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ABSTRACT

MESHLESS LOCAL PETROV-GALERKIN METHOD FOR PLANE
ELASTICITY PROBLEMS

Erday�, Deniz Can

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Süha Oral

February 2014, 79 pages

In this research, Meshless Local Petrov-Galerkin Method (MLPG) has been used

in order to solve problems of elasto-statics. Moving least squares approximation

(MLS) has been used to construct trial function. MLS weight function has

been selected as test function. Thus, method is so-called MLPG1. Cantilever

beam problem has been solved with MLPG. E�ect of integration and in�uence

domain sizes have been investigated for in�nite plate with circular hole problem.

Optimal parameters have been determined. Results have been compared with

exact solution.

Keywords: Mesh-free methods, meshless local Petrov-Galerkin method, solid

mechanics, elasticity, moving least squares methods
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ÖZ

DÜZLEM ELAST�S�TE PROBLEMLER� �Ç�N A�SIZ YEREL
PETROV-GALERK�N YÖNTEM�

Erday�, Deniz Can

Yüksek Lisans, Makina Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Süha Oral

�ubat 2014 , 79 sayfa

Bu çal�³mada elastostatik problemleri çözmek için a§s�z yerel Petrov-Galerkin

yöntemi kullan�lm�³t�r. Deneme fonksiyonun olu³turulmas�nda hareketli en kü-

çük kareler yöntemi kullan�lm�³t�r. Test fonksiyonu, hareketli en küçük kareler

yönteminin a§�rl�kland�rma fonksiyonu ile ayn� seçilmi³tir. Bu metoda MLPG1

denilmektedir. Ankastre çubuk analizi gerçekle³tirilmi³tir. Integral ve etki ta-

n�m kümelerinin çözüm üzerine etkileri delikli sonsuz plakalar için ara³t�r�lm�³

ve bu parametlerin en uygun de§erleri tespit edilmi³tir. Sonuçlar kesin çözüm

ile kar³�la³t�r�lmak sureti ile de§erlendirilmi³tir.

Anahtar Kelimeler: A§s�z yöntemler, a§s�z yerel Petrov-Galerkin yöntemi, kat�

mekani§i, elastisite, hareketli en küçük kareler yöntemi
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CHAPTER 1

INTRODUCTION

Methodology of solving solid mechanics problems begins with constructing a

physical model. Firstly, environment and problem domain are de�ned, and ideal-

izations are considered. Then, a convenient mathematical model is constructed.

Mathematical modeling o�ers governing equations with boundary conditions for

physical model. These governing equations can be solved either approximately

by numerical methods or exactly by analytical methods.

Compared to the past, the problems of engineering are more complex. How-

ever, analytical methods o�er solutions to relatively simple problems. On the

other hand, numerical methods o�er a practical way to solve these problems

approximately. In numerical methods, more computational power is required in

order to handle more complex problems and get more accurate results. Thanks

to the recent developments on computer technologies, more complex problems

can be solved more accurately in reasonable time.

Numerical methods have been developed for centuries in solid mechanics �eld.

One of the well-known example is �nite element method which is widely used

in many engineering problems. It is classi�ed as mesh-based method because a

prede�ned element mesh is required in order to represent and discretize domain.

In addition to the mesh-based methods, another class of numerical methods

is so-called mesh-free methods, which have been developed over past 40 years.
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One of the noticeable properties of mesh-free methods is that prede�ned mesh is

not required to discretize domain. Instead, points scattered to problem domain

are used in order to represent the problem. Using scattered points instead of

prede�ned mesh to represent problem domain enables to overcome some limita-

tions and shortcomings of mesh-based methods which are discussed in following

sections.

Figure 1.1: Domain representation: (a) FEM (b) Mesh-free methods [29]

1.1 Mesh-free Methods

Liu [29] de�nes mesh-free methods as following:

"A MFree method is a method used to establish system algebraic
equation for the whole problem domain without the use of a prede-
�ned mesh for the discretization."
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Mesh-free methods use scattered nodes in problem domain and on its bound-

aries to represent the problem. Then, a complex problem is transformed to a

system of algebraic equations. Two important steps of this transformation are

function approximation and problem formulation.

Firstly, shape functions are constructed in function approximation step. In

contrast to mesh-based methods, shape functions of mesh-free methods are con-

structed during the solution step. In other words, there is no prede�ned shape

function. Field variables at any point within the problem domain is approxi-

mated using the values at �eld nodes within the support domain.

Support domain for a point includes the �eld nodes which are used for ap-

proximating the value at that point. Support domains may di�er from one point

to another and be in various shapes and sizes. The value of shape function is

zero outside the support domain. Hence, mesh-free shape functions are locally

supported. Some methods used in approximation are Moving Least Squares

method (MLS), Weighted Least Squares method (WLS), Reproducing Kernel

Particle Method (RKPM), and Point Interpolation Method (PIM).

Secondly, in formulation step results of mathematical model, namely governing

di�erential equations and boundary conditions, are transformed in a system of

linear algebraic equations. Two categories of formulation step are strong form

formulation and weak form formulation. In strong form formulation, governing

di�erential equations are satis�ed at each �eld node. On the other hand, in weak

formulation, integral functional of governing di�erential equations are satis�ed.

In other words, governing equations are satis�ed averagely in problem domain.

1.2 Advantages of Mesh-free Methods

Mesh-free methods have certain advantages over mesh-based counterparts.

Comparison between mesh-free and mesh-based methods in this section is based
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on the studies presented by Nguyen et.all [40] and Li at all. [22]. A number of

advantages are discussed at following paragraphs.

Firstly, mesh-based methods require mesh to discretize problem domain. Mesh-

ing of problems with complex geometry is not performed automatically by com-

puters at all times. In other words, constructing a quality mesh is a semi-

automatic process and requires human intervention. Conversely, in mesh-free

methods point cloud is constructed by computers only, regardless of its com-

plexity. [16]

Next, FEM requires re-meshing steps to handle some problems, such as large

deformation and moving discontinuities problems. Although adaptive mesh gen-

erators are developed for this purpose, they have certain drawbacks. At �rst,

re-meshing at each step extends CPU time signi�cantly in three dimensional

problems. Furthermore, mapping of �eld variables between meshes worsens ac-

curacy of the problem. On the other hand mesh-free methods handle these

problems in an e�cient way, because connectivity between nodes is generated

during the solution process and can be regenerated if required.

Moreover, derivatives of �eld functions, such as strain and stress, are not

smooth in problem domain and discontinuous at element interfaces in FEM.

Hence, post-processing and special treatments are required in order to obtain

smooth derivatives. Conversely, required order of continuity should be deter-

mined easily at the beginning of solution process in mesh-free methods. As a

result, smooth derivatives of �eld variables can be obtained.[23]

Furthermore, convergence rate of mesh-free methods are generally better than

the mesh-based methods.[21]

As well as, h-adaptivity is implemented quite easily to mesh-free methods.

Since connectivity is constructed in run-time, accuracy of the solution is in-

4



creased by adding nodes into required regions.

Finally, mesh alignment a�ects solution accuracy for moving boundary prob-

lems, such as crack growth or shear bands. Therefore, mesh alignment sensitivity

analysis is required for mesh-based methods. On the other hand, it is not an

issue for mesh-free methods because of absence of mesh.

1.3 Disadvantages of Mesh-free Methods

Compared to mesh-based methods, one of the disadvantages of mesh-free

methods is high computational cost, of which main reasons are listed as fol-

lows:

• Higher integration schema is required in order to achieve required accuracy.

• For each integration point (gauss point) a number of additional processes

are required, such as neighborhood searching and computation of shape

function derivatives.

• Band width of mesh-free spare matrices is generally larger than the mesh-

based counterparts.

• Sti�ness matrix of some mesh-free methods, such as MLPG, is antisym-

metric.

Another disadvantage of mesh-free methods is that imposing essential bound-

ary conditions requires extra e�orts due to lack of Kronecker delta property.

1.4 Objective of Study

Main objective of this study is to solve problems of elasto-statics with meshless

Local-Petrov Galerkin (MLPG) method and investigate e�ect of parameters

on solution accuracy. In order to achieve this task, following steps have been

performed.
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• In chapter 3, mathematical model for 3 dimensional and plane elasto-

statics are presented.

• In chapter 4, MLPG method is examined. Moving least squares approxi-

mation schema and local weak form formulation are presented detailedly.

In addition, weighting functions and error norms are pointed out.

• In chapter 5, �rstly a cantilever beam problem is solved in order to check

correctness of formulation and computer implementation. Secondly, e�ect

of integration and in�uence domain size for in�nite plate with circular

hole is investigated. Thirdly, solution of in�nite plate with circular hole is

presented for selected integration and in�uence domain size.

• In chapter 6, conclusions are presented.

6



CHAPTER 2

LITERATURE REVIEW

Studies on mesh-free methods started in early 1970s. First mesh-free method

was smoothed particle hydrodynamics which is developed by Lucy [36] and Gin-

gold, Monaghan [14] in 1977. SPH has been based on strong form formulation

in Lagrangian description. Although SPH was originally used for simulation of

astrophysics problems, it became a widely used method to solve �uid mechanics

problems. Some of noteworthy researches about implementation of SPH to �uid

dynamics problems were conducted by Monaghan [37] [38].

First implementation of SPH to solid mechanics problem is about dynam-

ics of elastoplastic solids by Libersky,et all [24]. However, Libersky noted that

there were two major issues about SPH. These issues are inaccurate results

near boundaries and tension instability. Tension instability of SPH was �rst

investigated by Swegle [42]. Other notable research about stability of SPH was

perfomed by Belytschko, et all [7] and Xiao, et all [44]. In addition, improve-

ments to SPH method were performed to solve impact problems by Johnson, et

all [17] [18], Libersky,et all [25],Bonet et all. [9].

Another class of mesh-free methods is based on weak formulation. In strong

forms, di�erential equations are satis�ed at each �eld node, whereas in weak

forms, integral equations are satis�ed. These integral equations are integral

functionals of variational principle, such as weighted least square functional.
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After beginning of 1990s, research on mesh-free weak formulation are signi�-

cantly increased after publication of Di�use Element Method.

Di�use element method, which is introduced by Nayroles et al. [39] is the

�rst example of this class. Nayroles et.al modeled thermodynamics problem by

DEM. DEM is the �rst method which use moving least squares approximation

in galerkin weak form. It was originally o�ered as an improvement to FEM.

However, DEM failed to pass patch tests because of simpli�cation in formulation.

Afterwards, Belytschko et all. discovered that if approximation schema is

moving least square approximation, than accurate computation of derivatives

and integrals in Galerkin formulation is critical for solution quality . Accordingly,

they modi�ed and re�ned DEM and named it as element-free Galerkin method

(EFG). Study was published in 1994 [8].

Belytschko et al. applied EFG to solve elasticity and crack growth problems.

They argue that EFG is highly applicable and gives accurate results for crack

grow problems.[35][34].

Reproducing Kernel Particle Methods is yet another mesh-free method based

on global weak formulation and proposed by Liu et all in 1995 [33]. Liu et

all. used correction functions in SPH approximation in order to assure required

consistency.

RKPM has been applied to various problems. Solution to large deformation

problems proposed by Chen at all.[10] [11] and Liu [31]. As well as �uid dynamics

application of RKPM is also established by Liu et.all [32].

In global weak forms, such as EFG and RKPM, mesh is not required to

approximate �eld variable. However in order to integrate energy functional, such

8



as Galerkin weak form for EFG, a mesh network is required in global problem

domain which is generally called shadow elements.

In order to eliminate background meshing process in global weak formulation,

local weak formulation was evolved. Di�erence between global weak form and

local weak form is that for global weak form, energy integral is computed over

global domain whereas in local weak form, energy integral is computed over

sub-domains which may be overlapping and union of them represents the global

problem domain.

Atluri et all. proposed MLPG method based on local weak formulation[4].

In MLPG, energy integration can be evaluated over local domain around each

points instead of global domain. These local sub-domains are regularly shaped

for internal ones (depending on problem dimensions, they can be circle, rect-

angle, sphere) and there is no compatibility requirement between these internal

sub-domains. In other words it is not important that whether these domains

overlap or not. Only local sub-domains which intersect with global boundary

are locally meshed in order to represents boundary.

Atluri claims that MLPG method is truly meshless method because back-

ground mesh is not required for either function approximation or energy in-

tegration, however global weak forms need a background mesh for integration

purpose.[4]

Liu states that MLPG is one of the widely used mesh-free method[28]. Many

researchers, especially Atluri et al., have done improvements and implemen-

tations to di�erent problems since �rst introduction of MLPG. A number of

notable studies are listed as follows:

• Solution to linear Poisson's equation by Atluri et all. in 1998[4]

• Critical evaluation of basic framework of MLPG with numerical examples

by Atluri et al. in 1999 [2]
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• Solution to thin beams, 4th order boundary value problems by Atluri et

al. in 1999 [1]

• Solution to problems of elasto-statics by Atluri et all. in 2000 [5][6]

• Solution to elastodynamics problems by Gu,and Liu in 2001[15]

• Solution to shear deformable beams by Cho et all. in 2001 [13]

• Solution to thin plate bending by Long and Atluri in 2002 [41]

• Solution to linear crack problem by Ching and Batra in 2001 [12]

• Error analysis by Kim and Atluri in 2000 [19]

• Solution to �uid mechanics problem by Lin and Atluri in 2001 [26] [27],Liu

et all [30]

MLPG can use any test function and mesh-free function approximation pro-

cedure in solution process. Atluri and Shen de�ned 6 di�erent MLPG schema in

[3] based on variety of trial and test function . One of these is MLPG1 whose test

function is same as the weight function of moving least squares approximation.
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CHAPTER 3

MATHEMATICAL MODEL OF PROBLEM

3.1 Problems of Linear Elasto-statics

For linear elasto-statics problems it is assumed that loading is su�ciently slow.

Hence, there is no dynamic e�ect and accelerations are negligible. It is known

as quasi-static process. Another consideration is that material is isotropic and

homogeneous.

In addition, it is assumed that displacements and displacements gradients are

su�ciently small and stress is a linear function of strain. Therefore, in�nitesimal

strain tensor is used to describe deformation in linear elasto-statics.

Three dimensional problem of linear elasticity shown in �gure 3.1 are formulated

in following sub-sections.

3.1.1 Strain - Displacement Relations

Strain tensor of linear elasto-static problem is in�nitesimal strain tensor and

de�ned in terms of displacements as

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.1)
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Figure 3.1: Three Dimensional Elasticity Problem

3.1.2 Equilibrium Equations

For quasi-static process, equilibrium equations in domain Ω bounded by the

boundary Γ are

σij,j + bj = 0 in Ω (3.2)

Corresponding boundary conditions are

ui = ūi on Γu (3.3a)

σijnj = ti = t̄i on Γt (3.3b)

where ūi is prescribed essential boundary condition, and t̄i is prescribed natural

boundary condition as shown in �gure 3.1.
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3.1.3 Constitutive Law

Hooke's law for isotropic bodies in terms of elastic constants for isothermal

process is

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijεkk

)
(3.4)

3.2 Two Dimensional Formulation of Elasto-statics

In this section, foregoing equations of general elasto-static problem is simpli-

�ed for two dimensional problems. Two di�erent assumptions can be considered

for two dimensional problems,namely plane stress and plane strain assumptions.

For plane stress assumption, it is assumed that through thickness stresses σzz,

σxz, σyz are zero. For plane strain assumption, it is assumed that through thick-

ness displacement uz are zero or constant.

Following equations are transformed from indicial form to matrix form in order

to construct matrix form of system algebraic equations.

For two dimensional problems, stress vector is

σ =


σxx

σyy

σxy

 (3.5)

For two dimensional problems strain vector is

ε =


εxx

εyy

εxy

 (3.6)

Strain displacement relation is

ε = Lu (3.7)
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Figure 3.2: Two Dimensional Elasticity Problem

where u, displacement vector, is

u =

uv
 (3.8)

and L, di�erential operator, is

L =



∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x


(3.9)

Constitutive matrix for isotropic materials in terms of equivalent elastic con-

stants is

D =
Ē

1− v̄2


1 v̄ 0

v̄ 1 0

0 0 (1− v̄)/2


(3.10)
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where

Ē =


E, for plane stress
E

1− v2
, for plane strain

(3.11)

and

v̄ =


v, for plane stress
v

1− v
, for plane strain

(3.12)

Stress vector is written in terms of displacements as follows:

σ = D L u (3.13)

For two dimensional linear elasto-static problems shown in �gure 3.2, equilib-

rium equations in matrix form are

Lσ + b = 0 on Ω (3.14)

where b, body force vector, is

b =

bxby
 (3.15)

Boundary conditions of foregoing equilibrium equation are

u = ū on Γu (3.16a)

t = nσ = t̄ on Γt (3.16b)

where n, matrix of unit outward normals, is

n[2×3] =

nx 0 ny

0 ny nx

 (3.17)
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Prescribed displacements in vector form, ū, is

ū =

ūxūy
 (3.18)

Prescribed tractions in vector form, t̄, is

t̄ =

t̄xt̄y
 (3.19)
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CHAPTER 4

MESHLESS LOCAL PETROV-GALERKIN METHOD

(MLPG)

Various form of MLPG are presented by Atluri. Both of them are based on

Petrov-Galerkin formulation in local sub-domains. In this paper, MLPG1 is

used in order to solve problems of elasto-statics. Properties of MLPG1, which

is distinguished from other MLPGs, are presented in succeeding paragraphs.

Four main steps of MLPG are listed as

1. Domain representaion

2. Function approximation

3. Formation of system equation

4. Solution to system of linear algebraic equations

Firstly, problem domain and boundaries are represented by set of scattered

nodes in MLPG. Density of nodes e�ects accuracy of solution. If higher accuracy

is required for a particular region, then nodal density should be increased for

that region. Nodal density does not have to be uniform in MLPG.

Secondly, in function approximation step, value of �eld variable at any point

in local sub-domain is represented by values of �nite set of �eld nodes in lo-

cal support domain of the point. Thus, �eld variables in local sub-domain is

continuously de�ned in terms of values of �eld nodes. This continuous function
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is known as trial function. Moving least square method is used for function

approximation in MLPG1.

Thirdly, local symmetric weak formulation is used in order to �nd system of

linear algebraic equations. Local symmetric weak form is a variant of weighted

residual method. Idea of MLPG is that weighted residual integral is evaluated

at a small local sub-domain of �eld nodes. In other words, weighted residual

integral are satis�ed in each �eld node. Then algebraic equation sets of each

�eld node are assembled in order to �nd system of equations. In Petrov-Galerkin

formulation, test and trial function domains do not have to be same. On the

other hand, MLPG1 use same form of weight function for test and trial function

but with di�erent domains (domain size and shapes).

Fourthly, system of linear algebraic equations are solved. For solid mechan-

ics problems, outputs of solution are displacements. However, due to lack of

Kronecker delta property of MLS , these displacements are �ctitious. Thus, dis-

placement value of a point is approximated by MLS with respect to �ctitious

displacement values of �eld nodes in support domain of the point.

4.1 Domain De�nitions

There are 4 domain de�nitions for MLPG method in this study. These are

listed as follows:

• Problem domain

• Integration domain

• In�uence Domain

• Support Domain

All domains except problem domain are de�ned with respect to nodal spacing

of �eld nodes.
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4.1.1 Nodal Spacing

Nodal spacing may di�er in problem domain due to non-uniform node distri-

bution. Nodal space, ds, for a �eld node is minimum distance between the node

and its neighborhoods.

4.1.2 Problem Domain

It is the problem domain, Ω, bounded by Γ in equation (3.2). Domain and its

boundary are illustrated in 4.1.

Figure 4.1: Problem domain Ω and nodes

4.1.3 Integration Domain

It is the local sub-domain, ΩI , bounded by ΓI for node I. For each node, this

domain is costructed in order to evaluate integral in equation (4.23). Integration

domain for node K and I are shown in �gure 4.2. Integration domain of node

K is fully inside the problem domain. On the other hand, integration domain of

node I intersects with global boundary.
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Figure 4.2: Integration domain for node I and K

Integration domain sizes (�g. 4.3) for node I are

ax = αq × ds (4.1a)

ay = αq × ds (4.1b)

where ds is nodal spacing of the �eld node and αq is the integration domain size

multiplier. αq is a analysis parameter and determined by user.

Figure 4.3: Integration domain size for node I
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For each integration domain, there are gauss quadrature points in order to

evaluate integral in equation (4.23) numerically. Gauss points distribution in

integral domain of node I is illustrated in �gure 4.4.

Figure 4.4: Gauss points of integration domain for node I

4.1.4 In�uence and Support Domain

For each node, in�uence domain is constructed. In�uence domain of a node

de�nes a region in which the node contributes to �eld variable (displacement)

approximation.

For instance, in �gure 4.5 in�uence domains of nodes I, K and L is plotted.

Nodes I, K and L contribute to �eld variable (displacement) approximation at

gauss point Q, because gauss point is in the in�uence domain of these nodes.

On the other hand, nodes I and K contribute to �eld variable (displacement)

approximation at gauss point P, because gauss point is not in the in�uence

domain of node P.
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Figure 4.5: In�uence domains

In�uence domain is for node, and the corresponding domain for gauss point

is support domain. Support domain of a gauss point includes nodes which

contributes �eld variable approximation at that gauss point. For instance, in

�gure 4.5 support domain of gauss point Q includes nodes I, K and L. On the

other hand, support domain of gauss point P includes nodes I and K.

Radius of in�uence domain for a �eld node is

bI = αI × ds (4.2)

where ds is nodal spacing of the �eld node and αI is the in�uence domain size

multiplier. αI is a analysis parameter and determined by user.
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4.2 Moving Least Squares (MLS)

Moving least square approximation is used to construct shape functions of

MLPG. Method was originally used for smoothing and interpolating scattered

data by Lancaster at [20].

Objective of MLS is to construct a continuous function, uh(x), of �eld variable

with respect to �ctitious scalar values ui at points xi in a reasonable error as

shown in �gure 4.6 .

Figure 4.6: Function approximation by moving least square

Thus, weighted least-square error function is constructed as follows:

J =
n∑
i

W (‖x− xi‖) ‖u(xi)− ui‖2 (4.3)

where W is weighting function, xi is position of support node, and ui is value of

support node .

Minimizing error function, given in (4.3), proposes solution to approximation

problem.
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Figure 4.7: Pascal Triangle for 2 parameters; namely x and y

Unknown function, u(x), is approximated as follows:

u(x) ≈ uh(x) =
m∑
j=1

pj(x)aj(x) = pT (x)a(x) (4.4)

where pT (x) is vector of basis functions, a(x) is vector of unknown coe�cients,

m is number of basis function.

For two dimensional problem, spatial coordinates are

xT =
{
x y

}
(4.5)

In order to ensure minimum completeness requirement, complete set of mono-

mials from Pascal triangle (�gure 4.7) are used as basis functions.

There are 6 monomial for two dimensional problems to provide 2nd order

completeness. Vector form of these basis functions is

pT (x) =
{

1 x y x2 xy y2

}
[1×6]

(4.6)

Note that number of monomials can be found by

number of monomials =
(d+ c)!

d! c!
(4.7)

where d is dimension of space and c is order of completeness.
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Inserting approximated function in equation 4.4 into equation 4.3 gives

J =
n∑
i

W (‖x− xi‖) ‖pT (xi)a(x)− ui‖2 (4.8)

where n is the number of data points.

Weighted, discrete, L2 norm given in equation (4.8) is minimized if partial

derivatives of function with respect to unknown coe�cients is set to zero. This

leads the following linear relation set.

A(x)a(x) = C(x)Us (4.9)

where Us is vector of �ctitious �eld variables in support domain.

Us =
{
u1 u2 · · · un

}T
(4.10)
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Symmetric matrix A(x), weighted moment matrix, is

A(x) =
n∑

i=1

Wi(x− xi) p(xi) pT(xi) (4.11)

For two dimensional problem and 2nd order completeness with n support

points, A(x) is

A(x)[6×6] = W 1(x− x1)



1 x1 y1 x2
1 x1y1 y2

1

x1 x2
1 x1y1 x3

1 x2
1y1 x1y

2
1

y1 x1y1 y2
1 x2

1y1 x1y
2
1 y3

1

x2
1 x3

1 x2
1y1 x4

1 x3
1y1 x2

1y
2
1

x1y1 x2
1y1 x1y

2
1 x3

1y1 x2
1y

2
1 x1y

3
1

y2
1 x1y

2
1 y3

1 x2
1y

2
1 x1y

3
1 y4

1


[6×6]

+W 2(x− x2)



1 x2 y2 x2
2 x2y2 y2

2

x2 x2
2 x2y2 x3

2 x2
2y2 x2y

2
2

y2 x2y2 y2
2 x2

2y2 x2y
2
2 y3

2

x2
2 x3

2 x2
2y2 x4

2 x3
2y2 x2

2y
2
2

x2y2 x2
2y2 x2y

2
2 x3

2y2 x2
2y

2
2 x2y

3
2

y2
2 x2y

2
2 y3

2 x2
2y

2
2 x2y

3
2 y4

2


[6×6]

+ · · · +W n(x− xn)



1 xn yn x2
n xnyn y2

n

xn x2
n xnyn x3

n x2
nyn xny

2
n

yn xnyn y2
n x2

nyn xny
2
n y3

n

x2
n x3

n x2
nyn x4

n x3
nyn x2

ny
2
n

xnyn x2
nyn xny

2
n x3

nyn x2
ny

2
n xny

3
n

y2
n xny

2
n y3

n x2
ny

2
n xny

3
n y4

n


[6×6]

(4.12)
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C(x) is a antisymmetric matrix and de�ned as follows:

C(x) =
[
W 1(x)p(x1) W 2(x)p(x2) · · · W n(x)p(xn)

]
[6×n]

(4.13)

For two dimensional problem and 2nd order completeness with n support

points, C(x) is

C(x)[6×n] =



W 1 1 W 2 x2 · · · W n xn

W 1 x1 W 2 x
2
2 · · · W n x

2
n

W 1 y1 W 2 x2y2 · · · W n xnyn

W 1 x
2
1 W 2 x

3
2 · · · W n x

3
n

W 1 x1y1 W 2 x
2
2y2 · · · W n x

2
nyn

W 1 y
2
1 W 2 x2y

2
2 · · · W n xny

2
n


[6×n]

(4.14)

In order to �nd unknown coe�cients a(x) , each side of equation (4.9) is

multiply by inverse of A(x).

Then, a(x) is

a(x)[6×1] = A(x)−1
[6×6]C(x)[6×n]Us[n×1] (4.15)

Substituting coe�cients vector, a(x), into equation (4.4) gives

uh(x)[1×1] = pT (x)[1×6]A(x)−1
[6×6]C(x)[6×n]Us[n×1] (4.16)

which is the solution of approximation problem.

Equation (4.16) is rearranged as follows:

uh(x) = Φs(x)Us (4.17)

where Φs(x), vector of shape functions, is

Φs(x) =
{
φ1(x) φ2(x) · · · φn(x)

}
= pT (x)A(x)−1C(x) (4.18)
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Shape function, φi(x), corresponding to the ith node is

i = 1..n

φi = Pk
T (x)Akj

−1(x)Cji(x) j = 1..m

k = 1..m

(4.19)

Field variable vector, Us, in equation (4.17) contains only one �eld vari-

able,namely u. One should extend formulation to 2 variables, namely u and

v for 2 dimensional problems. Then, equation (4.17) is rearranged as follows:

uh(x) =

uv
 =

φ1 0 φ2 0 · · · φn 0

0 φ1 0 φ2 · · · 0 φn





u1

v1

u2

v2

...

un

vn



= Φ
[2×2n]

u
[2n×1]

(4.20)

where u is the ordered vector of two displacement components of �eld nodes in

support domain.

Note that matrix A(x) must have an inverse. Thus, condition of weighted

moment matrix, A(x), is crucial for solution. Some reasons of ill condition are

• Insu�cient number of nodes in support domain of any gauss point. n < m

• Special nodal con�gurations, such as linear arrangement of all support

nodes
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4.2.1 Weight Function

Cubic spline function is used as weighting function in MLS. The cubic spline

weight function is

W i(x) =


2/3− 4r2

i + 4r3
i , ri ≤ 0.5

4/3− ri + 4r2
i − 4/3r3

i , 0.5 < ri ≤ 1

0, ri > 1

(4.21)

and

ri =

√
(x− xi)2 + (y − yi)2

bI
(4.22)

where bI is the radius of in�uence domain, x and y are coordinates of gauss

point, xi and yi are coordinates of node.

In �gure 4.8, cubic spline weight function with respect to ri is plotted. Weight

function should have smooth derivatives up to nth order for 2nth order governing

di�erential equation.

Governing di�erential equations of elasto-statics are 2nd order. Therefore,

requirement for weight function is that it has smooth derivatives up to 1st. In

�gure 4.9, 4.10 , �rst and second order derivatives of cubic spline weight function

with respect to ri are plotted. Although second derivative is not smooth, �rst

derivative of function is smooth and this is su�cient condition for elasto-statics.

Cubic spline weight function ful�ll following requirements.[29]

• Weight function is positively de�ned within the support domain.

• Weight function equals to zero outside the support domain.

• Weight function decreases when move away from point of interest.

• Weight function is su�ciently smooth for derivative operation in required

order.
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Figure 4.8: Cubic spline weight function with respect to ri

Figure 4.9: First derivative of cubic spline weight function with respect to ri
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Figure 4.10: Second derivative of cubic spline weight function with respect to ri

4.3 Local Symmetric Weak Form

Atluri [5] presented local symmetric weak form for node I over local sub do-

main ΩI for problem of linear elasto-statics as follows:

∫
ΩI

WI(σij,j + bi)dΩ− α
∫
ΓI

WI(ui − ūi)dΓ = 0 (4.23)

where ΩI is integration domain for Ith node, ΓI is boundary of ΩI , W is test

function, and α� 1 is penalty parameter in order to impose essential boundary

conditions.

Because of lack of knocker delta property of MLS shape function, penalty

parameter is used to impose BCs.

By divergence theorem, equation (4.23) is∫
ΓI

WInjσijdΓ−
∫
ΩI

WI,jσijdΩ +

∫
ΩI

WIbidΩ− α
∫

ΓIu

WI(ui − ūi)dΓ = 0 (4.24)

where n is unit outward normal of boundry and nj is jth component of this
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vector.

There are three possibilities for boundary of the local integration domain Γq,

namely:

1. Internal boundary ΓIi : There is no intersection between local integration

boundary and global boundary

2. Global boundary

(a) Traction boundary ΓIt : Local integration domain intersect with

global traction boundary

(b) Essential boundary ΓIu : Local integration domain intersect with

global essential boundary

Then, equation (4.24) can be rewritten as follows:∫
ΓIi

WInjσijdΓ +

∫
ΓIu

WInjσijdΓ +

∫
ΓIt

WInjσijdΓ

−
∫
ΩI

WI,jσijdΩ +

∫
ΩI

WIbidΩ− α
∫

ΓIu

WI(ui − ūi)dΓ = 0 (4.25)

Traction vector is

σijnj = ti (4.26)

Substituting equation (4.26) and boundary condition de�ned in (3.16b) into

(4.25) gives∫
ΩI

WI,jσij dΩ−
∫

ΓIi

WInjσij dΓ−
∫

ΓIu

WInjσij dΓ

= +

∫
ΩI

WIbi dΩ +

∫
ΓIt

WI t̄i dΓ− α
∫

ΓIu

WI(ui − ūi) dΓ (4.27)

Equations (4.27) is in indicial form and for two dimensional problems, two

equations are obtained for a �eld node. Equation (4.27) is tranformed to matrix

form as follows:
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∫
ΩI

VIσ dΩ−
∫

ΓIi

WInσ dΓ−
∫

ΓIu

WISnσ dΓ + α

∫
ΓIu

WISuh dΓ

= +

∫
ΩI

WIb dΩ +

∫
ΓIt

WI t̄ dΓ + α

∫
ΓIu

WISū dΓ (4.28)

where matrix of weight functions is

WI [2×2] =

W (x,xI) 0

0 W (x,xI)

 (4.29)

and matrix of derivatives of weight functions is

VI [3×2] =

W,x(x,xI) 0 W,y(x,xI)

0 W,y(x,xI) W,x(x,xI)

 (4.30)

and traction vector on boundary is

t̄[2×1] = nσ̄ =

nx 0 ny

0 ny nx



σ̄xx

σ̄yy

σ̄xy

 (4.31)

Inserting trial function in equation (4.20) to stress displacement relation de�ned

in equation (3.13) gives,

σ[3×1] = D B u (4.32)

where B is named as strain matrix and de�ned as

B = LΦ =



∂φ1

∂x
0

∂φ2

∂x
0 · · · ∂φn

∂x
0

0
∂φ1

∂y
0

∂φ2

∂y
· · · 0

∂φn
∂y

∂φ1

∂y

∂φ1

∂x

∂φ2

∂y

∂φ2

∂x
· · · ∂φn

∂y

∂φn
∂x


(4.33)

S is the degree of freedom selector for essential boundary condition and

S =

S1 0

0 S2

 (4.34)
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where

si =

1, if ui is prescribed onΓq

0, else
(4.35)

Substitute equations (4.32),(4.20) into (4.28) gives two discrete equations for

the Ith �eld node as

∫
ΩI

VID B u dΩ−
∫

ΓIi

WInD B u dΓ−
∫

ΓIu

WInSD B u dΓ + α

∫
ΓIu

WISΦu dΓ

= +

∫
ΩI

WIb dΩ +

∫
ΓIt

WI t̄ dΓ + α

∫
ΓIu

WISū dΓ (4.36)

Equation (4.36) is rewritten as

KI[2×2n]u[2n×1] = fI[2×1] (4.37)

where KI is matrix called nodal sti�ness matrix associated with Ith �eld node

and de�ned as follows:

KI =

∫
ΩI

VID B dΩ−
∫

ΓIi

WInD B dΓ−
∫

ΓIu

WInSD B dΓ + α

∫
ΓIu

WISΦ dΓ

(4.38)

and FI is vector called force vector associated with Ith �eld node and de�ned as

follows:

FI =

∫
ΩI

WIb dΩ +

∫
ΓIt

WI t̄ dΓ + α

∫
ΓIu

WISū dΓ (4.39)

Note that equations (4.36), (4.38), and (4.39) are discrete equations for one

node (Ith) and its local domain. For two dimensional problem each node has

2 equation. For all N �eld node, these two equations are assembled to obtain

global system of equation.
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System of linear algebraic equations based on global numbering is



K(1)(1) K(1)(2) · · · K(1)(2N−1) K(1)(2N)

...
...

. . .
...

...

K(2I−1)(1) K(2I−1)(2) · · · K(2I−1)(2N−1) K(2I−1)(2N)

K(2I)(1) K(2I)(2) · · · K(2I)(2N−1) K(2I)(2N)

...
...

. . .
...

...

K(2N)(1) K(2N)(2) · · · K(2N)(2N−1) K(2N)(2N)


︸ ︷︷ ︸

K2N×2N



u1

v1

...

uI

vI
...

uN

vN

︸ ︷︷ ︸
U2N×1

=



f(1)x

f(1)y

...

f(I)x

f(I)y

...

f(N)x

f(N)y

︸ ︷︷ ︸
F2N×1

(4.40)

If one satis�es equilibrium equation and boundary conditions for all sub do-

mains whose union covers the global domain then global solution is obtained.

On the other hand, Atluri [4] states that even sub domains do not cover the

global domain, MLPG gives su�ciently good results.

4.3.1 Numerical Integration

For numerical integration gauss quadrature schema is used. Gauss quadrature

implemented form of sti�ness matrix is

KI = +

g∑
k=1

wk VI(xGk)D B(xGk) JΩI

+

gi∑
k=1

wk WI(xGk)nD B(xGk) JΓIi

+

gu∑
k=1

wk WI(xGk)nD B(xGk) JΓIu

+ α

∫
ΓIu

WIΦ dΓ

(4.41)
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Gauss quadrature implemented form of force vector is

FI = +

g∑
k=1

wk WI(xGk) b JΩI

+

gt∑
k=1

wk WI(xGk) t̄ JΓIt

+ α

∫
Γqu

WIū dΓ

(4.42)

where g, gi, gu, gt, is number of gauss points.

4.3.2 Weight Function

Cubic spline function is used as weighting function in local symmetric weak

form (Eq. (4.23)). The cubic spline weight function is

Wi(ri) =


2/3− 4r2

i + 4r3
i , ri ≤ 0.5

4/3− ri + 4r2
i − 4/3r3

i , 0.5 < ri ≤ 1

0, ri > 1

(4.43)

where ri is unit distance between gauss point and node I.

For rectangular integration domain in 2 dimension, rx and ry are as follows.

rx =
|x− xi|
ax

(4.44a)

ry =
|y − yi|
ay

(4.44b)

and ax, ay are integration domain size.

Weight function in 2 dimension for rectangular integration domain is as follows

WI = W (rx)×W (ry) (4.45)

4.4 Enforcement of Essential Boundary Condition

Instead of penalty method, direct interpolation method is used in order to

enforce essential boundary conditions [29]. In MLPG each node have two rows in
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the global sti�ness matrix and global force vector for two dimensional problems.

Then, for a node on essential boundary, its two equation in system of equations

are replaced with two essential boundary equation given in (4.46). Consequently,

essential boundary condition equations are also satis�ed.

Interpolation of essential boundary condition for a node is

uhI =

uhIvhI
 =

φ1 0 φ2 0 · · · φn 0

0 φ1 0 φ2 · · · 0 φn





u1

v1

u2

v2

...

un

vn



= Φ u =

ūIv̄I


(4.46)

For a �eld node on essential boundary, essential boundary conditions are im-

posed in two steps by direct interpolation method. Firstly, two rows of global

sti�ness matrix, which belong to the �eld node, are replaced with shape func-

tions matrix in equation (4.46). Secondly, two rows of global force vector, which

belong to the �eld node, are replaced with prescribed displacements in equation

(4.46)

After replacement sti�ness matrix, K, is

K =



K(1)(1) K(1)(2) · · · K(1)(2N−1) K(1)(2N)

...
...

. . .
...

...

φ1 0 · · · φn 0

0 φ1 · · · 0 φn
...

...
. . .

...
...

K(2N)(1) K(2N)(2) · · · K(2N)(2N−1) K(2N)(2N)


(4.47)
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After replacement force vector, F, is

F =



f(1)x

f(1)y

...

ūI

v̄I
...

f(N)x

f(N)y



(4.48)

4.5 Displacements

After solving linear systems of equations, u vector is obtained. However due

to lack of Kronecker delta property, these displacement values is �ctitious and

cannot be used directly. Following equation is used in order to �nd displacements

of point at x.

uv
 =

φ1 0 φ2 0 · · · φn 0

0 φ1 0 φ2 · · · 0 φn





u1

v1

u2

v2

...

un

vn



(4.49)

where φi(x) is shape function corresponding to the ith node in support domain

of point at x and de�ned in equation (4.19).

4.6 Stresses

After solving linear systems of equations u vector is obtained. In order to �nd

stress of a position, one should construct MLS shape functions for that point.

Then, following equation is used to get stress of a point
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σ = D B u (4.50)

where D is de�ned in (3.10) and B is de�ned in (4.33).

4.7 Error Estimation

In addition to direct comparison of stresses and displacements with exact

solution, following norms and errors are also considered.

Displacement L2 norm and relative error are

‖u‖ =

∫
Ω

uT u dΩ

 1
2

(4.51a)

ru =
‖unum − uexact‖
‖uexact‖

(4.51b)

Energy norm and relative error are

‖E‖ =

1

2

∫
Ω

εT D ε dΩ

 1
2

(4.52a)

rE =
‖Enum − Eexact‖
‖Eexact‖

(4.52b)
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CHAPTER 5

NUMERICAL EXAMPLES

5.1 Cantilever Beam

A Cantilever beam subjected to a parabolic traction at the free end is con-

sidered as seen in �gure 5.1. Beam has unit thickness and parabolic transverse

loading, given in equation (5.1), is applied at free end.

Properties of problem are tabulated in table 5.1 and problem is solved for

plane stress case. MLPG solution is compared with analytical solution given in

�5.1.1.

Traction of right edge given as follows

t(y) =
P

2I

[
D2

4
− y2

]
(5.1)

where I is moment of inertia and de�ned as follows:

I =
D3

12
(5.2)

5.1.1 Exact Solution

Exact solution of problem is given by Timoshenko and Goodier [43]
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Table 5.1: Properties of Cantilever Beam Problem

Parameters Values
Height, D 12 mm
Length, L 48 mm
Thickness, t 1 mm
Load, P -100 N
Modulus of Elasticity, E 70000 MPa
Poisson's Ratio, ν 0.33

Figure 5.1: Cantilever beam
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Displacement in x-direction is

u(x, y) = − Py

6EI

[
(6L− 3x)x+ (2 + v)

(
y2 − D2

4

)]
(5.3)

Displacement in y-direction is

v(x, y) =
Py

6EI

[
3vy2(L− x) + (4 + 5v)

D2x

4
+ (3L− x)x2

]
(5.4)

Stress in x-direction is

σxx(x, y) = −P (L− x)y

I
(5.5)

Stress in y-direction is

σyy(x, y) = 0 (5.6)

Shear stress is

τxy(x, y) =
P

2I

[
D2

4
− y2

]
(5.7)

5.1.2 MLPG Solution

Node distribution and gauss integration domain for an internal node is shown

in �gure 5.2. In addition, in �gure 5.3, integration domain for an boundary node

is illustrated.

For trial function construction 6 monomials are used. In�uence domain size

is 3.5 times nodal spacing.

Integration domain size is 2.5 times nodal spacing. For integration, integration

domain is divided into 4 sub-domains. 4 gauss points are used for each sub-

domain.

43



Figure 5.2: Cantilever beam node distribution and internal integration domain

Figure 5.3: Cantilever beam node distribution and edge integration domain
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5.1.3 Results

Results of MLPG solution is directly compared with exact solution. In addi-

tion, energy norm error is also calculated and given in table 5.2

Tip displacement of solution and exact errors are tabulated in table 5.3 and

5.4.

Normal and shear stresses at mid-length of beam and associated exact errors

are tabulated in table 5.5 and 5.6.

Color plots of normal and shear stress of MLPG and exact solution for whole

domain are given in �gure 5.4 and 5.5.

Color plots of displacements of MLPG and exact solution for whole domain

are given in �gure 5.6 and 5.7.

Table 5.2: Global energy error of cantilever beam problem

Energy Error
0.05

Table 5.3: Tip displacement ux of cantilever beam (x = 48 mm)

y [mm] ux exact [mm] ux MLPG [mm] % Error
6 0.068571 0.067895 0.99
3 0.033974 0.033649 0.96
0 0.000000 0.000000 N/A
-3 -0.033974 -0.033649 0.96
-6 -0.068571 -0.067895 0.99
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Table 5.4: Tip displacement uy of cantilever beam (x = 48 mm)

y [mm] uy exact [mm] uy MLPG [mm] % Error
6 -0.381857 -0.379470 0.63
3 -0.381857 -0.379520 0.61
0 -0.381857 -0.379510 0.61
-3 -0.381857 -0.379520 0.61
-6 -0.381857 -0.379470 0.63

Table 5.5: Mid-length stress σx of cantilever beam (x = 24 mm)

y [mm] σx exact [MPa] σx MLPG [MPa] % Error
6 100.0 97.8 2.17
3 50.0 48.9 2.16
0 0.0 0.0 N/A
-3 -50.0 -48.9 2.16
-6 -100.0 -97.8 2.17

Table 5.6: Mid-length stress σxy of cantilever beam (x = 24 mm)

y [mm] σxy exact [MPa] σxy MLPG [MPa] % Error
6 0.0 -0.4 N/A
3 -9.4 -9.4 0.43
0 -12.5 -12.1 2.98
-3 -9.4 -9.4 0.43
-6 0.0 -0.4 N/A
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Figure 5.4: σx stress of cantilever beam (a) MLPG (b) Exact
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Figure 5.5: σxy stress of cantilever beam (a) MLPG (b) Exact
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Figure 5.6: ux displacement of cantilever beam (a) MLPG (b) Exact
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Figure 5.7: uy displacement of cantilever beam (a) MLPG (b) Exact
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5.2 In�nite Plate with Circular Hole

In�nite plate with circular hole under uniaxial tension , shown in �gure 5.8, is

considered for e�ects of parameter study. Properties of problem are tabulated

in table 5.7 and problem is solved for plane stress case.

Figure 5.8: In�nite plate with circular hole

Table 5.7: Properties of Plate Problem

Parameters Values
Hole Radius, a 9 mm
Height, D 36 mm
Length, L 36 mm
Thickness, t 1 mm
Load, σ 100 MPa
Modulus of Elasticity, E 30000 MPa
Poisson's Ratio, ν 0.3
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Due to symmetry, upper right quadrant of the plate is modeled as shown in

�gure 5.9. Symmetric boundary conditions are imposed on the bottom and left

edges. Traction stresses of exact solution, given in equation (5.15), (5.16),and

(5.17) , are applied to the right and top edge. Circular boundary is traction free.

Figure 5.9: One quarter of in�nite plate with circular hole

• Segment AB: prescribed natural boundary

t̄1 = 0, t̄2 = 0 (5.8)

• Segment BC: prescribed essential and natural boundary

ū2 = 0, t̄1 = 0 (5.9)

• Segment CD: prescribed natural boundary

t̄1 = σxx, t̄2 = σxy (5.10)
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• Segment DE: prescribed natural boundary

t̄1 = σxy, t̄2 = σyy (5.11)

• Segment EA: prescribed essential and natural boundary

ū1 = 0, t̄2 = 0 (5.12)

5.2.1 Exact Solution

Exact solution of problem is presented in [3].

Displacement in x-direction with respect to radial coordinates is

u(r, θ) =
1 + v̄

Ē
σ

(
1

1 + v̄
r cos θ +

2

1 + v̄

a2

r
cos θ +

1

2

a2

r
cos 3θ − 1

2

a4

r3
cos 3θ

)
(5.13)

Displacement in y-direction with respect to radial coordinates is

u(r, θ) =
1 + v̄

Ē
σ

(
−v̄

1 + v̄
r sin θ − 1− v̄

1 + v̄

a2

r
sin θ +

1

2

a2

r
sin 3θ − 1

2

a4

r3
sin 3θ

)
(5.14)

Stress in x-direction with respect to radial coordinates is

σxx(r, θ) = σ

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3a4

2r4
cos 4θ

]
(5.15)

Stress in y-direction with respect to radial coordinates is

σyy(r, θ) = σ

[
−a

2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3a4

2r4
cos 4θ

]
(5.16)

Shear stress with respect to radial coordinates is

σxy(r, θ) = σ

[
−a

2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3a4

2r4
sin 4θ

]
(5.17)
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5.2.2 MLPG Solution

Node distribution is shown in �gure 5.10. There are 8 �eld nodes distributed

uniformly in tangential direction. On the other hand, there are 13 �eld nodes

distributed non-uniformly in radial direction. A total of 104 �eld nodes is used to

represent problem domain. In radial direction, ratio of adjacent spaces between

nodes is 1.15.

For trial function construction 6 monomials are used. For integration, inte-

gration domain is divided into 4 sub-domains. 4 gauss points are used for each

sub-domain.

Figure 5.10: Nodal arrangement for in�nite plate
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5.2.3 Results

4 sets of run are performed in order to investigate e�ects of integration and

in�uence domain size. Results of exact solution is used to calculate exact error

norms.

In �rst set, in�uence domain size multiplier is 3.5 and analysis is performed

for di�erent values of integration domain size multiplier which vary from 0.5 to

4.0 with 0.1 increments. Results are shown in �gure 5.11.

Figure 5.11: Energy and displacement L2-norm exact error with respect to in-
tegration domain size αq for in�uence domain size αI = 3.5
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In second set, in�uence domain size multiplier is 4.0 and analysis is performed

for di�erent values of integration domain size multiplier which vary from 0.5 to

4.0 with 0.1 increments. Results are shown in �gure 5.12.

Figure 5.12: Energy and displacement L2-norm exact error with respect to in-
tegration domain size αq for in�uence domain size αI = 4.0
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In third set, in�uence domain size multiplier is 4.5 and analysis is performed

for di�erent values of integration domain size multiplier which vary from 0.5 to

4.0 with 0.1 increments. Results are shown in �gure 5.13.

Figure 5.13: Energy and displacement L2-norm exact error with respect to in-
tegration domain size αq for in�uence domain size αI = 4.5
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In fourth set, integration domain size multiplier is 2.5 and analysis is per-

formed for di�erent values of in�uence domain size multiplier which vary from

3.5 to 4.5 with 0.1 increments. Results are shown in �gure 5.14.

Figure 5.14: Energy and displacement L2-norm exact error with respect to in-
�uence domain size αI for integration domain size αq = 2.5
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Finally, results of plate with circular hole problem is evaluated with selected

parameters. These parameters are as follows:

• Integration domain size multiplier is set to 2.5

• In�uence domain size is set to 4.0

Following results are based on foregoing parameters.

Tangential stresses in cylindrical coordinates for circular section where r =

9 mm are shown in �gure 5.15

Normal stresses, and shear stress for bottom edge where θ = 0◦ are shown in

�gure 5.16, 5.17, and 5.18.

Normal stresses, and shear stress for diagonal where θ = 45◦ are shown in

�gure 5.19, 5.20, and 5.21.

Normal stresses, and shear stress for left edge where θ = 90◦ are shown in

�gure 5.22, 5.23, and 5.24.

Color plots of normal stresses and shear stress of MLPG and exact solution

for problem domain are given in �gure 5.25, 5.26 and 5.5.

Color plots of displacements of MLPG and exact solution for problem domain

is given in �gure 5.28 and 5.29.
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Figure 5.15: σθ stress of plate problem at r = 9 mm for MLPG and Exact
Solution

Figure 5.16: σx stress of plate problem at θ = 0◦ for MLPG and Exact Solution
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Figure 5.17: σy stress of plate problem at θ = 0◦ for MLPG and Exact Solution

Figure 5.18: σxy stress of plate problem at θ = 0◦ for MLPG and Exact Solution
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Figure 5.19: σx stress of plate problem at θ = 45◦ for MLPG and Exact Solution

Figure 5.20: σy stress of plate problem at θ = 45◦ for MLPG and Exact Solution
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Figure 5.21: σxy stress of plate problem at θ = 45◦ for MLPG and Exact Solution
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Figure 5.22: σx stress of plate problem at θ = 90◦ for MLPG and Exact Solution

Energy and displacement errors are presented in table 5.8 for selected param-

eters.

Table 5.8: Global energy and displacement error of in�nite plate with circular
hole

Energy Error Displacement Error
0.01 0.0006
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Figure 5.23: σy stress of plate problem at θ = 90◦ for MLPG and Exact Solution

Figure 5.24: σxy stress of plate problem at θ = 90◦ for MLPG and Exact Solution

65



Figure 5.25: σx stress of plate problem (a) MLPG (b) Exact
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Figure 5.26: σy stress of plate problem (a) MLPG (b) Exact
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Figure 5.27: σxy stress of plate problem (a) MLPG (b) Exact
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Figure 5.28: ux displacement of plate problem (a) MLPG (b) Exact
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Figure 5.29: uy displacement of plate problem (a) MLPG (b) Exact

70



CHAPTER 6

CONCLUSION

In this study, MLPG method, based on local symmetric weak form and moving

least squares approximation, is implemented to problems of elasto-statics.

MLPG1 sub-class of MLPG is considered. In MLPG1, MLS weight function

is used as test function for weighting local weak form. However, their spaces

are chosen di�erently. Cubic spline function is selected for weighting purpose. 6

monomials are utilized for shape function construction.

For MLPG, accuracy of integration is very important. Thus, total of 64 gauss

point is constructed for each sub-domain in order to evaluate integration accu-

rately.

Although MLPG has not Kronecker delta property, essential boundary con-

ditions implemented easily by direct interpolation technique.

Derivatives of �eld variable, namely stresses, is smooth enough due to 2nd order

consistency. Special techniques, such as stress extrapolation or stress recovery,

are not required to achieve smooth stresses.

Cantilever beam problem is solved by using uniform nodal distribution. Stresses

and displacements are compared with exact solution. Although nodal density is

not high, results are satisfactory and exact global energy error is 0.05.
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Firstly, e�ect of integration domain size is investigated for in�nite plate with

circular hole problem. For three di�erent in�uence domain sizes, most accurate

results can be achieved when integration domain size multiplier is around 2.5.

Secondly, e�ect of in�uence domain size is investigated for in�nite plate with

circular hole problem. Integration domain size multiplier is set to 2.5. Most

accurate results can be achieved when in�uence domain size multiplier is around

4.3.

Finally, problem is solved and results are presented for integration domain

size multiplier 2.5 and in�uence domain size multiplier 4.0. Stresses and dis-

placements are compared with exact solution. Stresses and displacements are

accurate enough and exact global energy error is 0.01.
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APPENDIX A

GAUSS QUADRATURE INTEGRAL

A.1 Isoparametric formulation of Quadrilateral Element

Shape functions for one to one isoparametric mapping for quadrilateral ele-

ments are

N1 =
1

4
(1− ξ) (1− η)

N2 =
1

4
(1 + ξ) (1− η)

N3 =
1

4
(1 + ξ) (1 + η)

N1 =
1

4
(1− ξ) (1 + η)

(A.1)

Figure A.1: Isoparametric quadrilateral
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Jacobian for transformation is

|J | =

∣∣∣∣∣∣∣∣
4∑
i=1

∂Ni

∂ξi
xi

4∑
i=1

∂Ni

∂ξi
yi

4∑
i=1

∂Ni

∂ηi
xi

4∑
i=1

∂Ni

∂ηi
yi

∣∣∣∣∣∣∣∣ (A.2)

where xi and yi are the coordinates of vertices.

Transformation of isoparametric coordinates to global can be done by

x =
4∑
i=1

Nixi

y =
4∑
i=1

Niyi

(A.3)

A.2 Isoparametric formulation of Line Element

Jacobian for transformation is

|J | = 1

2

√
(x2 − x1)2 + (y2 − y1)2 (A.4)

Figure A.2: Isoparametric line

Transformation of isoparametric coordinates to global can be done by

x =
1

2
(x2 − x1) s+

1

2
(x2 + x1)

y =
1

2
(y2 − y1) s+

1

2
(y2 + y1)

(A.5)
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A.3 Gauss Points

Abscissa and weight for 4 gauss points are given in table A.1

Table A.1: Abscissa and weight for 4 gauss points

i xi wi
1 -0.8611363115940526 0.3478548451374538
2 -0.3399810435848563 0.6521451548625461
3 0.3399810435848563 0.6521451548625461
4 0.8611363115940526 0.3478548451374538
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