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ABSTRACT

BAYESIAN MODELLING FOR ASYMMETRIC MULTI-MODAL CIRCULAR
DATA

Kılıç, Muhammet Burak

Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Zeynep Kalaylıoğlu

Co-Supervisor : Prof. Dr. Ashis SenGupta

August 2015, 107 pages

In this thesis, we propose a Bayesian methodology based on sampling importance
re-sampling for asymmetric and bimodal circular data analysis. We adopt Dirichlet
process (DP) mixture model approach to analyse multi-modal circular data where the
number of components is not known. For the analysis of temporal circular data,such
as hourly measured wind directions, we join DP mixture model approach with circular
times series modelling. The approaches are illustrated with both simulated and real-
life data sets. Our Bayesian methodologies have been shown to have good statistical
properties in multi-modal circular data analysis. Computational codes for DP mixture
models are constructed in OpenBUGS and R.

Keywords: Directional Data, Dirichlet Process Mixture model, Asymmetry, Circular
Time Series
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ÖZ

ASİMETRİK ÇOKMODLU DAİRESEL VERİLER İÇİN BAYESCİ
MODELLEME

Kılıç, Muhammet Burak

Doktora, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Zeynep Kalaylıoğlu

Ortak Tez Yöneticisi : Prof. Dr. Ashis SenGupta

Ağustos 2015 , 107 sayfa

Bu tezde, asimetrik ve iki modlu veri analizi için, önem örneklemesine dayalı Bayesci
bir yaklaşım önerdik. Karma sayısı bilinmeyen, çok modlu dairesel veriler için, Di-
richlet süreç (DS) karma model yaklaşımını adapte ettik. Zamana bağlı olarak değişen
dairesel veri analizi için, örneğin rüzgar yönü, DS karma model yaklaşımını, dairesel
zaman serileri modeli ile birleştirdik. Bu yaklaşımlar, simulasyon ve gerçek veriler
ile gösterildi. Sonuç olarak, önerdiğimiz yöntemler, çok modlu dairesel veri anali-
zinde, iyi istatistiksel özelliklere sahip olduğu gösterilmiştir. Dirichlet süreci karma
modeller için sayısal kodlar R ve OpenBUGS da yapıldı.

Anahtar Kelimeler: Dairesel Veri, Dirichlet Süreci Karma Model, Asimetri, Dairesel
Zaman Serisi.
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Turkey (TÜBİTAK) and Faculty Development Programme (ÖYP) for supporting and
funding my visits to USA and India during my Ph.D study.

I would like to thank specially to my wife Nuriye Şeyda. She always make me feel
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CHAPTER 1

INTRODUCTION

Circular data exist in many scientific contexts such as medicine, ecology, meteo-

rology and biology. In many environmental and medicine applications, there arise

multi-modal circular data. To address multi-modality seen in various different ap-

plications changing from finance to astrophysics, in recent years, there has been an

increasing interest in developing statistical analyses for asymmetric and multi-modal

circular distributions. In general there are two solutions for multi-modal circular data

problems as follows

• One possible solution is to use asymmetric and multi-modal circular distribu-

tions. Main challenge for these distributions is the normalizing constants not

having a closed form expression.

• Another solution is to use mixture circular distributions. The main problem of

mixture circular distributions is that the number of modes may not be precisely

determined based on the available data sets.

Circular data analysis is more challenging than linear data analysis due to the restric-

tion of the support on the unit circle [0,2π) or [−π,π) and to the sensitivity of descrip-

tive and inferential statistics on the unit circle. However, there are various substantial

methods and techniques for analysing circular data. (see, e.g. Mardia (1972); Fisher

(1993); Mardia and Jupp (1999); Jammalamadaka and SenGupta (2001)). These

methods are broadly represented for simple circular univariate models. On the other

hand, on Bayesian circular data modelling, there has been small literature. (see,e.g.

Coles, (1988); Damien and Walker (1999); George and Ghosh (2006); Bhattacharya

1



and SenGupta (2009); Lasinio, et al. (2012); Wang and Gelfand (2013); Antonio et

al. (2014)).

In scope of this dissertation, we mainly focus on multi-modal circular data and de-

velop the flexible novel methods in analysing multi-modal circular data. In the fol-

lowing section, we illustrate multi-modal circular data examples from ecology (study

of animal movement), meteorology (wind direction) and bio-informatics (dihedral

angles).

1.1 Motivating examples

In this section, we illustrate circular real data examples to motivating our study.

Turtle data

A particular example is a study of animal movement. For illustration, we consider a

turtle data by Gould’s cited by Stephens, (1969). Fig 1.1 shows that most of turtles

move in one main direction, while small part of them moved in different directions.

Here, the main problem is the unknown number of modes for this kind of data types.

One may consider fitting models with different number of modes and assessing the

goodness of the fit of these models. However, this is hindered by the fact that there is

lack of goodness of fit test for multi-modal circular data.

Figure 1.1: Rose diagram of turtle data
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Wind direction data

Another particular example, Fig 1.2 displays a circular time series plot corresponding

to hourly wind direction collected on three days in Turkey. Here, there arise uncer-

tainty problem associated with number of modes in this time series modelling. For

multi-modal circular data depended on time, we considered a new class of circular

time series model.

(a) (b)
Figure 1.2: (a) Rose diagram of wind direction data. (b) Circular observed time series

of a hourly wind direction data from Turkey.

Protein data

Another particular example consists of protein backbone data set from bio-chemical

processes. Proteins play an important role in living organisms. A protein molecule

consist of a chain or sequence of amino acids. Dihedral angles define the backbone of

a protein. The protein is a polypeptide chain comprise of amino acids. The backbone

of a polypeptide chain consist of a sequence of atoms.

N1−Cα
1 −C1−N2−Cα

2 −C2− ...−Np−Cα
p −Cp

The protein backbone can be explained as three dihedral angles, namely, φ ,ψ and ω

angles. φ angle is the angle around the −N−Cα bond. ψ angle is the angle around

−Cα −C bond. ω angle is the angle around the −C−N− bond (see Fig. 1.3). In

particular, ψ and ω angles can be observed as multi-modal data (see Hughes (2007);

Durán and Domı́nguez (2014)).

3



Figure 1.3: Dihedral angles of the backbone a protein. Figure is adopted from

"http://www.bioinf.org.uk/teaching/bbk/molstruc/practical2/peptide.html"

In following section, we provide a summary of the whole chapters of the dissertation

and emphasize the most important components of it.

1.2 Outline

In Chapter 2, we give a brief summary of circular data and explain the basic properties

of them such as measurements of location, concentration and the other important

descriptive statistics. Then, we discuss the modelling approaches for circular data. At

the end of this chapter, I present asymmetric and bimodal circular distributions which

are based on the generalisations of von Mises distribution.

In Chapter 3, we facilitate a Bayesian analysis of bimodal distributions based on the

extension of von Mises distribution. The most important challenge of these distribu-

tions in terms of Bayesian analysis is the complex normalizing constants. Another

challenge is to draw the samples from their complex posterior distributions. In order

to overcome these challenges, we provide a general way to facilitate their Bayesian

analysis with sampling importance re-sampling, SIR. Meanwhile, real data examples

are used to illustrate the usefulness of the proposed approach.

In Chapter 4, we propose to adopt Dirichlet process (DP) for independent identical

distributed (i.i.d) circular observations. Here, the main challenge is determining the

number of modes. In many studies, the number of the modes is unknown as a priori.

This leads to an uncertainty about the true number of modes. In order to handle this

challenge, we use circular Bayesian non parametric models. These models detect the

number of the modes when it is unknown. Finally, simulated and real data examples

are presented to illustrate the flexibility of the proposed models.
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In Chapter 5, we first give a summary of the existing methods. One of these existing

models refers to circular autoregressive model with order (1), CAR(1) or Möbious

model. First drawback of these models is the potential identifying problem in model

parameters when multi-modality or changing concentration over time are observed.

Second drawback is that these models give poor fit to multi-modal circular data. In

order to handle these drawbacks, we introduce a new class of circular time series

model based on DP mixture models. Potential identifying problem is handled with a

constraint in Bayesian panorama. In addition, our model assumes that the conditional

distribution of the model is the mixture von Mises distribution. This provides the

flexibility of the proposed approach in terms of its error distribution. Numerical and

real data examples are provided to illustrate the plausibility of the proposed model.

Computational details and technical results are explained in chapter appendices at

the end of thesis. In all of the computational implementations, we used R language

and environment and OpenBUGS software which is a useful and efficient tool for

Bayesian computations.
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CHAPTER 2

CIRCULAR DATA

Circular statistics is a special branch of statistics that is used to analyse data which

can be mapped onto the circumference of a unit circle such as directional observations

in the study of wind directions and orientations in turtles. In circular data analysis,

standard linear statistical methods are not appropriate because of the geometric shape

underlying the data. For illustration, let 1o and 359o be two independent circular

observations. It is obviously not appropriate to use the standard arithmetic mean that

is equal to 180o. The circular mean direction is equal to 0o. In this chapter, we

summarize circular statistics and distributions.

2.1 Basic descriptive statistics for circular data

Corresponding to the usual descriptive statistics for linear variables, there exist de-

scriptive statistics for circular variables. Most basic descriptive statistics that are

fundamental to all the subsequent circular data analysis and modelling are sample

circular mean, measure of concentration of the data, and sample circular variance.

Circular mean is the mean of the directions and a simple formalization is provided

below. Measure of concentration and sample circular variance are measures of con-

centration and dispersion respectively and given below. Interested readers should

refer to Jammalamadaka and SenGupta (2001) (Topics in circular statistics) as well

as Mardia and Jupp (1999) (Directional statistics) for more.

To find sample circular mean direction, we need to use vector summation properties.

For instance, let θ1,θ2, ...,θn be a set of circular observations represented as points
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on the circumference of the unit circle. We transform each data point from the polar

coordinate to the Cartesian coordinate to obtain (cosθi,sinθi), i = 1, ...,n and sum

them up to obtain the resultant vector R shown below

R = (
n

∑
i=1

cosθi,
n

∑
i=1

sinθi) = (C,S)

Then length of resultant vector is given by

R =
√

C2 +S2

The direction of this resultant vector R is the sample circular mean direction denoted

by θ̄ which is shown by:

θ̄ = arctan∗(S/C) =



arctan(S/C), if C > 0,S≥ 0,

π/2, if C = 0,S > 0,

arctan(S/C)+π, if C < 0,

arctan(S/C)+2π, if C ≥ 0,S < 0,

undefined, if C = 0,S = 0.

given in Jammalamadaka and SenGupta, (2001).

Circular concentration is given by the L2 norm of the mean resultant vector R̄= (C̄, S̄)

where C̄ = 1
n ∑

n
i=1 cosθi and S̄ = 1

n ∑
n
i=1 sinθi as

R̄ =

√
C̄2 + S̄2, 0≤ R̄≤ 1 (2.1)

R̄ being close to 1 indicates that vectors (i.e. the directional data) are concentrated

around their mean vector (circular mean). A sample median direction denoted by θ̃

is defined as any angle ψ for which half of data points lie in the arc[ψ,ψ +π) and the

majority of the points are nearer to ψ than to ψ +π . From this definition, it is clear

that the median direction need not be unique. When n is odd, a median direction will

correspond to one of the data points. When n is even, it is usually taken to be the mean

of those data points. Formally, a median direction can be identified by minimizing

the dispersion measure

d(ψ) =
1
n

n

∑
i=1

(π−|π−|θi−ψ||).
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Simplest form of circular sample variance is defined as V = 1− R̄ and sample circular

standard deviation is σ̂ = {−2log(1−V )}1/2. The higher order sample moments is

defined by taking higher power of {eiθ j} and averaging these. We can write as

1
n

n

∑
j=1

(eiθ j)p =
1
n

n

∑
j=1

eiθ j p

=
1
n

n

∑
j=1

cospθ j + i
1
n

n

∑
j=1

sinpθ j

=C̄p + iS̄p, p = 0,1,2, ...,

where (C̄p, S̄p) are called as the pth order trigonometric moments based on the sam-

ple. These calculations are needed to for computing posterior means and standard

deviations from Markov Chain Monte Carlo (MCMC) output.

2.2 Properties of circular distributions

A circular probability density function is similar to a continuous probability density

function on real line. The range of a circular random variable θ which is measured in

radians is taken as [0,2π) or [−π,π). A circular probability density function satisfies

the following properties

(a) f (θ)≥ 0;

(b)
∫ 2π

0 f (θ)dθ = 1 or
∫

π

−π
f (θ)dθ = 1;

(c) f (θ) = f (θ +2πk) for any integer k.

The characteristic function of a circular random variable θ is given by

ϕθ (p) = E(eipθ ) =
∫ 2π

0
eipθ dF(θ) =Cp + iSp = ρpeiµp, p = 0,±1,±2, ...

where Cp = E(cospθ), Sp = E(sinpθ), ρp =
√

C2
p +S2

p and µp = arctan∗(Sp/Cp).

The value of the characteristic function at an integer p is called the pth trigonometric

moment of θ . In particular, consider the first trigonometric moment as

ϕ1 =C1 + iS1 = ρ1eiµ1,
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where µ1 is defined as mean direction denoted by µ and ρ1 is defined as mean resul-

tant length denoted by ρ . The length of ρ lies between 0 and 1 due to the inequality

of expectation and the characteristic complex number, 0 ≤ ‖E(eiθ )‖ ≤ E‖eiθ‖ = 1.

This first trigonometric moment ϕ1 are used to provide population measures of the

mean direction and the concentration of θ , respectively. Again the sample analogues

of µ and ρ are θ̄ and R̄ respectively, described in Section 2.1.

2.3 Review of common circular distributions

There are several circular distributions. Most common are uniform, von Mises, wrapped

family, projected normal and generalisations of von Mises distributions.

Uniform distribution on circle is defined as follows

f (θ) =
1

2π
, 0≤ θ ≤ 2π (2.2)

Length of the first trigonometric moment of this distribution is 0, therefore there is

no preferred mean direction. This corresponds to a situation where all directions are

equally likely. This distribution is used to test the hypothesis about the uniformity

of directions. For instance, testing the null hypothesis that the orientation of a newly

born turtle has no particular direction is equivalent to testing that distribution of the

orientation is circular uniform.

Most commonly used model for circular data is von Mises distribution denoted by

vM(µ,κ) (also known as circular normal distribution) and this distribution is sym-

metric and uni-modal. Its pdf is defined as shown below

f (θ) =
1

2πI0(κ)
eκcos(θ−µ) ,0≤ µ ≤ 2π, κ > 0 (2.3)

where µ is mean direction and κ is the concentration parameter. I0(κ) is modified

Bessel function of the first kind and order zero. The mean resultant length have shown

to have the expression I1(k)/I0(k), where Ip is the modified Bessel function of first

kind of order p which is given by

Ip(κ) =
1

2π

∫ 2π

0
cospθeκ cosθ dθ
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Figure 2.1: von Mises densities with mean direction µ = 0o and different concentra-

tion parameters κ = 1,2,7 and 10.

For 0 ≤ θ < 2π , values of the distribution function of the von Mises distribution are

given by

F(θ) =
1

2πI0(κ)

∫
θ

0
eκcos(φ−µ)dφ

the computation of both the Bessel function and the integral requiring quadrature.

Main problem with the use of von Mises distribution is modified Bessel function

which is not available in closed form. Abramowitz and Stegun (1970) give the ex-

pression of the function as shown below

I0(κ) =
∞

∑
r=0

(r!)−2(
1
2

κ)2r. (2.4)

They also give polynomial approximations to I0(κ) as :

I0(κ)' 1+3.5156229t2 +3.0899424t4 +1.2067492t6+

0.2659732t8 +0.0360768t10 +0.0045813t12, 0≤ κ ≤ 3.75, t = κ/3.75

For large κ , this Bessel function is approximated by

I0(κ)∼
eκ

√
2πκ

and we use the above approximations to evaluate the value of Bessel function in the

preceding sections.

Another commonly used models for the analysis of circular data are wrapped family

distributions. Wrapped family distributions are obtained by wrapping the line around
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the circumference of the circle. For illustration, let Y be a random variable on R with

probability density function g(y), then corresponding random variable on the circle is

θ = Y mod 2π (2.5)

Probability density function of wrapped distribution is

f (θ) =
∞

∑
k=−∞

g(θ +2πk)

Below, we briefly give the two important class of wrapped family distribution as

follows

A wrapped normal distribution WN(µ,ρ) is obtained by wrapping a N(µ,σ2) distri-

bution around the circle.

f (θ) =
1

σ
√

2π

∞

∑
k=−∞

exp{−(θ −µ +2πk)2)

2σ2 } , 0≤ θ < 2π

where σ2 =−2logρ . This distribution WN(µ,ρ) is also uni-modal and symmetric as

N(µ,σ2).

Wrapped Cauchy (WC) distribution is defined by Lévy (1939) and the probability

density function of WC(µ,ρ) is as follows

f (θ) =
1

2π
(1+2

∞

∑
k=1

ρ
kcosk(θ −µ))

=
1

2π

1−ρ2

1+ρ2−2ρcos(θ −µ)

where 0≤ µ < 2π and 0≤ ρ < 1. This distribution is both uni-modal and symmetric

and is used for circular distributions with heavy peaks.

Another family of circular distributions can be obtained by radial projection of bi-

variate distributions on the plane. Let Y be a two dimensional random vector with

P(Y = 0) = 0. Then obviously, ‖Y‖−1Y is a random point on the unit circle. If, Y

has a bivariate normal distribution N2(µ,Σ), then ‖Y‖−1Y has a projected normal

distribution denoted by PN2(µ,Σ). This distribution is known as offset normal distri-

bution. (see e.g. (Mardia (1972); Jammalamadaka and SenGupta 2001) . Probability

density function of a general projected normal distribution is defined as shown below

f (θ) =
1

C(θ)
{φ(µ1,µ2,0,Σ)+aD(θ)Φ[D(θ)]φ [

a(µ1sinθ −µ2cosθ√
C(θ)

] } (2.6)
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where

a = {σ1σ2

√
1−ρ2}−1

C(θ) = a2(σ2
2 cos2(θ)−ρσ1σ2sin2θ +σ

2
1 sin2

θ),

D(θ) =
a2√
C(θ)

[µ1σ2(σ2cosθ −ρσ1sinθ)+µ2σ1(σ1sinθ −ρσ2cosθ)] (2.7)

and φ and Φ are the pdf and cdf of N(0,1), respectively.

A special case of a general projected normal distribution with zero mean and variance

denoted by PN2(0,Σ) leads to

f (θ) =

√
(1−ρ2)

2π(1−ρsin2θ)
(2.8)

There is a relationship between wrapped Cauchy and projected normal distributions.

Kent and Tyler (1988); Mardia(1972) showed that

θ ∼ PN2(0,Σ)⇒ 2θ ∼WC(µ,ρ) (2.9)

General projected normal distribution has not been in common use for circular data

modelling because of complicated and unwieldy expression. However, in recent years

there are Bayesian developments for using general projected normal for the analysis

of circular data (see Wang and Gelfand 2012).

2.4 Multi-modal models

General approach to modelling multi-modal circular data is to use finite mixtures of

any uni-modal distributions considered in Section 2.3. One of the important features

of mixture distribution is that their parameters are generally easy to interpret. Most

commonly used models are finite mixtures of von Mises distributions. (see e.g. Mar-

dia and Sutton (1975); Spurr (1981) etc.)

Another useful way is generalisations of von Mises distribution which can be obtained

by expanding in Fourier series form. These distributions have an extensive history and

some of the most relevant references are Maksimov (1967); Cox (1975); Yfantis and

Borgman (1982); Gatto and Jammalamadaka (2007); Kim and SenGupta (2013). For

13



illustration, we consider the natural extension of von Mises distribution introduced by

Cox, D.R (1975) for two components as follows

∝ exp(a1cosθ +b1sinθ +a2cos2θ +b2sin2θ)

Taking a2 = 0, b2 = 0 give von Mises density as

∝ exp(κcos(θ −µ))

where a1 = κcosµ and b1 = κsinµ . Additionally, the generalisations of von Mises

density for two components can be used to represent symmetric or asymmetric, uni-

modal or bi-modal shapes depending on the choice of parameters. In the following

chapter, we will examine Bayesian analysis of two important sub-models of general-

isations of von Mises distributions for two components.
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CHAPTER 3

A BAYESIAN ANALYSIS FOR ASYMMETRIC AND

BIMODAL CIRCULAR DATA

Many circular data, such as the ones encountered in astrophysics, bio-informatics,

geosciences, environmental sciences, meteorology, etc. have the properties of asym-

metry and bi-modality simultaneously. In this chapter, we present a Bayesian analysis

of two elegant asymmetric and possibly bimodal distributions, which can be consid-

ered as generalisations of von Mises distribution, which are difficult to analyse by

the frequentist approach since their normalizing constants are not available in closed

forms. In order to obtain samples from their posterior distributions, we use a sam-

pling importance re-sampling (SIR) method. Because of the weights involved therein

are discrete, we advocate the use of Shannon entropy. Additionally, we construct

constrained joint prior distributions for the bi-modal cases. For model selection, we

encounter an interesting situation where model averaging procedures become nec-

essary, and use approximate Bayes factor and Bayesian information criteria. Our

approaches are illustrated with real data examples from biology and ecology.

3.1 Introduction

In many biological and environmental real life research, there arise asymmetric and

bi-modal circular data. For illustration, one of the most important research topic

in marine biology is the spawning time of a particular fish. The spawning time is

affected by tidal characteristics in fish biology. One of tidal characteristics is time of

low tide. Figure 3.1 displays the rose diagram of time of low tide and shows that the
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distribution is asymmetric.

Figure 3.1: Rose diagram of time of low tide

In the context of Bayesian inference for von Mises distribution, the earliest attempt

was presented by Mardia and El-Atoum (1976). The conjugate prior distribution

of von Mises distribution was introduced by Guttorp and Lockhart (1987). A full

Bayesian analysis of von Mises distribution was given by Damien and Walker (1999)

who suggested Gibbs sampler, using auxiliary variables, to draw samples from pos-

terior distribution. Sampling importance resampling (SIR) method was used by An-

tonia and Peña (2005) who generated the samples from posterior distribution for von

Mises distribution using conjugate prior distributions. Noting the hurdles associated

with the latent variable approach of Damien and Walker, SIR procedure was intro-

duced by SenGupta and Laha (2008) to determine a change point with von Mises

distribution.

To overcome the problems encountered for Bayesian inferences on circular distribu-

tions with unknown normalising constant, Bhattacharya and SenGupta (2009) pro-

posed to combine importance sampling with MCMC (IS-MCMC) for some circular

distributions.

The aim of this chapter is to model and develop Bayesian analyses procedures for

recently emerging possibly asymmetric bi-modal circular distributions for such data

as are often encountered in environmental and biological real-life data sets as will be

exemplified later in this chapter. Two important models used in analysing such data

16



are based on generalisations of von Mises distribution. These distributions have uni-

modality, asymmetry, as well as bi-modality properties. Main problem for analysing

such distributions is their complex normalizing constants which are not available in

closed forms. These constants lead to unknown normalising constants of their pos-

terior distributions. To overcome this problem, first, we suggest that a sample from

their posterior distributions can be generated using SIR, thereby eliminating the need

to deal with the complex normalizing constants of the posterior distributions. Addi-

tionally, another feature of these distributions is that their uni-modality or bi-modality

are dictated by certain constraints on the parameters. We overcome this problem by

constructing new constrained joint prior distributions dependent parameters.

The rest of this chapter is organized as five sections. In Section 3.2, we explain briefly

the definitions and some properties for two important sub-models of generalisations

of von Mises distribution. Then, first we define conjugate prior distribution for them

and construct joint prior distributions under the functional constraint on the parame-

ters. In Section 3.3 , we explain how to apply SIR method and how to draw samples

from their posterior distribution. In Section 3.4, we present model selection proce-

dures. In Section 3.5, SIR methodology is illustrated with real life examples from

biology and ecology. Section 3.6 includes some concluding remarks.

3.2 Some properties of two sub-models of generalisations of von Mises distri-

bution and their joint conjugate and constrained priors

A wide class of absolutely continuous circular distributions that have an exponential

family was introduced by Maksimov (1967) as follows

f (θ) ∝ exp

(
k

∑
j=1

(a jcos jθ +b jsin jθ)

)
(3.1)

which we we will rewrite as

f (θ) ∝ exp

(
k

∑
j=1

κ jcos j(θ −µ j)

)
(3.2)

where θ ∈ [0,2π), a j = κ jcos jµ j and b j = κ jsin jµ j, j = 1, ..,k. We consider

Bayesian analysis of two important sub-models where k = 2 which leads to general-
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isations of von Mises distribution, namely generalised von Mises (GvM) distribution

which was introduced by Cox (1975) and a three parameter asymmetric generalised

von Mises distribution (AGvM) which was introduced by Kim and SenGupta (2013).

These sub-models can allow a great deal of flexibility in terms of asymmetry and

bi-modality compared to von Mises distribution (vM).

We now review some definitions and define conjugate prior distributions and construct

joint prior distributions of two important sub-models for their Bayesian inferences,

respectively.

3.2.1 Generalised von Mises distribution

We note that a special case of (3.2), where k = 2, a j = κ jcosµ j and b j = κ jsinµ j, j =

1,2 commonly referred to as GvM, has received special attention, e.g. Cox (1975);

Yfantis and Borgman (1982) etc.

GvM distribution has probability density function given by

f (θ) =
1

2πc(δ ,κ1,κ2)
exp(κ1cos(θ −µ1)+κ2cos2(θ −µ2)) (3.3)

where µ1 ∈ [0,2π), µ2 ∈ [0,π), δ = µ1−µ2 and κ1,κ2 > 0. The normalizing constant

is defined as

c(δ ,κ1,κ2) =
1

2π

∫ 2π

0 exp(κ1cos(θ)+κ2cos2(θ +δ ))dθ

An infinite series form of the normalizing constant can be written as

c(δ ,κ1,κ2) = I0(κ1)I0(κ2)+2
∞

∑
i=1

I2i(κ1)Ii(κ2)cos2iδ (3.4)

where Ip(.) is the modified Bessel function of first kind and order p. Some important

inferential features for GvM distribution is presented in e.g. Yfantis and Borgman

(1982).

Note that GvM distribution is uni-modal if κ1 ≥ 4κ2 otherwise bimodal. Under

H0:µ1 = µ2 hypothesis, by differentiation of the pdf we obtain, −κ1sin(θ − µ)−
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4κ2sin(θ −µ)cos(θ −µ) = 0. The solution of this equation is

µ = 0 or µ = arccos
(
−κ1

4κ2

)
, κ2 6= 0 (3.5)

from this solution, the constraint follows.

3.2.1.1 Conjugate prior distribution for GvM

Result 1 : A conjugate prior for GvM distribution is given by

{c(δ ,κ1,κ2)}−rexp(κ1R01cos(µ1−µ01)+κ2R02cos 2(µ2−µ02))

where r is an integer which shows the number of realizations from the joint prior

distribution (r = 1). {c(δ ,κ1,κ2)}−1 is the normalizing constant. µ01, µ02, R01 and

R02 can be considered the vector hyper-parameters of the prior.

Proof: see Appendix A.1

3.2.1.2 Constrained joint prior distribution for GvM

Joint prior distribution p(µ1,µ2,κ1,κ2) of GvM is taken to be the product of the

following three prior distributions as follows

p(µ1,µ2,κ1,κ2) = vM(µ1|µ,κ) ×Unif(µ2|0,π) × f (κ1,κ2) (3.6)

where f (κ1,κ2) is a constrained joint prior distribution of dependent parameters of

GvM as follows

Result 2: The boundary conditions of bi-modal case are considered as 0 < κ1 <

4κ2, 0 < κ2 < ∞. Here, we consider truncated bivariate exponential conditionals

distribution as constrained joint prior distribution f (κ1,κ2) in explained Appendix

A.3

3.2.2 Asymmetric generalised von Mises distribution

As a special case of (3.2), where k = 2, µ j = µ, a j = κ jcosµ and b j = κ jsinµ, j =

1,2 referred to as AGvM introduced by Kim and SenGupta (2013). Here, assume
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that we are given a sample of data (θ1,θ2, ...,θn) from a AGvM distribution defined

as follows

f (θ) =
1

2πc(π

4 ,κ1,κ2)
exp(κ1cos(θ −µ)+κ2sin2(θ −µ)) (3.7)

where µ ∈ [0,2π) is location parameter, and the concentration parameter is κ1 > 0

and κ2 ∈ [−1,1] is a skewness parameter and the normalizing constant is

c(π

4 ,κ1,κ2) =
1

2π

∫ 2π

0 exp(κ1cos(θ)+κ2sin2(θ +
π

4
))dθ .

The infinite series form of the normalizing constant can be obtained by selecting δ =

π/4 in equation (3.4) . Note that this distribution is uni-modal if κ1 ≥ |2κ2| otherwise

bimodal. The defining equation for modes and anti-modes for AGvM distribution is

given by κ1sinθ +2κ2cos2θ = 0, or

arcsin

−κ1±
√

κ2
1 +32κ2

2

8κ2

 , κ2 6= 0 (3.8)

This solution (3.8) (see, proof Kim and SenGupta (2013)) yields the constraint.

3.2.2.1 Conjugate Prior distribution

Result 3: A conjugate prior for AGvM distribution can be defined as shown below

{c(δ ,κ1,κ2)}−rexp(κ1R01cos(µ−µ0)+κ2R02sin2(µ−µ0))

where r is the number of realisations from the joint prior distribution, {c(δ ,κ1,κ2)}−1

is the normalizing constant. µ0 , R01 and R02 are hyper-parameters.

Proof 2: see Appendix A.2

3.2.2.2 Constrained joint prior distributions for AGvM

The joint prior distribution of µ,κ1,κ2 for AGvM can be taken to be the product of the

two prior distributions. The prior distribution of µ is taken as von Mises distribution.
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we consider constrained joint prior distribution of κ1 and κ2 as a bivariate distribution.

The joint prior distribution p∗(µ,κ1,κ2) can then be written as shown below

p∗(µ,κ1,κ2) = vM(µ|µ,κ)× f (κ1,κ2) (3.9)

Based on the dependent parameters which are the shape parameter κ1 and the scale

parameter κ2 of AGvM distribution, the distribution may be uni-modal or bi-modal.

As a result of this we have to define a constrained joint prior distributions for f (κ1,κ2)

as follows

Result 4: The boundary conditions of bi-modal case are considered as 0 < κ1 <

2|κ2|< 2, and they can be written as 0 < κ ′1 =
κ1

2|κ2| < 1 and 0 < κ ′2 =
κ2+1

2 < 1. In or-

der to obtain a sample from f (κ ′1,κ
′
2) distribution, we consider three constrained joint

prior distributions, specifically, bivariate beta distribution, bivariate Dirichlet distribu-

tion and bivariate beta conditionals distribution and then retain only these simulated

values which obey κ1 = 2κ ′1|κ2| and κ2 = 2κ ′2−1.

Some technical and computational details for these constrained joint prior distribu-

tions are explained in Appendix A.4.

3.3 Bayesian analysis for GvM and AGvM with SIR

Suppose that a sample of random variates is easily generated from continuous density

g(ϕϕϕ), but that what is really required is a sample from density as follows

h(ϕϕϕ) =
f (ϕϕϕ)∫

f (ϕϕϕ)dϕϕϕ

More generally, given positive function f (ϕϕϕ), then how can we obtain a sample from

given only a sample from g(ϕϕϕ) and functional form f (ϕϕϕ) ? One of the resulting sam-

pling procedures is known as sampling importance re-sampling, (SIR) . (see, Rubin

(1987) ; Smith and Gelfand (1992) ). SIR methodology has two steps:

a) Draw a sample ϕiϕiϕi, i = 1,2, ...,M i.i.d from g(ϕϕϕ) which includes the support of

f (ϕϕϕ)
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b) Compute sample weights w(ϕiϕiϕi) = f (ϕi)ϕi)ϕi)/g(ϕi)ϕi)ϕi), i = 1, ...M, and calculate

qi = w(ϕiϕiϕi)/
M

∑
j=1

w(ϕ jϕ jϕ j) (3.10)

then draw ϕ∗ϕ∗ϕ∗ from discrete distribution over the ϕ1, ...,ϕMϕ1, ...,ϕMϕ1, ...,ϕM placing mass qi on ϕiϕiϕi. The

new sample ϕ∗ϕ∗ϕ∗ is approximately distributed according to f (ϕϕϕ). This approximation

will be improved by increasing M.

The sets of parameters ϕϕϕ are independent from each other. In other words, the two

sub-models of interest namely GvM and AGvM may be unimodal or bi-modal. To ob-

tain a sample from posterior distributions of GvM and AGvM as described Appendix

A1 and A2, we suggest the following proposal densities:

GvM proposal densities g1(ϕϕϕ) and g2(ϕϕϕ) are as follows

g1(ϕϕϕ) = vM(µ1|µ̂, κ̂)×Unif (µ2|0,π)×Gamma(κ1|αgvm,βgvm)

×Gamma(κ2|α2gvm,β2gvm)

g2(ϕϕϕ) = Unif(µ1|0,2π)×Unif(µ2|0,π)×

Gamma(κ1|αgvm,βgvm)×Gamma(κ2|α2gvm,β2gvm)

AGvM proposal densities g∗1(ϕϕϕ) and g∗2(ϕϕϕ) are given below

g∗1(ϕϕϕ) =vM(µ|µ̂, κ̂)× Gamma(κ1|αagvm,βagvm) ×Unif (κ2|−1,1)

g∗2(ϕϕϕ) =Unif(µ|0,2π) ×Gamma (κ1|αagvm,βagvm) ×Unif(κ2|−1,1)

where µ̂ and κ̂ are maximum likelihood estimates for von Mises distribution. The

parameters of the proposal gamma distributions can be selected around the center of

maximum likelihood estimates of the two sub-models. A useful way of controlling

accuracy of the proposal density g(ϕ)ϕ)ϕ) is Shannon entropy H for a discrete random

variable qi, H = −∑
M
i=1 qilogqi. The smaller values of H for the proposal densities

would be preferable.

Another sampling procedure of SIR is prior to posterior from which the likelihood

function plays an important role as re-sampling probability qi. Since the posterior

density can be written as f (ϕϕϕ|θi) ∝ L(ϕϕϕ,θi)× p(ϕ)ϕ)ϕ), qi is given by

qi = L(ϕiϕiϕi,θi)/
M

∑
j=1

L(ϕ jϕ jϕ j,θi) (3.11)
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In other words, a prior (joint) distribution for unknown parameters may be determined

ϕϕϕ . Samples are then drawn from this prior distribution and likelihood calculated for

each sample. The prior is re-sampled using likelihood as weights. This procedure is

used to obtain a sample the posterior distribution of the parameters using constrained

joint prior distributions of GvM and AGvM distributions in analysing bi-modal di-

rectional data. Here, these constrained joint distributions have complex form, but are

easy to simulate.

3.4 Model selection

In order to compare Bayesian modelling with AGvM, Magvm and Bayesian modelling

with GvM, Mgvm, we consider Bayes factor formula as follows

p(θ |Magvm)

p(θ |Mgvm)
=

∫
ϕ1ϕ1ϕ1

f1(θ |ϕ1)ϕ1)ϕ1)π1(ϕ1ϕ1ϕ1)dϕ1ϕ1ϕ1∫
ϕ2ϕ2ϕ2

f2(θ |ϕ2ϕ2ϕ2)π2(ϕ1ϕ1ϕ1)dϕ2ϕ2ϕ2
= B12 (3.12)

where θ denote observed data points, and ϕϕϕ1, ϕϕϕ2 denote the parameters of each

model. Bayes factor which is shown by B12 is used to compare Magvm, Mgvm models.

Each of the integral is known as a marginal likelihood, and the calculation of each

marginal likelihood is too difficult so we use approximate Bayes factor

B̂12 =

1
n1

∑
n1
i=1 f1(θ |ϕϕϕ

(i)
1 )π1(ϕϕϕ

(i)
1 )/g1(ϕϕϕ

(i)
1 )

1
n2

∑
n2
i=1 f2(θ |ϕϕϕ

(i)
2 )π2(ϕϕϕ

(i)
2 )/g2(ϕϕϕ

(i)
2 )

. (3.13)

where g1(ϕϕϕ1),g2(ϕϕϕ2) are importance functions and π1(ϕϕϕ1),π2(ϕϕϕ2) are conjugate

prior distributions for each model.

For prior to posterior implementation, we also present more traditional methods for

selection of the joint prior distribution or the constrained joint prior distribution of de-

pendent parameters of AGvM distribution, namely, the Akaike information criterion

(AIC), Bayesian information criterion (BIC) and Bayesian model averaging (BMA).

We compute AIC and BIC as AIC = −2log(θ |ϕ̂ϕϕ) + 2× (#number o f parameters)

and BIC =−2log(θ |ϕ̂ϕϕ)+(#number o f parameters)× log(n). For BMA, the poste-

rior model probabilities are defined as p(Mk|θ) =
p(θ |Mk)p(Mk)

∑
K
l=1 p(θ |Ml)p(Ml)

. To compute

model probabilities, we use the simple BIC approximation introduced by Raftery
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(1995) is given by P(Mk|θ)≈ exp(−BICk/2)/∑
K
l=1 exp(−BICl/2) where K is num-

ber of models.

3.5 Real data examples

Our methods proposed in this section can be used for the analysis of (i) symmetric and

uni-modal, (ii) symmetric and bimodal, (iii) asymmetric and uni-modal, (iv) asym-

metric and bimodal data. Here we illustrate the use of our Bayesian approach with

SIR through the analysis of asymmetric-uni-modal fish data, asymmetric-bimodal tur-

tle data. At first, we consider time of low tide of a particular fish. In order to draw

samples from posterior distribution, we applied SIR described in the equation (3.10).

As second example, we consider a study of movement turtle data. Here, we applied

prior to posterior implementation in SIR as given by (3.11) . For each case we sim-

ulate random samples M=1,000,000 from the corresponding proposal densities and

we re-sample 10,000 samples to produce a sample from the desired distribution. The

parameters of the proposal densities are selected as around the center of maximum

likelihood estimates of two sub- models.

3.5.1 Spawning time of fish

To illustrate the use of our Bayesian method, we use the data that were collected

on the spawning time of a particular fish by Robert R. Warner at the University of

California, Santa-Barbara. These data are analysed by Kim and SenGupta (2013)

using maximum likelihood approach. They conclude that AGvM or GvM fits data

set better than vM for asymmetry data . We also re-analyse the data set in Bayesian

perspective. For this data, µ̂ = 2.90, κ̂ = 1.76, Rn1 = 56.37 and Rn2 = 15.55. We

take hyper-parameters r = 0, R01 = 0, R02 = 0 as vague prior and select αagvm=4,

βagvm=2, αgvm = 4 βgvm = 2, α2gvm = 1, β2gvm = 2 as around center of maximum

likelihood estimates of two sub-models.

In order to obtain a sample from posterior distribution both AGvM and GvM, we use

the following proposal densities, respectively.
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AGvM proposal density g∗1(µ,κ1,κ2) is

vM(µ|µ̂, κ̂) ×Gamma(κ1|αagvm,βagvm)× Unif (κ2|−1,1)

GvM proposal density g1(µ1,µ2,κ1,κ2) is

vM(µ1|µ̂, κ̂)× Unif (µ2|0,π) ×Gamma(κ1|αgvm,βgvm) ×Gamma(κ2|α2gvm,β2gvm).

In Table 3.1, the posterior means and the 95% credible intervals for AGvM and GvM

are summarized for five independent SIR algorithms. We also used Shannon entropy

H measure to determine the accuracy of the proposal densities. According to H mea-

sure results as shown in Table 3.1, the proposal densities are suitable for AGvM and

GvM distribution. Fig 3.2 shows the maximum likelihood results with the red vertical

line close to the posterior means with blue line for AGvM distribution. Fig 3.3 shows

the posterior means of GvM distribution with a vertical blue line.
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Table 3.1: Five SIR runs and posterior mean estimates of both AGvM and GvM

AGvM µ̂ 95%CI κ̂1 95%CI κ̂2 95%CI H
2.90 (2.67, 3.12) 1.77 (1.16,2.27) -0.003 (-0.34,0.34) 9.81
2.90 (2.67, 3.12) 1.77 (1.32,2.26) -0.001 (-0.33,0.35) 9.80
2.90 (2.67, 3.13) 1.76 (1.31,2.28) 0.002 (-0.35,0.33) 9.82
2.90 (2.68, 3.12) 1.76 (1.33,2.27) 0.002 (-0.34,0.34) 9.82
2.90 (2.68, 3.12) 1.77 (1.32,2.29) 0.003 (-0.34,0.34) 9.81

GvM µ̂1 95%CI µ̂2 95%CI κ̂1 95%CI κ̂2 95%CI H
2.75 (2.57, 2.94) 0.97 (0.65,1.24) 2.40 (1.69,3.27) 0.71 (0.24,1.18) 8.21
2.76 (2.58, 2.94) 0.97 (0.66,1.25) 2.42 (1.68,3.29) 0.71 (0.24,1.19) 8.21
2.75 (2.58, 2.94) 0.96 (0.66,1.26) 2.41 (1.69,3.27) 0.70 (0.24,1.19) 8.19
2.75 (2.58, 2.94) 0.96 (0.67,1.25) 2.42 (1.70,3.21) 0.72 (0.24,1.19) 8.19
2.75 (2.58, 2.94) 0.96 (0.66,1.25) 2.41 (1.71,3.23) 0.71 (0.25,1.21) 8.21

26



Figure 3.2: Bayesian estimation of AGvM distribution: the vertical red line shows

maximum likelihood estimates, the blue line shows Bayesian estimates of the poste-

rior means

In order to compare models, AGvM and GvM, we compute Bayes factor as B̂12 =

3.46. Then, following Jeffreys (1961) 1, we propose the asymmetric generalised von

Mises distribution for the spawning time data.

Figure 3.3: Bayesian estimation of GvM distribution: the vertical red line shows

maximum likelihood estimates, the blue line shows Bayesian estimates of the poste-

rior means

1 Jeffreys (1961) suggests that there is substantial evidence about model 1 if 3 < BF < 10
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3.5.2 Movement of turtle

For the illustration of the bimodal case of AGvM, we consider turtle data of Gould

cited by Stephens, (1969). The data consists of orientations of 76 turtles after laying

eggs. Previously, turtle data was analysed by using two mixture von Mises distri-

bution. (see, e.g Stephens, (1969); Mardia (1975)) We re-analyse this data and use

three constrained joint prior distributions for dependent parameters of AGvM, namely

bivariate beta Olkin fbo(.), bivariate Dirichlet fbd(.) and bivariate beta conditionals

fbc(.). We take the hyper parameters as shape parameters, a = 750, b = 0.01, c =

1000 both bivariate beta Olkin and bivariate beta Dirichlet distribution. The hyper-

parameters of bivariate beta conditionals distribution are taken as m01 = 100, m11 =

0.03, m02 = 10000, m20 = 1000, m10 = 1000. Here, again, the hyper-parameters

of three constrained joint prior distributions are centred at maximum likelihood esti-

mates of AGvM distribution.

The joint prior distributions of AGvM are given by

p∗1(µ,κ1,κ2) =vM(µ|µ̂, κ̂)× fbo(κ1,κ2)

p∗2(µ,κ1,κ2) =vM(µ|µ̂, κ̂)× fbd(κ1,κ2)

p∗3(µ,κ1,κ2) =vM(µ|µ̂, κ̂)× fbc(κ1,κ2)

where µ̂ = 1.12 and κ̂ = 1.14 are maximum likelihood estimates of von Mises distri-

bution for turtle data. In this example, we compare three different joint prior distri-

butions of AGvM model by the model selection criteria. In Table 3.2, Akaike infor-

mation criteria, (AIC) and Bayesian information criteria (BIC) for AGvM model are

summarized for three different joint prior distributions. The smallest criteria denotes

the best model. Based on the results of model selection criteria, it is useful to use

p∗1(µ,κ1,κ2) as the joint prior for AGvM. This is an expected result, as the number of

hyper-parameters is increased, SIR technique may not be suitable. For instance, the

constrained joint prior distribution which is bivariate beta conditionals distribution

has six hyper-parameters and p∗3(µ,κ1,κ2) has a slightly higher AIC and BIC com-

pared to the others. Others may consider flexible bivariate beta distribution which is

introduced by Arnold and Tony (2011) as the constrained joint prior distribution for

dependent parameters, but, we eliminate this because of the number of parameters

and it not being available in closed form. However, this distribution may be consid-
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ered under the positive and the negative correlations. We propose three constrained

joint prior distributions for Bayesian analysis of the AGvM distribution for depen-

dent parameters. Among these, the bivariate beta distribution can be proposed as the

constrained joint prior distribution for AGvM distribution.

Table 3.2: Prior selection for turtle data

AGvM p∗1(µ,κ1,κ2) p∗2(µ,κ1,κ2) p∗3(µ,κ1,κ2)

AIC 224.76 224.82 225.07
BIC 231.75 231.81 232.06

From these results, we get these estimates as µ̂ = 1.74, κ̂1 = 0.87 and κ̂2 = −1.00

using joint prior p∗1(µ,κ1,κ2). To compare two mixture von Mises model and AGvM

model, we use BIC and BMA. For two mixtures von Mises distribution, we take

parameter estimates of Mardia’ (1975).

Table 3.3: Comparison of the models for turtle data

Model BIC P(Mk|θ)
Two mixture von Mises 232.48 0.41
AGvM 231.75 0.59

(a) (b)
Figure 3.4: (a) Comparison of model fits for turtle data (b) Posterior distribution for

Bayesian model averaged for turtle data

From Table 3.3 , AGvM model is more utility than two mixture von Mises distribution

in terms of comparison criteria. Fig. 3.4.a shows the fits of two mixture von Mises
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and AGvM models. Furthermore, the posterior model probabilities were found to be

0.41 for two mixture von Mises model, 0.59 for AGvM model. With these values, we

plot BMA posterior distribution for turtle data displayed in Fig. 3.4.b.

3.6 Concluding remarks

In this study, we have provided a fully Bayesian analysis of two sub-models of gen-

eralisations of von Mises distribution in analysing asymmetric and bi-modal circular

data. SIR method presents both a good alternative and a simple form in Bayesian

analysis of circular distributions which have complex normalising constants. To han-

dle their complex normalising constants, we applied SIR method and consider two ap-

proaches, firstly, we assume that the parameters are independent from each other, then

we use SIR algorithm to obtain a sample from their posterior distributions. Secondly,

if the parameters are functionally dependent, then we propose joint prior distributions

using likelihood principle in SIR. The main property of the second approach is that

their complex normalizing constants can be ignored. Moreover, we also propose con-

strained joint prior distributions under re-parametrization for depended parameters of

AGvM and GvM. Additionally, for the determination of hyper-parameters, maximum

likelihood estimation provides global maximum for our case and hence SIR method

is not further needed here for that purpose.

We would like to emphasize that these sub-models cover uni-modality, asymmetry as

well as bi-modality.
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CHAPTER 4

BAYESIAN SEMI-PARAMETRIC MODELS FOR

MULTI-MODAL CIRCULAR DATA

In many environmental and ecological data analysis such as wind directions, dihedral

angels and orientation of a specific bird, the empirical distribution displays a multi-

modal structure. One way to deal with the analysis of such data sets is to consider

k-mixture distribution where k is the number of mixing components which is often

unknown. In this chapter, we aim at addressing this problem and adopting Dirich-

let process (DP) mixture model with mixtures of von Mises (vM) and mixtures of

wrapped Cauchy (wC) distributions. In fact, the main problem about model uncer-

tainty is to choose an appropriate model via a suitable probability distribution. Re-

cently, there has been an increasing interest in the use of Bayesian non-parametric

models based on probability distributions over spaces of distributions. These models

are not commonly used in analysing circular data due to the difficulty of obtaining

a sample from the posterior distribution of the parameters of the component distri-

butions. Our proposed models overcome this difficulty and we present a simulation

study and real data examples to illustrate the usefulness and flexibility of them.

4.1 Introduction

In many environmental and ecological researches, data are directional such as wind

directions, the orientations of turtles and spawning times of a particular fish. Ex-

ploratory data analyses reveal that some of such data are multi-modal, for example

turtle data as seen in Fig 4.1 . For the analysis of multi-modal circular data, one may
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consider using mixtures of von Mises (vM) distribution as follows

f (θi; p1, ..., pC,µ1, ...,µC,κ1, ...,κC) =
C

∑
k=1

pk f (θi; µk,κk), for i = 1, ...,n (4.1)

where pk’s are unknown mixing probabilities, ∑
C
k=1 pk = 1, µk and κk are circu-

lar mean and concentration parameters of the kth mixing distribution respectively,

f (θi; µk,κk),k = 1, ...,C are vM probability density function of participating in the

mixture.

The number of modes is generally unknown and the challenge with which the analyst

is faced is determining the number of modes. To overcome this problem, we adopt a

Bayesian approach based on Dirichlet process (DP) mixture model.

DP mixture model approaches are commonly used in analysing linear data while these

approaches in analysing circular data are limited. This is due to the fact that it is

hard to deal with the complicated normalizing constant which is not available in their

closed forms and some burdensome problems in Markov chain Monte Carlo (MCMC)

methods.

Figure 4.1: Rose diagram of turtle data

In the context of DP mixture for circular data modelling, Ghosh et al (2003) con-

sidered DP mixture for vM distribution for the problems of prediction and test of

hypothesis, but they worked under the assumption of having same concentration pa-
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rameter κ over the mixing distributions. Bhattacharya and SenGupta (2009) con-

sidered DP mixture vM model for determining an unknown number of parameters.

Their approach works well under the assumption of a single concentration parameter

κ for all the distributions participating to the mixture, but they do not pursue their

approach for multiple concentration parameters κk due to burdensome problems in

their MCMC applications. Recently, Antonio et al. (2014) have provided DP mixture

circular models for projected and wrapped normal distributions due to the complex

normalizing constant of vM probability density function.

In the context of kernel density estimation for circular data, Hall et al (1987) used

cross-validation and minimization based on mean squared error loss and Kullback-

Leibler loss for selecting the bandwidth. Taylor (2008). assumed the underlying

population to be von Mises and used von Mises kernel. Oliviera et al. (2012) proposed

a new selector based on finite mixture vM densities.

Focus of the current chapter is to detect the number of modes of both vM Mises and

wrapped Cauchy (wC) distributions while relaxing the assumption for equal concen-

tration parameters. Benefit of DP mixture model approach in the analysis of multi-

modal data is twofold: 1. offers an efficient method to analyse the dataset in the

presence of unknown number of mixture components, 2. gives an estimation about

the number of mixture components. Based on the latter result, one may re-analyse

the dataset using a more appropriate distribution. For instance, if DP mixture method

estimates the number of mixing components to be 2, then one may consider fitting a

bimodal distribution.

The rest of this chapter is organized as five sections. Section 4.2 gives a brief sum-

mary to DP mixture model. Section 4.3 gives our proposed DP mixture approach

for common mixture circular distributions with unequal concentration parameters. In

Section 4.4 , we evaluate the accuracy of our approach for circular data analysis using

simulated data sets and apply it to turtle and ant data. Section 4.5 gives some discus-

sion and in Appendix B.3 , we set forth to apply this process with our OpenBUGS

codes.
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4.2 DP mixture models

Modelling a distribution as a mixture of simpler distributions is useful both as a non-

parametric density estimation method and as a way of identifying latent classes that

can explain the dependencies observed between variables. Mixture models can easily

be handled in a Bayesian framework by employing a prior distribution for mixing

weights. In recent years, there has been a remarkable increase in the use of DP mix-

ture model depending on the development of Markov Chain Monte Carlo methods for

obtaining a sample from the posterior distribution of the parameters of the component

distributions.

The earliest attempt with respect to Bayesian non-parametric studies was by Fergu-

son (1973). Blackwell and MacQuenn (1973) showed the marginal distribution of

latent class variables that had Polya-Urn representation. This result leads to work on

computational procedures for Bayesian non-parametric models.

DP is defined by Ferguson (1973) as follows

G∼ DP(G0,α)

where G0 represents a base distribution, α is the concentration parameter which

shows whether G0 is in the close realisation of G. A distribution consist of all

probabilities for partition of sample space Ω, that is, for all partitions denoted by

(A1, ...,Ak),

(G(A1), ...,G(Ak))∼ Dir(αG0(A1), ...,αG0(Ak)) (4.2)

where Dir denotes Dirichlet distribution.

In DP mixture model, DP is used as a nonparametric prior by Antoniak (1974). A

DP mixture model is shown as in the following hierarchical Bayesian specification

θi|ϕi ∼ F(ϕi)

ϕi|G∼ G (4.3)

G∼ DP(G0,α)

where θ1, ...,θn is a set of independent circular observations, and we model circular

data from which θi, i = 1, ...,n are drawn from infinite mixture circular distribution

F(ϕϕϕ). The prior for infinite mixture distribution is DP.
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Another form of writing in terms of finite mixture model with C components is shown

as in the following (Neal (2000)):

θi|Ki,ϕϕϕ ∼ F(ϕKi)

Ki|ppp∼ Discrete(p1, ..., pC)

ϕk ∼ G0, k = 1, ...,C

ppp∼ Dir(α/C, ...,α/C) (4.4)

where Ki denotes the latent class to which the observation θi belongs. The parameters

ϕk characterize the distribution of observations for each class k. The weights for

classes, ppp = (p1, ..., pC) are given by Dirichlet prior, with parameter α/C. Taking the

limit as C goes to infinity of finite mixture models with C components can be obtained

an equivalent model.

4.2.1 Stick breaking construction

Sethuraman (1994) defines the representation of DP in terms of stick breaking con-

struction. Accordingly, for qi ∼ Beta(1,α), i = 1,2, ...,

p1 =q1

p2 =(1−q1)q2

p3 =(1−q1)(1−q2)q3

...

This recursive relation can be shown as pi = qi ∏
i−1
j=1(1−q j), the stick breaking rep-

resentation of G is given by

G =
∞

∑
i=1

piIϕi, ϕi ∼ G0

where Iϕi is an indicator function at ϕi. This representation of DP shows that G is

discrete distribution with probability one.

Ishwaran and Zarepour (2000) and Ishawran and James (2001) propose that this

approach may be truncated at C components, that is, ∑
C
i=1 pi = 1 and truncated DP
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(TDP) can be shown as follows:

ϕi|G∼ G

G∼ T DP(C,G0,α)

By letting C to be the maximum number of components, the infinite series above can

be approximated by its finite counterpart as shown below
∞

∑
i=1

piIϕi ≈
C

∑
i=1

piIϕi (4.5)

Equation 4.5 shows that G converges almost surely to a DP with αG0. Finally, it can

be written as G→ DP(α,G0).

4.3 DP mixture circular models with stick breaking construction

In this section, we introduce two DP mixture circular models in analysing multi-

modal circular data. The first modelling is DP mixture vM model. The second model,

DP mixture wC model, considers for heavy peaks around on unit circle.

4.3.1 DP mixture von Mises model

Here, we consider a DP mixture vM model as follows

θi|Ki,ϕϕϕ ∼vM(µKi,κKi), i = 1, ...n

Ki|ppp∼Discrete(p1, ..., pC) (4.6)

ϕk =(µk,κk)∼ G0, k = 1, ...,C

α ∼Gamma(v1,v2)

where G0 is a bivariate distribution. We will consider vM(µ0,κ0)⊗Gamma(a0,b0)

for µk and κk. Ia(b) denotes unit mass at a = b, ϕϕϕ = (ϕK1, ...,ϕKn), KKK = (K1, ...,Kn) ∈
(1, ...,C)n under G and the weights ppp = (p1, ..., pC) are determined by stick breaking

algorithm. For qk ∼ Beta(1,α), and the foregoing notation is shown as pk = (1−
qk−1)qk pk−1/qk−1. Note that this algorithm has been already truncated so that the

stick is only broken C times, and G is defined as shown below:

G =
C

∑
k=1

pkIϕk , ϕk ∼ G0,
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A common choices for the parameter α of Dirichlet process is Gamma(2,2) distribu-

tion in which both shape and scale parameters are equal to 2. This prior is a good

choice for high and low values of α . The high values of α denote the number of mix-

ture components too high, while the low values of α denote the number of mixture

components too low.

For κk component, instead of gamma prior, we can use a uniform prior as shown

below

κk|a0,b0 ∼ Uniform(a0,b0)

Hyper-parameters a0,b0 can be selected based on the value of Bessel functions as

described in Chapter 2. In particular, for low concentration parameter κ , we may

choose as a0 = 0, b0 = 3.75, respectively.

4.3.2 DP mixture wrapped Cauchy model

A DP mixture wC model is defined as follows

θi|Ki,ϕϕϕ ∼wC(µKi,ρKi), i = 1, ...n

Ki|ppp∼Discrete(p1, ..., pC) (4.7)

ϕk =(µk,ρk)∼ G0, k = 1, ...,C

α ∼Gamma(v1,v2)

In this case, we select von Mises-Beta baseline prior G0, that is, the components of ϕk

are independently distributed as vM(µ0,κ0)⊗Beta(a0,b0) for µk and ρk simultane-

ously. α has gamma prior distribution with shape parameter v1 and scale parameter

v2.

4.3.3 Inference via Gibbs sampler

To obtain direct inference for G, we use blocked Gibbs sampling approach in de-

scribed Ishawran and James (2002) for our model specifications . The posterior dis-
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tribution of G|θθθ can be written as shown below

[ϕ, p,Kϕ, p,Kϕ, p,K,α|θθθ ] ∝

n

∏
i=1

vM(θi|µKi,κKi)×vM(µKi|µ0,κ0)×Gamma(κKi|a0,b0)

×
n

∏
i=1

Discrete(Ki|pC)×π(pC = pC(qC−1))×Gamma(α|v1,v2) (4.8)

π denotes the prior distribution of ppp, which is obtained by stick breaking algorithm

with Beta priors. The joint posterior distribution is not available in closed form. How-

ever, to draw a random sample, we can use Gibbs sampling using the full conditional

distributions as follows

[ϕϕϕ|KKK,ppp,α,θθθ ] =[ϕϕϕ|KKK,θθθ ] ∝

n

∏
i=1

vM(θi|µKi,κKi)×vM(µKi|µ0,κ0)

×Gamma(κKi|a0,b0)

[KKK|p,ϕp,ϕp,ϕ,α,θθθ ] =[KKK|p,ϕ,θp,ϕ,θp,ϕ,θ ] ∝

n

∏
i=1

vM(θi|µKi,κKi)×Discrete(Ki|pC)

[ppp|K,ϕK,ϕK,ϕ,α,θθθ ] =[ppp|KKK,α] ∝

n

∏
i=1

Discrete(Ki|pC)×π(pC = pC(qC−1))

×Gamma(α|v1,v2)

[α|p,ϕ,Kp,ϕ,Kp,ϕ,K,θθθ ] =[α|ppp] ∝ π(pC = pC(qC−1))×Gamma(α|v1,v2) (4.9)

This procedure generates the samples from posterior distribution [ϕ, p,Kϕ, p,Kϕ, p,K,α|θθθ ] and

for each cycle of Gibbs sampler, we can oversee (ϕ∗, p∗ϕ∗, p∗ϕ∗, p∗) which are drawn the samples

of (ϕ, pϕ, pϕ, p) . These samples generate a random probability measure as shown below:

G∗(.) =
C

∑
k=1

p∗kIϕ∗k
(.)

where G∗ can be used to directly estimate posterior distribution G|θθθ . We may start

from initial values (ϕ(0), p(0),K(0)ϕ(0), p(0),K(0)
ϕ(0), p(0),K(0),α(0)), and we may moderately simulate (ϕ(t), p(t)ϕ(t), p(t)ϕ(t), p(t),

K(t)K(t)K(t),α(t)) from the conditional distributions in the equation 4.9. In order to choose

the initial values, we may run a trial MCMC algorithm , and then, we can use the

final iteration of MCMC algorithm for inference. In addition, the full conditional

distributions of DP mixture wC model are defined a very similar way to DP mixture

vM model.

Finally, the derivations of the full conditional distributions for DP mixture vM and wC

models are given in Appendix (B.1) and (B.2) respectively. Our OpenBUGS codes

38



for DP circular mixture models are also given in Appendix (B.3). In addition, the im-

plementation of mixture Dirichlet process for linear data in WinBUGS or OpenBUGS

can be found in Congdon, (2001) .

4.4 Applications

In this section, we use four simulated data examples, a Monte Carlo study and two

real data examples to illustrate our proposed models. For circular data generation, we

use circular package in R. On the other hand, all inferences is coded in OpenBUGS

with same burn in (5000 iterations). In all cases, we save a posterior Monte Carlo

sample of size 5000 iterations. Moreover, assessment of convergence, we monitored

the dynamic traces of Gibbs sampling and used the value of the Brooks-Gelman-

Rubin ratio. In addition, for comparison, we use circular kernel density estimation in

R. For the bandwidth selection of circular kernel density approach can be used bw.nrd

and bw.cv.ml functions in circular package of in R.

4.4.1 Simulated data examples

In order to assess the accuracy of the proposed mixture DP approach, we designed

the following simulation study. The following four distinct models are considered

for circular data generation. Then for each simulated data set, the proposed method

is employed to estimate the model parameters. Resulting estimates are compared

against the true parameters to evaluate the performance of the method.

θi ∼ 0.1vM(1,1)+0.2vM(2,1)+0.7vM(3,2) i = 1, ...,n (4.10)

where n = 1000 observations which have lower concentration were simulated from

the mixture of three vM distributions.

θi ∼ 0.1vM(1,4)+0.2vM(3,5)+0.7vM(2,5) i = 1, ...,n (4.11)

where n = 1000 observations which have larger concentration were simulated from

the mixture of three vM distributions.

θi ∼ 0.2wC(1,0.2)+0.3wC(0.5,0.3)+0.5wC(3,0.4) i = 1, ...,n (4.12)
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where n = 1000 observations which have lower concentration were simulated from

the mixture of three wC distributions. These true models encompass various different

mixture scenarios as seen in Fig. 4.2 and Fig. 4.3

θi ∼ 0.2wC(1,0.9)+0.3wC(0.5,0.8)+0.5wC(3,0.7) i = 1, ...,n (4.13)

where n = 1000 observations which have larger concentration were simulated from

the mixture of three wC distributions.

Table 4.1: Posterior means of the mixing probabilities and parameters of the mixture
for simulated data from three mixture vM distribution

Lower κ (model 4.10) Larger κ (model 4.11)
c p̂c µ̂c κ̂c p̂c µ̂c κ̂c

1 0.84 2.95 1.85 0.83 2.00 3.86
2 0.13 0.98 2.10 0.13 3.20 6.00
3 0.01 0.15 2.01 0.04 0.60 7.68
4 0.001 0.03 1.83 0.005 0.20 7.04
5 0.0001 0.002 1.86 0.00009 0.07 6.98
6 0.00002 0.001 1.90 0.00003 0.03 6.90
7 0.000002 0.00002 1.87 0.00001 0.008 6.87
8 0.0000004 0.003 1.89 0.000005 0.01 6.82
9 0.00000005 0.002 1.87 0.000002 0.02 6.84

10 0.00000001 0.001 1.86 0.000003 0.002 6.90

We choose a maximum value for unknown modal number as C=10. To avoid con-

vergence problems for lower κ data set, we take hyper-parameters as µ0 = 0,κ0 =

7,a0 = 0,b0 = 3.75, we also take a fixed value as α = 0.5. For larger κ , we take α

and κk parameters as shown below

α ∼ Gamma(2,2), κk ∼ Uniform(3.75,10)

Posterior means of the mixing probabilities and parameters both lower concentration

and larger concentration parameters κ for vM distribution are summarized in Table

4.1 , respectively. In lower κ , 98 % of the simulated data set is drawn from three

distinctive mixture clusters. In larger κ , there are three components with associated

probabilities, 0.83, 0.13, 0.04, respectively. From these results, we observe that the

finding cluster number is the same as true cluster size of simulated from three mixture

vM distribution.
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On the other hand, for wC distribution, we use the following steps:

µk ∼ vM(0,7),ρk ∼ Beta(0.5,0.5) α ∼ Gamma(1,1)

Posterior means of the mixing probabilities and parameters both lower concentration

and larger concentration parameter for wC distribution are summarized in Table 4.2

, respectively. 98 % of the simulated data set is drawn from three distinctive clusters

in lower ρ . Three components of the associated probabilities are 0.49, 0.22, 0.26, in

larger ρ respectively. Consequently, our model is also working well for wC distribu-

tion, but it is observed that the results of the larger ρ parameters are slightly better

than the results of lower ρ parameters.

Table 4.2: Posterior means of the mixing probabilities and parameters of the mixture
for simulated data from three mixture wC distribution

Lower ρ (model 4.12) Larger ρ (model 4.13)
c p̂c µ̂c ρ̂c p̂c µ̂c ρ̂c

1 0.68 2.93 0.31 0.49 3.02 0.69
2 0.19 0.32 0.43 0.22 0.99 0.90
3 0.07 0.13 0.44 0.26 0.50 0.81
4 0.03 0.1 0.49 0.02 0.07 0.54
5 0.01 0.05 0.49 0.005 0.01 0.49
6 0.005 0.001 0.50 0.002 0.008 0.50
7 0.003 0.002 0.50 0.0001 0.02 0.50
8 0.002 0.004 0.51 0.00006 0.003 0.51
9 0.001 0.009 0.49 0.00004 0.005 0.49
10 0.002 0.02 0.51 0.00007 0.009 0.51

We compare these with kernel density estimation, the predictive density estimation

of mixture DP and true model for each simulated data set in Fig 4.2 and Fig 4.3 ,

respectively. The predictive density estimations of mixture DP approach are closer to

true models.

4.4.2 Monte Carlo study

In this section, we conducted a Monte Carlo study to investigate the performance

of the proposed approach for a number of two mixture vM and wC distributions.
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(a) Lower κ (Model 4.10) (b) Larger κ (Model 4.11)
Figure 4.2: Comparison of mixture DP vM model and kernel density estimation and

true density for simulated data from three mixture vM distribution

(a) Lower ρ (Model 4.12) (b) Larger ρ (Model 4.13)
Figure 4.3: Comparison of mixture DP wC model and kernel density estimation and

true density for simulated data from three mixture wC distribution
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The sample size was chosen as 100 and 500, respectively and 250 replicates were

performed in each simulation design.

First, we examine a simulated series with parameters as µµµ = (µ1,µ2) = (1,3), κκκ =

(κ1,κ2) = (5,8), ppp = (p1, p2) = (0.75,0.25) from two mixture vM distribution. The

rose diagram of this simulated data clearly shows bi-modality in Fig. 4.4.

Figure 4.4: Rose diagram of two mixture vM data

In proposed models, first, we choose both as C = 2 for a number of latent class.

(same as the number of cluster size with simulated data) and choose C = 3 for each

simulation design. Additionally, for DP mixture vM model parameters, we set as µk∼
vM(0.1,0.1), κk ∼Gamma(0.01,0.01), k = 1,2 and α ∼Uniform(0.5,10) while DP

mixture wC model parameters, we set as µk ∼ vM(0.1,0.1), ρk ∼ Beta(1,1), k = 1,2

and α ∼ Uniform(0.5,10)

The resulting estimators and their Monte Carlo properties and true values of estima-

tors given in parenthesis for both DP mixture two vM model (C = 2) and DP mixture

three vM model (C = 3) are presented in Table 4.3 and in Table 4.4. Also, box-plots

for estimators obtained from the Monte Carlo experiment for C = 2 are given in Fig

4.5, Fig 4.6 and Fig. 4.7.

Performance of our estimation method is evaluated through relative bias (R. Bias),

Monte Carlo standard error (MCSE), and standard error (SE). These performance
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Figure 4.5: Boxplots of estimated circular mean directions for two mixture vM dis-

tributions

Figure 4.6: Boxplots of estimated concentration parameters for two mixture vM dis-

tributions
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Figure 4.7: Boxplots of estimated weight parameters for two mixture vM distributions

measures are computed as

R.Bias =

( ¯̂
β −β

β

)

where β is true value for estimate of interest, ¯̂
β = ∑

B
i=1 β̂i/B, B is the number of

replicates performed, β̂i is the estimate of interest within each of the i = 1,2, ...,B. In

order to determine an assessment of the uncertainty in estimate of interest between

simulations, we use MCSE, which is calculated as the standard deviation of the esti-

mates of interest from all simulations,
√

[1/(B−1)]∑B
i=1(β̂i− ¯̂

β )2. Alternatively, the

average of the estimated within simulation SE for the estimate of interest is computed

as ∑
B
i=1 SE(β̂i)/B. If the estimates are unbiased, then, MCSE should be close to the

average of the estimated within simulation SE (see; Schafer and Graham (2002)).

In order to compare C = 2 and C = 3 models, we use Deviance and BIC model crite-

ria. We compute these criteria using the sets of parameters, among MCMC draws, that

maximize the posterior distribution denoted by MAP (Maximum at Posterior). Let ψ̂̂ψ̂ψ

the MAP estimators, then we compute Deviance and BIC as Deviance=−2log(θ |ψ̂ψψ)

and BIC=−2log(θ |ψ̂ψψ)+ (#number o f parameters)× log(n). The lowest criteria in-

dicate the best model and their standard errors are given in parenthesis.

From these results we observe that concentration parameters κ1, κ2 appear to have
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small relative bias. Other all of five parameters are approximately unbiased for n =

100. For n = 500, we observe that same results but less Monte Carlo standard error

(MCSE) and standard error (SE). To compare DP mixture vM models for C = 2 and

C = 3, we compute Deviance and BIC criteria. These criteria give a slight to the true

two group model (C = 2) and they show clearly favours true model in Table 4.5.

Table 4.3: Monte Carlo study results for DP mixture vM model (C = 2)

n = 100 Est. R.Bias MCSE SE n = 500 Est. R.Bias MCSE SE
µ̂1 (1) 1.00 0 0.06 0.06 µ̂1 1.00 0 0.03 0.03
µ̂2 (3) 2.98 -0.006 0.09 0.01 µ̂2 3.00 0 0.04 0.04
κ̂1 (5) 4.99 -0.004 0.78 0.85 κ̂1 4.66 -0.07 0.41 0.39
κ̂2 (8) 8.02 0.003 3.33 3.04 κ̂2 7.79 -0.03 1.29 1.26
p̂1 (0.75) 0.74 -0.01 0.05 0.05 p̂1 0.75 0 0.02 0.02
p̂2 (0.25) 0.26 0.04 0.05 0.05 p̂2 0.25 0 0.02 0.02
α̂ (-) 1.44 - 0.15 1.05 α̂ 1.40 - 0.07 0.99

Table 4.4: Monte Carlo study results for DP mixture vM model (C = 3)

n = 100 Est. R.Bias MCSE SE n = 500 Est. R.Bias MCSE SE
µ̂1 2.37 - 1.01 1.06 µ̂1 2.14 - 1.10 0.87
µ̂2 (3) 2.91 -0.03 0.39 0.18 µ̂2 3.00 0 0.13 0.06
µ̂3 (1) 1.00 0 0.09 0.07 µ̂3 1.00 0 0.04 0.03
κ̂1 2.46 - 3.14 2.98 κ̂1 3.68 - 2.48 2.42
κ̂2 (8) 7.92 -0.01 3.39 2.99 κ̂2 8.15 0.01 1.92 1.54
κ̂3 (5) 5.21 0.04 0.98 0.90 κ̂3 4.75 -0.05 0.47 0.41
p̂1 0.08 - 0.09 0.07 p̂1 0.07 - 0.09 0.07
p̂2 (0.25) 0.21 -0.16 0.08 0.06 p̂2 0.22 0.12 0.06 0.04
p̂3 (0.75) 0.71 -0.05 0.09 0.07 p̂3 0.71 -0.05 0.08 0.07
α̂ 5.81 - 0.85 2.34 α̂ 5.77 - 0.84 2.35

In second example, we assume model parameters as µµµ = (µ1,µ2) = (0.5,3), ρρρ =

(ρ1,ρ2) = (0.9,0.7), ppp = (p1, p2) = (0.20,0.80) from two mixture wrapped Cauchy

distribution. Rose diagram of two mixture wC simulated data is displayed in Fig. 4.8.

We find these estimates for C = 2 as µ̂̂µ̂µ = (0.50,3.00), ρ̂̂ρ̂ρ = (0.88,0.69), p̂̂p̂p =
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Table 4.5: DP mixture vM model fits for Monte Carlo study

C=2 C=3
n=100
Deviance 223.48(16.24) 227.71(16.50)
BIC 246.51 264.55
n=500
Deviance 1143.07(36.79) 1144.91(33.62)
BIC 1174.15 1194.62
No of parameters 5 8

Figure 4.8: Rose diagram of two mixture wC data

(0.20,0.80) and the estimate concentration parameter of DP is α̂ = 5.23 for n = 100.

Additionally, for n = 500, we find same results but less MCSE and SE compared to

n = 100 in Table 4.6. Finally, these results show that the estimators of all six pa-

rameters are approximately unbiased. The box-plots of estimated parameters for DP

mixture wC model for C = 2 are displayed in Fig 4.9, Fig 4.10 and Fig. 4.11. For

C = 3, we find similar estimates, but the estimates have more MCSE and SE com-

pared to C = 2 in Table 4.7.

Similarly, to compare DP mixture wC models for C = 2 and C = 3, we compute

Deviance and BIC criteria. These criteria give a slight to the true two group model

(C = 2) and they show clearly favours true model in Table 4.8.
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Figure 4.9: Boxplots of estimated circular mean directions for two mixture wC dis-

tributions

Figure 4.10: Boxplots of estimated concentration parameters for two mixture wC

distributions
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Figure 4.11: Boxplots of estimated weight parameters for two mixture wC distribu-

tions

4.4.3 Real data examples

In this section, we considered two real data sets to illustrate our circular DP modelling

described in Section 4.3. Firstly, we used turtle data which is cited by Stephens

(1969). Secondly, we analysed ant data that were randomly selected during an animal

orientation experiment described in Jander (1957 . Both data sets can be found in

CircNNTSR package in R as online or in Fisher’s (1991) book.

4.4.3.1 Turtle data

We re-consider turtle data by Gould’s cited by Stephens, (1969). The data consists of

orientations of 76 turtles after laying eggs. Previously, Stephens (1969) analysed this

data set using two component mixture vM distribution under the assumption of same

concentration and modes π radians. Mardia (1975) fitted two mixture vM distribu-

tion with having different concentration and modes parameters. Wang and Gelfand

(2013) used the general projected normal model to fit this data and two mixture com-

ponent vM distribution is not plausible for model specification. Main drawback of

these approaches is that number of modes is fixed empirically prior to the estima-
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Table 4.6: Monte Carlo study results for DP mixture wC model (C = 2)

n = 100 Est. R.Bias MCSE SE n=500 Est. R.Bias MCSE SE
µ̂1 (0.50) 0.50 0 0.04 0.05 µ̂1 0.50 0 0.02 0.02
µ̂2 (3.00) 3.00 0 0.06 0.06 µ̂2 3.00 0 0.03 0.03
ρ̂1 (0.90) 0.88 -0.02 0.05 0.06 ρ̂1 0.90 0 0.02 0.02
ρ̂2 (0.70) 0.69 -0.01 0.05 0.05 ρ̂2 0.70 0 0.02 0.02
p̂1 (0.20) 0.20 0 0.03 0.05 p̂1 0.20 0 0.01 0.02
p̂2 (0.80) 0.80 0 0.03 0.05 p̂2 0.80 0 0.01 0.02
α̂ 5.23 - 0.32 2.52 α̂ 5.28 - 0.14 2.51

Table 4.7: Monte Carlo study results for DP mixture wC model (C = 3)

n = 100 Est. R.Bias MCSE SE n=500 Est. R.Bias MCSE SE
µ̂1 (0.50) 0.53 0.06 0.30 0.07 µ̂1 0.50 0 0.02 0.02
µ̂2 (3.00) 2.99 -0.003 0.35 0.46 µ̂2 3.00 0 0.14 0.07
µ̂3 2.89 - 0.51 0.43 µ̂3 2.80 - 0.71 0.74
ρ̂1 (0.90) 0.87 -0.03 0.07 0.06 ρ̂1 0.90 0 0.02 0.02
ρ̂2 (0.70) 0.68 -0.03 0.13 0.16 ρ̂2 0.72 0.03 0.07 0.05
ρ̂3 0.68 - 0.15 0.12 ρ̂3 0.62 - 0.13 0.15
p̂1 (0.20) 0.19 -0.05 0.03 0.05 p̂1 0.19 -0.05 0.02 0.03
p̂2 (0.80) 0.20 - 0.18 0.17 p̂2 0.45 - 0.28 0.17
p̂3 0.61 - 0.17 0.18 p̂3 0.36 - 0.27 0.17
α̂ 4.60 - 1.40 2.46 α̂ 2.89 - 1.82 2.01

tions. On the other hand, our approach is flexible that number of modes is left un-

specified and estimated along with other parameters. For prior distributions of DP

mixture vM model, we consider concentrated (informative) priors for circular mean

parameters as µk ∼ vM(4,7) and for other parameters, we consider weak priors as

κk ∼Gamma(6,1) and α ∼Gamma(2,2). For turtle data, if we consider weak priors

for µk, there arise convergence problem for µk. In order to handle this problem, we

suggest to use concentrated priors or informative priors for µk. Main reason of con-

vergence problem is that model complexity is increasing or C is increasing. Hence,

weak priors might not provide enough information in the data for such a complex

hierarchical structure. Fig. 4.12 a shows posterior mean density estimate from our

mixture DP vM approach with kernel density estimate. Table 4.10 is summarized
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Table 4.8: DP mixture wC model fits for Monte Carlo study

C=2 C=3
n=100
Deviance 259.42(18.35) 261.57(19.80)
BIC 282.44 298.42
n=500
Deviance 1320.01(42.46) 1321.75(40.92)
BIC 1343.04 1371.45
No of parameters 5 8

(a) (b)
Figure 4.12: (a) Comparison of mixture DP vM model and kernel density estimation

for turtle data. (b) Identified clusters for turtle data
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Table 4.9: Estimates of parameters for turtle data

Method SU EM FCD Spurr and Koutbeiy MSBC DP vM (C=2)
µ̂1 67.67 63.47 63.50 63.20 63.15 63.31
µ̂2 242.83 241.20 241.25 240.20 241.13 241.15
κ̂1 3.00 2.65 2.65 2.91 2.75 3.18
κ̂2 4.49 8.61 7.43 4.81 7.43 5.37
p̂ 0.82 0.84 0.84 0.82 0.83 0.82
U2 0.032 0.019 0.019 0.018 0.018 0.020

posterior inferences of turtle data for C = 10. As far as the concentration parameter

α is concerned, we consider three assumptions on it as α is set to 0.5, or uniform

distribution with support (0.5,10) or Gamma distribution with shape and scale param-

eters that are equal to 2, respectively. Three inferences on α parameter have similar

results, that is, the specific choice of the concentration parameter α is does not affect

to model parameters’ posterior results. For α ∼ Gamma(2,2), we observe that there

are two distinct clusters about % 91, associated with probabilities, 0.81, 0.10, respec-

tively in Table 4.10. Here, we re-analyse this data for C = 2, but we use weak priors

as µk ∼ vM(0.1,0.1), and then, we get similar results with C = 10. Additionally,

we make a comparison other methods which are self updating (SU), expectation and

maximization (EM) algorithm, fuzzy-c directions (FCD) algorithm, Spurr and Kout-

beiy algorithm and mean shift-based clustering (MSBC) in the literature. (see e.g.

Chang-Cien, et al. (2012); Hung, et al. (2012)). Results of these methods for turtle

data are taken from Chang-Cien’, et al. (2012) paper . We find that the analysis results

from SU, EM, FCD , Spurr and Koutbeiy, MSBC and DP vM model are very simi-

lar in Table 4.9 and most of turtles move around 630 and other turtles move around

2410. Fig. 4.12.b shows these two identified clusters. To compare results of six dif-

ferent fitting methods, we compute Watson-U2 goodness of fit test of each method

for two mixture vM distributions. Clearly, U2 measures the discrepancy between the

empirical distribution function denoted by Fn and the distribution function denoted

by F . From this result, DP vM model shows superiority both number of modes and

the estimates of parameter for turtle data.
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4.4.3.2 Ant data

As second example, we analyse the ant data given by Appendix B.7 Fisher (1993).

This data consists of 100 observations which are randomly collected by Jander (1957).

Fisher (1993) shows that the vM distribution is not suitable model for this data with

goodness of fit test statistics. Pewsey (2002) demonstrates that there is no evidence

to show that the underlying distribution is asymmetric with test of circular reflective

symmetry. Abe and Pewsey (2011) re-analyse this data set and the best fit based on

model selection criteria is wC distribution. Here, we analyse this data in terms of

number of modes using DP mixture wC model. We choose the following prior set-

tings as µk ∼ vM(1,7), ρk ∼Beta(3,1), α ∼Gamma(2,2) and C = 10. We have also

examined robustness of the concentration parameter α of DP. We found no substantial

differences on parameter inferences for ant data. Summary posterior inferences and

posterior distribution of model parameters for ant data are indicated in Table 4.11.

For α ∼ Gamma(2,2), we conclude that there is one cluster about % 95 proportions.

This result is also consistent with the number of modes in the literature. Figure 4.13

shows the predictive density estimation for each group that are obtained using the

mixture DP and Kernel density approaches for circular data. To sum up, our mixture

DP wC approach is closer to that obtained by Kernel approach.

Figure 4.13: Comparison of mixture DP and kernel density estimation for ant data.
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Table 4.10: Posterior means of the mixing probabilities and parameters of turtle data

α = 0.5 α ∼U(0.5,10) α ∼ Gamma(2,2)
c p̂c µ̂c κ̂c p̂c µ̂c κ̂c p̂c µ̂c κ̂c

1 0.82 (0.05) 1.11(0.08) 3.52 (0.69) 0.80(0.05) 1.11 (0.08) 3.75 (0.67) 0.81 (0.05) 1.11 (0.08) 3.44 (0.69)
2 0.12 (0.06) 4.16 (0.27) 5.54(2.34) 0.08(0.06) 4.15(0.33) 5.65 (2.46) 0.11(0.06) 4.14(0.28) 5.60(2.35)
3 0.04 (0.05) 4.05(0.36) 5.63(2.48) 0.05(0.04) 4.12 (0.37) 5.51(2.43) 0.04 (0.05) 4.07(0.38) 5.65(2.51)
4 0.02 (0.03) 4.01(0.41) 5.66(2.43) 0.03 (0.03) 4.07 (0.39) 5.57 (2.47) 0.02 (0.03) 4.02 (0.40) 5.61 (2.5)
5 0.006(0.01) 4.00 (0.40) 5.66(2.52) 0.02(0.02) 4.05 (0.39) 5.64(2.51) 0.009(0.02) 4.01(0.39) 5.60(2.45)
6 0.002(0.005) 4.00(0.41) 5.65 (2.48) 0.009 (0.02) 4.03 (0.40) 5.69 (2.46) 0.005 (0.01) 4.01(0.40) 5.61(2.43)
7 0.0007(0.003) 3.99(0.39) 5.69 (2.41) 0.006(0.01) 4.01(0.40) 5.60 (2.47) 0.002(0.006) 4.00 (0.39) 5.59 (2.42)
8 0.0002(0.001) 4.00 (0.39) 5.72(2.52) 0.004 (0.008) 4.01(0.39) 5.64 (2.43) 0.001(0.004) 4.00 (0.40) 5.70 (2.48)
9 0.00008(0.0005) 4.00 (0.40) 5.62(2.42) 0.003(0.007) 4.00(0.40) 5.68(2.40) 0.0007 (0.003) 4.00(0.39) 5.70(2.48)

10 0.00004(0.0004) 4.00(0.40) 5.71(2.53) 0.006(0.01) 4.02(0.40) 5.64 (2.49) 0.001(0.004) 4.00 (0.39) 5.65(2.47)
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Table 4.11: Posterior means of the mixing probabilities and parameters of ant data

α = 0.5 α ∼U(0.5,10) α ∼ Gamma(2,2)
c p̂c µ̂c ρ̂c p̂c µ̂c ρ̂c p̂c µ̂c ρ̂c

1 0.96 (0.04) 3.22(0.07) 0.67 (0.04) 0.93(0.05) 3.23 (0.06) 0.68 (0.04) 0.95 (0.05) 3.23 (0.06) 0.67 (0.69)
2 0.03 (0.03) 1.00 (0.37) 0.74(0.20) 0.03 (0.03) 1.00 (0.37) 0.75(0.20) 0.03(0.03) 1.00(0.37) 0.74(0.20)
3 0.01 (0.02) 1.00(0.37) 0.79(0.20) 0.02 (0.02) 0.96(0.39) 0.76(0.20) 0.02 (0.02) 0.96(0.39) 0.76(0.20)
4 0.004 (0.009) 0.97(0.37) 0.79(0.19) 0.009 (0.01) 0.97 (0.39) 0.78 (0.20) 0.008 (0.03) 0.97 (0.39) 0.78 (0.20)
5 0.001(0.004) 0.98 (0.42) 0.80(0.19) 0.005(0.009) 0.98 (0.39) 0.80(0.20) 0.005(0.009) 0.98(0.39) 0.80(0.20)
6 0.0004(0.002) 0.99(0.39) 0.79 (0.19) 0.002 (0.006) 0.97 (0.40) 0.79 (0.19) 0.002 (0.006) 0.97(0.40) 0.79(0.19)
7 0.0001(0.0007) 1.00(0.39) 0.80 (0.19) 0.001(0.01) 0.97(0.40) 0.80 (0.19) 0.001(0.004) 0.97 (0.40) 0.80 (0.19)
8 0.00005(0.0004) 1.02 (0.39) 0.80(0.19) 0.0009 (0.003) 0.98(0.39) 0.79 (0.19) 0.0009(0.003) 0.99 (0.40) 0.80 (0.19)
9 0.00002(0.0002) 1.01 (0.39) 0.79(0.19) 0.0005(0.002) 0.99(0.38) 0.79(0.19) 0.0005 (0.002) 0.99(0.38) 0.79(0.19)

10 0.000007(0.00008) 1.02(0.41) 0.79(0.20) 0.001(0.003) 1.03(0.39) 0.79 (0.19) 0.001(0.004) 1.02 (0.39) 0.79(0.19)
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4.5 Discussion

In many environmental and ecological studies, there is an uncertainty about the num-

ber of modes in circular data. For von Mises distribution, the main problem is con-

vergence in the event of the multiple concentration parameter κk for each class k.

Bhattacharya and SenGupta (2009) consider that G0 is bivariate conjugate distribu-

tion under Polya-Urn representation, and then, they observe convergence problem

in their MCMC application. To handle this problem, we consider that G0 is bivari-

ate non-conjugate distribution under stick breaking representation. Hence, our model

overcomes the problem. Additionally, for wrapped Cauchy distribution, our proposed

DP mixture model works quite well in the event of multiple µk and ρk parameters for

each class k. Finally, it is seen that our models perform well in terms of estimates of

parameters and number of modes for both simulated and real life data sets.

As future extension, we would like to emphasize that our DP mixture approach may

be applied to mixture of skew circular distributions, namely, the sine-skewed von

Mises and wrapped Cauchy distributions. In this chapter we propose two specific DP

mixture models to determine the number of modes for time-independent circular data.

In the next chapter, we propose Bayesian semi-parametric model for time-dependent

circular data.
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CHAPTER 5

BAYESIAN SEMI-PARAMETRIC MODEL FOR

MULTI-MODAL CIRCULAR TIME SERIES DATA

The aim of this chapter is to define a new model for circular time series based on

Dirichlet process (DP) mixture on a family of random probability measures indexed

by the parameters of Möbius time series model. This new model is to define multi-

modal circular time series as dependent mixtures of von Mises distributions. Our

contribution is to provide a flexible circular time series model which overcomes both

changing concentration parameter over time and the problem of multi-modality for

time-dependent circular data. Real data examples are given from meteorology (wind

directions) to illustrate our multi-modal circular time series approach.

5.1 Introduction

Research in this chapter is motivated by an hourly wind direction dataset we have

received from a north-western wind farm details of which are given in section 5.4.2.2.

As seen in Figure 5.1, hourly wind direction data at hand presented a multi-modal

structure. Aim of this chapter is to develop a flexible methodology to analyse multi-

modal circular time series data.

Circular observations with time structure such as the hourly or daily wind directions

at fixed location have limited literature. Fisher and Lee (1994) proposed two main

approaches used to model circular time series. For noisy series, they recommend to

use circular model, while for non-noisy series, they propose transformation to a linear

series with a link function. Another useful process called, a Wrapped Autoregressive
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process WAR, was introduced by Breckling (1989) .This method is based on to wrap

a linear random variable around the circle. All of these methods are described in Sec.

5.2.

In the context of Bayesian circular time series, Coles (1998) used MCMC methods to

fit such class of models to circular data using wrapping process. Ravindiran (2002)

developed a Bayesian methodology for the wrapping process based on data augmen-

tation approach. Recently, Lasinio, et al. (2012) introduced Bayesian hierarchical

model to overcome circular data based on adaptive truncation method. However, cir-

cular time series based on von Mises model have not received as much attention in

Bayesian framework. In this study, we propose a new methodology to analyse multi-

modal circular time series data based on Bayesian non-parametric approach.

Figure 5.1: Rose diagram of a hourly wind direction data from Turkey

In many real data applications, the distribution of circular measurements is clearly

multi-modal, in particular, wind direction in Fig. 5.1. On this subject, Holzmann

et al.(2006) introduced a new class of circular time series model based on hidden

Markov models (HMM) for von Mises and wrapped distributions. They drew atten-

tion to Bayesian analysis of HMM, in particular, how to decide the number of states.

In this chapter, we provide DP mixture circular Möbius time series model taking ac-

count of multi-modal structure.

Rest of this chapter is organized as follows. In the following section, we provide a

brief summary of existing models for circular time series. In Section 5.3, we intro-
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duce Dirichlet process (DP) mixture Möbius time series model for circular data. Our

Bayesian methodology is applied on simulated and real data sets for illustration in

Section 5.4. We give some concluding remarks and future directions in Section 5.5

During this chapter, all circular valued random variables are assumed to take on values

in the interval [−π,π). To achieve symmetric support [−π,π), we transform from χ

to χ
′
= (χ +π) mod2π−π .

5.2 Review of circular time series models

In this section, we present a brief review of time series models for circular observa-

tions defined in literature.

5.2.1 Linked process

A linked process is introduced by Fisher and Lee (1994). This method is based on a

link function g. It is to associate a strictly monotonically increasing function which

transforms values from real line (−∞,∞) to circle (−π,π). If {Yt}t=1,2,... is a process

on the line, g is link function, and µ ∈ [0,2π), then the corresponding linked circular

process {Θt}t=1,2,... on the circle is defined by

Θt = g(Yt)+µ.

For illustration, the useful link function form is g(y) = 2πF(y), where F(y) is a dis-

tribution function.

5.2.2 Circular autoregressive process

A circular AR(p) process, CAR(p) is also introduced by Fisher and Lee (1994).

CAR(p) process, with link function g if Θt , given Θ = θt−1,Θt−2 = θt−2, ...,Θ1 = θ1

is von Mises vM(µt ,κ) for t > p, where

µt = µ +g(λ1g−1(θt−1−µ)+ ...+λpg−1(θt−p−µ))

where µt is a mean direction and κ is a constant concentration parameter.
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5.2.3 Wrapped process

The wrapping approach leads to following definition. Let {Yt}t=1,2,... be a process

on the real line and a corresponding process on the circle is {Θt}t=1,2,... then, the

wrapping process is obtained as follows

Yt = Θt +2πkt

where kt is an unobserved integer. Thus, fitting such process leads to missing data

problem. This problem can be handled with MCMC in Bayesian aspect. (see, e.g,

Coles (1998); Ravindran (2002); Lasinio et all (2012)).

5.2.4 Projected Normal process

This process is defined as following construction. Let {Xt ,Yt}t=1,2,... a process on

the plane. Thus, the radial projection to unit circle gives a corresponding process

{Θt}t=1,2,.. on the circle is described as follows

Xt = Rtcos(Θt), Yt = Rtsin(Θt)

If {Xt ,Yt}t=1,2,... is a stationary Gaussian process then Θt is a projected normal distri-

bution. Here, radial part {Rt}t=1,2,.. of projected normal distribution is unobserved .

Thus fitting such process leads to missing data problem. This problem can be handled

with MCMC or EM algorithms.

5.2.5 Möbius time series model

Downs and Mardia (2002) introduced a circular-circular regression model. This

model can be adopted for circular time series model (see, Hughes (2007)). Here,

consider the mapping as follows

tan
1
2
(θt−µ) = λ tan

1
2
(θt−1−µ) (5.1)

where µ is circular location parameter) on unit circle, λ is a slope parameter in closed

interval [−1,1], and θt and θt−1 are circular variables observed at time t and t − 1
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respectively. Equation 5.1 has the unique solution as follows

θt = µ +2atan{λ tan
1
2
(θt−1−µ)}

Möbius time series model assumes that the conditional distribution of θt given θt−1

has a von Mises distribution as shown below

Θt |(Θt−1 = θt−1)∼ vM(µ +2atan{λ tan
1
2
(θt−1−µ)},κ), t = 2, ...,n

and the circular time series model becomes

θt = µ +2atan{λ tan
1
2
(θt−1−µ)}+ εt

where εt ∼vM(0,κ). Circular mean direction of conditional distribution of θt given

θt−1 is given by

µt = µ +2atan{λ tan
1
2
(θt−1−µ)}

Note that this time series model has the same form introduced by Fisher and Lee

(1994), if g(.) = 2atan(.). Main drawback of the model is that it gives poor fitting for

multi-modal circular data sets. Another drawback is the potential problem of identi-

fying µ when λ is close to −1 due to the behaviour of log likelihood function (see,

Hughes (2007)). Kato, (2010) provides a new discrete Markov process by adapting

Möbius circle transformation as regression curve. This new discrete Markov process

has same regression curve with model 5.1 under the assumption of 0 < λ < 1 .

In the following section, we provide an extension of Möbius model depending on

Bayesian non-parametric approach.

5.3 DP mixture model for circular time series

In this section, we present a general way for non-parametric circular autoregressive

modelling using DP mixture. The idea is to provide a non-parametric extension of

Möbius time series model. In the following section, we present the model that will be

used in this chapter for time-dependent circular data.
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5.3.1 DP mixture Möbius model

We adopt a flexible Möbius model on a family of random probability measures using

DP defined by Ferguson (1973). Again we return the definition of DP which is almost

surely discrete, that is, G∼ DP(α,G0), where α > 0 is a concentration parameter of

DP and G0 is a known baseline distribution. The representation of G as described in

Sethuraman (1994) can be defined as

G(.) = ∑
k≥1

pkIϕk(.) (5.2)

where G(.) is a random probability measure and Iϕk is a indicator function (or point

mass) at ϕk and the weights follow a stick breaking process, pk = ∏i<k(1− qi)qk,

with qk ∼ Beta(1,α) and ϕk ∼ G0.

We consider the Möbius circular autoregressive order-one CAR(1), dependence case,

that is, the conditional distribution Θt |Θt−1, ...,Θ1 depends only on Θt−1 for t ≥ 2.

This conditional distribution for Θt given Θt−1 is a mixture von Mises distribution,

but we assume that number of components is unknown. In this situation, the mixing

measure G comes from the DP. Our proposed CAR(1)-DP mixture model can be

represented as follows

Θt |Θt−1 = θt−1,Kt = k,(µk,λk,κk)∼ vM(µk +2atan{λk tan
1
2
(θt−1−µk)},κk)

ϕk =(µk,λk,κk)∼ G0, k = 1,2, ...,∞ (5.3)

where Kt denotes latent mixture component indicators with probability P(Kt = k) =

pk. The representation of 5.3 presents a hierarchical definition and the dependence

structure is introduced in terms of the latent or state dependent parameters ϕk =

(µk,λk,κk). This model also provides modelling of changing concentration parameter

over time.

From the computational viewpoint, a simple format of model 5.3 can be achieved by

truncating the infinite mixture applied by DP. This is based on selecting sufficiently

large number of components, that is, maximum number of components say C. This

simple format applies a stick break definition in terms of the mixture weights with

pk = ∏i<k(1−qi)qk for k = 1,2, ...,C, where each pk is distributed with a Beta(1,α)

distribution for 1 ≤ k ≤ C. (Ishwaran and James (2001). The model of 5.3 can be
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rewritten as shown below

Θt |Θt−1 = θt−1,Kt ,ϕϕϕ ∼vM(µKt +2atan{λKt tan
1
2
(θt−1−µKt ),κKt}, t = 2, ..,n

Kt |ppp∼Discrete(p1, ..., pC), (5.4)

ϕk =(µk,λk,κk)∼ G0, , k = 1, ...,C

α ∼Gamma(v1,v2) (5.5)

where G0 can be chosen as vM(µ0,κ0)⊗Unif(0,1)⊗Gamma(a0,b0) and ppp is defined

by stick breaking process, and ϕϕϕ can be decomposed as µµµ = (µ1,µ2, ...,µC), λλλ =

(λ1,λ2, ...,λC) and κκκ = (κ1,κ2, ...,κC). We can implement a blocked Gibbs sampling

approach described in Ishwaran and James (2002) under our model specifications for

posterior density of G(.). Here, we can moderately draw samples from the following

full conditional distributions

(µµµ|λ ,κ,Kλ ,κ,Kλ ,κ,K,θn)

(λλλ |µ,κ,Kµ,κ,Kµ,κ,K,θn)

(κκκ|µ,λ ,Kµ,λ ,Kµ,λ ,K,θn)

(KKK|p,µ,λ ,κp,µ,λ ,κp,µ,λ ,κ,θn)

(ppp|KKK,α)

(α|ppp) (5.6)

This method produces values from posterior distribution G(.) and in each cycle of the

sampler, we can track of (µ∗,λ ∗,κ∗, p∗µ∗,λ ∗,κ∗, p∗µ∗,λ ∗,κ∗, p∗) which are sampled values for (µ,λ ,κ, pµ,λ ,κ, pµ,λ ,κ, p).

These values present a random probability measure as follows

G∗(.) =
C

∑
k=1

p∗kI(µ∗k ,λ ∗k ,κ∗k )(.)

which is a draw from the posterior distribution G(.). Hence, G∗ can be used to

directly estimate posterior distribution G|θn. To predict for a future observation

ϕn+1 = (µKn+1 ,λKn+1,κKn+1), we can randomly draw from G∗ and can write poste-

rior predictive density f (θn+1|θn) for the future observation as follows

f (θn+1|θn) =
∫

fvM(µKn+1 +2atan{λKn+1 tan
1
2
(θn−µKn+1)},κKn+1)dG(ϕn+1)

Finally, all full conditional distributions have non-standard forms. However all infer-

ences for this model can be performed using slice updater and adaptive Metropolis
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block updater in OpenBUGS. Both derivations of the full conditional distributions

and OpenBUGS codes can be found in Appendix C for chapter 5.

We would like to emphasize that our model depends on latent state probabilities,

but our model can be extended as based on a dependent DP model introduced by

MacEachern (2000), that is, dependence is introduced at the level of responses, and

not in terms of latent variables ϕk. The form of the dependent Dirichlet process as a

collection of random probability measures is defined as Gθ =∑k≥1 pk(θ)Iϕk(θ),θ ∈Θ.

However, from a computational point of view, DP mixture approach provides greatly

simplified computation. Here, we consider DP mixture approach which is a special

case of dependent DP approach with common weight.

5.4 Examples

In this section, we present a simulated data example and two real data examples

and evaluate the performance of the proposed model. In all of these examples, for

DP Möbius model parameters, we use a weakly informative prior as µ0 = 0.1 and

κ0 = 0.1 for µk and suggest a weakly informative prior for κk. For the concentration

parameter of DP, we choose ao = 2, b0 = 2 (Ishwaran and James (2001). For simula-

tion of data based on von Mises distribution, we use the circular package in R. For all

computation, we run using 40,000 iterations and dropped the first 20,000 as burn-in

iterations with thinning 10, and we use R2OpenBUGS package in R. Additionally,

standard diagnostic convergence criteria such as those available in the R2OpenBUGS

package is applied to all parameters, indicating that convergence is achieved.

5.4.1 Simulated data example

To evaluate the performance of the proposed DP Möbius model, we considered the

following simulation study. The proposed model is applied to estimate the model

parameters and the resulting estimates are compared against the true parameters to

assess the accuracy of the model.

In this section, we refer simulation studies doing by Artes and Toloi (2010). The best
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convergences were found when the autoregressive parameter λ was closer to zero

and time series size and concentration parameter were large. The bad convergences

were found when the autoregressive parameter λ was larger. Generally, simulation

studies have shown the difficulties involved in obtaining good estimates from larger

autoregressive cases or from low concentration data or from small sample sizes. To

avoid these difficulties in Monte Carlo experiment, we prefer simulated data example.

Here, we simulated two different Möbius time series model for each sample size of

N = 100 and combined these series. we assumed model parameters as µµµ = (µ1,µ2) =

(−1,0.5), λλλ = (λ1,λ2) = (0.5,0.8), κκκ = (κ1,κ2) = (2,5), ppp = (p1, p2) = (0.5,0.5).

Corresponding to rose diagram of the simulated data are displayed in Fig. 5.2 .

Clearly, there is one jump and can be seen two modes for simulated Möbius time

series data

(a) (b)
Figure 5.2: (a) Rose diagram of simulated Möbius time series data. (b) Plot of simu-

lated Möbius time series data

In the proposed model, we take as C = 2 ( the same as the number of components in

simulated data set). For κk, we use weakly informative prior as Gamma(0.01,0.01).

To overcome identifying problem on µ ′s, we suggest to use a constraint as µ2 =

(π/2− µ1)δ1, where δ1 ∼ Uniform(0,1). The resulting estimates are summarized

as follows

• The posterior circular means µ̂µµ are (−1.008,0.5882) and circular standard de-

viations are 0.32 and 0.36, respectively.
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• The posterior means of concentration parameter κ̂κκ are (1.80,4.77) and standard

deviations are (0.37 ,0.90).

• The posterior means of slope parameter λ̂λλ are (0.42,0.82) and standard devia-

tions are (0.16 ,0.09).

• The posterior means of mixing proportions p̂pp are (0.33,0.67) and standard de-

viations are (0.13,0.13). The posterior means of concentration parameter α̂ of

DP is 1.24 and standard deviation is (0.73)

Finally, the posterior estimators of all six parameters are very close to the true values

and other mixing proportions are close to true values. Fig. 5.3 a shows the simulated

circular time series and solid arrows represent the direction of each simulated value

and Fig. 5.3 b shows the the predicted circular time series data and dashed arrows

represent the direction of each predicted value. Both figures are very close. Fig. 5.4

shows both the posterior distribution of all parameters for three chains. For three

chains, posterior densities are very similar, that is, the convergence of all parameters

has achieved.

(a) (b)
Figure 5.3: (a) Plot of direction of the simulated circular time series data (b) Plot of

direction of the predicted circular time series data
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Figure 5.4: Posterior densities of all parameter of DP mixture Möbius model for simulated data
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5.4.2 Real data examples

In this section, we consider two real data sets to illustrate our proposed model. At first,

we analysed wind direction recorded at a site on Black Mountain, Australian Capital

Territory, Australia (Cameron 1983). Secondly, we analysed the wind direction data

recorded a hourly in a north-western wind farm in Turkey.

5.4.2.1 Wind directions in Australia

First circular time series example consists of 72 measurements of wind direction

recorded at a site on Black Mountain, Australian Capital Territory, Australia (Cameron

1983). Fisher (1994) analysed this data using CAR(1) described in Sec. 5.2.2. Re-

cently, the data is re-analysed for outlier detection in CAR(1) model by Abuzaid, et

al. (2014). They concluded observations 5, 12 and 31 are Innovational outlier (IO)

candidates, while observations 14,39, 50 are Additive outliers (AO) based on their

three graphical procedures.

(a) (b)
Figure 5.5: (a) Sample circular autocorrelations for the time series of wind directions

in Australia (b) Plot of observed circular time series data in Australia

We also re-analyse this data using our approach. To overcome identifying problem,

we use µ2 = µ1 + δ1 where δ1 ∼ vM(0,0.001)I(,π). We then set λ = λ1 = λ2. We

take hyper-parameter as a0 = b0 = 1 for concentration parameter κk. The resulting
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estimates of our proposed model are summarized as follows

• The posterior circular means are µ̂µµ = (293.8◦,22.6◦) and circular standard er-

rors are 0.064 and 0.90 radians.

• The posterior means of concentration parameters are κ̂̂κ̂κ = (4.67,0.42) and the

standard errors of them are 0.11 and 0.09

• The posterior means of mixing weights are p̂pp = (0.80,0.20) and the estimate

of λ ∗ is 0.78 and standard error is 0.012. The estimate of concentration param-

eter of DP Möbius model is α̂ = 0.83 and its standard error is 0.06. Posterior

densities of all parameters of the proposed model are displayed in Fig. 5.8 for

three chains.

We compare our model with models of Fisher and Lee (1994); Abuzaid et al.(2014)

as follows

The estimates of Fisher and Lee (1994), with their standard errors given in parenthe-

sis, are summarized as follows

µ̂ = 289.5◦(0.086), κ̂ = 2.5(0.352), λ̂ = 0.68(0.138)

The estimates of Abuzaid et al.(2014) are below after adjustment of five outliers and

refitting CAR(1) model to reduced data

µ̂ = 210.19◦(0.12), κ̂ = 2.27(0.10), λ̂ = 0.87(0.047)

According to these estimates, we obtain less standard error compare to other models.

Fig .5.6 displays the predicted and actual rose diagrams of wind directions. These

rose diagrams are similar.

Additionally, our second class observations are displayed as 12,15,19,31,32,39,40,50

and 51 in Fig. 5.9. This finding is particularly remarkable in the sense that our method

provided a formal way that was able to pin down the observations in this dataset hav-

ing a distribution different than the bulk. Also, the method was able to identify the

characteristics of the distribution to which the outliers belong. Accordingly, 80% of

the wind direction data constitutes one cluster (vM(293.8,4.67)) whereas 20% come

from another distribution (vM(22.6,0.42)).
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(a) (b)
Figure 5.6: (a) Rose diagram of wind direction data. (b) Rose diagram of predicted

wind direction data.

5.4.2.2 Wind directions in Turkey

As second example, we consider a time series of wind directions measured hourly in

a north western wind farm in Turkey. Here, we analyse a time series of 120 wind

directions measured hourly between 1.am. on May 1st and 11.p.m. on May 5th.

Sample circular autocorrelation coefficients proposed by Fisher and Lee (1994) are

displayed in Fig. 5.7.a , which shows that there is a evidence that a CAR(1) model

may be appropriate. We fit our proposed DP mixture Möbius model. To overcome

(a) (b)
Figure 5.7: (a) Sample circular autocorrelations for the time series of wind directions

in Turkey (b) Plot of observed circular time series data in Turkey

identifying problem for C = 2, we use µ2 = (π/2− µ1)δ1, where δ1 ∼ Unif(0,1).

We take hyper-parameter as a0 = b0 = 0.1 for concentration parameters κk.
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Figure 5.8: Posterior densities of parameters of DP Möbius model for wind direction data from Australia.
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Figure 5.9: Posterior density of K latent variables which belong to second cluster
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The resulting estimates of our Bayesian methodology for C = 2 are summarized as

follows

• The posterior circular means are µ̂µµ = (260.30◦,79.06◦) and circular standard

deviations are 0.94 and 0.96 radians.

• The posterior means of concentration parameters are κ̂κκ = (1.51,50.18) and the

standard deviations of them are 0.46 and 10.76

• The posterior means of mixing weights are p̂pp = (0.27,0.73) and the estimate

of λ̂λλ is (0.83,0.97) and standard deviations are (0.14,0.02). The estimate of

concentration parameter of DP Möbius model is α̂ = 1.16 and its standard de-

viation is 0.73.

For C = 3, we use data-based identifying prior-constraint on µ’s as µ1∼ vM(0.1,0.1)

I(,0), µ2 ∼ vM(0.1,0.1)I(0,π/3) and µ3 ∼ vM(0.1,0.1)I(π/3,π). The resulting

estimates of our Bayesian methodology for C = 3 are summarized as follows

• The posterior circular means are µ̂µµ = (240.37◦,29.09◦,110.45◦), and circular

standard deviations are 0.88,0.29 and 0.61 radians.

• The posterior means of concentration parameters are κ̂κκ = (1.47,1.72,48.97)

and the standard deviations of them are 1.67,4.80 and 11.16

• The posterior means of mixing weights are p̂pp = (0.16,0.12,0.70) and standard

deviations (0.09,0.08,0.07) the estimate of λ̂λλ are (0.44,0.33,0.96) and stan-

dard deviations are (0.26,0.29,0.02) respectively. The estimate of concentra-

tion parameter of DP Möbius model is α̂ = 1.56 and its standard deviation is

0.85.

Fig. 5.10 shows a rose diagram of the observed wind directions, white color, and

compared with the posterior predicted wind directions, red color. These rose diagrams

are very close. Additionally, Fig. 5.11 a shows the observed circular time series and

solid arrows represent the direction of each observation value and Fig. 5.11 b shows

the the predicted circular time series data and dashed arrows represent the direction
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(a) (b)
Figure 5.10: (a) Rose diagram of wind direction data in Turkey (b) Rose diagram of

predicted wind direction data in Turkey

of each predicted value in Turkey. Both figures are very close. Additionally, these

figures are constructed using teaching demos package in R.

To compare C = 2 and C = 3 our DP Möbius models, we use two metrics, namely,

mean absolute cosine error (MACE) and mean cosine difference error (MCDE). We

compute MACE and MCDE as MACE=
1
n

∑
n
i=1 |cos(θi)− cos(θ̂i)| and MCDE=1−

1
n

∑
n
i=1 cos(θi− θ̂i) where θ̂i is posterior mean of direction.

(a) (b)
Figure 5.11: (a) Plot of direction of the observed circular time series in Turkey (b)

Plot of direction of the predicted circular time series in Turkey

Table 5.1 shows the computed MACE and MCDE values for two DP Möbius models.

These values are close to zero. For C = 3, the computed MACE and MCDE are 0.20

and 0.09 which show a slight improvement over C = 2.
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Table 5.1: Comparison with model selection criterion

Model MACE MCDE
DP Möbius(C=2) 0.21 0.10
DP Möbius(C=3) 0.20 0.09

5.5 Discussion

In many real data application, likelihood of a Möbius time series model has multiple

local maxima and so convergence of the maximization algorithms provide no guar-

antee that the global maximum can be found when observing multi-modality. In this

chapter, we have provided DP mixture Möbius model in analysing multi-modal cir-

cular data. Potential identifying problem on µ is handled with a prior constraint in

Bayesian aspect. Identifying problem tends to elevate as C increases. Here, the or-

der constraint on µ ′s may not be proper since these parameters are circular in nature.

The useful solution is to divide circular support as based on empirical rose diagrams

when C > 2. The results of both simulated and real data examples indicate that our

proposed model has been shown to perform well in terms of estimates of parameter

and prediction error for multi-modal circular data. Finally, DP Möbius mixture mod-

els allow for great robustness when there are jumps in series or multi-modality in the

time series of interest.
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CHAPTER 6

CONCLUSION

In this dissertation, we investigate a number of problems which related with multi-

modal circular data analysis in Bayesian panorama. We propose new models in the

solution of these problems and contribute to the existing methods in the literature.

Our contributions can be summarized as follows :

• For asymmetric and bi-modal circular distributions based on the extension of

von Mises distribution, namely asymmetric generalised von mises (AGvM)

and generalised von Mises (GvM), we proposed a general solution depend-

ing on SIR method for analysing asymmetric and bi-modal circular data. Main

problem for analysing these distributions is the complex normalizing constants

which are not available in closed forms. Our approach overcomes this prob-

lem. Additionally, in this dissertation, we define conjugate prior distributions

for these problematic distributions and use the proposal distributions to obtain

sample from the posterior distributions using SIR method. Finally, we propose

the bivariate constrained joint prior distributions for the depended parameters of

AGvM and GvM distributions in analysing asymmetric and bi-modal circular

data.

• In many environmental and biological applications, circular data usually dis-

play multi modality and there is usually uncertainty about the number of modes

as it is hard to determine from the sampled data. To overcome this uncertainty,

we successfully adopted Dirichlet process (DP) mixture model to von Mises

and wrapped Cauchy distributions. Our simulated and real data examples show

the flexibility , utility and efficiency of the proposed approach in terms of the
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parameter and unknown modal number estimation.

• DP mixture Möbius circular time series model is proposed for time-dependent

circular data sets. Our aim is to model multi-modal circular time series obser-

vations with time structure. Our proposed Bayesian methodology depending

on DP mixture model overcomes both varying concentration parameter κ over

time and multi-modality problem in circular time series context. Additionally,

Bayesian framework allows us to solve identifying problem on µ and compu-

tational issues.
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APPENDIX A

APPENDIX FOR CHAPTER 3

In this section, we show posterior distribution-conjugacy for each sub-model and give

technical and computational details for these prior joint distributions of dependent

parameters for each sub-model described in Section 3.2

A.1 Posterior distribution-Conjugacy for Generalised von Mises distribution

The posterior density of GvM is proportionally to L(θ |µ1,µ2,κ1,κ2)× p(µ1,µ2,κ1,κ2)

which is given by

{c(κ1,κ2)}−nexp(∑
i

κ1cos(θi−µ1)+∑
i

κ2cos2(θi−µ2))×

{c(κ1,κ2)}−rexp(κ1R01 cos(µ1−µ01)+κ2R02cos2(µ2−µ02))

= {c(κ1,κ2)}−(n+r)exp{∑
i

κ1cos(θi−µ1)+κ1R01cos(µ1−µ01)}

×exp{∑
i

κ2cos2(θi−µ2)+κ2R02cos2(µ2−µ02)}

Here, the first exponential form can be separately expanded as

∑
i

κ1cos(θi−µ1)+κ1R01cos(µ1−µ01) = κ1cosµ1 ∑
i

cosθi +κ1sinµ1 ∑
i

sinθi

+κ1R01cosµ1cosµ01 +κ1R01sinµ1sinµ01

= κ1cosµ1{R01cosµ01 +∑
i

cosθi}+κ1 sinµ1{R01sinµ01 +∑
i

sinθi}

= κ1cosµ1{Rn1cosµn1}+κ1sinµ1{Rn1sinµn1}= κ1Rn1cos(µ1−µn1)

85



The second exponential form is given by

∑
i

κ2cos2(θi−µ2)+κ2R02cos2(µ2−µ02) = κ2cos2µ2 ∑
i

cos2θi +κ2sin2µ2 ∑
i

sin2θi

+κ2R02cos2µ2cos2µ02 +κ2R02sin2µ2sinµ02

= κ2cos2µ2{R02cos2µ02 +∑
i

cos2(θi)}+κ2sin2µ2{R02sin2µ02 +∑
i

sin2(θi)}

= κ2cos2µ2{Rn2cos2µn2}+κ2sin2µ2{Rn2sin2µn2}= κ2Rn2cos2(µ2−µn2)

A.1.1 Posterior distribution

Here, the posterior distribution of GvM is given by

{c(δ ,κ1,κ2)}−mexp(κ1Rn1cos(µ1−µn1)+κ2Rn2cos2(µ2−µn2))

where m = r+n and Rn1,Rn2 and µn1,µn2 are obtained from the following equations

Rn1cosµn1 = R01cosµ01 +∑
i

cosθi, Rn1sinµn1 = R01sinµ01 +∑
i

sinθi

Rn2cos2µn2 = R02cos2µ02 +∑
i

cos2θi, Rn2sin2µn2 = R02sin2µ02 +∑
i

sin2θi

(A.1)

A.2 Posterior distribution-Conjugacy for Asymmetric Generalised von Mises

distribution

The posterior density of AGvM is proportionally to L(θ |µ,κ1,κ2)× p(µ,κ1,κ2).

{c(κ1,κ2)}−n exp(∑
i

κ1cos(θi−µ)+∑
i

κ2 sin2(θi−µ))

×{c(κ1,κ2)}−rexp(κ1R01cos(µ−µ0)+κ2R02sin2(µ−µ0))

= {c(κ1,κ2)}−(n+r)exp{∑
i

κ1cos(θi−µ)+κ1R01cos(µ−µ0)}

×exp{∑
i

κ2sin2(θi−µ)+κ2R02sin2(µ−µ0)}

(A.2)
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Here, we can be expanded separately the summation of forms as follows

∑
i

κ1cos(θi−µ)+κ1R01cos(µ−µ0) = κ1cosµ ∑
i

cosθi +κ1sinµ ∑
i

sinθi

+κ1R01cosµcosµ0 +κ1R01sinµsinµ0

= κ1cosµ{R01cosµ0 +∑
i

cos(θi)}+κ1sinµ{R01sinµ0 +∑
i

sin(θi)}

= κ1cosµ{Rn1cosµn}+κ1sinµ{Rn1sinµn}= κ1Rn1cos(µ−µn)

The second summation is expanded as:

∑
i

κ2sin2(θi−µ)+κ2R02sin2(µ−µ0) = κ2cos2µ ∑
i

sin2θi−κ2sin2µ ∑
i

cos2θi

+κ2R02sin2µcos2µ0−κ2R02cos2µsin2µ0

=−κ2cos2µ{R02sin2µ0−∑
i

sin2θi}+κ2sin2µ{R02cos2µ0−∑
i

cos2θi}

=−κ2cos2µ{Rnsin2µn}+κ2sin2µ{Rn2cos2µn}= κ2Rn2sin2(µ−µn).

A.2.1 Posterior distribution

Here, the posterior distribution of AGvM is given by

{c(δ ,κ1,κ2)}−mexp(κ1Rn1cos(µ−µn)+κ2Rn2sin2(µ−µn))

where m = r+n and Rn1,Rn2, µn obtained from the following equation

Rn1cosµn = R01cosµ0 +∑
i

cosθi, Rn1sinµn = R01sinµ0 +∑
i

sinθi

Rn2cos2µn = R02cos2µ0−∑
i

cos2θi, Rn2 sin2µn = R02sin2µ0−∑
i

sin2θi

(A.3)

A.3 Constrained joint prior distribution for dependent parameters of GvM

A.3.1 Bivariate exponential conditionals distribution

The density function of bivariate exponential conditionals (BEC) distribution is given

by

f (κ1,κ2|,α,β ,γ) = c exp(−(ακ1 +βκ2 + γκ1κ2)) (A.4)
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for α > 0,β > 0,γ > 0 and κ1,κ2 > 0, where c denotes unknown normalizing con-

stant. (see e.g, Arnold et al. (1999) )

For our case, κ1,κ2 are constrained as 0 < κ1 < 4κ2, 0 < κ2 < ∞, and hence, we

have a truncated BEC distribution. The conditional distributions of κ1 and κ2 are

truncated exponential and exponential distribution f (κ1|κ2) = TExp(α + γκ2,4κ2)

and f (κ2|κ1) = Exp(β + γκ1), respectively. Here, in order to obtain a sample from

truncated BEC distribution, we use two stage Gibbs sampler algorithm as follows

Algorithm 1: Simulation of bivariate exponential conditionals distribution

Give a starting point φ (0) = (κ
(0)

1 ,κ
(0)

2 ),
κ

(s)
1 ∼ f (κ1|κ (s−1)

2 )

κ
(s)

2 ∼ f (κ2|κ (s)
1 )

φ (s) = (κ
(s)

1 ,κ
(s)

2 )

A.4 Constrained joint prior distributions of dependent parameters for AGvM

A.4.1 Bivariate beta distribution

Suppose that independent random variables Y1, Y2, Y3 have standard gamma distribu-

tion with respective shape parameters, a,b, c and

κ ′1 =
Y1

Y1+Y3
, κ ′2 =

Y2
Y2+Y3

The marginal distribution of κ ′1 and κ ′2 are beta distributions with parameters (a,c)

and (b,c) respectively. The joint probability density of bivariate beta distribution is

defined as:

f (κ ′1,κ
′
2) =

(κ ′1)
a−1(κ ′2)

b−1(1−κ ′1)
b+c−1(1−κ ′2)

a+c−1

B(a,b,c)(1−κ ′1κ ′2)
a+b+c , 0 < κ

′
1,κ
′
2 < 1 (A.5)

where B(.) is beta function. (Olkin and Liu (2003) ).
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A.4.2 Bivariate Dirichlet distribution

Let Y1, Y2, Y3 be independent random variables which have standard gamma distribu-

tion with respective shape parameters, a,b, c and

κ ′1 =
Y1

Y1+Y2+Y3
, κ ′2 =

Y2
Y1+Y2+Y3

The joint density of κ ′1,κ
′
2 is defined by

f (κ ′1,κ
′
2) =

Γ(a+b+ c)
Γ(a)Γ(b)Γ(c)

(κ ′1)
a−1(κ ′2)

b−1(1−κ
′
1−κ

′
2)

c−1, κ
′
1 +κ

′
2 < 1. (A.6)

(see Wilks (1963)) This distribution may considered as a special case when the κ ′1

and κ ′2 parameters are too small.

A.4.3 Bivariate beta conditionals distribution

This distribution is a special case of the following theorem.

Theorem : Suppose that f1(κ
′
1;θ) and f2(κ

′
2;η) denote l1 and l2 parameter exponen-

tial families respectively. Let f (κ ′1,κ
′
2) be a bivariate density whose the conditional

densities satisfy f (κ ′1|κ ′2) = f1(κ
′
1;θ(κ ′2) and f (κ ′2|κ ′1)) = f2(κ

′
2;η(κ ′1)) for some

functions θ(κ ′2), and η(κ ′1)). Then the joint density h(κ ′1,κ
′
2) is defined by

h(κ ′1,κ
′
2) = r1(κ

′
1)r2(κ

′
2)exp(q(1)(κ ′1)M(l1+1)×(l2+1)q

(2)(κ ′2)) (A.7)

where q(1)(κ ′1)= (q10(κ
′
1),q11(κ

′
1), ...,q1l1(κ

′
1)) and q(2)(κ ′2)= (q20(κ

′
2),q21(κ

′
2), ...,q2l2(κ

′
2))

with q10(κ
′
1) = q20(κ

′
2) ≡ 1 and M(l1+1)×(l2+1) is matrix of constant parameters (see

Arnold et al. (1999)).

The joint density of bivariate beta conditionals distribution is defined below, following

by above Theorem.

1
κ ′1(1−κ ′1)

1
κ ′2(1−κ ′2)

exp(
(

1 logκ ′1 log(1−κ ′1)
)

M3×3


1

logκ ′2

log(1−κ ′2)

)

0 < κ
′
1,κ
′
2 < 1

(A.8)
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where M3×3 =


m00 m01 m02

m10 m11 0

m20 0 0

 and the conditional distributions of κ ′1,κ
′
2 are

specified by

f (κ ′2|κ ′1) = Beta(m11log(κ ′1)+m01,m02),

f (κ ′1|κ ′2) = Beta(m11log(κ ′2)+m10,m20)

respectively. The marginal distribution is not a well known form and it can be showed

as shown below

f (κ ′1) = c xm10−1(1− x)m20−1

Γ(m11logx+m21log(1− x)+m01)Γ(m12logx+m21log(1− x)+m02)

Γ((m11 +m12)logx+(m21 +m22)log(1− x)+m01 +m02)
(A.9)

where c is the constant of the integral and corresponds to exp(m00).

In order to obtain a sample from these bivariate distributions, we use the following

algorithms. The first and second algorithms are related to direct simulation, and the

last algorithm is related to Gibbs sampler to obtain a bivariate conditional beta distri-

bution by using conditional distributions.
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Algorithm 2: Simulation of bivariate beta distribution
Generate independently gamma random variables, Y1,Y2,Y3 with shape parameter a,b,c,
respectively.
κ ′1 =

Y1
Y1+Y3

,κ ′2 =
Y2

Y2+Y3

κ2 = 2κ ′2−1 and κ1 = 2κ ′1|κ2|

Accept if κ1 < 2|κ2| else return first step

Algorithm 3: Simulation of bivariate Dirichlet distribution
Generate independently gamma random variables, Y1,Y2,Y3 with shape parameter a,b,c,
respectively.
κ ′1 =

Y1
Y1+Y2+Y3

,κ ′2 =
Y2

Y1+Y2+Y3

κ2 = 2κ ′2−1 and κ1 = 2κ ′1|κ2|

Accept if κ1 < 2|κ2| else return first step.

Algorithm 4: Simulation of bivariate beta conditionals distribution

Let φ (0) = (κ
′ (0)
1 ,κ

′ (0)
2 ), be a starting point

κ
′ (s)
1 ∼ f (κ ′1|κ

′ (s−1)
2 )

κ
′ (s)
2 ∼ f (κ ′2|κ

′ (s)
1 )

κ
(s)
2 = 2κ

′ (s)
2 −1 and κ

(s)
1 = 2κ

′ (s)
1 |κ(s)

2 |

φ (s) = (κ
(s)

1 ,κ
(s)

2 )
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Posterior computation for DP mixture von Mises model

The full conditional distributions for the parameters of DP mixture von Mises model

are as follows:

Let K∗1 , ...,K
∗
m be the current m unique values of KKK. The conditional distribution

ϕϕϕ|KKK,θθθ can be decomposed as µµµ|κ,K,θκ,K,θκ,K,θ and κκκ|µ,K,θµ,K,θµ,K,θ . In each iteration of Gibbs

sampler, we simulate as

Conditional distribution for µµµ: For each j ∈ K∗1 , ...,K
∗
m, draw

µ j|κ,K,θκ,K,θκ,K,θ ∝ exp(κ0cos(µ j−µ0)+ ∑
i:Ki= j

κ jcos(θi−µ j)).

In OpenBUGS, block-hybrid sampling algorithm is performed to obtain random sam-

ples from µ j|κ,K,θκ,K,θκ,K,θ . Also for each j ∈KKK−K∗1 , ...,K
∗
m, independently simulate µ j ∼

vM(µ0,κ0).

Conditional distribution for κκκ: For each j ∈ K∗1 , ...,K
∗
m, draw

κ j|µ,K,θµ,K,θµ,K,θ ∝
κ

b0−1
j

I0(κ j)n j
exp( ∑

i:Ki= j
κ jcos(θi−µ j)−a0κ j)

where n j = #{i : Ki = j}. Slice sampling algorithm is used to obtain random sam-

ples from the full conditional distribution of κ j. Also for each j ∈ KKK−K∗1 , ...,K
∗
m,

independently simulate κ j ∼ Gamma(a0,b0).

Conditional distribution for KKK:

(Ki|ppp,µµµ,κ,θθθ)∼
C

∑
k=1

pk,i Ik(.), i = 1, ...,n
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where

(p1,i, ..., pC,i) ∝
p1

I0(κ1)
exp(κ1(cos(θi−µ1)), ...,

pC

I0(κC)
exp(κC(cos(θi−µC)).

Discrete slice sampling algorithm is used to obtain random samples from the full

conditional distribution of KKK

Conditional distribution for ppp:

p1 = q∗1 and pk = (1−q∗1)(1−q∗2)...(1−q∗k−1)q
∗
k , k = 2, ...,C−1

where

q∗k ∼ Beta(1+nk,α +
C

∑
l=k+1

nl), k = 1, ...,C−1

where nk = #{i : Ki = k}, that is, nk saves the number of Ki values which set to k

Conditional distribution for α:

α|ppp∼ Gamma(C+ v1−1,v2−
C−1

∑
k=1

log(1−q∗k)

where q∗k are same values in the simulation of ppp.

B.2 Posterior computation for DP mixture wrapped Cauchy model

The full conditional distributions for the parameters of DP mixture wrapped Cauchy

model are given by:

Let K∗1 , ...,K
∗
m be the current m unique values of KKK. The conditional distribution

ϕϕϕ|KKK,θθθ can be decomposed as µµµ|ρ,K,θρ,K,θρ,K,θ and ρρρ|µ,K,θµ,K,θµ,K,θ . In each iteration of Gibbs

sampler, we simulate as

Conditional for µµµ: For each j ∈ K∗1 , ...,K
∗
m, draw

µ j|ρ,K,θρ,K,θρ,K,θ ∝ exp(κ0cos(µ j−µ0))+ ∑
i:Ki= j

log(
1

1+ρ2
j −2ρ jcos(θi−µ j)

))

it can be used Taylor expansion of log(1/1+ x)) with ignored high order terms, we

repeatedly write the full conditional distributions for µµµ as follows

∝ exp(κ0cos(µ j−µ0))+ ∑
i:Ki= j

2ρ jcos(θi−µ j)−ρ
2
j )
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and then, the block-hybrid sampling algorithm is performed to obtain random sam-

ples from the full conditional distribution of µ j. Also for each j ∈ KKK−K∗1 , ...,K
∗
m,

independently simulate µ j ∼ vM(µ0,κ0).

Conditional distribution for ρρρ: For each j ∈ K∗1 , ...,K
∗
m, draw

ρ j|µ,K,θµ,K,θµ,K,θ ∝ ρ
a0−1
j (1−ρ j)

b0−1
∏

i:Ki= j

1−ρ2
j

1+ρ2
j −2ρ jcos(θi−µ j)

.

Slice sampling algorithm is performed to obtain random samples from ρ j|µ,K,θµ,K,θµ,K,θ .

Also for each j ∈KKK−K∗1 , ...,K
∗
m, independently simulate ρ j ∼ Beta(a0,b0).

Conditional distribution for KKK:

(Ki|ppp,µµµ,κκκ,θθθ)∼
C

∑
k=1

pk,i Ik(.), i = 1, ...,n

where

(p1,i, ..., pC,i) ∝ p1
1−ρ2

1
1+ρ2

1 −2ρ1cos(θi−µ1)
, ..., pC

1−ρ2
C

1+ρ2
1 −2ρCcos(θi−µC)

.

The discrete slice sampling algorithm is used to obtain random samples from the full

conditional distribution of KKK. The others full conditional distributions are same in

given by Appendix B.1.

B.3 OpenBUGS codes

In this part, we share our OpenBUGS codes. We define von Mises distribution and

wrapped Cauchy distribution via of new specifying distributions using ones trick. For

new prior distribution, the likelihood for θ when this is combined with a flat prior for

θ the correct prior results. Our codes with respect to wrapped Cauchy distribution are

shown below

#Wrapped Cauchy distribution

model{

const<-10000

Pi <- 3.14159265359

for (i in 1:N) {
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z[i]<- 1

z[i] ~ dbern(wc[i])

L[i] <- (1/(2*Pi))*(1-rho[ K[i] ]*rho[ K[i] ])/(1+rho[ K[i] ]*

rho[ K[i] ] -2*rho[K[i]] *cos(theta[i]-mu[ K[i] ] ))

wc[i]<-L[i]/const

K[i] ~ dcat(p[])

}

#Constructive DPP

#stick-breaking prior

p[1]<- q[1]; q[C]<-1

for (j in 2:C)

{p[j]<-q[j]*(1-q[j-1])*p[j-1]/q[j-1] }

for (k in 1:C-1) {q[k]~dbeta(1,alpha)}

# Baseline distribution

for (k in 1:C){

rho[k]~dbeta(0.5,0.5)

}

Ikappa0<-exp(kappa0)/sqrt(2*Pi*kappa0)

#hyperparemeters

kappa0<-7

mu0<-0

for (k in 1:C){

mu[k]~dflat()

z1[k]<-1

z1[k]~dbern(phi[k])

L2[k]<- 1/(Ikappa0) *exp(kappa0*cos(mu[k]-mu0))

phi[k]<-L2[k]/const

}

#DPP parameter prior

alpha~dgamma(1,1)
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#Programing for calculating summary statistics#

for ( i in 1:N) { for (j in 1:C) {

SC[i,j]<-equals(j, K[i])

} }

#total clusters #

for (j in 1:C) {cl[j]<-step(sum(SC[,j])-1)}

Cluster<-sum(cl[])

}

}

The likelihood of von Mises distribution in OpenBUGS is defined as follows

#Likelihood

const<-10000

pi<-3.14159265359

for (i in 1:N) {

z[i]<-1

z[i]~dbern(phi[i])

t[i]<-kappa[K[i]]/3.75

Ikappa00[i]<-1+3.5156229*pow(t[i],2)+3.0899424*pow(t[i],4)+

1.2067492*pow(t[i],6)+

0.2659732*pow(t[i],8)+0.0360768*pow(t[i],10)

+0.0045813*pow(t[i],12)

Ikappa01[i]<-exp(kappa[K[i]])/sqrt(2*pi*kappa[K[i]])

L1[i]<- 1/(Ikappa00[i]) * exp(kappa[K[i]]*cos(theta[i]-mu[K[i]]))

L2[i]<-1/(Ikappa01[i]) * exp(kappa[K[i]]*cos(theta[i]-mu[K[i]]))

L[i]<-L1[i]*step(3.75-kappa[K[i]])+L2[i]*step(kappa[K[i]]-3.75)

K[i] ~ dcat(p[])

phi[i]<-L[i]/const

}
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Circular-Circular association

Let (Θ1,Ψ1) and (Θ2,Ψ2) be two independent random vectors of (Θ,Ψ), and the cir-

cular correlation coefficient introduced by Fisher and Lee (1983) is defined as follows

ρT =
E{sin(Θ1−Θ2)sin(Ψ1−Ψ2)}

{E[sin2(Θ1−Θ2)]E[sin2(Ψ1−Ψ2)]}1/2

This circular correlation coefficient takes values between −1 and 1, and is 0 if Θ and

Ψ are independent otherwise dependent.

Given a random sample of n observations of (Θ,Ψ), (θ1,ψ1), ...,(θn,ψn), the estimate

of ρT is given by

ρ̂T =
4(AB−CD)

{(n2−E2−F2)(n2−G2−H2)}1/2

where

A =
n

∑
j=1

cosθ j cosψ j, B =
n

∑
j=1

sinθ j sinψ j,

C =
n

∑
j=1

cosθ j sinψ j, D =
n

∑
j=1

sinθ j cosψ j,

E =
n

∑
j=1

cos2θ j, F =
n

∑
j=1

sin2θ j, G =
n

∑
j=1

cos2ψ j, F =
n

∑
j=1

sin2ψ j.

In order to examine the correlation patterns of Θt , we use this circular correlation

coefficient. Here, given a random sample of n observations of Θt , which can be

written as (θ1,θk+1), ...,(θn−k,θn), k ≥ 0, then we compute ρ̂T,k which is defined as

k− lag sample circular autocorrelation.
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C.2 Posterior computation for DP mixture Möbius model

The full conditional distributions for the parameters of DP mixture Möbius time series

model are as follows:

Let K∗1 , ...,K
∗
m be the current m unique values of KKK. In each iteration of the Gibbs

sampler, we simulate

Conditional for µµµ: For each j ∈ K∗1 , ...,K
∗
m, draw

µ j|λ ,κ,K,θλ ,κ,K,θλ ,κ,K,θ ∝ exp(κ0cos(µ j−µ0)+

∑
t:Kt= j

κ jcos(θt− (µ j +2atan{λ j tan
1
2
(θt−1−µ j)})).

Adaptive Metropolis Hastings algorithm is performed to obtain random samples from

µ j|λ ,κ,K,θλ ,κ,K,θλ ,κ,K,θ . Also for each j∈KKK−K∗1 , ...,K
∗
m, independently simulate µ j∼ vM(µ0,κ0).

Conditional for λλλ : For each j ∈ K∗1 , ...,K
∗
m, draw

λ j|µ,κ,K,θµ,κ,K,θµ,κ,K,θ ∝ exp( ∑
t:Kt= j

κ jcos(θt− (µ j +2atan{λ j tan
1
2
(θt−1−µ j)})).

Slice sampling algorithm is performed to obtain random samples from λ j|µ,κ,K,θµ,κ,K,θµ,κ,K,θ .

Also for each j ∈KKK−K∗1 , ...,K
∗
m, independently simulate λ j ∼ Unif(a0,b0).

Conditional distribution for κκκ: For each j ∈ K∗1 , ...,K
∗
m, draw

κ j|µ,K,θµ,K,θµ,K,θ ∝
κ

b0−1
j

I0(κ j)n j
exp( ∑

t:Kt= j
κ jcos(θt− (µ j +2atan{λ j tan

1
2
(θt−1−µ j)}))−a0κ j)

where n j = #{t : Kt = j}. The slice sampling algorithm is used to obtain random

samples from the full conditional distribution of κ j. Also for each j ∈KKK−K∗1 , ...,K
∗
m,

independently simulate κ j ∼ Gamma(a0,b0).

Conditional distribution for KKK

(Kt |ppp,µµµ,κ,θθθ)∼
C

∑
k=1

pk,t Ik(.), t = 2, ...,n

where

(p1,t , ..., pC,t) ∝
p1

I0(κ1)
exp(κ1(cos(θt− (µ1 +2atan{λ1 tan

1
2
(θt−1−µ1)}))), ...,

pC

I0(κC)
exp(κC(cos(θt− (µC +2atan{λC tan

1
2
(θt−1−µC)}))).
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Conditional distribution for ppp

p1 = q∗1 and pk = (1−q∗1)(1−q∗2)...(1−q∗k−1)q
∗
k , k = 2, ...,C−1

where

q∗k ∼ Beta(1+nk,α +
C

∑
l=k+1

nl), k = 1, ...,C−1

where nk = #{t : Kt = k}, that is, nk saves the number of Kt values which set to k

Conditional distribution for α:

α|ppp∼ Gamma(C+ v1−1,v2−
C−1

∑
k=1

log(1−q∗k)

where q∗k are same values in the simulation of ppp.

C.3 OpenBUGS codes

In the following codes, we give R2OpenBUGS codes for our Möbius time series

model. Stick breaking implementation is similar with previous chapter.

circmodel <- function() {

const<-10000

pi<-3.14159265359

for (i in 2:N) {

z[i]<-1

z[i]~dbern(phi[i])

t[i]<-kappa[T[i]]/3.75

Ikappa00[i]<-1+3.5156229*pow(t[i],2)+3.0899424*pow(t[i],4)+

1.2067492*pow(t[i],6)+

0.2659732*pow(t[i],8)+0.0360768*pow(t[i],10)

+0.0045813*pow(t[i],12)

Ikappa01[i]<-exp(kappa[T[i]])/sqrt(2*pi*kappa[T[i]])

L1[i]<- 1/(Ikappa00[i]) * exp(kappa[T[i]]*cos(theta[i]-mut[i]))

L2[i]<-1/(Ikappa01[i]) * exp(kappa[T[i]]*cos(theta[i]-mut[i]))

L[i]<-L1[i]*step(3.75-kappa[T[i]])+L2[i]*step(kappa[T[i]]-3.75)
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T[i] ~ dcat(p[])

phi[i]<-L[i]/const

}

for (i in 2:N){

w[i]<-theta[i-1]-mu[T[i]]

mut[i] <-mu[T[i]]+2*arctan(lambda[T[i]]*tan(w[i]/2))

}

mut[1]<-theta[1]

# Constructive DPP

#stick-breaking prior

p[1]<- r[1]; r[C]<-1

for (j in 2:C) {p[j]<-r[j]*(1-r[j-1])*p[j-1]/r[j-1] }

for (k in 1:C-1) {r[k]~dbeta(1,alpha)}

# Baseline distribution

kappa0<-0.1

t1<-kappa0/3.75

mu0<-0.1

Ikappa0p<-1+3.5156229*pow(t1,2)+3.0899424*pow(t1,4)+

1.2067492*pow(t1,6)+

0.2659732*pow(t1,8)+0.0360768*pow(t1,10)+

0.0045813*pow(t1,12)

#Ikappa0p<-exp(kappa0)/sqrt(2*pi*kappa0)

#for (k in 1:C){

mu[1]~dunif(-3.14159265359,3.14159265359)

z1[1]<-1

z1[1]~dbern(phip[1])

L3[1]<-1/(Ikappa0p)*exp(kappa0*cos(mu[1]-mu0))

phip[1]<-L3[1]/const

#}
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for ( k in 2:C){

mu[k]<-(pi/2-mu[k-1])*delta[k-1]

}

for(k in 1:C-1)

{

delta[k]~dunif(0,1)

}

for (k in 1:C){

kappa[k]~dgamma(0.01,0.01)

}

#DPP parameter prior

#alpha~dunif(0.5,10)

alpha~dgamma(2,2)

for (k in 1:C){

lambda[k]~dunif(0,1)

}

}

circdata <- list("theta","N","C")

circinits <- function() {

list(alpha=1,

mu=c(-1.5,NA),

kappa=c(2,0.2),lambda=c(0.5,0.5),r=c(0.5,NA))}

## Uses default settings for n.burnin = n.iter/2; n.thin=10;

circout <- bugs(data = circdata, inits = circinits,

parameters.to.save = c("alpha",

"mu", "kappa","p","lambda"), model.file = circmodel,

n.chains = 3,n.burnin=40001, n.iter = 80001,n.thin=10,

debug=TRUE)
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