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ABSTRACT

OPTIMIZATIONS BASED ON TEMPORAL COHERENCE FOR RENDER
FARMS

Gülkök, Ahmet Umut
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Veysi İşler

January 2014, 99 pages

Temporal coherence is very important for various computational motion picture ap-

plications. Animation rendering and video encoding are good examples of these ap-

plications. This study proposes an optimization technique using temporal coherence

for distributed animation rendering environments so called “Render Farms”. The

proposed approach consists of separate procedures for reducing the network commu-

nication cost and providing dynamic computational load balancing between render

farm worker computers. The network communication cost between the render farm

controller and the workers is reduced by compressing the output images with the

H.264 video codec which provides significant compression as the coherence between

the adjacent frames increases. In addition, computational load balancing is achieved

by a cost prediction method based also on temporal coherence. However, these two

methods work best with different task distribution schemes. Therefore, these two

optimizations are combined with a new task distribution algorithm considering the

tradeoffs.

Keywords: distributed rendering, render farm, load balancing, animation rendering,

temporal coherence, temporal coherence, video encoding
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ÖZ

GÖRSELLEME ÇİFTLİKLERİ İÇİN ZAMANSAL TUTARLILIĞA DAYALI
OPTİMİZASYONLAR

Gülkök, Ahmet Umut
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Veysi İşler

Ocak 2014 , 99 sayfa

Bu çalışma dağıtık görselleme ortamları ya da diğer bir deyişle görselleme çiftlikleri

için zamansal tutarlılığı kullanan bir optimizasyon tekniği önermektedir. Zamansal

tutarlılık görüntünün ardışık kareleri arasındaki benzerlikleri ifade eder ve hareketli

görüntüler için en önemli özelliklerden biridir. Önerilen yaklaşım görselleme çift-

liğindeki işçi bilgisayarlar ve kontrolcü bilgisayar arası iletişim yükünü ve işçilerin

aralarındaki işlem yükü dengesizliklerini azaltmak için zamansal tutarlılıktan faydala-

nan iki ayrı metot kullanmaktadır. Ağ iletişimi yükünü azaltmak için çıktı görüntüler

H.264 codec’i ile sıkıştırılmıştır. İşlemsel yük dengesini kurabilmek için ise zamansal

tutarlılık kavramından faydalanan bir kalan süre tahmin etme yöntemi geliştirilmiştir.

Ancak bu iki yöntemin en verimli çalıştığı iş dağıtım biçimleri farklıdır. Bu nedenle

bu iki metodun birlikte olabildiğince verimli çalışabilmesini sağlayan yeni bir iş da-

ğıtımı algoritması geliştirilmiştir.

Anahtar Kelimeler: dağıtık görselleme, görselleme çiftliği, yük dengeleme, animas-
yon görselleme, zamansal tutarlılık, kareler arası tutarlılık, video kodlama
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CHAPTER 1

INTRODUCTION

1.1 Background

The process of realistic image synthesis in computer graphics consists of several

phases such as preparing the 3D model, determining and setting materials and tex-

tures, positioning and adjusting the virtual light sources and finally rendering [9].

The term “rendering” in computer graphics is the process of generating a 2D image

from a model of a 3D environment. This 3D environment is named as scene file or

scene data structure. It is a collection of 3D geometry, texture data, material defini-

tions, light positions and light characteristics [8]. Naturally, the more accurate and

detailed this data is, the more realistic the final 2D image will be. However, the detail

of the scene definition is not the only criteria for the photo-realism. The algorithms

used for the rendering also affect the photo-realism significantly.

The ultimate goal of photo realistic image synthesis is to acquire an image which does

not differ from the real world image of a scene [8]. The success in photo-realism of

a rendering technique depends on the precision of the algorithms while simulating

the key aspects of the illumination such as shadows, soft shadows, reflections, trans-

parency, translucency, refraction, diffraction, indirect illumination, caustics etc. To

achieve this, since the 1970s researchers proposed various photo-realistic rendering

techniques such as “Ray Tracing”, “Ray Casting”, “Radiosity”, “Photon Mapping”

etc. Each of them has various advantages compared to the others. For example, one

of the earliest techniques is the “Ray Casting” rendering technique that is proposed

first by Arthur Appel in 1968 [4]. Actually the idea behind it is significantly old. The
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first ray casting idea is proposed by Rene Descartes in 1637 and he applied the laws

of refraction and reflection to a spherical water droplet to demonstrate the formation

of rainbows. The techniques “Ray Casting” is very successful for spot lights. Lately,

in 1979 Turner Whitted came up with the technique called “Ray Tracing” which is

an evolved version of the idea of Appel, but unlike the “Ray Casting” this idea solves

the lighting equation completely the phenomena refraction and reflection at the same

time [18]. The Radiosity technique, on the other hand, proposed first by Goral et.

al. in 1984, is better for diffuse lights [15]. These techniques are generally named as

“Global Illumination Techniques”.

Although, the global illumination techniques provide great photo-realism, they bring

a major issue which is extremely high computational cost. This cost is so high that

with today’s graphics hardware these techniques cannot be applied to the real-time

applications such as computer games or virtual reality simulators. Instead global il-

lumination techniques are the major tool for non-real-time photo-realistic computer

graphics applications. In the past decade, the software industry has produced great

products using the global illumination techniques in their renderers. These products

are the most important tools for the areas such as architectural drawing, animation

films, movie special effects etc. The huge demand in this industry pushed the artists

to continually improve the details of the scenes they produce. Therefore, the extreme

computational cost of global illumination has been continuing to be an issue for the

non-real-time rendering applications too. For example, the company Weta Digital

required 35000 CPU cores and 104 terabytes of RAM for rendering the famous ani-

mation movie “Avatar” [6].

As Gonzalez-Morcillo et. al. mention, distributing the processing is a natural way

to reduce the rendering time. In other words, having a rendering that takes t amount

of time on a single processing node, would take t/n amount of time in ideal cases

with n identical processing nodes working in parallel on different parts of the same

rendering. This kind of parallel processing settings is called Distributed Rendering

Environment (DRE) [8]. Actually the DREs not only for non-real-time rendering with

GI. They are also used for some real-time applications without GI. An example of

the real-time non-GI applications of DREs is the flight simulators with dome shaped

screens. Because the huge size of the screen, the resolution of the image that needs to
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be rendered in each frame is so high, several GPUs need to be utilized in parallel for

this processing task. Additionally, even a multi-GPU computer combining 2 GPUs

with SLI (Scalable Link Interface) technology of NVIDIA can be considered as a

DRE. On the other hand, when the non-real-time DREs are considered, it is observed

that the variety in the scale of computation cluster is greater than the real-time DREs.

Today the DREs are so indispensable in the area of non-real-time rendering with GI,

this kind of DREs has a special name which is “Render Farm”. There are various

render farm forms. The main choice for middle sized organizations which has plenty

of workstations for their staff is to build a centralized cluster based render farm. In

this kind of render farm there is a central resource queue like famous “DrQueue”

and all computers are in a fast local area network. The centralized resource controller

holds a job queue and gives these jobs to the worker computers whenever they are

idle. Secondly, there are some render farm companies. In a render farm company,

idle staff computers are not used as render farm workers. Instead, some dedicated

servers are built for the rendering. Unlike the previous form, this solution may be

decentralized because the cluster size is extremely high and the task of controlling the

resources may need to be distributed as well. Finally, there is a render farm category

based on volunteer computing. A famous example for this kind is “Renderfarm.fi”,

alternatively called “The Publicly Distributed Rendering Service”. In this grid based

render farm approach there is a public community with volunteers connected by the

Internet. To be able to use other people’s resources for rendering, each volunteer must

serve some free CPU resource to the community whenever his/her computer is idle.

This mutual benefit relation generates an ecosystem in which each person changes

the role as producer or consumer from time to time [3].

1.2 Scope and Objectives

In the ideal cases, the render farms are expected to decrease the render time linearly as

the number of processing nodes increases. In other words, the job which is rendered

with one computer in t amount of time is expected to be rendered with n identical

computers in t/n amount of time. However, in practical cases where straight-forward

techniques are used, this ideal case can almost never be observed due to some bottle-
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necks, tradeoffs and overheads. For example, while splitting the rendering job into

sub tasks1, the granularity of the tasks results in the most crucial tradeoff due to the

task submission overhead. Moreover, the increase in the number of render farm work-

ers means increase in the communication costs, which is another obstacle to achieve

the linear speedup. This thesis work concentrates mainly on the optimizations that

can be applied to a render farm controller to deal with these problems. These opti-

mizations try to overcome the load imbalance between the worker computers and the

high communication cost between the workers and the render farm controller. The

optimizations about the rendering algorithms that can be applied to the renderers run-

ning on the worker computers are out of the scope of this work. The techniques that

will be proposed in this study is based on temporal coherence that is the similarities

between the adjacent frames of an animation scene. Therefore, none of the proposed

techniques in this study is applicable to single-frame still image rendering, which is

also out of the scope of this study.

One of the side works of this research is to propose a thorough distributed rendering

environment architecture which is suitable for an environment such as campus net-

work. The software developed to assess the proposed algorithms of this research is

also designed with this constraint. For example, the system does not require a closed

and safe local area network. Moreover, both the application and the algorithms are

designed to deal with hardware diversity. In other words, both a super computer and

an old computer can be workers of the same render farm. Another important de-

sign consideration about the software and the algorithms is being dynamic and agile.

The target environment for this research does not consist of dedicated servers with

24/7 up-time. Instead, the render farm will probably contain laboratory workstations

which have variable up-time and workload. Because of this fact, the system must deal

with momentary changes in the distribution of processing power.

1.3 Document Organization

In the rest of this document, firstly the related work about the area of distributed

1 Throughout this document the whole file submitted to the render farm by the user will be called “job” and
the sub parts of this job submitted to the rendering nodes by the resource controller will be called “task”
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rendering optimizations is presented in Chapter 2. Secondly the problem addressed

in this research about the render farms is explained in detail in Chapter 3. In Chapter 4

the algorithms and formulas used in this work explained in detail with the architecture

of the software used. Then, Chapter 5 includes and discusses the test results of the

proposed approach.
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CHAPTER 2

RELATED WORK

In this chapter, some recent studies about the distributed rendering optimizations will

be presented. When the studies in field of distributed rendering optimizations is exam-

ined, it is observed that majority of the research is conducted on real-time distributed

rendering environments. The reason for this case appears to be the fact that real-time

distributed rendering environments are far more sensitive to load balancing than the

non-real-time DREs. As a result, balancing the workloads of the renderers in a real-

time DRE provides higher performance gains than load balancing in the non-real-time

DREs. The cause of extra sensitivity of the real-time distributed rendering to load bal-

ance can be explained with the example of physical simulation environment such as a

flight simulator. These simulators usually provide an extremely high resolution image

on a dome shaped screen. In order to generate that high resolution image in real time,

distributed rendering is required. Thus, the image on the screen should be partitioned

and each partition should be rendered by a separate renderer. However, if the screen is

partitioned equally, the load of renderers rendering the above partitions may probably

be lower than the renderers rendering the below partitions since the cost of rendering

the sky is lower than rendering the terrain. In this situation the renderers of top par-

titions will wait for the other renderers in an idle state until the rendering of the next

frame is started. In this case the closest deadline is the completion of current frame.

On the other hand, in the non-real-time DRE such as animation rendering, the closest

deadline is current job that consists of multiple frames. As a result, small and short

term load imbalances in non-real-time DRE can be tolerated in a long rendering job

whereas a real-time DRE may become completely useless if there is load imbalance.

This phenomenon is illustrated in Figures 2.1, 2.2, 2.3 and 2.4.
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Figure 2.1: Real-Time DRE with Perfect Load Balance

Figure 2.2: Real-Time DRE with Load Imbalance

In Figure 2.1, a real-time DRE with perfect load balance is shown. In this illustration,

there are four rendering units with the same processing power. The load balance

can be considered to be “perfect” since each renderer A, B, C and D is assigned to

jobs with equal cost. Therefore, completion of the current frame, which is the closest

deadline, is finished as soon as possible by using all renderers most efficiently. On the

other hand, Figure 2.2 shows the utilization of the renderers in case of load imbalance.

As a result of this load imbalance, the renderers A, B and D wait for renderer C during

each frame since the load of C is higher than the others.
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Figure 2.3: Non-Real-Time DRE with Perfect Load Balance

Figure 2.4: Non-Real-Time DRE with Load Imbalance

In Figure 2.3 the environment is non-real-time unlike Figure 2.1 and 2.2, where an

animation having multiple frames is to be rendered. In this figure, the load balancing

can be considered as perfect. Although, each frame has a different cost, each renderer

finishes their assigned tasks at the same time at the end of the animation job. This

is the only requirement for a non-real-time DRE since the closest deadline is the

completion of whole animation instead of a single frame.

In Figure 2.4, the load imbalance is illustrated for the case that the task assignments

are not planned according to the costs of tasks and the power of the renderers. For
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example, in Render Job #1 the costs of assigned tasks of renderers A and B are less

than the costs of tasks assigned to C and D. Because of the shown unutilized CPU

times, the deadline is delayed. In this figure, a renderer which finished all tasks for a

job could have started to process the next job. In that case, the total completion time

of the three jobs would be optimal but still the Render Job #1 would be delayed.

Although the main focus of this research is the optimizations in a non-real-time DRE

like shown in Figure 2.4, some of the studies which have been conducted in the real-

time DRE field will also be examined closely. These studies will be presented in the

next section. Later in Section “Studies on Non-Real-Time DR Optimizations” the

studies related directly to the field of this research will be presented.

2.1 Studies on Real-Time DR Optimizations

Most of the researchers working in the distributed rendering field draw a strict line

between non-real-time and real-time DR optimizations and they conducted their re-

search only on one side of this line. Whereas, in this research the other side of the line

will also be considered although the main focus is non-real-time distributed rendering

environments. The main reason for this case is that some ideas in the real-time side

can be very inspiring for the non-real-time side of DR optimizations. Three important

researches will be examined in this section. These papers are chosen especially since

they address some problems which will be examined closely in Section 3. Namely

these problems are, dividing the whole job so that the number of sub-tasks is equal to

the number of renderers and acquiring sub-tasks with costs proportional to the power

of the renderer.

According to Molnar et. al. [13] the rendering pipelines can be divided into three cat-

egories which are sort-first parallel rendering systems, sort-middle parallel rendering

systems and sort-last parallel rendering systems. As mentioned in Section 1.1, be-

cause the computational cost of the global illumination techniques is extremely high,

the real-time distributed rendering is mostly implemented with the “Rasterization”

rendering technique which has significantly lower cost when compared to GI. Indeed,

the three rendering pipe-line category stated above are all related to the Rasterization
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rendering technique. As can be understood from the names, the Rasterization prob-

lem contains some sorting phase, which is on the objects in the scene. This sorting

process is necessary to determine which object is visible in the final image in case

one object hides some other. The moment that this phase occurs is critical for DR

because it is main dependency point of independent rendering nodes. As a result, the

way of handling this problem affects the DR performance significantly.

In their studies Molnar et. al. [13] analyzed each of three approaches and tried

to discover some tradeoffs. In addition, they propose a framework to decide which

approach to use according to the needs. The study of Molnar et. al. [13] explains the

three rendering pipeline category as follows:

Sort-Last: In this approach all rendering nodes renders the full frame with different

subsets of the geometric objects in the scene. This approach requires a complex pro-

cess in the last sorting phase. This last phase is a kind of blending and it is relatively

hard to implement. According to Molnar et. al. [13], the advantage of this approach

is that the renderers are independent until the pixel merging phase, which is the last

phase, and it is less prone to load imbalance. Its disadvantage is that it creates very

high traffic between the renderers especially when oversampling is used [13].

Sort-Middle: The sort-middle approach is also a complex approach. At the begin-

ning of the process the primitives are converted into 2D screen coordinates according

to their geometry and position. Then, the primitives are distributed to the renderers

according to their coordinates on the screen. Therefore, instead of rendering a full

frame image, each renderer can work on a sub-set of the frame which contains the

primitives that are assigned to that renderer. The major disadvantage of this approach

is that it is susceptible to load imbalance between renderers when primitives are dis-

tributed unevenly over the screen [13].

Sort-First: In this approach one frame is split into several responsibility areas before

the Rasterization and each area is assigned to a renderer. Unlike the sort-last or the

sort-middle approaches, the scene content is not divided at all and it is given to each

renderer without any change. In other words, each renderer is aware of each primitive

in the scene. The fact that all renderers are aware of each primitive in the scene

does not cause a significant performance drop since the primitives outside the view
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frustum will be ignored. The biggest advantage about this approach is that it creates

very little network traffic since the renderers do not need to switch information during

the rendering. Unfortunately, this approach is highly susceptible to load imbalance

[13].

Among these three approaches, the sort-first can be considered as the most important

one. It is a better choice for distributed rendering since it generates lower communi-

cation traffic. To prevent bottlenecks caused by insufficient network bandwidth, this

advantage of sort-first approach is crucial when there is high number of renderers.

The sort-first technique is also important for non-real-time DR. The distributed ren-

dering techniques used in non-real-time DR show great resemblance to the sort-first

technique. The load balancing techniques in this area may provide a good start point

for load balancing of non-real-time DR.

To solve the load balancing problem of the sort-first approach a dynamic method is

proposed by Ji and He [12]. In their method the cost of a sub-task (i.e. tile in the

screen) is calculated as the sum of the load of geometric transformations and the load

of rasterization. They described it with the following formula:

L
rendering

= N
vert

· t
v

+ A
frag

· t
f

In this formula L
rendering

is the predicted rendering load of a partition in frame. N
vert

and A
frag

is the number of vertices in the scene and the number of pixels in the final

image respectively. The t
v

and t
f

values are the predefined unit times required for

processing one vertex and one pixel in the geometric transformation and rasterization

phases respectively.

The proposed approach in the study of Ji and He partitions the frame by creating a kd-

tree. While creating the kd-tree, cost of each kd-tree node is calculated by the above

formula. By an iterative method the kd-tree is refined until the aimed load balance

precision is achieved. Lately, these partitions are assigned to the renderers as part of

the sort-first approach [12].

Another important research in real-time DRE field that may be inspiring for the non-

real-time DRE belongs to Abraham et. al. [1]. The preferred rendering technique
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in this paper is again sort-first. Abraham et. al. [1] stated that they propose a very

simple to implement load balancing algorithm which provides good load balancing.

Moreover, the cost of the algorithm is negligible when compared to the cost of ren-

dering. The success of the algorithm comes from usage of temporal coherence which

is one of the most important ideas in this field. Temporal coherence uses the fact that

in movie contents, the objects in the scene manifest a continuous movement except

for the scene and camera changes. This fact provides the predictability of the next

frame by the previous frame. Of course there is the possibility of two completely un-

related consecutive frames but the probability of this is very low because of the high

frame rates around 30 fps. In other words, there will be probably so many coherent

frames until a scene or camera change. The approach of Abraham et. al. [1] uses

this coherence to determine the load distribution of a frame. To be precise, the algo-

rithm starts with a blindly created tiling. Then the system renders it and the algorithm

collects the run times of each sub-task. Actually this run time data gives informa-

tion about the load distribution of the last rendered frame whereas the problem is to

find the load distribution of the next frame. Although the run times of last rendered

frame can just be an approximation for the next frame, because of the temporal co-

herence, the research states that the algorithm provides a high degree of load balance.

When compared to the approach of Ji and He [12] this approach gives slightly less

load balancing precision with gain of performance. The performance is higher in this

approach because it uses each frame as an iteration step and executes only one load

balancing per frame whereas the approach of Ji and He [12] continues to iterate to

refine the load balancing until a threshold is reached for each frame.

In their study Abraham et. al. [1] also proposed a smart method for task-renderer

matching. The solution to this problem can also be very important in the non-real-

time distributed rendering environments. The importance of this method is that it

changes a disadvantage into an advantage. As seen in Figure 2.2 the imperfections in

the load distribution causes unutilized CPU or GPU resources. In the load balancing

method of Abraham et. al. [1] there will always be some amount of imperfections

in load balancing, which is inevitable. Therefore, instead of fighting that fact, the

renderer which finished its task earliest starts rendering the most costly tile of the

next frame. At first glance this seems to be meaningless since it does not solve the
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delay in the closest deadline. However it actually solves the problem by just changing

the sharp boundaries into smooth transitions at the start and finish of frames.

2.2 Studies on Non-Real-Time DR Optimizations

In this section, important studies on non-real-time distributed environments will be

presented. As mentioned in Section 2.1, these studies also remain on one side of the

boundary between non-real-time DRE and real-time DRE. On the non-real-time side

of that boundary, the studies are examined under four categories which are Render

Farm Frameworks, Communication Optimizations, Cost Prediction, Task Distribu-

tion Optimizations.

2.2.1 Render Farm Frameworks

One of the most comprehensive render farm frameworks belongs to Patoli et. al. [16].

They defined 11 constrains for render farms. These constrains are “Platform Indepen-

dent”, “Grid Based”, “Registry Support”, “Freeware”, “Fully Automatic”, “Workflow

Support”, “Job Monitoring”, “Animation Support”, “Open Source”, “Script Genera-

tor” and “Service Oriented”. The paper also contains a table which compares all

well-known render farm solutions with the proposed framework of Patoli et. al. Ac-

cording to this table, the presented framework in the paper is claimed to satisfy all

of these constraints, whereas the closest and one of the famous render farm solu-

tions “DrQueue” can satisfy only six of these constraints. The main contribution

of this study is that it shows that all these render farm features can be provided at

the same time. In order to provide grid based distributed rendering, the framework

uses Condor, which is a general purpose and advanced tool for distributed comput-

ing developed by the University of Wisconsin-Madison. In order to provide platform

independence, the preferred 3D software in the study is open source Blender but by

the “Script Generator” feature theoretically all 3D software can be integrated to this

framework.

Gooding et. al. also proposed a render farm framework [11]. They propose a compre-

hensive design for a render farm that is built upon the TerraGrid network. TerraGrid is
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an extremely big grid computing architecture contributed mainly by universities. It is

mainly used for very costly scientific calculations. Another contribution of this study

is that they open the way of very new possibilities in this area by founding this mas-

sive render farm. Gooding et. al. claimed that their proposed render farm framework

solves many software problems which can be encountered by any software developer

while developing a render farm controller software [11]. First one is the problem

about the communication of controller and the farm worker computers. To solve this

problem, Gooding et. al. also used Condor. The second problem solved by this study

is the security of the artifacts. To deal with the security issue, a submission process

is designed having authentication and encryption. Since the framework in this study

contains a comprehensive design even the procedures for job name creation or asset

relocation are presented.

2.2.2 Communication Optimizations

One of the biggest problems about the render farms is the limitation of the network

bandwidth. Because of this problem, most of the render farms are cluster based and

built on a local area network. Considering the bandwidth of local area networks

may even be insufficient, building a render farm across WAN requires some special

techniques. In their paper Cao et. al. [20] propose some techniques to deal with the

communication cost problem and build a render farm across WAN. Their approach

is based on using multi-level controller nodes hierarchically. In other words, the

workers in this farm are grouped in an efficient way to both overcome communication

bottlenecks and increase scalability. In a naive communication schema for render

farms, there are usually a controller and some number of workers all connected to

the controller directly. Assuming the number of the workers is n, the communication

load of the controller will be n time higher than the render farm workers. To solve

this issue, Cao et. al. [20] propose to group the clusters and pick some sub controller

in each group. In this schema the main controller only communicates with the sub

controllers directly. The sub controllers only communicate with their workers in its

cluster. Unfortunately, this schema also has a drawback. Since the communication

between the workers and the main controller is provided by the sub controllers, all

workers go offline in case of sub-controller failure. Therefore, each cluster must
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be able to entitle another machine as sub-controller automatically in case of sub-

controller failure.

The study of Chong et. al. [5] is one of the studies which propose a framework for

distributed rendering. However, they provide a communication optimization algo-

rithm also. The main contribution of this study is that it proposes a novel approach to

solve the problem of high network traffic caused by the huge input files (scene defini-

tion files). The framework handles this problem by a special lossless 3D compression

method. This novel 3D compression method mainly focuses on the scene definition

files. They mention that most of the size in these files is occupied by 3D objects which

generally are duplicated because of the temporal coherence. The technique of Chong

et. al. [5] overcomes this duplication by hashing the geometric objects. Naturally the

hash value of an object will be very small compared to the object itself. Therefore, by

sending only one copy of the object and the hash values whenever necessary reduces

the network traffic significantly. According to the test results presented in the paper

of Chong et. al. [5] this technique can achieve compression ratios up to 97%.

2.2.3 Cost Prediction

One of the papers proposing a method for predicting the global illumination rendering

cost of a scene is by Reinhard et. al. [17]. Their proposed approach is based on the

knowledge that the cost of one traced ray in global illumination increases on each

ray-object intersection. Therefore, Reinhard et. al. [17] claim that the cost of the

scene converges to the average tree depth of the spatial subdivision. However, at the

ray-object intersections some amount of light passes through for transparent objects.

Therefore, the formula they use for cost prediction also takes the average amount of

surface transparency into account.

Another important study about the cost prediction problem is by Gillibrand et. al.

[7]. Unlike Reinhard et. al. [17] Gillibrand et. al. propose to calculate the cost by

building spatial subdivision tree and using its average depth and surface transparency.

The proposed approach of Gillibrand et. al. profiles some pixels in the scene by

tracing a ray from each of these pixels like real ray tracing algorithm. However, to

achieve a run time which is significantly less than rendering the scene, the algorithm
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carries out ray tracing for very small subset of all pixels. In the first phase of the

algorithm, scene is rasterized like a preview of the geometric objects. In the result

of this rasterization phase, they change the colors of the materials according to their

material properties. For example, red for transparent materials, blue for glossy and

specular materials and green for diffuse materials. After acquiring this snapshot of the

scene their algorithm has knowledge about both material and complexity distribution

of the scene. In the next stage the algorithm decides the positions of the sample lights.

Having the complexity map, the algorithm puts fewer samples on the simple objects

such as walls and puts more samples on the complex specular objects. After that

process the algorithm profiles the rays. The main contribution of this study is that

the results converge to the real cost quickly because the algorithm calculates more

samples around the complex objects.

2.2.4 Task Distribution Optimizations

The study of Abramson et. al. [2] is very important since it proposes a solution to the

problem of fairly distributing the shared resources to the users on a grid computing

environment. This problem becomes even harder if the users are clients of a company

providing rendering service because the billing model of a company like that may

have the possibility of getting more resource by paying more. To solve this problem

Abramson et. al. propose the use of Nimrod-G which is a resource broker framework.

The main parameters for this application are the aimed deadline for the job, budget,

and the choice of minimizing the cost or time. This framework simulates the stock

market for a render farm. In other words, high demand results in cost increase. Each

user of this render farm declares a budget which is the maximum possible payment

planned for a rendering job. Then user selects the choice of time or cost minimization

together with the planned due date for the job. If the user selects to minimize the

cost, the system allocates the resources to this user whenever possible but retracts the

resources when there is a customer who is selecting the time minimization choice and

paying more for the resources. This scheduler tries to provide a fair resource alloca-

tion by giving service to each user proportional to their payments and by considering

the final due dates declared by the users.
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Another important study in this field belongs to González-Morcillo et. al. [9]. This

study uses a multi-agent approach for task distribution optimizations. They call

this “MAgarRO” (standing for “Multi-Agent Approach to Rendering Optimization”).

This approach is also grid based and suitable to work with the free CPU cycles in a

campus network. In the paper, “MAgarRO” is claimed to have the following features:

Decentralized control: In MAgarRO, all render farm workers are not controlled by

a single controller. Instead, the system contains multiple clusters called agents which

show autonomous behavior. In other words, all these agents have a local controller

and make decisions by themselves. In addition there is also a main controller to which

the agents report and communicate.

Higher level of abstraction: The MAgarRO is claimed to be suitable to work with

all renderers by defining the input parameters.

Use of expert knowledge: This feature is one of the most important features of MA-

garRO. According to González-Morcillo et. al. [9], the render farms are not always

used in an optimized way because of the wrong render parameters. In other words,

inexperienced users may increase the quality unnecessarily and that results in exces-

sive rendering times with very small quality gains. To prevent this, the MAgarRO

is claimed to optimize the render parameters by some fuzzy set rules called expert

knowledge.

Local optimization: By the autonomous behavior of multi-agent approach each

agent can build its own expert knowledge according to its hardware configuration.

The MAgarRO contains several phases before the real rendering phase. By applying

these phases the system collects information about the tasks and distributes them to

the agents according to the power of each agent. Meanwhile, the processing powers

of the agents are also updated. To be precise, the procedure consists of the following

phases. In the first phase an agent can be added to the system. When an agent is con-

nected for the first time, a benchmarking job runs on it to assess its processing power.

To achieve load balanced task distribution, MAgarRO tries to divide the frames into

zones by detecting the parts which are more costly. To do that it generates a special

image called “Importance Map”. This approach also uses fast rasterization to gener-
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ate the importance maps like the technique used in the study of Molnar et. al. [13].

After the generation of importance maps the resulting image is partitioned into zones

that have roughly the same complexity. In the next stage the master of the render farm

distributes the sub tasks of the rendering job to the agents. Then the agents profile

the zones by just rendering the 5% resolution of each zone. By doing that, the sys-

tem acquires more precise cost estimation about each zone. After the accurate cost

estimation is acquired, a communication service called “Blackboard” is used so that

the agents share information with each other. Namely, each agent registers the cost

estimation of the assigned task together with some properties of the zone such as its

resolution etc. After this process a phase called “Auctioning” is carried out. In Auc-

tioning phase all idle agents of the system compete for the available unfinished tasks

and the master distributes the zones to agents. As a final phase before rendering, the

expert knowledge is applied to the zones. In other words, after the task submissions

each agent uses its fuzzy rule sets to model the expert knowledge to determine the

optimal rendering parameters. The main parameters in this procedure are the recur-

sion level, the light samples and the interpolation band size. The agents try to find

an optimal value for these parameters to prevent unnecessary quality for the unim-

portant areas on image. For example, for the simple objects such as walls there is no

need for a high number of light samples whereas for the complex specular objects the

light samples should be increased. After all these optimizations, the agents render the

zones fully. However, at this point a problem emerges because agents used different

render parameters for each zone. After connecting the zones, some difference in tone

and detail may become visible at the connection line of each zone. To solve this prob-

lem, González-Morcillo et. al. [9] used an interpolation technique. The MAgarRO

determines an interpolation band size according to the difference in the render param-

eters between two zones. Then, a linear interpolation is applied to provide a smooth

transition between the zones.

Although the proposed approach of González-Morcillo et. al. [9] contains a good

task distribution optimization, it does not take granularity of the tasks into account.

On the other hand, modeling the expert knowledge seems to solve one of the biggest

problems in this area. Unfortunately, the test results in the study is not suitable for

distinguishing how much of the performance gain is because of the expert knowledge
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and how much of it is because of the task distribution optimizations. One of the most

important aspect of the results of this study is that it shows the importance of the task

granularity. In other words, the sub-task rendering time does not decrease linearly

while the number of agents increases. This phenomenon is illustrated in Figure 3.3.

The main reason for this non-linearity is the per-task overhead. Namely, for execution

of each task the renderer carries out some initialization before rendering. In addition,

the communication overhead per pixel also increases. This problem will be explained

in Chapter 3 more detailed.

The main problem of MAgarRO proposed by González-Morcillo et. al. [9] is that it

analyzes the cost distribution in each frame and the tasks of a rendering job are parts

of a frame. Although, this high granularity is inevitable for still-image rendering jobs,

for multi-frame animation jobs this high granularity results in a high overhead. There-

fore, for animations the cost distribution should be analyzed in frame level instead of

analyzing in sub-frame level.
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CHAPTER 3

THE PROBLEM STATEMENT

Because of the high demand in the animation industry in the past decade the detail and

the complexity of the scenes created by the artists have been increasing continuously.

Although, the hardware technologies improved significantly in the meanwhile, this

improvement was never enough to make a single computer fast enough to render even

a small animation by itself considering the tight due dates of the animation companies.

Because of this high computation cost, for now the only practical solution in this area

is to use large number of computers in parallel like workers in a farm.

3.1 Communication Cost Problem

In ideal cases, render farms are expected to decrease the time required to render lin-

early while the number of rendering nodes in it increases. In other words, the job

which is rendered with one computer in t amount of time is expected to be rendered

with n identical computers in t/n amount of time. However, in practical cases with

straight-forward approaches this linear speedup can almost never be observed due to

some bottlenecks, tradeoffs and overheads. An example of the bottlenecks is the case

of centralized approach for large render farms [8]. In this case, the render farm is

so big that one computer is not enough to handle all the controlling tasks such as

providing inputs, collecting outputs, accounting, aliveness checks etc. This results in

low scalability. Another bottleneck example is about the networking. Network bot-

tlenecks occur with the grid based render farms connected with some narrow band

network connection. In this case, the wait for the download operations of the input
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and the upload operation of the output can decrease the render farm performance [5].

This performance drop can be very significant if the scene input file contains so many

high resolution textures or the resolution of the produced output is very high. This is

illustrated in Figure 3.1 and Figure 3.2.

Figure 3.1: Network Bandwidth Usage History of Render Farm Controller

Figure 3.2: Network Bandwidth Usage History of a Render Farm Worker
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Figure 3.1 and Figure 3.2 show the network load measurements for a render farm with

20 workers and one controller connected with a 802.11g Wi-Fi network. Figure 3.1

shows the network traffic history of the render farm controller and Figure 3.2 shows

the network traffic history of one of the render farm workers. A rendering job having

1000 frames with JPEG format and 1920x1080 resolution is submitted to the render

farm for this test. The average file size of each image file is 1.2 megabytes and the

average rendering time is measured as 5 minutes. The periodic peaks which can be

seen in Figure 3.2 correspond to the uploading of output frames to the render farm

controller. While the network adapter of the render farm worker only deals with this

one file in approximately five minutes, the network adapter of render farm controller

has to deal with 20 times more data at the same time. Thus, the load on the network

adapter of render farm controller is 20 times higher as can be seen in Figure 3.1.

As the worker count increases or the output file resolution increases this unbalanced

load turns into a significant bottleneck in the communication. Therefore, the network

costs of the operations between the render farm workers and the controller should

be optimized as much as possible. The study of Chong et. al. [5] can be a good

example for this kind of optimizations. Although, decreasing the network costs is

not the ultimate solution for the problem of decreased scalability due to network load

imbalance, it may still improve the system performance.

Moreover, render farms do not always have a dedicated network. Even if the band-

width of the network is enough for the operation of render farm, the same network

may be in use by some other users. A render farm built in a campus network can be

a good example for this situation. Campus networks usually have high bandwidths,

which is enough for the render farm but during the operation of the render farm the

personal users of the network may suffer from some latencies that decrease the usabil-

ity of interactive applications such as web browsers. For this reason too, the network

usage of the render farms should be minimized as much as possible.

3.2 Computational Load Imbalance Problem

Besides the above problems there is another issue about splitting a rendering job

into sub-tasks and submitting these sub-tasks to rendering nodes. As mentioned in
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the previous chapter, the granularity of the tasks results in a crucial tradeoff due to

the overheads occurring during the task submission. Knowing the costs of different

parts of the job while splitting job into sub-tasks and matching sub-tasks with the

processing nodes according to their capacity is a major optimization to deal with the

load imbalance between the render farm worker computers.

To explain this problem, the stages of submitting a rendering job to a render farm

should be explained. In all render farms, the process starts with the submission of the

input file. This file can be placed in a shared network location if the whole system and

the user are in a local area network or the file can be uploaded by a portal application

[5]. After the server acquires the input file then comes the sub-task submission phase.

In this phase, firstly the render farm controller splits the whole job into sub-tasks.

After that, the render farm controller could submit each sub-task to a rendering node

or the rendering nodes could check the system to detect if there is any unfinished

task. If there is any unfinished task, the workers may pick a task by themselves. The

first alternative which gives full control to the render farm controller is called “Data

Driven Approach" [10]. This second approach is called “Demand Driven Approach"

[10]. Both of these approaches have different advantages and disadvantages. To gain

insight knowledge about the problem, these two approaches can be examined closely.

The demand driven approach has some advantages. Firstly, it guaranties full CPU

utilization in all conditions because the render farm workers are always in a loop of

“render, pick new task, render, pick new task, render . . . ”. As long as there are some

unfinished tasks in the task pool of the render farm, the workers will continue to work

with full CPU utilization and this means the system would be fully utilized. This

idea may be correct theoretically but not practically. If it was correct in all cases, this

thesis work would not exist since by using this approach there would be no need for

further optimization. The problem starts with the fact that this approach works great

only with fine-grained task splitting. This is illustrated in Figure 3.3 and Figure 3.4.
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Figure 3.3: Fine Grained Task Splitting

Figure 3.4: Coarse Grained Task Splitting

The figures illustrate a heterogeneous render farm with three rendering nodes (A, B,

C). The processing power (i.e. speed) of A, B and C are 4p, 8p and p respectively

(with the assumption that p is a unit for processing power of a computer). Each rect-

angle represents the processing of one sub-task by a rendering node. In Figure 3.3 all

tasks have equal cost which is c (with the assumption of c is unit for rendering task

cost). In Figure 3.4 the sub-tasks have also equal costs but this time the cost is 8c.

In other words, in Figure 3.3 the rendering job are split into sub-tasks with 8 time

higher granularity. The obvious problem in Figure 3.4 is the unutilized CPU times

of A and B because of the unbalanced workload. Actually, if there were plenty of
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rendering jobs in the render farm and the only performance criteria was the overall

elapsed time for all jobs, the case of Figure 3.4 could be considered as optimal, be-

cause the time durations marked as “Unutilized” in the figure would be used for the

tasks of next job. However, if there is only one job or if each job belongs to a different

user, per-job rendering completion times are very important. Per-job rendering com-

pletion times grow significantly for the case of Figure 3.4. Therefore, if the render

farm controller does not have any control over matching tasks and workers (Demand

Driven Approach), the system must definitely work with fine grained tasks.

At first glance, the fine grained task division seems to be a good solution. Unfortu-

nately, this solution brings another problem which is task submission overhead. As

can be seen from Figure 3.3 and Figure 3.4 there is a gap between each task execu-

tion. These gaps denotes the initialization time of the rendering software at the time

of task submission. 3D editing software such as 3DsMax1 or Blender accept the batch

rendering task through a command-line prompt. This command contains various ren-

dering settings with the path to job file and frame numbers to render. An example

rendering command for 3DsMax is given in Appendix A. Each time this command is

invoked the computer starts a 3DsMax process and loads some significant number of

DLLs. Then the plug-in loading phase comes. There are plenty of plug-ins distributed

with 3DsMax. In addition, there are also plenty of third party plug-ins available. For

example, a plug-in for hair and fur movement, a plug-in for Physics calculations, a

plug-in for procedural terrain generation etc. Even VRay, one of the most preferred

GI renderer, is a plug-in for 3DsMax. Before starting to process a scene, all installed

plug-ins are loaded and initialized. This causes an important amount of time. In addi-

tion, some 3D editing software such as 3DsMax does not have any built-in renderer.

Instead, the renderers can be installed in 3D editing software as plug-ins. Both Men-

talRay and VRay accepts the models, lights or materials in their own data format.

Thus, they translate the contents of the scene to their format before processing. This

also requires some important amount of time depending on the complexity and size

of the scene. In Table 3.1 the time spent for each phase according to the sample run

in Appendix A is presented.

1 3DsMax is the commercial product of the software company AutoDesk. Although there is a powerful
open source alternative named Blender exists, the 3DsMax dominates the market significantly. Since available
and suitable testing scenes etc. are limited for Blender, throughout this research mainly 3DsMax is used while
development of software and testing of the algorithms.
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Table 3.1: Execution Phases and Time Durations of 3Ds-

Max

Phase Time (seconds)

Startup of process “3dsmaxcmd.exe” 20

Loading of the plug-ins 3

Initialization of the renderer 1

Loading and translation of the scene 5

Rendering 80

Clean up and finalization 11

Time spent for each phase of sample 3DsMax run

presented in Appendix A

Table 3.1 shows that for the sample run presented in Appendix A approximately 30%

of the total time is spent for processing other than rendering. Even though this ratio

depends highly on the output size, hardware configuration, software configuration

and the scene contents, it is still obvious that most of the times this overhead will be

far from being negligible. Considering this overhead, there is a crucial tradeoff in

granularity of task division. Although finest grained task division gives the best load

balancing, it causes a significant increase in render time, because the task submission

cost occurs over and over again for each small task.

Figure 3.5: The Effect of Task Granularity to Job Completion Time

27



In Figure 3.5 the effect of overheads mentioned above can be observed. The test en-

vironment and the input is the same as the sample 3DsMax run given in Appendix A.

The only differences are the start frame, end frame and every nth frame parameters.

The given data set is acquired by rendering the first 100 frame of the job with dif-

ferent number of sub tasks on one render farm worker computer given in Appendix

A. In other words, the 1 point on the horizontal axis shows the rendering time of job

submitted to the renderer as a whole and the 50 point on the horizontal axis shows

the rendering time of the same job with 50 separate sub tasks each having 2 frames.

As the sub task granularity increases the job completion time increases linearly due

to the time cost of the task submission. In this test setup this cost is approximately 35

seconds and if there is 50 separate sub tasks, the total non-rendering cost is approxi-

mately 1750 seconds. This phenomenon results in the requirement of decreasing the

task granularity as much as possible.

After examining the Demand Driven Approach the need of control over task distribu-

tion becomes obvious. To deal with the tradeoff between granularity and initialization

time, using Data Driven Approach seems to be indispensable. Namely, some smart

decisions have to be made while dividing jobs into tasks and submitting tasks to the

workers. To be more precise, the sub-problems which should be solved by the pro-

posed algorithm are:

1. Discovery of the cost map of job: Since there is a huge overhead of the fine

grained task division, task splitting must be coarse grained as much as possi-

ble. Otherwise the situation showed in Figure 3.4 would occur in this approach

too. However, this brings the requirement of splitting the job according to the

capacities of the workers available in the render farm at that moment [9]. To

handle this requirement Reinhard et. al. proposed a technique [17]. However,

the method of Reinhard et. al. is based on the knowledge about the geometries

and the lights in the scene. Thus this method is not applicable for this research

because almost all commercial software such as 3DsMax works with a propri-

etary file format which cannot be parsed outside of the application. In addition,

even if there are alternatives such as Blender which has an open file format, dis-
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covering the contents of the scene file is also a costly job. Consequently, a new

approach is required to discover the cost distribution across to the rendering job

without knowing the geometries and lights in the scene. In addition, it should

be done with a smaller cost.

2. Quantization of the processing power of workers in the farm: As stated be-

fore, the Data Driven Approach with the coarse grained task division will be

preferred in the proposed approach of this research. However, as the granular-

ity of the tasks decrease, the risk of unbalanced workload increases as shown in

Figure 3.4. To prevent this, the system must distribute the tasks to the workers

in an intelligent way so that the completion time of the tasks of each worker is

close as much as possible to improve utilization. Therefore, each worker should

be assigned to a task having a cost proportional to the workers relative process-

ing power. This brings the requirement of knowing the processing power of

each worker in the farm.

Moreover, the worker assessment methods should also be dynamic. Assessing

a worker when it connects to the system for the first time might be an easy

solution but the result of a non-dynamic assessment like this may be invalid

after some time. Because there are possible cases like change in the software

configuration of render farm worker, malicious software, a stuffed page file or

registry etc. Each of these cases may decrease the performance of a computer

over time. Therefore, the relative processing power point of each worker should

be renewed dynamically without interrupting the execution of the system sig-

nificantly.

3. Dynamic assessment of the environment: As mentioned in Section 1.2 the

target environment for this research does not consists of dedicated servers hav-

ing 24/7 up-time. Instead, it will probably contain staff workstations and lab-

oratory computers that have variable up-times and workloads. Because of this

fact, the system must deal with the momentary changes in the distribution of

processing power among the workers of the render farm. For example, after

submitting tasks of a job to the worker computers, a power loss may occur in

some location where the most powerful computers reside. It is obvious that this

invalidates the previous task distribution plan completely. In case of failure or
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power loss for a worker computer, the assigned rendering tasks of this worker

should be retract and assigned to other suitable workers. The opposite of this is

also possible. In other words, when a powerful worker computer is connected

to the system in the middle of a rendering job, it might be a good action to

cancel the current task distribution plan and recreating it by including the new

worker.

In Chapter 4, solutions to these problems are proposed by giving algorithms, detailed

explanations and software architecture.
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CHAPTER 4

PROPOSED APPROACH

The core of the proposed approach of this work is the task distribution algorithm

together with render farm worker assessment techniques. To test these techniques a

thorough software structure is necessary. Therefore, a piece of distributed computing

software has been developed that satisfy every basic need of a render farm and the

proposed algorithm is integrated in this software. Although the main concentration of

this chapter is the algorithms explained in Section 4.3 and Section 4.4, the design of

the developed software and the configuration of the hardware are explained in Section

4.1 and Section 4.2 to provide a deeper insight to the system.
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4.1 Hardware Architecture

Figure 4.1: Hardware Configuration

In this research all tests are done with the hardware resources of the Modeling and

Simulation Research and Development Center (MODSIMMER). The aimed system

must work in campus network setting because in a campus network there is usually

large number of relatively new computer which are not under load for 24/7. In other

words, they are always on but not always used by students or staff. They are usu-

ally idle in weekends or at nights. This situation is very good for building a render

farm. One of the secondary goals of this research is to utilize this wasted processing

power of the campus network to perform some beneficial jobs. Decision of using the

resources in a campus network settles the majority of the design choices about the

hardware architecture.
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Firstly, the resources will be divergent and heterogeneous. It is divergent, because

different computers with different performance may be utilizable in different times.

Let say there is a supercomputer and an Internet lab in a campus. In one moment

all computers of the Internet lab may be available and the super computer may be in

maintenance mode. In some other time the supercomputer may be available but all

computers of the Internet lab may be occupied. Considering the processing power

of the supercomputer is far more than the computers in the Internet lab, the total

processing power available in the system and the distribution of it may change any

moment by environmental factors.

Secondly, because the campus computer network is the target hardware configuration,

the network of the system will not be a closed local area network. Instead, it is an open

and unsecured network. Therefore, the system must utilize some communication

security tools. In addition, using the wide area network brings new possibilities such

as using resources from very distant locations. Although, most of the network lines

in a campus is very fast, this system does not have to be used with campus network

only. It can also be used in a grid computing setting with narrow-band communication

lines. Therefore, the communication overhead should be minimized.
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4.2 Software Architecture

Figure 4.2: Software Configuration

After deciding the hardware architecture some important decisions have been made

about the software architecture. The first thing known about the software is that it

will be a piece of distributed computing software. Therefore, it needs a software unit

on each worker computer to accept commands with inputs to process. This software

unit is “RenderFarm Worker” which can be seen in Figure 4.2. Secondly, the render

farm should have the ability to distribute inputs, execute some commands on inputs,

and collect the outputs from the workers. This results in the need of a central con-

troller which is named as “RenderFarm Controller”. Moreover, the user of the system

is both the source of the input and the destination of the output. Therefore, the soft-

ware should also provide a user interface for job submission and output retrieval. In
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addition the user should also be able to do some extra operations such as cancelling a

job, restarting a job, observing the progress of a job or even previewing the output of

an unfinished job. By considering these needs, there should be a third software unit

which is the “RenderFarm User Interface” as can be seen in Figure 4.2. In the below

parts the design of these three software units are explained in detail and a very basic

communication sequence can be observed in Figure 4.3.
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Figure 4.3: Sequence of a Basic Communication Between Software Units
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4.2.1 Design of RenderFarm Controller

At this point of the development some important decisions have been made. The first

thing was the programming language. Java has been chosen as the main programming

language since platform independence is aimed. Although Windows is mainly used

while development and the testing since 3DsMax needs it, the 3D software called

“Blender” is completely platform independent and the software of this research can

be completely portable also in case of using with Blender. After deciding the basic

configuration of the distributed software and the programming language the commu-

nication scheme has been chosen. The alternatives were using third party off-the-shelf

middleware software, using DDS (Data Distribution Service), using custom messages

on bare TCP/IP and using RMI of Java. DDS and third party middleware alterna-

tives are discarded because they are known with their extremely high configuration

complexity. In other words, the solutions in these categories can be considered as

too complex for this prototype work. On the other hand, using raw messages over

TCP/IP can be over simple and also hard to implement since there are hundreds of

commands in the interfaces of the system. If the raw messages with TCP/IP were

used, encoder/decoder of each of those hundreds of messages would be implemented

separately. Therefore, RMI has been chosen to be the communication layer of the

system.

After the above decisions the remote interfaces are written according to the RMI stan-

dards and the implementation of the RenderFarm Controller is started. As mentioned

above the controller is responsible for keeping all user accounts with the status of

jobs, job input files and output files. It also responds to all commands coming from

the “RenderFarm User Interface” instances. To increase the security of the commu-

nication via RMI, encryption enabled socket factories are used in the communication

layer of the system.

The RenderFram controller has a database which is implemented with the technology

called “H2” which is completely platform independent and free. The main entities

in the database scheme are “Job”, “Task” (which is a sub-part of a job having one or

many frames), “Frame”, “User” and “Worker”. Moreover, there is a remote interface

in the controller for each of these entities. The “User” entity is responsible for the au-
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thentication. In other words, login operations and every other method calls are done

with a username and password. This way the security of the system is increased in

an unsecured wide area network. In addition, the controller recognizes the caller of a

method by using this credentials. The “Worker” entity and the interface is responsi-

ble for the communication of the controller and the “RenderFarm Worker” software

unit. For example, a worker reports a problem to the controller through the “Worker”

interface and the history and the performance information about a worker is stored

in the “Worker” table of the database. The rest of the interfaces are straightforward.

For example, when a user submits a new job, the “RenderFram User Interface” soft-

ware unit calls the “submitNewJob(String username, String password, Job job)”

method of the Job interface or when a worker finishes rendering a frame, it calls

the “frameRendered(String username, String password, Job job)” method of the

Frame interface. These calls can be observed in Figure 4.3.

4.2.2 Design of RenderFarm Worker

The software unit “RenderFarm Worker” is relatively simple than the others. Its main

duty is to listen and apply the commands from the render farm controller. As can

be seen in Figure 4.3 each worker instance also logs in to the system like a normal

user while connecting. Each worker stores a global unique ID which is given by the

controller at first login. At the time of this first login a special procedure is carried

out called benchmarking. To assess the performance of the machine that the worker

runs on, the controller executes a standard job on the worker. By measuring the

task completion times the controller gives a performance point to that worker and

matches it in the database with its unique identifier. Actually this is just the initial

benchmarking and the whole assessment procedure is not limited to this. The details

of this procedure are left to Section 4.4.

The other basic commands that can be executed on this software unit are:

• newTaskAssigned(Task task, List<Frame> frames,

RemoteInputStream remoteFileData, long jobFileSize);

• cancelTask(Task task);
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• String getSystemInfo();

• void workerIsDeletedFromServer();

• List<FrameInterval> requestAvailableOutputOfTask(Task task);

• void workerUpdated(Worker worker);

• void cancelRenderUploadEncodeTask();

• void cancelRenderTask();

As can be understood from these commands the controller assigns tasks to the workers

by giving some necessary information about the task and the file handle to download

the input file. After getting this command the worker starts to download the file from

the controller server if it does not already have it. As mentioned earlier a “Task”

entity is a subset of the frames of a job. The worker renders the frames listed in the

“List<Frame> frames” parameter.

4.2.3 Design of RenderFarm User Interface

Platform independence is an important factor for this software unit and the best way

of providing it to the users was choosing to develop a Web based interface. The

most crucial decision has been made at this point. Although a Web based interface

is the first thing that comes to mind, it is not used in this work. Instead, a desktop

application is preferred. The most important factor for that decision was the download

process of the output files. If a web based user interface was used, the user would

only be able to download the output files together after the job is completed. This

means that the user would have to wait some significant amount of time to download

the output after the job is completed. However, by using a desktop application this

problem has been solved. The developed desktop application has a synchronization

module. This module continuously checks the account of a user for files waiting for

download. By using this solution a rendered frame is downloaded to the computer of

the user immediately and therefore the download of the output files and the rendering

is overlapped.
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Because the Java RMI is used for communication layer, this application is also de-

veloped with Java. It is a GUI application with a user session mechanism. In other

words, the application asks for the credentials at start-up and displays the information

of that user until log out. In addition, it has two modes which are “admin” and “user”.

If the logging in user has administrator privileges, the application displays all jobs of

all users instead of only showing the jobs of the current user. In addition, it shows

the status of all worker computers in a detailed view for maintenance purposes. Oth-

erwise, if the logged in user is not an administrator, the user can only view the status

of his/her jobs together with some detailed log information collected from the worker

computers. The user has full control on his/her jobs such as cancelling, suspending,

restarting, changing priority or previewing the partial results.

4.3 Communication Cost Optimization

As explained in Section 3.1 the network load and the network load imbalance is ma-

jor problem for distributed animation rendering environments. Huge data transfers

occur at the time of job submissions and at the time of collecting the output from a

worker. The study of Chong et. al. [5] uses a lossless compression technique of the

input files to deal with this problem. Although their technique is very efficient and

elegant, it may not solve the problem in general. Because the majority of the input

file size is usually occupied by the textures instead of the scene definition containing

geometric objects, coordinates and directions. Moreover, the input file is transferred

to the workers only once before the job begins. On the other hand, the output files

flow to the render farm controller from the workers throughout the rendering process.

Therefore, the optimizations for the network load of the output files may be more

crucial especially if the resolution of the output files is high. Actually one may claim

that the transfer of the output files is not a problem since it can be overlapped with the

rendering. However, in general most of the render farms may not have dedicated net-

work. In the local area network of an organization or in a campus network there may

be so many other users using the same network lines. In this case if the render farm

worker count is high, so many worker computers will make the lines busy with their

output files. Consequently, this results in the deteriorated service quality for the other

40



users. Another interactive application that depends on the network bandwidth may

suffer from the high network load of the render farm. Therefore, a way to decrease

the size of the output files should be found.

The biggest advantage of working with motion picture is the temporal coherence.

The solutions proposed in this section and following one are highly dependent on the

temporal coherence. (More detailed explanation about the temporal coherence will

be given in Section 4.4.) The proposed solution for the network load problem in this

work is actually from another field which is video compression.

Current video compression techniques use three main techniques called “transforma-

tion & quantization”, “entropy coding" and “prediction" which is the most important

for this research since it is based on temporal coherence [14]. The technique “predic-

tion” is important since its connection to the temporal coherence makes it a good tool

for a research about motion picture rendering which also have temporal coherence.

Therefore it is highly applicable to the problem in this work.

To be precise, the proposed approach of this work is to compress the output image

files of the animation by using video encoding software. Actually, the outputs of

the renderers, which are frame by frame and in still image formats, will eventually be

combined into a video file since the aimed product of an animation is a motion picture

in other words a movie. In the commercial render farm solutions such as Backburner

of the Autodesk for now there is no option for getting the output as a movie if the

rendering is distributed to multiple computers. If the rendering is distributed to multi-

ple computers in Backburner, the output format can only be still image formats. That

means that the user must convert the set of output frames into a video file manually

after the rendering is completed for all frames. This requirement probably resulted

by the fact that the video encoding software currently handles the parallel comput-

ing differently than the 3D rendering software. The 3D rendering software currently

does not rely on the temporal coherence probably to increase the independence of the

frames and therefore the ability to distribute the frames to different computers. On

the other hand, the video compression techniques such as H.264 depend highly on the

temporal coherence. Thus, video encoding software such as H.264 needs data from

several frames at the same time [14]. Specifically a video encoder that will produce a
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single video file may be multi-threaded but must be one process working on a single

computer with common memory and it must get the input frames in the correct se-

quential order while building the video. It cannot skip a frame and fill the gap of that

frame later. Even though it is not impossible, this kind of software currently is not

designed to handle these situations. On the other hand, the straightforward distributed

rendering techniques are contradicting with these requirements since the finish times

of the frames may be very divergent and the frames can be finished in mixed order on

different computers that do not have a common memory. Therefore, the problem of

reducing the network cost is now can be reduced to using the video compression on a

distributed animation rendering environment with separate worker computers.

To reduce the network load, the video compression must be applied on the worker

computer before sending the output files to the render farm controller. This con-

tradicts with the requirement of having only one video encoder process running on a

single computer and producing a single video file. Despite the differences in handling

the parallel computing, the video encoding must be forced to work like rendering soft-

ware. In other words, in some way it must be distributed to separate computers. With

today’s video encoders this is only possible by applying the video encoder separately

to different continuous parts of the animation on different machines. In other words,

the proposed technique of this work distributes the frames to the workers in a spe-

cial way (which will be explained more detailed in Section 4.4) that each worker is

responsible from a continuous part of the animation. For example, in a render farm

with three workers, worker 1 may get the frames 1 to 100, worker 2 may get the

frames 101 to 500 and the worker 3 may get the frames 501 to 1000 of an animation

with 1000 frames. In the distribution scheme the workers creates a video encoding

process for its continuous part and starts to render the frames sequentially. When a

frame is completed, instead of sending the frame image file to the render farm con-

troller immediately, it feeds that file to the video encoder. Then, when all frames in

that continuous part are completed, the render farm worker software sends a close

command to the video encoder to finalize the single video file that corresponds to

the output of that continuous animation part. Then the render farm worker sends this

compressed single movie file to the render farm controller. Hence, the network load

because of the output of those frames is reduced as much as the compression ratio of
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the video compressor. Later when all workers have sent the video files that correspond

to their part, the render farm controller merges the parts according to their sequences.

Fortunately, this merging is possible with the video file containers such as “mp4" file

which is also called “MPEG-4 Part 14”. By using the mp4 file format which supports

streaming and merging, the render farm controller merges the output video without

needing to re-encode them. In other words, the cost of this merging stage is almost

identical to the cost of copying the final output video on the same disk.

Unfortunately, distributing the frames the way mentioned above makes the load bal-

ancing problem more complicated. It requires a special care to keep a balance be-

tween video compression ratio, load balance and fault tolerance. There is a crucial

tradeoff between high video compression and fault tolerance that will be explained in

Section 4.4. For example, the popular render farm solution Backburner of Autodesk

distributes the frames with dynamically adjusted but usually very small chunks. That

way it ensures the load balancing with its fine grained task distribution but the task

submission overhead increases consequently. Moreover, that task distribution scheme

makes the above mentioned video compression technique impossible because the

frames assigned to a worker is not continuous. For video codecs such as H.264 that

benefit from the temporal coherence having continuous big chunks is important. In

other words, it is better to encode one video file having 100 frames than acquiring

the same video file by merging 10 separately encoded video files having only 10

frames. With a task distribution scheme that does not consider the video compression

techniques, the second case occurs. At this point the reason behind that should be

examined. The video codec H.264 gives better compression ratio as the number of

continuous frames increases. This effect of temporal coherence on the video com-

pression ratio is illustrated in Figure 4.4.
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Figure 4.4: Effect of Temporal Coherence to Video Compression

The data on Figure 4.4 is acquired by 36 separate video encoding tests. In each test

a video is encoded from several image files using H.264 codec1. The horizontal axis

shows the number of images used in that test. The vertical axis shows the compression

ratio. For example, if the total size of the 64 frames used in a test is 100 megabytes

and the compression ratio is said to be 90% then the size of compressed video is 10

megabytes. The first 9 of these tests are illustrated with the curve having diamond

marks. In these tests all frames are completely the same. A quickly rising and ex-

tremely high compression ratio can be observed in this graph. The second test group

illustrated with curve having square marks. This curve corresponds to videos gener-

ated with different but coherent frames. Actually that frames belong to a real motion

picture. In that case a drop can be observed in the compression ratio but it is still high

and rising with frame count. Finally, the tests results illustrated on the curve having

triangle marks belong to the tests made with completely different random images. In

other words, there is no temporal coherence. In this case there is almost no rising

trend on the curve. Instead it manifests a constant compression ratio which is a re-

sult of the other compression techniques of the H.264 codec called transformation &

quantization and entropy coding which do not depend on temporal coherence [14].

1 Please refer to Appendix B for compression presets of H.264 used in the test
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4.4 Task Distribution Algorithm

As mentioned in Chapter 3 the challenge of rendering task distribution of an ani-

mation is the result of the per-task overheads. In other words, the initialization and

finalization processes that have to be done for each task assigned to a worker. Al-

though a fine-grained task division would provide a perfect load balancing, because

of that overhead the task division should definitely be coarse grained so that the ren-

der farm deals with less number of per-task overhead. However, when the coarse

grained task division is preferred, the problem of load imbalance may occur. There-

fore, the ultimate goal of this algorithm is to achieve a smart task distribution where

each worker has one task for one job and each worker finishes its task at the same

time as much as possible. This problem results in the need of two fundamental data

which are the cost distribution of the job and the performance metrics of the workers

so that the algorithm assigns each worker to a task that has a cost proportional to the

worker’s processing power. In the following two sections the approaches used to as-

sess the performance of the workers and to predict the cost distribution of the job are

explained in detail. Later the steps of the task distribution algorithm will be presented

in this chapter by combining the approaches in following two sections.

4.4.1 Measuring the Processing Powers of Render Farm Workers

It is crucial for the proposed task distribution algorithm to have a correct knowledge

about the performance of the workers. Therefore some benchmarking mechanism is

necessary. For this purpose the control software unit contains an embedded render-

ing task that is executed on each worker when it is connected to the system for the

first time. Naturally, this task execution may give different results in different times

depending on the other processes working on the machine. But it is assumed that the

staff is responsible for ensuring the machine is completely idle while connecting it

to the system for the first time. After this benchmarking the controller of the render

farm has knowledge about the processing power of the worker machine. However

the most important constraint about the approach proposed in this work is agility and

dynamism. To satisfy this constraint the system should keep the performance point

of the worker updated all the time. The need for this arises from the fact that the
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performance of a machine does not only depend on the hardware used in it. Instead,

the health of the operating system, file system, the system up-time or even the disk

usage may affect the performance of a system. Because of this, the controller should

dynamically update the performance points of the workers in the render farm.

While assessing the performance of a worker, the controller uses ratios. For example,

in a render farm containing hundred slow lap-tops and one powerful workstation the

performance point of the workstation may be “5.3”. On the other hand the perfor-

mance point of the same workstation may decrease to “0.7” if an extremely powerful

mainframe is added to the render farm. Because of this fact the performance point

of all workers are updated when there is any change in the statistics of the render

farm. This change may be completion of a frame, failure of a worker or first-time

connection of a new machine. After each of these events the performance point of

each worker is updated according to the below formula.

P = (W (n
frame

)⇥ T
benchmarkRF

T
benchmarkWorker

) + ((1�W (n
frame

))⇥ T
avgAllFramesRF

T
avgAllFramesWorker

)

W (n) = 0.3 + 0.7⇥
arctan(300�n

100 ) + ⇡

2

arctan(3) + ⇡

2

where:

P : The performance point of the worker

W (n): The function calculating the weight of the benchmark with respect to the

frame count

T
benchmarkRF

: The average benchmark task completion time of the whole render farm

T
benchmarkWorker

: The benchmark task completion time of the worker

n
frame

: Number of frames successfully completed by the worker since the first con-

nection

T
avgAllFramesRF

: The average frame rendering time of the whole render farm

T
avgAllFramesWorker

: The average frame rendering time of the worker

Basically this formula is a weighted average of the performance point acquired by

the benchmarking and the future tasks. At the moment of first connection the per-
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formance point of a worker is determined primarily by the benchmarking results. In

other words, the value of W (n
frame

) is 1. However, as the worker finishes some tasks,

the effect of the finished tasks gains more and more importance by time but never gets

more than 70%. The change of the ratio between benchmark and the statistical data

with respect to the rendered frame count is illustrated in Figure 4.5.

Figure 4.5: Visualization of Benchmark Weight Function

While designing the W (n) function, smoothness has been taken as an important con-

straint. The arctan function is used because of this. If the smoothness had not been

provided, the sudden changes in the processing power of a worker would result in

frequent task distribution changes while rendering.

There are two main constants in the function which are adjustable parts. The first

element 0.3 determines the minimum weight that the benchmarking point will take in

the future which corresponds to 30%. Secondly, the 300 value determines the frame

count for which the slope of the weight function is highest as can be seen from Figure

4.5. Increasing this value results in a more horizontal curve. In other words, the 300

term determines the change speed of the benchmark point weight in the processing

power point. These two values can be fine-tuned according to the job characteristics
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of the render farm.

The notion of weighted average is also important because of another issue which can

be explained with the example of an old render farm and a new worker connecting

to it. If the render farm finished some extremely heavy jobs in the past and the con-

temporary jobs are relatively lighter, the new worker would get a performance point

higher than it deserves because of the difference in jobs that contribute to the render

farm average and the worker average. However, thanks to the weighted average this

will not be a problem since the effect of the task averages to the performance point

will increase after some significant amount of work.

The advantage of using the ratios for performance points will be clearer while ex-

plaining the cost prediction algorithm. To summarize, the aim of using ratios is to

have ability to solve the following simple equation: “How much time will it take for

worker A to render frame n if the worker B has rendered it in t time where the perfor-

mance points of the workers A and B are 1.3 and 0.8 respectively?”. Answering this

question is simply the first stage for a good task distribution.

4.4.2 Predicting the Cost Distribution of Job

As mentioned in Chapter 2 the problem of cost prediction is an important topic in

distributed rendering optimizations because it is crucial for a good load balancing.

Actually, if fine-grained task division was used and if the workers were just picking

a small task when idle, this would not be a problem and naturally the work load of

each worker would be proportional to the processing power of the worker. However

because of the per-task overhead and the compression characteristics of the video

compression algorithms mentioned in Section 4.3 coarse-grained task division must

be used and therefore every task should be divided by the controller according to the

processing power of the worker that it will be assigned to.

The problem arising at this point is that the performance of worker is not the only

variable, but the costs of the frames of a job are also variable. Namely, in an animation

movie there may be some high number of different scenes and each of them may

have different complexity in terms of geometry and lights. Moreover, even in the
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same scene, as the camera moves the distance of a complex object to the camera may

change and this also affects the cost of the frames. This situation can be illustrated

with Figure 4.62.

Figure 4.6: Cost Difference Caused By The Camera Angles

In Figure 4.6 two frames are presented from one of the test inputs of this work named

“Aslan_dans_project.max”. This input file contains only one scene but the camera

and the actor moves throughout the movie. In frame 210 (on the left hand side) the

actor is far from the camera compared to the frame 784 (on the right hand side).

Thus, in frame 210 some other objects from the scene are also visible; whereas, in

the frame 784 the only object rendered is the actor. As a result the rendering costs

of these two frames are different. Namely, the frame 210 and 784 took 40.213 and

24.325 seconds to render respectively (with 400x320 resolution and on an Intel i7

8GB RAM machine). Therefore, the rendering time of frame 210 is 83% higher than

the rendering time of frame 784. In case of a bad task distribution plan this difference

may cause a significant load imbalance.

As mentioned in Chapter 2 Reinhard et. al. [17] proposed to build a spatial subdi-

vision tree for cost prediction. This approach is not suitable for this work since it

requires detection of the scene contents which is avoided in this research in order

to create a more generic solution. Secondly, Gillibrand et. al. [7] use a profiling

technique which renders a small subset of the scene for a few pixels. This method

does not need to parse the scene file. However, this method is more suitable for a

2 The pictures in figure are from an animation project provided by Zor Zanaat Animation Studio
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fine-grained task division or for a real-time distributed rendering in which the closest

dead-line is one frame instead of the whole job. Moreover, the methods of Reinhard

et. al. [17] and Gillibrand et. al. [7] would be unnecessarily costly because the level

of cost prediction precision they provide is unnecessary for an animation rendering

job which may take extremely long times unlike the real-time distributed rendering.

In this research, a lighter and cheaper algorithm should be used.

Although the method of Gillibrand et. al. [7] cannot be directly used for this work, it

gives a clue for the solution. The proposed cost prediction approach of this work also

uses the profiling notion but the main difference with the solution of Gillibrand et. al.

[7] is that this technique profiles frames instead of pixels. To be more precise, before

starting to render a job the system prepares a subset of the frames with constant gaps.

For example, the profiling frame subset for an animation with 100 frames may be

1, 10, 20, . . . , 100. Each of these frames will be assigned to a worker. After rendering

these frames the system will have a rough cost map of the job. As will be explained

later in this chapter the first task distribution plan will be based on this rough cost

prediction. Even though it is rough at first, as the frames are completed this map will

be refined by time. In other words, the profiling is not a preprocessing stage in this

approach. Instead it is the rendering itself and the profiling continues as long as the

rendering continues by refining the cost map. This continuous refinement has a great

benefit for the agility of the task distribution algorithm. Another advantage of this

method is that the time spent for profiling is not wasted since the output files of the

profiling stage is also the output of the rendering itself.

Besides the advantages mentioned above, a big question arises for this approach. In

the early stages of the rendering, when there are only a few finished frames, will the

cost prediction be reliable enough? The answer to this question does not only depend

on the algorithm but also the characteristics of the scene. Namely, if the camera

angles or the scene geometry changes dramatically in every frame, this approach

will probably provide a bad estimation. However, this is not the case for most of

the animations. An animation movie that is produced for humans should have some

degree of continuity. Therefore, the term “Temporal coherence” is a reliable base for

this approach. Temporal coherence can be illustrated in Figure 4.7.
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Figure 4.7: Effect of Temporal Coherence on Cost Distribution

In Figure 4.7 the cost effect of temporal coherence is shown. The data belongs to

the frames between 850 and 930 from the test animation “Aslan_dans_project.max”.

Throughout this animation the scene contents are always the same. In other words, the

complexity of the scene contents does not change. However, the changes in the view

angle and the position of the actor affect the frame costs dramatically. The sudden

cost change at frame 880 is because of that fact. On the other hand, except this scene

change area there is a significant coherence between the frames. This coherence is

illustrated by selecting three random frames from each area. As mentioned before,

animation files contain plenty of coherent areas and some inconsistent transition areas

in between. Fortunately, as can be observed from Figure 4.7 the proportion of the

coherent areas is far more that the inconsistent areas. For example, in this experiment

there is only one inconsistent frame transition for 80 consistent frame transitions and

this ratio may be even greater. As a result, counting on the temporal coherence is

statistically reliable for estimating the frame costs.
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4.4.3 The Algorithm

Figure 4.8: Basic Structure of the Task Distribution Algorithm
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In this section of this chapter the core algorithm of the “RenderFarm Controller” soft-

ware unit is presented. As mentioned at the beginning of this chapter the proposed

algorithm aims to maintain the load balance between render farm workers and in-

crease the video compression ratio by using the techniques explained in Sections 4.3,

4.4.1 and 4.4.2. The basic structure of the algorithm is illustrated in Figure 4.8. As

can be seen from Figure 4.8 the algorithm is event based. After each event the al-

gorithm carries out the necessary steps and halts until a new event is received. The

events are as follows:

• Change of Job Queue: This event occurs when the first job of the job queue

changes. This can be caused by inserting a job when there is no other job,

inserting a job with higher priority than the job that is currently in the first

order in the queue, pausing the first job of the queue, resuming a job having

higher priority than the first job of the queue and finally deleting or cancelling

the first job of the queue. The task distribution system needs this event to know

which job to process.

• Change of Job Completion Percentage: This event is triggered when a frame

is completed by its render farm worker. The task distribution system needs this

event to ensure load balance during the whole progress of the job and know the

completion of rendering.

• Change of Video Coverage: This event is triggered when the compressed

video of a task is received by the render farm controller. The task distribu-

tion system needs this event to know the moment of completion of a job. Be-

cause of the video encoding approach, the job is not completed when its frame

rendering percentage reaches 100%. In other words, the job is not finished

until all encoded video files are received even though all frames are rendered

by the workers. Therefore, after the “Change of Job Completion Percentage”

event reports 100% frame rendering percentage, the state of job is set to “Post

Rendering” and the task distribution system waits for the “Change of Video

Coverage" event that reports all video files are received. Then the state of the

job is set to “Finished”. After the status of current job is set to “Finished” the

job queue is refreshed and this triggers the “Change of Job Queue” event.
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• Change of Task Status: This event is triggered when one of the sub tasks of the

current job changes. The possible states for tasks are “Pending”, “Rendering”,

“Cancelled”, “Post Render”, “Finished” and “Failed”. When a task is created

its task is “Pending”. When the worker starts its task the status is changed to

“Rendering”. If any error occurs or the worker disconnects unexpectedly, the

status of the task is changed to “Failed”. When the whole job is cancelled or

a specific task is retracted from its worker the task status is set to “Cancelled”.

When all frames are rendered, the status is set to “Post Render” before the task

is marked as “Finished”. In this stage the worker encodes the result video and

uploads this video to the render farm controller.

• Change of Worker Configuration: This event is triggered when the set of

currently available workers is changed or when the relative processing power

of the workers change. The set of currently available workers change when a

new worker is connected, a worker is disconnected or the activeness of a worker

is changed by the render farm administrator. The relative processing powers of

the workers may change after the completion of each frame. When a worker

reports that it has rendered a frame it also reports the elapsed time. With this

value all relative processing powers are updated with the formula explained in

Section 4.4.1. The task distribution system needs this event to maintain the

load balance and ensure that the most optimal worker set is used throughout the

rendering process.

Above mentioned above five events call the procedure named processJob(); when

triggered. The processJob(); is given in Algorithm 1. The algorithms given below

work on the following shared data:

Variables:

• J is the currently rendering job

• N is the number of frames in the current job

• F is the array containing all frames of the current job having size N and sorted

by frame number
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• N 0 is the number of frames in the cost map where N 0 < N

• C is the array containing the cost map frames where C ⇢ F and sorted by

frame number

• W is the array containing all workers assigned to the current job

• W
all

is the array containing all workers of the render farm

• T is the duration of the output animation movie

• C
percentage

is the ratio between cost map frames and all frames as percentage

which is 100⇥ N

0

N

• R is a mapping denoting the task distribution regions. More precisely, R =

{W ⇥ (F ⇥F ) | Worker w is responsible for rendering the region starting with

f1 and ending with f2 where w 2 W , f1 2 F , f2 2 F and f1 < f2}

• costPredictionEnabled is a flag indicating the cost prediction is possible

• initialized is a flag indicating the initialization of the cost map is done

Constants:

• N 0
min

:= 10 is minimum number of frames in C

• C
minPercentage

:= 4 is the minimum for C
percentage

• C
maxPercentage

:= 15 is the maximum for C
percentage

• C
costSamplePerSecond

:= 1 is the cost map frame count for one second of the

animation.

• n
max

:= 50 is the maximum number of frame in a sub task

• � := 1.2 is the cost increase acceptance factor when task distribution map

changing

.
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Algorithm 1 The Main Task Distribution System Algorithm
1: function PROCESSJOB()

2: if ¬initialized then

3: INITIALIZECOSTMAP()

4: end if

5: if ¬ANYFRAMENOTTRANSFERRED(F ) then

6: SETJOBSTATUS(J, F inished)

7: return . The job is completed.

8: end if

9: if ¬ANYFRAMENOTRENDERED(F ) then

10: SETJOBSTATUS(J, PostRender)

11: return . Wait until all rendered frames are transferred

12: end if

13: if MISSINGWORKERDETECTED(W ) then

14: R ? . Task distribution plan is invalidated

15: end if

16: R0  SUGGESTTASKDISTRIBUTION(F ) . Suggest optimal task distribution

17: if (R = ? _ ISREGIONCHANGENECESSARY(R,R0)) then

18: if W 6= ? then

19: for i 1, |W | do

20: CANCELTASKOFWORKER(W ) . Cancel current tasks of the workers

21: end for

22: end if

23: R R0 . The new task distribution is accepted

24: |W | |R|

25: for i 1, |R| do

26: W [i] GETWORKEROFREGION(R[i]) . Reinitialize the worker list

27: end for

28: end if

29: if ANYFRAMENOTASSIGNEDORRENDERED(F ) then . While there is a frame to assign

30: for i 1, |W | do

31: w  W [i] . For each worker w

32: r  GETREGIONOFWORKER(w,R)

33: i
regionStart

 GETSTARTINDEXOFREGION(r)

34: i
regionEnd

 GETENDINDEXOFREGION(r)

35: costMapPhase  costPredictionEnabled ^

¬ANYFRAMENOTASSIGNEDORRENDERED(C) . Cost map generation phase or not
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36: if ¬ISWORKERBUSY(w) then

37: j  0

38: . Determine the frames to assign

39: . Get each frame if not cost map generation phase

40: . otherwise pick only cost map frames

41: for i i
regionStart

, i
regionEnd

do

42: f  F [i]

43: if (costMapPhase ^ f 2 C) _ ¬costMapPhase then

44: F
region

[j] f

45: j  j + 1

46: end if

47: end for

48: if i
regionStart

= 0 then . If left most region

49: regionCenterFrame F [0]

50: else if i
regionEnd

= |F | then . If right most region

51: regionCenterFrame F [|F |]

52: else . Middle regions

53: regionCenterFrame F [
i
regionEnd

+ i
regionStart

2
]

54: end if

55: SORTBYDISTANCETOREGIONCENTER(F
region

, regionCenterFrame)

56: for i 1, MIN(n
max

, |F
region

|) do

57: F
task

[i] F
region

[i]

58: end for

59: if |F
task

| > 0 then

60: ASSIGNTASKTOWORKER(w,F
task

)

61: end if

62: end if

63: end for

64: end if

65: end function

In line 3 of Algorithm 1 the cost map of the job, which is a mapping from workers

set to frame intervals, is initialized at the beginning of a job. The algorithm used in

function InitializeCostMap() is given in Algorithm 2. Then at line 5 the algorithm

checks whether the output of all frames is received by the render farm controller. If

so the job is finished. As mentioned in Section 4.3, to be able to carry out video
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encoding, render farm workers do not send the output of the frames until the task is

completed. When the task is completed, all image outputs of the frames will be en-

coded into a video file. Therefore, until the end of a task, the frames in that task may

be rendered but not yet transferred. Because of that fact, at the very last moments

of a job, all frames may be rendered but the uploading of the result videos may be

in progress. In that period of time the state of the job is marked as “Post Render”.

The if block at line 9 is responsible from this decision. The next if block at line 13

invalidates the task distribution plan when any worker of the job becomes unavail-

able. In that case becoming unavailable may be result of an unexpected failure, a

network problem or intentional removal from the system by an administrator. In any

way if there is previous task distribution plan R, it should be cancelled and a new one

should be used. Then at line 16 an optimal task distribution plan is created by the

function SuggestTaskDistribution and this mapping is assigned to a local variable R0

to be compared with the current task distribution plan R. This comparison is done

by calling the function isRegionChangeNecessary at line 17. The purpose of com-

paring the currently working task distribution plan with the suggested optimal one is

to detect any load imbalance. The fact that this comparison is done very frequently

gives the dynamism to the system, which makes it possible to detect load imbalance

immediately when it exceeds some threshold. The algorithm used in function isRe-

gionChangeNecessary, which is developed for the decision of change the old task

distribution regions with the new optimal ones, is given in Algorithm 4.

Then at line 30 there is the big for loop block which assigns the frames to the suitable

workers. For carry out that task, the algorithm first determines whether the job is in

cost map phase or not. (Line 35) The meaning of being in cost prediction phase is

that assigning the equally spaced cost map frames to the workers before assigning all

frames sequentially. By doing this the system tries to have an estimated knowledge

about the frame cost based on the ideas given in Section 4.4.2. Thus the array F
region

is filled by all frames of the region or by the selected cost map frames in that region

according to the variable costMapPhase. Later at line the algorithm finds the most

secure frame of the region which is called the region center. The notion of being

secure for a frame means that having the highest probability of belonging to the same

worker till the end of job. This is one of the most important optimizations of this
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algorithm. For a frame belonging to the same worker is important because if that

frame is rendered by a worker A and later its neighbor frame is rendered on a different

worker B because of a task distribution plan change, this result with a break off in

the output video. Consequently, the compression ratio of the result video file will

decrease because of the facts explained in Section 4.3. Considering the dynamic load

balancing approach of the algorithm, the frames close to the region boundaries is

more prone to change region in the initial moments of the job since the reliability of

cost map is lower at the beginning. Thus the rendering order of frame is not the frame

number but the distance to the so called region center. In other words, rendering starts

from the the most secure frame of the region.

After sorting the frames according to their distance to the region center, the algorithm

chooses the first n
max

of the frames to assign to the worker. The task size in this sys-

tem is limited to n
max

because of a tradeoff. As mentioned above the video encoding

approach requires holding the rendering result until the end of the task to encode the

image files into single video file. However, because of that behavior, if the worker

fails in the middle of a task, the frames which are rendered but not yet transferred

becomes un-rendered since it is now impossible to reach their outputs. As a result,

instead of assigning all regions to the worker at once, the size of a task is limited to

n
max

.

The specific value 50 for the n
max

is chosen according to the main conclusion that is

derived from the experiments demonstrated in Figure 4.4 and the details of the video

compression technique called “Prediction" [14]. According to the experiments the

compression ratio increases as the number of coherent and adjacent frames increases.

The rising trend of the curves of same and coherent frames (diamond and square

mark) in Figure 4.4 is a result of that feature of H.264 video codec. Therefore, one of

the main constraints of the task distribution algorithm is to assign big continuous parts

to the workers. In other words, it should implement a coarse grained task distribution.

However, as mentioned before, there is a tradeoff and it should not relinquish the load

balance to enlarge these task parts since bigger sub-tasks means higher possibility of

load imbalance. Fortunately, the effect of temporal coherence on compression ratio

does not necessarily require the sub-tasks to be as big as possible. As can be seen

from Figure 4.4, the rise of the compression ratio slows down significantly after 50
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frames in a video. In other words, a video with 1000 frames and 50 frames have very

similar compression ratios because of the size of the prediction window size of the

H.264 video compression. Therefore “50 frames” is a good maximum sub-task size

to choose. Therefore, the maximum task size in the algorithm is also set to be 50

frames. In other words, even if a huge region having 2000 frames is assigned to a

worker, the worker can get at most 50 frames in one sub task. Therefore, that region

with 2000 frames may be rendered with 40 separate sub tasks.

Algorithm 2 Cost Map Initialization Algorithm
1: function INITIALIZECOSTMAP()

2: N 0  T ⇥ C
costSamplePerSecond

3: C
percentage

 100⇥ N

0

N

4: if C
percentage

< C
minPercentage

then

5: C
percentage

 C
minPercentage

6: N 0  T ⇥ C
costSamplePerSecond

7: end if

8: if C
percentage

> C
maxPercentage

then

9: C
percentage

 C
maxPercentage

10: N 0  T ⇥ C
costSamplePerSecond

11: end if

12: if N 0 < N 0
min

then

13: costPredictionEnabled false

14: N 0  T ⇥ C
costSamplePerSecond

15: else

16: costPredictionEnabled true

17: costmapGap (N�N

0)
N

0�1

18: |C| N 0

19: C[1] F [1]

20: for i 2, N 0 do

21: C[i] F [(i⇥ costmapGap) + i]

22: end for

23: C[N 0] F [N ]

24: end if

25: initialized true

26: SETJOBSTATUS(J,Rendering)

27: end function
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As mentioned above Algorithm 2 is responsible from creating the cost map which is

actually a subset of all frames whose elements are equally spaced frames. To be more

precise, the algorithm first tries to determine how many of the frames will be in the

cost map C. The key factor in this calculation is the constant C
costSamplePerSecond

.

The algorithm determines how many frames correspond to one second of the anima-

tion using the frame rate value. Then it calculates the C
percentage

and checks whether

it is between the allowed minimum and maximum. As long as C
percentage

is between

C
minPercentage

and C
maxPercentage

values, the system tries to render C
costSamplePerSecond

⇥
T frames in the cost prediction phase. For example, for an animation with 25 FPS

and 10000 frames (400 seconds) there will be 400 cost map frames which results

C
percentage

to be 4 which is in the limits. FPS value may change the C
percentage

value,

however if the calculated C
percentage

exceeds the limits, it will be recalculated with

a different n
costSamplePerSecond

to keep it in limits. Unfortunately, there is another

minimum which is the minimum number of frames in the cost map. If an animation

is so small that cost map contains less than N 0
min

frames even with the maximum

C
percentage

, the cost prediction phase will be disabled since the cost map will be unre-

liable. Straightforward rendering approach will be used in that case.

The purpose of Algorithm 3 is to generate the most load balanced and optimal task

distribution plan at any moment. As mentioned before, the algorithm 4 decides to use

that task distribution or not. At line 2, the workers are sorted according to their relative

processing power. The purpose of that is to choose the most powerful machines if

there are more workers than the frame count even though this is a small probability.

Then the total processing power and the total remaining cost of frames is calculated.

Rest of the idea is straight forward. The list of all remaining frames is partitioned into

continuous regions having costs proportional to the processing power of the worker

that it is assigned to. As a result this creates a worker-region mapping list R which

is expected to be load balanced according to the current knowledge about the job and

the workers.
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Algorithm 3 Task Distribution Suggestion Algorithm
1: function SUGGESTTASKDISTRIBUTION(F )

2: SORTBYPROCESSINGPOWER(W
all

)

3: totalWorkerPower  0

4: for i 1, MIN(|W
all

|, |F |) do

5: W
optimal

[i] W
all

[i] . Get the most powerful workers

6: totalWorkerPower  totalWorkerPower + GETPOWEROF(W
all

[i])

7: end for

8: totalRemainingCost 0

9: for i 1, |F | do

10: if ¬ISRENDERED(F [i]) then

11: totalRemainingCost totalRemainingCost+ GETCOSTOF(F [i])

12: end if

13: end for

14: for i 1, |W
optimal

| do

15: w  W
optimal

[i]

16: powerProportion GETPOWEROF(W
all

[i])

totalWorkerPower
17: regionTargetCost totalRemainingCost⇥ powerProportion

18: i
regionStart

 0, i
regionEnd

 0, cost 0

19: for j  i
regionStart

, |F | ^ cost < regionTargetCost do

20: f  F [j]

21: if ¬ISOUTPUTREQUESTED(f) ^ ¬ISOUTPUTRECEIVED(f) then

22: cost cost+ GETCOSTOF(f)

23: end if

24: i
regionEnd

 i
regionEnd

+ 1

25: end for

26: if cost > 0 then

27: R
result

[i] (w, (i
regionStart

, i
regionEnd

))

28: if i
regionEnd

> |F | then

29: break

30: end if

31: i
regionStart

 i
regionEnd

+ 1

32: i
regionEnd

 i
regionStart

+ 1

33: end if

34: end for

35: return R
result

36: end function
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Algorithm 4 Task Distribution Change Decision Algorithm
1: function ISREGIONCHANGENECESSARY(r, r0) . r is the current and r’ is the suggested regions

2: if r0 = ? _ AREREGIONSSAME(r, r0) then

3: return false

4: end if

5: if r = ? then

6: return true

7: else

8: t
remainingCurrent

 GETCURRENTREMAININGTIME(r)

9: t
remainingNew

 GETREMAININGTIMEAFTERREGIONCHANGE(r0)

10: if t
remainingNew

⇥ � < t
remainingCurrent

then

11: return true

12: else

13: return false

14: end if

15: end if

16: end function

At any moment of the job, the system generates an optimal task distribution plan and

the Algorithm 4 decides whether to cancel the current task distribution and switch to

the new one. The key point in this decision is the estimated remaining times which

is calculated by Algorithm 5. As can be seen between lines 8 and 14, the algorithm

gets the remaining time estimations for the current task distribution and the suggested

one. Then, it decides to switch to the new one if the new one will make the current

job to finish earlier. At this comparison the estimated remaining time for the new task

distribution plan is multiplied with � to decrease the probability of wrong decisions

that can increase the rendering time caused by the task cancellation penalty which is

low video compression ratio and increased task submission costs.

.
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Algorithm 5 Remaining Time Estimation Algorithm
1: function GETCURRENTREMAININGTIME(r, afterRegionChange)

2: if ¬ANYFRAMERENDERED(F ) then

3: return -1

4: end if

5: t
Job

 0 . Remaining time of job

6: w  GetWorkers(r)

7: for i 1, |w| do

8: i
regionStart

 GETSTARTINDEXOFREGION(r[i])

9: i
regionEnd

 GETENDINDEXOFREGION(r[i])

10: reminingCost 0 . Remaining scaled cost of region

11: n
unassignedFrames

 0 . Number of unassigned frames

12: for j  i
regionStart

, i
regionEnd

do

13: if afterRegionChange then

14: if ¬ISOUTPUTREQUESTED(F [j]) ^ ¬ISOUTPUTRECEIVED(F [j]) then

15: reminingCost reminingCost+ GETCOSTOF(F [j])

16: n
unassignedFrames

 n
unassignedFrames

+ 1

17: end if

18: else

19: if ¬ISRENDERED(F [j]) then

20: reminingCost reminingCost+ GETCOSTOF(F [j])

21: end if

22: if ¬ISASSIGNED(F [j]) then

23: n
unassignedFrames

 n
unassignedFrames

+ 1

24: end if

25: end if

26: end for

27: t
Region

 reminingCost

GetRelativeProcessingPowerOf(w[i]])

28: n
taskSubmission

 n
unassignedFrames

n
max

29: t
taskSubmission

 n
taskSubmission

⇥ GETSTARTUPTIMECOSTOF(w[i])

30: t
Region

 t
Region

+ t
taskSubmission

31: if t
Job

< t
Region

then

32: t
Job

 t
Region

33: end if

34: end for

35: end function
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Together with the techniques given in Section 4.4.2, algorithm 5 is one of the most

important parts of the task distribution system since good remaining time estimation

is the key of load balancing. The main idea of this algorithm is that the remaining

time for a job is the maximum of the remaining times of workers. The if block at

line 31 corresponds to this maximum calculation. But before that the challenge is

to calculate the remaining time for each worker according to its given region. To

do that, firstly, total scaled cost and number of the remaining frames should be cal-

culated. However, the term “remaining” gets two different meanings according to

the use case of this function. The if block at line 13 emerges because of this. The

afterRegionChange parameter of the function determines this use case as can be

seen at line 8 of Algorithm 4. If the function is used to calculate the remaining time

of the suggested regions after canceling the current one, the afterRegionChange

variable is set to be true and the first part of the if block at line 13 works. In case of

cancelling the current task distribution, a frame which is rendered but not yet trans-

ferred to the render farm controller becomes both un-rendered and un-assigned after

the task cancellation. On the other hand, in case of calculating for the current task

distribution without cancelling, even though the output is not transferred yet, it will

arrive in the future. Therefore, a rendered but not transferred frame is not considered

to be remaining. After collecting the remaining scaled cost information, to change

the scaled cost information into remaining time information, the cost is divided by

the relative processing power of the worker. (Line 27) Unfortunately, the rendering

time does not correspond directly to the remaining time of worker. There is also

t
taskSubmission

which is the total task submission overhead that will be occurred in the

future. To calculate this value total number of future task submissions is multiplied

by the renderer start-up time of worker which is detected while initial benchmarking.

Naturally, the renderer startup time does not depend on the job.

4.4.4 Complexity Analysis of the Algorithm

The time complexity of Algorithm 1 depends on the other algorithms because all

other algorithms are used in Algorithm 1. The time complexity of Algorithm 2 is

O(n) where “n” is the frame count of the animation. The complexity of Algorithm 3

is O(wn) because of the nested loop at line 19 where “w” is the worker count. The
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complexity of Algorithm 4 equals to the complexity of the Algorithm 5 because it

directly calls the function GetCurrentRemainingTime(). Algorithm 5 has also com-

plexity O(wn) since it loops on frames inside a loop running on workers list. Fortu-

nately, the function processJob(), which implements Algorithm 1, does not call the

other algorithms in loops. However, at line 55 of Algorithm 1 the frame list is sorted

in a loop running on the workers list. Because the complexity of this sorting operation

is O(nlogn) the complexity of Algorithm 1 is O(wnlogn).
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CHAPTER 5

RESULTS AND DISCUSSION

After implementing the algorithms presented in Chapter 4 together with the rest of

render farm software some tests have been carried out on the render farm built in

MODSIMMER. The hardware configuration of the render farm is given below:

Hardware Configuration of Workers 1-6:
CPU: Intel Xeon E5620 2.40GHz

Memory: 24 GB

HDD: 7200 RPM

Network: Gigabit Network Adapter

Hardware Configuration of Workers 7-10:
CPU: Intel Core 2 Duo E7400 2.80GHz

Memory: 2 GB

HDD: 7200 RPM

Network: Gigabit Network Adapter

All computers are connected with gigabit network switches. Throughout the rest of

this chapter, the worker numbers 1-10 mentioned above will be referred for each test.

The software used during the tests is Autodesk 3DsMax Design 2013 with MentalRay

Renderer.

As mentioned in Chapter 3 this research has two main problems to solve. The first

is reducing the network communication load of the render farm and the solution pro-

posed for this is to compress the renderer output before sending from render farm
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worker to the render farm controller. The test results to measure the efficiency of this

approach are evaluated in Section 5.1. The second main problem addressed in this

research is to ensure load balancing while increasing the video compression ratio as

much as possible and keeping the task submission overhead minimum. The results of

tests about the approach addressing this problem is presented in Section 5.2

5.1 Test Results of Network Load Reduction Approach

To measure the network usage during this test a piece of network monitoring software

is used. After running the network monitoring software on the machine that the render

farm controller is running on, two test jobs have been submitted to the render farm

controller and the rendering started. The jobs have been submitted to workers 1, 2, 3,

4, 5, 6 with the following adjustments:

Job adjustments for test run #1:
Video Encoding: Disabled

Output format: bmp

Output resolution: 1920x1080

Frames: 1-250

Job adjustments for test run #2:
Video Encoding: Enabled

Output format: mp4 (Codec: H.2641)

Output resolution: 1920x1080

Frames: 1-250

For the first run, the video encoding is disabled while submitting the job and for

the second run the video encoding was enabled. As can be seen from the above

adjustments the only difference in these two test runs is the enable/disable status

of the video encoding optimization. The reason for making the same test with this

difference is to see the effect of video encoding approach on the network utilization.

1 Please refer to Appendix B for compression presets of H.264 used in the test
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Figures 5.1 and 5.2 are acquired from the network monitoring software and show the

network load on the controller machine.

Figure 5.1: Network Load When Communication Cost Optimization is Disabled

Figure 5.2: Network Load When Communication Cost Optimization is Enabled

The data shown in Figure 5.1 belongs to the test run #1. According to the results the

total data flown from the workers to the controller is 1.5 gigabytes. When the output

files, which are sent as separate images, are examined the total size of the files is

calculated as 1.42 gigabytes (average bmp image file size was 5.9 megabytes), which
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means that 82 megabytes of network load is created by the procedural communica-

tions between the workers and the controller. This procedural communications are

primarily status reports of the tasks from the workers to the controller. When Figure

5.2 is examined, it is observed that the total data flown into the controller machine is

79.5 megabytes in test run #2. The total size of the output files, which are sent as com-

pressed videos, is calculated as 7.7 megabytes. This results show that the proposed

approach for decreasing the communication cost has a great success. The outgoing

network load caused by the render farm workers is decreased by 94.8% when the total

data flow is considered. When the data flow caused by the procedural communication

is subtracted from the total data flow, the success of this approach manifests itself

more dramatically. In this way, it is observed that the data flow caused by the out-

put file uploading is decreased by 99.5% by the video encoding approach. When the

test run #1 is repeated with jpeg2 as output format instead of “bmp” the percentages

94.8% and 99.5% becomes 53.5% and 90.4% respectively. However, the results ac-

quired by bmp files are more important because the jpeg compression decreases the

quality of the image files. After the rendering when the user applies the video encod-

ing to the compressed jpeg files, the final quality of the video file will be lower than

the quality of a video acquired by encoding the uncompressed bmp files. Therefore,

in a production rendering bmp output file format would probably be more preferable

since the quality is very important.

The optimization technique for decreasing the network cost in this research can be

extremely beneficial in the following cases. First of all, if the render farm is built on a

wide area network with a narrow band network connection, the overall performance

will increase with this optimization. Because the output upload operations of the

workers may accumulate to the end of job because of the low data transfer rates, even

if the rendering is finished, the arrival time of the final product is delayed and thus

the overall rendering time increases. Secondly, even if the network connection is not

narrow band, high network load of a render farm can still be a problem. A campus

network with a render farm distributed on it may be a good example for this issue.

The worker computers of this render farm might be very distant when compared to

a local area network. Therefore, the packets of the render farm do not only pass

2 Compression quality parameter was set to 100 (best quality) and smoothness was set to 0 in the jpeg settings
of 3DsMax
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through switches but also through routers which might be affected by congestion.

Moreover, so many other people might use the same network at the same time for the

interactive applications such as video streaming or remote desktop connections. If the

network load of the render farm is so high, these interactive applications will probably

be affected. Therefore, decreasing the network load provides significant benefits for

these kind of render farm setups too.

5.2 Test Results of Load Balanced Task Distribution Approach

The task distribution system tries to provide a better compression ratio to the video

encoding approach used for network load optimization. This is done by applying

a coarse grained task distribution. In other words, the frames of the animation are

assigned to the workers as continuous groups which are as big as possible. However,

as mentioned in Chapter 3 there are some tradeoffs. As the sub tasks get bigger,

the system becomes more prone to load imbalance. The tests presented in Sections

5.2.1 and 5.2.3 have been done to verify that the proposed approach deals well with

this tradeoff. The test presented in Section 5.2.2 is to evaluate the precision of cost

prediction based on the temporal coherence. The test presented in Section 5.2.4 is

to show the scalability of the system. Finally, section 5.2.5 shows a comparison of

the overall rendering times of this system and the popular commercial render farm

product “Backburner” with a case study.

5.2.1 Video Compression Ratio

The success of the approach proposed in Section 4.3 mainly depends on the compres-

sion ratio of the video encoding. Because of the tradeoffs mentioned in Section 3.1

the system may not always provide the most optimal compression ratio. Consider-

ing the nature of the task distribution algorithm, the output images of the animation

are not combined into a single video at once. While producing a single video file at

once provides the best compression ratio, the task distribution system produces sev-

eral video files to be merged later. In other words, the workers produce video parts

for the region that they are responsible from. For example, if a worker is assigned
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to a region from frame 100 to frame 130, at the end of the task it uploads a video

file like “100-130.mp4”. Later, at the end of the job, these video files are merged to

get the final video file. Consequently, the break offs in the videos might decrease the

compression ratio. The question is how much it decreases. To measure this, the input

file used in this case study is rendered on the render farm. Workers 1, 2, 3, 4, 5, 6 are

used for this test. The test is repeated two times with the following adjustments:

Job adjustments for test run #1:
Video Encoding: Disabled

Output format: bmp

Output resolution: 1920x1080

Frames: 1-1000

Job adjustments for test run #2:
Video Encoding: Enabled

Output format: mp4 (Codec: H.2643)

Output resolution: 1920x1080

Frames: 1-1000

After the output files of the test run #1 have been acquired, the total size of the output

images is calculated as 6.22 gigabytes. On the other hand, the size of the final output

file from the test run #2 is 16.3 megabytes. That means that the proposed approach of

this research have provided 99.744% compression ratio. To see how much compres-

sion ratio is relinquished for load balanced task distribution, the output files acquired

from the test run #1 are compressed into a single video file by a piece of video en-

coding software with the same quality level. The output size of this video file was 15

megabytes. That corresponds to 99.764% which is the maximum possible compres-

sion ratio for that output and quality level. As a result, it is observed that because of

the break offs in the video files, the system loses 0.02% compression ratio.

If the test run #1 is repeated with jpg4 as the output format, the total size of the output

3 Please refer to Appendix B for compression presets of H.264 used in the test
4 Compression quality parameter was set to 100 (best quality) and smoothness was set to 0 in the jpeg settings

of 3DsMax
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images is 377.5 megabytes. After encoding these jpg files into a single video file,

same video with size 15 megabytes is acquired. This means that with jpg output file

format the optimal video compression ratio is 96.02% and the video compression

ratio of the render farm is 95.68%. Thus the loss in compression ratio for the jpg case

is 0.35%.

As a result, in both cases the loss in compression ratio is negligible. This proves

the idea mentioned in Section 4.4. According to that idea, the effect of temporal

coherence on compression ratio does not necessarily requires the sub tasks to be as

big as possible. As can be seen from Figure 4.4 the rise of the compression ratio

slows down significantly after 50 frames in a video. In other words, a video with 1000

frames and 50 frames have very similar compression ratios because of the prediction

window size of the H.264 video compression. Therefore, the success of the proposed

approach in providing good video compression has been proved.

5.2.2 Cost Prediction and Remaining Time Estimation

Before assessing the load balancing performance of the proposed approach, the pre-

cisions of the cost prediction and the remaining time estimation should be tested,

because the success of the load balancing approach proposed in this research directly

depends on the precisions of the cost prediction and the remaining time estimation.

As can be seen in Algorithm 2 in Chapter 4, the system first initializes a cost map

containing a subset of the frames which are equally separated. After rendering these

frames and interpolating the unknown costs, the initial cost map is acquired. The idea

of interpolating this cost list is completely based on the temporal coherence. Using

these costs estimations of this interpolated cost map, the remaining frames of the ani-

mation are distributed to the workers and later the load balance is continuously tested

with the estimated remaining time comparison on the line 8 of Algorithm 4.

Firstly, the question is how reliable it is to decide cost of a frame from the known costs

of the neighbor frames. To assess this approach the cost distribution graphs produced

periodically by the render farm software have been used. Figures 5.3 and 5.4 are two

of these graphs. They are produced from the test carried out with the workers 1, 2, 3,

4, 5, 6 and with the following job adjustments:
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Job adjustments for the test run:
Video Encoding: Enabled

Output format: mp4 (Codec: H.2645)

Output resolution: 1024x768

Frames: 1-3000

Figure 5.3: Initial Cost Map

Figure 5.4: Cost Map at the End of the Job

5 Please refer to Appendix B for compression presets of H.264 used in the test
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Figure 5.3 shows the state of the cost map at the moment that the cost map frames

are rendered and the costs of the remaining frames are determined by interpolation.

On the other hand, Figure 5.4 shows the cost distribution at the end of the job. In

other words, all cost data in Figure 5.4 is real. When these two graphs are compared

visually, the consistency is very obvious. For example, as can be seen in Figure 5.4,

the costs of the frames increase significantly around frames 200, 500 and 1800. The

cause of this increase is the changes in the scene and the camera angle. When Figure

5.3 is examined, it is observed that the cost prediction system have predicted these

increased costs in the early stages of the rendering. Besides these significant cost

changes, the cost prediction approach have predicted even the smaller changes which

can be observed around frame 1050.

Besides the visual assessment, the success of the cost prediction approach has also

been tested numerically. For this assessment the deviation for each frame is deter-

mined. The deviation for each frame has been calculated with the following formula:

D = 100⇥ |C
real

� C
predicted

|
C

real

where:

D: The deviation of cost for a frame

C
real

: Real cost of the frame determined by rendering

C
predicted

: Predicted cost of the frame determined by interpolation

These deviations are illustrated in Figure 5.5.

.
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Figure 5.5: Deviations of Predicted Costs from Real Costs

In Figure 5.5 the majority of the deviations can be considered as small. The average

of these deviations is 8.17%. Only at the scene change regions such as the regions

around frames 200, 500 and 1800, there are some frames whose costs are predicted

with a very high deviation. However, since this cost prediction method does not

interested in the costs of individual frames, this will not affect the task distribution

significantly. This can be explained with the following scenario. In this scenario there

are two identical render farm workers with the same processing powers. The above

mentioned job is assigned to these workers. Naturally, the task distribution system

will try to divide the frames into two parts whose total costs are equal. The system

will use the interpolated cost map for the first task distribution plan. According to this

cost data, the boundaries of regions are 1-1523 and 1524-3000. On the other hand,

if this partitioning is done by the real costs, the boundaries of the regions are exactly

the same, which are 1-1523 and 1524-3000. This concludes that the proposed cost

prediction is fairly reliable for this application because while creating a load balanced

task distribution plan the cost of frame groups are considered instead of individual

frame costs.

The second important aspect about cost prediction is the estimation of remaining time

which is done by Algorithm 5 in Section 4.4. To assess the precision of this algorithm

a test run has been carried out on the render farm workers 1, 2, 3, 4, 5, 6. The job

adjustments of the test run are the following:
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Job adjustments for the test run:
Video Encoding: Enabled

Output format: mp4 (Codec: H.2646)

Output resolution: 1024x768

Frames: 1-3000

The render farm software starts displaying the estimated remaining time of the job

when the first cost map is completed. The job status graph created by the render

farm controller software at that time is given in Figure 5.6. The time is recorded as

22:35:51 and the software estimated the remaining time as 6 hours and 44 minutes.

Figure 5.6: Estimated Remaining Time Test (After First Cost Map)

6 Please refer to Appendix B for compression presets of H.264 used in the test
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Figure 5.7: Estimated Remaining Time Test (End of Job)

When the job is finished the job status graph created by the render farm controller

software is recorded again (Figure 5.7). The job is completed at 05:49:56. The real

elapsed time is 7 hours and 15 minutes. Therefore, the error rate in remaining time

estimation is 6.89% which is close to the 8.17% error in cost prediction.

5.2.3 Load Balance and Utilization

The utilization of a render farm can be discussed with two different criteria. The first

one is the individual CPU usage percentages. The renderer named “MentalRay" is

used for the tests of this study. During the tests it is observed that MentalRay uses

the CPU with 100% utilization almost always during the rendering. Second criterion

for utilization is about the load balance. As can be explained by Figure 3.4 in Section

3.2, if the tasks of a job are distributed without balancing the load, the workers which

finish their tasks will wait for the workers which continue rendering. The amount of

this unutilized time determines the render farm utilization. More precisely it has been
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calculated as follows:

U = 100⇥

wP
i=1

t
i

w ⇥ T

where:

U : The utilization of the render farm

w: The worker count

t
i

: The total utilized time for worker i

T : The time difference between start of the job and finish of the last frame

Job adjustments for the test run (With workers 1, 2, 3, 4, 5):
Video Encoding: Enabled

Output format: mp4 (Codec: H.2647)

Output resolution: 1920x1080

Frames: 1-1000

Table 5.1: Task Start Completion Times in Test Run

Worker Task ID Task Start Time Task End Time

1 1 06:21:41 06:30:21

2 2 06:21:42 06:27:30

3 3 06:21:42 06:26:27

4 4 06:21:43 06:29:54

5 5 06:21:43 06:26:52

. . . .

. . . .

1 20 06:34:06 09:36:31

2 21 06:34:06 09:33:14

3 25 09:28:46 09:30:12

4 23 06:34:07 09:29:48

5 24 06:34:08 09:30:45

7 Please refer to Appendix B for compression presets of H.264 used in the test
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In Table 5.1 start times of the first tasks and the finish times of the last tasks are pre-

sented. As can be seen on the table the job start time is 06:21:41 and the job finish

time is 09:36:31 which is the completion time of the last task. Therefore, the T value

is 11690 seconds. Total rendering time of workers t1, t2, t3, t4, t5 are 11690, 11493,

11311, 11286, 11344 seconds respectively. Therefore, the individual utilization per-

centages of the workers are 100%, 98.31%, 96.75%, 96.54%, 97.04% respectively

and the utilization of the whole render farm for this job is 97.73%.

5.2.4 Scalability

As mentioned before, the centralized control structure of render farms results in ten-

dency to low scalability when the resources of controller machine is not increased

as much as the resources of worker machines. In other words, if the count and the

total processing power of the worker machines are increased while controller stays

the same, the system will eventually suffer from some bottlenecks on the controller

machine.

In this case study, the reaction of the system against the scaling is measured. Same

job is rendered by various processing power configurations and the same controller

machine as shown in Figure 5.8

Figure 5.8: Change of Rendering Time with Increase in Worker Resources
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The five test run in Figure 5.8 have been carried out by the 5 worker configurations

shown in Table 5.2. The first column shows the number of the experiment, the second

column shows the total processing powers of the workers which also corresponds to

the horizontal axis of the graph in Figure 5.8, and finally the third column of the table

shows the workers (Workers 1-10) in the experiment and their individual processing

power points (PPP) determined by the render farm controller software.

Table 5.2: Worker Configurations in Scalability Tests

Exp.# Total PPP Workers (Individual PPP)

1 0.857 8(0.44), 9(0.41)

2 2.672 3(1.34), 4(1.33)

3 4.890 2(0.84), 3(1.34), 4(1.33), 5(1.37)

4 7.062 1(0.85), 2(0.84), 3(1.34), 4(1.33), 5(1.37), 6(1.31)

5 8.802 1(0.85), 2(0.84), 3(1.34), 4(1.33), 5(1.37),

6(1.31), 7(0.43), 8(0.44), 9(0.41), 10(0.45)

The curve shown in Figure 5.8 is very close to linear as expected for this level of

worker count. As the worker computer count increases this curve will probably start

to be more horizontal because of the ratio of task submission overhead to the render-

ing time as explained in Figure 3.5. As long as the controller is not the bottleneck,

the rendering time will continue to decrease while the worker count increases. How-

ever, it is obvious that a bottleneck will eventually occur in a centralized controlled

distributed computing system if the communication bandwidth and processing power

of the controller computer is not scaled proportional to the worker computers. Fortu-

nately, since the communication costs are decreased significantly by the video encod-

ing optimizations, the worker count at which this bottleneck occurs is very high and

could not even be seen by the hardware resources of this case study.

5.2.5 Comparison with Backburner

Backburner is one of the most popular distributed rendering solutions. It is created

by the company Autodesk which is also the creator of the major 3D design software
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3DsMax. Actually, there is not any known optimization in Backburner for decreasing

the network load. Therefore, there will not be any comparison about the network

load optimizations. Instead, the job completion times will be compared. For this

comparison the environmental factors should be eliminated. In other words, the tests

have been done on the same hardware and software configurations. In addition, during

the test there was not any other user on the computers who can share the CPU power

with the renderers. The test has been carried out on workers 1, 2, 3, 4, 5, 6 and the

same input file was used with the following adjustments:

Job adjustments for the test run with the software of this research:
Video Encoding: Enabled

Output format: mp4 (Codec: H.2648)

Output resolution: 1024x768

Frames: 1-3000

Job adjustments for the test run with Backburner:
Video Encoding: (not available)

Output format: jpg9

Output resolution: 1024x768

Frames: 1-3000

The first test has been carried out with the software developed for this research. The

job completion time was 7 hours 44 minutes and 38 seconds. The second test, on the

other hand, has been carried out by using Backburner. The job completion time with

Backburner increased up to 8 hours 10 minutes and 3 seconds. This corresponds to

5.47% speedup. A plausible explanation of this speedup is that Backburner maintains

the load balance by using fine grained task distribution and thus the task submission

overhead increases the job completion time. This explanation is stated as plausible

instead of exact since the task distribution algorithm of Backburner is not known

completely. However, the fine grained task distribution behavior can be observed on

8 Please refer to Appendix B for compression presets of H.264 used in the test
9 Compression quality parameter was set to 100 (best quality) and smoothness was set to 0 in the jpeg settings

of 3DsMax

82



its monitoring interface.

Since the amount of task submission cost does not depend on the rendering time, the

5.47% speedup varies when the input job or adjustments changes. More precisely, if

the rendering time increases the speedup ratio should decrease because the task sub-

mission overhead does not depend on rendering time. To verify this, two additional

tests have been carried out. The environment and the job was exactly the same. The

only difference was that the output resolution is raised up to 1920x1080 pixels. The

software of this research achieves 12 hours 17 minutes and 37 seconds as rendering

time. The rendering time of Backburner, on the other hand, was 12 hours 33 min-

utes and 33 seconds this time. As a result, the above idea has been verified since the

speedup ratio was decreased to 2.16%.

The proposed approach of this research provides another speedup resulting from the

video encoding. The resulting images of the above rendering with Backburner have to

be encoded into video format on a single computer after the rendering is completed.

The worker #1 of the render farm which has an Intel i7 CPU has completed this

encoding process in 21 minutes and 40 seconds. That means the speedup provided

by the proposed approach of this research is more than 2.16%. The final product

of rendering was delayed almost 38 minutes with Backburner when the final video

encoding is considered.

5.3 Usage of GPUs with the Proposed Approach of This Research

With the advances in the general purpose GPU computing, the number of GPU ren-

derers also increased. The products “NVIDIA Optix”, “ARION”, “LIGHTWORKS”,

“V-RAY” are good examples in this area. At this point a valid question arises: “Is

GPU rendering technology applicable to the proposed approach of this research?”.

The answer is 100% positive. Because the techniques explained in this study have

an entity called render farm worker. The work is distributed among the render farm

workers which are separate computers connected with network. The system does

not require the information about what type of renderer is inside the worker com-

puter as long as it gets the result. Therefore, even the processing power measurement
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technique is independent from the usage of GPU or CPU. It only requires the result

creation time of a computer.

5.4 Usage of Hadoop and MapReduce with the Proposed Approach of This

Research

As mentioned above even though the amount of data transmitted through the network

connections is decreased by the video encoding optimization, there will be a bottle-

neck eventually at some point as the render farm scale increases. In their study of

Liu et. al. [19] propose a method for a similar I/O bottleneck problem. Specifically,

they proposed an approach for building a render farm on HDFS (Hadoop Distributed

File System). The conventional method for storing the scene data is keeping it on

a media with NFS (Network File System) and accessing directly via network paths.

This method is very prone to bottlenecks [19]. By using the distributed file system

HDFS, Liu et. al. have achieved optimizing the process of accessing the scene data.

Proposed approach of Liu et. al. distributes the data over a number of data nodes

on different machines. Thus, the I/O load for this data is also distributed. However,

even though there won’t be local bottlenecks with this approach, the load on the net-

work interfaces may still be very high. As a result, applying both the video encoding

optimization and HDFS may provide even better scalability for render farms.
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CHAPTER 6

CONCLUSION

This research aimed to improve the utilization, load balance and scalability of ren-

der farms by solving the high communication load and load balancing issues. The

high communication load issue occurs because of the centralized control in the ren-

der farms. Throughout the rendering job the render farm workers upload the result

images to the render farm controller. While the networking hardware of a worker ma-

chine only deals with its own network packets, the networking hardware of the render

farm controller deals with all the network packets coming from large number of work-

ers. This results in network traffic imbalance between the controller and the workers.

This imbalance results in a bottleneck on the controller machine if the worker count

is high enough. Unfortunately, with a centralized render farm controller probability

of this bottleneck cannot be overcome. Instead, the problem may be solved by trying

to decrease the size of the data that is sent over the network. This research proposes

to reduce the output size by merging the output images of the rendering into a video

file compressed by H.264 codec. Although compressing the data before sending to

controller is a solution which is applicable to any other distributed processing envi-

ronment, the case of render farm is special because of the temporal coherence. The

H.264 codec compresses the motion picture by several different techniques. One of

those techniques is called “Prediction” and it is the most important one among them.

The prediction technique takes advantage of the temporal coherence in motion pic-

tures and encodes only a small portion of the images. By using H.2641 encoding the

output images are compressed up to 99.5%. The technique of Chong et. al. [5] ad-

dresses this high network load issue by hashing the geometric objects. Naturally the

1 Please refer to Appendix B for compression presets of H.264 used in the case study
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hash value of an object will be very small compared to the object itself. Therefore, by

sending only one copy of the object and the hash values whenever necessary reduces

the network traffic significantly. According to the test results presented in the paper

of Chong et. al. [5], this technique can achieve compression ratios up to 97% for the

scene input. The technique of this research, on the other hand, compresses the output

data. As a result using the both methods together can achieve even better results.

The case study of the research has been carried out by the H.264 compression settings

presented in Appendix B. Although these settings provide images that are nearly loss-

less to the eyes, theoretically they are not 100% lossless. Although, the H.264 video

encoder provides a lossless compression too, this decreases the compression ratio sig-

nificantly. If the lossless compression is applied (when “crf” parameter of H.264 is

set to 0), the proposed approach may not be able to provide a valuable optimization

level for communication cost. However, according to the official guide of the ffm-

peg for video encoding, setting the “crf” value as 18 instead of the default value 23

gives results which are extremely close to lossless and it still provides a significant

compression. Therefore, even though lossless compression is not possible with this

approach, by providing a user interface for adjusting the “crf” setting of the encoder,

the user may obtain output data according to his/her needs, as long as completely

lossless output is not required.

Without the temporal coherence this high compression ratio could not be achieved.

For example, a web server also has a similar structure which is basically a server and

some number of connected clients. The difference is that the centralized web server

feeds the clients with the data this time. Therefore, the same bottleneck problem may

occur and the same problem may be addressed by compressing the data. Although,

data compression solution will help with this problem too, it may not be as efficient

as the compression in the render farm because there is no temporal coherence in the

data of web servers unlike the render farms.

The second problem addressed in this research is the computational load balancing of

the render farm workers. Although the fine grained task distribution provides perfect

load balancing naturally, in this research it cannot be used because of the solution of

the first problem. The video compression technique which is based on the temporal
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coherence gives better compression ratio when the number of consecutive frames that

feed the video increases. Therefore, to get a good video compression ratio, bigger

continuous sub tasks should be assigned to the workers at once. That task distribution

scheme is called coarse grained task distribution. Unfortunately, coarse grained task

distribution brings the high possibility of load imbalance. To solve this problem the

proposed approach of this research tries to partition the job into sub tasks which

have costs proportional to the powers of the workers that they will be assigned to.

At that point the load balancing problem is reduced to two sub problems which are

determining the processing powers of the workers and cost distribution of the job. The

processing powers of the render farm workers are measured by a hybrid technique

which both utilizes the benchmarking results and the statistical background of the

workers. The cost distribution of the job, on the other hand, is predicted by and

interpolation method based on the temporal coherence. More precisely, the system

first renders a subset of the job which consists of equally separated sparse frames.

Then the costs of the frames between these frames are predicted by interpolating the

cost graph. For this problem also the temporal coherence is crucial. Without the

temporal coherence property of the motion pictures, this cost prediction solution may

not be possible.

Although, the other researchers like Reinhard et. al. [17] and Gillibrand et. al. [7]

propose some extremely elegant cost prediction techniques, they are suitable for the

load balancing in a real time distributed rendering environment, because their tech-

niques reveal the cost distribution inside a frame. Whereas, the cost distribution inside

a frame is not important for a render farm working on a non-real-time animation job,

because in this kind of applications the deadline is the end of the job instead of a

frame. Therefore, while rendering an animation the cost distribution in the whole an-

imation is important. This fact results in the requirement of a cost prediction method

like proposed in this research. The proposed cost prediction technique in this research

achieved 91.83% correctness in the case study. When the results of the cost prediction

are used together with the processing power information of the workers, the system

acquires the ability to estimate the remaining time of a job. In the case study, the

proposed approach estimated the remaining time with 93.11% correctness.

Another successful outcome of the case study was the comparison with Backburner
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which is the popular product of the Autodesk for render farms. Even though the

speedup of the rendering process was small (approximately 2%-5%) the proposed

approach of this research has a great advantage over Backburner. There is currently

no render farm solution that provides distributed video encoding for the animation

jobs. They can only produce still image files for each frame and the merging process

of these frames is left to user. The output images acquired from one of the test runs of

this case study has taken 21 minutes to merge into a video on an Intel i7 CPU. That

means user of the Backburner will have to wait another 21 minutes before getting

the final product. On the other hand, the software of this research distributes the

video encoding process to the render farm workers. Therefore, the final product video

becomes ready as soon as the rendering finishes.

6.1 Future Work

One of the most important parts of this research is the estimation of the remaining time

and cost prediction. Having the ability to estimate the remaining time of a rendering

job, so many great advances in this area can be achieved. One of these advances

is about the fair distribution of the rendering resources in a multi user render farm.

Today’s regular render farms work as rendering queues where only one rendering job

uses the resources at the same time. However, a company servicing with a render farm

to other customers may want to distribute the resources according to the job rendering

time, due date and payment. In other words, a customer with a high payment and tight

due date may have a bigger portion of the rendering resources than other users, if other

users pay less and their due dates are not soon. In this area there is the important

study of Abramson et. al. [2] that discuss their efforts in developing a resource

management system for scheduling computations on resources distributed across the

world with varying quality of service (QoS). With the knowledge of rendering cost of

an animation this approach may be applied to a render farm too.
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APPENDIX A

SAMPLE RUN OF 3DSMAXCMD.EXE

The developed render farm application invokes the renderer software with terminal

commands. Below is a sample command to invoke 3DsMax to render frame 1 of the

scene “input.max” with 800x600 resolution.

> 3dsmaxcmd

-workPath:C:\workspace

-v:5 -showRFW:0

-continueOnError

-outputName:C:\out.png

-width:800 -height:600

-start:1

-end:1

C:\input.max

The command also tells that continue if possible when an error occurred

(-continueOnError), do not show render frame window i.e. work in

background, (-showRFW:0) and work with verbosity level 5 (-v:5)

The below sequence is the output of 3dsmaxcmd.exe called from command-line with

the command presented above. The timestamps in the sequence can be useful to see

the proportions of times spent to initialize the software itself, spent to initialize plug-

ins, spent to load and translate the scene and the rendering itself. The moment of invo-

cation and the real time of the process termination is written to the first and last lines.

91



The time difference between the last log at 28.07.2013 16:53:43 and the line “At

28.07.2013 16:53:54 control process is terminated.” shows the

time spent to cleanup and finalization process. This time also has an effect on the total

processing time of a render job.

At 28.07.2013 16:52:00 below command is executed...

> 3dsmaxcmd

-workPath:C:\workspace

-v:5 -showRFW:0

-continueOnError

-outputName:C:\out.png

-width:800 -height:600

-start:1

-end:1

C:\input.max

28.07.2013 16:52:01; Parsing scene: C:\input.max

28.07.2013 16:52:01; 1 frames initialized

28.07.2013 16:52:01; Max install location: C:\Program Files (x86)

\Autodesk\3ds Max Design 2013

28.07.2013 16:52:01; Max file being rendered: C:\input.max

28.07.2013 16:52:01; Renderer: NVIDIA mentalray

28.07.2013 16:52:19; [V-Ray] ===========================================

28.07.2013 16:52:19; [V-Ray] Console created, V-Ray A for x86 Feb 16 2013

28.07.2013 16:52:19; [V-Ray] ===========================================

28.07.2013 16:52:19; [V-Ray] Compiled with Intel C++ compiler, version 12.1

28.07.2013 16:52:19; [V-Ray] Host is 3dsmax, version 15

28.07.2013 16:52:19; [V-Ray] V-Ray DLL version is 2.00.01

28.07.2013 16:52:22; Max is ready

28.07.2013 16:52:23; Frame 1 assigned

28.07.2013 16:52:28; MENTAL RAY LOG: 0.4 94 MB warn 082058:
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jitter and contour rendering are incompatible, using jitter 0.0

28.07.2013 16:53:43; Frame 1 completed; Elapsed time 00:01:20

28.07.2013 16:53:43; Job Complete - Results in C:\

28.07.2013 16:53:43; Send End of Job command to Max

28.07.2013 16:53:43; Job Completed with Warning(s) - see above

28.07.2013 16:53:43; Total elapsed time 00:01:21

At 28.07.2013 16:53:54 process is terminated.

The software configuration of the test platform is as follows:

• Operating System: Microsoft Windows 7 Service Pack 1 x64

• 3DsMax: AutoDesk 3DsMax Studio 2013 x86

• 3DsMax Installed Third Party Plug-ins: Only ChaosGroup VRay x86 2.00.01

• 3DsMax Used Renderer: MentalRay

The hardware configuration of the test platform is as follows:

• CPU: Intel Core i5 2.5 GHz

• Memory: 8 GB 1600 MHz DDR3

• Storage: Solid Stated Drive with 430 MB/s read speed and 330 MB/s write

speed

.
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APPENDIX B

H.264/MPEG-4 AVC ENCODING SETTINGS

Following presets are used when encoding a video during the case study.

profile : Not Set

preset: medium

tune: Not Set

slow-firstpass: Not Set

keyint: 250

min-keyint: Auto

no-scenecut: Not Set

scenecut: 40

intra-refresh: Off

bframes: 3

b-adapt: 1

b-bias: 0

b-pyramid: Norrmal

open-gop: None

no-cabac: Not Set

ref: 3

no-deblock: Not Set

slices: 0

slice-max-size: 0

slice-max-mbs: 0

constrained-intra: Not Set
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pulldown: none

fake-interlaced: Not Set

frame-packing: Not Set

qp: Not Set

bitrate: Not Set

crf: 23

rc-lookahead: 40

vbv-maxrate: 0

vbv-bufsize: 0

vbv-init. 0.9

crf-max: Not Set

qpmin: 0

qpmax: 51

qpstep: 4

ratetol: 1.0

ipratio: 1.40

pbratio: 1.30

chroma-qp-Offset: 0

aq-mode: 1

aq-strength: 1.0

no-mbtree: Not Set

qcomp: 0.60

cplxblur: 20

qblur: 0.5

me: ’hex’

merange: 16

mvrange: -1 (Auto)

mvrange-thread: -1 (Auto)

subme: 7

psy-rd: 1.0:0.0

no-mixed-refs: Not Set

no-chroma-me: Not Set

no-8x8dct: Not Set
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trellis: 1

colorprim: undef

transfer: undef

colormatrix: undef

chromaloc: 0

nal-hrd: None

pic-struct: Not Set

crop-rect: Not Set

muxer: Auto

demuxer: Auto

input-csp: i420

output-cspt: i420

input-range: Auto

psnr: Not Set

ssim: Not Set
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