
NUMERICAL AND EXPERIMENTAL EVALUATION OF COMPUTATIONAL
SPECTRAL IMAGING WITH PHOTON SIEVES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNÇ ALKANAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2016





Approval of the thesis:

NUMERICAL AND EXPERIMENTAL EVALUATION OF COMPUTATIONAL
SPECTRAL IMAGING WITH PHOTON SIEVES

submitted by TUNÇ ALKANAT in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
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ABSTRACT

NUMERICAL AND EXPERIMENTAL EVALUATION OF COMPUTATIONAL
SPECTRAL IMAGING WITH PHOTON SIEVES

Alkanat, Tunç

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Figen S. Öktem

September 2016, 94 pages

Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is
an important diagnostic tool for an expanding range of applications in physics, chem-
istry, biology, medicine, astronomy, and remote sensing. In this thesis, a recently de-
veloped computational imaging technique that enables high-resolution spectral imag-
ing is studied both numerically and experimentally. This technique employs a diffrac-
tive imaging element called photon sieve, and distributes the image formation task
between the photon sieve system and a data-processing unit. In the data-processing
unit, the measurements obtained with the photon sieve system are used in an inverse
problem framework to reconstruct the spectral images from their superimposed and
blurred measurements. Here, we first develop a fast and accurate method to compute
the two-dimensional point spread function (PSF) of any diffractive imaging element.
Using this method, imaging properties of photon sieves are analyzed under different
design scenarios. Secondly, we construct an experimental setup for the photon sieve
imaging system, and PSF measurements obtained with this setup are compared with
the theoretical calculations. Lastly, the image reconstruction method used to solve the
inverse problem is studied and its performance is analyzed numerically for different
regularization choices and various potential observing scenarios.
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ÖZ

FOTON SÜZGECİ İLE HESAPLAMALI SPEKTRAL GÖRÜNTÜLEMENİN
SAYISAL VE DENEYSEL İNCELEMESİ

Alkanat, Tunç

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Figen S. Öktem

Eylül 2016 , 94 sayfa

Spektral görüntüleme, yani ışınım yapan bir ortamın eşzamanlı spektroskopisi ve gö-
rüntülenmesi, fizik, kimya, biyoloji, tıp, astronomi ve uzaktan algılama gibi uygulama
alanları giderek genişleyen önemli bir teşhis aracıdır. Bu tezde, yüksek çözünürlüklü
spektral görüntülemeyi mümkün kılan yeni bir hesaplamalı görüntüleme yöntemi sa-
yısal ve deneysel olarak incelenmektedir. Bu yöntem, foton süzgeci adında kırınım
tabanlı bir görüntüleme elemanı içermekte ve görüntü oluşturma işini foton süzgeci
sistemi ve veri işleme birimi arasında dağıtmaktadır. Veri işleme biriminde, foton
süzgeci sisteminden alınan ölçümler, ters problem çerçevesinde kullanılarak, bulanık
ve üst üste eklenmiş ölçümlerden spektral görüntüler geri oluşturulmaktadır. Bu ça-
lışmada, ilk olarak, herhangi bir kırınım tabanlı görüntüleme elemanının iki boyutlu
nokta dağılım fonksiyonunu (NDF) hızlı ve hassas olarak hesaplayan bir yöntem ge-
liştirilmiştir. Bu yöntem kullanılarak, foton süzgecinin görüntülemeye ilişkin özellik-
leri farklı tasarım yönleri ile incelenmiştir. İkinci olarak, spektral görüntüleme sistemi
için bir deneysel ortam oluşturulmuş ve bu ortamdan alınan NDF ölçümleri kuram-
sal hesaplamalar ile karşılaştırılmıştır. Son olarak, görüntü geri oluşturulma yöntemi
çalışılmış ve olası farklı gözlem koşulları ve düzenlileştirme seçenekleri için spektral
görüntüleme sisteminin performansı sayısal olarak incelenmiştir.
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kırınım tabanlı görüntüleme, nokta dağılım fonksiyonu, ters problemler, görüntü geri
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CHAPTER 1

INTRODUCTION

The saddest aspect of life right now is that science gathers knowledge faster

than society gathers wisdom[10].

– Isaac Asimov

Spectral imaging is the acquisition of the spectrum of radiation for each spatial point

in a scene. Different than a traditional grayscale image that is two-dimensional and

formed by measuring the integrated intensity within a spectral range, a spectral data

set is a three-dimensional data that contains multiple images of the scene, each ob-

tained at a different narrow spectral range.

There is an ever increasing need for novel spectral imaging modalities that offer

higher performance and flexibility as the applications in science and engineering grow

rapidly. This is because spectral imaging provides spectral signatures for the objects

in the imaged scene. More specifically, spectral information is useful for understand-

ing the chemical composition and physical properties of the targeted objects. For

instance, in astrophysics, spectral data is useful for investigating the chemical struc-

ture and reactions of celestial bodies; in mineralogy, it is useful for exploring new

mining sites; and in military, it is useful for revealing threats.

Older approaches to the nearly a century and a half year old field of spectral imaging

are based on optical manipulation of light. Slit spectroscopy [11] and interferome-

try [12] based techniques are the first approaches that enabled a scene to be viewed at

different wavelengths. Then, as the manufacturing capabilities increase, techniques

that involve more hardware complexity with precisely aligned and manufactured op-
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tical elements are developed and improved the success of spectral imaging devices.

Nevertheless, all optics-based techniques suffer from the physical limitations inherent

in their optical components and face the difficulty of acquiring the three-dimensional

spectral data set with the intrinsically two-dimensional detectors. As a result of these,

spectral image acquisition techniques have been an active research area for a con-

siderably long time and new approaches are still of interest to improve the spectral

imaging capabilities such as spatial resolution, spectral resolution, time resolution

and optical throughput.

As a result of the limitations of the optics-based techniques and the advancements

in computing power, computational imaging approaches to spectral imaging have

emerged. This has led to the development of novel spectral imagers with new capa-

bilities that would not otherwise be possible with optics-based techniques. Although

there is ample room for improvement and novel developments, exciting advance-

ments in the field of computational spectral imaging are already pushing the limits in

spectral imaging.

Among different computational imaging approaches for acquiring spectral informa-

tion, the focus of this study is on a recently developed technique that exploits the

unique properties of a diffractive imaging element called photon sieve to enable

high-resolution spectral imaging. This imaging modality distributes the image for-

mation task between the photon sieve system and a data-processing unit. In the data-

processing unit, the measurements obtained with the photon sieve system are used

in an inverse problem framework and the spectral images of a radiating scene with

a discrete spectrum are reconstructed from their superimposed and blurred measure-

ments. This technique is of utmost importance at short wavelengths such as extreme

ultra-violet (EUV) and x-rays where radiations with discrete spectrum are common.

This is because alternative techniques suffer from the strong absorption of materials

or manufacturing difficulties at these short wavelengths.

In this thesis, this spectral imaging technique with photon sieves is studied through

both numerical and experimental analysis and its performance is evaluated for sce-

narios of practical importance. Helping to bridge the gap between the theoretical and

experimental evaluation of the technique, this study aims to conclusively demonstrate
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its performance and practical feasibility.

1.1 Contributions and Outline

This work is organized as follows. In Chapter 2, an up-to-date survey of existing

spectral imaging techniques is presented along with the terminology and parameters

associated with such systems.

In Chapter 3, first, some background about diffractive imaging elements and their

mathematical characterization are given. Then in Section 3.2, a fast and accurate

method is developed to compute the two-dimensional point spread function (PSF) of

any diffractive imaging element. Using this method, imaging properties of photon

sieves under different design scenarios are also analyzed. Finally, in Section 3.3, a

flexible experimental setup built for the photon sieve imaging system is described,

and PSF measurements obtained with this setup are compared with the theoretical

PSFs computed using the method developed in Section 3.2.

Chapter 4 focuses on the image reconstruction aspect of the photon sieve spectral

imaging technique. First, a detailed explanation of the imaging system, and the corre-

sponding forward and inverse problems are presented in Section 4.1. Then, the image

reconstruction algorithm for solving the inverse problem is described in Section 4.2.

Lastly, in Section 4.3, results of a comprehensive set of numerical tests are presented

to assess the performance of the reconstruction method under different practical sce-

narios of interest such as for varied number of observations, amount of measurement

noise, measurement plane locations and spectral composition of the scene. Also, the

performance of different regularization choices are comparatively evaluated.

Finally, Chapter 5 concludes this work by commenting on the contributions of this

thesis, the results and their implications, as well as the future work.
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CHAPTER 2

REVIEW OF SPECTRAL IMAGING TECHNIQUES

2.1 Spectral Imaging

Spectral imaging is the process of capturing the spectrum for each spatial location

in a radiating scene. Today, application areas of the spectral imaging techniques

are growing rapidly since the spectral image data set provides a useful diagnostic

information for a wide variety of applications including agriculture, remote sensing,

biomedicine and defense.

Figure 2.1: A sample spectral image data set. Image retrieved from [1].

Although spectral imagers use detector arrays similar to that of other imaging tech-

niques, spectral imaging devices have more complicated optical systems than the tra-

ditional grayscale and red-green-blue (RGB) cameras. While a grayscale imaging

device measures the integrated intensity within its detector array’s spectral range,

an RGB imaging device works similar to its grayscale counterpart but dividing the
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spectrum into three overlapping spectral bands. Unlike both, spectral imaging tech-

niques provide the spectrum for each spatial location by dividing it into several non-

overlapping narrow bands. This results in forming a 3-D image data set as illustrated

in Fig. 2.1.

In this chapter, the terminology used in this thesis will be explained in Section 2.2,

the properties and parameters associated with spectral imaging devices will be de-

scribed in Section 2.3, and the existing spectral imaging techniques will be reviewed

in Section 2.4.

2.2 Spectral Imaging Terminology

Spectral imaging literature contains different terminologies used by different research

groups. To avoid ambiguity, the terminology that is used throughout this document

will be defined.

First of all, the name of the field appears in different forms such as hyperspectral

imaging, multi-spectral imaging, spectral imaging or imaging spectroscopy. For the

sake of simplicity, a device that obtains a 3-D image with more than three spectral

bands will be referred to as a spectral imaging system throughout this document. The

resulting spectral data set will be mathematically expressed as I(x, y, λ) where λ is

the spectral dimension, and x and y are the horizontal and vertical spatial dimensions,

respectively. Also, a spectral data set will be referred as spectral datacube, with each

unit of the datacube called as a "voxel". Spectral datacube and associated voxels are

illustrated in Fig. 2.2.

Resolution is another term that may cause ambiguity. Throughout this document,

"pixel resolution" is used as the number of measurement elements on the detector

along a spatial dimension whereas the terms of "spatial resolution" and "spectral res-

olution" refer to the ability of imaging system to resolve nearby spatial and spectral

components of the scene, respectively.

The terms of "scanning" and "snapshot" are used to refer to the acquisition strategy

of the spectral imaging systems. The term "snapshot" is used to describe devices that
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Figure 2.2: A sample spectral datacube where each inner cube represents a voxel.

Image retrieved from [2].

construct the spectral datacube using a single exposure interval of detector(s). Note

that, the terms "snapshot" and "scanning" do not necessarily give information about

the acquisition time of the device.

2.3 Spectral Imaging System Parameters

• Spectral Resolution: Spectral resolution represents the minimum wavelength

difference that is distinguishable by the imaging system. It is related to the

resolving power of the system as follows:

∆λ =
λ

R
(2.1)

where ∆λ denotes the spectral resolution at wavelength λ and R is the resolving

power of the imaging system [13].

• Spatial Resolution: Spatial resolution is the minimum-sized spatial detail dis-

tinguishable in an image. It represents the ability of an imaging system to

resolve spatial features as illustrated in Fig. 2.3.

• Pixel Resolution: Pixel resolution represents the number of voxels along a

spatial dimension. A detector array samples the detected continuous input ir-
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Figure 2.3: Two spatial features become indistinguishable as the spatial spacing be-

tween them gets smaller than the spatial resolution of the imaging system. Image

retrieved from [3].

radiance over each pixel. Mathematical expression for this sampling process is

given in Eqn. 2.2 where I[k, l] is the sampled image, Ic(x, y) is the continuous

input irradiance, and δx and δy are the pixel widths along x and y directions,

respectively. Here, Nx and Ny denote the pixel resolution along each spatial

dimension.

I [k, l] = Ic(x, y)|x=kδx, y=lδy (2.2)

where
−(Nx − 1)/2 ≤ k ≤ (Nx − 1)/2,

−(Ny − 1)/2 ≤ l ≤ (Ny − 1)/2.

• Total Frame Rate: Total frame rate is defined in this thesis as the reciprocal

of the total acquisition time needed to fully capture the spectral datacube.

• Number of Spectral Bands: The number of spectral bands, denoted by Nw, is

the number of narrow-band spectra in the spectral datacube. A sample spectral

datacube with Nw = 32 is shown in Fig. 2.4.

2.4 Overview of Spectral Imaging Techniques

Research conducted on spectral imaging has led to many different techniques devel-

oped for this imaging modality. Architectures addressing a wide variety of different

considerations including system cost, time resolution, throughput and manufacturing

difficulties resulted in different approaches to tackle the task of forming the 3-D spec-

tral data set. Due to the vast amount of different techniques proposed, a consistent
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Figure 2.4: A sample spectral datacube with a spectral range of 500nm to 686nm and

a spectral resolution of 6nm, hence consisting of a total of 32 spectral bands. Image

retrieved from [4].

classification of spectral imaging techniques is necessary. To this end, we propose the

classification approach depicted in Fig. 2.5.

2.4.1 Optics-based Techniques

Optics-based spectral imaging techniques form the datacube directly from the raw

data acquired with the detector array. These techniques optically form the spectral

datacube by either scanning, image slicing or dividing where scanning techniques are

referred to as conventional techniques in this thesis. Conventional techniques, image

slicing and image dividing based techniques are reviewed in Sections 2.4.1.1, 2.4.1.2

and 2.4.1.3, respectively.

2.4.1.1 Conventional Techniques

• Whiskbroom Spectral Imaging

Whiskbroom spectral imaging performs scanning along both spatial dimen-

sions and uses a 1-D detector array to obtain spectral datacube. The scanning
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Figure 2.5: Overview of spectral imaging techniques.

is achieved by either mechanically moving the single detector in the measure-

ment plane or by using two galvo mirrors to direct the incident irradiance of

different spatial positions onto a fixed detector. The spectrum of each spatial

position is obtained dispersing the incoming light from that position onto the

linear detector array. An illustration of the whiskbroom approach is shown in

Fig. 2.6a.

The whiskbroom approach has advantages such as fast readout rate, wide spec-

tral range, high spectral resolution, and low cost. Conversely, disadvantages

associated with this approach are low total frame rate and high hardware com-

plexity [5].

• Pushbroom Spectral Imaging

Pushbroom spectral imaging approach performs scanning along one spatial di-

mension and uses a 2-D detector to capture the 3-D spectral information. For

each integration duration of the detector matrix, pushbroom spectral imagers

limit the incident scene irradiance by a long slit and then disperses the corre-

sponding 1-D spatial region onto the 2-D detector. This acquisition approach is

shown in Fig. 2.6b.

Pushbroom approach is one of the most widely-used approaches for spectral

imaging due to its convenience for airborne and spaceborne applications. This

class of imagers can be mounted on a moving platform and thus the mechanical-
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(a) (b) (c)

Figure 2.6: (a) Whiskbroom approach. (b) Pushbroom approach. (c) Tunable filter

approach. Image retrieved from [5].

optical scanning of the scene can be avoided by using the motion of platform

itself. Different than the whiskbroom spectral imagers, this technique provides

higher throughput (hence higher signal-to-noise ratio (SNR)) and higher total

frame rate while maintaining the high spectral resolution, but with increased

calibration difficulty [14].

• Tunable Filter Spectral Imaging

This class of spectral imaging devices use multiple narrow-band spectral fil-

ters to apply wavelength filtering on the incident light, thus forming a stack of

images associated with the spectral bands allowed through each filter. In this

approach, the datacube is constructed by repeating the imaging procedure by

performing scanning along the spectral dimension with the utilization of differ-

ent filters.

Spectral imaging using tunable filters provides medium spectral range and spec-

tral resolution with low throughput, high cost and low hardware complexity [5].

In addition, total frame rate depends on the switching duration of the tunable fil-
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ter technology used. For example, wavelength switching time for filter wheel,

liquid crystal tunable filter (LCTF) and acousto-optical tunable filter (AOTF)

are reported to be of order of 1 s, 50 to 500ms and 10 to 50 µs, respectively [2].

2.4.1.2 Image Slicing based Techniques

Main challenge of spectral imaging arises from the fact that the desired data is of

three dimensions while the detectors are inherently of two dimensions. Image slicing

based techniques approach this difficulty by reformatting the 2-D incident irradiance

into 1-D shape by optical means and then dispersing the resulting 1-D data onto a

detector.

• Integral Field Spectral Imaging using Reflection

This class of spectral imagers use reflective optical elements to reshape the

observed 2-D beam before dispersing it onto the detector. First example of this

approach is introduced by Bowen in [15] and uses a stack of mirrors to direct

vertical lines of the input scene and vertically concatenate them to form a single

line.

Figure 2.7: Bowen-Walraven image slicer. Image retrieved from [2].

Due to the fact that Bowen’s device was large, bulky [16] and hard to manu-

facture [2], a design by Walraven that relies on the same principle as Bowen’s

approach is developed [17] in 1972. Walraven’s image slicer, more commonly
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referred to as Bowen-Walraven image slicer, uses total internal reflection in-

side a prism to serialize the incident irradiance as depicted in Fig. 2.7. The

Bowen-Walraven image slicer is reported to provide high throughput [18] and

low spatial resolution [19] with high device cost but it is yet one of the most

widely used image slicers [20].

• Integral Field Spectral Imaging using Fiber Bundles

Another integral field spectral imaging approach is based on fiber bundles [21].

The idea is to construct a fiber bundle with the shape of the FOV in one end and

a linear shape on the other thus effectively serializing the FOV.

Although the initial idea of using fiber bundles as an integral field unit (IFU)

was proposed early on 1956 [22], its practical realizations came a lot later

because of the manufacturing difficulties associated with fiber-optics technol-

ogy [23]. Spectral imaging using fiber bundles is reported to have low spatial

resolution and be susceptible to noise induced by varying mechanical vibra-

tion [24] and devices built on this principle have relatively low pixel resolution

of order few tens of voxels in each spatial dimension [25, 26].

• Integral Field Spectral Imaging using Lenslet Arrays

Another approach to integral field spectral imaging is to use lenslet arrays. The

idea of using lenslet arrays as an IFU to achieve spectral imaging is proposed

in 1960 by Courtes [27]. A lenslet array placed in the aperture of the imaging

system focuses individual wavefronts incident on each lenslet, and then each

of the focused spots are dispersed onto a different position on the 2-D detector.

It is reported that spectral imagers with large number of spectral bands such as

400 and 580 bands [28, 29] are realized with this approach.

• Image Mapping Spectrometry (IMS)

Integral field spectral imaging is shown to provide the spectral datacube with

a single snapshot and high number of spectral bands but with low pixel res-

olution. On the other hand, IMS approach provides high pixel resolution by

using an image slicing methodology similar to that of Bowen’s. Introduced in

2009 by Gao et. al. [30], IMS maps each horizontal or vertical line of the in-

cident beam on the input aperture to different spatial locations using an image
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mapping mirror with proper spacing. Then, empty space between horizontal or

vertical lines are filled by dispersion.

2.4.1.3 Image Dividing based Techniques

The main idea in image dividing based optical techniques is to divide the input wave-

front into multiple replicas and then individually process these replicas to obtain the

datacube. Each of these techniques uses a different optical approach to divide and

process the incident radiation from the scene as will be described below.

• Beamsplitting Spectral Imaging

In beamsplitting spectral imaging, incident input radiation is divided into sev-

eral replicas and a different narrow bandpass filter is applied to each replica

to obtain a 2-D image of the scene at a particular spectral band. Beamsplit-

ting and filtering can be achieved by using different optical elements such as

color splitting prisms [31, 32, 33], spectral filtering beamsplitters [34] and filter

stacks [35]. Main advantage of this snapshot spectral imaging approach is its

ability to provide high pixel resolution, but it has the drawback of low number

of spectral bands which is limited to Nw < 6 [2].

• Spectrally Resolving Detector Arrays (SRDA)

Another image dividing based approach relies on spectrally resolving detector

arrays. In this approach, the image of the scene is recorded using filters placed

on top of each detector, instead of dividing the beam beforehand. Each pair of

filter and detector element provides a single voxel of the datacube. Therefore,

this approach to spectral imaging can be understood as an extended version of

the traditional RGB imagery. The technique is illustrated in Fig. 2.8.

• Image Replicating Imaging Spectrometer (IRIS)

Developed in 2002 [36], this technique relies on the use of Wollaston beamsplit-

ting polarizer. A Wollaston beamsplitting polarizer consists of two triangular

birefringent prisms glued to each other to divide incident polarized light into

two with the angle between splitted beams depending on the wavelength. After
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Figure 2.8: Illustration of SRDA approach to spectral imaging. Image retrieved

from [2].

splitting the input beam, the device simultaneously applies wavelength filtering

to each beam. By using N Wollaston prisms sequentially, IRIS can form 2N

spectrally filtered replicas of the incident radiation and then optically projects

them onto the detector array to form the datacube.

The IRIS system is reported to provide a modest number of spectral bands

(Nw = 8 in [37]), modest field of view (FOV) and high SNR [38]. Main disad-

vantages associated with this technique are its polarization dependent behaviour

and the trade-off between FOV width and number of spectral bands.

• Tunable Echelle Imager (TEI)

Introduced in 2000 [39], TEI utilizes a Fabry-Pérot filter, an optical device

with a periodic bandpass spectral transmission pattern, to apply filtering in the

spectral domain. This filtering process leaves only the narrow bands of interest.

Then, resulting beam is directed onto the detector array after each wavelength

is mapped to a different pixel location.

Practical realization of TEI is shown to provide high spectral resolution [40] but

the main disadvantage is its low throughput caused by the use of Fabry-Pérot

filter [2].
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2.4.2 Computational Imaging Techniques

In the computational imaging approaches, transformation or reconstruction is per-

formed on the raw data acquired with the detectors to form the spectral datacube.

Here we review such spectral imaging modalities that involve either transformation

or reconstruction in Sections 2.4.2.1 and 2.4.2.2 respectively.

2.4.2.1 Transformation based Techniques

Transformation based computational imaging techniques perform a transformation on

the detector-captured raw data, which simply corresponds to representing the data in

a different basis. Interferometric devices belong to this class of spectral imagers and

they exploit the fact that the Fourier transform of the interferogram of an incident ra-

diation is equal to its spectrum [41]. Another approach in this class is multi-aperture

filtered camera (MAFC) which uses a linear transformation to correct for the off axis

data acquisition of multiple detector arrays and thus is classified here as a transfor-

mation based approach.

• Imaging Fourier Transform Spectrometer (IFTS)

This scanning-based interferometric approach splits the incident radiation into

two by using a beamsplitter and then introduces varying optical path difference

(OPD) to the splitted beams before combining them on the detector. Amount of

OPD introduced to the beams causes a phase shift and the device sequentially

collects data for different phase shifts between splitted beams, thus constructing

an interferogram. Interferogram is a 3-D data that consists of 2-D interference

patterns associated with each phase shift. The spectral datacube is then con-

structed by computing the Fourier transform of the interferogram.

The IFTS is most commonly used in the far-infrared region, and it is reported

to provide a high SNR and large number of spectral bands [13] but with the

disadvantage of sensitivity to mechanical vibrations [2].

• Snapshot Hyperspectral Imaging Fourier Transform Spectrometer (SHIFT)

SHIFT spectral imager is a snapshot interferometric device developed in 2010 [42].
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(a)

Figure 2.9: An MAFC implementation where each filter - detector array pair is given.

Image retrieved from [2].

This spectral imager first forms multiple images of the scene by using a lenslet

array. Then a spatially varying optical path difference is introduced to each

formed image by using a Wollaston prism. The result is projected onto a de-

tector where replicas of the scene with different OPDs appear to be tiled. The

datacube is then constructed from the imaged interferogram.

The main disadvantage of this approach is its low optical throughput caused

by the use of polarizers [43] and parallax problem caused by the use of the

lenslet array [44]. On the other hand, its advantages are its compactness and

insensitivity to mechanical vibrations.

• Multi-Aperture Filtered Camera (MAFC)

MAFC approach is a simple, snapshot approach developed in 2004 [45]. In this

approach, a filter - detector array pair is used to image the scene at different

spectral bands. Given that each optical assembly for each different spectral

band is placed close to each other, MAFC approach assumes that individual

detector arrays capture the same scene with nearly same angle of incidence.

Unwanted parallax effects are then reduced with a computational method. For

example, the computational method proposed in [45] applies pixel remapping

to the acquired raw data such that parallax induced projection angle of each
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pixel is estimated and then compensated. An illustration of this approach is

given in Fig. 2.9a.

Advantages of this technique is its simple and compact hardware whereas its

main disadvantage is caused by the limiting assumption of near-uniform angle

of incidence from the scene for all filter-detector array pairs.

2.4.2.2 Reconstruction based Techniques

As a result of the limitations of the optics-based techniques and the advancements

in computing power, computational imaging approaches to spectral imaging have

emerged. This has led to the development of novel spectral imagers with new capabil-

ities that would not otherwise be possible. In this section, we review reconstruction-

based computational spectral imaging approaches which include computed tomogra-

phy imaging spectrometer, coded aperture snapshot spectral imager and photon sieve

spectral imager.

• Computed Tomography Imaging Spectrometer (CTIS)

Figure 2.10: Left: Depiction of the Computed Tomography Imaging Spectrometer

(CTIS), right: An illustration of 5x5 diffraction pattern on the detector array. Image

retrieved from [2].

First proposed in 1991, CTIS is a computational spectral imaging system that

reconstructs the datacube from several dispersed images of the scene [46, 47].

In this approach, the radiation from the scene is passed through a 2-D grating
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to construct dispersed images at multiple diffraction orders. Each diffraction

order corresponds to a different amount of dispersion (chromatic aberration),

and each dispersed image corresponds to a 2-D oblique projection of the spec-

tral datacube with a different projection angle. The 3-D datacube is then recon-

structed from its projections by using a computational routine inspired from the

tomographic reconstruction. A depiction of the CTIS is shown in 2.10 along

with a sample set of projections on the detector array for a 5x5 diffraction pat-

tern.

There are both snapshot and scanning realizations of the CTIS instrument. As

for the scanning case, study in [48] utilizes a rotatable direct vision prism to

obtain different projections. In this approach, a sequence of images is captured

for each amount of rotation on the prism which corresponds to a different pro-

jection angle for the projection of the datacube. The resulting images are then

combined with a reconstruction method that solves the underlying linear inverse

problem by a simple direct inversion of the sensing matrix. On the other hand,

the snapshot realizations of the CTIS instrument use 2-D grating to directly

obtain the 2-D projections of the 3-D spectral datacube on the detector. Then,

similar to their scanning counterpart, the 3-D datacube is formed by numerical

reconstruction. In [46], the reconstruction of the datacube is performed with the

multiplicative algebraic reconstruction technique (MART). MART algorithm

operates by iteratively minimizing the entropy of the estimate for reconstruc-

tion [49]. In another implementation of CTIS in [50], expectation maximization

algorithm in [51] is used to obtain the reconstruction by iteratively minimizing

the norm of the residual.

One important limitation of the CTIS approach arises from the missing cone

problem first pointed out in [50]. The missing cone problem is due to the

limited projection angle caused by the use of finite-sized detector arrays and

the decreased diffraction efficiency associated with higher diffraction orders.

Based on the projection-slice theorem [52], the problem can be viewed as the

absence of data for the conic regions in both upper and lower portions of the

frequency domain representation of the datacube.

There are advantages and disadvantages associated with the CTIS approach.
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Compactness of the system, not requiring mechanically moving parts and avail-

ability of the snapshot form are the advantages. On the other hand, the disad-

vantages include manufacturing difficulties associated with the 2-D dispersing

element, reconstruction artifacts arising from the missing cone problem, and

the high computational complexity of the reconstruction scheme.

• Coded Aperture Snapshot Spectral Imager (CASSI)

CASSI is a computational imaging instrument that takes advantage of the com-

pressive sensing (CS) theory for snapshot spectral imaging [53]. It involves

an optical system similar to CTIS; but, here a single projection of the spectral

datacube is obtained after applying a coded aperture to the imaged scene. As

a result, the captured data corresponds to the projection of the spatially coded

datacube, which contains both spatial and spectral information in a multiplexed

fashion. The known binary aperture mask allows the measurement to be de-

composed into its spectral components and the absent spatial data correspond-

ing to the blocking regions of the coded aperture is reconstructed under the

assumption that an accurate sparse representation of the datacube is available.

An illustration of the single disperser version of the CASSI instrument is shown

in Fig. 2.11.

Figure 2.11: Illustration of coded aperture snapshot spectral imager. Image retrieved

from [2].

20



CASSI differs from the previously developed coded aperture spectral imag-

ing techniques [54, 55, 56] by its snapshot ability. There are several variants

of the CASSI approach for snapshot spectral imaging. The first realization of

the CASSI approach is DD-CASSI [57]. Developed in 2007, this technique

involves a dual-disperser architecture where the input scene is dispersed twice

with the coded aperture lying between the two dispersers and the second disper-

sion cancelling the effect of the first one. Then, the resulting wave is directed to

the detector that captures superimposed 2-D spatial information for each spec-

tral band of datacube. Yet, since a space-shifted binary code is applied to each

2-D spatial information component, the reconstruction of the datacube is still

possible. On the other hand, different than the DD-CASSI, SD-CASSI uses a

single disperser for multiplexing the spatial and spectral information. Captur-

ing the spectral data in a less compressed manner, SD-CASSI offers images

with higher spectral and lower spatial resolution compared to DD-CASSI.

The reconstruction method employed in CASSI is a compressive sensing ap-

proach that assumes a sparse representation for the datacube. This reconstruc-

tion method aims to undo the effects of the underlying optics, coded aperture

and dispersion by minimizing a data fidelity term with `1 norm regularization

that imposes sparsity in some transform domain. This minimization problem is

given as follows for the SD-CASSI:

f̂ = W

(
argmin

θ′

{
||g −HWθ′||22 + τ ||θ′||1

})
(2.3)

where f̂ , W, H, τ and θ′ are respectively the solution, sparsifying transfor-

mation operator, sensing matrix of the system, regularization parameter and

sparse transform coefficients. The above problem enforces the minimization of

the residual between the model and the measured data along with the sparsity

of the transform coefficients for the solution. The sparsifying transform matrix,

W, used is the Kronecker product of 2-D Symmlet-8 wavelet basis with the

cosine basis.

Although CASSI is a novel spectral imaging system that introduces a new and

exciting approach to the field, the practical performance of the CASSI instru-

ment are not as good as expected [2]. Its compact architecture, simple optical
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assembly and large datacube size are advantageous. Yet, the reconstruction

method that is reported to have an algorithm complexity of O(KN4L) for K

focal-plane array (FPA) measurements and a datacube size of NxNxL yields

a considerably long acquisition time despite the snapshot architecture of the

instrument. Furthermore, the CASSI approach is reported to provide good re-

construction results only for the non-snapshot case [58].

• Photon Sieve Spectral Imager

Figure 2.12: Illustration of photon sieve based spectral imaging approach. Image

retrieved from [6]. c© 2014 IEEE.

This reconstruction based computational spectral imaging technique relies on

the use of a diffractive imaging element called photon sieve [59, 6]. Photon

sieve is a modification of a Fresnel zone plate, both of which are diffractive

lenses that provide wavelength dependent focusing. In other words, these op-

tical elements focus spectral components of different wavelengths to different

focal planes. For traditional imaging, this behavior causes an undesired effect

called chromatic aberration which implies the presence of a different system

response for each spectral component. This traditionally undesired behavior is

exploited in this approach for spectral imaging.

This spectral imaging technique is primarily developed for high-resolution imag-

ing of scenes with discrete spectrum. It works by distributing the image forma-

tion task between a photon sieve system and a reconstruction method. The

photon sieve system, as illustrated in Fig. 2.12, takes multiple measurements

with each measurement consisting of focused or defocused images of different
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spectral components. For instance,K measurements can be obtained forK dif-

ferent spectral components, with each measurement taken on the corresponding

center wavelength’s focus. Then, by using a reconstruction method, the indi-

vidual spectral images are reconstructed from their superimposed and blurred

measurements. In other words, for each measurement, this method eliminates

the contributions from all other unwanted bands.

Photon sieve based spectral imaging approach is reported to offer higher spec-

tral resolution than the conventional tunable filter spectral imaging techniques

and enable diffraction-limited high spatial resolution, while requiring only a

light-weight and low-cost imaging system [60, 6, 61]. This technique is of ut-

most importance at short wavelengths such as extreme ultra-violet (EUV) and

x-rays where radiations with discrete spectrum are common. This is because al-

ternative spectral imaging techniques suffer from strong absorption of materials

or manufacturing difficulties at these short wavelengths.

This spectral imaging technique is the main focus of this study. We will demon-

strate the performance of the technique for various scenarios of practical impor-

tance through both numerical and experimental analysis.
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CHAPTER 3

POINT-SPREAD FUNCTIONS OF DIFFRACTIVE IMAGING

ELEMENTS

3.1 Diffractive Imaging

There are several ways to model the behavior of electromagnetic waves as they propa-

gate through space. Geometrical optics attempt to characterize electromagnetic waves

by treating them as rays where rays can be interpreted as bundles of massless parti-

cles that move through space with highly correlated physical motion patterns. Such

motion patterns can be understood and predicted by utilizing geometrical identities.

For instance, the law of reflection and the law of refraction in geometrical optics

aim to model the behavior of light as it encounters reflective surfaces and transitions

between materials of different refractive indices. Although modelling light as rays

yields accurate results when the size of the structures that the light encounters is large

compared to the wavelength, wave behavior of light should be considered in all other

cases. One of such cases that require wave interpretation of light is diffraction. In its

simplest form, diffraction is defined as any deviation from geometrical optics when a

light wavefront confronts an obstruction [62].

According to a more precise definition, diffraction is the behavior of light to bend

around corners of obstacles [63]. It can be understood through the Huygens’ prin-

ciple which states that each point on a wavefront can be interpreted as a source of a

spherical radiation [64]. One way to illustrate the diffraction phenomena is through

the single-slit experiment depicted in Fig. 3.1. In the single-slit experiment, a plane

wave is blocked everywhere except the slit on the slit plane. However, as the wave
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propagates from the slit plane, it does not remain limited to the width of the slit but

does also propagate towards regions that are blocked by the slit, following a spherical

distribution, as stated by the Huygens’ principle.

Figure 3.1: Single-slit experiment that illustrates the diffraction phenomena for a

wider and a narrower slit.

Many optical imaging elements such as lenses and mirrors exploit the refraction and

reflection phenomena to focus light. Although such imaging elements are commonly

used in the visible portion of the electromagnetic spectrum, they can turn out to be im-

practical at shorter wavelengths such as extreme-ultraviolet (EUV) and x-rays. This

is because for reflective imaging elements, manufacturing inaccuracies significantly

degrade the imaging performance and hinder from achieving diffraction-limited spa-

tial resolution. Similarly, at these shorter wavelengths, a significant refraction can-

not be obtained to make refractive imaging elements due to the strong absorption

of materials [65]. On the other hand, diffractive imaging elements can still offer

diffraction-limited imaging performance even at these shorter wavelengths. In this

chapter, point-spread functions of diffractive imaging elements will be investigated

using both theoretical, numerical, and experimental tools.

3.1.1 Fresnel Zone Plate

Fresnel zone plates (FZPs) are most commonly used diffractive imaging elements.

The binary Fresnel zone plate consists of alternating opaque and transparent zones

as illustrated in Fig. 3.2a. The transparent zones are placed such that only the con-

structive interference is allowed at the focus of a certain wavelength. It is important

to note here that the focal length of a Fresnel lens depends on wavelength.
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(a) (b)

Figure 3.2: (a) Aperture transmission (transmittance) function of a Fresnel zone plate

with 9 transparent zones as shown with white rings. (b) A Fresnel zone plate shown

along with its focus at a distance of f .

To arrange transparent zones to constructively interfere at the focus, the optical path

length from the focus to a transparent point on the FZP for a specific wavelength, for

example r0, should not differ more than λ/2. Let us define the first zone of a binary

FZP as follows:

A1(x, y) =

 1 if
√
x2 + y2 + f 2 − f < λ/2

0 otherwise.

where f denotes the focal length at wavelength λ. Similarly, the nth zone of the FZP,

corresponding to a path length difference between (n − 1)λ/2 and nλ/2 with the

focus, can be written as

An(x, y) =

 1 if
(n− 1)λ

2
<
√
x2 + y2 + f 2 − f < nλ

2
for positive integer n

0 otherwise.

The complete aperture transmission function of the FZP can be obtained by com-

bining all the zones with positive constructive interference which only include either

even-numbered or odd-numbered zones. Hence the aperture transmission function of

the binary FZP can be mathematically expressed as
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A(x, y) =
∞∑
n=1

A2n(x, y)

or

A(x, y) =
∞∑
n=1

A2n−1(x, y).

The Fresnel zone plates shown in Figures 3.2a and 3.2b respectively illustrates these

two aperture functions. Note also that the above sum is to infinity. A practical zone

plate however, includes a finite number of transparent zones which then determines

the width of the outermost zone and consequently the spatial resolution.

3.1.2 Photon Sieves

A photon sieve is a modification of a Fresnel zone plate which consists of a large

number of holes distributed over Fresnel zones. It has been proposed as a superior

diffractive imaging device than the Fresnel zone plate [66], to be especially used at

UV and x-ray wavelengths to achieve diffraction-limited resolution. Advantages over

Fresnel zone plates are improved spatial resolution for a given smallest fabricable

structure, suppression of higher diffraction orders through quasi-random variations

in the distribution and diameter of the holes, and self-supporting structure [66]. An

exemplary photon sieve aperture is shown in Fig. 3.3b along with the Fresnel zone

plate of similar properties in Fig. 3.3a.

Photon sieves open up new possibilities for high resolution imaging and spectroscopy.

Many such photon sieve imaging systems are developed, some of which are also built

and tested to illustrate diffraction-limited imaging performance [6, 60, 67, 68, 69].

3.2 Fast PSF Computation Method for Diffractive Imaging

Here, a fast and accurate method is developed for the numerical computation of two-

dimensional point-spread functions (PSFs) of photon sieves. This method is based

on the closed-form Fresnel imaging formulas and PSFs derived in [70], which are
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(a) (b)

Figure 3.3: (a) Aperture function of a Fresnel zone plate. (b) Aperture function of a

photon sieve that is formed by replacing Fresnel zones in (a) with pinholes.

given in terms of convolutions and Fourier transforms. Here, this form is exploited to

develop a fast computation method for the 2-D PSF by using fast Fourier transform

(FFT). This fast computation method is important for effectively developing and an-

alyzing new imaging modalities enabled by photon sieves.

In the earlier works, the focusing properties of photon sieves and the design pro-

cedure have been analyzed through the calculation of Fresnel-Kirchoff diffraction

integrals [66] and approximate Fresnel integrals [71]. The PSF computation based

on [71] is only for photon sieves with circular-shaped holes, and also requires nu-

merical integration and evaluation of Bessel functions for each individual hole. The

computation method presented here instead utilizes FFT and makes use of the 2D

aperture function of the photon sieve at once. Furthermore, unlike [71], our method

is general enough that it can be used for any photon sieve configuration, not necessar-

ily for those with circular holes. In fact, the developed method is powerful that it can

be used to effectively analyze any other diffractive imaging element, such as Fres-

nel lenses and their modifications, and any other mask-like patterns including coded

apertures.

Developed two-dimensional PSF computation method is presented in Sect. 3.2.3

along with the evaluation of its accuracy and computational cost in Sect. 3.2.4. In ad-

dition, to illustrate its use, numerical simulations are performed to analyze the imag-

ing properties of the photon sieves under different design scenarios and results are

presented in Sect. 3.2.5. This work has been recently presented in [7].
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3.2.1 Point-Spread Function (PSF)

Point-spread function (PSF) is the response of an optical system to a unit point

source [72]. Similar to its one-dimensional analogous, the impulse response, the

point spread function completely characterizes an optical system that satisfies space-

invariance and linearity properties. Because of this, it is an important tool for analyz-

ing such optical systems.

In contrast to an intuitive approach derived from the geometrical optics, a point source

input to an optical imaging system with a finite-sized aperture does not produce a

point-like output. This is due to the fact that the finite-sized aperture introduces

diffraction and “spreads” the energy of input point source to a larger spatial extent.

For instance, optical systems that are referred as “diffraction-limited” are the optical

systems whose PSFs only include the effect of the unavoidable diffraction caused by

the finite-sized aperture and thus can be considered desirable.

Like the impulse response, the PSF can be used to determine the output of a linear

space-invariant (LSI) optical system to an arbitrary input by utilizing the superpo-

sition principle. The superposition principle in this context corresponds to a 2-D

convolution operation and is mathematically expressed in the continuous case as fol-

lows:

o(x, y) = i(x, y) ∗ g(x, y) =

∫∫
i(u, v)g(x− u, y − v)dudv (3.1)

where ∗ denotes 2-D convolution and 2-D functions o, i and g are the output, input and

PSF of the optical system, respectively. Also note that the optical transfer function,

optical system analogous of the transfer function, is the Fourier transform of the PSF.

3.2.2 Closed-Form PSF Formula

The aperture (transmission) function, a(x, y), of the photon sieve is defined as the

ratio of the transmitted field amplitude to the incident field amplitude at every point

(x, y) on the photon sieve. Although, for a photon sieve or in general for a coded

aperture, a(x, y) is commonly binary (taking value 1 over the transparent regions),
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a(x, y) is treated as any complex function here to keep the developed method general

and applicable to other diffractive imaging elements as well.

For example, for the classical photon sieve configuration consisting of large number

of circular holes, the aperture function can be expressed as

a(x, y) =
N∑
n=1

an(x, y) =
N∑
n=1

circ

(
x− xn
dn

,
y − yn
dn

)
(3.2)

where N is the total number of holes, and an(x, y) is the aperture function of the

nth pinhole whose diameter is denoted by dn and central location by (xn, yn). The

aperture function an(x, y), taking value 1 inside the circular pinhole, is expressed in

terms of a circle function where the circle function defined as [52]

circ(x, y) =

 1 if
√
x2 + y2 ≤ 1

2

0 otherwise.

Note that the effect of apodization can also be included to a(x, y) through multiplica-

tion with the apodization function.

The PSF of a photon sieve imaging system with aperture function a(x, y) has the

following closed-form expression [70]:

gλ,di(x, y) = j
λ

∆
e
−jπ x

2+y2

∆λd2
i ∗ A

(
x

λdi
,
y

λdi

)
(3.3)

where ∗ denotes 2-D convolution, A(fx, fy) is the 2-D Fourier transform of a(x, y),

∆ = 1/di + 1/ds with ds and di respectively denoting the distances from the source

and image planes to the plane where the photon sieve resides.

3.2.3 Developed Fast PSF Computation Method

Because the computation will be performed on a digital computer, the goal here is to

compute the samples of PSF gλ,di(x, y). Suppose the separation between the samples

are chosen as δx and the total number of samples as N . Then the PSF computation
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will cover the range of x and y values from [−(N − 1)δx/2, (N − 1)δx/2]. Here N

is taken to be odd without loss of generality.

The PSF formula in (3.3) is given in terms of a convolution. This form is exploited

to develop the fast PSF computation method using FFT since the computational com-

plexity of FFT is much less compared to that of convolution. Proposed method com-

putes the discrete PSF by first sampling the optical transfer function (OTF) in the

frequency domain and then performing an inverse FFT. The OTF of the photon sieve,

i.e. the 2-D Fourier transform of the PSF, is given by

Gλ,di(fx, fy) = (λdi)
4a(λdifx, λdify)e

jπ(∆λdi
2)(fx

2+fy
2) (3.4)

This OTF is discretized by taking its samples uniformly with a separation of 1/(Nδx):

Gλ,di [k, l] = Gλ,di(fx, fy) |fx= k
Nδx

,fy= l
Nδx

(3.5)

for −(N − 1)/2 ≤ k, l ≤ (N − 1)/2. Note that the OTF in (3.4) has a finite support

determined by the scaled aperture function a(λdifx, λdify). In particular, if the finite

size of the aperture is D along both spatial directions, OTF is nonzero only for a

frequency band of length D/(λdi) along both spatial frequencies. As a result of this,

OTF needs to be sampled only for a finite range of k and l.

Related to the finite support of the OTF, or equivalently the bandlimitedness of the

PSF, there is also an important constraint on δx dictated by the Nyquist-Shannon

sampling theorem:

δx < 1/(D/(λdi)) = λdi/D. (3.6)

Hence for the computation method to work accurately, this sampling criterion must

be satisfied.

Another issue that should be handled carefully is the selection of the number of sam-

ples. Because the PSF is not space-limited and sampling the OTF in the frequency-

domain as in (3.5) causes periodic replication of the PSF in the space-domain, the

number of samples N should be chosen sufficiently large to contain a significant

amount of total energy of the PSF so that the error introduced by periodic replication

is negligible. Provided that the sampling criterion is satisfied and N is sufficiently
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large, the discretized PSF, gλ,di [m,n] = gλ,di(mδx, nδx) can be obtained by comput-

ing the inverse discrete Fourier transform (DFT) of Gλ,di [k, l]:

gλ,di [m,n] ≈ F−1
N×N{Gλ,di [k, l]}[m,n], (3.7)

where F−1
N×N denotes the N-point inverse FFT. This gives us the 2-D discretized PSF

obtained through a single FFT.

3.2.4 Computational Efficiency and Accuracy of Method

For further analysis, the accuracy and computational efficiency of the developed fast

method is compared to that of numerical integration based method in [71]. Fig.3.4a

shows the root-mean-square error (RMSE) between the PSFs computed with the two

methods as the number of samples, N , used in the fast method is increased. As

mentioned, N should be chosen sufficiently large to contain a significant portion of

the total energy of the PSF in the support of its discretized version. As a result of

this, the accuracy of the computation method is improved as we increase N up to

the point that nearly %99.9 of the total energy is contained in the discretized range.

However, note that further increase in N is not needed after this point. Fig.3.4b

also shows the computation time needed for each method as the number of zones

in the photon sieve is increased. This illustrates the computational efficiency of the

developed method. Note that since the PSF computation method in [71] computes

the contribution from each individual hole separately, its computation time has strong

dependence to the number of holes (or, equivalently, the number of zones). In these

simulations, a photon sieve design for EUV solar imaging [60] is used, which contains

125 zones with 64,509 holes, an outer diameter of 50 mm and smallest hole diameter

of 50 µm.

3.2.5 Numerical Simulations for Photon Sieves

To illustrate the use of the fast PSF computation method, numerical simulations are

performed to analyze the imaging properties of the photon sieves under different de-
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Figure 3.4: (a) RMSE between the PSFs obtained with the two methods for increasing

number of samples used in the fast method. (b) Computation time versus number of

processed zones for the two methods [7].

sign scenarios involving different shapes of holes and random variations in the hole

distributions.

To illustrate that the method is applicable to any diffractive imaging device with given

aperture function, two identical photon sieve designs are considered: One with cir-

cular holes and the other with square holes. Fig. 3.5(a)-(b) shows the corresponding

2-D PSFs and their 1D cross-sections. As shown, the resulting PSFs are very similar;
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only the one with square holes has slightly larger secondary sidelobes.

The effectiveness of different design approaches can also efficiently be analyzed by

computing the corresponding 2-D PSFs with the presented fast method. Here this is

illustrated by analyzing how the focusing performance of photon sieves are affected

from random variations in their hole distributions. It has been proposed that quasi-

random spatial distribution of pinholes can help to suppress secondary maxima [66].

Here, the effects of randomizing the existence of pinholes is analyzed and the peak-to-

sidelobe-ratio (PSLR) of the PSF is calculated for varying hole existence probabilities

(Hole existence probability of 0.5 means that each hole in the original design will exist

in the final design with a probability of 0.5). Fig.3.5(c) suggests that the suppression

of the secondary maxima is not improved with such randomization.

3.3 Experimental Validation of Theoretical PSFs

The aim of the experimental work of this thesis is to validate the theoretical PSFs

of photon sieves. For this aim, an experimental setup is constructed. Traditional

experimental approaches to analyze diffractive imaging elements rely on lithographic

techniques to physically construct the diffractive device. However, there are two main

disadvantages associated with such approaches. Firstly, lithographic fabrication is a

costly and time-consuming process. Secondly, a diffractive element constructed us-

ing lithographic techniques cannot be changed after fabrication. To overcome these

difficulties, a programmable digital micro-mirror device (DMD) is utilized in this

experimental setup to construct photon sieves. In this section, the details of this ex-

perimental setup will be presented in Section 3.3.1 and the experimental results will

be presented in Section 3.3.2.

3.3.1 Experimental Setup

To justify the design choices for the experimental setup, each component will be

described in this section. The experimental setup consists of four main parts: Source,

source modifying optics, DMD and charge-coupled device (CCD) camera. An image

of the experimental setup is shown in Fig. 3.6.
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Figure 3.5: (a) Cross-sections of 2-D PSFs for photon sieves with circular and square

holes. (b) From top to bottom, the corresponding 2-D PSFs. (c) PSLR of the PSF

versus pinhole existence probability [7].

• Source: Given that the aim of the experimental study is to measure the PSF of a

photon sieve, a collimated monochromatic laser source with a narrow spectral

band-pass is used. More specifically, the used light source is LLL-2 He-Ne

laser of Lambda Scientific with wavelength of 632.8 nm, beam diameter of 1.2

mm and rated output power of 1.0 to 1.5 mW.

• Source Modifying Optics: The point-spread function is the response of an

optical system to a point source as described in Section 3.2.1. In this experi-

mental setup, a collimated laser beam which acts as a point source at infinity, is
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Figure 3.6: A view of the experimental setup where the optical path is depicted with

a red line.

used to measure the PSF. As a result, the image of the point source at infinity

is captured by the CCD camera as the PSF of the imaging system. Yet, there

are practical difficulties associated with this PSF measurement caused by the

source beam diameter and output power.

To overcome these practical difficulties and increase the versatility of the sys-

tem, a set of source-modifying optics is used. The first difficulty addressed

arises from the input beam diameter. Without source-modifying optics, the

largest diameter of the analyzed diffractive imaging element is limited by the

beam diameter of the collimated source, which has a beam diameter of 1.2 mm.

On the other hand, the DMD, which is used for generating the pattern of the

diffractive imaging element, has an active area of 14.5 mm by 8.2 mm. To be

able to effectively use the active area of the DMD, a pair of beam expanding

lenses is used.

The second practical difficulty faced when constructing the experimental setup

is the input source power. Despite the laser source being used has a relatively

low power output, the measured intensity at the focus of some tested diffractive

imaging devices is high enough to saturate the pixels of the CCD camera and

cause blooming. Moreover, to be able to measure the PSF for the out-of-focus

case along with the focused case for the same imaging element, ability of dy-
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namically adjusting the source power is necessary since the peak intensity for

these cases can vary significantly. For these reasons, the experimental setup

contains a pair of linear polarizers. By keeping the degree of polarization of

one of the linear polarizers fixed, the source power can be adjusted to fit the ex-

periment by varying the degree of polarization of the other polarizer. By using

this approach, the experimental setup is able to provide well-adjusted PSFs that

fits the dynamic range of the CCD camera.

• Digital Micro-mirror Device (DMD): A DMD is a reflective spatial light mod-

ulator that modulates the amplitude, direction, and phase of incoming light. It

consists of micro-mirrors whose tilt directions can be controlled individually.

In this experimental setup, DLP6500 device of Texas Instruments is used to

realize the diffractive imaging elements.

Figure 3.7: A depiction of the DMD chip withMxN micro-mirrors. The tilt direction

of micro-mirrors is 45 degrees as shown. Image retrieved from [8].

The utilized DMD chip contains more than 2 million micro-mirrors that are

placed orthogonally to form a 2-D array of dimensions 1920 by 1080 with a

pixel pitch of 7.56 µm. The discrete tilt angles for each micro-mirror are ±12

and 0 degrees, corresponding to on, off and neutral states, respectively. The tilt

direction for each micro-mirror is perpendicular to its diagonal. A depiction of
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the DMD chip is shown in Fig. 3.7.

There are several points that should be considered when using DMDs. Firstly,

the DMD surface should be illuminated with an angle of incidence of −24◦

as illustrated in Fig. 3.8. This is due to the fact that the on state tilt of each

micro-mirror has a magnitude of 12 degrees. Hence, for the detector aperture

to be co-axial with the on-state output aperture of DMD, the angle of incidence

of the illumination source should be −24◦.

Secondly, because of its pixelated structure, the DMD behaves like a 2-D grat-

ing and produces several diffraction orders when illuminated with coherent

sources [9]. Careful alignment of the DMD chip considering the angle of inci-

dence of the input beam and the location of the DMD output aperture can lead

to a properly aligned system where most of the energy is contained within the

0th order. Such a state leads to the "blaze" condition. If instead the illumination

source is not properly aligned, the energy is distributed among the four bright-

est orders resulting in an "anti-blaze" condition and decreased throughput. In

Fig. 3.9a, theoretical diffraction orders for blaze and anti-blaze conditions are

depicted along with their experimental verifications in 3.9b and 3.9c, respec-

tively.

• CCD Camera: In this experimental setup, DCU223M CCD camera by Thor-

Labs is used. There are advantages associated with CCD cameras compared

to complementary metal-oxide-semiconductor (CMOS) cameras. Firstly, high

uniformity enabled by the use of same charge-to-voltage converter for each

pixel leads to reduced fixed-pattern noise for the CCD. Secondly, its higher

quantum efficiency allows improved SNR. On the other hand, the blooming ef-

fect associated to the CCD technology is a disadvantage. To overcome this dis-

advantage, a careful adjustment of the input power per unit area is required. The

pixel size and dynamic range of the utilized camera are also important. Pixel

size affects the spatial resolution of the device and should be small enough to

resolve the details of the PSF. The dynamic range is also important when mea-

suring the PSF of a photon sieve since the PSF has a high peak-to-sidelobe ratio

for practical designs. In fact, capturing a detailed PSF with sidelobes and an

unsaturated main lobe requires a high dynamic range. For our purposes, a dy-
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Figure 3.8: A depiction of DMD chip illumination angle and micro-mirror tilt axis.

Image retrieved from [8].

namic range of 0 − 255 is sufficient for measuring the PSF of a photon sieve

having a small number of white zones.

3.3.2 PSF Measurements and Comparisons

Using the experimental setup described in Sect. 3.3.1, PSF is measured at different

distances from the photon sieve and the experimental results are compared to that of

theoretical PSFs computed using the fast method in Sect. 3.2. To obtain verifiable and

conclusive results that serve as a proof of concept for both the DMD-based photon

sieve system and the fast PSF computation method, the experimental setup is tested

with a photon sieve design that has relatively low peak-to-sidelobe ratio and a wide

main lobe. There are two main reasons for this choice. First, increasing the number

of zones leads to smaller holes on the outermost white zone and thus a sharper PSF.

Given that the spatial resolution of the constructed imaging system is limited by the

pixel pitch of the detector, a sharper peak would be captured with a smaller number of

detector pixels. For this reason, a photon sieve having a PSF with wider main lobe is

chosen. Second, the relative intensity value of the first sidelobe of the PSF compared
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(a)

(b) (c)

Figure 3.9: (a) Theoretical demonstration of the "blaze" and "anti-blaze" conditions.

Retrieved from [9]. (b) - (c) Experimental diffraction patterns for "blaze" and "anti-

blaze" conditions, respectively. Note that in (b), most of the energy is contained

within the 0th diffraction order at the center, and in (c), most of the energy is dis-

tributed between four brightest orders.

to its main lobe depends on the number of white zones in the design. Because the

dynamic range of the utilized detector is 0 − 255, a photon sieve with small number
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of white zones is used to decisively measure the intensity of the sidelobes.

Properties of the utilized photon sieve design for the experimental tests are given

in Table 3.1, where ∆ is diameter of the holes in outermost zone and d/w ratio is

the ratio of diameter of a pinhole to the width of its underlying Fresnel zone. Also,

corresponding aperture transmission function of the photon sieve sampled according

to the pixel pitch of the DMD is shown in Fig. 3.10.

Figure 3.10: Aperture transmission function of the tested photon sieve.

Sieve Properties

D (mm) λ (nm) f (m) ∆ (µ m) Nzones DOF (mm) d/w ratio

2.00 632.80 0.14 45.36 5 ± 6.50 1.53

Table 3.1: Properties of the tested photon sieve.

PSF measurements are obtained at different measurement planes, each with a different

amount of depth of focus (DOF). Note that the depth of focus for a photon sieve

design is given as DOF = ±2∆2/λ where λ is the wavelength of interest and ∆ is

the diameter of holes in the outermost zone of the photon sieve. Experimental results

obtained with the setup are summarized in Fig. 3.11. In Figures 3.11b, 3.11d and

3.11f, 2-D theoretical and measured PSFs are shown for measurement planes located

at 0, +1 and +3 depth of focus away from the focus. Note that each upper sub-figure

is for the theoretical PSF, whereas the lower sub-figure is for the experimental PSF.

Also in Figures 3.11a, 3.11c, 3.11e, the cross-sectional views of the corresponding

PSFs are shown.
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Results show strong agreement between the theoretical and experimental cases espe-

cially in terms of the width of the main lobes and the location of the minima. Slight

deviations from the theoretical ones are observed in the measured PSFs due to off-

axis illumination effects, which cause some stretching as explained in [73]. However,

although the photon sieve aperture is constructed using DMD which suffers from er-

rors due to pixelation and null zones between the DMD micro-mirrors, there is still

good agreement between theoretical and experimental PSFs which suggests that such

errors in the generated aperture function do not significantly distort the PSF.
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Figure 3.11: (a),(c), and (e): The cross-sectional views of the theoretical and experi-

mental PSFs, respectively, at the focus, +1 and +3 depth of focus away from the focus.

(b), (d), and (f): The corresponding 2D PSFs (top: theoretical, bottom: experimental).
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CHAPTER 4

PERFORMANCE ANALYSIS OF PHOTON SIEVE SPECTRAL

IMAGING

The photon sieve based spectral imaging modality developed in [59] uses a computa-

tional image formation approach for spectral imaging. In this section, performance of

the image reconstruction method used in this modality will be analysed. The imaging

system, forward problem and the corresponding inverse problem will be described

briefly in Sect. 4.1. The reconstruction algorithm that provides a numerical solution

to the inverse problem is then presented in Sect. 4.2. Finally, the reconstruction per-

formance for different observing scenarios will be investigated in Sect. 4.3 along with

different regularization choices.

4.1 Computational Spectral Imaging with Photon Sieves

The photon sieve based spectral imaging technique relies on the wavelength depen-

dent focusing property of the photon sieve described in Sect. 3.1.2. In this technique,

a photon sieve imaging system is used together with an image reconstruction method.

In the image reconstruction method, mathematical model of the imaging system is

used in an inverse problem framework to separate the contributions from each dis-

crete spectral component and form their corresponding spectral images. The imaging

system for which the reconstruction method is developed is depicted in Fig. 4.1.

In the imaging system shown in Fig. 4.1, the input light field consists of illumination

from incoherent sources with different wavelengths λp for p = 1, 2, ..., P . The source

is located before the photon sieve with a spacing of ds. A total of K measurements
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Figure 4.1: Imaging system used in photon sieve based spectral imaging technique.

Image retrieved from [6]. c© 2014 IEEE.

are assumed to be taken, each at a different distance, dk, from the photon sieve plane

where k = 1, 2, ..., K. Sample observations are shown in Fig. 4.2 simulated for

the case with two monochromatic sources and two observations taken at the focus of

each wavelength of interest. Contributions of the two monochromatic sources to each

observation are also shown along with a set of sample reconstructed images. The

method used to obtain these reconstructed images are explained below.

As described in 3.2.1, the point-spread function relates the input of an imaging system

to its output at a plane of measurement, and the output can be obtained by convolving

the corresponding PSF with the input. Thus, for the photon sieve imaging system, the

formed image in the kth measurement plane, tk[m,n], can be expressed in discrete

form as

tk[m,n] =
P∑
p=1

s̃p[m,n] ∗ gλp,dk [m,n] (4.1)

where s̃p[m,n] is the diffraction-limited discrete intensity function of the pth source

with a wavelength of λp and gλp,dk [m,n] is the discrete point-spread function for a

measurement plane separation of dk and for the associated wavelength of λp. Here the

discretization corresponds to sampling on the detector with a pixel size that satisfies
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Figure 4.2: Top row: Obtained observations at the focus of each wavelength of in-

terest. Second row: Contributions of the first and second sources to the observation

at the focus of λ1. Third row: Contributions of the first and second sources to the

observation at the focus of λ2. Bottom row: Reconstructed images for both sources.
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the Nyquist criteria. Putting Eqn. 4.1 into matrix-vector form yields

tk =
P∑
p=1

Hk,ps̃p (4.2)

where s̃p is the N2x1 lexicographically reordered vector form of the matrix that con-

tains NxN samples of s̃p[m,n], and Hk,p is N2xN2 convolution operator that per-

forms the convolution of s̃p[m,n] with its corresponding PSF, gλp,dk [m,n]. Then, by

combining observations from all measurement planes into a single vector, t′, and in-

tensity images of all sources into a single vector, s̃, the problem converts to the form

of t′ = Hs̃ where

H =


H1,1 · · · H1,P

... . . . ...

HK,1 · · · HK,P

 (4.3)

s̃ =


s̃1

s̃2
...

s̃P

 (4.4)

t′ =


t1

t2
...

tK

 (4.5)

Note that, the KN2 x PN2 matrix H is formed by combining matrices Hk,p as in

above and KN2x1 vector t′ and PN2x1 vector s̃ are formed by vertically concate-

nating lexicographically reordered measurements and intensity images. Then, a com-

plete mathematical expression for the combined observation vector, t, can be obtained

by including an additive noise to the model as the measurement noise. Thus, the final
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mathematical expression for the forward problem is

t = Hs̃ + w (4.6)

where w is assumed to be white Gaussian that is uncorrelated across different mea-

surement planes and spatial pixels. The problem of recovering s̃ from t is the inverse

problem to be solved to reconstruct the spectral images.

Solving inverse problems is a well-studied subject [74]. In [6], the inverse problem

in photon sieve based spectral imaging is formulated as a least-squares minimization

problem with `p-norm regularization given as

argmin
s̃

||t−Hs̃||2WH
+ α2||Ls̃||pp. (4.7)

Here, the operator L is the regularization operator chosen to be the discrete deriva-

tive operator in [6], WH is a weighting matrix that incorporates varying SNR levels

over different measurement planes, α is the regularization parameter that controls the

contribution of the regularization term and t is the vector formed by concatenating

lexicographically reordered noisy measurements. Optimization problem in Eqn. 4.7

yields a solution for s̃ by minimizing the difference between the measurements and

the model with the regularization term allowing prior information about s̃ to be im-

posed on the solution.

4.2 Image Reconstruction Algorithm

Numerical solution of the minimization problem in Eqn. 4.7 requires careful atten-

tion. First consider the case p = 2. In this case, the solution can be obtained by

differentiating the objective function with respect to s̃ and equating it to zero. This

results in the following equation:

(HTWHH + α2LTWLL)̃s = HTWHt (4.8)
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where WL is a general weighting matrix for the `2-norm regularization term, which

is identity for the case in Eqn. 4.7. One can obtain the solution, s̃est, to this linear

equation by setting

A = HTWHH + α2LTWLL (4.9)

b = HTWHt (4.10)

s̃est = A−1b. (4.11)

1 : Compute r(0) = b− Ax(0) for some initial guess x(0)

2 : for i = 1, 2, ...
3 : solve Mz(i−1) = r(i−1)

4 : ρi−1 = r(i−1)T z(i−1)

5 : if i = 1
6 : p(1) = z(0)

7 : else
8 : βi−1 = ρi−1/ρi− 2
9 : p(i) = z(i−1) + βi−1p

i−1

10 : endif
11 : q(i) = Ap(i)

12 : αi = ρi−1/p
(i)T q(i)

13 : x(i) = x(i−1) + αip
(i)

14 : r(i) = r(i−1) − αiq(i)

15 : Check convergence; continue if necessary.
16 : end

Figure 4.3: Pseudo-code for the preconditioned conjugate gradient algorithm.

Yet, given that the matrix A is of dimensions PN2 x PN2, it is not practical to

compute the inverse of A or even to explicitly form A due to memory limitations. To

overcome this problem, an optimization algorithm such as preconditioned conjugate

gradient (PCG) algorithm can be used to iteratively obtain the solution. Such an

algorithm eliminates the need to explicitly form A−1 or A, and instead computes the
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forward problem and updates the guess for the solution in each iteration. Pseudo-

code for the PCG algorithm applied to a general linear problem of the form Ax = b

is given in Fig. 4.3.

Although using PCG successfully avoids the inversion of the matrix A and saves

a significant amount of computational time, it still requires forming the matrix A

explicitly, as it is needed in lines 1 and 11 of the pseudo-code in Fig. 4.3. To avoid

explicitly forming of A, a modified version of the PCG algorithm can be used. By

expressing A as in Eqn. 4.9, 1st and 11th lines of the pseudo-code can be expressed

as in the modified pseudo-code shown in Fig. 4.4.

1 : Compute r(0) = (HTWHt)−HT [WH(Hx(0))]− α2LT [WL(Lx(0))] for x(0)

2 : for i = 1, 2, ...
3 : solve Mz(i−1) = r(i−1)

4 : ρi−1 = r(i−1)T z(i−1)

5 : if i = 1
6 : p(1) = z(0)

7 : else
8 : βi−1 = ρi−1/ρi− 2
9 : p(i) = z(i−1) + βi−1p

i−1

10 : endif
11 : q(i) = HT [WH(Hp(i))] + α2LT [WL(Lp(i))]
12 : αi = ρi−1/p

(i)T q(i)

13 : x(i) = x(i−1) + αip
(i)

14 : r(i) = r(i−1) − αiq(i)

15 : Check convergence; continue if necessary.
16 : end

Figure 4.4: Pseudo-code for the modified preconditioned conjugate gradient algo-

rithm.

Because H and L are real-valued matrices in this problem, HT and LT correspond to

the adjoint of the operators H and L where adjoint in this case is simply the Hermitian

transpose of a matrix. The advantage of replacing A with its expanded form can be
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understood by considering the operators H and L along with their adjoints. Given that

the matrix H corresponds to the operator form of the superimposed convolutions with

the PSFs of the imaging system, multiplication of H with a vector is simply equivalent

to computing these superimposed convolutions. Similarly, suppose that the matrix L

is taken as the discrete derivative operator. Then, multiplication with L can simply

be carried out by convolving the operand with the corresponding derivative kernel.

As a result, explicitly forming the matrices H and L is not required. Also, because

the matrix multiplication with HT and LT corresponds to convolution with the time-

reversed versions of the kernels H and L, explicitly forming these adjoint matrices is

not necessary either.

Described numerical approach is intended to be used for the special case when p = 2.

For p 6= 2, obtaining the solution of the minimization problem in Eqn. 4.7 requires a

different approach. The regularization term with `p-norm is given by

||Ls̃||pp =
n∑
i=1

|[Ls̃]i|p. (4.12)

This equation is not differentiable at 0 because it contains the absolute value of each

element in the vector Ls̃ and the absolute value function is not differentiable at the

origin. To be able to differentiate the regularization term in the minimization problem,

a smooth approximation to the `p-norm regularization can be used [75]. After smooth

approximation, the minimization problem becomes

argmin
s̃

||t−Hs̃||2WH
+ α2

n∑
i=1

([Ls̃]2i + β)p/2 (4.13)

where β is the smoothing parameter. Note that when β = 0 the above equation turns

into the original minimization problem. For a sufficiently small β value, the above

equation provides a differentiable approximation to the original problem.

Differentiating the new objective function in Eqn. 4.13 with respect to s̃ and equating
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it to zero gives

−2HTWHt + 2HTWHHs̃ + 2α2

n∑
i=1

[LT]i
p/2

([Ls̃]2i + β)1−p/2 [Ls̃]i = 0 (4.14)

this can be rewritten as

−2HTWHt + 2HTWHHs̃ + 2α2LTdiag

(
p/2

([Ls̃]2i + β)1−p/2

)
Ls̃ = 0 (4.15)

(
HTWHH + α2LTdiag

(
p/2

([Ls̃]2i + β)1−p/2

)
L

)
s̃ = HTWHt. (4.16)

Note the resemblance of Eqn. 4.16 to the closed-form solution of `2-norm regulariza-

tion given in Eqn. 4.8. This can be visualized by setting

WL = diag

(
p/2

([Ls̃]2i + β)1−p/2

)
. (4.17)

Despite the fact that the Eqns. 4.16 and 4.8 appears to be of the same form, there

is an important difference. In Eqn. 4.16, the weighting matrix, WL, depends on s̃.

As a result, the equation 4.16 does not have a closed-form solution, hence cannot be

directly solved by using the PCG algorithm as in p = 2 case. However, a simple

iterative fixed-point algorithm can be used to obtain its solution. For this, one can

first hold WL fixed and solve the resulting set of linear equations for s̃ using PCG,

then hold s̃ fixed and update the weighting matrix WL, and repeat this process until

convergence. This will give a numerical solution to the problem for the case p 6= 2.

4.3 Performance Analysis

To assess the performance of the reconstruction method, a comprehensive set of nu-

merical simulations are performed. In this section, information about the utilized im-

age quality metrics, dataset and regularization choices will be given in Sections 4.3.1,
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4.3.2 and 4.3.3, respectively. Then, the performance of the reconstruction method will

be numerically investigated in Sect. 4.4 by considering different practical scenarios

of interest such as for varied number of observations, amount of measurement noise,

measurement plane locations and spectral composition of the scene.

4.3.1 Reconstruction Performance Metrics

Throughout the numerical experiments, the image reconstruction fidelity is measured

by numerically comparing the reconstructed images with the diffraction-limited true

intensity images where the diffraction-limit is the result of the finite-sized aperture of

the photon sieve. For this purpose, two image quality metrics are used: Peak signal-

to-noise ratio (PSNR) and structural similarity index (SSIM). Note that results that

will be presented here are the average success for all reconstructed images, where

the reconstruction performance corresponding to the wavelength with a smaller focal

length is found to be slightly better for all cases.

• Peak Signal-to-Noise Ratio: PSNR is ratio of the maximum possible intensity

value for the reference image to the mean squared error (MSE) between the

reference and distorted images. Given the reference and reconstructed images

in the vector form as x = {xi|i = 1, . . . , N} and y = {yi|i = 1, . . . , N},
respectively, then PSNR in dB is defined as [76]

PSNR(x, y) = 10 log10

(
I2
max

1
N

∑N
i=1(xi − yi)2

)
(4.18)

where Imax is the maximum value allowed in the reference image (i.e. image

dynamic range), N is the total number of pixels, and xi and yi are the ith element

of the reference and reconstructed images, respectively.

• Structural Similarity Index: SSIM is an image quality metric that compares

a reconstructed image to a reference image in terms of the similarity of lumi-

nance, contrast and structure [77]. Formal definition for SSIM is given as

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (4.19)
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where

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1

, (4.20)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2

, (4.21)

s(x, y) =
σxy + c3

σxσy + c3

. (4.22)

Parameters µx, µy, σx, σy and σxy are local sample means, standard deviations

and correlation coefficient of x and y. Also, α, β, γ are the weight parameters

that determine the relative importance of the three components, and c1, c2 and

c3 are small constants used to stabilize each expression when the denominator

is small. SSIM index is obtained using a sliding window over the entire images,

calculating the SSIM index within each local window, and then averaging all of

these SSIM values to obtain a single SSIM value.

4.3.2 Utilized Images for Performance Analysis

It is important to use images with different characteristics to be able to objectively

evaluate the performance of reconstruction. For this purpose, four different pairs

of images with size 128x128 are used in the numerical simulations as the intensity

images of two sources with wavelengths 33.4 nm and 33.5 nm. These four pairs are

as follows: Two pairs of solar spectral images, a pair consisting of different bands

of Indian pines spectral image data set and another pair consisting of completely

different natural images.

• Solar Images: One of the important contributions of the spectral imaging tech-

nique with photon sieves is the improved spectral resolution. One application

area where this contribution is prominent is EUV solar imaging since the spec-

trum in this application contains discrete wavelengths within a close spectral

range. For example, obtaining diffraction-limited images of the discrete emis-

sions in 33.4 and 33.5 nm wavelengths is an important application in solar

imaging [60] and this is not possible with the state-of-the-art spectral imagers.
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To demonstrate the performance of the spectral imaging technique for this prac-

tical scenario, two pairs of solar images obtained for a spectral band centered at

33.5 nm is used in this study where one of each pair is considered as the emis-

sion at 33.4 nm wavelength and the other is at 33.5 nm. Furthermore, one pair

is selected from solar images that are visually similar to each other whereas the

second pair contains more spatial difference. These solar images are shown in

Fig. 4.5.

(a) (b)

(c) (d)

Figure 4.5: (a) - (b) and (c) - (d): Two pairs of solar images that are used for perfor-

mance evaluation. Note the visual resemblance of the upper pair. Pairs a-b and c-d

will be referred as SI1 and SI2. Courtesy of NASA/SDO and the AIA, EVE and HMI

science teams.
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• Indian Pines: This spectral image data set has a datacube size of 145x145x224

and is captured using AVIRIS sensor that covers a spectral range of 400 nm

- 2500 nm. The scene includes two main highways, a rail line, some built

structures and several fields of agricultural products. A pair of images from

different bands of this datacube is used and is shown in Fig. 4.6.

(a) (b)

Figure 4.6: (a) - (b): A pair of images from the corrected Indian pines dataset that

will be referred to as IP.

• Natural Images: This pair consists of the grayscale versions of the well-known

"Cameraman" and "Lena" images which are shown in Fig. 4.7a and 4.7b. This

completely different pair of natural images is used to obtain an insight about

the performance of the technique when the two spectral images, unlike other

pairs, are poorly correlated.

An accurate simulation of the measurement data, as given in Eqn. 4.6, requires the

presence of noise. To simulate the measurement noise of the detector, an additive

white Gaussian noise is added to all simulated measurements. The amount of added

noise is characterized in terms of SNR where SNR is defined as [76]

SNR(dB) = 10 log10

(
σ2
t

σ2
n

)
, (4.23)

and σ2
t and σ2

n are the variances of the simulated output data, t, and the additive noise,
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(a) (b)

Figure 4.7: (a) "Cameraman" and (b) "Lena" images.

w, respectively.

4.3.3 Regularization Choices

In the original reconstruction method developed for photon sieve spectral imaging [6],

discrete derivative operator (DDO), which penalizes total variation in the reconstructed

images when p is set to 1, is used as the regularization operator L. In this study, perfor-

mance evaluation of the spectral imaging modality is not only tested with the discrete

derivative operator, but also with different choices of regularization operators. In this

section, these regularization choices will be explained.

• Discrete Derivative Operator (DDO): This regularization choice, known as

total variation when p = 1, incorporates prior information about the variations

in the images. To include the discrete derivative operator along both x and y

directions, the regularization matrix is defined as

L =

Dx

Dy

 (4.24)

where Dx and Dy are the discrete approximations to the gradient operator along

x and y directions, each with dimensions N2xN2 for an image of size NxN .
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• Discrete Cosine Transform (DCT): Setting matrix L in the regularization term

of Eqn. 4.7 as the DCT operator, one can determine a solution for s̃ that min-

imizes the `p-norm of its DCT coefficients along with the least-squares data

fidelity term. The DCT is an important tool in signal and image processing,

especially for lossy compression and sparse representation. For example, in

JPEG compression, it enables lossy compression when applied on an image

by discarding the small-valued coefficients corresponding generally to higher

frequency components of the DCT. In this study, 2-D DCT coefficients are com-

puted for the entire image as a whole, rather than block processing as in JPEG

compression.

• Discrete Wavelet Transform (DWT): DWT is another commonly used spar-

sifying transform. In fact, it is well-known that DWT coefficients of natural

images tends to be sparse. In this study, Symmlet-8 wavelet is used in a 2-level

wavelet decomposition process, and the resulting coefficients are used in the

regularization term.

4.4 Numerical Results

A series of numerical experiments is performed to evaluate the performance of the

spectral imaging technique with photon sieves, focusing on its reconstruction aspect.

Throughout the experiments, a photon sieve design with a diameter of 25 mm, a min-

imum fabricable structure of 5 µm and a number of transparent zones of 125 is used

along with two sources of wavelengths 33.4 and 33.5 nm. Also, smoothing parameter,

β, in the approximated `p-norm regularization term is chosen to be 10−5 and SNR is

fixed to 30 dB except for the experiment in Sect. 4.4.3 where the effect of SNR on

the reconstruction performance is investigated. As part of the numerical experiments,

optimum values for the regularization parameters are determined for each choice of

the regularization operator and for each image pair in Sect. 4.4.1, the effect of mea-

surement plane locations on the reconstruction performance is investigated in Sect.

4.4.2, effect of number of observations is examined in Sect. 4.4.4 and finally, effect

of spectral separation between two sources is analyzed in Sect. 4.4.5.
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4.4.1 Selection of Regularization Parameters

The minimization problem contains two free parameters to choose, namely α and p.

In this section, the effect of these regularization parameters on the performance of im-

age reconstruction will be evaluated for different choices of regularization operators

and image pairs.

To evaluate the success of each regularization operator given in Sect. 4.3.3, the op-

timal pair of (α, p) parameters is determined for each case. Reconstruction perfor-

mance as a function of regularization parameters is given in Appendix A for each

regularization operator and image pair. There, contour plots for all combinations of

images, regularization operators and quality metrics are available for an SNR value of

30 dB. Reconstructed images with different regularization operators and optimal reg-

ularization parameters are given in Figures 4.10, 4.11, 4.12 for SI1, IP and NI image

pairs, respectively. Also the reconstruction quality obtained with optimal regulariza-

tion parameters is summarized in Table 4.1.

SI1 SI2 IP NI

SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR Avg. SSIM Avg. PSNR

DDO 0.974 42.479 0.972 41.095 0.961 38.401 0.939 32.923 0.961 38.725

DCT 0.969 41.869 0.965 40.066 0.958 37.995 0.909 31.540 0.950 37.868

DWT 0.969 41.841 0.964 40.026 0.958 37.346 0.905 31.368 0.949 37.645

Average 0.971 42.063 0.967 40.396 0.959 37.914 0.918 31.944 0.953 38.079

Table 4.1: Reconstruction performance with optimal regularization parameters for

each regularization operator and image pair.

For SI1 image pair, Fig. 4.8 shows the detailed reconstruction performance as a

function of regularization parameters for the three different regularization operators.

Quick examination of Table 4.1 and Fig. 4.8 reveals that the best regularization op-

erator is DDO for all the image pairs used. In fact, results show that DDO operator

performs better than all other regularization operators regardless of the pair of images

that is used. For this reason, in the remaining tests, only DDO operator will be used

for regularization.

For the outperforming DDO operator, Fig. 4.9 shows the detailed reconstruction per-

formance as a function of regularization parameters for all different image pairs. Note
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Figure 4.8: Reconstruction performance for different regularization operators and SI1

image pair.
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Figure 4.9: Reconstruction performance for different image pairs and DDO operator.

that α = 0.05 and p = 1.5 appears to be nearly optimal regardless of the image pair

used. This shows that optimal values of the regularization parameters are not sensitive

to the underlying image pairs to be reconstructed.

Also note that, examining Fig. 4.9, one can conclude that the highest reconstruction

quality for all regularization operators is that of SI1 image pair, which is the most sim-

ilarly looking image pair. Moreover, results show that the lowest quality is obtained

for NI image pair for all the regularization operators. However, the reconstruction

performance of this poorly correlated image pair may not be representative for prac-

tical use since spectrally close bands often tend to yield similar 2-D intensities as in

other pairs. Yet, the performance obtained for NI image pair is still useful since it can

be interpreted as the worst-case performance.
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Figure 4.10: From top to bottom: Diffraction-limited SI1 image pair, reconstructions

with DDO, DCT and DWT operators for regularization.
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Figure 4.11: From top to bottom: Diffraction-limited IP image pair, reconstructions

with DDO, DCT and DWT operators for regularization.
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Figure 4.12: From top to bottom: Diffraction-limited NI image pair, reconstructions

with DDO, DCT and DWT operators for regularization.

65



4.4.2 Effect of Measurement Plane Locations

As described in Sect. 4.1, to reconstruct the spectral datacube, photon sieve imag-

ing system takes multiple 2-D measurements that contain each spectral image with

different focusing amount. An intuitive examination of this strategy yields a guess

for the optimal locations of measurement planes as the focus of each wavelength of

interest. The goal of the numerical test performed in this section is to verify this guess

by analyzing the imaging performance for two sources as a function of the locations

of two measurements to be acquired.

This reasonable guess is based on the fact that the relative amount of residual in-

tensity from wavelengths other than the wavelength of interest is minimum when a

measurement is taken from the focus for that particular wavelength. This observa-

tion is a direct result of the wavelength dependent focusing property of photon sieves.

Yet, in practice, it may also not be possible to place the measurement planes at the

exact focus of the wavelength to be imaged. Instead, a certain amount of known mis-

placement can be introduced when physically constructing the imaging system. Thus,

the numerical test performed here will also illustrate how sensitive the reconstruction

performance is to measurement locations.

To evaluate the performance for different measurement plane distances, dk, a nu-

merical experiment is performed. By keeping the imaging setting same other than

the measurement locations (such as same photon sieve design, input spectral com-

position and SNR), reconstructed images obtained from different measurements with

DDO-based regularization are used to compute the reconstruction quality (i.e. SSIM

and PSNR). Result for SI1 image pair is shown in Fig. 4.13 and results for all other

image pairs are available in Appendix B. Note that all tests are performed for a regu-

larization parameter set of (α = αoptimal, p = 1.3), regularization operator of DDO,

source wavelengths of λ1 = 33.4 and λ2 = 33.5 nm. Corresponding focal lengths for

wavelengths λ1 and λ2 are 3.7425 and 3.7313 meters, and depth of foci (DOFs) are

1.497 and 1.493 millimetres.

Investigating Fig. 4.13, one can conclude that the reconstruction performance is max-

imized when the measurements are taken at the foci of the wavelengths of interest, as
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Figure 4.13: Reconstruction performance for varying measurement plane locations,

d1 and d2, for SI1 image pair.

expected. In the bottom right portion of the image, the measurement planes are again

in the foci of the wavelengths, hence same optimal performance is observed. Results

show that a similar reconstruction performance can be obtained when the measure-
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ment planes are placed within ±1 DOF of foci. Also, as the dashed line labelled as

d1 = d2 demonstrates, the reconstruction quality significantly drops as the measure-

ment planes get close to each other (Similar results for other image pairs are available

in Appendix B).

4.4.3 Effect of Measurement Noise

Another important design consideration for the studied spectral imaging modality

is SNR. Aim of the reconstruction method is to reconstruct the individual images for

each wavelength of interest in the presence of noise, blur, and the residuals from other

bands. As given in Eqn. 4.2, observed total intensity at a measurement plane consists

of contributions from all spectral bands of the scene. In theory, it is possible to obtain

almost perfect reconstructions if the exact PSF for each contributing wavelength is

known and the observations are noise-free. But in practice, all measurements are

exposed to a certain amount of noise. The presence and amount of measurement

noise on observations has a prominent effect on performance.

In this numerical experiment, the effect of SNR on image reconstruction quality is an-

alyzed. To perform this analysis, the imaging setting is chosen as in previous sections.

A Monte Carlo run with five different noise realizations are performed by using the

optimal regularization parameters for each image pair. Then the reconstruction qual-

ity metrics are calculated and averaged over the five runs. The results for all four pairs

of images are presented in Fig. 4.14. In addition, reconstructed images of SI1 and NI

pairs for different levels of SNR are respectively shown in Figures 4.15 and 4.16.

As expected, the reconstruction performance increases with the increased SNR. Yet,

even for medium and medium-to-low SNR values as low as 15 dB, the reconstruction

method still improves the observed images significantly.

4.4.4 Effect of Number of Measurements

In this numerical experiment, the number of measurements, K, is increased while

the number of sources is kept constant and the resulting observations are exposed to
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Figure 4.14: Reconstruction performance (a) in SSIM and (b) in PSNR for varying

SNR levels for SI1, SI2, IP and NI image pairs.

different levels of SNR. The aim of this study is to determine how much improvement

is achieved in the reconstructions with additional measurements.

Increasing the number of measurements in this experiment corresponds to taking ob-
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Figure 4.15: Top left: First diffraction-limited intensity image of SI1 pair. Rest from

left to right and top to bottom: Reconstructed images for a measurement noise with

SNR values of 10, 15, 20, 25, 30, 35 and 40 dB.
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Figure 4.16: Top left: First diffraction-limited intensity image of NI pair. Rest from

left to right and top to bottom: Reconstructed images for a measurement noise with

SNR values of 10, 15, 20, 25, 30, 35 and 40 dB.

71



servations from equally spaced measurement planes between the two focal planes,

f1 and f2, corresponding to the wavelengths, λ1 and λ2. For instance, for the case of

three measurements, the separations of the measurement planes from the photon sieve

plane are f1, (f1 + f2)/2 and f2. A special case is the case of K = 1; in this case,

the reconstruction is performed using a single observation taken from the distance of

(f1 + f2)/2. Results for this numerical experiment are presented in Fig. 4.17 for the

SI1 image pair and two different SNR levels of 15 and 30 dB using 5 Monte Carlo

trials, while the source wavelengths are kept as 33.4 and 33.5 nm.

Examination of Fig. 4.17 shows that the reconstructions are only marginally improved

when the number of measurements are increased more than two. Hence one can con-

clude that for both low and high SNR cases taking two measurements is sufficient and

additional measurements do not worth the cost. On the other hand, for the case with

a single measurement taken between the two focal planes, the reconstruction perfor-

mance is poor. Further examination of the reconstructed images for K = 1 case, as

given in Fig. 4.18, reveals that the reconstructed images for the distinct wavelengths

appear to be similar; hence the spectral imaging technique fails to separate the two

spectral components with a single measurement taken between the focal planes. This

is because the PSFs acting on the two spectral components are almost the same at this

distance of (f1 +f2)/2. An additional experiment is performed for this case by taking

the single measurement either at f1 or f2. As can be seen in Fig. 4.17, although the

spectral imaging technique still fails in these cases in terms of reconstructing both

spectral images, it can at least recover one of the spectral images (the one associated

with the focal plane that the measurement is taken).

4.4.5 Effect of Spectral Separation

One of the important features of the spectral imaging technique with photon sieves is

the improved spectral resolution. As mentioned in Sect. 4.4, in all the previous tests,

the numerical experimental setup is constructed such that there are two sources of ra-

diation with wavelengths 33.4 and 33.5 nm. This corresponds to a spectral resolution

of 0.1 nm and a physical separation of 11.2 mm between the foci of sources or equiv-

alently a separation of 7.4 DOF from the focus of each source. In this experiment, the
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Figure 4.17: Reconstruction performance (a) in SSIM and (b) in PSNR for varying

number of observations.

effect of spectral separation between two sources will be analyzed by varying λ1 that

was fixed to 33.4 nm earlier and keeping λ2 constant at 33.5 nm.

As the spectral separation between the two sources is decreased, the corresponding
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Figure 4.18: Reconstructed images obtained with a single measurement and SNR=30

dB. Top row from left to right: single measurement taken at (f1+f2)/2, reconstructed

images for the first and second wavelengths. Middle row from left to right: single

measurement taken at f1, reconstructed images for the first and second wavelengths.

Bottom row from left to right: single measurement taken at f2, reconstructed images

for the first and second wavelengths.
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foci of distinct sources get closer to each other. This gradually degrades the image

reconstruction performance as the similarity between two observations is increased,

as also discussed in Section 4.4.2. In this experiment, the performance of reconstruc-

tion is numerically investigated for varying spectral separation between sources. The

results for this numerical experiment are presented in Fig. 4.19.

(a)

(b)

Figure 4.19: Reconstruction performance for varying λ2 and for SI1 pair of images.
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λ2 (nm) 33.37 33.38 33.39 33.40 33.41 33.42 33.43 33.44 33.45 33.46 33.47 33.48 33.49

Dist. between Foci (DOF2) 9.7 9.0 8.2 7.5 6.7 6.0 5.2 4.5 3.7 3.0 2.2 1.5 0.7

Table 4.2: Changing separation between the foci of wavelengths in terms of DOF of

λ2.

Results show that it is possible to obtain good reconstructions even for when λ1 =

33.48 and λ2 = 33.5 nm, corresponding to a spectral resolution of 0.02 nm. To under-

stand the significance of this result, consider the corresponding separations between

the foci of different wavelengths in terms of DOF of the second source, as presented

in Table 4.2. Investigating Table 4.2, one can observe that good reconstructions can

be achieved even when the focus of the second source is only one DOF away from

the focus of the first source. In practice, this result corresponds to a relative spectral

bandpass of (33.5 − 33.48)/33.5 = 5.97x10−4. One can conclude that a spectral

resolution of 0.02 nm is achievable with this modality; that is, photon sieve spectral

imaging technique can resolve radiation from spectral components that are as close

as 0.02 nm in wavelength within the proximity of 33.5 nm. This spectral resolution is

more than two orders of magnitude higher than what can be achieved with the current

state-of-the-art spectral imaging technology.
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CHAPTER 5

CONCLUSIONS

Spectral imaging is an important diagnostic tool for a wide-variety of applications

such as remote sensing, physics, chemistry, biology, and medicine. Although the field

has been an active research area for a considerably long time, new imaging modali-

ties that offer higher performance and flexibility are still of interest as the applications

in science and engineering grow rapidly. Inevitably all optics-based techniques suf-

fer from the physical limitations inherent in their optical components and face the

difficulty of acquiring the three-dimensional spectral data set with the intrinsically

two-dimensional detectors. Increasingly demanding considerations such as spatial,

spectral and time resolution, as well as optical throughput push the efforts on the field

to go beyond its physical limits, and thus keep the century and a half year old field

still an active area of research.

In this study, a recently developed computational spectral imaging technique with

photon sieves is analyzed both numerically and experimentally. This technique of-

fers unprecedented spatial and spectral resolution for scenes with discrete spectrum

compared to the conventional techniques, while requiring only a light-weight and

low-cost imaging system. The technique is of particular importance in the EUV and

x-rays since at these short wavelengths alternative spectral imaging techniques have

strong physical limitations.

In this thesis, a detailed up-to-date survey of existing spectral imaging techniques is

presented. Moreover, a fast and accurate method is developed to compute the two-

dimensional point-spread function of diffractive imaging elements and is also exper-

imentally validated. A compact, cheap and versatile experimental setup is also built
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for the photon sieve imaging system, and PSF measurements taken with this setup are

used to validate the theoretical forward models. Lastly, computational image recon-

struction method of the photon sieve spectral imager is described and the performance

of the reconstruction method is evaluated for different regularization operators and

under different practical scenarios of interest to determine the practical capabilities

and limits of the approach.

Developed PSF computation method accurately obtains the 2-D PSF of a photon sieve

as well as any diffractive imaging element with a given aperture function. While

the previously developed methods for this purpose have high computational cost and

are only applicable to certain diffractive elements, the developed method is an FFT-

based fast method with significantly lower computational complexity, and is general

enough that it can be used for any photon sieve configuration, as well as for any other

diffractive imaging element such as Fresnel lenses and their modifications, and any

other mask-like patterns including coded apertures.

Constructed experimental setup is intended to be a versatile and cheap prototype for

the photon sieve imaging system. In fact, since a programmable DMD is used, the

system can realize any binary diffractive imaging device. The 2-D measurements for

the PSF of a photon sieve obtained with this experimental setup show strong agree-

ment with theory and serve as a proof of concept for the DMD-based photon sieve

system.

Besides the analysis of focusing properties of the photon sieve system, image re-

construction method used with photon sieve spectral imager is also examined in this

study. Starting with the formulations of the forward and inverse problems, details of a

fast numerical algorithm for solving the inverse problem, which is specialized to this

imaging modality, is described. Then, using this algorithm, the image reconstruction

performance is evaluated for this computational imaging modality under the scenarios

of different regularization operators and parameters as well as varying number of ob-

servations, amount of measurement noise, measurement plane locations and spectral

composition of the scene.

The discrete derivative operator is shown to be the optimal choice for the regulariza-

tion operator in the `p-norm based regularization. It is also observed that good re-
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constructions are possible even with medium and medium-to-low SNR values. This

observation is important in practice in the design of the imaging system since this will

determine the exposure time. Two other important design parameters are the number

of measurements to take and the locations of these measurement planes. Numeri-

cal results suggest that it is sufficient to take as many measurements as the number

of spectral components. Moreover, the optimal locations for the measurements are

found to be at the focal planes of the corresponding wavelengths of interest. Another

numerical experiment of this study is related to the spectral separation of sources. It

is observed, for the considered EUV solar imaging application, that the spectral res-

olution achievable with the photon sieve spectral imager is more than two orders of

magnitude higher than what can be achieved with the current state-of-the-art spectral

imaging technology.

5.1 Future Work

As a future work, the constructed experimental setup for PSF measurement is planned

to be used for the practical demonstration of the photon sieve spectral imager. Also,

we intent to improve the success of the reconstruction method by using data-adaptive

regularization methods.
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APPENDIX A

RECONSTRUCTION PERFORMANCE FOR DIFFERENT

REGULARIZATION PARAMETERS

In the following figures, the image reconstruction performance of the spectral imag-

ing modality is presented for different image pairs, regularization parameter pairs,

(λ, p), and regularization operators. Note that the values of the optimal regularization

parameters are marked with a red cross in each of the figures.
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Figure A.1: Reconstruction performance for regularization with DDO operator and

for SI1 image pair where the left column shows the results in SSIM metric and the

right column in PSNR.
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Figure A.2: Reconstruction performance for regularization with DDO operator. From

top to bottom: SI2, IP and NI image pairs where the left column shows the result in

SSIM metric and right column in PSNR.
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Figure A.3: Reconstruction performance for regularization with DCT operator. Top

row for SI1 image pair and bottom is for SI2 where the left column shows the results

in SSIM metric and right column in PSNR.

83



Average SSIM - DCT Regularization - IP

0.
22

86
1

0.
28

06
8

0.
33

27
6

0.
38

48
4

0.
43

69
1

0.
48

89
9

0.
54

10
6

0.
59

31
4

0.
64

52
2

0.
64

52
2

0.
69

72
9

0.
69

72
9

0.74937

0.7
49

37

0.
74

93
7

0.80145

0.80145

0.
80

14
5

0.85352

0.85352

0.8
53

52

0.
85

35
2

0.9056

0.9056

0.9056

0.9056

0.
90

56

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Alpha

0.5

1

1.5

2

p

(a)

Average PSNR - DCT Regularization - IP

17
.4

82
6

18
.9

47
7

20
.4

12
9

21
.8

78
1

23
.3

43
3

24
.8

08
5

26
.2

73
6

27.7388

27
.7

38
8

27
.7

38
8

29.204

29
.2

04

29
.2

04

30.6692

30.6692

30
.6

69
2

32.1344

32.1344

32.1344

32
.1

34
4

32
.1

34
4

33.5996

33.5996

33.5996

33.5996

33
.5

99
6

35.0647

35.0647

35.0647

35.0647

35
.0

64
7

36.5299

36.5299

36.5299

36.5299

36
.5

29
9

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Alpha

0.5

1

1.5

2

p

(b)

Average SSIM - DCT Regularization - NI

0.
15

17
3

0.
20

22
3

0.
25

27
3

0.
30

32
4

0.
35

37
4

0.
40

42
4

0.
40

42
4

0.
45

47
4

0.
45

47
4

0.
50

52
4

0.
50

52
4

0.55574

0.
55

57
4

0.
55

57
4

0.60624

0.60624

0.
60

62
4

0.65674

0.65674

0.65674

0.
65

67
4

0.70725

0.70725

0.70725

0.
70

72
5

0.75775

0.75775

0.75775

0.
75

77
5

0.80825

0.80825

0.80825

0.
80

82
5

0.85875

0.85875

0.85875

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Alpha

0.5

1

1.5

2

p

(c)

Average PSNR - DCT Regularization - NI

11
.1

17
5

12
.5

76
2

14
.0

34
9

15.4936

15
.4

93
6

16.9524

16
.9

52
4

18.4111

18
.4

11
1

19.8698

19
.8

69
8

19
.8

69
8

21.3285

21
.3

28
5

21
.3

28
5

22.7872

22
.7

87
2

22
.7

87
2

24.246

24.246

24
.2

46

24
.2

46

25.7047

25.7047

25.7047

25.7047

25
.7

04
7

27.1634

27.1634

27.1634

27.1634

27
.1

63
4

28.6221

28.6221

28.6221

28.6221

28
.6

22
1

30
.0

80
8

30
.0

80
8

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Alpha

0.5

1

1.5

2

p

(d)

Figure A.4: Reconstruction performance for regularization with DCT operator. Top

row for IP image pair and bottom is for NI where the left column shows the perfor-

mance in SSIM metric and the right column in PSNR.
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Figure A.5: Reconstruction performance for regularization with DWT operator. Top

row for SI1 image pair and bottom is for SI2 where the left column shows the perfor-

mance in SSIM metric and the right column in PSNR.
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Figure A.6: Reconstruction performance for regularization with DWT operator. Top

row for IP image pair and bottom is for NI where the left column shows the perfor-

mance in SSIM metric and the right column in PSNR.
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APPENDIX B

RECONSTRUCTION PERFORMANCE FOR DIFFERENT

MEASUREMENT PLANE LOCATIONS

In the following figures, the image reconstruction performance of the photon sieve

spectral imager is evaluated for varied measurement plane locations considering dif-

ferent image pairs and reconstruction quality metrics.
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Figure B.1: Reconstruction performance for varying measurement plane locations, d1

and d2, for SI1 image pair where left column is the performance in SSIM metric and

right column is in PSNR.
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Figure B.2: Reconstruction performance for varying measurement plane locations,

d1 and d2, for SI2, IP and NI image pairs, from top to bottom. Left column is the

performance in SSIM metric and right column is in PSNR.
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