
COMPARATIVE EVALUATION OF COMMAND DISTRIBUTION VIA
DDS AND CORBA IN A SOFTWARE REFERENCE ARCHITECTURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA BERK DURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

APRIL 2014

Approval of the thesis:

COMPARATIVE EVALUATION OF COMMAND DISTRIBUTION

VIA DDS AND CORBA IN A SOFTWARE REFERENCE

ARCHITECTURE

submitted byMUSTAFA BERK DURAN in partial ful�llment of the require-
ments for the degree of Master of Science in Electrical and Electronics

Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Eng.

Prof. Dr. Semih Bilgen
Supervisor, Electrical and Electronics Eng. Dept.

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçc�
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Ali H. Do§ru
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Dept., METU

Bar�³ �yidir, M.Sc.
Software Engineering Department, ASELSAN

Date:

I hereby declare that all information in this document has been ob-

tained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct,

I have fully cited and referenced all material and results that are not

original to this work.

Name, Last Name: MUSTAFA BERK DURAN

Signature :

iv

ABSTRACT

COMPARATIVE EVALUATION OF COMMAND DISTRIBUTION VIA
DDS AND CORBA IN A SOFTWARE REFERENCE ARCHITECTURE

Duran, Mustafa Berk

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Semih Bilgen

April 2014, 49 pages

Communication between modules in distributed system architectures plays a

crucial role in proper system operation. Therefore, selection of the method for

the communication of software running on di�erent platforms becomes impor-

tant. Two of the alternatives for data distribution are the Common Object Re-

quest Broker Architecture (CORBA) and Data-Distribution Service (DDS). In

this study, e�ects of the selection on the overall software quality and performance

are investigated for real-time embedded systems developed in conformance with

a software reference architecture. For the purposes of this study, a benchmark

project was prepared according to the application domain requirements and soft-

ware reference architecture of the software engineering department. Four test

cases were designed to animate possible scenarios that the system might come

across. Test cases employ di�erent numbers of user interfaces as peers, either as

command sources or as display panels used in the project. Methods are evaluated

in terms of software quality and performance metrics. Software quality metrics

v

are collected under coupling and complexity measurements whereas utilization

and latency are measured for evaluation of software performance.

Keywords: CORBA, DDS, Middleware, Command distribution, Data distribu-

tion, Software reference architecture, Software performance, Software quality.

vi

ÖZ

YAZILIM REFERANS M�MAR�S�NDE KOMUT DA�ITIMI �Ç�N DDS VE
CORBA ALTYAPILARININ KAR�ILA�TIRMALI DE�ERLEND�RMES�

Duran, Mustafa Berk

Yüksek Lisans, Elektrik Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Semih Bilgen

Nisan 2014 , 49 sayfa

Da§�t�k sistem mimarilerinde modüller aras�ndaki ileti³im sistemin düzgün ça-

l�³mas�nda önemli rol oynar. Bu nedenle, ileti³im yönteminin seçimi farkl� plat-

formlarda çal�³an yaz�l�mlar için önemlidir. Komut da§�t�m� için iki alternatif;

�Common Request Broker Architecture" (CORBA) ve �Data-Distribution Ser-

vice" (DDS)tir. Bu çal�³mada, yap�lan seçimin yaz�l�m�n kalite ve performans�na

etkileri yaz�l�m referans mimarisi kapsam�nda geli³tirilen gerçek zamanl� gömülü

sistemler için incelenmi³tir. Bu çal�³man�n amaçlar� do§rultusunda, uygulama

alan� gereksinimleri ve bölümün yaz�l�m referans mimarisine göre bir kar³�la³-

t�rma projesi haz�rlanm�³t�r. Sistemde rastlanmas� olas� senaryolar� canland�r-

mak için dört test senaryosu tasarlanm�³t�r. Test senaryolar�nda de§i³ik say�lar-

daki kullan�c� arayüzlerine, komut kaynaklar� veya projede kullan�lan ekran pa-

nelleri olarak yer verilmi³tir. Yöntemler, yaz�l�m kalite ve performans ölçümleri

ba³l�klar� alt�nda de§erlendirilmi³tir. Yaz�l�m kalite ölçütleri ba§la³�m ve karma-

vii

³�kl�k ölçümleri ile toplan�rken, yaz�l�m performans�n� ölçmek için kullan�m ve

gecikme süresi ölçütleri toplanm�³t�r.

Anahtar Kelimeler: CORBA, DDS, Özel yaz�l�m, Komut da§�t�m�, Veri da§�t�m�,

Yaz�l�m referans mimarisi, Yaz�l�m performans�, Yaz�l�m kalitesi.

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to Prof. Dr. Semih Bilgen for

his support, understanding and guidance throughout the development of this

thesis study. Without his supervision, patience and encouragement, this thesis

would not have been completed.

I thank TÜB�TAK for its support throughout this thesis. I would also like to

thank ASELSAN Inc. for the support and encouragement on academic studies.

I would like to thank Bar�³ �yidir for his vision and ideas that he shared with

me throughout this study. I am grateful to my team leader Evrim Kahraman

and my colleague Sezgin Hay�rl� for their tolerance during this study.

I really appreciate the support of my friends, who �hopefully" never resented

me when I rejected their plans to hang out as I needed to �work on my thesis".

With their love and understanding I managed to overcome the di�culties in the

process.

Finally, I would like to express my special thanks to my parents �eyda and Ufuk

Duran and my �ancée Elçin Ergin for their love, trust, understanding and every

kind of support not only throughout my thesis but also throughout my life.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 3

2.1 Introduction . 3

2.2 Command and Data Concepts 3

2.3 Real-time Embedded Software Performance 4

2.3.1 Introduction 4

2.3.2 Performance Metrics 5

2.4 Real-time Embedded Software Quality 9

xi

2.4.1 Introduction 9

2.4.2 Quality Metrics 9

2.4.3 Reusability . 12

2.5 Data Distribution Middleware: CORBA and DDS . . . 15

2.5.1 Common Object Request Broker Architecture . 15

2.5.2 Data Distribution Service 18

3 EXPERIMENTAL WORK . 21

3.1 Experimental Methodology 21

3.1.1 Selection of Metrics 22

3.1.2 Project Description 22

3.2 Experimental Process 24

3.2.1 Test Case 1: Single Source for Command and
Display . 25

3.2.2 Test Case 2: Separate Command and Display
Modules . 27

3.2.3 Test Case 3: Multiple and Separate Command
and Display Modules 29

3.2.4 Test Case 4: Multiple Sources of Command and
Multiple Display Modules 31

3.2.5 Tools Used for the Experiments 32

4 EXPERIMENTAL RESULTS AND EVALUATION 33

4.1 Measurement of Quality Related Metrics 33

4.2 Measurement of Performance Related Metrics 35

xii

4.2.1 Latency Measurements 35

4.2.2 Utilization Measurements 37

5 DISCUSSION AND CONCLUSION 41

REFERENCES . 45

xiii

LIST OF TABLES

TABLES

Table 2.1 Real-time embedded software performance metrics related to

component based software architecture 14

Table 2.2 Real-time embedded software quality metrics and their rela-

tionship with ISO/IEC 25010 . 15

Table 4.1 Extracted software quality metrics 34

Table 4.2 Extracted latency metrics . 36

Table 4.3 Extracted CPU utilization metrics 37

Table 4.4 Extracted RAM usage metrics 38

Table 4.5 Extracted stack usage metrics 39

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Request and Result Being Sent Through the ORB 17

Figure 3.1 Representation of the System Using CORBA Interface 23

Figure 3.2 Representation of the First Test Case 26

Figure 3.3 Sequence Diagram for the First Test Case with CORBA . . . 26

Figure 3.4 Sequence Diagram for the First Test Case with DDS 27

Figure 3.5 Representation of the Second Test Case 28

Figure 3.6 Sequence Diagram for the Second Test Case with CORBA . 28

Figure 3.7 Sequence Diagram for the Second Test Case with DDS 29

Figure 3.8 Representation of the Third Test Case 29

Figure 3.9 Sequence Diagram for the Third Test Case with CORBA . . 30

Figure 3.10 Sequence Diagram for the Third Test Case with DDS 30

Figure 3.11 Representation of the Fourth Test Case 31

Figure 3.12 Sequence Diagram for the Fourth Test Case with CORBA . . 32

Figure 3.13 Sequence Diagram for the Fourth Test Case with DDS 32

Figure 4.1 A-B Timing Chart for the Four Test Cases 36

Figure 4.2 CPU Utilization Chart for the Four Test Cases 38

xv

Figure 4.3 RAM Usage Chart for the Four Test Cases 39

Figure 4.4 Stack Usage Chart for the Four Test Cases 40

xvi

LIST OF ABBREVIATIONS

CBO Coupling Between Objects

CBSE Component Based Software Engineering

CCCC C and C++ Code Counter

CORBA Common Object Request Broker Architecture

COTS Commercial-O�-The-Shelf Software

CPU Central Processing Unit

DCPS Data-Centric Publish Subscribe

DDS Data Distribution Service

DLRL Data Local Reconstruction Layer

EI External Interface

FP Function Point

GUI Graphical User Interface

IDL Interface De�nition Language

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MCN McCabe Cyclomatic Number

MTTF Mean Time to Failure

MTBF Mean Time Between Failures

OMG Object Management Group

ORB Object Request Broker

OS Operating System

QoS Quality of Service

RAM Random Access Memory

RTOS Real-Time Operating System

RTPS Real-Time Publish Subscribe

SCU Software Control Unit

SLOC Source Lines of Code

SST Defense System Technologies (Tr. Savunma Sistem Teknolojileri)

xvii

WMC Weighted Method Complexity

YMM Software Engineering Department (Tr. Yaz�l�m Mühendisli§i Müdür-
lü§ü)

xviii

CHAPTER 1

INTRODUCTION

As the projects in defense industry largely rely on distributed system archi-

tectures, communication between modules plays a crucial role in the proper

operation of the system as a whole. Therefore, selection of the method for the

communication of software running on di�erent platforms becomes important.

Two of the alternatives for data distribution are the Common Object Request

Broker Architecture (CORBA) and Data-Distribution Service (DDS), both de-

�ned by Object Management Group (OMG).

CORBA is a distributed object computing middleware with quality of service

(QoS) support which brings up a performance overhead while providing plat-

form independence. DDS is a data distribution middleware focusing mainly on

delivering the data within speci�ed QoS requirements. In this study, CORBA

and DDS are empirically compared as alternative communication methods to

observe and assess their e�ects on software performance and quality.

The scope of this study includes the software projects both delivered and be-

ing developed by Software Engineering Department (YMM) of Defense System

Technologies (SST) division in ASELSAN, Inc. The software reference architec-

ture used in the projects is enacted by the department itself with motivation to

increase mainly reuse and the overall software quality.

Software reference architecture is used to provide blueprints for the software

projects developed in the same domain. In software engineering departments

that adopt the component-based software development methodology such as

1

YMM, establishing software reference architecture proves useful mainly in the

integration and reuse of the components. In order to do this, the reference

architecture used in YMM di�erentiates the software operation between the

control plane and data plane as well as the other reference architectures proposed

in the literature for similar domains [24] [26] [37]. Introducing these two planes

in the reference architecture brings up the necessity for classifying the messages

shared by the components that reside in those planes; data and command, both

having di�erent requirements and focuses.

Having separated command distribution from data distribution, selection for the

distribution method should be made according to the restrictions brought up by

the requirements of the project. In order to achieve this, methods are evaluated

under the metrics of software quality and performance. In this study, the eval-

uation metrics are selected and collected according to the application domain

and requirements of YMM. Software quality metrics are collected under coupling

and complexity measurements whereas utilization and latency are measured for

evaluation of software performance.

The rest of this thesis document consists of the following sections:

In Chapter 2, background information on command and data concepts and

CORBA and DDS middleware are introduced. Additionally, real-time embedded

software performance and quality measurement metrics are presented.

Then in Chapter 3, experimental methodology is explained with metric selection,

description for the prepared benchmark project that the measurements are taken

on and the test scenarios that highlight the requirements of the application

domain.

In Chapter 4, experimental results are demonstrated with the measurements on

quality and performance related metrics.

Finally, in Chapter 5, the thesis is concluded with discussions on the measure-

ments. The achievements and limitations of the study are reevaluated and sum-

marized, also outlining perceived challenges and di�culties. Suggestions are

presented for future work.

2

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, di�erences between command and data concepts, real-time em-

bedded software performance metrics and real-time embedded software quality

metrics are reviewed, followed by discussions of the DDS and CORBA technolo-

gies.

2.2 Command and Data Concepts

Existence of domain-speci�c software architecture is a necessity for embedded

systems. Software reference architecture aids to bring engineering discipline and

predictability to software projects and prevents the engineers to develop new

software for every project in the same domain. With the use of software refer-

ence architecture, product cycle time and development cost decreases whereas

software quality and reusability increases [46]. As a result of this, software refer-

ence architecture becomes widely used in real-time embedded software projects.

Primary goals for designing the software architecture are stated by [14] as the

development of reusable architecture framework and development of reusable

application components for the product line.

Design of the software reference architecture relies on the di�erentiation of con-

trol and computational aspects. Without this separation, di�culties in analyzing

the application behavior occur. When the control plane is di�erentiated from

3

the computational plane, data �ow and control �ow could be separated and vi-

sualization and analysis of the system behavior becomes possible. Furthermore,

it eases the addition and subtraction of components [24].

Data �ow and control �ow are the two important �ow policies in software ar-

chitecture [27]. Data �ow represents the motion of computational data whereas

control �ow represents the motion of commands and indicators or �ags (referred

as �control data") that in�uence the sequence of operations [43]. Computational

data carried in the data �ow could be illustrated as large sized sensor data whose

loss in the execution time causes disturbance in the operation rather than a fail-

ure. Loss of commands and indicators or �ags in control �ow on the other hand,

may result in critical failure and damage. While �correctness" is of highest im-

portance in control plane, data plane requires �e�cient computation" in the �rst

place [26].

Consequently, after di�erentiating the two data types mentioned in the archi-

tecture, it is necessary to take the necessary precautions, such as determining

quality of service (QoS) speci�cations, for the sake of performance of the em-

bedded system as both planes require attention on di�erent aspects.

2.3 Real-time Embedded Software Performance

2.3.1 Introduction

An embedded system is a computerized system which in contrast to a general

purpose computing environment, aims to achieve a dedicated set of tasks most

often within speci�c hardware architecture and its restrictions. Embedded sys-

tems are used in almost every high-tech device for many di�erent purposes.

Real-time systems, on the other hand, are a subset of embedded systems [15].

The factor that di�erentiates real-time systems from other systems is their strict

performance requirements [7]. Real-time software is expected to meet timeliness

requirements in addition to the functional correctness [35]. Inability to meet its

performance criteria means failure for a real-time system [19].

4

In a similar manner, physical constraints are the most important characteristics

of an embedded system. Hardware used in the system on which the software

runs is �xed and in most cases cannot be extended by the user. This brings

up the necessity to decrease the hardware costs arising from memory, power,

cooling and computing power. Consequently, developers are held responsible for

optimizing the system to minimize the use of resources [15]. Usually, in order

to decrease the costs of manufacturing the equipment, computers that are used

in embedded systems are selected and built among the least powerful ones as

long as they are capable of satisfying the requirements [4]. These restrictions

necessitate optimizations in the system along with additional considerations on

the system architecture, data distribution and algorithm selection.

Real-time systems are characterized by three important components; time, reli-

ability and the environment. In real-time systems, time is considered to be the

most valuable resource. Completion of a task should be scheduled within the

stated time interval for that speci�c task. Inter-task communication should also

be arranged to deliver the necessary messages between the tasks that interact

with each other. Timing of these messages, in addition to the computational cor-

rectness, is important for the related tasks to operate properly [44]. In addition,

in a real-time embedded system, some of the events received by the system that

were triggered from the outside must be responded in a speci�ed time interval.

Exceeding this interval would result in system failure and a probable disaster

[49]. Being a potential cause of a disaster in case of a failure, a real-time system

has to be reliable. Failure of a real-time system could result in not only �nancial

loss, but also loss of human lives, especially in the defense industry. Another

active component of a real-time system is naturally its environment. It is neces-

sary to consider the surroundings of the computer in the big picture as a whole

[44].

2.3.2 Performance Metrics

A metric can be described as a characteristic of a system that can be measured.

In software development point of view, a metric is generally related to software's

5

performance. Ideal metrics must contain some important qualities [31]. Metrics

should be simple and quantitatively, precisely and objectively de�nable. The

cost to obtain the metrics should be limited to a reasonable extent. The metric

should be competent to ful�ll its purpose of measure and they are also expected

to be robust, so that they are resistant to small changes in the subject. Three

�elds are mainly covered when system performance is of consideration; response

time, throughput and speed of the system.

Four important performance metrics are prioritized by [19]; performance pro�l-

ing, A-B timing, response to external events and Real-Time Operating System

(RTOS) task performance. [30] states processor utilization, memory consump-

tion, memory available, memory utilization and disk utilization as fundamental

performance metrics.

Capability of performance pro�ling brings up the information on the time spent

for each function used in the system during runtime. Problematic areas are

therefore more easily detectable, in other words, it is easier to observe on which

functions the system spends more time and resources. Identifying those areas

enables the developers to make optimizations on the system more e�ciently

[19]. Performance pro�ling metric could be considered under both speed-related

metrics and throughput metrics according to the classi�cation of [18] as it aids

to obtain functional processing speed and processing rate of incoming messages.

According to [19], A-B timing is the most important timing measurement for

real-time systems. It is a point to point timing measurement and enables the

developers to check if a speci�c code segment meets its timing requirements.

Similar to performance pro�ling metric, measurement of the time spent by the

system to go from one point to another in the code, A-B timing metric could be

considered under speed-related and throughput metrics of [18].

Response to external events metric is de�ned as measurement of the time spent

by the software from receiving an external event to responding to that event

after taking necessary action [19]. As it is related to the system response time,

response to external event could be classi�ed under speed-related metrics of [18].

6

RTOS task performance measurements are studied under two categories; task

deadline performance measurements and task pro�ling performance measure-

ments. Task deadline performance measurements cover the measurement of the

time spent by a single task from being triggered by an event until meeting its

deadline in a multi-tasking application. Task pro�ling performance measure-

ments are similar to performance pro�ling measurements, except for taking the

measurements on the task level instead of function level [19]. This metric could

be considered under both speed-related and throughput metrics of [18] and pro-

cessor utilization metrics of [30] as the utilization of the processor e�ects the

response time of a task [7].

According to [18], existing software performance metrics prevent the evaluation

of component performance as they mostly treat the system as a black box.

For component based reference architecture as the one being used in YMM,

six classes of metrics stated by [18] appear to be more suitable for evaluation

of component performance in a real-time embedded system; utilization, speed-

related metrics, availability, reliability, throughput and scalability metrics.

Utilization metrics concept refers to the extent to which a component's resources

are being used when the system is under load. Types of the system resources

may di�er from one system to another. However, mainly the system resources

under consideration of the engineers are; network bandwidth, CPU, memory,

cache and storage. As a result, utilization metrics could be organized under

three types; network utilization, server machine utilization and client machine

utilization. Network utilization is typically the network tra�c versus the num-

ber of users, whereas server and client machine utilization refers to the server or

client utilization versus command rate for CPU, cache, memory and disk utiliza-

tion [18]. Considering that a real-time embedded system must use its resources

e�ciently, measuring components' resource utilization under load is useful.

Speed-related metrics cover a variety of metrics that the engineers use to mea-

sure the processing speed of a system. System-user response time is one of the

most preferred speed metrics which is used to obtain minimum, maximum and

the average user response time for various user groups. If the system contains

7

di�erent types of messages for communication, it is necessary to measure the

processing time for the messages of di�erent kind. Database connection and re-

sponse times are necessary for the systems making use of database accesses with

various types of database queries. Latency metrics, such as processing delay and

communication delay, also form an important type of speed-related metrics as

they are needed for taking di�erent kinds of delay measurements in a system

[18]. Additional speed-related metrics are introduced by [9].

Availability metrics are used for checking system availability which by de�nition

is the system available time divided by the system evaluation time in total [48].

Component or system availability becomes important in measuring the perfor-

mance [29]. According to [18], availability metrics could be investigated under

three types; network, computer hardware and computer software availability.

Reliability of a system is usually expressed with its mean time to failure (MTTF)

or mean time between failures (MTBF). [18] bases the component reliability

on component uptime and downtime for services during the time interval of

performance evaluation and divides reliability metrics under four categories;

network reliability, computer hardware reliability, computer software reliability

and application reliability.

Throughput metrics are used to measure the success of a component in mes-

sage, event and transaction request processing aspects for the period of evalua-

tion. Throughput metrics could be investigated under three types; transaction

throughput, message throughput and task throughput. Typically, throughput

metrics are total number of processed versus received transactions, processed

messages versus received messages or completed tasks versus given tasks [18].

Scalability is de�ned as the deployment capability of the system for performing

its functions and services within a range of various de�ned sizes. System and

component capacity boundaries, data volume, number of concurrent access users,

process speedup and throughput improvement are the areas that the system's

scalability is measured on. Scalability metrics are examined in performance im-

provement and performance boundary and limit categories. Function speedup,

transaction throughput improvement, boundary and limit are the examples of

8

scalability metrics [18].

In addition to these performance metrics, when the communication between

software control units is in consideration, new performance dimensions occur.

Delivery to simultaneous nodes, bandwidth utilization, media reliability, conges-

tion and failure recovery are the performance dimensions stated by [2]. Within

these dimensions, [2] emphasizes four metrics to be the key metrics for perfor-

mance; latency, jitter, throughput and e�ciency. All are in accordance with the

component based metrics of [18].

Table 2.1 combines and summarizes the relationship between metrics of [18], [19]

and [2] in accordance with the scope of this thesis.

2.4 Real-time Embedded Software Quality

2.4.1 Introduction

In this section, real-time embedded software quality is investigated under two

parts. In the �rst part, widely accepted and used quality metrics in the lit-

erature, including the ISO/IEC 25010 standard, are discussed. In the second

part, although not being described as a quality metric, reusability; whose e�ects

on software quality is investigated in detail in [13] and is accepted as a major

software quality factor in [17], is explained.

2.4.2 Quality Metrics

In order to measure software quality, it is important to use commonly accepted

and well de�ned characteristics and metrics. In this manner, ISO/IEC 25010 is a

widely used standard which describes the metrics to measure and evaluate soft-

ware product quality. Before taking its �nal form as ISO/IEC 25010, ISO/IEC

9126 was published in 1991 and revised in 2001. [22] introduces two quality

models, one is for internal and external quality and the other quality model is

for quality in use. Six characteristics used to de�ne internal and external qual-

9

ity are identi�ed as; functionality, reliability, usability, e�ciency, maintainability

and portability. Quality in use characteristics are divided under four categories;

e�ectiveness, productivity, safety and satisfaction.

Although the ISO/IEC 9126 is widely used and adopted as a software qual-

ity framework, many criticisms pointing out its shortcomings also exist. In

[6], weaknesses of ISO/IEC 9126 are discussed along with the suggestions for

resolving those issues. Terminology used in ISO/IEC 9126, absence of met-

ric classi�cation, problematic mapping between standards and representation of

measurements for the metrics are the major subjects of criticisms in [6]. In their

study, [5] pointed out the �aws in ISO/IEC 9126. Ambiguity in the de�nitions of

metrics, insu�ciency of counting measures, inappropriate phase assignments of

attributes and insu�ciency of attributes and measures are the major problems

that usually surface at the end of a study.

As a consequence of these analyses, ISO/IEC 9126 was replaced by ISO/IEC

25010. ISO/IEC 25010 introduced new characteristics and sub-characteristics

with an extended scope including computer systems as a whole rather than

software only.

Software quality is investigated under two quality models in [23]. Quality in

use model addresses the �ve characteristics observed as the product is used

interactively whereas the product quality model contains eight characteris-

tics pointing out static features of the software and dynamic features of the

system. Five characteristics of quality in use model are; e�ectiveness, e�ciency,

satisfaction, freedom from risk and context coverage. Product quality model's

eight characteristics are de�ned as; functional suitability, performance e�ciency,

compatibility, usability, reliability, security, maintainability and portability [23].

Functional suitability describes the extent of functions that the system is capable

of providing as required by the user. Needs of the user is the main concern,

as opposed to the functional speci�cations. Performance e�ciency investigates

the utilization of available system resources, such as hardware con�guration,

software con�guration or other supplies used by the system, when the system

is under conditions de�ned previously. Compatibility is the availability of the

10

software for interacting with other software in the same hardware or software

environment. Usability describes the ease of usage of the product by de�ned

users in order to ful�ll pre-speci�ed goals. Reliability is de�ned as the capability

of a system to perform under stated conditions for de�ned amount of time. Since

software does not wear out, design and implementation errors, non-conformance

of requirements are targeted. Security covers data and information protection

in the system, and also transmitted by the system, against other systems and

actors. Limited authorization to data access is also a concern. Maintainability is

the availability of the system for alterations that are applied by the maintainers

in order to prolong its lifespan. Activities that intend correction, improvement

or adaptation to changes in addition to software upgrades and updates are all

included in maintenance e�orts. Portability describes the ease and e�ectiveness

of transferring the software from one environment, hardware or software, to

another [23].

In their work, [39] analyze the relationship between quality metrics and physical

metrics in embedded software systems. According to [39], embedded systems

di�er from the traditional software as the metrics used for embedded software

are mostly physical metrics due to design constraints. In addition; reuse, time to

market and price are also stated to be important for embedded systems. Works

of [38] and [11] show parallelism with [39] in the selection of metrics. Coupling,

cohesion, extensibility, population metrics and complexity are selected in all

three studies among the metrics to be used for the quality measurement.

Coupling is de�ned as the measurement of the relationship between elements

in software. Cohesion, on the other hand, is the measurement of the degree

of relationship between those elements. Extensibility refers to the expansion

capacity of the software. Population metrics measure the attribute, method and

class counts. Complexity metrics are used to determine the di�culty levels in

understanding the problem or algorithm [39].

Among the eight characteristics and their sub-characteristics de�ned in [23],

ones that are considered applicable and bene�cial to conduct the comparative

analysis e�ectively are; time behavior, resource utilization and capacity which

11

reside under performance e�ciency category. Furthermore; coupling, cohesion,

population metrics and complexity are acknowledged as key metrics for software

quality analysis.

In addition to these quality metrics, reusability under maintainability charac-

teristic of ISO/IEC 25010 is investigated and explained separately in the next

section.

2.4.3 Reusability

In [17], reusability is introduced as another major software quality factor as

the purpose of software reuse is de�ned to be the improvements in both soft-

ware quality and productivity. As stated in [17], de�nition of software reuse

is; using the previously developed software or software knowledge to create new

software. Both the software that is eligible for reuse and software knowledge

can be counted as reusable assets. Software's probability of reuse is called as its

reusability property.

Software reuse is investigated under two categories; opportunistic (ad-hoc) reuse,

which is not a part of a repeatable process, and systematic (planned) reuse [33].

YMM aims to increase the systematic reuse in their projects.

The need and motivation for building larger scale systems that are more complex,

reliable and less expensive while not exceeding the time of delivery directs the

focus of developers on software reuse. In comparison to traditional methods of

software engineering, software reuse is considered to be a better method. Since

most of the organizations building software systems are operating on speci�c

domains, the systems they build are mostly not new. They are generally the

altered versions of existing systems the company has previously built. This

condition, in other words; the concept of domain engineering became a key idea

in software reuse and encouraged the application of reuse to improve quality and

productivity [17].

E�ects of reuse on quality are investigated thoroughly in [13]. Defect rate is ob-

served to be decreased as a result of systematic reuse due to three major reasons;

12

the components that are planned to be reused are more carefully designed and

tested [33], defects that occur with the components that are subject to reuse are

approached with higher priority [34] and developers gets more experience on the

component as it becomes reused [36].

According to the case study in [36], with the usage of a framework for devel-

opment, increase in quality and productivity was achieved. Gross productivity

also increased and implementation of a function point (FP) accelerated as the

di�culties in the development of a component become resolved beforehand in

the framework. Developers also become more experienced on the components

due to the learning e�ect. Use of a design pattern in a software engineering

environment is also encouraged in [12] as it enables the de�nition of a process

and consequently opens the way for systematic reuse.

In [34], a study investigating the defect density and stability in accordance with

reuse is explained. Reuse is claimed to be a factor improving software quality

as components subject to reuse have lower defect density and higher priority in

solving those defects than other components that are not reused. Less amount

of modi�cation e�ort is applied on the reused components, making them more

stable than non-reused components which are more defect-prone.

The results and advantages that component based software engineering (CBSE)

and reuse o�ers to developers and users are stated by [34] as; shorter devel-

opment time and decreased total cost, architectures that are standardized and

available for reuse, separation of skills by packaging di�culties into frameworks,

easier acquisition of components and improved reliability in the shared software

components. On the other hand, disadvantages are claimed to be the dependence

on component providers and suspicion on the new technology in the case of not

developing the components to be reused in-house in addition to the trade-o�s

for quality attributes and functional requirements [34].

13

Table2.1: Real-time embedded software performance metrics related to compo-
nent based software architecture

Component

Based Per-

formance

Metric

Explanation Covered Metrics in [19]

Utilization
[18]

Usage of resources
when the system is
under load

Task deadline and pro�ling
performance measurements

System-user
response
time [18]

Minimum, maximum
and average user
response time for
di�erent users

Performance pro�ling, A-B timing,
Response to external events, Task
deadline and pro�ling performance
measurements

Latency [18]
[2]

Processing and
communication delays

Performance pro�ling, A-B timing,
Response to external events, Task
deadline and pro�ling performance
measurements

Availability
[18]

Network, hardware
and software
availability

-

Reliability
[18]

Network, hardware
,software and
application reliability

-

Throughput
[18] [2]

Success of a
component in message,
event and transaction
request processing

Performance pro�ling, A-B timing,
Task deadline and pro�ling
performance measurements

Scalability
[18]

Deployment capability
of the system within a
range of various sizes

-

14

Table2.2: Real-time embedded software quality metrics and their relationship
with ISO/IEC 25010

Quality Metric Related Category in ISO/IEC 25010

Time behavior [23] Performance e�ciency
Resource utilization [23] Performance e�ciency
Capacity [23] Performance e�ciency
Coupling [39] [38] [11] Compatibility
Cohesion [39] [38] [11] Compatibility
Population metrics [39] [38] [11] -
Complexity [39] [38] [11] Usability
Reusability [23] Maintainability

2.5 Data Distribution Middleware: CORBA and DDS

Advanced real-time systems of today are mostly distributed and require co-

operation and coordination of distinct computers. Major di�culty behind this

is the fast delivery of data to many recipients. In order to resolve this issue,

di�erent data distribution middleware technologies were developed and those

could be classi�ed and investigated under three broad categories: client-server,

message passing and publish-subscribe [42].

According to [42], for service oriented systems, client-server middleware is the

suitable choice whereas message passing is preferable for free-form data sharing.

Publish-subscribe covers both messaging and discovery while forming a data

centric information distribution system.

Common Object Request Broker Architecture (CORBA) and Data Distribution

Service (DDS) are widely used middleware technologies in real-time systems.

2.5.1 Common Object Request Broker Architecture

Common Object Request Broker Architecture (CORBA) is a framework used for

object-oriented and distributed application development. As the technologies in

hardware and software were diversi�ed, real-time computing environments be-

15

came heterogeneous [32]. Increasing necessity for standardized communication

between systems developed using di�erent languages formed the basis for a mid-

dleware that aids establishing connection through di�erent message formats and

types [20]. As a result, a distributed object computing middleware that is also

able to manage quality of service requirements in real-time systems emerged as

an industry standard by Object Management Group (OMG) [41].

With foundation of OMG in 1989, development of CORBA began. The �rst

version of the speci�cation; CORBA 1.0 was introduced in 1991. In the fol-

lowing years, newer versions were released and in 1998, Minimum CORBA was

introduced for embedded systems in order to provide an interoperable subset of

CORBA for applications with resource constraints. Real-Time CORBA, con-

taining the abilities for network, CPU and memory resource management [41],

was released in 1999 and extended CORBA for building deterministic applica-

tions. It took two years for a team composed of several companies to prepare

Real-Time CORBA which was planned to support Fixed Priority scheduling

protocols [20]. Most recent major version (3.0) of CORBA speci�cation was

released in 2002 and updated twice with minor changes to 3.0.2 in the same

year.

CORBA is a middleware under the control of operating system, carrying resem-

blance to a software bus. It is composed of two major components; Interface

De�nition Language (IDL) and Object Request Broker (ORB). IDL eliminates

language dependence by specifying a common interface to distributed objects,

whereas ORB facilitates the network connection by locating objects, managing

communication and marshaling the data. ORB is to provide basic functionalities

in order to enable heterogeneous objects operate together [32].

Figure 2.1 has been constructed to depict the mechanism for sending a request

and receiving its result through the ORB. Client is the actor in need to invoke

a method on the Object which is implemented by the code shown as Object

Implementation. It is the responsibility of ORB to �nd and prepare the object

implementation and establish data communication. It is necessary for the Client

to know the type of the object and the operation it needs in order to make a

16

Figure 2.1: Request and Result Being Sent Through the ORB

request. The interface that the Client sees (IDL) is composed of operations

and their parameters and it is language and location independent. The Client

only knows about the logical structure. IDL speci�es the interfaces of objects in

order to de�ne their types. ORB delivers the request to Object Implementation

and retrieves the result [3]. ORB, therefore provides platform independence to

CORBA as it is possible to use CORBA objects on any platform implementing

the ORB.

Even though CORBA provides language and platform independence, its per-

formance is a major drawback. There exist numerous studies in the literature

on performance of CORBA and performance improvement methods for ORB

implementation. [32][47][40][8]

According to [32], CORBA is not feasible for high performance communication

service implementation. In their study, [32] compares CORBA to socket imple-

mentation and underlines platform independence, language independence and

decreased complexity in number of interfaces (from NxN with a N node socket

system to N with CORBA ORB) as the advantages of CORBA over socket. [32]

states that, although socket implementation provides better performance, being

OS speci�c makes it not suitable for heterogeneous and distributed computing

environments.

Another study on improving CORBA performance is proposed in [47] demon-

strating the e�orts on caching. Similarly, transparency in location, OS and

17

language are stated to be strengths of CORBA compared to socket and remote

procedure call (RPC) protocols. However, problems of the ORB are pointed out

to be related with the message overhead and networking bandwidth.

Factors causing the performance overhead in CORBA are listed in [40] mainly

as; excessive data copying and conversions, ine�cient techniques used for de-

multiplexing in server, bu�ering methods and long function call chains inside

the ORB.

2.5.2 Data Distribution Service

Data Distribution Service (DDS) is an open standard developed by OMG that

caters publish-subscribe middleware for real-time systems [42]. The �rst version

of DDS speci�cation was released in 2003, updated to version 1.1 in 2005 and

took its latest form as version 1.2 in 2007.

DDS Speci�cation introduces two interfaces: Data-Centric Publish Subscribe

(DCPS) and Data Local Reconstruction Layer (DLRL). DCPS interface is lo-

cated at the lower level aiming to distribute data to related subscribers e�ciently.

DLRL is optional and resides atop DCPS level. DLRL aids to integrate data

distribution service into the application layer easily. Typed interfaces, which

translate the actual data types, are preferred to be used as they are simpler,

safer and more e�cient to use. In order to use typed interfaces, it is necessary

to use a generation tool converting the type descriptions into �tting interfaces

and implementations. This conversion ful�ls the space between middleware and

typed interfaces [1].

For the description of service behavior in DDS, Quality of Service (QoS) concept

is used. QoS settings enable the developer to focus on what is required rather

than how to implement that requirement. In a real-time application where the

resources are limited, it is important to distribute the resource usage propor-

tional to importance of the requirements through QoS properties [1]. As [10]

states, main focus of DDS is on the distribution of data within guaranteed QoS

restrictions.

18

DCPS model introduces the global data space concept available for use of any

interested application. Accessing the data located in this data space is achieved

by becoming a �Subscriber" and similarly, contribution of an application requires

it to become a �Publisher". Whenever a Publisher sends data, the middleware is

responsible for delivering the data posted on the global data space to interested

Subscribers. DCPS model resides above a data model that describes the global

data space through a set of data structures presented by a topic and a type.

DLRL model reconstructs the data using updates enabling the application to

use that data as local. The middleware is also responsible of updating the local

copy of the data as well as distributing it to related Subscribers [1].

Real-time Publish Subscribe (RTPS) is a standard wire protocol de�ned by

OMG for DDS. Method for transferring messages between nodes is not de�ned in

RTPS speci�cation and left for the providers to introduce their solutions. Three

major DDS implementations are: RTI DDS, OpenSpliceDDS and OpenDDS

[16]. A performance assessment study between these implementations could be

found in [16].

According to [10], publisher-subscriber systems based on DDS o�er narrow sup-

port for reliability in exchange for guaranteed QoS. Consequently, a routing

method is proposed by [10] in their work. Similarly, various DDS implementa-

tions, solutions and analyses exist in the literature.

Considering the capabilities, advantages and shortcomings of CORBA and DDS,

[25] states DDS and CORBA are compatible and complementary; DDS focuses

on data whereas CORBA focuses on requests.

19

20

CHAPTER 3

EXPERIMENTAL WORK

The present study aims to compare and analyze the e�ects of using DDS and

CORBA for command distribution on a real-time embedded system developed

in conformance with a software reference architecture. In order to achieve this

goal, it is necessary to de�ne the priorities of the software development team and

requirements of the software and underline the assessment criteria considering

the YMM's application domain.

Selection of the metrics with reasoning and methods for obtaining those measure-

ments are presented in this section. Following the metric selection, the project

used for comparison is described and the experimental process is explained in

detail.

3.1 Experimental Methodology

In order to analyze the performance and quality aspects of command distribution

with DDS and CORBA, a benchmark project is prepared using the application

domain requirements and software reference architecture of YMM. Four test

cases are formed to implement the possible scenarios that may occur through

the operation of the system. The benchmark project is described in detail in

3.1.2 Project Description and the test cases are presented in the 3.2 Experimental

Process section.

Performance and quality metrics are selected carefully among the widely used

metrics in literature reviewed in Chapter 2. Selection of the metrics that are

21

unbiased, applicable to the domain and distinctive for the comparison has been

the primary concern.

3.1.1 Selection of Metrics

Metric selection was conducted in a way to highlight the di�culties in the selec-

tion procedure between usage of CORBA and DDS in time and mission-critical

software systems. Both performance and quality concerns guided the selection

of metrics for comparison of two methods in the reference architecture.

Among the metrics identi�ed in Chapter 2, utilization and latency are selected as

the performance metrics to be measured from the project. In terms of utilization,

memory usage and CPU usage values are measured. For latency measurements,

A-B timing is used to determine processing delays. These metrics are selected

among the ones that build up the key restrictions in performance for the real-

time systems developed by YMM.

For the comparison in software quality, coupling and complexity are selected as

the quality metrics to be obtained from the project. Code size, code complexity

and coupling measurements are taken from the benchmark project for software

quality analysis.

3.1.2 Project Description

For the experimental work, a benchmark project was prepared using the soft-

ware reference architecture of YMM. The project contains a System Simulator,

that is; a narrowed-down version of a software control unit (SCU) implement-

ing only the desired functionality used in the application domain. In order to

send and receive messages via CORBA or DDS, System Simulator uses one of

the external interfaces through its communication port. Figure 3.1 shows the

system, excluding the internal SCU details, with System Simulator connected to

CORBA external interface. It is possible to add CORBA or DDS functionality

directly to the software units that are using the communication, in other words,

inside the System Simulator. However, the reference architecture requires the

22

Figure 3.1: Representation of the System Using CORBA Interface

software units to be project independent. Reuse is of the essence and to prevent

modi�cation of a unit while using it in separate projects, external interfaces

are used to implement that unit's provided and required interface functions and

events. For this reason, CORBA and DDS external interfaces are prepared and

it is possible to switch between the two by changing the link between ports.

One of the most common commands used in the domain (�move to target")

is selected and the functionality that is required to realize the command is

implemented in the System Simulator. Moving turret to target scenario in the

application domain is generally de�ned as follows;

• External application (i.e. user interface or target tracking software) sends

the command containing target position information to SCU.

• SCU sends an acknowledgement message upon receiving the command

(command is taken or rejected).

23

• SCU sends a status message regarding the change in state of the system

(i.e. turret is moving).

• SCU sends the result (success or failure) of the operation.

• SCU sends a status message regarding the change in state of the system

(i.e. turret is idle).

The message �ow given above describes the command �ow between SCU and an

external application. In addition to command �ow, data �ow occurs during this

operation as the SCU publishes angular position data of the turret periodically

while moving.

Preparation of the System Simulator class and external interface classes is han-

dled in a way to keep the provided and required interfaces between those classes

unchanged and hence, isolate the external interfaces from the main software

unit (System Simulator in this case). DDS Repository and CORBA IDLs are

prepared by extracting the relevant functions and topics from existing YMM

projects in order to ful�ll the domain requirements and follow the software ref-

erence architecture of YMM. As explained in 2.2 Command and Data Concepts,

separation of control and data �ow is an important part of the architecture.

Consequently, the benchmark project is designed and implemented in a way to

provide this separation. Related indication and status events are passed be-

tween the classes to indicate the preparedness of the data which is to be pulled

separately by the class in need of that information.

3.2 Experimental Process

Four test cases that realize possible system architectures for distributed software

in the application domain are developed for the investigation of performance and

quality metrics.

Within the �ow of the benchmark operation scenario, GUI software that is

responsible for handling the commands from the user (GUI Command) sends

the command through DDS or CORBA to SCU. External Interface module

24

captures the command and forwards it to the system. Considering the state of

the system at the time of receiving the laying command, system responds to

the command by sending a response and stating either the command is taken

or rejected. If the command is taken, state of the system changes as the turret

starts to move. An indication on the status change is also sent to the GUI

software that is responsible for displaying the system status and turret position

(GUI Display). In some cases, responsibilities for sending the commands and

displaying the data are combined in single GUI software (GUI Command &

Display).

The part after the status change contains a di�erence between CORBA and

DDS cases since the remote function invocation methodology in CORBA puts

the responsibility to retrieve the status information on the part that requires

this information, in this case; GUI. In the DDS case, this responsibility is given

to the external interface. Similarly, when the turret is in motion, knowing the

system state, DDS External Interface periodically pulls the turret angles from

the system and publishes whereas CORBA External Interface fetches the angle

data from the system upon receiving a request from the GUI application. Upon

completion, system sends the result indication to the external interface which

informs the source of command (GUI Command) and changes its state.

3.2.1 Test Case 1: Single Source for Command and Display

In the �rst case, System Simulator using one of the external interfaces (CORBA

or DDS) receives the command from the windows application which is the only

source of the command in addition to being the only endpoint receiving the

published data. Model diagram representation of this case could be observed in

the Figure 3.2.

This case realizes a common scenario where there is a single user interface ap-

plication to control and display the SCU behavior. An authorized user can start

the laying operation using the user interface software that is running on Win-

dows operating system and observe the behavior of the software using the same

panel.

25

Figure 3.2: Representation of the First Test Case

For this test case, sequence diagrams demonstrating the �ow of messages be-

tween the user interface, external interface (CORBA and DDS) and System

Simulator are shown in �gures 3.3 and 3.4.

Figure 3.3: Sequence Diagram for the First Test Case with CORBA

26

Figure 3.4: Sequence Diagram for the First Test Case with DDS

3.2.2 Test Case 2: Separate Command and Display Modules

For the second test case, source of the command and the application using the

data published by SCU are separated. Most system con�gurations in YMM's

application domain use this formation.

Figure 3.5 shows representation of the second test case. Similar to the �rst case,

System Simulator only uses one of the external interfaces shown inside the grey

box representing SCU in a test setup.

This case di�ers from the �rst test case via separation of command and display

modules. In the application domain, there may be a command panel that does

not display the results of some commands it sends or sometimes does not employ

a display module at all. In that case, an additional interface that shows the

system status information is used as a separate panel.

Sequence diagrams containing the scenarios with usages of DDS and CORBA

external interfaces are given in �gures 3.6 and 3.7.

27

Figure 3.5: Representation of the Second Test Case

Figure 3.6: Sequence Diagram for the Second Test Case with CORBA

28

Figure 3.7: Sequence Diagram for the Second Test Case with DDS

3.2.3 Test Case 3: Multiple and Separate Command and Display

Modules

The third case, whose model representation is given in Figure 3.8, additionally

multiplies the number of receiving applications to provide basis for observation

of multicast behavior of both methods.

Figure 3.8: Representation of the Third Test Case

This test case introduces the conditions that may require more than one display

modules for the user. Source of command is single and is also capable of dis-

29

playing the data. Additional display panels are sometimes required for di�erent

operators that work on di�erent parts of the system and require the informa-

tion on system status simultaneously. Furthermore, there can also be another

software control unit that requires the data published by our SCU to operate

properly.

Sequence diagrams for the third case could be observed in �gures 3.9 and 3.10.

Figure 3.9: Sequence Diagram for the Third Test Case with CORBA

Figure 3.10: Sequence Diagram for the Third Test Case with DDS

30

3.2.4 Test Case 4: Multiple Sources of Command and Multiple Dis-

play Modules

The last test case realizes the scenario containing multiple publisher and sub-

scriber applications existing in the same environment. It is not common to come

across this case in the application domain, however, this case exists in theory

and used for comparative analysis.

Figure 3.11: Representation of the Fourth Test Case

This scenario is similar to the third test case as it also contains multiple nodes for

displaying the information provided by the SCU. However, there is an important

di�erence between the two cases as the last test case distributes the responsibility

of sending the command to three di�erent software modules, which requires the

SCU remembering the source of a command and send the responses only to

source of the command. In the application domain, di�erent SCUs require and

provide services from/to each other and operate simultaneously.

For the last test scenario, �gures 3.12 and 3.13 represent the sequence diagrams

for systems using CORBA and DDS as external interfaces.

31

Figure 3.12: Sequence Diagram for the Fourth Test Case with CORBA

Figure 3.13: Sequence Diagram for the Fourth Test Case with DDS

3.2.5 Tools Used for the Experiments

For the development of benchmark project and windows applications in C++

programming language, IBM Rational Rhapsody 7.5 is used. DDS implementa-

tion used in mentioned software is COTS. Operating environment for the SCU

is the VxWorks 6.8 running on MPC8640D processor.

32

CHAPTER 4

EXPERIMENTAL RESULTS AND EVALUATION

4.1 Measurement of Quality Related Metrics

Quality related metrics that are obtained and used in the evaluation are grouped

in two categories; coupling and complexity. Code size and coupling between

objects measurements are taken under coupling category, whereas cyclomatic

complexity, weighted methods per class and percentage of branches are measured

for complexity evaluation.

Code size is measured as source lines of code (SLOC) which gives the summation

of non-commented lines of code.

Coupling between objects (CBO) is obtained via counting the non-inheritance

classes that a speci�c class depends on.

Counting the number of �ows in a module gives the McCabe's cyclomatic number

per module (MCN) and this value being high refers to increased complexity in

the code.

Weighted methods per class (WMC) is measured by counting the methods in

a class and weighting them with a complexity coe�cient, commonly cyclomatic

complexity. In this study, WMC is measured with unity weight as the cyclomatic

complexity is also given.

Another complexity measure is the percentage of branches in the code. This

metric represents the count of branching points in the sequential execution of

33

the code, such as if-else and switch-case statements.

For the measurement of quality related metrics, upon completion of test case

implementation, header and source �les are generated for each test case sce-

nario. Four di�erent CORBA external interface classes (CORBA EI 1 to 4) are

prepared for each test scenario as the scenarios get more complex from the �rst

to last. On the other hand, the same DDS external interface implementation

(DDS EI) is used in all four scenarios due to its multicast support.

Extraction of the metrics is handled via free static code analysis tools. First

tool we used is SourceMonitor [45], which identi�es the size and relative com-

plexity of a module. Branch percentage measurements are obtained through

SourceMonitor. Second tool we used is C and C++ Code Counter (CCCC)

[28]. Measurements on metrics, such as MCN, WMC and CBO are taken from

CCCC. The last tool is Understand [21], which is a source code analysis tool

that we used to measure SLOC in our modules.

Measured quality related metrics for the external interface modules covering all

four test cases are given in Table 4.1.

Table4.1: Extracted software quality metrics

Metric/Module DDS

EI

CORBA

EI1

CORBA

EI2

CORBA

EI3

CORBA

EI4

Source Lines of Code
(SLOC)

914 1068 1150 1234 1318

Coupling Between
Objects (CBO)

15 19 19 19 19

Weighted Methods per
Class (WMC)

35 49 54 59 61

McCabe's Cyclomatic
Number (MCN)

4.57 3.96 4.32 4.75 5.36

% Branches 12.2 12.5 13.5 14.2 16.1

As it can be observed from the Table 4.1, increasing number of peers lead to

additional e�ort in the development of the external interface. Lines of code

increases thus increasing coupling and the coding e�ort. Code size and percent-

34

age of branches for DDS external interface remains close to CORBA external

interface only for the �rst test case.

Whereas theWMC count for DDS external interface stays lower than the CORBA

external interface implementations; cyclomatic complexity (MCN) of DDS exter-

nal interface resides between the values of CORBA EI2 and CORBA EI3 which

correspond to the cases with 2 and 3 GUI applications. With the fourth test

case, increasing the number of command sources further increase the complexity

of external interface code.

Higher complexity increases the error proneness of the code. When the test

scenarios are considered, for the CORBA external interface implementations, it

can be observed that the design decisions (such as pulling the turret angles from

the SCU periodically) are made to keep the complexity on the GUI application

side. The reasoning behind this decision lies within the swiftly changing nature

of the GUI application and the testing cost of GUI being lower.

4.2 Measurement of Performance Related Metrics

Performance related metrics that are measured for the evaluation are grouped in

two categories; latency and utilization. A-B timing measurements are taken for

latency evaluation, whereas CPU usage and memory usage values are measured

for utilization.

Performance measurements were conducted for all four test scenarios with both

DDS and CORBA implementations. SCU executables running on MPC8640D

processor were analyzed in runtime with WindRiver Workbench System Viewer

and A-B timing (Latency), CPU, RAM and stack usage (Utilization) measure-

ments were taken for the test case scenarios explained in Chapter 3.

4.2.1 Latency Measurements

For latency metrics, A-B timing measurements were taken for each scenario from

the beginning to the end of laying operation. In other words, we measured the

35

time spent by the SCU from the point where the �rst command is received from

the command interface until the execution is completed and the result is sent.

This method allowed us to observe the e�ect of using DDS and CORBA as

external interface on rest of the software. Delay caused from the network was

exempted.

Table 4.2 shows the A-B measurements (in milliseconds) for both external in-

terfaces for all four test cases in tabular form.

Table4.2: Extracted latency metrics

Interface /

Scenario

Test Case

1

Test Case

2

Test Case

3

Test Case

4

CORBA 5002.6 5003.5 5005.8 5005.3
DDS 4999.7 5000.7 4999.8 5000.4

The trend between test cases could be observed in the Figure 4.1. It can be

Figure 4.1: A-B Timing Chart for the Four Test Cases

observed from the measurements that the time spent by the software conducting

laying operation is slightly higher for the cases where CORBA is used as the

external interface module due to its performance overhead.

36

4.2.2 Utilization Measurements

Utilization measurements are taken under two metrics; CPU usage and memory

usage. Memory usage is also divided into two categories, RAM usage and stack

usage.

For all four test cases, average core usage values are taken as percentages from

the beginning of the scenario to the end.

As the actual units such as servo systems, navigation systems or meteorological

sensors that increase the workload of CPU are not included in the benchmark

project, measured utilization of the CPU is not as high as it usually is during

operation as it remains idle most of the time. However, for the purposes of

this study, it is viable to compare the CPU utilization of SCU while using two

di�erent communication interfaces.

Table 4.3 shows the CPU utilization measurements (in percentages) for both

external interfaces for all four test cases in tabular form. The trend between

test cases could be observed in the Figure 4.2.

Table4.3: Extracted CPU utilization metrics

Interface /

Scenario

Test Case

1

Test Case

2

Test Case

3

Test Case

4

CORBA 0.630 0.653 0.995 0.985
DDS 0.619 0.588 0.588 0.621

37

Figure 4.2: CPU Utilization Chart for the Four Test Cases

Considering the utilization aspect of the software, measurements show a con-

sistency in numbers for the case where DDS is used as the external interface,

whereas CPU usage of the software increases with the increasing number of peers

in the cases where CORBA is used.

In addition to CPU utilization, RAM and stack usage metrics are collected for

all scenarios with CORBA and DDS. Peak value of the allocated RAM size and

the maximum size of the stack used during laying operation by the software are

extracted to demonstrate the e�ect of using CORBA or DDS as the external

interface in the project on memory utilization.

Measured maximum allocated RAM values (in kilobytes) for four test cases with

both CORBA and DDS are given in Table 4.4. The trend between test cases in

peak RAM usage could be observed in the Figure 4.3.

Table4.4: Extracted RAM usage metrics

Interface /

Scenario

Test Case

1

Test Case

2

Test Case

3

Test Case

4

CORBA 34135 34142 34168 34171
DDS 29742 29721 29742 29721

38

Figure 4.3: RAM Usage Chart for the Four Test Cases

Measured maximum stack usages for four test cases with both CORBA and DDS

are given in Table 4.5. The trend between test cases in maximum stack usage

could be observed in the Figure 4.4.

Table4.5: Extracted stack usage metrics

Interface /

Scenario

Test Case

1

Test Case

2

Test Case

3

Test Case

4

CORBA 54352 61312 67984 67840
DDS 50288 50480 52352 51584

39

Figure 4.4: Stack Usage Chart for the Four Test Cases

Figures 4.3 and 4.4 show that the memory usage values for the cases with

CORBA is higher than the ones with DDS as external interface. Both stack

and RAM usages remain around the same values for the cases with DDS. How-

ever, stack usage of CORBA external interface increases with increasing number

of peers as a new object is created by allocating memory from the stack for each

new connection.

40

CHAPTER 5

DISCUSSION AND CONCLUSION

Distributed systems are widely used in defense industry, thus increasing the im-

portance of the communication method selection. In this study, two alternatives,

CORBA and DDS are compared within the application domain and software

reference architecture of YMM. Studies concentrating on the performance and

possible improvements for DDS and CORBA were conducted separately prior to

this thesis. In our study, e�ects of the selection on the overall software quality

and performance are investigated for real-time embedded systems developed in

conformance with a software reference architecture.

For the purposes of this study, a benchmark project was prepared. In the devel-

opment phase of this benchmark project, application domain requirements and

software reference architecture of YMM were considered and laying operation

was selected as it is a typical and commonly used operation containing both

command and data distribution.

Four test cases were designed to animate possible scenarios that the system

might come across. Test cases employ di�erent numbers of user interfaces as

peers, either as command sources or as display panels used in the project. The

�rst test case represents the simple one to one connection. There exists a single

source of command which is also used for displaying the data published from

the simulator. Other three test cases represent one to n connection case where

n is either two or three. The second case consists of two external applications,

one command module and one display module, whereas an additional display

module is added for the third case. The fourth test case is designed to increase

41

the number of command sources and again contains three command and display

applications.

Measurements were taken under two main categories, quality and performance.

For quality evaluation, coupling and complexity aspects of the code were mea-

sured. Code size is observed to be increasing with the number of peers for

CORBA, consequently increasing the e�ort spent for development and coupling.

Cyclomatic complexity measurements showed that the complexity of CORBA for

one to one and one to two cases remains lower than the complexity of DDS. How-

ever, increasing number of peers gradually increases the complexity of CORBA

interface and it surpasses the complexity of DDS interface in the third test case.

With higher complexity, code becomes more error prone and less maintainable.

Reusability also decreases. Since YMM prioritizes reuse, DDS seems preferable.

For performance evaluation, latency and utilization measurements were taken.

When the latency measurements are observed, a slight performance overhead

could be noticed in the cases with CORBA external interface. As this time dif-

ference occurs at the ends of the scenarios, command distribution is not a�ected.

In terms of CPU and memory utilization, measurements show an increasing

trend through the test cases. While the measured values for CORBA remain

close to DDS in the �rst test case, they are worsened by the increasing number

of command and data display modules.

Measurements show that, for the cases that require one to one communication, in

terms of software quality, selection of CORBA results in lower code complexity

and increased probability of reuse at cost of higher coupling and development

e�ort. When the number of communication nodes increase, a reevaluation is

necessary as the complexity of the code implementing CORBA also increases.

We can conclude from the performance measurements that the performance

overhead brought up by CORBA creates a slight di�erence between the two al-

ternatives in terms of latency. When the utilization measurements are evaluated,

it can be observed that although the values are close for one to one communica-

tion case, the gap widens for increasing number of communications along with

42

increasing memory consumption of CORBA interface.

In future studies, this work could be signi�cantly improved if more metrics could

be obtained from a project with increased number of operational scenarios. Ob-

taining development e�ort measurements directly would play an important role

in the design and decision-making process. Additionally, including network de-

lays and bandwidth utilization would contribute to the performance evaluation.

In this study, we handled CORBA and DDS and the e�ects of their usage on the

real-time embedded software projects in YMM's application domain separately.

A future study could also include complementary usage of these two communi-

cation methods, in other words; a hybrid external interface could be built by

combining the messages to be sent in CORBA and DDS.

Consequently, we have compared the e�ects of using CORBA or DDS on com-

mand distribution within a project developed in a software reference architecture

concerning both performance and quality aspects of the software. It is impor-

tant that concerns of a software engineering department in a leading defense

industry company are highlighted in the aspects of comparison. Therefore this

study employs signi�cant data to provide the guidelines for making a design

decision on the selection between CORBA and DDS in a real-time embedded

software project.

43

44

REFERENCES

[1] Data distribution service for real-time systems version 1.2, January 2007.
OMG Available Speci�cation, Object Management Group.

[2] Meeting real-time requirements in integrated defense systems an rti
whitepaper, 2007. Real-Time Innovations, Inc.

[3] Common object request broker architecture (corba) speci�cation, version
3.3, November 2012. OMG Formal Document, Object Management Group.

[4] S. Agrawal and P. Bhatt. Real-time embedded software systems - an intro-
duction. Technical report, TATA Consultancy Services, August 2001.

[5] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
iso/iec 9126 quality standard. In Empirical Software Engineering, 2005.

2005 International Symposium on, pages 7 pp.�, 2005.

[6] Rafa E. Al-Qutaish. An investigation of the weaknesses of the iso 9126
international standard. In Proceedings of the 2009 Second International

Conference on Computer and Electrical Engineering - Volume 01, ICCEE
'09, pages 275�279, Washington, DC, USA, 2009. IEEE Computer Society.

[7] Mesut Ayata. E�ect of some software design patterns on real time software
performance. Master's thesis, Middle East Technical University, June 2010.

[8] Kevin Butler, Mark Clement, and Quinn Snell. A performance broker for
corba. In Proceedings of the 8th IEEE International Symposium on High

Performance Distributed Computing, HPDC '99, pages 3�, Washington,
DC, USA, 1999. IEEE Computer Society.

[9] Brendon Cahoon, Kathryn S. McKinley, and Zhihong Lu. Evaluating the
performance of distributed architectures for information retrieval using a
variety of workloads. ACM Trans. Inf. Syst., 18(1):1�43, January 2000.

[10] Antonio Corradi and Luca Foschini. A dds-compliant p2p infrastructure
for reliable and qos-enabled data dissemination. In Proceedings of the 2009

IEEE International Symposium on Parallel&Distributed Processing, IPDPS
'09, pages 1�8, Washington, DC, USA, 2009. IEEE Computer Society.

[11] Ulisses Brisolara Correa, Luis Lamb, Luigi Carro, Lisane Brisolara, and
Julio Mattos. Towards estimating physical properties of embedded systems

45

using software quality metrics. In Proceedings of the 2010 10th IEEE In-

ternational Conference on Computer and Information Technology, CIT '10,
pages 2381�2386, Washington, DC, USA, 2010. IEEE Computer Society.

[12] G. de Souza Pereira Moreira, D.A. Montini, D.A. da Silva, F.R.M. Cardoso,
Luiz Alberto Vieira Dias, and A.M. da Cunha. Design patterns reuse for
real time embedded software development. In Information Technology: New

Generations, 2009. ITNG '09. Sixth International Conference on, pages
1421�1427, 2009.

[13] Berkhan Deniz. Investigation of the e�ects of reuse on software quality in
an industrial setting. Master's thesis, Middle East Technical University,
January 2013.

[14] Bryan S. Doerr and David C. Sharp. Freeing product line architectures
from execution dependencies. In Proceedings of the First Conference on

Software Product Lines : Experience and Research Directions: Experience

and Research Directions, pages 313�329, Norwell, MA, USA, 2000. Kluwer
Academic Publishers.

[15] Bruce Powel Douglass. Design Patterns for Embedded Systems in C: An

Embedded Software Engineering Toolkit. Newnes, Newton, MA, USA, 1st
edition, 2010.

[16] C. Esposito, S. Russo, and D. Di Crescenzo. Performance assessment of
omg compliant data distribution middleware. In Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages
1�8, 2008.

[17] William B. Frakes and Kyo Kang. Software reuse research: Status and
future. IEEE Trans. Softw. Eng., 31(7):529�536, July 2005.

[18] Jerry Zayu Gao, Jacob Tsao, Ye Wu, and Taso H.-S. Jacob. Testing and

Quality Assurance for Component-Based Software. Artech House, Inc., Nor-
wood, MA, USA, 2003.

[19] Nat Hillary. Measuring performance for real-time systems. Technical re-
port, Freescale Semiconductor, 11 2005.

[20] Cathy Hrustich. Corba for real-time, high performance and embedded sys-
tems. In Proceedings of the Fourth International Symposium on Object-

Oriented Real-Time Distributed Computing, ISORC '01, pages 345�, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[21] Scienti�c Toolworks Inc. Understand source code analysis and metrics ver-
sion 3.1. [Online] http://www.scitools.com/, February 2014.

46

[22] ISO. International standard iso/iec 9126, information technology software
product quality part1: Quality model. Technical report, International Stan-
dard Organization, 2001.

[23] ISO/IEC. Iso/iec 25010 system and software quality models. Technical
report, International Standard Organization, 2010.

[24] Kyo Chul Kang, Moonzoo Kim, Jaejoon Lee, and Byungkil Kim. Feature-
oriented re-engineering of legacy systems into product line assets: A case
study. In Proceedings of the 9th International Conference on Software Prod-

uct Lines, SPLC'05, pages 45�56, Berlin, Heidelberg, 2005. Springer-Verlag.

[25] R. Karoui. Corba /dds, competing or complementing technologies? Tech-
nical report, PrismTech, 2005.

[26] Moonzoo Kim, Jaejoon Lee, Kyo Chul Kang, Youngjin Hong, and Seok-
Won Bang. Re-engineering software architecture of home service robots: a
case study. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on, pages 505�513, 2005.

[27] Doug Lea. Concurrent Programming in Java: Design Principles and Pat-

terns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

[28] Tim Littlefair. Cccc - c and c++ code counter. [Online]
http://cccc.sourceforge.net/, October 2012.

[29] V. Mainkar. Availability analysis of transaction processing systems based
on user-perceived performance. In Proceedings of the 16th Symposium on

Reliable Distributed Systems, SRDS '97, pages 10�, Washington, DC, USA,
1997. IEEE Computer Society.

[30] J. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea.
Performance Testing Guidance for Web Applications: Patterns & Practices.
Microsoft Press, Redmond, WA, USA, 2007.

[31] E.E. Mills, Carnegie-Mellon University. Software Engineering Institute,
and United States. Dept. of Defense. Software Metrics. Technical report
(Carnegie-Mellon University. Software Engineering Institute). Software En-
gineering Institute, 1988.

[32] Shivakant Mishra, Lan Fei, and Guming Xing. Design, implementation
and performance evaluation of a corba group communication service. In
Proceedings of the Twenty-Ninth Annual International Symposium on Fault-

Tolerant Computing, FTCS '99, pages 166�, Washington, DC, USA, 1999.
IEEE Computer Society.

47

[33] Parastoo Mohagheghi and Reidar Conradi. Quality, productivity and eco-
nomic bene�ts of software reuse: A review of industrial studies. Empirical
Softw. Engg., 12(5):471�516, October 2007.

[34] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz.
An empirical study of software reuse vs. defect-density and stability. In
Proceedings of the 26th International Conference on Software Engineering,
ICSE '04, pages 282�292, Washington, DC, USA, 2004. IEEE Computer
Society.

[35] A.K. Mok. Real-time software design-from theory to practice. In Com-

puter and Communication Systems, 1990. IEEE TENCON'90., 1990 IEEE

Region 10 Conference on, pages 394�398 vol.1, 1990.

[36] Maurizio Morisio, D. Romano, and I. Stamelos. Quality, productivity, and
learning in framework-based development: an exploratory case study. Soft-
ware Engineering, IEEE Transactions on, 28(9):876�888, 2002.

[37] Gerrit Muller. A reference architecture primer, March 2013. Buskerud
University College.

[38] Marcio F. S. Oliveira, Ricardo Miotto Redin, Luigi Carro, Luís da Cunha
Lamb, and Flávio Rech Wagner. Software quality metrics and their impact
on embedded software. In Proceedings of the 2008 5th International Work-

shop on Model-based Methodologies for Pervasive and Embedded Software,
MOMPES '08, pages 68�77, Washington, DC, USA, 2008. IEEE Computer
Society.

[39] RicardoM. Redin, MarcioF.S. Oliveira, LisaneB. Brisolara, JulioC.B. Mat-
tos, LuisC. Lamb, FlavioR. Wagner, and Luigi Carro. On the use of soft-
ware quality metrics to improve physical properties of embedded systems.
In Bernd Kleinjohann, Wayne Wolf, and Lisa Kleinjohann, editors, Dis-
tributed Embedded Systems: Design, Middleware and Resources, volume 271
of IFIP - The International Federation for Information Processing, pages
101�110. Springer US, 2008.

[40] D. C. Schmidt, A. S. Gokhale, T. H. Harrison, and G. Parulkar. A high-
performance end system architecture for real-time corba. Comm. Mag.,
35(2):72�77, February 1997.

[41] Douglas C. Schmidt and Fred Kuhns. An overview of the real-time corba
speci�cation. Computer, 33(6):56�63, June 2000.

[42] S. Schneider and B. Farabaugh. Is dds for you? Technical report, Real-
Time Innovations, Inc., 2009.

48

[43] D.C. Sharp. Avionics product line software architecture �ow policies. In
Digital Avionics Systems Conference, 1999. Proceedings. 18th, volume 2,
pages 9.C.4�1�9.C.4�8 vol.2, 1999.

[44] K.G. Shin and P. Ramanathan. Real-time computing: a new discipline of
computer science and engineering. Proceedings of the IEEE, 82(1):6�24,
1994.

[45] Campwood Software. Sourcemonitor version 3.4. [Online]
http://www.campwoodsw.com/sourcemonitor.html, May 2013.

[46] Kelly L. Spicer. A successful example of a layered-architecture based em-
bedded development with ada 83 for standard-missile control. Ada Lett.,
XX(4):50�63, December 2000.

[47] Stephen Wagner and Zahir Tari. A caching protocol to improve corba
performance. In Proceedings of the Australasian Database Conference, ADC
'00, pages 140�, Washington, DC, USA, 2000. IEEE Computer Society.

[48] Alan Wood. Predicting client/server availability. Computer, 28(4):41�48,
April 1995.

[49] Tao Zhou, Xiaobo (Sharon) Hu, and Edwin H.-M. Sha. A probabilistic
performance metric for real-time system design. In Proceedings of the Sev-

enth International Workshop on Hardware/Software Codesign, CODES '99,
pages 90�94, New York, NY, USA, 1999. ACM.

49

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	LITERATURE REVIEW
	Introduction
	Command and Data Concepts
	Real-time Embedded Software Performance
	Introduction
	Performance Metrics

	Real-time Embedded Software Quality
	Introduction
	Quality Metrics
	Reusability

	Data Distribution Middleware: CORBA and DDS
	Common Object Request Broker Architecture
	Data Distribution Service

	EXPERIMENTAL WORK
	Experimental Methodology
	Selection of Metrics
	Project Description

	Experimental Process
	Test Case 1: Single Source for Command and Display
	Test Case 2: Separate Command and Display Modules
	Test Case 3: Multiple and Separate Command and Display Modules
	Test Case 4: Multiple Sources of Command and Multiple Display Modules
	Tools Used for the Experiments

	EXPERIMENTAL RESULTS AND EVALUATION
	Measurement of Quality Related Metrics
	Measurement of Performance Related Metrics
	Latency Measurements
	Utilization Measurements

	DISCUSSION AND CONCLUSION
	REFERENCES

