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ABSTRACT 
 

 SCHEDULING WITH LATEST ARRIVAL CONSOLIDATION IN 

SERVICE NETWORK DESIGN PROBLEMS 

 

 

Yiğit, Aybeniz 

                               PhD, Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Canan Sepil 

  

July 2014, 323 pages 

 

In this thesis, we consider the service network design problem of a ground-

transportation based delivery system, in which routes of demands of commodities 

between any origin-destination pair are determined. A commodity can be sent from 

its origin to its destination through direct delivery, however such a routing would 

not effectively make use of the vehicles used for transportation. To benefit from 

economies of scale, a networking policy based on consolidation is generally applied 

in service networks. We consider freight-consolidation, in which different 

commodities are consolidated to be transported using common vehicles and 

consolidation operations are performed at stations, some of which are chosen as 

terminals. Nonsimultaneous arrival of commodities necessitates waiting times at 

stations/terminals. The latest arrival consolidation in service network design 

problem is then, a minimax model that considers the delays at terminals and focuses 

on minimization of the arrival time of the last arrived commodity to its destination. 

For the solution of the model, we present exact and heuristic solution procedures. 

We develop a tailored Generalized Benders Decomposition algorithm and to 

address larger size networks, we develop a Large Neighborhood Search based 

algorithm. We show the effectiveness of the heuristic solution procedure by 

performing extensive computational experiments. In the constructed service 

network, each direct ride between stations is assumed to be performed by the same 
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vehicle. Extending this assumption to allow multiple vehicles and using event-

activity-network representation, we develop a delay management model for service 

networks that apply latest arrival consolidation.  

 

Keywords: Consolidated multicommodity network design, latest arrival, delay 

management, Generalized Benders Decomposition, Large Neighborhood Search. 
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ÖZ 

 

SERVĐS AĞI TASARIMI PROBLEMLERĐNDE EN GEÇ ULAŞANLARA 

GÖRE BĐRLEŞTĐRME ĐLE ZAMAN ÇĐZELGELEMESĐ 

  

Yiğit, Aybeniz 

          Doktora, Endüstri Mühendisliği Bölümü 

          Tez Yöneticisi : Doç. Dr. Canan Sepil 

  

Temmuz 2014, 323 Sayfa 

 

Bu tezde, kara taşımacılığı temelli bir dağıtım sisteminde bulunan ürün taleplerinin 

başlangıç noktaları ile varış noktaları arasındaki rotalarının belirlendiği bir servis 

ağı tasarımı problemi üzerinde çalışılmıştır. Bir ürün başlangıç noktasından varış 

noktasına direk taşıma yönetimi ile gönderilebilir. Fakat bu şekildeki bir rotalama 

taşıma araçlarının verimsiz kullanımına neden olmaktadır. Ölçek ekonomisinden 

faydalanmak için, bir ağ tasarımı yöntemi olan ürünlerin birleştirilmesi politikası 

servis ağı tasarımı problemlerinde yaygın olarak kullanılmaktadır. Biz de, farklı 

ürünlerin birleştirilip ortak taşıma araçları ile dağıtıldıkları ve ürün birleştirme 

işlemlerinin istasyonlarda gerçekleştirildiği bir ürün birleştirme yapısını temel alan 

bir model oluşturduk. Uyguladığımız birleştirme yönteminde istasyonların bir kısmı 

terminal olarak seçilmektedir. Ürünlerin istasyonlara/terminallere eş zamanlı 

ulaşmamaları beklemelere neden olmaktadır. Servis ağı tasarımı problemlerindeki 

en geç ulaşanlara göre birleştirme, terminallerdeki gecikmelere odaklanan ve varış 

noktasına en geç ulaşan ürünün ulaşma vaktini eniyileyen bir modeldir. Bu modelin 

çözümü için geliştirilmiş olan kesin ve sezgisel yöntemler sunulacaktır. Kesin 

çözüm yöntemi olarak bir Genelleştirilmiş Benders Ayrışım algoritması 

geliştirilmiştir. Daha büyük servis ağları için de Geniş Komşuluk Esaslı Arama 

sezgisel yönetimi kullanılarak bir algoritma geliştirilmiştir. Sezgisel çözüm 
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yöntemimizin etkisi geniş bir kapsamda gerçekleştirdiğimiz hesaplamalı deneyler 

ile gösterilmiştir. Modellediğimiz servis ağında, istasyonlar arasındaki direk 

transferlerin aynı taşıma aracı ile gerçekleştirildiği varsayılmıştır. Bu varsayımın 

kapsamını direk transferlerin birden fazla taşıma aracı ile gerçekleştirilebileceği 

şekilde genişleterek ve olay-etkinlik-ağı gösterimini kullanarak, en geç ulaşanlara 

göre birleştirme yönetiminin uygulandığı servis ağları için bir gecikme yönetim 

modelini de geliştirdik.  

 

Anahtar Kelimeler: Birleştirilmiş çoklu ürün taşıma ağ tasarımı, en geç ulaşan ürün, 

gecikme yönetimi, Genelleştirilmiş Benders Ayrışım yöntemi, Geniş Komşuluk 

Esaslı Arama sezgisel yöntemi. 
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CHAPTER 1 

 

 

1 INTRODUCTION 
 

 

 

 

Freight transportation has always been a vital part in the economy of countries and 

its importance is getting higher due to globalization and increased transport needs. 

Besides transport expenditures, transport sector involves large scale of investment 

decisions related to infrastructures and technologies that constitute an important part 

in national development plans. To be competitive in freight transportation and to 

maintain sustainability, designing a transport system that provides high quality 

service with lower costs becomes a critical issue. This purpose necessitates the 

planning and the efficient use of transport resources including vehicles, facilities, 

equipments, and crew. The integrated planning of these issues belongs to tactical 

level and is handled through Service Network Design (SND) problems. 

 

1.1 Motivation  

SND problems mainly deal with the optimization of transfers occurring between 

many node pairs and design a service network together with commodity routes 

utilizing a multi commodity flow structure. When there are multiple commodities, 

the resources (vehicles, crew, handling operations) and the infrastructure (capacities 

of facilities, handling equipments) of the network must be shared among these 

commodities. When direct deliveries are assumed, each commodity would be sent 

through the shortest delivery path from the origin to the destination of the 

commodity. To benefit from economies of scale, usually consolidation is applied. In 

Figure 1 (a) direct delivery and in Figure 1 (b) consolidation strategies are 

presented. 
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Figure 1. Direct Delivery vs Consolidation 

 

Compared to direct delivery strategy, a commodity may travel a longer route by 

applying consolidation but large amount of savings in transportation costs and 

network design costs (terminal location, infrastructure construction and 

improvement) are incurred. A consolidation structure can be defined by a set of 

terminals, a set of stations, inter and intra transfer strategies between each set, and 

the conditions on the elements of a route including the number of intermediate stops 

and the allowable number of terminals or stations a route can have.  

 

The main decisions in SND problems include; 

� freight consolidation,  

� terminal congestion,  

� design of services,  

� design of routes, 

� service levels, 

� empty vehicle repositioning, (Crainic and Laporte (1997), Pedersen (2005)).  

 

Freight consolidation is applied to benefit from economies of scale resulting from 

transportation of large quantities in a more economic way. In consolidated 

transportation, same vehicle may be used for the transportation of freight for 

different customers, whose origins and destinations can also be different. By 

consolidating freight, the vehicle capacity can be fully utilized, which lowers fixed 

costs related to vehicles, whereas variable costs increase due to detours and 

transshipments, Wieberneit (2008).  
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Terminals are the major consolidation centers where arriving vehicles are unloaded, 

commodities are consolidated and loaded to departing vehicles. Arrival patterns and 

the amount of incoming flows determine terminal congestion. Terminals have 

limited capacities (handling equipments, consolidation infrastructure, personnel) for 

performing the main consolidation operations. Thereby, to prevent terminal 

congestion and the resulting delays, issues related to consolidation structures, 

terminal operations, and routing strategies should be focused on. 

 

SND problems design services and routes for commodities and vehicles. A service 

can be defined by vehicle types, speed and capacity of the vehicles, and the 

selection of the transportation mode (ground, rail, air, maritime, intermodal). The 

vehicle routes are defined by originating and ending terminals, and the intermediate 

stops. The commodity routes consist of a sequence of stations and the vehicles that 

perform the transportation between each station, Crainic and Laporte (1997).  

 

All routes have to satisfy service levels that are determined by delivery times or 

time windows. Delivery time requirements state the total allowable time for 

performing all deliveries within the transportation system. Time windows state the 

earliest and the latest times for initiating and terminating the services at stations. 

Considering the priorities of different commodity classes, it is possible to define 

several types of service levels within the same planning system.  

 

Due to imbalances in commodity flows, differences in supply and demand of 

vehicles occur at terminals. These differences can be corrected by repositioning 

empty vehicles in such a way to satisfy the demand of the next planning period, 

Crainic (2000). 

 

Depending on the characteristics of the application areas, different consolidation 

types are applied in SND problems. Cargo delivery network design studies 

generally apply a hub-and-spoke consolidation structure and the related studies are 

in the domain of hub location problems. Hubs are the consolidation and transfer 

centers. The non-hub nodes are usually called as spokes. Hub location problems 

locate hubs and determine the allocation of spokes to hubs. The basic consolidation 
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structure applied by hub location problems assumes that in the resulting hub-and-

spoke network; 

� every hub pair is connected to each other, 

� no direct link is allowed between spoke pairs, 

� commodities are delivered at least visiting one hub and at most two hubs.  

 

There are several studies relaxing these assumptions allowing more than two hubs 

(Campbell et al. (2005a,b)), transfers between spokes (Kuby and Gray (1993), 

Yaman et al. (2007)), and not connecting every hub pair in the constructed hub 

network, which is defined as incomplete hub network design problem by Alumur 

(2009). In incomplete hub network design problem of Alumur (2009), the 

transportation network is assumed to be fully connected but the constructed hub 

network is allowed to be incomplete. 

 

Hub location problems assume a fully connected transportation network, in which a 

direct link can be established between each node pair. However, this assumption 

may not always hold for other transportation systems like railroad planning 

problems that operate on physical networks in which the connections are 

determined by railways. This main difference affects the formulation structures of 

both problems.  In hub location models, assignment type variables, in which a node 

is assigned to another node is used, whereas railroad planning studies use 

multicommodity flow variables to model the commodity routes. 

 

The freight consolidation in railways is modeled by railroad blocking problem. In 

railroad transportation, the terminals of railways are called as yards, where 

incoming flows are reclassified and assembled into outgoing flows. In railroad 

blocking problem, to reduce the intermediate handlings taking place at yards, 

commodities are grouped together to form blocks. Once a block is formed, it is not 

reclassified until it reaches its destination. By this way, classification costs and 

delays are tried to be kept at minimum.  

 

When consolidation is applied in service networks, delays occur at certain nodes 

due to nonsimultaneous arrivals of commodities. These delays may constitute an 
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important part in total delivery times and should be focused for improving service 

time and service quality aspects. In railroad blocking studies the effect of waiting 

times, congestion delays and queues for consolidation operations at yards are 

studied and generally modeled implicitly such as incorporating into main models 

related delay costs, Bodin et al. (1980), Crainic et al. (1984), Marin and Salmeron 

(1996a) or modeling delays as links in the network, Haghani (1989), Zhu (2010). 

 

Classical hub location models dealing with service levels only consider travel times. 

Kara and Tansel (2001) is the first to consider the transient times spent at hubs by 

determining the departure time of a vehicle according to the latest arriving cargo 

that will be loaded to that vehicle. Authors call this problem as latest arrival hub 

location problem and present a novel model that minimizes the maximum latest 

arrival time. The concept of latest arrival is incorporated into different hub location 

problems by using the minimax objective function. To the best of our knowledge, 

all latest arrival studies on hub location problems assumes single allocation of non-

hub nodes to hubs and requires full-cross-traffic assumption for the latest arrival 

time calculations. 

 

1.2 Scope of the Work  

In this thesis, we study the latest arrival concept in freight transportation with the 

aim of enhancing its application area to broader class of problems in tactical and 

operational levels. For this purpose, firstly we model the latest arrival concept on 

incomplete physical networks, in which the nodes are allowed to be assigned to 

multiple other nodes directly for sending and receiving flow, and the latest arrival 

time calculations does not necessitate full-cross-traffic assumption. This is the first 

time in literature that such a formulation is introduced for service network design 

problems. We name this problem as latest arrival consolidated multicommodity 

network design problem (LA-CMNDP), which belongs to tactical level. 

 

In LA-CMNDP, consolidation is applied at some points of the transportation 

network in a similar way to the blocking of railroad planning models. Individual 

commodities that may share same routes throughout their delivery paths are 

grouped together. We will refer to these consolidated commodities as blocks as in 
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the railroad literature throughout the thesis. The transportation between each node 

pair defines a block including many commodities with different origins and 

destinations. In Figure 2, a sample service network consisting of eight nodes and 

two commodities is presented, and arcs {(1,3), (2,3), (3,6), (6,8)}  represent the 

blocks. 

 

 

Figure 2. Blocks in a Service Network 

 

Since each arc of the service network defines a block and behaves as a single entity, 

a block can depart from a node only after all of its commodities arrive to that node. 

Therefore, the earliest departure time from a node for a block is determined by the 

latest arriving commodity that is to be placed into that block. This property of the 

service network relates with the latest arrival concept of Kara and Tansel (2001) in 

hub location problems. Throughout the thesis, we refer this consolidation structure 

as the latest arrival consolidation structure.  

 

LA-CMNDP has a minimax objective function that minimizes the maximum latest 

arrival time to destinations. Compared to minimum cost models that focus on 

system wide transportation costs, minimax models aim to establish service 

guarantees for each customer. As shipments get smaller like the case in motor 

carriers emphasized by Campbell (2005), the freight become more specialized and 

the delivery times become more critical. Therefore, models focusing on service 

quality aspects are preferred. Another application area of minimax models is 
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emergency planning problems, in which the main objective is to cover all nodes of a 

network in the minimum possible time. 

 

After a service network is designed by LA-CMNDP, the next planning problem 

belongs to operational level and it consists of determining the detailed vehicle 

schedules/timetables and the assignment of commodity paths to vehicle routes. 

From the outputs of LA-CMNDP, the minimum number of vehicles to perform all 

deliveries can be determined. Due to latest arrival consolidation structure, at some 

nodes of the service network the departing vehicles have to wait for the late arrivals. 

These waiting times cause delays in arrival times to destinations of all commodities 

within the transportation system. In case of a late arriving commodity, there are two 

options for the departing vehicles either to wait or to depart. The depart option 

reduces the delays of commodities but can increase the number of vehicles required 

to perform all deliveries. On the other hand, the wait option does not increase the 

vehicle numbers and does not reduce the delays.  

 

A similar problem that determines the wait-depart decisions of vehicles is studied in 

public transportation literature with the name of delay management problem. In 

case of a delay in the arrival time of a vehicle, the connecting vehicles either wait or 

depart. If the connecting vehicle waits for the delayed vehicle, then the passengers 

within the connecting vehicle and the passengers that will get on this vehicle later 

will all be delayed. On the other hand, if the connecting vehicle departs without 

waiting, then the passengers within the delayed vehicle will miss their connection 

and have to wait for the next departing vehicle. The planning of these wait-depart 

decisions of all vehicles within a public transportation system and the required 

updates in the timetable of the vehicles are modeled as delay management problem 

by Schöbel (2001). The main delay management problem variants are studied 

comprehensively in Schöbel (2006).  

 

We present a model for the delay management problem arising in service network 

design problems that apply latest arrival consolidation (DLA). Our model 

determines the wait-depart decisions of all vehicles, the detailed schedules of the 

vehicles, and the assignment of commodity paths to vehicle routes by minimizing 
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the total delay of all commodities at all stations. We use event-activity-network 

representation of project networks to model DLA. 

 

1.3 Outline of the Thesis 

In Chapter 2, we present the main network optimization problems in freight 

transportation with a taxonomy of models within the decision hierarchy: strategic, 

tactical, and operational planning levels and we state the conceptual framework of 

this thesis within freight transportation. 

 

For the sake of completeness, all literature reviews are presented in the same 

chapter. Literature reviews regarding (i) the studies in freight transportation that are 

relevant to LA-CMNDP, (ii) the exact solution procedures we apply to LA-

CMNDP, and (iii) the main delay management problems are presented in Chapter 3. 

 

In Chapter 4, we formally describe LA-CMNDP stating the main properties and 

present a mathematical model along with the derivation of arrival and departure 

times. We develop exact and heuristic solution procedures for LA-CMNDP. In the 

exact solution procedures, we apply Generalize Benders Decomposition (GBD) and 

propose eight GBD algorithms. In Chapter 5, we  present our GBD algorithms with 

their main properties and report their computational performances. In the heuristic 

solution procedure, we develop a Large Neighborhood Search (LNS) algorithm that 

outperforms all GBD algorithms and the exact solution program CPLEX. The 

developed LNS algorithm solves larger size networks in reasonable computational 

times. In Chapter 6, we provide the details of our heuristic algorithm and show its 

effectiveness by reporting extensive computational experiments.  

 

In Chapter 7, we present the delay management model for service network design 

problems that apply latest arrival consolidation, and present a discussion on possible 

solution procedures.  

 

Chapter 8 concludes the thesis summarizing our main findings/results and stating 

the contributions of this thesis and possible future study issues.  
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CHAPTER 2 

 
 

2 NETWORK OPTIMIZATION PROBLEMS IN FREIGHT 
TRANSPORTATION 

 

 

 

 

Network optimization problems are widely studied in freight transportation to 

model the planning problems arising in each decision level: strategic, tactical, and 

operational. Strategic planning problems involve large capital investments to meet 

the long-term requirements of the transport system and they are generally defined as 

logistics system design. Tactical planning problems deal with the effective use of 

resources in an integrated manner and determine the main operating policies. 

Service Network Design problems establish the main problem class in tactical level. 

Operational planning problems focus on daily activities and involve constructing 

detailed plans.  

 

In this chapter, we present the main problems in each decision level of freight 

transportation in Section 2.1. We present a taxonomy of the network optimization 

problems in freight transportation in Section 2.2. Considering the characteristics of 

different transportation modes (ground, rail, air, maritime, and intermodal), we 

provide the most prominent problems of each decision level according to each 

transportation mode in Section 2.3. In Section 2.4, we present the conceptual 

framework of this thesis in freight transportation stating our main modeling 

concerns. In Section 2.5, we present the relevance of this thesis to other 

optimization problems. 

 

2.1 Planning Levels 

Designing and managing a transportation system involves many interrelated 

decision problems that have to be modeled within a hierarchical structure by 
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considering the input-output relationships between each hierarchy. The decisions 

that require high level of management and that affect the operations of the transport 

system for a long period of time belong to strategic level. The strategic level 

problems deal with the design and the development of a transport system. The 

facility location decisions involving where to locate facilities, at what capacity, in 

which physical layout; the acquisition of major resources such as vehicles, fleet, 

equipments; the installation of main infrastructures like rail lines, highways; and the 

decisions related to long term planning of all these entities such as capacity 

expansion and abandonment issues are in the domain of strategic level problems.  

 

Tactical level models determine the main operating policies of the transport system 

by focusing on the effective use of all resources and providing high quality service 

to customers. The major class of problems in tactical level are Service Network 

Design problems, in which the decisions regarding the service routes, frequency, 

and schedules; the capacity, type, and speed of the vehicles; the type of the 

transportation modes are given. In addition to designing the service network, to 

determine the vehicle routes and to reposition the empty vehicles after they perform 

the scheduled deliveries are also belong to tactical level. 

 

The detailed planning of the transport system focusing on the efficient use of 

resources to perform the daily operations is modeled at operational level. The 

allocation of crew to vehicles, constructing detailed timetables of vehicles, loading 

plans, the detailed planning of vehicle movements such as dispatching plans, and all 

planning activities to ensure the continuity of the system such as maintenance plans 

are in the domain of operational level problems.  

 

2.2 Taxonomy of Network Optimization Models in Freight Transportation 

The planning problems ranging from strategic level to operational level are 

generally modeled as network flow/design problems. Considering the main network 

optimization models in freight transportation, we develop a taxonomy basically 

considering the classification structures of Magnanti and Wong (1984) and Crainic 

and Laporte (1997). We present our taxonomy in Figure 3.  
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Location models establish the major problem class in strategic planning level, due 

to related high investment costs and its long-term impact on decision problems in 

all planning levels. The locations of facilities state the major limitations on the 

operations of the transportation system. For this reason, the location decisions are 

given considering the transfers between node pairs, distribution and variability of 

demand patterns throughout the transportation network. Past term data as well as 

forecasts regarding projections to future periods are generally used in these models. 

 

Location models can be categorized into three classes, Crainic and Laporte (1997):  

(i) Covering Models: The main objective is to locate the facilities so as to cover 

all other nodes of the network without exceeding predetermined travel 

times/distances.  

(ii) Median Models: A predetermined number of facilities are located to 

minimize total weighted travel distances. 

(iii) Center Models:  A predetermined number of facilities are located to 

minimize the maximum distance between a facility and a node or to the 

maximum travel time between the node pairs. 

 

Hub location models establish an important body of knowledge in location literature 

and have direct applications regarding models stated in (i)-(iii).  

 

Network design models cover a wide range of problems including a class of 

problems (i.e. minimum spanning tree, shortest path, travelling salesman) that 

establish the basic building blocks of large-scale network optimization models. We 

take into our taxonomy the network design models that can be applied with more 

general purposes to design a freight transportation network, i.e. fixed charge 

network design models, in which links are established between selected node pairs 

to perform the transfers. Since the capacitated version establishes the major problem 

class in multicommodity network design models, we provide the formulation and 

the literature review of related applications in detail in Section 3.1.  
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The development and the maintenance of the facilities, the transportation network, 

and the infrastructure are also in the domain of strategic level problems. By 

analyzing the increase or decrease trends in transportation requirements with respect 

to seasonal periods and/or customer regions the capacity expansion or abandonment 

decisions of major facilities and the psychical network have to be modeled. For 

more information about capacity expansion models, the survey paper presented by 

Luss (1982) can be referenced. Luss (1982) states the basic decisions in capacity 

expansion models as the size, time, and the location of expansion. 

 

Tactical level problems include SND models and vehicle routing models. Service 

schedules can be modeled either decision variables of the SND model or can be 

determined by modeling the SND problem using time-space network representation 

(dynamic SND model), in which each node represents a station at a specific time.  

 

SND problems arise in different freight network design contexts including ground, 

rail, air, maritime, and intermodal transportations. Main ground SND studies are 

less-than-truckload (LTL), truckload (TL), and motor carrier network design 

problems. In LTL transportation, the capacity of a vehicle is shared among different 

commodities. TL transportation generally operates with full vehicle loads and direct 

transports from origins to destinations. Motor carriers operate like LTL 

transportation but transport small parcels (postal deliveries and cargos). Compared 

to LTL transportation, delivery times become more important in motor carrier 

transportation, Campbell (2005).  

 

Constructing vehicle routes to perform the services and after they perform the 

deliveries at the end of the planning period repositioning the empty vehicles are 

studied at tactical level. Same problems can also be modeled at operational level to 

determine the detailed schedules and vehicle movements. Whereas the planning 

concerns of tactical level is to fully utilize the vehicle capacities by minimizing the 

routing costs. 
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2.3 Freight Transportation Problems with Respect to Different 

Transportation Modes 

Generally, most of freight transportation planning problems has direct applications 

in all transportation modes consisting of ground, rail, air, maritime, and intermodal. 

Intermodal transportation generally implies the transportation of freight/passengers 

using more than one transportation mode. Many definitions of intermodal 

transportation can be found in literature. Bontekoning et al. (2004) present 18 

definitions ranging from general ones to specific ones. The definition that is 

admitted by European Conference of Ministers of Transport, in 1993 is  

� “The movement of goods in one and the same loading unit or vehicle, which 

uses successively several modes of transportation without handling the 

goods themselves in changing modes”.  

This definition is the one that is used most commonly. 

 

In intermodal transportation studies, multimodal transportation term is also used as 

an alternative definition, whereas they are not same. The main difference between 

two modes is highlighted by Pedersen (2005) stating that multimodal transportation 

means using more than one transportation mode but interoperability between 

different modes is not required. However, intermodal transportation covers all 

planning issues regarding the transfers between different modes. 

 

In Table 1, for each transportation mode we list the most prominent planning 

problems with their specific and well-known definitions corresponding to each 

decision level. Since intermodal transportation covers a broader range of problems 

than multimodal transportation and the two terms are generally used 

interchangeably implying the intermodality, we include in Table 1 only intermodal 

transportation.  

 

The information stated in Table 1 is constructed basically considering  

� the classification schemes of freight transportation models, the reviews and 

the problems provided by Magnanti and Wong (1984), Crainic and Laporte 

(1997), Crainic (2000), Ghiani et al. (2004), Crainic and Kim (2007), 
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� the studies on railroad transportation provided by Crainic et al. (1984), 

Ahuja et al. (2005), Jha et al (2008), Liu et al. (2008), Zhu (2010), 

� the studies on air transportation provided by Barnhart and Schenur (1996), 

Büedenbender et al. (2000), Barnhart et al. (2002), Armacost et al. (2004), 

� the studies on maritime transportation provided by Lai and Lo (2004), 

Shintani et al. (2007), Imai et al. (2009), Gelareh et al. (2010), and 

� the studies on intermodal and multimodal transportation provided by Kim et 

al. (1999), Jansen et al. (2004), Pedersen (2005), Crainic and Kim (2007).  
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2.4 Conceptual Framework 

In this section, we present conceptually where this thesis fits into the freight 

transportation. Since our model has similarities to hub location and railroad 

blocking problems, we state the basic issues in the consolidation structures and the 

objectives of both problems. Then, we indicate which properties and attributes of 

these models are similar to our main modeling concerns. Also, we state the 

differences of our model. We present the conceptual framework of this thesis in 

Figure 4. 

 

Hub location problems are in the domain of location models class and railroad 

blocking problems are in the domain of service network design problems in tactical 

level. Two different modeling structures are generally applied in location and 

network design models.  In location models, the transfers between node pairs are 

generally defined by assignment type decision variables: 

�  0,≥ijx  denoting the fraction of demand of node i served by the facility 

located at node j, or 

� {0,1},∈ijx  where ijx  equals to 1 if node i is directly assigned to node j for 

sending and receiving flow to other nodes and equals to 0 otherwise. 

 

In network design models at strategic and tactical levels, the transfers between node 

pairs are generally modeled through multicommodity flow variables: 

� 0,≥k
ijx  denoting the fraction of demand of node i served by the facility 

located at node j, or 

�  {0,1},∈k
ijx  where k

ijx  equals to 1 if commodity k flows through node i to 

node j or equals to 0 otherwise. 

 

In this thesis, we focus on time efficient routing of commodities. We consider a 

commodity as homogenous freight that may either refer to cargo, containerized 

goods, letter mails, or small parcels. Each commodity is defined by an origin and a 

destination pair (O-D pair). Namely, all freight that is destined from the same O-D 

pair is treated as a single commodity. 
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In Figure 4, we highlight the main attributes of our modeling properties by red ink 

and with a star. We indicate where they belong into freight transportation taxonomy 

and how they relate with hub location and railroad blocking problems. These 

attributes can be listed as follows: 

� terminals are located to increase the level of consolidation throughout the 

service network,  

� latest arrival concept of Kara and Tansel (2001) is applied, 

� multiple allocation of nodes to other nodes/terminals are allowed, 

� a similar routing structure to the stopovers in hub location problems is 

applied, in which a route can contain multiple stopping points to reach a 

terminal and in our modeling structure the routes that do not visit a terminal 

are also allowed, 

� the objective function minimizes the maximum latest arrival time to 

destinations, 

� commodity routes are modeled using multicommodity variables, 

� a scheduled service network is designed,  

� each arc in the service network defines a block as in the railroad blocking 

problems, 

� there are limits on the number of incoming blocks to each node (degree-

constrained network design). 

 

The main differences of our model from the latest arrival hub location problems are 

that our model 

� does not need full-cross-traffic assumption for the latest arrival time 

calculations, 

� allows multiple allocation, 

� can be applied to incomplete psychical networks as well as fully connected 

networks. 

 

The main differences of our model from the railroad blocking problems are:  

� the degree-constraints are defined on incoming arcs, 

� the handling capacities of nodes/terminals are modeled implicitly through  

in-degree-constraints, 
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� the physical links are defined as uncapacitated, 

� a minimax type objective function is used and to keep balance between the 

maximum latest arrival time and total travel times, limits are defined for the 

travel time of each commodity. 

 

2.5 Relevance to Other Optimization Problems 

In addition to freight transportation, the latest arrival consolidation structure we 

study in this thesis can also be applied to other optimization fields utilizing 

multicommodity flow network structure and involving delays due to transfers 

between node pairs of the network. One important application area of the latest 

arrival consolidation is the packet switching problem in telecommunication network 

optimization.  

 

In communication networks, the data transmission (i.e. downloading a web page) is 

performed by first decomposing the whole content into smaller data packets and 

then transmitting each packet through several routers until it reaches its destination. 

The packets arriving to each router are stored instantly and then transmitted to 

another router, Pioro and Medhi (2004). During this transmission process, packets 

experience delays at routers. The major delays experienced by packets are stated by 

Kurose and Ross (2000) as nodal processing delay, queuing delay, transmission 

delay, and propagation delay. Time performance of data transmission is an 

important field of research in communication networks. Flow control techniques 

that focus on congestion control, providing fast packet switching, and the real time 

applications that require high-speed transmissions are studied by Pouzin (1981), 

Newman (1988), and Aras et al. (1994), respectively.   

 

Since the transmission process of a content can only be completed until all packets 

of it reach the destination point, the latest arrival consolidation structure can be 

applied to packet switching problem. The modeling approach of LA-CMNDP can 

be used to determine the routes of transmissions and the related consolidation 

structure throughout the communication network for the purpose of minimizing the 

maximum latest arrival time of all transmissions, thereby the total duration of the 

transmission. 
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Also, the modeling structure of our second model DLA can be used to further 

minimize all delays experienced by the packets at the routers by re-adjusting the 

consolidation plan. Namely, at some of the routers, transmissions to the next router 

without waiting the latest arriving packet can be allowed with the purpose of 

decreasing the system wide delays. 
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CHAPTER 3 

 

 

3 LITERATURE REVIEW 
 

 

 

 

LA-CMNDP applies a consolidation structure that is similar to the blocking of 

railroad planning problems, utilizes multicommodity flow structure, and determines 

the arrival and departure times of consolidated blocks considering the latest arrivals. 

Although LA-CMNDP has features related to different problem domains, since it 

mainly constructs a service network and determines the schedules of consolidated 

blocks, LA-CMNDP belongs to the class of Service Network Design (SND) 

problems. In order to cover all features of LA-CMNDP, in this chapter we present a 

literature review of multicommodity network design problems in Section 3.1, SND 

problems in Section 3.2, railroad blocking problems in Section 3.3, and the latest 

arrival studies in Section 3.4 especially focusing on the ones that are related to LA-

CMNDP. 

 

We develop exact and heuristic solution procedures for LA-CMNDP. For the exact 

solution procedure, we implement Generalized Benders Decomposition procedure, 

which is a variant of Benders Decomposition procedure. We present the literature 

reviews of Benders Decomposition and Generalized Benders Decomposition 

procedures in sections 3.5 and 3.6, respectively. For a technical note on the 

fundamentals of Benders Decomposition procedure Appendix A can be referenced, 

and for the fundamentals and the technical details of Generalized Benders 

Decomposition procedure Section 5.1 and Appendix B can be referenced. 

 

We develop a second model DLA for the delay management problem arising in 

service networks that apply latest arrival consolidation structure. The details of 
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DLA is presented in Chapter 7. In Section 3.7, we present the literature review of 

main delay management problems. 

 

3.1 Multicommodity Network Design Problems 

Network design problems arising in different application areas mainly utilize 

multicommodity flow structure. Fixed charge capacitated multicommodity network 

design (CMND) problems establish the major problem class of multicommodity 

network design problems since the CMND formulation represents a generic model 

for the planning problems in the construction, improvement, and operations of 

transportation, logistics, production, and telecommunication systems, (Crainic et al. 

(2000), Crainic and Gendreau (2002), Ghamlouche et al. (2004)).  

 

In CMND problems each commodity k K∈  is defined by a demand value kv  and 

an origin ( )O k  and a destination ( )D k  pair. There is a fixed charge ijFC  for 

establishing a link between node pairs ( , )i j  and a unit routing cost k
ijc  for the flow 

of commodity k  on arc ( , )i j  of the network that have a capacity limit represented 

by iju . Flow variables k
ijx  denote the flow of commodity k  on arc ( , )i j  and design 

variables ijy  denote whether arc ( , )i j  exist in the resulting network or not. For a 

given directed network ( , )=G N A  consisting of a set of nodes N  and a set of arcs 

A, the arc-based formulation of CMND is as follows.  
 

( , ) ( , )

CMND

( )

( ) , , (3.1)

0

( , ) (3.2)

0 ( , ) , (3.3)

{0,1} ( , ) (3.4)

∈ ∈ ∈

∈ ∈

∈

+

 =


− = − = ∀ ∈ ∀ ∈



≤ ∀ ∈

≥ ∀ ∈ ∀ ∈

∈ ∀ ∈

∑ ∑ ∑

∑ ∑

∑

k k
ij ij ij ij

i j A k K i j A

k

k k k
ij ji

j N j N

k
ij ij ij

k K

k
ij

ij

Minimize FC y c x

subject to

v if i O k

x x v if i D k i N k K

otherwise

x u y i j A

x i j A k K

y i j A
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Constraints (3.1) are the flow balance constraints and ensure that the demand kv  of 

each k  is delivered from ( )O k  to ( ).D k  By constraints (3.2) commodity flows 

satisfy arc capacities iju . Majority of the CMND problems study on directed 

networks considering arc capacities. Whereas there are several studies in which 

undirected networks are addressed, (Alvarez et al. (2003), Zaleta and Socarras 

(2004), Alvarez et al. (2005a), Alvarez et al. (2005b)). In these studies, the capacity 

of an edge { , }i j  iju  is shared among the commodities flowing in both directions on 

this edge, which is the case observed in telecommunication network design 

problems. For undirected networks, constraints (3.2) are replaced by (3.5). 

( ) { , } (3.5)
∈

+ ≤ ∀ ∈∑ k k
ij ji ij ij

k K

x x u y i j E  

CMND problems mostly assume that each commodity can be splittable to multiple 

paths and model k
ijx  variables as continuous. Yaghini and Kazamzadeh (2012) study 

the unsplittable CMND and present a model with binary flow variables. Since the 

splittable CMND problems are NP-hard, unsplittable CMND problems are even 

harder due to the increased number of binary variables. Frangioni and Gendron 

(2009) present a CMND model that allows multiple facilities on each ( , )∈i j A by 

defining the ijy  variables as integer variables. 
 

Majority of the CMND problems are modeled as arc-based, but there are several 

studies applying path-based approach, (Crainic et al. (2000), Crainic and Gendreau 

(2002), Hewitt et al. (2010)). With respect to the LP relaxations of arc-based and 

path-based formulations, none of the formulations outperforms the other, as shown 

by Gendron et al. (1999).  

 

CMND problems are NP hard problems necessitating exponential computational 

times to obtain the optimal solutions and LP relaxations do not provide tight lower 

bounds. Exact solution methods including relaxations and cutting plane algorithms 

are applied for CMND problems. Gendron et al. (1999) study continuous 

relaxations and Lagrangean relaxations of CMND, evaluate the quality of the lower 

bounds comparing them with Tabu Search heuristic and branch-and-bound results 

and concluded that none of the methods if applied alone to CMND is sufficient to 
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solve large size problems. Gendron et al. (1994) show that the quality of the lower 

bounds obtained from relaxations can be improved by using valid knapsack 

inequalities.  

 

Holmberg and Yuan (2000) presented Lagrangean relaxation based branch-and-

bound method that can be used for obtaining good feasible solutions to large-size 

problems. Sridhar and Park (2000) present a branch-and-bound algorithm that 

applies Benders, cut set inequalities, and show that for small size networks Benders 

cuts are better for heavy traffic load and cut set inequalities are better for light 

traffic load. Costa et al. (2009) present a comprehensive comparison of Benders, 

metric and cut set inequalities and by strengthening Benders inequalities, they 

reduce the computational time to obtain feasible solutions. Crainic et al. (2001) 

present bundle-based relaxation methods that outperform the subgradient 

counterparts by converging faster and being more robust to initial parameter 

settings.  

 

Chouman et al. (2003) and Chouman et al. (2009) study cutting plane algorithms by 

incorporating valid inequalities including strong and cut set inequalities. By this 

way, they obtain better lower bounds than the LP relaxation.  Frangioni and 

Gendron (2009) study cutting plane algorithms and column and row generation 

methods for their reformulation of CMND problem as to form a starting point for 

constructing a MIP based heuristic method.  

 

Exact solution methods cannot solve large size CMND problems. Therefore, 

heuristics are applied either solely or in conjunction with exact solution methods or 

other heuristics for large size problems. Solution methods of CMND problem that 

apply heuristic solution methods are presented in Section 3.1.1. 

 

3.1.1 Heuristic Solution Methods  

Neighborhood search algorithms establish the majority of the heuristic solution 

approaches applied for CMND problems. A review of CMND studies having 

heuristic based solution methods are presented in Table 2 with main modeling 

characteristics, solution methods, and computational results. Modeling 
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characteristics are analyzed with respect to three criteria: whether commodities are 

modeled as splittable or unsplittable, an arc-based or a path-based formulation is 

used, and capacity limits are defined for arcs or edges. In computational results part, 

the test networks, test problem sizes and computational run time performances 

(CPU times) are listed.  |N| represents the number of nodes of the test problems and 

|K| represents the number of commodities. Although CPU times depend on the 

hardware used, they provide an insight for the duration of the computation. 

Generally, each study presents a set of test networks. However, to compare the 

capabilities of the studies the largest test instances are presented in Table 2. For the 

same sized test networks, there are several instances due to variations of fixed 

charge to variable costs ratio and capacity levels. Therefore, whenever same size 

test network has different instances, the minimum and the maximum CPU times 

corresponding to those instances are presented in Table 2.  
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As it can be seen from the computational performances, the difficulty of the CMND 

problems increase as the number of commodities increase. 

 

CMND studies that consider capacitated edges use randomly generated test 

networks, generally apply Scatter Search and according to the presented average 

computational times, for networks with 50 nodes and 100 commodities near optimal 

solutions are generated around 3 minutes computation time. 

 

Majority of the CMND studies that consider capacitated arcs, use the same test 

networks, which are randomly generated and introduced by Crainic et al. (2000). 

These test networks are called as Canad problems and include a set of instances 

having different fixed cost to variable cost ratios and different capacity levels. 

 

Earlier studies using Canad test problems mostly apply Tabu Search based solution 

methods. Among them the first improvements are observed by cycle-based Tabu 

Search, Ghamlouche et al. (2003) and later Path Relinking algorithm proposed by 

Ghamlouche et al. (2004) outperformed the cycle-based Tabu Search. Crainic et al. 

(2006) present a multilevel cooperative Tabu Search method, which provides better 

results than the both methods. Crainic and Gendreau (2007) develop a Scatter 

Search algorithm and compare it with Path Relinking algorithm but the Scatter 

Search algorithm does not outperform the Path Relinking algorithm. 

 

Chouman and Crainic (2010) present a combined MIP and Tabu Search method for 

developing good feasible solutions to CMND problem and they obtained better 

results than the ones provided by the optimization programs.  

 

Hewitt et al. (2010) present a method that applies an exact solution method within a 

neighborhood search algorithm and for randomly generated test networks consisting 

of 500 nodes and 200 commodities they compare their method with cycle based 

Tabu Search and Path Relinking methods. The proposed combined model of Hewitt 

et al. (2010) outperforms both methods in solution quality and computational time 

performances.  
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Katayama et al. (2009) develop a capacity scaling heuristic that applies column and 

row generation. Testing the proposed method on Canad problems and comparing 

with previous studies simplex based Tabu Search of Crainic et al. (2000), cycle-

based Tabu Search of Ghamlouche et al. (2003), Path Relinking of Ghamlouche et 

al. (2004), and multilevel cooperative Tabu Search of Crainic et al. (2006) revealed 

that the capacity scaling heuristic of Katayama et al. (2009) provides new best 

solutions in %70 of the test problems in the shortest computation times. 

 

Rodrigez-Martin and Salazar Gonzalez (2010) and Katayama and Yuritomo (2011) 

apply local branching heuristic, Yaghini et al. (2012) and Yaghini and Kazamzadeh 

(2012) apply Simulated Annealing heuristic and they all shorten the computational 

times on Canad problems. Paraskevopoulos et al. (2013) present an Evolutionary 

Algorithm that applies Scatter Search and Iterated Local Search. In terms of 

solution quality, it is better than all the heuristics developed for CMND on average, 

but it is competitive with the method of Hewitt et al. (2010) and computational 

performance of Paraskevopoulos et al. (2013) is not better than that of Crainic et al. 

(2006) and Katayama et al. (2009). 

 

3.2 Service Network Design Problems  

SND problems apply multi commodity flow structure and have similarities to 

CMND problems. This similarity is also highlighted by Kim et al. (1997) and the 

author states that SND problems have additional complexity compared to CMND 

problems, since SND problems have to maintain a balance of service levels and 

transportation assets throughout the service network.  

 

In SND literature, there are various modeling approaches including arc-based, path-

based, and tree-based formulations, Kim et al. (1997). Since LA-CMNDP uses an 

arc-based formulation, we present a generic SND model that applies an arc-based 

formulation. For different modeling approaches in SND problems and for a review 

of SND literature Crainic (2000), Crainic (2005), and Wieberneit (2008) can be 

analyzed. 
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To state the arc-based SND problem, assume the following notation. For a given set 

of service types f F∈ , let f
ijy  denote for arc ( , )i j  whether a service type of f  is 

established or not. Commodity flows are denoted by k
ijx . The capacity of service 

type f  is represented by fu , and the fixed cost of using arc ( , )i j  having service 

type f  is represented  by f
ijh . Then the arc-based formulation of SND is as follows, 

Kim (1997). 
 

( , ) ( , )

SND-Arc

(3.1), (3.3)

0 , (3.6)

( , ) (3.7)

0 , ( , ) (3.8)

∈ ∈ ∈ ∈

∈ ∈

∈ ∈

+

− = ∈ ∈

≤ ∈

≥ ∈ ∈

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

f f k k
ij ij ij ij

f F i j A k K i j A

f f
ij ji

j N j N

k f f
ij ij

k K f F

f
ij

Minimize h y c x

subject to

y y i N f F

x u y i j A

y and integer f F i j A

 

Constraints (3.1) and (3.3) are the multicommodity flow conservation constraints. 

Constraints (3.6) are the design balance constraints and ensure that the number of 

each service type f entering to node i is equal to the number leaving. Constraints 

(3.7) are the capacity constraints that limit the flow on each arc up to its service 

capacity. Constraints (3.8) ensure that for each arc an integer number of service of 

type f can be established, Kim (1997). 

 

SND Problems are NP-hard problems consisting of many design issues. Besides the 

complexity of the models, considering the properties of a real life transportation 

network (node, arc, commodity numbers) and characteristics of modeling attributes 

(service level requirements, consolidation policies) SND problems require 

improved solution techniques. To obtain a near optimal solution within a reasonable 

computation time, heuristic solution methods are applied either solving the whole 

SND problem or using in conjunction with an exact solution method. Also Kim et 

al. (1999), Jarrah et al. (2009), and Pedersen (2005) emphasize the necessity of 

using heuristics in SND problems, which are NP-hard.  
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Neighborhood search algorithms are generally applied in LTL SND studies Equi et 

al. (1997), Farvolden and Powell (1994), Jarrah et al. (2009), Erera et al. (2012) and 

motor carrier SND studies Powell (1986a), Powell and Sheffi (1989), Powell and 

Koskosidis (1992), Barcos et al. (2010). Sung and Song (2003) present an SND 

model that both allows LTL and TL transportation and solve the model by a 

neighborhood search algorithm. 

 

Main decision problems handled in rail freight SND studies include generation of 

train routes with frequencies and service levels, generation of freight routes with 

related train itineraries and intermediate stops, allocation of classification operations 

to yards in such a way to prevent congestion, and modeling the empty car flows.  

Yaghini and Akhavan (2012) analyze the railroad freight transportation studies that 

apply multicommodity network design problem structure. Recent CMND problems 

and major railroad planning problems having multicommodity structure are 

reviewed with their properties and solution methods. 

 

Majority of rail SND studies apply heuristic based solution approaches, Crainic et 

al. (1984), Keaton (1989), Haghani (1989), Marin and Salmeron (1996a,b), Gorman 

(1998), Campetella et al. (2006), Zhu (2010), and Lin et al. (2012). There are 

several studies that apply exact solution methods, Kwon et al. (1998), and Pedersen 

and Crainic (2007). 

 

Heuristic based solutions are applied in maritime SND studies. Lai and Lo (2004) 

study a dynamic ferry service network design problem and present a shortest path 

based heuristic algorithm. Shintani et al. (2007) apply genetic algorithm to a 

container shipping network design problem, which is modeled as a two level 

Knapsack problem.  

 

Air SND studies deal with transportation of time critical shipments that are 

generally called as express shipment delivery problems. The shipments include 

small parcels, postal deliveries and have strict delivery time windows like next day 

delivery. To satisfy tight time windows, express shipment delivery necessitates 

modeling a multimodal SND that integrates ground and air transportation so as to 
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guarantee point to point delivery. Armacost et al. (2002) and Barnhart and Shen 

(2005) focus on the air part of express shipment delivery problem. Armacost et al. 

(2002) extend the main model by a composite variable formulation that provides 

tighter LP bounds.  Barnhart and Shen (2005) apply column generation. 

Büedenbender et al. (2000) also focus on the air part, but apply a hybrid Tabu 

Search and branch-and-bound algorithm. 

 

Barnhart and Schneur (1996), Kim et al. (1999), and Barnhart et al. (2002) model 

the express shipment delivery problem considering both the ground and the air 

parts. Barnhart and Schneur (1996) apply column generation, Kim et al. (1999) 

apply a heuristic solution method that applies problem reduction and column 

generation techniques, and Barnhart et al. (2002) present an iterative solution 

procedure within a decomposition structure. 

 

Multimodal SND studies also include models for combined ground and rail 

transportation networks, Jansen et al. (2004), Pedersen and Crainic (2007), and 

Andersan et al. (2009). Jansen et al. (2004) solve the main model by decomposing it 

into several sub problems. Pedersen and Crainic (2007) and Andersan et al. (2009) 

present dynamic SND models and apply exact solution methods.  

 

To deal with demand variability over a planning horizon and to generate detailed 

schedules, dynamic SND models are developed that apply a time space network 

structure. To include time dimension, additional nodes and arcs have to be defined 

resulting in huge planning networks. This increase in network size brings additional 

complexity to already NP-hard SND problems.  

 

Heuristic decomposition approaches are widely applied to these large and 

complicated time-space SND problems. The main decision problem is partitioned 

into several sub problems and solving the sub problems iteratively, a solution for 

the whole model is constructed. Local search algorithms, heuristic approximation 

algorithms, Slope Scaling heuristic, Tabu Search, and shortest path algorithms are 

used for solving the sub problems, Haghani (1989), Farvolden and Powell (1994), 

Kim et al. (1999), Jansen et al. (2004), Lai and Lo (2004), Jarrah et al. (2009), Zhu 
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(2010), Bai et al. (2010), Erera et al. (2012). Pedersen et al. (2009) apply Tabu 

Search algorithm to the main model without partitioning.  

 

Several studies apply exact solution methods for time space SND problems, Kwon 

et al. (1998), Pedersen and Crainic (2007), Andersan et al. (2009). Kwon et al. 

(1998) present a dynamic routing and scheduling rail car model that incorporates 

delivery time windows and consider the priority of rail cars. The authors apply 

column generation and obtain the optimal plans for 12 terminals in reasonable 

computational times.  

 

Pedersen and Crainic (2007) experiment with an optimization package to define the 

complexity of their intermodal freight train service design model. For 25 terminals 

and 90 commodities the authors could obtain only 3 feasible solutions out of 9 

different scenarios within 90 hours of computation time, verifying the necessity of 

heuristics for larger scale networks.  

 

Andersan et al. (2009) strengthen the LP relaxation of their dynamic SND model by 

defining valid inequalities. For 17 nodes and 40 commodities optimal solutions are 

obtained by an optimization program. The authors state the most promising solution 

methods for large networks as metaheuristics and column generation. 

 

3.2.1 Heuristic Solution Methods  

In order to report SND studies resembling the structure of LA-CMNDP, those that 

do not apply a time space network structure and those that utilize a heuristic 

solution method are reviewed in Table 3. The application areas (rail, LTL, ground, 

air), general description of the problem formulations, objective functions, main 

decisions of the models, the constraints, and computational results of the SND 

studies are presented in Table 3. If there are different instances for the same size test 

network then the maximum and minimum CPU time values of these instances are 

given in Table 3. 
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Heuristic solutions developed for SND problems mostly apply neighborhood search 

algorithms. Majority of the models consider capacities of vehicles, consolidation 

centers, and services. Capacitated models aim determining the commodity and 

vehicle flows so as to prevent congestion and related delays in an implicit manner. 

For the same purpose, some SND studies apply different additional strategies.  

Powell (1986a), Powell and Sheffi (1989), and Powell and Koskosidis (1992) locate 

direct service links between terminal pairs, if the flow of commodities on this link 

satisfies the minimum frequency requirements. Crainic et al. (1984) restrict the 

minimum block sizes so as to fully utilize the classification infrastructure of yards 

and for the classification operations at yards apply a queuing model. In order to 

prevent congestion at yards, delays due to accumulation and classification at yards 

are penalized by a cost function. 

 

Lin et al. (2012) present a rail service network design model that generates train 

services and frequencies. In the presented model, delay costs resulting from service 

accumulation, classification, and block formation operations at yards are considered 

in the objective function so as to distribute classification operations to yards in such 

a way to prevent congestion. 

 

Büedenbender et al. (2000), Sung and Song (2003), and Barcos et al. (2010) 

consider service time requirements in their models and for problems with 3,000, 

1,156, and 2,352 commodities the reported computational times are 24 hours, 51 

minutes, and 3.16 hours respectively.  

 

In computational experiments, Lin et al. (2012) consider the largest number of 

commodities with 14,440 and the computation time is 6.14 hours. Jarrah et al. 

(2009) consider the largest number of nodes with 725 nodes and the computation 

time is around 2 hours for 680 commodities.  
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3.3 Railroad Blocking Problems  

Railroad blocking problem is the basic decision problem of railroads. Shipments, 

physical railroad network, and the yards constitute the major elements of a railroad 

blocking problem. A shipment consists of individual railcars and it may visit several 

yards on its route. In each yard, incoming shipments are reclassified to be placed on 

outgoing trains. To reduce the intermediate handlings taking place at yards, 

shipments are grouped together to form blocks. A block consists of individual 

shipments, whose origin and destinations need not be the same as the O-D pair of 

the block. Once a block is formed, it is not reclassified at yards until it reaches its 

destination. By this way, classification costs and delays occurring at yards are tried 

to be kept at minimum. Due to resource limits of yards (car handling capacities, 

working crew) and rail line capacities it is not possible to form an individual block 

for each shipment, Barnhart et al. (2000), Ahuja et al. (2005), Ahuja et al. (2007).  

 

Blocking problem is a multicommodity network design problem, an arc-based 

formulation is presented by Ahuja et al. (2005) and a path-based formulation is 

presented by Newton et al. (1998). Path-based approach requires establishing all 

legal paths for each commodity beforehand. A priori path generation can require a 

lot of enumeration depending on the size of the network. Whereas by this way it is 

possible to handle more practical constraints by eliminating some paths that do not 

satisfy practical constraints like restrictions on allowable route lengths, Newton et 

al. (1998), Barnhart et al. (2000). 

 

Let ( , )=G N A  be the physical railroad network, where N represents the set of 

nodes denoting stations. At stations, individual shipments originate, terminate or 

switch trains. A represents the set of arcs of the physical railroad network. The sets 

of arcs that enter and emanate from station i are denoted by In(i) and Out(i), 

respectively. At each node ,∈i N  at most ib  blocks can be formed and id  rail cars 

can be classified with unit classification cost of im . Then the arc-based formulation 

of railroad blocking problem is as follows. 
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( , ) ( , ) ( )

( , ) ( )

( , ) ( )

Blocking-Arc

(3.1), (3.2), (3.4)

(3.9)

(3.10)

{0, } ( , ) , (3.11)

∈ ∈ ∈ ∈ ∈

∈

∈ ∈

+

≤ ∀ ∈

≤ ∀ ∈

∈ ∀ ∈ ∀ ∈

∑ ∑ ∑ ∑ ∑

∑

∑ ∑

k k
ij ij i ij

k K i j A i N k K i j Out i

ij i
i j Out i

k
ji i

k K j i In i

k
ij k

Minimize c x m x

subject to

y b i N

x d i N

x v i j A k K

 

Objective function tries to minimize the sum of transportation costs and the 

classification costs. Constraints (3.1) and (3.11) are multicommodity flow 

conservation constraints. Due to constraints (3.11) the commodities are 

unsplittable. Constraints (3.2), (3.9), and (3,10) are arc capacity, blocking capacity, 

and car handling capacity constraints, respectively, Ahuja et al. (2005).  

 

LA-CMNDP applies a consolidation structure that is similar to railroad blocking 

problem. Each arc in the solution network of LA-CMNDP defines a block and 

commodities are assumed to be unsplittable. Model LA-CMNDP does not consider 

arc capacities and car handling capacities. Whereas blocking capacity constraints 

(3.9) are handled in a different way by LA-CMNDP, in which capacity restrictions 

are applied to the number of incoming blocks to nodes. 

 

Blocking problems generally use real railway networks or simulated networks 

generated from real railway data. Earlier studies on blocking problem apply exact 

solution methods, Bodin et al. (1980), Newton et al. (1998), Barnhart et al. (2000). 

Bodin et al. (1980) tested their model on a network having 33 classification yards. 

To reduce the problem size some variables are fixed heuristically and the reduced 

model is solved by an optimization program. Newton et al. (1998) apply a path-

based formulation approach that enables reductions in problem size. For a network 

of 150 nodes and 1,300 commodities, the authors obtain solutions with 2% of lower 

bound by a branch and price algorithm that applies column generation. Barnhart et 

al. (2000) present a Lagrangean relaxation method that applies valid inequalities. 

The authors obtain tighter lower bounds than the LP relaxation on two test 
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networks. The first network has 116 nodes with 7,170 commodities and the second 

one has 1,050 nodes with 12,110 commodities.  For the larger network, they do not 

consider the car handling capacity restrictions. 

 

Recent studies on railroad blocking problem apply neighborhood search and 

population based algorithms. Ahuja et al. (2005) and Ahuja et al. (2007) present a 

Very Large Scale Neighborhood (VLSN) search algorithm, Yaghini et al. (2011) 

and Yue et al. (2011) apply ant-colony and Yaghini et al. (2012b) apply genetic 

algorithm. In Section 3.3.1, railroad blocking studies that apply heuristic solution 

methods are analyzed with main modeling characteristics and computational results. 

 

Railroad blocking problem is also a basic decision problem in Yard Location 

problem. Yards are the stations of railroads where cars from incoming trains are 

reclassified and assembled into outing blocks. Since important blocking operations 

take place at yards, the yard locations have great influence on the resulting blocking 

network structure, which necessitates giving yard location decisions considering the 

blocking problem. Ahuja et al. (2005) present a yard location formulation, which is 

based on the arc-based formulation of railroad blocking problem. The presented 

model assumes that the candidate yard locations and the desired number of yards is 

known beforehand and denoted by p. Let N denote the set of candidate yard nodes. 

If a node i N∈  is selected as yard then 1iz = , the blocking and car handling 

capacities of node i is increased by ib  and id , respectively. Then, the arc-based 

formulation of yard location problem is as follows. 
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( , ) ( , ) ( )

( , ) ( )

( , ) ( )

( , ) ( )

Yard Location-Arc

(3.1), (3.2), (3.4), (3.11)

\ (3.12)

\ (3.13)

(3

∈ ∈ ∈ ∈ ∈

∈

∈ ∈

∈
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≤ + ∀ ∈
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∑ ∑
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k
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.14)
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∈ ∈
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≤ + ∀ ∈

≤

∈ ∀ ∈

∑ ∑

∑

k
ji i i i

k K j i In i

i
i N

i

x d d z i N

z p

z i N

 

Objective function tries to minimize the sum of transportation costs and the 

classification costs. Blocking capacity (3.9), and car handling capacity (3.10) 

constraints of blocking problem are rewritten for non-candidate yard nodes (3.12)-

(3.13) and for candidate yard nodes (3.14)-(3.15). By constraints (3.16), at most p 

of the nodes can be selected as yards and the blocking and car handling capacities 

of these nodes are increased, Ahuja et al. (2005).  

 

Like yard location problem, LA-CMNDP locates a predetermined number of 

terminals, considering the bottlenecks at nodes resulting from the incoming block 

capacity restrictions. By this way, the level of consolidation throughout the 

transportation network is tried to be increased.  

 

For the solution of yard location problem, a neighborhood search algorithm is 

presented by Liu et al. (2008), which is presented in Section 3.3.1 with 

computational results. 
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3.3.1 Heuristic Solution Methods  

Ahuja et al. (2005) present a VLSN search algorithm for the railroad blocking 

problem and give an overview of the solution approach. The details of the VLSN 

algorithm are presented by Ahuja et al. (2007). Considering a large U.S. railroad 

network, the authors state the potential of VLSN search algorithm to solve real life 

instances of railroad blocking problems, which may have 50,000 shipments. For the 

solution part, only blocking capacities of nodes (out-degree constraints of nodes) 

are considered, whereas car handling capacities of nodes and arc capacities are 

ignored. The authors state the reason of this assumption as even ignoring these 

capacities most nodes and arcs satisfy them. The VLSN search algorithm is tested 

using three major U.S. railroads’ data. Compared to the current solutions of 

railroads, the VLSN method provides around 15% savings in reclassifications in 2 

hours computation time. 

 

Liu et al. (2008) apply the VLSN search algorithm in three greedy heuristic 

algorithms. All algorithms produce same results, though the simplest one is the drop 

algorithm. Since addition of yard location decisions increases the complexity of 

railroad blocking problem, the proposed solution method is experimented on a 

smaller network that has 39 yards. The proposed method provides a solution within 

6 hours computation time to allow the decision maker analyze the problem from 

different perspectives. 

 

Yaghini et al. (2011) and Yue et al. (2011) apply ant colony algorithm for blocking 

problem. For a test network of 50 nodes and 1114 commodities, Yaghini et al. 

(2011) obtain a feasible solution in 44 seconds. Yaghini et al. (2012b) present a 

Genetic algorithm that generates a near optimal solution within 81 seconds for a test 

network of 50 nodes and 1,114 commodities. 

 

A review of railroad blocking studies having heuristic based solution methods are 

presented in Table 4 with main modeling characteristics of the studies and 

computational results including the size of the test networks and the solution time 

performances, CPU times.  
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3.4 Latest Arrival Problems  

Latest arrival concept is first introduced by Kara and Tansel (2001) for single 

allocation hub location problem. Hubs are consolidation centers that collect 

shipments (goods, packages, messages, etc.) from their origins and distribute them 

to their destinations. Hub location problems consist of two main decisions; locating 

hub facilities and determining the allocation of non-hub nodes to hubs. The non-hub 

nodes are usually called as spokes. There are two allocation structures of spokes to 

hubs; i) single allocation, in which every spoke is assigned to exactly one hub and 

ii) multiple allocation, in which a spoke can be assigned to multiple hubs for 

different shipments. 

 

Service times are handled in hub location literature in various forms. p-hub center 

and hub covering models are the first studies considering service times. Campbell 

(1994b) presents the first formulations of both problems. p-hub center problem 

locates p hubs in order to minimize the maximum travel time or distance between 

every origin destination pair. On the other hand, hub covering problem tries to 

cover all nodes by not exceeding a predetermined allowable travel time limit for all 

origin destination pairs by minimizing the number of hubs or total transportation 

cost. 

 

Classical hub location models dealing with service times only consider travel times. 

However, delays occurring at hubs constitute an important part in total delivery 

times. Since hubs are consolidation centers, a significant amount of time is 

consumed for unloading the arriving vehicles, sorting the shipments, and loading 

the departing vehicles. Kara and Tansel (2001) consider the transient times spent at 

hubs by determining the departure time of a vehicle according to the latest arriving 

cargo that will be loaded to that vehicle.  

 

The concept of latest arrival to a hub is studied in different hub location problems. 

Tan and Kara (2007) present latest arrival hub covering problem. Yaman et al. 

(2007) present latest arrival hub location problem with stopovers. Alumur (2009) 

use the latest arrival idea in multimodal hub location and hub network design 

problem for satisfying two different service levels. Yaman et al. (2012) present the 
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release time scheduling and hub location for next day delivery problem, in which 

release times of trucks from each node are determined so as to maximize the total 

amount of cargo guaranteed to be delivered by the next day. The model applies the 

latest arrival idea to departures from hubs under single allocation structure.  

 

LA-CMNDP applies the latest arrival consolidation structure defined by Kara and 

Tansel (2001). Different from latest arrival hub location problems, LA-CMNDP 

applies a multiple allocation structure, in which each node can be connected to 

multiple nodes. Moreover LA-CMNDP considers constant handling times for the 

processing operations performed at nodes. Among the latest arrival hub location 

problems, Yaman et al. (2007) is the only study considering constant processing 

times at stopovers. The main modeling characteristics of latest arrival studies are 

presented in Table 5. 

 

Table 5. Modeling Characteristics of Latest Arrival Studies 
 

Study 
Problem 

Definition 
Objective 
Function 

Allocation 
Type 

Consider 
Handling 
Times? 

Constant or 
Variable 
Handling 

Times 

Kara and 
Tansel 
(2001)  

Hub Location 
Problem 

Minimize 
Maximum Latest 
Arrival Time 

single no - 

Tan and 
Kara 
(2007)  

Hub Covering 
Problem 

Minimize The 
Number of Hubs 
to Locate 

single no - 

Yaman et 
al. (2007)  

Hub Location 
Problem with 
Stopovers  

Minimize 
Maximum Latest 
Arrival Time 

single 
only at 

stopovers 
constant 

Alumur 
(2009)  

Multimodal 
Hub Location 
Problem 

Minimize Fixed 
Network Design 
and Transportation 
Costs 

single no - 

Yaman et 
al. (2012)  

Hub Location 
for Next Day 
Delivery 

Minimize 
Transportation 
Costs 

single no - 
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3.5 Benders Decomposition 

Benders decomposition has successful applications in network design problems. 

The major survey paper on Benders decomposition is presented by Costa (2005) 

focusing on applications in fixed-charge network design problems. The survey 

includes 17 studies and in most of them Benders decomposition outperforms 

branch-and-bound and Lagrangean relaxation methods. In this section, we present a 

literature review of the main enhancement techniques developed for Benders 

decomposition. In the literature, generally hybrid methods that involve multiple 

enhancements are applied to accelerate Benders decomposition.   

 

Considering the underlying structures of the main enhancement techniques, a 

classification scheme is proposed in Figure 5. Generalized Benders decomposition 

(GBD) is also included into the classification, since GBD provides an extension of 

Benders decomposition to non-linear programming problems. The literature review 

of GBD techniques is presented in detail in Section 3.6. 

 

As presented in Figure 5, the enhancements in Benders decomposition are 

developed generally focusing on  

i) effective solution techniques for the RMP and the SP,  

ii) selecting/generating stronger cuts,  

iii) generating multiple Benders cuts,  

iv) extensions to classical Benders cuts, and 

v) modeling structures. 

 

The ultimate purpose of all techniques is to speed up the convergence, to increase 

the computational efficiency, and to solve larger size problems. However, each 

class of techniques put emphasis on different improvement areas. For instance, 

techniques in class ii) focus on choosing the cuts that have higher potential to better 

restrict the feasible region of the RMP and iii) focus on reducing the required 

number of RMP solutions. The explanations of the enhancement techniques 

together with the reviewed studies are listed in Table 6. In addition, a list of studies 

that apply the classical algorithm of Benders (1962) is provided in Table 7. 



 

 

F
ig

ur
e 

5.
 C

la
ss

if
ic

at
io

n 
of

 M
ai

n 
E

nh
an

ce
m

en
t T

ec
hn

iq
ue

s 
fo

r 
B

en
de

rs
 D

ec
om

po
si

ti
on

 

 

51 



 

T
ab

le
 6

. E
xp

la
na

ti
on

s 
an

d 
R

el
at

ed
 S

tu
di

es
 f

or
 B

en
de

rs
 D

ec
om

po
si

ti
on

 E
nh

an
ce

m
en

t T
ec

hn
iq

ue
s 

 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 

C
la

ss
 

S
u

b
 C

la
ss

 

C
u

t 
S

el
ec

ti
on

 
M

et
h

od
s 

P
ar

et
o 

O
pt

im
al

 
C

ut
s 

W
he

n 
th

e 
S

P
 h

as
 m

ul
ti

pl
e 

op
ti

m
al

 s
ol

ut
io

ns
 (

th
e 

ca
se

 i
n 

m
os

t 
of

 t
he

 n
et

w
or

k 
op

ti
m

iz
at

io
n 

pr
ob

le
m

s)
, a

m
on

g 
th

e 
al

te
rn

at
iv

e 
cu

ts
 th

e 
st

ro
ng

es
t o

ne
, n

am
el

y 
th

e 
P

ar
et

o 
op

ti
m

al
 c

ut
 i

s 
se

le
ct

ed
.  

T
he

 i
de

nt
if

ic
at

io
n 

of
 t

he
se

 c
ut

s 
w

it
hi

n 
th

e 
B

en
de

rs
 d

ec
om

po
si

ti
on

 i
s 

pe
rf

or
m

ed
 b

y 
de

fi
ni

ng
 a

 c
or

e 
po

in
t 

of
 t

he
 R

M
P

 
an

d 
th

en
 s

ol
vi

ng
 a

 P
ar

et
o 

O
pt

im
al

 L
in

ea
r 

P
ro

gr
am

 u
si

ng
 t

he
 s

ol
ut

io
n 

of
 t

he
 

S
P

.  

M
ag

na
nt

i a
nd

 W
on

g 
(1

98
1)

, 
M

er
ci

er
 e

t a
l. 

(2
00

5)
, C

or
de

au
 

et
 a

l. 
(2

00
6)

, P
ap

ad
ak

os
 

(2
00

8)
, P

ap
ad

ak
os

 (
20

09
),

  
C

on
tr

er
as

 e
t a

l. 
(2

01
1)

, S
a 

et
 

al
. (

20
13

),
 T

an
g 

et
 a

l. 
(2

01
3)

 

S
tr

on
ge

r 
C

ut
s 

In
st

ea
d 

of
 

so
lv

in
g 

th
e 

P
ar

et
o 

op
ti

m
al

 
L

P
 

to
 

op
ti

m
al

it
y,

 
it

 
is

 
so

lv
ed

 
ap

pr
ox

im
at

el
y.

 T
he

 a
pp

ro
xi

m
at

e 
so

lu
ti

on
s 

al
so

 p
ro

vi
de

 s
tr

on
g 

cu
ts

 b
ut

 n
ot

 
ne

ce
ss

ar
il

y 
th

e 
P

ar
et

o 
op

ti
m

al
 c

ut
s.

 
C

on
tr

er
as

 e
t a

l. 
(2

01
1)

 

H
ig

h 
D

en
si

ty
 

P
ar

et
o 

(H
D

P
) 

C
ut

 
G

en
er

at
io

n 

H
ig

h 
de

ns
it

y 
P

ar
et

o 
op

ti
m

al
 

cu
ts

 
(i

nv
ol

vi
ng

 
hi

gh
 

nu
m

be
r 

of
 

de
ci

si
on

 
va

ri
ab

le
s 

of
 R

M
P

) 
is

 o
bt

ai
ne

d 
by

 li
ft

in
g 

th
e 

P
ar

et
o 

op
ti

m
al

 c
ut

s.
 

T
an

g 
et

 a
l. 

(2
01

3)
 

M
in

im
al

 
In

fe
as

ib
le

 
S

ub
sy

st
em

s(
M

IS
) 

C
ut

 G
en

er
at

io
n 

T
hi

s 
m

et
ho

d 
se

le
ct

s 
th

e 
m

os
t 

vi
ol

at
ed

 B
en

de
rs

 c
ut

 (
ei

th
er

 o
pt

im
al

it
y 

or
 

fe
as

ib
il

it
y)

 a
m

on
g 

th
e 

al
te

rn
at

iv
es

 b
y 

so
lv

in
g 

a 
C

ut
 G

en
er

at
io

n 
L

P
, w

hi
ch

 i
s 

a 
fe

as
ib

il
it

y 
se

ek
in

g 
pr

ob
le

m
.  

F
is

ch
et

ti
 

et
 

al
. 

(2
00

8)
, 

F
is

ch
et

ti
 e

t a
l. 

(2
01

0)
, S

a 
et

 a
l. 

(2
01

3)
 

E
li

m
in

at
io

n 
of

 
In

ac
ti

ve
 C

ut
s 

T
he

 m
ul

ti
pl

e 
cu

ts
 g

en
er

at
ed

 b
y 

th
e 

S
P

 a
re

 a
na

ly
ze

d 
an

d 
th

e 
in

ac
ti

ve
 c

ut
s 

ar
e 

el
im

in
at

ed
 b

ef
or

e 
ad

di
ng

 to
 th

e 
R

M
P

. 
M

ar
in

 a
nd

 J
ar

am
il

lo
 (

20
09

) 

 

52 



 

T
ab

le
 6

 (
co

nt
in

ue
d)

 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 C

la
ss

 
S

u
b

 C
la

ss
 

C
u

t 
S

el
ec

ti
on

 
M

et
h

od
s 

T
ig

ht
er

 C
ut

 
G

en
er

at
io

n 

W
he

n 
it

 i
s 

di
ff

ic
ul

t 
to

 o
bt

ai
n 

op
ti

m
al

it
y 

cu
ts

, 
th

is
 m

et
ho

d 
pr

ov
id

es
 t

he
 

se
le

ct
io

n 
of

 t
ig

ht
er

 f
ea

si
bi

li
ty

 c
ut

. 
A

na
ly

zi
ng

 t
he

 d
is

ta
nc

e 
be

tw
ee

n 
th

e 
in

fe
as

ib
le

 p
oi

nt
 a

nd
 t

he
 f

ea
si

bl
e 

po
in

ts
, 

th
e 

cu
t 

th
at

 i
s 

cl
os

er
 t

o 
th

e 
fe

as
ib

le
 r

eg
io

n 
of

 th
e 

R
M

P
 is

 s
el

ec
te

d.
 

Y
an

g 
an

d 
L

ee
 (

20
11

),
  

Y
an

g 
an

d 
L

ee
 (

20
12

) 

M
u

lt
i-

cu
t 

B
en

de
rs

 
D

ec
om

p
os

it
io

n 

D
is

ag
gr

eg
at

ed
 

B
en

de
rs

 
D

ec
om

po
si

ti
on

 

In
 t

hi
s 

m
et

ho
d,

 t
he

 S
P

s 
ar

e 
de

co
m

po
se

d 
in

to
 s

ub
 p

ro
bl

em
s 

an
d 

fo
r 

ea
ch

 s
ol

ut
io

n 
of

 th
e 

su
b 

pr
ob

le
m

s 
a 

se
pa

ra
te

 c
ut

 is
 a

dd
ed

 to
 th

e 
R

M
P

. 

C
or

de
au

 e
t a

l. 
(2

00
0)

, 
C

am
ar

go
 e

t. 
al

. (
20

08
),

  
G

el
ar

eh
 a

nd
 N

ic
ke

l (
20

08
),

  
M

ar
in

 a
nd

 J
ar

am
il

lo
 (

20
09

),
 

C
on

tr
er

as
 e

t a
l. 

(2
01

1)
,  

T
an

g 
et

 a
l. 

(2
01

3)
 

G
en

er
at

in
g 

M
ul

ti
-C

ut
s 

by
 

M
IS

 

In
 M

IS
 m

et
ho

d 
of

 F
is

ch
et

ti
 e

t 
al

. 
(2

00
8)

, 
w

he
n 

th
e 

S
P

 i
s 

bo
un

de
d,

 i
n 

ad
di

ti
on

 to
 a

n 
op

ti
m

al
it

y 
cu

t, 
a 

fe
as

ib
il

it
y 

cu
t i

s 
al

so
 g

en
er

at
ed

. 
F

is
ch

et
ti

 e
t a

l. 
(2

00
8)

 

M
ax

im
um

 
F

ea
si

bl
e 

S
ub

sy
st

em
 

(M
F

S
) 

C
ut

 
G

en
er

at
io

n 

T
hi

s 
m

et
ho

d 
is

 w
el

l s
ui

te
d 

to
 p

ro
bl

em
s 

th
at

 n
ec

es
si

ta
te

 m
or

e 
fe

as
ib

il
it

y 
cu

ts
 t

ha
n 

op
ti

m
al

it
y 

cu
ts

 i
n 

B
en

de
rs

 d
ec

om
po

si
ti

on
. W

he
n 

a 
fe

as
ib

il
it

y 
cu

t 
is

 
ge

ne
ra

te
d,

 
M

F
S

 
ge

ne
ra

te
s 

an
 

ad
di

ti
on

al
 

op
ti

m
al

it
y 

cu
t 

by
 

id
en

ti
fy

in
g 

th
e 

m
ax

im
um

 
nu

m
be

r 
of

 
co

ns
tr

ai
nt

s 
th

at
 

ca
n 

be
co

m
e 

fe
as

ib
le

 f
ro

m
 th

e 
in

fe
as

ib
le

 S
P

. 

S
ah

ar
id

is
 a

nd
 I

er
ap

et
ri

to
u 

(2
01

0)
 

 

53 



 

T
ab

le
 6

 (
co

nt
in

ue
d)

 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 C

la
ss

 
S

u
b

 C
la

ss
 

M
u

lt
i-

cu
t 

B
en

de
rs

 
D

ec
om

p
os

it
io

n 

C
ov

er
in

g 
C

ut
 B

un
dl

e 
(C

C
B

) 
G

en
er

at
io

n 

U
si

ng
 t

he
 R

M
P

 s
ol

ut
io

ns
, 

a 
bu

nd
le

 o
f 

lo
w

-d
en

si
ty

 c
ut

s 
(i

nv
ol

vi
ng

 s
m

al
l 

pa
rt

 
of

 d
ec

is
io

n 
va

ri
ab

le
s 

of
 R

M
P

) 
ar

e 
ge

ne
ra

te
d 

th
ro

ug
h 

an
 a

ux
il

ia
ry

 L
P

. 
T

he
 

m
ai

n 
pr

in
ci

pl
e 

in
 g

en
er

at
io

n 
of

 m
ul

ti
pl

e 
lo

w
-d

en
si

ty
 c

ut
s 

is
 t

o 
co

ve
r 

m
os

t 
of

 
th

e 
de

ci
si

on
 v

ar
ia

bl
es

 o
f 

th
e 

R
M

P
 a

nd
 t

he
re

by
 e

ns
ur

in
g 

a 
st

ro
ng

er
 r

es
tr

ic
ti

on
 

on
 th

e 
so

lu
ti

on
 s

pa
ce

 o
f 

th
e 

R
M

P
. 

S
ah

ar
id

is
 e

t a
l. 

(2
01

0)
 

M
ax

im
um

 
D

en
si

ty
 C

ut
 

(M
D

C
) 

G
en

er
at

io
n 

M
D

C
 m

et
ho

d 
ca

n 
be

 a
pp

li
ed

 e
it

he
r 

as
 a

 s
ta

nd
al

on
e 

m
et

ho
d 

or
 t

og
et

he
r 

w
it

h 
th

e 
C

C
B

 m
et

ho
d.

 T
he

 b
as

ic
 i

de
a 

of
 t

he
 M

D
C

 m
et

ho
d 

is
 t

o 
ge

ne
ra

te
 m

ul
ti

pl
e 

cu
ts

 
tr

yi
ng

 
to

 
co

ve
r 

m
ax

im
um

 
nu

m
be

r 
of

 
va

ri
ab

le
s 

of
 

th
e 

R
M

P
 

us
in

g 
co

m
pl

em
en

ta
ry

 s
la

ck
ne

ss
. 

S
ah

ar
id

is
 a

nd
 I

er
ap

et
ri

to
u 

(2
01

3)
 

R
el

ax
ed

 
M

as
te

r 
P

ro
bl

em
 

(R
M

P
) 

S
ol

u
ti

on
 

T
ec

h
n

iq
u

es
 

L
P

 
R

el
ax

at
io

ns
 

T
he

 
L

P
 r

el
ax

at
io

ns
 

of
 t

he
 

R
M

P
 a

re
 

so
lv

ed
 

ei
th

er
 

in
 s

om
e 

it
er

at
io

ns
 

of
 

B
en

de
rs

 d
ec

om
po

si
ti

on
 o

r 
in

 a
ll

 it
er

at
io

ns
.  

M
cD

an
ie

l a
nd

 D
ev

in
e 

(1
97

7)
, C

or
de

au
 e

t a
l. 

(2
00

0)
, 

C
or

de
au

 e
t a

l. 
(2

00
6)

,  
C

od
at

o 
an

d 
F

is
ch

et
ti

 (
20

06
) 

L
oc

al
 

B
ra

nc
hi

ng
 

A
ft

er
 e

ac
h 

R
M

P
 i

s 
so

lv
ed

, 
lo

ca
l 

br
an

ch
in

g 
is

 a
pp

li
ed

. 
B

y 
th

is
 w

ay
 d

if
fe

re
nt

 
fe

as
ib

le
 s

ol
ut

io
ns

 a
re

 s
ea

rc
he

d 
an

d 
th

e 
po

ss
ib

il
it

y 
of

 o
bt

ai
ni

ng
 b

et
te

r 
up

pe
r 

an
d 

lo
w

er
 b

ou
nd

s 
is

 in
cr

ea
se

d.
 

R
ei

 e
t a

l. 
(2

00
8)

 

 

54 



 

T
ab

le
 6

 (
co

nt
in

ue
d)

 
 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 C

la
ss

 
S

u
b

 C
la

ss
 

R
el

ax
ed

 
M

as
te

r 
P

ro
bl

em
 

(R
M

P
) 

S
ol

u
ti

on
 

T
ec

h
n

iq
u

es
 

N
ot

 S
ol

vi
ng

 th
e 

R
M

P
 to

 
O

pt
im

al
it

y 

T
he

 R
M

P
 i

s 
no

t 
so

lv
ed

 t
o 

op
ti

m
al

it
y,

 i
t 

is
 s

to
pp

ed
 w

he
n 

it
 f

in
ds

 a
 b

et
te

r 
so

lu
ti

on
 t

ha
t 

m
ee

ts
 t

he
 r

eq
ui

re
d 

cr
it

er
io

n 
(e

it
he

r 
a 

be
tt

er
 s

ol
ut

io
n 

th
an

 t
he

 
in

cu
m

be
nt

 o
ne

 o
r 

(U
B

-ɛ
))

 

G
eo

ff
ri

on
 a

nd
 G

ra
ve

s 
(1

97
4)

, 
C

am
ar

go
 e

t. 
al

. (
20

08
) 

V
al

id
 

In
eq

ua
li

ti
es

 
V

al
id

 
in

eq
ua

li
ti

es
 

ar
e 

in
co

rp
or

at
ed

 
to

 
th

e 
R

M
P

, 
to

 
in

cr
ea

se
 

th
e 

co
m

pu
ta

ti
on

al
 e

ff
ic

ie
nc

y.
 

C
or

de
au

 e
t a

l. 
(2

00
0)

, 
C

or
de

au
 e

t a
l. 

(2
00

6)
, 

S
ah

ar
id

is
 e

t a
l. 

(2
01

1)
,  

T
an

g 
et

 a
l. 

(2
01

3)
 

H
eu

ri
st

ic
 

A
pp

ro
ac

he
s 

T
he

 R
M

P
 is

 s
ol

ve
d 

he
ur

is
ti

ca
ll

y.
  

W
en

tg
es

 (
19

98
),

 
 J

ia
ng

 e
t a

l. 
(2

00
9)

,  
P

oo
ja

ri
 a

nd
 B

ea
sl

ey
 (

20
09

) 

S
u

b
 P

ro
bl

em
 

(S
P

) 
S

ol
ut

io
n 

T
ec

h
n

iq
u

es
 

A
vo

id
in

g 
In

fe
as

ib
il

it
ie

s 

E
ve

ry
 t

im
e 

th
e 

S
P

 i
s 

in
fe

as
ib

le
, 

fe
as

ib
il

it
y 

B
en

de
rs

 c
ut

s 
ha

ve
 t

o 
be

 
ge

ne
ra

te
d 

by
 i

de
nt

if
yi

ng
 t

he
 e

xt
re

m
e 

ra
ys

. 
T

o 
av

oi
d 

th
es

e 
op

er
at

io
ns

, 
th

e 
fe

as
ib

il
it

y 
of

 t
he

 S
P

 i
s 

gu
ar

an
te

ed
 b

y 
in

co
rp

or
at

in
g 

pr
ob

le
m

 s
pe

ci
fi

c 
fe

as
ib

il
it

y 
en

su
ri

ng
 c

ut
s 

in
to

 th
e 

R
M

P
 f

or
m

ul
at

io
n.

 

C
am

ar
go

 e
t a

l. 
(2

00
9b

) 

D
ec

om
po

si
ng

 
th

e 
S

P
 

T
he

 s
ol

ut
io

n 
pr

oc
ed

ur
e 

of
 t

he
 S

P
 i

s 
si

m
pl

if
ie

d 
by

 s
ol

vi
ng

 t
he

 S
P

 f
or

 e
ac

h 
co

m
m

od
it

y 
se

pa
ra

te
ly

 a
nd

 th
en

 a
gg

re
ga

ti
ng

 th
e 

in
di

vi
du

al
 s

ol
ut

io
ns

. 
G

eo
ff

ri
on

 a
nd

 G
ra

ve
s 

(1
97

4)
, 

C
am

ar
go

 e
t a

l. 
(2

00
9b

) 

 

55 



 

T
ab

le
 6

 (
co

nt
in

ue
d)

 
 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 C

la
ss

 
S

u
b

 C
la

ss
 

S
u

b
 P

ro
b

le
m

 
(S

P
) 

S
ol

u
ti

on
 

T
ec

h
n

iq
u

es
 

In
ex

ac
t C

ut
s 

W
he

n 
th

e 
S

P
 i

s 
ve

ry
 l

ar
ge

, 
in

st
ea

d 
of

 s
ol

vi
ng

 t
he

 S
P

 t
o 

op
ti

m
al

it
y,

 i
ne

xa
ct

 
cu

ts
 a

re
 g

en
er

at
ed

 t
hr

ou
gh

 a
 p

ri
m

al
-d

ua
l 

in
te

ri
or

 p
oi

nt
 m

et
ho

d 
ap

pl
ie

d 
to

 
th

e 
S

P
. 

Z
ak

er
i e

t a
l. 

(1
99

8)
 

E
ff

ic
ie

nt
 

A
lg

or
it

hm
s 

T
o 

sp
ee

d 
up

 t
he

 S
P

 s
ol

ut
io

n 
ti

m
e,

 e
ff

ic
ie

nt
 a

lg
or

it
hm

s 
(l

ik
e 

sh
or

te
st

 p
at

h 
al

go
ri

th
m

) 
ar

e 
us

ed
 in

st
ea

d 
of

 th
e 

si
m

pl
ex

 a
lg

or
it

hm
. 

W
en

tg
es

 (
19

98
),

  
M

ar
in

 a
nd

 J
ar

am
il

lo
 (

20
09

),
 

C
am

ar
go

 e
t a

l. 
(2

00
9b

) 

E
xt

en
si

on
s 

to
 

C
la

ss
ic

al
 

B
en

de
rs

 C
ut

s 

S
tr

en
gt

he
ni

ng
 

B
en

de
rs

 C
ut

s 
T

he
 

st
re

ng
th

 
of

 
th

e 
B

en
de

rs
 

cu
ts

 
ar

e 
in

cr
ea

se
d 

by
 

an
 

al
go

ri
th

m
 

th
at

 
m

od
if

ie
s 

th
e 

op
ti

m
al

 d
ua

l v
ar

ia
bl

es
 o

f 
th

e 
S

P
. 

V
an

 R
oy

 (
19

86
),

  
W

en
tg

es
 (

19
98

) 

C
om

bi
na

to
ri

al
 

(C
B

) 
B

en
de

rs
 

C
ut

s 

C
B

 c
ut

s 
ar

e 
al

te
rn

at
iv

e 
fe

as
ib

il
it

y 
cu

ts
 a

nd
 d

ef
in

ed
 f

or
 p

ro
bl

em
s 

w
ho

se
 

ob
je

ct
iv

e 
fu

nc
ti

on
 o

nl
y 

de
pe

nd
s 

on
 i

nt
eg

er
 v

ar
ia

bl
es

 a
nd

 t
he

 l
in

ka
ge

 o
f 

co
nt

in
uo

us
 a

nd
 i

nt
eg

er
 v

ar
ia

bl
es

 a
re

 i
n 

th
e 

fo
rm

 o
f 

bi
g-

M
 t

yp
e 

lo
gi

ca
l 

co
ns

tr
ai

nt
s.

  

C
od

at
o 

an
d 

F
is

ch
et

ti
 (

20
06

) 

A
 P

ri
or

i C
ut

 
G

en
er

at
io

n 

A
n 

in
it

ia
l 

se
t 

of
 B

en
de

rs
 c

ut
s 

ar
e 

ge
ne

ra
te

d 
w

it
h 

th
e 

pu
rp

os
e 

of
 o

bt
ai

ni
ng

 a
 

be
tt

er
 i

ni
ti

al
 a

pp
ro

xi
m

at
io

n 
of

 B
en

de
rs

 r
ef

or
m

ul
at

io
n 

an
d 

th
er

eb
y 

re
du

ci
ng

 
th

e 
re

qu
ir

ed
 n

um
be

r 
of

 it
er

at
io

ns
. 

W
en

tg
es

 (
19

98
),

  
C

or
de

au
 e

t a
l. 

(2
00

0)
,  

C
on

tr
er

as
 e

t a
l. 

(2
01

1)
 

 

56 



 

T
ab

le
 6

 (
co

nt
in

ue
d)

 
 

B
en

de
rs

 D
ec

om
po

si
ti

on
 

E
n

h
an

ce
m

en
t 

T
ec

h
n

iq
ue

s 
E

xp
la

n
at

io
n

s 
S

tu
d

ie
s 

M
aj

or
 C

la
ss

 
S

u
b

 C
la

ss
 

M
od

el
li

n
g 

S
tr

u
ct

u
re

 

A
lt

er
na

ti
ve

 
F

or
m

ul
at

io
ns

 

In
 c

as
e 

of
 a

lt
er

na
ti

ve
 f

or
m

ul
at

io
ns

 o
f 

a 
pr

ob
le

m
, 

se
le

ct
in

g 
th

e 
m

os
t 

ap
pr

op
ri

at
e 

on
e 

ca
n 

im
pr

ov
e 

th
e 

co
m

pu
ta

ti
on

al
 p

er
fo

rm
an

ce
 o

f 
B

en
de

rs
 

de
co

m
po

si
ti

on
. 

G
eo

ff
ri

on
 a

nd
 G

ra
ve

s 
(1

97
4)

,  
M

ag
na

nt
i a

nd
 W

on
g 

(1
98

1)
, 

P
ap

ad
ak

os
 (

20
09

) 

P
ro

bl
em

 
S

iz
e 

R
ed

uc
ti

on
 

P
ro

bl
em

 
si

ze
 

is
 

el
im

in
at

ed
 

th
ro

ug
h 

re
du

ct
io

n 
te

st
s,

 
in

 
w

hi
ch

 
th

e 
de

ci
si

on
 v

ar
ia

bl
es

 t
ha

t 
w

ou
ld

 n
ot

 a
pp

ea
r 

in
 t

he
 o

pt
im

al
 s

ol
ut

io
n 

ar
e 

id
en

ti
fi

ed
 u

si
ng

 t
he

 U
B

, 
L

B
 i

nf
or

m
at

io
n 

an
d 

el
im

in
at

ed
 f

ro
m

 t
he

 R
M

P
 

an
d 

S
P

. 

C
on

tr
er

as
 e

t a
l. 

(2
01

1)
 

 

57 



58 

Table 7. List of Studies for Classical Benders Decomposition 

Studies That Apply 
Classical Benders Decomposition 

McDaniel and Devine (1977), Camargo et. al. (2008), 
Gelareh and Nickel (2008), Fischetti et al. (2008), Jiang et 
al. (2009), Marin and Jaramillo (2009), Fischetti et al. 
(2010), Saharidis et al. (2010), Saharidis and Ierapetritou 
(2010), Yang and Lee (2011), Yang and Lee (2012), 
Sharidis and Ierapetritou (2013), Tang et al. (2013) 

 

Majority of the enhancements focus on the strength of the Benders cut set. By using 

more powerful cut sets, less number of RMPs would be required and the 

computational efficiency is expected to be increased. The trade-off between the 

required computational effort to increase the strength of the Benders cut set and the 

expected number of reduction in the RMPs may not be same for all problem 

structures or all instances. In fact, this observation holds for other enhancements 

presented in Table 6. Thus, before applying an enhancement the similarity of the 

problem structures should also be considered.    

 

The initial Benders cuts have an important effect for the convergence of the 

Benders decomposition, Magnanti and Wong (1981). For most of the network 

optimization problems, due to network flow structure, mostly the SP is degenerate 

(having multiple optimal solutions). In such problems, the classical Benders 

decomposition generates the Benders cuts using the solution of the SP without 

considering the alternatives. Thus, to accelerate the Benders decomposition, 

selecting the strongest cut becomes a critical issue. Magnanti and Wong (1981) 

present the first tailored cut selection technique, in which the Pareto optimal cuts, 

namely the non-dominated cuts are selected through a Pareto Optimal LP using the 

solution of the SP and defining a core point of the RMP.  

 

Fischetti et al. (2008) state the major drawbacks of Magnanti and Wong (1981) 

method as: (i) the SPs are required to be bounded, thus the method is not applicable 

to the unbounded cases, (ii) the quality of the cuts depend on the core points and it 



59 

is difficult to define the core points, (iii) the method requires solving an additional 

time-consuming LP. The difficulty of defining the core points is also highlighted in 

Mercier (2005), Papadakos (2009), Sa et al. (2013) and an alternative way to define 

the core points is presented by Papadakos (2008). The enhancements of Papadakos 

(2008) also provide a solution procedure for the Pareto Optimal LP that does not 

depend on the SP solution.  

 

Contreras et al. (2011) obtain stronger cuts through approximately solving the 

Pareto Optimal LP and by this way speed up the cut selection phase. Tang et al. 

(2013) present High Density Pareto (HDP) cut generation, in which the Pareto 

optimal cuts are lifted so as to include high number of decision variables of the 

RMP. For this purpose, the coefficient matrix of the Pareto Optimal LP is adjusted.  

 

Fischetti et al. (2008) present the minimal infeasible subsystems (MIS) cut selection 

technique, in which the most violated optimality or feasibility cut is selected 

through a Cut Generation linear program. Cut selection is performed by establishing 

a correspondence between the minimal infeasible subsystems (MIS) of an infeasible 

LP and the vertices of the alternative polyhedron. The authors compare two 

variants; (i) single cut MIS, (ii) multi-cut MIS on a set of MIP problems. Multi-cut 

MIS forces to generate a feasibility cut also when the SP is bounded. The single cut 

MIS has lower CPU times on most of the instances, but for problems involving 

feasibility cuts multi-cut MIS becomes superior. 

 

Sa et al. (2013) present a cut selection technique that applies the MIS cut selection 

scheme of Fischetti et al. (2008) and enhances the core point determination method 

of Papadakos (2008) to the cases when the SP is infeasible. On tree of hubs location 

problem, the method of Sa et al. (2013) significantly reduce the required  number of 

iterations to converge and CPU times compared to the methods of Papadakos 

(2008) and Fischetti et al. (2008). In addition, on tree of hubs location problem, the 

MIS cut selection of Fischetti et al. (2008) outperforms the method of Papadakos 

(2008). 
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For the cases when it is difficult to obtain optimality cuts, Yang and Lee (2011) and 

Yang and Lee (2012) propose a tighter cut generation technique, that selects the 

strongest feasibility cut. In this method, the infeasible solutions are eliminated by 

analyzing the distance between the infeasible point and the feasible points and 

choosing the cut that is closer to the feasible region of the RMP. Tighter feasibility 

cut generation method outperforms the direct use of extreme rays in both CPU 

times and iteration numbers. 

 

Another way of increasing the strength of the Benders cut set is to generate multiple 

cuts in each iteration. This method is widely applied in transportation problems, 

including hub location (Camargo et. al. (2008), Contreras et al (2011)), railroad 

planning problems (Cordeau et al. (2000)), logistics facility location problem with 

capacity expansion (Tang et al. (2013)), public transport (Gelareh and Nickel 

(2008)), and rapid transit network design problems (Marin and Jaramillo (2009)). In 

this method, the SP is decomposed into smaller problems, generally into sub SPs for 

each origin-destination pair. For individual solutions of the sub SPs a separate cut is 

added to the RMP and this method is called as disaggregated Benders 

decomposition.  

 

Marin and Jaramillo (2009) effectively manage the number of constraints that are to 

be added in each iteration to the RMP by analyzing the disaggregated Benders cuts 

and eliminating the inactive ones. Contreras et al. (2011) generate multiple cuts by 

decomposing the SP to each potential hub node in an uncapacitated multiple 

allocation hub location problem. Thus, the number of sub SPs is decreased and the 

computational efficiency is increased compared to decomposing the SP to each i-j 

pair. 

 

Saharidis and Ierapetritou (2010) generate multi-cuts by Maximum Feasible 

Subsystem (MFS) cut generation scheme for the particular problems that necessitate 

more feasibility cuts than optimality cuts. In this method, each time a feasibility cut 

is generated, an optimality cut is also generated through an auxiliary MIP that 

searches the minimum number of modifications that are necessary to convert an 

infeasible SP to a feasible one. Compared to the classical Benders decomposition, 
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the MFS method significantly reduces CPU times on scheduling problem in a multi-

purpose multi-product batch plant.  

 

A novel multi-cut generation method that is called as Covering Cut Bundle (CCB) 

generation is proposed by Saharidis et al. (2010). The Benders cuts are stated as 

low-density cuts, namely to include a small set of decision variables of the RMP, 

thereby having low ability to restrict the feasible space of the RMP and 

necessitating lots of iterations. Considering the fact that a set of low-density cuts is 

stronger than the single cut that is obtained by summation of them, through an 

auxiliary LP a bundle of low-density cuts that cover most of the decision variables 

of the RMP are generated. In cut generation, the coverage of each variable is 

considered and priority is given to the uncovered ones. Compared to the classical 

Benders decomposition, the CCB significantly reduces CPU times on scheduling of 

crude oil problems. 

 

Trying to cover all of the decision variables in CCB method may result in increased 

computational times. To overcome this, Maximum Density Cut (MDC) generation 

that intends to cover maximum number of decision variables of the RMP using 

complementary slackness theorem is proposed by Sharidis and Ierapetritou (2013). 

MDC generation can also be implemented together with the CCB method. On 

scheduling problem of multi-purpose multi-product batch plant and scheduling of 

crude oil problems significant improvements in CPU times are reported compared 

to the classical Benders decomposition.  

 

In addition to cut selection and multi-cut Benders decomposition techniques, 

extensions to classical Benders cuts are also proposed in several studies. Van Roy 

(1986) proposes an algorithm for increasing the strength of Benders cuts obtained 

from the transportation SP of capacitated facility location problem. The optimal 

dual variables of the closed facilities are modified to obtain a stronger cut. Wentges 

(1998) propose alternative algorithms to strengthen the cuts on capacitated facility 

location problem and the proposed algorithms outperform the algorithm of Van Roy 

(1986). 
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Codato and Fischetti (2006) present combinatorial Benders (CB) cuts technique for 

problems whose objective function only depends on integer variables and the 

linkage of continuous and integer variables are in the form of big-M type logical 

constraints. 

 

Instead of Benders feasibility cuts, CB cuts are added to the LP relaxation of the 

RMP to eliminate the minimal infeasible subsystems (MIS) from the RMP.  

 

In Benders decomposition algorithm, the first RMP does not include any optimality 

or feasibility cuts. However, when it is easy to obtain feasible solutions for the main 

model, a priori generation of benders cuts can reduce the required Benders 

iterations. To generate an initial set of Benders cuts, Cordeau et al. (2000) and 

Cordeau et al. (2006), use a definite feasible point of the main model, and Wentges 

(1996) and Contreras et al. (2011) apply a heuristic algorithm. 

 

Since the RMP is a MIP, efficient solution procedures are studied for increasing the 

computational performance. Geoffrion and Graves (1974) is the first study that 

proposes not solving the RMPs to optimality. The rationale of this technique is 

stated as the initial RMPs have too little information about transportation costs due 

to less number of cuts and need not be solved to optimality. McDaniel and Devine 

(1977), Cordeau et al. (2000), and Cordeau et al. (2006) solve the RMPs as an LP 

for the first l iterations, then solve them as an IP. Another extension for the RMP 

solution procedures is proposed by Rei et al. (2008), in which local branching is 

applied after each RMP is solved.  

 

In order to increase the restriction on the solution space of the RMP, valid 

inequalities are also implemented. Cordeau et al. (2000) and Cordeau et al. (2006) 

use valid inequalities for strengthening the LP relaxation of the RMP. Saharidis et 

al. (2011) increase the convergence by using a set of valid inequalities on fixed-

charge network problems. Tang et al. (2013) report significant improvements in 

lower bounds obtained from the RMP by using valid inequalities on logistics 

facility location problem with capacity expansion.  
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Heuristic algorithms are also used for solving the RMP. Wentges (1998) solve the 

RMP, which is a simple plant location problem, with a special purpose heuristic that 

is developed for capacitated facility location problems. Jiang et al. (2009) report up 

to 50% CPU time reduction on multi-product production distribution network 

design problems by using Tabu Search algorithm. Poojari and Beasley (2009) 

obtain better lower and upper bounds on a set of MIP problems with a Genetic 

algorithm. 

 

Efficient solution procedures are also considered for the SP to speed up the solution 

time. To avoid the infeasibilities and thereby to avoid the identification of the 

related extreme rays of the SP, Camargo et al. (2009b) append cuts that ensure the 

installation of at least one hub into the RMP formulation of a hub location problem 

with economies of scale. To simplify the solution procedure of the SP, Geoffrion 

and Graves (1974) and Camargo et al. (2009b) decompose the SP to each 

commodity and obtain the ultimate solution by aggregating the individual solutions. 

For very large SPs, Zakeri et al. (1998) propose an inexact cut generation. In this 

method, instead of solving the SP to optimality, a feasible dual solution is generated 

by a primal-dual interior point method. The cuts generated through this way would 

be inexact but increase in computational efficiency is reported. The convergence of 

the algorithm for a sequence of inexact cuts is also shown.  

 

Instead of the simplex method, efficient algorithms are also applied for solving the 

SP. For instance, to solve the SP Wentges (1996) use a standard transportation 

algorithm, Marin and Jaramillo (2009) use shortest path algorithm, and Camargo et 

al. (2009b) apply an inspection procedure that determines the dual variables by 

complementary slackness conditions and an all-pairs shortest path algorithm. 

 

Among alternative formulations of a problem, one of them can be preferable for 

Benders decomposition. Geoffrion and Graves (1974) and Papadakos (2009) show 

that one of the alternative formulations is preferable in terms of computational 

efficiency. Magnanti and Wong (1981) present criterion of selecting the preferred 

formulations for Benders decomposition, comparing the Benders cuts of two 

alternative formulations using the dominance concept of Pareto optimal cuts.  
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Contreras et al. (2011) apply problem size reduction within Benders decomposition 

on uncapacitated hub location problem. Decision variables that would not appear in 

the optimal solution are identified using UB and LB information and eliminated 

from the RMP and the SP. 

 

3.6 Generalized Benders Decomposition 

GBD has a wide range of application areas including transportation (Florian and 

Nguyen (1974), França and Luna (1982), Federgruen and Zipkin (1984)), project 

scheduling (Erenguc et al. (1993)), chemical process design and control (Clasen 

(1984), Zhu and Kuno (2003), Liu et al. (2011)), electrical power systems planning 

(Benchakraun et al. (1997), Mahey et al. (2001), McCusker and Hobbs (2003), 

Marin and Salmeron (1998)), water resources management problems (Watkins and 

McKinney (1998), Cai et al. (2001)), and structural design problems arising in 

mechanical engineering (Munoz and Stolpe (2011)). In this section, we present a 

literature review of GBD solution techniques focusing on main variants and basic 

acceleration methods. 

 

The solution techniques in GBD studies are presented with a classification scheme 

in Figure 6. Although most of the techniques in Figure 6 are only applicable to 

special type of problems and the main purpose of them is to extend the GBD 

method to the studied problem, to present a comprehensive review we include them 

into the classification scheme. In addition, some of the techniques are applied with 

the aim of accelerating the GBD algorithm and they are highlighted as enhancement 

techniques in Figure 6. The explanations of the GBD solution techniques together 

with the reviewed studies are listed in Table 8. 

 

Most of the GBD studies focus on explicit determination of L functions, in order to 

obtain implementable algorithms. Another important issue in GBD studies is the 

problems involving nonconvexities, approximate approaches as well as exact GBD 

solution procedures are available for nonconvex NLP problems. Some of the GBD 

applications (i.e. nested GBD) necessitate specific problem structures. We classify 

such applications in “modeling structures” class.  
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Compared to Benders decomposition method, GBD provides a more flexible 

decomposition scheme since the projected y variables need not be integer. 

Therefore, depending on the modeling structure, alternative decompositions are 

available and due to different nonlinearity properties of f and G functions the 

decomposed problems, the RMP and the SP, may require tailored solution 

procedures.  
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In addition to the three GBD variants (GBD-v1, GBD-v2, GBD-v3) that are 

presented in Appendix B, different methods are applied to determine the L functions 

explicitly. Lazimy (1986) presents an extension scheme for GBD that applies a 

conversion in the form of z y=  and shows the computational benefits of the 

proposed extension on example problems. The Lazimy’s extension provides 

improvements in two aspects; (i) the nonlinear L functions (due to y variables) are 

turned into linear functions, (ii) no further assumptions on f and G functions (i.e. the 

separability in x and y) are required to apply this extension.  

 

In GBD, the SP can be an NLP that requires algorithmic solution procedures and it 

could be difficult to obtain optimal multipliers by optimization package solvers. 

Benchakraun et al. (1997) present an algorithmic solution procedure for the SP of a 

network design problem with underlying tree structure and obtain the optimal 

multipliers by solving the KKT optimality conditions of the SP. 

 

McCusker and Hobbs (2003) present an integrated model for distributed power 

generation planning problems. The integrated model is solved by applying GBD 

twice in a nested structure. GBD is applied to the top level local planning problem, 

whose SP is a capacity planning and production costing problem, which is also 

solved by GBD. For the inner optimization problem, since convexity assumptions 

are not satisfied, the authors determine the optimal multipliers with gradients 

leading to heuristic GBD cuts. However, convergence to reasonable solutions is 

achieved. 

 

Florian and Nguyen (1974) apply GBD to a problem that computes the equilibrium 

flows in a transportation network with elastic demands and congestion effects. The 

presented model has a convex objective function and is partitioned to each origin 

destination pair. Each partitioned problem is solved by GBD, in which the RMPs 

and the SPs are solved algorithmically. The ultimate solution is obtained by 

aggregating individual solutions. Although limited computational experiments are 

performed promising results are obtained.   
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The success of GBD depends on several aspects. The decomposed problems the 

RMP and the SP have to be easy to solve compared to the original problem. It must 

be possible to obtain optimal multipliers and extreme rays efficiently, Federgruen 

and Zipkin (1984). Therefore selecting the complicating y variables becomes a 

critical issue in GBD. Cai et al. (2001) present a supporting example for this case. 

On a nonconvex water resources management problem, the authors show that one 

decomposition structure does not even lead to convergence whereas another one 

produces good quality solutions.  

 

Another aspect to be considered in modeling structures is the alternative 

formulations. Munoz and Stolpe (2011) report significant increase in computational 

times whit an alternative formulation to a structural design problem. 

 

Erenguc et al. (1993) show the applicability of GBD to a time/cost trade-off 

problem with discounted cash flows. The RMP is solved by branch and bound that 

finds feasible solutions with a heuristic algorithm and the SP is solved 

algorithmically. With the proposed GBD method, fast convergence and low 

computational times are achieved on large number of test problems. 

 

Zhu and Kuno (2003) present a hybrid branch and bound and GBD method to a 

nonconvex MINLP problem, whose RMP can turn out to be infeasible in some 

iterations. In order to overcome this situation, every time the RMP is infeasible, a 

feasible solution is obtained by solving an auxiliary feasibility seeking problem. 

 

Many GBD studies focus on effective solution procedures for the RMP, to improve 

the overall computational efficiency. Montemanni and Gambardella (2005) solve 

LP relaxations of the RMP of a robust shortest path problem, to obtain a priori cuts 

before starting the main GBD algorithm. The authors experiment on the most 

effective number of a priori cuts that would increase the computational efficiency 

without increasing the RMP sizes. 

 

When the RMP has a well-known structure, efficient algorithms are applied to 

increase the computational efficiency, Florian and Nguyen (1974) apply a shortest 



75 

path based algorithm and França and Luna (1982) apply 0-1 based implicit 

enumeration algorithm. In addition, heuristic algorithms are also used. Hoang 

(1982) solve the RMP of a topological optimization problem heuristically and the 

authors remark that although it becomes difficult to obtain feasible solutions for the 

RMP as the gap between UB and LB decreases, good computational performance is 

achieved. Sirikum et al. (2007) solve the RMP of a power generation expansion 

planning problem with Genetic Algorithm (GA). The collaborative use of GA and 

GBD increases the computational efficiency especially for larger size problems. 

 

In GBD, the size of the RMP gets larger steadily as iterations progress. To avoid 

excessive increase in size of the RMP and also to improve the computational 

performance, constraint dropping schemes are applied. Floudas and Aggarwal 

(1990) remove the GBD constraints that do not provide information about the main 

solution components. Likewise, Marin and Salmeron (1998) identify the inactive 

constraints and remove them from the RMP. 

 

Mahey et al. (2001) apply GBD to capacitated multicommodity communication 

network flow problem, which is formulated as a MINLP. The solution performance 

of the RMP is increased by adding three sets of valid inequalities; (i) capacity cut 

set inequalities, (ii) spanning tree cuts, and (iii) efficient feasibility cuts.   

 

Another enhancement technique applied to the RMP is not solving it to optimality. 

Oliveria et al. (1995) apply branch and bound method to obtain a feasible solution 

of the investment planning RMP of a transmission network planning problem. 

Munoz and Stolpe (2011) solve the RMP to optimality only every a fixed number of 

iterations to save computational time. 

 

In GBD literature, the efficient solution procedures are studied for the SP as well. 

When the SP is infeasible, the feasibility GBD cuts have to be generated by 

identifying the extreme rays of the SP. To avoid these operations and to maintain 

the feasibility of the SP, Cai et al. (2001) relax the constraints of the SP by using 

slack variables and penalize them in the objective function of the SP. With this 

enhancement the quality of the solutions and the computational efficiency are 
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significantly increased. Martinez-Crespo (2007) speed up the convergence of the 

GBD on a power scheduling problem by avoiding infeasibility of the SP. For this 

purpose, the authors incorporate problem specific feasibility ensuring cuts to the 

RMP formulation. Likewise, Camargo et al. (2009a) ensure the feasibility of the SP 

by adding valid inequalities to the RMP of a multiple allocation hub network design 

under hub congestion problem. 

 

When the SP has a special structure well known algorithms are applied to it. Hoang 

(1982) apply a traffic assignment algorithm to the SP, which is a convex cost 

uncapacitated multicommodity flow problem. The computational efficiency is 

further increased by applying the algorithm to each i-j pair separately. Camargo et 

al. (2009a) decompose the SP into two separate transportation problems; (i) a linear 

transportation problem, (ii) a convex flow assignment transportation problem. The 

authors use a flow deviation algorithm for the former and solve the latter with an 

inspection procedure that determines the dual variables by complementary 

slackness conditions and the shortest path algorithm. França and Luna (1982) solve 

the convex stochastic transportation SP algorithmically.  Mahey et al. (2001) apply 

a specially tailored algorithm to the convex cost multicommodity flow SPs. 

 

Clasen (1984) apply GBD on chemical equilibrium planning problem and observe 

slow convergence of the SP. To overcome this, the SP is not solved to optimality 

and by this way the best computational performance is achieved. 

 

Floudas et al. (1989) is the first to show that GBD can identify the global optimum 

even when the problem involves nonconvexities. For nonconvex NLP and MINLP 

problems, the authors present a Global Optimum Search (GOS) algorithm that aims 

to partition the main nonconvex problem into sub problems whose global optimums 

can be obtained efficiently. If the projected problem ( )v y  is nonconvex, GOS does 

not guarantee to obtain the global optimum solution of the original problem and 

provide approximate GBD cuts, Floudas et al. (1989), Floudas and Aggarwal 

(1990). However, by using approximate GBD cuts good computational results and 

even convergence to global optimum is achieved in different studies, Floudas et al. 
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(1989), Floudas and Aggarwal (1990), Watkins and McKinney (1998), Cai et al. 

(2001), McCusker and Hobbs (2003). 

  

Liu et al. (2011) extend the GBD to nonconvex stochastic MINLP problems, whose 

f and G functions are separable in integer and continuous variables. Using the 

separability property, it becomes possible to define the feasible regions of integer 

and continuous variables individually. Then, the nonconvex functions are replaced 

by their convex relaxations converting the original problem into a convex 

programming problem that can be solved by classical GBD. ε -convergence of the 

nonconvex GBD is also shown. Nonconvex GBD significantly improves the 

computational efficiency over optimization package solvers. 

 

Munoz and Stolpe (2011) increase the computational performance of GBD on 

structural design problems by applying several enhancement techniques. A priori 

GBD cuts are generated by solving the continuous relaxation of the original 

problem. Using the dominance relationship of Magnanti and Wong (1981), the 

authors show that the continuous relaxation provides Pareto optimal cuts. In 

addition to GBD feasibility cuts, combinatorial cuts proposed by Codato and 

Fischetti (2005) are also generated and added to the RMP. Moreover, a GBD 

heuristic is proposed, in which heuristic GBD cuts are generated by applying 

alternative formulations.  

 

3.7 Delay Management Problems 

Delays occurring in transportation systems affect the service times and therefore the 

service quality. There are many causes of delays, including consolidation 

operations, vehicle arrivals, and unexpected break downs. The earliest studies of 

modeling delays in transportation systems can be found in railroad planning 

problems, Bodin et al. (1980), Crainic et al. (1984), Haghani (1989), and Ferreira 

(1997). An important amount of research is conducted on delays occurring in public 

transportation problems and detailed models are presented. In this section, we first 

briefly present the initial modeling approaches of delays that are studied in railroad 

planning problems and then we review the delay management studies in public 

transportation literature. 
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One of the earliest studies that model delays is presented by Bodin et al. (1980) in a 

railroad blocking problem. The authors model total delay cost, which is the cost of 

holding railcars at a yard before moving them to adjacent yards. This delay can be 

called as accumulation delay, the waiting time that is spent by railcars at yards until 

block formation.  

 

Crainic et al. (1984) differentiate the delays occurring at yards into three classes; 

classification (time spent for blocking, inspection, and assembly operations), 

accumulation, and connection (the waiting time of railcars until the train becomes 

available) delays. Authors model total delay costs for each service by using a 

queuing model for classification delays and using cost estimates for the other delay 

types. Haghani (1989) model yard operations using a time space network structure, 

in which the queuing delays before classification operations and the connection 

delays are defined as links in the network. 

 

Another classification of delays is presented by Ferreira (1997), in which delay 

sources are defined in three classes: (i) delays that occur due to track related 

problems like signal failures, (ii) delays due to train related problems like break 

down of a train, and (iii) delays occurring at terminals including loading/unloading 

operations, and crew changes. 

 

In public transportation literature, delays due to vehicle arrivals and the resulting 

effects are studied extensively. When a delayed vehicle arrives at a station, there are 

two options for the connecting vehicles, to wait or to depart. In wait option, the 

passengers within the connecting vehicle and the passengers that will get on this 

vehicle later will be delayed. Whereas in depart option, the passengers within the 

delayed vehicle will miss their connection and have to wait for the next departing 

vehicle. Given a set of initial delays of specified vehicles at specified stations, the 

wait-depart decisions of all vehicles within a public transportation system is 

modeled as delay management problem, which is introduced by Schöbel (2001). 

The model minimizes the delay of all passengers and provides an updated timetable 

for all vehicles by determining the vehicle connections that would be maintained 

and that would be dropped from the current timetable. Since the delay management 
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problem minimizes the sum of all delays over all passengers, it is called as total 

delay management problem by Schöbel (2006). In Schöbel (2001), procedures to 

calculate an upper and a lower bound for the delay management problem is also 

presented.  

 

The complexity of the delay management problem is shown to be NP-hard by Gatto 

et al. (2005). In addition, the authors show that the restricted versions of the delay 

management problem, in which the maximum number of passenger transfers are 

limited or the cases including a specified delay of only one vehicle, are hard to 

solve. De Giovanni et al. (2005) present valid inequalities for the delay management 

problem and show that the inequalities are the facet defining inequalities of some 

special cases of the delay management problem. Heilporn et al. (2008) present two 

different MIP models for the delay management problem, which have less number 

of variables and propose a branch and bound algorithm and a constraint generation 

procedure to solve the models. 

 

A comprehensive study on the main variants of the delay management problem and 

the corresponding solution procedures are presented by Schöbel (2006). The delay 

management problems presented in Schöbel (2006) all assume that the initial delays 

are given. The case, in which the delay is unknown is studied by Anderegg et al. 

(2009) in an online wait-depart decision problem and algorithms are proposed for 

two cases; (i) the case when the delay is unbounded and (ii) the case when the delay 

is expected to be within a specified bound. 

 

Cicerone et al. (2008) introduce robust delay management problem for the cases 

that involve a single delay that can be at most α times. Authors show that the 

problem is NP-hard and provide a polynomial time algorithm. The robust 

timetabling algorithm guarantees that delay with α times would affect at most ∆ 

arrivals and departures. 

 

The capacities of rail tracks in delay management problem is studied by 

Scahatabeck and Schöbel (2008), Schöbel (2009), and Scahatabeck and Schöbel 

(2010). The authors present the delay management problem with priority decisions, 
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in which the priorities of the trains using the same rail track is determined together 

with the wait-depart decisions and the updated timetables. 

 

Delay management problems update an existing timetable in case of given delays. 

Constructing the timetables by considering the possible outcomes of the delay 

management problem is also studied, (Liebchen et al. (2010) and Dollevoet et al. 

(2012)). Liebchen et al. (2010) present a model that constructs delay resistant 

periodic timetables. The model optimizes the delay management and the 

timetabling problems in an integrated manner. The delay resistance property of the 

timetable is handled in the context of light robustness and modeled through 

analyzing the effects of different delay scenarios. Dollevoet et al. (2012) present an 

iterative optimization framework, in which the delay management problem is 

solved at macroscopic level and using the updated timetable the train scheduling 

problem is solved at microscopic level. The proposed framework is tested with 

several scenarios with different delay amounts on real-life railway data. 

 

Dollevoet and Huisman (2013) model delay management problem by considering 

the rerouting decisions of passengers. Authors present three heuristic approaches 

and show that the one that solves the main delay management problem and reroutes 

the passengers in an iterative manner performs the best.  

 

A review on the main delay management problems are presented in Table 9 

including the formulation type, the objective functions, the assumptions, the 

decisions, and the solution procedures of the models.   
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CHAPTER 4 

 

 

4 LATEST ARRIVAL CONSOLIDATED MULTICOMMODITY 

NETWORK DESIGN PROBLEM (LA-CMNDP) 

 

 

 

 

The latest arrival consolidated multicommodity network design problem (LA-

CMNDP) constructs a scheduled service network so as to minimize the maximum 

latest arrival time of commodities to destinations. The main entities of the service 

network obtained by LA-CMNDP are a consolidation plan that determines the 

delivery paths of commodities and a scheduling plan for each commodity including 

the arrival and departure times to stations. The schedules are determined by the 

latest arrival consolidation policy, in which the earliest departure times from 

stations are determined by the latest arriving commodities. The commodity flows 

are modeled by multicommodity network flow structure. In this chapter, we present 

the basic characteristics of LA-CMNDP in Section 4.1 together with the main 

planning issues concerned in service network design, the assumptions, and the 

deliverables of the model. We provide the mathematical model in Section 4.2, 

present the properties of the constructed service network in Section 4.3, and define 

the complexity of LA-CMNDP in Section 4.4. 

 

4.1 Problem Definition 

Let ( , )=G N A  represent the physical transportation network, which is not 

necessarily complete. N is the set of nodes denoting the stations, where 

commodities are originated, consolidated, or terminated, and A is the set of arcs of 

the physical transportation network. The arcs that enter and emanate from station i  

are denoted by In(i) and Out(i), respectively. The set of commodities are defined by 

K, and each commodity k K∈  is defined by an origin station ( )O k  and a 
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destination station ( ).D k  For each commodity k, there is a ready time ( )
k

O kr  that 

determines the earliest departure time of k from station ( ).O k  

 

In LA-CMNDP, commodities are consolidated at stations to form blocks so that 

they share the same routes on their delivery paths. A block consists of individual 

commodities, whose origin-destination pair need not be the same as the origin and 

the destination of the other commodities in the same block. Each arc ( , )∈i j A of 

the service network generated by LA-CMNDP represents a block, consisting of a 

set of commodities that are consolidated and routed together through station i to j. 

The transportation time from station i to j is denoted by ijt  and a positive handling 

time iδ  is associated to each station i N∈  for loading, unloading, and consolidation 

operations experienced by all departing blocks. To increase the level of 

consolidation throughout the service network, LA-CMNDP locates terminals that 

have higher consolidation capabilities compared to stations. 

 

LA-CMNDP applies latest arrival consolidation policy, in which a consolidated 

block can depart from station i to j only after all commodities that will be routed 

through arc ( , )i j  arrive to station i. It is assumed that each station i N∈  can 

receive incoming blocks from iB  different stations ( )j In i∈ . For the stations that 

are selected as terminals, to increase the consolidation capabilities the iB  limits are 

increased by an amount of iB  so as to allow incoming blocks from all stations 

( ).∈j In i Thus, iB  values are defined as | ( )| .+ =i iB B In i  
 

The direct deliveries between stations i and j are assumed to be performed by the 

same vehicle and the vehicle capacities are not considered. Each commodity k is 

delivered through a single path, namely the flow of each individual commodity is 

unsplittable.  There are no restrictions on the number of terminals and stations to be 

visited or the number of arcs, a delivery path can have.  

 

Due to the latest arrival consolidation policy, the total travel time of a commodity 

from its origin to destination includes the waiting times spent at the stations for the 

late arrivals. LA-CMNDP has a minimax type objective function that minimizes the 
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maximum latest arrival time to destinations. Therefore, each commodity might be 

routed through a longer path than its shortest delivery path as long as its total travel 

time is within the travel time of the latest arrival path. Let kSP  be the travel time 

along the shortest delivery path from ( )O k  to ( )D k . To keep the balance between 

the maximum latest arrival time and the total travel times of commodities, in LA-

CMNDP each commodity k  is routed through a path, whose travel time is at most 

β  times , 1.β >kSP  With this restriction, longer travel times would be avoided.  

 

With the defined characteristics, LA-CMNDP  

� designs a service network by determining which arcs of the physical 

transportation network are allowed to carry commodity flows,  

� selects p  of the stations as terminals to increase the level of consolidation,  

� constructs a consolidation plan that includes an individual delivery path for 

each commodity, and 

� determines arrival times of commodities to stations and departure times of 

blocks from stations, while minimizing the maximum latest arrival time to 

destinations. 

 

LA-CMNDP has two types of decision variables: (i) binary network design 

variables  ijy  for each ( , )∈i j A to construct the service network, routing variables 
k
ijx  for each ( , )  and ∈ ∈i j A k K  to construct the delivery paths of commodities, and 

iH  for each i N∈  to choose p of the stations as terminals; (ii) continuous variables 
k
iDA  for each  and i N k K∈ ∈  to represent the arrival time of commodity k  to 

station i, ijDT  for each ( , )∈i j A to represents the departure time from station i to j, 

and LA  that represents the maximum latest arrival time to destinations.  
 

4.1.1 Derivation of  Arrival and Departure Times 

A representation of a consolidation plan generated by LA-CMNDP on an example 

transportation network consisting of 8 stations and 3 commodities is presented in 

Figure 7. Commodity 1 (K1) originates at station 1 and is destined to station 6, 

commodity 2 (K2) originates at station 2 and is destined to station 8. In delivery 
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paths of these two commodities, they are consolidated at station 3 and transferred 

together from station 3 to 6.  

 

 

Figure 7. A Simple Representation of Consolidation in LA-CMNDP 

 

Under the latest arrival consolidation structure, following observations can be stated 

for the consolidation plan presented in Figure 7. 

� The block that is formed at station 3 can leave station 3, only after 

commodities K1 and K2 arrive to station 3. 

� Since this block behaves as a single entity on its route from station 3 to 6, 

commodities K1 and K2 have to leave station 3 at the same time and arrive 

to station 6 at the same time. Therefore, there is a unique departure time 

ijDT  for all commodities departing from station i to j. 

� Since station 6 is the destination of commodity K1, the block containing 

commodities K1 and K2 has to terminate at station 6 and commodity K2 has 

to be delivered to station 8 through another block. Therefore the arrival time 

of commodity K2 to station 6 has to be known individually to determine the 

departure time of a new block that contains commodity K2, which 

necessitates keeping arrival times to stations for all commodities separately, 

k
jDA . 

 

 

 

 



89 

Arrival Times: 

Each commodity k arrives to a station j through only one arc ( , ) ,∈i j A  (see Figure 

8). The arrival time of commodity k to station j is determined by the departure time 

from station i  to j and the travel time from station i  to j by constraints (4.1). Since 

commodities can be included in the service network only after they are ready, the 

arrival time of commodities to their originating stations are set equal to their ready 

times by constraints (4.2).  

( ) ( )

( ) , \{ ( )}, \{ } (4.1)

(4.2)

≥ + ∀ ∈ ∀ ∈ ∀ ∈

= ∀ ∈

k k
j ij ij ij

k k
O k O k

DA DT t x k K j N O k i N j

DA r k K

 

 

Figure 8. Arrival of Commodity k to Station j 

 

Departure Times: 

A departing block from station i to j includes a set of commodities, each of which 

might arrive to station i through different blocks, (see Figure 9). The departure time 

of a block from station i to j is determined by the latest arriving commodity that is 

to be placed into that block and the handling time occurring at station i by 

constraints (4.3).    

( ) , \{ }, (4.3)δ≥ + ∀ ∈ ∀ ∈ ∀ ∈k k
ij i i ijDT DA x i N j N i k K

 

 

 

Figure 9. Departure from Station i to j 
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Constraints (4.1)-(4.3) construct the schedule of the service network designed by 

LA-CMNDP, in which the stations can be assigned directly to multiple other 

stations, the determination of arrival and departure times does not necessitate full- 

cross-traffic assumption, in which each node sends and receives flow from all other 

nodes of the transportation network, and there are no restrictions on the number of 

terminals and the stations to be visited by commodities. Whereas the latest arrival 

time constraints in hub location problem of Kara and Tansel (2001) are determined 

for single allocation of each non-hub node (spoke) to hubs, require full-cross-traffic 

assumption, and restrict each delivery path to consist of a sequence of nodes that 

have either spoke-hub-hub-spoke or spoke-hub-spoke structure.  

 

The latest arrival model of Kara and Tansel (2001) do not include arrival time 

variables, rather it includes two different types of departure time variables: (i) iDT  

the departure time from hub i to spokes and (ii) �iDT  the departure time from hub i 

to other hubs in the network. The full-cross-traffic and the single allocation 

assumptions result in a special structure in the departure times from hub i, so that 

for all departures to the spokes there is a unique iDT  for each hub i and for all 

departures to other hubs there is a unique �iDT  for each hub i. 

 

Kara and Tansel (2001) model commodity flows by binary ijx  variables that equals 

to 1 if node i is assigned to hub j and 0 otherwise. Their model is nonlinear due to 

the following constraints, which determines the latest arrival time that is denoted as 

Z: 

( ) , (4.4).≥ + ∀ ∈i ij ijZ DT t x i j N  
 

Two different linearizations are proposed for constraints (4.4) as follows: 

1: (1 ) , (4.4 ),′≥ + − − ∀ ∈ ∀ ∈i ij ij ijL Z DT t x M x i N k K

where M represents a large positive number and  

2 : , (4.4 ).′′≥ + ∀ ∈ ∀ ∈i ij ijL Z DT t x i N k K

 

Kara and Tansel (2001) show that L1 and L2 are both valid for their model. The 

computational performance of L1 is stated as poor due to the big M structure but L2 

performs well. 
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Our latest arrival time constraints (4.1) and (4.3) are also nonlinear and only L1 

provides a valid linearization scheme for our model. Since in LA-CMNDP each 

node can be assigned directly to multiple other nodes, constraints (4.1) and (4.3) 

cannot be linearized by L2.  

 

If we apply L2 to constraints (4.1) and (4.3): 

, \{ ( )}, \{ } (4.1 )

, \{ }, (4.3 ).δ

′′≥ + ∀ ∈ ∀ ∈ ∀ ∈

′′≥ + ∀ ∈ ∀ ∈ ∀ ∈

k k
j ij ij ij

k k
ij i i ij

DA DT t x k K j N O k i N j

DT DA x i N j N i k K

 

For the cases 0,k
ijx =  (4.1 )′′  and (4.3 )′′  would be k

j ijDA DT≥  and ,k
ij iDT DA≥  

respectively. Therefore, L2 defining invalid constraints for DA and DT values.  

 

However, if L1 is applied: 

(1 ) , \{ ( )}, \{ } (4.1 )

(1 ) , \{ }, (4.3 ).δ

′≥ + − − ∀ ∈ ∀ ∈ ∀ ∈

′≥ + − − ∀ ∈ ∀ ∈ ∀ ∈

k k k
j ij ij ij ij

k k k
ij i i ij ij

DA DT t x M x k K j N O k i N j

DT DA x M x i N j N i k K
 

 

For the cases 0,k
ijx =  (4.1 )′  and (4.3 )′  would be 0k

jDA ≥  and 0,ijDT ≥  

respectively and for the cases 1k
ijx =  (4.1 )′  and (4.3 )′  would be valid. 

 

4.2 Mathematical Model 

Using the latest arrival time constraints (4.1)-(4.3) defined in the previous section, 

we will present the mathematical model of LA-CMNDP as follows: 
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( )

( , ) ( ) ( , ) ( )

( , ) ( )

LA-CMNDP

(4.1) (4.3)

(4.5)

1 ( )

0 ( ) ( ), (4.6)

1 ( )

( , ) , (4.7)

(4.

∈ ∈

∈

−

≥ ∀ ∈

=


− = ≠ ≠ ∀ ∈
− =

≤ ∀ ∈ ∀ ∈

≤ + ∀ ∈

∑ ∑

∑

k
D k

k k
ij ji

i j Out i j i In i

k
ij ij

ji i i i
j i In i

Minimize LA

subject to

LA DA k K

if i O k

x x if i O k and i D k k K
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Constraints (4.1)-(4.3) determine the arrival and departure times as stated in detail 

in Section 4.1.1. Constraints (4.5) determine the maximum latest arrival time, LA, 

considering all arrivals to destinations. Constraints (4.6) are the multicommodity 

flow balance constraints and ensure that each commodity k is delivered from 

( ) to ( ).O k D k  Constraints (4.7) ensure that a commodity k can be sent from station 

i to j, if arc ( , )i j  is in the service network. By constraints (4.8) each station i can 

accept incoming blocks from at most iB  different stations and if station i is selected 

as a terminal, then it can accept incoming blocks from all ( ).j In i∈ Constraint (4.9) 

selects p  of the stations as terminals. Constraints (4.10) ensure that in the optimal 

solution of LA-CMNDP, each commodity k  is delivered through a path that is at 

most β  times .kSP  Constraints (4.11) and (4.12) are the non negativity constraints. 

 

Constraints (4.8) define capacity restrictions for stations by limiting the number of 

incoming arcs to each station and called as degree constraints by Şahin and Ahuja 

(2009). Constraints (4.8) are similar to the degree constraints used in yard location 

problem of Ahuja et al. (2005), since a consolidation center is located in both 



93 

problems with the motivation of increasing the degree limits of the stations. Ahuja 

et al. (2005) define the degree constraints for the emanating arcs in order to model 

the block building capacities of yards. Whereas in LA-CMNDP, to increase the 

level of consolidation we define the degree constraints for the incoming arcs and 

increase the incoming arc limits of terminals.  

 

Defining capacity limits for the incoming flows is also applied in the capacitated 

hub location problems defined by Campbell (1994) and Ebery et al. (2000). The 

main reason for focusing on the incoming flow amounts is stated as after the 

incoming flows are consolidated at hubs they are not sorted again. Also another 

motivation for limiting the incoming flows could be the limited resources (handling 

operators) and the infrastructure (handling equipments, space limits) of 

consolidation centers. 

 

In an optimum LA-CMNDP solution, to prevent long waiting times at nodes and 

thereby to reduce the maximum LA value, it may not be possible to send each 

commodity through its shortest path. Because, using the shortest paths for all 

commodities may result in higher LA values and for some problems even a feasible 

solution may not be obtained. The upper limits defined for iB  may also restrict the 

use of some shortest paths. Therefore, the optimum LA value is sure to be equal to 

or higher than the maximum shortest path length in the transportation network. 

Therefore, we can use the maximum shortest path length value as a lower bound for 

the optimum LA value of LA-CMNDP. 

 

4.3 Properties of the LA-CMNDP Service Network 

The main entities of a consolidation plan obtained by LA-CMNDP are the 

individual delivery paths of commodities and the consolidated paths.  

 

Definition 4.1: A Consolidated Path (CP) is established, when the individual 

delivery paths of commodities form a sequence of stations that are linked to each 

other by arrival and departure times of blocks formed at stations. Consolidated 

paths may contain several commodities, whose origin and destination need not be 
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the same as the beginning and the ending stations of the CP. An example LA-

CMNDP service network having three consolidated paths is presented in Figure 10. 

 

 

Figure 10. The Consolidated Paths in an Example LA-CMNDP Service Network 

 

Definition 4.2: The Latest Arrival Path (LA-Path) is the CP that contains at least 

one commodity k, whose D(k) is the same as the last node of the CP and ( )
k
D kDA

 
is 

the maximum arrival time. 

 

Lemma 4.1: A feasible solution of LA-CMNDP can contain at most K many 

different CPs if all commodities in K have distinct delivery paths.  

 

Since we are interested in the CP that results with the highest latest arrival time for 

a commodity, in the remainder of the report, LA-path is used for referring to the CP 

that determines the maximum latest arrival time and CP is used for referring the 

other CPs in the service network. 

 

The basic notations regarding an LA-Path are:  

� LAN : the set of nodes that are on the LA-path, 

� LAA : the set of arcs that are on the LA-path, 

� LAP : LA-path, ( , ),=LA LA LAP N A  
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� LAK : the set of commodities flowing on ,LAP  

� LAX : the set of routing variables of : { | ( , ) , },= ∈ ∈LA LA k LA LA
ijP X x i j A k K  

� LAb : the beginning node of ,LAP  

� LAe : the ending node of ,LAP  

� succi : the successor node of node i  on ,LAP  

� predi : the predecessor node of node i  on .LAP  
 

An LA-path in a small sized LA-CMNDP service network consisting of 6 stations 

and 3 commodities is presented in Figure 11. Assume that {1,(1,3),3,(3,5),5,=LAP  

(5,6),6}  in this network, then { }1, 2, 3LAK K K K= . 

 

 

Figure 11. A Simple Representation of an LA-Path 

 

4.3.1 Properties of an LA-Path 

For a given set of routing variables , arcs  and nodes ′ ′ ′X A N with corresponding 

arrival and departure times two conditions have to be satisfied to form LAP ; (i) 

linkage of commodities and (ii) linkage of arrival and departure times. Condition 

4.1 states a general condition for the linkage of commodities on any CP, and 

together with Condition 4.2, the given sets , ,and ′ ′ ′X A N  define the LAP  and 

correspond to , ,and LA LA LAX A N  respectively. 
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In order to satisfy the linkage of commodities on LAP , the given routing variables 
k
ijx X ′∈  corresponding to the intermediate arcs ( ), ( ){ , , }( , ) ≠ LA LA LA LA

succ predb b e ei j  of 
LAP  have to satisfy Condition 4.1. 

 

Condition 4.1: For a given set of routing variables , arcs , and nodes ′ ′ ′X A N  of a 

transportation network, if ( , )i j A′∈  then at least one of the commodities k K∈  

flowing on arc ( , )i j  has to traverse ( , ) ′∈predi i A , and at least one of the 

commodities k K∈  flowing on arc ( , )i j  has to traverse arc ( , ) ′∈succj j A  to 

maintain the linkage of commodities on a CP. Let ijK  denote the set of 

commodities flowing on arc ( , ).i j  At least one  ijk K∈  also has to be a member of 

predi iK  and at least one ijk K∈  has to be a member of ,succjjK (see Figure 12). 

 

 

 

Figure 12. Linkage of Commodities on LA-Path 

 

Condition 4.2: If a given set of routing variables ,  arcs ,  and nodes ′ ′ ′X A N  

defines the  LAP , then for all ( , )i j A′∈ , δ= + +
pred predij i i i i iDT DT t .  

 
If given sets , ,′ ′ ′X A N  together with the corresponding arrival and departure  times 

satisfy both Conditions 4.1 and 4.2, then sets , ,and ′ ′ ′X A N define LAP .  
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4.3.2 Applicability of  LA-CMNDP 

LA-CMNDP can only be applied to transportation networks, in which it is possible 

to obtain acyclic solutions. In some networks, when latest arrival consolidation 

structure is applied due to the parameter values of ( , , ,| |)β ip B K  cyclic service 

networks can be obtained. In case of cycles, no feasible solution of LA-CMNDP 

can be constructed. We state the necessary condition for a solution to determine the 

applicability of LA-CMNDP in Proposition 4.1. We define a solution as an 

implementable solution, if it satisfies Proposition 4.1, namely if the latest arrival 

consolidation structure can be applied to the corresponding physical transportation 

network. 

 

Before stating Proposition 4.1, a cycle in latest arrival service networks needs to be 

defined. A cycle is formed, when it is impossible to determine the departure time 

ijDT  for at least one arc ( , ) .∈i j A  The departure time ijDT  cannot be determined, 

if the arrival time k
iDA  of at least one commodity { : 1}k

ijk K x∈ =  to node i depends 

on ijDT . Such a situation causes a loop in the arrival and departure time calculations 

and the corresponding LA value equals to .∞  An example for a cyclic LA-CMNDP 

solution is presented in Figure 13. 
 

 

Figure 13. A Cyclic Solution 

 

In latest arrival consolidation structure of LA-CMNDP, the transfers between node 

pairs are assumed to be performed by the same vehicle. If this assumption is relaxed 

so as to allow multiple vehicles to perform the direct rides, then no cycles would be 



98 

formed. Therefore, by such an extension scheme, the latest arrival consolidation 

structure becomes applicable to all networks irrespective of the parameter values of 

( , ,βp ,| |)iB K . Considering this extension, we develop a model that generates 

detailed vehicle schedules and routes and assigns commodity paths to vehicle routes 

by minimizing the sum of delays experienced by all commodities at stations due to 

late arrivals. We name this tactical level problem as delay management problem in 

service network design problems that apply latest arrival consolidation (DLA). We 

present the modeling details of DLA in Chapter 7. 

 

Proposition 4.1: For an implementable LA-CMNDP solution, the service network 

should be acyclic. 

 

Proof 4.1: Assume that the service network is cyclic. Then constraints (4.1)-(4.4) 

would result in an LA value of ∞ . □ 

 

To have an implementable LA-CMNDP solution, the service network established 

by , ,′ ′ ′X A N  should be acyclic. The formulation of LA-CMNDP does not 

necessitate incorporating additional sub-tour elimination constraints. However, in 

some problem instances, due to the parameter values of ( , , ,| |)β ip B K  the LA-

CMNDP service network might be cyclic and to obtain an implementable solution 

the parameter values should be adjusted. Proposition 4.1 also states an important 

property that has to be considered while developing heuristic solution procedures 

for LA-CMNDP.  

 

4.4 Complexity 

In this section, we present that LA-CMNDP is NP-hard by showing that LA-

CMNDP is a special case of uncapacitated multiple allocation p-hub center problem 

(UMApHCP), which is proven to be NP-hard by Ernst et al. (2009).  

 

Proposition 4.2: LA-CMNDP is NP-hard, even if it is applied to a complete 

physical transportation network ( , ),=G N A in which there is a positive flow 
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between each node pair ( , ) ,∈ ×i j N N  and ( ), 1, 0 , 0β δ= = = ∀ ∈ =i i O kM B i N r  

.∀ ∈k K   

 

Proof 4.2: 

Although the physical transportation network need not be complete for LA-

CMNDP and the full-cross-traffic assumption is not required, we can apply LA-

CMNP to a fully connected network, in which there is a positive flow between each 

node pair ( , )∈ ×i j N N  without loss-of generality. If we take , 1, 0β δ= = =i iM B  

( ), 0 ,∀ ∈ = ∀ ∈O ki N r k K then each non-terminal station i can only receive incoming 

flows from one other station j. Since there is a positive flow from all stations 

\{ }∈j N i  to station i and 1=iB  for all non-terminal stations, the station j has to be 

a terminal. Therefore, each non-terminal station i receives incoming flows from all 

\{ }∈j N i  through one terminal. For the sake of brevity, the terminal that a station i 

is assigned to for receiving incoming flows is denoted as H(i).   

 

Under these conditions, each non-terminal station i can be linked to multiple 

terminals in order to send flow to some stations \{ }∈j N i
 

as long as these 

assignments do not result in an increase in the LA value. The delivery paths of 

commodities can contain at most four stops that are in the form of station-terminal-

terminal-station so as to minimize the maximum LA value, since the physical 

transportation network is fully connected. Flows from one terminal l to another 

terminal m can be directly sent from l to m, since the arc ( , )∈l m A  and also the 

flows from one terminal l to each non-terminal station i can be directly sent to H(i). 

Since full-cross-traffic assumption holds and station i can only receive incoming 

flow from H(i), the departing vehicle from H(i) to station i has to wait for all the 

arrivals from other hubs and non-terminal stations. Therefore, the maximum LA 

value is determined by the ( , )i j  pair that has the longest travel time. 

 

UMApHCP minimizes the maximum travel distance between all origin-destination 

pairs. Due to the minimax objective function of UMApHCP there would be 

multiple optimal solutions with different allocations of non-hub nodes to hubs. 
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Therefore, the service network structure of LA-CMNDP would correspond to one 

of the alternative solutions of UMApHCP, which is illustrated in Figure 14. If we 

take α as 1 in UMApHCP, the objective functions of both problems are determined 

by the maximum travel distance between all origin-destination pairs and the LA 

values of UMApHCP and LA-CMNDP would be the same. As a result, LA-

CMNDP is a special case of UMApHCP and therefore LA-CMNDP is NP hard. □ 

 

 

Figure 14. The Network Structure of LA-CMNDP and UMApHCP Under the 
Conditions Defined in Proof 4.2 
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CHAPTER 5 

 
 

5 GENERALIZED BENDERS DECOMPOSITION FOR LA-CMNDP 

 

 

 

 

The LA-CMNDP is a mixed integer non linear programming problem having two 

types of decision variables: (i) binary variables , ,k
ij ij ix y H , (ii) continuous variables 

, , k
ij iLA DT DA . When binary variables are known, the nonlinear constraints (4.1) and 

(4.3) are linearized, and LA-CMNDP reduces to a linear programming problem 

with only continuous variables. Thus, a decomposition structure that partitions LA-

CMNDP into two parts; a multicommodity network design problem and a linear 

problem, would provide an efficient solution scheme. These observations motivated 

us to apply Benders decomposition to LA-CMNDP. Benders decomposition 

provides a simplified solution method and has many successful applications on 

network design and transportation problems.  Due to the nonlinearity present in our 

model, we apply Generalized Benders Decomposition to LA-CMNDP.  

 

In this chapter, we present the fundamentals of Generalized Benders decomposition 

algorithm in Sections 5.1. We present the GBD reformulation of LA-CMNDP, 

propose an alternative decomposition cut for LA-CMNDP in Section 5.2, and report 

the related computational experiments performed on a large number of test 

instances in Section 5.3.  

 

5.1 Generalized Benders Decomposition Procedure 

Benders decomposition is proposed by Benders in 1962 for solving mixed-integer 

programming problems that can be partitioned into two problems, a master problem 

and a sub problem. The master problem can be linear, non-linear or discrete 

programming problems including the complicating integer variables and the sub 
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problem needs to be a linear programming problem. The partitioned problems are 

solved iteratively for finite number of times until a predetermined convergence 

criterion is met. For the fundamentals of Benders decomposition procedure, 

Appendix A can be referenced. 

 

Geoffrion (1972) generalized Benders decomposition to nonlinear programming 

(NLP) problems. In this section, we present Generalized Benders Decomposition 

(GBD) algorithm for NLP problems having the following form: 

1

2

( ) ( , )

 

( , ) 0

,

n

n

P Minimize f x y

subject to

G x y

x X

y Y

≤

∈ ⊆ ℜ

∈ ⊆ ℜ

 

where  

� ( , )G x y  represents the m-vector of constraints, defined on X and Y, 

� y represents the complicating variables, namely for fixed y the original 

model becomes easier to solve. 

 

GBD provides a simplified solution technique for the NLP problems, in which 

when y variables are fixed;  

� (P) can be decomposed into separate optimization problems, each having a 

different subvector of x, or 

� (P) reduces to a problem with a well-known special structure that has 

efficient solution algorithms, or 

� (P) becomes convex in x, although the original (P) is nonconvex in x-y 

domain. 

 

The partitioning of (P) in Benders decomposition is performed by projecting (P) 

onto the y-space. The details of the projection process, the finite convergence of 

GBD, and the variants of GBD procedure are presented in Appendix B. After the 

projection, for fixed ,y  (P) reduces to the following problem ( ),P y which is the 

subproblem (SP) of GBD: 
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( ) ( , )

( , ) 0

,

≤

∈

P y Minimize f x y

subject to

G x y

x X

 

and the following Generalized Benders reformulation is obtained: 

0

[supremum[infimum [ ( , ) ( , )]]]

infimum[ ( , )] 0

,

λ λ

∈≥

∈

+

≤ ∀ ∈Λ

∈

T

x Xu

T

x X

Minimize f x y u G x y

subject to

G x y

y Y

 

where  

� u is the optimal dual multipliers of ( ),P y   

� 
1

{ : 0  and  1}λ λ λ
=

Λ= ∈ ≥ =∑
m

m
i

i

R andλ∈Λ specifies the convex combination 

of the constraints that have no solution in X. 

 

This reformulation is the Master Problem (MP) of (P). Since supremum states the 

least upper bound, the MP can be restated by using an auxiliary variable 0y : 

0

0

( )

min ( ( , ) ( , )) 0 (5.1)

min ( ( , )) 0 0, (5.2)

.

λ λ λ

∈

∈

≥ + ∀ ≥

≤ ∀ ≥ ∈Λ

∈

T

x X

T

x X

MP Minimize y

subject to

y f x y u G x y u

G x y

y Y

 

 

Constraints (5.1) and (5.2) have to be considered for all 0u ≥  (feasible SPs) and all 

extreme rays of the dual of the SP λ∈Λ  (infeasible SPs) resulting in a large 

number of constraints. Thus, the MP is solved considering a subset of the original 

set of constraints, by relaxation. When the solution of the relaxed MP (RMP) does 

not satisfy the ignored constraints, the violated constraints are generated, added to 

the RMP, and the RMP is solved again. This procedure continues until the optimal 

solution that satisfies all constraints of the MP or an ε -optimal solution is obtained. 
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To test the feasibility of an optimal RMP solution 0
ˆ ˆ( , )y y  with respect to the 

ignored constraints and to generate the violated constraints, ˆ( )P y  is solved.  

� If ˆ( )P y  is feasible, then using the optimal or a near optimal multiplier 

vector û , a constraint in the form of (5.1) is added to the RMP. 

� If ˆ( )P y  is infeasible, a vector λ̂∈Λ  is obtained and a constraint in the form 

of (5.2) is added to the RMP. 

 

It should be noted that constraints of type (5.1) correspond to the optimality 

constraints and (5.2) correspond to the feasibility constraints. 0ŷ  gives a lower 

bound and the objective function of ˆ( )P y  gives an upper bound on the optimal 

objective value of (P). Geoffrion (1972) states that the constraints (5.1) and (5.2) 

are usually the most (or nearly the most) violated among all violated constraints 

(Remark 2.4 in Geoffrion (1972)). 

 

To state the main steps of the GBD algorithm for a minimization NLP problem, let 

functions *( , )L y u  and *( , )L y λ  represent the minimization problems in (5.1) and 

(5.2), respectively: 

*( , ) min( ( , ) ( , )), , 0
∈

≡ + ∈ ≥T

x X
L y u f x y u G x y y Y u  

*( , ) min( ( , )), , 0λ λ λ
∈

≡ ∈ ≥T

x X
L y G x y y Y  

 

Then the RMP is: 

0

0
*

*

(RMP)

( , )

( , ) 0

.

q

w

Minimize y

subject to

y L y u q Q

L y w W

y Y

λ

≥ ∈

≤ ∈

∈

 

 

The main steps of GBD algorithm for a minimization NLP problem are provided in 

Figure 15.  
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Figure 15. The Flow Chart of Generalized Benders Decomposition Algorithm 
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To present a brief comparison of Benders decomposition and Generalized Benders 

decomposition reformulations, the compact forms of the RMPs and the SPs of two 

methods are provided in Figure 16. 

 

Benders Decomposition Generalized Benders Decomposition
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Figure 16. Comparison of Benders and Generalized Benders Decomposition 
Reformulations 
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5.2 Generalized Benders Decomposition for LA-CMNDP 

LA-CMNDP has two types of decision variables: (i) binary variables , ,k
ij ij ix y H  and 

(ii) continuous variables , ,k
i ijLA DA DT . We take binary variables as complicating 

variables, since for fixed binary variables LA-CMNDP reduces to an LP problem. 

In order to present the GBD reformulation of LA-CMNDP, we first state the 

compact form of LA-CMNDP as: 

1

2

( ) ( , )

 

( , ) 0

{0,1} ,

≤

∈ ⊆ℜ

∈ =

n

n

P Minimize f z y

subject to

G z y

z Z

y Y

 

where 

� z  represents the continuous time variables , ,k
i ijLA DA DT , 

� y  represents the binary network variables , ,k
ij ij ix y H , 

� ( , )f z y LA= , 

� ( , ) 0G z y ≤  represent the m-vector of constraints  

▫ ( )0 , \{ }, \{ }k k k
ij ij j ij ij O kt x DA x DT k K j N i N j− + ≤ ∀ ∈ ∀ ∈ ∀ ∈ , 

▫ 0 , \{ },k k k
i ij ij ij ix DT x DA i N j N i k Kδ − + ≤ ∀ ∈ ∀ ∈ ∀ ∈ , 

▫ ( ) 0k
D kDA LA k K− ≤ ∀ ∈ , 

� Z represents the set of constraints defined by (4.2) and (4.12), 

� Y represents the set of constraints defined by (4.6)-(4.11), 

� Z is a nonempty convex set, 

� Y is a finite discrete set, 

� f  is convex on Z for each fixed 2{0,1}ny Y∈ = , since f  is a linear 

function, 

� G  is convex on Z for each fixed 2{0,1}ny Y∈ = , since G is a bilinear 

function, 

� the set { : ( , )   for some  }m
yB b R G z y b z Z= ∈ ≤ ∈  is closed for each fixed 

2{0,1}ny Y∈ = , since Z is bounded and closed and ( , )G z y  is continuous on 

z  for each fixed 2{0,1}ny Y∈ = . 
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For fixed 2{0,1}ny Y∈ = , the following SP is obtained for LA-CMNDP: 

( ): ( ) ( , )

( , ) 0

.

P y v y Minimize f z y

subject to

G z y

z Z

≡

≤

∈

 

( )P y  of LA-CMNDP is an LP problem and for each fixed 2{0,1}ny Y∈ = , one of 

the following conditions hold: 

� ( )v y  is finite: then ( )P y  gives us the optimal LA value. ( )v y LA=  for fixed 

, ,k
ij ij ix y H  variables since ( )P y  is an LP and ( )P y  has an optimal 

multiplier vector û  (dual variables of ( )P y ), 

�  ( )v y = −∞ : then we obtain the extreme ray vector λ̂  from the unbounded 

dual of ( )P y . 
 

In GBD of LA-CMNDP, when ( )v y  is finite we generate GBD optimality cuts and 

when ( )v y = −∞  we generate GBD feasibility cuts and add each GBD cut to the 

following RMP of LA-CMNDP: 

0

0

(RMP)

min ( ( , ) ( , ))

min ( ( , )) 0

.

λ

∈

∈

≥ + ∈

≤ ∈

∈

T
q

z Z

T
w

z Z

Minimize y

subject to

y f z y u G z y q Q

G z y w W

y Y

 

The RMP of LA-CMDNP is a MIP problem that can be solved to optimality. So the 

assumptions of the GBD procedure, the details of which are presented in Appendix 

B are satisfied. The SP and the RMP formulations of LA-CMNDP are provided in 

explicit forms in Sections 5.2.1 and 5.2.2, respectively.  

 

5.2.1 The Sub Problem  

( )SP x  represents the compact form of the SP of LA-CMNDP. For fixed  x  

variables that are obtained from the RMP, the SP becomes an LP problem. Taking 

ready times ( ) 0k
O kr =   for k K∀ ∈  without loss of generality, we can state the SP 

explicitly as: 
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( )

( )

( )

0 , \{ ( )}, \{ } (5.3)

0 , \{ } , (5.4)

0 (5.5)

0 (5.6)

0, 0, 0 , , ( , ) (4.

δ

− + ≤ ∀ ∈ ∀ ∈ ∀ ∈

− + ≤ ∀ ∈ ∀ ∈ ∀ ∈

− ≤ ∀ ∈

= ∀ ∈

≥ ≥ ≥ ∀ ∈ ∀ ∈ ∀ ∈

k k k
ij ij j ij ij

k k k
i ij ij ij i

k
D k

k
O k

k
i ij

SP x Minimize LA

subject to

t x DA x DT k K j N O k i N j

x DT x DA i N j N i k K

DA LA k K

DA k K

LA DA DT k K i N i j A 12).

 

We can obtain the optimal multiplier vector û  by associating the dual variables k
ijπ  

to constraints (5.3), k
ijω  to constraints (5.4), kα  to constraints (5.5), and kµ  to 

constraints (5.6) and taking the dual of SP (D-SP). 

 

\ ( ) \{ } \{ }

( ) ( )
\{ ( )}

( ) ( ) ( )
\{ ( )} \{ ( )}

D-SP

1 (5.7)

0 (5.8)

0 (5.9)

π δ ω

α

µ ω

π ω α

π ω

∈ ∈ ∈ ∈ ∈ ∈

∈

∈

∈ ∈

+

≤

− ≤ ∀ ∈

− − ≤ ∀ ∈

−

∑ ∑ ∑ ∑∑ ∑

∑

∑

∑ ∑

k k k k
ij ij ij i ij ij

k K j N O k i N j k K i N j N i

k

k K

k k k
O k j O k j

j N O k

k k k k
jD k D k j D k j

j N D k j N D k

k k
ji ij

Maximize t x x

subject to

x k K

x k K

x
\{ } \{ }

\ :{ ( ) }

0 , \{ ( ), ( )} (5.10)

0 ( ), \{ } (5.11)

0 ( ), \{ } (5.12)

0, , 0, 0 , , (5.13)

ω π

ω π

π µ ω α

∈ ∈

∈ ∈

∈ ∈ =

≤ ∀ ∈ ∀ ∈

− ≤ ∀ ≠ ∀ ∈

− ≤ ∀ = ∀ ∈

≥ ≥ ≥ ∀ ∈ ∀ ∈ ∀ ∈

∑ ∑

∑ ∑

∑ ∑

k
ij

j N i j N i

k k k
ij ij ij

k K k K

k k k
ij ij ij

k K k K k O k j

k k k k
ij ij

k K i N O k D k

x j O k i N j

x j O k i N j

urs i N j N k K

 

 

In GBD algorithm,  

� each time the ( )SP x  is feasible, by using the optimal dual variables * ,π k
ij  

* *, ,ω αk k
ij the following optimality cut is generated: 

( )( )

( )( ) ( )( )

*
0

, ,
\ ( ) \{ }

* *
( )

\{ }

min

(5.14),

π

ω δ α

∈
∈ ∈ ∈

∈ ∈ ∈ ∈


≥ + − + +




− + + − 



∑ ∑ ∑

∑∑ ∑ ∑

k k k k
ij ij ij j ij ij

LA DA DT Z
k K j N O k i N j

k k k k k k
ij i ij ij ij i D k

k K i N j N i k K

y LA t x DA x DT

x DT x DA DA LA
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� each time the ( )SP x  is infeasible, by using the extreme rays , , ,π ω αk k k
ij ij the 

following feasibility cut is generated: 

( )( ) ( )( )

( )( )

( )
, ,

\ ( ) \{ }

\{ }

min

0 (5.15).

π α

ω δ

∈
∈ ∈ ∈ ∈

∈ ∈ ∈


− + + −




− + ≤



∑ ∑ ∑ ∑

∑∑ ∑

k k k k k k
ij ij ij j ij ij D k

LA DA DT Z
k K j N O k i N j k K

k k k k
ij i ij ij ij i

k K i N j N i

t x DA x DT DA LA

x DT x DA

 

Optimality cuts (5.14) state a condition for the commodities that flow on the LA-

path.  Optimal dual variables * * *, ,k k k
ij ijπ ω α  denote which commodities have to be 

included in (5.14) for traversing arc ( , ) LAi j A∈ , for the handling time spent at node 
LAi N∈ , and for arriving the last node of LA-path, respectively. By Proposition 4.1 

for an implementable LA-CMNDP solution, the service network should be acyclic. 

Feasibility cuts (5.15) eliminate the cycles using the extreme rays , ,k k k
ij ijπ ω α . 

 
The minimization functions in (5.14) and (5.15) are determined by applying GBD-

v2, the details of which are presented in Appendix B, since the SP is convex in k
ijx : 

* * * * * **( , , , ) ( , , , , , , ),π α π α≡L x w L x LA DA DT w

*( , , , ) ( , , , , , , ).π ω α π ω α≡L x L x LA DA DT  

 

Then (5.14) and (5.15) can be restated as: 

( )( )

( )( ) ( )( )

* * * *
0

\ ( ) \{ }

* * * * * *
( )

\{ }

(5.16),

π

ω δ α

∈ ∈ ∈

∈ ∈ ∈ ∈


≥ + − + +



− + + − 



∑ ∑ ∑

∑∑ ∑ ∑

k k k k
ij ij ij j ij ij

k K j N O k i N j

k k k k k k
ij i ij ij ij i D k

k K i N j N i k K

y LA t x DA x DT

x DT x DA DA LA

and 

( )( ) ( )( )
( )( )

( )

\ ( ) \{ }

\{ }

0 (5.17).

π α

ω δ

∈ ∈ ∈ ∈

∈ ∈ ∈


− + + −




− + ≤



∑ ∑ ∑ ∑

∑∑ ∑

k k
k k k kj ij D kij ij ij ij

k K j N O k i N j k K

k
k k kij iij i ij ij

k K i N j N i

t x DA x DT DA LA

x DT x DA
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5.2.2 The Relaxed Master Problem  

( )( )

( )( )

( )( )

( )( )

0

* * **
0 ( )

** *

\ ( ) \{ }

** *

\{ }

\{

RMP

(5.18)

α

π

ω δ

π

∈

∈ ∈ ∈

∈ ∈ ∈

∈


≥ + − +


− + +


− + ∈



− +

∑

∑ ∑ ∑

∑∑ ∑

q qk qqk
D k

k K

qqk qkk k
ij ij ij j ij ij

k K j N O k i N j

qqk qkk k
ij i ij ij ij i

k K i N j N i

wk w
wk k kj ijij ij ij ij

i N

y LA DA LA

t x DA x DT

x DT x DA q Q

t x DA x DT

Minimize y

subject to

( )( )
( )( )

( )

\ ( ) }

\{ }

( , ) ( ) ( , ) ( )

0 (5.19)

1 ( )

0 ( ) ( ) (4.6)

1 ( )

( , ) ,

α

ω δ

∈ ∈ ∈

∈ ∈ ∈

∈ ∈


+ −




− + ≤ ∈



=


− = ≠ ≠ ∀ ∈
− =

≤ ∀ ∈

∑ ∑ ∑ ∑

∑∑ ∑

∑ ∑

wk w
wk D k

k K j N O k j k K

w wk
wk k kij iij i ij ij

k K i N j N i

k k
ij ji

i j Out i j i In i

k
ij ij

DA LA

x DT x DA w W

if i O k

x x if i O k and i D k k K

if i D k

x y i j A k

{ } { } { }

( , ) ( )

( , )

(4.7)

(4.8)

(4.9)

( ) (4.10)

0,1 0,1 0,1 ( , ) , (4.11)

δ β

∈

∈

∈

∈

≤ + ∀ ∈

=

+ ≤ ∀ ∈

∈ ∈ ∈ ∀ ∈ ∈

∑

∑

∑

ji i i i
j i In i

i
i N

k k
i ij ij

i j A

k
ij ij i

K

y B B H i N

H p

t x SP k K

x y H i j A k K

 

The RMP is a MIP problem. 0y  is an under estimator for the optimal LA value of 

LA-CMNDP and is a lower bound on LA. The optimal solution of the SP *LA  

provides an upper bound on LA. The main steps of the GBD algorithm of LA-

CMNDP are stated in Figure 17. Although theoretically it is possible to obtain 

infeasible SPs, in GBD of LA-CMNDP, the SP turns out to be feasible at each 

iteration, therefore the algorithm steps related to infeasible SPs are not included in 

Figure 17. Since the SP only involves binary k
ijx  variables, to simplify the notation 

binary ,ij iy H  variables are not stated in Figure 17. 
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* * *( , , )π ω α

* * *, , : , ,q q qπ ω α π ω α=
: 1q q= +

0 ( , , , , , , )q q q q q qy L x LA DA DT π ω α≥

* * *( , , )LA DA DT

* * *, , : , ,q q qLA DA DT LA DA DT=

*SP( )x

: 0q =
:UB = +∞

*LA UB<

*:UB LA=

UB LB=

0
* *( , )y x

0
*:LB y=

 

Figure 17. Main Steps of GBD Algorithm for LA-CMNDP 

 

Before proceeding to the next section, we evaluate the applicability of enhancement 

techniques to our problem LA-CMNDP. Although, it is theoretically possible to 

obtain infeasible primal SPs, in GBD of LA-CMNDP the SP solutions always 

produce optimality cuts. Therefore, the enhancements regarding the feasibility cuts 

(i.e. Combinatorial Benders cuts) became not applicable to our problem. Since, the 
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SP of LA-CMNDP cannot be decomposed to sub problems we solve only one SP in 

each iteration. 

 

Considering the properties of the GBD optimality cut, we develop an alternative 

decomposition cut for LA-CMNDP. The derivation of the alternative decomposition 

cut is presented in Section 5.2.3 and the computational comparison with the GBD 

cut is presented in Section 5.3. We also use valid inequalities in the RMP to speed 

up the convergence and report the application results in Section 5.3. 

 

5.2.3 An Alternative Decomposition Cut  

An alternative decomposition cut is developed for LA-CMNDP and is presented in 

this section in three steps. First (i) it is shown that D-SP of LA-CMNDP is Totally 

Unimodular, then (ii) the properties of the GBD cut 0
* ( , , , )y L x wπ α≥  is stated, 

and (iii) the alternative decomposition cut is presented.   

 

(i) The sufficient conditions for an ×m n  matrix A to be TU, Wolsey (1998): 

“ (a) { 1, 1,0}ija ∈ + −
 
for all i, j. 

  (b) Each column j contains at most two nonzero coefficients (
1
| | 2

=
≤∑

m

ij
i

a ). 

  (c) There exists a partition ( 1 2,M M ) of the set M of rows such that each column j 

containing two nonzero coefficients satisfies 
1 2

0.”
∈ ∈

− =∑ ∑ij ij
i M i M

a a  

 
 Proposition 5.1: The constraint matrix of D-SP is Totally Unimodular (TU), 

meaning that it always has an integral optimal solution.  

 

Proof 5.1: Let A denote the constraint matrix of D-SP, whose formulation contains 

binary k
ijx  variables. Hence, A contains entries having binary values. Therefore, all 

coefficients ija  of dual variables in D-SP are +1, -1, or 0 satisfying condition (a). In 

order for A to satisfy (c), the required row partition of A is 1M A=  and 2M = ∅ . 

Therefore, if each column j of A satisfy (b), and  | | 0
∈

=∑ ij
i A

a , then A will be TU.  
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In such a partition scheme each column of A can be analyzed separately: 

� For dual variables α ∀k k , each corresponding column contains two non 

zero entries (one +1 and one -1) by constraints (5.7) and (5.9) respectively. 

Therefore all columns of A corresponding to dual variables kα  will satisfy 

(b) and (c). 
 

� For dual variables µ ∀k k , each corresponding column contains one non 

zero entry (one +1) by constraints (5.8). Therefore all columns of A 

corresponding to dual variables kµ  will satisfy (b) and (c).  
 

� For dual variables , \{ },π ∀ ∈ ∀ ∈ ∀ ∈k
ji i N j N i k K  each corresponding 

column contains one +1 by constraints (5.9) and (5.10) and one -1 by 

constraints (5.11) and (5.12). Therefore all columns of A corresponding to 

dual variables k
jiπ  will satisfy (b) and (c). 

 

� For dual variables , \{ },ω ∀ ∈ ∀ ∈ ∀ ∈k
ij i N j N i k K  each corresponding 

column contains one -1 by constraints (5.8), (5.9), (5.10) and one +1 by 

constraints (5.11) and (5.12). Therefore all columns of A corresponding to 

dual variables k
ijω  will satisfy (b) and (c). □ 

 

(ii) The properties of the GBD cut 0
* ( , , , )y L x wπ α≥ : 

In iteration l, SP is solved fixing k
ijx  variables to *lk

ijx  (the optimal solution of the 

RMP at iteration l). The dual variables of the ( )SP x  defines LA
lP  (the LA-path in 

solution *lk
ijx ) and the objective function equals to lLA (the LA value of the solution 

*lk
ijx ). The GBD cut that is generated using the primal and the dual solutions of the 

( )SP x  includes a set of k
ijx  variables ( lX ) that are necessary to define .LA

lP  It 

should be noted that lX is indeed a subset of the set that includes all k
ijx  variables 

that flow on ,LA
lP  namely .LA

l lX X⊂  
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The GBD cut of LA-CMNDP ensures that in the optimal solution of the RMP  

� if every k
ijx  in lX  is equal to 1, then 0y  would be greater than or equal to lLA , 

� if some of the k
ijx  in lX  are equal to 1, then 0y  would be greater than or equal 

to the maximum k
iDA  value that is attained by 1k

ijx =  and .k
ij lx X∈  

 

Proposition 5.2: The GBD cut 0
* ( , , , )q q qy L x wπ α≥  generated at iteration l 

includes the minimum set of k
ijx  variables that are sufficient to define LA

lP . 

 

Proof 5.2: Since the constraint matrix of D-SP is TU, D-SP always has an integral 

optimal solution, meaning that variables k
ijπ   and  k

ijω   are either equal to 0 or 1 at 

optimality. For each ( , ) LAi j A∈ , the coefficient of k
ijπ  in the objective function is  

ijt  for LAk K∀ ∈  and the coefficient of  k
ijω  is  iδ  for LAk K∀ ∈ . Since the objective 

function of D-SP provides the LA value and the constraint matrix of D-SP is TU; 

� in the optimal solution of D-SP for each ( , ) LAi j A∈  the corresponding dual 

variables k
ijπ  and k

ijω  can be equal to 1 for only one of  the commodities 

LAk K∈ ,  

� thus the GBD cut 0
* ( , , , )y L x wπ α≥  includes only one k

ijx  variable for 

traversing each ( , ) LAi j A∈  and only one k
ijx  variable for the handling time 

iδ  spent at each LAi N∈ . □ 

 

(iii) The Alternative Decomposition Cut: 

An alternative decomposition cut is developed for LA-CMNDP in a combinatorial 

structure. Similar to the GBD cut 0
* ( , , , )y L x wπ α≥ , the alternative decomposition 

cut also ensures that if in the optimal solution of the RMP the k
ijx  variables in lX  

are equal to 1, then 0y  would be greater than or equal to lLA . Since ( )SP x  is 

feasible in each iteration of the GBD of LA-CMNDP, we can use the index 

subscript  q, ( )∈q Q  instead of l. Then the alternative decomposition cut can be 

stated as: 
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( )0 | | 1 (5.20).
∈

 
 ≥ − − ∈
 
 
∑
k

ij q

k
ij q q

x X

y x X LA q Q  

 

Proposition 5.3: The alternative decomposition cut stated by (5.20) is valid for the 

RMP of LA-CMNDP.  

 

Proof 5.3: As shown in Proof 5.2, qX consists of the minimum set of k
ijx  variables 

that are sufficient to define .LA
lP  In any feasible solution of the RMP, 

� if all k
ijx  variables in qX  are equal to 1, then (5.20) would be 0 ,qy LA≥  and 

state the same condition on 0y  with the GBD cut (5.18). 

� if at least one k
ijx  variable in qX  is not equal to 1, then (5.20) would be 

0 0,y ≥  which is valid for the RMP. □ 

 

The GBD cut (5.18) and the alternative decomposition cut (5.20) are provided 

explicitly on a small example RMP solution presented in Figure 18.  

 

 

Figure 18. A Simple Example Solution Obtained From the First Iteration of the 
RMP 
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If the D-SP is solved using the solution presented in Figure 18, then the following 

optimal dual variables * * *( , , )k k k
ij ijπ ω α  are obtained: 

1 2 3
13 35 57

1 1 2
13 35 57

3 1

1, 1, 1,

1, 1, 1,

1, 1.

π π π

ω ω ω

α µ

= = =

= = =

= =

 

 

Using the optimal dual variables * * *( , , )k k k
ij ijπ ω α , the GBD cut for the solution 

presented in Figure 18 can be stated implicitly as follows: 

* *3 * 1 *1 1 * 2 *2 2 *
0 (3) 13 13 3 13 13 35 35 5 35 35

3 *3 3 * 1 * 1 *1 1 * 1 *1
57 57 7 57 57 1 13 13 13 1 3 35 35 35 3

2 * 2 *2
5 57 57 57 5

( ( ) ( ) ( )

( ) ( ) ( )

( )) (5.21).

δ δ

δ

≥ + − + − + + − + +

− + + − + + − + +

− +

Dy LA DA LA t x DA x DT t x DA x DT

t x DA x DT x DT x DA x DT x DA

x DT x DA

 

If we substitute the * * *( , , )LA DA DT  values into (5.21), we obtain the following 

GBD cut: 

1 1 2 2
0 13 13 35 35

3 3 1 1 1 1
57 57 13 13 35 35

2 2
57 57

(170 (40 50 10 ) (50 110 60 )

(50 170 120 ) (10 10 0 ) (10 60 50 )

(10 120 110 )) (5.22).

≥ + − + + − + +

− + + − + + − + +

− +

y x x x x

x x x x x x

x x

 

Using the optimal dual variables * * *( , , )k k k
ij ijπ ω α , the alternative decomposition cut 

for the solution presented in Figure 18 can be stated implicitly as follows: 

( )1 1 2 2 3
0 13 35 35 57 57 4 170 (5.23).≥ + + + + −y x x x x x  

 

As shown in Proof 5.3, if variables 1 1 2 2 3
13 35 35 57 57( , , , , )x x x x x  are all equal to 1 in any 

optimum solution of the RMP, then (5.22) and (5.23) would be the same. 

 

5.2.4 Valid Inequalities for LA-CMNDP  

Valid inequalities can be used to accelerate the solution time of the RMP. For this 

purpose, two sets of valid inequalities are defined:  
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( , ) ( )

( , ) ( )

1 , (5.24)

1 , (5.25).

∈

∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈

∑

∑

k
ij

i j Out i

k
ji

j i In i

x k K i N

x k K i N

 

(5.24) and (5.25) are valid for LA-CMNDP, since each commodity is delivered 

through a single path. A commodity k K∈  can only enter to a node i N∈  by using 

one of the incoming arcs ( , ) ( )j i In i∈  and can only leave that node by using one of 

the outgoing arcs ( , ) ( )i j Out i∈ . 

 

5.3 Computational Experiments 

Different test networks are used in hub location, multicommodity network design, 

and railroad blocking problems. Hub location studies generally use CAB (Civil 

Aeronautics Board) data set that is constructed using the Civil Aeronautics Board 

1970 sample survey including the 25 intercity passenger data of United States, 

(O’Kelly (1986)). The most generally used data set in multicommodity network 

design problems is Canad data set, which is generated randomly and introduced by 

Crainic et al. (2000). Canad test networks include a set of problem instances having 

different fixed cost to variable cost ratios and different capacity levels. We do not 

consider CAB data set in our computational experiments, since CAB data set 

reflects the characteristics of passenger flows in air transportation. The focus of 

Canad data set is on flow amounts, capacities, and cost ratios. Since in this thesis 

we do not consider costs and capacities, we do not use Canad data set either.  

 

In railroad blocking studies generally the real blocking data of different private 

and/or national railroad companies are used, (i.e. Crainic et al. (1984), Ahuja et al. 

(2005), Liu et al. (2008)). Since these data is private to companies we do not have 

an access to them. Through internet, some data about rail freight flow can be 

achieved. However, these data generally gives information about freight flow 

amounts according to different commodity types over a period of time. 

  

Since the CAB, Canad, and railroad data sets does not fit our modeling concerns, 

we generate a new data set considering different regions of Turkey. For the inter 
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city transportation times, we use the Turkish highway travel time data provided by 

Tan and Kara (2007). Cities of Turkey are provided in Appendix C together with 

region and license tag information. The regions and the size of the generated test 

networks are given in Table 10. 

 

Table 10. The Regions and the Size of the Test Networks 
 

Test 
Networks  

Regions 
Number 
of Cities 

T1 
T1-1 Marmara Region 11 

T1-2 Central Anatolia Region 13 

T2 

T2-1 Central Anatolia & Mediterranean Regions 21 

T2-2 
Central Anatolia & Western and Middle Black Sea 
Regions 

25 

T2-3 
Central Anatolia & Western and Middle Black Sea 
& Mediterranean Regions 

33 

T3 

T3-1 
Central Anatolia & Mediterranean &Western and 
Middle Black Sea & Marmara & Aegean Regions 

52 

T3-2 
Central Anatolia & Mediterranean & Black Sea & 
Eastern  and South Eastern Anatolia Regions 

62 

T3-3 Turkey 81 

 

In test networks, each city i N∈  is assumed to be connected to other cities 

\{ }∈j N i  that are within cover(i) travel time distance, Figure 19. The test networks 

that are generated in this way are provided in Appendix D, where the cities are 

indicated by their license tags. 

 

 

Figure 19. Connections of Stations in Test Networks 
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Due to terminal location constraints (4.8)-(4.9), each station i N∈  can accept 

incoming blocks from iB  different stations and can accept incoming blocks from all 

( )j In i∈  if it is chosen as a terminal. In any transportation network, if the number 

of arcs that are incident to station i is higher than ,iB  then station i would be a 

candidate terminal node.  

 

To compare the alternative decomposition cut (5.20) with the GBD cut (5.18) and to 

test the effectiveness of the valid inequalities (5.24) and (5.25), eight different 

Benders decomposition algorithms are constructed. The optimality cuts and the 

valid inequalities used in the algorithms are presented in Table 11.  

 

Table 11. Variants of the Benders Decomposition Algorithms Applied to LA-
CMNDP 

 

Variants of Benders 
Decomposition Algorithms 

Valid 
Inequalities 

Optimality Cut 

GBD-1 

GBD-1-1 No Valid Inequalities 

GBD Optimality 
Cut (5.18) 

GBD-1-2 (5.24) 

GBD-1-3 (5.25) 

GBD-1-4 (5.24) & (5.25) 

GBD-2 

GBD-2-1 No Valid Inequalities 

Alternative 
Decomposition Cut 
(5.20) 

GBD-2-2 (5.24) 

GBD-2-3 (5.25) 

GBD-2-4 (5.24) & (5.25) 

 

All computations are performed on a computer with Intel® Core™ i7-2620M CPU 

@ 2.7GHz and 2.94 GB RAM. All variants of the Generalized Benders 

decomposition algorithms of LA-CMNDP are implemented in C# using CPLEX 

12.5. To compare the GBD algorithm results with the optimal values, model LA-

CMNDP is also solved to optimality by CPLEX 12.5.  
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To solve the SP efficiently, we develop an algorithm but it did not outperform the 

simplex algorithm. Thus, we solve the SPs by the simplex algorithm. In preliminary 

runs, we generate multiple valid GBD cuts by using the feasible points that are 

obtained from the RMP, but this significantly slows down the convergence and 

increase the number of iterations in all test instances. Therefore, in all GBD 

algorithms we solve the RMP to optimality.  

 

In computational experiments of the GBD algorithms, the following parameter 

setting is applied in all instances. iB  is set equal to the average number of incident 

arcs of ,i N∀ ∈  and β  is taken as 1.1. Handling times iδ  are determined randomly 

using different lower and upper bounds considering the total amounts of flow that 

originates and that is destined to each station .i N∈  Namely for the stations with 

higher flow amounts higher iδ  values and for the stations with lower flow amounts 

lower iδ  values are determined randomly. 

 

As expected, the complexity of LA-CMNDP increases as the network size gets 

larger and it becomes difficult to test various levels of all parameters on all 

instances. Therefore, separate experimental designs are constructed for T1, T2, and 

T3 networks. The rest of this section is organized as follows. For each test network 

T1, T2, and T3, first the experimental design is explained then the analysis of the 

computational results is provided. 

 

For T1 test networks, 6 instances are generated for all combinations of (| |, )N p  

where | |∈N {11,13} and ∈p {2,3,4}. For each of these 6 instances, | |K  is tested at 

5 levels | |∈K {0.20L, 0.40L, 0.60L, 0.80L, L}, where | | ( | 1)= × −L N N  and L denotes 

the number of commodities for the full-cross-traffic case. For each of the 

commodity levels | |∈K {0.20L, 0.40L, 0.60L, 0.80L}, selecting the O(k), D(k) pairs 

randomly from ,∈k K  5 different instances are generated. Therefore, the total 

number of instances generated for T1 networks equals to 126. In T1 test networks, 

the highest p value, p=4 equals to the number of candidate terminal nodes and 

corresponds to imposing no limits on the number of incoming blocks to nodes. 
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Therefore, the T1 instances with p=4 are solved with removing the terminal location 

constraints (4.8)-(4.9).  

 

In Table 12, for T1 test networks, the computational performances of GBD cut 

(GBD-1-1) and the alternative decomposition cut (GBD-2-1) are compared with 

each other and with the optimal LA-CMNDP solutions that are obtained from 

CPLEX. For each solution method, the CPU times are reported. The instances that 

do not have an implementable LA-CMNDP solution are stated with “No Solution” 

remark in computational results. For GBD-1-1 and GBD-2-1 algorithms, the 

numbers of Benders cuts that are generated are also presented in Table 12. The 

results corresponding to the commodity levels | |∈K {0.20L, 0.40L, 0.60L, 0.80L} in 

Table 12 represent averages over 5 random instances. For T1 networks, the 

computational results of each random instance and the instances, in which | |=K L  

are provided in Appendix E.  
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Table 12.Computational Results of GBD-1-1 and GBD-2-1 on T1 Instances 

    
 CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| 

CPU 

Time (s) 
  

# of  

Cuts 

CPU 

Time (s) 
  

# of  

Cuts 

CPU 

Time (s) 

T1-1 11 2 22 0.5   3 0.6   3 0.4 

   
44 0.8 

 
4 1.2 

 
7 1.3 

   
66 1.4   6 2.5   6 1.8 

   
88 1.7 

 
4 2.4 

 
4 1.4 

   
110 No Solution         

  
  Average 1.1   4 1.7   5 1.2 

  
3 22 0.5   3 0.6   3 0.4 

   
44 0.8 

 
4 1.2 

 
7 1.3 

   
66 1.4   6 2.6   8 2.1 

   
88 1.9 

 
6 3.1 

 
7 2.4 

   
110 No Solution            

  
  Average 1.1   5 1.9   6 1.5 

  
4 22 0.4   3 0.6   3 0.4 

   
44 0.7 

 
5 1.2 

 
4 0.8 

   
66 1.3   4 1.8   4 1.2 

   
88 1.7 

 
5 2.5 

 
5 1.7 

   
110 2.8   7 4.3   7 2.8 

      Average 1.4   5 2.1   5 1.4 

T1-2 13 2 31 0.7   4 0.8   4 0.6 

   
62 1.3 

 
7 2.7 

 
6 1.7 

   
94 2.1   8 4.4   9 3.3 

   
125 2.3 

 
5 3.9 

 
6 3.3 

   
156 No Solution            

  
  Average 1.6   6 2.9   6 2.2 

  
3 31 0.6   4 0.8   4 0.6 

   
62 1.2 

 
7 2.8 

 
6 1.8 

   
94 2.2   8 4.7   7 2.9 

   
125 2.9 

 
13 9.2 

 
12 5.8 

   
156 No Solution            

  
  Average 1.7   8 4.4   7 2.8 

  
4 31 0.6   3 0.7   3 0.5 

   
62 1.3 

 
5 2.0 

 
5 1.4 

   
94 2.0   8 3.9   7 2.2 

   
125 2.8 

 
9 5.9 

 
11 4.5 

   
156 2.3   13 10.6   6 2.1 

      Average 1.8   8 4.6   6 2.1 

 

 
According to the results presented in Table 12, all T1 instances that have an 

implementable LA-CMNDP solution could be solved to optimality by GBD-1-1 and 

GBD-2-1. On T1 networks, GBD-2-1 reduces the CPU times compared to GBD-1-

1. Only on few instances, GBD-2-1 has shorter CPU times than CPLEX. On most 

of the T1 instances, CPLEX provides solutions in shorter CPU times than GBD-1-1 

and GBD-2-1. For the instances that correspond to the full- cross-traffic case, in 

which | | | | ( | 1),= × −K N N an implementable LA-CMNDP solution can be obtained 
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only when p=4, which equals to the number of candidate terminal nodes. The 

reason of this is that as number of commodities increase to have an implementable 

LA-CMNDP solution the terminal location constraints (4.8)-(4.9) are generally 

need to be relaxed. 

 

The combined and the individual effects of the valid inequalities (5.24) and (5.25) 

are tested separately in GBD-1-1 and GBD-2-1 algorithms on T1 instances 

| |∈N {11,13} with p=4 and | |∈K {0.20L, 0.40L, 0.60L, 0.80L, L}, and the 

computational results are presented in Table 13 and in Table 14, respectively. Since 

there are 5 different instances for each of the commodity levels | |∈K {0.20L, 0.40L, 

0.60L, 0.80L}, valid inequalities are tested on 42 instances in total. For each of the 

Benders decomposition variant, the number of cuts and the CPU times in seconds 

are presented. The computational results of each random instance are provided in 

Appendix F.  

 

Table 13. Computational Results of GBD-1 Variants on T1 Instances 

 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 3 0.6   3 0.6   2 0.4   4 0.6 

  
44 5 1.2 

 
3 1.0 

 
2 0.7 

 
4 1.0 

  
66 4 1.8   4 1.8   3 1.5   5 1.9 

  
88 5 2.6 

 
5 2.7 

 
4 2.5 

 
5 2.8 

  
110 7 4.3   4 2.3   4 2.9   7 4.3 

    Average 5 2.1   4 1.7   3 1.6   5 2.1 

T1-2 13 31 3 0.7   3 0.7   3 0.7   3 0.7 

  
62 5 2.0 

 
5 1.9 

 
5 1.9 

 
6 2.4 

  
94 8 3.9   7 4.0   7 4.1   5 3.2 

  
125 9 5.9 

 
11 7.3 

 
10 6.8 

 
9 6.7 

  
156 13 10.6   17 15.2   10 8.6   13 11.4 

    Average 8 4.6   9 5.8   7 4.4   7 4.9 
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Table 14. Computational Results of GBD-2 Variants on T1 Instances 

 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 3 0.4   3 0.4   3 0.4   3 0.5 

  
44 4 0.8 

 
4 0.8 

 
4 0.8 

 
4 0.8 

  
66 4 1.2   5 1.3   4 1.2   5 1.4 

  
88 5 1.7 

 
5 1.7 

 
4 1.6 

 
5 1.8 

  
110 7 2.8   3 1.5   4 1.9   7 2.9 

    Average 5 1.4   4 1.2   4 1.2   5 1.5 

T1-2 13 31 3 0.5   3 0.6   3 0.5   3 0.6 

  
62 5 1.4 

 
5 1.4 

 
5 1.4 

 
5 1.5 

  
94 7 2.2   6 2.4   6 2.2   7 2.7 

  
125 11 4.5 

 
10 5.0 

 
11 5.2 

 
10 4.8 

  
156 12 6.5   15 8.5   14 8.2   17 10.3 

    Average 8 3.0   8 3.6   8 3.5   8 4.0 

 

According to the results presented in Table 13 and Table 14, for T1 instances 

adding valid inequalities in the RMP formulation result in minor decreases in the 

CPU times of some instances.  

 

In T2 test networks, the number of commodities increases considerably and all 

GBD variants could only solve instances with limited percentage of the 

commodities that correspond to the full-cross-traffic case. Changing the number of 

terminals in a problem instance, which have low number of commodities compared 

to the commodity number of the full-cross-traffic case, does not have an impact on 

the resulting solutions. Therefore, terminal location constraints (4.8) and (4.9) of 

LA-CMNDP are disregarded in T2 and also in T3 computations. Each T2 test 

network | | { 21, 25,33}∈N  is tested for 6 levels of | | {25, 50,75,100,125,150}.∈K For 

each level of | |,K selecting the ( ), ( )O k D k  pairs randomly 5 different instances are 

generated. Therefore, the total number of instances generated for T2 networks 

equals to 90.  

 

All GBD variants are tested on T2 instances. According to the computational 

results, GBD-1-4 and GBD-2-4 outperform the variants GBD-1-2, GBD-1-3, GBD-

2-2, and GBD-2-3. Namely, incorporating valid inequalities (5.24) and (5.25) 

simultaneously into the RMP produce better results than its counterparts that 



126 

incorporate only one of the valid inequalities. Therefore, to evaluate the impact of 

the valid inequalities we report only the GBD-1-4 and GBD-2-4 variants. In Table 

15 and Table 16 the computational results of GBD-1-1, GBD-1-4 and GBD-2-1, 

GBD-2-4 on T2 instances are reported respectively and compared with CPLEX 

solutions. All solution methods are implemented without imposing a time limit on 

them. Some of the T2 instances cannot be solved to optimality and the solution 

methods terminate due to out of memory restriction for these instances. For each of 

the solution method, the number of instances that are solved to optimality, the 

optimality gap of the solution method, which is stated as (UB-LB)/UB, and the CPU 

times are reported. For GBD variants, the number of cuts that are generated and the 

deviation of the LA values of the GBD variants from the LA value of CPLEX are 

also reported. The data in Table 15 and Table 16 represent the results over 5 random 

instances. The computational results of each random instance are provided in 

Appendix G.  
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According to the results presented in Table 15 and Table 16, with respect to the 

number of optimum instances and the percentage deviation from CPLEX values, 

GBD-2-1 outperforms GBD-1-1 for | | {21,33}=N  and GBD-1-1 outperforms GBD-

2-1 for | | 25=N . By incorporating valid inequalities into the RMP, the optimum 

solutions could be obtained on average for 5 more T2 instances by GBD-1-4 and for 

6 more T2 instances by GBD-2-4. As network size gets larger, especially for the 

instances with | | 25=N , | | 150=K  and | | 33=N , | | 100≥K  GBD variants produce a 

solution that is on average %8 higher than the CPLEX solution in considerably 

shorter CPU times. 

 

For T3 test networks, 12 instances are generated for all combinations of (| |, | |)N K  

where | | { 52,62,81}∈N  and | | {50,100,150, 200}∈K . For each of the commodity 

levels 5 different instances are generated selecting the ( ), ( )O k D k  pairs randomly. 

Therefore, the total number of instances generated for T3 networks equals to 60.  
 

Since incorporating both of the valid inequalities outperform the individual uses as 

number of nodes and commodities increase, on T3 instances GBD-1-4 and GBD-2-

4 are tested. In Table 17 and Table 18 the computational results of GBD-1-1, GBD-

1-4 and GBD-2-1, GBD-2-4 on T3 instances are reported respectively and 

compared with CPLEX solutions. The comparison structure of Table 15 and Table 

16 is used basically in Table 17 and Table 18. Since none of the instances could be 

solved to optimality by any of the solution methods, the number of instances in 

which a feasible solution could be obtained is reported instead.  As number of 

commodities increase no feasible solution could be obtained by CPLEX. To 

evaluate the solution quality of GBD algorithms on these instances, the maximum 

shortest path length values are used as lower bounds as the details are explained in 

Chapter 4. All solution methods are implemented without imposing a time limit on 

them. The data in Table 17 and Table 18 represent the results over 5 random 

instances. The computational results of each random instance are provided in 

Appendix H.  
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According to the results presented in Table 17 and Table 18, considering the 

average performances, on T3 instances the minimum deviations in LA values from 

the maximum SP length is obtained by GBD-2-4. On average, GBD-2-1 

outperforms GBD-1-1 for the deviations from the maximum SP length. However, 

GBD-1-1 outperforms the GBD-2-1 on average CPU times. Although incorporating 

valid inequalities into the RMP increase computational times, better solutions with 

lower LA values could be obtained. Compared to T1 and T2 instances, on T3 

instances as number of commodities increase all GBD variants provide a feasible 

solution, whereas CPLEX cannot. With the use of a GBD algorithm, for 34 

instances, which the CPLEX cannot provide any solution, feasible solutions are 

obtained. This outcome is the most important factor that shows the effectiveness of 

the GBD algorithms over CPLEX especially on larger networks.  
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CHAPTER 6 

 
 

6 LARGE NEIGHBORHOOD SEARCH ALGORITHM FOR LA-CMNDP 
(LNS-LA) 

 

 

 

 

The computational results presented in Section 5.3 show that the exact solution 

procedure GBD has limited performance on LA-CMNDP. To solve larger size 

problems efficiently, tailored metaheuristic algorithms are required. We develop a 

Large Neighborhood Search (LNS) algorithm for LA-CMNDP (LNS-LA), 

considering the structure of a feasible solution. In this chapter, we present the 

fundamentals of an LNS metaheuristic in Section 6.1 and the main structure of 

LNS-LA together with sub algorithm details in Sections 6.2-6.4. In computational 

experiments, (i) the performance of LNS-LA is experimented on different sized test 

networks, (ii) LA-CMNDP is compared with single allocation latest arrival p-hub 

location problem (SLApHLP) of Kara and Tansel (2001), and (iii) sensitivity 

analysis regarding the changes in terminal locations are performed and results are 

presented in Section 6.5. 

 

6.1 Large Neighborhood Search 

LNS metaheuristic is in the class of Very Large Scale Neighborhood Search 

(VLSN) algorithms. Therefore, in this section we first provide the basic concepts of 

the neighborhood search method and then present the VLSN and LNS techniques. 

 

6.1.1 Neighborhood Search 

Among the heuristic solution methods developed for large scale optimization 

problems, neighborhood search algorithms (local search algorithms) establish an 

important class due to their computational performances and structured mechanisms 

that can be tailored to meet various modeling aspects. Neighborhood search 
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algorithms start with a feasible solution and iteratively improve it by searching its 

neighborhood solutions. The neighborhood structure and the search strategy that 

guides the selection of the next solution for continuing the search are the main 

elements for defining a neighborhood search algorithm. To give the basic 

definitions, first a Combinatorial Optimization Problem needs to be defined. 

 

A Combinatorial Optimization Problem determines the values of a set of decision 

variables 1{ ,..., }= mX x x  with variable domains 1 , ..., mD D  so as to satisfy the 

problem constraints and to minimize the objective function ( )f x : 

( )

,∈

Minimize f x

subject to

x S

 

where S  represents the set of all feasible assignments of decision variables in ,X  

1 1{ ( , ), ..., ( , ) | ,  satisfies all the constraints}= = ∈m m i iS s x v x v v D s , and S  is usually 

called as the search space, Blum and Roli (2003). 
 

A neighborhood structure N  is defined by a point to a set assignment function. A 

neighborhood function assigns a set of neighbors ( )s S⊆N  to every s S∈ . The set 

of neighbors ( )sN  establish the neighborhood of s , Ahuja et al. (2002), Blum and 

Roli (2003). 
 

Since neighborhood search algorithms are in the class of metaheuristic algorithms, 

the important design issues regarding metaheuristics have to be considered while 

designing a neighborhood search algorithm. Thus, we first introduce the most 

prevalent design issues that ascertain the performance of a metaheuristic algorithm; 

(i) intensification and (ii) diversification. As remarked by Blum and Roli (2003), 

although the focuses of intensification and diversification are contrary, they 

describe search strategies that are complementary to each other. To guarantee a 

thorough search of the entire search space, the balance between these two strategies 

becomes critical. Intensification aims to quickly discover the regions of the search 

space that include high quality solutions and search them thoroughly. On the other 

hand diversification aims to search different regions that may lead to better 
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solutions and not to waste too much time in the regions those are already searched 

or do not produce good quality solutions. 

 

The performance of a neighborhood search algorithm mainly depends on the 

neighborhood structure. As the neighborhood size gets larger, it becomes more 

probable to obtain better solutions, whereas the neighborhood search time increases. 

To set a balance between the computational time and the quality of the solutions, 

and to tailor the neighborhood structure for the purposes of intensification and 

diversification, different neighborhood size management strategies are available. 

The most common strategies include problem dependent techniques that provide 

fast evaluation of neighbors, and specialized neighborhood search techniques like 

Variable Neighborhood Search (VNS) or Very Large Scale Neighborhood search 

(VLSN). 

 

VNS metaheuristic is proposed for combinatorial optimization problems by 

Mladenovic and Hansen (1997). VNS provides an efficient neighborhood 

management structure that aims to prevent getting stuck at a local minimum. For 

this purpose, use of multiple neighborhood structures 1 2, , ..., rN N N  are allowed 

and systematic change of neighborhoods is performed within the search. As stated 

by Blum and Roli (2003), a solution which does not direct the search trough a local 

minimum with respect to one neighborhood structure can be a good starting point 

for another neighborhood structure. The success of VNS metaheuristic for different 

combinatorial optimization problems including the travelling salesman problem, the 

p-median problem, and the minimum sum-of-squares clustering problem is 

presented by Hansen and Mladenovic (2001).  

 

When the neighborhood size gets exponential as the instance size increases or the 

neighborhood is too large to search explicitly, improved search techniques are 

required. VLSN techniques provide specialized search strategies that identify the 

good solutions in a large neighborhood within reasonable computational times.  
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6.1.2 Very Large Scale Neighborhood Search 

VLSN technique is first introduced by Ahuja et al. (2000) and a comprehensive 

survey is presented by Ahuja et al. (2002). VLSN deals with very large 

neighborhoods and covers a broad range of techniques for searching the good 

neighbors without explicitly evaluating all neighbors of a neighborhood. 

Exponential neighborhood structures constitute an important class of VLSN. A 

neighborhood structure N is exponential, if the number of neighbors | ( )|sN  grows 

exponentially with the instance size. The search techniques applied for the 

neighborhoods that are too large to search explicitly are also in the domain of 

VLSN, Ahuja et al. (2002). 

 

VLSN techniques are grouped in three major classes by Ahuja et al. (2002): 

• Variable depth neighborhood search (VDNS) methods,  

• Network flow based improvement methods, 

• Methods that base the neighborhood structure on special cases that are 

solvable in polynomial time. 

 

VDNS methods search a set of deeper neighborhoods 1 2, , ..., rN N N  heuristically. 

Transitions from 1j−N  to jN  is performed by a Move function, which is executed r 

iterations and defined as 1 1( , ( )) ( , ( )).− −=j j j jx f x Move x f x The value of r is guided 

by the search algorithm. In VDNS, each neighborhood jN  is searched partially; by 

this way the computational time required for the neighborhood search is reduced, 

Ahuja et al. (2002). 
 

The main difference of VDNS and VNS is that the former searches the same 

neighborhood with variable depths, on the other hand the latter searches structurally 

different neighborhoods. The illustration comparing the neighborhood structures of 

VDNS and VNS that is presented by Psinger and Ropke (2010) is given in Figure 

20 and the main steps of VDNS presented by Ahuja et al. (2002) are provided in 

Figure 21. 
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Figure 20. The Illustration Presented by Psinger and Ropke (2010) for Comparing 

the Neighborhood Structures of VDNS and VNS 
 

algorithm Variable Depth Neighborhood Search 

begin 

 input: 
1x = a feasible solution; 

 for j=2 to r 

  1 1( ( ), ) ( ( ), )− −=j j j jf x x Move f x x ; 

 end; 

 return the jx  that minimizes ( ( ) :1 )jf x j r≤ ≤ ; 

end; 

 
Figure 21. Main Steps of Variable Depth Neighborhood Search Method 

 

In network flow based VLSN methods, efficient search of large neighborhoods is 

performed by identifying improving neighbors with network flow techniques.  

These techniques are grouped in three main categories by Ahuja et al. (2002).    

Methods that define improving neighbors by; 

• finding minimum cost cycles, 

• applying shortest path or dynamic programming based methods, 

• finding minimum cost assignments and matchings. 

 

Special cases of some NP-hard combinatorial optimization problems can be solved 

in polynomial time. By restricting the problem topology or adding constraints to the 

main model, these special cases can be derived from the main NP-hard problem. If 

the neighborhood structure is based on such an efficiently solvable special case, 

then the large neighborhood can be searched in polynomial time, Ahuja et al. 

(2002).   
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6.1.3 Large Neighborhood Search 

LNS is proposed by Shaw (1998) with application results for vehicle routing 

problems, in which a routing plan that serves a set of customers with a fleet of 

vehicles is determined. The proposed LNS method performs two main operations; 

(i) remove some of the customers from the routing plan and (ii) re-optimize the 

routing plan by re-inserting these removed customers. The size of the neighborhood 

(number of customers to be removed, r) is managed throughout the algorithm so as 

to favor small r values to speed up the algorithm and to favor increments in r to 

increase the quality of the solutions and to escape from local minimum points. 

Computational results reveal that LNS is extremely competitive with the best 

known metaheuristic methods on vehicle routing problems. 

 

LNS is a metaheuristic method that belongs to the class of VLSN techniques. 

Psinger and Ropke (2010) describe the fundamentals of LNS metaheuristic and 

present the application areas. LNS improves an initial solution by applying two 

main operations. First the solution is destroyed resulting in an infeasible solution 

and then this infeasible solution is repaired by re-optimizing the destroyed 

components to reach a feasible solution. Different from most neighborhood search 

algorithms, in LNS the neighborhood is defined implicitly by these destroy and 

repair operations. Accordingly, the neighborhood ( )xN  of a solution x consists of 

all the solutions that can be reached by the consecutive application of the destroy 

and repair operations. LSN metaheuristic does not search all neighbors in a 

neighborhood; rather it samples the neighborhood. 

 

The destroy operation and its implementation determines the search strategy. 

Destroy operations should be defined so as to search a broad solution space 

especially focusing on parts that may include global optimum. Furthermore to 

prevent both cycling and getting stuck at a local minimum, the destroy operation 

should make it possible to destroy different parts of a solution throughout the LNS 

algorithm. The degree of destruction should be managed considering the 

characteristics of the search space. Low degree destructions cannot benefit from the 

advantages of large neighborhood search. On the other hand, high degree 
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destructions require high computational times and may provide poor quality 

solutions.  

 

The repair operation can be performed by a heuristic method or an optimization 

method. A heuristic method identifies better solutions in reasonable computational 

times. On the other hand an optimization method increases computational time but 

good quality solutions can be obtained. Compared to a heuristic method, an 

optimization based repair operation cannot guarantee to search a set of diverse 

solutions. The repaired solution is called as movex . After obtaining movex , it is either 

accepted and replaced by the incumbent solution x, or it is rejected and the search 

continues with x. The acceptance criterion is defined by a function ( , )moveaccept x x . 

In LNS depending on problem characteristics, either only improving solutions are 

accepted or non-improving solutions are allowed under specified circumstances for 

the purpose of diversification. The main steps of LNS metaheuristic are presented in 

Figure 22.  

 

algorithm Large Neighborhood Search 
begin  

input:  x := a feasible solution;  
best

x := x; 

repeat 
move

x := repair(destroy(x)); 

if accept( move
x , x) then  

 x := move
x ; 

 end; 

 if cost( move
x ) < cost( best

x ) then 

 best
x := move

x ; 

end; 
until stop criterion is met; 

return best
x ; 

end; 

 
Figure 22. Main Steps of Large Neighborhood Search 
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6.2 LNS-LA 

A neighborhood structure and a search strategy have been used by neighborhood 

search algorithms in network problems. The simplest of the neighborhood search 

moves in network problems is the add/drop structure, in which new solutions are 

searched by either adding or dropping an arc from the current network 

configuration. Powell (1986a) and Powell and Sheffi (1989) apply add/drop 

structure for LTL transportation. Extending the idea of basic add/drop structure, 

similar neighborhood moves are defined in various modeling contexts. Several 

examples can be listed as:  Crainic et al. (1984), Marin and Salmeron (1996a, b), 

and Equi et al. (1997) increase/decrease the frequencies of selected services, 

Gorman (1998) add/delete a vehicle to the current schedule, or slide the schedule of 

a vehicle, Jansen et al. (2004) swap the elements of separate solution components of 

operational plans.  

 

As modeling structure gets complicated neighborhood moves like add/drop and 

swap operations may not guarantee a thorough search. Simple neighborhood moves 

generally perform well in location problems, which deliver commodities through 

paths consisting of few number of arcs, Ghamlouche et al (2003). But this is not the 

case for multicommodity network flow problems involving commodity paths 

consisting of many arcs. In these problems, when a change regarding the flow on a 

single arc is performed, mostly an equivalent solution to the current one is obtained, 

Ghamlouche et al (2003). Therefore, for these problems, neighborhood moves that 

deal with changes in several components of a solution are required to design an 

effective search. 

 

Path based and cycle based neighborhood structures perform higher level of change 

in searched solutions compared to simple neighborhood moves. In the path based 

neighborhood structure, the path of one commodity is changed in each local move, 

Crainic (2000). A cycle-based neighborhood structure includes and excludes several 

arcs from the current solution simultaneously by redirecting flow around cycles 

considering capacity restrictions, Ghamlouche et al. (2003), Pedersen (2005), 

Pedersen et al. (2009), and Zhu (2010).  
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The main components in a feasible solution of LA-CMNDP are the delivery paths 

of commodities and the consolidated paths. Since the problem is uncapacitated, the 

decision variables determining the commodity paths k
ijx  do not include information 

about the flow amounts. Due to the minimax objective function, the arcs and the 

commodities that constitute the LA-path have higher potential to obtain a different 

LA-CMNDP solution compared to other consolidated paths. For instance, although 

the delivery paths of commodities flowing on other consolidated paths are changed, 

the LA value of the current solution may not change. Therefore we focus on the LA-

path in our search algorithm and define our main neighborhood move as “to break 

the LA-path” of the incumbent solution by rerouting a set of commodities. This 

move can provide solutions with a lower LA value. Although it is also possible to 

obtain a solution with a higher LA value, iteratively applying the same 

neighborhood move can direct the search towards a better solution and can provide 

escaping from local minimums.  

 

The metaheuristic we design is LNS, in which the neighborhood moves first destroy 

the current solution and then repair the destroyed solution to obtain a feasible 

solution by searching a large neighborhood. The LNS algorithm developed for LA-

CMNDP (LNS-LA) begins with an initial feasible solution and iteratively improves 

the incumbent solution by applying two different destroy and repair operations. In 

Section 6.2.1 the initial solution generation routine is presented and in Section 6.2.2 

the neighborhood search part is presented in detail. The subroutines used in LNS-

LA are provided in Section 6.3. 

 

6.2.1 Initial Solution Generation 

Throughout the document k is used to define an individual commodity and k is used 

to denote the parameter in k-shortest paths. Due to constraints (4.10), the delivery 

path from ( ) to ( )O k D k  for a commodity k  is restricted to be within β  times the 

shortest path of commodity k ( 1β ≥ ). The initial solution generation routine 

considers k-shortest paths for routing commodities. The k-shortest path algorithm 

of Yen (1971) is used in the routine, which has a complexity of 2(O N + k )N . At 
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the end of the routine a set of alternative paths k =P { 1 2, ,...,P P Pk } is obtained for 

each k K∈ . 

 

In initial solution generation routine, by routing each commodity through a path that 

is randomly chosen from set the k
P , a set of solutions 1 2{ , , ..., }= IS S SS  are 

generated, where I represents the number of solutions to be generated and is 

determined according to the instance size. After obtaining S , the feasibility of each 

solution in S  is checked with respect to the terminal location constraints (4.8)-(4.9) 

and infeasible solutions are eliminated from S . Next, for the solutions in S , the LA  

values and DA, DT vectors are determined and the infeasible solutions with respect 

to the latest arrival constraints (4.1)-(4.3) and (4.5) are eliminated from S . Among 

the remaining solutions in S , the one that attains the lowest LA value is chosen as 

the initial solution. If S  becomes empty upon elimination of infeasible solutions, 

the routine terminates stating that “no feasible solution is found”. The pseudo-code 

of the routine is provided in Figure 73 in Appendix I and the flow chart is presented 

in Figure 23 including the subroutine calls. The subroutines are provided in Section 

6.3. The complexity of the subroutine is 2( )O KN  due to Latest Arrival subroutine 

that is presented in Section 6.3.1 in detail. 
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Figure 23. The Flow Chart of Initial Solution Generation Routine 

 

6.2.2 Neighborhood Search 

LNS-LA applies two neighborhood structures defined as 1 1
1 ( ( ))repair destroy x=N  

and 2 2
2 ( ( ))repair destroy x=N  in two separate phases: (i) the 1N -phase and (ii) the 

2N -phase. These phases are applied consecutively until the predetermined iteration 

number is reached. The algorithm begins with the 1N -phase. If the best solution 
bestx  cannot be updated by applying 1N  consecutively for a predetermined number 

of times, then to prevent getting stuck at a local optimum 1N -phase terminates. To 

jump to another region of the search space the algorithm enters the 2N -phase. The 

beginning solution for the 2N -phase is chosen by a function ( , )bestchoose x x . After 

obtaining a new solution movex  by 1N  and 2N , LNS-LA either continues the search 
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with movex , x, or bestx . The decision of which solution to continue with is given by 

functions 1( , )moveaccept x x  for 1N  and by 2 ( ,moveaccept x  )bestx  for 2N . The main 

steps of LNS-LA are presented in Figure 24 and the flow chart is presented in 

Figure 25. 

 

 
algorithm LNS-LA 
begin 

input:  x= a feasible solution of LA-CMNDP;  
best

x := x; 

repeat 
move

x := 1 1( ( ))repair destroy x ;   

if 1 ( ),move
accept x x = move

x  then  x := move
x  ;  

1N -phase 

if LA( x ) < LA( best
x ) then best

x := x ;    

if best
x cannot be updated for predetermined number of times then 

 x: = ( ),best
choose x x ;  

move
x := 2 2( ( ))repair destroy x ;   

if LA( move
x  ) < LA( best

x ) then best
x := move

x ; 

if 2 ( ),move best
accept x x = move

x  then  x: = move
x ; 

2N -phase  

else  x: = best
x ;      

end; 
end; 

until maximum iteration number is reached; 

return best
x ; 

end; 

 

Figure 24. Main Steps of LNS-LA Algorithm 
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Figure 25. The Flow Chart of LNS-LA Algorithm 

 

The main idea of the first neighborhood structure 1 1
1 ( ( ))repair destroy x=N  can be 

stated as “to break the LA-path” and is defined as follows:  

 

Definition 6.1: To break the LA-path, at least one arc ( , ) LAi j A∈  has to be selected 

as the break point arc. Then among the commodities LAk K∈ , the ones that flow on  

( , ) LA
predi i A∈  and ( , )i j  are re-routed through alternative paths that do not contain 

arcs {( , ), ( , )}predi i i j  simultaneously. 

 

Break point arc selections are performed randomly by 1N  so as to reach different 

portions of the search space. For a break point arc ( , ),i j  for each k  with 1k
ijx = , if 
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there are 2 alternative paths, then the related neighborhood size would be 

exponential and can be expressed as 2 l , where { | 1}k
ijl k K x= ∈ = .  

 

Let RK  denote the set of commodities that are to be removed from the current 

solution. In LNS-LA, RK  is determined considering the commodities flowing on 

{( , ), ( , )}∈ LA
predi i i j A , due to the linkage property of  LAP  presented in Condition 

4.1. It should be noted that, LAP  can also be broken if RK  is determined only 

considering the commodities flowing on arc ( , ),i j but this increases the number of 

commodities to be re-routed, since a new set of commodities that flow on arc ( , )i j  

but that do not flow on ( , )predi i  is added to the RK . Whereas the set { |=RK k  

 and 1}∈ = =LA
pred

k
ij

k
i ik K x x  defines the minimum sufficient set of commodities to 

break LAP  and thereby reduces the required computational search time to obtain a 

new LA-CMNDP solution. 

 

1destroy  operation selects the break point arc, determines the set RK , and removes 

the commodities ∈ Rk K  from LAP . Then 1repair  operation generates new LA-

CMNDP solutions by searching the alternative paths of commodities in RK . Due to 

the large neighborhood size of 1N , 1repair  operation searches neighboring 

solutions heuristically, in which the 2-shortest paths among alternatives are 

considered.  

 

When 1N  is applied to the incumbent solution x, either an improving or a non-

improving movex  is obtained. By 1( , )moveaccept x x  function all movex  are accepted to 

continue the search. Non-improving solutions are also accepted, since the solutions 

with higher LA values provide escaping from local minimum and direct the search 

through unexplored regions of the solution space where further improvements can 

be found. If the LA value of movex  (LA( movex )) is less than LA( bestx ) then bestx  is 

updated with movex . The flow chart of 1N -phase is presented in Figure 26 including 

the subroutine calls. The subroutines are provided in detail in Section 6.3. 
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The 1N -phase produces two solutions as output; the incumbent solution x and .bestx  

If bestx  is updated in the last execution of the 1N -phase, the 2N -phase begins with 

,bestx  for the purpose of intensification Otherwise, the 2N -phase begins with x. 
 

 

 

Figure 26. The Flow Chart of 1N -phase 
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The 1N -phase destroys the LA-path of a solution at a single arc. Although the break 

point arcs are selected randomly, after some iterations the 1N -phase can switch 

among similar solutions. To prevent getting stuck at local optimums, the second 

neighborhood structure 2 2
2 ( ( ))repair destroy x=N  with an increased level of 

destruction is applied. In the 2N -phase, the path of each commodity LAk K∈  is 

destroyed and then repaired. To maintain diversification throughout the LNS-LA,  

2repair  operation considers all alternative delivery paths while re-routing 

commodities. After all LAk K∈  are re-routed by 2N , if bestx  is updated then the 

incumbent solution x is replaced by bestx , otherwise x is replaced by the best 

neighbor neighborx , which may have a higher LA value. Like the first neighborhood 

structure, 2N  also allows non-improving solutions. The flow chart of the 2N -

phase is presented in Figure 27 including the subroutine calls, the details of which 

are provided in Section 6.3. 
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6.3 Subroutines Used in LNS-LA 

To conduct an efficient search, tailored algorithms are required to manage latest 

arrival time calculations. For this purpose, a set of subroutines are used within LNS-

LA. These subroutines establish the basic algorithmic operations of latest arrival 

time calculations in multicommodity network flow problems and can also be used 

in different modeling contexts dealing with late arrivals. The inputs, the outputs, 

and the main functions of the subroutines are presented in this section. 

 

Given a solution ( , , )x y H , Latest Arrival subroutine identifies the feasibility of the 

solution and determines the LA  value  with corresponding DA  and DT  vectors. 

Given the ( , , )LA DA DT , Find LA-Path subroutine identifies , ,LA LA LAP K X . Latest 

Arrival subroutine performs all time calculations from scratch; therefore if it is used 

in the neighborhood search part it would necessitate an important amount of 

computational time. However, after determining the time values of a solution x by 

Latest Arrival subroutine, the neighboring solutions can be searched by update 

subroutines that focus only on the components of x that would be affected upon path 

changes. To perform updates, three subroutines are applied consecutively: Path 

Change, Remove Path, and Add Path.  

 

Path Change subroutine compares the current path Cp  and a new path Np  of a 

commodity k  and provides the sets of arcs and nodes that have to be updated for 

removing Cp  and adding Np  to the current solution. The removal process is 

performed by Remove Path subroutine and the addition process is performed by 

Add Path subroutine. 
 

6.3.1 Latest Arrival Subroutine 

The routing variables x  establish the main input of Latest Arrival subroutine. 

Considering x , the arcs with positive flow are put in active arcs set ACA , and DT, 

DA calculations are performed considering the commodities that flow on ACA . The 

sequence between DT and DA calculations for each ( , ) ACi j A∈  are arranged by a 

parameter called as ready ( , )i j  that indicates whether all arrival times to node i that 
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are needed to determine ijDT  are known. When ready ( , )i j =1 the corresponding 

arc ( , )i j  can be selected for time calculations. The flow chart of the routine that 

determines and updates the ready ( , )i j  parameters is presented in Figure 28. The 

pseudo-code is provided in Figure 74 in Appendix I and the complexity of the 

routine is 2( )O KN . 

 

 

 

Figure 28. The Flow Chart of Ready Subroutine 
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To facilitate the selection of arcs in ACA , a set of active nodes ACN  is also kept. 

Upon calculating ijDT , arc ( , )i j
 
is removed from ACA , node j is added to ACN , 

and node i  is removed from ACN  if none of the emanating arcs from node i is in 

ACA . At any point of the routine, if ready ( , )i j =0 for all arcs in ACA , then no arc 

can be selected for time calculations. This means that the corresponding solution x 

is cyclic, namely feasibility is violated and the routine terminates stating that x is 

infeasible. The flow chart of Latest Arrival subroutine is presented in Figure 29. 

The pseudo-code is provided in Figure 75 in Appendix I and the complexity of the 

subroutine is 2( )O KN . 
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Figure 29. The Flow Chart of Latest Arrival Subroutine 
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6.3.2 Find LA-Path Subroutine 

Find LA-Path subroutine identifies the components of LAP  by applying a backward 

search beginning from the destination node ( )i D k=  that satisfies ( )
k
D kDA LA= . In 

the first step, node i is marked as the last node of LAP . Then the preceding node of 

node i on LAP  is identified by analyzing the commodity flows on ( , )j i A∈  with 

corresponding jiDT  values. The node j that satisfies Conditions 4.1 and 4.2 is 

selected as the preceding node of node i on .LAP This backward procedure is 

repeated until the beginning node of LAP  is identified. 
 

Find LA-Path subroutine can also be used to identify all distinct Consolidated Paths 

in a feasible solution of LA-CMNDP by conducting separate backward searches for 

each distinct ( )
k
D kDA value. The flow chart of Find LA-Path subroutine is presented 

in Figure 30. The pseudo-code of the subroutine is provided in Figure 76 in 

Appendix I and the complexity is ( )O KN . 
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Figure 30. The Flow Chart of Find LA-Path Subroutine 
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6.3.3 Path Change Subroutine 

To change the current path Cp of a commodity k with a new path ,Np for a set of 

arcs ( , )i j A∈  and a set of nodes i N∈  the corresponding ijDT  and iDA values have 

to be updated. Let ,REM REMA N denote the sets that have to be considered for updates 

regarding the removal of Cp from the current solution. Let ,ADD ADDA N denote the 

sets that have to be considered for updates regarding the addition of Np to the 

current solution. The process performed by Path Change subroutine is shown on an 

example presented in Figure 31.  

 
 

 

Figure 31. An Example for the Inputs and the Outputs of Path Change Subroutine 

 

To change the Cp with Np of commodity k, 45 56 67, ,k k kx x x  should be set equal to 0 and  

48 86 67, ,k k kx x x  should be set equal to 1. Therefore 23 3 34 4, , ,k kDT DA DT DA  will not be 

affected. Whereas 45DT  has to be updated since the departing block from node 4 to 

node 5 will no longer have to wait for the arrival of k to node 4. The change in the 

value of 45DT
 
will cause a change in the departure and arrival time calculations of 

the forward paths emanating from node 4. These changes are handled by Remove 

Path and Add Path subroutines. The flow chart of Path Change subroutine is 

presented in Figure 32. The pseudo-code of the subroutine is provided in Figure 77 

in Appendix I and the complexity is ( )O N . 
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Figure 32. The Flow Chart of Path Change Subroutine 

 

 

 

 

 

 



158 

6.3.4 Remove Path Subroutine 

Remove Path subroutine updates the DA, DT values that would be affected upon 

removing commodity k from the arcs in REMA . As indicated in Section 6.3.3, this 

removal process affects the time calculations for the set of commodities in \ { }K k  

and the set of arcs in \{ }REMA A  that form the emanating blocks from nodes in 

.REMN  Remove Path subroutine also performs the required updates regarding these 

emanating blocks. 
 

Since removing a commodity from some arcs of a feasible solution of LA-CMNDP 

does not produce a cycle causing infeasibility in time calculations, feasibility check 

with respect to constraints (4.1)-(4.3) and (4.5) is not needed to be performed. Due 

to latest arrival consolidation structure, the sequence of DT and DA updates is 

arranged with ready parameter. The flow chart of Remove Path subroutine is 

presented in Figure 33, where , ,UP UP UPA N K  denotes the sets for time calculation 

updates and p denotes the commodities in \ { }K k . The pseudo-code is provided in 

Figure 78 in Appendix I and the complexity is 2( )O KN . 
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6.3.5 Add Path Subroutine 

Add Path subroutine updates the DA, DT, and LA values that would be affected 

upon adding commodity k to the arcs in .ADDA Similar to the Remove Path 

counterpart, the required updates regarding the emanating blocks from nodes in 
ADDN are also performed and the sequence of DT and DA updates is arranged with 

ready parameter. In any feasible solution of LA-CMNDP, after the removal of a 

commodity k from a set of arcs, the flow balance constraints of commodity k 

become violated. Add Path subroutine guarantees to satisfy these constraints. But a 

change in the delivery path of a commodity does not guarantee to obtain a solution 

that is feasible with respect to the time calculations. Thus, the feasibility check with 

respect to constraints (4.1)-(4.3) and (4.5) is performed within the subroutine. The 

flow chart of Add Path subroutine is presented in Figure 34, where 

, ,UP UP UPA N K denotes the sets for time calculation updates and p denotes the 

commodities in \ { }K k . The pseudo-code is provided in Figure 79 in Appendix I 

and the complexity is 2( )O KN . 
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6.4 Complexity of LNS-LA 

The complexity of LNS-LA and the complexities of the main parts of LNS-LA 

including the related subroutine calls are presented in Table 19, in which I 

represents the predetermined number of solutions that are to be constructed to 

generate a feasible initial solution and depends on the instance size. The upper limit 

for the subroutine calls in the 1N -phase equals to 72  and the upper limit for the 

number of alternative paths of commodity k equals to 9. It is important to note that, 

in majority of the iterations of LNS-LA, the realized subroutine calls in the 1N -

phase and the number of alternative paths of a commodity are considerably lower 

than their upper limits. Since the complexity of an algorithm is defined by the worst 

case computational operations, the upper limits are provided in Table 19.  

 

Table 19. Complexity of LNS-LA 
 

 Main Parts of LNS-LA 

Subroutines 
 of LNS-LA 

Initial 
Solution 

Generation 
1N -phase 2N -phase 

Latest Arrival 2( )O KN  I - - 

Find  LA-Path ( )O KN  - 1 1 

Path  Change ( )O N  - 72  9 |
LAK | 

Remove Path 2( )O KN  - 72  9 |
LAK | 

Add Path 2( )O KN   72  9 |
LAK | 

Complexities of Main 
Parts

2( )I O KN  272 ( )O KN  2 2( )O K N  

Complexity of LNS-LA 2 2 272 ( ) ( )+O KN O K N  
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6.5 Computational Experiments 

All computational experiments are performed by using the test networks (T1, T2, 

T3), the structures of which are presented in Section 5.3. The performance of LNS-

LA algorithm is analyzed in Section 6.5.1. LA-CMNDP is compared with 

SLApHLP in Section 6.5.2 and the sensitivity of LA-CMNDP solutions to terminal 

locations are analyzed in Section 6.5.3. 

 

6.5.1 Computational Results of LNS-LA 

All computations are performed on a computer with Intel® Core™ i7-2620M CPU 

@ 2.7GHz and 2.94 GB RAM. LNS-LA algorithm is coded using MATLAB 7.11.0 

(R2010b). To compare the LNS-LA results with the optimal values, model LA-

CMNDP is also solved by CPLEX 12.  

 

The performance of LNS-LA is analyzed according to three aspects; (i) the quality 

of the solutions, (ii) the percentage improvements over the initial solution, and (iii) 

the CPU times. By using CPLEX, the optimal LA-CMNDP solutions can be 

generated for majority of the T1 networks but for larger networks (T2, T3) having 

realistic number of commodities even an integer solution cannot be obtained by 

CPLEX. Due to this reason, the LA values of the solutions obtained by LNS-LA are 

compared with the optimal LA values in T1 networks and in some of the T2 and T3 

instances of Chapter 5.  

 

For T2 and T3 networks, two separate analyses are performed. In the first one, 

LNS-LA is tested on the T2 and T3 instances of Chapter 5 with the purpose of 

comparing the performances of LNS-LA and the best performing GBD algorithm. 

Considering the average performances reported in Chapter 5, GBD-2-4 is the best 

GBD algorithm for both of the T2 and the T3 instances. In the second analysis, 

LNS-LA is tested on newly generated T2 and T3 instances having significantly 

higher number of commodities compared to the instances of Chapter 5. For 

assessing the quality of the solutions, the maximum shortest path length values are 

used as lower bounds, the details of this lower bound is explained in Chapter 4.  
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Since it is difficult to test various levels of all parameters on all instances, separate 

experimental designs are constructed for T1, T2, and T3 networks. In all instances 

iB  is set equal to the average number of incident arcs of i N∀ ∈ . The rest of this 

section is organized as follows. For each test networks T1, T2, and T3, first the 

experimental design is explained then the analysis of computational results is 

provided. 

 

For T1 test networks, 30 instances are generated for all combinations of ( , ,| |)βp N  

where {2,3, 4}p∈ , {1.1,1.2,1.3,1.4,1.5}β ∈ , | | {11,13}∈N . All instances are 

solved for full-cross-traffic case. The computational results of T1 instances are 

presented in Table 20. For the CPLEX computations, the optimum LA values, the 

percentage differences of the optimum LA values from the maximum shortest path 

lengths, and the CPU times are presented. The comparison with the maximum 

shortest path lengths is provided to evaluate the effects of p and β  on optimal LA 

values. For LNS-LA computations, the initial and the final LA values, the 

percentage improvements over the initial LA values, the optimality gaps, and the 

CPU times are presented. 
 

According to the results presented in Table 20, for all instances that can be solved to 

optimality, the LNS-LA finds the optimum solution. LNS-LA performs a significant 

improvement over the initial solution, which equals to 33% on average. The 

computational times of LNS-LA are much shorter than those of the CPLEX. 

Therefore, for T1 networks LNS-LA presents a good overall performance. For some 

of the instances no LA-CMNDP solution exists. Namely all of the commodities 

k K∈  cannot be delivered from their origin to destination due to the kSPβ  

restrictions on the delivery paths and the iB  limits imposed on nodes i N∈ . To 

reach a feasible LA-CMNDP solution, either p or β  values have to be increased. 

For the instances with the same (| |, | |, ),N K p as β  is increased longer delivery paths 

for commodities are allowed and for the instances with the same (| |, | |, )βN K , as p 

is increased new routing arcs are introduced. By increasing either β  or p, it 

becomes more likely to reach feasibility and to lower LA values. When β  is 
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increased from 1.1 to 1.2, a feasible solution can be obtained for most of the 

instances and increasing β  from 1.2 to 1.3 does not decrease the LA values 

considerably. Thus, in the computational experiments of T2 and T3 test networks 

β  value is taken as 1.2. 
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As we stated in the beginning of this section, we performed two separate 

computational experiments of LNS-LA regarding T2 and T3 networks. First, we 

report the computational experiments of LNS-LA on the T2 and T3 instances of 

Chapter 5, comparing the LNS-LA results with the results of the CPLEX and the 

best performing GBD algorithm (GBD-2-4) on these instances. For the details of 

the related experimental designs, Chapter 5 can be referenced. Then we present a 

new experimental design regarding T2 and T3 networks having higher number of 

commodities and report the related computational results of LNS-LA. 

 

The comparison of LNS-LA with CPLEX and GBD-2-4 algorithm on T2 instances 

is presented in Table 21 and on T3 instances is presented in Table 22. All the 

computational results in Table 21 and Table 22, represent the averages over five 

random instances. The computational results regarding each random instance are 

provided in Appendix J.  

 

In Table 21, for the CPLEX and the GBD-2-4 algorithm the optimality gaps of the 

solution methods, which is stated as (UB-LB)/UB, are presented. For GBD-2-4 the 

number of Benders cuts is presented. For all solution methods, the number of 

optimum instances and the CPU times are presented. The LA value of GBD-2-4 is 

compared with the LA value of CPLEX and the LA value of LNS-LA is compared 

with the LA values of the CPLEX and the GBD-2-4 algorithm. 

 

The comparison structure of Table 22 is basically same as the structure of Table 21. 

Since for most of the T3 instances CPLEX cannot provide any solution, in Table 22, 

the number of instances with a feasible solution of each solution method is 

presented. The maximum shortest path lengths are used as lower bounds in Table 

22, for the explanations of this lower bound Chapter 4 can be referenced.  
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According to the computational results presented in Table 21, on T2 instances LNS-

LA outperforms GBD-2-4 with respect to the solution quality and the computational 

times. GBD-2-4 cannot provide the optimum solution in 23 instances, whereas 

LNS-LA always identifies the optimum solution. Moreover, for the instances that 

the CPLEX cannot provide the optimum solution, LNS-LA provides better 

solutions.  

 

According to the computational results presented in Table 22, on T3 instances LNS-

LA provides considerably better solutions that are on average 4% lower than 

CPLEX, and 9% lower than GBD-2-4. As network size gets larger the 

computational efficiency of LNS-LA becomes more prominent with an average of 

less than 1 minute CPU time.  

 

The highest number of commodities in T2 and T3 instances of Chapter 5 are 150 

and 200, respectively. These numbers correspond to a very low percentage of the 

commodities in the full-cross-traffic case. To test LNS-LA on instances that have 

realistic commodity numbers, we generate new T2 and T3 instances.  

 

For T2 test networks, 9 instances are generated for all combinations of (| |, )N p  

where | | {21, 25, 33}∈N and { 0.20 x | |, 0.24 x | |, 0.28 x | |}.∈p N N N For each of these 

9 instances, | |K is tested at three levels | | {0.35 , 0.65 , }∈K L L L  where L denotes the 

number of commodities for the full-cross-traffic case and | | x (| | 1).= −L N N  For 

each of the commodity levels | | {0.35 , 0.65 }∈K L L , selecting the ( ), ( )O k D k  pairs 

randomly 5 different instances are generated. Therefore, the total number of 

instances generated for T2 networks equals to 99. The computational results of 

LNS-LA on T2 instances are presented in Table 23 with the percentage 

improvements over the initial LA values, the difference between the LA values of 

LNS-LA and the maximum shortest path lengths, and the CPU times. The results 

corresponding to the commodity levels | | {0.35 , 0.65 }∈K L L  in Table 23 represent 

the averages over five random instances. The computational results of the random 

instances and the instances, in which | | =K L  for T2 networks are provided in 

Appendix K.  
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Table 23. Computational Results of LNS-LA for T2 Test Networks 
 

     

LNS-LA Results 

Test  

Problem 
|N| p 

Commodity 

Density 
|K| 

% Improvement 

Over  

Initial LA  

% Difference 

from Maximum 

SP Length  

CPU 

Time 

(s) 

T2-1 21 4 35% 147 30.1% 3.9% 10.1 

   
65% 273 53.3% 5.8% 20.2 

  
  100% 420 No Solution 

  
5 35% 147 32.6% 3.8% 10.7 

   
65% 273 39.9% 5.5% 20.4 

  
  100% 420 52.2% 4.9% 57.4 

  
6 35% 147 33.4% 3.4% 10.4 

   
65% 273 34.5% 3.5% 18.6 

      100% 420 36.3% 4.9% 41.6 

T2-2 25 5 35% 210 32.9% 9.9% 18.5 

   
65% 390 

No Solution 

  
  100% 600 

  
6 35% 210 30.8% 8.5% 19.2 

   
65% 390 40.7% 8.4% 38.7 

  
  100% 600 No Solution 

  
7 35% 210 30.9% 8.4% 17.7 

   
65% 390 30.8% 7.8% 41.2 

      100% 600 30.2% 1.7% 78.5 

T2-3 33 7 35% 370 41.9% 8.9% 55.5 

   
65% 686 

No Solution 

  
  100% 1,056 

  
8 35% 370 41.5% 8.2% 51.6 

   
65% 686 60.8% 2.5% 162.1 

  
  100% 1,056 No Solution 

  
9 35% 370 41.0% 7.8% 56.7 

   
65% 686 60.9% 2.3% 157.4 

      100% 1,056 67.6% 4.2% 184.3 

 
 

According to the results presented in Table 23, LNS-LA provides solutions with LA 

values that are on average 6% higher than the maximum SP length. In LA-CMNDP 

problems as network size increases, the difference between the LA values and the 

maximum SP length tend to increase. Therefore, a difference of 6% can be accepted 

as an indicator of good quality solutions. LNS-LA improves the initial solutions by 

an amount of 41% on average and the computing times are less than 3 minutes for 

all instances. Considering these observations, LNS-LA presents a good overall 

performance for T2 test networks.  
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In T2 instances as p is increased, it becomes more likely to obtain solutions with 

lower LA values and to reach feasibility. This is an expected outcome, since by 

locating more terminals alternative routing arcs become available and better 

solutions are likely to be obtained. 

 

As | | and | |N K  increases, the limitations due to terminal location constraints (4.8)-

(4.9) become more restrictive for obtaining a feasible solution. According to the 

computational results of T1 and T2 networks, only for the highest p values, a 

feasible solution can be obtained for all levels of (| |, | |, )βN K . Actually, these 

highest p values equal to the number of alternative terminal nodes and correspond 

to imposing no limits on the number of incoming blocks to nodes. Since T3 test 

networks are larger than T1 and T2 networks and include significantly higher 

number of commodities, terminal location constraints (4.8)-(4.9) of LA-CMNDP 

are disregarded in T3 computations.  

 

T3 test networks consist of 3 networks, | | {52, 62, 81}∈N . For each of these 3 

networks, | |K is tested at 4 levels | | {0.25 , 0.50 , 0.75 , }∈K L L L L  where L denotes 

the number of commodities for the full-cross-traffic case and | | x (| | 1).= −L N N  

Since the number of commodities is increased considerably compared to T2 

instances, the commodity levels are increased to obtain more information about 

high number of commodities. For each of the commodity levels 

| | {0.25 , 0.50 , 0.75 }∈K L L L , five different instances are generated selecting the 

( ), ( )O k D k  pairs randomly. Therefore, the total number of instances generated for 

T3 networks equals to 48. The computational results of LNS-LA on T3 instances 

are presented in Table 24 with the percentage improvements over the initial LA 

values, the difference between the LA values of LNS-LA and the maximum shortest 

path lengths, and the CPU times. The results corresponding to the commodity levels 

| | {0.25 , 0.50 , 0.75 }∈K L L L  in Table 24 represent the averages over five random 

instances. The computational results of the random instances are provided in 

Appendix L.  
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Table 24. Computational Results of LNS-LA for T3 Test Networks 
 

    

LNS-LA Results 

Test 

Problem 
|N| 

Commodity 

Density 
|K| 

% 

Improvement 

Over 

Initial LA 

% Deviation 

from Max. 

SP Length  

CPU 

Time 

(s) 

T3-1 52 25% 663 34% 7% 227 

  
50% 1,326 53% 13% 553 

  
75% 1,989 55% 21% 646 

  
100% 2,652 No Solution 

T3-2 62 25% 946 39% 8% 510 

  
50% 1,891 45% 30% 863 

  
75% 2,837 44% 41% 1,319 

    100% 3,782 No Solution 

T3-3 81 25% 1,620 35% 20% 1,233 

  
50% 3,240 45% 21% 2,446 

  
75% 4,860 50% 22% 3,548 

    100% 6,480 No Solution 

 
 

According to the results presented in Table 24, as number of commodities increase 

over 1,000, the percentage deviations from maximum shortest path lengths tend to 

increase, which is an expected outcome. The average percentage deviations for the 

lowest commodity level, | | 0.25 ,=K L , equals to 12% and for the highest commodity 

level | | 0.75 ,=K L this value equals to 28%. Considering the related instance sizes 

these deviations can be accepted as an indicator of good quality solutions. LNS-LA 

improves the initial solutions by an amount of 44% on average and the 

computational times are less than 11 minutes for the instances with | | 52=N , 22 

minutes for the instances with | | 62=N ,  and 1 hour for the instances with | | 81=N . 

As a result, LNS-LA presents a good overall performance for T3 test networks. 
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6.5.2 Comparison of LA-CMNDP and SLApHLP 

In this section, LA-CMNDP is compared with the single allocation latest arrival p-

hub location problem (SLApHLP) of Kara and Tansel (2001). Both models try to 

minimize the maximum latest arrival time to destinations, whereas use different 

consolidation structures and assumptions.  

 

The consolidation structure and the assumptions that effect time calculations in 

SLApHLP can be stated as follows:  

� each non-hub-node (spoke) can only be assigned to a single hub, 

� there are two possible delivery path structures for the commodities: (i) 

spoke-hub-spoke, (ii) spoke-hub-hub-spoke, 

� the transfers between hubs are discounted with an amount , (0 1),α α< <  

� a fully-connected transportation network is assumed, 

� full-cross-traffic is assumed. 

 

Compared to the consolidation structure of SLApHLP, LA-CMNDP allows more 

flexible routing possibilities for commodities. In LA-CMNDP, each node can be 

directly assigned to multiple other nodes to send and receive commodity flows. The 

delivery paths of commodities do not have to satisfy a special structure and do not 

have to include a terminal station. LA-CMNDP can be applied to incomplete 

transportation networks as well as the fully-connected ones. In addition, LA-

CMNDP does not apply a discount factor ,α  rather it restricts the delivery paths of 

commodities to be at most β  times their shortest delivery paths. 

 

Another main difference of both models is that LA-CMNDP does not use the full-

cross-traffic assumption. This assumption has a simplifying effect on time 

calculations and when combined with single allocation structure SLApHLP does 

not have to model arrival times and can have a linear model. Whereas LA-CMNDP 

has to model arrival times and necessitates more complicated time calculations. The 

largest test instance solved by SLApHLP consists of 25 nodes and 600 

commodities, (Kara and Tansel (2001)). Later studies on single allocation latest 
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arrival hub location problems report larger networks like the Turkey network 

consisting of 81 nodes and 6,480 commodities, (Yaman et al. (2007)). 

 

To analyze the effects of the consolidation structures of models SLApHLP and LA-

CMNDP on the latest arrival times and the total travel times we compare both 

problems on the same network. For this purpose, we use T1 test networks, since for 

majority of the T1 instances the optimum LA-CMNDP solutions can be obtained. 

Since model SLApHLP assumes a fully-connected structure, in T1 networks the 

travel times ijt  between the node pairs ( , ),i j  that are not physically connected by a 

direct link are set equal to the corresponding shortest paths in the incomplete T1 

networks.  

 

To observe the effects of selecting different values of β  and α , SLApHLP is 

tested for {1,0.9,0.8,0.7,α ∈ 0.6}  and LA-CMNDP is tested for {1.1,1.2,β ∈  

1.3,1.4,1.5}  on test instances that are generated for all combinations of (| |, )N p  
where | |∈N {11,13} and ∈p {2,3,4}.  
 

Comparing LA-CMNDP and SLApHLP when 1α =  would enable us to evaluate 

the effect of networking structures of both problems on travel times. In Table 25, 

LA values and the total travel times of both problems are provided. For LA-

CMNDP, the percentage of decrease in LA and the percentage of decrease in total 

travel times over SLApHLP are also given.  

 

Considering the results presented in Table 25, when | |N =11 LA-CMNDP provides 

an average of 15% decrease in LA and an average of 26% decrease in total travel 

times over SLApHLP. As | |N  is increased from 11 to 13, LA-CMNDP again 

provides solutions with lower time values.  The main reason of the decreases in 

travel times is that LA-CMNDP allows a more flexible networking structure 

compared to SLApHLP.  
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Table 25. Comparison of LA-CMNDP and SLApHLP When α=1 
 

  
SLApHLP 

 
LA-CMNDP 

Test 

Problem 
p LA 

Total 

Travel 

Times 

  β LA 

Total 

Travel 

Times 

% 

Decrease 

in LA 

% Decrease 

in Total 

Travel Times  

T1-1 2 519 48,114   1.1 457 33,828 12% 30% 

     
1.2 417 32,525 20% 32% 

     
1.3 417 33,484 20% 30% 

     
1.4 417 33,431 20% 31% 

 
        1.5 417 33,793 20% 30% 

 
3 485 44,796   1.1 456 33,203 6% 26% 

     
1.2 417 31,708 14% 29% 

     
1.3 417 32,678 14% 27% 

     
1.4 417 32,423 14% 28% 

 
        1.5 417 32,300 14% 28% 

 
4 464 40,673   1.1 456 32,771 2% 19% 

     
1.2 417 31,743 10% 22% 

     
1.3 417 32,852 10% 19% 

     
1.4 417 32,660 10% 20% 

          1.5 417 32,773 10% 19% 

T1-2 2 762 79,010 
 

1.1 727 74,088 5% 6% 

     
1.2 727 74,357 5% 6% 

     
1.3 727 75,276 5% 5% 

     
1.4 727 75,652 5% 4% 

     
1.5 727 75,331 5% 5% 

 
3 693 77,761   1.1 689 72,111 1% 7% 

     
1.2 689 71,987 1% 7% 

     
1.3 689 72,785 1% 6% 

     
1.4 689 72,643 1% 7% 

 
        1.5 689 72,812 1% 6% 

 
4 689 74,790 

 
1.1 689 72,494 0% 3% 

     
1.2 689 72,367 0% 3% 

     
1.3 689 73,298 0% 2% 

     
1.4 689 73,611 0% 2% 

          1.5 689 73,739 0% 1% 

 
α  value of 1 corresponds to applying no discounts for the inter hub transfers, 

which may be the case depending on the type of the vehicles used but considering 

the main motivation of hub location problems 1α =  is not a practical case. Yaman 

et al. (2007) state that 0.9α =  reflects the realistic discount amount in travel times 

considering the trucking operations of cargo companies in Turkey and apply this α  

value in their latest arrival hub location with stopovers problem. Taking this real life 

application into consideration, we compare LA-CMNDP and SLApHLP when 

0.9α =  in Table 26.  The comparison structure of Table 26 is same with the 

structure of Table 25.  
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Table 26. Comparison of LA-CMNDP and SLApHLP When α=0.9 

  

SLApHLP 
 

LA-CMNDP 

Test 

Problem 
p LA 

Total 

Travel 

Times 

  β LA 

Total 

Travel 

Times 

% 

Decrease 

in LA 

% Decrease in 

Total Travel 

Times  

T1-1 2 498 43,747 
 

1.1 457 33,828 8% 23% 

     
1.2 417 32,525 16% 26% 

     
1.3 417 33,484 16% 23% 

     
1.4 417 33,431 16% 24% 

     
1.5 417 33,793 16% 23% 

 
3 464 42,144   1.1 456 33,203 2% 21% 

     
1.2 417 31,708 10% 25% 

     
1.3 417 32,678 10% 22% 

     
1.4 417 32,423 10% 23% 

 
        1.5 417 32,300 10% 23% 

 
4 430 39,530 

 
1.1 456 32,771 -6% 17% 

     
1.2 417 31,743 3% 20% 

     
1.3 417 32,852 3% 17% 

     
1.4 417 32,660 3% 17% 

          1.5 417 32,773 3% 17% 

T1-2 2 720 73,807   1.1 727 74,088 -1% 0% 

     
1.2 727 74,357 -1% -1% 

     
1.3 727 75,276 -1% -2% 

     
1.4 727 75,652 -1% -2% 

     
1.5 727 75,331 -1% -2% 

 
3 644 72,286   1.1 689 72,111 -7% 0% 

     
1.2 689 71,987 -7% 0% 

     
1.3 689 72,785 -7% -1% 

     
1.4 689 72,643 -7% 0% 

 
        1.5 689 72,812 -7% -1% 

 
4 620 71,336 

 
1.1 689 72,494 -11% -2% 

     
1.2 689 72,367 -11% -1% 

     
1.3 689 73,298 -11% -3% 

     
1.4 689 73,611 -11% -3% 

          1.5 689 73,739 -11% -3% 

 
 
Considering the results presented in Table 26, although LA-CMNDP does not apply 

a discount factor, LA-CMNDP provides an average of 8% decrease in LA and an 

average of 21% decrease in total travel times over SLApHLP when | |N =11. In 

addition, the LA values of LA-CMNDP when | |N =13 and p={3,4} are equal to the 

maximum SP lengths, namely the best possible LA values. When | |N =13, due to 

the discount factor α , SLApHLP provide solutions with lower time values. As α  

values get lower than 0.9 and p increases, SLApHLP gets an advantage for further 

decreasing the time values. The LA values of SLApHLP and LA-CMNDP are 
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compared for different values of  α  and β  in Figure 35,  Figure 36, Figure 37 for  

p=2, 3, and 4 respectively when | | 11;=N and in Figure 38, Figure 39, Figure 40 for 

p=2, 3, and 4 respectively when | | 13.=N  

 

 

Figure 35. LA Values of LA-CMNDP and SLApHLP When |N|=11, p=2 

 

 

Figure 36. LA Values of LA-CMNDP and SLApHLP When |N|=11, p=3 
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Figure 37. LA Values of LA-CMNDP and SLApHLP When |N|=11, p=4 

 

 

Figure 38. LA Values of LA-CMNDP and SLApHLP When |N|=13, p=2 
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Figure 39. LA Values of LA-CMNDP and SLApHLP When |N|=13, p=3 

 

 

Figure 40. LA Values of LA-CMNDP and SLApHLP When |N|=13, p=4 

 

Considering the Figures 35 through 37, although LA-CMNDP does not apply a 

discount factor, when | | 11=N  LA-CMNDP outperforms SLApHLP for 0.8α ≥  on 
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all values of p. Considering the Figures 38 through 40, when | | 13=N  and p={3,4}, 

LA-CMNDP provides solutions that are equal to or better than SLApHLP and for 

0.9α ≤  SLApHLP outperforms LA-CMNDP. As p increases, the number of inter 

hub links also increases causing considerable decreases in LA values.  

 

In Figures 41 and 42 total travel times of LA-CMNDP and SLApHLP are compared 

for | | 11=N  and | | 13=N  respectively. Since different values of ( , )βp  do not cause 

significant amount of changes in total travel times of solutions obtained by LA-

CMNDP, the average total travel times over all ( , )βp  are presented in Figures 41 

and 42 for LA-CMNDP. When | | 11,=N  LA-CMNDP produces solutions with 

lower total travel times compared to SLApHLP for majority of the test instances. 

When | | 13,=N  due to the increased problem size the effect of applying discounts 

on the inter hub links become more observable and for 0.9α ≤  SLApHLP produces 

solutions with lower total travel times. 

 

 

Figure 41. Total Travel Times of LA-CMNDP and SLApHLP When |N|=11 
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Figure 42. Total Travel Times of LA-CMNDP and SLApHLP When |N|=13 

 

6.5.3 Sensitivity Analysis of Terminals 

The main motivation of locating terminals in LA-CMNDP is to increase the level of 

consolidation throughout the transportation system. As expected, the stations that 

are chosen as terminals have an important effect on the consolidation plans and 

therefore the arrival times. Also due to terminal location constraints (4.8)-(4.9), for 

some LA-CMNDP instances an implementable solution cannot be obtained. For 

examples the computational results in Section 6.5.1 can be referenced. To analyze 

the effects of the terminal locations in an optimum LA-CMNDP solution on LA 

values and on obtaining an implementable solution, we perform a sensitivity 

analysis.   

 

We use T1 test networks in the sensitivity analysis, in which we first record the 

terminal locations in an optimum solution. Then, we re-solve the related instance by 

applying an additional restriction on the terminal locations such that the restricted 

node or the nodes cannot be selected as a terminal. Finally, for each instance we 

report the new LA values and the new terminal locations.  When a node, which is 

selected as a terminal by LA-CMNDP, is restricted for terminal location, and LA-

CMNDP is re-solved with this restriction one of the other candidate terminal nodes 
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has to be selected as a terminal. Candidate terminal nodes are presented in Figure 

43 and Figure 44 for test networks with | | 11=N  and | | 13,=N  respectively. 

 

 

Figure 43. Candidate Terminal Nodes for |N|=11 

 

 

Figure 44. Candidate Terminal Nodes for |N|=13 
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The restrictions are applied to either one candidate terminal node or a couple of 

nodes if necessary. The sensitivity analysis is only performed on T1 instances that 

yield an implementable LA-CMNDP solution. When p=4, none of the terminals can 

be selected for removal, since p=4 means that locating a terminal at all candidate 

terminal locations for | | {11,13}.∈N  Therefore, the sensitivity analysis is performed 

only for p∈{2,3}.  

 

In Table 27, three separate sensitivity analysis results are presented. The LA values 

and the terminals in the optimum solution of LA-CMNDP under no restrictions 

(Original Model) is presented in the first column of Table 27. Each ‘Terminals’ 

column in Table 27 indicates which nodes are selected as terminals in the 

corresponding solutions. Total travel time values are not reported since restricting a 

candidate terminal node for terminal location do not result in a considerable effect 

on total travel time values. The instances that are remarked as “Not Applicable” 

refers to the cases, in which the restricted node is not selected as a terminal in the 

optimal solution of the LA-CMNDP (Original Model). 

 

 

According to the results presented in Table 27, the obtaining an implementable LA-

CMNDP solution is highly sensitive to the changes in terminal locations especially 

on instances with lower values of p and β and the LA values are moderately 

sensitive to the changes in terminal locations. 

 

For instance, when either node 59 or node 77 is restricted for terminal location in 

T1-1 network, a feasible LA-CMNDP solution cannot be generated for p=2, β=1.2 

and p=3, β∈{1.2, 1.3}. In addition, restricting node 40 or node 68 for terminal 

location in T1-2 network increases LA values for p=3,  β∈{1.2, 1.3, 1.4, 1.5} and 

for  p=3 and β∈{1.2, 1.3, 1.4}, respectively. 
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CHAPTER 7 

 
 

7 DELAY MANAGEMENT IN LATEST ARRIVAL CONSOLIDATION 
 

 

 

 

LA-CMNDP provides delivery paths for all commodities together with a scheduling 

plan that involves arrival and departure times to stations. Due to the latest arrival 

consolidation structure, some commodities may have to wait at some stations of the 

transportation network for the late arriving commodities. These waiting times cause 

delays affecting all arrivals to destinations. In LA-CMNDP, each direct ride 

between stations is assumed to be performed by the same vehicle. If we extend this 

assumption in such a way to allow multiple vehicles to perform the direct rides, the 

delays occurring at stations then could be minimized. This extension arise a new 

decision issue of which vehicles wait at the stations for the arrival of late 

commodities and which vehicles depart without waiting. The minimum number of 

vehicles required within the service network can be determined for each feasible 

LA-CMNDP solution. Without exceeding these minimum numbers, the wait-depart 

decisions of each vehicle for the stations on its route and the corresponding 

schedules namely the timetables can be generated so as to minimize the waiting 

time of all commodities at all stations.  In this chapter, we present the basic decision 

issues and the modeling framework that we use for the delay management problem 

in latest arrival consolidation problems in Section 7.1. In Section 7.2, we present the 

mathematical model and discuss on the possible solution procedures. 

 

7.1 Delay Management in Latest Arrival Consolidation 

After LA-CMNDP has been solved, the next planning problem is to determine the 

vehicle routes for carrying the commodities through their delivery paths. By 

analyzing any feasible solution, the minimum number of vehicles required to 

perform the deliveries could be determined together with the initiating station for 



188 

each vehicle. LA-CMNDP constructs the commodity paths by assuming that each 

direct ride between stations is performed by the same vehicle. Although the 

maximum latest arrival time to destinations is minimized, at some stations of the 

service network departing vehicles may have to wait for the late arriving 

commodities. These waiting times delay the departure times of the vehicles and the 

commodities arrive to destinations with these delays.  

 

Without exceeding the minimum vehicle numbers, if multiple vehicles are allowed 

to perform the direct rides between the stations, the delays experienced by 

commodities could be minimized. The objective of minimizing the sum of all 

delays over all commodities force the vehicles depart as early as possible without 

waiting for the late arrivals. On the other hand, it may not be possible for all 

vehicles to depart from stations without waiting for the late arrivals, since the 

number of vehicles is limited. 

 

For the delay management problem in latest arrival consolidation (DLA), in Section 

7.1.1 we present the basic decision issues including the notation. To construct the 

mathematical model, we use event-activity-network representation and in Section 

7.1.2 we present the related event-activity-network structure in detail.  

 

7.1.1 Basic Decision Issues  

LA-CMNDP provides a delivery path kP  for each commodity ∈k K  in a 

transportation network ( , )=G N A . Let V be the set of vehicles that are required to 

deliver all commodities in K. For each vehicle v V∈ , the originating station ( )O v , 

and a set of alternative routes vR  can be identified by analyzing any feasible LA-

CMNDP solution. Each individual route vr R∈  consists of a set of stations vN N⊆  

which vehicle v  runs through. We assume that individual routes of vehicles include 

each station ∈i N  only once as Schöbel (2006), in order to avoid a time dependent 

representation of stations. 

 

The wait-depart decisions of vehicles at stations establish the timetables and affect 

the arrival times of commodities to their destinations. To manage the delays within 
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the transportation system, the arrival and the departure times of vehicles to stations 

have to be modeled. Let v
iDA  denote the arrival time of vehicle v  to station i and 

v
iDT  denote the departure time of vehicle v  from station i. We assume the same 

constant handing time δ i  is spent for the load-unload operations by all vehicles 

stopping at station i.  

 
There are three basic operations for a vehicle v  passing through a station i, 

illustrated in Figure 45:  

(i) stop and wait for the late arriving commodities, 

(ii) stop and collect/deliver commodities, 

(iii) continue the route without stopping. 

 

 

Figure 45. Possible Operations for a Vehicle v Passing Through a Station 

 

It should also be noted that, operations (i) and (ii) can be performed together by a 

vehicle stopping at a station.  

 

(i) Stop & Wait for the Late Arrivals: 

If vehicle v waits at station i for the arrival of vehicle u, then vehicle v can depart 

only after vehicle u arrives and the unload/load operations are performed:  

(7.1).δ≥ +v u
i i iDT DA  

 

(ii) Stop & Collect/Deliver: 

In this option,  

� new commodities can be loaded to v, 
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� some of the commodities on v can be unloaded.  

The new commodities have two sources, either they are unloaded from a vehicle 

that departs before v arrives to station i or station i can be the originating station of 

the new commodities. The unloaded commodities can be loaded to other vehicles 

departing from station i or station i can be the destination of these commodities. 

Vehicle v can depart from station i after experiencing δ i  amount of time for the 

corresponding load/unload operations: 

(7.2).δ≥ +v v
i i iDT DA

 

(ii) Continue the Route: 

In this option, vehicle v does not stop at station i, does not experience any handling 

time, and does not wait for the other vehicles. Therefore, the departure time of 

vehicle v from station i equals to the arrival time of vehicle v to station i: 

(7.3).=v v
i iDT DA

 

All vehicles cannot always choose the depart option at all stations. Since there is 

limited number of vehicles within the transportation system, at some stations some 

of the vehicles have to wait for the late arrivals. The wait option is depicted in 

Figure 46 on a small network consisting of 5 stations, 3 commodities (a, b, c), and 2 

vehicles (v, u). 

 

 

Figure 46. An Example Representation for the Wait Option 

 

If vehicle v arrives at station 3 earlier than vehicle u, 3 3<v uDA DA , then v has to wait 

at station 3 for the arrival of u, since the delivery from station 3 to station 4 has to 

be performed by one vehicle. 
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7.1.2 Event Activity Network Representation  

DLA uses the following inputs obtained and derived from the solution of LA-

CMNDP: 

� the delivery paths kP  of all commodities in ,K  

� the minimum number of vehicles | |V  required to deliver all commodities in 

K  through their delivery paths ,kP  

� the originating stations ( )O v  of each vehicle in V, 

� the set of alternative routes vR  for each vehicle in V. 
 

DLA 

� determines the wait-depart decisions of each vehicle at each station,  

� determines the vehicle routes together with the timetables indicating the 

arrival and departure times to stations,  

� determines a routing plan for each commodity, namely assigns each 

commodity k to vehicle routes on its delivery path .kP  

 

The input-output relationship of LA-CMNDP and DLA is presented in Figure 47. 
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Figure 47. The Input-Output Relationship of LA-CMNDP and DLA 
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In delay management and timetabling studies, the activity on arc project network 

representation is generally used to model the problems, (Schöbel (2001), Schöbel 

(2006), Ginkel and Schöbel (2007), Heilporn et al. (2008)). Likewise, we generate 

the modeling structure of DLA, by using an event activity network representation 

that is similar to the one presented by Schöbel (2006). 

 

Let ( , )θ=EAN E  represent the event activity network of DLA. E is the set of nodes 

that represents the arrival and the departure events of the vehicles, and θ  is the set 

of directed arcs that represents the driving, changing, and passing activities. The 

sets of arcs in θ  that enter and emanate from event ∈g E  are denoted by ( )In g  

and ( )Out g , respectively. Using the event activity network structure of Schöbel 

(2006), the events and the activities in ( , )θ=EAN E  is defined as follows: 

� = ∪arr depE E E  

� {( , , ) : }= ∈ ∈arrE v i arr the arrival event of vehicle v V to station i N  

� {( , , ) : }= ∈ ∈depE v i dep the departure event of vehicle v V from station i N  

� v
arrE :   the set of nodes in arrE  representing the arrival events of vehicle v  

� v
depE :   the set of nodes in depE  representing the departure events of vehicle v  

� = ∪
v v v

arr depE E E  

� θ θ θ θ= ∪ ∪drive pass change  

� {(( , , ), ( , , )) : }θ = ∈ ×drive dep arrv i dep v j arr E E vehicle v drives from station i to j   

� {(( , , ), ( , , )) : }θ = ∈ ×pass arr depv i arr v i dep E E vehicle v passes through station i  

� 
{(( , , ), ( , , )) :

}

θ = ∈ ×change arr depv i arr u i dep E E commodities change from

vehicle v to u at station i
 

 

Driving and passing activities are performed by both the vehicles and the 

commodities, whereas the changing activities are only performed by commodities. 

The passing activities θ pass  represent the possible options for a vehicle passing 

through a station. As previously discussed in Section 7.1.1, these options are: 
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(i) stop & wait for the late arrivals, 

(ii) stop & collect/deliver, 

(iii) continue the route. 

 

For an example transportation network given in Figure 48, the corresponding event 

activity network representation ( , )θ=EAN E  is presented in Figure 49.   

 

 

Figure 48. An Example Transportation Network with Vehicle Routes 

 
 
 

 

Figure 49. The EAN Representation of the Transportation Network Presented in 
Figure 48 
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To model the vehicle routes and the commodity assignments to vehicles in DLA, 

we define the following decision variables: 

� 
1 ( , )

0

θ∈ 
=  
 

gh

if the activity g h is performed
y

otherwise
 

� 
1 ( , )

0

θ∈ ∈ 
=  
 

k
gh

if commodity k K performs the activity g h
x

otherwise
 

� 

1

( , )

0

θ

 
 

= ∈ 
 
 

gh pass

if handling operations are required to perform

z the activity g h

otherwise

 

� Π :g  the schedule of event ∈g E  

� :kDA  the arrival time of commodity ∈k K  to its destination ( ).D k   

 

Π g  denotes the  

� arrival time DA  of vehicles to stations for ∈ arrg E ,  

� departure time DT  of vehicles from stations for .∈ depg E  

 

In a feasible solution of DLA; the ghy  variables give us the route ∈ vr R  of each 

vehicle v together with the related wait-depart decisions and the operations 

performed by each vehicle v at stations on its route, the k
ghx  variables give us the 

commodity assignments to vehicle routes, the Π g  variables give us the timetable of 

the transportation system, and kDA  variables give us the arrival time of 

commodities to their destinations. 

 

To obtain a feasible timetable, the constraints that have to be satisfied by Π g  

variables of DLA are defined in (7.4)-(7.12) considering the precedence relations of 

the events in ( , )θ=EAN E  that are determined by the performed activities in θ  and 

the commodity assignments to the performed activities. 
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In DLA, the ready times of the commodities at their origins are assumed to be zero. 

The initiating stations ( )=i O v  of vehicles can be of two types. In the first type, 

vehicle v begins its route at station i by loading only the commodities k, whose 

( ) =O k i . In the second type, vehicle v begins its route at station i by loading the 

commodities, whose ( ) ≠O k i . The initiating stations of the vehicles in the first set 

is denoted as bN  and the second set is denoted as .mN  The Πg  of the arrival 

events of the vehicles in V, whose ( ) ,∈ bO v N  is equal to zero. Since these vehicles 

can start their routes without waiting for the arrival of other vehicles: 

Π 0 {( , , ) | ( ) } (7.4).= ∀ ∈ = = ∈ b
g arrg E v i arr i O v and i N

 

The vehicles v, whose ( ) ,∈ mO v N  have to wait at ( )O v  for the arrival of other 

vehicles u, (see Figure 50). Therefore, the arrival time of the vehicles v are set 

greater than or equal to the arrival time of the vehicles u: 

Π Π ( , ) {(( , , ), ( , , )) | ( ) },

( , ) {(( , , ), ( , , )) | ( ) } (7.5).

θ

θ

≥ ∀ ∈ = = ∈

∀ ∈ = = ∈

m
g f f h pass

m
change

y g h v i arr v i dep i O v and i N

f h u i arr v i dep i O v and i N

 

 

 

Figure 50. The EAN Representation for a Vehicle v That Can Start Its Route at 
Station i=O(v) After the Arrival of Vehicle u 
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The possible operations that can be performed by a vehicle passing through a 

station have different effects on the schedules that are defined by constraints (7.6)-

(7.12).  

 

In stop & wait for the late arrivals case, vehicle v waits at station i for the late 

arriving commodities and a vehicle change happens from the late arriving vehicle u 

to vehicle v, (see Figure 51). Vehicle v can depart from station i only after vehicle u 

arrives to station i and the load/unload operations are performed: 

(( , , ), ( , , ))Π (Π ) ( , ) { } (7.6).δ θ≥ + ∀ ∈ =h f i f h change u i arr v i depy f h

 

 

Figure 51. The EAN Representation for a Vehicle v That Waits at Station i for the 
Late Arriving Vehicle u 

 

In stop & collect/deliver case, the handling time δ i  spent by vehicle v at station i 

for the load operations (collect) are considered by constraints (7.7)-(7.9): 

( )

Π Π ( , ) {(( , , ), ( , , ))} (7.7)

, ( , ) {( , , ), ( , , ) | } (7.8)

Π (Π ) ( , ) {(( , , ), ( , , ))},

( , ) {(( , , ), ( , , ))} (7

δ θ

θ

δ θ

θ

≥ + ∀ ∈ =

≥ ∀ ∈ ∈ = =

≥ + ∀ ∈ =

∀ ∈ =

h g i gh pass

k
gh gh pass

h g i f h pass

change

O k

z g h v i arr v i dep

z x k K g h v i arr v i dep i

y g h v i arr v i dep

f h u i arr v i dep .9).

 

Together with constraints (7.7) and (7.8) define the load operations of the new 

commodities k that start their route at station ( )=i O k , (see Figure 52).  
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Figure 52. The EAN Representation for the Load Operations of Vehicle v at Station 
i for The New Commodities k With i=O(k) 

 

Constraints (7.9) define the load operations of the commodities that have arrived to 

station i before vehicle v arrives, (see Figure 53). 

 

 

Figure 53. The EAN Representation for the Load Operations of Vehicle v at Station 
i for the Commodities That Have Arrived to Station i Before Vehicle v 

 

In stop & collect/deliver case, the handling time δ i  spent by vehicle v at station i 

for the unload operations (deliver) are considered by constraints (7.7) and (7.10)-

(7.11): 

g

Π Π ( , ) {(( , , ), ( , , ))} (7.7)

, ( , ) {( , , ), ( , , ) | ( )} (7.10)

Π (Π ) ( , ) {(( , , ), ( , , ))},

( , ) {(( , , ), ( , , ))}

δ θ

θ

δ θ

θ

≥ + ∀ ∈ =

≥ ∀ ∈ ∈ = =

≥ + ∀ ∈ =

∀ ∈ =

h g i gh pass

k
gh f drive

h g i g f pass

change

z g h v i arr v i dep

z x k K f g v j dep v i arr i D k

y g h v i arr v i dep

g f v i arr u i dep (7.11).
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Together with constraints (7.7) and (7.10) define the unload operations of the 

commodities k that arrive to their destination at station ( )=i D k , (see Figure 54).  

 

 

Figure 54. The EAN Representation for the Unload Operations of Vehicle v at 
Station i for the Commodities k With i=D(k) 

 

Constraints (7.11) define the unload operations of the vehicle v at station i for the 

vehicle changes from vehicle v to u, (see Figure 55). 

 

 

Figure 55. The EAN Representation for the Unload Operations of Vehicle v at 
Station i for the Vehicle Changes From v to u 

 

If vehicle v does not stop at station i and continues its route, then 0=ghz  and 

constraint (7.7) would be Π Π≥h g  corresponding to continue the route case.  
 

The departing vehicle v from station i can reach the next station j on its route only 

after experiencing the travel time ijt  between stations, (see Figure 56). 
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Π (Π ) ( , ) {(( , , ), ( , , ))} (7.12)θ≥ + ∀ ∈ =g h ij hg drivet y h g v i dep v j arr

 

 

 

Figure 56. The EAN Representation for the Driving of Vehicle v From Station i to j 

 
The arrival times of commodities to their destinations is obtained by the following 

sets of constraints:  

Π , {( , , ) | ( )} (7.13)≥ ∀ ∈ ∈ = =k
g arrDA k K g E v i arr i D k

 

 

7.2 Mathematical Model 

To model the vehicle routes in DLA, a modeling structure that is similar to the one 

presented by Ahuja et. al. (2005) for train scheduling problem is used. The train 

scheduling problem uses the blocking plan as an input and determines the number 

of trains to be scheduled; the arrival and the departure times of each train to each 

station; the route of each train including the initiating and the final stations; and 

assignments of blocks to the trains. Although DLA is similar to the train scheduling 

problem, there are differences between the two problems. In DLA, the minimum 

number of vehicles that are required to perform the deliveries and the initiating 

stations of the vehicles are known, whereas they are decision variables in train 

scheduling problem.   

 

In modeling network structure of Ahuja et. al. (2005), two dummy nodes; a source 

node φ  representing the supply of trains and a sink node s representing the train 

terminations are added to the scheduling network with the assumption that at source 

node φ  a unit flow of distinct commodities each representing a train is available to 

be sent to the stations of the transportation network ( , )=G N A , (see Figure 57). 

The trains that are to be scheduled are sent from node φ  to their initiating stations, 
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which are determined by the mathematical model. The scheduled and the 

unscheduled trains terminate at node s. The arc from node φ  to a station ∈i N  is 

used for the scheduled trains and the arc ( , )φ s  is used for the unscheduled trains.  

 

 

Figure 57. The Network Structure of Ahuja et al. (2005) Used For Modeling Train 
Routes 

 

Since in DLA the minimum number of vehicles required to perform the deliveries, 

| |,V  are known with the initiating stations ( )O v  for each vehicle, only the dummy 

sink node s is added to the EAN as a termination event. Each vehicle v begins its 

route at ( ),O v  passes through a set of stations ,∈i N  and terminates its route at s. In 

order to model the vehicle routes from stations ( )O v  to s in EAN, an arc from each 

arrival event in * {( , , ) | ( )}∈ = ≠arrg E v i arr i O v  to s is added to the EAN and the arcs 

( , )g s  define the termination activities :θterminate  

{(( , , ), ) | ( ) : }.θ = ≠terminate v i arr s i O v vehicle v terminates its route at station i  

 

The extended EAN structure that includes the termination event s and the 

termination activities θterminate  is presented in Figure 58. It should be noted that 

termination activities are only performed by vehicles. Each commodity k terminates 

its route at one of the arrival events of its destination station, 
** {( , , ) | ( )}∈ = =arrg E v i arr i D k . 

 



202 

 

Figure 58. The Extended EAN Structure Used to Model the Vehicle Routes in DLA 

 
Using the extended EAN structure, DLA is formulated so as to minimize the waiting 

times of all commodities at all stations. For this purpose, the objective function of 

DLA minimizes the sum of arrival times to destinations of all commodities, 

∈
∑ k

k K

DA .  
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The objective function minimizes the sum of the arrival times of all commodities to 

their destinations. Constraints (7.4)-(7.12) state the feasibility of the timetable of the 

transportation system. Constraints (7.13) determine the arrival time of commodities 

to their destinations. The vehicle routes and the assignments of commodities to the 

vehicle routes are modeled as multicommodity network flows using flow balance 

constraints. Constraints (7.14) are the flow balance of vehicle routes and constraints 

(7.15)-(7.17) are the flow balance of commodity assignments. By constraints (7.18), 

each commodity k can only be assigned to an activity g, if g is selected by the 

model and g is an activity of the stations that are on .kP  Constraints (7.19)-(7.20) 
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are the nonnegativity constraints. DLA is a nonlinear mixed integer programming 

problem, due to the timetable constraints of (7.5)-(7.7), (7.9), (7.11), and (7.12). 

 

7.2.1 Flow Balance of Vehicle Routes and Commodity Assignments  

In this section, the explicit forms of the flow balance constraints of the vehicle 

routes and the commodity assignments are stated on small example transportation 

networks. In Figure 59, a set of example routes are given for a vehicle v and in 

Figure 60 the corresponding EAN representation is presented. 

 

 

Figure 59. A Set of Example Routes for a Vehicle v 

 

 

 

Figure 60. The EAN Representation of the Vehicle Routes Given in Figure 59 
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Constraints (7.14) ensure that each vehicle in V can only be routed through one of 

its alternative routes .vR  The explicit forms of the constraints (7.14) for the EAN 

given in Figure 60 are as follows: 

{ 12

23 24 12

35 3 23

46 4 24

57 58 35

68 46

( ) : 1 1

2 0

3 0

( ) : 4 0

5 0

6 0

= = =

= + − =
 = + − =

≠ ≠ = + − =
 = + − =
 = − =

s

s

g O v g y

g y y y

g y y y

g O v and g s g y y y

g y y y

g y y

 

{

7 57

8 58 68

3 4 7 8

7 0
( ) :

8 0

: 1.

= − =
≠ ≠ 

= − − =
= = − − − − = −

s

s

s s s s

g y y
g O v and g s

g y y y

g s g s y y y y

 

 

In Figure 61, a set of example vehicle routes are given for a commodity k and in 

Figure 62 the corresponding EAN representation is presented. 

 

 

Figure 61. A Set of Alternative Vehicle Routes for a Commodity k  
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Figure 62. The EAN Representation of the Vehicle Routes Given in Figure 61 

 

Constraints (7.15)-(7.17) assign commodities to vehicle routes such that each 

commodity is routed through its delivery path kP  following a sequence of vehicle 

routes. Constraints (7.15) and (7.16) state the flow balance of a commodity k for the 

events with ( , ( ), )v O k arr  and ( , ( ), ),v D k arr  respectively. The explicit forms of the 

constraints (7.15) and (7.16) for the EAN given in Figure 62 are as follows: 

2,4

7,10 8,12

{( , , ) | ( )}: {2} 1

{( , , ) | ( )}: {10,12} 1.

∈ = = =

∈ = = − − = −

k
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g v i arr i O k g x

g v i arr i D k g x x
 

 

Constraints (7.17) state the flow balance of the a commodity k for the events in 

\{( , ( ), ), ( , ( ), )}E v O k arr v D k arr . The explicit forms of the constraints (7.17) for the 

EAN given in Figure 62 are as follows: 
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k k

k k k
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k k

g u dep x x

g u arr x x x
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g v dep x x
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7.2.2 Solution Procedures  

We solve DLA on a small example problem by applying the linearization structure 

presented in Section 4.1. We generate the problem instance using T1-1 network that 

has | | 11=N  and we generate 5 commodity paths on this network, ( | | 5=K ). Even 
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for this small network, the minimum number of vehicles required to deliver the 5 

commodities is equal to 4 and there are 11 alternative vehicle routes. The 

corresponding EAN consists of 34 nodes and 48 arcs. We obtain 45% decrease in 

total waiting times by DLA, showing the potential of our model to reduce the delays 

within the transportation system. 

 

To solve large instances, the properties of DLA has to be considered. DLA is a 

nonlinear mixed integer programming problem. The nonlinearity is due to the 

constraints (7.5)-(7.7), (7.9), (7.11), (7.12) that state the feasibility conditions of the 

timetable. DLA has a similar structure to LA-CMNDP. When the binary variables 

, ,k
gh gh ghx y z  are known, the nonlinear constraints become linear and DLA reduces to 

a linear programming problem that can be solved efficiently. Therefore, 

decomposition methods like Generalized Benders Decomposition (GBD) procedure 

can be applied to DLA. To increase the computational efficiency valid inequalities 

could also be incorporated into the decomposition scheme.  

 

Also to reduce the size of the event-activity network in DLA, the shrinking method 

that is used by Ginkel and Shöbel (2007) could be applied. By this way, the same 

model would be used in an efficient structure that reduces the number of decision 

variables. 

 

Tailored metaheuristic algorithms could also provide efficient solution procedures 

for DLA, especially for problems with realistic sizes. After constructing an initial 

routing plan for vehicles and a corresponding timetable algorithmically, 

improvements could be achieved by neighborhood search algorithms. Changes in 

vehicle routes and the wait-depart decisions of the vehicles at stations could be 

searched by tailored neighborhood moves.  
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CHAPTER 8 

 
 

8 CONCLUSION 
 

 

 

 

In this chapter, we first present a brief summary of this thesis stating our main 

findings and results in Section 8.1. Then, in Section 8.2 we list the main 

contributions of this thesis. Lastly, in Section 8.3 we provide possible future 

research directions.  

 

8.1 Summary 

In this thesis, we study on a multicommodity network design problem that applies 

latest arrival consolidation. We name this problem as LA-CMNDP and define the 

main properties of the problem and the resulting service network. We present a 

literature survey of the studies that are related to LA-CMNDP, including 

multicommodity network design problems, service network design problems, 

railroad planning problems, and the latest arrival problems. We present the 

properties and the capabilities of the models developed for these problems. 

 

For LA-CMNDP, we develop exact and heuristic solution procedures and analyze 

their capabilities on different size test networks by performing extensive 

computational experiments. For this purpose, we generate 8 different-sized test 

networks considering different regions of Turkey. 

 

In the exact solution procedures, we implement Generalized Benders 

Decomposition (GBD). We develop 8 different GBD algorithms for LA-CMNDP. 

We propose an alternative GBD cut and show the effectiveness of this alternative 

cut over the original GBD cut by performing computational experiments on 276 test 
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instances. We also incorporate different sets of valid inequalities into the GBD 

algorithms and identify the ones that increase the quality of the solutions.  

 

All GBD variants provide the optimum solutions within seconds for the test 

instances with |N|={11,13} and the commodity numbers satisfying the full-cross-

traffic case. For the test instances having |N|={21,25}, if we consider the average 

performances CPLEX provide better solutions than all GBD variants. However, as 

number of nodes and commodities increase, CPLEX cannot provide even an integer 

solution, whereas all GBD variants provide a feasible solution. These instances can 

be listed as: |N|=33, | | 75;≥K  |N|=52, | | 200;≥K  |N|=62, | | 150;≥K  |N|=81, | | 100.≥K  

 

Although on larger size instances all GBD algorithms outperform CPLEX, the 

computational times of GBD algorithms are around 12 minutes on average. The 

computational times and the quality of the solutions are further improved with a 

tailored heuristic algorithm. We develop an LNS metaheuristic algorithm for LA-

CMNDP, which we call as LNS-LA.  

 

We prove the effectiveness of LNS-LA by performing computational experiments 

on 327 test instances. We compare the computational performances of the best 

GBD algorithm and LNS-LA on test instances with |N|={21,25,33,52,62,81}. In all 

instances, LNS-LA provides better solutions in significantly shorter computational 

times than the best performing GBD algorithm. Moreover, for the instances, which 

CPLEX cannot provide the optimal solution, LNS-LA provides solutions with 

better objective functions in less than 2 minutes computation time. 

 

Under all different parameter settings of ( , ,| |),βp K  LNS-LA provides the optimum 

solutions in seconds for test networks with |N|={11,13}. LNS-LA provides good 

quality solutions for test networks with |N|={21}, | | 420;≤K  |N|={25}, | | 600;≤K  

|N|={33}, | | 1,026≤K  in computational times of less than 3 minutes. LNS-LA 

provides good quality solutions for test networks with |N|={52} and | | 1,989≤K  in 

less than 10 minutes, for test networks with |N|={62} and | | 2,837≤K  in less than 22 

minutes, and for test networks with |N|={81} and | | 4,860≤K  in less than an hour.  
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We compare LNS-LA and the single allocation latest arrival p-hub location problem 

(SLApHLP) of Kara and Tansel (2001) with respect to the effect of their 

networking structures on travel times. Although LA-CMNDP does not apply a 

discount factor to any of the arcs in the service network, even for 0.9,α =  LNS-LA 

provide solutions with lower LA values and lower total travel times. This is due to 

the flexible networking structure of LA-CMNDP. Compared to the strict hubbing 

structure of SLApHLP, in LA-CMNDP a node can be linked to multiple other 

nodes and the commodities are allowed to be delivered through paths consisting 

even 1 or 2 arcs as long as other constraints hold. 

 

We analyze the effects of terminal locations on the service network of LA-CMNDP 

by performing a sensitivity analysis on test networks having | | {11,13}.∈N  

According to the sensitivity analysis results, obtaining an implementable LA-

CMNDP solution is highly sensitive and the LA values are moderately sensitive to 

the locations of terminals.  

 

We present a model for the delay management problem arising in service network 

design problems that apply latest arrival consolidation, which we call as DLA. 

Using event-activity-network representation of project networks, we develop a 

model that simultaneously determine the vehicle routes with schedules and the 

assignments of commodity paths to the vehicle routes. We present the 

computational results of DLA on a small transportation network and discuss on 

possible solution procedures. 

 

8.2 Contributions 

The main contributions of this thesis can be listed as follows: 

� A taxonomy of network optimization problems in freight transportation is 

presented together with the main strategic, tactical, and operational planning 

problems in each transportation mode (ground, rail, air, maritime, and 

intermodal).  

� A mathematical model for service network design problems that apply latest 

arrival consolidation is presented. The proposed model (LA-CMNDP) 
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allows more flexible routing than its counterparts in hub location studies; 

allows multiple allocation; does not require full-cross-traffic assumption for 

the latest arrival time calculations, can be both applied to incomplete and 

complete physical networks.  

� Comprehensive literature reviews for Benders Decomposition and 

Generalized Benders Decomposition procedures are presented. 

� For the main solution and enhancement techniques of BD and GBD 

procedures, classification schemes, which provide researchers a guideline 

for the possible set of techniques and the required problem features for 

applicability, are proposed.  

� For the solution of LA-CMNDP, eight GBD based algorithms are 

developed. An alternative decomposition cut to the classical GBD cut is 

proposed. The proposed alternative decomposition cut improves the 

computational time performance and the solution quality of the classical 

GBD procedure. Further enhancements in GBD algorithms are analyzed by 

incorporating different sets of valid inequalities and  experimenting on large 

number of test instances.  

� A Large Neighborhood Search (LNS) metaheuristic is developed for LA-

CMNDP. With the proposed metaheuristic algorithm, moderate sized test 

networks having up to 200 commodities can be solved significantly faster 

than CPLEX and all GBD variants. Larger networks (81 nodes, 4,860 

commodities) that cannot be solved by CPLEX and GBD algorithms are 

solved in reasonable computing times. 

� The proposed metaheuristic includes a set of interrelated subroutines that 

establish the basic algorithmic operations of latest arrival time calculations 

in multicommodity network flow problems. The presented subroutines can 

also be used in different modeling contexts (i.e. the packet switching 

problem in telecommunication networks) dealing with late arrivals. 

� An integrated mathematical model for the delay management problem in 

service networks that apply latest arrival consolidation is proposed. The 

integrated modeling of vehicle routes and commodity assignments to vehicle 

routes are achieved by defining flow balance constraints on event-activity-

networks. 
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8.3 Future Research Directions 

Several enhancements can be incorporated into the latest arrival consolidation 

structure and new models under these considerations can be developed. Minimum 

allowable waiting time limits, in which all the departures from a station wait for all 

the arrivals within this limit, can be modeled. Priorities of the commodities can be 

considered in consolidation operations. Also, delivery time restrictions of 

commodities can be incorporated into the consolidation structure and a service 

network providing different levels of services can be modeled. 

 

LA-CMNDP can be re-modeled considering the capacity restrictions of vehicles, 

the transportation infrastructure (terminals, handling equipments), and the resources 

(crew, handling operators). 

 

The modeling concerns of DLA can be enhanced by incorporating time window 

constraints. Allowable waiting times can be defined for all vehicles stopping at a 

station. The effect of applying soft and hard time window constraints on the system 

wide delays can be analyzed. 

 

Developing exact and heuristic solution procedures for model DLA can be studied. 

Generalized Benders Decomposition procedure can be implemented with possible 

enhancement techniques like incorporating valid inequalities, developing efficient 

solution procedures for the sub and the relaxed master problems. In addition, 

tailored heuristics can be developed for DLA. 

 

An integrated model that develops the commodity paths, the vehicle routes, and the 

corresponding timetables simultaneously with latest arrival consolidation can be 

studied. Namely, the problems LA-CMNDP and DLA can be modeled together. For 

this integrated model, decomposition structures that partition the main model into 

sub problems and solve the sub problems in an iterative manner can be developed. 
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APPENDIX – A 

 

 

B. TECHNICAL NOTE ON BENDERS DECOMPOSITION 

 

 

 

We present Benders decomposition algorithm for mixed integer programming 

problems having the following form: 

( )

 

( )

0, 0  ,

Minimize cx f y

subject to

Ax F y b

Dy e

x y and integer

+

+ ≥

≥

≥ ≥

 

where vectors x and y represent the continuous and integer variables, respectively, 

and c represents the row vector of the associated costs of x and ( )f y  represents a 

scalar function. The constraints of the problem are represented by matrices A, D, 

vector function ( )F y , and fixed vectors b and e. All matrices, vectors, and 

functions are defined with appropriate sizes. 

 

If we fix the integer variables y as { , 0 and integer}∈ = ≥ ≥y Y y Dy e y , we can 

express this formulation as: 

0
min{ ( ) min{ : ( )}} ( .1).
∈ ≥

+ ≥ −
y Y x

f y cx Ax b F y A

 

The inner minimization problem in (A.1) is the Benders Sub Problem (SP). Since 

the SP is a linear programming problem, by duality theory we can interchange the 

primal and the dual formulations and express (A.1) as:  

0
min{ ( ) max{ ( ( )) : }} ( .2),
∈ ≥

+ − ≤T

y Y u
f y u b F y uA c A

where u denotes the dual variables associated to constraints ( ).≥ −Ax b F y  
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The inner maximization problem in (A.2) is the Benders Dual Sub Problem (D-SP). 

Since the link between the variables x and y is broken in D-SP, the feasible space 

{ 0; }S u u uA c= ≥ ≤  of the D-SP becomes independent of the constraints 

including  y variables and D-SP can have either a bounded or an unbounded optimal 

solution. 

� If bounded, then the solution corresponds to one of the extreme points, 

where Q  is the set of index numbers of the extreme points of S. 

� If unbounded, then there is a direction λ  for which ( ( )) 0T b F yλ − > . 

 
An unbounded optimal solution for the D-SP results in infeasibility of the inner 

minimization problem in (A.1) and has to be avoided by eliminating the 

corresponding y  variables. For this purpose, the following set of constraints that 

are called as extreme ray cuts have to be added to (A.2): 

( ( )) 0 ( .3),λ − ≤ ∈w

T b F y w W A

where W denotes the set of index numbers of the extreme rays of S.  

 

Considering (A.3) for y , the maximum value of the D-SP would equal to one of the 

extreme points qu ( ∈q Q ): 

min{ ( ) max{ ( ( )) : 1,..., }}

 

( ( )) 0 .λ

∈
+ − =

− ≤ ∈

q

w

T

T

y Y
f y u b F y q Q

subject to

b F y w W

 

By associating an auxiliary continuous variable η  for the maximum objective 

function value of the D-SP, the Benders Reformulation can be obtained:  

  ( )

 

( ( )) 0 ( .3)

( ( )) ( .4)

, 0 ( .5).

η

λ

η

η

+

− ≤ ∈

≥ − ∈

∈ ≥

w

q

T

T

Minimize f y

subject to

b F y w W A

u b F y q Q A

y Y A

 

Extreme ray cuts defined by (A.3) are also called as the feasibility cuts, since they 

state the necessary conditions for the feasibility of the formulation (A.1). 

Constraints (A.4) are called as the optimality cuts, since they define the optimality 

conditions of the D-SP.  
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Benders decomposition algorithm begins with only considering the constraints 

(A.5), which form the first Master Problem. Then the optimality and feasibility cuts 

are generated iteratively. Since the initial Master Problem and the following ones 

include a subset of constraints (A.3) and (A.4), they are called as Relaxed Master 

Problems (RMP). The objective function of the RMPs would provide a lower 

(upper) bound to the main minimization (maximization) problem. Each time the 

RMP is solved a temporary y  is obtained and the solution of the D-SP with y  

would provide us an upper (lower) bound to the main minimization (maximization) 

problem. If the D-SP is bounded an optimality cut, otherwise a feasibility cut is 

added to the RMP. In the Benders decomposition algorithm, the RMP and the D-SP 

are solved iteratively until the lower bound is equal to the upper bound or the 

optimality gap is within a predetermined limit, ε .  

 

The main steps of Benders decomposition algorithm for a minimization problem are 

provided in Figure 63, where UB and LB state the upper and lower bounds 

respectively, *
D SPz − and *

RMPz  state the optimal objective values of the D-SP and the 

RMP respectively. For more information about Benders decomposition, Benders 

(1962), Nemhauser and Wolsey (1998), Costa (2005), and Taşkın (2010) can be 

referenced. 
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( )UB LB

UB
ε

−
< ε

y

y*
D SPz UB− <

*: D SPUB z −=
*: RMPLB z=

*
RMPz

 

Figure 63. The Flow Chart of Benders Decomposition Algorithm
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APPENDIX – B 

 

 

B. TECHNICAL NOTE ON GENERALIZED BENDERS 
DECOMPOSITION 

 

 

 

The Projection: We present Generalized Benders Decomposition (GBD) algorithm 

for NLP problems having the following form: 

1

2

( ) ( , )

 

( , ) 0

.

≤

∈ ⊆ ℜ

∈ ⊆ ℜ

n

n

P Minimize f x y

subject to

G x y

x X

y Y

 

 

The partitioning of (P) in Generalized Benders decomposition is performed by 

projecting (P) onto the y-space: 

 

( ') ( )

 

,

P Minimize v y

subject to

y Y V∈ ∩

 

where  

( ) infimum ( , )  ( , ) 0, ( .6)≡ ≤ ∈
x

v y f x y subject to G x y x X A

and 

{ : ( , ) 0  for some  }V y G x y x X≡ ≤ ∈ . 

 

The optimization problem in (A.6) is: 

( ) ( , )

( , ) 0

.

P y Minimize f x y

subject to

G x y

x X

≤

∈
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In this projection scheme,  

� ( ')P  is the projection of (P) onto the y-space, 

� Y V∩  denotes the projection of the feasible region of (P) onto the y-space, 

� ( )v y  is the optimal value of (P) for fixed y,  

� the set V contains the feasible y values of ( )P y . 

 

By projecting (P) onto the y-space, problems ( ')P  and ( )P y  are obtained, which 

are easier to solve than (P). Using nonlinear duality theory, Generalized Benders 

Reformulation of (P) is derived in a three step procedure: (i) projection, (ii) dual 

representation of V, and (iii) dual representation of ( )v y . 

 

(i) Projection: 

( ')P  is equivalent to (P), thus  

� (P) is infeasible or unbounded if and only if the same holds for ( ')P , 

� if * *( , )x y  is optimal in (P), then *y  has to be optimal in ( ')P  and *x  is 

the optimizing x of *( )P y , 

� an 1ε -optimal solution y  of ( ')P  and an 2ε -optimal solution x  of 

( )P y  would be 1 2ε ε+ -optimal solution ( , )x y  of (P). 

 

(ii) Dual Representation of V: 

A point y Y∈  is also in the set V if and only if y  satisfies the infinite 

system: 

infimum[ ( , )] 0 ( .7),λ λ
∈

≤ ∀ ∈ΛT

x X
G x y A

where 
1

{ : 0  and  1}
m

m
i

i

Rλ λ λ
=

Λ = ∈ ≥ =∑ . 

λ∈Λ  specifies the convex combination of the constraints that have no 

solution in X. 

 

In order the dual representation of V to hold for (P), following assumptions 

have to be satisfied: 

 Assumption 1: X is a nonempty convex set, 
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 Assumption 2: ( , )G x y  is convex on X for each fixed ∈y Y , 

 Assumption 3: the set { : ( , )   for some  }m
yZ z R G x y z x X= ∈ ≤ ∈  is closed 

 for each fixed ∈y Y . 

 

(iii) Dual Representation of ( )v y : 

Problem ( )P y  is the subproblem (SP) of the GBD. The SP should be dual 

adequate in order to derive the ( )v y  representation, then the optimal value of 

( )P y  equals to the optimal value of its dual on Y V∩ : 

0

( ) supremum[infimum [ ( , ) ( , )]] ( .8),
∈≥

= + ∀ ∈ ∩T

x Xu

v y f x y u G x y y Y V A

where u is the optimal dual multipliers of ( ).P y  In order the dual 

representation of ( )v y  to hold for (P), following assumptions have to be 

satisfied: 

Assumptions 1-2  

Assumption 4: ( , )f x y  is convex on X for each fixed ∈y Y , 

Assumption 5: For each fixed y Y V∈ ∩  at least one of the following 

conditions must hold: 

(a) ( )v y  is finite and ( )P y  has an optimal multiplier vector û   

( û  is an optimal multiplier vector, if û  achieves the 

supremum in (A.8)), 

(b) ( )v y  is finite, ( , )G x y  and ( , )f x y  are continuous on X, X is 

closed, and for an 0ε ≥  the ε -optimal solution set of ( )P y  

is nonempty and bounded, 

(c) ( )v y = −∞ . 

 

For a problem (P) that satisfies Assumptions 1-5, if the three step procedure 

described by (i)-(iii) is applied, the following Generalized Benders reformulation is 

obtained: 
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0

[supremum[infimum [ ( , ) ( , )]]]

( .7)

.

∈≥
+

∈

T

x Xu

Minimize f x y u G x y

subject to

A

y Y

 

Floudas (1995) present the theoretical derivation of GBD for Mixed Integer 

Nonlinear Programming (MINLP) problems and present basic GBD variants that 

could be applied to MINLP problems. For a comprehensive review of MINLP 

solution techniques Grossman (2002) can be referenced. In addition, for more 

information on theoretical aspects of GBD, Geoffrion (1972), Lazimy (1986), 

Floudas et al. (1989), Bagajewicz and Manousiouthakis (1991), Sahinidis and 

Grossman (1991), Floudas (1995), and Grossman (2002) can be referenced. 

 

Finite Convergence:  

Geoffrion (1972) prove the finite convergence for MINLP problems, in which Y is a 

finite discrete set and prove the finite ε -convergence when Y is of infinite 

cardinality in Theorems 2.4 and 2.5 of Geoffrion (1972), respectively. 

 

Finite Convergence (Theorem 2.4 of Geoffrion (1972)):  

GBD algorithm terminates in a finite number of steps for any given 0ε >  and also 

for 0ε = ,  

� if Assumptions 1-4 hold,  

� if Assumption 5 hold omitting condition (b), and 

� Y is a finite discrete set. 

 

Finite ε -Convergence (Theorem 2.5 of Geoffrion (1972)):  

GBD algorithm terminates in a finite number of steps for any given 0ε > ,  

� if Assumptions 1-5 hold,  

� Y is a non-empty compact subset of V, 

� set of optimal multiplier vectors for ( )v y  is non-empty for y Y∀ ∈  and 

uniformly bounded in some neighborhood of each such point. 

 



243 

Variants of GBD:  

Explicit determination of functions *( , )L y u  and *( , )L y λ  is critical for obtaining 

implementable GBD algorithms and increasing the computational efficiency. 

Depending on problem characteristics and the partitioning structure, different 

solution procedures are utilized for this purpose. In this section, the most prominent 

GBD variants are provided. A comprehensive list of techniques regarding L 

functions is given in Section 3.6. Floudas (1995) presents three GBD variants 

together with the underlying assumptions:  

 

GBD-v1: 

The first variant is the application of Property (P) of Geoffrion (1972) and is 

applicable to the NLP problems, in which f and G are linearly separable in x and y, 

i.e. 

1 2 1 2( , ) ( ) ( ) , ( , ) ( ) ( ).f x y f x f y G x y G x G y≡ + ≡ +  

 

When ( )P y  is feasible for any 0u ≥ , it becomes possible to determine 

minimize( ( , ) ( , ))T

x X
f x y u G x y

∈
+  independently of y and the function  *( , )L y u  can be 

obtained explicitly as a function of y: 

1 1 2 2
*( , ) min( ( ) ( )) ( ) ( ), ( .9).

∈
≡ + + + ∈T T

x X
L y u f x u G x f y u G y y Y A

 

When ( )P y  is infeasible, for any λ∈Λ , it becomes possible to determine 

minimize( ( , ))T

x X
G x yλ

∈
 independently of y and the function  *( , )L y λ  can be 

obtained explicitly as a function of y: 

1 2*( , ) min ( ( )) ( ), ( .10).λ λ λ
∈

≡ + ∈T T

x X
L y G x G y y Y A  

 

Due to the strong duality theorem, the optimum solutions of the independent 

minimization problems in (A.9) and (A.10) are identical to the optimum solutions of 

feasible and infeasible ( )P y  problems with respect to x, respectively, Floudas 

(1995). 
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GBD-v2: 

If the projected problem ( )v y  is convex in y, then the optimal primal and dual 

solutions of ( )v y  namely * *( , )x u  and * *( , )x λ can be used to determine the 

functions *( , )L y u  and *( , )L y λ , respectively: 

* ** ( , ) ( , , )L y u L x y u=  

* *
*( , ) ( , , )L y L x yλ λ= . 

 

Floudas (1995) state that when ( )v y  is convex in y, * *( , , )L x y u  and * *( , , )L x y λ  

� represent supporting functions for ( )v y  at y , thus 

� provide valid GBD cuts. 

 

Variant GBD-v2 can be applied to the problems, in which f and G functions  are not 

linearly separable in x and y. Practically, when Property (P) does not hold the 

determination of functions *( , )L y u  and *( , )L y λ  are performed by fixing the ( , )x u  

and ( , )x λ  to the optimal solutions of the sub problems, Floudas et al. (1989), 

Sahinidis and Grossman (1991). If ( )v y  is nonconvex, then the GBD cuts obtained 

by GBD-v2 does not guarantee validity for the original problem and the GBD 

algorithm may terminate at a local optimum point, Floudas (1995), Cai et al. (2001). 

 

GBD-3: 

This variant is called as Global Optimum Search (GOS) and is proposed by Floudas 

et al. (1989) for nonconvex NLP and MINLP problems. GBD-v3 uses the same 

assumptions and algorithm steps of GBD-v2. But GBD-v3 assumes that ( , )f x y  

and ( , )G x y  are convex in Y for each fixed x X∈ . This additional assumption is 

required to obtain a special structure in the RMP. In GOS, the x and y variables are 

selected so as to satisfy the convexity assumptions and by this way global solutions 

are ensured to be obtained for the RMP and ( )P y . For problems with nonconvex 

( )v y , if f and G are not linearly separable in x and y, then GBD-v3 provides 

approximate GBD cuts rather than valid ones.  
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APPENDIX – C 

 
 

B. THE CITIES AND THE REGIONS OF TURKEY 

 

 

 

 
Table 28. The City and License Tag Information of Turkey Regions 

 
Regions License Tag City 

 
Regions License Tag City 

Aegean Region 

3 Afyon 
 

Marmara 
Region 

10 Balıkesir 

9 Aydın 
 

11 Bilecik 

20 Denizli 
 

16 Bursa 

35 İzmir 
 

17 Çanakkale 

43 Kütahya 
 

22 Edirne 

45 Manisa 
 

34 İstanbul 

48 Muğla 
 

39 Kırklareli 

64 Uşak 
 

41 Kocaeli 

Central Anatolia 

6 Ankara 
 

54 Sakarya 

18 Çankırı 
 

59 Tekirdağ 

26 Eskişehir 
 

77 Yalova 

38 Kayseri 
 

South 

Eastern 

Anatolia 

2 Adıyaman 

40 Kırşehir 
 

21 Diyarbakır 

42 Konya 
 

27 Gaziantep 

50 Nevşehir 
 

47 Mardin 

51 Niğde 
 

56 Siirt 

58 Sivas 
 

63 Şanlıurfa 

66 Yozgat 
 

72 Batman 

68 Aksaray 
 

73 Şırnak 

70 Karaman 
 

79 Kilis 

71 Kırıkkale 
 

Eastern 

Anatolia 

4 Ağrı 

Mediterranean 

Region 

1 Adana 
 

12 Bingöl 

7 Antalya 
 

13 Bitlis 

15 Burdur 
 

23 Elazığ 

31 Hatay 
 

24 Erzincan 

32 Isparta 
 

25 Erzurum 

33 İçel 
 

30 Hakkari 

46 Kahramanmaraş 
 

36 Kars 

80 Osmaniye 
 

44 Malatya 

Middle Black Sea 

5 Amasya 
 

49 Muş 

19 Çorum 
 

62 Tunceli 

52 Ordu 
 

65 Van 

55 Samsun 
 

75 Ardahan 

60 Tokat 
 

76 Iğdır 

Western Black 

Sea 

14 Bolu 
 

Eastern 

Black Sea 

8 Artvin 

37 Kastamonu 
 

28 Giresun 

57 Sinop 
 

29 Gümüşhane 

67 Zonguldak 
 

53 Rize 

74 Bartin 
 

61 Trabzon 

78 Karabük 
 

69 Bayburt 

81 Düzce 
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APPENDIX – D 

 

 

B. THE TEST NETWORKS 

 

 

 
 

 

Figure 65. T1-1 Marmara Region Test Network – 11 Cities 

 

 

Figure 66. T1-2 Central Anatolia Region Test Network – 13 Cities 
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Figure 67. T2-1 Central Anatolia and Mediterranean Regions Test Network – 21 

Cities 

 

 

 

Figure 68. T2-2 Central Anatolia & Western and Middle Black Sea Regions Test 

Network – 25 Cities 

 



249 

 

Figure 69. T2-3 Central Anatolia & Western and Black Sea & Mediterranean 
Regions Test Network – 33 Cities 
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APPENDIX – E 

 

 

B. COMPUTATIONAL RESULTS OF GBD-1-1 AND GBD-2-1 ON T1 
INSTANCES 

 

 

 

Table 29. Computational Results of GBD-1-1 and GBD-2-1 on T1 Instances – 

Random 1 

    
CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| LA 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

T2-1 11 2 22 566 0.6   566 2 0.5   566 2 0.4 

   
44 701 0.6 

 
701 3 1.0 

 
701 4 0.9 

   
66 701 1.5   701 5 2.2   701 4 1.2 

   
88 No Solution                 

  
  Average 0.9     3 1.2     3 0.8 

  
3 22 566 0.5   566 2 0.4   566 2 0.3 

   
44 701 0.5 

 
701 3 1.0 

 
701 4 0.9 

   
66 701 1.5   701 4 1.8   701 6 1.7 

   
88 701 1.2   701 7 3.7   701 7 2.5 

  
  Average 0.9     4 1.7     5 1.3 

  
4 22 566 0.5   566 3 0.4   566 2 0.3 

   
44 701 0.5 

 
701 2 0.7 

 
701 2 0.5 

   
66 701 1.3   701 3 1.4   701 3 0.9 

   
88 701 1.9   701 4 1.9   701 4 1.4 

      Average 1.1     3 1.1     3 0.8 

T2-2 13 2 31 800 0.7   800 3 0.8   800 3 0.6 

   
62 906 1.4 

 
906 3 1.5 

 
906 3 1.0 

   
94 No Solution                 

   
125 No Solution                 

  
  Average 1.1     3 1.2     3.0 0.8 

  
3 31 800 0.7   800 3 0.7   800 3 0.5 

   
62 906 1.4 

 
906 3 1.4 

 
906 3 1.0 

   
94 906 2.0   906 3 2.0   906 3 1.4 

   
125 906 2.1   906 9 5.9   906 7 3.2 

  
  Average 1.6     5 2.5     4 1.5 

  
4 31 800 0.6   800 4 0.9   800 4 0.7 

   
62 906 1.3 

 
906 1 0.6 

 
906 1 0.5 

   
94 906 2.1   906 2 1.3   906 2 0.9 

   
125 906 1.7   906 6 4.0   906 6 2.7 

      Average 1.4     3 1.7     3 1.2 
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Table 30. Computational Results of GBD-1-1 and GBD-2-1 on T1 Instances – 

Random 2 

    
CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| LA 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

T2-1 11 2 22 559 0.6   559 5 1.0   559 5 0,7 

   
44 575 0.9 

 
575 7 1.8 

 
575 18 3,1 

   
66 702 1.7   702 5 2.2   702 5 1.6 

   
88 702 2.2   702 5 2.7   702 4 1.6 

  
  Average 1.4     6 1.9     8 1.7 

  
3 22 559 0.6   559 5 0.9   559 5 0,6 

   
44 575 0.9 

 
575 7 1.8 

 
575 18 3.1 

   
66 702 1.8   702 5 2.2   702 5 1.6 

   
88 702 2.7   702 5 2.7   702 5 1.8 

  
  Average 1.5     6 1.9     8 1.8 

  
4 22 559 0.6   559 6 1.0   559 6 0,7 

   
44 575 1.0 

 
575 11 2.6 

 
575 10 1.7 

   
66 702 1.6   702 5 2.0   702 5 1.4 

   
88 702 1.9   702 8 3.8   702 8 2.5 

      Average 1.3     8 2.3     7 1.6 

T2-2 13 2 31 840 0.5   840 4 0.7   840 4 0.5 

   
62 885 0.7 

 
885 5 1.7 

 
885 5 1.3 

   
94 906 2.1   906 9 5.0   906 11 4.0 

   
125 No Solution                 

  
  Average 1.1     6 2.5     7 1.9 

  
3 31 840 0.6   840 4 0.7   840 4 0.5 

   
62 885 0.7 

 
885 5 1.8 

 
885 5 1.3 

   
94 906 2.1   906 10 5.5   906 8 3.0 

   
125 No Solution                 

  
  Average 1.1     6 2.7     6 1.6 

  
4 31 840 0.6   840 1 0.3   840 1 0.2 

   
62 885 0.7 

 
885 1 0.7 

 
885 1 0.5 

   
94 906 1.9   906 7 3.5   906 6 1.9 

   
125 906 2.0   906 8 5.3   906 10 4.2 

      Average 1.3     4 2.5     5 1.7 
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Table 31. Computational Results of GBD-1-1 and GBD-2-1 on T1 Instances – 

Random 3 

    
CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| LA 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

T2-1 11 2 22 559 0.3   559 1 0.3   559 1 0.2 

   
44 701 0.7 

 
701 3 0.9 

 
701 2 0.4 

   
66 701 0.9   701 6 2.5   701 9 2.5 

   
88 835 1.0   835 3 1.8   835 3 1.2 

  
  Average 0.7     3 1.3     4 1.1 

  
3 22 559 0.3   559 1 0.3   559 1 0.2 

   
44 701 0.7 

 
701 3 0.9 

 
701 2 0.4 

   
66 701 1.0   701 6 2.5   701 9 2.5 

   
88 824 1.9   824 7 3.9   824 9 3.2 

  
  Average 1.0     4 1.9     5 1.6 

  
4 22 559 0.3   559 1 0.3   559 1 0.2 

   
44 701 0.5 

 
701 2 0.6 

 
701 2 0.5 

   
66 701 1.0   701 5 2.0   701 5 1.3 

   
88 809 1.1   809 6 2.9   809 7 2.1 

      Average 0.7     4 1.5     4 1.0 

T2-2 13 2 31 885 0.7   885 4 0.9   885 4 0.6 

   
62 885 1.9 

 
885 15 6.3 

 
885 11 3.3 

   
94 906 2.0   906 9 5.2   906 11 4.5 

   
125 1.293 2.3   1.293 5 3.9   1.293 6 3.3 

  
  Average 1.7     8 4.0     8 2.9 

  
3 31 885 0.6   885 4 0.9   885 4 0.6 

   
62 885 1.5 

 
885 16 6.6 

 
885 11 3.3 

   
94 906 2.9   906 9 5.2   906 11 4.4 

   
125 906 3.6   906 14 10.3   906 16 7.9 

  
  Average 2.2     11 5.7     11 4.0 

  
4 31 885 0.8   885 3 0.6   885 3 0.5 

   
62 885 1.8 

 
885 16 5.6 

 
885 17 3.9 

   
94 906 2.4   906 14 7.1   906 14 4.3 

   
125 906 2.8   906 12 7.8   906 12 5.0 

      Average 2.0     11 5.3     12 3.4 
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Table 32. Computational Results of GBD-1-1 and GBD-2-1 on T2 Instances – 

Random 4 

    
CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| LA 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

T2-1 11 2 22 566 0.6   566 5 1.0   566 6 0.7 

   
44 566 1.1 

 
566 6 1.7 

 
566 7 1.4 

   
66 575 1.6   575 12 4.7   575 12 3.1 

   
88 No Solution                 

  
  Average 1.1     8 2.5     8 1.7 

  
3 22 566 0.6   566 6 1.0   566 6 0.7 

   
44 566 1.1 

 
566 6 1.8 

 
566 7 1.5 

   
66 575 1.6   575 12 4.8   575 12 3.1 

   
88 809 2.1   809 7 3.5   809 10 3.2 

  
  Average 1.3     8 2.7     9 2.1 

  
4 22 566 0.5   566 4 0.9   566 4 0.5 

   
44 566 0.9 

 
566 5 1.3 

 
566 5 0.9 

   
66 575 1.5   575 5 1.9   575 5 1.3 

   
88 809 1.8   809 4 2.1   809 4 1.3 

      Average 1.2     5 1.5     5 1.0 

T2-2 13 2 31 840 0.7   840 5 1.1   840 5 0.8 

   
62 840 1.3 

 
840 7 2.9 

 
840 8 2.2 

   
94 885 2.0   885 6 3.5   885 6 2.4 

   
125 No Solution                 

  
  Average 1.3     6 2.5     6 1.8 

  
3 31 840 0.6   840 5 1.1   840 5 0.8 

   
62 840 1.1 

 
840 8 3.1 

 
840 8 2.2 

   
94 870 2.2   870 9 5.2   870 9 3.5 

   
125 No Solution                 

  
  Average 1.3     7 3.1     7 2.2 

  
4 31 840 0.6   840 2 0.5   840 2 0.4 

   
62 840 1.7 

 
840 3 1.2 

 
840 3 0.8 

   
94 870 1.6   870 5 2.8   870 5 1.8 

   
125 906 3.6   906 9 5.7   906 13 5.6 

      Average 1.9     5 2.5     6 2.1 
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Table 33. Computational Results of GBD-1-1 and GBD-2-1 on T1 Instances – 

Random 5 

    
CPLEX 

 
GBD-1-1 

 
GBD-2-1 

Test 

Problem 
|N| p |K| LA 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

  LA 
# of  

Cuts 

CPU 

Time 

(s) 

T2-1 11 2 22 701 0.3   701 1 0.3   701 1 0.2 

   
44 701 0.6 

 
701 2 0.7 

 
701 2 0.5 

   
66 809 1.3   809 2 1.0   809 2 0.7 

   
88 809 1.9   809 5 2.6   809 5 1.6 

  
  Average 1.0     3 1.1     3 0.8 

  
3 22 701 0.3   701 1 0.3   701 1 0.2 

   
44 701 0.6 

 
701 2 0.7 

 
701 2 0.6 

   
66 809 1.1   809 4 1.7   809 7 1.8 

   
88 809 1.8   809 3 1.8   809 3 1.1 

  
  Average 0.9     3 1.1     3 0.9 

  
4 22 701 0.3   701 2 0.4   701 2 0.3 

   
44 701 0.8 

 
701 3 0.8 

 
701 3 0.6 

   
66 809 1.2   809 4 1.7   809 4 1.1 

   
88 809 1.9   809 4 2.1   809 4 1.3 

      Average 1.0     3 1.3     3 0.8 

T2-2 13 2 31 870 0.7   870 3 0.7   870 3 0.5 

   
62 888 1.4 

 
888 3 1.2 

 
888 4 1.0 

   
94 888 2.3   888 7 4.0   888 7 2.5 

   
125 No Solution                 

  
  Average 1.5     4 1.9     5 1.3 

  
3 31 870 0.7   870 3 0.7   870 3 0.5 

   
62 888 1.2 

 
888 3 1.2 

 
888 4 1.0 

   
94 888 1.9   888 10 5.6   888 6 2.3 

   
125 888 3.1   888 16 11.4   888 13 6.4 

  
  Average 1.7     8 4.7     7 2.5 

  
4 31 870 0.6   870 6 1.0   870 5 0.7 

   
62 888 1.1 

 
888 5 1.6 

 
888 5 1.1 

   
94 888 2.1   888 10 4.9   888 7 2.1 

   
125 888 3.6   888 11 6.9   888 12 5.1 

      Average 1.9     8 3.6     7 2.3 
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APPENDIX – F 

 

 

B. COMPUTATIONAL RESULTS OF GBD VARIANTS WITH VALID 
INEQUALITIES ON T1 INSTANCES 

 

 

 

Table 34. Computational Results of GBD-1 Variants on T1 Instances – Random 1 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 3 0.4   2 0.4   2 0.4   4 0.6 

  
44 2 0.7 

 
2 0.7 

 
2 0.7 

 
2 0.7 

  
66 3 1.3   3 1.4   3 1.4   3 1.4 

  
88 4 2.1   4 1.9   5 2.8   4 2.3 

    Average 3 1.1   3 1.1   3 1.3   3 1.2 

T1-2 13 31 4 0.9   4 0.9   2 0.6   4 1.0 

  
62 1 0.6 

 
1 0.7 

 
1 0.7 

 
1 0.7 

  
94 2 1.3   1 1.1   3 2.0   2 1.5 

  
125 6 4.0   7 5.0   6 4.3   5 3.8 

    Average 3 1.7   3 1.9   3 1.9   3 1.7 

 

Table 35. Computational Results of GBD-1 Variants on T1 Instances – Random 2 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 6 1.0   6 0.9   3 0.4   5 0.7 

  
44 11 2.6 

 
7 1.8 

 
2 0.7 

 
6 1.6 

  
66 5 2.0   5 2.1   3 1.4   6 2.3 

  
88 8 3.8   8 4.2   5 2.9   5 2.7 

    Average 8 2.3   7 2.2   3 1.3   6 1.8 

T1-2 13 31 1 0.3   1 0.3   1 0.3   2 0.5 

  
62 1 0.7 

 
1 0.6 

 
1 0.7 

 
2 0.9 

  
94 7 3.5   9 5.0   6 3.4   5 2.9 

  
125 8 5.3   10 6.7   8 5.6   8 5.9 

    Average 4 2.5   5 3.2   4 2.5   4 2.6 
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Table 36. Computational Results of GBD-1 Variants on T1 Instances – Random 3 
 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 1 0.3   1 0.3   1 0.3   1 0.3 

  
44 2 0.6 

 
2 0.7 

 
2 0.7 

 
2 0.6 

  
66 5 2.0   3 1.3   3 1.3   4 1.7 

  
88 6 2.9   4 2.4   4 2.4   6 3.2 

    Average 4 1.5   3 1.2   3 1.2   3 1.4 

T1-2 13 31 3 0.6   2 0.5   3 0.7   2 0.5 

  
62 16 5.6 

 
13 4.6 

 
13 4.8 

 
15 5.6 

  
94 14 7.1   14 7.9   14 7.9   6 3.5 

  
125 12 7.8   13 8.9   14 9.8   12 8.3 

    Average 11 5.3   11 5.5   11 5.8   9 4.5 

 

 

Table 37. Computational Results of GBD-1 Variants on T1 Instances – Random 4 
 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 4 0.9   5 0.9   4 0.6   7 1.0 

  
44 5 1.3 

 
5 1.4 

 
4 1.2 

 
5 1.3 

  
66 5 1.9   8 3.0   5 2.1   8 3.0 

  
88 4 2.1   4 2.3   4 2.4   5 2.7 

    Average 5 1.5   6 1.9   4 1.6   6 2.0 

T1-2 13 31 2 0.5   3 0.7   3 0.7   2 0.5 

  
62 3 1.2 

 
7 2.5 

 
6 2.2 

 
9 3.1 

  
94 5 2.8   4 2.5   4 2.5   9 5.0 

  
125 9 5.7   10 7.2   10 7.3   9 6.5 

    Average 5 2.5   6 3.2   6 3.2   7 3.8 

 

 

Table 38. Computational Results of GBD-1 Variants on T1 Instances – Random 5 
 

   
GBD-1-1 

 
GBD-1-2 

 
GBD-1-3 

 
GBD-1-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 2 0.4   1 0.3   1 0.3   1 0.3 

  
44 3 0.8 

 
1 0.5 

 
1 0.5 

 
3 1.0 

  
66 4 1.7   3 1.4   3 1.3   3 1.3 

  
88 4 2.1   5 2.9   3 1.9   5 2.9 

    Average 3 1.3   3 1.2   2 1.0   3 1.4 

T1-2 13 31 6 1.0   6 1.1   6 1.0   6 1.0 

  
62 5 1.6 

 
3 1.2 

 
3 1.3 

 
4 1.6 

  
94 10 4.9   6 3.5   9 4.7   5 2.9 

  
125 11 6.9   13 8.9   10 6.9   13 9.2 

    Average 8 3,6   7 3.7   7 3.5   7 3.7 
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Table 39. Computational Results of GBD-2 Variants on T1 Instances – Random 1 
 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time (s) 

T1-1 11 22 2 0.3   2 0.4   2 0.4   3 0.5 

  
44 2 0.5 

 
2 0.5 

 
2 0.5 

 
2 0.6 

  
66 3 0.9   4 1.0   3 1.0   3 0.9 

  
88 4 1.4   3 1.3   5 1.9   4 1.6 

    Average 3 0.8   3 0.8   3 0.9   3 0.9 

T1-2 13 31 4 0.7   4 0.7   2 0.4   4 0.8 

  
62 1 0.5 

 
1 0.5 

 
1 0.5 

 
1 0.5 

  
94 2 0.9   1 0.7   3 1.3   2 1.1 

  
125 6 2.7   7 3.4   6 3.1   5 2.7 

    Average 3 1.2   3 1.3   3 1.3   3 1.3 

 

 

Table 40. Computational Results of GBD-2 Variants on T1 Instances – Random 2 
 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 6 0.7   6 0.7   5 0.6   5 0.6 

  
44 10 1.7 

 
10 1.8 

 
12 2.0 

 
8 1.5 

  
66 5 1.4   5 1.5   7 1.9   6 1.7 

  
88 8 2.5   8 2.7   6 2.1   5 1.9 

    Average 7 1.6   7 1.7   8 1.7   6 1.4 

T1-2 13 31 1 0.2   1 0.3   1 0.3   2 0.4 

  
62 1 0.5 

 
1 0.5 

 
1 0.4 

 
2 0.7 

  
94 6 1.9   7 2.6   5 2.0   5 2.1 

  
125 10 4.2   9 4.3   9 4.3   8 4.1 

    Average 5 1.7   5 1.9   4 1.7   4 1.8 

 

 
Table 41. Computational Results of GBD-2 Variants on T1 Instances – Random 3  

 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 1 0.2   1 0.2   1 0.2   1 0.3 

  
44 2 0.5 

 
2 0.5 

 
2 0.5 

 
2 0.5 

  
66 5 1.3   5 1.4   3 0.9   4 1.1 

  
88 7 2.1   4 1.5   4 1.5   6 2.2 

    Average 4 1.0   3 0.9   3 0.8   3 1.0 

T1-2 13 31 3 0.5   2 0.4   3 0.6   2 0.4 

  
62 17 3.9 

 
12 3.1 

 
15 3.8 

 
13 3.4 

  
94 14 4.3   11 4.1   8 3.0   8 3.2 

  
125 12 5.0   10 4.8   12 5.6   12 5.9 

    Average 12 3.4   9 3.1   10 3.2   9 3.2 
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Table 42. Computational Results of GBD-2 Variants on T1 Instances – Random 4 
 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 4 0.5   5 0.6   4 0.5   6 0.7 

  
44 5 0.9 

 
5 0.9 

 
4 0.8 

 
5 1.0 

  
66 5 1.3   8 2.0   5 1.4   8 2.1 

  
88 4 1.3   4 1.6   4 1.5   5 1.9 

    Average 5 1.0   6 1.3   4 1.0   6 1.4 

T1-2 13 31 2 0.4   4 0.6   3 0.5   3 0.5 

  
62 3 0.8 

 
9 2.2 

 
6 1.5 

 
7 1.9 

  
94 5 1.8   4 1.7   4 1.7   13 5.0 

  
125 13 5.6   13 6.5   18 8.6   10 4.9 

    Average 6 2.1   8 2.8   8 3.1   8 3.1 

 

 

Table 43. Computational Results of GBD-2 Variants on T1 Instances – Random 5 
 

   
GBD-2-1 

 
GBD-2-2 

 
GBD-2-3 

 
GBD-2-4 

Test 

Problem 
|N| |K| 

# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

  
# of  

Cuts 

CPU 

Time 

(s) 

T1-1 11 22 2 0.3   1 0.2   1 0.2   1 0.3 

  
44 3 0.6 

 
1 0.4 

 
1 0.4 

 
2 0.6 

  
66 4 1.1   3 0.9   3 0.9   3 1.0 

  
88 4 1.3   5 1.8   3 1.1   4 1.6 

    Average 3 0.8   3 0.8   2 0.6   3 0.8 

T1-2 13 31 5 0.7   6 0.7   6 0.7   6 0.8 

  
62 5 1.1 

 
3 0.9 

 
4 1.0 

 
4 1.1 

  
94 7 2.1   7 2.6   9 3.2   5 2.1 

  
125 12 5.1   13 5.9   10 4.6   13 6.2 

    Average 7 2.3   7 2.6   7 2.4   7 2.6 
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APPENDIX – G 

 

 

B. COMPUTATIONAL RESULTS OF GBD ALGORITHMS ON T2 
INSTANCES 

 

 

 

The tables of Appendix G are presented starting on the next page. 
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APPENDIX – H 

 

 

B. COMPUTATIONAL RESULTS OF GBD ALGORITHMS ON T3 
INSTANCES 

 

 

 

The tables of Appendix H are presented starting on the next page. 
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APPENDIX – I 

 

 

B. THE PSEUDO-CODES OF THE SUBROUTINES IN LNS-LA 
ALGORITHM 

 

 

 

subroutine Initial Solution Formation 
begin 

input: the physical network and all the parameters of model LA-CMNDP;  

{}:=S ;  

for k K∈  

generate 1 2, ,...,{ }kP
k P P P= by k-shortest path algorithm; 

end; 
for i = 1: I 

{}:
i

S = ; 

for k = 1: K  
k

c := a randomly chosen path  from set k
P ; { }:

i i k
S S= ∪ c ; 

end; 

:
i

S= ∪S S ; 

end; 
for  i = 1: I 

if i
S  is not feasible with respect to constraints (4.8)-(4.9) of LA-CMNDP then 

: \
i

S=S S ; 

 else 

calculate , ,DA DT LA values and check feasibility with respect to constraints (4.1)-(4.3) 

& (4.5); 

if i
S  is not feasible with respect to constraints (4.1)-(4.3) & (4.5) then : \

i
S=S S ; 

end; 
end; 
if  S is not empty then 

( ( )): min
best

S LA= S ; 

return best
S ; 

else 
 return “no feasible solution is found”; 

end; 
end; 

 
Figure 73. The Pseudo-Code of Initial Solution Generation Subroutine 
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subroutine ready; 

begin 

input: ,x  AC
A , AC

N ; 

for AC
i N∈  

for ( , ) AC
i j A∈  

 if 
( , )

0
AC

mi
m i

y
A

=
∈
∑  then 

ready ( , ) : 0i j = ; 

 else 

  for ( , ) AC
i j A∈  

 ready ( , ) : 0i j = ; 

  for ( , ) AC
m i A∈  

  if there are k K∈  with 1k k
mi ijx x= =  then  

  ready ( , ) : 1i j = ; 

  end; 
 end; 
end; 

  end; 
 end; 

end; 

return ready ( , )i j  for all ( , ) AC
i j A∈ ; 

end; 

 
Figure 74. The Pseudo-Code of Ready Subroutine 
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subroutine Latest Arrival; 

begin 

input: x ; : {( , ) : =1}AC k

ijA i j A x= ∈ ; : {}
AC

N = ; 

for all ( , ) AC
i j A∈ calculate ready values and determine feasibility; 

if feasibility is not violated 

for ( )i O k= , k K∈
 

if ( , )
AC

i j A∈ and  ready(i,j)=1  then 

 
:

ij i
DT δ= ; :

ij ij

k
jDA DT t= +  for k  with 1k

ijx = ;  

drop ( , )i j  from AC
A ; add node j to AC

N ;  

 end; 
end; 

 end; 

 for AC
i N∈  

for ( , ) AC
i j A∈  update ready values and determine feasibility; 

end; 

while {}AC
N ≠  and  feasibility is not violated do 

for AC
i N∈  

for ( , ) AC
i j A∈   

 if ready(i,j)=1 then 

   :
ij

DT =  max( )k
i

k K
DA

∈ i
δ+ ; 

for k K∈  with 1k
ijx =  

  
:

ij ij

k
jDA DT t= + ;  

   end; 

   drop arc ( , )i j  from ACA ;  add node j to AC
N ;  

 end; 
end; 

if there is no emanating arc ( , ) AC
i j A∈  from node i  then drop node i from AC

N ;  

end; 

for ( , ) AC
i j A∈  update ready values and determine feasibility; 

end; 

if {}AC
N =  then 

 x is feasible;  
( ): max k

D kk K
LA DA

∈
= ; 

else  x is infeasible; 

end; 
return feasibility of x; 
if x is feasible then return LA , D A , D T ; 

end; 
end; 

 

Figure 75. The Pseudo-Code of Latest Arrival Subroutine 
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subroutine Find LA-Path; 

begin 
input: x , LA , D A , D T ; 

arrival := LA ;    

: {}LAA = ;   : {}LAX = ;  : {}LAK = ;  : {}CANDIDATEK = ; 

NEXT := 0; i=1; 
while NEXT = 0 do 

 if max k
ik

DA = arrival then  

  NEXT := i; 

 else 
  i := i+1; 

 end; 
end; 

for i N∈  

if 
NEXTiDT =  arrival

NEXTit−  then 

arrival :
NEXTiDT= ;     

: ( , ) ;= ∪
LA LA

NEXTA A i  

for 1
i NEXT

kx =  

: ;= ∪
i NEXT

LA LA kX X x  

: ;= ∪
LA LAK K k  : ;= ∪

CANDIDATE CANDIDATEK K k  
  end; 

  NEXT := i ; 

 end; 
end; 

 while arrival > 0 

for i N∈
  

if 
i NEXTDT =  arrival

NEXTit−  then 

if there is at least one CANDIDATE
k K∈  with 1NEXT

k
ix =

 
then 

arrival : NEXTiDT= ;   

,: ( ) ;= ∪
LA LA

NEXTiA A  : {}CANDIDATEK = ; 

for 1NEXT

k
ix =  

: ;= ∪ NEXT

LA LA k
iX X x  

: ;= ∪
LA LAK K k  : ;= ∪

CANDIDATE CANDIDATEK K k  
end; 

NEXT:= i ;   

end; 
end; 

end; 
end;  

return  LAA , 
LAX ,

LAK ; 

end; 

 
Figure 76. The Pseudo-Code of Find LA-Path Subroutine 
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subroutine Path Change; 
begin 

input: Cp and N
p of commodity k; 

: {}REMA = ;  : {}REMN = ;   

: {}ADDA = ;  : {}ADDN = ;  

i  := ( )O k ;  

repeat until N
i p∉  

_i next  := the successor node of i on C
p ; 

_j next  := the successor node of i on N
p ; 

if _ _i next j next=  then  

 : _i i next= ; 
else  

diff := i ; 

end; 
end; 

 put all forward arcs of Cp  that emanates from node diff  to REMA ; 

 put diff  and all forward nodes that succeeds diff  on Cp  to REMN ; 

 put all forward arcs of N
p  that emanates from node  diff  to ADDA ; 

 put diff  and all forward nodes that succeeds diff  on N
p  to ADDN ; 

 return REMA , REMN , ADDA , ADDN ; 

end; 

 
Figure 77. The Pseudo-Code of Path Change Subroutine 
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subroutine Remove Path; 
begin 

input:  x , ,LA DA , D T , and REMA , REMN for commodity k ; 

: {}UPA = ;  : {}UP
N = ; : {}UP

K = ; 

for ( , ) REM
i j A∈  : 0k

ijx = ; 

for ( , ) REM
i j A∈  

 if k p
i iDA DA>  for all p K∈  with 1p

ijx =
 
then 

 add ( , )i j  to UPA ; add nodes i and j to UP
N ;  

 add p with 1p
ijx =

 
to UPK ; 

 end; 
end; 

for REM
j N∈ if j ≠ diff  then : 0k

jDA = ; 

 while there is an emanating arc from UP
i N∈ not analyzed yet do 

  for \
UP

m N N∈  

  if 1
p

im
x =  and UP

p K∈  

  add node m to UP
N ;  add arc ( , )i m  to UPA ; 

  add all commodities p flowing on arc ( , )i m  to  UPK ; 

  end; 
end; 

 end; 

 for ( , ) UP
i j A∈ update ready values; 

: {}UP
N = ; add all nodes i N∈  that have an emanating arc ( , ) UP

i j A∈ with ready(i,j)=1 to UP
N ; 

 while {}
UP

N ≠  do 

  for UP
i N∈  

   for ( , ) UP
i j A∈

 
 if ready(i,j)=1  

:ijDT =  max( )k
i

k
DA

i
δ+ ; 

for 1p
ijx =

 
:p

j ij ijDA DT t= + ;  

  drop arc ( , )i j  from UPA ;  add node j to UP
N ; 

end; 

 if there is no emanating arc ( , ) UP
i j A∈  from node i  then drop node i from UP

N ; 

end; 
end; 

for ( , ) UPDATE
i j A∈ update ready values; 

 end; 
 return updated x , D A , D T ; 

end; 

Figure 78. The Pseudo-Code of Remove Path Subroutine 
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subroutine Add Path; 
begin 

input: updated x , D A , D T  and ADDA , ADDN for commodity k ; 

for ( , ) ADD
i j A∈  : 1k

ijx = ; :
UP ADD

A A= ; :
UP ADD

N N= ; 

put all commodities flowing on ( , )
ADD

i j A∈ to UPK ; 

 while there is an emanating arc from UP
i N∈ not analyzed yet do 

  for \
UP

m N N∈  

  if 1
p

im
x =  and 

UP
p K∈  

  add node m to UP
N ; add arc ( , )i m  to UPA ; 

  add all commodities p flowing on arc ( , )i m  to  UPK ; 

  end; 
end; 

 end; 

 for ( , )
UP

i j A∈  update ready values and determine feasibility; 

 : {}
UP

N = ;add all nodes i N∈  that have an emanating arc ( , )
UP

i j A∈ with ready(i,j)=1 to UP
N ; 

 while {}
UP

N ≠  and feasibility is not violated do 

for UP
i N∈  

for ( , )
UP

i j A∈
 

if ready(i,j)=1 then 

:ijDT =  max( )k
i

k
DA

i
δ+ ; 

for 1p
ijx =

 
:p

j ij ijDA DT t= + ;  

drop arc ( , )i j  from UPA ; add node j to UP
N ; 

end; 
end; 

if there is no emanating arc ( , )
UP

i j A∈  from node i  then drop node i from UP
N ;  

end; 

for ( , )
UP

i j A∈  update ready values and determine feasibility; 

 end; 

if {}
UP

A =  then 

updated  x is feasible;  

( ): max k
D kk K

LA DA
∈

= ; 

else 
 updated x is infeasible; 

 end; 
 return feasibility of updated x; 

if updated x is feasible then return updated x, , ,LA DA , D T ; 

end; 
end; 

 
Figure 79. The Pseudo-Code of Add Path Subroutine 
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APPENDIX – J 

 
 

B. COMPARISON OF LNS-LA WITH GBD-2-4 ALGORITHM 

 

 

 

The tables of Appendix J are presented starting on the next page. 
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