
CONTROLLER AREA NETWORK RESPONSE TIME ANALYSIS AND
SCHEDULING FOR ADVANCED TOPICS: OFFSETS, FIFO QUEUES AND

GATEWAYS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK ALKAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

FEBRUARY 2015

Approval of the thesis:

CONTROLLER AREA NETWORK RESPONSE TIME ANALYSIS AND
SCHEDULING FOR ADVANCED TOPICS: OFFSETS, FIFO QUEUES AND

GATEWAYS

submitted by BURAK ALKAN in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Gönül Turhan Sayan
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Klaus Schmidt
Co-supervisor, Mechatronics Engineering, Cankaya Univ.

Examining Committee Members:

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Şenan Ece Güran Schmidt
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Utku Karakaya, M.Sc.
TOFAS ARGE

Vakkas Çelik, M.Sc.
TUBITAK UZAY

Date: 10.2.2015

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: BURAK ALKAN

Signature :

iv

ABSTRACT

CONTROLLER AREA NETWORK RESPONSE TIME ANALYSIS AND
SCHEDULING FOR ADVANCED TOPICS: OFFSETS, FIFO QUEUES AND

GATEWAYS

Alkan, Burak
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

Co-Supervisor : Assoc. Prof. Dr. Klaus Schmidt

February 2015, 112 pages

Controller Area Network (CAN) is the most widely used in-vehicle network for the

communication among electronic control units (ECUs). CAN has a priority-based

arbitration mechanism and the classical usage of CAN assumes the implementation

of priority queues (PQs) on ECUs. Based on this assumption, the literature provides

efficient algorithms for the computation of worst-case response times (WCRTs) of

messages as well as for the appropriate assignment of priorities to messages in order

to meet real-time guarantees such as message deadlines.

In contemporary CAN networks there are several extensions to the classical case.

First, the addition of new functionality to vehicles requires adding new messages

with appropriate priorities to existing CAN networks. Second, FIFO queues (FQs)

might be used instead of PQs for easier implementation. Third, due to the ever-

increasing bus load, CAN networks are usually divided into several segments that are

connected via gateways to decrease the contention among messages. Fourth, a further

measure is to distribute the message transmission of each ECU over time by assigning

v

transmission offsets to messages. All of the stated extensions require new methods

for WCRT analysis and priority assignment on CAN.

This thesis has a list of contributions that address the extensions for CAN as listed

above. Regarding offset scheduling; different schedulability analysis methods for

message sets with given offset and priority assignments are incorporated to a previous

offset assignment algorithm. Then, a new algorithm which simultaneously assigns

the message offsets and priorities is proposed. Regarding ECUs with FIFO queues;

the previous schedulability analysis is improved to decrease its run time and then

this analysis is used in an algorithm that assigns the priorities to the new messages

that extend an existing CAN network. Regarding gateways; an algorithmic priority

assignment is proposed for ECUs with priority queues and the schedulability analysis

for CAN networks with gateways is extended to FIFO queues.

All of the algorithms that are used and developed in this thesis are implemented in

C++ to integrate into a novel in-vehicle network analysis and design tool; AUTONET.

Keywords: Controller Area Network (CAN), Schedulability analysis, Response time

analysis, Priority assignment, CAN FIFO Analysis, CAN Offset Analysis, CAN-to-

CAN Gateway Analysis

vi

ÖZ

DENETLEYİCİ ALAN AĞI(DAA) İLERİ KONULARI İÇİN TEPKİ SÜRESİ
ANALİZİ VE ÇİZELGELENDİRME: GÖRELİ KONUM, FIFO KUYRUKLAR

VE AĞ GEÇİTLERİ

Alkan, Burak
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Şenan Ece Güran Schmidt

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Klaus Schmidt

Şubat 2015 , 112 sayfa

DAA elektronik kontrol üniteleri (EKÜ) arasındaki haberleşme en yaygın olarak kul-

lanılan araç içi haberleşme ağıdır. DAA’in öncelik tabanlı bir tahkim mekanizması

vardır ve klasik kullanımda EKÜ’ler üzerinde öncelik kuyrukları kullanıldığı varsa-

yılır. Bu varsayıma dayanarak, literatürde en kötü durum tepki süreleri hesaplamaları

ve mesajların gerçek zamanlı zaman sınırlarını karşılayan uygun öncelik atamaları

için etkili algoritmalar bulunmaktadır.

Aktüel DAA ağlarında klasik duruma ek olarak başka durumlar vardır. Birincisi, araç-

lara yeni özelliklerin eklenmesi, mevcut DAA ağlarına uygun öncelikleri ile yeni me-

sajların eklenmesini gerektirir. İkincisi, FIFO kuyrukları çeşitli nedenlerden dolayı

öncelik kuyruklarının yerine kullanılabilir. Üçüncü olarak, sürekli artan veri yoğun-

luğundan dolayı DAA ağları, ağ geçitleriyle mesajlar arasındaki çekişmeyi azaltmak

için çeşitli kısımlara ayrılmıştır. Dördüncü olarak diğer bir önlem mesajlara göreceli

konumlar atayarak mesaj iletimini zamana yaymaktır. Belirtilen tüm bu ek özellikler

vii

tepki süresi hesaplamaları ve öncelik atamaları için yeni metotları gerektirir.

Bu tez yukarıda listelenen DAA ileri konuları için yapılan katkıları bir liste olarak

sunmaktadır. Göreceli konum çizelgelemesi için, göreceli konum ve öncelik değer-

leri belirlenmiş mesaj setleri için farklı çizelgeleme analiz yöntemleri daha önceki

göreceli konum atama algoritmalarıyla birleştirilmiştir. Sonra, aynı anda öncelik ve

göreceli konum ataması yapabilen yeni bir algoritma önerilmektedir. FIFO kuyruğu

kullanan EKÜ’ler için, daha önceki çizelgeleme analiz yöntemi geliştirilmiş ve bu

algoritmanın çalışma süresi düşürülmüştür. Daha sonra bu algoritma var olan bir me-

saj setine ekleme yapabilmek için öncelik atayabilecek hale getirilmiştir. Ağ geçitleri

için, öncelik kuyruğu kullanan EKÜ’lere yönelik öncelik atama algoritması önerilmiş

ve halihazırdaki çizelgeleme analizi FIFO kuyrukları da kapsayacak şekilde gelişti-

rilmiştir.

Bu tezde kullanılan ve geliştirilen tüm algoritmalar C++’da yazılmış ve yeni bir araç

içi ağ analiz ve tasarım aracı olan AUTONET’e entegre edilmiştir.

Anahtar Kelimeler: Denetleyici Alan Ağı(DAA), Çizelgeleme Analizi, Tepki Süresi

Analizi, Öncelik Atamaları, DAA FIFO Analizi, DAA Gecikme Analizi, DAA Ağ

Geçidi Analizi

viii

To My Wife

ix

ACKNOWLEDGMENTS

First of all, I would like to express my sincere appreciations to my supervisors Assoc.

Prof. Dr. Şenan Ece Güran Schmidt and Assoc. Prof. Dr. Klaus Schmidt for their

excellent guidance and insight throughout this thesis. Their guidance helped me in

all the time of research and writing of this thesis. I could not have imagined having

better advisors and mentors than them for my study.

I would like to thank TÜBİTAK-BİDEB for their financial support during my gradu-

ate education. I am supported by TÜBİTAK-BİDEB MS scholarship (2210). I would

also like to express my gratitude to Utku Karakaya, Duygu Çulum Karani and Onur

Canbaz from TOFAS R&D team for their contribution to my research.

A special thanks to my wife, Emine. Words cannot express how grateful I am to

my wife for all of the sacrifices that she made on my behalf. Her support was what

sustained me thus far.

I want to thank to ASELSAN Inc. and my employers for letting me involve in this

academic study. I would like to express my special appreciation to my colleagues

Erman, Korhan, Fatih, Emine, Eray, Hakan and my seniors Emrah Demircan, Nurise

Savaşır Özpolat for their contribution on the improvement of my engineering skills,

which makes it possible to finish this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvii

LIST OF FIGURES . xx

LIST OF ALGORITHMS . xxii

LIST OF ABBREVIATIONS . xxiv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND AND MOTIVATION 5

2.1 CAN Protocol . 5

2.2 Problems of CAN Protocol 6

xi

2.3 Performance Parameters . 8

2.4 Literature Search . 9

2.5 Computational Model and Notation 10

2.6 Traditional Schedulability Analysis 11

2.7 Case Studies . 14

2.7.1 Netcarbench . 14

2.7.2 NetCarAnalyzer 14

2.7.3 RtaWSimulator 14

3 CAN OFFSET ANALYSIS . 17

3.1 Overview . 17

3.2 Offset Definition . 18

3.3 Response Time Analysis with Offsets: Exact Method 19

3.3.1 Response Time Of A Scenario: 21

3.4 Response Time Analysis with Offsets: Approximate Method 24

3.5 Response Time Analysis with Offsets: Maximum Interfer-

ence Method . 27

3.6 Offset Assignment . 31

3.6.1 SOSA . 31

3.6.2 LNSA . 32

xii

3.6.3 GAOS . 32

3.7 Offset and Priority Assignment Together 35

3.8 Case Study . 37

3.8.1 Case Study 1 . 37

3.8.2 Case Study 2 . 39

3.8.3 Case Study 3 . 40

3.8.4 Case Study 4 . 42

3.8.5 Case Study 5 . 43

4 FIFO ANALYSIS . 45

4.1 Overview . 45

4.2 Characteristics of FIFO Controllers 46

4.3 Schedulability Analysis Algorithm 47

4.3.1 Notation and Scheduling Model 47

4.3.2 Worst-case Response Time Computation 49

4.3.2.1 WCRT Computation for PQ Messages 49

4.3.2.2 WCRT Computation for FQ Messages 50

4.3.2.3 Schedulability Analysis Algorithm . . 50

4.4 Improved Algorithm for Schedulability Analysis with FIFO

Queues . 52

xiii

4.4.1 Special Cases . 53

4.4.2 Improved Algorithm 55

4.4.3 Illustrative Example 57

4.5 FIFO Scheduling . 60

4.6 Message Set Extension . 62

4.6.1 Motivation . 62

4.6.2 Extension Algorithm 62

4.6.3 Message Set Extension Example 69

4.7 Performance evaluation . 72

4.7.1 Performance of the Improved Schedulability Al-

gorithm . 72

4.7.2 NetCarAnalyzer Comparison 73

4.7.3 Priority Assignment for Message Set Extension . . 74

5 GATEWAY ANALYSIS . 75

5.1 Overview . 75

5.2 Why Gateways are Needed 76

5.3 Commercial CAN2CAN Gateways 78

5.3.1 Simple Gateways: 79

5.3.2 Advanced Gateways: 79

xiv

5.4 Schedulability Analysis . 80

5.4.1 Non-GW Messages 83

5.4.2 GW Messages . 85

5.5 Scheduling Algorithm . 88

5.6 Gateways and FIFO Queues 91

5.6.1 Non-GW Messages: 91

5.6.2 GW Messages: 93

5.7 Case Study . 94

5.7.1 Case Study 1 . 94

5.7.2 Case Study 2 . 96

5.7.3 Case Study 3 . 98

6 INTEGRATION IN AUTONET . 101

6.1 Overview . 101

6.2 CAN related Algorithms . 102

6.2.1 Classical CAN Scheduling 102

6.2.2 CAN Networks with Practical Limitations 103

6.2.3 CAN Networks with Offsets 103

6.2.4 CAN-to-CAN Gateways 104

6.3 Graphical User Interface (GUI) Realization 104

xv

6.3.1 Description . 104

6.3.2 GUI User Input/Output Interfaces 105

7 CONCLUSION . 107

REFERENCES . 109

xvi

LIST OF TABLES

TABLES

Table 1.1 Literature Search Results Table . 4

Table 2.1 Notation . 11

Table 3.1 Message Set With Two Nodes . 21

Table 3.2 Possible Scenarios . 23

Table 3.3 Two example message sets . 24

Table 3.4 Exact, MIF and Approximate Algorithms in terms of run-times and

exactness . 37

Table 3.5 Run-time Comparison of Three Analysis Algorithms For Different

Number of Messages . 38

Table 3.6 Run-time Comparison of Three Analysis Algorithms For Different

Number of ECU’s . 38

Table 3.7 Run-time Comparison of Three Analysis Algorithms For Granular-

ity Values . 39

Table 3.8 Run-time Comparison of Three Analysis Algorithms For Different

Period Values . 39

Table 3.9 The Effect of Granularity On the Schedulability 40

Table 3.10 Message Set Groups . 40

xvii

Table 3.11 Average Number of Unschedulable Messages and Sum of WCRT’s

For Each Group and Each Algorithm . 41

Table 3.12 Total Run-Time Values For Each Group and Each Algorithm 42

Table 3.13 LNSA and GAOS with both MIF and Approximate Analysis 42

Table 3.14 Minimum Bus Speed Required For Offset and Priority Together Al-

gorithm and Number of Unschedulable Messages For LNSA Algorithm

at These Speeds . 43

Table 4.1 Notation . 48

Table 4.2 Example Message Set . 57

Table 4.3 Notation for Message Set Extension 63

Table 4.4 Existing Message Set F . 69

Table 4.5 Extension Set N . 69

Table 4.6 Priority Assignment for the Extended Message Set 70

Table 4.7 Different Message Sets and Their Run-Times 72

Table 4.8 Extension Sets and Priority Assignment Results 74

Table 5.1 Properties of BMW 7 series domains 77

Table 5.2 Notation For Message m . 82

Table 5.3 Message Set Groups For Gateway Analysis 94

Table 5.4 Minimum Speeds Required For Gateway Scheduling and Number

Of Unschedulable Messages if networks are separately scheduled or gate-

way scheduled . 97

Table 5.5 Increase in the WCRT’s of messages if FIFO gateways are used

instead of PQ gateways . 99

xviii

Table 5.6 Average of WCRT’s of GW and non-GW messages for each group

for PQ and FIFO cases and Increase in the WCRT in case of FIFO queue . 99

xix

LIST OF FIGURES

FIGURES

Figure 2.1 Screenshot of NetCarAnalyzer . 15

Figure 3.1 An example CAN Network with Offset Assigned Messages 19

Figure 3.2 Transaction with Hyperperiod 12 20

Figure 3.3 Transactions of 2 Nodes . 22

Figure 3.4 Obtaining IF From Transaction 28

Figure 3.5 Saturation Addition of two IF’s 30

Figure 4.1 Spanning and Non-Spanning Groups 54

Figure 4.2 Spanning and Non-Spanning Groups 57

Figure 4.3 NetCarAnalyzer Results and Our Implementation Results 73

Figure 5.1 Car domains . 77

Figure 5.2 Case Study 1: WCRT analysis for message set 1 95

Figure 5.3 Case Study 1: WCRT analysis for message set 2 95

Figure 5.4 Case Study 1: WCRT analysis for message set 3 96

Figure 5.5 Case Study 1: WCRT analysis for message set 4 97

Figure 5.6 Case Study 1: WCRT analysis for message set 5 98

xx

Figure 6.1 Graphical User Interface Architecture 105

Figure 6.2 Example Vehicle Network Topology 106

xxi

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Approximate Offset WCRT Analysis Algorithm 27

Algorithm 2 MIF Analysis Algorithm . 29

Algorithm 3 LNSA Algorithm . 33

Algorithm 4 GAOS Algorithm . 34

Algorithm 5 Offset and Priority Assignment Algorithm 36

Algorithm 6 WCRT computation for CAN networks with FIFO queues. . . . 52

Algorithm 7 Improved WCRT computation for CAN networks with FIFO

queues. 59

Algorithm 8 Priority Assignment for CAN systems with FIFO nodes. 61

Algorithm 9 Message set extension algorithm: main loop. 65

Algorithm 11 Message set extension algorithm Case 2: at least one FIFO

group spans the current priority-level. 67

Algorithm 12 Message set extension algorithm Case 3: there is no space in

the current gap. 68

Algorithm 10 Case 1: No FIFO group spans the current priority-level 71

Algorithm 13 WCRT analysis for CAN-CAN gateways. 84

Algorithm 14 WCRT Computation for non-GW messages 85

xxii

Algorithm 15 WCRT computation for GW messages 87

Algorithm 16 Scheduling for CAN gateway networks. 90

Algorithm 17 Gateway Schedulability Analysis For Mixed Systems. 92

xxiii

LIST OF ABBREVIATIONS

CAN Controller Area Network

ECU Electronic Control Unit

SOSA Standard Offset Scheduling Algorithm

LNSA Local Neighborhood Search Algorithm

GAOS Genetic Algorithm for Offset Scheduling

CSMA/CR Carrier Sense Multiple Access/Collision Resolution

GUI Graphical User Interface

WCRT Worst Case Response Time

ID Identifier (Priority)

CAN2CAN CAN-to-CAN

LCM Least Common Multiple

WCEA Worst Case Exploration Algorithm

MIF Maximum Interference Function

IF Interference Function

FIFO First-in-first-out

PQ Priority Queue

FQ FIFO Queue

BCRT Best Case Response Time

GW Gateway

non-GW non-Gateway

ADC Absolute Distance Constraint

AutoNET Automotive Network Designer

xxiv

CHAPTER 1

INTRODUCTION

Controller Area Network (CAN) is the de-facto standard for the signal communica-

tion among electronic control units (ECU) in vehicles. It was developed in 1983 at

Bosch as an internal project for in-vehicle networks. In 1986, CAN became offi-

cial and CAN chips were released commercially. Standards [40] were published and

CAN controllers are now used in millions of cars [43]. CAN supports bounded mes-

sage delays by always sending the highest priority message among multiple messages

in different ECUs that are contending for the bus access at the same time. In order to

support message transmission on CAN with real-time guarantees, it is hence essen-

tial to determine their worst-case response times (WCRT) depending on the message

properties such as message priority, size and period [10]. It is then necessary, that

all messages are schedulable, that is, there WCRTs are smaller than their deadlines.

In addition, assuming that message priorities are unassigned for a new in-vehicle ap-

plication, it is as well desired to assign priorities such that each message meets its

deadline.

The stated problems are addressed in the academic literature. Algorithms for the

WCRT analysis are first stated in [41] and improved in [19]. Furthermore, many

studies are concerned with the message priority assignment on CAN such as [14,

19, 22]. Hereby, the classical usage of CAN in a single CAN network with ideal

CAN nodes that implement priority queues (PQs) for their generated CAN messages

is assumed. Nevertheless, several modifications in the usage of CAN are made in

practical applications which requires special attention.

First, it has to be considered that in-vehicle applications are not always developed

1

from scratch but evolve over time. That is, it is common in practical applications that

existing message sets are extended by new messages when adding functionality. In

that case, priorities need to be assigned to the new messages while keeping the IDs

of the existing messages. This problem is studied in [39] under the assumption of

the classical usage of CAN with PQs. Second, practical applications do not always

use CAN nodes with PQs but use FIFO queues (FQs) instead for an easier implemen-

tation. CAN networks with FQs require a modified WCRT analysis. The reason is

that not always the highest-priority message contents for the bus but might be waiting

in an FQ behind a lower-priority message, increasing the WCRT. A WCRT analysis

for CAN networks with FQs is proposed in [25] together with a priority assignment

algorithm. Third, it is observed in recent practical applications that the bus load on

CAN increases considerably due to new functionality that is added to vehicles. Since

the classical usage of CAN poses a limit on the supported bus load, the transmis-

sion of messages on CAN with offsets is suggested [31]. Here, the idea is to avoid

that messages of the same CAN node are transmitted simultaneously by assigning a

unique offset to each message. As a result, the number of messages that contents for

the bus at any time is reduced, which also reduces the WCRT of messages and hence

allows for a higher bus load. Different methods for the WCRT analysis for CAN with

offsets are provided in [26, 47, 17]. Fourth, it is common that in-vehicle applications

do not contain only a single CAN network but multiple CAN networks. Since data

exchange between these networks is usually required, CAN-CAN gateways are used

in order to exchange messages between different CAN networks. Considering the

dependency of CAN networks that are connected by a gateway, a modified WCRT

analysis is suggested in [45].

It can be observed that the literature offers different approaches for the more advanced

topics on CAN. Nevertheless, there are several missing points in the literature and the

combination of the advanced topics has not been addressed at all. The main aim of

this thesis is to solve some of the missing points in the literature supported by efficient

algorithms. In particular, the contributions of this thesis are as follows:

• Several existing algorithms for the stated advanced topics are implemented in

the form of a C++ software library. These algorithms include the WCRT anal-

ysis for CAN networks with FQs from [25, 11], different algorithms for the

2

WCRT analysis for CAN networks with offsets from [26, 47, 17], algorithms

for the offset assignment on CAN networks with offsets from [16], and the

WCRT analysis for gateway networks from [45]. The algorithmic implementa-

tion is accompanied by several case studies.

• Regarding CAN networks with offsets, the current literature only provides al-

gorithms that assign offsets to messages, assuming that the message priorities

are pre-assigned. As a novel contribution of this thesis, a new algorithm that

assigns both offsets and message priorities is developed and implemented in the

C++ software library. An experimental case study shows the effectiveness of

this algorithm.

• Regarding CAN networks with FQs, the problem of extending an existing CAN

network with FQs by new messages is considered and a new algorithm for

the priority assignment of the new messages is proposed. The results of this

research are also presented in [12].

• Regarding CAN gateway networks, only WCRT analysis is considered in the

existing literature. This thesis develops an algorithm for the priority assignment

on CAN gateway networks and demonstrates its effectiveness in computational

experiments. In addition, the WCRT analysis on CAN gateway networks is

extended to the case of FQs.

An overview of the relevant advanced topics and the related contributions of this

thesis is given in Table 1.1.

3

Table1.1: Literature Search Results Table

No Topic Does Exist In the Literature? This Thesis
1 Offset Analysis Yes Yes
2 Offset Assignment Yes Yes
3 Offset Assignment and Priority Assignment No Yes
4 FIFO Analysis Yes Yes
5 FIFO Schedule Yes Yes
6 FIFO Schedule with Message Set Extension No Yes
7 GW Analysis Yes Yes
8 GW Priority Assignment No Yes
9 FIFO-Offset Analysis Yes No
10 FIFO-Offset Assignment No No
11 FIFO-Offset Priority Assignment and Offset Assignment No No
12 FIFO-GW Analysis Yes Yes
13 FIFO-GW Priority Assignment No No
14 GW-Offset Analysis No No
15 GW-Offset Assignment No No
16 FIFO-Offset-GW Analysis No No
17 FIFO-Offset-GW Assignment No No

The remainder of the thesis is organized as follows. Chapter 2 gives the necessary

background and motivation for the thesis work. Chapter 3 contains the thesis work

on CAN networks with offsets. First, different WCRT analysis algorithms are im-

plemented and compared: approximate, exact and MIF analysis. Then some offset

assignment algorithms are examined and implemented using the three WCRT analy-

sis algorithms. Their efficiencies are compared. In the final part of this chapter, offsets

and priorities are assigned together in order to better utilize the CAN bus. In Chapter

4, the WCRT analysis for CAN with FQs is investigated and an improved algorithm

is proposed. In addition, a method for extending existing message sets for CAN net-

works with FQs is developed. CAN-CAN gateways are studied in the Chapter 5.

An existing gateway analysis technique is reviewed and implemented. Furthermore,

a new gateway priority assignment algorithm is developed. Then by combining the

results on CAN networks with FQs and gateways, a gateway analysis is conducted

for CAN gateway networks with both FQs and PQs. Finally, Chapter 6 describes the

integration of the described methods and algorithms into the software tool AutoNET.

4

CHAPTER 2

BACKGROUND AND MOTIVATION

2.1 CAN Protocol

CAN protocol was developed in 1983 in order to reduce the cabling weight in au-

tomobiles. Thanks to it, engine, brakes, air conditioner and all the car sensors are

connected together with two cables instead of dozens of them. In automotive net-

works, CAN has the biggest market share and the most dominant product. In [6], it

is stated that although it has been in use for 3 decades, it is still at the beginning of

global market penetration. 850 million CAN related products were sold in 2011 and

future predictions estimate growth for CAN protocol for the next two decades.

Although started to be used for automotive networks, because of some good reasons

such as speed, robustness against errors and ease of implementation, now it is in

use in many areas. Industrial automation, medical devices, railway transport, marine

systems and the energy area are the other usage areas of CAN protocol.

CAN is an asynchronous multi-master serial data bus with Carrier Sense Multiple

Access/Collision Resolution (CSMA/CR), that is capable of operating at speeds of

up to 1 Mbit/s. Each CAN frame has a payload of at most 8 B and a unique identifier

(CAN ID) such that the frame with the smallest ID has the highest bus access priority.

Any CAN node may start a transmission when the bus is idle. If more than one

node attempt transmission of a frame at the same time, the node whose frame has

the CAN ID with the lowest binary value wins the arbitration. Other nodes that lose

the arbitration retransmit their frames when the bus becomes idle again. In CAN

hardware, receiver and transmitter are physically independent. The sent message

5

can be listened by the receiver at the same time. By this way, the CAN controller

compares the signal it sent and it received. During transmission, ID is sent first. In

the bus line, there are two logic levels: 0 and 1. 0 is dominant and 1 is recessive. If

two different CAN controllers send their messages at the same time, collision occurs

and it can be resolved by ANDing these logic levels. This is called bitwise arbitration.

Message with lower ID becomes dominant and the other sending node decides to wait.

Therefore, lower ID messages have higher priorities. When collision occurs, low

priority message detects the collision immediately and waits until the line is empty.

ID is also used for message filtering in the receiver part.

The arbitration mechanism relies on the fact that all of the messages have distinct

CAN IDs and all nodes on a CAN network use the same type of CAN ID (11 bit for

the base frame format and 29 bit for the extended format). Consider a CAN network

with a bit time of τbit. It is possible to evaluate the maximum transmission time C of

each CAN frame with a payload of b bytes as

C = (55 + 10b)τbit (11-bit CAN ID) and C = (80 + 10b)τbit (29-bit CAN ID) (2.1)

In the sequel, we assume that all messages on a network have the same type of CAN

ID and the respective maximum frame duration is given. We further note that both

periodic and sporadic messages are subject to the same event-triggered arbitration

mechanism.

There are several CAN standards, in CAN 2.0A standard, messages are packed into

frames. There are 4 types of frames: Data frames, request frames, error frames and

overload frames. These frames are used with different purposes: data, data request,

faulty data and delayed data. CAN has multiple error detection and error handling

mechanisms. In terms of reliability, it is a very robust protocol, but error handling is

out of the scope of this thesis.

2.2 Problems of CAN Protocol

We have made literature search and found some problems that CAN protocol encoun-

ters. Some of these problems are already solved and some of them are still unresolved.

In this thesis, we try to solve some of the open problems.

6

-Message Formation and Signal Packing: The goal of frame packing for CAN is

packing different signals in the same message in order to reduce the framing overhead

and hence improve the schedulability of CAN systems. In the most recent work,

[29] packs signals with similar periods in the same frame such that the bandwidth

utilization is reduced by each packed message. This measure is also beneficial for the

schedulability of the CAN message set. In the scope of this thesis, it is assumed that

signals are already packed into messages.

-Finding worst case response time bounds for messages: Since the car operations

are real-time operations, they have to have some time deadlines. It should be guar-

anteed by network designers that message response times would not exceed their

deadlines. For this purpose, we use analytical models to calculate message response

times. Even if, we could not calculate it exactly, finding an upper bound works.

-Hardware limitations: Hardware limitations are limited number of buffers, non-

abortable transmission requests and FIFO queues. Practical CAN applications rely

on the functionality of the ECU hardware. In practise, several hardware components

do not strictly follow the CAN protocol specification. Controller may have less num-

ber of buffers than the synchronously arrived messages. In such a case, exceeding

messages wait in software queues and cannot take part in the arbitration if the trans-

mission requests cannot be abortable which introduces additional delay. Instead of

priority queues, sometimes FIFO queues are preferred, which is against the nature of

CAN protocol. It causes priority inversion and messages may miss their deadlines.

-Finding an optimal priority ordering: We should give priorities to messages in a

such a way that if a schedulable order exists for a given message set, it is guaranteed

that we find it.

-Finding a robust priority ordering: Error due to electromagnetic interference is

possible in CAN bus with a very small probability. Although error handling proce-

dures exist, we need to schedule our network in such a way that it tolerates maximum

number of errors. If we schedule considering error possibility, even if some bit errors

happen in the bus, no message misses its deadline.

7

2.3 Performance Parameters

We obtained performance metrics from literature research that are important for the

CAN protocol. We check whether our solutions satisfy these performance metrics or

not.

-Guarantee for timing constraints: Message sets should be schedulable. Before

mounting the message set to the in-vehicle network, response time analysis should be

conducted elaborately and no messages should miss its deadline.

-WCRT analysis accuracy: Analysis should give correct results. This results could

be exact or approximate. Sometimes upper bounds are accepted as approximate re-

sults. But these upper bounds are too pessimistic, they can give unschedulable results

even if the system is schedulable.

-Algorithm efficiency: One of the most important parameters is algorithm efficiency.

Complexity of algorithms cannot be high, because CAN networks cn be medium or

large sized. For example, if the complexity is exponential, it takes hours to complete

the analysis. In most of CAN algorithms, there is a trade-off between complexity and

exactness. If we want exact results, complexity could be very high. However,if we

want complexity to be small, then instead of exact results, we should be satisfied with

bounds. Note that these bounds should be safe and tight.

-Number of errors tolerated: Network should be schedulable and also the difference

between the message deadline and response time must be maximum. This difference

is called as slack. If an error occurs, it can be tolerated due to slack. As the difference

increases, so does the number of errors tolerated.

-Delay tolerated: Some delays are possible in practical applications such as buffer-

ing delay, copy time delay or delay due to error. If we have high message slacks, then

delay can be tolerated. We should choose the delay tolerant message schedulings.For

example, for messages A,B,C,D,E, with different orderings, we have different sum of

slacks. Deadline minus jitter priority ordering algorithm produces A-B-C-D-E order.

In that order sum of slacks are 74 time units. Robust priority ordering algorithm pro-

duces A-C-B-D-E order with sum of slacks 110 time units. Second ordering tolerates

8

a delay of 110 time units while the first one tolerates 74 [20].

-Bus utilization: Bandwidth should not be wasted, achievable bus utilization should

be as maximum as possible. In CAN, in the past above 40 % was considered as high

bus utilization, but today with efficient algorithms, 60-80 % is considered as high.

-Bus speed required: Minimum bus speed required means that what should be the

bus speed if we want maximum utilization at minimum speed. Below this value, the

system is not schedulable anymore. CAN bus speed and bus length are inversely

proportional. With 40 meters cable, we can have at most 1 Mbps. If we want a bus of

500 meters long, then we can have at most 100 Kbps speed. Bus length is an important

parameter for car manufacturers. CAN bus connects many parts inside a car and it

may be needed to have a long bus. If we increase the length, then we need to reduce

the speed. However, we cannot reduce below the minimum bus speed required.

-Runtime CPU overhead: If the algorithmic complexity is high, it takes some time

to run the code. Even if CAN analysis and scheduling algorithms work offline, still

they have to finish in a reasonable amount of time for practical use in industrial envi-

ronment by network designer.

2.4 Literature Search

The timing analysis has been elaborately studied before. Bounds on the worst case re-

sponse times were first specified in [41], then refuted in [19]. There were some faults

in [41] and [19] fixed it. Also optimal priority assignment method were proposed

in the same paper. But these methods are developed for ideal CAN. Later researches

have integrated the practical limitations of hardware [25, 38, 18, 35] . CAN with FIFO

queues are studied in [25, 38]. Finite buffer space problem is solved in [18]. Another

practical problem is non-abortable transmission requests, this problem is discussed

in [35]. Robustness issue is investigated in several papers [39, 23, 20] and robust

scheduling and extension algorithms are proposed. For FIFO extension, [39] paper is

taken as reference.

In [31], scheduling messages with offsets idea is proposed. There are several methods

9

in the literature that analyze these worst-case response times assuming that appropri-

ate offsets are assigned to CAN messages [26, 47, 31, 17, 33]. Experimental evalu-

ations are performed in [31] and approximations are given in [17, 26]. Exact offset

analysis is studied in [47]. In addition, the case of FIFO queues instead of priority

queues is discussed in [44]. In the scope of this thesis, the algorithms in [26, 47, 17]

are implemented in order to support the schedulability analysis for CAN with offsets.

[31] proposed offset scheduling algorithm and [16] further continued on this research

and came up with offset scheduling solutions. Also we implemented [16] algorithms.

CAN-to-CAN(CAN2CAN) gateways are considered in [25, 46, 45]. An analytical

approach for estimating the worst-case response time of CAN messages that pass

gateways is proposed in [45]. Nevertheless, the existing literature does not give any

scheduling algorithm. [45] is implemented in this thesis and for developing schedul-

ing and FIFO analysis methods, we used [25] paper.

2.5 Computational Model and Notation

We consider messages that are transmitted on the CAN bus. Each message m is spec-

ified by a tuple m = (Cm,Tm, Jm,Dm,Em), whereby Cm is the maximum transmission

time, Tm is the message period , Jm is the release jitter, Dm is the deadline and Em

is the transmission deadline of m. Cm is evaluated according to (2.1), Tm represents

the time between two message generations for periodic messages and the minimum

inter-arrival time for sporadic messages, Jm represents the maximum time from the

generation of m until its availability in the CAN device driver queue, Dm states the

maximum allowable time between the generation of m until its successful arrival at a

receiver node and Em = Dm− Jm.

Regarding scheduling, we consider a CAN network with a set of messagesM. Since

schedulability on CAN depends on the relative priority order of messages instead of

the absolute CAN ID [41, 19, 39], we introduce the priority order o :M 7→ {1, . . . , |M|}.

Here, o(m) represents the priority level of message m ∈M. The lowest priority level

is |M| and the highest priority level is 1. For a message m ∈ M, we write lp(m) for

the set of lower-priority messages than m: lp(m) = {m′ ∈ M|o(m′) > o(m)}; hp(m) is

10

the set of higher-priority messages than m: hp(m) = {m′ ∈M|o(m′) < o(m)}.

Depending on the priority order o, each message m ∈M has a WCRT denoted as Rm.

We say that a priority order o is feasible for a message m ∈ M if Rm ≤ Em. If o is

feasible for all m ∈ M, o is called feasible. That is, the goal of message scheduling

on CAN is determining a feasible priority order o.

The notation introduced in this section is summarized in Table 2.1.

Table2.1: Notation

Message under analysis denoted as m

Cm Longest transmission time
Dm Deadline
Jm Release jitter
Em Transmission deadline
Tm Period or minimum inter-arrival time
wm Queuing delay
Rm Worst-case response time
hp(m)Higher-priority messages than m
lp(m) Lower-priority messages than m
Bm Blocking time
o Priority order

CAN messages could be periodic or sporadic. In our analysis, we assume that spo-

radic messages are periodic with minimum inter-arrival time. This adds pessimisms

to calculations.

2.6 Traditional Schedulability Analysis

There are 3 major duties of a CAN network designer:

-Packing signals into CAN messages.

-Calculating WCRT’s of CAN messages and ensuring that these messages do not

violate their deadlines.

-Assigning Id’s to CAN messages such that these messages arrive to their destination

nodes before violating the deadlines.

11

The first one is out of the scope of this thesis. We assume that signals are already

packed to CAN messages. But the later two are studied in detail. In the thesis,

calculating WCRT’s of messages is called as CAN analysis or schedulability analysis

and assigning Id’s to CAN messages is called as CAN scheduling.

In this section, we try to compute the WCRT of messages on the CAN network. The

computed values are used for checking the scheduability of the network by comparing

these values with deadlines. If WCRT’s of all messages are smaller than deadlines,

the network is schedulable. Even if one of the messages violates the deadline, then

the whole network is unschedulable.

Worst case response time Rm of any message m consists of 3 elements:

Rm = Jm +Cm + wm (2.2)

One of the elements is Jm, message may be released later than expected. wm is the

queueing delay.It is the time that the message has to wait until the start of transmis-

sion. The last element is maximum transmission time Cm. It depends on bus speed

and message length.

Queuing delay is composed of two elements: blocking delay and interference delay.

CAN protocol uses priority based arbitration, always higher priority messages start

transmission before lower priority messages. But if a lower priority message is on

the bus just before a high priority message, the higher priority message has to wait

until the end of the transmission because of the non-preemptive nature of CAN. This

waiting time is called blocking delay for that high priority message. In other words,

blocking delay is due to one of the lower priority messages. In 2.3, it is seen that

blocking message is the longest message among the lower priority messages.

Bm = max
kεlp(m)

(Ck) (2.3)

Interference delay is because of higher priority messages which wins arbitration be-

fore message m. The calculation of interference delay is more complicated than

blocking delay. It is not simply the addition of transmission time of higher prior-

ity messages, because more than one instance of same higher priority message may

12

be transmitted before m. Therefore, we have to calculate busy period. Busy period is

defined as continuous interval of time during which no lower priority messages starts

transmission and ends when the bus is idle. The initial value for priority level-m busy

period is tm = Cm and it finishes when tn+1
m = tnm.

tn+1
m = Bm +

∑
∀kεhp(m)

⌈
tnm
Tk

⌉
Ck (2.4)

After calculating the busy period, we need to know how many instances of message

m is released during busy period. Then we calculate response time for each instance

and the largest of the response time values is the worst case response time of message

m. Number of message instances in the busy period is given as:

Qn
m =

⌈
tm
Tk

⌉
(2.5)

2.6 gives the queueing delay of q th instance. The equation starts with wm = Bm +qCm

and ends when wn+1
m = wn

m or wm > Dm.

wn+1
m (q) = Bm + qCm

∑
∀kεhp(m)

⌈
wn

m

Tk

⌉
Ck (2.6)

WCRT is the largest of the response times of instances. Response time of q th in-

stance:

Rm(q) = wm(q)−qTm +Cm (2.7)

WCRT of message m is therefore:

Rm = max
q=0...Qm

(Rm(q)) (2.8)

13

2.7 Case Studies

Throughout this thesis, some algorithms and methods are developed, implemented

and compared with existing algorithms and methods. In order to confirm accuracy, ef-

ficiency and effectiveness of the proposed methods and algorithms, we conduct some

experiments. For these experiments, we need message sets to test our methods and

algorithms. We also use an analytical tool and a simulator.

2.7.1 Netcarbench

This software generates example message sets which are similar to messages used in

real cars. We have used the message sets generated by Netcarbench for the assesment

of our algorithms ([8]). It is an open-source software and we have used its source

code and embedded it to our own code. By giving the properties of the network such

as bus speed and bus load, we can generate the message sets.

2.7.2 NetCarAnalyzer

Car manufacturers make tests before deploying CAN network to the vehicle. Since it

is a real-time system, they have to be sure that messages meet their deadlines. For this

purpose, they use analytical timing analysis tools. There are many commercial tools,

one of the is NetCarAnalyzer ([7]). NetCarAnalyzer is a timing analysis tool that

supports various forms of CAN networks such as CAN with or without offset, CAN

with FIFO queues or priority queues. It uses the latest researches in the literature and

among its customers there are many big companies such as PSA Peugeot-Citroën and

Renault ([7]). For the verification of our implementations, we use this tool.

2.7.3 RtaWSimulator

RtaW simulator enables to simulate CAN networks ([9]). For the evaluation and ver-

ification of our implementations, in some cases we use this simulator. RTaW-Sim

is able to simulate and predict the performances of CAN networks. These networks

14

Figure 2.1: Screenshot of NetCarAnalyzer

could be interconnected via gateways or could generate errors. We use starter version

of this simulator since it is free. The non-free version has more capabilities. RTaW-

Sim helps the network designer compare different design solutions, choose the right

components (e.g., waiting queue policy) and communication controllers (e.g., num-

ber of buffers), and configure them. But we only use for evaluating WCRT of our

networks. Both NetCarAnalyzer and RTAW-Sim take NetcarBench output as input.

NetCarBench produces .xml files suitable for both of them.

15

16

CHAPTER 3

CAN OFFSET ANALYSIS

3.1 Overview

This chapter reviews the offset concept for CAN networks and its analysis and schedul-

ing methods. Offset definition and its effects are studied in Section 3.2. In the litera-

ture, there are several methods for worst case response time analysis for CAN systems

with offsets. In Section 3.3, 3.4 and 3.5 three schedulability analysis methods are

studied and implemented. One of these methods gives exact results and the other two

give approximate results. The exact method has a high algorithmic complexity and is

not practical and we consider the approximate methods as a more practical solution.

Topic of assigning proper offsets is studied in Section 3.6. Three offset assignment

algorithms are reviewed and adjusted according to results of the previous sections

that we show. These offset assignment algorithms use schedulability analysis and us-

ing a better analysis improves results. Hence, we propose an algorithm that presents

a contribution to CAN offset analysis in Section 3.7: we have assigned offsets and

priorities together, which is a new topic and does not exist in the literature before us.

Finally, Section 3.8 contains the case studies of this chapter. Three of these existing

schedulability analysis methods are compared and offset assignment algorithms are

evaluated according to these methods. Moreover, our contribution on priority and

offset assignment is tested and compared.

17

3.2 Offset Definition

Offset is the relative time difference among the first generation of the messages. A

message mi is released at t = 0 and when another message m j is released with a delay

at t = O j, this O j is called offset. By using offsets, we try to spread the message load

over time and reduce the maximum peak load. As argued by [31], offsets dramatically

reduce the WCRT’s of messages. Normally, while doing WCRT analysis, we assume

that all higher priority messages are released synchronously. It is possible that for

a certain period, bus becomes highly loaded, some messages miss their deadlines

and after that period bus becomes idle. If we break the release synchronization by

sending messages asynchronously, we can reduce WCRT. The bandwidth of the bus

is then shared fairly by all messages. Then we can further increase the maximum bus

load. Offset usage increases the bus load from 40% to up to 80% with a good offset

scheduling algorithm [31]. Offset assignment to messages is called offset schedule .

The traditional schedulability analysis does not support offsets. There are several

methods in the literature for WCRT analysis. In these methods, it is assumed that

messages are already assigned offsets and priorities. We investigate three different

WCRT algorithms for CAN systems with offsets and compare them. An important

parameter here is the algorithm complexity. Although such kinds of algorithms work

offline, still they have to end in a bounded time. Each of them has different algorithm

complexity and exactness. There is a trade off between complexity and exactness.

We choose one of them as the superior one. Also there are several offset assignment

algorithms. Offset scheduling decides the offset for each message so as to make a

given CAN message set schedulable.

In Figure 3.1, it is seen that messages are released with offsets. There are two nodes,

m1 and m2 are released from one node and m3 from the other. In the second part of

the figure, m1 has offset value 1 and m3 has 2. When there were no offsets, WCRT of

the message m3 is 3, but when there is offsets, its WCRT decreases to 1. Similarly,

WCRT of m2 decreases from 2 to 1. This example simply shows the effect of offsets.

18

 0 1 2 3 4 5 6 7

 m1

 m2 m1 m2

 m3

 0 1 2 3 4 5 6 7

m1 m2 m1 m2

m3

 0 1 2 3 4 5 6 7

m1 m2 m1 m2

m3

 m1 m2 m1 m2

m3

Without Offsets With Offsets

 0 1 2 3 4 5 6 7

Figure 3.1: An example CAN Network with Offset Assigned Messages

3.3 Response Time Analysis with Offsets: Exact Method

This analysis method described here is based on [47]. We studied and implemented

the analysis method in that paper in code. It gives exact WCRT’s but its algorithmic

complexity is high. It has exponential complexity. It is only suitable for small and

medium sized networks.

In CAN protocol, each node has its own clock, there is no time synchronization

among nodes. Hence, offset idea is only valid within the node. Even if their off-

sets are different, two messages from different nodes can be released simultaneously.

We do not know the origin of timeline for each node and this makes the analysis

complicated.

In order to find the WCRT of messages with offsets, the exact analysis uses the trans-

action model. Each node is modeled with a transaction. The least common multiple

(LCM) of periods of messages of the same node is called a hyperperiod. If we con-

sider message instances of that node during a hyperperiod, these instances constitute

the transaction. Only one hyperperiod is enough because transactions are periodic

with the hyperperiod. In Figure 3.2, a timeline of length 24 is shown. LCM of pe-

riods of messages is 12, and hence the hyperperiod is 12. The message pattern from

t = 0 to t = 11 is an exact replica of the pattern from t = 12 to t = 23.

In the analysis, after transactions are formed, scenarios are decided. In a scenario,

19

 0 1 2 3 4 5 6 7 8 9 10 11

 12 13 14 15 16 17 18 19 20 21 22 23 24

 m3 m1

 m1 m3 m2 m4 m1 m4 m2 m4

 m3 m1

 m1 m3 m2 m4 m1 m4 m2 m4

A Transaction with Hyperperiod 12

Figure 3.2: Transaction with Hyperperiod 12

each message instance from each transaction is a candidate for the time origin of that

node. Response time can be calculated for each of these scenarios and the largest

response time gives WCRT. But this leads to many possible scenarios and if the mes-

sage set gets bigger, it becomes impossible to investigate all scenarios. Therefore, we

need to reduce the number of scenarios. In the traditional analysis, we only consider

the worst case and for the worst case, we assume that all higher priority messages are

released simultaneously at a time called critical instant. That critical instant is too

pessimistic for the offset case, because offset means asynchronism and messages are

released at different times. Hence we redefine the critical instant. Critical instant is

the instant at which at least one higher priority message is released from each node.

We do not know which messages are released at the critical instant. Each higher pri-

ority message instance of each transaction is a candidate as critical instant message

for any given message.

In short, in the exact analysis, we analyze all worst case scenarios and in each of these

scenarios a different higher priority message is assumed to be released at the critical

instant.

20

3.3.1 Response Time Of A Scenario:

We are analyzing a scenario for worst case response time of message m at priority

level l. m is released at critical instant and candidates from other nodes are also

released at that instant. Critical instant candidates are modeled with φi variable. φi is

the property of the node. It is the time difference between the start of transaction and

the critical instant. With each critical instant change, we have a different φi choice for

that node.

Relative positioning of messages to the critical instant point is shown with ϕi. It is a

property of message. For each scenario, each message of each node has different ϕi

values. It can be calculated as follows:

ϕk
i = (T k

i − (φi−φ
k
i))(mod T k

i) (3.1)

Table 3.1 shows an example message set and Figure 3.3 displays the transactions of

nodes. Let see from Table 3.2 all possible scenarios for the given example together

with possible φi and ϕi values :

Table3.1: Message Set With Two Nodes

Node 1 Node 2
Message Period Offset Message Period Offset
m1 4 0 m0 4 0
m2 6 2 m5 8 2
m3 6 1
m4 8 3

For all 6 messages, we have to analyze 24 scenarios. It means a total of 144 iterations.

For scenario 1, time origin of each transaction is zero. Therefore, at the critical instant

t = 0, m1 and m0 are released. At t = 1, m3 is released. m2 and m5 are released at t = 2

and m4 is released at t = 3. For scenario 2, critical instant is t = 1 for node 1 and

t = 0 for node 2. m3 and m0 are released at the critical instant for this scenario. For

each of these scenarios, we do not have to make computations. As we mentioned, we

need only worst case scenarios. Only higher priority messages are considered. For

21

 0 1 2 3 4 5 6 7 8 9 10 11

 m3 m1

 m1 m3 m2 m4 m1 m4 m2 m4

 0 1 2 3 4 5 6 7

 m0 m5 m0

Figure 3.3: Transactions of 2 Nodes

example, for the possible scenarios for m3, we are interested in only φ1 = 0,1,2,4,7,8

and φ2 = 0,4. Therefore, number of scenarios is reduced to 12 for message m3.

For each worst case scenario, we calculate WCRT of the message under analysis.

Response time is the sum of queuing delay and transmission time. Queuing delay of

m consists of three parts: First one is blocking delay due to lower priority messages.

Second one is interference due to higher priority messages that released from other

nodes at critical instant or later before the busy period ends. And the last one is

interference due to higher priority messages that are released from the same node

during the busy period. First, as in the traditional analysis, we should calculate the

busy period. (3.3) shows busy period calculations. It is an iterative equation, initial

value starts with t = Cm and ends when tn = tn+1. In this equation, second term is due

to transmission time of the instances of the message under analysis and third term

is due to interference due to higher priority message instances. M(t) value gives the

message instances during busy period and it is calculated with (3.2). Its value depends

on the critical instant choice. For each higher priority message, we need M(t) value.

It is calculated during iterative computations.

M(t) =

 Jk
i +ϕk

i (φi))

T k
i

+

 t−ϕk
i (φi))

T k
i

+ 1 (3.2)

t = Ba
u + Ma

u(t)Ca
u +

∑
ΓiεΓ,Fk

i εhpi(Fa
u)

Mk
i (t)Ck

i (t) (3.3)

22

Table3.2: Possible Scenarios

Scenario No φ1,φ2 ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5
1 φ1 = 0,φ2 = 0 0 0 2 1 3 2
2 φ1 = 1,φ2 = 0 0 3 1 0 2 2
3 φ1 = 2,φ2 = 0 0 2 0 5 1 2
4 φ1 = 3,φ2 = 0 0 1 5 4 0 2
5 φ1 = 4,φ2 = 0 0 0 4 3 3 2
6 φ1 = 7,φ2 = 0 0 1 1 0 0 2
7 φ1 = 8,φ2 = 0 0 0 0 5 3 2
8 φ1 = 11,φ2 = 0 0 1 2 1 0 2
9 φ1 = 0,φ2 = 2 2 0 2 1 3 0
10 φ1 = 1,φ2 = 2 2 3 1 0 2 0
11 φ1 = 2,φ2 = 2 2 2 0 5 1 0
12 φ1 = 3,φ2 = 2 2 1 5 4 0 0
13 φ1 = 4,φ2 = 2 2 0 4 3 3 0
14 φ1 = 7,φ2 = 2 2 1 1 0 0 0
15 φ1 = 8,φ2 = 2 2 0 0 5 3 0
16 φ1 = 11,φ2 = 2 2 1 2 1 0 0
17 φ1 = 0,φ2 = 4 0 0 2 1 3 4
18 φ1 = 1,φ2 = 4 0 3 1 0 2 4
19 φ1 = 2,φ2 = 4 0 2 0 5 1 4
20 φ1 = 3,φ2 = 4 0 1 5 4 0 4
21 φ1 = 4,φ2 = 4 0 0 4 3 3 4
22 φ1 = 7,φ2 = 4 0 1 1 0 0 4
23 φ1 = 8,φ2 = 4 0 0 0 5 3 4
24 φ1 = 11,φ2 = 4 0 1 2 1 0 4

Lp is the busy period and from busy period and starting time, number of instances is

found as:

εa
u,Lp

=

⌈
Lp−ϕ

a
u(φi))

T a
u

⌉
(3.4)

Due to jitter, the lowest numbered instance may have negative value. It is:

εa
u,0 = −

⌈
Ja

u −ϕ
a
u(φi))

T a
u

⌉
+ 1 (3.5)

Then we calculate the start time of nth instance:

sa,n
u = Ba

u + (n−εa
u,0)Ca

u +
∑
ΓiεΓ

Mk
i (t)Ck

i (t) (3.6)

23

For each instance,we find the response time using equation:

Ra,n
u = sa,n

u +Ca
u(ϕa

u(φi) + (n−1)T a
u) (3.7)

The largest response time gives WCRT:

Ra,n
u = max

{
Ra,n

u : n = εa
u,0, ..., ε

a
u,Lp

}
(3.8)

3.4 Response Time Analysis with Offsets: Approximate Method

The exact algorithm considers all possible worst case scenarios and it has exponential

complexity. Table 3.3 shows number of worst case scenarios for two different exam-

ple message sets. Although the number of worst case scenarios are extremely large,

these sets are smaller than the real applications. Moreover, increasing the number of

messages causes an exponential increase in the number of scenarios. Therefore, it is

not suitable for larger networks. There is another solution for offset WCRT analysis.

Table3.3: Two example message sets

Message Set Number of Scenarios
3 Nodes-24 Messages 171.800
5 Nodes-45 Messages 90.902.150

Instead of working with all possible worst case scenarios, an approximation method

can be employed. If this approximation is safe and run-time is bounded, then this

method is a good solution. Safety means that the approximate WCRT is always larger

than the exact WCRT. Moreover, approximate results should be tightly bounded, there

should not be too much difference between the approximate WCRT and the exact

WCRT. Because even if the system is schedulable, the approximate method may give

unschedulable results.

WCRT of a message consists of contributions from other nodes. Instead of taking con-

tributions of each message to the WCRT separately as in the exact case, this method

24

uses contributions of nodes, which reduces the complexity dramatically.

The message under analysis m is released and we add contributions of other nodes

to the WCRT of m. Contribution from a node can be in one of two forms: blocking

message and synchronized message. A lower priority message from other nodes may

win arbitration just before the release of m. This is the blocking message. Higher

priority messages from other nodes that are released simultaneously with m are called

synchronized messages.

In the nodes, initially blocking and synchronized messages are unknown and they

are found by trial and error. At the beginning, we choose some blocking and syn-

chronized messages and find their contributions. With these initial contributions, we

calculate an initial response time. Then process continues with iteration. Given the

initial value of response time and contribution of each node to this value, we alter

the synchronized message in a node if this change increases the response time and

the contribution of this node. All higher priority messages from other nodes are can-

didates for synchronized message. This trial and error method is called worst case

exploration algorithm (WCEA).

Cmax(i) = max
kεhps(m,i)

(Ck) (3.9)

Bmax(i) = max
kεlps(m,i)

(Ck) (3.10)

For each node, among higher priority messages, we find Cmax. Similarly, for each

node among lower priority messages, we find Bmax. Then blocking delay is found as:

Bm = max
1≤i≤Nmax,i,Nm

(Bmax(i)−Cmax(i)) (3.11)

While calculating blocking delay, we subtract Cmax because later, we add it for cal-

culating queuing delay. Initial contributions are found according to the formula:

25

W0
m = C + Bm +

∑
1≤i≤Nmax,i,Nm

Cmax(i) (3.12)

Our initial assumption is that contributions of nodes are due to longest messages.

However, the worst case may not appear when the longest messages are released

together. We need to try other messages and check whether the contribution of that

node increases if we change the message. We continue the iteration until wn
m = wn+1

m

or wm > Dm, in the later case, the system is unschedulable.

Wk
m = W0

m +
∑

1≤i≤Nmax

Ctrbk
i (3.13)

This method is proposed in [26]. The pseudo-code given in that paper is shown in

Algorithm 1. We have implemented it for the case studies. The complexity of this

algorithm depends on the number of messages, unlike exact analysis, it has linear

complexity.

26

input : Message Set M with its features

output: WCRT of each message

1 for each message m, m = 1 to m = |M| do

2 for each node i do

3 Find Bmax(i) and Cmax(i)

4 end

5 Calculate Bm, w0
m and Ctrb0

i

6 while wn
m != w0

m do

7 for each node i do

8 for each instance j do

9 Compute Ctrb j for instance j

10 end

11 Ctrbi = max1≤i≤Nmax,i,Nm(Ctrb j)

12 end

13 wn
m = w0

m +Ctrbi

14 end

15 Rm = wm +Cm

16 return Rm

17 end
Algorithm 1: Approximate Offset WCRT Analysis Algorithm

3.5 Response Time Analysis with Offsets: Maximum Interference Method

The last offset analysis method we study is the maximum interference function(MIF)

analysis. The analysis described in this section is based on [17]. Interference func-

tion (IF) and MIF are mathematical representations that are used to formulate the

WCRT calculations. Recall from the previous sections that we have used the transac-

tion model for message instances of nodes and generated scenarios. There are many

possibilities for the time origin of a transaction and for each node, each possibility is

a scenario. Here, for each scenario we represent each node with IF’s. It is a function

of time and represents transmission times of message instances inside a transaction.

It is like taking a screenshot of transactions for each scenario. In a time interval, if

there is a message transmission, then the slope of the function is 1 and if there is no

27

 0 1 2 3 4 5 6 7 8 9 10 11

 m1

 m1 m2 m1 m2

 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

t

IF(t)

Time(sec)

Transmission
Time(sec)

IF(t) vs t

Figure 3.4: Obtaining IF From Transaction

transmission, the slope is 0. Figure 3.4 shows how to obtain IF from a transaction.

Note that in the IF, we only have the higher priority message instances. Assume

that we want to calculate response time for a scenario (but not the worst case for

simplicity). We first obtain the IF’s of all nodes, then we can calculate response time

by adding the IF’s of all nodes. The addition is not a normal addition, it is called

saturation addition. It is the operation of picking up the uppermost line of all IF

lines. It provides adding up the delays of higher priority messages.

If we obtain IF of each node for each scenario and make the analysis for all possible

scenarios and obtain the largest one as WCRT, then we are doing exact analysis.

However, in the analysis, we use MIF instead of IF for a faster algorithm. By using

MIF, we obtain a faster algorithm but approximate results. MIF is the saturation

addition of IF’s for each node. At the end of saturation addition, the message can win

the arbitration when the slope becomes zero. Figure 3.5 shows how to obtain MIF

from two given IF’s. Addition starts from zero. Between t = 0 and t = 1, both of

the IF’s have slope 1, so MIF has slope between t = 0 and t = 2. Between t = 1 and

28

t = 1, IF2 has slope but IF1 has no slope. Hence MIF has slope between t = 2 and

t = 3. Between t = 2 and t = 3, IF1 has slope, IF2 has no slope. Then, MIF has slope

between t = 3 and t = 4. Between t = 2 and t = 3, both IF’s has no slope, but MIF

is already at t = 4. This process continues until MIF has no slope, at that point busy

period ends and a lower priority message can gain access to the bus. We implement

MIF algorithm using the pseudo-code given in Algorithm 2.

input : Message Set M with its features

output: Message WCRT’s

1 for each message m, highest priority first do

2 Obtain worst case offset possibilities

3 for each offset possibility do

4 Obtain the IF for the node of the analyzed message m

5 Obtain the MIF’s for all other nodes one by one

6 Make saturation addition of all MIF’s and IF’s

7 Add Bm and Cm values to saturation addition

8 From the saturation addition, find the point where the slope becomes

zero and it is equal to response time
9 end

10 Highest of the response times gives WCRT

11 end
Algorithm 2: MIF Analysis Algorithm

29

 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

1

2

3

4

5

 0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

 0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

IF_1(t)

IF_2(t)

IF_1(t)

+

IF_2(t)

t

t

t

IF_1(t) vs t

IF_2(t) vs t

(IF_1(t)+IF_2(t)) vs t

Figure 3.5: Saturation Addition of two IF’s

30

3.6 Offset Assignment

Although offset usage increases the maximum bus load remarkably, using an ineffi-

cient scheduling algorithm may decrease this potential. With offset scheduling, we try

to distribute load over time. Since nodes are not synchronized, distributing messages

of each node uniformly does not mean a schedulable solution, even if it is schedula-

ble it may not be a good solution. For example, several high priority messages with

offsets from different nodes may meet at a certain time zone and some of them may

violate their deadlines. Offset assignment is very similar to traffic shaping, it regu-

lates the bus load to assure schedulability and increase total capacity. It provides a

means to control the volume of traffic that is sent to the CAN bus. In this section,

for offset scheduling we have reviewed three methods: two of them are proposed

in [16] and one of them is from [31]. These three algorithms are: Standard Offset

Assignment Algorithm (SOSA), Local Neighborhood Search Algorithm (LNSA) and

Genetic Algorithm for Offset Scheduling (GAOS).

SOSA has the least complexity. It tries to spread the load as much as possible, but it

ignores the effects of other nodes when assigning offsets. Therefore, other algorithms

are proposed. LNSA assigns offsets by searching all possible offset combinations for

all messages. For each combination an offset WCRT analysis is required, hence its

run-time is high. GAOS uses the concepts of genetic programming. It is a machine

learning algorithm and used to optimize the offsets.

3.6.1 SOSA

SOSA assigns offsets to each node separately. For each node, messages are put to

timeline as far as possible from each other. This algorithm is proposed in [31]. For

each message insertion, first the longest interval with the smallest load is decided

for the corresponding node and new message is added to the middle of that interval.

It works as follows: Assume Tmax is the longest period in the analyzed node. First

message is put to t=0 and the longest least loaded interval is [0,Tmax), hence second

message is put to t = Tmax/2. For the third message, there are two options Tmax/4 and

3Tmax/4. Put it to Tmax/4 and continue until all the messages are placed.

31

3.6.2 LNSA

LNSA searches for offsets from a set of offset configurations. Time is divided into dis-

crete intervals called granularity. Granularity 2 means, offsets are multiples of 2. Each

message can have offsets at multiples of granularity value. For example, consider a

message set of 10 messages with granularity 2 and period 10. There are (10/2)10

different combinations. For the best result, for all combinations, WCRT analysis can

be done and the best one can be chosen, but testing WCRT for all combinations is

impossible. LNSA also tests possible offset combinations but not all of them. It starts

with SOSA algorithm. First each message is assigned an offset according to SOSA.

Then for each message starting from the highest priority, all offset possibilities are

tried assuming that all other messages keep their SOSA assigned offsets. For each

of these offset possibilities, WCRT analysis is performed and the sum of slacks of

all messages is calculated. Then the offset which produces the largest sum of slacks

is chosen. This offset is kept as the offset of that message. The next message is se-

lected and the same steps are repeated. The run-time of LNSA algorithm depends

on the granularity and the number of messages. LNSA was proposed in [31] and its

pseudo-code is given in Algorithm 3.

3.6.3 GAOS

GAOS finds an optimization for offsets by using genetic programming.We first sum-

marize the basics of genetic programming related to our research: It is inspired by

evolution theory. It starts with a set of individuals called population. Individuals are

chosen from the population to create new populations. Newer ones are better than

the elders because individuals are chosen according to their fitness, only the fittest

individuals join to reproduction. There are main operators used in genetic program-

ming: selection, crossover and mutation. Selection is the choice of parents according

to fitness. Crossover is the combination of properties of parents during reproduction.

Mutation is the random change of properties of individuals.

If we are to apply this genetic idea to offset assignment, we apply the following

procedure: Assigning offset to each message is a combination and each combination

32

input : Message Set M

output: Message Offsets

1 Apply SOSA and obtain an initial offset configuration

2 Sort messages in increasing deadline order

3 for each message m in sorted order do

4 S umO f S lacks = 0 MaxS lackValue = 0

5 for each possible offset o do

6 Make WCRT analysis for each message m do

7 S umO f S lacks+ = S lackm

8 end

9 end

10 if S umO f S lacks> MaxS lackValue then

11 O(m) = o MaxS lackValue = S umO f S lacks

12 end

13 end
Algorithm 3: LNSA Algorithm

is an individual. We start with an initial population, we make WCRT analysis for the

individuals of this population and find the fittests. The fittest individuals are the ones

with largest sum of slacks. Then by applying crossovers and mutations to the fittest

combinations, we obtain child combinations. Note that the sum of slacks of new

individuals are larger than those of previous ones, because algorithm iterates towards

better individuals. The algorithm continues until we find a schedulable solution or

maximum number of iterations is reached.

GAOS has less number of iterations than LNSA, because in LNSA we search all

possible directions. However, in GAOS as we iterate, in the next iteration, we know

in which direction we continue to search.

We have compared three algorithms in terms of efficiency and complexity. SOSA

does not make offset WCRT analysis, but the other two use WCRT analysis inside

the algorithms. The original LNSA and GAOS use the approximate WCRT analysis

algorithm described in the third section. We have implemented these algorithms also

with MIF and exact analysis algorithms.

33

input : Message Set Z, maxNoOfIterations, mutationRatio,

crossoverRatio,initialPopulationNo,PopulationNo

output: Message Offsets

1 for i=1 to i=initialPopulationNo do

2 Generate Initial Populations using mutations

3 end

4 for each individuals in the population do

5 Make WCRT analysis

6 if Schedulable Individual Exists then

7 return schedulable

8 end

9 else

10 Calculate sum of slacks

11 end

12 end

13 for i=1 to i=maxNoOfIterations do

14 Select two individuals with the largest sum of slacks

15 Crossover the parents with crossoverRatio

16 Apply mutations to children

17 for each individuals in the population do

18 Make WCRT analysis

19 if Schedulable Individual Exists then

20 return schedulable

21 end

22 else

23 Calculate sum of slacks and choose the population with the largest slack individuals, total

population cannot exceed PopulationNo

24 if population >PopulationNo then

25 Discard the ones with smallest sum of slacks

26 end

27 end

28 end

29 end
Algorithm 4: GAOS Algorithm

34

3.7 Offset and Priority Assignment Together

Many studies have been carried out in priority assignment topic. However, there

exists no priority assignment algorithm for the offset case. Offset scheduling increases

the bus load and we can further increase that load if we can freely assign priorities.

Priority and offset are two parameters that affect WCRT, and they are not independent.

If we have a message set with unassigned priorities and unassigned offsets, what we

normally do is first assigning priorities to messages and then assigning offsets or vice

versa. The two processes work independently and as a result, we may obtain poor

results. For example, for a given message set, assume first we assign offsets using

SOSA and then assign priorities in deadline monotonic order, but the system may be

unschedulable. Or, we assign priority first and offset second. A schedulable system

may not be obtained with this configuration because even if we assign the smallest

deadline message to high priority, if all higher priority messages gather at the same

offset, it still misses its deadline. Therefore, priority and offset should be handled

together.

We have developed an algorithm to solve this problem. We apply SOSA algorithm

first, and in each node, messages are uniformly distributed. Then starting from the

lowest priority level, messages are tried one by one for the priority levels assuming

all other unassigned messages are at higher priorities. For this testing, we assume that

messages in the same node have offsets and messages from other nodes are released

simultaneously with the message under analysis since the nodes are not synchronized.

We find a schedulable message for each priority level if possible. If a schedulable

message does not exist for the given priority level then the one with largest slack is

chosen meaning that the one which violates the deadline the least is chosen. After

all messages are assigned to priority levels, the system is tested with new offsets and

priorities. If schedulable, then algorithm returns. If still it is not schedulable, then

we need to modify the offsets. We determine the unschedulable messages and apply a

method which is similar to GAOS. Within the limited number of iterations, we change

the offsets of unschedulable messages according to GAOS.

With the algorithm whose pseudo-code is given in 5, we do not promise an optimal

35

input : Message Set M=all messages, Message Set H = 0 and Message Set L = M

output: Message Offsets and Message Priorities

1 Apply SOSA algorithm and obtain messages with new offsets O

2 for each priority level l, lowest first do

3 for each message m do

4 Calculate WCRT of message m assuming m is at priority level l and all other unassigned

messages are at higher priorities. Also assume same node messages have offsets and other

messages are released simultaneously.

5 if m is schedulable then

6 H = HUm, L = L/m, Priority(m)=l

7 end

8 else

9 Choose any m with smallest deadline violation. H = HUm, L = L/m, Priority(m)=l

10 schedulable=false

11 end

12 while schedulable do

13 Test Set M with Priority() and O()

14 if M is schedulable then

15 return true

16 end

17 else

18 Determine unschedulable messages

19 for i=1 to i=maxNoOfIterations do

20 Select two individuals with the largest sum of slacks, apply crossovers and

mutations

21 for each individuals in the population do

22 Make WCRT analysis

23 if Schedulable Individual Exists then

24 return schedulable

25 end

26 else

27 Calculate sum of slacks and choose the population with the largest

slack individuals, total population cannot exceed PopulationNo

28 end

29 end

30 end

31 end

32 end

33 end

34 end
Algorithm 5: Offset and Priority Assignment Algorithm

36

scheduling algorithm, but filling the gap of literature on priority assignment for CAN

with offsets.

3.8 Case Study

3.8.1 Case Study 1

In order to compare exact algorithm, approximate algorithm and MIF algorithm in

terms of run-times and exactness, we have made an experiment. In this experiment,

we have used 20 message sets, bus loads are between 30% and 40%. Number of ECUs

are between 4 and 7. Message periods are among 10,20,50,100,200ms. Offsets are

chosen such that messages of each node are uniformly distributed. The experiment

is run for 20 message sets serially and ended in 50 minutes. Table 3.4 shows the

run-time and exactness comparisons. According to it, exact algorithm run-time is

incomparable with the other two. For larger message sets, the exact WCRT calcu-

lation becomes impractical. MIF and approximate algorithms have no problem with

run-time. But in terms of exactness, MIF algorithm is much better. In order to com-

pare the exactness, we have summed the WCRT’s of messages for each algorithm.

The MIF sum is 98.2% higher than the exact sum. Similarly, the approximate sum is

72.9% higher than the exact sum.

Table3.4: Exact, MIF and Approximate Algorithms in terms of run-times and exact-
ness

Exact MIF Approximate
Run-times 48.5 min 23 sec 17 sec
Similarity to Exact Case 100% 98.2% 72.9%

There are four parameters we have observed that affect run-times of algorithms. Num-

ber of messages, period, number of ECU’s and granularity. The number of total mes-

sages is the first parameter for the run-time. We have two message set groups. Each

group has 10 different message sets. Each message set has same number of ECU’s

and same granularity, the number of nodes is 4 and granularity is 20. The bu speed

is 125 Kbps. Both groups have standard periods as 10, 20, 50, 100, 200 ms. Av-

erage number of messages in the message sets of the first group is between 28 ad

37

32. Average number in the second group is between 43 and 46. Two message set

groups have significant run-time difference, especially for the exact algorithm. Table

3.5 shows the comparison of two message set groups. Table shows the average of all

message sets. As can be seen, as the number of total messages increases, run-times

also increase. After increasing the number of messages by 50%, the run-time of the

exact algorithm increases by 6 times. However, MIF and approximate run-times are

still much smaller.

Table3.5: Run-time Comparison of Three Analysis Algorithms For Different Number
of Messages

Exact Analysis
Average

MIF Analysis
Average

Approximate Analysis
Average

Group 1 49.4 sec 2.62 sec 0.358 sec
Group 2 277 sec 5.11 sec 0.608 sec

The number of ECU’s is another important parameter for the run-time. We have

compared two message set groups with nearly same number of messages. Again each

group has 10 message sets, the number of messages in the message sets is between 28

and 32. The first group message sets have 3 ECUs and the second group sets have 6.

Periods and granularity are same for both groups, granularity is chosen as 20. As can

be seen from Table 3.6, as the number of ECUs increases with same number of total

messages, run-times also increase because the number of scenarios increases which

depends on the formula given by (3.14).

∏
j=NumberO f Nodes

(
∑

i=NumberO f Messages

Hyperperiod[j]
PeriodO f Message[i]

)! (3.14)

Table3.6: Run-time Comparison of Three Analysis Algorithms For Different Number
of ECU’s

Exact Analysis
Average

MIF Analysis
Average

Approximate Analysis
Average

Group 1 9.67 sec 1.87 sec 0.25 sec
Group 2 614.35 sec 3.4 sec 0.28 sec

Another important parameter we have observed that affects run-times of the algo-

rithms is the offset granularity. For a message set group of 10 message sets, we have

38

run the three algorithms for granularity of 10 and for granularity of 1. Group 1 has

granularity of 10 and Group 2 has granularity of 1. The number of messages in each

set is between 28 and 32, periods are again standard periods. Number of ECU’s is 4.

In Table 3.7, run-times are compared. As the granularity increases the offset possibil-

ities decreases and run-times decrease, as well.

Table3.7: Run-time Comparison of Three Analysis Algorithms For Granularity Val-
ues

Exact Analysis
Average

MIF Analysis
Average

Approximate Analysis
Average

Group 1 90.7 sec 2.88 sec 0.27 sec
Group 2 498.5 sec 3.9 sec 0.343 sec

The last important parameter that affects run-time is period. First message set group

has standard periods as 10, 20, 50, 100, 200 ms and second group has non-standard

periods as 15, 35, 60, 130, 210 ms. The number of messages in each set is between

20 and 22. The number of ECU’s in each set is 3 and granularity is 10. As can be

seen from Table 3.8, non-standard periods increase run-time significantly.

Table3.8: Run-time Comparison of Three Analysis Algorithms For Different Period
Values

Exact Analysis
Average

MIF Analysis
Average

Approximate Analysis
Average

Group 1 4.92 sec 1.24 sec 0.187 sec
Group 2 779 sec 5.02 sec 0.234 sec

3.8.2 Case Study 2

In order to observe the effect of granularity on schedulability, we have made this ex-

periment. High granularity is better in terms of run-time. However, as the granularity

increases, the number of unschedulable messages may increase. In Table 3.9, we

have three granularity options. For schedulability comparison, we have chosen bus

load between 70% and 90%. The first row has granularity of 10, second row has

granularity of 5 and third row has 1. We have 5 message set groups and each group

has 20 message sets. The number of messages is between 100 and 125 in each set.

For WCRT analysis, we have used MIF offset analysis algorithm. In the table, the

39

number of unschedulable messages in each message set groups is shown. As can be

seen from table, there is almost a direct correlation between granularity and number

of unschedulable messages.

Table3.9: The Effect of Granularity On the Schedulability

Number of
Unch. Mess.

Number Of Mess.
In Each Set 100-105 105-110 110-115 115-120 120-125

Granularity=10 0 4 8 12 19
Granularity=5 0 2 7 9 13
Granularity=1 0 0 3 6 11

3.8.3 Case Study 3

We have made an experiment in order to assess the efficiency and complexity of offset

assignment methods, SOSA, LNSA and GAOS. For this purpose, we have generated

6 different message set groups. These groups have different features as can be seen

from Table 3.10. Using these sets, we have evaluated the three algorithms in terms

of schedulability, number of schedulable messages and run-times. Each message set

group has 20 message sets. Also for this experiment for evaluating schedulability, we

have used MIF analysis method. This due to the timing and exactness concerns.

Table3.10: Message Set Groups

Group 1 Nonstandard Periods, Infrequent Offsets, Normal Load
Group 2 Standard Periods, Frequent Offsets, Normal Load
Group 3 Standard Periods, Infrequent Offsets, High Load
Group 4 Standard Periods, Infrequent Offsets, Normal Load
Group 5 Nonstandard Periods, Frequent Offsets, Normal Load
Group 6 Nonstandard Periods, Frequent Offsets, High Load

The nonstandard periods are 15,35,60,130,210 and standard periods are 10,20,50,100,200.

Frequent offsets have granularity of 1 and infrequent offsets have granularity of 5.

Normal load is between 30% and 45%, high load is between 60% and 80%. Table

3.11 shows the average number of unschedulable messages and total sum of WCRT’s

of each message for each group and for each algorithm. For all groups, we have used

40

deadline monotonic order for priority assignment. CAN bus speeds are adjusted to

125 Kbps for simplicity.

Table3.11: Average Number of Unschedulable Messages and Sum of WCRT’s For
Each Group and Each Algorithm

Group No SOSA LNSA GAOS
Sum Of
WCRT’s

No Of
Unsch. Mes.

Sum Of
WCRT’s

No Of
Unsch.Mes.

Sum Of
WCRT’s

No Of
Unsch. Mess

Group 1 7082 20 7054 15 7197 7
Group 2 1820 0 1806 0 1924 0
Group 3 5429 46 5018 0 7124 8
Group 4 1725 0 1689 0 1877 0
Group 5 6211 16 5930 8 5839 4
Group 6 25820 180 24095 165 21470 115

In Table 3.12, it is seen that each algorithm has different run-time performance for

each group. GAOS finds just a schedulable offset configuration, but LNSA searches

the best configuration in terms of schedulability. SOSA has no concern on schedu-

lability, it just spreads messages uniformly. This is the reason why LNSA has the

highest run-times.

For Group 1, GAOS is the best choice although sum of slacks is better in LNSA.

SOSA has more unschedulable messages and less slacks. This result is consistent

with Vakkas study. In Vakkas, for Class A type message sets GAOS is suggested. For

Group 2, SOSA seems ideal. Although sum of WCRT’s are very close, run-times are

comparably different. For Group 3, we can say that GAOS is good for such kinds of

message sets, but if the run-time is not important LNSA can be used. If we compare

with Vakkas study, for Class E type message sets, results are again consistent. For

Group 4, we see that for such message sets run-time seems trivial. Hence LNSA is

better.

If we compare Group 2 and Group 4, we see that increasing granularity decreases the

run-time. The disadvantage is on schedulability. High granularity message sets are

less schedulable than the sets with lower priority. By looking at Group 2 and Group

5 together, we observe that period is another factor that affects run-time. For Group 5

and Group 6, nonstandard periods deteriorate the system performance. If we compare

Group 1 and Group 5, it is seen that frequent offsets and infrequent offsets affect the

schedulability and frequent offsets are better in terms of schedulability.

41

Table3.12: Total Run-Time Values For Each Group and Each Algorithm

Group No SOSA LNSA GAOS
Group 1 7.5 sec 280.2 sec 18 sec
Group 2 4.3 sec 61.4 sec 5.57 sec
Group 3 7.5 sec 25.8 sec 9.47 sec
Group 4 1.8 sec 4.4 sec 2.4 sec
Group 5 5.2 sec 3120 sec 23.6 sec
Group 6 39.2 sec 59576 sec 217 sec

3.8.4 Case Study 4

In Case Study 1 and Case Study 3, we have measured the performance and run-times

of offset assignment and offset WCRT analysis algorithms. LNSA and GAOS algo-

rithms use WCRT analysis methods inside their own algorithm and we need to choose

the best analysis algorithms for both of them. In this experiment, we ran LNSA and

GAOS algorithms together with MIF and approximate analysis algorithms and com-

pared the performance metrics. We have also tried exact algorithm for both of them

and decided that using exact analysis algorithm inside offset assignment algorithms

is not practical. Because a single offset assignment algorithm runs WCRT analysis

many times and in the exact case, the process requires several days.

Table3.13: LNSA and GAOS with both MIF and Approximate Analysis

Analysis
Algorithm

LNSA GAOS

Run-Time No Of
Unsch. Mes. Run-Time No Of

Unsch.Mes.
MIF Algorithm 1963 sec 0 175.6 sec 2
Approximate Algorithm 126.6 sec 27 14.74 sec 73

In Table 3.13, a message set group of 20 message sets is investigated and average

run-time for each set and total number of unschedulable messages are shown. The

bus loads are between 70% and 90%. When we compare the rows of the table, it is

clear that there is a trade-off between run-time and unschedulable messages. If we

have no timing concern, then MIF is better. Also, we see that for this configuration

LNSA is superior for both MIF and approximate cases.

42

3.8.5 Case Study 5

Using the algorithm developed in Section 1.7 for offset and priority assignment, we

can achieve very high loads (above 90%) as long as message deadlines are equal to

message periods. When we look at the message set groups given in Case Study 3,

we see that Groups 1, 3 and 6 violate schedulability. We have applied our offset and

priority assignment algorithm to these groups and found schedulable configurations

for each of the message sets at 125 Kbps speed. Then, we have halved the message

deadlines and again applied our algorithm. For each message set, we have found the

minimum bus speed required in order to make the system schedulable using offset and

priority assignment algorithm. At the found speeds, we have applied LNSA algorithm

to the message sets for offset assignment. For the priority assignment, we have used

deadline monotonic ordering. For those configurations, we have found the number of

unschedulable messages. We have repeated the experiment, for Deadline = Period/3

case. In Table 3.14, for the found bus speeds, the number of unschedulable mes-

sages can be seen. Note that these are the result of LNSA algorithm with deadline

monotonic ordering. For offset and priority assignment algorithm the number of un-

schedulable messages is all zero.

Table3.14: Minimum Bus Speed Required For Offset and Priority Together Algorithm
and Number of Unschedulable Messages For LNSA Algorithm at These Speeds

GroupNo Deadline=Period Deadline=Period/2 Deadline=Period/3
Min. Bus

Speed
Unsch. Mes.
With LNSA

Unsch. Mes.
With our Alg.

Min. Bus
Speed

Unsch. Mes.
With LNSA

Unsch. Mes.
With our Alg.

Min. Bus
Speed

Unsch. Mes.
With LNSA

Unsch. Mes.
With our Alg.

Group 1 125 Kbps 6 0 62 Kbps 58 0 68 Kbps 29 0
Group 3 125 Kbps 3 0 93 Kbps 26 0 114 Kbps 47 0
Group 6 125 Kbps 46 0 101 Kbps 72 0 110 Kbps 60 0

This table shows that our algorithm is much better for all three groups. The superiority

is seen better as the deadlines are decreased.

43

44

CHAPTER 4

FIFO ANALYSIS

4.1 Overview

In this chapter, we analyze an unideal CAN network. In practical applications, due to

several reasons FIFO queues are used in CAN controllers instead of priority queues.

We study such kind of an unideal network which is a mixed CAN network consisting

of both priority queued and FIFO queued CAN controllers. This chapter is sent to In-

ternational Journal of Vehicle Design (IJVD) and accepted for that journal. It will be

published on May. In Section 4.2, we define characteristics of FIFO CAN controllers.

This chapter of the thesis is mainly based on [25] paper. Schedulability analysis of

mixed CAN networks given in that paper is reviewed in Section 4.3. This chapter

also suggests an improved schedulability analysis. We developed an algorithm which

makes the FIFO analysis faster. Properties of our improved schedulability analysis

algorithm is given in Section 4.4. Scheduling of FIFO messages is studied in Section

4.5 and scheduling algorithm for mixed CAN networks is implemented. Moreover,

we further continue on FIFO analysis. In practical applications, it is very common

to extend an existing message set by adding new messages. We want old messages

to retain their original Id’s, but new messages to get Id’s accordingly. In literature,

there are studies for extending ideal CAN networks. In Section 4.6, we suggest a

new algorithm for extending mixed CAN networks. And finally, in Section 4.7, we

demonstrate all of these cases.

45

4.2 Characteristics of FIFO Controllers

In the traditional schedulability analysis, it is assumed that the highest priority mes-

sage in the queue always wins the arbitration. However, this might not be the case

in practice. Due to several reasons, FIFO queues could be used instead of priority

queues. First reason is that CAN systems are mass products, saving a very small

amount from an item can be multiplied by millions of items. High-end cars today

have about 70 CAN controllers ([18]). Therefore, because of the cost FIFO con-

trollers can be preferred. Second reason is due to simplicity. In [36], it is stated that

FIFO queues are simpler and provide faster queue management which improves the

performance of the system. For example, Fujitsu MB90385/90387, Fujitsu 90390,

Intel 87C196 (82527), Infineon XC161CJ/167 (82C900) components do not use pri-

ority queues, they transmit according to buffer number rather than message ID ([25]).

Another usage of FIFO queues is in the gateways. In a gateway, many messages

gather and the capacity of the gateway priority queue could be exceed, which is very

probable. The most simple solution to this problem is using FIFO queues. In a car,

not all controllers are FIFO, but FIFO and priority queued controllers may be used

together which is a mixed CAN network.

Aside from schedulability analysis, scheduling of FIFO messages is investigated

in this chapter. In the literature, there are many proposed scheduling algorithms.

[13],[30],[15],[19] papers propose algorithms for priority queued CAN networks. For

mixed CAN networks, in [11],[25] scheduling algorithms are developed. These algo-

rithms are concerned with the scheduling of complete message set. In other words,

all messages are initially unassigned and we assign completely new priorities to all of

them.

CAN has been in use for three decades. Many different cars have been produced

since then but message sets used in these cars have not changed much. When a

new car is produced, car manufacturers use existing messages sets used in older cars.

Because these message sets have been proven to work fine. Many documents are

prepared for these message sets and reliability is tested in many cars. When a new

feature is wanted to be added, they add new messages to the existing message sets

but scheduling process does not start for all messages. This is called extending the

46

existing message set. This is a scenario frequently encountered in applications: set

of messages is already assigned Id’s and new messages have to be added to existing

application.

Car manufacturers make the old messages keep their Id’s and assign Id’s to new mes-

sages. When a new message is added to the system, if the scheduling process starts

for all messages and if new Id’s are given to all messages, then there is no problem,

many scheduling algorithms from literature can be used. For the extension case, how

the Id’s of new messages is chosen is a problem. For example, let the existing net-

work consists of Id’s 3, 6 and 9. In such case, the Id’s 1,2,4,5,7,8 and all Id’s larger

than 9 are available for new messages. We have to choose appropriate Id’s among

these available gaps without violating schedulability. In the paper [39], a scheduling

solution for extending existing message sets is proposed. This solution works only for

ideal CAN networks which consists of only priority queued nodes. Using this work,

we suggest a new algorithm for extending existing mixed CAN systems consisting of

both FIFO and priority queued nodes. This is the main contribution of this paper.

4.3 Schedulability Analysis Algorithm

4.3.1 Notation and Scheduling Model

We consider messages that are transmitted on the Controller Area Network [40]. Each

message m is specified by a tuple m = (Cm,Tm, Jm,Dm,Em), whereby Cm is the max-

imum transmission time, Tm is the message period , Jm is the release jitter, Dm is

the deadline and Em is the transmission deadline of m. Cm is evaluated according to

(2.1), Tm represents the time between two message generations for periodic messages

and the minimum inter-arrival time for sporadic messages, Jm represents the maxi-

mum time from the generation of m until its availability in the CAN device driver

queue, Dm states the maximum allowable time between the generation of m until its

successful arrival at a receiver node and Em = Dm− Jm.

Regarding scheduling, we consider a CAN network with a set of messagesM. Since

schedulability on CAN depends on the relative priority order of messages instead of

47

the absolute CAN ID [41, 19, 39], we introduce the priority order o :M 7→ {1, . . . , |M|}.

Here, o(m) represents the priority level of message m ∈M. The lowest priority level

is |M| and the highest priority level is 1. For a message m ∈M, we write lp(m) for the

set of lower-priority messages than m: lp(m) = {m′ ∈ M|o(m′) > o(m)}; hp(m) is the

set of higher-priority messages than m: hp(m) = {m′ ∈M|o(m′) < o(m)}. In addition,

we use the blocking time Bm = maxk∈lp(m) Ck, which represents the transmission time

of the longest message in lp(m).

Depending on the priority order o, each message m ∈ M has a worst-case response

time (WCRT) denoted as Rm. We say that a priority order o is feasible for a message

m ∈M if Rm ≤ Em. If o is feasible for all m ∈M, o is called feasible. That is, the goal

of message scheduling on CAN is determining a feasible priority order o.

The notation introduced in this section is summarized in Table 4.1.

Table4.1: Notation

General messages denoted as m

Cm Longest transmission time
Dm Deadline
Jm Release jitter
Em Transmission deadline
Tm Period or minimum inter-arrival time
wm Queuing delay
Rm Worst-case response time
hp(m)Higher-priority messages than m
lp(m) Lower-priority messages than m
Bm Blocking time
o Priority order

FQ messages

G Set of FIFO groups
Gm FIFO group of message m
M(m) Set of messages in the same FIFO group as m
Lm Lowest-priority message in M(m)
EMIN

m minimum transmission deadline in M(m)
fm Buffering delay of message m
fm,k Buffering delay of message m for message k
CMAX

m Maximum transmission time in M(m)
CMIN

m Minimum transmission time in M(m)
CSUM

m Accumulated transmission time in M(m)

48

4.3.2 Worst-case Response Time Computation

The most commonly used scheduling model for CAN [19] assumes that the the device

driver of a CAN node implements a priority queue (PQ) such that always the highest

priority available message occupies the head of the PQ and enters arbitration. Nev-

ertheless, as is pointed out by [36, 25], not all CAN device driver implementations

comply with this assumption and use FIFO queues (FQ) instead. In this case, each

message has to wait until it becomes the oldest message in the FQ in order to enter

arbitration. As a result, each FIFO-queued message may experience an additional

buffering delay when queued behind lower-priority messages, leading to an increased

WCRT compared to the analysis by [19].

In this paper, the schedulability analysis and priority assignment for messages on

CAN networks that include both PQ and FQ nodes. Since our research is based on

WCRT computation by [25], we briefly summarize this computation. We first intro-

duce additional notation in order to describe CAN nodes with FQs. We consider a set

G of FIFO groups. We write Gm ∈G for the FIFO group of message m ∈M and M(m)

for the set of messages that enter the same FQ as m. Lm is the lowest-priority mes-

sage in M(m). The maximum and minimum transmission time of messages in M(m)

is CMAX
m and CMIN

m , respectively, and the sum of all transmission times of messages in

M(m) is evaluated as CSUM
m =

∑
k∈M(m) Ck. FQ messages potentially experience an ad-

ditional buffering delay before reaching the head of the FQ. The maximum buffering

delay of FQ message m ∈M is written as fm.

The notation introduced in this section is summarized in Table 4.1.

4.3.2.1 WCRT Computation for PQ Messages

We recall the WCRT computation for a PQ message m ∈ M from [25]. To this end,

first the queuing delay wm is evaluated by the following iteration

wn+1
m = max(Bm,Cm) +

∑
k∈hp(m)

⌈wn
m + Jk + fk,m +τbit

Tk

⌉
Ck (4.1)

Hereby, fk,m represents the effect of the buffering delay of the higher-priority message

k ∈ hp(m) on the queuing delay of m. It holds that fk,m = fk or fk,m = 0 as is discussed

49

in Section 4.4. The iteration in (4.1) starts with w0
m = Cm and terminates when either

wm > Em (deadline violation) or wn+1
m = wn

m (convergence). In the first case, the system

is not schedulable. In the second case, the WCRT of m is determined as

Rm = wn+1
m +Cm. (4.2)

4.3.2.2 WCRT Computation for FQ Messages

For each FQ message m ∈M, the queuing delay wm is evaluated as follows

wn+1
m = max(BLm ,C

MAX
m) +CSUM

m −CMIN
m +

+
∑

k∈(hp(Lm)\M(m))

⌈wn
m + Jk + fk,m +τbit

Tk

⌉
Ck (4.3)

We note that this computation is FIFO symmetric in the sense that it is assumed

that all messages k ∈ M(m) obtain the same queuing delay. Accordingly, the compu-

tation considers the blocking time BLm of the lowest-priority message in M(m), the

maximum transmission time CMAX
m and the maximum accumulated transmission time

CSUM
m −CMIN

m of FQ messages in front of the tail of the FQ. Again, fk,m represents the

effect of the buffering delay of the higher-priority message k ∈ hp(m) on the queuing

delay of m with fk,m = fk or fk,m = 0 as is discussed in Section 4.4. The iteration in

(4.3) starts with w0
m = max(BLm ,C

MAX
m) + CSUM

m −CMIN
m and terminates when either

wm > EMIN
m = mink∈M(M)(Ek) (deadline violation of at least one message in M(m))

or wn+1
m = wn

m (convergence). In the first case, the system is not schedulable. In the

second case, the WCRT of m is determined as

Rm = wn+1
m +CMIN

m (4.4)

and the maximum buffering delay of m is computed as

fm = wn+1
m = Rm−CMIN

m . (4.5)

4.3.2.3 Schedulability Analysis Algorithm

An algorithm for evaluating the WCRTs in (4.2) and (4.4) is proposed by [25] in Al-

gorithm 6. Since we suggest an improvement of this algorithm in Section 4.4, we

50

briefly discuss the main features of the algorithm in [25]. It is noted that there can be

a circular dependency when evaluating (4.3) for FQ messages of FIFO groups with

interleaved priority levels. To illustrate this dependency, let k and m be two messages

whose FIFO groups Gk and Gm have interleaved priority levels. Then, fk,m = fk is

needed for the computation of wm and fm,k = fm is needed for the computation of wk.

In order to break this circular dependency, [25] observe that buffering delay values

according to (4.5) and (4.3) are monotonically increasing with each iteration. Hence,

they perform the WCRT computation in a loop over all messages m ∈M that is repeat-

edly restarted. To this end, the computation according to (4.1) and (4.3) is performed

for a fixed value of the buffering delay for each message. If an inconsistency is de-

tected, that is, fm < wm for any message m ∈ M, the buffering delay is updated to

fm = wm and the computation is restarted. The algorithm terminates if fm = wm is

obtained for all FQ messages.

51

input : Full message set with corresponding priority assignment o(m) for each

message m

output: WCRT Rm for each message m

1 Initialize fg := 0 for all g ∈G

2 repeat=true;

3 for all priority levels l starting from the highest level do

4 Let m be the message with pm = l

5 if m is a FIFO queued message then

6 Compute Rm according to (4.3) and (4.4) if Rm > Dm then

7 return unschedulable;

8 end

9 if fm,k < wm then

10 fm,k = wm repeat=true;

11 end

12 end

13 else

14 Compute Rm according to (4.1) if Rm > Dm then

15 return unschedulable;

16 end

17 end

18 end

19 return schedulable;
Algorithm 6: WCRT computation for CAN networks with FIFO queues.

4.4 Improved Algorithm for Schedulability Analysis with FIFO Queues

In this section, we present our improved algorithm for the schedulability analysis of

CAN networks with PQs and FQs. Section 4.4.1 discusses special cases that simplify

the WCRT computation and Section 4.4.2 states our improved algorithm based on

these special cases. An illustrative example is given in Section 4.4.3.

52

4.4.1 Special Cases

The evaluation of the queuing delay in (4.1) and (4.3) for a message m ∈M requires

the knowledge of the buffering delay fk,m for each higher-priority message k ∈ hp(m).

As is stated by [25], fk,m = 0 for all PQ messages. In addition, in certain special cases,

fk,m = 0 also for FQ messages. Otherwise fk,m = fm. We next rigorously investigate the

special cases in which fk,m = 0 is valid for FQ messages with the aim of simplifying

the algorithm by [25].

First, we define the notion of spanning for FIFO groups.

Definition 4.4.1 (a) Consider a PQ message m ∈ M and a FIFO group Gk for

some FQ message k ∈ M. We say that Gk spans m if hp(m)∩M(k) 6= ∅ and

lp(m)∩M(k) 6= ∅.

(b) Consider an FQ message m ∈M and a FIFO group Gk. We say that Gk spans

m if hp(Lm)∩M(k) 6= ∅ and lp(Lm)∩M(k) 6= ∅.

In words, (a) states that a FIFO group Gk spans a PQ message m if the priority level

of m is between the highest and the lowest priority level of Gk. Similarly, (b) states

that a FIFO group Gk spans a FQ message m if the lowest priority level Lm of Gm is

between the highest and the lowest priority level of Gk.

We illustrate the concept of spanning FIFO groups using the example setting in Fig.

4.1. In this example, there are 4 FIFO groups FIFO0, FIFO1, FIFO2, FIFO3 and

two PQ messages PQ2 and PQ5. The priorities of the respective messages increase

according to the arrow in the figure and the priority levels of message in each FIFO

group lie between the indicated upper and lower bound. It holds that the PQ message

j2 = PQ2 is spanned by the FIFO group FIFO1 and the PQ message j5 = PQ5 is

spanned by the FIFO group FIFO4. Likewise, all FQ messages of FIFO0 (such as

j0) are spanned by FIFO1, all FQ messages of FIFO1 (such as m1) are spanned by

FIFO 3 and all FQ messages of FIFO3 (such as j3) are spanned by FIFO4. The FQ

messages of FIFO4 are not spanned by any FIFO group.

Using the idea of spanning FIFO groups, several facts regarding the evaluation of the

buffering delay fk,m in (4.1) and (4.3) are stated by [25] and summarized in Proposi-

53

FIFO-0

j0

j2

m1

FIFO-1
PQ-2

FIFO-3

j3
m4

FIFO-4 PQ-5
j5

increasing

priority

Figure 4.1: Spanning and Non-Spanning Groups

tion 4.4.2.

Proposition 4.4.2 (a) Let m be a PQ message and Gk be a FIFO group such that

hp(m)∩M(k) 6= ∅. fk,m = fk if Gk spans m. Otherwise, fk,m = 0.

(b) Let m be an FQ message and Gk be a FIFO group such that hp(m)∩M(k) 6= ∅.

fk,m = fk if Gk spans m. Otherwise, fk,m = 0.

In words, (a) states that the buffering delay fk,m for a PQ message m evaluates to zero

for all messages k that belong to FIFO groups whose priority levels lie entirely above

the priority level of m. In Fig. 4.1, the WCRT of PQ2 is evaluated with fk,m = 0 for all

messages of FIFO0 and the WCRT of PQ5 is evaluated with fk,m = 0 for all messages

k of FIFO3, FIFO1 and FIFO0. Similarly, (b) states that the buffering delay fk,m for an

54

FQ message m evaluates to zero for all messages k that belong to FIFO groups whose

priority levels lie entirely above the priority level of the lowest priority message Lm

of Gm. In Fig. 4.1, the WCRT of m4 is evaluated with fk,m = 0 for all messages k

of FIFO3, FIFO1 and FIFO0 and the WCRT of m1 is evaluated with fk,m = 0 for all

messages k of FIFO0.

We demonstrate the implications of Proposition 4.4.2 using Fig. 4.1. Considering

the PQ message j2, 1. implies that fk,m = 0 for all messages k of FIFO0, whereas

fk,m = fk for all higher-priority messages of FIFO1 since FIFO1 spans j2. Similarly,

when calculating the WCRT of the PQ message j5, fk,m = 0 for all messages k of

FIFO0, FIFO1 and FIFO3 (not spanning). Only fk,m = fk for the higher-priority FQ

messages k of FIFO4. For the WCRT of the FQ message j3, fk,m = 0 for the FQ

messages in FIFO0 and FIFO1 (non-spanning). Only fk,m = fk for the higher-priority

messages k in FIFO4 (spanning).

4.4.2 Improved Algorithm

Based on the properties stated in Proposition 4.4.2, we obtain the following new result

about the WCRT computation.

Proposition 4.4.3 (a) Let m be a PQ message and k ∈ hp(m) be an FQ message.

Then, fk,m = fLk = wn+1
Lk

if Lk ∈ lp(m). Otherwise, fk,m = 0.

(b) Let m be an FQ message and k ∈ hp(m) \M(m) be an FQ message of another

FIFO group. Then, fk,m = fLk = wn+1
Lk

if Lk ∈ lp(Lm). Otherwise, fk,m = 0.

Proof.

(a) Let m and k be as specified in Proposition 4.4.3 (a). If Lk ∈ lp(m), it holds

that lp(m)∩M(k) 6= ∅. Also, hp(m)∩M(k) 6= ∅ since k ∈ hp(m). Hence, by

Definition 4.4.1 (a), Gk spans m. Then, by Proposition 4.4.2 (a), fk,m = fk and

with (4.5), fk = wn+1
k . Considering that our analysis is FIFO symmetric, it holds

that wn+1
k = wn+1

Lk
, that is, fk,m = wn+1

Lk
. If Lk < lp(m), Definition 4.4.1 (a) implies

that Gk does not span m. Hence, fk,m = 0 with Proposition 4.4.2 (a).

55

(b) Let m and k be as specified in Proposition 4.4.3 (b). If Lk ∈ lp(Lm), it holds that

lp(Lm)∩M(k) 6= ∅. Also, hp(Lm)∩M(k) 6= ∅, since k ∈ hp(m). By Definition

4.4.1 (b), Gk spans m and by Proposition 4.4.2 (b), fk,m = fk. Then, fk = wn+1
k =

wn+1
Lk

= fLk by (4.5) and FIFO symmetry. If Lk < lp(Lm), Gk does not span m

with Definition 4.4.1 (b). Then, Proposition 4.4.2 (b) implies that fkm = 0.

�

In words, Proposition 4.4.2 states that non-zero buffering delays fk,m 6= 0 for the queu-

ing delay computation of a message m only appear for higher-priority messages k

of FIFO groups whose lowest-priority message Lk has a lower priority than m. In

addition, it then holds that the buffering delay is equal to the queuing delay of Lk:

fk,m = wn+1
Lk

.

Considering the result in Proposition 4.4.2, the circular dependency identified by [25]

can be removed by starting the WCRT computation from the lowest-priority message.

In that case, the required non-zero buffering delays fk,m = wn+1
Lk

for the evaluation

of (4.1) and (4.3) are always known since Lk ∈ lp(m) and wn+1
Lk

is evaluated before

wn+1
k . Based on this discussion, we present our improved algorithm for the WCRT

computation on CAN networks with PQs and FQs.

Algorithm proceeds from lowest priority level to the highest priority level. If the an-

alyzed message is a PQ message, (4.1) and (4.2) are applied using the evaluation of

fk,m as determined in Proposition 4.4.2 (line 5). If the analyzed message is an FQ

message, then we check whether it is the lowest priority message on its FIFO group

(line 8). In the positive case, (4.3) is evaluated to determine the queuing delay us-

ing fk,m as determined in Proposition 4.4.2 (line 9). The buffering delay of the FIFO

group is then equal to the found queuing delay (line 10) and the WCRT follows from

(4.4) (line 11). In the negative case, the WCRT of the considered message is equal

to the previously computed WCRT of the lowest-priority message in the FIFO group

(line 14). It is readily observed that the proposed algorithm improves the schedu-

lability analysis in [25]. First, the WCRT computation only needs to be evaluated

for all PQ messages and one FQ message in each FIFO group. In [25], the WCRT

computation has to be performed for all messages. Second and more importantly,

our algorithm does not need any restart. That is, whereas our algorithm performs the

56

WCRT computation for each PQ message and the lowest-priority messages in each

FIFO group only once, the WCRT computation for each message potentially has to

be performed many times until convergence in [25]. As is shown in Section 4.7.1,

this leads to significant computational savings of the proposed algorithm.

4.4.3 Illustrative Example

Table4.2: Example Message Set

Message m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12
Node FQ1 PQ2 FQ3 FQ1 FQ1 FQ3 FQ4 FQ3 FQ4 PQ5 PQ5 FQ4
Period 20 20 20 20 20 20 20 20 20 20 20 20
Deadline 20 20 20 20 20 20 20 20 20 20 20 20
WCRT 6 3 10 6 6 10 13 10 13 13 14 13

For better understanding, we apply Algorithm 7 to an example message set with 12

messages. The message properties are summarized in Table 4.2, whereby it is as-

sumed that the priority level of each message is given by its name. For simplicity,

we assume a bus speed of 125 Kbps and a payload size of 7 bytes for each message

(Cm = 1 ms for each message). The priority order is displayed in Fig. 4.2.

increasing

priority

FIFO1

FIFO4

FIFO3

PQ2

PQ5

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

ma1

m12

PQ6

Figure 4.2: Spanning and Non-Spanning Groups

The schedulability analysis starts with the lowest-priority message m12. It is the FQ

message with the lowest priority in the group FIFO4. Therefore, the buffering delay

57

fk,m12 is zero for all other FQ messages since no FIFO group spans m12. We obtained

wn+1
m12

= 12 in line 9 of Algorithm 7 and Rm12 = 13 (line 11). Then buffering delay of

FQ4 is fm12 = wn+1
m12

= 12 (line 10). When calculating the WCRT of the PQ message

m11, the buffering delays of messages in FQ3 and FQ1 are zero because these groups

do not span m11. Nevertheless, the buffering delay of messages in FQ4 is fm12 = 12

since FQ4 spans m11. The WCRT of m11 is determined as Rm11 = 14 (line 5). The

WCRT calculation for m10 is very similar to that of m11. Next, the WCRT of m9

need not be calculated since m9 is in the same FIFO group as m12. Because of FIFO

symmetry, Rm9 = Rm12 = 13 (line 14). m8 is the lowest-priority message of FQ3 and is

spanned only by FQ4. Hence, The WCRT computation for m8 considers that fm8,m7 =

fm12 = 13 and fm8,k = 0 for all other messages. The resulting WCRT is Rm8 = 10 (line

11) and the buffering delay of FQ3 is fm8 = 9 (line 10). The remaining WCRTs are

calculated similarly. The results are listed in Table 4.2.

For comparison, we also applied the algorithm by [25] and obtained the same WCRT

values for this example. Nevertheless, the algorithm by [25] needs 24 iterations due

to frequent restarts, whereas our algorithm completes the WCRT computation in only

6 iterations. We note that this difference becomes an important parameter for larger

example sets as is shown in Section 4.7.1.

58

input : Message setM with priority assignment o(m) for each message m ∈M

output: WCRT Rm for each message m ∈M

1 Initialize fLk := 0 for all lowest-priority messages Lk of FiFO groups

2 for all priority levels l starting from the lowest level do

3 Let m be the message with o(m) = l

4 if m is a PQ message then

5 Compute Rm using (4.1) and (4.2) with fk,m = fLk for all FQ messages

such that hp(m)∩M(k) 6= ∅ and Gk spans m. fk,m = 0 for all remaining

messages in hp(m).
6 end

7 else

8 if m = Lm is the lowest priority message in M(m) then

9 Compute wn+1
m using (4.3) with fk,m = fLk for all FQ messages such

that hp(m)∩M(k) 6= ∅ and M(k) spans m. fk,m = 0 for all remaining

messages in hp(m).

10 Set fLm := wn+1
m

11 Compute Rm := wn+1
m +CMIN

m (using (4.4))

12 end

13 else

14 Rm := RLm (using FIFO symmetry)

15 end

16 end

17 end
Algorithm 7: Improved WCRT computation for CAN networks with FIFO

queues.

59

4.5 FIFO Scheduling

The idea behind the scheduling algorithm is that we assign messages to the available

priority levels. This scheduling algorithm uses the schedulability test in each step. It

assigns a message to a priority level and then tests whether this message is schedulable

at that priority or not. If schedulable, then leave it and go to another priority level.

If not schedulable, then try another message for that priority level and test it again.

Similar to the schedulability algorithm, there are some differences between priority

queued and FIFO queued messages. For FIFO queued messages, a special case exists.

For a priority level, if we assign a FIFO message to that level, then adjacent priority

levels should be assigned to the other messages at the same node. Starting from the

lowest priority level, we try to match the message to the levels. In which order, we try

messages to the priority levels also matter. In the paper, in default, given messages are

sorted in smallest deadline first order. We try to match the largest deadlined message

to the lowest priority level. The pseudo-code is given in Algorithm 8.

60

input : Message sets S with unassigned priorities

output: Priority Ordering o

1 Initialize Message Sets H = S , L = emptyS et;

2 for each priority band k, lowest first do

3 for each message m in S do

4 if m is schedulable in priority band k according to schedulability test

described in Algorithm 6 with all unassigned priority-queued messages

/ other FIFO groups assumed to be in higher priority bands then

5 Assign m to that priority level, o(m) = k;

6 H = H/m, L = LUm;

7 if m is part of a FIFO group then

8 assign all other messages in the FIFO group to adjacent

priorities within priority band k;
9 end

10 break(break to outer loop);

11 end

12 end

13 end
Algorithm 8: Priority Assignment for CAN systems with FIFO nodes.

61

4.6 Message Set Extension

4.6.1 Motivation

The previous section develops an improved algorithm for the schedulability analy-

sis of CAN networks with PQs and FQs. For such analysis, it is assumed that all

messages on the CAN network are known and a priority level is assigned to each

message. In addition, [25] considers the case where a set of messages without a

priority assignment is given. In this case, an algorithm for the computation of such

priority assignment is provided. A characteristic of this algorithm is that the resulting

priority assignment is FIFO-adjacent, that is, messages in the same FIFO group are

assigned adjacent priority levels. Nevertheless, practical applications do not only re-

quire the schedulability analysis for an existing message set with given priority levels

or the computation of priority levels for an entire message set. A frequently encoun-

tered situation is that an existing message set with given CAN IDs is extended by new

messages [39]. In this case, the task is to place the CAN IDs of the new messages be-

tween the CAN IDs of the existing messages, while maintaining schedulability of the

existing messages and achieving schedulability for the new messages. This problem

is solved by a priority assignment algorithm for the case of CAN networks with PQs

by [39]. In this thesis, we develop an algorithm that performs the priority assignment

for new messages that are added to an existing CAN network with both PQs and FQs.

4.6.2 Extension Algorithm

We assume that the set of messagesM is composed of a set of fixed messages F and

a set of new messages N . We write F = {F1, . . . ,F|F |} and assume that the messages

in F are sorted by decreasing priority (increasing CAN ID) such that F1 has the

highest priority and F|F | has the lowest priority. Using id : F 7→ N to define the fixed

CAN ID id(Fi) of a message Fi ∈ F , it is observed from the fixed ID assignment for

messages inF that the new messages inN can only obtain IDs in the ID gaps between

the messages with fixed ID. We write gi = id(Fi+1)− id(Fi)− 1 for the gap between

message Fi and Fi+1 for i = 1, . . . , |F | − 1. In addition, we introduce g0 = id(F1) and

g|F | = 2q− id(F|F |)−1 (q = 11 or q = 29) for the gaps before the first and after the last

62

CAN message with fixed ID. For notational convenience, we further divide the setM

in PQ messagesMPQ and FQ messagesMFQ. Likewise, we write NPQ =N ∩MPQ,

NFQ =N ∩MFQ, F PQ = F ∩MPQ and F FQ = F ∩MFQ. Finally, for a FIFO group

Gk ∈ G, we write MGk for the set of messages that belongs to Gk. The notation is

summarized in Table 4.3.

Table4.3: Notation for Message Set Extension

Notation Explanation

MPQ PQ messages
MFQ FQ messages
F = {F1, . . . ,F|F |} ⊆M messages with fixed CAN ID
N ⊆M new messages
F PQ PQ messages with fixed CAN ID
F FQ FQ messages with fixed CAN ID
NPQ new PQ messages
NFQ new FQ messages
gi gap between messages with fixed CAN ID
MGk messages that belong to FIFO group Gk

Using the previously introduced notation, the main objective of this section is to de-

termine a schedulable priority order o :M 7→ N such that

• Messages Fi ∈ F obtain priority levels o(Fi) such that they can keep their fixed

CAN IDs id(Fi),

• Messages N ∈ N obtain priority levels o(N) in the gaps between the fixed CAN

IDs.

The difficulty of the stated problem is that, in principle, any new messages could be

assigned any priority level in the available gaps between fixed messages. That is,

considering that there are |N| new messages and F + 1 gaps, there are up to
(
|F |+1
|N|

)
possible priority assignments. Moreover, the presence of FQ messages with poten-

tially non-adjacent priority levels and the possible lack of gaps that are adjacent to

FQ messages make the priority assignment difficult.

In order to solve the stated problem, we propose a priority assignment algorithm that

tries to place each new message N ∈ N in the most appropriate gap between fixed

63

messages. The algorithm starts with the full set of messages W = F ∪N from the

lowest priority level. It keeps the boolean variable FIFO to indicate if some FIFO

group spans the current priority level, the variable gcur to indicate how many new

messages fit in the current gap and the variable Gun for the FIFO groups with unas-

signed messages. The basic strategy of our algorithm is to

1. prefer assigning PQ messages to lower-priority levels in order to achieve smaller

WCRTs and hence buffering delay for FQ messages,

2. assign the lowest-priority message of any FIFO groups such that the buffering

delay of the respective FIFO groups is minimized,

3. assign FQ messages of FIFO groups with a lower-priority lowest-priority mes-

sage first.

Since our algorithm comprises different cases, we present it in 4 parts. Algorithm 9

contains the main loop with 3 different cases that are addressed in Algorithm 10, 11

and 12, respectively.

The main loop in Algorithm 9 inspects each priority-level l starting from the lowest

priority-level l = |W| (line 1). In Case 1 (line 2), there is space for new messages

in the current gap and no FIFO group spans priority-level l (FIFO = false). In Case

2 (line 5), there is space for new messages in the current gap and at least one FIFO

groups spans priority-level l. In Case 3 (line 8), the current gap is fully occupied.

Algorithm 10 is applied in Case 1. The algorithm tries to find an appropriate new

message for the available gap. Hereby, S denotes a set of identified candidate mes-

sages that is initially empty (line 1). Considering that no FIFO group spans the current

priority level l, unassigned PQ messages are tried first (line 2) and all feasible such

messages are inserted in S (line 5). If at least one feasible candidate PQ message

is found (line 8), the candidate with the largest value of CN/TN is chosen since the

remaining candidates (to be assigned to higher priority levels) potentially cause a

smaller interference on the WCRT of other messages. Line 10 performs the priority

assignment to N and updates the variables of the main loop. Then, the algorithm

returns to the main loop (line 11). If no candidate PQ message is found, the next

choice is to assign the current priority-level l to a new FQ message. Since no FIFO

64

input : fGk = 0 for all Gk ∈G;W := F ∪N ; l := |W|; FIFO := false;

Gnew := ∪m∈NFIFOGm; n := |F |; gcur := gn

output: Priority assignment o

1 while l > 0 do

2 if gcur > 0∧FIFO = false then

3 Case 1: Apply Algorithm 10 to assign an appropriate message to

priority level l.
4 end

5 else if gcur > 0∧FIFO = true then

6 Case 2: Apply Algorithm 11 to assign an appropriate message to

priority level l.
7 end

8 else

9 Case 3: Apply Algorithm 12 to assign an appropriate message to

priority level l.
10 end

11 end
Algorithm 9: Message set extension algorithm: main loop.

65

group spans l in Case 1, this FQ message is the lowest-priority message in its FIFO

group. Line 13 checks all unassigned FIFO groups and line 14 determines the new

FQ message with the smallest WCRT in its group. If this FQ message is feasible, it is

inserted as candidate in S (line 16). If at least one candidate FQ message is found, the

candidate N with the smallest WCRT obtains priority-level l (line 20). Since N is the

lowest-priority message in its FIFO group, also the buffering delay is set as fN = wn+1
N .

If no FQ message is found, this implies that the current gap cannot be used for new

messages. Hence, priority-level l must be used for the next fixed message Fn. If Fn is

a PQ message (line 24), it obtains o(Fn) = l if it is feasible and the main loop moves

to the next gap (line 27). The same procedure is applied if Fn is an FQ message (line

34 to 39). Hereby, it has to he noted that, in both cases, the buffering delay of higher-

priority messages is zero since no FIFO group spans l. In addition, the evaluation is

only performed if
∑n−1

i=1 gi ≥ |W|, that is, there are enough gaps for the unassigned

new messages. If none of the evaluations in Algorithm 10 leads to a positive result,

the message set is deemed unschedulable.

In Case 2 of Algorithm 9, there is space in the current gap and the current priority-

level l is spanned by at least one FIFO group. In principle, any FQ message N of

any FIFO group Gk such that o(Lk) < l has already be assigned can be chosen since

RN ≤ Emin
N according to line 36 in Algorithm 10. In Algorithm 11, we suggest to

choose the message N that belongs to the FIFO group Gk with the lowest priority

o(Lk) and with the largest CN/TN . The aim is to minimize the number of messages

spanned by FIFO group Gk and to keep the interference of unassigned messages of Gk

small. If all messages of Gk are assigned (line 4), Gk is removed from the set of new

FIFO groups Gnew. Further, if all FIFO groups are either fully assigned or unassigned

(line 7), FIFO becomes false, since the next priority-level is not spanned by any FIFO

66

group.

1 Find Gk ∈Gnew such that o(Lk) > o(Lk′) for any other Gk′ ∈Gnew

2 Choose N ∈ NFQ∩MGk ∩W with the largest value of CN/TN

3 o(N) := l; l := l−1;W :=W\{N}; gcur := gcur−1

4 if NFIFO∩MGk ∩W = ∅ then

5 Gnew := Gnew \ {Gk}

6 end

7 if ∪Gk∈GnewMGk ∩W = ∪Gk∈GnewMGk then

8 FIFO := false

9 end

10 continue with main loop
Algorithm 11: Message set extension algorithm Case 2: at least one FIFO group

spans the current priority-level.

In case 3 of Algorithm 9, there is no space in the current gap. In that case, it needs

to be checked if the next fixed message Fn is feasible at the current priority-level l.

This check is performed for PQ messages in line 1 to 10 and for FQ messages in line

11 to 26. If the check is positive, priority-level l is assigned to Fn (line 4 or line 20).

67

Otherwise, the message set is deemed unschedulable.

1 if Fn ∈M
PQ then

2 Compute RFn using (4.1) and (4.2)

3 if RFn ≤ EFn then

4 o(Fn) := l; l := l−1;W :=W\{Fn}; n := n−1; gcur := gn

5 continue with main loop

6 end

7 else

8 return not schedulable

9 end

10 end

11 else

12 if Fn = LFn then

13 Compute RFn using (4.3) and (4.4)

14 fFn := wFn

15 end

16 else

17 RFn = RLFn

18 end

19 if RFn ≤ Emin
Fn

then

20 o(Fn) := l; l := l−1;W :=W\{Fn}; n := n−1; gcur := gn

21 continue with main loop

22 end

23 else

24 return not schedulable

25 end

26 end
Algorithm 12: Message set extension algorithm Case 3: there is no space in the

current gap.

68

4.6.3 Message Set Extension Example

We consider the existing message set F as given in Table 4.4 and the new messages

in Table 4.5. Here, the CAN IDs of the existing messages are assigned such that there

is a gap of gi = 1, i = 0, . . . ,11 between any of the neighboring messages. The gap

after the last existing message is g12 = 2q−24. Two of the new messages belong to a

new node FQ6 with a FIFO queue and the two remaining messages are added to the

node PQ5 with a PQ.

Table4.4: Existing Message Set F

Message F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
CAN ID 1 3 5 7 9 11 13 15 17 19 21 23
Queue FQ1 PQ2 FQ3 FQ1 FQ1 FQ3 FQ4 FQ3 FQ4 PQ5 PQ5 FQ4
Period 20 20 40 20 20 40 40 40 40 20 20 40

Deadline 20 20 40 20 20 40 40 40 40 20 20 40

Table4.5: Extension Set N

Message A B C D
Node FQ6 FQ6 PQ5 PQ5
Period 10 40 20 10
Deadline 10 40 20 10

We apply Algorithm 9 to this example. Since |F |+ |N| = 16, the algorithm starts

with l = 16, n = 12 and gcur = g12. This priority level is not spanned by any FIFO

group and gcur > 0,which corresponds to Case 1 in Algorithm 9. Hence, first the

PQ messages C and D are tried (line 2 in Algorithm 10. Message D violates the

deadline, but message C fits. Hence, o(C) = 16 is assigned. For l = 15, again, the PQ

message D is tried and still violates the deadline. According to line 13 in Algorithm

10, the WCRTs of the new FQ messages A and B are computed. Since none of these

messages is feasible, the current fixed message F12 should be assigned to l = 15.

Using line 34 in Algorithm 10, it is found that F12 is feasible. Hence, o(F12) = 15

and the algorithm moves to the next gap gcur = g11. The algorithm then determines

that no new messages can be placed in the gaps between the fixed messages F7 to F11

and the priority levels 10 to 14 are assigned to these messages. At l = 9, the new FQ

69

message B is feasible (line 13 to 23 in Algorithm 10) such that o(B) = 9. Since the

unassigned new FQ message A obtains a higher priority than B, FIFO = true is set in

line 20 of Algorithm 10. Although it would be desired to place the new FQ message

A adjacent to B, this is not possible since the gap between F6 and F7 is already filled.

That is, o(F7) = 8 and it is found that o(A) = 7 is suitable using Algorithm 11. The

remaining new PQ message D fits in the gap after F1 and hence, obtains o(D) = 2.

The overall priority assignment for the extended message set is shown in Table 4.6

together with the respective WCRTs.

Table4.6: Priority Assignment for the Extended Message Set

Message m Priority Level o(m) CAN ID id(m) WCRT Rm

F1 1 1 7
D 2 2 3
F2 3 3 4
F3 4 5 14
F4 5 7 7
F5 6 9 7
A 7 10 10
F6 8 11 14
B 9 12 10
F7 10 13 18
F8 11 15 14
F9 12 17 18
F10 13 19 16
F11 14 21 17
F12 15 23 18
C 16 24 19

70

1 S := ∅

2 for all N ∈ (W∩NPQ) do

3 Compute Rm using (4.1) and (4.2) with fk,m = 0 for all k ∈ hp(N)∩MFQ

4 if Rm ≤ Em then

5 S := S∪{N}

6 end

7 end

8 if S 6= ∅ then

9 Select N ∈ S with largest value of CN/TN

10 o(N) := l; l := l−1;W :=W\{N}; gcur := gcur −1

11 continue with main loop

12 end

13 for all Gk ∈Gnew do

14 Try all N ∈ NFQ ∩MGk and find N with the smallest RN using (4.3) and (4.4)

15 if RN ≤ Emin
N then

16 S := S∪{N}

17 end

18 end

19 if S 6= ∅ then

20 Select N ∈ S with smallest value of RN and set FIFO = true

21 o(N) := l; l := l−1;W :=W\{N}; gcur := gcur −1; fN := wn+1
N

22 continue with main loop

23 end

24 if Fn ∈M
PQ ∧

∑n−1
i=1 gi ≥ |W| then

25 Compute RFn using (4.1) and (4.2) with fk,Fn = 0 for all k ∈ hp(Fn)∩MFQ

26 if RFn ≤ EFn then

27 o(Fn) := l; l := l−1;W :=W\{Fn}; n := n−1; gcur := gn

28 continue with main loop

29 end

30 else

31 return not schedulable

32 end

33 end

34 else if Fn ∈M
FQ ∧

∑n−1
i=1 gi ≥ |W| then

35 Compute RFn using (4.3) and (4.4) with fk,Fn = 0 for all k ∈ hp(Fn)∩MFQ

36 if RFn ≤ Emin
Fn

then

37 o(Fn) := l; l := l−1;W :=W\{Fn}; n := n−1; gcur := gn; fFn := wFn ; FIFO = true

38 continue with main loop

39 end

40 else

41 return not schedulable

42 end

43 end

44 else

45 return not schedulable

46 end

Algorithm 10: Case 1: No FIFO group spans the current priority-level

71

4.7 Performance evaluation

In this section, we evaluate the performance of the algorithms proposed in this pa-

per. To this end, Section 4.7.1 compares our improved schedulability algorithm to

the algorithm in [25] and Section 4.7.3 demonstrates the applicability of our priority

assignment algorithm for the message set extension. Note that our algorithms are im-

plemented in C++ and the computational experiments are run on a laptop computer

with i5 core CPU, 2.2 GHz processor, 4 GB RAM.

4.7.1 Performance of the Improved Schedulability Algorithm

In this experiment, the run-time of the existing schedulability algorithm in [25] and

our improved schedulability algorithm in Section 4.4.2 are compared. We perform the

WCRT analysis for different message sets using our C++ implementation of Algo-

rithm 7 and the implementation of the algorithm in [25]. The message set properties

(bus speed, load, number of PQ/FQ messages) and run-time results are summarized

in Table 4.7. It is readily observed that the run-time of our improved algorithm is

better than that of the original algorithm. In all cases, our algorithm completed the

analysis less than the original algorithm. For large message sets such as Set8 (295

messages), improved algorithm is 4 times better than the original algorithm.

Table4.7: Different Message Sets and Their Run-Times

Message
Set

Load
(%)

Bus Speed
(Kbps)

No Of
PQ/FQ Mess.

Original Alg.
Run-Time [sec]

Improved Alg.
Run-Time [sec]

Set 1 32.34 125 55/42 0.009 0.006
Set 2 27.45 125 53/25 0.0044 0.0037
Set 3 31.11 125 65/33 0.009 0.0045
Set 4 34.25 125 68/29 0.009 0.0048
Set 5 25.94 250 97/54 0.022 0.009
Set 6 28.6 250 95/72 0.025 0.011
Set 7 30.1 250 124/44 0.023 0.01
Set 8 24.5 500 134/161 0.08 0.031
Set 9 6.81 500 91/60 0.005 0.003

Set 10 15.9 500 235/90 0.001 0.008

72

4.7.2 NetCarAnalyzer Comparison

In this experiment, the correctness of the NetCarAnalyzer[7] is discussed. NetCar-

Analyzer uses existing schedulability algorithm in [25], but we show that in Figure

4.3, it has some flaws. Although it is a commercial product, we easily found its mis-

takes. We compared the NetCarAnalyzer results and original algorithm that we have

written in C++. First, it is observed that NetCarAnalyzer does not support FIFO-

symmetry, which is a key concept in the algorithm, messages in the same FIFO node

have different response times. When we look at the upper parts of the red line in Fig-

ure 4.3, we see that there are three levels, one for each FIFO node. Messages of first

FIFO node has WCRT value of 69, second FIFO node has WCRT value of 72 and

the third one has 78. But blue line does have such levels for FIFO nodes. Secondly,

NetCarAnalyzer gives wrong WCRT’s such that WCRT values are lower than we cal-

culated. For the message with priority 12, NetCarAnalyzer result is 28 ms. This is

a FIFO message and the lowest priority message in the same FIFO node has priority

64, it roughly means that there are 63 messages before that message wins arbitration,

therefore WCRT of messages at that node should be higher than 63 ms(each message

transmission is approximately 1 ms).

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6

N e tC a r A n a ly z e r

O u r Im p r o v e d A lg o r ith m

Figure 4.3: NetCarAnalyzer Results and Our Implementation Results

73

4.7.3 Priority Assignment for Message Set Extension

In order to show the efficiency of the message set extension algorithm, we extend the

message sets in Table 4.7. For each message set, we generate a smaller message set

to be added to the CAN network with the existing message set. Some of the new

messages are PQ and some of them are FQ messages. Our experiment proceeds as

follows. First, we determine the smallest bus speed for each message set such that

Algorithm 9 obtains a feasible priority assignment. Then, at the same bus speed, we

perform a manual priority assignment by placing the new messages in available gaps

in a deadline monotonic way. Hereby, the manual assignment may give schedula-

ble or unschedulable results. Hence, we record if the manual assignment leads to a

schedulable priority assignment as well as how many messages violate their dead-

lines. Table 4.8 summarizes our results. In most cases, the manual assignment cannot

determine a feasible priority assignment, whereby up to 30% of the new messages

can be infeasible.

Table4.8: Extension Sets and Priority Assignment Results

Message Set
Minimum Speed
Required For
Improved Alg.

PQ Mess. FIFO Mess. Manual Assignment Result
with the Same Bus Speed

Extension Set 1 232 Kbps 10 8 Not schedulable(1 unsch. mess.)
Extension Set 2 208 Kbps 6 13 Not schedulable(2 unsch. mess.)
Extension Set 3 128 Kbps 11 8 Not schedulable(11 unsch. mess.)
Extension Set 4 268 Kbps 2 11 Schedulable
Extension Set 5 392 Kbps 13 20 Not schedulable(1 unsch. mess.)
Extension Set 6 445 Kbps 14 14 Not schedulable(3 unsch. mess.)
Extension Set 7 468 Kbps 6 17 Not schedulable(2 unsch. mess.)
Extension Set 8 715 Kbps 45 15 Not schedulable(3 unsch. mess.)
Extension Set 9 245 Kbps 11 25 Not schedulable(2 unsch. mess.)
Extension Set 10 484 Kbps 23 31 Not schedulable(3 unsch. mess.)

74

CHAPTER 5

GATEWAY ANALYSIS

5.1 Overview

This chapter is about analyzing and scheduling CAN networks which contains gate-

ways. With the increasing number of electronic units in cars, gateways become very

common in CAN systems. They are needed because of several reasons. Gateways

provide message transfer between two isolated CAN networks. The network inside

a single car may need to be disjointed and several separated networks form. Even

though the two networks are isolated, they still need to communicate with each other.

The main contributions of this chapter are as follows: First, in Section 5.2, we explain

the necessity of gateways. Section 5.3 introduces some commercial gateway applica-

tions and describe their main features. Then, in order to guarantee the real-time capa-

bility of systems with gateways, we make schedulability analysis in Section 5.4. This

analysis is very different from traditional analysis and requires additional concepts.

In the literature, gateway schedulability analysis exists, we have used [45] paper in

this section. However, in the literature there is no study about message scheduling

in gateway systems. In Section 5.5, we have developed a scheduling algorithm for

CAN networks containing gateways. This is the one of the major contributions of

this chapter. Another major contribution is about FIFO queues. So far, gateway and

FIFO concepts have not been studied together in the literature. In Chapter 4, we have

examined FIFO CAN controllers. Using the experience obtained in FIFO, we have

developed a schedulability analysis solution for systems consisting of PQ, FIFO con-

trollers and gateways. Moreover, in our analysis, gateways can be either FIFO or

PQ. In Section 5.6, this solution is introduced. Finally, in Section 5.7, we verify our

75

algorithms with case studies.

5.2 Why Gateways are Needed

The reasons for the usage of gateways are numerous and these reasons are crucial.

This is why car manufacturing companies such as PSG, BMW are using them in

CAN systems ([32]). One of the reasons is the reduction of complexity. In a large

CAN network, not all ECU’s communicate with each other. For example, multimedia

components do not need to communicate with body part components inside a car.

Multimedia messages only travel among ECU’s related to multimedia. Therefore, we

can divide a large network into several isolated networks in which unrelated parts

stay separated. Similarly, a car can be divided into domains based on functionality of

parts.

Car manufactures divide a car into domains as: powertrain, chassis, body, safety and

telematics ([34]). These domains have different performance, safety and communi-

cation requirements. Powertrain domain is responsible for power generation, engine

control and transmission. It needs communication in miliseconds periods. Chassis

is responsible for suspension, steering and braking, and its communication messages

have hard deadlines. Another domain is safety. Airbags, cruise control and tire pres-

sure monitoring are some example components of that domain. These examples need

high speed data transmission. Body domain mainly implements body and comfort

functions. Applications in this domain are not safety critical and do not require high

bandwidth. Communication mostly depends on driver or passengers’ action. Telem-

atics domain includes multimedia, navigation and entertainment systems. In this do-

main, huge amount of data is required to be exchanged. Since these domains are ir-

relevant to each other, they are separated. They have different communication needs,

and their communication networks can be separated as well. However, it may not

be possible to fully isolate these networks. Some messages called inter-domain mes-

sages are required among networks. These messages need to travel in all networks

and gateways should allow them. Note that inter-domain messages are not as frequent

as another kind of messages called intra-domain messages. They are the messages

which travel only in their own network. If they had the same frequency, there would

76

PowerTrain

Domain

GW

P
o

w
e

rtra
in

 E
C

U
s

Chassis

Domain

GW

C
h

a
s
s
is

 E
C

U
s

Body

Domain GW

B
o

d
y
 E

C
U

s

Safety

Domain GW

S
a

fe
ty

 E
C

U
s

Telematics

Domain GW

T
e

le
m

a
tic

s
 E

C
U

s

Network BackBone(CAN or

FlexRAY)

Figure 5.1: Car domains

Table5.1: Properties of BMW 7 series domains

Powertrain Chassis Body Telematics Safety
No of ECUs 3-6 6-10 14-30 4-12 11-12
Bandwidth 500 Kbps 500 Kbps 100 Kbps 22 Mbps 10 Mbps
No of Messages 36 180 300 660 20
Cycle Time 10 ms-10 s 10 ms-10 s 50 ms-2 s 20 ms-5 s 50 ms
Safety Requirements high high low low very high

be only one network, which is the reason of dividing networks. Overall, network of

a car is separated into domains to reduce the complexity and different domains are

connected together and this is done via gateways.

BMW 7 series is equipped with highly sophisticated electronic components. Table

5.1 shows features of each domain in BMW 7 series ([37]). As seen from table,

bandwidth, cycle time and safety requirements of each domain are different. Body

domain has 300 messages and 100 Kbps bus speed is adequate. However, safety

domain has 20 messages and it needs 10 Mbps bus speed. Then, it was wise to divide

into parts. If they did not divide them, either they would use 10 Mbps speed for all

networks and increase cost and complexity or use slower speeds and allow messages

violating their deadlines.

77

Second reason why we need gateways is about bus speed and cable length. Shorter

bus length means higher bus speed. With 1 Mbps bus speed, we can have at most

40 m cable and with 100 Kbps speed, we can have 500 m cable. By using gateways,

we are adding networks end-to-end and hence shortening the bus length. This is a

way of increasing bus speed. Similarly, we can increase the communication network

distance.

The final reason is due to reliability and safety needs. Domains with different relia-

bility and safety needs are separated. If an error occurs in a domain, it affects only

that domain, the other domains keep safe. When CAN bus system on one side of the

gateway happens some error, the system on the other side can still work correctly.

5.3 Commercial CAN2CAN Gateways

In order to make a schedulability analysis for gateways, we need to know certain

characteristics of them. We have made a deep research on gateways, found that there

are two kinds of gateways (when we talk about CAN to CAN gateways, it is also

called bridge): Simple gateways and advanced gateways. Before describing their

features, we should define some gateway related concepts such as message filtering,

ID translation, extra buffering time, signal extraction and integration.

CAN bus works in broadcast. All messages sent from any node arrive to all nodes. If

the arrived node is interested in that message, it takes it, otherwise, simply rejects. In

gateways also this is an important property. All messages arrive to the gateway from

two networks. Gateway has two ports, port 1 for network 1 and port 2 for network

2. All messages traveling in network 1 arrive to gateway port 1 and all messages

traveling in network 2 arrive gateway port 2, but gateway only transfers inter-network

messages. Intra-domain messages are rejected. Both ports filter irrelevant messages,

this feature is called message filtering.

In the two networks, same message can have different priorities. It may have a lower

priority in one network and may have a higher priority in the other, since the two net-

works are actually isolated. During the message passing, its ID can be changed. This

is called ID translation. A gateway with extra buffering time stores messages before

78

delivering to the other network. This feature provides some advantages like reduced

jitter. Finally, signal extraction and integration in the gateways can be possible. In

CAN messages, several signals are packed. The goal of signal packing for CAN is

packing different signals in the same message in order to reduce the framing overhead

and hence improve the schedulability of CAN systems. In the gateway, a message can

be broken up into signals and then different signals from different messages can be

packed together. These are the features that need attention during WCRT analysis.

5.3.1 Simple Gateways:

They are two port simple devices, have message filtering and ID translation proper-

ties. But no signal extraction or message integration feature exists. Also they have

no additional wait support in the buffers. There is one output buffer for each port,

incoming messages are checked and mapped from bridge map and put to the output

buffer. In the output buffers, they enter into arbitration.

We have checked the datasheets of several different products and they all have these

properties in common. They are configured via RS232. This configuration only in-

cludes CAN bus speed adjustment and ID mapping. In the configuration programs

for these products, only we set IDs and mappings for messages. The available simple

gateways from the market are PCAM Router([5]), I-7532([2]), SW-400T([1]), CG-

ARM7([4]), Ixxat([3]).

5.3.2 Advanced Gateways:

Advanced gateways are implemented in FPGAs and they may have more than two

ports. They have message filtering,ID translation, signal extraction, message integra-

tion properties. Also timeout events can be triggered.(Extra buffering is possible).

But there is not much information on these kinds of bridges since they are network-

dependent special designs ([27, 28]).

In this chapter, the analysis suggested is about simple gateways, since they are more

common. We have considered the features of them while developing the ideas and

79

algorithms.

5.4 Schedulability Analysis

In this section, we study the analysis described in [45] paper. We calculate WCRT of

all messages inside a two-network system connected via a gateway. Adding a GW to

the network brings extra challenges. One of the challenges is that GW messages ob-

tain additional jitters. When we want to transfer a message in a traditional CAN bus,

the response time of that message cannot be calculated constantly. This response time

value is between best case response time(BCRT) and WCRT. There is a variability in

it. So far we have been only interested in WCRT. Now, consider that we transfer a

message from source network to the destination network via GW. Response time of

that message in the source network cannot be recorded as constant as well. The vari-

ability in the response time of the message on the source network typically translates

into queuing jitter on the destination network. This means that the arrivals of that

message to the GW is not periodic. For example, it is generated in the source net-

work in 10msec period. The instances of the message are generated at t = 0,10,20...

That instances may arrive to the GW at t = 2,18,22. Then, the instances inherit jit-

ter while passing through the GW. In the worst-case, multiple instances of the same

message that were originally queued periodically on the source network, may end up

being transmitted back-to-back on a destination network. In this case, lower priority

messages may undergo increased delays.

The problem does not end here. There is also a mutual dependence issue: The release

time of a message in network 1 depends on the GW messages coming from network

2. Similarly, release time of a message in network 2 depends on the GW messages

coming from network 1. They affect each other and we cannot calculate WCRT of

network 1 messages without knowing the WCRT’s of network 2 messages or vice

versa.

As a result, the scheduling analysis problem of systems with GW’s cannot be trivially

solved because of these two problems. There is a concept in distributed real time

analysis called holistic response time analysis. Holistic means ‘whole’. There are

80

multiple processors in distributed systems and some information is exchanged among

these processors, tasks communicate by message passing which is similar to bus and

GW ([42]). CAN counterpart of holistic analysis of distributed real time systems

is CAN GW analysis. We have searched literature about both holistic analysis and

CAN GW analysis. The work in [45], uses the same holistic approach developed for

distributed real time systems and proposes a scheduling analysis solution for CAN

networks with GW’s. We have studied and implemented this solution.

Holistic GW analysis can be used to determine the overall end-to-end response time

of each message, and thus determine if end-to-end deadlines are met. It assumes

that messages inherit all of the response time up to their reception at a GW plus the

maximum delay in being processed by the GW as queuing jitter on the destination

network.

The mutual dependence issue is also solved. The solution consists of analyzing the

messages of two networks simultaneously in decreasing priority order. By doing so,

we can know the jitters of high priority messages when working with a low priority

message. Same priority non-GW messages may exist in both networks, but GW

messages have to have unique priorities in both networks.

For the following parts, we assume that system consists of two networks which are

connected via a simple CAN2CAN gateway: Network 1 and Network 2. Two net-

works may have same or different bus speeds. In each network, there are CAN

controllers connected to their own buses. Messages could be gateway(GW) or non-

gateway(non-GW) messages. For GW messages, the generating network is called

source network and target network is called destination network.

81

Table5.2: Notation For Message m

Notation For Message m

Rs Source network response time dlp(m) Lower priority messages than m in the destination network
Rd Destination network response time slp(m) Lower priority messages than m in the source network
Re2e End-to-end total response time shp(m) Higher priority messages than m in the source network
ws Source network buffering delay dhp(m) Higher priority messages than m in the destination network
wd Destination network buffering delay shpgw(m) Higher priority gw messages from source network
Bs Blocking due to source network dhpgw(m) Higher priority gw messages from destination network
Bd Blocking due to destination network ADC Absolute distance constraint

Cgwmin12
Minimum transmission time of FIFO
gw messages from network 1 to network 2

Cgwmax12
Maximum transmission time of FIFO
gw messages from network 1 to network 2

Cgwsum12
Total transmission time of FIFO
gw messages from network 1 to network 2

With WCRT analysis, we mean end-to-end delay analysis, Re2e is the total response

time((5.1)). WCRT analysis for both non-GW and GW messages are so different

from traditional analysis. For GW messages, response time is the time between gen-

eration in the source network and reception in the destination network, it is the sum

of response time in the source network Rs and response time in the destination net-

work Rd . For non-GW messages, it is simply the time between generation time and

reception time in the same network. While calculating WCRT’s, we treat GW and

non-GW messages differently. A GW has two queues, one queue for messages from

network 1 to network 2 and another for messages from network 2 to network 1. For

example, Cgwmin12 is for the queue from network 1 to network 2 and Cgwmin21 is for

from network 2 to network 1.

Re2e = Rs + Rd (5.1)

While calculating WCRT, different types of messages cause blocking and interfer-

ence. Bs is due to blocking message in the source network and Bd is in the destination

network. shp(m) and slp(m) represent two sets of messages coming from the source

network and having higher and lower priorities. dhp(m) and dlp(m) are the other

two sets of messages from destination network. Higher priority GW messages from

source and destination networks are shpgw(m) and dhpgw(m), respectively.

We used and implemented Algorithm 13 for WCRT analysis. It starts with sorting the

82

messages of two networks in decreasing priority order. For each message, we repeat

the same steps. For the worst case, at critical instant, all higher priority messages

are assumed to be released. GW messages are released with jitter and these jitter

values are previously calculated since we analyze in decreasing priority order. This

critical instant idea puts some pessimism into the analysis. All GW messages cannot

be released at the same time since their reception from the other network is done

one by one. We can consider arrival of GW messages as if they were released with

offset. Then the release order of GW messages affects the response time. As we

mentioned, jitter for GW messages is the difference between WCRT and BCRT. In

the analysis, since we do not know the actual arrival order messages into the GW,

there are several possibilities for BCRT. The second f or loop shows this. For each

BCRT possibility, the analysis is repeated and largest of the response time values are

chosen as WCRT. We use Absolute Distant Constraint(ADC) term for different arrival

order possibilities. We use the ADCk to indicate the time distance between mk and

the first arrived dhpgw(i) messages. ADCk of the messages not only depend on their

own Ck, but also on the arriving order of the messages. (5.2) shows how to calculate

ADC and for the first arrived message ADCk = 0.

ADCk = Ck + ADC j where level(m j) = level(mk)−1 (5.2)

level(m j) = level(mk)−1 means the arrival order, mk is the next message after m j. As-

sume m1,m2 and m3 are messages with Cm1 = 1,Cm2 = 2,Cm3 = 2. If the arrival order

is m1,m2,m3, then ADC1 = 0,ADC2 = 2,ADC3 = 4. If the arrival order is m2,m1,m3,

then ADC2 = 0,ADC1 = 1,ADC3 = 3. In the analysis, taking ADC into account brings

extra overhead and run-time of the algorithm increases. We can reduce algorithm

complexity if we exclude ADC, this gives approximate result rather than exact but

the difference is not major. In the case studies, we will use approximate case.

5.4.1 Non-GW Messages

If the analyzed message is a non-GW message, analysis is similar to traditional anal-

ysis. There are two sources of delay: blocking delay and interference delay. Blocking

83

input : Message setM with priority assignment o(m) for each message m ∈M

output: WCRT Rm for each message m ∈M

1 Initialize Rm,max = 0 for all m ∈M

2 for Each priority l, highest priority first do

3 for Each different possible arrival order of GW messages do

4 Let m be the message such that o(m) = l

5 Calculate ADC of each message for each arrival order of GW messages

6 if m is not a gateway message %% We only look at the source network

then

7 Compute Rs,m using Algorithm 14

8 Rm = Rs,m

9 end

10 else if m is a gateway message then

11 Compute Rs,m and Rd,m using Algorithm 14

12 Rm = Rs,m + Rd,m

13 end

14 if Rm > Rm,max then

15 Rm,max = Rm

16 end

17 end

18 end
Algorithm 13: WCRT analysis for CAN-CAN gateways.

delay Bs is due to lower priority messages in the same network or due to lower priority

GW messages. We use (5.3) for blocking delay.

Bs,i = max(Ci,Cm,Cl)

m ε slp(i)

l ε dlpgw(i))

(5.3)

Interference delay is due to higher priority messages from either same network or

from the other network. For the GW messages coming from the other network, we

have to include their jitters as seen from (5.4). Initial value for the iteration is w0
s,i = Ci.

84

Here, we subtract ADCk because message is released from GW at t = ADCk, not at

t = 0.

wn+1
s = Bs +

∑
shp

(m)
⌈
ws/T j

⌉
C j +

∑
dhpgw(m)

⌈
ws + Rs−Ck −ADCk

Tk

⌉
Ck (5.4)

For the response time, we take the largest of the buffering delay:

Rs,i = max(wn
s,i) +Ci (5.5)

input : Message m, message setM with priority assignment o(m) for each

message m ∈M

output: WCRT Rs,m

1 Initialize w0
s,m = Bm, n = 0

2 if m is not a gateway message %% We only look at the source network then

3 while wn+1
s,m 6= wn

s,m do

4 for Messages k ∈ hp(m) do

5 if k < dhpGW(m) %% message on source network then

6 wn+1
s,m = wn+1

s,m + d
wn

s,m
Tk
eCk

7 end

8 else

9 wn+1
s,m = wn+1

s,m + d
wn

s,m+Rs,k−Cm−ADCk
Tk

e

10 end

11 end

12 end

13 Rs,m = wn+1
s,m +Cm

14 end
Algorithm 14: WCRT Computation for non-GW messages

5.4.2 GW Messages

If the analyzed message is a GW message, analysis consists of two parts: source

network delay and destination network delay. Analysis for the source network delay

is same as analysis for non-GW messages. We ignore processing delay inside the GW.

85

The waiting time in the GW during arbitration in the destination network is included

in destination network delay. Note that different from source network, blocking delay

is only due to lower priority messages in the destination network((5.6)). (5.7) and

(5.8) are also similar to source network calculations.

Bd ,i = max(Ci,Cm)

m ε dlp(i)
(5.6)

wn+1
d = Bd +

∑
dhp(m)

⌈
wd/T j

⌉
C j +

∑
shpgw(m)

⌈
wd + Rs−Ck −ADCk

Tk

⌉
Ck (5.7)

Rd,i = max(wn
d,i) +Ci (5.8)

86

input : Message m, message setM with priority assignment o(m) for each

message m ∈M

output: WCRT Rs,m and Rd,m

1 Initialize w0
s,m = Bs,m, w0

d,m = Bd,m,

2 while wn+1
s,m 6= wn

s,m %% Source Network do

3 for k ∈ hp(m) do

4 if k < dhpGW(m) then

5 wn+1
s,m = wn+1

s,m + d
wn

s,m
Tk
eCk

6 end

7 else

8 wn+1
s,m = wn+1

s,m + d
wn

s,m+Rk−Cm−ADCk
Tk

eCk

9 end

10 end

11 end

12 Rs,m = wn+1
s,m +Cm

13 while wn+1
d,m 6= wn

d,m %% Destination Network do

14 for k ∈ hp(m) do

15 if k < shpGW(m) then

16 wn+1
d,m = wn+1

d,m + d
wn

d,m
Tk
eCk

17 end

18 else

19 wn+1
d,m = wn+1

d,m + d
wn

d,m+Rk−Cm−ADCk

Tk
eCk

20 end

21 end

22 end

23 Rd,m = wn+1
d,m +Cm

Algorithm 15: WCRT computation for GW messages

87

5.5 Scheduling Algorithm

Assigning priorities to several networks at the same time may bring many complica-

tions and it is hard without a systematic approach. Existing scheduling algorithms do

not support two networks and a GW. Moreover, as mentioned in the previous section

GW messages have an unpredictable jitter issue. This problem has not been studied

before and we developed an algorithm which assigns priorities to messages of two

networks connected via GW.

One can try to schedule two networks separately with known priority assignment

methods. However, even if the two networks are separately schedulable, overall it

may be unschedulable. For instance, a GW message may be given low priority in

one of the networks and it easily violates its deadline. This is the simplest case and

because of such cases, we developed a scheduling algorithm for GW’s.

The algorithm starts with an assumption for GW messages. Since we do not know the

jitters before assigning any priority, we assume that the jitters of GW messages are

equal to their periods to capture the worst cases. This is a very pessimistic assumption

and increases the effect of GW’s to the system. For all GW messages initially:

Jm = Tm (5.9)

We keep two priority tables for two networks, at the end the GW messages have the

same values on both tables, meaning that GW messages have unique priorities on

both networks. In Algorithm 16, we present our ideas. We start to assign priorities

with network 1 non-GW messages and we match the lowest priority levels to those

messages first. If a message is schedulable at this priority level, we place it there

and this continues until no more new messages are schedulable. Then, we start non-

GW messages of network 2 and check whether they are schedulable starting from the

lowest priority level. When no more non-GW messages are schedulable, we pass to

GW messages and try them one by one. For a priority level, we try all unassigned

GW messages, we run WCRT analysis assuming unassigned messages are at higher

priorities. Then, we choose the best suitable message.

88

In the algorithm, after all messages are visited once, we find a priority level for each

message and then adjust the message priorities to have the same priority for GW

messages. Moreover, we place back the original jitters of GW messages. We make

WCRT analysis for the assigned priority levels. If the system is schedulable, we ter-

minate the algorithm and if not schedulable, we try to make unschedulable messages

by swapping process.

In this step, there is no possibility that non-GW messages are unschedulable. Because

in the previous steps, if a non-GW message is unschedulable, we have to terminate

the algorithm. Even if the GW message is unschedulable, we assign a priority to

it. Therefore, here we may have unschedulable GW messages. We can make them

schedulable by swapping them with higher priority schedulable non-GW messages.

Before swapping: non-GW message: WCRT = 67 ms Deadline = 100 ms
GW message: WCRT= 107 ms Deadline = 100 ms

After swapping: GW message: WCRT = 94 ms Deadline = 100 ms
non-GW message: WCRT= 75 ms Deadline = 100 ms

Note that this swapping should be between GW messages and non-GW messages. It

cannot be between two GW messages because changing the order of them does not

make them schedulable if at least one of them is unschedulable. However, swapping

unschedulable GW message with a schedulable non-GW message may also result in

deadline violation. In that case, all higher priority non-GW messages are tried and if

none of them is schedulable, we terminate.

89

input : Message setM

output: Priority order o if schedulable

1 Initialize For all gateway messages: Rs,m = Dm/2, Rd,m = Dm/2, for all other messages: Rm = Dm/2,

W =M, l := |W|, Jm = Tm

2 while Priority assignment is not schedulable do

3 whileW 6= ∅ do

4 for Non-GW messages on network 1 do

5 if Message m is schedulable at level l then

6 o(m) = l andW =W\{m} and l := l−1

7 end

8 end

9 for Non-GW messages on network 2 do

10 if Message m is schedulable at level l then

11 o(m) = l andW =W\{m} and l := l−1

12 end

13 end

14 for GW messages m inW do

15 Compute Rm,s and Rm,d using the equations in subsection 5.4.2

16 Define ∆m = Dm −Rm,s −Rm,d

17 end

18 Determine m with the smallest ∆m

19 o(m) = l andW =W\{m} and l := l−1

20 end

21 Jm = Joriginal
m

22 Use Algorithm 13 to compute Rm for each m ∈M

23 if Rm ≤ Dm for all m ∈M then

24 Modify priorities of each network such that GW messages have same ID’s on both sides

25 return o

26 end

27 else

28 Swap GW messages with Rm > Dm with neighboring non-GW messages until all messages are

schedulable

29 if Swapping does not achieve a schedulable priority order then

30 return not schedulable

31 end

32 end

33 end
Algorithm 16: Scheduling for CAN gateway networks.

90

5.6 Gateways and FIFO Queues

In this section, we further continue on FIFO analysis. In the FIFO chapter, we in-

vestigated networks with both FIFO and priority queued CAN controllers. Now, we

see what happens if we add a GW to this system. This GW can be either FIFO or

priority queued gw. In the [25] paper, it is stated that it is very common to use FIFO

queues inside GW’s because number of GW messages can be larger than the number

of available buffers in a priority queue. Therefore using FIFO queues in GW’s is a

solution. Although paper contains experiments with FIFO queued GW’s, it does not

give any analysis method. As far as we know, there is no published WCRT analysis

on GW’s and FIFO queues together. The other controllers also can be either FIFO

or priority queued. For calculating WCRT’s of messages, we combine FIFO analysis

and GW analysis.

In the FIFO analysis, we have seen that a FIFO queued message can be modeled

as a priority queued message but with additional jitter. Total waiting time in the

FIFO controller is considered as buffering jitter fk. If the GW is also FIFO, jitters of

messages become larger and algorithm becomes more complicated in this case. The

difference between FIFO GW analysis and PQ GW analysis is that in PQ case jitter

of GW messages is Rs, but if the GW is FIFO, jitter becomes Rs + fk. For GW case

FIFO buffering is modeled with Rd. In FIFO GW buffer, GW messages wait Rd −Cm

time before entering into arbitration. Then total jitter becomes Rs + Rd −Cm.

Note that we have a while loop. As we calculate from higher to lower priority mes-

sages, fk values are needed to be updated. We cannot use the improved schedulability

analysis described in FIFO chapter. Because here in order to break the mutual depen-

dence, we have to go in decreasing order, but improved algorithm works in increasing

priority order.

5.6.1 Non-GW Messages:

For non-GW messages, we have only source network calculations. The equations are

similar to Section 5.4 equations. We have (Csum −Cmin) for FIFO buffers, fm and

(Rd −Cm) different from there. Algorithm 13 is written for the case where GW has

91

input : Get Cmin,Cmax,Csum for FIFO nodes and Cgwmin,Cgwmax,Cgwsum

1 repeat = True

2 while repeat do

3 for Each message m, highest priority first do

4 //Source Network Calculations

5 if m is a PQ message in the originating node then

6 Use (5.10),(5.12) and (5.13)

7 end

8 else if m is a FIFO message in the originating node then

9 Use (5.11),(5.12) and (5.13)

10 if fm! = ws then

11 fm = ws

12 repeat = True

13 end

14 end

15 // Destination Network Calculations

16 if m is a GW message then

17 Use (5.14),(5.15),(5.16) and 5.17

18 end

19 end

20 end
Algorithm 17: Gateway Schedulability Analysis For Mixed Systems.

92

FIFO buffer, if it has PQ buffer, then it needs slight modification. For PQ GW case

Rd is dropped from (5.12). If the originating node of non-GW message is FIFO, we

have to take Csum,Cmax,Cmin values into consideration.

Bs,i = max(Ci,Cm,Cl) f or PQ message

m ε slp(i)

l ε dlpgw(i))

(5.10)

Bs,i = Csum−Cmin f or FIFO message (5.11)

wn+1
s = Bs +

∑
shp

⌈
(ws + f j)/T j

⌉
C j +

∑
dhpgw

⌈
ws + Rs + Rd −Ck

Tk

⌉
Ck (5.12)

Rs,i = ws,i +Ci (5.13)

5.6.2 GW Messages:

For GW messages source network calculations do not change, same with the non-

GW messages. For the destination network calculations, if the GW is FIFO, we

calculate only contributions due to different network messages, contributions of the

same network messages are already included in Csum value. We use (5.15) in this

case. If the GW is PQ, we take contributions of two networks into account and use

(5.16)

Bd,i = max(Ci,Cm)

m ε dlp(i)
(5.14)

wn+1
d = Bd +

∑
dhp

⌈
(wd + fm)/T j

⌉
C j (5.15)

93

wn+1
d = Bd +

∑
dhp

⌈
(wd + fm)/T j

⌉
C j +

∑
shpgw

⌈
wd + Rs−Ck

Tk

⌉
Ck (5.16)

Rd,i = max(wn
d,i) +Ci (5.17)

5.7 Case Study

5.7.1 Case Study 1

In this experiment, the reliability of GW schedulability analysis described in 13 is

examined. For this study, we used a system of two networks and five different mes-

sage sets. The properties of these sets are given in Table 5.3, number of messages

and load levels are different for two networks. Message periods are 20, 50, 100, 500,

1000, 2000 ms message payloads are between 1 and 8 bytes and message priorities

are assigned in deadline monotonic order. All nodes have PQ buffers. For each of

the message sets, we conducted two simulations using RtaW-Sim: 6-hour simulation

and 7-day simulation. 7- day simulations ended between 40 minutes and 70 minutes.

Then we ran our algorithm for the same message sets. WCRT Analysis For Message

Sets figures compare simulations and algorithm results.

Table5.3: Message Set Groups For Gateway Analysis

Network 1 Network 2
GW Mess. NGW Mess. Load Bus Speed GW Mess. NGW Mess. Load Bus Speed

Set 1 6 61 23 % 125 Kbps 5 16 23.5 % 125 Kbps
Set 2 14 128 43 % 250 Kbps 19 67 46.5 % 125 Kbps
Set 3 13 202 50 % 250 Kbps 12 183 42.3 % 250 Kbps
Set 4 17 87 67.5 % 125 Kbps 12 99 64.1 % 125 Kbps
Set 5 14 103 48 % 500 Kbps 11 259 80.4 % 250 Kbps

It is seen from all the figures that simulation results never exceeds our results and

hence our algorithm is safe. There is difference between 6-hour simulation and 7-day

simulation, 7-day gives worse results. Moreover, we notice the jumps and drops in

the WCRT graphs. This is due to the fact that we combine the results of the messages

of two networks in a single plot. It is clear from WCRT analysis for message set 2

94

figure that there are two levels in the results. For the algorithm result, the lower level

starts from 0 and goes to 100. The upper level starts from 0 and goes to 230. The first

level is the result of network 1 which has 250 Kbps speed and the second level shows

the results of network 2 which has 125 Kbps speed. The WCRT’s of two networks

are not close to each other in this example due to different bus speeds.

0

50

100

150

200

250

300

4
3

5
0

5
5

3
1

5
6

4

6
0

7

6
4

8

6
8

5

7
2

5

7
7

0
8

3
9

9
2

1

9
7

1
1

0
1

8

1
0

4
6

1
0

6
8

1
0

9
3

1
1

2
6

1
1

5
4

1
1

8
3

1
2

2
0

1
2

7
3

1
3

3
0

1
3

7
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 3

6 hour sim

algorithm

7 day sim

0

50

100

150

200

250

8
0

4
5

4

5
2

2
5

5
1

5
9

9

6
4

1
6

7
1

7
0

8
7

4
7

7
6

9

8
0

6
8

3
1

8
5

3
8

9
4

9
2

3

9
5

8

9
9

5
1

0
5

7

1
0

7
5

1
1

4
2

1
1

9
4

1
2

6
7

1
3

5
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 2

6 hour sim

algorithm

7 day sim

0
10
20
30
40
50
60
70
80
90

100

5

6
1

1
5

6

2
4

7

2
8

6

3
0

9

3
4

6

3
9

8

4
1

3

4
5

1

5
4

2

5
8

3

6
1

3

6
7

2

7
1

3

7
5

6

8
5

7

9
0

6

9
3

6

1
0

3
9

1
1

1
6

1
3

7
3

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 1

6 hour sim

algorithm

7 day sim

Figure 5.2: Case Study 1: WCRT analysis for message set 1

0

50

100

150

200

250

300

4
3

5
0

5

5
3

1

5
6

4

6
0

7

6
4

8

6
8

5

7
2

5

7
7

0

8
3

9

9
2

1

9
7

1
1

0
1

8

1
0

4
6

1
0

6
8

1
0

9
3

1
1

2
6

1
1

5
4

1
1

8
3

1
2

2
0

1
2

7
3

1
3

3
0

1
3

7
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 3

6 hour sim

algorithm

7 day sim

0

50

100

150

200

250

8
0

4
5

4

5
2

2

5
5

1

5
9

9

6
4

1

6
7

1

7
0

8

7
4

7

7
6

9

8
0

6

8
3

1

8
5

3
8

9
4

9
2

3

9
5

8

9
9

5

1
0

5
7

1
0

7
5

1
1

4
2

1
1

9
4

1
2

6
7

1
3

5
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 2

6 hour sim

algorithm

7 day sim

0
10
20
30
40
50
60
70
80
90

100

5

6
1

1
5

6

2
4

7

2
8

6

3
0

9

3
4

6

3
9

8

4
1

3

4
5

1

5
4

2

5
8

3

6
1

3

6
7

2

7
1

3

7
5

6

8
5

7

9
0

6

9
3

6

1
0

3
9

1
1

1
6

1
3

7
3

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 1

6 hour sim

algorithm

7 day sim

Figure 5.3: Case Study 1: WCRT analysis for message set 2

The gateway messages also have higher WCRT values since they travel in both net-

works. The load levels of the two networks in message set 1 is similar and the

95

0

50

100

150

200

250

300

4
3

5
0

5
5

3
1

5
6

4

6
0

7

6
4

8

6
8

5

7
2

5

7
7

0
8

3
9

9
2

1

9
7

1
1

0
1

8

1
0

4
6

1
0

6
8

1
0

9
3

1
1

2
6

1
1

5
4

1
1

8
3

1
2

2
0

1
2

7
3

1
3

3
0

1
3

7
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 3

6 hour sim

algorithm

7 day sim

0

50

100

150

200

250

8
0

4
5

4

5
2

2
5

5
1

5
9

9

6
4

1
6

7
1

7
0

8
7

4
7

7
6

9

8
0

6
8

3
1

8
5

3
8

9
4

9
2

3

9
5

8

9
9

5
1

0
5

7

1
0

7
5

1
1

4
2

1
1

9
4

1
2

6
7

1
3

5
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 2

6 hour sim

algorithm

7 day sim

0
10
20
30
40
50
60
70
80
90

100

5

6
1

1
5

6

2
4

7

2
8

6

3
0

9

3
4

6

3
9

8

4
1

3

4
5

1

5
4

2

5
8

3

6
1

3

6
7

2

7
1

3

7
5

6

8
5

7

9
0

6

9
3

6

1
0

3
9

1
1

1
6

1
3

7
3

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 1

6 hour sim

algorithm

7 day sim

Figure 5.4: Case Study 1: WCRT analysis for message set 3

WCRT’s of gateway messages can be better seen. There are in total of 11 gateway

messages in message set 1 and there are 11 jumps in the WCRT analysis for message

set 1 figure.

The load levels of the two networks in message set 4 are similar and the bus speeds

are same, so the difference between the first level and second levels in the WCRT

analysis for message set 4 figure is trivial. The jumps and drops are mostly due to

gateway messages.

WCRT analysis for message set 3 and 5 figures have similar characteristics with the

other figures, but since the total number of messages in message set 3 and message

set 5 are high, the jumps and drops are more frequent.

5.7.2 Case Study 2

In order to show the efficiency of GW scheduling algorithm developed in 16, we

conducted a comparison experiment. We used the message sets in Case Study 1.

First, the messages had unassigned priorities, we assigned priorities using Algorithm

16, also we found minimum bus speed required to make the system schedulable at

these priority levels. Since in some of the message sets, the speeds of two networks

96

0

50

100

150

200

250

300

350

400

450

500

4
5

4
1

4

5
0

2

5
3

2

5
5

5

5
7

6

6
1

9

6
4

6

6
7

2

7
2

3

7
8

8

8
3

7

8
6

6

9
1

3

9
6

5

1
0

0
2

1
0

3
9

1
0

9
9

1
1

2
8

1
1

6
1

1
1

8
2

1
3

0
9

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 4

6 hour sim

algorithm

7 day sim

0

50

100

150

200

250

300

350

400

450

500

1
0

1
9

0

3
8

1

5
1

6

5
4

7

5
7

9

6
4

2

7
3

0

8
0

8

8
6

9

9
2

0

9
7

2

1
0

2
0

1
0

4
7

1
0

8
1

1
1

2
5

1
1

6
7

1
1

9
5

1
3

5
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 5

6 hour simulation

algorithm

7 day sim

Figure 5.5: Case Study 1: WCRT analysis for message set 4

are different, we decreased two speeds at the same rate to find the minimum speeds

required. Then, at these speeds, we scheduled two networks separately and found

the number of unschedulable messages. In Table 5.4, for the found bus speeds, the

number of unschedulable messages can be seen. Moreover, we measured how many

times the swapping part worked in Algorithm 16.

Table5.4: Minimum Speeds Required For Gateway Scheduling and Number Of Un-
schedulable Messages if networks are separately scheduled or gateway scheduled

Set No Bus Speed 1 Bus Speed2 Unsch. Mess. two NWs
separately scheduled

Unsch. Mess.
GW scheduled No Of Swaps

Set 1 35 Kbps 35 Kbps 15 0 0
Set 2 196 Kbps 71 Kbps 31 0 7
Set 3 134 Kbps 134 Kbps 13 0 0
Set 4 99 Kbps 99 Kbps 34 0 40
Set 5 476 Kbps 226 Kbps 4 0 0

For the set 1, we decreased the bus speed to 35 Kbps for two networks and found a

schedulable priority assignment using our gateway scheduling algorithm. Then, for

the same speed, we made traditional scheduling for two networks separately. For

the GW messages, we added the response times of two networks. We obtained 13

unschedulable messages at this speed. We applied the same procedure to the other

message sets, in sets 1,3 and 5, the swapping part of the scheduling algorithm did not

work. This is because unschedulability is due to non-gateway messages and for un-

97

0

50

100

150

200

250

300

350

400

450

500

4
5

4
1

4

5
0

2

5
3

2

5
5

5

5
7

6

6
1

9

6
4

6

6
7

2

7
2

3

7
8

8

8
3

7

8
6

6

9
1

3

9
6

5

1
0

0
2

1
0

3
9

1
0

9
9

1
1

2
8

1
1

6
1

1
1

8
2

1
3

0
9

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 4

6 hour sim

algorithm

7 day sim

0

50

100

150

200

250

300

350

400

450

500

1
0

1
9

0

3
8

1

5
1

6

5
4

7

5
7

9

6
4

2

7
3

0

8
0

8

8
6

9

9
2

0

9
7

2

1
0

2
0

1
0

4
7

1
0

8
1

1
1

2
5

1
1

6
7

1
1

9
5

1
3

5
1

W
C

R
T

CAN IDs

WCRT Analysis for Message Set 5

6 hour simulation

algorithm

7 day sim

Figure 5.6: Case Study 1: WCRT analysis for message set 5

schedulable non-gateway messages nothing can be done. However, in message set 2,

swapping part ran 9 times meaning that some gateway messages became schedulable

by swapping the priorities. Likewise, message set 4 became schedulable at this speed

after 40 swapping. With message sets 2 and 4, we tried the case in which the schedul-

ing algorithm does not have swapping part. In that case, for message set 2, minimum

bus speeds are 198 and 73 Kbps for two networks respectively. For message set 4, it

s 103 Kbps for two networks. From this result, we see that swapping may help us to

gain extra bandwidth.

5.7.3 Case Study 3

We conducted Case Study 3 in order to compare the performance of FIFO gateways

and PQ gateways. For the 5 message sets given in Case Study 1, we made FIFO gate-

way analysis assuming that gateways have FIFO message queues. Then, we compared

results with PQ gateway cases. The message sets and the conditions are exactly same

except that in one case gateways have FIFO queues, in the other gateways has priority

queues.

In Table 5.5, increase in the WCRT’s of messages is shown if FIFO gateways are

used instead of PQ gateways. As can be seen, increase in WCRT’s of GW messages

98

Table5.5: Increase in the WCRT’s of messages if FIFO gateways are used instead of
PQ gateways

Increase in the WCRT’s
of GW messages

Increase in the WCRT’s
of non-GW messages

Set1 5% 0%
Set2 12% 0.4%
Set3 3.3% 0.06%
Set4 17% 1.4%
Set5 10.4% 0.08%

is related to number of GW messages and bus load. There is also minor increase in

the non-GW messages.

In order to show the further effects of FIFO gateways, we generated 3 message set

groups. Each group has 20 message sets. Number of GW messages differs among

groups. Group A has 20 GW messages, Group B has 30 and Group C has 40 GW

messages. Bus loads are kept constant between 40-45% for all sets. Bus speeds are

125 Kbps for simplicity. Table 5.6 shows average WCRT values for the two cases:

Gateway with priority queues and Gateway with FIFO queues. The disadvantages of

FIFO queued gateways are more visible as the number of GW messages increases.

Table5.6: Average of WCRT’s of GW and non-GW messages for each group for PQ
and FIFO cases and Increase in the WCRT in case of FIFO queue

PQ GW FIFO GW Increase in %
GW Messages Non-GW Messages GW Messages Non-GW Messages GW Messages Non-GW Messages

Group A 5388 10325 6180 10488 14.7% 1.5%
Group B 10453 13375 12410 13640 18.7% 1.9%
Group C 17837 16363 21473 16986 20.3% 3.7%

99

100

CHAPTER 6

INTEGRATION IN AUTONET

6.1 Overview

Software tools developed for automotive network design are widely used in industry.

Such kinds of tools provide some functions such as system configuration, schedula-

bility test, scheduling or simulation. Existing commercial tools are expensive and not

all of them use the latest research results. Moreover, they are somewhat inadequate

in terms of practical restrictions or some functionalities such as signal packing. Al-

though most of them are in capable of doing similar calculations, there is not much

all-in-one tools. Therefore, we developed a tool for a project. This chapter presents

the content of Project AutoNET(Automotive Network Designer). AutoNet is an au-

tomatic scheduling tool for in-vehicle networks, it is developed for TOFAS AŞ. It

provides basically scheduling for CAN, for FlexRAY networks and for gateway net-

works. FlexRAY and gateway networks are out of the scope of this thesis . This

thesis only concerns about CAN scheduling. In the CAN part of AutoNET, pack-

ing of signals, the schedulability analysis for given CAN priority assignments and

the computation of CAN priority assignments are studied. Hereby, several practical

constraints such as the occurrence of bus errors, the usage of FIFO queues instead of

priority queues and the extension of existing CAN message sets are included in that

tool. Moreover,it supports offsets and have gateway facility. All of the work done

in this thesis is included in that tool. We implemented all methods in the form of

a C++ software library. The implemented algorithms have also a user-friendly in-

terface. This chapter explains the integration of developed methods and algorithms

to AutoNET, introduces the graphical user interface(GUI) design and discusses the

101

general GUI structure and the interfaces to the underlying software library.

6.2 CAN related Algorithms

In this thesis, all of the algorithms used in AutoNET cannot be described because of

limited pages. AutoNET implements the algorithms developed in this thesis, but it

has also some other algorithms which were not mentioned in the previous chapters.

We shortly introduce them. We implemented all methods and algorithms of AutoNET

inside a class called CANScheduler. Here, we present related functions.

6.2.1 Classical CAN Scheduling

In the Background chapter of this thesis, we introduced classical CAN scheduling

calculations. This part implements the classical CAN network analysis. It requires

methods for the WCRT analysis of CAN messages and methods for the assignment

of unique priorities to CAN messages in order to meet the relevant CAN performance

requirements. The relevant function for WCRT analysis is Analyze() of the class

CANScheduler.

The classical CAN scheduling algorithm is implemented in the CAN library, the rel-

evant function is Schedule() of the class CANScheduler.

A feasible priority order guarantees that none of the messages violates its deadline.

However, there is no additional information about further properties of the priority

order. For example, the analysis does not consider that the worst-case response times

of some messages might be very close to their deadline or that a single fault in a

message transmission might cause deadline violation if the message has to be re-

transmitted. This issue is studied in [24, 21], where robust priority orders according

to different criteria are proposed. The basic idea of this work is to consider additional

interference (for example due to faulty transmission) that can block the transmission

of messages.

The WCRT computation with additional interference and with maximum error re-

covery is implemented in AutoNET. The relevant functions are AnalyzeMessage-

102

Interference() and AnalyzeMessageError().

Different versions of the robust priority assignment algorithm are implemented in the

CAN library that is developed in the scope of this project. The relevant functions

are MaxErrorSchedule() (maximizing the number of tolerated errors) MaxInter-

ferenceSchedule() (maximizing the amount of tolerated interference) and Max-

SlackSchedule() (maximizing the amount of slack) of the class CANScheduler.

Message set extension is another feature of AutoNET. It is frequently necessary to ex-

tend an existing message set by new messages. In this case, we want the old messages

keep their original ID’s and only assign priorities to new messages. The [39] paper in-

troduces that idea. The function implemented for this method is RobustScheduler().

6.2.2 CAN Networks with Practical Limitations

In FIFO Analysis chapter, we have studied systems consisting of both priority and

FIFO queued controllers. The schedulability computation for CAN networks with

FIFO queues is implemented in the CAN library as AnalyzeFQAndPQ(), Analyze-

FIFOMessage and AnalyzePQMessage functions.

In FIFO Analysis chapter, we have also discussed a scheduling algorithm for mixed

systems. The relevant function for FIFO scheduling is ScheduleFQAndPQ() of the

class CANScheduler.

Final algorithm we developed in FIFO Analysis chapter is FIFO extension schedul-

ing. We have developed a message set extension algorithm for mixed systems and

implemented in the CAN library as ExtensionSchedulerForFIFO() funtion.

6.2.3 CAN Networks with Offsets

In the CAN Offset Analysis chapter, we have seen several algorithms: The rele-

vant function for exact offset analysis is ExactOffsetSchedulingAnalysis() .

OffsetWCRTAnalysis() is the related funtion for approximate offset WCRT analy-

sis. For maximum interference theorem analysis, we have implemented MIFAnaly-

103

sis() function. There are three offset assignment algorithms in that chapter: SOSA,

GAOS and LNSA. The relevant functions for these algorithms are OffsetSchedule(),

GeneticSchedule() and HeuristicSchedule(), respectively. We have also de-

veloped an algorithm for assigning offsets and priorities together. The relevant func-

tion is OffsetandPriorityScheduleTogether().

6.2.4 CAN-to-CAN Gateways

In Gateway Analysis chapter, we have studied a WCRT analysis algorithm for a sys-

tem consisting of two CAN networks connected via a gateway. If all the controllers

including the gateway uses priority queues, then one can use GatewayInterconnec-

tedAnalyze() function implemented in the CAN library. If both priority queues and

FIFO queues are used, then GatewayInterconnectedAnalyzeForFIFO() function

should be used. For priority queued networks with gateway, we have also a schedul-

ing algorithm. The relevant function is GatewaySchedule().

6.3 Graphical User Interface (GUI) Realization

The algorithms developed and described in the previous chapters are implemented in

the form of a C++ software library. In order to make the algorithms conveniently

available, we are developing a graphical user interface (GUI) for in-vehicle network

scheduling for CAN and FlexRay. In this section, we briefly outline the organiza-

tion and features of our GUI application. We are only interested in CAN part. The

AutoNET GUI for CAN scheduling is realized with 5 tabs of operation: Signals and

Messages, Nodes, Topology, Analysis, and Scheduling.

6.3.1 Description

The Graphical User Interface (GUI) of AutoNET is designed to decrease the time

required by the engineers who design the vehicle network. Furthermore, the possible

design errors can be mitigated. The proposed GUI software architecture is presented

in Fig.6.1.

104

GUI User Input

GUI Data Structures

GUI Data Interface

CAN Library Gateway Library FlexRay Library

GUI User Output

Figure 6.1: Graphical User Interface Architecture

The GUI provides input and output interfaces to the users. The inputs from the users

and the outputs that are produced by the underlying CAN, FlexRay and Gateway li-

braries are stored in the container objects defined in the GUI Data Structures. Further-

more events such as click, scroll, drag and drop, menus, window controls, hierarchy

and connections are defined in the GUI Data Structures. The components of the GUI

Data Structure are mapped to the CAN, FlexRay and Gateway Libraries by the GUI

Data Interface. This interface passes the inputs to the CAN, FlexRay and Gateway

Libraries and the outputs (the signal message mapping, network schedules and worst

case delay and jitter values) to the GUI data structure.

6.3.2 GUI User Input/Output Interfaces

The GUI user input interface is drag and drop and file inputs according to the standard

formats such as FIBEX and dbc as well as any other desired format. With these

formats, message sets(type of the message (periodic/sporadic) period, deadline, bit

length, source node, destination node(s)), network topology, ECUs, types of networks

(CAN/FlexRay), CAN bus rates, segments, gateways, and clusters are given to the

tool. An example vehicle network topology is shown in Fig. 6.2.

105

ECU 1
(FR)

ECU 2
(FR)

ECU 3
(FR)

ECU 4
(FR-CAN GW)

ECU 5
(CAN)

ECU 7
(CAN-CAN GW)

High Speed CAN:500 Kbps

FR CH A 10 Mbps
FR CH B 10 Mbps

ECU 6
(CAN)

ECU 8
(CAN)

Low Speed CAN:50 Kbps

ECU 9
(CAN)

Figure 6.2: Example Vehicle Network Topology

The GUI user output is provided as tables, plots and standard configuration file for-

mats (FIBEX, CAN dbc). The output data computed by the CAN library of AutoNET

is:

• Worst case response times for the messages, deadline violations

• CAN schedules (CAN ID assignments, offset assignments),

106

CHAPTER 7

CONCLUSION

The recent advances in automobile technology lead to an increase in the number of

messages in in-vehicle networks. As a result, several additions to the classical Con-

troller Area Network (CAN) such as the usage of transmission offsets and the idea of

message set extension have been proposed. In addition, several practical limitations

of CAN such as the usage of FIFO queues (FQS) instead of priority queues (PQs) or

the division of CAN networks into different segments that are connected by gateways

need to be considered in practical applications. The main focus of this thesis is the

worst-case response time (WCRT) analysis and the message priority assignment for

CAN networks with the stated extensions and restrictions.

First, the usage of transmission offsets on CAN is considered. Three different algo-

rithms for the WCRT computation are implemented in a C++ library and compared.

It is concluded that the Maximum Interference Method (MIF) is most suitable. In ad-

dition, different methods for the offset assignment are implemented and compared by

case studies. Finally, as an entirely novel contribution, an algorithm for the combined

offset and priority assignment for CAN messages is proposed. The benefits of this

algorithm are shown in computational experiments.

Second, CAN networks with PQs and FQs are considered. Here, a modified WCRT

analysis algorithm that reduces the complexity of the existing analysis is developed.

Moreover, an algorithm for extending an existing CAN application by new messages

is proposed. A paper on this research has been submitted to the International Journal

of Vehicle Design.

107

Third, CAN gateway networks are considered. The existing WCRT algorithm for

such networks is implemented and its correctness is evaluated by simulation. In ad-

dition, for the first time, a priority assignment algorithm for gateway networks is

developed and its efficiency is shown in computational experiments. Moreover, as a

further novel contribution, the WCRT analysis on CAN gateway networks is extended

to the case of CAN networks with FQs and PQs.

All the algorithms that are implemented in the scope of this thesis are made available

for the use in the software tool AutoNET for in-vehicle networks.

Topics for future research can be concluded form Table 1.1. In particular, the work

on CAN networks with FQs and CAN messages with offsets can be used to combine

both of them. That is, FQ-Offset WCRT analysis and priority assignment is an inter-

esting topic for future research. Furthermore, a proof of optimality of our message set

extension algorithm for CAN networks with FQs and PQs is a further task for future

work. Finally, it is envisaged to extend the priority assignment algorithm for CAN

gateway networks that is developed in this thesis to the case of CAN networks with

FQs and PQs.

108

REFERENCES

[1] CAN BUS Bridge(Intelligent Repeater), (accessed December 11, 2014).

[2] CAN Series Products, (accessed December 11, 2014).

[3] CANbridge for CAN and CANOpen Systems, (accessed December 11, 2014).

[4] CAN/CAN Gateway CG0ARM7, (accessed December 11, 2014).

[5] PCAN Router-Peak Systems, (accessed December 11, 2014).

[6] What is ahead for CAN, (accessed November 3, 2014).

[7] NETCAR-Analyzer : the RTaW-Sim plugin for worst-case timing analysis on
Controller Area Network, (accessed October 10, 2014).

[8] NETCARBENCH A benchmark generator for automotive communication sys-
tems, (accessed October 10, 2014).

[9] RTaW-Sim : Controller Area Network simulation and configuration, (accessed
October 10, 2014).

[10] B. Alkan, E. G. Schmidt, and K. W. Schmidt. Karayollarında akıllı ulaşım
sistemleri için araç içi ağları. In Karayolu Akıllı Ulaşım Sistemleri Kongre ve
Sergisi, 2014.

[11] B. Alkan, E. G. Schmidt, K. W. Schmidt, D. Çulum Karani, and U. Karakaya.
Autonet - an automatic scheduling tool for in-vehicle networks. In OTEKON,
2014.

[12] B. Alkan, E. G. Schmidt, K. W. Schmidt, D. Çulum Karani, and U. Karakaya.
Controller area network (can) with priority queues and fifo queues: Improved
schedulability analysis and message set extension. International Journal of Ve-
hicle Design (submitted), 2014.

[13] N. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Technical Report YCS 164, Dept. Computer Science,
University of York, UK, 1991.

[14] N. Audsley. On priority assignment in fixed priority scheduling. Information
Processing Letters, 79(1):39–44, 2001.

[15] N. Audsley. On priority assignment in fixed priority scheduling. Information
Processing Letters, 79(1):39–44, 2001.

[16] V. Celik. Development of strategies for reducing the worst-case message re-
sponse times on controller area network. Master’s thesis, Middle East Technical
University, 2012.

109

[17] Y. Chen. Real time scheduling and analysis for can messages with offsets. Mas-
ter’s thesis, Nagoya University, 2012.

[18] R. B. D. Khan and N. Navet. Integrating hardware limitations in can schedula-
bility analysis. In in Factory Communication Systems (WFCS), pages 207–210,
2010.

[19] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network (CAN)
schedulability analysis: Refuted, revisited and revised. Real-Time Syst.,
35(3):239–272, April 2007.

[20] R. I. Davis and A. Burns. Robust priority assignment for fixed priority real-time
systems. IEEE International Real-Time Systems Symposium, pages 3–14, 2007.

[21] R. I. Davis and A. Burns. Robust priority assignment for fixed priority real-time
systems. In IEEE International Real-Time Systems Symposium, pages 3–14,
2007.

[22] R. I. Davis and A. Burns. Robust priority assignment for messages on controller
area network (CAN). Real-Time Syst., 41(2):152–180, Feb. 2009.

[23] R. I. Davis and A. Burns. Robust priority assignment for messages on controller
area network (can). Real-Time Syst, 41(2):152–180, 2009.

[24] R. I. Davis and A. Burns. Robust priority assignment for messages on controller
area network (CAN). Real-Time Syst., 41(2):152–180, Feb. 2009.

[25] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka. Schedulability analysis for
controller area network (CAN) with FIFO queues priority queues and gateways.
Real-Time Syst., 49(1):73–116, Jan. 2013.

[26] L. Du and G. Xu. Worst case response time analysis for CAN messages with
offsets. In Vehicular Electronics and Safety, IEEE International Conference on,
pages 41 –45, 2009.

[27] P. E. Ekiz H., Kutlu A. Design and implementation of a can2can bridge. In
Proceedings of IEEE ISPAN96 Conference, 1996.

[28] P. E. Ekiz H., Kutlu A. Implementation of can / can bridges in distributed en-
vironments and performance analysis of bridged can systems using sae bench-
mark. 1997.

[29] I. B. F. Polzlbauer and E. Brenner. Optimized frame packing for embedded
systems. Embedded Systems Letters, IEEE, 4:65–68, 2012.

[30] L. George, N. Rivierre, and M. Spuri. Pre-emptive and non-pre-emptive real-
time uni-processor scheduling. Technical Report 2966, Institut National de
Recherche et Informatique et en Automatique (INRIA), France, 1996.

[31] M. Grenier, L. Havet, and N. Navet. Scheduling messages with offsets on Con-
troller Area Network - a major performance boost. In The Automotive Em-
bedded Systems Handbook, Industrial Information Technology Series. Taylor &
Francis / CRC Press, 2008.

110

[32] U. Keskin. In-vehicle communication networks: A literature survey. Master’s
thesis, Technische Universiteit Eindhoven (TU/e) Den Dolech 2, 5600 AZ Eind-
hoven, The Netherlands, July 28, 2009.

[33] S. Mubeen, J. Maki-Turja, and M. Sjodin. Worst-case response-time analysis
for mixed messages with offsets in controller area network. In Emerging Tech-
nologies Factory Automation, IEEE Conference on, pages 1–10, 2012.

[34] F. S.-L. N. Navet, Y. Song and C. Wilwert. Trends in automotive communication
systems. Proceedings of the IEEE, 93(6):1204–1224, 2005.

[35] M. D. Natale. Evaluating message transmission times in controller area net-
works without buffer preemption. In 8th Brazilian Workshop on Real-time Sys-
tems, 2006.

[36] M. D. Natale. Understanding and using the Controller Area network, (accessed
October 10, 2014).

[37] T. Nolte. Share-driven scheduling of embedded networks. Master’s thesis,
Malardalen University Press Dissertations, No. 26. Department of Computer
Science and Electronics, Malardalen University, Sweden, May 2006.

[38] N. N. R.I. Davis. Controller area network (can) schedulability analysis for mes-
sages with arbitrary deadlines in fifo and work-conserving queue. In 9th work-
shop on factory communication systems, pages 33–42, 2012.

[39] K. Schmidt. Robust priority assignments for extending existing controller area
network applications. Industrial Informatics, IEEE Transactions on, 10(1):578–
585, 2014.

[40] I. Standard-11898. Road vehicles-interchange of digital information – Con-
troller Area Network (CAN) for high-speed communication. International
Standards Organisation (ISO), 1993.

[41] K. Tindell, A. Burns, and A. Wellings. Calculating controller area network
(CAN) message response times. Control Engineering Practice, 3:1163–1169,
1995.

[42] K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard
real-time systems. Microprocessing and Microprogramming, 50(2–3):117–134,
1994.

[43] A. Valenzano and G. Cena. Controller area networks for embedded systems.
In R. Zurawsk, editor, Networked Embedded Systems, pages 15–1–15–38. CRC
Press, 2009.

[44] H. T. Y. Chen, R. Kurachi and G. Zeng. Schedulability comparison for can
message with offset: Priority queue versus fifo queue. RTNS, pages 181–192,
2011.

[45] Y. C.-R. K. H. T. Y. Xie, G. Zeng and R. Li. Schedulability analysis for mes-
sages in gateway-interconnected controller area network. International Confer-
ence on Connected Vehicles and Expo, 2012.

111

[46] Y. C.-R. K. H. T. Y. Xie, G. Zeng and R. Li. Worst case response time analysis
for messages in controller area network with gateway. IEICE Transactions on
Information and Systems, 2013(7):1467–1477, 2013.

[47] P. Yomsi, D. Bertrand, N. Navet, and R. Davis. Controller area network (CAN):
Response time analysis with offsets. In Factory Communication Systems, IEEE
International Workshop on, pages 43–52, 2012.

112

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND AND MOTIVATION
	CAN Protocol
	Problems of CAN Protocol
	Performance Parameters
	Literature Search
	Computational Model and Notation
	Traditional Schedulability Analysis
	Case Studies
	Netcarbench
	NetCarAnalyzer
	RtaWSimulator

	CAN OFFSET ANALYSIS
	Overview
	Offset Definition
	Response Time Analysis with Offsets: Exact Method
	Response Time Of A Scenario:

	Response Time Analysis with Offsets: Approximate Method
	Response Time Analysis with Offsets: Maximum Interference Method
	Offset Assignment
	SOSA
	LNSA
	GAOS

	Offset and Priority Assignment Together
	Case Study
	Case Study 1
	Case Study 2
	Case Study 3
	Case Study 4
	Case Study 5

	FIFO ANALYSIS
	Overview
	Characteristics of FIFO Controllers
	Schedulability Analysis Algorithm
	Notation and Scheduling Model
	Worst-case Response Time Computation
	WCRT Computation for PQ Messages
	WCRT Computation for FQ Messages
	Schedulability Analysis Algorithm

	Improved Algorithm for Schedulability Analysis with FIFO Queues
	Special Cases
	Improved Algorithm
	Illustrative Example

	FIFO Scheduling
	Message Set Extension
	Motivation
	Extension Algorithm
	Message Set Extension Example

	Performance evaluation
	Performance of the Improved Schedulability Algorithm
	NetCarAnalyzer Comparison
	Priority Assignment for Message Set Extension

	GATEWAY ANALYSIS
	Overview
	Why Gateways are Needed
	Commercial CAN2CAN Gateways
	Simple Gateways:
	Advanced Gateways:

	Schedulability Analysis
	Non-GW Messages
	GW Messages

	Scheduling Algorithm
	Gateways and FIFO Queues
	Non-GW Messages:
	GW Messages:

	Case Study
	Case Study 1
	Case Study 2
	Case Study 3

	INTEGRATION IN AUTONET
	Overview
	CAN related Algorithms
	Classical CAN Scheduling
	CAN Networks with Practical Limitations
	CAN Networks with Offsets
	CAN-to-CAN Gateways

	Graphical User Interface (GUI) Realization
	Description
	GUI User Input/Output Interfaces

	CONCLUSION
	REFERENCES

