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ABSTRACT

SEARCH FOR SUPERSYMMETRY (SUSY) WITH TOPOLOGICAL
VARIABLES AT THE LHC

Unal, Mesut
M.S., Department of Physics
Supervisor : Prof. Dr. Mehmet Tevfik Zeyrek

Co-Supervisor : Assoc. Prof. Dr. Muammer Altan Cakir

August 2015, [71| pages

The primary purpose of this thesis is to compare the effects on signal significance
of the topological variables, W-stransverse mass (M},) and topness, which would
be used in Supersymmetry searches in the single lepton channels in the future col-
lider experiments. In this thesis, Stau-coannihilation scenarios were used as signal
samples along with the four major background events, ti+jets, boson+jets, single
top+jets, and diboson, of supersymmetric top squark pair production and cascade
decays. These brand new topological variables were proposed as an alternative to
the classical variables such as My and Hp for background elimination due to the
mathematically underconstrained nature of both ¢f and signal cascade decays. Since
both the signal and the background samples were required to be produced at higher
energies than the experiments conducted up to now, simulation programs such as
Pythia and Delphes, were used to produce those samples. With the help of pyROOT
data analysis framework, the samples are processed according to the kinematical and
topological requirements. The results show that by applying a cut on both M}%, and
topness variables separately, a significant increase in the statistical significance of the
signal was obtained. Moreover, these variables almost gave the same significance
results for all the signal scenarios with or without pile-up.



Keywords: High Energy Physics, Standard Model, Supersymmetry, Dark Matter,
Stau-coannihilation, Higgs Boson, Stransverse Mass, Topness, LHC, ATLAS, CMS
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TOPOLOJIK DEGISKENLER YARDIMIYLA LHC DENEYLERINDE
SUPERSIMETRI (SUSY) ARASTIRMALARI

Unal, Mesut
Yiiksek Lisans, Fizik Bolumii
Tez Yoneticisi : Prof. Dr. Mehmet Tevfik Zeyrek

Ortak Tez Yoneticisi : Do¢. Dr. Muammer Altan Cakir

Agustos 2015 ,[71] sayfa

Bu tezin 6ncelikli amaci gelecekte yapilacak olan ¢arpistirma deneylerindeki tek lep-
ton kanallarinda siipersimetri arastirmalarinda kullanilabilecek W-stransverse kiitle
(M}) ve topness topolojik degiskenlerinin sinyalin istatistiksel anlamliligindaki etki-
lerinin kiyaslanmasidir. Bu tezde, tt+jets, boson+jets, single top+jets ve diboson gibi
stop ¢ift olusumu ve kademeli bozunumunun ana arka plan olaylarinin yaninda Stau
ortak yok olusu seneryalor: sinyal ornekleri olarak kullanilmistir. ¢ ve sinyal kade-
meli bozunumlarinin yeterli matematiksel kisitlamalar1 olmadigindan 6tiirii bu yeni
topolojik degiskenler M ve Hp gibi klasik degiskenlere alternative olarak oneril-
migtir. Sinyal ve arka plan olaylarinin daha onceki deneylerin ulasamadig1 enerjilerde
tiretilmesi gerektigi icin Pythia ve Delphes gibi simiilasyon programlari bu olaylar
tiretmek i¢in kullanilmigtir. Bu ornekler pyROOT veri analiz sistemi ile kinematik
ve topolojik gerekliliklere gore islenmistir. Sonuglar gostermektedir ki, MY, ve top-
ness degiskenlerinin ikisine birden ayr1 ayr1 uygulanan kesintiler, sinyalin istatistiksel
anlamliliginda kayda deger artiglar sagladi. Ayrica bu iki topolojik degisken, sinya-
lin istatistiksel anlamliliginda y18int1 vakali ve vakasiz biitiin sinyal senaryolar1 i¢in
neredeyse ayni sonuglarr vermistir.

Anahtar Kelimeler: Yiiksek Enerji Fizigi, Standart Model, Siipersimetri, Karanlik
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Madde, Stau ortak yok olusu, Higgs Bozonu, Stransverse Kiitle, Topness, LHC, AT-
LAS, CMS
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CHAPTER 1

INTRODUCTION

Particle physicists try to find a way out from the constraints of the current valid laws
that govern the microcosms of particles. Standard Model (SM) has been valid for al-
most half a century and gives good predictions for the experimental results. Although
the conducted experiments up to now support its claims, SM is not believed to be a

fundamental theory and not flawless.

Supersymmetry (SUSY) is one of the most popular and most promising cures for
the deficiencies SM has and the troubles SM creates. So far, in the experiments, no
sign of SUSY has been observed. Previous experiments set limitations and excluded
discovery regions for the further researches. Especially the Run I phase of the Large
Hadron Collider (LHC) upset the ones in the favor of SUSY. Yet, Run II phase of
the LHC instill hope for us. For the higher collision energies, it is more likely to
find heavy SUSY particles. At that point, since such high collision energies have
never been experienced so far, it is important to decide which methods should be
used in order to identify SUSY signals. Because there will be more pile-up and
background rates in the higher energies, it would be a big challenge for the researchers

to discriminate signal from the background.

In this research, two brand new variables, which are called stransverse mass and
topness, are used for background elimination process. After the classical cuts that are
described as control cuts, these two variables are used interchangeably. By comparing
their signal significance results, we try to show their efficiencies in the background

elimination.



In Chapter [2] a brief theoretical background of the Standard Model and Supersym-
metry, which is necessary to understand this thesis, is given. By explaining the flaws
of SM, the consequences of the new Higgs boson discovery, and the importance of
SUSY, the motivation of the research is evaluated. In Chapter [3] phenomenological
meanings of the dedicated topological variables are explained in detail to prepare us
for the Analysis part, Chapterd In Chapter 4] from analysis tools to analysis results,
all aspects of our research are given along with the some necessary concepts such as

statistical significance and pile-up.



CHAPTER 2

THEORY

2.1 Standard Model

Standard Model (SM) is a mathematically consistent theory of the strong, electro-
magnetic, and weak interactions. It explains the most of the relations between the
fundamental forces of the universe and the elementary particles. A theory must be
Lorentz and gauge invariant to become physical, and surely SM provides it. Its vari-
ous aspects have been tested successfully with different experiments so far. Despite
its fundamental troubles and dilemmas that will be described later in this chapter in
more detail, SM come through all the examinations within the scope of its predic-
tions. As described in [[1], it is an approximately correct description of nature in the

order of the scale 1/1000"" the size of the atomic nucleus.

The July 4", 2012 discovery of the scalar Higgs boson, once more, verify the opera-
tiveness of SM, because its measured features has showed that the newly discovered
scalar has the same behavior with the Higgs boson described in SM. The couplings
of the Higgs boson have been probed to measure how much it deviates from the SM
predictions in the experiments conducted up to now. Yet, no significant deviation is

found according to the latest results [2].

In addition to the previous predictions of SM such as the existence and the features
of vector bosons, the charm quark, and the neutral current, very rare decays of the
strange B meson (BY) and the B® meson into two oppositely charged muons (17 ™)
are observed just as the same rate SM predicts. SM foresees that for every billion

produced BY mesons four of them decay into p ™ ~, and for every ten billions pro-

3



duced B° mesons one of them decay into ;= pair [3]. In 2014, both CMS and
LHCDb experiments, with the data collected in the first run of LHC, announced that
they observed these decays just like the SM posits [4]. Combined statistical signifi-
cances obtained by both CMS and LHCb results are 60 for B® — 7 u~, and 3¢ for
B — putpu~ [4].

Though the existence of such results are in favours of SM, it is not considered as
a fundamental theory. It has incomplete parts, important problems, and too much

arbitrariness to become a complete and a fundamental theory.

First of all, the minimal version of the SM has 20 free parameters for neutrinos with
zero mass and 7 additional free parameters for massive Dirac neutrinos. Also, these

7 parameters become 9 if neutrinos are Majorana neutrinos [/1].

Second, SM has a gauge symmetry problem. It is a product of SU(3) x SU(2) x U (1),
but only the SU(2) part is chiral, and unfortunately the reason is unknown. Charge
quantization, which is another aspect of gauge symmetry problem, is the other open

question. In other words, why all particles have charges multiples of e/3 is unknown

().

Moreover, fermions have known 3 families, and there is no answer for why there are
3 families instead of 2 or 4. Considering the fact that the known matter only consists
of the 1% family, existence of the other families becomes an even harder question. In
addition, mass values of the particles of a family are bigger than the masses of the
particles of previous families. SM does not predict such a mass hierarchy between

the families.

Furthermore, one of the biggest problems of SM is called “gauge hierarchy problem”,
or “Higgs hierarchy problem” or simply “hierarchy problem”. In the presence of a
cut-off scale, A, which represents the physical energy scale and can be considered as
ultraviolet cut-off if there is no any higher scale, Higgs mass is affected by quantum
loop corrections. The bare mass (tree-level) of Higgs receives quadratically divergent
corrections from loop diagrams as the ones shown in Figure[2.1] and so the measured

Higgs mass is written as



M3 = (M7 )pare + O(A, g%, B?)A? 2.1

Figure 2.1: Diagrams of various radiative corrections to Higgs mass that are Higgs

self-interaction, interactions with gauge bosons, and interactions with fermions.

where )\ is the self-coupling parameter, g is the gauge coupling constant, and f is the
fermion coupling constant. Such contributions make Higgs mass around cut-off scale.
However, due to the Electroweak Symmetry Breaking (EWSB) and the unitarity of
WW scattering, Higgs mass must be smaller than 700 GeV [, 5, 6], and this is the
reason of why it is called hierarchy problem. To adjust the theoretical Higgs mass to
the experimental value a “fine-tuning” is required, but it makes the theory “unnatural”,

and it causes the naturalness problem.

Last but not least, SM lacks important ingredients: A sufficient mechanism to explain
the existence of dark energy and dark matter. Dark energy contributes to the 74% of
the energy density of the Universe, and is responsible for the accelerated expansion of
the Universe. On the contrary, dark matter is the “brake” of this expansion. It forms
24% of the energy density of the Universe, and interact with the ordinary matter,
which forms the 4-5% of the Universe, attractively to decrease the acceleration of
the expansion [7]. However, the common opinion is that dark matter consists of
Weakly Interacting Massive Particles (WIMPs) since we cannot directly observe and
measure its effect on ordinary matter [8, 9]. Yet, unfortunately, SM does not have a
mechanism to help us understand the existence and behavior of both Dark Energy and

Dark Matter.



2.2 Beyond the Standard Model and Minimal Supersymmetric Standard Model

Besides the vector gauge bosons, i.e. photons, W and Z bosons, and gluons, SM pre-
dicts the existence of an additional scalar boson, Higgs boson, which was described
very briefly in the previous section. This scalar boson is the fundamental particle of
the Higgs field, and causes the Higgs mechanism. Higgs mechanism is thought to be
the reason behind the Electroweak Symmetry Breaking (EWSB), which explains the

existence of the massive gauge bosons.

EWSB is simply the breaking of SU(2) x U(1) symmetry group into U(1) symme-
try group. This symmetry breaking happens spontaneously and called Spontaneous
Symmetry Breaking (SSB). SSB is formulated by Weinberg and Salam [10} [11], in
1967, after the important achievement of Glashow that is the unification of electro-
magnetic and weak interactions [[12]]. Bhattacharyya says in reference [6]], “Whenever
a system does not show all the symmetries by which it is governed, we say that the
symmetry is ‘spontaneously’ broken. More explicitly, when there is a solution which
does not exhibit a given symmetry which is encoded and respected in the Lagrangian,
or Hamiltonian, or the equations of motion, the symmetry is said to be spontaneously
broken”. Without any symmetry breaking, the particle universe is described by the
symmetry group, G = SU(3) x SU(2) x U(1). This configuration describes a pic-
ture that all the gauge bosons are massless. In other words, the system is symmetric
in terms of mass. However, the electroweak part of the SM, i.e. SU(2) x U(1) sym-
metry group, is spontaneously broken. Before the SSB, the number of total degrees
of freedom of the electroweak part is 12, which consists of one complex doublet with
four degrees of freedom, one massless gauge boson with two degrees of freedom,
and three another massless gauge bosons with six degrees of freedom. After SSB,
three of the four degrees of freedom of the complex doublet are eaten by the last three
massless gauge bosons. The total number of degrees of freedom is the same, but the
constituents are different. These are a massless photon with two degrees of freedom,
a scalar Higgs boson with one degrees of freedom, and massive W= and Z° bosons
with nine degrees of freedom from now on. In other words, we can say that three com-
ponents of the Higgs doublet are eaten by the W and Z bosons, and they gain mass
by the Higgs mechanism [[13]]. On the contrary, gluons do not couple to Higgs and

6



stay as massless bosons. In Figure [2.2] the famous Mexican hat potential is shown.
At 91 = ¢ = 0, which are the mass eigenstates of the complex doublet, potential
takes its maximum value, and the system is symmetric. Yet, when the symmetry is
spontaneously broken, potential takes a random value at the circle of ¢; = ¢o # 0

that is placed in the bottom of the Mexican hat.

Figure 2.2: Representation of SSB in the shape of Mexican hat potential. Here ¢,
and ¢, = 0 are the mass eigenstates of the complex scalar. For ¢; = ¢ = 0
potential takes its local maximum value along with the symmetry preservation. For
1 = ¢ # 0, symmetry is spontaneously broken, potential drops to the bottom circle
of the Mexican hat, and so the gauge bosons require their masses. The figure is taken

from [14]].

The idea behind the SSB is that while creating the masses of gauge bosons, calcula-
bility of the theory is saved. In other words, as it was proved by t"Hooft, SSB does not
eliminate the renormalizability of the theory [15, [16]. However, SSB causes Higgs
mass to increase enormously. A point like Higgs boson under the Higgs mechanism
receives quadratically divergent quantum loop corrections to its mass. As stated in the
previous section, there is a theoretical upper limit for Higgs mass around 700 GeV
under the assumption of the perturbative weak interaction. So, Higgs mass should be
of the order of 102 GeV whereas the grand unification scale can be taken as 10'° GeV.
Grand Unification Theories (GUTs) are used for the unification of the three forces,
1.e. electromagnetic, weak, and strong forces, of the Universe except the gravity, and
usual limit predicted by the SUSY calculations is 10'> GeV as can be seen in Figure
[2.3] In this case, one-loop corrections to the Higgs mass become 24 orders of mag-
nitude bigger than the bare mass of Higgs boson. To keep the theory renormalized,

bare mass must be fine-tuned to 24 digits [17]. Unless fine-tuning is applied, Higgs
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mass becomes closer to the unification scale which is much bigger than the expected

upper limit. However, this time, naturalness problem occurs.
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Figure 2.3: Behaviors of the inverse coupling constants with respect to the energy
scale. As it can be seen at the left, fundamental forces cannot unite anywhere in SM
unlike SUSY scenarios that unites these forces around 10° GeV. The figure is taken

from [[18]].

To solve the abovementioned problems of SM, a new space-time symmetry, super-
symmetry or simply SUSY, is developed by Gervais and Sakita [19], Golfand and
Likhtman [20]], and Volkov and Akulov [21]] independently in the beginning of 1970s.
It is an extension of the SM’s symmetry structure and a renormalizable field theory
that interchanges bosons and fermions. According to SUSY, all SM particles have
their supersymmetric partners that have not been discovered yet. Moreover, up to the
Planck scale, Mp; ~ 10'% GeV, all gauge couplings remain perturbative [3]. The
SUSY partners of particles have different spins. For instance, SUSY partner of a
fermion, quark or lepton, is a spin-0 scalar particle, squarks or sleptons respectively,
and SUSY partner of a gauge boson is a spin-1/2 gaugino. Instead of one Higgs
doublet as in SM, SUSY proposes two Higgs doublets and their spin-1/2 partners,
Higgsinos. Gauginos and Higgsinos mix together to form Dirac charginos with two
mass eigenstates (Y, 7 = 1,2), and Majorana neutralinos with four mass eigenstates
(XY, r = 1...4). In Figure particles and their corresponding SUSY partners are

shown.

In 1977, Pierre Fayet posited the first realistic SUSY model, which is called Minimal
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Figure 2.4: SM particles (left) and their SUSY partners (right).

Supersymmetric Standard Model (MSSM) [22]. It is the simplest supersymmetric
extension of the SM as is evident from its name. In MSSM, squarks and sleptons
are coupled to two SM fermions. Yet, such an interaction violates lepton number
and baryon number conservations in addition to the unobserved and unexpected im-
mediate proton decay [5]. To get rid of these problems, a new quantum number is
postulated, and it is called R-parity. SM particles are even under the R-parity trans-
formation while SUSY partners are odd under this transformation. In other words,
R = +1 is assigned for SM particles while R = —1 is assigned for their SUSY part-
ners. Then, possible SUSY 3-point gauge interaction vertices are ¢qg, qqg, and ggg.
It means that SUSY particles are always produced in pairs. The vertices with three

quarks are not allowed since it leads to rapid proton decay [3].

MSSM, by postulating the intrinsic boson-fermion symmetry, solves the hierarchy
problem. The new SUSY partners of the SM particles cancel quadratic divergences
and restores naturalness. For instance, the top quark contribution whose diagram is

seen in Figure (top diagram) to the Higgs mass radiative corrections is

2
A2 (2.2)



where N, = 3, which represents the top quark colors, and h; = m,v, the top-Yukawa
coupling with v is the vacuum expectation value [[1]. Now, assume that we have two
complex scalar fields, ¢, where r = 1, 2. Their diagrams are the bottom left and the
bottom right ones in Figure [2.5] and their contribution to Higgs mass can be written

as

AN o

82

(AM;)g, ~ 2.3)
where )\, are the coupling constants for each complex scalar [1]]. These quadratic di-
vergences cancel each other by A\; = Xy = (h;)?. In the perspective of SM, this can be
done by externally. However, fortunately, it is done by supersymmetry automatically.
As a result, it can be deduced that these complex scalar fields are the scalar partners

of the top quarks, ¢;, and ¢ [1].

i
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Figure 2.5: Top quark and ¢, contributions to M.

In addition to the solution of the mass hierarchy method, supersymmetry offers sev-
eral candidates for DM as well. In the R-parity conserving scenarios, lightest super-
symmetric particle, LSP, is the DM candidate of SUSY. Since LSP is in R-odd state,
it cannot decay into two SM particles. Moreover, as it is the lightest SUSY particle,
it cannot decay into another SUSY particles as well. So, it has to be a stable parti-
cle and so, a strong candidate for DM. There are three options for LSP; neutralino,
sneutrino, and gravitino, which is the SUSY partner of the hypothetical graviton.
The LHC friendly version of the MSSM is the phenomenological MSSM (pMSSM).

Apart from being measurable, it decreases the number of MSSM constraints. It is
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important, because MSSM increases the number of parameters of SM to more than
100 parameters. pMSSM decreases them to 19, and proposes that lightest neutralino
(X)) is the best candidate for DM, because experimental results ruled out the sneu-
trino possibility. Besides, gravitino couples to other particles gravitationally and as

long as it is not LSP, we can rule it out, too [3]].

SUSY posits that the SM particles should have the same mass with their SUSY part-
ners; however, no such particles are observed so far, and obviously, this prevents
SUSY to become the exact symmetry of the Universe. The reason is that SUSY must
be also broken spontaneously. There are two main mechanisms for such a symmetry

breaking [[17].

First one is the SSB of SUSY. It is a more desirable way than the second possibility
that is explained below. However, for such a case, even though symmetry of the
Lagrangian is preserved, ground state does not have symmetry. As a result, symmetry

in the spectrum of the states is destroyed.

Second, since the first way is not a viable case, breaking the symmetry explicitly
by adding terms to the Lagrangian is preferred instead. These terms must be non-
invariant under SUSY transformation, and the cancellation of the quadratic diver-
gences must be preserved. Since these terms do not spoil the cancelation of quadratic
divergences, this breaking mechanism is called ‘explicit SUSY breaking’ or ‘soft
breaking’. In this case, two mass gaining mechanism occur for SUSY particles: The
one from the EWSB and the other one from the soft breaking. Even though soft
breaking does not disturb the cancellation of the quadratic divergences of the Higgs
mass, it leaves a logarithmic dependence for Higgs mass in terms of top mass and the

averages of the stop masses, i.e.

2
m=

(mj) ~ Mjcos*(28) + —In(—%) (2.4)
t

In this equation, m; = , /mz, my, and tanf = v, /vg where v, and vy are the vacuum

expectation values of up type and down type fermions respectively [6} 23, 24]. Soft

breaking requires that m; > my,, so that fine-tuning is inevitable. Unfortunately,

this leads to the problem so called “little hierarchy problem”, but it is off-topic for
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experimentalists for now. As a result, we can deduce that it is wise to search in the
region that top squark mass is much bigger that top mass. In the Figure[2.6] neutralino
mass vs. stop mass is shown. In the corresponding limit, for this thesis, we work on

the rightmost region of this this figure, and assume the existence of on-shell  — Y9

decay.
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Figure 2.6: Neutralino mass vs. stop mass plane, and region-by-region stop decay

possibilities. The figure is taken from [23].

2.3 Importance of the 2012 Higgs discovery and the Motivation of this research

2012 discovery of Higgs boson, which is announced at July 4th 2012 [26), 27], has
opened a new era for particle physics. Higgs was one of the most important missing
parts of particles physics, and the discovery caused some theories such as Higgless

models and the theories considering Higgs as a composite particle to be ruled out.

What we can deduce from equation [2.4|is that

(mp)? = M3 cos(23) + radiative corrections < 135GeV (2.5)

[S, 28]]. Here, 135 GeV is phenomenological upper limit for the Higgs mass. Luck-
ily, the precision measurements after 2012 Higgs discovery have shown that Higgs
mass is approximately 125.09 £ 0.21(stat.)£0.11(syst.) GeV, which is the combined
result of ATLAS and CMS experiments [29]]. In Table [2.1] significances of the latest

observations results are shown for the most important Higgs decay channels.
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Significance (my = 125.0GeV)
Combination Expected | Observed
H—Z7 6.30 6.50
H— vy 5.30 5.60
H—-WW 540 4.70
H— 77 390 3.80
H—bb 2.60 2.00
H— pp <0.10 0.40

Table 2.1: Significance results of the CMS experiment for the most important decay
modes with integrated luminosities of up to 5.1 fb~! at 7 TeV and up to 19.7 fb~!
at 8 TeV, assuming my = 125.0GeV [30]]. Here expected significance is the median
significance of signal hypotheses with a given measurement, and is obtained after the
fit of the signal-plus-background hypothesis to the data.

Although these are the desperate times for SUSY searchers since no SUSY particles
have been observed so far and the newly discovered Higgs boson shows SM like
specifications, as it can be seen in equation this Higgs boson is still likely to be
the lightest Higgs boson candidate of SUSY. In the perspective of MSSM, three of
the eight degrees of freedom of two complex Higgs doublet are eaten by W and Z
bosons, five degrees of freedom remain. These remaining degrees of freedom form
five physical Higgs fields, which are two scalar Higgs fields (HY, HY), one pseudo-
scalar Higgs field (A°), and a pair of charged Higgs fields (H*). The scalar states, H?
and HY, mix to mass eigenstates, h° and H°. This h° is the so-called lightest Higgs
of SUSY. It is a scalar and in the mass range as SUSY proposed, so that it can be said
that there is still hope for SUSY [31].

In addition, this research is focused on the single lepton channel, which gives us the
possibility to use several types of variables that uses invariant mass concept such as
transverse mass and stransverse mass that are explained in next chapter in more detail.
Moreover, in addition to single lepton, there should be at least six jets two of which
are tagged as b-jets and missing energy. By looking at the jet multiplicity and missing
energy distributions, we can eliminate the background even more. First and foremost,
after all the classical cuts that used in general SUSY searches, new variables like
stransverse mass and topness is used in this research. These are brand new variables
and used in previous analysis very few. By comparing their possible effects on signal

significance in the future SUSY searches like the ones in 14 TeV LHC or HL-LHC
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makes our research even more exciting.

14



CHAPTER 3

PHENOMENOLOGY OF TOPOLOGICAL VARIABLES FOR
SUSY SEARCHES

In this chapter, phenomenological backgrounds of the fundamental variables that are
used for this research are explained. The first one, transverse mass or simply My,
is used in all variations of the cut-list possibilities listed in Chapter 4. As explained
below, to a certain extent, it can be effective to discriminate background events from

the signal events.

In the later sections of this chapter, more complex variables such as M}% and topness
are explained in detail. These variables are important for the underconstrained events
that cannot be reconstructed properly enough with My. Effects of MY, and topness
variables on signal significance are the main subjects of these thesis, and the compar-
ison of their effects are examined in Chapter @ To understand the role they would

play in the SUSY searches, we need to understand the idea behind them, first.

3.1 Transverse Mass, M

Transverse mass, My, is a variable that helps us to constrain the mother particle mass
that decays into one visible and one invisible particles. Measured transverse momen-
tum, pr of the visible particle equals to the transverse momentum of the invisible
particle. For instance, W boson mass can be determined from the W — [v decay
with the measured pr of the visible lepton. Here, under the assumption that on-shell

W boson decays into lepton and neutrino, M is defined as
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M7 =mi +m? + 2(EREP™s — pl - pr) (3.1)

where E.. and EJ** are the transverse energies of the lepton and the associated neu-
trino, and p/. and pr are the transverse momenta for the lepton and missing energy,
respectively. The beam direction is chosen to be along z-axis so that gt = (P, pj,).

Then,

Ep = \/m} + |ph|? (3.2)

B = \m2 + [pr[? (3.3)

If m; and m,, are negligibly small, equation [3.1|can be written as

—

M} = 2(ELEJ™* — pp - pr) (3.4)

and

M2 = 2ELEF5(1 — cosg) (3.5)

where (EM$)? = ﬁQT and ¢ is the angle between the lepton and the neutrino in
azimuthal plane with respect to the incoming beam direction as stated in [32]. As a

result, it constraints the W mass, which means M7 endpoint gives the myy, i.e.

MF < m3y, (3.6)

that holds only when the rapidity of the 1 and v are equal to each other [33]].
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3.2 Stransverse Mass, Mo

M variable, which is also called stransverse mass, is a topological variable that
is closely related to My variable. It was first introduced by C. G. Lester and D. J.
Summers [34] to overcome the calculation difficulties for the mother particle mass of

the cascade decades that includes more than one missing particles.

As stated in the Section 3.1, My is a common and useful variable to determine the
W mass via the transverse momenta of lepton and missing neutrino. Yet, in a hadron
collider, the parity odd particles are produced in pairs, and the result is a cascade
decay ending at stable particles [35]. In MSSM theory, which requires the R-parity,
the lightest parity-odd particle is a stable dark matter candidate, i.e. Lightest Super-
symmetric Particle (LSP). Since it is a weakly interacting particle, it is impossible
to be detected. In both branches of cascade decays, LSPs are created along with the
neutrinos. In addition to the missing particles problem, total momentum in the beam
direction cannot be measured, and it is even more difficult to determine the mother
particle mass [35]]. Some kinematical variables such as pr and E7 can give estima-
tions for the new particle masses, but they are sensitive to mass differences of new
particles and model dependent. So, it is not viable to test the trueness of a new theory,
since determining the particle masses is the first step to confirm a new theory. Hence,
instead of model dependent approaches, model independent approaches are approved.
In such approaches, invariant mass distributions are used. By looking at the endpoints
of the distributions whose positions are functions of the particles involved in the de-
cay one can determine the requested masses. Yet, it requires long decay chains and
thus a lot of constraints. It is impossible to apply these techniques to analyse the short

decay chains.

For short decay chains, two main approaches are used. First one is based on kine-
matic constraints such as constraints resulted from pr measurements and the mass-
shell constraints. It is assumed that the event topology is known and all the interme-
diate particles are on shell. Apart from such techniques that are solely depends on
4-momenta, M- variable, which is defined only on the plane transverse to the beam
direction, is a clever way for mass determination as concluded in [35]]. In the R-parity

conserving scenario, primary particle is pair produced and both of them decay into
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undetected LSPs, and the event kinematics is left underconstrained. In the aforemen-
tioned cascade decay, we expect a similar decay process for both of the branches of

the decay.

For a typical SUSY event resulting to production of sleptons (1), the decay process

can be shown as

pp— X + 15 (3.7)

and

- = 0 (3.8)
It seems that the mother particle mass in this decay can be calculated via M, but since

we have massive undetected particle, chargino, we have to use Mp5. For equation @

we can write,

m? =mj +m’ + 2(EpErpgcosh(An) — P - Prs) (3.9)

where Er = \/paT + m? and (An) is the rapidity between 1 and x. For cosh(An) > 1,
ie. An >0,

mlg > ma(Dri, Prg) = mi + mi + 2(EmiEry — Pri - Pry) (3.10)

Although we cannot measure the missing transverse momenta of neutrino and neu-
tralino separately, the total missing transverse momenta can be measured and be writ-

ten as

Pr = Pry. + Pry, (3.11)

where a and b are arbitrary indices describing the neutralinos. Hence, equation [3.10]

becomes

18



m? > maz{mi(Pri—, Pry, ), My (Briv Pry,) } (3.12)

Yet, since we don’t know which neutralino is a or b, it is wisely advised in [34] to

write equation[3.10]as

mlg > M%z = min_ [max{m%(ﬁﬂ—aﬁl)7m%(ﬁTl_7ﬁ2>}] (3.13)

Prtpe=pr
where the neutralino mass is a free parameter. In equation the larger My value
is chosen since either of the My values cannot exceed the parent particle mass if
the true momenta are used. The minimization on trial neutralino momenta fulfilling
the EY’?”S constraint is used to avoid obtaining a M- value that exceeds the mother
particle mass [36]. In other words, if the assumed daughter particles’ masses are
equal or less than the true masses, M5 is bounded from above by the mother particle
mass. Thus, we can define Mpy as the minimal mother particle mass compatible
with the postulated event topology and an assumed daughter particle mass [35]. The
distribution of My, has an endpoint at the primary particle mass. If the assumed
neutralino mass is less (more) than its true mass value, the endpoint will be below

(above) the true mother particle mass.

3.3 W-Stransverse Mass, M)}

Even though more than three variations of My, are listed in [37] such as Mgg and
M2, MY is the most suitable one, among others, especially for single lepton back-
ground with two intermediate on-shell W bosons, which one of them decays into an
observed lepton and a neutrino. MJ%, can be defined as the minimal mother parti-
cle mass that can be compatible with the all transverse momentum and mass-shell
constraints of the event topology [37]. Here, the superscript W is for the on-shell
W boson information. For this variable, mass of the mother particle, i.e. top quark,
is not explicitly used, but implicitly bounded by the event. The difference between
the original My, and M% is that we use all the mass-shell constraints of the cascade

decay for M% calculations, and instead of taking the maximum of two sides of M,
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unlike the original M, it is directly defined as the minimisation in consideration of
mass shell conditions. The relation of the MY, in terms of event kinematics is seen
in equation [3.14] and the event topology of the single lepton background originated
from dileptonic ¢t decay can be seen in Figure

Figure 3.1: Event topology of the dileptonic t¢ cascade decay with labels for M),
variable. Here p, is the entire missing momentum, and p; is just for the missing

neutrino of the observed lepton. The figure is taken from [37].

(1 + P+ po)? = (P2 + pb,)? = mf/

(3.14)

W . . ) Pl 47 = EF*,pi =0,(p1+m)° = p; = My,
My = minq m, consistent with:

Cmiss _ 2
where B = pr.

3.4 Topness

Topness is an alternative variable to M}% for the elimination of the ¢ background.
It is first proposed by Michael L. Graesser and Jessie Shelton in 2013 [38]. Its pur-
pose is the suppression of the dominant backgrounds such as dileptonic top decay
described in section like M% As described in [38]], topness is effective for all
signal searches whose main background is dileptonic tops with one missing lepton.

However, its efficiency is higher for stop pair production with asymmetric final state,
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tt* — tX3XY + h.c., which is examined in section [4.2]in more detail.

As stated in previous sections, when one of the leptons of the dileptonic background
is lost, one of the mass shell conditions is lost as well. Thus, the system becomes
underconstrained, and the variables like M are no longer works efficiently enough
to discriminate background in a proper way. Instead, missing mass-shell condition is
replaced with the minimization of reconstructed center-of-mass energy of the event.
At this point, a function S is defined as a measure of how well an event can be

reconstructed pursuant to the dileptonic top pair hypothesis for the minimum value of

S. S is defined as

(myy, —p3y)? | (mi — (po, + 01+ 21)?)?

S(pw,, pw,, pw., P1.) = ! + - +
w t
(mf — (po, +pw)?)? | (4mi — (32, pi)*)?
1 + 1 (3.15)
e acm

where ay = 5GeV, a; = 15GeV, and acy; = 1TeV along with the mass-shell condi-
tions, pl2 =0, p%,v = m%,v, and transverse momentum conservation relations. Finally,

topness is defined as

t = In(minsS) (3.16)

[38]. Since the calculation of the minimization of .S is a non-trivial problem, iterations

methods are preferable to calculate it.
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CHAPTER 4

ANALYSIS

In this chapter, the results of the analysis are explained in addition to the analysis tools
and the topologies of the both background and signal processes. After explaining
the required knowledge for the analysis, a cut-flow, which is a list of applied cuts
in an order, is listed. This step-by-step examination of the background elimination
process shows us how we can eliminate the background, and obtain the signal events
effectively, i.e. to which points the cuts should be applied in order not the eliminate

signal events along with the background events as much as possible.

Inclusive search part of the analysis contains the common variables that are applied in
almost all the SUSY searches. For instance, missing transverse energy, A¢, Hr, and
missing transverse mass cuts, which are explained in more detail in this chapter, are
applied repectively. As described below, a hard cut on such distributions eliminate
an important amount of the backgrounds. Yet, for the underconstrained events, they
might eliminate the good events as well. Thus, this affects our results negatively,
and we need more appropriate variables to increase the signal significance, which

quantifies the probability of the existence of the wanted events.

In the last part of this chapter, M", and topness variables are applied for this purpose.
These variables serve at almost the same purpose, and used interchangeably. First,
M}Y, is applied just after the cut-flow that includes the above-mentioned variables.
Then instead of MY, topness is applied, and the significance results of them are
compared, because the aim of this research is to compare the effects of these two
variables on signal significance in the single lepton, multi jet, and missing energy

channel.
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4.1 Analysis Tools

The signal scenarios that are used in this research are based on the predictions at 14
TeV collision energies. Since we have no real data obtained with a real detector at
these energies, some simulations programs are used to estimate the events. The calcu-
lations of the signal scenarios, which is explained in section 4.3} are done with SOFT-
SUSY 3.4.0 [39]] in combination with the SUSY-HIT 1.3b/3.4 [40]. These models
are based on SUSY Les Houches Accord, which is a standard for SUSY predictions
taken by SUSY authorities in Les Houches meetings. The type of such files are called
SLHA files, i.e. end with “.slha”, and processed with MADGRAPH 5 [41, 42]. The
output of this process is the Les Houches Events (LHE). Then, to obtain fragmenta-
tion and hadronization of the events, these LHE files are run through PYTHIA 6.4
[43]. In addition, DELPHES 3.0.10 [44]], which is also called “fast simulation”, is

used for detector simulation for all kind of detectors.

Pythia is a software that is used to generate events with multiparticle productions
in collisions. Within the perspective of our understandings on particle physics, it
can produce events that would be emerged as a result of electron-positron, pp or ep

collisions [43]. The produced realistic events are the inputs of detector simulations.

For the phenomenological studies, instead of using complex detector features, fast
detector simulations, which use simplified approaches, are preferred. Delphes 3 is
the preferred one in our research. It contains almost all the detector features such
as a track propagation system embedded in a magnetic field, electromagnetic and
hadron calorimeters, and a muon identification system [44]. So, jets, isolated elec-
trons, muons and photons, taus, and missing energy, can be reconstructed realisti-
cally enough for the purposes like ours. Apart from the features of previous versions,
Delphes 3 has particle-flow algorithm whose aim is to identify the resulting particles
of a collision by combining the information of the different subdetectors optimally
[45] and is (was) widely used by the CMS (ALEPH) experiments especially in Run
I phase of the LHC. However, as I said, it is not a full detector simulation and lacks
some complexities of real detectors such as fake rate of electron, muon, and photon
misidentification. Yet, it still works good enough for general purpose detector simu-

lations. It has also pile-up simulation and mitigation features that will be important
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for the next phases of the LHC as well as our study. Moreover, it has the flexibility
to use it in electron-positron collider simulations along with hadron collisions [44].
In this research Snowmass specified Delphes data cards are used for both signal and

background simulations [46]].

Finally, these Pythia and Delphes simulated data cards are analysed with pyROOT
program. ROOT is a data analysis framework based on C++ language. It was de-
signed at CERN and used in various experiments then. The “py” in front of the
ROOT refers to extended version of the ROOT. By extending it in such a way, ROOT
can be compatible with the Python features and allow us to use Python scripts with
it. Our ROOT macros give us the flexibility to assign various cuts, to tag specific

particles, and to plot the necessary figures.

4.2 Topology of the Single Lepton Channel

Single lepton channel is one of the most promising channels for SUSY searches and
used in this research. To achieve the cancellation of large loop corrections to the
Higgs boson mass, the most viable scenarios among others requires stop and gluino
masses below approximately 500 GeV and 1.5 TeV, respectively. According to this
scenario top squark is the lightest quark partner, and it leads to multiple W boson,
multiple b quarks and two LSPs in final state in the perspective of R-parity conserva-

tion [47]].

This thesis focuses on the final state that contains single-lepton, multiple jets, at least
two of which are b-tagged jets and two LSPs, which are undetected and taken into
account as missing energy along with the neutrino that is coupled to our one and only
detected lepton. These final state particles are originated from either directly pro-
duced top squark pair or gluino associated top squark pair. For both cases, different
number of jets is expected such as at least four jets for direct stop production and at
least six jets for gluino associated stop production. We know that BR of £ — ¢ — Wb
decay is 100 % [48]], so we are 100 % sure that at least two b jets are produced. In
Figures 4.1 and 4.2] Feynman diagrams of direct top squark production and gluino

associated top squark productions are shown, respectively. In Figures 4.3] Feynman
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diagrams of leptonic top decay is represented. For ¢ decay, diagram is the same except

the charge conjugate of the daughter particles are produced.
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Figure 4.1: Event topology of the direct top squark production and top squark decay

Figure 4.2: Event topology of the gluino associated top squark production and top

squark decay

In addition to top squark decay into neutralino and top quark subprocess, top squark
also can decay into b quark and chargino pairs that lead to neutralino and W boson
final state again. In Figure[d.4] the Feynman diagram of this process is shown. In Fig-
ure [4.5] besides symmetric decay processes mentioned above, an asymmetric decay
channel is shown. It is like the mixture of the processes in Figure .| and Figure 4.4
Again, the final state is the same, but only the subprocesses are different asymmetri-

cally. Hermitian conjugate of either of its branches is also possible.
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Figure 4.3: Event topology of the leptonic top quark decay

In the previous SUSY searches done by the LHC experiments, simplified SUSY mod-
els were used. In simplified SUSY, only on-shell SUSY pair productions are taken
into account, and the branching fraction of the specified decay channel is assumed to
be 100%. On the contrary, we used non-simplified models that have variety of top
squark decay modes. While some these decay modes are presented in this section,

rest of them are explained in section 4.4
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Figure 4.4: Event topology of the direct top squark production and top squark decay

with different subprocesses

Single lepton channel, which is sometimes called the golden channel has a very im-
portant role for SUSY searches, because gluino associated stop pair production with
one of the four W bosons decays leptonically has a probability of approximately 40%
[47], and direct stop production with two of the W bosons decay leptonically has a
probability of approximately 44% [49] and 30% for e and . only.
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Figure 4.5: Event topology of an asymmetric top squark pair decay. It leads to the

same final situation with the previous symmetric processes.

As it is declared in previous chapters, we have not observed any SUSY signal up
to now. In Figure , distributions of M7, E}mss, and M% which were obtained
by CMS detector in the /s = 8 TeV collisions, are shown [50]. In Figure
distributions of E}"** and topness, which were obtained by ATLAS detector in the
\/5 = 8 TeV collisions, are shown [235]]. For both analysis results, it can be said that
significance of the signal points is far from the discovery band. To see a signal above

the 50, obviously, we need more data and higher collision energies.

4.3 Signal Samples (Stau Coannihilations)

Lightest neutralino, (as stated before), i.e. LSP, is the Dark Matter candidate of the
R-parity conserving MSSM, and is a linear combination of the SUSY partners of the
neutral gauge and Higgs bosons. Thermal relic scenario is thought to be the explana-
tion for the origin of the dark matter. According to original thermal relic scenario, at
the early times of the universe, DM particles were in equilibrium with the surround-
ing cosmic bath with the help of frequent interactions. Yet, the expansion and cooling
of the universe caused Boltzmann suppressed interaction rate to be dropped under the

rate of the expansion of the universe and so the equilibrium has been disturbed. As a
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Figure 4.6: My, E and M., results of CMS experiment at 8 TeV collision energy.
The figures are taken from [50]].
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Figure 4.7: E7"** and topness results of ATLAS experiment at 8 TeV collision energy.
The figures are taken from [25]].

result, the so-called particle freeze-out started, and the particle number density started
to redshift due to the annihilation processes [S1]. However, not only the annihilation
models of \Y, as pointed out in [52], but also the coannihilations with other super-
symmetric particles heavier than the neutralino should be taken into account since
the original thermal relic scenario, X! annihilation, is not enough to explain the DM

abundance. The current observationally bounded value of the relic density is

QDMh2 X MppMINDM Z 0.11 (41)

[53]). Stau-y9 coannihilation, or just Stau Coannihilation (STC) is one of the common
ways for the prediction of the Dark Matter relic density calculations. STC lies in
the parameter space that is in agreement with the pre-LHC results with the highest
likelihood [54]. In this allowed parameter space region, mass difference of stau-
NLSP and YV-LSP (AM = Mgy — mi?) is taken in the range of 5-15 GeV. Thanks
to this small choice of mass range, coannihilation can be valid for the early universe,

and DM relic density can reach its current abundance [55]].

To be more specific, in this thesis, stau and )Z? masses nearly degenerate; mgq, = 194

GeV and my = 187 GeV [460]. If this mass degeneracy between stau and XY is
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observed in LHC, it would be highly possible that y9 was the dark matter.

In this research, four main signal benchmark points have been used; STC4, STCS,
STC6 and STCS. Since the total SUSY cross section at LHC mainly depends on the
lightest stop mass, for these four scenarios only #; mass changes from 293 GeV to
735 GeV respectively. While the production cross section of the top squark decreases
significantly, production cross section of the electroweak particles stays almost same.
Mass spectrums of the benchmark points are shown in Figures[4.8] 4.9 4.10] and[4.11]
and the cross section values of each for different center-of-mass collision energies can

be seen in Figure d.12]
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Figure 4.8: The mass spectrum of STC4 with m; = 293.1 GeV. The figure is taken
from [56]].

4.4 Backgrounds

The main SM backgrounds for this research are ti+jets, boson(W or Z)+jets, single
top production with additional jets, and diboson. Other possible backgrounds are
ttZ, ttH, and Drell-Yan(DY)+jets production, but their contributions are too small
and suppressed by jet multiplicity requirements. In the figures [4.13| 4.14] 4.15] and

Feynman diagrams of the background processes are shown.

In this research, we used two possible background uncertainty values; 15% and 20%.

These assumptions are based on the research done at 8 TeV collisions energies by
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Figure 4.9: The mass spectrum of STC5 with m;, = 415.7 GeV. The figure is taken
from [56].

2240 -
3 g
qu
2 1920 ix
3
=
1600 k
by
1280 -
960
— =
640 -
— f
0 1
HO " x &=
320 |- A B 7 3 ?(g G
4 iy # x% b
k IR il

Figure 4.10: The mass spectrum of STC6 with m; = 526.9 GeV. The figure is taken
from [56].

CMS experiment [S0]. In [S0], it can be seen that measured systematical background

uncertainties vary from 15% to 25%, so that it is applicable for us to use such values.

In addition to the SM backgrounds, there exist SUSY backgrounds as well. Un-
like simplified SUSY models that top squarks only decay into ty? or by?, we use
non-simplified models in this thesis that include a variety of other top squark decay
possibilities. For instance, in our STC models, only 4% of t}f{ events decay into
txD(tx?). Moreover, bottom squark pair production is a considerable process that

leads to the production of by? and t)}f events. In Section the necessary cuts are
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Figure 4.11: The mass spectrum of STC8 with m; = 735.7 GeV. The figure is taken
from [56]].
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Figure 4.12: Cross sections of four benchmark points for various collision energies.

The figure is taken from [46].

listed to eliminate these backgrounds.
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(a) Gluon jet (b) Quark jet

Figure 4.14: Event topologies of the boson(W or Z)+jets backgrounds

Figure 4.16: Event topology of the diboson background
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4.5 Pile-up Events

Besides background events, pile-up events are the other important challenge for the
analysis of high luminosity collisions. It is simply defined as the secondary proton-
proton collisions overlapping the primary interactions or the number of collisions per
bunch crossing. Considering the fact that higher luminosity values will be reached in
colliders, especially after the start of Run-II phase of LHC, it is compulsory to take

pile-up events into account for this research as well.

In the Run-II of LHC, integrated luminosity will reach to 300 fb~! and approximately
50 pile-up events or more are expected per bunch crossing [S7, 46]. Also in this
research, two more pile-up cases are analyzed; no pile-up and 140 pile-up. 140 pile-
up events are for even higher luminosities such as 3000 b~ [46] 58,59, 60]. Thus, to
predict the results of future HL-LHC plans with 33 TeV, we carry out an analysis for
140 pile-up cases, too. The case of no pile-up events seems optimistic, but important

for us to compare the validity of our results.

4.6 Statistical Significance of Signal

Statistical significance of a signal scenario is a mathematical quantity that is used for
inspecting whether there is a discovery or not in a research. To establish a discovery,

one should reject the background only hypothesis, i.e. null hypothesis.

First of all, this null hypothesis is assumed to be the true scenario. In, other words,
SM background is true, and there is no new physics according to this hypothesis for
our case. Thus, the deviation from null hypothesis describes how much we are close
to a discovery. This deviation is quantified as o. For a discovery, it is required that our
signal events distribution deviates from background only hypothesis with at least 5o,
whereas the hint for a new physics requires at least 30. 30 means that the reason for
the deviation is the statistical fluctuations of background with a possibility of 0.27%,
i.e. there is a 0.27% possibility that background only hypothesis is true. Likewise,
So means that there is a 0.000057% possibility that background only hypothesis is
true. In Figure a Gaussian distribution with the points that corresponds to some
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specific standard deviation values, and the percentile values for these points can be
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Figure 4.17: Gaussian distribution with some specific standard deviation values.
These deviations represent the possibility of a new physics hypothesis is true against

the background only hypothesis. The figure is taken from [61].

The most simple and common relation for significance calculations is

Z=s/Vb (4.2)

where Z is the expected discovery significance, s is stands for signal and b is back-
ground. What about if we have uncertainty for background? For such a case, only
the uncertainty of background is relevant for calculation, though signal uncertainty is
used only for setting limits [62]]. In this perspective, equation 4.2]is modified as

7 =s/\/b+o? 4.3)

where o7 is the variance of background and represented as

op = (uncertainty) x b 4.4)

For instance, if backgrounds have a 25% uncertainty, explicit version of equation 4.3|
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Figure 4.18: Jet pp distributions before and after p > 40 GeV cut for No pile-up

case

becomes

Z =5/\/b+ (0.25 x b)? (4.5)

4.7 Control plots and Inclusive Variables

Requiring at least 4 (6) jets for direct top squark pair production (gluino associated
stop pair production) with p; > 40 GeV and |n| <2.4 increases the fraction of £,¢%
events with respect to b}i)’{ events, which are the main SUSY background as stated in
previous section [60]. Also, the events with lepton transverse momentum is bigger
than 20 GeV are selected. These cuts are the classical cuts that are used similarly
almost all the single lepton searches. In the figures[d. 18] .19} and[4.20] jet transverse

momentum distributions with the corresponding cut are shown. In the figures #.21]

4.22] and 4.23] lepton transverse momentum distributions with the corresponding cut

are shown, respectively.

Just after the multiplicity, transverse momentum and pseudorapidity cuts, EF%5 >

500 GeV is applied, because there is additional missing energy due to the additional
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Figure 4.23: Lepton pr distributions before and after p; > 20 GeV cut for 140 pile-up

case

neutralinos and neutrinos. FEZ¥** is an inclusive variable and one of the common

variables used for SUSY searches since it is expected to find signal events in higher

missing energy region. In the figures [4.24} 4.25 and 4.26| £ distributions before

and after the E2""** > 500 GeV cut are shown for each pile-up cases, respectively.

To reduce SM background further, a new angular variable, min A¢ which is intro-
duced in [60], is used. min A¢ is the minimum angle between the leading jet and
E7s in the azimuthal plane. A¢ value is small for QCD multi jet background
whereas signal points are expected have larger values, and this makes the variable
useful for our analysis. In the tablesd.1] [4.2] and[4.3] the significance results after the
A¢ cut are shown for each signal scenarios and for each pile-up cases. The signifi-

cance results are below 20 which is too low to be considered enough for a discovery.
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Figure 4.27: Hyp distributions before and after Hr > 1100 GeV cut for No pile-up

case

To eliminate the background and increase the significance of the signal more, another
common SUSY search variable, Hp is used. It is an inclusive variable just like E%Z“'SS
and described as the scalar sum of the jet transverse momentum values. As it can be
seen in Figure {.27] Figure #.28] and Figure 4.29] a hard cut on Hr can effectively
separate the signal from the background. It can be seen in the tables .4} [4.5] and [4.6]
that just after the Hy cut, the biggest remaining background is dileptonic ¢ decays

with one of the leptons is missing.
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Figure 4.28: Hyp distributions before and after Hy > 1100 GeV cut for 50 pile-up
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Figure 4.29: Hp distributions before and after Hr > 1100 GeV cut for 140 pile-up

case
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Delphes samples ys=14 TeV, j Ldt=300 lb", No pile-up Delphes samples {s=14 TeV, J Ldt=300 fb", No pile-up [ ST¢d
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Figure 4.30: My distributions before and after My > 120 GeV cut for No pile-up

case

Boson+jet background, which is a lepton, E7*¢ and jet source was the biggest back-
ground before the previous cuts. Yet now, it is very small compared to ¢, but still
not negligible. Here E7* is originated from the single neutrino of leptonic boson,
mostly W, decay. Since it is single boson decay, a cut on M distribution can elimi-
nate such backgrounds due to the fact that M, distribution has an end point at the W
boson mass. In the figures[4.30] [4.31| and [4.32] M distributions are shown. In Table
[A.7] Table[4.8] and Table4.9] the signal significance values obtained after the My cut

are shown, respectively.
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Figure 4.31: M distributions before and after M, > 120 GeV cut for 50 pile-up
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Figure 4.32: My distributions before and after M7y > 120 GeV cut for 140 pile-up

case
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Delphes samples ys=14 TeV, _[ Ldt=300 lb", No pile-up Delphes samples ys=14 TeV, j Ldt=300 fb", No pile-up
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Figure 4.33: MY, distributions before and after M)%, > 170 GeV cut for No pile-up

case

4.8 Analysis with the Dedicated Variables, and Their Comparison

After the cuts mentioned previous section, the largest remaining background is dilep-
tonic ¢t channel. The results are in good agreement with the results of ATLAS t{

research [64] up to now.

However, since Ej’?iss and Hp cuts are composite variables, it can be deduced that the
previous cuts may not sort out the signal efficiently and correctly enough. In addition,
the last cut, My, is for one W boson decay branch with one missing particle. Yet, there
are more than one W boson decay branches with more than one missing particle. So,
at this point, we need exclusive variables to go further in our analysis. These variables
are M}, and topness (t) whose mathematical descriptions and physical meanings are
described in Chapter[3] In the figures4.33|[4.34] and[4.35] event distribution for MY,
before and after cuts, are shown. In the figures [4.36] [4.37] and 4.38] event distribution

for topness, before and after cuts, are shown.

In the tables [4.10, .11} and [4.12] for each pile-up scenario and each STC models,

significance results of M}% and topness variables can be seen separately. In the cut

flow, MJ}%, and topness are applied after the previous cuts and these two are applied

interchangeably.
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Delphes samples ys=14 TeV, j Ldt=300 fb”, 50 pile-up Delphes samples ys=14 TeV, _[ Ldt=300 fb”, 50 pile-up
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Figure 4.34: MY distributions before and after M)%, > 170 GeV cut for 50 pile-up
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Figure 4.35: M" distributions before and after M}, > 170 GeV cut for 140 pile-up

case
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Delphes samples ys=14 TeV, J Ldt=300 lb", No pile-up Delphes samples ys=14 TeV, I Ldt=300 fb", No pile-up
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Figure 4.36: Topness distributions before and after ¢ > 6.5 cut for No pile-up case
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Figure 4.37: Topness distributions before and after ¢ > 6.5 cut for 50 pile-up case
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Figure 4.38: Topness distributions before and after ¢ > 6.5 cut for 140 pile-up case
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The results are promising. ¢t background decreases to its half, and the significance
results of all the signal scenarios are above the 50 for all the possible cases. When
using the improved uncertainty, 15%, significance results almost increase by its one
and a half as expected, because improved uncertainty means we are much closer to
the realistic result in the hypothesis that SUSY exits. In addition, the results of these
two variables are almost the same. That means, both of them can be used separately

or together in the analyses. In the figures [4.39] [4.40] and [4.41] trend of the increased

significance results are shown for 15% background uncertainty, respectively. Num-
bers on the horizontal axises represents the important cuts; A¢, Hy, My, and M% or
topness respectively. Each significance value represents the significance of the sig-
nal just after the corresponding cut. After the 374 cut, Mr, significance reaches its
maximum value for all the cases, and then decreases after the dedicated variables.
However, it doesn’t mean that stransverse mass and topness is not working properly.
The reason for the decrease might be that M cut separates background and signal
wrongly. My is used for calculating the mother particle mass with the information of
daughter particles. For instance, W boson mass is obtained with the lepton and the
missing neutrino by using the transverse variables. As it is explained in Chapter [3]
since there are more than one missing particles, the system is underconstrained for
M. As aresult, M might not tag the signal and background efficiently enough so

that it gives us fake results.
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CHAPTER 5

CONCLUSION

In conclusion, this thesis contributes to the searches for the answers to the most im-
portant questions in particle physics; what are the exact symmetry and the laws of the
Universe? SUSY is one of the most popular replacements for the common particle
physics theories that lacks important features to explain mass hierarchy problem, how
to unify fundamental forces of the Universe, dark matter, so on and so forth. MSSM
is the collider friendly version of the SUSY and proposes some possible candidates
for the dark matter along with solving the problems of SM naturally. In this thesis,
two topological variables are examined in a specific SUSY decay, single lepton chan-
nel, by comparing their efficiencies in our analysis. These variables, W-stransverse
mass and topness, are brand new and have been used seldom in previous analysis of
CMS and ATLAS. It is highly expected that these variables will be more useful for
the higher collision energies especially for the 14 TeV run of the LHC and 33 TeV
run of the HL-LHC.

In the perspective of R-parity conserving MSSM, SUSY particles are produced in
pairs and so it is expected to reconstruct an LSP pair originated from the mentioned
decay channel. Single lepton channel, which is called the golden channel, is the main
target of this research. We expect to see single lepton, multiple jets, at least two of
which are b-tagged jets and two LSPs, which are undetected and taken into account
as missing energy along with the neutrinos as final state particles. These final state
particles are originated from the top squark pair produced as a result of the collision.
By using the abovementioned special variables, we eliminate the background events

and reconstruct the signal cascade decay in four STC scenarios for three possible
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pile-up cases: 0, 50, and 140 pile-up. In this thesis, only the events with the first two
families of leptons, i.e. e and p types are used. 7 leptons are not included and for the
further researches, 7 tagging might be used as well to increase number of possible
signal scenarios and eliminate the background more efficiently. In addition, other
decay channels such as fully hadronic and dileptonic would be analysed to obtain

even more inclusive judgement for the difference between the dedicated variables.

After the control cuts, which are used almost all the SUSY analyses, we applied W-
stransverve mass and topness variables interchangeably, and then compare the num-
ber of events left after both cases. As a result, we achieved an important improvement
in the signal significance as it can be seen in the figures 4.39], .39], and [4.39] We
observe a significant increase after applying the dedicated variables. However, there
is no significant difference between the results of each. So, we can say that their ef-
ficiencies are almost the same. They can be used together or separately in the future

analyses.
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