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ABSTRACT

A LOCAL PARAMETER ESTIMATOR BASED ON ROBUST LAV
ESTIMATION

Özdemir, Volkan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Murat Göl

August 2015, 96 pages

There are parameter errors in power system models due to the change of weather

conditions, such as temperature and humidity changes, miscommunication be-

tween the control center and the transducers of circuit breakers and tap changers,

etc. Because of the incorrect parameters, the state estimator may provide bi-

ased state estimates which may lead to many serious economic and operational

results. In order to prevent that, one must identify and correct those parameter

errors. This work proposes a local parameter estimator based on the robust

Least Absolute Value (LAV) estimator. Considering the increasing number of

Phasor Measurement Units (PMUs), their fast refreshing rate and high accu-

racy, the proposed method will employ PMU measurements in local parameter

estimation which will provide a more reliable system model.

In general, a PMU measures the current phasor �owing through a branch, and

the voltage phasor of the sending bus of the considered branch. However, it is
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known that those two measurements are not enough to estimate the parame-

ters of that branch. Therefore, multiple measurements taken in di�erent time

instants will be used in the parameter estimation process for measurement re-

dundancy, assuming that the state estimates are also available.

It is known that the LAV estimator is a computationally expensive despite be-

ing robust in the presence of enough measurement redundancy. Note that, the

parameter estimation problem is a non-linear problem, which increases the com-

putational burden; since the vector to be estimated consists of not only the

parameters of the considered branch, but also the bus voltages of the sending

and the receiving ends of the considered branch. This de�ciency will be elim-

inated by performing local parameter estimation, which is a very small sized

problem compared to the state estimation problem's size

Keywords: Phasor Measurement Units, Least Absolute Value, Robust Parame-

ter Estimation, Local Parameter Estimation
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ÖZ

GÜRBÜZ LAV YÖNTEM�NE DAYANAN YEREL PARAMETRE
KEST�R�MC�S�

Özdemir, Volkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisli§i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Murat Göl

A§ustos 2015 , 96 sayfa

Güç sistemi modellerinde, s�cakl�k ve nem de§i³iklikleri gibi hava ³artlar� ne-

deniyle baz� parametre hatalar� olu³maktad�r. Ayn� zamanda, kontrol merkezi,

devre kesiciler ve kademe de§i³tiricileri aras�ndaki ileti³imsizlik de güç sistemi

parametre hatalar�na sebep olabilmektedir. Yanl�³ parametrelerden dolay�, du-

rum kestirimcisi, yanl� tahminlerde bulunabilir ve bu yüzden ciddi ekonomik

ve operasyonel sonuçlarla kar³�la³�labilir. Bu durumun önüne geçebilmek için,

bu parametre hatalar�n�n tespit edilmesi ve düzeltilmesi gerekmektedir. Fazör

Ölçüm Cihazlar�n�n (Phasor Measurement Unit - PMU) gün geçtikçe yayg�nla³-

t�§� ve h�zl� tepki süreleri göz önüne al�narak, bu tezde En Az Mutlak De§erli

(Least Absolute Value - LAV) gürbüz tahmincisi yöntemine dayanan bir yerel

parametre kestirimcisi önerilmektedir. Geli³tirilmi³ olan metot daha güvenilir

bir sistem modeli olu³turacakt�r.

Genel olarak bir PMU, bir hattan akan Faz Ak�m�n� ve ilgili hatt�n gönderen
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taraf�ndaki Fazör Gerilimini ölçer. Bununla birlikte, bu iki ölçümün, hat para-

metrelerin tahmini için yeterli olmad�§� bilinmektedir. Bu nedenle, sistemde hali-

haz�rda bir durum kestirimcinin de varoldu§u kabul edilerek, parametre tahmini

için ölçüm art�kl�§�n� artt�rmak amac�yla farkl� anlarda çoklu ölçümler kullan�-

lacakt�r.

LAV kestirimcisinin gürbüz olmas�na ra§men i³lemsel olarak çok masra�� oldu§u

bilinmektedir. Parametre kestiriminin linear olmamas� ve kestirilen vektörde il-

gili hatlar�n parametre verilerinin yan�nda gönderen ve alan bara gerilimlerinin

de§erlerinin de tahmin edilecek olmas� kestirim probleminin hesapsal yükünü

artt�rmaktad�r. Kestirilen parametrelerin yerel olmas�, problemin boyutunu kü-

çültür ve bu kusuru yok eder.

Anahtar Kelimeler: Faz Ölçüm Cihaz�, Mutlak En Küçük De§er, Gürbüz Para-

metre Kestirimi, Yerel Parametre Kestirimi
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CHAPTER 1

INTRODUCTION

1.1 Problem De�nition

State estimation (SE) in power systems is one of the most essential functions

of Energy Management Systems (EMS) for the reliability of the whole system

operation [1] . SE assumes a true model of the power system [1�4], and hence

knowledge of system topology and true values of the line and transformer pa-

rameters are extremely important for the accuracy of SE [1�7]. Although SE

assumes perfect knowledge of the system, it is a�ected by three types of male-

factions, [8] which are:

• Bad data on measurements

• Topology errors

• Parameter errors [8]

Bad data and topology error has serious e�ects on the results of SE, and hence

there are various methods developed on the literature to overcome those issues.

This work focuses on the parameter errors. When parameters have errors, the

state estimator may generate biased state estimates which will conceal the actual

states and lead unreliable information about the system. Biased state estimates

may cause catastrophic events during the operation because EMS applications

and decision routes rely on the estimates generated by the estimator.
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Performance of the programs that run on the EMS depends on the parameters

strongly. Topological errors can be identi�ed easily in SE, which may be treated

as parameter errors, while the small errors in the parameters such as branch

impedance etc. will create reliability problems [9].

1.2 Estimation Algorithms

Well known parameter estimation techniques can be sorted via two sections,

which are o�-line methods [5�13] and on-line methods [14�18]. Those tech-

niques are employs Least Squares (LS) estimator [1]. Since LS is a not a robust

estimator, even in the presence of single bad data, the estimation results will

be biased. Relationship between residuals and parameter errors constitute the

main basis of o�-line and on-line methods [19].

In order to guarantee unbiased parameter estimates, one must employ normal-

ized residuals test [20], which has a signi�cant computational cost due to the

mandatory matrix inversion. In this thesis LAV algorithm will be proposed

against the LS for obtaining a robust yet computationally competitive estima-

tor [21, 22].

LS estimator is computationally faster compared to the LAV estimator, if no bad

data exists in the measurement set. However, robustness of the LAV estimator

makes it more desirable for the proposed parameter estimation method de�ned

in this thesis.

The robust LAV estimator, which is an L-1 estimator, has an iterative solu-

tion scheme for non-linear problems [23]. Although the iterative solution means

longer solution time, when the estimation problem is formulated as a local pa-

rameter estimation problem, which is a very small sized problem in compar-

ison of centralized problems, like state estimation etc, the de�ciency will be

compensated immediately. The robustness thanks to the LAV estimator and

computational e�ciency thanks to the local problem formulation makes the

proposed parameter estimation method more advantageous compared to the

existing methods .
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1.3 Phasor Measurements Units

A Phasor Measurement Unit (PMU) is a digital device which can read analog

signal voltage with the help of analog to digital converters and produces volt-

age and current phasor measurements which are called synchrophasors [9, 24].

Synchronized Phasor Measurement Units (PMUs) are the newest and the most

reliable trend in the power system world so the number and importance of the

PMUs in power grids increase day by day. The SCADA systems provide a-

synchronized and low resolution measurements, which reduce the reliability of

the estimations based on those measurements. On the other hand, the fast re-

fresh rate and high accuracy of PMU measurements enables use of more reliable,

computationally e�cient and robust estimation methods.

It is proposed to use of the PMU measurements in local parameter estimation

which will be the next step of the power system parameter estimation in this

work. It is a fact that PMUs take synchronized bus voltage phasor and line

current phasor measurements 30 times a second with respect to the Global Po-

sitioning System (GPS) [25]. Main two reason of using GPS in PMUs are;

• Ability of determining real coordinates which tells the exact location of

the device,

• Having an access to an accurate global clock,

It is a known fact that, the system states and PMU measurements are linearly

related, which makes PMU measurements desirable in SE. However, once the

parameter estimation is considered, the estimation problem becomes non-linear

due to the relation between the system parameters, system states and mea-

surement set. Therefore, although the SE problem has single step solution for

systems measured solely by PMUs, the parameter estimation problem will have

a iterative solution.
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1.4 WLS Estimator

This section presents the WLS estimation which is originally a Gaussian concept

of estimation by least squares that was used in astronomical calculations in

18th century [26]. From its invention till the Kalman's studies in 20th century,

it nurtured so many estimation theories. Although it was used in order to

understand the motions of the planets by Gauss, today it is used widely in

power system in many aspects mainly in power system state estimation.

In a power system with;

• m measurements

• n system states

• Measurement vector, z is non-linearly related to the system states as shown

below

z = h(x) + e (1.1)

x is the system state vector, h(x) is the non-linear function that relates z and

x, and e is the measurement error vector.

zT =
[
z1 z2 z3 ... zm

]
(1.2)

h(x) =



h1(x1, x2, x3...xn)

h2(x1, x2, x3...xn)

h3(x1, x2, x3...xn)

.

.

.

.

hm(x1, x2, x3...xn)


(1.3)
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eT =
[
e1 e2 e3 ................... em

]
(1.4)

E(ek) is assumed to be equal to 0 and E[ekel] = 0. The main aim of a WLS

estimator is minimizing the objective function which is:

J(x) =
m∑
k=1

R−1
kk ∗ (zk − hk(x))2 (1.5)

J(x) = (z − h(x))T ∗R−1 ∗ (z − h(x)) (1.6)

To have the minimum, below condition must be satis�ed:

∂J(x)

∂x
= 0 (1.7)

Calling ∂J(x)
∂x

as g(x) and by expanding g(x) into its Taylor series around the xk:

g(x) = g(xk) +G(xk)(x− xk) +NHOT (1.8)

By assuming;

• k as the iteration index

• xk as the vector at k

• G(x) = ∂g(xk)
∂x

The estimation problem can be solved iteratively by Newton-Raphson method;

xk+1 = xk −G(xk)−1 ∗ g(xk) (1.9)

Where G(x) is called the Gain Matrix which is large but sparse and symmetric

.
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1.5 Contribution

In this thesis, a new local parameter estimation method is proposed which uses

the information that is obtained from PMU measurements. Least Absolute

Value (LAV) algorithm is used for estimating line parameters through the thesis

without needing a bad data process while it is assumed that there exists a state

estimator which may or may not be robust. In state estimation, problem is linear

whenever the considered system is measured by PMU's, but in parameter estima-

tion case, measurements and line parameters are not linearly related. Therefore,

in order to comprehend an iterative solution must be employed, which in general

is computationally expensive. the proposed method employs local formulation

of the parameter estimation problem, which reduces the size of the estimation

problem signi�cantly. The proposed method is evaluated by simulations under

di�erent conditions.

1.6 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 shows LAV estimator in general and how it is applicable to

parameter estimation in power systems.

• Problem formulation of the proposed solution is restated in Chapter 3.

This chapter also gives the information about system model and how it is

implemented for both algorithms.

• The performance comparison between LS and LAV is revealed in Chapter

4. It is proven that LAV is better than the LS in some aspects while

showing LAVs shining properties. This chapter also contains simulations

and the results of the comparison between LAV and LS estimators in terms

of accuracy and computational performance.

• Chapter 5 contains the simulation results of the proposed method under

di�erent real life scenarios and shows the power of the power system pa-

rameter estimation by LAV.
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• Finally, The thesis is concluded in Chapter 6 and new ideas for possible

future work is given.
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CHAPTER 2

LAV ESTIMATOR

This chapter �rstly presents the Least Absolute Value (LAV) estimation of an

unknown vector in a linear regression. After that a brief review of linear pro-

gramming is given, followed by the simplex solution method of linear program-

ming problems.

2.1 Linear Regression

Firstly consider the regression model given below:

zi = AT
i x+ ei (2.1)

where;

• zi is a set of m observations i = 1, 2, 3......m

• Ai is a set of m vectors AiεR
n, i = 1, 2, 3......m

• x is an unknown vector xεRn, i = 1, 2, 3......m

• ei the random error for each observation

For understanding the linear regression, one should know the basic minimization

problem formulation as follows:

• A is a matrix of mxn and AT
i is the ith row of A,
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• c is a vector while all of its elements equals to 1's and cεRm,

• r is the vector of observation residuals where rεRm.

With all the above information for �nding the least absolute value estimate x̂ of

the unknown vector x, one should solve the following:

minimize cT |r| (2.2)

subject to z − Ax = r (2.3)

2.2 Simplex Solution Method

Objective function of LAV estimator is de�ned as below for a system with m

measurements and n states [1]:

minimize
n∑

i=1

|ri| (2.4)

subject to zi = hi(x) + ri , while 1 < i < m (2.5)

In (2.4) and (2.5):

• ri is the residual value of ith,

• zi is simply the ith measurement,

• Finally hi is a nonlinear function which gives the relation between state

vector x and the measurement vector, zi

LAV optimization problem can be expressed and solved as an equivalent linear

programming (LP) problem if one re-arranges the equations and de�nes new

variables which are all non-negative [1]. If x0 is assumed as an initial solution
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for the state and one gets the �rst order approximation of hi(x) around the x0,

one gets the objective function as:

J(xk) =
m∑
i=1

(pki + lki ) (2.6)

By (2.6) we can write the measurement residual vector at the kth state estima-

tion iteration as below:

rk = pk + lk (2.7)

rk = z − h(xk)−H(xk) ∗∆x (2.8)

rk = ∆zk −H(xk) ∗∆xk (2.9)

Since what we are doing is showing the roots of linear programing by LAV, we

can easily get rid of the superscript k for simplicity. Than for a closer look of

the problem which is solved at iteration k can be written easily as:

Minimize
m∑
i=1

(pi + li) (2.10)

Subject to H ∗∆xp −H ∗∆xl + p− l = ∆z (2.11)

∆xp,∆xl, p, l ≥ 0 where ∆x = ∆xp −∆xl (2.12)

For writing simpler like general LP problem, it can be summarized as below:

Minimize cT ∗ Y (2.13)
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Subject to M ∗ Y = b while Y ≥ 0 (2.14)

Detailed explanation of the (2.13) and (2.14) can be found in below:

cT = [0m, 1n] (2.15)

0n = [0, 0....0, 0]nx1 (2.16)

1m = [1, 1....1, 1]mx1 (2.17)

b = ∆z (2.18)

Y = [∆xTp ,∆x
T
l , p

T , lT ] (2.19)

M = [H,−H, Im,−Im] (2.20)

Im = eye(m) (2.21)

In (2.15), Zn is the 1x2N vector consisting of zeros and Om is the 1x2m vector

consisting of ones. ∆xp and ∆xl are 1xN , and p and l are 1xm vectors listed in

(2.12);

For the iterative solution, one must follow the algorithm shown in below:

• Initialize x0 as a �at start,

• Solve the linear programing problem given in (2.15) using a linear pro-

graming solver,
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• Check if ∆xk < ε

• If 'yes' stop

• If 'no' update the Y and M and go to second step
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CHAPTER 3

PROPOSED PARAMETER ESTIMATION METHOD

In Chapter 1 and 2, review of the parameter estimation is given. In this chapter,

the new way of parameter estimation method is implemented.

State estimation takes a crucial part in EMS for system security and reliability,

in order to build a proper system model one needs proper system data namely pa-

rameter values since the data given from the factory are not always reliable EMS

needs to have a parameter estimation tool for a secure system. The proposed

parameter estimation method employs LAV estimator in an iterative manner.

This chapter introduces the proposed parameter estimation method.

EMS may estimates all parameters of a given power system, as well as the subset

of the system parameter, like local parameter estimation [1]. If the parameters

used in the state estimation tools are accurate then the accuracy of the estimates

will be much higher. EMS builds a system model according to those parameters

and system topology. The most reliable way of the representing the system

model is basic two port π model. While the EMS deals with the whole system

for estimating states of the buses, it consumes a lot of CPU power during the

process and CPU loading problem is same as if one tries to estimates of the every

parameters of the whole system. Since there is a high computational loading

while estimating the all parameters, local parameter estimation is preferred in

this thesis. Starting from this chapter a local parameter estimation method

will be built. For building the local parameter estimation model, such that

parameters of each line are estimated separately as a single estimation problem,

consider the two-bus system given in Fig.3.1 by two port π model, where;
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• g12 is the conductance between bus-1 and bus-2,

• b12 is the susceptance between bus-1 and bus-2,

• b11 is the charging-susceptance of the transmission line.

Figure 3.1: 2-Bus Sample System

The proposed method employs PMU measurements, as they are time stamped

and fast refreshed measurements. The only PMU located in Fig.3.1 is st the

BUS-1 due to system simplicity and cost issues. It will generate the voltage pha-

sor measurements of BUS-1 and current phasor measurements between BUS-1

and BUS-2.The relation between the system parameters and the PMU measure-

ments that can be taken is expressed as below.

Imeas
ij = Re(Imeas

ij ) + Im(Imeas
ij ) (3.1)

Re(Imeas
ij ) = gij(Re(Vi)−Re(Vj))− (bij + bii)(Im(Vi)) + bijIm(Vj) (3.2)

Im(Imeas
ij ) = gij(Im(Vi)− Im(Vj))− (bij + bii)(Re(Vi))− bijRe(Vj) (3.3)

In (3.1), (3.2) and (3.3):

• Re(Imeas
ij ) is the real part of the current phasor measurement of the PMU

located in BUS-i,
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• Im(Imeas
ij ) is the imaginary part of the current phasor measurement of the

PMU located in BUS-i,

• Re(Vk) is the real part of BUS-k voltage phasor

• Im(Vk) is the imaginary part of BUS-k voltage phasor

In the power system given in Fig.3.1, because of the economic constraints, there

will be a single PMU located either at Bus-1 or Bus-2. A single scan of a PMU

(Voltage and Current phasor measurements) satis�es observability for state es-

timation in the system given in Fig.3.1. However, considering the additional

states (line parameters) of the parameter estimation problem, a single scan will

cause un-observability. Therefore, at least three measurement scans are required

for the observability of the parameter estimation problem. Considering the fast

refresh rate of PMU measurements [25], this thesis proposes to use multiple

PMU scans taken from the same measurement unit at consecutive time instants

to solve parameter estimation problem.

Using only the voltage and current phasor measurements obtained by a PMU

makes the parameter estimation vulnerable to measurements error associated

with that PMU. In order to improve the robustness of the parameter estimation,

the state estimates of the system from the EMS state estimator are also employed

as measurements.

3.1 Building the Jacobian Matrix for Local Parameter Estimation

This thesis employs non-linear parameter estimation formulation, which is stated

below:

z = h(x) + e (3.4)

In (3.4) measurement vector z with size of 8nx1, is de�ned as below where

measurements are taken at n di�erent time instants;
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ZT =
[
V m,r V m,i V e,r V e,i Im,r Im,i

]
(3.5)

In (3.5):

• V m,r is the vector of real parts of the voltage phasor measurements taken

at the sending end of the branch (1xn),

• V m,i is the vector of imaginary parts of the voltage phasor measurements

taken at the sending end of the branch (1xn),

• V e,r is the vector of real parts of the voltage phasor estimates at the sending

and receiving ends of the branch (1x2n),

• V e,i is the vector of imaginary parts of the voltage phasor estimates at the

sending and receiving ends of the branch (1x2n),

• Im,r is the vector of real parts of the current phasor measurements from

the sending end to the receiving end of the branch (1xn),

• Im,i is the vector of imaginary parts of the current phasor measurements

from the sending end to the receiving end of the branch (1xn)

The state vector x with size (4n+ 3)x1 is de�ned as follows;

xT =
[
V r V i gij bij bii

]
(3.6)

In (3.6) :

• V r is the vector of real parts of the voltage phasors of the sending and

receiving ends of the branch (1xn),

• V i is the vector of imaginary parts of the voltage phasors of the sending

and receiving ends of the branch (1x2n),

• gij is the series conductance of the branch (1x1),

• bij is the series susceptance of the branch (1x1),
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• bii is the charging susceptance of the branch (1x1).

It is clear that the PMU measurements are non-linearly related to the state

vector x de�ned in (3.6). The non-linear relations of the PMU measurements

and the state vectors are mapped in to the h(x) matrix function with size (8n)x1

as below:

h(x)T =
[
V m,r
i V m,i

i Im,r
ij Im,i

ij V r
i V i

i V r
j V i

j

]
(3.7)

To obtain the Jacobian Matrix of the h(x), partial derivatives of the function

h(x) must be written;

∂h(x)

∂x
= H (3.8)

In (3.8), H is the Jacobian matrix of the size (8n)x(4n+ 3). n is assumed as 1,

than H is formed for the system given in 3.1. The H matrix is given below:

H =



dV m,r
i

dV r
i

dV m,r
i

dV r
j

dV m,r
i

dV i
i

dV m,r
i

dV i
j

dV m,r
i

dgij

dV m,r
i

dbij

dV m,r
i

dbii

dV m,i
i

dV r
i

dV m,i
i

dV r
j

dV m,i
i

dV i
i

dV m,i
i

dV i
j

dV m,i
i

dgij

dV m,i
i

dbij

dV m,i
i

dbii

dV e,r
i

dV r
i

dV e,r
i

dV r
j

dV e,r
i

dV i
i

dV e,r
i

dV i
j

dV e,r
i

dgij

dV e,r
i

dbij

dV e,r
i

dbii
dV e,r

j

dV r
i

dV e,r
j

dV r
j

dV e,r
j

dV i
i

dV e,r
j

dV i
j

dV e,r
j

dgij

dV e,r
j

dbij

dV e,r
j

dbii

dV e,i
i

dV r
i

dV e,i
i

dV r
j

dV e,i
i

dV i
i

dV e,i
i

dV i
j

dV e,i
i

dgij

dV e,i
i

dbij

dV e,i
i

dbii

dV e,i
j

dV r
i

dV e,i
j

dV r
j

dV e,i
j

dV i
i

dV e,i
j

dV i
j

dV e,i
j

dgij

dV e,i
j

dbij

dV e,i
j

dbii
dIm,r

ij

dV r
i

dIm,r
ij

dV r
j

dIm,r
ij

dV i
i

dIm,r
ij

dV i
j

dIm,r
ij

dgij

dIm,r
ij

dbij

dIm,r
ij

dbii

dIm,i
ij

dV r
i

dIm,i
ij

dV r
j

dIm,i
ij

dV i
i

dIm,i
ij

dV i
j

dIm,i
ij

dgij

dIm,i
ij

dbij

dIm,i
ij

dbii



(3.9)

Elements of the Jacobian Matrix, H is given below one by one:

dV m,r
i

dV r
i

= 1 (3.10)

dV m,r
i

dV i
i

=
dV m,r

i

dV r
j

=
dV m,r

i

dV i
j

= 0 (3.11)
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dV m,r
i

dgij
=
dV m,r

i

dbij
=
dV m,r

i

dbii
= 0 (3.12)

dV m,i
i

dV i
i

= 1 (3.13)

dV m,i
i

dV r
i

=
dV m,i

i

dV r
j

=
dV m,i

i

dV i
j

= 0 (3.14)

dV m,i
i

dgij
=
dV m,i

i

dbij
=
dV m,i

i

dbii
= 0 (3.15)

dIm,r
ij

dV r
i

= gij (3.16)

dIm,r
ij

dV i
i

= −bij − bii (3.17)

dIm,r
ij

dV r
j

= −gij (3.18)

dIm,r
ij

dV i
j

= bij (3.19)

dIm,r
ij

dgij
= Re(Vi)−Re(Vj) (3.20)

dIm,r
ij

dbij
= −Im(Vi) + Im(Vj) (3.21)

dIm,r
ij

dbii
= −Im(Vi) (3.22)

dIm,i
ij

dV r
i

= bij + bii (3.23)
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dIm,i
ij

dV i
i

= gij (3.24)

dIm,i
ij

dV r
j

= −bij (3.25)

dIm,i
ij

dV i
j

= −gij (3.26)

dIm,i
ij

dgij
= Im(Vi)− Im(Vj) (3.27)

dIm,i
ij

dbij
= Re(Vi)−Re(Vj) (3.28)

dIm,i
ij

dbii
= Re(Vi) (3.29)

dV e,r
i

dV r
i

= 1 (3.30)

dV e,r
i

dV i
i

=
dV e,r

i

dV r
j

=
dV e,r

i

dV i
j

=
dV e,r

i

dgij
=
dV e,r

i

dbij
=
dV e,r

i

dbii
= 0 (3.31)

dV e,i
i

dV i
i

= 1 (3.32)

dV e,i
i

dV r
i

=
dV e,i

i

dV r
j

=
dV e,i

i

dV i
j

=
dV e,i

i

dgij
=
dV e,i

i

dbij
=
dV e,i

i

dbii
= 0 (3.33)

dV e,r
j

dV r
j

= 1 (3.34)

dV e,r
j

dV i
i

=
dV e,r

j

dV r
j

=
dV e,r

j

dV i
j

=
dV e,r

j

dgij
=
dV e,r

j

dbij
=
dV e,r

j

dbii
= 0 (3.35)
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dV e,i
j

dV i
j

= 1 (3.36)

dV e,i
j

dV r
i

=
dV e,i

i

dV i
i

=
dV e,i

j

dV r
j

=
dV e,i

j

dgij
=
dV e,i

j

dbij
=
dV e,i

j

dbii
= 0 (3.37)

To sum up the matrix representation, equations between (3.10) and (3.37) are

written into H in (3.38) :

H =



1 0 0 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

gij −gij −(bij + bii) bij V Re
i − V Re

j V Im
j − V Im

i −V Im
i

(bij + bii) −bij gij −gij V Im
i − V Im

j V Re
j − V Re

i V Re
i


(3.38)

It is clear that even though H is a massive matrix, a large part of the elements

are zeros which will cause a drop in the processor power necessity during the

local parameter estimation.

As seen in (3.38), H is a rank-de�cient matrix if n is less than 3. As mentioned

before, this thesis proposes to use multiple time scans to perform parameter

estimation. �3� is the minimum number of scans that should be taken to ob-

tain observability. However, in order to have a robust estimator, measurement

redundancy is required. In order to have a robust estimator, each state should

have 4 redundant measurements [23]. Therefore, this work proposes the use of

at least 6 measurement scans for single bad data robustness. Thanks to the

fast refresh rate of PMUs (30 times/second) and small size of the parameter

estimation problem (48x27 for n = 6), the computational time and burden of

the proposed method is very small.
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CHAPTER 4

COMPARISON BETWEEN WLS AND LAV

ESTIMATORS

Chapter 1 and 2 reveals the basic history of the parameter estimation while

in Chapter 3, the new way of parameter estimation method is implemented.

Chapter 4 shows the comparison between WLS and LAV Estimators.

WLS is the mostly employed estimator to solve the estimation problems, due to

its simplicity and fast solution. However in this work, it is proposed to employ

LAV estimator to solve the parameter estimation problem. This chapter provides

a comparison between the WLS and LAV estimators, to validate the choice of

the estimator for robust parameter estimation problem.

The 2-bus system given in Fig.3.1 is employed for the simulation purpose. True

values of the line parameters selected for simulation purposes are given in the

IEEE 30-Bus sample system and the values are used in this chapter are stated

in Table 4.1. Note that the actual values of the line are not known for sure since

these values can easily be a�ected by di�erent conditions [27].

In this work 3 di�erent scenarios were employed to validate the proposed method

in MATLAB environment using a Windows Operating System. In the 1st sce-

nario, parameter estimation with no bad data case is run for both LS and LAV

estimators. In the 2nd scenario, single bad parameter data was introduced and

the simulation results were compared to LAV estimator. Finally a bad measure-

ment was introduced to the measurement set and the estimation results of LS

and LAV estimators are compared. In all simulations, the measurement set is
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in the form of (3.5) and the state vector is in the form of (3.6). Measurement

set consists of 6 time scans as indicated in the previous chapter.

The performance of the both estimators are compared by the mean squared

errors (MSE) which is the average of the squares of errors which is the di�erence

between actual values and what is estimated by the estimators [28]. Calculation

of the MSE is shown below:

MSE =
1

n
∗

n∑
k=1

(Xe
k −Xk)2 (4.1)

where;

• n is the number of predictions

• Xe is the estimated value

• X is the actual value

Table 4.1: Transmission Line Parameters

Transmission Line Parameters

g12 5.2246 pu

b12 -15.646 pu

b11 0.0528 pu

4.1 Scenario-1

In this scenario, no bad data were introduced to the measurement set. However,

to make the simulation more realistic, Gaussian error was added to all measure-

ments. This scenario was run 100 times and the results are presented in Table

4.2.

As seen in Table 4.2, both estimators are converged to the true values in compa-

rable durations. Note that no special e�ort is spent for estimator optimization.
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Table 4.2: Simulation Results for Scenario 1

Mean Squared Errors and Mean Time

WLS

MSE of g12 2.27e-011

MSE of b12 2.87e-014

MSE of b11 2.71e-13

mean time 0.028 seconds

LAV

MSE of g12 9.23e-10

MSE of b12 1.006e-10

MSE of b11 4.23e-12

mean time 0.059 seconds

4.2 Scenario-2

In this scenario, it is assumed that the given parameter information is incorrect,

such that the series susceptance was assumed to be 3 times larger than the true

value. In this scenario, a Gaussian error was added to the measurement set and

the simulations were conducted 100 times. Simulation results are presented in

Table 4.3 and Fig.2.

As seen in Table 4.3 and Fig.4.1, the proposed method converged to the true

values in acceptable duration with acceptable accuracy. Note that, the increase

in simulation duration and decrease in accuracy are caused by the incorrect

initial values of the parameter estimation problem.
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Figure 4.1: Parameter Estimations of LAV Scenario-2

Table 4.3: Simulation Results for Scenario 2

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.0984

MSE of b12 0.0958

MSE of b11 0.0063

mean time 0.15 seconds

4.3 Scenario-3

In this scenario, it is assumed that the measurement set includes a bad measure-

ment. Gaussian error was added to the measurement set and the simulations

were conducted 100 times. In each simulation, a measurement is selected as bad

randomly. Simulation results for LS and LAV estimators are presented in Table

4.3.
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Table 4.4: Simulation Results for Scenario 3

Mean Squared Errors and Mean Time

WLS

MSE of g12 7.62

MSE of b12 6.86

MSE of b11 0.067

mean time 0.05 seconds

LAV

MSE of g12 6.64e-8

MSE of b12 7.39e-8

MSE of b11 4.66e-9

mean time 0.03 seconds

As seen in Table 4.3, the proposed method converged to true values in similar

duration with Scenario 1. On the other hand, LS had a high mean squared

error, which indicates that it converged to incorrect parameters. In order to

obtain unbiased estimates with LS, one needs to perform bad data detection

and identi�cation process as well, which requires extra computational burden.
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CHAPTER 5

SIMULATIONS AND NUMERICAL RESULTS

5.1 Line Parameter Estimation with non-Robust State Estimator

Chapter 1 and 2 contains review of the parameter estimation and Chapter 3

shows the new way of parameter estimation method while Chapter 4 shows the

comparison between WLS and LAV Estimators. Finally this chapter presents

the numerical results obtained via simulations to validate the proposed method.

In di�erent case studies,di�erent amount of bad data is considered for di�erent

measurement types.

The 2-bus system given in Fig.3.1 is again employed for simulation purpose but

this time the state estimator which provides the state estimates used in the

parameter estimation is a non robust estimator so it will generate biased and

wrong state variables.True values of the line parameters selected for simulation

purposes are stated in Table 4.1. Note that the actual values of the line param-

eters are not known for sure since these values can easily be a�ected by di�erent

conditions.

5.1.1 Parameter Estimation with non-Robust State Estimator with

Errors in V e
1

In this section, 4 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times using Monte Carlo simulations.
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In the 1st scenario, parameter estimation with only one bad data in V e
1 during

the 7 time scan is run for LAV. In the 2nd scenario, parameter estimation with 2

bad data in V e
1 during 7 time scan is run for LAV. In the 3rd scenario, parameter

estimation with 3 bad data in V e
1 during 7 time scan is run for LAV. In the 4th

scenario, parameter estimation with 6 bad data in V e
1 during 7 time scan is run

for LAV.

5.1.1.1 Scenario-1: Single Error in V e
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives one bad data for V e,t1
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0.The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.1.

Table 5.1: Simulation Results for 6.1.1.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1361

MSE of b12 0.1368

MSE of b11 0.0077

mean time 0.6064 seconds

5.1.1.2 Scenario-2: Two Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 2 bad data for V e,t1
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0 and at time t2 the state estimator

gives V e,t2
1 = 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.2.
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Table 5.2: Simulation Results for 6.1.1.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1566

MSE of b12 0.1447

MSE of b11 0.0078

mean time 0.60062 seconds

5.1.1.3 Scenario-3: Three Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 3 bad data for V e,t1
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0, at time t2 the state estimator gives

V e,t2
1 = 0. and at time t3 the state estimator gives V e,t3

1 = 0. The multiple bad

data in the observation set is eliminated successfully by the proposed LAV based

estimator, and unbiased estimates are obtained.Simulation results are presented

in Table 5.3.

Table 5.3: Simulation Results for 6.1.1.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1673

MSE of b12 0.1568

MSE of b11 0.0090

mean time 0.60778 seconds

5.1.1.4 Scenario-4: Four Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 4 bad data for V e,t1
1 . For example,

at time t1,t2,t3 and t4 the state estimator gives V e,t1
1 = V e,t2

1 = V e,t3
1 = V e,t4

1 = 0.

The multiple bad data in the observation set is eliminated successfully by the

proposed LAV based estimator, and unbiased estimates are obtained.Simulation

results are presented in Table 5.4.
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Table 5.4: Simulation Results for 6.1.1.4. Scenario-4

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1685

MSE of b12 0.1658

MSE of b11 0.0095

mean time 0.60595 seconds

5.1.1.5 Scenario-5: Five Errors in V e
1

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives 5 bad data for V e,t1
1 . For

example, at time t1,t2,t3,t4 and t5 the state estimator gives V e,t1
1 = V e,t2

1 =

V e,t3
1 = V e,t4

1 = V e,t5
1 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained.Simulation results are presented in Table 5.5.

Table 5.5: Simulation Results for 6.1.1.5. Scenario-5

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1698

MSE of b12 0.16858

MSE of b11 0.0099

mean time 0.61527 seconds

5.1.1.6 Scenario-6: Six Errors in V e
1

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives 6 bad data for V e
1 . Since there

are 7 time instants and nearly all of the estimator voltage values are biased,

parameter estimation is not successful as the previous scenarios. Simulation

results are presented in Table 5.6. In Fig.5.1 one can see the performance of

the parameter estimator by itself. The critical issue about this scenario is, even

though all of the inputs are biased, parameter estimator sometimes estimates
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the true values as well during the 100 times repetitive scenario run. If one

expands the time instants of the parameter estimator which can be easily done

by using 8 time instants instead of using 6 time instants, parameter estimator

will be again successful and the time consumption of the estimation process is

nearly the same. Simulation results are presented in Table 5.7 and Fig.5.2. In

Fig.5.2, iter means the total number of the iterations in order to estimate the

parameters.

Table 5.6: Simulation Results for 6.1.1.6. Scenario-6

Mean Squared Errors and Mean Time

LAV

MSE of g12 44.4461

MSE of b12 116.2870

MSE of b11 112.4563

mean time 0.54831 seconds

Figure 5.1: Parameter Estimations Results for 6.1.1.4. Scenario-4
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Table 5.7: Simulation Results for 6.1.1.4. Scenario-4 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.7507

MSE of b12 0.7197

MSE of b11 0.0613

mean time 0.46776 seconds

Figure 5.2: Parameter Estimations Results for 6.1.1.4. Scenario-4 with 7 Time

Instants

5.1.2 Parameter Estimation with non-Robust State Estimator with

Errors in V e
2

The 2-bus system given in Fig.3.1 is again employed for simulation purposes

but this time the state estimator which gives the used input in the parameter

estimation is a non robust estimator so it will generate biased and wrong state

variables at time instants.
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True values of the line parameters selected for simulation purposes are stated in

Table 4.1. Note that the actual values of the line are not known for sure since

these values can easily be a�ected by di�erent conditions. In this section, 2

di�erent scenarios were employed to validate the proposed method in MATLAB

environment using a Windows Operating System. All of the scenarios are run

for 100 times for getting unbiased observations for the operator.

In the 1st scenario, parameter estimation with only one bad data in and in 7

time scan is run for LAV. In the 2st scenario, parameter estimation with 2 bad

data in and in 7 time scan is run for LAV.

5.1.2.1 Scenario-1: Single Error in V e
2

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives one bad data for V e
2 . For example,

at time t1 the state estimator gives V e,t1
2 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.8

Table 5.8: Simulation Results for 6.1.2.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.0542

MSE of b12 0.01223

MSE of b11 0.00508

mean time 0.56871 seconds

5.1.2.2 Scenario-2: Double Error in V e
2

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 2 bad data for V e
2 . Although there

are 7 time instants and all of the estimator voltage values are biased, parameter

estimation is not successful as the previous scenarios. Simulation results are
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presented in Table 5.9. In Fig.5.3 one can see the performance of the parameter

estimator by itself. The critical issue about this scenario is, even though results

generally bad, parameter estimator sometimes estimates the true values as well

during the 100 times repetitive scenario run. If one expands the time instants

of the parameter estimator which can be easily done by using 8 time instants

instead of using 7 time instants, parameter estimator will be again successful and

the time consumption of the estimation process is nearly the same. Simulation

results are presented in Table 5.10 .

Table 5.9: Simulation Results for 6.1.2.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 37.985

MSE of b12 196.548

MSE of b11 116.858

mean time 0.52894 seconds

Figure 5.3: Parameter Estimations Results for 6.1.2.2. Scenario-2
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Table 5.10: Simulation Results for 6.1.2.2. Scenario-2 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.6507

MSE of b12 0.5856

MSE of b11 0.0552

mean time 0.4789 seconds

5.1.3 Parameter Estimation with non-Robust State Estimator with

Errors in V e
1 and V e

2

In this section, 4 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in each of V e
1

and V e
2 in 7 time scan is run. In the 2nd scenario, parameter estimation with

2 bad data in each of V e
1 and V e

2 in 7 time scan is run. In the 3rd scenario,

parameter estimation with 3 bad data in each of V e
1 and V e

2 in 7 time scan is run

and �nally In the 4th scenario, parameter estimation with 4 bad data in each of

V e
1 and V e

2 in 7 time scan is run.

5.1.3.1 Scenario-1: Single Error in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives one bad data for V e
1 and V e

2 .

For example, at time t1 the state estimator gives V e,t1
1 = V e,t1

2 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in in Table 5.11 .
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Table 5.11: Simulation Results for 6.1.3.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1080

MSE of b12 0.1230

MSE of b11 0.0061

mean time 0.3540 seconds

5.1.3.2 Scenario-2: Double Error in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives 2 bad dataa for V e
1 and V e

2 .

For example, at time t1 the state estimator gives V e,t1
1 = V e,t1

2 = 0, n time

t2 the state estimator gives V e,t1
1 = V e,t1

2 = V e,t2
1 = V e,t2

2 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in in Table 5.12 .

Table 5.12: Simulation Results for 6.1.3.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 9.0618

MSE of b12 1.5132

MSE of b11 0.1896

mean time 0.3540 seconds

5.1.3.3 Scenario-3: Three Errors in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives 3 bad dataa for V e
1 and V e

2 . For

example, at time t1 the state estimator gives V e,t1
1 = V e,t1

2 = 0, at time t2 the

state estimator gives V e,t1
1 = V e,t1

2 = V e,t2
1 = V e,t2

2 = 0 and at time t3 the state

estimator gives V e,t1
1 = V e,t1

2 = V e,t2
1 = V e,t2

2 = V e,t3
1 = V e,t3

2 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV
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based estimator, and unbiased estimates are obtained. Simulation results are

presented in in Table 5.13 .

Table 5.13: Simulation Results for 6.1.3.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1527

MSE of b12 0.1144

MSE of b11 0.0067

mean time 0.3822 seconds

5.1.3.4 Scenario-4: Four Errors in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 4 bad data for V e
1 and V e

2 . Although

there are 7 time instants and all of the estimator voltage values are biased,

parameter estimation is not successful as the previous scenarios. Simulation

results are presented in Table 5.14. In Fig.5.4 one can see the performance of

the parameter estimator by itself. The critical issue about this scenario is, even

though results generally bad, parameter estimator sometimes estimates the true

values as well during the 100 times repetitive scenario run. If one expands the

time instants of the parameter estimator which can be easily done by using

8 time instants instead of using 7 time instants, parameter estimator will be

again successful and the time consumption of the estimation process is nearly

the same. Simulation results are presented in Table 5.15 .

Table 5.14: Simulation Results for 6.1.3.4. Scenario-4

Mean Squared Errors and Mean Time

LAV

MSE of g12 35.9401

MSE of b12 15.2967

MSE of b11 0.7106

mean time 0,52698 seconds
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Figure 5.4: Parameter Estimations Results for 6.1.3.3. Scenario-4

Table 5.15: Simulation Results for 6.1.3.4. Scenario-4 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1582

MSE of b12 0.1367

MSE of b11 0.0069

mean time 0.3125 seconds

5.2 Line Parameter Estimation with Robust State Estimator with

Errors in PMU

The 2-bus system given in Fig.3.1 is again employed for simulation purpose but

this time the state estimator which gives the used input in the parameter es-

timation is robust but the PMU devices located on the bus-1 is not calibrated

properly, so it will generate biased and wrong measurement states at time in-

stants.True values of the line parameters selected for simulation purposes are
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stated in Table 4.1. Note that the actual values of the line are not known for

sure since these values can easily be a�ected by di�erent conditions.

5.2.1 Parameter Estimation with Robust State Estimator with Er-

rors in V m
1

In this section, 6 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in each of V m
1 in

7 time scan is run. In the 2nd scenario, parameter estimation with 2 bad data in

each of V m
1 in 7 time scan is run. In the 3rd scenario, parameter estimation with

3 bad data in each of V m
1 in 7 time scan is run. In the 4th scenario, parameter

estimation with 4 bad data in each of V m
1 in 7 time scan is run. In the 5th

scenario, parameter estimation with 5 bad data in each of V m
1 in 7 time scan

is run and �nally in the 6th scenario, parameter estimation with 3 bad data in

each of V m
1 in 7 time scan is run.

5.2.1.1 Scenario-1: Single Error in V m
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives one bad data forV m
1 . For example,

at time t1 the state estimator gives V m,t1
1 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.16.
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Table 5.16: Simulation Results for 6.2.1.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.0963

MSE of b12 0.0989

MSE of b11 0.0062

mean time 0.3452 seconds

5.2.1.2 Scenario-2: Double Error in V m
1

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 2 bad data forV m
1 . For example, at

time t1 the state estimator gives V m,t1
1 = 0 and at time t2 the state estimator

gives V m,t2
1 = 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.17.

Table 5.17: Simulation Results for 6.2.1.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1404

MSE of b12 0.1772

MSE of b11 0.0085

mean time 0.3337 seconds

5.2.1.3 Scenario-3: Three Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 3 bad data forV m
1 . For example, at time

t1 PMU gives V m,t1
1 = 0, at time t2 PMU gives V m,t2

1 = 0 and at time t3 PMU

gives V m,t3
1 = 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.18.
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Table 5.18: Simulation Results for 6.2.1.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1412

MSE of b12 0.1782

MSE of b11 0.0079

mean time 0.3258 seconds

5.2.1.4 Scenario-4: Four Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but PMU used in the system gives 4 bad data forV m
1 . For example, at time t1

PMU gives V m,t1
1 = 0, at time t2 PMU gives V m,t2

1 = 0, at time t3 PMU gives

V m,t3
1 = 0 and at time t4 PMU gives V m,t4

1 = 0 . The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.19.

Table 5.19: Simulation Results for 6.2.1.4. Scenario-4

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1412

MSE of b12 0.1782

MSE of b11 0.0079

mean time 0.3258 seconds

5.2.1.5 Scenario-5: Five Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but PMU used in the system gives 5 bad data forV m
1 . For example, at time t1

the PMU gives V m,t1
1 = 0, at time t2 PMU gives V m,t2

1 = 0, at time t3 PMU gives

V m,t3
1 = 0 and at time t4 PMU gives V m,t4

1 = 0 . The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table
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5.20.

Table 5.20: Simulation Results for 6.2.1.5. Scenario-5

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1412

MSE of b12 0.1782

MSE of b11 0.0079

mean time 0.3258 seconds

5.2.1.6 Scenario-6: Six Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 6 bad data for V m
1 . Although there

are 7 time instants and 3 of the PMU values are biased, parameter estimation

is not successful as the previous scenarios. Simulation results are presented in

Table 5.21. In Fig.5.5 one can see the performance of the parameter estimator

by itself. The critical issue about this scenario is, even though results generally

bad, parameter estimator sometimes estimates the true values as well during

the 100 times repetitive scenario run. If one expands the time instants of the

parameter estimator which can be easily done by using 8 time instants instead of

using 7 time instants, parameter estimator will be again successful and the time

consumption of the estimation process is nearly the same. Simulation results

are presented in Table 5.22 .

Table 5.21: Simulation Results for 6.2.1.6. Scenario-6

Mean Squared Errors and Mean Time

LAV

MSE of g12 8.6097

MSE of b12 1.9281

MSE of b11 2.1579

mean time 0.39654 seconds

44



Figure 5.5: Parameter Estimations Results for 6.2.1.6. Scenario-6

Table 5.22: Simulation Results for 6.2.1.6. Scenario-6 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1232

MSE of b12 0.1134

MSE of b11 0.0052

mean time 0.3127 seconds

5.2.2 Parameter Estimation with Robust State Estimator with Er-

rors in Im12

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in Im12 in 7 time
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scan is run. In the 2nd scenario, parameter estimation with 2 bad data in Im12 in

7 time scan is run.

5.2.2.1 Scenario-1: Single Error in Im12

In this scenario it is assumed that the given parameter information is correct but

PMU used in the system gives 1 bad data for Im12. For example, at time t1 the

PMU gives Im,t1
12 = 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.23.

Table 5.23: Simulation Results for 6.2.2.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1334

MSE of b12 0.1599

MSE of b11 0.0075

mean time 0.39443 seconds

5.2.2.2 Scenario-2: Double Error in Im12

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 2 bad data for Im12. Although there are 7

time instants and 2 of the PMU values are biased, parameter estimation is not

successful as the previous scenarios. Simulation results are presented in Table

5.24. In Fig.5.6 one can see the performance of the parameter estimator by

itself. The critical issue about this scenario is, even though results generally

bad, parameter estimator sometimes estimates the true values as well during

the 100 times repetitive scenario run. If one expands the time instants of the

parameter estimator which can be easily done by using 8 time instants instead of

using 7 time instants, parameter estimator will be again successful and the time

consumption of the estimation process is nearly the same. Simulation results

are presented in Table 5.25 .
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Table 5.24: Simulation Results for 6.2.2.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 6.9578

MSE of b12 11.1321

MSE of b11 0.3784

mean time 0.37397 seconds

Figure 5.6: Parameter Estimations Results for 6.2.2.2. Scenario-2

Table 5.25: Simulation Results for 6.2.2.2. Scenario-2 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1175

MSE of b12 0.1383

MSE of b11 0.0068

mean time 0.39015 seconds
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5.2.3 Parameter Estimation with Robust State Estimator with Er-

rors in V m
1 and Im12

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in each of Im12

and V m
1 in 7 time scan is run. In the 2nd scenario, parameter estimation with 2

bad data in each of Im12 and V
m
1 in 7 time scan is run.

5.2.3.1 Scenario-1: Single Error in V m
1 and Im12

In this scenario it is assumed that the given parameter information is correct but

PMU used in the system gives 1 bad data for each of Im12and V
m
1 . For example,

at time t1 the PMU gives Im,t1
12 = V m

1 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained.. Simulation results are presented in Table

5.26.

Table 5.26: Simulation Results for 6.2.3.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1355

MSE of b12 0.1549

MSE of b11 0.0080

mean time 0.39972 seconds

5.2.3.2 Scenario-2: Double Error in V m
1 and Im12

In this scenario it is assumed that the given parameter information is correct but

the PMU used in the system gives 2 bad data for each of Im12 and V
m
1 . Although

there are 7 time instants and 2 of the PMU values are biased, parameter estima-
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tion is not successful as the previous scenarios. Simulation results are presented

in Table 5.27. In Fig.5.7 one can see the performance of the parameter estimator

by itself. The critical issue about this scenario is, even though results generally

bad, parameter estimator sometimes estimates the true values as well during

the 100 times repetitive scenario run. If one expands the time instants of the

parameter estimator which can be easily done by using 8 time instants instead of

using 7 time instants, parameter estimator will be again successful and the time

consumption of the estimation process is nearly the same. Simulation results

are presented in Table 5.28 .

Table 5.27: Simulation Results for 6.2.3.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 3.0210

MSE of b12 8.3504

MSE of b11 0.3097

mean time 0.36985 seconds

Figure 5.7: Parameter Estimations Results for 6.2.3.2. Scenario-2
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Table 5.28: Simulation Results for 6.2.3.2. Scenario-2 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1341

MSE of b12 0.1571

MSE of b11 0.0088

mean time 0.3984 seconds

5.3 Transformer Parameter Estimation with non-Robust State Esti-

mator

Figure 5.8: 2-bus sample system with a Simple Transformers

The 2-bus system with transformers given in Fig.5.8 is employed for simulation

purpose. True values of the line parameters selected for simulation purposes are

stated in Table 5.29. Note that the actual values of the line are not known for

sure since these values can easily be a�ected by di�erent conditions. Pi model

is considered during the scenarios. Measurement set consists of 7 time scans as

well.

Table 5.29: Transmission Line Parameters

Transmission Line Parameters

Y12 -1.786 pu

b12 -0.969 pu
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5.3.1 Transformer Parameter Estimation with Robust State Estima-

tor with Error in Parameter a

In this scenario it is assumed that the given parameter information is incorrect,

such that the transformers tap ratio to be 3 times larger than the true value. In

this scenario Gaussian error was added to the measurement set and the simu-

lations were conducted 100 times. As seen in Table 5.30, the proposed method

converged to the true values in acceptable duration with acceptable accuracy.

Table 5.30: Simulation Results for Scenario 6.2.3.1.

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1291

MSE of b12 0.0249

MSE of b11 9.0920e-4

MSE of a 6.1042e-4

mean time 0.3240 seconds

5.3.2 Transformer Parameter Estimation with non-Robust State Es-

timator with Errors in V e
1

In this section, 6 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in V e
1 in 7 time

scan is run. In the 2nd scenario, parameter estimation with 2 bad data in V e
1 in

7 time scan is run. In the 3rd scenario, parameter estimation with 3 bad data in

V e
1 in 7 time scan is run. In the 4th scenario, parameter estimation with 4 bad

data in V e
1 in 7 time scan is run.In the 5th scenario, parameter estimation with5

bad data in V e
1 in 7 time scan is run and �nally in the 6th scenario, parameter

estimation with 6 bad data in V e
1 in 7 time scan is run.
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5.3.2.1 Scenario-1: Single Error in V e
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 1 bad data forV e
1 . For example,

at time t1 the state estimator gives V e
1 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.31.

Table 5.31: Simulation Results for 6.3.2.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.0699e-010

MSE of b12 2.3544e-009

MSE of b11 1.0090e-010

MSE of a 2.5103e-010

mean time 0.3874 seconds

5.3.2.2 Scenario-2: Double Error in V e
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 2 bad data forV e
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0 and at time t2 the state estimator

gives V e,t2
1 = 0 . The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.32.

Table 5.32: Simulation Results for 6.3.2.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.0787e-010

MSE of b12 2.1224e-008

MSE of b11 1.0950e-010

MSE of a 2.4121e-010

mean time 0.3815 seconds
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5.3.2.3 Scenario-3: Three Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 3 bad data forV e
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0, at time t2 the state estimator

gives V e,t2
1 = 0 and at time t3 the state estimator gives V e,t3

1 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in Table 5.33.

Table 5.33: Simulation Results for 6.3.2.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.0799e-008

MSE of b12 3.3566e-008

MSE of b11 1.5090e-009

MSE of a 8.5204e-010

mean time 0.3985 seconds

5.3.2.4 Scenario-4: Four Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 4 bad data forV e
1 . For example,

at time t1 the state estimator gives V e,t1
1 = 0, at time t2 the state estimator

gives V e,t2
1 = 0, at time t3 the state estimator gives V e,t3

1 = 0 and at time t4 the

state estimator gives V e,t4
1 = 0. The multiple bad data in the observation set

is eliminated successfully by the proposed LAV based estimator, and unbiased

estimates are obtained. Simulation results are presented in Table 5.34.
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Table 5.34: Simulation Results for 6.3.2.4. Scenario-4

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.0799e-007

MSE of b12 3.2111e-007

MSE of b11 1.1589e-008

MSE of a 8.8954e-009

mean time 0.3815 seconds

5.3.2.5 Scenario-5: Five Errors in V e
1

In this scenario it is assumed that the given parameter information is correct

but state estimator that is used in the system gives 5 bad data forV e
1 . For

example, at time t1 the state estimator gives V e,t1
1 = 0, at time t2 the state

estimator gives V e,t2
1 = 0, at time t3 the state estimator gives V e,t3

1 = 0 , at

time t4 the state estimator gives V e,t4
1 = 0 and at time t5 the state estimator

gives V e,t5
1 = 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.35.

Table 5.35: Simulation Results for 6.3.2.5. Scenario-5

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.0524e-006

MSE of b12 3.1598e-006

MSE of b11 1.1452e-007

MSE of a 8.7496e-008

mean time 0.37614 seconds

5.3.2.6 Scenario-6: Six Errors in V e
1

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 6 bad data for V e
1 . Although there

are 7 time instants and 6 of the PMU values are biased, parameter estimation
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is not successful as the previous scenarios. Simulation results are presented

in Table 5.36. In Fig.5.9 and in Fig.5.10 one can see the performance of the

parameter estimator by itself. The critical issue about this scenario is, even

though results generally bad, parameter estimator sometimes estimates the true

values as well during the 100 times repetitive scenario run. If one expands the

time instants of the parameter estimator which can be easily done by using 8

time instants instead of using 7 time instants, parameter estimator will be again

successful and the time consumption of the estimation process is nearly the

same. Simulation results are presented in Table 5.37 in Fig.5.11 and in Fig.5.12

.

Table 5.36: Simulation Results for 6.3.2.6. Scenario-6

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.3283

MSE of b12 1.9771

MSE of b11 0.2037

MSE of a 0.3173

mean time 0.36985 seconds

Table 5.37: Simulation Results for 6.3.2.6. Scenario-6 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.1341

MSE of b12 0.1571

MSE of b11 0.0088

MSE of a 0.3097

mean time 0.3984 seconds
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Figure 5.9: Parameter Estimations Results for 6.3.2.6. Scenario-6

Figure 5.10: Tap Ratio Estimation Results for 6.3.3.6. Scenario-6
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Figure 5.11: Parameter Estimations Results for 6.3.2.6. Scenario-6

Figure 5.12: Tap Ratio Estimation Results for 6.3.3.6. Scenario-6
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5.3.3 Transformer Parameter Estimation with non-Robust State Es-

timator with Errors in V e
2

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in V e
2 in 7 time

scan is run. In the 2nd scenario, parameter estimation with 2 bad data in V e
2 in

7 time scan is run.

5.3.3.1 Scenario-1: Single Error in V e
2

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 1 bad data forV e
2 . For example,

at time t1 the state estimator gives V e,t1
2 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.38.

Table 5.38: Simulation Results for 6.3.3.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.0699e-010

MSE of b12 2.3544e-009

MSE of b11 1.0090e-010

MSE of a 2.5103e-010

mean time 0.3874 seconds

5.3.3.2 Scenario-2: Double Error in V e
2

In this scenario it is assumed that the given parameter information is correct but

the state estimator used in the system gives 2 bad data for V e
2 . Although there
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are 7 time instants and 6 of the PMU values are biased, parameter estimation

is not successful as the previous scenarios. Simulation results are presented in

Table 5.39. In Fig.5.13 and in Fig.5.14 one can see the performance of the

parameter estimator by itself. The critical issue about this scenario is, even

though results generally bad, parameter estimator sometimes estimates the true

values as well during the 100 times repetitive scenario run. If one expands the

time instants of the parameter estimator which can be easily done by using

8 time instants instead of using 7 time instants, parameter estimator will be

again successful and the time consumption of the estimation process is nearly

the same. Simulation results are presented in Table 5.40 and in Fig.5.15

Table 5.39: Simulation Results for 6.3.3.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 19.6872

MSE of b12 31.3483

MSE of b11 1.5684

MSE of a 0.1245

mean time 0.36145 seconds

Table 5.40: Simulation Results for 6.3.3.2. Scenario-6 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.4607e-07

MSE of b12 5.3091e-08

MSE of b11 4.8862e-09

MSE of a 2.3890e-09

mean time 0.3984 seconds
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Figure 5.13: Parameter Estimations Results for 6.3.3.2. Scenario-2

Figure 5.14: Tap Ratio Estimation Results for 6.3.3.2. Scenario-2
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Figure 5.15: Tap Ratio Estimation Results for 6.3.3.2. Scenario-2 with 8 Time

Instants

5.3.4 Transformer Parameter Estimation with non-Robust State Es-

timator with Errors in V e
1 and V e

2

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data for each V e
1

and V e
2 in 7 time scan is run. In the 2nd scenario, parameter estimation with 2

bad data for each V e
1 and V e

2 in 7 time scan is run.
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5.3.4.1 Scenario-1: Single Error in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but state estimator that is used in the system gives 1 bad data for V e
1 and V e

2 .

For example, at time t1 the state estimator gives V e,t1
1 = V e,t1

2 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in Table 5.41.

Table 5.41: Simulation Results for 6.3.4.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 7.8436e-008

MSE of b12 5.0663e-008

MSE of b11 4.2440e-009

MSE of a 2.4319e-009

mean time 0.37562 seconds

5.3.4.2 Scenario-2: Double Error in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but state estimator that is used in the system gives 2 bad data for V 1 and V e
2 .

For example, at time t1 the state estimator gives V e,t1
1 = V e,t1

2 = 0 and at time

t2 the state estimator gives V e,t2
1 = V e,t2

2 = 0. The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.42.
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Table 5.42: Simulation Results for 6.3.4.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.0453

MSE of b12 0.1427

MSE of b11 0.0051

MSE of a 0.0053

mean time 0.37125 seconds

5.3.4.3 Scenario-3: Three Errors in V e
1 and V e

2

In this scenario it is assumed that the given parameter information is correct

but the state estimator used in the system gives 3 bad data for V e
1 and V e

2 . Al-

though there are 7 time instants and 2 of the PMU values are biased, parameter

estimation is not successful as the previous scenarios. Simulation results are

presented in Table 5.43. In Fig.5.16 and in Fig.5.17 one can see the performance

of the parameter estimator by itself. The critical issue about this scenario is,

even though results generally bad, parameter estimator sometimes estimates the

true values as well during the 100 times repetitive scenario run. If one expands

the time instants of the parameter estimator which can be easily done by using

8 time instants instead of using 7 time instants, parameter estimator will be

again successful and the time consumption of the estimation process is nearly

the same. Simulation results are presented in Table 5.44 and in Fig.5.18

Table 5.43: Simulation Results for 6.3.4.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 19.6872

MSE of b12 31.3483

MSE of b11 1.5684

MSE of a 0.1245

mean time 0.36145 seconds
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Table 5.44: Simulation Results for 6.3.4.3. Scenario-3 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.1394e-07

MSE of b12 2.1420e-07

MSE of b11 1.2245e-08

MSE of a 6.5588e-09

mean time 0.3911 seconds

Figure 5.16: Parameter Estimations Results for 6.3.4.2. Scenario-2
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Figure 5.17: Tap Ratio Estimation Results for 6.3.4.3. Scenario-3

Figure 5.18: Tap Ratio Estimation Results for 6.3.4.3. Scenario-3 with 8 Time

Instants
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5.4 Transformer Parameter Estimation with Robust State Estimator

with Errors in PMU

The 2-bus system given in Fig.5.8 is again employed for simulation purpose but

this time the state estimator which gives the used input in the parameter es-

timation is robust but the PMU devices located on the bus-1 is not calibrated

properly, so it will generate biased and wrong measurement states at time in-

stants.True values of the line parameters selected for simulation purposes are

stated in Table 5.29. Note that the actual values of the line are not known for

sure since these values can easily be a�ected by di�erent conditions.

5.4.1 Transformer Parameter Estimation with Robust State Estima-

tor with Errors in V m
1

In this section, 6 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in each of V m
1 in

7 time scan is run. In the 2nd scenario, parameter estimation with 2 bad data in

each of V m
1 in 7 time scan is run. In the 3rd scenario, parameter estimation with

3 bad data in each of V m
1 in 7 time scan is run. In the 4th scenario, parameter

estimation with 4 bad data in each of V m
1 in 7 time scan is run. In the 5th

scenario, parameter estimation with 5 bad data in each of V m
1 7 time scan is run

and �nally in the 6th scenario, parameter estimation with 3 bad data in each of

V m
1 in 7 time scan is run.

5.4.1.1 Scenario-1: Single Error in V m
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 1 bad data for V m
1 . For example,

at time t1 the state estimator gives V m,t1
1 = 0. The multiple bad data in the
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observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.45.

Table 5.45: Simulation Results for 6.4.1.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.0799e-008

MSE of b12 3.3566e-008

MSE of b11 1.5090e-009

MSE of a 8.5204e-010

mean time 0.34122 seconds

5.4.1.2 Scenario-2: Double Error in V m
1

In this scenario it is assumed that the given parameter information is correct

but state estimator that is used in the system gives 2 bad data for V m
1 . For

example, at time t1 and t1 the state estimator gives V m,t1
1 = V m,t2

1 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in Table 5.46.

Table 5.46: Simulation Results for 6.4.1.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.3681e-08

MSE of b12 1.1986e-08

MSE of b11 9.4490e-10

MSE of a 4.8059e-10

mean time 0.341369 seconds

5.4.1.3 Scenario-3: Three Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but state estimator that is used in the system gives 3 bad data for V m
1 . For

67



example, at time t1, t1 and t3 the state estimator gives V m,t1
1 = V m,t2

1 = V m,t3
1 0.

The multiple bad data in the observation set is eliminated successfully by the

proposed LAV based estimator, and unbiased estimates are obtained. Simulation

results are presented in Table 5.47.

Table 5.47: Simulation Results for 6.4.1.3. Scenario-3

Mean Squared Errors and Mean Time

LAV

MSE of g12 2.6864e-08

MSE of b12 1.4287e-08

MSE of b11 1.1380e-09

MSE of a 6.7359e-10

mean time 0.34587 seconds

5.4.1.4 Scenario-4: Four Errors in V m
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 4 bad data for V m
1 . For example,

at time t1, t1, t3 and t4 the state estimator gives V m,t1
1 = V m,t2

1 = V m,t3
1 = V m,t4

1 0.

The multiple bad data in the observation set is eliminated successfully by the

proposed LAV based estimator, and unbiased estimates are obtained. Simulation

results are presented in Table 5.48.

Table 5.48: Simulation Results for 6.4.1.4. Scenario-4

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.3568e-08

MSE of b12 1.9069e-08

MSE of b11 1.6117e-09

MSE of a 7.2774e-10

mean time 0.35268 seconds
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5.4.1.5 Scenario-5: Five Errors in V m
1

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 5 bad data for V m
1 . For example,

at time t1, t1, t3, t4 and t5 the state estimator gives V m,t1
1 = V m,t2

1 = V m,t3
1 =

V m,t4
1 0 = V m,t5

1 0. The multiple bad data in the observation set is eliminated

successfully by the proposed LAV based estimator, and unbiased estimates are

obtained. Simulation results are presented in Table 5.49.

Table 5.49: Simulation Results for 6.4.1.5. Scenario-5

Mean Squared Errors and Mean Time

LAV

MSE of g12 4.9655e-08

MSE of b12 4.0168e-08

MSE of b11 5.1770e-09

MSE of a 2.5772e-09

mean time 0.332548 seconds

5.4.1.6 Scenario-6: Six Errors in V m
1

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 6 bad data for V m
1 . Although there are 7

time instants and 6 of the PMU values are biased, parameter estimation is not

successful as the previous scenarios. Simulation results are presented in Table

5.50. In Fig.5.19 and in Fig.5.20 one can see the performance of the parameter

estimator by itself. The critical issue about this scenario is, even though results

generally bad, parameter estimator sometimes estimates the true values as well

during the 100 times repetitive scenario run. If one expands the time instants

of the parameter estimator which can be easily done by using 8 time instants

instead of using 7 time instants, parameter estimator will be again successful and

the time consumption of the estimation process is nearly the same. Simulation

results are presented in Table 5.51 and in Fig.5.21
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Figure 5.19: Parameter Estimations Results for 6.4.4.6. Scenario-6

Figure 5.20: Tap Ratio Estimation Results for 6.4.1.6. Scenario-6
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Figure 5.21: Tap Ratio Estimation Results for 6.4.4.6. Scenario-6 with 8 Time

Instants

Table 5.50: Simulation Results for 6.4.1.6. Scenario-6

Mean Squared Errors and Mean Time

LAV

MSE of g12 0.2582

MSE of b12 0.1220

MSE of b11 0.0284

MSE of a 0.0223

mean time 0.34129 seconds
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Table 5.51: Simulation Results for 6.4.1.6. Scenario-6 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.4607e-07

MSE of b12 5.3091e-08

MSE of b11 4.8862e-09

MSE of a 2.3890e-09

mean time 0.3984 seconds

5.4.2 Transformer Parameter Estimation with Robust State Estima-

tor with Errors in Im12

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in Im12 in 7 time

scan is run. In the 2nd scenario, parameter estimation with 2 bad data in Im12 in

7 time scan is run.

5.4.2.1 Scenario-1: Single Error in Im12

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 1 bad data for Im12 . For example,

at time t1 the state estimator gives Im,t1
12 = 0.The multiple bad data in the

observation set is eliminated successfully by the proposed LAV based estimator,

and unbiased estimates are obtained. Simulation results are presented in Table

5.52.
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Table 5.52: Simulation Results for 6.4.2.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.7192e-008

MSE of b12 8.5635e-009

MSE of b11 1.0324e-009

MSE of a 5.0888e-010

mean time 0.36248 seconds

5.4.2.2 Scenario-2: Double Error in Im12

In this scenario it is assumed that the given parameter information is correct but

the PMU used in the system gives 2 bad data for Im12. Although there are 7 time

instants and only 2 of the PMU values are biased, parameter estimation is not

successful as the previous scenarios. Simulation results are presented in Table

5.53. In Fig.5.22 and in Fig.5.23 one can see the performance of the parameter

estimator by itself. The critical issue about this scenario is, even though results

generally bad, parameter estimator sometimes estimates the true values as well

during the 100 times repetitive scenario run. If one expands the time instants

of the parameter estimator which can be easily done by using 8 time instants

instead of using 7 time instants, parameter estimator will be again successful and

the time consumption of the estimation process is nearly the same. Simulation

results are presented in Table 5.54 and in Fig.5.24

Table 5.53: Simulation Results for 6.4.2.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.3992

MSE of b12 2.9840

MSE of b11 0.0654

MSE of a 0.1511

mean time 0.34784 seconds
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Table 5.54: Simulation Results for 6.4.2.2. Scenario-2 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.2058e-07

MSE of b12 8.5493e-08

MSE of b11 3.7169e-09

MSE of a 2.0987e-09

mean time 0.36897 seconds

Figure 5.22: Parameter Estimations Results for 6.4.2.2. Scenario-2
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Figure 5.23: Tap Ratio Estimation Results for 6.4.2.2. Scenario-2

Figure 5.24: Tap Ratio Estimation Results for 6.4.2.2. Scenario-2 with 8 Time

Instants
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5.4.3 Transformer Parameter Estimation with Robust State Estima-

tor with Errors in V m
1 and Im12

In this section, 2 di�erent scenarios were employed to validate the proposed

method in MATLAB environment using a Windows Operating System. All of

the scenarios are run for 100 times for getting unbiased observations for the

operator.

In the 1st scenario, parameter estimation with only one bad data in each of Im12

and V m
1 in 7 time scan is run. In the 2nd scenario, parameter estimation with 2

bad data in each of Im12 and V
m
1 in 7 time scan is run.

5.4.3.1 Scenario-1: Single Error in V m
1 and Im12

In this scenario it is assumed that the given parameter information is correct but

state estimator that is used in the system gives 1 bad data for V m
1 and Im12 . For

example, at time t1 the state estimator gives Im,t1
12 = V m,t1

1 = 0. The multiple

bad data in the observation set is eliminated successfully by the proposed LAV

based estimator, and unbiased estimates are obtained. Simulation results are

presented in Table 5.55.

Table 5.55: Simulation Results for 6.4.3.1. Scenario-1

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.56978e-008

MSE of b12 8.45891e-009

MSE of b11 2.0124e-008

MSE of a 4.015e-009

mean time 0.347815 seconds

5.4.3.2 Scenario-2: Double Error in V m
1 and Im12

In this scenario it is assumed that the given parameter information is correct

but the PMU used in the system gives 2 bad data for V m
1 and Im12. Although
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there are 7 time instants and only 2 of the PMU values are biased, parameter

estimation is not successful as the previous scenarios. Simulation results are

presented in Table 5.56. In Fig.5.25 and in Fig.5.26 one can see the performance

of the parameter estimator by itself. The critical issue about this scenario is,

even though results generally bad, parameter estimator sometimes estimates the

true values as well during the 100 times repetitive scenario run. If one expands

the time instants of the parameter estimator which can be easily done by using

8 time instants instead of using 7 time instants, parameter estimator will be

again successful and the time consumption of the estimation process is nearly

the same. Simulation results are presented in Table 5.57 and in Fig.5.27

Table 5.56: Simulation Results for 6.4.3.2. Scenario-2

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.3992

MSE of b12 2.9840

MSE of b11 0.0654

MSE of a 0.1435

mean time 0.34112

Table 5.57: Simulation Results for 6.4.3.2. Scenario-2 with 8 Time Instants

Mean Squared Errors and Mean Time

LAV

MSE of g12 1.2489e-07

MSE of b12 6.9826e-08

MSE of b11 2.954e-09

a 1.0658e-08

mean time 0.36215 seconds
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Figure 5.25: Parameter Estimations Results for 6.4.3.2. Scenario-2

Figure 5.26: Tap Ratio Estimation Results for 6.4.3.2. Scenario-2
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Figure 5.27: Tap Ratio Estimation Results for 6.4.2.2. Scenario-2 with 8 Time

Instants
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CHAPTER 6

CONCLUSION

This thesis introduces a robust parameter estimator against bad measurements,

which employs LAV estimator. In order to increase the computational perfor-

mance (decrease the computational burden), the estimation problem is devel-

oped locally, for a single line measured by a PMU. The required measurement

redundancy is maintained using multiple PMU scans and state estimates. The

proposed method is validated with simulations.

The contribution of the proposed work can be listed as follows:

• The proposed parameter estimation method is robust against bad mea-

surements.

• Increasing the PMU measurement snapshots will also improve the robust-

ness of the estimator. Note that compared to WLS the proposed LAV

estimation is slightly constitutionally expensive. However, considering the

performance of the LAV estimator under bad data and incorrect parame-

ter conditions, the case studies simulated the superiority of the proposed

method over WLS estimator.

• Thanks to the proposed local estimation approach, the size of the estima-

tion problem is very small. Therefore, the computational burden of the

parameter estimation problem is small, even the number of measurement

snapshots increases, which enables removal of bad data with long duration.

• Thanks to the fast and reliable solution, the parameter estimation can be

performed multiple times during a day or week, according to the change
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of environmental conditions, that cause change in line and transformer

parameters.

• The developed method can be used at the control center for each branch

or transformer separately. Note that parameter estimation is not required

to be performed as frequent as state estimation. Therefore, for computa-

tional ease, parameter estimation of each branch and transformer can be

performed one at a time.

• Parameter errors generally �agged as bad measurements in state estima-

tion. Using a reliable parameter estimator will increase the trust to the

measurements and enable a more reliable system operation.

• Numerical studies showed that even the state estimates are unbiased, i.e.

a reliable state estimator is available in EMS or the state estimates are

biased, parameters can be estimated correctly.

The major drawback of the proposed method is the need for a PMU located at

the line with the parameters to be estimated. Note that this necessity applies

to all parameter estimation techniques, and hence it does not constitute a dis-

advantage to the proposed method over the methods available in the literature.

As a future work, PMU designs can be improved by designing a unique FPGA

code that can solve the parameter estimation problem locally for the PMUs.
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APPENDIX A

MATLAB CODE OF PARAMETER ESTIMATION

WITH ROBUST STATE ESTIMATOR

t i c

c l c

c l o s e a l l

c l e a r a l l

k=1;

g=0;

b=0;

bs=0;

k=1;

t t s =100;

Xs=ze ro s (3 , t t s ) ;

i s m a t r i x i=ze ro s ( t t s , 1 ) ;

t e s t n o =1;

f o r dongu=1: t t s
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os=7;

zdata meas=x l s r e ad ( random . xlsx , meas ) ;

z e s t = [ ] ;

x f l a t=ze ro s ( ( os 4 ) , 1 ) ;

f o r k=1:2 : ( os 4 )

x f l a t ( k )=1+0.1 rand ;

x f l a t ( k+1)=0.1 rand ;

end

x e s t =[ x f l a t ; 5 . 2 246 ; 1 5 . 6 4 6 ; 0 . 0 5 2 8 ] ;

gbbsest=[

x e s t ( ( os 4+1 ) )

( x e s t ( ( os 4+ 2 ) ) x e s t ( ( os 4+3 ) ) )

x e s t ( ( os 4+1 ) )

x e s t ( ( os 4+2 ) ) ;

( x e s t ( ( os 4+2))+ x e s t ( ( os 4+3 ) ) )

x e s t ( ( os 4+1 ) ) x e s t ( ( os 4+2 ) )

x e s t ( ( os 4+1 ) ) ] ;

Hgbbsye=[1 0 0 0 ;

0 1 0 0 ;

gbbsest ; ] ;

H s o l e s t=ze ro s ( s i z e (Hgbbsye , 1 ) os

, s i z e (Hgbbsye , 2 ) os ) ;

H s o l e s t=DiagK(Hgbbsye , os ) ;
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H e s t=H s o l e s t ;

z e s t=H e s t x f l a t ;

z e s t=z e s t +0 . 001 rand ( ( 4 os ) , 1 ) ;

m e a s n um e s t=length ( z e s t ) ;

R e s t =0 . 0 0 0 1 . eye ( m e a s n um e s t ,

m e a s n um e s t ) ;

G e s t=H e s t inv ( R e s t ) H e s t ;

x e s t=inv ( G e s t ) H e s t inv ( R e s t ) z e s t ;

x=[ x f l a t ; 5 . 2 246 ; ( 1 5 . 6 4 6 3 ) ; 0 . 0 5 2 8 ] ;

xK=[ x f l a t ; 5 . 2 246 ; 1 5 . 6 4 6 ; 0 . 0 5 2 8 ] ;

z = [ ] ;

f o r k=1: os

V1mr=z e s t ( 4 ( k 1 )+ 1 ) ;

V1mi=z e s t ( 4 ( k 1 )+ 2 ) ;

V1er=x e s t ( 4 ( k 1 )+ 1 ) ;
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V1ei=x e s t ( 4 ( k 1 )+ 2 ) ;

V2er=x e s t ( 4 ( k 1 )+ 3 ) ;

V2ei=x e s t ( 4 ( k 1 )+ 4 ) ;

I12mr=z e s t ( 4 ( k 1 )+ 3 ) ;

I12mi=z e s t ( 4 ( k 1 )+ 4 ) ;

z b l o c k =[V1mr ; V1mi ; I12mr ;

I12mi ; V1er ; V1ei ; V2er ; V2ei ] ;

z=[z ; z b l o c k ] ;

end

ep s i l o n =5;

h= [ ] ;

hbk=ones ( 8 , 1 ) ;

k=0;

f o r k=0:( os 1 )

hbk(1)=x ( ( 4 k+1)) ;

hbk(2)=x ( ( 4 k+2)) ;

hbk(3)= x ( ( os 4+1 ) )
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( x ( ( 4 k+1) ) x ( ( 4 k+3)))

( x ( ( os 4+2 ) )

( x ( ( 4 k+2) ) x ( ( 4 k+4))))

( x ( ( os 4 + 3 ) ) x ( ( 4 k+2))) ;

hbk(4)= x ( ( os 4+1 ) )

( x ( ( 4 k+2) ) x ( ( 4 k+4)))

+x ( ( os 4+2 ) )

( x ( ( 4 k+1) ) x ( ( 4 k+3)))

+x ( ( os 4 + 3 ) ) x ( ( 4 k+1)) ;

hbk(5)= x ( ( 4 k+1)) ;

hbk(6)= x ( ( 4 k+2)) ;

hbk(7)= x ( ( 4 k+3)) ;

hbk(8)= x ( ( 4 k+4)) ;

h=[h ; hbk ] ;

end

x e s k i=x ;

z=z h ;

t r =0;

whi l e ( ep s i l on 0 . 0 5 )

g b b s =[x ( ( os 4+1 ) ) ( x ( ( os 4+2 ) )

x ( ( os 4+3 ) ) ) x ( ( os 4+1 ) ) x ( ( os 4+2 ) ) ;

( x ( ( os 4+2))+x ( ( os 4+3 ) ) ) x ( ( os 4+1 ) )

x ( ( os 4+2 ) ) x ( ( os 4+1 ) ) ] ;
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H g b b s y a z i l i =[1 0 0 0 ;

0 1 0 0 ;

g b b s ;

1 0 0 0 ;

0 1 0 0 ;

0 0 1 0 ;

0 0 0 1 ] ;

H s o l=ze ro s ( s i z e ( H g b b s y a z i l i , 1 )

os , s i z e ( H g b b s y a z i l i , 2 ) os ) ;

H s o l=DiagK( H g b b s y a z i l i , os ) ;

H V ASIL = [ ] ;

f o r k = 1 : os

V l ik i s im=[0 0 0 ;

0 0 0 ;

( x ( ( 4 ( k 1 ) + 1 ) ) x ( ( 4 ( k 1 )+3 ) ) )

( x ( ( 4 ( k 1 ) + 2 ) ) x ( ( 4 ( k 1 )+4 ) ) )

x ( ( 4 ( k 1 )+ 2 ) ) ;

( x ( ( 4 ( k 1 ) + 2 ) ) x ( ( 4 ( k 1 )+4 ) ) )

( x ( ( 4 ( k 1 ) + 1 ) ) x ( ( 4 ( k 1 )+3 ) ) )

x ( ( 4 ( k 1 )+ 1 ) ) ;

0 0 0 ;

0 0 0 ;

0 0 0 ;

0 0 0 ] ;

H V ASIL = [ H V ASIL ; V l ik i s im ] ;

end
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H=[ H s o l H V ASIL ] ;

R=0 . 0 00001 . eye ( 8 os , 8 os ) ; 1 6 , 1 6

m=s i z e (H, 1 ) ;

n=s i z e (H, 2 ) ;

cLAV=[ ze ro s (1 , n ) z e r o s (1 , n )

1 0 0 ones (1 ,m) 1 0 0 ones (1 ,m) ] ;

cLAV ( 2 n+[3 ,4 ,11 ,12 ,19 ,20 ,27 ,28 ,

35 ,36 ,43 ,44 ,51 ,52 ] )=1 ;

cLAV ( 2 n+m+[3 ,4 ,11 ,12 ,19 ,20 ,27 ,28

,35 ,36 ,43 ,44 ,51 ,52 ] )=1 ;

Al=[H H spar s e ( eye (m) ) spar s e ( eye (m) ) ] ;

Yl=l i np r og ( cLAV , [ ] , [ ] ,

Al , z , z e r o s ( 2 (m+n ) , 1 ) ,

1 0 0 ones ( 2 (m+n ) , 1 ) ) ;

xLAV=Yl ( 1 : n ) Yl (n+1:n+n ) ;

z=Yl ( 2 n+1 : 2 n+m) Yl ( 2 n+m+1:end ) ;

x e s k i=x e s k i+xLAV ;

ep s i l o n=max( abs ( xLAV ) ) ;

x=x e s k i ;

t r=t r +1;
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end

i s m a t r i x i ( t e s t n o )= t r ;

t e s t n o=t e s t n o +1;

Xs (1 , dongu)=x ( ( os 4 )+ 1 ) ;

Xs (2 , dongu)=x ( ( os 4 )+ 2 ) ;

Xs (3 , dongu)=x ( ( os 4 )+ 3 ) ;

end

x ;

AG=xK( ( os 4 )+ 1 ) ;

AB=xK( ( os 4 )+ 2 ) ;

ABS=xK( ( os 4 )+ 3 ) ;

AGMAT=AG . ones (1 , dongu ) ;

ABMAT=AB . ones (1 , dongu ) ;

ABSMAT=ABS . ones (1 , dongu ) ;

t g f =0;

tb f =0;

t b s f =0;

f o r k=1: s i z e (Xs , 2 ) ;

t g f=t g f+(Xs (1 , k ) AG ) 2 ;

tb f=tb f+(Xs (2 , k ) AB ) 2 ;

t b s f=tb s f+(Xs (3 , k ) ABS ) 2 ;

end
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tgMSE=sq r t ( t g f )

tbMSE=sq r t ( tb f )

tbsMSE=sq r t ( t b s f )

p l o t (Xs ( 1 , : ) , g ) ;

hold on ;

p l o t (Xs ( 2 , : ) , b ) ;

p l o t (Xs ( 3 , : ) , r ) ;

p l o t ( i s m a t r i x i , b ) ;

p l o t (AGMAT , k . ) ;

p l o t (ABMAT , k . ) ;

p l o t (ABSMAT , k . ) ;

l egend ( g12 , b12 , b11 , i t e r ) ;

x l ab e l ( times ) ;

y l ab e l ( pu ) ;

t i t l e ( g12 b12 b11 parameters ) ;

a l i t sum=0;

f o r k=1: t t s ;

a l i t sum=al i t sum+i s m a t r i x i ( k ) ;

end

o i t e r=al i t sum/ t t s
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