total Time” can be thought as multiplication of “Iteration Time” 

and “Iteration Count”. However, due to initial meshing steps and computation of 

translation coefficients, “Total Time” may differ slightly.    

  

Table 4-1   Performance parameters for dielectric scattering problems for 0.1-0.3 

   

 

Table 4-2   Performance parameters for dielectric scattering problems for 0.35-0.55 

 

 

 

 

 

 

 

 

Dielectric size() 0,1 0,15 0,2 0,25 0,3

Iteration Time (sec) 0,3 0,38 3,2 11 22

Iteration Count 10 13 12 14 17

Total Time(min) 3,33E-02 8,33E-02 6,50E-01 2,65E+00 6,17E+00

RAM(MB) 1,80 2,00 2,60 4,00 5,90

# of Particles 19 33 93 179 341

# of Unknowns 3,0E+02 5,3E+02 1,5E+03 2,9E+03 5,5E+03

Dielectric size() 0,35 0,4 0,45 0,5 0,55

Iteration Time (sec) 51 85 172 271 430

Iteration Count 19 21 29 37 50

Total Time(min) 1,59E+01 3,12E+01 8,81E+01 1,40E+02 3,50E+02

RAM(MB) 7,90 10,60 15,20 20,60 25,90

# of Particles 515 751 1141 1551 2007

# of Unknowns 8,2E+03 1,2E+04 1,8E+04 2,5E+04 3,2E+04
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Table 4-3   Performance parameters for dielectric scattering problems for 0.6-0.75λ 

 

 

4.5.2 Scattering Calculations of NASA Almond 

NASA almond as defined in [44], is commonly used as a benchmark tool for 

the evaluation and justification of computational electromagnetic solvers. 

Measurement and computation results at various frequencies of NASA almond are 

presented in the literature [45]. Since, scattering from a sphere is a very special case; 

RCS calculation of  NASA almond is also considered in this study. Also, since 

scatterer is a metallic body, its effects on the convergence is investigated and RCS 

results are compared with measurements and other electromagnetic solvers.  

 

Meshing of the NASA almond is provided in Figure 4.15 as cluster of 

spheres. Geometry of NASA almond is presented in [44]. According to boundaries of 

the NASA almond body, spheres with 0.04 separation in space are filled throughout 

the body. Hence, instead of the actual structure, scattering problem from cluster of 

spheres is investigated at various frequencies. 

 

 

Dielectric size() 0,6 0,65 0,7 0,75

Iteration Time (sec) 590 819 993 1323

Iteration Count 62 69 77 80

Total Time(min) 5,89E+02 9,16E+02 1,27E+03 1,74E+03

RAM(MB) 32,80 42,20 51,00 61,50

# of Particles 2601 3407 4169 5137

# of Unknowns 4,2E+04 5,5E+04 6,7E+04 8,2E+04
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Figure 4.15 Mesh of NASA almond as a cluster of spheres at 1.19GHz is demonstrated. Center of the 

spheres are 0.04 apart. Total number of spheres is 453. Monostatic RCS of the almond is simulated 

in VV and HH planes. 

 

Mathematical description of NASA almond is provided in [44] as: 

 For             ; 

x=9.936.t 

y=1.9209566    
 

        
 
  

cos     - < <   

z=0.6403156    
 

        
 
  

sin      - < <   

(4-41) 

  

For            ; 

x=9.936.t 

y=48.02516     
 

       
 
  

      cos     - < <   

z=16.00839     
 

       
 
  

      sin     - < <   

(4-42) 

Notice that coordinates generated with (4-41) and (4-42) are in inch scale.  

 

Quality of the meshing and size of spheres plays crucial role in the accuracy 

of the computations. With selection of proper mesh size and sphere radius scattering 
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results provided in Figure 4.16 and Figure 4.17 are obtained. As can be inferred from 

the graphs, scattering problem can be approximated as distribution of spheres and 

calculation results are close to the original problem. For comparison, results of 

FEKO are also provided [45]. In Figure 4.16 and Figure 4.17, RCS calculations for 

horizontal and vertical polarizations are provided. Calculation performed in zero 

elevation and horizontal axis denotes   variation. dBSM unit denotes dB with respect 

to one square meter. For all cases, monostatic RCS is calculated.  

 

Figure 4.16 Comparison of the FMM simulations with the FEKO monostatic RCS for NASA almond 

at 1.19GHz. Minimum separation between the centers of the spheres is selected as 0.04 . Radii of the 

spheres are 0.0232. Simulation result of horizontal polarization is provided.    

 

With a variation on sphere radius and mesh size, results of the computations 

can drastically change. Using same mesh size with different sphere radius, vertical 

polarization results are provided in Figure 4.18. As can be seen from the graph, 

selection of the sphere radius as 0.02 improves the vertical polarization solution of 

the scattering problem. However, horizontal polarization results differ from the 
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previous case. Solution of the horizontal polarization for a sphere radius of 0.02 is 

given in Figure 4.19.  

 

Figure 4.17 Comparison of the FMM simulations with the FEKO monostatic RCS for NASA almond 

at 1.19GHz. Minimum separation between the centers of the spheres is selected as 0.04 . Radii of the 

spheres are 0.0232. Simulation result of vertical polarization is provided.   

  

 

Figure 4.18 Comparison of the FMM simulations with the FEKO monostatic RCS for NASA almond 

at 1.19GHz. Minimum separation between the centers of the spheres is selected as 0.04 . Radii of the 

spheres are 0.02. Simulation result of vertical polarization is provided. 
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As can be seen in Figure 4.19, results of FMM differ from FEKO results and 

the results obtained with 0.0232 sphere radius shown in Figure 4.16. With reduced 

sphere size, convergence of the problem is improved since vector addition theorem is 

not violated. However, due to reduction of the sphere size, RCS of cluster of spheres 

is changed. Hence, selection of sphere radius as 0.02 is not suitable for horizontal 

polarization.   

    

 

Figure 4.19 Comparison of the FMM simulations with the FEKO monostatic RCS for NASA almond 

at 1.19GHz. Minimum separation between the centers of the spheres is selected as 0.04 . Radii of the 

spheres are 0.02. Simulation result of vertical polarization is provided.    

 

  NASA almond problem is attempted at various frequencies. Solution of 

problem at 1.19GHz is especially important due to wavelength of the solution 
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frequency is comparable with object dimensions. For 1.19GHz, length of the object 

is approximately equals to free space wavelength.  

 

Figure 4.20 Convergence of the FMM results at various angles for monostatic RCS calculation of 

NASA almond at 1.19GHz. Minimum separation between the centers of the spheres is selected as 

0.04 . Radii of the spheres are 0.021. Simulation result of horizontal polarization is provided. (For 

clarity, only results of the selected angles are provided.)   

 

Convergence of the scattering problem is also considered. As can be seen 

from the Figure 4.20, with a selection of sphere radius of 0.021, convergence with 

desired error threshold can be achieved in less than 12 iterations. Each iteration takes 

around 40 seconds with Intel i5 M480. Hence, total simulation time for an angle is 

around 8 minutes. Selection of sphere size plays important role on the convergence 

of the problem. With 0.02 sphere size, convergence is fairly good. This corresponds 

to realistic problem where spheres are touching each other. Representation of mesh 

size and sphere radius is given in Figure 4.21. In order for vector addition theorem be 

applicable to scattering problem, spheres should not coincide with each other. Hence, 

mesh size should be larger than twice the sphere radius. For such a selection solver 

converges, however, as can be seen from the Figure 4.19, selection of sphere radius 

as half of the mesh size may not represent the electromagnetic scattering problem 
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adequately. Hence, sphere radius has to be increased, which causes convergence 

issues.  

 

Figure 4.21 Demonstration of meshing of a volume using spheres. Selection of sphere radius as half 

of the mesh size or smaller corresponds to realistic problem. With selection of larger sphere size 

effects converge of the solver since model represents a fictitious problem. 

 

At a higher frequency, same problem is addressed again. However, due to 

increased mesh count, instead of meshing whole almond body as in Figure 4.15, only 

surface of the almond is meshed. Hence a hollow structure shown in Figure 4.22 is 

obtained. By doing so, there is a considerable amount of saving in the particle count. 

Since scatterers are impenetrable, elements inside the volume should not contribute 

to the scattering problem. Therefore, hollow structure should provide similar results 

as meshing the whole body. Hence, instead of dealing with dense near field 

interactions among interior elements, which increase simulation time substantially, 

only interactions between the elements on the outer shell is computed, where 

interactions can be considered far.    

 

 

 
Sphere radius 

Mesh size 
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Figure 4.22 Mesh of NASA almond as a cluster of spheres at 7GHz is demonstrated. Center of the 

spheres are 0.1 apart. Total number of spheres is 1995. Monostatic RCS of the almond is simulated 

in VV and HH planes. 

 

Figure 4.23 Comparison of the FMM simulations with the measurements of monostatic RCS for 

NASA almond at 7.0GHz. Minimum separation between the centers of the spheres is selected as 0.1. 

Radii of the spheres are 0.058. Simulation result of horizontal polarization is provided. Dashed line 

represents measurement result and solid line denotes FMM result.    
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As can be seen from Figure 4.23, there is a strong resemblance between the 

simulation results and measurements. Hence, with proper mesh size and modeling 

the shell of NASA almond as a cluster of spheres, electromagnetic scattering 

problem can be solved for horizontal polarization case. Total number of unknowns in 

this problem is 31920. Discrepancies between the results of the simulation and 

measurements should depend on the spherical modeling, since same problem is 

attempted with near field solver and results are very close to the FMM solutions.  

 

Figure 4.24 Comparison of the FMM simulations with the measurements of monostatic RCS for 

NASA almond at 7.0GHz. Minimum separation between the centers of the spheres is selected as 0.1. 

Radii of the spheres are 0.058. Simulation result of vertical polarization is provided. Dashed line 

represents measurement result and solid line denotes FMM result.      

 

Again simulation results for the vertical polarization and measurement results 

are correlated as can be seen from  Figure 4.24. Hence, meshing used for horizontal 

polarization is also applicable to the vertical polarization.  
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Simulation frequency is further increased to 9.92 GHz and calculations are 

performed. As in the case of Figure 4.22, only the surface of the NASA almond is 

meshed in order to reduce mesh count and decrease near field interactions. Mesh size 

is selected as 0.1 and radius of spheres is selected as 0.058. Resultant mesh is 

similar to the previous mesh structure given in Figure 4.22 and will not be repeated 

here. Vertical and horizontal polarization results are compared with the measurement 

results and are given in Figure 4.25 and Figure 4.26.  

  

Figure 4.25 Comparison of the FMM simulations with the measurements of monostatic RCS for 

NASA almond at 9.92GHz. Minimum separation between the centers of the spheres is selected as 

0.1 . Radii of the spheres are 0.058. Simulation result of horizontal polarization is provided. Dashed 

line represents measurement result and solid line denotes FMM results [45].   
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Figure 4.26 Comparison of the FMM simulations with the FEKO simulations of monostatic RCS for 

NASA almond at 9.92GHz. Minimum separation between the centers of the spheres is selected as 

0.1 . Radii of the spheres are 0.058. Simulation result of vertical polarization is provided. Line with 

diamond marker is FMM results.  

  

As can be seen from the graphs given in Figure 4.25 and Figure 4.26, there is 

a general agreement with computation and measurement results. 
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CHAPTER 5 

5.  

                                                                                   

CONCLUSIONS 

 

Contribution of this thesis is the implementation of diagonalization of the 

vector addition theorem introduced by Chew [35] for the solution of electromagnetic 

scattering problems composed of randomly distributed spheres. 

 

For the solution of generic scattering problems, several fundamental theorems 

were investigated. In order to take advantage of spherical symmetry, vector spherical 

wave functions were reviewed. Scalar and vector addition theorems were examined 

for the translation of the field from source to scatterer coordinates. Also, plane waves 

were expanded in terms of vector spherical wave functions, in order to define 

incoming fields onto the scatterers due to external sources. T-matrix formulation was 

examined for the solution of scattering from single particle problem. With increased 

particle count direct implementation of the particle interactions were found to be 

inefficient due to increased number of matrix vector multiplications. Hence, vector 

addition theorems were diagonalized to reduce far field interactions.     

 

FMM solver was implemented to solve multiple scattering problems for 

arbitrary distribution of spheres. Using FMM solver, scattering from dielectric and 

metallic test bodies were investigated. Since solver relies on T-matrix formulation, 

instead of computation of isolated T-matrices, objects were transformed to smaller 

bodies where T-matrices were known or easily computable. Due to the orthogonality 

of the vector spherical wave functions on spherical coordinates, boundary conditions 

were easily applied and T-matrix could be formed for a spherical scatterer. Since, T-

matrix of a sphere is readily available, it is useful to represent scattering bodies of 

arbitrary shape by a cluster of small spheres. Then, scattering problem for cluster of 

spheres was investigated using FMM. Due to increased number of unknowns instead 

of direct solvers, iterative solvers are used. Iterative solvers provide better 
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performance in terms of memory allocation and solution speed of matrix equations. 

Using the analyzed algorithms, an electromagnetic solver is implemented using C++. 

Developed tool is tested for convergence, memory allocation and accuracy using a 

number of test bodies. Scattering problems involving more than 380000 unknowns 

are numerically solved with developed tool. For the solution of the problems an 

ordinary PC was used, since memory requirements for the given problem was just 

280MB. Finally, monostatic RCS results obtained by FMM are compared with the 

measurement results of the dielectric sphere and metallic NASA almond.  
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