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ABSTRACT

BELL-LIKE INEQUALITIES IN QUANTUM INFORMATION THEORY

Seskir, Zeki Can
M.S., Department of Physics

Supervisor : Prof. Dr. Sadi Turgut

July 2015, 111 pages

Bell and Bell-like inequalities are essential tools for identifying and inspecting quan-
tum entanglement, a key phenomenon in quantum information theory. As the devel-
opment of Quantum Information Theory progresses more and more Bell-like inequal-
ities are formulated. An investigation of these and further inequalities will be given
in their correspondences to Bell’s and Kochen-Specker theorems. Also Hardy’s test
will be studied and particular applications of it for bipartite and tripartite systems are
going to be probed.

Keywords: Bell’s Theorem, Bell Inequalities, CHSH, Locality, Hidden Variables,
EPR, Leggett-Garg, Kochen-Specker, KCBS, GHZ, Hardy’s Test
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ÖZ

KUANTUM BİLGİ TEORİSİNDE BELL-TÜRÜ EŞİTSİZLİKLER

Seskir, Zeki Can
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Sadi Turgut

Temmuz 2015 , 111 sayfa

Bell ve Bell-türü eşitsizlikler kuantum bilgi teorisinin kilit noktalarından birisi olan
kuantum dolanıklığı incelemek ve belirlemek için temel araçlardır. Kuantum Bilgi
Teorisi ilerledikçe ortaya çok sayıda çeşitli Bell-türü eşitsizlikler de sürülmektedir.
Bu tür ve ötesindeki eşitsizlikler, Bell ve Kochen-Specker teoremleri ile olan bağlan-
tıları içerisinde ele alınacaktır. Ek olarak Hardy testi çalışılacak, iki ve üç parçacıklı
sistemler için özel uygulamaları incelenecektir.

Anahtar Kelimeler: Bell Teoremi, Bell Eşitsizlikleri, CHSH, Yerellik, Saklı Değiş-
kenler, EPR, Leggett-Garg, Kochen-Specker, KCBS, GHZ, Hardy Testi
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CHAPTER 1

INTRODUCTION

There are many beginnings in the field of physics. EPR paper[1] and the concept of

entanglement were the initial push for the Quantum Information Theory and Bell’s

1964 paper on the EPR ‘paradox’[2] was the cornerstone on which an entire liter-

ature is built upon. Bell’s insight on the subject, his ability to successfully trans-

form mostly philosophical debates into formal assumptions within a context of logical

structure was not an underrated one. This approach, which later assumed the name

Bell’s Theorem, allowed physicists to form such statements that their negation would

demonstrate the falsification of classical ideas such as locality, non-contextuality and

so on, while bringing forth the requirement for a revision of the most basic physical

intuitions of the modern era.

Main logic behind Bell’s theorem can be best understood as reductio ad absurdum

in the form of a "no-go theorem". One formulates a statement using explicit as-

sumptions; demonstrating the falsehood of this statement, which leads to a physical

impossibility, opens up these assumptions to debate. In Bell’s case it was a contra-

diction between quantum predictions which can be verified by experimental data and

a theory of hidden variables using the requirements introduced by Einstein as the a

priori assumptions derived from a definition known as "criterion of reality"[1]. Bell

constructed an inequality, which now known as Bell’s inequality, where its bound

on expectation values denoted the limits on a certain bipartite system and he demon-

strated that quantum predictions violate these limits. This violation of Bell’s inequal-

ity is considered to be the first experimentally testable formulation of EPR argument,

hence some even consider this as the opening shot of ‘experimental metaphysics’[3].
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After the development of Bell’s theorem a huge amount of literature piled up rather

quickly and many new forms of inequalities and some theorems focused on similar

problems which Bell’s theorem was addressing. In the following chapters of this

study the most common of these inequalities will be investigated, their similarities and

differences are going to be emphasized to establish their relations to Bell’s theorem

and the lineage of many inequalities. In addition to these, some theorems addressing

the problem of micro/macro-reality divide will also be a focus of investigation. Their

resemblances and dissimilarities with respect to the Bell’s theorem are going to be

studied.

Chapter 2 consists several key points on which the following literature has built upon.

The problem of completeness of quantum theory asserted by Einstein, Podolsky and

Rosen in 1935[1] and immediate responses to this paper will be the starting point of

this study. Famous Bohr-Einstein debates following the initial papers and how two

different formulations of physical reality have formed and sustained themselves will

be the next. The concept of hidden variables, one particular and very strong use of it

by Bohm and its differences with the quantum theory at hand will also be investigated

in chapter 2.

Following the same line of thought in chapter 3 the development of Bell’s theorem

and Bell’s thinking is going to be focused on. Inequalities such as BCHS, CHSH and

MABK will be investigated to see the common patterns between them and to identify

the key points of inequalities as Bell inequality.

In chapter 4 other types of inequalities and theorems regarding the problem of realism

will be studied. These can be summarized as the Leggett-Garg inequalities[4], which

are sometimes referred to as temporal Bell inequalities, and the Kochen-Specker

theorem[5] dealing with the concept of contextuality.

In chapter 5, Bell’s theorem without the use of inequalities is going to be stud-

ied. Firstly the GHZ experiment[6] and how Bell’s theorem, which was understood

through an inequality, can be formulated without inequalities will be investigated. Af-

ter that a more recent development of this type, without inequalities, called Hardy’s

test[7] will be the matter of importance. Several different uses of Hardy’s test on

generic and spin states are going to be presented and some contemporary studies and
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experiments based on it will be mentioned.

Finally in chapter 6 and 7 all of the subjects above are going to be discussed with

respect to their relevance to the problems of macro/micro - realism, locality, con-

textuality and their resemblances in themselves. Following this, the study will be

concluded with closing statements and remarks. In the appendix some derivations of

useful constructions will be shown explicitly.
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CHAPTER 2

EPR PROBLEM AND HIDDEN VARIABLES

In this chapter the problem introduced by Einstein-Podolsky-Rosen and its conse-

quences are going to be discussed gradually in several sections. Section 2.1 will be

an introduction to the original paper, its key ideas and some immediate and recognized

responses to it will be included here. In section 2.2 the publicized debates developed

between Einstein and Bohr will be brought forth and how these debates nourished the

construction of several important concepts in the field is going to be investigated. Sec-

tion 2.3 will focus on a special branch of alternative theories to quantum theory itself

divulged around the idea of adding hidden variables to the wave function. Finally in

section 2.4 the formal background that led to the construction of Bell’s theorem will

be introduced briefly and only in the context of their relevance to the EPR problem

and the rest of this study.

2.1 EPR Paper and Responses

Einstein-Podolsky-Rosen’s 1935 dated paper named "Can Quantum-Mechanical De-

scription of Reality Be Considered Complete?"[1] can be considered as an epoch

moment for the problem of locality in quantum mechanics. It has over 5000 citations

standing alone in http://journals.aps.org/, some of it from 2015. After

80 years, although its mathematical representations are of little use to anyone, this

paper hasn’t lost its relevance to the contemporary arguments of physicists and the

problem of locality (or rather non-locality) stands as an unsolved problem in physics.

In this section the conceptual developments that arose from the EPR paper and the

5
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immediate responses will be of focus and the mathematics of this paper will mostly

be omitted since it was highly theoretical and ‘not even rigorously true’[8]. However

ideas and assumptions sprouting from this original paper has encapsulated the de-

bates over many areas from completeness of quantum theory to the nature of physical

reality itself. To this extent it would only be appropriate to look at what Einstein-

Podolsky-Rosen introduced as a condition of completeness;

"every element of the physical reality must have a counterpart in the physical the-

ory"[1]

They continue by disserting that elements of the physical reality cannot be determined

by considerations other than of experimental approaches and measurements and de-

note that a comprehensive definition of reality is unnecessary in their case. However

a criterion of reality is established in the following form;

"If, without in any way disturbing a system, we can predict with certainty (i.e., with

probability equal to unity) the value of a physical quantity, then there exists an ele-

ment of physical reality corresponding to this physical quantity." [1]

After some dealing with the position and momentum of a system they reach the con-

clusion that;

"when the momentum of a particle is known, its coordinate has no physical reality"[1]

Moreover they claim that either (1) ‘for two physical quantities with non-commuting

operators there is no simultaneous reality’ or (2) ‘that the quantum mechanical de-

scription of reality given by the wave function is not complete’. To further the argu-

ment they examine two separated systems which have interacted between t=0 and t

= T and then ceased to interact. Since they no longer interact the authors make the

assumption that "no real change can take place in the second system in consequence

of anything that may be done to the first system"[1]. Hence using this argument and

assigning two wavefunctions to the same reality (by expanding it in two different

bases) they reach to a point where starting from the argument that the wave function

gives a complete description of reality indicates that two physical quantities with non-

commuting operators can have simultaneous reality. So the negation of (2) leads to

the negation of (1), then it is concluded as the initial assumption that wave function

6



gives complete description of reality is not holding true[1].

This famous paper has two closing statements which are, although spectacularly

wrong, leads to two of the still on-going debates in the field of foundations of quantum

mechanics. First one is; "This makes the reality of P and Q[which are observables

corresponding to the second system] depend upon the process of measurement car-

ried out on the first system, which does not disturb the second system in any way. No

reasonable definition of reality could be expected to permit this.”[1] This is the point

in history where the concept of quantum entanglement is first expressed (though still

not named) in the literature. This counter-intuitive idea was developed by the authors

to refute quantum theory in the sense that it is not ‘reasonable’, which later turned out

to be one of the foundational cornerstones of the theory itself. The ingeniousness of

this paper led to this groundbreaking discovery which allowed the problem of locality

to be formalized.

The second statement was that; "While we have thus shown that the wave function

does not provide a complete description of the physical reality, we left open the ques-

tion of whether or not such a description exists. We believe, however, that such a

theory is possible”[1]. This is also a very important statement which led a consider-

able amount of physicists to search for a theory that gives a ‘more’ complete descrip-

tion of the physical reality than the wave function approach of quantum theory itself.

The scope of this (still continuing) search for this ‘new’ theory is more extensively

investigated in section 2.3.

With these closing statements and above mentioned assumptions, criterion and de-

scriptions the EPR paper was a very controversial and hence a fruitful piece of study.

Responses to it was immediate. Niels Bohr published an article titled [9] same as

EPR’s, "Can Quantum-Mechanical Description of Physical Reality be Considered

Complete?" which has the following abstract;

“It is shown that a certain ‘criterion of physical reality’ formulated in a recent article

with the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential

ambiguity when it is applied to quantum phenomena. In this connection a viewpoint

termed ‘complementarity’ is explained from which quantum-mechanical description

of physical phenomena would seem to fulfill, within its scope, all rational demands

7



of completeness.” [9]

Bohr’s paper develops around several topics ranging from time measurements in

quantum theory to transformation theorem of quantum mechanics, from commutation

relationships to experimental arrangements and so on. However the repeating idea in

this paper is that it is impossible to control the interactions between the measuring

device and the measured object, hence the notion of "without in any way disturbing a

system" is not an applicable condition when dealing with quantum phenomenon. The

problem of locality introduced by EPR is basically seen as a mishandling of quantum

concepts and reference frames.

Another and again very important response came from Schrödinger named "Discus-

sion of Probability Relations Between Separated Systems"[10] coining the term ‘en-

tanglement’ and explaining at length how the situation proposed by EPR is in fact

accurate and measurements on one of the entangled states may help predict the future

measurements on the accompanying entangled state.

Also Schrödinger published an important and a very famous paper titled "Die gegen-

wärtige Situation in der Quantenmechanik"[11] which is translated as "The Present

Situation in Quantum Mechanics" where he explains key developments in quantum

theory, its differences from classical mechanics an so forth. He makes reference to

the EPR paper and problems introduced by this paper as well and answers them.

Although there are countless number of responses and references to the EPR paper,

Wendell H. Furry’s 1936 article named "Note on the Quantum Mechanical Theory of

Measurement"[12] should also be noted. It relates von Neumann’s theory of measure-

ment and the EPR problem through using the notion of ‘reduction of wave packets’.

An emphasis on the relation of a system and the means used to observe it is made as

a concluding remark here and following Bohr’s lead the issue of measuring devices

is highlighted again. Also as an interesting note the closing statement underlines the

problem of the distinction between subject and object, which is a recurring focus in

investigations concerning reality in the quantum ‘world’.
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2.2 Einstein-Bohr debates

The EPR paper introduced and highlighted some important problems within the reach

of physics but it is also a metaphysical piece. Its opening statement is "In a complete

theory there is an element corresponding to each element of reality."[1], which em-

phasized a philosophical divide in the field of physics. In this divide champions of the

sides came forth and argued their cases against each other and in front of the entire

physics community of those times. The most famous of these debates were the se-

ries of letters and articles which in their totality called as the Bohr-Einstein debates.

Although it was named Bohr-Einstein debates other towering figures in the history

of physics such as Max Born, Werner Heisenberg and Erwin Schrödinger played im-

portant roles. Born corresponded with Einstein continuously through the period now

known as the Quantum Revolution and especially Schrödinger took on himself to an-

swer Einstein’s assertions with regard to the incomplete or problematic structure of

quantum mechanics.

Standing points of these two giants can be best emphasized through their own words.

Einstein believed in a way of conducting physics such that it is a matter of truth

seeking, finding the right tools to understand what is actually out there in the physical

world. He explains his grasp on the dealings of physics as; “. . . the concepts of physics

relate to a real outside world. . . It is further characteristic of these physical objects

that they are thought of as arranged in a space-time continuum. An essential aspect

of this arrangement of things in physics is that they lay claim, at a certain time, to an

existence independent of one another, provided these objects ‘are situated in different

parts of space’.” [13]

However Bohr did not believe in this one-to-one correspondence, through his readings

of Kant and similar philosophers he developed an understanding of physics that is

more concerned with explanation and prediction, while being skeptical about a world

outside that can be exactly encapsulated by a physical theory. In his own words;

“There is no quantum world. There is only an abstract quantum physical description.

It is wrong to think that the task of physics is to find out how nature is. Physics

concerns what we can say about nature.“[14]

9



Though Einstein’s and Bohr’s points corresponded to two of the extremes of their

times there was a vast majority standing in between. Physicists such as Heisenberg

agreed Bohr’s ideas but hesitated to generalize them into the physics of everyday life,

which is now referred to as macro-reality. A brief note on his views can be said as;

“This again emphasizes a subjective element in the description of atomic events, since

the measuring device has been constructed by the observer, and we have to remem-

ber that what we observe is not nature in itself but nature exposed to our method of

questioning. Our scientific work in physics consists in asking questions about nature

in the language that we possess and trying to get an answer from experiment by the

means that are at our disposal.“ [15]

The separation between levels of physical reality into macro and micro later played

an important role in theory developing as well as in philosophy of physics. Physicists

following the lead of classical physicists and later updated versions by Einstein argues

that there is a consistent reality that both govern the stars and the atomic particles and

it has an in-itself existence. Others take a standing in the center and assert that reality

is scale dependent and macro-reality has different rules than micro-reality, former has

definiteness and sharp precision while the latter has a statistically un-deterministic na-

ture. Finally the extremes in Bohr’s line of thought argues that the consistency seen in

the macro level is again an illusion and can only be attributed to the high approxima-

tion powers of standing theories. There are other, more contemporary developments

in each of these line of thoughts, which will be discussed in 6.1.

Different beliefs yield different theories and various ways of problematization. These

points taken as micro-realism, macro-realism and realism as a whole led to a variety

of different roads in the context of physical theories. Physicists such as John S. Bell

devoted their lives to constitute a theory that is consistent with realism [16, 17]. While

others tried to establish the triumph of Bohr’s beliefs and introduced methods to refute

the consistent structure of the macroscopic realism[4]. And a few has even proposed

drastic changes in the current understanding of basic concepts such as time[18] or

introduced new concepts such as universal background noise[19, 20] in their search

for a new theory.

The ideas and theories are always in flux, new approaches are being developed and old
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ones are being rigorously tested everyday. However what is constant in physics is and

always have been the correspondence of theory and results of experiments. This is

probably best explained by Feynman’s following quote from the book The Character

of Physical Law; “It does not make any difference how beautiful your guess is. It

does not make any difference how smart you are, who made the guess, or what his

name is – if it disagrees with experiment it is wrong. That is all there is to it.” [21]

2.3 Hidden Variables

In this section a general approach to construct an alternative theory to quantum me-

chanics will be of the focus. This search can be summarized as the hidden variable

program and its purpose can best be explained through the following lines from Bell’s

article named "On the Problem of Hidden Variables in Quantum Mechanics"[22];

"The question at issue is whether the quantum mechanical states can be regarded as

ensembles of states further specified by additional variables, such that given values

of these variables together with the state vector determine precisely the results of

individual measurements."

There are several known [18, 23, 24] and in some respect still on-going versions of

this program. Aharonov’s approach uses a two-vector formalism that allow future

events to effect the outcomes of present measurements. Nelson’s way is a deriva-

tion of quantum mechanics from classical mechanics through random variables and

stochastic systems. Finally, Bohmian mechanics involves allowing a definite position

function with nonlocal properties. All these have in common is that their aim is to

replicate the predictions of quantum mechanics but eliminate the discrepancies of it

(such as wave function collapse) through introducing ‘hidden’ variables. Hidden here

is used in the sense that this new variable cannot be set during the preparation period

of state at hand.

As there are theories making use of the hidden variables there are strong impossibility

proofs that prohibits the addition of hidden variables to quantum theory in order to

obtain same predictions. The common weakness of these proofs is that they use

certain assumptions and proofs with respect to hidden variables but the generalization
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process of them to cover the entire class of hidden variable theories is problematic.

As stated in "A Refutation of the Proof by Jauch and Piron that Hidden Variables Can

be Excluded in Quantum Mechanics” Bohm himself declares that this kind of proofs,

such as von Neumann’s, exclude only a certain very restricted class of hidden variable

theories[25].

Simplified and shorthened versions of some of these impossibility proofs of hidden

variables can be found in Bell’s article[22] for [26, 27, 28] and their restrictions with

respect to Bohm’s pilot-wave theory [24] can again be found in Bell’s another article

named "On the Impossible Pilot Wave"[29].

The notation used in the following section will be a faithful representation of Bohm’s

original demonstration and will not be followed in the rest of this study since rest will

use mostly Dirac’s bra-ket notation formalism.

2.4 Bohm’s spin arrangement

Bohm investigates the EPR problem in his book ‘Quantum Theory’ between pages

611–623 as a finishing argument for the 22nd chapter titled ‘Quantum Theory of the

Measurement Process’.[24] In the 16th section ‘The Hypothetical Experiment of Ein-

stein, Rosen and Podolsky’ of this chapter Bohm introduces a ‘somewhat modified’

version of the experiment in a conceptually equivalent form, but considerably easier

to treat mathematically. This modified version is the spin arrangement of the EPR

problem that is generally known and it is sometimes even referred to as the EPR-

Bohm correlations. It is the version that has been most widely used in the literature

following that era.

In this version a molecule containing two atoms in a state in which the total spin is

zero with spin of each atom being 1
2

is supposed. The classical counterpart of this

supposition takes place as to assume two particles with spin angular momentum zero,

hence if the first particle has a certain angular-momentum vector than the second

particle will have an angular-momentum vector that is of the same magnitude but

opposite direction. So that by measuring one particle the experimenter can obtain

information about the other one. Since taking a measurement of the first particle is
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consistent with EPR’s requirement of ‘without in any way disturbing’ for the second

particle this new version proposed by Bohm is consistent with the original situation

proposed by EPR.

Bohm starts from the most general state consisting two spin-half particles;

Ψa = u+(1)u+(2) Ψb = u−(1)u−(2)

Ψc = u+(1)u−(2) Ψd = u−(1)u+(2)
(2.1)

are the spins aligned in ẑ-direction, where ± signs correspond to ±~
2
. Following the

line of argument above to obtain a total spin zero state with particle spins correspond-

ing to opposite values with each other Ψc and Ψd are required in such a way with

Jz = 0 and J = 0,

Ψ0 =
Ψc −Ψd√

2
(2.2)

Now describing the process of measurement of σx with eigenfunctions v+, v− result

is similarly J = 0 and Jx = 0,

Ψ0 =
v+(1)v−(2)− v−(1)v+(2)√

2
(2.3)

After measurement the state becomes

Ψ =
v+(1)v−(2)eiα1 + v−(1)v+(2)eiα2

√
2

(2.4)

where Bohm takes α1 and α2 as uncontrollable phase factors. Hence it is seen from

here as well that the value of σx for each particle is also correlated.

As an addition to these, Bohm states another important point corresponding to this

problem. He defines a mean value of any function g(o2) of the spin variables of the

second particle alone and looks to the average of this function after a measurement

on the first particle. Average of this function is the same as what is obtained without

a measurement of the spin variables of the first particle. He concludes that the be-

haviour of the two spins, however, are correlated despite the fact that each behaves in

a way that does not depend on what actually happens to the other after interaction has

ceased.[24]

Bohm’s brilliant redefinition of the problem at hand allowed it to become much more

open to mathematical interpretation. Bell himself was much affected by Bohm’s ideas

and vocally advertised de Broglie-Bohm theory in more than one occasion[30, 29].
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For more of the correspondence between these two great minds one can look at Shel-

don Goldstein’s publication for the 50th year anniversary of Bell’s theorem, of a talk

he gave on Bell’s view on Bohm at a memorial conference for him, titled "Bell on

Bohm"[31]. This modified version of the EPR argument allowed Bell to formulate

his inequality and theorem.
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CHAPTER 3

BELL’S THEOREM AND BELL INEQUALITIES

In the previous chapter the EPR paper and the whirlwind of debates, arguments and

theorizing that followed it were discussed. One of the main topics in these was the

problem of locality and how to address it. Although approaches such as de Broglie –

Bohm Theory and other hidden variable theories are somewhat inclusive of the prob-

lem, they still can not demonstrate it clearly enough to directly respond to Einstein’s

point of concern. The main focus of this chapter is the one that did not end the discus-

sions but allowed everyone to speak about the problem at hand through mathemati-

cal, logical and most importantly physical aspects, rather than solely philosophical or

vaguely formal manners.

In this chapter the renowned 1964 dated paper of Bell[2] and further progress in that

line will be investigated. Bell’s theorem and generation of Bell inequalities are going

to be shown in the context of Bell’s own and consecutive papers regarding his work.

Further developments and other inequalities formulated from Bell’s approach such as

BCHS and CHSH inequalities consisting of bipartite spin half states and a product of

a set of papers which together called as MABK inequality consisting N-partite spin

half particles will also be of importance. There will also be pieces from more contem-

porary discussions regarding Bell’s theorem and Bell type of inequalities. In addition

to those, how this line of thought effected the current understanding of physical reality

among academia of physics will be examined, though not exhaustively.
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3.1 "On the Einstein-Podolsky-Rosen Paradox" paper

This single article is probably one of the most cited and well-read papers regarding

the notions of quantum entanglement, non-locality and hidden variable theories, also

it is considered to be one of the cornerstones of Quantum Information Theory. It

is published by J. S. Bell in 1964 and consist the method now known as the Bell’s

theorem. This theorem in fact is not a well established and clearly stated theorem but

it is a general understanding or an approach, a way of stating certain assumptions in

a formal manner.

The opening statements of this work are the following lines,

"The paradox of Einstein, Podolsky and Rosen was advanced as an argument that

quantum mechanics could not be a complete theory but should be supplemented by

additional variables. These additional variables were to restore to the theory causal-

ity and locality."[2]

In his 2014 dated paper titled "The Two Theorems of John Bell "[32] for a special

issue celebrating the 50th anniversary of Bell’s 1964 paper, H. M. Wiseman makes a

point that although there is a single Bell’s theorem there are more than one interpre-

tation of it and this mainly depend on how Bell himself in time developed his own

approach and it didn’t reach to as many physicists as his original paper did. In the

above first lines of the 1964 paper, Bell argues that the EPR argument was two-fold,

it depended on quantum theory being either not causal or not local. However his

later views, presented in 1975 at the Sixth GIFT Seminar, Jaca and reproduced in

1976 titled "The theory of local beables"[16] indicates a particular and singular argu-

ment introduced by EPR and that is ‘local causality’. (Further discussions on ‘Local

Causality’ will be conducted in Sec. 6.2)

The second chapter of the latter publication is titled ‘Local Causality’. The single

page explanation can be summarized as; if an event B does not belong to the backward

light cone of an event A, the outcome of the event A can not depend on B in any way.

Assume the event A depends on some set of variables denoted as Λ. If B does not

lie in the backward light cone of A then the following relation should be satisfied,
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meaning the outcome obtained from A does not depend on B;

(A|Λ, B) = (A|Λ) (3.1)

During the following chapters in that paper Bell again shows, by using the simpli-

fied 1974 version of CHSH inequality[33], that quantum mechanics is not a locally

causal theory. However, he also explains that, in chapter 7, relativistic quantum me-

chanics is locally causal in the human sense. The previous statement emphasizes

that although there is discrepancy in formalism there are no such problems in experi-

ment, hence it does not allow faster than light transmission of messages. This is again

stressed by Bell in his 1981 instructive study titled "Bertlmann’s socks and the nature

of reality"[34] that this is not seen by EPR as a real action at a distance but rather

a ‘spooky action at a distance’ indicating it having a correspondence only in wave

function formalism.

It is noted by Wiseman[32] that Bell’s early terminology is not well adjusted to the

specifications he was making. He used separability and locality interchangeably in

more than one paper, he introduced strong arguments such as realism and determin-

ism without clearly identifying the concepts at hand and so on. However in his later

writings this attitude has slowly disappeared and much more complete works of Bell

can be found in his post-1964 years. Wiseman attributes the shroud of mystery con-

cerning Bell’s theorem mostly to the misunderstanding of his previous works by some

hasty researches in the physics community. All these said, Bell continued using the

word locality implying local causality in his later writings as well hence in this study

the word locality will be preserved and used to imply local causality argument intro-

duced by Bell[16].

Continuing with Bell’s 1964 paper it seems rather important to construct what was

later to be shown in contradiction. Similar to EPR’s description of elements of reality

and completeness of a theory, Bell here introduces a ‘requirement of locality’. He

argues that "the result of a measurement on one system be unaffected by operations

on a distant system with which it has interacted in the past"[2] is what creates the

essential difficulty in EPR argument to quantum theory. Now in here another note

should be included that the EPR argument does not exactly correspond or require

this kind of locality in their paper. The term broadly defined in the above quote
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as ‘operations’ is in fact has a much more limited use in EPR paper, denoting not

operations in general but the measurement outcomes provided by these.

Now following the demonstration of [2] in a faithful manner, since quantum theory

does not allow pre-determination and the argument is that this should not be the case

for a complete theory, Bell introduces a λ that may be a single variable, a set of

variables or even a set of functions discrete or continuous, to address this issue. The

result A of measuring σ1.â is then determined by â and λ together, and the result B

of measuring σ2.b̂ in the same instance is determined by b̂ and λ, where â and b̂ are

directions. So now the following can be argued,

A(a, λ) = ±1 B(b, λ) = ±1 (3.2)

To get the expectation value of the product of the two components at hand the proba-

bility distribution ρ(λ) is to be used in the context:

P (a, b) =

∫
dλρ(λ)A(a, λ)B(b, λ) (3.3)

This should correpond to the quantum mechanical expectation value of a singlet state:

〈σ1.âσ2.b̂〉 = −â.b̂ (3.4)

Now for normalized probability distribution ρ there is∫
dλρ(λ) = 1

and because of eqn. 3.2, P in eqn. 3.3 cannot be less than -1 and it can be -1 at â = b̂

only if

A(a, λ) = −B(a, λ)

Using this eqn. 3.3 can be rewritten in the form

P (a, b) = −
∫
dλρ(λ)A(a, λ)A(b, λ)

And for another unit vector ĉ there is

P (a, b)− P (a, c) = −
∫
dλρ(λ)[A(a, λ)A(b, λ)− A(a, λ)A(c, λ)]

after re-arranging these

P (a, b)− P (a, c) =

∫
dλρ(λ)A(a, λ)A(b, λ)[A(b, λ)A(c, λ)− 1]
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Here note thatA(i, λ) has possible outcomes±1 for all i’s, hence [A(i, λ)]2 = 1 holds

for i = a, b, ... Now through the conditions defined in eqn. 3.2 it becomes

|P (a, b)− P (a, c)| ≤
∫
dλρ(λ)[1− A(b, λ)A(c, λ)]

The second term on the right is in fact P (b, c) and the whole thing can be written as

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) (3.5)

This is the first of well-known Bell inequalities. For P not constant the left hand

side is in order |b - c| for small |b - c|, hence P(b,c) cannot be stationary at -1 the

minimum value which is for b̂ = ĉ, and it cannot be equal to the quantum mechanical

expectation value expressed in equation 3.4.

In addition to this the formal proof of the quantum mechanical correlation 3.4 not

being approximated arbitrarily closely by the form 3.3 can be shown in the following

lines. This proof would not take into account the failure of the approximation at

isolated points. Instead of equations 3.3 and 3.4 consider these functions

P (a, b) and −â.b̂

where the bar represent, independent averaging of P (a′, b′) and −â′.b̂′ over vectors

â′ and b̂′ within small angles of â and b̂. For all â and b̂ assume that the difference is

bounded by ε:

|P (a, b) + â.b̂| ≤ ε (3.6)

Now it will be shown that ε cannot be made arbitrarily small for a small finite δ of the

following form. Suppose that for all â and b̂;

|â.b̂− â.b̂| ≤ δ

Then from eqn. 3.6 it follows

|P (a, b) + â.b̂| ≤ ε+ δ (3.7)

and from eqn. 3.3

P (a, b) =

∫
dλρ(λ)Ā(a, λ)B̄(b, λ) (3.8)

where the averages are bounded as given below;

|Ā(a, λ)| ≤ 1 and |B̄(b, λ)| ≤ 1 (3.9)
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So that from equations 3.7 and 3.8 together with â = b̂∫
dλρ(λ)[Ā(b, λ)B̄(b, λ) + 1] ≤ ε+ δ (3.10)

Now see that from eqn. 3.8

P̄ (a, b)− P̄ (a, c) =

∫
dλρ(λ)Ā(a, λ)B̄(b, λ)[Ā(b, λ)B̄(c, λ) + 1]

−
∫
dλρ(λ)Ā(a, λ)B̄(c, λ)[Ā(b, λ)B̄(b, λ) + 1]

(3.11)

Using 3.11 and 3.9 together

|P̄ (a, b)− P̄ (a, c)| =
∫
dλρ(λ)[Ā(b, λ)B̄(c, λ) + 1]

+

∫
dλρ(λ)[Ā(b, λ)B̄(b, λ) + 1]

(3.12)

And together with 3.8 and 3.10 eqn 3.12 becomes of the form

|P̄ (a, b)− P̄ (a, c)| ≤ 1 + P̄ (b, c) + ε+ δ

Finally using 3.7

|â.ĉ− â.b̂| − 2(ε+ δ) ≤ 1− b̂.ĉ+ 2(ε+ δ)

or in a more orderly manner

|â.ĉ− â.b̂|+ b̂.ĉ− 1 ≤ 4(ε+ δ) (3.13)

Now take for example â.ĉ = 0 and â.b̂ = b̂.ĉ = 1√
2
. Then

4(ε+ δ) ≥
√

2− 1

So that for small finite δ, the value of ε cannot be taken as arbitrarily small. Hence it

is shown that the quantum mechanical value cannot be represented, either accurately

or arbitrarily closely, in the form of the eqn. 3.3.

Furthermore Bell demonstrates that if A could depend on b̂ and B could depend on

â there would be no difficulty in reproducing the quantum mechanical correlation

3.5. However this would mean in a system like that, for given values of the hidden

variables, the results of measurements with one magnet depend on the setting of the

distant magnet. As a conclusion he wrote;
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"In a theory in which parameters are added to quantum mechanics to determine the

results of individual measurements, without changing the statistical predictions, there

must be a mechanism whereby the setting of one measuring device can influence the

reading of another instrument, however remote."[2]

3.2 BCHS and CHSH Inequalities

3.2.1 BCHS or Bell-Clauser-Horne-Shimony inequalities

There are many articles using inequalities of the CHSH or Bell-CHSH or BCHS types

while referring to the same basic set of articles, mainly [2, 35, 36, 37]. However since

the original paper of CHSH uses correlation functions and defining spaces over λ

there was a lot of room for simplification hence in the following years what is com-

monly referred to as CHSH inequality has changed. This new and simplified version

of it depended upon expectation values and average values in the classical sense, while

another form of derivation sprouting from the first set of initial papers began to form

rapidly after Arthur Fine’s paper titled "Hidden Variables, Joint Probability, and the

Bell Inequalities"[38]. In this section of the study main focus will be on what is now

commonly called as Fine’s theorem and its connection to the papers [35] [36]. This

theorems connection to the Bell’s inequality and CHSH inequality will be explained

through following the demonstration of de Muynck’s 1986 article [39].

In Arthur Fine’s 1982 article titled "Hidden Variables, Joint Probability, and the Bell

Inequalities"[38] a series of statements has been established and their equivalence is

argued. These statements, taken from the abstract of his paper, are the following:

(1) There is a deterministic hidden-variables model for the experiment.

(2) There is a factorizable, stochastic model.

(3) There is one joint distribution for all observables of the experiment, returning the

experimental probabilities.

(4) There are well-defined, compatible joint distributions for all pairs and triples of

commuting and non-commuting observables.
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(5) The Bell inequalities hold.

The logical connections between all these statements are not as solid as Fine wished

them to be, however for demonstrative purposes equivalence between them are clear

and instructive enough. Following the arguments of Clauser-Horne in [33] Fine de-

scribes two space-time regions R1 and R2 that are space-like separated. There are

non-commuting observables A, A’ for R1 and B, B’ for R2 with values ±1. Proba-

bilities of the experiment are the observed distributions for A, A’, B, B’ and four ad-

ditional compatible pairs AB, AB’, A’B and A’B’. Another definition is, for A = +1

complement of it is denoted by Ā = −1 and P(S) is a function defined as the prob-

ability of enclosed observable S taking the value +1. So that P(Ā) denotes A’s com-

plement Ā taking the value +1 hence P(Ā) corresponds to the probability of A taking

value -1.

Similar to Bell’s hidden variable notation, a normalized probability density func-

tion ρ(λ) is defined on Λ which the set of hidden variables required for the ‘com-

plete’ state specifications. Now another notation is introduced by Fine such that

A(λ), A′(λ), B(λ), B′(λ) each defined on Λ with values ±1 satisfy the integration

relations

P (S) =

∫
S̃(λ)ρ(λ)dλ (3.14)

and

P (ST ) =

∫
S̃(λ)T̃ (λ)ρ(λ)dλ (3.15)

where S̃ is a special notation identifying the relation S̃(λ) = 1 → S(λ) = 1 and

S̃(λ) = 0→ S(λ) = −1. See that this holds since S(λ) = −1 gives P(S) = 0 due to

P(..) giving the probability of S taking the value +1. And for S̃(λ) = 1 the integral∫
S̃(λ)ρ(λ)dλ gives 1 which indicates P(S) is 1, so it is consistent with S(λ) taking

the value +1. Also see that if instead of P(S) its complement P(S̄) is used then taking

S̃(λ)→ 1− S̃(λ) and re-arranging as

P (S̄) =

∫
[1− S̃(λ)]ρ(λ)dλ (3.16)

will provide the same distribution relation. For S̃(λ) = 1, P(S̄) will be zero meaning

that P(S) = 1 and this is consistent with S̃(λ) → S(λ) = 1 relation. Inverse of it and

similar conventions for eqn. 3.15 with compatible pairs of observables also hold.

22



Now that it is possible to argue that the existence of a deterministic hidden-variables

model is strictly equivalent to the existence of a joint probability distribution function

P(A A’ B B’) for the four observables of the experiment[38]. To look for this

P (AA′BB′) =

∫
Ã(λ)Ã′(λ)B̃(λ)B̃′(λ)ρ(λ)dλ (3.17)

and see that

P (AA′BB′) + P (AĀ′BB′) + P (AA′BB̄′) + P (AĀ′BB̄′) = P (AB) (3.18)

For explicit demonstration of this relation refer to the Appendix section B.1.

If P (AA′BB′) is given then a simple way to define a deterministic hidden-variables

model is of the following sort. Let Λ consist of all sixteen quadruples of the form

λ =< a1, a2, a3, a4 > where ai = ±1 and introduce

A(λ) = a1 A′(λ) = a2 B(λ) = a3 B′(λ) = a4 (3.19)

Then define ρ(λ) as ρ(a1, a2, a3, a4) = P (AA′BB′) where Si = S is used if ai = 1

and Si = S̄ is used if ai = −1. Thus the idea of deterministic hidden variables is just

the idea of a suitable joint probability function[38].

Now to show that the existence of this in its own accord is a contradiction with quan-

tum theory Fine introduces a proposition that for triples A,B,B′ and A′, B,B′ with

probability distributions P (ABB′) and P (A′BB′) it is possible to construct P(A A’

B B’) and P(B B’) which is a well-defined joint probability distribution of two non-

commuting observables which is a violation of quantum mechanical requirements.

Setting P (AA′BB′) = P (ABB′)P (A′BB′)
P (BB′)

with P (AA′BB′) → 0 for P (BB′) = 0 can

be shown and justified as

P (ABB′) = P (AA′BB′) + P (AĀ′BB′) ≤ P (A′B) + P (Ā′B′)

= P (A′B′) + P (B′)− P (A′B)
(3.20)

and

P (ĀBB′) = P (ĀA′BB′) + P (AĀ′BB′) ≤ P (A′B′) + P (Ā′B)

= P (A′B′) + P (B)− P (A′B)
(3.21)

For explicit calculations again refer to Appendix B.1. Then it can easily be seen that

0 ≤ P (AB̄B̄′) = P (A)− P (AB)− P (A′B) + P (AB′) + P (ABB′) (3.22)
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together with

0 ≤ P (ĀB̄B̄′) = 1−P (B)−P (A)−P (B′)+P (AB)+P (AB′)+P (ĀBB′) (3.23)

Using eqn. 3.20 for P (ABB′) in eqn. 3.22 and eqn. 3.21 for P (ĀBB′) in eqn. 3.23

gives

−1 ≤ P (AB) + P (AB′) + P (A′B′)− P (A′B)− P (A)− P (B′) ≤ 0 (3.24)

By changing A to A′, B to B′ and other variations, seven more inequalities of this

sort can be obtained. Fine refers these eight inequalities collectively as Bell/CH

inequalities[38] or from later references they are called BCHS inequalities. It is

showed by these that every deterministic hidden variable theory restricts the prob-

abilities of the experiment so as to satisfy these eight inequalities.

Now following de Muynck[39] take the observablesA,A′, B,B′ only asAi consistent

with eqn. 3.19. Expectation value of a product AiAj is given by

〈AiAj〉 = Pij(+,+) + Pij(−,−)− Pij(+,−)− Pij(−,+) (3.25)

where Pij(+,+) stands for P (Ai = +1, Aj = +1) and similarly for the others. The

inequality in eqn. 3.24 can be re-written in the form

−1 ≤ P (A1, A2) + P (A1, A3) + P (A3, A4)− P (A2, A4)− P (A1)− P (A3) ≤ 0

(3.26)

By re-naming and shortening the middle term in the following manner

Q(A1, A2, A3, A4) = P (A1, A2) + P (A1, A3)

+P (A3, A4)− P (A2, A4)− P (A1)− P (A3)
(3.27)

It can be argued that

〈A1A2〉+ 〈A1A3〉+ 〈A3A4〉 − 〈A2A4〉 = Q(+,+,+,+) +Q(−,−,−,−)

−Q(+,−,−,+)−Q(−,+,+,−)
(3.28)

for explicit demonstration see Appendix section B.2. From 3.26 it follows as

Q(+,+,+,+) ≥ −1, Q(−,−,−,−) ≥ −1,

−Q(+,−,−,+) ≥ 0, −Q(−,+,+,−) ≥ 0,
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Giving the following inequality

(〈A1A2〉+ 〈A1A3〉+ 〈A3A4〉 − 〈A2A4〉) ≥ −2 (3.29)

Just by changing A2 with A3, it can also be argued that

(〈A1A2〉+ 〈A1A3〉+ 〈A2A4〉 − 〈A3A4〉) ≥ −2 (3.30)

And from these equations 3.29 and 3.30 together the following can be obtained

| 〈A2A4〉 − 〈A3A4〉 | ≥ 2 + 〈A1A2〉+ 〈A1A3〉 (3.31)

In the above relation taking 〈A1A2〉 = −1 will give Bell’s inequality of 3.5.

In conclusion to this section, it can be said that inequalities such as BCHS, CHSH

and their kind are generally noted as Bell inequalities since they are all equivalent

to each other and can be shown to satisfy Bell’s original inequality. However, as

Bell acknowledges in the conclusion part of his work [16] the 1969 paper of CHSH

[35] is a very suitable prototype for any Bell inequality to be derived from. Different

inequalities may be required for different experimental configurations but they all

should be, in principle, obtainable from the CHSH inequality.

3.2.2 Violation of CHSH inequality

In the previous section it is shown that any Bell inequality for dichotomic observables

can be derived from one another. In this section a straightforward violation of CHSH

inequality will be demonstrated and since each Bell inequality can be derived from

one another, violation of one serves the purpose of violation of Bell inequalities as a

whole. Experimental violations of this sort has been reported, starting from Aspect

experiments in 1981 [37].

A simple spin singlet state corresponding to a bipartite system with particles at points

A and B can be defined as

|Ψ〉 AB =
|01〉 − |10〉√

2
(3.32)

Operators concerning spin-half states are explicitly derived in appendix sec. A.1,

hence the following arguments with regard to the state at hand can be said

σAx |0〉A = |1〉A σAx |1〉A = |0〉A
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σAy |0〉A = i |1〉A σAy |1〉A = −i |0〉A

σAz |0〉A = |0〉A σAz |1〉A = |1〉A

Similarly all these relations apply to B as well. By defining an overall σi operation

on the system as σAi + σBi where i = x, y, z, the below equations are applicable

σx |Ψ〉 AB = (σAx + σBx) |Ψ〉 AB = σAx |Ψ〉 AB + σBx |Ψ〉 AB

σy |Ψ〉 AB = (σAy + σBy) |Ψ〉 AB = σAy |Ψ〉 AB + σBy |Ψ〉 AB

σz |Ψ〉 AB = (σAz + σBz) |Ψ〉 AB = σAz |Ψ〉 AB + σBz |Ψ〉 AB

See that σAi |Ψ〉 AB leaves the state of the particle B unchanged and same goes for

operations on B leaving A unchanged, even though the system in its entirety is af-

fected. By using this and the equations above it can easily be argued that the relations

below hold

σx |Ψ〉 AB = 0 σy |Ψ〉 AB = 0 σz |Ψ〉 AB = 0

From the definition of Ŝn that gives σn, again it is easy to see that

σn |Ψ〉 AB = (σAn + σBn) |Ψ〉 AB = 0

which indicates that the system at hand is rotationally invariant and it is a s = 0 state.

Now for simplicity leaving out ~ and constants, one can define σAn = ±1 and the

corresponding σBn = ∓1 to satisfy σn = σAn + σBn = 0 for σn |Ψ〉 = 0 therefore

these give σAnσBn = −1. Also this can be investigated by looking at the following

relations,

σAxσBx |Ψ〉 = σAx[
|00〉 − |11〉√

2
] =
|10〉 − |01〉√

2
= − |Ψ〉

σAyσBy |Ψ〉 = σAy[
−i |00〉 − i |11〉√

2
] =
−i2 |10〉+ i2 |01〉√

2
= − |Ψ〉

σAxσBx |Ψ〉 = σAz[
− |01〉 − |10〉√

2
] =
− |01〉+ |10〉√

2
= − |Ψ〉

From these relations σAnσBn |Ψ〉 = − |Ψ〉 can be derived too. Hence it gives

〈Ψ|σAnσBn|Ψ〉 = −1 (3.33)

Now check for 〈Ψ|σAnσBm|Ψ〉 where n̂ 6= m̂. First of all expand σBm and σAn as,

σBm = mxσBx +myσBy +mzσBz and σAn = nxσAx + nyσAy + nzσAz
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Applying σBm on |Ψ〉 will result,

σBm |Ψ〉 = mx[
|00〉 − |11〉√

2
] +my[

−i |00〉 − i |11〉√
2

] +mz[
− |01〉 − |10〉√

2
]

On this applying σAn will yield,

σAnσBm |Ψ〉 = nxσAxσBm |Ψ〉+ nyσAyσBm |Ψ〉+ nzσAzσBm |Ψ〉

Investigating each part in its own,

nxσAxσBm |Ψ〉 = nxmx[
|10〉 − |01〉√

2
]− nxmy[i

|10〉+ |01〉√
2

]− nxmz[
|00〉+ |11〉√

2
]

nyσAyσBm |Ψ〉 = nymx[i
|10〉+ |01〉√

2
] + nymy[

|10〉 − |01〉√
2

] + nymz[i
|00〉 − |11〉√

2
]

nzσAzσBm |Ψ〉 = nzmx[
|00〉+ |11〉√

2
]+nzmy[i

− |00〉+ |11〉√
2

]+nxmz[
− |01〉+ |10〉√

2
]

Following the previous line of argument it can be said that,

〈Ψ|σAnσBm|Ψ〉 = 〈Ψ|nxσAxσBm + nyσAyσBm + nzσAzσBm|Ψ〉

which can be separated as,

〈Ψ|nxσAxσBm|Ψ〉+ 〈Ψ|nyσAyσBm|Ψ〉+ 〈Ψ|nzσAzσBm|Ψ〉

By taking the hermitian conjugate of eqn. 3.32 the following is reached,

AB 〈Ψ| =
〈01| − 〈10|√

2

Hence using the braket the following results can be acquired,

〈Ψ|nxσAxσBm|Ψ〉 =
nxmx

2
(−1) +

nxmy

2
(−i) +

nxmz

2
(0)

+
nxmx

2
(−1) +

nxmy

2
(i) +

nxmz

2
(0)

That is

〈Ψ|nxσAxσBm|Ψ〉 = −nxmx

Again using the bra-ket notation for the other two in the following manner

〈Ψ|nyσAyσBm|Ψ〉 =
nymx

2
(i) +

nymy

2
(i2) +

nymz

2
(0)

+
nymx

2
(−i) +

nymy

2
(i2) +

nymz

2
(0)
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Giving

〈Ψ|nyσAyσBm|Ψ〉 = −nymy

And finally

〈Ψ|nzσAzσBm|Ψ〉 =
nzmx

2
(0) +

nzmy

2
(0) +

nzmz

2
(−1)

+
nzmx

2
(0) +

nzmy

2
(0) +

nzmz

2
(−1)

Resulting in

〈Ψ|nzσAzσBm|Ψ〉 = −nzmz

Using these together it can be argued that

〈Ψ|σAnσBm|Ψ〉 = −nxmx − nymy − nzmz = −n̂.m̂ (3.34)

for any given n̂ and m̂. See that this is in accord with eqn. 3.33 since n̂.n̂ gives 1.

Now define SAn = ±1 and the rest, where the difference between σn and Sn being

Sn ≡ S(λ, n̂) while σn ≡ σ(n̄) Following the most basic form of CHSH inequality

(usually derived from and attributed to [35, 36]), which argues the statement below

−2 ≤ 〈(SAn + SAm)SB` + (SAn − SAm)SBp〉 ≤ 2 (3.35)

where A and B are two particles and n̂, ˆ̀, m̂ and p̂ are arbitrarily chosen directions

of measurement. For a certain set of directions(Fig. 3.1) it can be shown that the

inequality 3.34 is violated.

Figure 3.1: Directions of measurements for maximal violation

For the following set of measurements,

〈σAnσB`〉 = −n̂.ˆ̀=
1√
2

〈σAmσB`〉 = −m̂.ˆ̀=
1√
2

〈σAnσBp〉 = −n̂.p̂ =
1√
2

〈σAmσBp〉 = −m̂.p̂ = − 1√
2
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With n̂ ⊥ m̂ and ˆ̀⊥ p̂ while θ = π
4

and φ = 3π
4

where θ is the angle between m̂ and
ˆ̀ while φ is the angle between m̂ and p̂. Since the system is rotationally invariant,

the only dependence is to the angles between the directions and not to the directions

themselves. Using these directions, the maximum value of 2
√

2 allowed by QM can

be obtained.

3.3 MABK Inequalities

In this section Mermin-Ardehali-Belinski-Klyshko inequalities [40, 41, 42], which

are usually summarized as MABK, will be of the focus. Since there is a vast and

mostly contemporary literature on the possible experimental realizations of this type

of inequalities, with additions and refutations from many sources, the main point of

this section is not to study these exhaustively but to explain their relevance to the

Bell’s theorem. Through this context, a brief derivation and explanation of the corre-

spondence between them is going to be investigated and their categorical understand-

ing as the general class of multipartite Bell inequalities will be examined.

Mermin’s Inequality

Following the GHZ[6] era, Mermin, whom was a prominent figure already in Bell’s

theorem related literature, published an article titled "Extreme Quantum Entangle-

ment in a Superposition of Macroscopically Distinct States"[40]. The term ‘macro-

scopically distinct’ here is a particularly important term to be noticed. More on this

term and the concept of macro-realism will be discussed in Sec 4.1. Furthermore,

the GHZ approach, which is a use of Bell’s theorem without inequalities, will be the

focus of Sec 5.1.

In Mermin’s article a Bell-type inequality is derived for a state of n spin-1/2 particles

which are in a superposition state much like the GHZ state for n = 3 case. This

is the first noticeable and realizable generalization of Bell’s inequality to n-partite

systems in the literature, hence it is an important development in the field. It is a rather

straightforward demonstration, using distribution and correlation functions instead of

expectation values to address the cases where the measurements are imperfect and the
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extreme values are failed to be attained. Main difference from the GHZ approach is

the emphasis on realizable observations with imperfections.

The demonstration starts with the definition of the basic state

|Φ〉 =
1√
2

[|00..0〉+ i |11..1〉] (3.36)

with |0〉 corresponding to upward spin in ẑ-direction and |1〉 corresponds to down-

ward spin in ẑ-direction. And the operator Â is defined in the following way;

Â =
1

2i
[
n∏
j=1

(σx
j + iσy

j)−
n∏
j=1

(σx
j − iσyj)] (3.37)

where |Φ〉 is an eigenstate to it with eigenvalues 2n−1. Expanding this product will

provide

2n−1 = 〈Φ|σy1σx
2...σx

n|Φ〉+ 〈Φ|σx1σy
2...σx

n|Φ〉+ ..+ 〈Φ|σx1σx
2...σy

n|Φ〉

− 〈Φ|σy1σy
2σy

3σx
4...σx

n|Φ〉 − ...+ 〈Φ|σy1σy
2σy

3σy
4σy

5...σx
n|Φ〉+ ...

(3.38)

The above expression represents a set of expectation values for experiments to be

conducted. This form of the expansion is due to the ‘i’ factor coming from the Pauli

matrix of σy. Since there is a 1
2i

in front of the expansion the sign is of the order im−1,

where m is the number of σy’s in that term of the expansion which is always odd due

to the cancellation of even σy numbered terms. The total number of the terms in 3.38

is given as ∑
j odd

(
n

j

)
= 2n−1

This is obtained through the following steps;

(1 + 1)n =
∑
j

(
n

j

)
(1− 1)n =

∑
j

(
n

j

)
(−1)j

→
∑
j odd

(
n

j

)
=

1

2
[(1 + 1)n − (1− 1)n] = 2n−1

Since each term must lie between -1 and +1 to obtain the equality of 2n−1 in 3.38 each

term has to have its extreme values. This gives that |Φ〉 must be an eigenstate of the

operators appearing in every term. Mermin shows that this idea alone is a refutation of

EPR argument due to the commutation relations of σx and σy elements in these terms.
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This refutation takes place in his earlier article titled "Quantum Mysteries Revisited"

[43] where he applies a pedagogical and non-technical method he previously used on

EPR problem to the GHZ experiment.

As the paper at hand does not deal with extreme values but the resulting distribu-

tion functions of imperfect measurements, Mermin introduces correlation functions

Ep1 ...pn where 〈Φ|σp11...σpn
n|Φ〉 fails to attain the extreme values ±1. Now it is in-

quired that whether the measured distribution functions P p1 ...pn(m1,m2, ...mn) (with

each sj either being x or y and each mj being + in ẑ-direction or - in ẑ-direction)

that describe the outcomes of the 2n−1 different kinds of experiments that must be

performed on n particles in the state |Φ〉 to obtain the correlation functions yielded in

3.38 can be all represented in the conditionally independent form as follows

P p1 ...pn(m1,m2, ...mn) =

∫
dλρ(λ)[p1

p1(m1, λ)...pnpn(mn, λ)] (3.39)

Mermin takes this form of representation as a hallmark of a local theory that accounts

for the correlations entirely in terms of information jointly available to the particles

when they left their common source[40]. The set of parameters λ is common to all n

particles, with distribution ρ(λ), is subject only to the requirement that the outcome

of any one detector for given λ does not depending on the choice of component to

be measured at any of the other detectors, or in other words that correlation functions

which can be represented in this form obeys local causality introduced by Bell[16].

If a representation 3.39 is accepted, then the mean of a product of x or y components

for the spins of all particles can be given in the following manner

Ep1 ...pn =

∫
dλρ(λ)Ep1

1(λ)...Epn
n(λ) (3.40)

where the correlation function is given as

Es
j(λ) = pp

j(+, λ)− ppj(−, λ) (3.41)

Now, the theoretical value of the linear combinations of experimentally measured

correlation functions from the expansion 3.38 of 3.37 is given as

F =

∫
dλρ(λ)

1

2i
[
n∏
j=1

(Ex
j + iEy

j)−
n∏
j=1

(Ex
j − iEy

j)] (3.42)
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The quantum mechanical expectation value of Â corresponding to this is

F = 〈Φ|Â|Φ〉 = 2n−1 (3.43)

However in 3.42 a much more strict bound can be formulated. Each of the 2n quanti-

ties Ex
j, Ey

j appearing in 3.42 is constrained by 3.41 to the region in between -1 and

+1. Since the integrand of 3.42 is linear in each Es
j (if the other 2n-1 is held fixed),

it assumes its extreme values only at the boundaries of each of their domains. It is

therefore bounded everywhere by the largest of the extreme values it takes at where

the points Ex
j and Ey

j is independently taken to be -1 or +1. Since 3.42 is equivalent

to

F = Im[

∫
dλρ(λ)

n∏
j=1

(Ex
j + iEy

j) (3.44)

at the extreme points F can be taken as just the imaginary part of an average of the

product
∏n

j=1(Ex
j + iEy

j) with complex numbers each with
√

2 magnitude and

phases of the form ±π
4

or ±3π
4

. For even n this product can lie along the imagi-

nary axis with value
√

2n and for odd n it is at π
4

degrees to the imaginary axis and its

Im(..) can only attain the maximum value of
√

2n−1. Hence if F can be represented

in 3.42 then

F →

F ≤ 2
n
2 , n even

F ≤ 2
n−1
2 , n odd

(3.45)

relations should hold. However when n ≥ 3 these bounds are violated. In the ap-

pendix section B.3.1 an explicit demonstration for n = 2 and n = 3 particle systems

are studied. It is shown in [44] that the maximal violation of Mermin’s inequality can

only be obtained for GHZ states and the states obtained from them by local unitary

transformations, hence other maximally entangled states such as W states does not

maximally violate this inequality.

The important point of Mermin’s inequality is that its violation increases exponen-

tially with number of particles. While n increases linearly, violation of the bounds

increases in the order of 2
n
2 , hence for macroscopic systems it gets significant values.

In Ardehali’s addition[41] to Mermin’s original paper, a lemma of the following sort

is introduced:
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Lemma: If u, u’, v and v’ are random variables having probability distribution func-

tion P(u, v, u’, v’), then the following elementary relation always holds[41]:∑
P (u, u′, v, v′)[u(v − v′) + u′(v + v′)] ≤ 2max{|u|, |u′|}max{|v|, |v′|} (3.46)

instead of random variables here using the correlation functions from 3.41 will yield

the same results with 3.45.

As a final point to this section, in Belinski and Klyshko’s extensive study of 1993

named "Interference of light and Bell’s theorem" [42] the fifth section is titled as

"Bell Theorem For N Observers". They refer to an extensive literature on the subject

mainly between 1989 and 1992 such as GHZ[6], Mermin[40] and other studies of

that period [45, 41, 46], highlighting the increasing interest on the subject. Authors

argue that for Mermin’s inequality at n=2 and n=3 gives familiar results with pre-

viously studied subjects however as N → ∞ a new quantum effect can appear and

they study this through introduction of a hypothetical photon interference experiment.

Mathematical results derived from their work is much similar to Mermin’s original

derivation, however since there is a physical setup introduced the notation and corre-

sponding elements such as the phase or visibility of interference requires additional

assumptions to the problem at hand.

Combined together these demonstrations are called as MABK inequalities. Term is

generally used for non-GHZ tripartite and N > 3 cases. Important point of these type

of Bell inequalities is generally taken to be as their potential to take the experimental

verifications of no-local-hidden variable theory type of tests to a macroscopic level.
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CHAPTER 4

OTHER TYPES OF INEQUALITIES

Till this chapter the development of Bell’s theorem and Bell-type inequalities on the

arguments introduced by EPR, and later developed by Bohm, has been the focus of

the study. Generalization of Bell-type inequalities to further cases by Mermin and

other parties has been investigated, several derivations re-stated and the core issues

of EPR problem such as locality, realism and completeness has been introduced. As

mentioned earlier, Bell’s theorem is considered by some as the opening shot of ‘exper-

imental metaphysics’ [3], however as expected it does not stand alone. In this chapter

two other approaches to the presumably metaphysical problems through physical ex-

perimentation will be investigated. The problem of ‘macrorealism’ vs ‘microrealism’

in section 4.1 and the issue of contextuality in section 4.2.

Problematization of these subjects were already considered long before John Bell, in

the early days of quantum revolution. Schrödinger’s cat [11] is a strong motivation

for Leggett’s pursuit of his ‘program’ [47] and the roots of Kochen-Specker theo-

rem lies in de Broglie’s pilot wave and von Neumann’s refutation of it. However the

importance of these two approaches does not lie only within the problems that they

consider but also the insights they provide to tackle them. Kochen and Specker were

mathematicians hence their insights on the subject of contextuality did allow new

outlooks on the structure of Hilbert space on which quantum mechanics is built upon.

And Anthony Leggett’s background on both experimental and philosophical matters

of physics allowed him to be in a quite unique position to both assert highly philo-

sophical (hence strongly logical) and up-to-date experimentally aware propositions to

the subject at hand.
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4.1 Leggett-Garg Inequality

The focus of this section will be what is generally referred to as Leggett-Garg Inequal-

ities(or LGIs). These types of inequalities were developed by Anupam Garg and An-

thony J. Leggett in 1985 to distinguish theories supporting macrorealism(MR) from

quantum mechanics(QM) [4]. In this section key points of the Leggett-Garg’s origi-

nal paper will be presented, together with their response to some immediate critism.

Later a somewhat comprehensive and contemporary understanding of what this type

of inequalities do correspond to is going to be investigated through passages and high-

lights from Leggett’s own reviews[48, 49], comments from his own summer lecture

series at the Institute for Quantum Computing, University of Waterloo[47] and several

other review articles [50, 51]. The LGIs are closely related to highly experimental ob-

jects such as SQUIDs, fullerenes, magnetic biomolecules, quantum-optical systems

and so on, although these subjects will not be investigated a brief literature review on

the experimental realization of LGIs can be found at the end of this section.

4.1.1 "Is the flux there when nobody looks?" paper

The original paper by Anthony J. Leggett and Anupam Garg dated 1985, where the

LGI experiment is introduced has the title "Quantum Mechanics versus Macroscopic

Realism: Is the Flux There when Nobody Looks?" [4]. In this paper an idealized

‘macroscopic quantum coherence’ experiment is introduced with the conjunction of

two general assumptions which are,

(S1) Macroscopic Realism: A macroscopic system with two or more macroscopically

distinct states available to it will at all times be in one or the other of these states.

(S2) Noninvasive measurability at the macroscopic level: It is possible, in principle, to

determine the state of the system with arbitrarily small perturbation on its subsequent

dynamics.[4]

From later references, the assumption of macroscopic realism simply states that a

macroscopic object which has available to it two or more macroscopically distinct

states is at ’almost all’ times in one of these states. The ’almost all’ statement here
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is important due to the fact that there are transition periods between these macro-

scopically distinct states, however it is also noted in [4] that effects caused by these

transitions are smaller than the relevant ones by several orders of magnitude hence

can be ignored for any and all experimental purposes.[49].

For (S2), which is referred to as NIM(non-invasive measurability), Leggett denotes

that this assumption is not a quantum mechanical assumption in itself, hence the

violation of any LGI can be understood as the falsification of NIM rather than MR.

However, he adds that any proposition of a MR theory without the assumption or the

possibility of NIMs seems unlikely to him [47].

The original paper argues that for an isolated SQUID, QM predicts that if the flux is

initially in one well, it will oscillate back and forth with some frequency ω0. Below

figure can be considered to investigate the situation at hand,

Figure 4.1: SQUID oscillation

As shown in Fig. 4.1 it is possible to divide the values of the trapped flux into four

regions A1, B1, B2 and A2. Define a quantity Q which equals to +1 if the system

is observed to be in region A2 and -1 if observed in A1, for now the probabilities of

finding the system in B1 or B2 are ignored since they are minuscule. It follows from

(S1) that for a system prepared in time t0,

(i) joint probability densities ρ(Q1, Q2), ρ(Q1, Q2, Q3) and so on, can be defined for

Q to have values Qi at times ti (for t0 < t1 < t2...)
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(ii) it is possible to argue correlation functions of the form Kij = 〈QiQj〉

These joint probability densities should be consistent hence∑
Q2=±1

ρ(Q1, Q2, Q3) = ρ(Q1, Q3) (4.1)

From just this, considering times ti corresponding to polarizer settings, Bell-type

inequalities such as

1 +K12 +K23 +K13 ≥ 0 (4.2)

or

|K12 +K23|+ |K14 −K24| ≤ 2 (4.3)

can be constructed. Since Qi = ±1, Kij = 〈QiQj〉 will provide |Kij| ≤ 1. Assume

Q1 = +1, then there are four possible time development scenarios of the form;

Q1 = +1 Q2 = +1 Q3 = +1

Q1 = +1 Q2 = −1 Q3 = +1

Q1 = +1 Q2 = −1 Q3 = −1

Q1 = +1 Q2 = +1 Q3 = −1

(4.4)

giving the Kij values below.

K12 = +1 K23 = +1 K13 = +1

K12 = −1 K23 = −1 K13 = +1

K12 = −1 K23 = +1 K13 = −1

K12 = +1 K23 = −1 K13 = −1

(4.5)

It is clear to see that these values do satisfy the inequality constructed in eqn. 4.2.

Similar scenarios can be considered for Q1 = −1 case as well. Following the same

line of thought a fourth Q value as Q4 can be defined and through similar steps the

inequality in eqn. 4.3 can be obtained.

Violation of these inequalities will falsify the assumptions (S1) and (S2) which led to

their construction. However in this form alone LGI has many more assumptions than

just (S1) and (S2) and the original paper continues for several pages just to explain the

relationships between dissipation patterns and tunneling frequency for underdamped

or heavily damped conditions.
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To overcome the problem of NIM, Leggett-Garg introduces the idea of a ideal neg-

ative result experiment or ideal negative measurement. They do not argue that this

is the only possible non-invasive measurement type but it is a type of NIM, which

has its counter-arguments standing as well [52, 47]. The ideal negative measurement

scheme follows the line of thought that constructing a device which only interacts

with the system if Q has +1 value and not interacting with Q = -1, or vice versa, can

be considered as a non-invasive measurement. Most of the critism on this is based

upon the fact that the state collapse occurs in both cases, however Leggett answers

that this (S2) is not a quantum mechanical assumption.

One of the criticism to this paper came in 1988[52] directly arguing the possibility of

NIM and the macroscopic nature of a SQUID. Peres noted that the amount of ∆X lost

during the measurement must be gained as ∆P due to the uncertainty principle, hence

the ‘arbitrarily small perturbation on its subsequent dynamics’ part of (S2) does not

hold. In their response [53] authors formulate a measure ζ of ‘invasiveness’ and show

that it can be made of the order 10−7, which is far too small to spoil the projected

experiment [53].

4.1.2 Temporal Bell Inequalities

LGIs are sometimes also referred to as temporal Bell inequalities as well, since orig-

inal Bell inequalities use space-like separated regions and LGIs use temporally sep-

arated regions. In [47], using this approach, a much more clear and comprehensive

version of the above derivation can be found. First of all, it is important to note that

after 2008 [49] a third assumption is added to (S1) and (S2) which reads as,

(S3) Induction: Properties of an ensemble are determined exclusively by initial con-

ditions and not what will happen in a later time

Leggett introduces this assumption while noting that further developments in physics

may come from debating over the concept of ‘arrow of time’, however for any MR

theory that can be formulated in current or contemporary physics (S3) is a reasonable

and a ‘should be’ assumption to be made.

Take a two-state system which can be considered as the generalized version of the
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one argued in [4]. Divide this ensemble to three sub-ensembles which consists of,

(E1) The quantity Q is measured at t1 and t2

(E2) The quantity Q is measured at t2 and t3

(E3) The quantity Q is measured at t1 and t3

for t1 < t2 < t3. For the experimental average of these sub-ensembles take;

〈Q(t1)Q(t2)〉 exp = 〈Q1Q2〉 exp

〈Q(t2)Q(t3)〉 exp = 〈Q2Q3〉 exp

〈Q(t1)Q(t3)〉 exp = 〈Q1Q3〉 exp

respectively for (E1), (E2) and (E3). And define the correlation function Kexp as

Kexp = 〈Q1Q2〉 exp + 〈Q2Q3〉 exp − 〈Q1Q3〉 exp = Kexp(t1, t2, t3)

Now assume a simple two state Hamiltonian[47, 49] of the form:

Ĥ =

 0 Ω

Ω 0


which will provide

〈Q(ti)Q(tj)〉 = cos Ω(ti − tj) (4.6)

It should be noted here that for the equation above, general state before time ti is

rather irrelevant. Now the question asked by Leggett is that ‘What does MR pre-

dict?’. Answer to this question can be given in several steps. First of all, by (S1)

it can be argued that at any given time, quantities Q1, Q2, Q3 simultaneously exist

(whether measured or not) and take values ±1. Building on that and remembering

the arguments which led to eqn. 4.2 the following can be constructed by using simple

algebra.

Q1Q2 +Q2Q3 −Q1Q3 ≤ 1 (4.7)

Hence for a single ensemble

〈Q1Q2〉 ens + 〈Q2Q3〉 ens − 〈Q1Q3〉 ens ≤ 1 (4.8)
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By using above eqn.s 4.7 and 4.8 if measurements are non-invasive then 〈QiQj〉 ens =

〈QiQj〉 exp. Thus any theory of MR class predicts the Bell-like inequality of the form:

KMR ≤ 1 (4.9)

This is known as ‘Temporal Bell Inequality’ [47] and is violated by QM for appro-

priate choices of time. For example, taking the time intervals t3 − t2 = t2 − t1 = π
3Ω

gives KQM = 3
2
, which clearly violates the above given inequality.

Here Leggett highlights some a priori objections to the program and their counter

arguments. First objection, he notes, is that for ‘Macroscopic’ objects the action S is

of the scale S � ~ hence the predictions of QM will reduce to those of CM(Classical

Mechanics). His counter argument to this objection is to use such systems which have

microscopic energy levels but have a reasonably macroscopic variable embedded in

it. He gives SQUIDs as a notable example [47, 49, 48].

Second objection to the program he notes as ‘this program is totally ridiculous since

decoherence will kill you stone dead’ [47]. He says that this objection mainly depends

on pre-2000 literature where the effect of decoherence was over-estimated. Although

macroscopic objects do have closely spaced energy levels most of these states are

irrelevant to the question of superposition, for example in SQUIDs there exist many

degrees of freedom but most of them are irrelevant to the interference effect that

would have been observed with experiments.

The final objection he highlights is asymmetry of the program. He means by this that

if such an experiment supports QM it can clearly be argued that MR should let go,

however if such an experiment supports MR than an argument can always be made

that writing a Hamiltonian or a Lagrangian for macroscopic objects is a much more

complicated process than what has been anticipated [47]. In this matter he answers

with the following line of logic.

If theory T predicts experimental consequence E, and that experiment finds E, this

does not establish that T is correct.

However, if theory T predicts experimental consequence E, and for that experiment

’not-E’ is found, this does establish the falsity of T. It is also noted by Leggett[49]
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that concepts such as realism cannot be brought into questioning alone, hence only a

set of propositions which uses the argument of realism can be refuted but never the

concept realism by itself.

Before finishing up this section, another standard form[51] of the LGIs should be

mentioned. For the known ±1 valued Qis the following form can easily be formu-

lated.

−1 ≤ 〈Q1Q2〉+ 〈Q2Q3〉+ 〈Q1Q3〉 ≤ 3 (4.10)

The upper bound 3 cannot be exceeded since 4.6, however the lower bound -1 can be

violated through appropriate choice of ti − tj sets.

Further Remarks on Leggett-Garg Inequalities

Leggett-Garg Inequalities, in contrast to Bell inequalities, are still a contemporary

subject in progress. There are papers, as recent as March 2015[54], developing the

current form of the inequalities. Using the guidelines of [50] there can be found

13 experimental ideas developed by different teams just in between 2010 and 2014,

the context of these tries will be mentioned shortly. References with respect to used

physical objects and measurement methods can be found in the table[50] below.

Recent developments (after 2000) in condensed matter theory and advancing exper-

imental capabilities can be considered to be the most important factors of the in-

creasing studies in LGIs. But also interest from fields even like biophysics, to ex-

plore the possible quantum effects in bio-molecular processes (such as photosynthe-

sis [55, 56, 57] and bio-systems in general [58]) acts as a propellant for the physicists

to push towards the frontier between macro and micro systems with tenacity.
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Table 4.1: Experimental violations of LGI

Physical object Measurement method Reference

superconducting qubits CWM [59]
W/SW [60]

nitrogen-vacany centre STAT [61]
W [62]

NMR(nuclear magnetic resonance) P [63, 64]
INM [65]

photons W/SW [66, 67, 68]
P [69]

Nd3+ : Y V O4 crystal STAT [70]
phosphorus impurties in silicon INM [71]

The abbreviations used for the measurement methods can be identified as:

P: Projective; INM: ideal negative measurement; STAT: stationarity

CWM: Continuous weak measurement; W/SW: weak/semi-weak measurement

Most of the experiments given in [50] test variations of LGIs, however the authors

note that these systems can hardly be considered as macroscopic hence the violations

are not unexpected.

It is noted by Leggett[72] that the only actual experiment which claims to have tested

the Leggett-Garg inequality at the macroscopic level is Palacios-Laloy et al., Nature

Physics 6,442 (2010)[59]. However he adds that this is problematic because of their

‘weak measurement’ technique. ‘Weak measurement’ can be used for purposes of es-

tablishing that everything is consistent with QM, but refuting macrorealism through

measurements with this technique is open to criticism since the analysis far too heav-

ily depends on QM itself. He notes that most of the experiments done at the micro-

scopic level such as [66] also shares the same fate and distinguishes [71] as the only

one to his knowledge that those not suffer from this defect. But there are attempts

at devising macroscopic analog of that experiment which is hoped to eliminate the

problems encountered in previous experiments.
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4.2 Kochen-Specker Theorem and KCBS Inequality

In this section, the arguments of Simon B. Kochen and Ernst Specker[5] and a con-

temporary inequality derived from it [73] will be of the focus. This approach is widely

referred to as Kochen-Specker Theorem and deals with the concept of contextuality.

In the literature there are two different naming of this approach as BKS theorem or KS

theorem corresponding to Bell-Kochen-Specker or Kochen-Specker alone, there are

two possible reasons to consider this situation. The first one, which can be attributed

to the use of BKS Theorem, is that both Bell’s article "On the Problem of Hidden

Variables in Quantum Mechanics"[22] and Kochen-Specker’s study "The Problem of

Hidden Variables in Quantum Mechanics"[5] uses Gleason’s original study [27] and

focus on the problem of hidden variables in quantum mechanics. BKS Theorem indi-

cates a general method which consist of placing certain constraints on a possible the-

ory of hidden variables, then demonstrating that these constraints are not applicable

in reproducing the predictions of quantum mechanics and ruling out a class of hidden

variable theories bound to the constraints introduced. In this sense, both Bell’s theo-

rem and Kochen-Specker’s theorem are specific examples of BKS theorem. However

it should be noted that, with respect to this use of the term, BKS theorem in itself

does not specify the constraints (local causality in Bell’s case and contextuality in

Kochen-Specker case).

The second reason is basically the timing and language of Kochen-Specker. Although

it is submitted in 1966 there is no reference or use of either Bell’s papers or the argu-

ment of locality in their 29 pages long study. They exclusively focus on the possibility

of embedding a partial algebra that is in accord with the predictions of quantum me-

chanical observables into a commutative algebra. After proving the possibility of this,

authors demonstrate that although this algebra can be embedded, there will be contra-

dictions due to the non-commutative operators in quantum theory [5]. In this context,

Kochen-Specker theorem and Bell’s theorem are considered to be complements of

each other rather than being equivalent theorems demonstrating the same thing.

Although their approach is ingenious and original, the KS theorem was much less

popular than Bell’s theorem most probably due to its highly complicated and intri-

cate geometrical structure[74] until Peres’s refinement in 1990[75]. In their original
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study Kochen-Specker expressed the non-existence condition by using 117 vectors,

which represented difficulty for any experimental applications. After Peres’s paper

studies along that line accelerated and finally with KCBS inequality strong experi-

mental applications opened up. In the following parts of this section Mermin’s 1990

dated article "Simple unified form for the major no-hidden-variables theorems"[74]

and Cabello’s 1996 dated article "Bell-Kochen-Specker theorem: A proof with 18

vectors"[76] will be used as guidelines for demonstrating KS theorem, also Peres’s

articles [75, 77] will be of use. For the KCBS inequality original article [73] and

Cabello’s 2013 ‘explanation’ [78] is going to be examined.

4.2.1 A simple proof of Kochen-Specker theorem

The Kochen-Specker theorem indicates that for operators A, B, C with [A, B] = [A,

C] = 0 and [B, C] 6= 0, the outcome of a measurement of A cannot be independent

of whether A is measured alone, or together with B or C [22]. As their study relies

on Gleason’s, this theorem is an extended use of the concept Quantum contextual-

ity, which is shown by Gleason to exists only in dimensions greater than two [27].

Contextuality provides that the measurement result of a quantum observable depends

on the measurement context, that is whether the observable is measured by itself or

with other commuting observables. These other measurements can be simultaneous

or previous to the measurement of the relevant observable.

The original proof of Kochen-Specker uses three dimensional state space, which can

be associated with the spin states of a spin-1 particle. Peres’s argument instead uses

four dimensional space of two spin-half particles[75]. Considering the following six

operators σx1σy
2, σy

1σx
2, σx

1, σx
2, σy

1, σy
2, assigning simultaneous values to these

must fail if the system is in spin singlet state given in eqn. 3.32 that is,

|Ψ〉 AB =
|01〉 − |10〉√

2
(4.11)

Now define a function f(σi
j), for i = x, y and j = 1, 2, which corresponds to these

simultaneously assigned values. Kochen-Specker argues and defines that [5] for com-

measurable observables A1, A2 the following holds;

f(A1A2) = f(A1)f(A2) (4.12)
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In this case for the spin singlet state relations below should be satisfied,

f(σx
2) = −f(σx

1) and f(σy
2) = −f(σy

1)

together with

f(σx
1σy

2) = f(σx
1)f(σy

2) and f(σy
1σx

2) = f(σy
1)f(σx

2)

Hence f(σx
1σy

2)f(σy
1σx

2) can be re-written as f(σx
1)f(σy

2)f(σy
1)f(σx

2) but is

f(σx
2) = −f(σx

1) and f(σy
2) = −f(σy

1) are given so together they basically give

f(σx
1σy

2)f(σy
1σx

2) = 1. But σx1σy
2 and σy1σx

2 commute with each other and their

product is σz1σz
2, which requires f(σx

1σy
2)f(σy

1σx
2) = f(σz

1σz
2) = 1 however

for a spin singlet state f(σz
1σz

2) = −1 is known. Therefore simultaneous values

cannot be assigned for a spin singlet state. (For detailed demonstration of above

relations see Appendix sec. B.4)

The only downside of Peres’s argument is that it applies to a particular state, rather

than the original demonstration of Kochen-Specker, which is state-independent. Mer-

min proposes an advancement [74] to Peres’s argument by adding three more op-

erators to the six operators at hand, namely σx
1σx

2, σy
1σy

2, σz
1σz

2. For mutually

commuting operators Mermin defines six constraints of the following types;

f(σx
1σx

2)f(σx
1)f(σx

2) = 1

f(σy
1σy

2)f(σy
1)f(σy

2) = 1

f(σx
1σy

2)f(σx
1)f(σy

2) = 1

f(σy
1σx

2)f(σy
1)f(σx

2) = 1

f(σx
1σy

2)f(σy
1σx

2)f(σz
1σz

2) = 1

f(σx
1σx

2)f(σy
1σy

2)f(σz
1σz

2) = −1

(4.13)

Multiplying all of the equations given in 4.13 the left hand side will give +1 since

every term appears twice and (±1)2 = +1. However the right hand side will clearly

result in -1, hence a contradiction is arrived at, independent of any particular state.

Further remarks on Kochen-Specker theorem

In a proof with 18 vectors by Cabello et al.[76] the general characteristics of a non-

contextual hidden-variables (NCHV) theory are defined as follows
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(1) In an individual system each projection operator (defined as |u〉 〈u|) has a unique

answer in the form of yes or no (1 or 0) which is independent of which of the other

observables are considered to being observed simultaneously (non-contextuality con-

dition)

(2) For each set of one dimensional projection operators, in an n-dimensional Hilbert

space, whose sum gives the identity operator there is only one operator with answer

1 while there are n-1 operators which give the answer 0.

According to these, if the answer to a projection operation over a given vector is one,

than the rest of the orthogonal projection operators should result in zero. Using this

and a notation of the form f(ui) denoting the answer to the |ui〉 〈ui| operation, authors

introduced a straightforward proof using nine sets of orthogonal four-dimensional

vectors of the following types [76]:

f(0, 0, 0, 1) + f(0, 0, 1, 0) + f(1, 1, 0, 0) + f(1,−1, 0, 0) = 1

f(0, 0, 0, 1) + f(0, 1, 0, 0) + f(1, 0, 1, 0) + f(1, 0,−1, 0) = 1

f(1,−1, 1,−1) + f(1,−1,−1, 1) + f(1, 1, 0, 0) + f(0, 0, 1, 1) = 1

f(1,−1, 1,−1) + f(1, 1, 1, 1) + f(1, 0,−1, 0) + f(0, 1, 0,−1) = 1

f(0, 0, 1, 0) + f(0, 1, 0, 0) + f(1, 0, 0, 1) + f(1, 0, 0,−1) = 1

f(1, 1,−1, 1) + f(1, 1, 1, 1) + f(1, 0, 0,−1) + f(0, 1,−1, 0) = 1

f(1, 1,−1, 1) + f(1, 1, 1,−1) + f(1,−1, 0, 0) + f(0, 0, 1, 1) = 1

f(1, 1,−1, 1) + f(−1, 1, 1, 1) + f(1, 0, 1, 0) + f(0, 1, 0,−1) = 1

f(1, 1, 1,−1) + f(−1, 1, 1, 1) + f(1, 0, 0, 1) + f(0, 1,−1, 0) = 1

(4.14)

These vectors can be considered as pure spin states of a bipartite spin-half system.

There are 18 different vectors used in this setup and 12 of those are separable and can

be written in the form of (u1, u2)1⊗(u3, u4)2 where ui corresponds to the eigenvalues

of operators σxj and σzj applied on different particles.

Six remaining vectors are entangled and cannot be written in a separated manner.

These vectors can be represented in terms of their connections with the observables

σz
1⊗ σz2, σz1⊗ σx2, σx1⊗ σz2 and σx1⊗ σx2. As an example, f(1, -1, 1,1) which is

an eigenvector of σz1⊗ σx2 and σx1⊗ σz2 with values ±1 can be associated with the

question, does the operations σz1 ⊗ σx2 and σx1 ⊗ σz2 have well-defined outcomes
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with respect to a hidden variable with values -1 and +1? If the answer is yes, f(1,-

1,1,1) = 1, if no, it is 0.

Considering these, it is clear to see that eqn. 4.14 cannot provide simultaneous an-

swers to all assigned value questions since adding all nine equations yield an even

number on the left hand side while giving 9 on the right hand side, which is a clear

contradiction. This proof of Cabello et al. [76] is only one of the many attempts in

the era to refine the argument of Peres’s on the Kochen-Specker theorem. Another

important point is that the above given proof is a state-independent form and for a

specific state (a spin singlet state is given as an example [76]) the number of vectors

required for a proof is significantly reduces. This asserts Mermin’s analysis on his

paper [74] that the high complexity in Kochen and Specker’s original demonstration

is most probably due to their success of demonstrating their proof without using a

specific state.

4.2.2 KCBS Inequality

In 2008 Klyachko-Can-Binicioğlu-Shumovsky(KCBS) published an article titled "Sim-

ple Test for Hidden Variables in Spin-1 Systems" [73] discussing the non-classical

nature of most spin-1 states, its physical implications, possible underlying cause and

experimental verification through a Bell type inequality. They use a similar line of ar-

gument with Kochen-Specker [5] and assume a hidden distribution of variables which

is compatible with the distributions of commuting observables in accord with quan-

tum mechanics. Consider a non-negative function of the following form,∑
Ajcommute

fj(aj) ≥ 0 (4.15)

while assuming a hidden distribution over all variables ai compatible with distribu-

tions of other commuting observables aj where i ∈ j. Then taking the expectation

value of this distribution leads to a Bell-type inequality.∑
Ajcommute

〈Ψ|fj(Aj)|Ψ〉 ≥ 0 (4.16)

where Aj are commuting observables and f(Aj) represents the hidden distribution.

Their insight was to connect the marginal problem, which deals with the problem

48



of existence of a joint probability distribution of random variables compatible with

given partial distributions, with a geometrical proof. This proof is that the marginal

problem[79] corresponds to the existence of a body in Rn of a non-negative density

with some given projections onto coordinate subspaces [73]. Using this together with

the constraints they obtained from CHSH [35] inequality by Fine’s theorem[38], for

a spin-1 system with a cyclic quintuplet of unit vectors of the form `i ⊥ `i+1 with

i = 1, .., 5 with the use of an appropriate software they obtained a geometrical object

which is now known as the KCBS pentagram[73].

Now consider the spin projection operators S`i . For successive indices the following

holds,

[S`i
2, S`i+1

2] = 0 (4.17)

due to orthogonality of ~̀i and ~̀i+1. Instead of squares of spin projection operators, a

new observable of the form deemed more appropriate and formulated as,

Ai = 2S`i
2 − 1

which has eigenvalues ±1. Using this the following inequality is obtained similar to

the form of CHSH inequality,

〈A1A2〉+ 〈A2A3〉+ 〈A3A4〉+ 〈A4A5〉+ 〈A5A1〉 ≥ −3 (4.18)

and by using the relation below

AiAi+1 = 2S`i
2 + 2S`i+1

2 − 3 (4.19)

this later is recast into the following form,

〈S`12〉Ψ + 〈S`22〉Ψ + 〈S`32〉Ψ + 〈S`42〉Ψ + 〈S`52〉Ψ ≥ 3 (4.20)

which is called the pentagram inequality. The relation in eqn. 4.19 is obtained through

using this relation,

A`i = I − 2 |`i〉 〈`i| = 2S`i
2 − I (4.21)

where |`〉 corresponds to |0〉` in Hilbert space representation of a spin-1 particle.

Hence the pentagram inequality can be written in the form[73];

5∑
k=1

| 〈`k|Ψ〉 |2 ≤ 2 (4.22)

49



The neutrally polarized spin-1 state gives | 〈`k|Ψ〉 |2 = cos2(`kΨ) = 1√
5

which vio-

lates the above inequality.

KCBS inequality reduces the number of involved spin projection operators from 31

to 5 [73] for the contextuality tests, however it is state dependent. The authors argue

that there cannot be a test of non-contextual hidden variables (NCHV) for three di-

mensional quantum systems with less then 5 observables and that other possible tests

involving 5 observables can all be reduced to the pentagram inequality.

After the publication of their paper, experimental verifications of KCBS inequality

has started being tested. A brief summary of the successful experimental implemen-

tations can be found below:

Table 4.2: Experimental violations of KCBS Inequality

Physical object Year Reference

2009 [80]
2011 [81]

photons 2012 [82]
2013 [83]
2014 [84, 85]
2015 [86]

171Y b+ ions 2013 [87, 88]
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CHAPTER 5

BELL’S THEOREM WITHOUT INEQUALITIES

In this chapter an alternative approach to the Bell’s theorem will be presented. Bell’s

theorem is usually considered as constructing inequalities using local hidden vari-

ables to show contradictions in order to demonstrate the falsification of LHV. There

are several examples and alternative approaches to the EPR problem, however this

chapter will consist of a method introduced by Greenberger, Horne and Zeilinger

around 1989-1990[6] which is widely known as the GHZ experiment. In section 5.1

the history, development and indications of solely the GHZ experiment will be in-

vestigated. Another method known as Hardy’s Test, which uses the GHZ logic but

deviates from it in a profound manner, will be of the focus in section 5.2.

5.1 GHZ Experiment

The original introduction of GHZ dates to a workshop held on October 21 and 22,

1988 at George Mason University titled "Bell’s Theorem, Quantum Theory and Con-

ceptions of the Universe" and the citation in general referred to as is the original

publication of GHZ argument is a book titled the same with the workshop edited by

Menas Kafatos in 1989 [6] and the relevant section of it has the title "Going Beyond

Bell’s Theorem". A more well-known version of the argument is published in 1990

with Shimony joining the authors for an extensive and self-contained review which

has the title "Bell’s theorem without inequalities"[89].

In this section both the original 1989 and the extended 1990 version of the demon-

strations will be revisited and their relevance to the Bell’s theorem is going to be
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highlighted by comparing some of the arguments with the derivation of Bell’s from

section 3.1. Although it is a rather straightforward demonstration the importance of

the original idea lies on the emphasis that for bipartite systems Bell inequalities hold

for perfect correlations, however for N-partite systems with N ≥ 3 they do not. Just

by using Bell’s original assumptions on the EPR problem it is possible to show that

contradiction arises between a local hidden variable(LHV) theory and quantum me-

chanical predictions.

A similar line of argument can be developed for GHZ states using the Kochen-

Specker theorem instead of Bell’s theorem and the argument of contextuality, that

is assigning simultaneous values to non-commuting observables will result in con-

tradictory outcomes. The applicability of both theorems to the GHZ states provides

additional insight and opens up the possibility of a unified no-go theorem for hidden

variable theories[74].

5.1.1 Going Beyond Bell’s Theorem

Remember that in the singlet state eqn. 3.4

〈(σ1.â)(σ2.b̂)〉 = −â.b̂ (5.1)

which can be re-written in the form

P (a, b) = 〈(σ1.â)(σ2.b̂)〉 = −â.b̂ = −cos(a.b) (5.2)

and leading to the famous Bell inequality of the form 3.5

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) (5.3)

GHZ notes that for the case â = ±b̂ this inequality gives no information at all. They

call this the super-classical case[6]. The question they asked was that is it always

possible to find a classical model for the super-classical cases and the answer was

no. However this could not be demonstrated through bipartite spin-singlet state used

in deriving Bell’s theorem so they had to consider a more complex consisting four

spin-half particles in a state that is similar to Bohm’s.

|Φ〉 =
|0011〉 − |1100〉√

2
(5.4)
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Through a similar reasoning with eqn. 5.2 for the quantum mechanical expectation

value for the spins in four given directions can be denoted in the following manner

P (n1, n2, n3, n4) = −cos(α + β − γ − σ) (5.5)

where each these ni is taken to be in the xy-plane at angles α, β, γ, σ respectively. If

any of the two angles are fixed the other two behaves similarly with the bipartite case,

so Bell’s inequality will hold. Now for the case

α + β + γ + σ = 0, π

the cosine term will result in either +1 or -1, hence measuring the three of the spins

along these given directions will allow the experimenter to predict the fourth with 100

percent certainty, which is exactly the super-classical case. After introducing the λ

element and proper parametrization it becomes

A(α, λ)B(β, λ)C(γ, λ)D(σ, λ) = +1 or − 1 (5.6)

for α + β + γ + σ = 0 and α + β + γ + σ = π cases. However this condition

cannot be satisfied. Keeping two of the parameters constant and varying the other two

continuously is possible hence the only logical result is A = B = C = D = constant, but

this is impossible since the product sometimes equals to +1 and sometimes -1. This

holds for any value of λ hence no integration is required either. The authors note that

making definite predictions in the EPR sense using a classical, deterministic, local

theory which reproduces quantum theory in general is impossible, however to show

this one must go beyond the Bell’s theorem[6].

5.1.2 Bell’s theorem without inequalities

In 1990 a much more comprehensive study on the subject is published by GHSZ

(Greenberger, Horne, Shimony and Zeilinger)[89]. It has several sections in which

the clear links between previous study[6] and EPR program(as authors call it) is estab-

lished, an extensive version of the original derivation is done and the more commonly

known version of GHZ states are introduced.

Remember the initial GHZ state 5.4 and the quantum mechanical expectation value
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correspondence as 5.5. Now for four arbitrary directions such as n̂1, n̂2, n̂3, n̂4 corre-

sponding to particles i = 1, 2, 3, 4, the expectation value can be written as

〈σ1σ2σ3σ4〉 = 〈Φ|σ1σ2σ3σ4|Φ〉 (5.7)

where σi represents n̂i.~σ on the ith particle. Since 5.4 is given, its hermitian conjugate

is its bra version in the bra-ket notation hence

〈Φ| = 〈0011| − 〈1100|√
2

(5.8)

So that the eqn. 5.7 can be written in the explicit form as

〈σ1σ2σ3σ4〉 =
[〈0011| − 〈1100|]σ1σ2σ3σ4[|0011〉 − |1100〉]

2

which becomes

〈σ1σ2σ3σ4〉 =
1

2
[〈0011|σ1σ2σ3σ4|0011〉 − 〈1100|σ1σ2σ3σ4|0011〉

+ 〈1100|σ1σ2σ3σ4|1100〉 − 〈0011|σ1σ2σ3σ4|1100〉]
(5.9)

After some calculations (which can be found in appendix section B.5.1) this can be

represented as

〈σ1σ2σ3σ4〉 = cos(θ1) cos(θ2) cos(θ3) cos(θ4)

− sin(θ1) sin(θ2) sin(θ3) sin(θ4) cos(φ1 + φ2 − φ3 − φ4)
(5.10)

Setting n̂i to be on xy-plane will reduce this equation into

〈σ1σ2σ3σ4〉 = − cos(φ1 + φ2 − φ3 − φ4) (5.11)

Now for the perfect correlation cases where φ1 + φ2 − φ3 − φ4 = 0, π values of

P (n̂1, n̂2, n̂3, n̂4) will be ∓1. Analogous to eqn. 5.6 these can be stated as

φ1 + φ2 − φ3 − φ4 = 0→ A(φ1, λ)B(φ2, λ)C(φ3, λ)D(φ4, λ) = −1 (5.12)

and

φ1 + φ2 − φ3 − φ4 = π → A(φ1, λ)B(φ2, λ)C(φ3, λ)D(φ4, λ) = +1 (5.13)

Consider the following implications of these restrictions

A(0, λ)B(0, λ)C(0, λ)D(0, λ) = −1 (5.14)
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A(φ, λ)B(0, λ)C(φ, λ)D(0, λ) = −1 (5.15)

A(φ, λ)B(0, λ)C(0, λ)D(φ, λ) = −1 (5.16)

A(2φ, λ)B(0, λ)C(φ, λ)D(φ, λ) = −1 (5.17)

Using these together certain other implications can be obtained as well. For example

eqn.s 5.14 and 5.15 will result in

A(φ, λ)C(φ, λ) = A(0, λ)C(0, λ) (5.18)

Eqns. 5.14 and 5.16 will give

A(φ, λ)D(φ, λ) = A(0, λ)D(0, λ) (5.19)

and using these two together (5.18 and 5.19) yields

C(φ, λ)

D(φ, λ)
=
C(0, λ)

D(0, λ)
(5.20)

which can be rewritten as

C(φ, λ)D(φ, λ) = C(0, λ)D(0, λ) (5.21)

since D(φ, λ) is±1 and is equal to its inverse, same applies to D(0, λ) as well. Com-

bining the equations 5.17 and 5.21 gives

A(2φ, λ)B(0, λ)C(0, λ)D(0, λ) = −1 (5.22)

and comparing this with eqn. 5.14 results in

A(2φ, λ) = A(0, λ) = constant ∀ φ (5.23)

(a much simpler version of the above demonstration can be found in appendix section

B.5.2). This result alone is physically troublesome since A(φ, λ) represents an intrin-

sic spin quantity of the first particle and should change sign as φ → φ + π. Now to

show the mathematical contradiction just consider the eqn. 5.13 which allows

A(φ+ π, λ)B(0, λ)C(φ, λ)D(0, λ) = +1 (5.24)
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Also considering eqn. 5.15 the following relation holds

A(φ+ π, λ) = −A(φ, λ) (5.25)

however this result clearly contradicts with eqn. 5.23. Also see that since B(φ, λ) has

been set to B(0, λ) for the entire demonstration this method can clearly be applied to

three spin-half particles case as well.

5.1.3 Kochen-Specker theorem applied to GHZ state

A brief but instructive version of the GHZ proof is given by Mermin[74] using Kocher-

Specker theorem[5], advanced by Peres’s argument[75]. An eight dimensional space

consisting of three spin half particles is considered such as;

|Ψ〉 =
|000〉+ |111〉√

2
(5.26)

Ten operators σx1, σy1, σx2, σy2, σx3, σy3, σx1σy
2σy

3, σy1σx
2σy

3, σy1σy
2σx

3 and

σx
1σx

2σx
3 are taken and simultaneous values are assigned to each. Using the line of

argument from 4.12, five constraints on the commuting subsets of these operators can

be identified as:

f(σx
1σy

2σy
3)f(σx

1)f(σy
2)f(σy

3) = 1

f(σy
1σx

2σy
3)f(σy

1)f(σx
2)f(σy

3) = 1

f(σy
1σy

2σx
3)f(σy

1)f(σy
2)f(σx

3) = 1

f(σx
1σx

2σx
3)f(σx

1)f(σx
2)f(σx

3) = 1

f(σx
1σx

2σx
3)f(σx

1σy
2σy

3)f(σy
1σx

2σy
3)f(σy

1σy
2σx

3) = −1

(5.27)

See that relations of the form f(σx
1σy

2σy
3)f(σx

1)f(σy
2)f(σy

3) is in fact of the form

[f(σx
1)f(σy

2)f(σy
3)]2 = 1 from 4.12 hence the first four of the above equations are

self-evident. For the fifth one consider the operations

σx
1σx

2σx
3(
|000〉+ |111〉√

2
) =
|000〉+ |111〉√

2

σx
1σy

2σy
3(
|000〉+ |111〉√

2
) = −(

|000〉+ |111〉√
2

)

(5.28)

and so on, each σyj will bringforth an i and two σyjs will cause a minus sign. As a

result the fifth relation will become (+1)(-1)(-1)(-1) = -1.
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Now, by multiplying all of the relations given in 5.27 the left hand side will result

in +1 since each term appears twice, but the right hand side will give -1. This is

a clear contradiction, giving that for an entangled state such as GHZ the context of

measurements affect the outcomes, hence assigning simultaneous values using hidden

variable argument results in contradictory terms. Although Mermin derived the above

relation for GHZ states, it is in fact state independent, for detailed demonstration see

appendix section B.5.3.

5.2 Hardy’s Test

In 1992 theoretical physicist Lucien Hardy has introduced an approach to test the va-

lidity of local realistic theories without using inequalities in an article named ‘Quan-

tum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories’

[7]. He explains the main difference between his approach and the GHZ experiment

as his version being “only applies to the 1/16th of the experiments whereas the GHZ

result applies to every experiment” [7]. The physical system used is analogous to a

spin-1/2 one but it is a generalized physical quantity with two eigenvalues. Still his

thinking provides an alternative method to the GHZ and is a relatively straightfor-

ward demonstration using two particles compared to GHZ setup which requires three

particles at least [6].

The original paper in 1992 consists of a setup with an electron and a positron. Using

two sets of beam splitters which leads the particles to different paths where a possi-

bility of intersection and a probability of annihilation is introduced, using the hidden

variable argument of realistic theories he shows a clear contradiction between the re-

sults and the assumption of locality. However in the second paper [90] physical setup

is omitted and a more formal version of the argument is presented in the form where

no physical process, such as the annihilation of electron and the positron, is men-

tioned and the contradiction is presented only by choosing the appropriate constants

for initial states. Also in the second paper [90] this test is applied to spin-1/2. Results

show that the contradiction applies to every entangled state except the maximally en-

tangled one. This point will be highlighted in the discussion part of this work at hand

and a comparison with Bell inequalities will be investigated.
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In the following sections both the derivations of first[7] and the second[90]papers

are going to be presented. An addition by S. Goldstein will be shown[91]. A basic

demonstration for a bipartite spin-half state will be given in section 5.3.1 and for a

tripartite spin-half state in 5.3.2. There are further generalizations in literature such

as the generalization to two spin-s particles in [92], generalization to N spin half par-

ticles in [93] and a generalization attempt to N spin-s particles by [94]. More recent

developments such as a review by Ahoronov “Revisiting Hardy’s Paradox: Coun-

terfactual Statements, Real Measurements, Entanglement and Weak Values” [95], an

implementation using joint weak measurement on a photon pair [96] and an exper-

imental try of this implementation by a Japanese team [97] are also relevant study

subjects for Hardy’s test.

5.2.1 Derivation of Hardy’s Paradox by using e+ e− pair

In this gedanken experiment Hardy proposed using two Mach-Zehnder-type interfer-

ometers MZ±, one for positrons (MZ+) and one for electrons (MZ−). The paths of

these particles are arranged in a manner that is shown in Fig. 5.1 at one point they

may interact at a point P.

Figure 5.1: Hardy’s setup

Outcome of this interaction is given as:

|u+u−〉 → |γ〉 (5.29)
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where |u±〉 corresponds to the states of positron and electron along that path and |γ〉
is the state of the radiation produced on annihilation. It is this interaction that allows

the possibility of obtaining |d+d−〉 final state where both the electron and the positron

arrive at the corresponding detectors D±. Later, during the derivation of Hardy’s sec-

ond paper it will become clear that this setup is only one of the many possible setups

where arranging the constants of given states in such manners where contradictory

results appear if they are accepted as physical realities rather than distributions over

probabilities.

To explicitly show the derivation, consider that an electron and a positron are set in the

point of origin for the paths noted in the above figure 5.1. Given that the initial state

is |s±〉 where |s+〉 represents the initial state of the positron and |s−〉 representing the

initial state of the electron, the first beam splitters (denoted in the Fig. 5.1 as BS1+

and BS1-) act on the state in the following manner:

|s+〉 → 1√
2

(i |u+〉+ |v+〉) and |s−〉 → 1√
2

(i |u−〉+ |v−〉) (5.30)

The operation of BS2+ is given as:

|u+〉 → 1√
2

(|c+〉+ i |d+〉) and |v+〉 → 1√
2

(i |c+〉+ |d+〉) (5.31)

And the operation of BS2− is given as:

|u−〉 → 1√
2

(|c−〉+ i |d−〉) and |v−〉 → 1√
2

(i |c−〉+ |d−〉) (5.32)

Hence by just considering these relations it is easy to argue that in the absence of

BS2±:

|u±〉 → |c±〉 and |v±〉 → |d±〉 (5.33)

For a given initial state of the form |s+s−〉 after passing through BS1± respectively,

the state will evolve to the following form:

|s+s−〉 → 1

2
(i |u+〉+|v+〉)(i |u−〉+|v−〉)→ 1

2
(− |γ〉+i |u+v−〉+i |v+u−〉+|v+v−〉)

(5.34)

Note that this is due to eqn. 5.29 where interaction of e− and e+ at point P leads to

the annihilation of these two particles and cause a radiation which is denoted by |γ〉
as a state.
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In the absence of both BS2+ and BS2− the final state will be:

1

2
(− |γ〉+ i |c+d−〉+ i |d+c−〉+ |d+d−〉) (5.35)

If BS2+ is kept in its place while BS2− is removed, the final state would be:

1

2
√

2
(−
√

2 |γ〉 − |c+c−〉+ 2i |c+d−〉+ i |d+c−〉) (5.36)

Similarly, if BS2− is kept in its place while BS2+ is removed, the final state would

be:
1

2
√

2
(−
√

2 |γ〉 − |c+c−〉+ i |c+d−〉+ 2i |d+c−〉) (5.37)

And finally if both BS2+ and BS2− are kept in their places:

1

4
(−2 |γ〉 − 3 |c+c−〉+ i |c+d−〉+ i |d+c−〉+ |d+d−〉) (5.38)

The argument of realism is introduced at this point by assuming that the state of

the pair of particles is already established prior to the measurement via the hidden

variable λ. Certain sets of arrangements are used in the original paper where the

absence or existence of second beam splitters(BS2±) create different scenarios. These

different situations are denoted in the paper with C±(∞,λ) noting the outcome of C±

detectors where BS2± are absent and C±(0,λ) noting where BS2± are present. Same

goes for D± as well.

The important point here is that since now realism is introduced, outcomes for the

positron and electron are supposed to be independent of each other. For example the

value of D±(0,λ) is to be independent of whether BS2- is in place or not. From eqn.

5.35 the following argument can be made:

C+(∞, λ)C−(∞, λ) = 0 (5.39)

for every experiment since by the arrangement of paths and interaction at point P it is

guaranteed that no |u+u−〉 final state can emerge. Similarly from eqn. 5.36:

D+(∞, λ) = 1 → C−(∞, λ) = 1 (5.40)
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this is due to the term |d+c−〉 where it is the only term that contains |d+〉 that is when

the positron is detected by the detector D+. And from eqn. 5.37:

D−(∞, λ) = 1 → C+(∞, λ) = 1 (5.41)

again this argument is based upon the fact that only |c+d−〉 term contains |d−〉 which

gives out a detection by the detector D−. Finally from eqn. 5.38:

D+(∞, λ)D−(∞, λ) = 1 (5.42)

this holds for 1
16

of the experiments.

Now the contradiction is clear to see. For the cases where eqn. 5.42 is satisfied, eqn.

5.41 and 5.40 should also be satisfied. Hence 5.40 and 5.41 together gives that:

C+(∞, λ)C−(∞, λ) = 1 (5.43)

This statement is the opposite with the one made in eqn. 5.39, hence providing a con-

tradiction between local realism and quantum mechanics. The point where locality

comes into importance is that if the hidden variable λ were not a local one than state-

ments like D+(0,λ) or C−(∞,λ) would be impossible to claim. Rather than that, only

joint measurement results should have been claimed, preventing any contradiction to

arise. However the one at hand is not an all out contradiction since 5.43 only occurs

for 1
16

th of experiments while 5.39 is valid for all of the experiments. Hardy notes

that this is the main dissimilarity between his approach and GHZ result, since GHZ

applies to every experiment.[7]

5.2.2 Derivation of Hardy’s Paradox via two leveled generic states

The second paper of Hardy on this matter is named “Nonlocality for Two Particles

without Inequalities for Almost All Entangled States” [90]. He states that the purpose

of this paper was to show that the proof of non-locality he introduced can be run for

any entangled state except the maximally entangled ones, this is in comparison to his

previous derivation where a particular physical setup and arrangement of states were

required.
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In his derivation Hardy devises the generic state in a certain manner so that the out-

come of |u1u2〉 vanishes. This was known to be arbitrary and any other state can be

set to vanish by choosing different constants. This has been shown by S. Goldstein

while he generalized this approach of Hardy to suit a more complete formal structure

[91].

As a start, choosing appropriate basis states |±i〉 for particle i with i = 1,2 is required.

These states do not correspond to any particular physical property, they could be

associated to any appropriate quantity with respect to the experimental setup at hand.

An entangled state with two particles can be written in the following form by Schmidt

decomposition:

|Ψ〉 = α |++〉 − β |−−〉 (5.44)

where α and β are two real constants obeying normalization relation and |++〉 and

|−−〉 corresponding to the states where both particles are in |+〉 state and both parti-

cles are in |−〉 state respectively. As mentioned earlier the minus sign in between is

chosen for later convenience. Now introduce another set of basis states, |ui〉 and |vi〉
which relates to the original basis vectors in the following manner:

|+〉i = c1 |ui〉+ ic2
∗ |vi〉 (5.45)

|−〉i = ic2 |ui〉+ c1
∗ |vi〉 (5.46)

see that 〈+|−〉i = ic1
∗c2 − ic2c1

∗ = 0 so they hold. Also for the inverse relations:

|ui〉 = c1
∗ |+〉i − ic2

∗ |−〉i (5.47)

|vi〉 = −ic2 |+〉i + c1 |−〉i (5.48)

again c1 and c2 satisfies the normalization relation and the new states are orthogonal

to each other due to the orthogonality of the old basis states. Substituting eqn.s 5.45

and 5.46 into eqn. 5.44 gives:

|Ψ〉 = (αc1
2 + βc2

2) |u1u2〉+ i(αc2
∗c1 − βc2c1

∗) |u1v2〉+

i(αc2
∗c1 − βc2c1

∗) |v1u2〉 − [α(c2
∗)2 + β(c1

∗)2] |v1v2〉
(5.49)
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Call αc1
2 + βc2

2 = 0 thus giving:

c2
2

α
= −c1

2

β
= 0

or equivalently taking the positive square roots and rearranging:

c2 = k
√
α and c1 = ik

√
β (5.50)

See that the negative square root solution can be obtained by just putting
√
β → −

√
β

at any stage. The constant k here can be assumed to be real by choosing the phases of

c1 and c2 appropriately. Hence using the normalization property of c1 and c2 together

with eqn. 5.50 the following k can be attributed:

k2 =
1

|α|+ |β|
(5.51)

Substituting eqn. 5.50 into 5.49 and using 5.51 together with ignoring overall phase

will give that:

|Ψ〉 =
√
αβ |u1v2〉+

√
αβ |v1u2〉+ (|α| − |β|) |v1v2〉 (5.52)

which can be rewritten in the following form

|Ψ〉 =

( √
αβ

|α| − |β|
|u1〉+

√
|α| − |β| |v1〉

)

⊗

( √
αβ

|α| − |β|
|u2〉+

√
|α| − |β| |v2〉

)
− αβ

|α| − |β|
|u1u2〉

(5.53)

Now a third set of basis vectors are to be introduced in order to reach the desired

point:

|wi〉 = c3 |ui〉+ c4 |vi〉 (5.54)

|xi〉 = −c4
∗ |ui〉+ c3

∗ |vi〉 (5.55)

with the following inverse relations

|ui〉 = c3
∗ |wi〉 − c4 |xi〉 (5.56)
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|vi〉 = c4
∗ |wi〉+ c3 |xi〉 (5.57)

where

c3 =

√
αβ√

1− |αβ|
and c4 =

|α| − |β|√
1− |αβ|

Normalization of c3 and c4 follows from the normalization of α and β. Using 5.54 in

5.53:

|Ψ〉 = N(|w1w2〉 − c3
2 |u1u2〉) (5.58)

with

N =
1− |αβ|
|α| − |β|

is obtained. Hence using eqn.s 5.54 and 5.56 in 5.58 the |Ψ〉 state of the two particles

can be written in the following four equivalent forms:

|Ψ〉 = N(c3c4 |u1v2〉+ c3c4 |v1u2〉+ c4
2 |v1v2〉) (5.59)

|Ψ〉 = N(|w1〉 ⊗ (c3 |u2〉+ c4 |v2〉)− c3
2(c3

∗ |w1〉 − c4 |x1〉)⊗ |u2〉) (5.60)

|Ψ〉 = N((c3 |u1〉+ c4 |v1〉)⊗ |w2〉 − c3
2 |u2〉 ⊗ (c3

∗ |w2〉 − c4 |x2〉)) (5.61)

|Ψ〉 = N(|w1w2〉 − c3
2(c3

∗ |w1〉 − c4 |x1〉)⊗ (c3
∗ |w2〉 − c4 |x2〉)) (5.62)

Now consider the observables Ui and Xi with the corresponding operators,

Ui = |ui〉 〈ui| and Xi = |xi〉 〈xi|

These physical quantities each can take values 0 and 1 with respect to the eigenvalues

of corresponding operators. Also see that these operators in general do not commute

so it is not possible to measure both of them on the same particle at the same time.

By using 5.59 it can shown that when U1 and U2 are measured

U1U2 = 0 (5.63)
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is obtained due to the absence of |u1u2〉 term in the state. Similar to the first deriva-

tions logic, from 5.60 it is shown that

if X1 = 1 then U2 = 1 (5.64)

this is due to only the term |x1u2〉 containing |x1〉. Continuing the same line of

argument, it is obtained from 5.61 that

if X2 = 1 then U1 = 1 (5.65)

Finally from 5.62 if X1 and X2 are measured respectively for the first and second

particles then there is a chance that X1 = 1 and X2 = 1 are obtained with |Nc3
2c4

2|2

probability.

X1X2 = 1 (5.66)

Now again introducing the notion of realism and assuming that there exist some hid-

den variables λ which describe the state of each individual pair of particles a contra-

diction between local realism and quantum mechanics can be shown. Again similarly

to the first derivation the argument of locality comes into existence due to the discrim-

ination of U1, X1 independent of U2, X2 and so on. This separation of particles in

the local realist theories, which is the underlying idea behind the assumption that sys-

tems can be investigated locally without considering any effect coming from outside

of their local area which is exactly the assumption that is shown to be contradicting

with quantum mechanical predictions.

To make it simpler one can always translate this into a logical chain in the following

form,

X1 = 1→ U2 = 1→ U1 = 0 and X1 = 1→ X2 = 1→ U1 = 1 (5.67)

which gives that for the same system with the same initial condition (X1 = 1) one

can argue that by using hidden variables U1 = 1 and U1 = 0 are both attainable at the

same time.

S. Goldstein’s one page long paper named “Nonlocality without Inequalities for Al-

most All Entangled States for Two Particles” came just a few months later and got
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published in 1994. His argument was to generalize the Hardy’s results in the sense

that it allows one of the four observables at hand to become almost arbitrary [91].

Let |ui〉 and |vi〉 be bases for particles i where i = 1, 2, and a state of the form

|Ψ〉 = a |v1v2〉+ b |u1v2〉+ c |v1u2〉

with non-zero a, b, c. Important point here is that the term |u1u2〉 is missing which

basically corresponds to the annihilation process defined in the first paper by Hardy.

Similarly with the previous papers the following operators are defined

Ui = |ui〉 〈ui| and Wi = |wi〉 〈wi|

And (i) U1U2 = 0 together with (ii) U1 = 0 indicating W2 = 1 and (iii) U2 = 0

implying W1 = 1 are established for the following |wi〉’s

|w1〉 =
a |v1〉+ b |u1〉√
|a|2 + |b|2

and |w2〉 =
a |v2〉+ c |u2〉√
|a|2 + |c|2

This gives (iv) W1 = W2 = 0 with non-vanishing probability since a, b, c are not

zero. It can be seen that when local realism is assumed (i) – (iii) gives W1W2 = 1 but

(iv) W1W2 = 0 occurs as well hence a contradiction.

Goldstein furthers his argument to demonstrate that not just for spin-1/2 bases but for

any basis |u1〉, |v1〉 for the first particle the general state |Ψ〉 assumes the form

|Ψ〉 = |u1〉 ⊗ |f 2
u〉+ |v1〉 ⊗ |f 2

v〉 (5.68)

in which, for almost all states |Ψ〉, |f 2
u〉 6= 0 and |f 2

v〉 is neither proportional to nor

orthogonal to |f 2
u〉, that is |f 2

v〉 = a |f 2
u〉+|f 2

u⊥〉where a 6= 0 and 〈f 2
u|f 2

u⊥〉 = 0.

The importance of this statement is that this construction fails when |f 2
u〉 is propor-

tional to |f 2
v〉 which means that |Ψ〉 is a product state. Also Goldstein notes that

〈f 2
u|f 2

u〉 = 〈f 2
v|f 2

v〉 indicates that |Ψ〉 is maximally entangled.

So that for particles associated with higher than two dimensions in Hilbert space the

following decomposition can be applied

|Ψ〉 = Σci |e1
i〉 ⊗ |f 2

i〉

where e forms partially a basis for the first particles and same applies to f for the

second particle. So that for any entangled state that is not maximally entangled ci 6= cj

hence the previous argument following the eqn. 5.68 can be applied.
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Goldstein concludes that this shows generally a “proof of nonlocality” can be reached

from every entangled state which is not maximally entangled. He stresses that the

importance of this approach mainly relies on it making no reference to probability or

probabilistic inequalities.

5.3 Applying Hardy’s Test

In this section of the study some key points of Hardy’s test will be investigated

through several applications. Firstly, a bipartite spin-1/2 system is going to be stud-

ied to show an easy demonstration of Hardy’s test by using the arguments of logical

realism similar to Cabello’s case [98]. Secondly, the same line of argument will be

followed with the generic tripartite spin-1/2 state case. The main point of this sec-

ond exercise will be to show that for tripartite states single logical chain is enough to

demonstrate Hardy’s desired result.

5.3.1 Hardy’s Test for two spin-half particles

Consider a generic separable state of the following form

|Ψ〉 = c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉

with the general normalization relation |c1|2 + |c2|2 + |c3|2 + |c4|2 = 1 and |0〉 repre-

senting spin-up in the ẑ direction and |1〉 representing spin-down in ẑ direction.

Now take c1 = 0 to make this an entangled state with the following properties

|Ψ〉 = c2 |01〉+ c3 |10〉+ c4 |11〉 (5.69)

where

|c2|2 + |c3|2 + |c4|2 = 1

And define two operations of the form

Ûi = |Ui〉 〈Ui| D̂i = |Di〉 〈Di|

Operation Ûi deals with the outcome of i’th particles σz measurement and provides

the results 0 or 1 depending on whether the i’th particle is spin-up in ẑ direction, in
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which case it gives 1, or whether it’s not, in which case it gives 0. Similarly D̂i deals

with the outcomes of i’th particles σx measurement and so on.

To satisfy Hardy’s test there are four basic requirements.

U1U2 = 0 (5.70)

D1 = 1→ U2 = 1 (5.71)

D2 = 1→ U1 = 1 (5.72)

D1D2 = 1 with prob. 6= 0 (5.73)

To satisfy 5.70 the eqn. 5.69 is enough. Noting that |+〉, |−〉 represents spin-up/down

in x̂, for 5.71 a state of the following manner should be constructed from 5.69 by

changing the basis and choosing appropriate constants;

|Ψ〉 = (...) |+〉1 ⊗ |0〉2 + (...) |−〉1 ⊗ |...〉2 (5.74)

where the contents of (...) parts are irrelevant for the requirement at hand. A state of

this form can easily be constructed like expanding the eigenkets of the first particle in

|+〉, |−〉 basis ;

|Ψ〉 = (
|+〉1 + |−〉1√

2
)⊗ c2 |1〉2 + (

|+〉1 − |−〉1√
2

)⊗ c3 |0〉2 + (
|+〉1 − |−〉1√

2
)⊗ c4 |1〉2

this is

|ψ〉 =
1√
2

[c2(|+1〉+ |−1〉) + c3(|+0〉 − |−0〉) + c4(|+1〉 − |−1〉)]

For this to resemble eqn. 5.74 the condition c2 = −c4 is a necessary one. After

choosing them in that manner it becomes

|Ψ〉 =
1√
2

[c3(|+0〉 − |−0〉)− 2c4 |−1〉] (5.75)

It is clear that this equation satisfies the requirement 5.71. And for 5.72 to hold a state

of the following kind is needed

|Ψ〉 = (...) |0〉1 ⊗ |+〉2 + (...) |...〉1 ⊗ |−〉2 (5.76)
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Hence expanding the state of the second particle in |+〉 , |−〉 basis while keeping the

first particle in |0〉 , |1〉 basis should be done. That gives the following state

|ψ〉 =
1√
2

[−c4 |0〉1⊗(|+〉2−|−〉2)+c3 |1〉1⊗(|+〉2 + |−〉2)+c4 |1〉1⊗(|+〉2−|−〉2)]

after simplifying this eqn.

|Ψ〉 =
1√
2

[c4(|0−〉 − |0+〉+ |1+〉 − |1−〉) + c3(|1+〉+ |1−〉)]

For this eqn. to satisfy the relation 5.75, c3 = −c4 is a necessary condition. By

|c2|2 + |c3|2 + |c4|2 = 1 relation and using necessary conditions the constants of the

state can be written as

c1 = 0 , c2 =
1√
3

, c3 =
1√
3

, c4 = − 1√
3

Hence the state is

|Ψ〉 =
|01〉+ |10〉 − |11〉√

3

And it finally becomes

|Ψ〉 =
|0+〉+ 2 |1−〉 − |0−〉√

6

This equation satisfies the relation 5.72. Finally expanding both particles in |0〉 , |1〉
will give 5.73. Following the steps below

|Ψ〉 =
1

2
√

3
[(|+〉1 + |−〉1)⊗ (|+〉2 − |−〉2) + (|+〉1 − |−〉1)⊗ (|+〉2 + |−〉2)

−(|+〉1 − |−〉1)⊗ (|+〉2 − |−〉2)]

(5.77)

after further simplifications

|Ψ〉 =
1

2
√

3
[|++〉+ |−+〉 − |−−〉 − |+−〉+ |++〉

+ |+−〉 − |−+〉 − |−−〉 − |++〉+ |+−〉+ |−+〉 − |−−〉]
(5.78)

This will give the following eqn. which satisfies 5.73 in the 1
12

th of the experiments.

|Ψ〉 =
|++〉 − 3 |−−〉+ |+−〉+ |−+〉

2
√

3
(5.79)

The argument of logical realism allows one to propose that if D1 = 1→ U2 = 1 and

D2 = 1→ U1 = 1 holds for all of the experiments, together with a certain probability

of obtaining D1D2 = 1 it can be deduced that U1U2 = 1 is applicable for some of the

cases. However it is known that U1U2 = 0 for all of the cases, hence a contradiction

arises.
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5.3.2 Hardy’s Test for three spin-half particles

Similar to the two spin-half case above consider a generic tripartite spin-half state of

the following form

|Ψ〉 = c1 |000〉+c2 |001〉+c3 |010〉+c4 |011〉+c5 |100〉+c6 |101〉+c7 |110〉+c8 |111〉

Taking c1 to zero will give out an entangled state which is of the type that satisfies

Hardy’s test.

|Ψ〉 = c2 |001〉+c3 |010〉+c4 |011〉+c5 |100〉+c6 |101〉+c7 |110〉+c8 |111〉 (5.80)

Now consider the logical chain that is required to show a contradiction in the follow-

ing manner

|00〉 12 → |1〉3 → |+〉2 → |1〉1 (5.81)

The first two steps of this chain, |00〉 12 → |1〉3 and |1〉3 → |+〉2, have probability

of 1 while the last step |+〉2 → |1〉1 has a probability of occurrence that is greater

than zero but less than one. To demonstrate these steps two additional forms of 5.80

is required and their general forms can be written in the following manners. For the

|1〉3 → |+〉2 step

|Ψ〉 = (...)1 ⊗ |+〉2 ⊗ |1〉3 + (...)1 ⊗ (...)2 ⊗ |0〉3 (5.82)

and for the |+〉2 → |1〉1 step

|Ψ〉 = α |1〉1 ⊗ |+〉2 ⊗ |...〉3 + (...)1 ⊗ |−〉2 ⊗ |...〉3 (5.83)

with non-vanishing α are required. So that starting from eqn. 5.80 and expanding the

second particles state in the |+〉, |−〉 basis;

|Ψ〉 =
c2[|0〉 1 ⊗ (|+〉2 + |−〉2)⊗ |1〉3]√

2
+
c3[|0〉 1 ⊗ (|+〉2 − |−〉2)⊗ |0〉3]√

2

+
c4[|0〉 1 ⊗ (|+〉2 − |−〉2)⊗ |1〉3]√

2
+
c5[|1〉 1 ⊗ (|+〉2 + |−〉2)⊗ |0〉3]√

2

+
c6[|1〉 1 ⊗ (|+〉2 + |−〉2)⊗ |1〉3]√

2
+
c7[|1〉 1 ⊗ (|+〉2 − |−〉2)⊗ |0〉3]√

2

+
c8[|1〉 1 ⊗ (|+〉2 − |−〉2)⊗ |1〉3]√

2

(5.84)
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after tidying this up

|Ψ〉 =
c2√

2
[|0 + 1〉+ |0− 1〉] +

c3√
2

[|0 + 0〉 − |0− 0〉] +
c4√

2
[|0 + 1〉 − |0− 1〉]

+
c5√

2
[|1 + 0〉+ |1− 0〉] +

c6√
2

[|1 + 1〉+ |1− 1〉] +
c7√

2
[|1 + 0〉 − |1− 0〉]

+
c8√

2
[|1 + 1〉 − |1− 1〉]

(5.85)

For this eqn. to resemble 5.82 the terms containing |−〉 2 should cancel out each other

and terms containing |+〉 2 should remain intact. That is obtained through enforcing

the necessary conditions

c2 = c4 , c6 = c8 and c2 6= −c6

This new form of the state is as follows

|Ψ〉 = [
2c2 |0+〉 12√

2
+

2c6 |1+〉 12√
2

]⊗ |1〉3 + (...)12 ⊗ |0〉3 (5.86)

Hence |1〉3 → |+〉2 can clearly be seen from this expression. And following the

same line of logic to reach 5.83 the second part of the above equation can be written

explicitly as

|Ψ〉 = [
c3√

2
(|0+〉 12 − |0−〉 12) +

c5√
2

(|1+〉 12 + |1−〉 12)

+
c7√

2
(|1+〉 12 − |1−〉 12)]⊗ |0〉 3 + (...)12 ⊗ |1〉 3

(5.87)

Hence with the probability |α|2 = |c7|2+|c5|2
2

+ 2|c6|2 the step |+〉2 → |1〉1 holds. So

in summary

|00〉 12 → (...)→ |1〉1

can occur with non-vanishing probability. Meaning that constructing a local realist

structure yields a contradiction since measurement results on distant entangled parti-

cles affect the measurement outcomes of other particles.

An important point to this derivation is that even when c6 = c8 = 0, which leaves no

|1〉1 ⊗ (..)2 ⊗ |1〉3 terms in the initial state, |α|2 is non-vanishing for c7 6= −c5 and

c7, c5 6= 0. Under these conditions a similar version of the bipartite can be written.

Assume U1
1 = 1 corresponds to the first particle having spin |1〉1 and U1

3 = 1

corresponds to the third particle having spin |1〉3. So that when c6 = c8 = 0 it can
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be argued that U1
3U1

1 = 1 is an impossibility since there is no corresponding |1〉1 ⊗
(..)2⊗|1〉3 term in the initial state. Now in the same line of argument assumeD+

2 = 1

corresponds to the second particle having spin |+〉2. With the right arrangement it has

been shown that in eqn. 5.86 U1
3D+

2 = 1 always hold. However it has also been

shown through eqn. 5.87 that U1
1D+

2 = 1 holds with non-vanishing probability.

Now assuming a hidden variable theory where these outcomes note real, definite,

deterministic physical quantities with the help of a set of variables such as λ there

will be a contradiction of the form

U1
3(λ)U1

1(λ) 6= 1

U1
3(λ)D+

2(λ) = 1

U1
1(λ)D+

2(λ) = 1

The above equation shows that Hardy’s test in a single logical chain can be reached

in tripartite spin-half states. That is |u〉i → (...) → |u⊥〉i with a probability for

i = 1, 2, 3 and |u〉 corresponds to a spin state, can be shown, unless the state at hand is

maximally entangled. However for a bipartite spin-half system |u〉i → (...) → |u⊥〉i
with a probability, where i = 1, 2 is inapplicable.
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CHAPTER 6

DISCUSSIONS

In the previous chapters of this study theorems, inequalities and demonstrations on

some of the essential problems in foundations of quantum mechanics has been pre-

sented. This chapter’s focus will be on the interrelation of those presented sub-

jects and their relevance to the essential problems such as locality, contextuality

and realism. In those lines, some basic groundwork by Bell[34], Leggett[99] and

Wiseman[32] is going to be introduced to denote the historical development of these

ideas. Furthermore into this chapter each inequality will be briefly revisited, their sig-

nificance, important qualities and possible practical uses are going to be discussed.

6.1 Notes on Physical Reality

The problem of physical reality predates the formal branch of physics, which is gen-

erally attributed to the era following Copernican Revolution and formation of Newto-

nian mechanics. There are countless pages from even the early days of writing itself

which address to this, still open, problem of reality. However, in the domain of for-

mal physics the problem of reality, or more generally referred to as realism, is taken

at hand from a phenomenological perspective rather than an ontological one. In this

respect, realism in physics generally considers questions such as whether a hidden

variable theory violating Lorentz invariance can hold rather than questions like ‘what

is an object?’.

In his 1981 dated paper "Bertlmann’s socks and the nature of reality"[34] Bell, after

discussing the EPR problem and locality, stressed upon four possible positions that
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might be taken on the issue of ‘nature of reality’, although he admits there might be

other possibilities.

First of all, he consider Einstein’s argument with the elements of reality and the cri-

terion of reality, that is reinforcing the wavefunction of QM with hidden variables.

Through Bell inequalities and Bell’s theorem this possibility seems not a suitable

approach to be taken.

Secondly, he argue another hidden variable case but in which choosing parameters a

and b of distant locations as free variables are forbidden. For this case the free will of

experimenter or the chance of true randomness is non-existent.

Thirdly, accepting non-locality into the framework and faster than light causal in-

fluences would solve the problem at hand. An unobservable ‘aether’-like solution

would be the cheapest one, Bell states, however the role of Lorentz invariance in such

a theory would be quite problematic.

Finally, Bell argues that Bohr’s stance was that there is no reality below a ‘macro-

scopic level’ and what the theory does is only to depict statements of prediction, it

does not directly represent a coherent - sensible underlying structure of reality.

These stances of course should be taken with respect to the EPR problem and local-

ity. In Bell’s article there is no explicit mention of contextuality, however it can be

inferred from his example with pairing socks according to their colours or lengths but

not both[34].

Leggett, in his summer courses, addresses to the same problem within the view of

physical theories. He classifies certain approaches with respect to their stances to or

against realism at different levels. Dividing the physical reality into two of the forms

micro- and macro- he asserts the notion (which was attributed to Bohr just above[34])

that such a divide is existent in the physics community[99].

A table of correspondence, similar to the one below, is given by Leggett himself[99].

It denotes the stance point of some mainstream approaches taken by physicists, ac-

quired knowingly or unknowingly along their careers. It should be noted that ap-

proaches on this table does not cover all the different stances along the community.
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Table 6.1: Leggett’s table of Theory-Realism correspondence

Approach Micro-realism Macro-realism

Everett-Wheeler ‘Many-Worlds’, mentalistic, yes yes
Schulman’s ‘Calvinistic’ interpretation
Copenhagen interpretation, no no
Quantum-Information theoretic approach
‘orthodox’ decoherence view yes no
(neo-)Bohmian yes ?

Leggett uses mentalistic approach to summarize all the outlooks which argues that

nothing actually happens until the human consciousness is involved. Although not

being a widespread formal assumption attributed to a certain theory, this is a popular

view amongst public and it effects the arguments on the foundations of quantum me-

chanics even in physics community. Effects of these views can also be seen in efforts

like past or delayed choice experiments[100].

He uses Calvinistic in the sense that the idea of free will, where the experimenters

choice of measurement parameters is free or not-constrained, is not accepted in some

interpretations. It is argued that for a final given state of the universe just by applying

the Schrödinger’s equation backwards an initial state of the universe, although being

horribly entangled, can be found[99].

The approach Leggett calls as neo-Bohmian mainly consist of updated versions of

Bohmian mechanics or de Broglie-Bohm pilot wave theory. The stance of this the-

ory with respect to macro-realism is basically unclear since the formation of pilot

wave theory deals with the problem of locality by creating a non-local hidden vari-

able(NLHV) theory. It is also a deterministic theory hence there is no measurement

problem in the formal level, however the wave function collapse is a phenomeno-

logical outcome of the theory. For further remarks on the subject Arthur Fine and

Sheldon Goldstein’s book titled "Bohmian Mechanics and Quantum Theory: An

Appraisal"[101] can be consulted.

In Wiseman’s 2014 dated article[32] he generalizes the views of physicists with re-

spect to Bell’s theorem into two camps, operationalists and realists. He argues that
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the quantum information theoretic approach can be understood the stance of opera-

tionalist camp. The dual definition of Bell’s theorem in which it generates an either-or

outcome with hidden variables and locality, and that hidden variables (or realism as it

is generally referred to as) should be ruled out since locality should hold. However, in

addition to this mainstream stance of this camp, Wiseman states that there are other

stances and gives Quantum Bayesianism (or QBism as they call themselves) as an

example.

The QBist interpretation differs from the Copenhagen interpretation in pursuit of

achieving a more Bohr-like interpretation of quantum mechanics. QBism takes, ex-

plicitly, the subjective view of probability, which is similar to the ones of statisticians

and economists approaches [102]. In this sense assigning probability is taken as a

subjective action hence disallowing even the probability of constructing a joint proba-

bility distribution to space-like separated events. This, they claim, solves the problem

of non-locality in quantum mechanics[102]. Although an operationalist approach,

QBism contains strong metaphysical claims such as "Inductive inference is nothing

more than a broadly shared personal judgment based on habit."[102], which can be

taken as a clear sign that realists are not the only ones having dealings outside the

domain of physics.

Realist camp identified by Wiseman also has mainstream ideas and extremes. Wise-

man places Bell into this group through two of his convictions, first ‘that correlations

need to be explained’ and second ‘that nature should have a unified description, in

which antrhopocentric notions such as detector settings should play no fundamental

role’[32]. Bell himself, on [103] argues that accepting ‘no signaling faster than light’

as the fundamental causal structure of theoretical physics is hard for him to accept.

He claims that notions such as ‘no signaling...’ are vague and they shouldn’t be. Also,

in that same article Bell explains (in section 10 titled ‘Quantum mechanics cannot be

embedded in a locally causal theory’), the formal violation of local causality by QM,

however he adds that this is only in the formal sense, a spooky-action-at-a-distance

and not a ‘real’ one [103]. Still Bell and many other physicists, following the lead

of Einstein, align themselves in the side that require their physical theory to be con-

sistent both in formal and ‘real’ sense. Problems such as spooky-action-at-a-distance

should be addressed, not ignored.
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As an extreme point in the realist camp the demand for an objective realist theory

can be given[104]. This kind of a demand, mainly coming from philosophers of

physics, requires the formation of new, clearly defined, applicable notions (similar to

Bell’s wish[103]) on which the theory of physical reality can be constructed. This

new objectively defined reality may be contextual, non-local and so on, but should be

complete. In summary, they wish to follow Einstein’s lead but not his understanding

of what physical reality is.

6.2 Local Causality

As stated before, Bell uses the term local causality (LC)[16] to differentiate what

he identifies from the EPR argument from what is commonly understood when the

word locality is used. Others (such as Mermin) consistently calls the same concept

as Einstein locality. Many papers dedicated to explaining what is local causality or

Einstein locality (separately identifying the same concept with two different names)

can be found in http://arxiv.org/ and other sources.

A brief and superfluous description of the differences between the common notion

of locality and LC can be explained by the help of figure 6.1. First of all, locality

in the most general sense corresponds to that events are local. Directions chosen on

a measurement device for a particle A should not play any role on distribution of

particle B’s experimental outcomes and vice versa.

Figure 6.1: 2-D representation of light cones of two events

Now, consider the figure 6.1 above with regions R1, R2, R3 and R4 denoted in the

figure as 1, 2, 3, 4 and events A-B. Locality argument would require that outcomes of

experiments done in space-like separated places, corresponding to events A and B,

cannot depend on each other. This is a very general and intuitive approach. However

for LC the issue at hand is more definite and precise.
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Through Einstein’s definition of space-time continuum, for region R2 neither the

event A nor B can play any role as a parameter effecting the probability distribu-

tions of event occurrences in that region. Similarly, for region R1 only the event A

and for region R3 only the event B can play any role, assuming no other events took

place. Only events occurring in region R4 can depend on the occurred events A and

B, for the other regions the corresponding events has not yet occurred in their frame

hence cannot have any effect on those regions.

Figure 6.2: 2-D representation of light cones of three events

Again now consider the above figure 6.2. Assuming a previous event O, where both

A and B could be effected from can be introduced. For the EPR problem a hidden

variable approach would assume such an event O, usually the moment of interaction

between two particles. However, if event O is an event where an entangled pair of

particles are generated and the events A and B correspond to two space-like separated

experiments done on these particles respectively, a situation arises. Bell has demon-

strated that the outcome of event A does depend on the event B, and outcome of event

B does depend on the event A. Through this demonstration Bell has shown that any

hidden variable theory that reproduces the predictions of quantum mechanics should

allow faster than light communication, and if not should satisfy an inequality, which

quantum mechanics violates.

6.3 Demonstrations with and without Inequalities

In this study many demonstrations with or without inequalities have been established

and investigated in their own respect. Through this section they will be revisited
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briefly and connections between them, together with a more general view of the entire

subject, are going to be discussed.

Bell and MABK Inequalities

Bell’s theorem and the initial Bell inequality eqn. 6.1 forms a groundwork on which

rest of the literature has built upon.

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) (6.1)

Two more commonly known Bell inequalities are the one that is constructed through

Fine’s theorem, which is called as the BCHS inequality in this study (eqn. 6.2) and

the CHSH inequality 6.3.

−1 ≤ P (AB) + P (AB′) + P (A′B′)− P (A′B)− P (A)− P (B′) ≤ 0 (6.2)

−2 ≤ P (AB) + P (A′B′) + P (A′B)− P (AB′) ≤ 2 (6.3)

Violation of these kind of inequalities have been established with experiments starting

with Aspect experiments in 1981 [37].

MABK inequalities correspond to the violation of Bell-like inequalities in n-partite

systems. Mermin[40] has demonstrated that for increased particle number n, the in-

equality (which reduces to CHSH inequality for bipartite systems) is violated with

exponentially increasing values.

Legget-Garg Inequality

A general form of the LGIs can be written as eqn. 6.4 below.

−1 ≤ 〈Q1Q2〉+ 〈Q2Q3〉+ 〈Q1Q3〉 ≤ 3 (6.4)

Leggett-Garg inequality does in fact encompasses a wider discussion than a ruling

out the possibility of constructing a certain class of hidden variable theories. As-

sumptions used to construct this inequality, macrorealism(MR), non-invasive mea-

surement(NIM) and induction are all important points of discussion in the contem-
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porary arguments on the nature of physical reality. For example, ideas such as no-

signaling in time[54] has been proposed, which highlights that not even statements

such as ‘future events cannot influence past events’ are not unanimously accepted

among physics community [105].

KCBS Inequality

The KCBS inequality is formulated to experimentally demonstrate that assigning si-

multaneous values to outcomes of non-realized experiments yield contradictory re-

sults, which is the argument of Kochen-Specker theorem. It assumes the form in

below eq. 6.5, called as the pentagram inequality by the authors since on a geometri-

cal surface it creates a pentagram like five sharp edged object.

〈S`12〉Ψ + 〈S`22〉Ψ + 〈S`32〉Ψ + 〈S`42〉Ψ + 〈S`52〉Ψ ≥ 3 (6.5)

This inequality not only just reduces the number of involved spin projection operators

for state dependent contextuality tests to 5 observables, but also authors also argue

that there can be no other tests for three dimensional quantum systems involving less

than 5 observables. And that other tests involving 5 observables for such systems can

be reduced to the inequality given above.

GHZ experiment

"Going Beyond Bell’s Theorem"[6] marks an important point not just due to the ad-

vancement of theory but also for attracting attention to the GHZ state. Using a partic-

ular state to demonstrate a contradiction, without applying the method of constructing

inequalities, has played an important role for the following literature of the era. Fig-

ures such as Peres [75], Mermin [74], Cabello [76] and many others applied this

approach to Kochen-Specker theorem, and other approaches like Hardy’s [7, 90] took

inspiration from GHZ.

Other than its inspirational and instructive purposes GHZ approach also established

a clear method where a single experiment can demonstrate the falsification of a cer-

tain class of hidden-variable theories, where in Bell’s approach the contradiction was
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reached through statistical analysis. It has been shown later that, GHZ state actually

goes beyond Bell’s theorem also in the sense it gives consistent contradictions with

the use of Kochen-Specker theorem as well [74].

Hardy’s Test

Hardy’s test is a particularly interesting example in the entirety of these demonstra-

tions with and without inequalities. In the first article [7], the physical setup proposed

by Hardy and the dependence of the final state to the existence or absence of the beam

splitters is a direct use of locality argument. However, the second demonstration of

Hardy months later [90] uses almost exactly the same mathematics and arguments,

but without a physical setup, which leads to a contradiction that does not require the

use of locality argument anywhere. On the contrary, the second and more generalized

version of Hardy’s test is actually more consistent and applicable to Kochen-Specker

theorem, and direct correspondence between them can easily be shown [76].

Following the above line of argument, it can be argued that approaches like Hardy’s

test cannot be located solely under either Bell’s theorem or Kochen-Specker theorem.

The more general use of Bell-Kochen-Specker(BKS) theorem has much use in this

case, which can be taken as an umbrella term for approaches that use contradictions

to discard certain classes of hidden-variable theories. Hardy’s test demonstrates a

contradiction between hidden-variable theories and predictions of quantum mechan-

ics, and to demonstrate this contradiction one can use either the locality argument or

contextuality, both will suffice for the purpose of demonstrating this contradiction.

Unification of Theorems and Inequalities

Before finishing up the discussions on this study, it would only be appropriate to men-

tion the efforts of unifying these theorems and inequalities. There are inequalities

such as BCHS, CHSH and MABK that uses specifically Bell’s theorem, space-like

separated regions, local causality and local hidden variable theory. There are demon-

strations of Peres, Mermin and the KCBS inequality that exclusively uses Kochen-

Specker theorem, impossibility of assigning simultaneous values to the outcomes
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of non-realized experiments and contextuality. And there are those like GHZ and

Hardy’s test that can be constructed using both arguments. Finally, there are the likes

of Leggett-Garg inequalities, which deals with the same problem (problem of hidden

variables) however cannot be simply located under neither Bell’s nor Kochen-Specker

theorems.

Using a generalized term like Bell-Kochen-Specker theorem does seem to work in an

informal level however it does not produce an actual statement. The EPR problem

uses locality very strongly and it is understandable to argue that what EPR problem

proposes is replacing quantum mechanics (or generalizing it) to a local hidden vari-

able theory. However, Kochen and Specker also addresses to the EPR problem while

introducing their theorem and locality does not play any role there. Furthermore, in

assumptions that lead to the construction of LGIs where time-like separated regions

are of the essence, the EPR problem still plays an important role although it has no

argument concerning that type of regions. Hence just using the EPR problem or Bell’s

original article or Kochen-Specker’s won’t address the issue in its totality.

Eventhough there have been difficulties in establishing clear links between these

ideas in the past, lately an accelerated effort can be seen. Approaches such as Mer-

min’s ‘Unified form’ of no hidden variable theorems[74] left its place to some con-

cepts such as Gleason’s no-disturbance property[106] and monogamy relations be-

tween inequalities[107, 108] which gives more solid mathematical ground to built

upon. In his 2012 dated article Cabello [78] discusses how noncontextual hidden

variable(NCHV) theories and local hidden variable(LHV) theories using CHSH and

KCBS inequalities can be generalized to bounds set by using only no-signalling and

exclusivity (which denotes that two events are exclusive if they cannot be simultane-

ously true).
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CHAPTER 7

CONCLUSION

In this study, the outlooks on the EPR problem and entailing hidden variable prob-

lems are investigated through formulations with respect to Bell’s, Kochen-Specker

and generalizations of these theorems. Several methods with and without inequalities

established, their relevance to the problems at hand and to each other studied. Among

these methods CHSH, MABK, LGI and KCBS inequalities are highlighted especially

in their roles as archetypes for their relevant subjects. In addition to those, GHZ ex-

periment and Hardy’s test has been studied to demonstrate the without inequality

approaches on the problems at hand.

A review of historical development of the problems starting from the EPR article, de-

veloping through Bohr-Einstein debates and general discussions amongst the scholars

of the relevant era is taken as the focus of chapter 2. Especially the formulation of

de Broglie - Bohm theory as an example to the possibility of non-local hidden vari-

able theories plays an important role in the historical process of these problems. The

concepts derived from this theory has still relevance to the contemporary discussions

since Bohmian mechanics can be formulated to give the same predictions with quan-

tum mechanics.

As the study advanced, in chapter 3 Bell’s theorem had become the focus. Bell’s ap-

proach to the EPR problem and his proposal to tackle with problem of completeness

of QM with using the argument of locality was studied. In this context the develop-

ment of the idea of local causality (LC), which is also violated formally by quantum

mechanics causing a spooky-action-at-a-distance problem was highlighted. Two dif-

ferent branches of inequalities, mainly called in this study as BCHS and CHSH, were
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investigated and it is shown that both inequalities and other inequalities derived from

those two are equivalent. They all can be derived from Bell’s original inequality eqn.

3.5 and experimental violation of any inequality which can be called as Bell inequal-

ity due to its equivalency with Bell’s original, is enough to demonstrate the violation

of all Bell inequalities. Also a generalization to N-partite systems by Mermin and

others has been shown.

Other types of inequalities, which can not be directly connected to Bell’s original in-

equality was the subject of chapter 4. These other inequalities, namely Leggett-Garg

and KCBS, differ from Bell inequalities through their basic assumptions. LGIs deal

with the problem of macrorealism and violation of an LGI actually won’t give any

information on the subject of locality. Similarly, KCBS inequality uses contextuality,

simultaneous value assignments to the outcomes of non-realized experiments. Viola-

tion of KCBS inequality would result in demonstrating that this assumption is wrong

and this simultaneous value assignment process is an invalid one. The problem of

contextuality was first formally established by Kochen and Specker using a method

now being referred as Kochen-Specker theorem.

In chapter 5, which is the last body chapter of this study, Bell’s theorem without

inequalities were examined. Although these are referred to as Bell’s theorem with-

out inequalities they can actually be used with Kochen-Specker theorem as well.

When these ‘without inequalities’ approaches are used with Kochen-Specker the-

orem, they demonstrate the negation of non-contextuality assumption and rule out

non-contextual hidden variable(NCHV) theories. It is argued that a more general the-

orem, containing both Bell’s and Kochen-Specker theorems can be thought to apply

to these without inequality approaches. This theorem, called BKS, is already in use

amongst the physics community however its use varies from author to author and its

uses are not as clear as Bell’s or Kochen-Specker theorems.

In the discussion chapter 6, subjects were re-visited and further arguments on them

has been made. In section 6.1 titled ‘Notes on Physical Reality’, mainly four different

approaches on which theories today can be located under is stressed upon. Arguments

made by authors such as Bell, Leggett and Wiseman on these approaches and how

these approaches deal with certain problems was also highlighted.
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As a conclusion to this study several comments should be made. First of all, although

some of these discussions on locality, contextuality or realism is taken to be ‘meta-

physical’, their physical implications are almost as strong as the uncertainty principle.

Principles such as no-signaling faster than light, no-signaling in time or exclusivity

brings forth these arguments into experimental plane. Study of Bell inequalities has

important uses with respect to entangled systems and studies on LGIs may deliver

the exact mechanism of quantum decoherence, which would result in generation of

macroscopic quantum phenomena at will.

Secondly, efforts in unifying these theorems and inequalities might reveal not only

the lower bounds where quantum mechanics reduces to classical mechanics, but also

the upper bounds allowed by QM, which are not always consistent with the upper

bounds derived from the principles at hand. In this respect, such efforts may enforce

or diminish the position of valued principles of contemporary physics and open up

the path for discovering new principles of nature.

Finally, the circle of thought experiments leading actual experiments leading to fur-

ther thought experiments can be seen in the development of this subject, from Ein-

stein to Bell to Aspect to Hardy and many more. Although it is impossible to disprove

general concepts such as locality or realism through experimentation, it is possible to

harden the lines between what is physical and what is metaphysical. The problem

of hidden variables is a clear example where through theorems of Bell’s and Kochen-

Specker certain classes of this theory, LHV and NCHV respectively, are canceled out.

Whether this subject can be developed to make distinctions between relativistic and

non-relativistic quantum mechanics is also an open question which requires further

studies.
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APPENDIX A

USEFUL TOOLS FOR QUANTUM SYSTEMS

A.1 Construction of Sn operator for spin-1/2 systems

As previously discussed, the matrix representations of Pauli matrices can be written

in the following form for spin-1/2 systems:

Sn =
~
2
σn (A.1)

where n̂ is an arbitrary direction. For the usual x̂, ŷ, ẑ directions Pauli matrices take

the forms;

σx =

 0 1

1 0

 , σy =

 0 −i
i 0

 , σz =

 1 0

0 −1

 (A.2)

By using these three matrices in;

~σ = σxı̂+ σy ̂+ σzk̂ (A.3)

Hence using eqn. A.2 and implementing the Pauli matrices for x̂, ŷ, ẑ into eqn. A.3

one reaches the σn operator for spin-1/2 systems through the following steps;

n̂ = sin(θ) cos(φ)̂ı+ sin(θ) sin(φ)̂+ cos(θ)k̂

and multiplying this with the ~σ given above
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~σ.~n =
~
2

(sin(θ) cos(φ)σx + sin(θ) sin(φ)σy + cos(θ)σz)

Now the above statement can be considered as the Sn operator. Dividing this with
~
2

to satisfy (1.1.1) and explicitly expanding the Pauli matrices together with the sine

and cosine parameters will provide the following form;

σn =

 cos(θ) sin(θ) cos(φ)− i sin(θ) sin(φ)

sin(θ) cos(φ) + i sin(θ) sin(φ) − cos(θ)


Since when taken into sin(θ) parenthesis the off-diagonal entries of this matrix given

e−iφ and eiφ then the final form of the σn operator can be written as;

σn =

 cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

 (A.4)
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APPENDIX B

EXPLICIT CALCULATIONS

B.1 Fine’s Theorem

The equations 3.15, 3.16 and 3.17 are of the following forms

P (ST ) =

∫
S̃(λ)T̃ (λ)ρ(λ)dλ (B.1)

and

P (S̄) =

∫
[1− S̃(λ)]ρ(λ)dλ (B.2)

and

P (AA′BB′) =

∫
Ã(λ)Ã′(λ)B̃(λ)B̃′(λ)ρ(λ)dλ (B.3)

Using these relations the equation 3.18 can be obtained as

P (AA′BB′) + P (AĀ′BB′) + P (AA′BB̄′) + P (AĀ′BB̄′) = P (AB) (B.4)

First term is already expanded so starting from the second term

P (AĀ′BB′) =

∫
Ã(λ)[1− Ã′(λ)]B̃(λ)B̃′(λ)ρ(λ)dλ

which can be rewritten as

P (AĀ′BB′) = P (ABB′)− P (AA′BB′)

Third term is

P (AA′BB̄′) =

∫
Ã(λ)Ã′(λ)[1− B̃(λ)]B̃′(λ)ρ(λ)dλ

which correponds to

P (AA′BB̄′) = P (AA′B)− P (AA′BB′)
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And the fourth term

P (AĀ′BB̄′) =

∫
Ã(λ)[1− Ã′(λ)]B̃(λ)[1− B̃′(λ)]ρ(λ)dλ

can be read as

P (AĀ′BB̄′) = P (AB)− P (AA′B)− P (AB′B) + P (AA′BB′)

Hence adding all these together as

P (AA′BB′) + P (AĀ′BB′) + P (AA′BB̄′) + P (AĀ′BB̄′) =

P (AA′BB′) + P (ABB′)− P (AA′BB′) + P (AA′B)− P (AA′BB′)

+P (AB)− P (AA′B)− P (AB′B) + P (AA′BB′) = P (AB)

(B.5)

gives this relation which is identical to 3.18.

Now for 3.21 and 3.22 the following can be shown explicitly

P (ABB′) = P (AA′BB′) + P (AĀ′BB′) ≤ P (A′B′) + P (B′)− P (A′B)

and

P (ĀBB′) = P (ĀA′BB′) + P (AĀ′BB′) ≤ P (A′B′) + P (B)− P (A′B)

For the first eqn. expand P(A B B’) as

P (ABB′) =

∫
Ã(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

it is clear to see that this can be rewritten as

P (ABB′) =

∫
Ã(λ)Ã′(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

+

∫
Ã(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

−
∫
Ã(λ)Ã′(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

(B.6)

and the last two terms can be re-arranged as

P (ABB′) =

∫
Ã(λ)Ã′(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

+

∫
Ã(λ)[1− Ã′(λ)]B̃(λ)B̃′(λ)ρ(λ)dλ

(B.7)

which gives the following by using eqn. 3.16 on the last term

P (ABB′) = P (AA′BB′) + P (AĀ′BB′)
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Now expanding the terms on the right-hand side of the inequality P(A’ B’) + P(B’) -

P(A’B) as

P (A′B′) =

∫
Ã′(λ)B̃′(λ)ρ(λ)dλ

P (B′) =

∫
B̃′(λ)ρ(λ)dλ

and

−P (A′B) = −
∫
Ã′(λ)B̃(λ)ρ(λ)dλ

Adding these will give

P (A′B′) + P (B′)− P (A′B) =

∫
[Ã′(λ)B̃′(λ) + B̃′(λ)− Ã′(λ)B̃(λ)]ρ(λ)dλ

which is always equal or greater than

P (ABB′) =

∫
Ã(λ)B̃(λ)B̃′(λ)ρ(λ)dλ

since any configuration of Ã′(λ)B̃′(λ) + B̃′(λ) − Ã′(λ)B̃(λ) is necessarily greater

than or equal to the corresponding configuration of Ã(λ)B̃(λ)B̃′(λ). Same argument

can be made for eqn. 3.22 as well.

B.2 Muynck’s Demonstration

In section 3.2.1 equation 3.28 is as follows

〈A1A2〉+ 〈A1A3〉+ 〈A3A4〉 − 〈A2A4〉 = Q(+,+,+,+) +Q(−,−,−,−)

−Q(+,−,−,+)−Q(−,+,+,−)
(B.8)

Left-hand side terms can be expanded in the form

〈A1A2〉 = P12(+,+) + P12(−,−)− P12(+,−)− P12(−,+)

〈A1A3〉 = P13(+,+) + P13(−,−)− P13(+,−)− P13(−,+)

〈A3A4〉 = P34(+,+) + P34(−,−)− P34(+,−)− P34(−,+)

−〈A2A4〉 = −P24(+,+)− P24(−,−) + P24(+,−) + P24(−,+)
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So in total form

〈A1A2〉+ 〈A1A3〉+ 〈A3A4〉 − 〈A2A4〉 =

P12(+,+) + P12(−,−)− P12(+,−)− P12(−,+)

+P13(+,+) + P13(−,−)− P13(+,−)− P13(−,+)

+P34(+,+) + P34(−,−)− P34(+,−)− P34(−,+)

−P24(+,+)− P24(−,−) + P24(+,−) + P24(−,+)

(B.9)

And now expand the right-hand side terms similarly

Q(+,+,+,+) = P12(+,+)+P13(+,+)+P34(+,+)−P24(+,+)−P1(+)−P3(+)

Q(−,−,−,−) = P12(−,−)+P13(−,−)+P34(−,−)−P24(−,−)−P1(−)−P3(−)

−Q(+,−,−,+) = −P12(+,−)−P13(+,−)−P34(−,+)+P24(−,+)+P1(+)+P3(−)

−Q(−,+,+,−) = −P12(−,+)−P13(−,+)−P34(+,−)+P24(+,−)+P1(−)+P3(+)

Adding all these together will give

Q(+,+,+,+) +Q(−,−,−,−)−Q(+,−,−,+)−Q(−,+,+,−) =

P12(+,+) + P13(+,+) + P34(+,+)− P24(+,+)− P1(+)− P3(+)

+P12(−,−) + P13(−,−) + P34(−,−)− P24(−,−)− P1(−)− P3(−)

−P12(+,−)− P13(+,−)− P34(−,+) + P24(−,+) + P1(+) + P3(−)

−P12(−,+)− P13(−,+)− P34(+,−) + P24(+,−) + P1(−) + P3(+)

(B.10)

Terms corresponding to the probability distributions of single observables will cancel

out each other and the final form will be

Q(+,+,+,+) +Q(−,−,−,−)−Q(+,−,−,+)−Q(−,+,+,−) =

P12(+,+) + P13(+,+) + P34(+,+)− P24(+,+)

+P12(−,−) + P13(−,−) + P34(−,−)− P24(−,−)

−P12(+,−)− P13(+,−)− P34(−,+) + P24(−,+)

−P12(−,+)− P13(−,+)− P34(+,−) + P24(+,−)

(B.11)

It is clear to see that this is identical to the form obtained in B.9 so that B.8 holds.
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B.3 MABK

B.3.1 Mermin’s inequality for n=2 and n=3

From section 3.3 eqn. 3.36 reads as;

|Φ〉 =
1√
2

[|00..0〉+ i |11..1〉] (B.12)

and operator used in Mermin’s demonstration is 3.37

Â =
1

2i
[
n∏
j=1

(σx
j + iσy

j)−
n∏
j=1

(σx
j − iσyj)] (B.13)

For bipartite states (n=2) Mermin’s inequality hold and this can be shown in the fol-

lowing manner. The state |Φ〉 for two particles can be written as;

|Φ〉 =
1√
2

[|00〉+ i |11〉] (B.14)

with |0〉 corresponding to upward spin in ẑ-direction and |1〉 corresponds to down-

ward spin in ẑ-direction. In addition to the state, for n=2 the operator Â is

Â =
1

2i
[(σx

1 + iσy
1)(σx

2 + iσy
2)− (σx

1 − iσy1)(σx
2 − iσy2)] (B.15)

Expanding this will result

Â =
1

2i
(σx

1σx
2+iσx

1σy
2+iσy

1σx
2−σy1σy

2−σx1σx
2+iσx

1σy
2+iσy

1σx
2+σy

1σy
2)

and after simplifications

Â = σx
1σy

2 + σy
1σx

2

Together with the known Pauli matrices from eqn. A.2. Now note that

|+〉 =

 1

0

 |−〉 =

 0

1

 (B.16)

Hence for a bipartite two-leveled system there is a 4x1 matrix corresponding to each

ket-vector. For the state at hand those are

|00〉 = |0〉 ⊗ |0〉 =


1

0

0

0

 |11〉 = |1〉 ⊗ |1〉 =


0

0

0

1

 (B.17)
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And similarly for the Pauli matrices of the operator

σx
1σy

2 = σx
1 ⊗ σy2 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 (B.18)

together with

σy
1σx

2 = σy
1 ⊗ σx2 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 (B.19)

Hence applying this operator on the state at hand will provide the following result

Â |Φ〉 =
1√
2

[


0

0

0

i

+


0

0

0

i

+ i


−i
0

0

0

+ i


−i
0

0

0

] = 2 |Φ〉 (B.20)

From eqn. 3.45 for n = 2 it can be seen that F ≤ 2 and above calculations verify

that for n = 2 this inequality holds, which was already established by Mermin[40].

However for n = 3, it does not. Now again using the relations given in equations 3.36

and 3.37 with n=3 the state and the operator can be written in the forms

|Φ〉 =
1√
2

[|000〉+ i |111〉] (B.21)

and

Â =
1

2i
[(σx

1 +iσy
1)(σx

2 +iσy
2)(σx

3 +iσy
3)−(σx

1−iσy1)(σx
2−iσy2)(σx

3−iσy3)]

(B.22)

Following the same procedures with B.15 this operator can be written in the form

Â = σx
1σx

2σy
3 + σx

1σy
2σx

3 + σy
1σx

2σx
3 − σy1σy

2σy
3 (B.23)
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which can be written in the sum of the following forms

σx
1σx

2σy
3 =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 i 0

0 0 0 0 0 −i 0 0

0 0 0 0 i 0 0 0

0 0 0 −i 0 0 0 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

i 0 0 0 0 0 0 0



σx
1σy

2σx
3 =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0

0 0 0 0 0 i 0 0

0 0 0 0 i 0 0 0

0 0 0 −i 0 0 0 0

0 0 −i 0 0 0 0 0

0 i 0 0 0 0 0 0

i 0 0 0 0 0 0 0



σy
1σx

2σx
3 =



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0

0 0 0 0 0 −i 0 0

0 0 0 0 −i 0 0 0

0 0 0 i 0 0 0 0

0 0 i 0 0 0 0 0

0 i 0 0 0 0 0 0

i 0 0 0 0 0 0 0


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σy
1σy

2σy
3 =



0 0 0 0 0 0 0 i

0 0 0 0 0 0 −i 0

0 0 0 0 0 −i 0 0

0 0 0 0 i 0 0 0

0 0 0 −i 0 0 0 0

0 0 i 0 0 0 0 0

0 i 0 0 0 0 0 0

−i 0 0 0 0 0 0 0


Putting these in B.23 will give the following Â in the matrix representation formalism

Â = 4



0 0 0 0 0 0 0 −i
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0


Hence together with

|000〉 =



1

0

0

0

0

0

0

0


|111〉 =



0

0

0

0

0

0

0

1


The operation Â on the ket |Φ〉 will give

Â |Φ〉 = 4 |Φ〉

So it is obvious that 〈Â〉 gives 4 while from 3.45 the bound is 21 for n=3, hence the

quantum mechanical expectation value exceeds the boundary limit of the local hidden

variable (λ) theory at hand. The Mermin inequality is violated with exponentially

increasing values[40] for systems with n ≥ 3.
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B.4 A simple proof of Kochen-Specker theorem

A spin singlet state is given as

|Ψ〉 12 =
|01〉 − |10〉√

2

Define σx2 as I1 ⊗ σx2 where I1 identifies the identity operator I |Ψ〉 = |Ψ〉 for all

|Ψ〉. Now see that

(I1 ⊗ σx2) |Ψ〉 12 =
|00〉 − |11〉√

2

and similarly for taking σx1 as σx1 ⊗ I2

(σx
1 ⊗ I2) |Ψ〉 12 = −|00〉 − |11〉√

2

Hence f(σx
2) = −f(σx

1) holds. Now also see that

(I1 ⊗ σy2) |Ψ〉 12 = −i |00〉+ |11〉√
2

and

(σy
1 ⊗ I2) |Ψ〉 12 = i

|00〉+ |11〉√
2

giving f(σy
2) = −f(σy

1). For σx1σy
2σy

1σx
2 = σz

1σz
2 see the following matrix

relations:

σx
1σy

2 =


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


and

σy
1σx

2 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0


hence their product σx1σy

2σy
1σx

2 is
0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0




0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


which is equal to σz1σz

2.
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B.5 GHZ

B.5.1

Equation 5.11 is of the following form

〈σ1σ2σ3σ4〉 =
1

2
[〈0011|σ1σ2σ3σ4|0011〉 − 〈1100|σ1σ2σ3σ4|0011〉

+ 〈1100|σ1σ2σ3σ4|1100〉 − 〈0011|σ1σ2σ3σ4|1100〉]
(B.24)

which consists the four elements 〈0011|σ1σ2σ3σ4|0011〉, 〈1100|σ1σ2σ3σ4|0011〉,

〈1100|σ1σ2σ3σ4|1100〉 and 〈0011|σ1σ2σ3σ4|1100〉. Noting that the sigma operator in

an arbitrary direction is given as A.4 and 〈0| and 〈1| are given as unit vectors in up

and down directions along ẑ the following relations said to hold

〈0|σn|0〉 =
(

1 0
) cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

 1

0

 = cos(θ)

〈0|σn|1〉 =
(

1 0
) cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

 0

1

 = e−iφ sin(θ)

〈1|σn|0〉 =
(

0 1
) cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

 1

0

 = eiφ sin(θ)

〈1|σn|1〉 =
(

0 1
) cos(θ) e−iφ sin(θ)

eiφ sin(θ) − cos(θ)

 0

1

 = − cos(θ)

and also noting that

〈1100|σ1σ2σ3σ4|1100〉 = 〈1|σ1|1〉1 〈1|σ2|1〉2 〈0|σ3|0〉3 〈0|σ4|0〉4

which can be generalized to other elements as well, the explicit form of these are

〈1100|σ1σ2σ3σ4|1100〉 = cos(θ1) cos(θ2) cos(θ3) cos(θ4)

〈0011|σ1σ2σ3σ4|0011〉 = cos(θ1) cos(θ2) cos(θ3) cos(θ4)

〈1100|σ1σ2σ3σ4|0011〉 = eiφ1 sin(θ1)eiφ2 sin(θ2)e−iφ3 sin(θ3)e−iφ4 sin(θ4)

〈0011|σ1σ2σ3σ4|1100〉 = e−iφ1 sin(θ1)e−iφ2 sin(θ2)eiφ3 sin(θ3)eiφ4 sin(θ4)
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Adding these to obtain eqn. B.24 will result in

〈σ1σ2σ3σ4〉 = cos(θ1) cos(θ2) cos(θ3) cos(θ4)

− sin(θ1) sin(θ2) sin(θ3) sin(θ4) cos(φ1 + φ2 − φ3 − φ4)
(B.25)

B.5.2

Multiplying the equations 5.15, 5.16 and 5.17 will give

A(2φ, λ)(A(φ, λ))2(B(0, λ))2B(0, λ)(C(φ, λ))2C(0, λ)(D(φ, λ))2D(0, λ) = −1

(B.26)

since N(φ, λ) = ±1 for N = A,B,C,D it can easily be argued that (A(φ, λ))2 =

(B(0, λ))2 = (C(φ, λ))2 = 1 hence giving the simplifed equation

A(2φ, λ)B(0, λ)C(0, λ)D(0, λ) = −1 (B.27)

and comparing this to eqn. 5.14 which is

A(0, λ)B(0, λ)C(0, λ)D(0, λ) = −1 (B.28)

will give

A(2φ, λ) = A(0, λ)

for all φ

B.5.3

The relation 4.12 states that

f(A1A2A3) = f(A1)f(A2)f(A3)

for three commuting operators A1, A2, A3. Hence the equation

f(σx
1σx

2σx
3)f(σx

1σy
2σy

3)f(σy
1σx

2σy
3)f(σy

1σy
2σx

3)

can be written in the form

f((σx
1 ⊗ σx2 ⊗ σx3)(σx

1 ⊗ σy2 ⊗ σy3)(σy
1 ⊗ σx2 ⊗ σy3)(σy

1 ⊗ σy2 ⊗ σx3))
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For this to be written the only condition is that the set of operators σx1σx
2σx

3, σx1σy
2σy

3,

σy
1σx

2σy
3 and σy1σy

2σx
3 should be commuting. The commutation relationships are

[σx
1σx

2σx
3, σx

1σy
2σy

3] = (σx
1σx

2σx
3)(σx

1σy
2σy

3)− (σx
1σy

2σy
3)(σx

1σx
2σx

3)

[σx
1σx

2σx
3, σy

1σx
2σy

3] = (σx
1σx

2σx
3)(σy

1σx
2σy

3)− (σy
1σx

2σy
3)(σx

1σx
2σx

3)

[σx
1σx

2σx
3, σy

1σy
2σx

3] = (σx
1σx

2σx
3)(σy

1σy
2σx

3)− (σy
1σy

2σx
3)(σx

1σx
2σx

3)

[σx
1σy

2σy
3, σy

1σx
2σy

3] = (σx
1σy

2σy
3)(σy

1σx
2σy

3)− (σy
1σx

2σy
3)(σx

1σy
2σy

3)

[σx
1σy

2σy
3, σy

1σy
2σx

3] = (σx
1σy

2σy
3)(σy

1σy
2σx

3)− (σy
1σy

2σx
3)(σx

1σy
2σy

3)

[σy
1σx

2σy
3, σy

1σy
2σx

3] = (σy
1σx

2σy
3)(σy

1σy
2σx

3)− (σy
1σy

2σx
3)(σy

1σx
2σy

3)

(B.29)

See that

σx
1 ⊗ σx2 ⊗ σx3 =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



σx
1 ⊗ σy2 ⊗ σy3 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


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σy
1 ⊗ σx2 ⊗ σy3 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


and

σy
1 ⊗ σy2 ⊗ σx3 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


Using these the commutation relationships of B.29 can be shown all to be zero, hence

the set of operators (σx1σx
2σx

3, σx1σy
2σy

3, σy1σx
2σy

3, σy1σy
2σx

3) is commuting.

Allowing

f((σx
1 ⊗ σx2 ⊗ σx3)(σx

1 ⊗ σy2 ⊗ σy3)(σy
1 ⊗ σx2 ⊗ σy3)(σy

1 ⊗ σy2 ⊗ σx3))

to be written. Multiplying the matrix forms of operators will give the result

f(−I) = −f(I) = −1

the minus of the identity operator. Since the rest of the equations in 5.27 are already

self-evident and state independent due to the fact that f(σi
j)2 = 1 independent of i’s

or j’s, with the above relation established the entire form of 5.27 can shown to be

state independent.
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