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ABSTRACT 

ZERO-𝒏̂ GAP DESIGN VIA MODULATION OF HEXAGONAL PHOTONIC 
CRYSTAL LATTICE 

 

 

MORADI, SHAHRAM 

M.Sc., Department of MICRO AND NANO TECHNOLOGY 

Supervisor: Assist. Prof. Dr. SERDAR KOCAMAN 

Co-supervisor: Assist. Prof. Dr. EMRE YUCE 

 

February 2017, 93 pages 

 

We study the effect of disorder in the lattice on a photonic band diagram and apply it to 

form a superlattice in order to examine negative refractive index and finally obtain zero-

ñ gap. In addition, the novelty of suggested modulated PhC introduces new ways of 

controlling light through the complicated lattices. The aim of this approach is to have a 

deep understanding of dispersion characteristics dependence on the lattice structure by 

comparing modified structures with conventional lattice types. We design a disordered 

modulated hexagonal lattice in which the positions of holes vary in the orthogonal 

direction of applied light direction and study its influence on both effective refractive 

index and photonic band structure through numerical simulations. The results of this 

approach are promising enough to utilize them in various applications of on-chip 

integrated circuits. We applied this class of suggested structure in one particular 

superlattice to gain zero-ñ gap for the sake of comparison with the reported structures 

recently.  

 

Keywords: photonic crystal, zero-𝑛̂gap, negative refractive index 
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ÖZ 

 

ALTIGENSEL FOTONIK ÖRGÜ MODÜLASYONU İLE GENİŞ BANT SIFIR 

KIRICILIK İNDEKSİ TASARIMI 

 

MORADI, SHAHRAM 

Yüksek Lisans, Mikro Ve Nano Teknoloji Bölümü 

Tez Yöneticisi: Asst. Professor Dr. SERDAR KOCAMAN 

Ortak Tez Yöneticisi: Asst. Professor Dr. EMRE YUCE 

Şubat 2017, 93 sayfa 

 

Fotonik örgü yapılarındaki düzensizliğin fotonik bant diyagramına olan etkisi incelendi 

ve bu düzensizlik negatif kırılma indisini gözlemlemek ve nihai olarak sıfır kırıcılık 

indisli bant aralığı elde etmek için fotonik yapıya uygulandı. Ek olarak önerilen yapı 

ışığın karmaşık örgü yapıları içerisinde kontrolune yeni yollar sunmaktadır. Bu 

yaklaşımın amacı dağılım özelliklerinin örgü yapıya olan bağlılığını, değiştirilmiş ve 

olağan yapıları karşılaştırarak derinlemesine anlamaktır. Konumu uygulanan ışığın 

yönüne dik yönde değişiklik gösteren oyuklar içerecek şekilde düzensizleştirilmiş 

altıgen örgü yapı tasarlandı ve bu yapının etkin kırılma indisi ile fotonik bant düzenine 

etkisi nümerik simülasyonlarla incelendi. Bu yaklaşımın sonuçları bu yapıların çeşitli 

çip üzeri tümleşik devre uygulamalarında kullanılabilmesine olanak sağlayacak kadar 

umut vericidir. Önerilen türdeki yapı belirli bir süper örgüye literatürdeki yapılarla 

karşılaştırmak amacıyla sıfır kırıcılık indisli bant aralığı elde etmek için uygulandı.  

 

Anahtar Sözcükler:Fotonık örgü, Bant Sıfır kırıcılık indisi, negatif kırılma indisi 

http://fbe.metu.edu.tr/tr/mikro-ve-nanoteknoloji
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CHAPTER 1 

CHAPTER 

1 INTRODUCTION 

1.1 Overview 

It is now well recognized that photonic science and the related technologies have been 

playing an essential role in the rapid progressing and development of today's information 

and communication technology. However, by considering huge demand of data 

communication in 21st century, the sole option of using electronics is changing and 

photonic integrated circuits (PICs) with which the speed of data transfer reached to the 

terahertz scale. A PIC is a device that combines various components similar to an 

electronic integrated circuit which functions on optical wavelength such as the visible or 

near infrared range. Integration of various optically active and inactive devices operates 

on one single chip made the developments in this field especially exciting. In this chapter, 

we go over the general concepts and applications of the developing branches of photonic 

science and also discuss some of the typical devices that will help understand what we 

study at this thesis clearly.  

1.2 Devices in the photonic field of science 

1.2.1 Quantum Dots 
As discussed above, photonics has the potential of enabling high-speed and wide 

bandwidth data handling beyond the limitations of electronics technologies. One of the 

major subareas here is about the studies on quantum dots. Light-matter interaction as an 

outlet of achieving high-speed communication and information is considered as a key 

factor in this field. By reviewing all developed nanophotonic devices, the idea of light-

matter interactions can be summarized by confining light inside a small-engineered 

geometry [1]. This means that light with small mode volumes has the capability of being 
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manipulated for optical information processing at low level of energies which could be as 

low as a single photon level. Promising efforts in this field that develops and give rise to 

coherent control of light through strongly coupled nanophotonic devices such quantum 

dots and PhC cavities constitute the main interest. As quantum dots are made of particular 

semiconductor "artificial atoms" that can act as efficient photon emitters, they behave as 

stable quantum memories. After embedding them in a PhC cavity [3] that spatially 

confines light to sub-wavelength one can attain the desired strong coupling regime. In 

strong coupling regime, these interactions are large enough that even a single photon can 

obtain the ability of creating a fabulous nonlinear response in an atomic system. Such 

single-photon nonlinear capabilities are highly desirable for quantum information 

processing [2] where atoms serve as quantum memory elements and photons act as 

required carriers of quantum information. This kind of device platforms provides a 

roadway towards compact integrated quantum on-chip networks that could serve as 

fundamental components in building quantum computers. Researchers study and 

demonstrate a quantum transistor, where a single spin in a quantum dot under particular 

conditions switches the state of a photon [4]. It is also well studied the coherently control 

of atom-photon interactions on picoseconds timescales based on tailored quantum states 

of light in a certain cavity [5]. As a conclusion, this technology grows in a way where 

quantum dots embedded in PhCs based devices will be crucial for the development of chip 

integrated quantum systems that has could be a real tuning point photonics science. 

1.2.2 NanoOptomechanical Devices 
Optically tuned physical movement, which are compatible for on-chip integration, have 

been made possible by opto-mechanical effects [6]. As an example, many devices such as 

sensors [7] gratings, [8-9], ring resonators [10-11] and movable mirrors [12-15] need 

tunable lasers and optomechanical elements can help for desired longitudinal mode of 

introduced pulse through the cavity and controlling the line width of the laser transition. 

Another applications of these devices can be explained through optical actuation that relies 

on optical forces allowing PICs elements to be controlled by light force, and this is based 
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on nonlinearity of optical field [16-18]. Some experiments demonstrate such nonlinear 

behavior in a a microwave regime metamaterial structures [17]. This approach was 

extended to the regime using a dielectric material and its optomechanical metamaterial 

properties. An all-dielectric metamaterial has been shown to possess an optomechanical 

nonlinear property that gives rise to modulation of light with light at megahertz (MHz) 

range of frequency [19]. Moreover, nanoscale positioning is obtainable, since optical 

gradient force is exerted on the free-standing waveguide while light flow is evanescently 

coupled to either a nearby waveguide or a dielectric substrate [20-21]. This leads to 

changing effective refractive index of the free standing waveguide with the nanoscale 

position [22-24]. However, the amplitude of the optical gradient force is proportional to 

the gradient of the electromagnetic field and this field is significantly enhanced by proper 

components such as PhC cavities and ring resonators with high quality factors [23-24]. As 

a result, on-chip applications of optomechanical force started to develop and realize the 

aim of both sending and receiving mechanical signals among a variety of platforms and 

design capabilities that come with PhCs play a key role in this development. 

1.2.3 Plasma photonic 
Photonic Band Gap (PBG) as an essential parameters of photonic science needs to be 

controlled since the complicated components of a PIC progress with vast alternative range 

of frequencies. To obtain a tunable PBG, the refractive index of a PhC can be changed 

through the magnetic permeability of one of the constituent materials used in PhC. 

Meaning that the dielectric of utilized component in PhC should depend on some external 

parameters. [25]. Utilization of tunable laser is one of the most important applications of 

photonic science and usingionized gases, or plasmas, for light radiation in the Ultra 

Violet(UV) and Deep Ultra Violet (DUV) spectral range needs this tools of controlling 

PBG as discussed. However, they are still a medium of choice for laser sources at 

wavelengths that are not achievable by solid-state technology. For example, KrF and ArF 

gas mixture plasma based lasing media are included in gas-phase materials that produce 

traditional excimer gas laser. However, using these typical lasers suffer from having a 
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huge volume and lack of tenability for complicated systems. Plasma-based laser operation 

miniaturizes its physical package using plasma PhC (PPC) that contains extra components 

of controlling PBG rather than conventional PhCs. For example, generation of a long and 

stable plasma column inside the core of argon filled Kagome hollow-core PhC fiber (HC-

PCF) is reported [26].These laser generation is based on conversionof NIR pulsed laser 

with stimulated Raman scattering [27], soliton dynamics [28], or high harmonic 

generation [29] and they are different from case to case. Therefore, compatibility of PPC 

for these types of generators is accentuated since their ability of matching in mentioned 

regime.These works proved that micro-confining usingthe fourth state of matter within 

photonic structures such as HC-PCF is now possible and in progress. In other words, it 

opens the way toward a new research topic named “plasma photonics.” 

1.2.4 Micro cavity 
By reviewing the history, Whispringgallery modes (WGMs) were suggested by Lord 

Rayleigh in 1910. Micro-cavities, as one particular WGM structures, take advantages of 

total internal reflection (TIR)to confine and enhance light energythrougha smooth and 

curved surfaces [30]. Possible applications of using micro-cavities, can be addressed in 

integrated micro-optics devices, such as optical filters [31], biological sensors [32-33], 

light emitting devices [34] and quantum optics light sources [35]. In addition, in advanced 

level of utilization, variety of micro-cavity structures have been proposed, such as micro-

columns [36], micro-rings [37], micro-disks [38], and microtoroids [39]. Wavelength 

tuning is a challenging issue in utilization of these types of devices, for example in 

conventional semiconductor micro-cavities because of the intrinsic energy level 

constituents of semiconductors it was a difficult step to proceed. However, possible 

solutions like Dye-doped lasers existssince the volume of enhanced energy that they 

provide in one pulse [30]. On the other hand, the enhanced energy gives rise to losing 

single modeoutput spectra, which enormously influence the output.This concerns end up 

with different methods that inspire researchers to suggest, such as multi layered films or 

gratings with distributed feedback (DFB) or distributed Bragg reflection (DBR) 
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components [40-41].It is noticeable that the huge gap between proposed conventional 

optical cavities and micro-cavities is the effects that arise from the miniaturized 

dimensions of the structure. In other words, this level of designing and fabricating provide 

a useful chance of observing Quantum effects of the light's electromagnetic field like 

spontaneous emission rate and even behavior of atoms [42].  

1.2.5 Photonic crystal 
Among all those selected devices that we want to skim briefly the role of PhCs are more 

accentuated rather than the other components of photonic integrated circuits (PIC). 

However, it is undeniable that photonics is not independent of electronic integrated 

circuits (ICs) and many of the date processing processes still with electronic chips. This 

limitation is originated from basic characteristic of light in an offered media. Unlike the 

electrons in media, the confining of light or even storing it in a small volume is a hardship 

job. In addition, controlling the speed of light is even another issue which is correlated to 

the weak interaction of light with matter.PhCs are expected to obviate all those 

requirements to form a satisfying tools of operation.This thesis reviews what a PhC is and 

what it can do, particularly for photonics technologies and describes how effective is an 

engineered structure. Comparing dispersion, variation of refractive index for each 

frequency inside the same material,influence onPhCs which give rise to the various light 

emissionresults such as self-collimated beam emission [43-44], negative refractive index 

materials [45-46], and zero-ñ gap effects [47] opens huge possibilities to solve all above 

mentioned problems. Meaning that, they could bring new methods to manipulate the light 

flow in PhCs like what we are expecting in ICs. The light emission directionin one PhC 

is determined by group velocity current of lightin the mentioned PhC,𝑣𝑔 = ∇𝑘𝜔(𝑘). 

Therefore, the Equi-Frequency Contours (EFCs), plays major role in determination and 

expectation of light flow since in the Bloch modes that forms by cross sections of the 

computed dispersion values in surface of momentum space are determining the 

propagation direction and characterizing the flowing of lights in PhCs and to design the 

desired dispersion based PhC.For example, optical devices that we described 
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previouslyand even others that we do not explain such asnanochannel waveguides [48-

49], beam splitters [50], super lenses [51], de-multiplexers [51] and so on can be included 

as an achievements of mentioned approach. The analysis of optical components with 

desired optical featuresdevelops since advances in fabrication procedure with sub-

wavelength size scale are in a rapid growth. In other words, these attempts have ended up 

with the rapid growth of(PhCs) field of study, providing useful chances for having 

progressed new device periods for a vast range of applications. A PhC is, by definition, 

an artificially engineered structure whose refractive index (n) is modulated with a 

particular periodicity comparable to the wavelength of light in the utilized material [52]. 

Moreover, they enable various novel ways of manipulating light in proper medias beyond 

those limitations for existed conventional materials in nature. All attempts s to realize 

PhCs have focused mostly on planar (2D) structures because of their potentialof well-

developing microelectronic chip fabrication methods, possibility of combining in 

oneunified planar (2D) platform on top of a substrate, and their close relation to the 

previousgeneration of integrated optic circuits [53]. However, existence of photonic band 

gaps also creates strong light confinement that gives possibility of reducing energy 

consumption of optical devices.existence of photonic band gap at higher dimensions (3D) 

reported last decades [54-56]. There are applications such as beam forming and dispersion 

controller in which all dimensional structures using threedimensions (3D) PhCs are highly 

proceededcases to get rid ofany issue of coupling light flow into and out of the designed 

planar platform of chip. Moreover, recent advances in nanoscale materials and fabrication 

methodslike self-assembly [57], multi-beam interference lithography [58], and multi-

photonslithography [59] have provided the unique chances to fulfillqualified 3D PhCs at 

anacceptable cost level that can be offered to use as an optical elements in such devices. 

In a summery, to have complete advantages of photonics over electronics, one must break 

through the limitations of current photonics by tightly squeezing an applied optical pulse 

within a miniaturized volume such as cavity and control the speed of light flow 
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dynamically [60].  In chapter three, we study some tools and possibilities of governing 

light merely by applying governing rules and parameters in this case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

 

 

 

 

  



9 

 

CHAPTER 2 

 

2 THEORY 

1. In this chapter, we provide the relative concepts, which are necessary to understand 

them as a fundamental rules of governing what we obtained in the photonic crystal 

field. It is noticeable that what we obtained are based on numerical computation of 

governing equations which we address some of them that is well explained in [61] that 

used numerical methods of examination. Moreover, the results of this thesis is merely 

simulation which require setting a particular boundary condition on a bounded domain 

and they can be applied to our modulated PhCs or any other desired geometry. The 

MIT Photonic-Bands (MPB) [70] and Meep, are a free software packages to program 

and model electromagnetic system which MPB mainly is used to compute band 

diagrams and eigenfields for the crystals, however, Meep perform time-domain 

(FDTD) simulations of any modulated electromagnetic structures with one, two and 

even threedimensions to calculate transmission spectra, resonant modes and many 

other related problems. We applied our suggested geometries to simulate modulated 

disordered PhC and the results will be discussed in the next chapter. 

2.1 Governing Equations 

2. Remarkable progress has been made over the past decades in the study of nanoscale 

PhCs and some other metamaterials. The ability to accurately calculate the 

eigenmodes and band structures of such structures is a critical step to develop these 

types of devices which mentioned some of them in first chapter. By skimming the path 

of this progress, one clearly notices that the computation of band structure were 

focused on frequency-independent dielectric mediums earlier. However, some 

software packages, MPB and Meep, make us able to calculate photonic band structures 

of those material systems with frequency-dependent permittivity [62-63].  
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3.  

2.2 Computational tools 

4. Finite difference, finite element, boundary element, localized Gaussian-Hermite are 

all computational methods in the frequency domain to solve equations based on the 

time-harmonic Maxwell equations. Starting with the Maxwell's equations help one to 

have a clear understanding of basic process of what we did to obtain results of light 

propagation through the suggested modulated structure. However, Maxwell's formulas 

are written in different forms and governing rules of light-matter interaction according 

what is well explained in [62] will be: 

∇ × 𝐸(𝑥, 𝑡) =  −
1

𝑐

𝜕𝐵(𝑥, 𝑡)

𝜕𝑡
 

(2.1) 

∇ × 𝐵(𝑥, 𝑡) =  
1

𝑐

𝜕𝐷(𝑥, 𝑡)

𝜕𝑡
 

(2.2) 

∇. 𝐷(𝑥, ) =  0 (2.3) 

∇. 𝐻(𝑥, 𝑡) =  0 (2.4) 

5. In which c, E, B, H and D are the speed of light, electric field, magnetic field, magnetic 

induction, and the electric displacement respectively. Note that all parameters are 

dependent of time and positioning ,which occurs after interacting of light with matter. 

The Maxwell's formulas can be re-written in the constitutive equations form to solve 

above mentioned relations in a particular given boundary conditions based on what a 

designer applied in terms of material properties and geometries. Thus, the constitutive 

equations based on material property can be: 
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𝐷(𝑥, 𝑡) =  𝜀(𝑥)𝐸(𝑥, 𝑡)   

𝐵(𝑥, 𝑡) =  𝐻(𝑥, 𝑡)    

(2. 5)  

(2. 6) 

6. By considering non-magnetic material the dielectric profile ε(x) is a position-

dependent permittivity that represents solutions of Maxwell's equation in any points 

according to the medium's property.Since our geometry has periodicity, then the 

mentioned dielectric profile, which represents optical characteristics of our structure, 

shows the lattice periodicity in this form: 

ε(x + X) = ε(x) (2.7)  

7. To sum up all periodic profiles through the given lattice by Fourier transform, one can 

simply integrate all acceptable (x) including their translations X to form a plane wave 

depending on wave vectors. To analyze above mentioned equation in whole we can 

write it in this form:  

𝜀(𝑥) = ∫ 𝑔(𝑟)𝑒(𝑖𝑟.𝑥) 𝑑𝑟 
(2.8) 

8. In which g(r) is defined as the coefficient on the plane wave with the wave vector (r).  

𝜀(𝑥 + 𝑋) =  ∫ 𝑔(𝑟)𝑒(𝑖𝑟.𝑥)𝑒(𝑖𝑟.𝑋)𝑑𝑟 = ∫ 𝑔(𝑟)𝑒(𝑖𝑟.𝑥)𝑑𝑟  (2.9) 

9. To show periodicity of dielectric dependent on position, ε(x),  Fourier transform g(r) 

can be given with an exponential term,𝑒(𝑖𝑟.𝑋), in which the g(r) is either 0 or 𝑙. We can 

extract those values that have 1 since the Fourier transform asigns zero value 

everywhere except for the values of (r) that 𝑒(𝑖𝑟.𝑋)= 𝑙  for all X vectors inside the 

suggested lattice. Thus, all wave vectors r which have the exponential terms equal to 
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𝑙  are acceptable to build a lattice with a periodic dielectric profile in which 

(𝑟. 𝑋 = 2𝜋𝑙), for all lattice vectors (X) and integer value of (𝑙). The exponential term 

of dielectric profile, will created vectors (r) that are called reciprocal lattice vectors.We 

designate by the letter G for the mentioned reciprocal lattice. All included vectors of 

reciprocal lattice shape a different lattice in new position, that is, the summation of all 

created new vectors that arranges so many new reciprocal lattice vectors through the 

suggested lattice.The volume where the reciprocal lattice forms in 2 or 3 dimensions, 

is called reciprocal space of suggested unit cell. 

2.3 Brillouin Zone in Hexagonal lattice 

10. It is typical to select the value of T in (k = k'+T) to shrink |k'| down, i. e., to have as 

near to the adjacent of base of what we assumed as a reciprocal lattice. Meaning that 

|k'| is necessary to be consideredcloser to the base of reciprocal latticerather than to 

any other possible cells of suggested reciprocal lattice.In this fashion, Wigner-Seitz 

cell can be extracted from the given reciprocal lattice. Since the extracted Wigner-

Seitz cell cannot be shrieked down more we can call it irreducible Brillouin zone of 

determined unit cell. In (Figure 2.1) the irreducible Brillouin zone is shown that is 

labeled and characterized by different wave vectors and the eigenwave is clarified in 

each suggested wave vectors. 

11.  
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Figure 2.1 - The corresponding first Brillouin zone of a two-dimensional,(a) square lattice and (b) 

hexagonal lattice  and their Brillouin zone (blue area). 

12. In our thesis, the hexagonal structure is the basic matter of discussion and its 

irreducible zone is shown in (Figure 2.2. b) in which the two wave vectors 

characterized the periodicity through the whole hexagonal lattice and the lattice 

constant is considered as the distance between center of holes in K direction with two 

vectors that is shown in (Figure 2.2. a) and the radius of each cylinderical holes/rods 

is considered "r". It is noticeable that the addressed hexagonal structure can be 

engineered in either high dielectric film like silicon with lower dielectric (holes) or 

vice versa. 
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13.  

14. Figure 2.2 - (a) Hexagonal distributionwith lattice constant of "a", (b) irreducible Brillouin zone (orange 

triangle)  starting from the centre, GammaΓ,  towards M and K  directions. 

15.  

2.4 Hexagonal distribution and superlattice structure 

16. Disordered geometry is one of the inevitable parts of fabrication, particularly in 

Nanoscale engineering of materials that has been an interesting topic of investigation 

recently [65-68]. The theory of hexagonal structure for creating a 2D periodic PhC on 

three dimensional structure is based on a particular triangular holes (cylindrical)  in 

which one of them assumes as a Gamma (the center of axis) and two other holes aligns 

in K direction, reciprocal lattice directions, with a certain distance which is called 

lattice constant. In addition, the bisector of created angle between those K-directions 

makes M direction in the k space (Figure 2.3). 
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17.  

18. Figure 2.3  - Schematic of hexagonal distribution and its reciprocal lattice directions 

19. As a result, the M and K direction make the𝜃 angle in regular hexagonal. It assumes 

30 degree and K direction lines will make 60 degree with each other due to the 

symmetric holes in two side of the Gamma. In order to have hexagonal structure, this 

unit cell should be supposed as a base of two defined directions since the 2D periodic 

PhC is desired. In order to compute photonic Band Gap (PBG), using MPB, we define 

one cylindrical hole in Gamma position at (0,0,0) of Cartesian space, then extend the 

structure in a way that all other cylindrical holes produces through the lattice 

symmetrically. For the sake of simplicity, creating two vectors of elementary unit cell 

is so useful and it leads to have iteration of previous vectors constituent and 

consequently designing of the new created component (Figure 2.4. a). 

a) 
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b) 

 

c) 

 

d) 

 

20. Figure 2.4 - Distribution of cells through the lattice; a) generation of hexagonallattice from iteration of 

unit cells, b) generation of cells c) generation of superlattice (1D distribution) of generated unit cell, d) 

schematic of both unit cells inside the generated periodic superlattice 

21. In the (Figure 2.4.b) and (Figure 2.4.a) two different distributions, triangular and 1D, 

are addressed respectively. For the complicated structures such as combining two class 

of PhCs to form a superlattice we can also have different periodicity directions with 

witch the computation of dispersion relation versus the direction in reciprocal space is 
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possible (Figure 2.4.d). For these types of superlattices we expect multiple irreducible 

Brillouin zone in one direction since in K-space there might be numerous unit cells. 

2.5 Suggested methods of analysis 

2.5.1 Analytical method of analysis 

22. Finite-difference time-domain (FDTD) method is one of the strong tools of simulation, 

as the duration of simulation for computational process is reduced enormously and it 

depends on the number of the meshed grids in the calculation domain (for example it 

is in the order of N*N in 2 dimensions). In order to solve Maxwell's equations by 

extracting one Eigenvalues form out of the equation, the plane wave expansion method 

(PEW) is a useful technique to solve band structure (dispersion relation) of specific 

PhC geometries. A Finite Element scheme in a non-orthogonal coordinate system, 

compute the band structure of one photonic crystal (PhC) including super-lattice. The 

procedure can easily be applied for any other integrated structure, which can have both 

the dielectric elements combined with metal components. However, our structure is 

not metallic type and it is 0.32 [um] thick silicon with engineered cylindrical holes 

(air) inside the silicon on top of 1 [um] silicon dioxide. Recently, the FDTD method 

is applied to calculate superlattice photonic band gap, both guided/surface modes. In 

2D PhCs, the combination of any periodicity of boundary conditions with a 

surrounded perfectly matched layer (PML) uses for obtaining of the boundary values. 

The full-wave analysis is one of the reliable FDTD methods is also suggested for of 

guided modes in some PhC fibers since it uses real variables of applied components. 

As a result, the FDTD method can be considered as promising tools for solving 

Maxwell’s equations. It introduces to solve a wide variety of problems related to 

electromagnetic fields, such as PBG calculation, scattering phenomena's, circuitry 

elements in electronic, wave propagation ,radiation analysis in antennas, etc. In this 

thesis, we chose MPB to the calculation of modal solutions of Maxwell's equations 

over both inhomogeneous and periodic geometry.  
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2.5.2 Boundary conditions 

23. Two types of boundary conditions with which the constant iteration method of 

computation is possible are introduced in this thesis. First, physical boundary 

condition that is determined with the lattice size and dimensions, including properties 

of designed materials inside a Perfect Matched Layers (PML). Second, numerical 

boundary condition in which some governing equations assumes to be calculated 

inside a grids of computation. In order to solve the equation with respect to the limited 

volume of date, it needs the edge of grids to be determined by numerical boundary 

conditions. In other words, the calculation process needs some values from outside of 

the limited grids. We obtained photonic band gap structure with respect to the above 

mentioned conditions and also the physical boundary conditions as below [71]: 

24. 1. Normal components of B and D are continuous across the interface of two different 

utilized dielectrics in the structure.  

25. 2. Tangential component of the wave vector is continuous across an interface of two 

different dielectrics. 

26. 3. Both of the electric and magnetic field normal to the interface are discontinuous 

across the interfaces. 

27. 4. Both of the electric and magnetic tangential components are continuous across the 

interface. 

28. As a result, all components are continuous except the product of permittivity and 

permeability changes in the interface based on constitutive relations which dictate the 

new values of fields after interacting with materials. When calculating the band 

structures of PhCs, one normally selects one of the unit cells of the computed lattice 

in the finite computation domain, and uses the applied periodic boundary condition, 

which satisfies the Bloch theory of photonic band gap. It is noticeable that constitutive 



19 

 

relations express the existence of new sources P and M in terms of the fields E and H, 

that is 𝑃 = 𝑓[𝐸]and 𝑀 = 𝑓[𝐻] and they are equivalent to 𝐷 = 𝑓[𝐸] and 𝐵 = 𝑓[𝐻] 

which have linearity in most practical situations of interacting light with matter for 

PhC applications. As all linear equations are often addresses in terms of the electric 

and magnetic susceptibilities 𝜒𝐸 and 𝜒𝑀 then we can rewrite the secondary sources 

that are necessary for computational process as below [72]: 

29. 𝑷(𝑟) =  𝜀0𝜒𝐸(𝒓, 𝜔)𝑬(𝒓) , M(r) = 𝜒𝑀(𝒓, 𝜔)𝑯(𝒓) 

30. Considering that the permeability and permittivity are: 

31. 𝜇 = (1 +  𝜒𝐸) ,𝜀 = (1 +  𝜒𝑀) 

32.  Thus, for what we considered to the boundary conditions one can simply follow the 

expected rules which mentioned in (Figure 2.5). 

33.  

34. Figure 2.5 - Boundary conditions for an interacted electromagnetic wave in the interface of two different 

medias, (a) tangential components of H and E fields are considered continuous across an existed 
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interface, (b) fields normal to an existed interface are considered discontinuous across an existed 

interface (note that normal components of B and D are continuous across an existed interface), (c) 

tangential component of a wave vector is considered continuous across an interface. 
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CHAPTER 3 

 

3 MODULATED SOLUTION 

35. In this chapter, our attempts are focused on reviewing previous work of researchers 

that utilizes the photonic crystals in a novel way; getting a negative refractive index 

which is not possible in natural materials, and then apply it to obtain a zero average 

index.In order to cover this intention, we firststart from the simple computation of 

band diagram of a particular photonic crystal and demonstrate how the negative 

refraction can be obtained.  Then, we discuss how to obtain zero average index in the 

following description. To do this, we need a material with a positive refractive index. 

Since the positive refraction is the natural case, previous studies have used a regular 

slab waveguide. We discuss how to get positive refractive index from the slab 

waveguide and then combine the slab waveguide with photonic crystal that has 

negative refraction that results in a superlattice which is a 1D photonic crystal itself. 

We then analyze the properties of this superlattice. We also study the transmission 

spectra for the cases mentioned above.  

3.1 Photonic band diagram computation of a hexagonal lattice 

36. Here, we study a photonic crystal that is similar to a case in the literature to get 

negative refraction which use a standard silicon-on-insulator wafer with 0.32 [um] 

thick silicon on top of 1 [um] silicon dioxide [80]. The parameters (r/a = 0.32, h/a = 

0.64) were specifically chosen in order to get negative refraction in the optical 

communication wavelength.The calculated band diagram is shown in (Fig. 3.1). 

Previous class of structures, crystal-slab superlattices, to see how effective is each case 

among suggested methods of combining LIM & PIM to gain zero-ñ gap. Here we 

study a PhC with a particular parameters to gain a PBG at (a/λ = 0.2875)with a 0.32 

[um] thick silicon on top of 1 [um] silicon dioxide that is shown in (Figure 3.1.a.b.). 
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a) 

 

b) 

 

Figure 3.1- PhC band diagram for TM (odd) mode, (a) band diagram; (b) zoomed PBG with an orange 

colour bar 

37. In the (Figure 3.1), we are focusing on the Γ-M direction and there is a PBG at the 

angular frequency of 0.585. 

38.  
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3.2 Negative Vs Positive 

39. Next, we study how a point source propagates across this crystal for a variety of 

different frequency values. In order to make the take away point clearer, we will use 

a 2D structure with the similar parameters. 

 

Figure 3.2- Typical light matter interaction in a range of positive refractive index frequencies 

40. In (Figure 3.2), we chose a frequency from the first TM band on the band diagram. As 

it can be seen from the figure, this section of the photonic band diagram has a positive 

slope in the Γ-M direction. Then, once the point source is placed in front of the lattice 

facing the Γ-M direction and the field distribution is calculated, it is seen that the field 

is diverging, as it is the case for all the natural materials. 
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41. In (Figure 3.3), we present the results of our simulations where we repeat the exact 

same procedure for a frequency from the second TM band. In our thesis, all computed 

results are TM (odd) mode but they can be considered in TE (even) mode as well. 

 

Figure 3.3 - Schematic of light flowing through a 2D PhC with a=0.5 [um], r/a=0.39 cylindrical hole (air) 

inside the 0.32 [um] on a silicon dioxide substrate with 1 [um] thickness. The isotropic point-source is 

propagating with normalized frequency of a/λ = 0.306 

42. As it is clear from the band diagram, this time the frequency is chosen from a particular 

section of the spectrum where the band diagram has a negative slope for the Γ-M 

direction.When we compare the field distribution with the previous case, there is an 

unconventional behavior for the second case.  

43. When we analyze the field distributions for the two case, we see an optical path that 

is represented by the graphics in (Figure 3.4).  
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44.  

45. Figure 3.4 - Optical path light rays once the medium has a) positive index b) negative index 

46. In order to be able to explain this behavior, we use the famous Snell’s Law which is 

stated below and it is clear that the optical path in the second case is only possible if 

the refractive index of the medium is negative. 

sin 𝜃1 ∗ 𝑛1 =  sin 𝜃2 ∗ 𝑛2 (3.1) 

47. This result is actually not surprising as the effective refractive index will be 

determined by the derivative of the frequency with respect to wavevector and that 

precisely corresponds to the slope of the band diagram. In addition, this is also why 

negative refraction results in uperlensing that can defeat diffraction limit and the light 

is focused even if there is no curvature on the lens [78]. 

48. In order to support the result above, we repeat the same calculation with another 

frequency that also has the negative slope on the band diagram. The simulation results 

are shown in (Figure 3.5). 
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Figure 3.5 - Applying frequency from the negative portion of a band edge 

49. The frequency chosen in this case is closer to the band edge. As this means it is also 

closer to the slow lightregion, we expect to see a higher effective index. Furthermore, 

if we extend (Figure 3.4) for the case where the negative refractive index is higher, we 

would expect the diffraction angle within the slab smaller resulting in a focused spot 

that is closer to the slab. This is indeed what is observed in the transmission field 

distribution calculation in (Figure 3.5). 

3.3 Simulation for PBG and Negative Refractive Index 

50. We also provide the light propagation through different designed photonic crystals to 

make sure about what we obtained from MPB. First, we show the typical light 

propagation through the medium like PhC which the band diagram of mentioned PhC 

is shown at the (Figure 3.6. a) and also its transmission spectrum for different 

dimensions in height and width is illustrated in (Figure 3.6.b). In general, flowing light 

and fluctuation of energy level through the lattice is dependant of geometry and vice 
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versa. In other words, the dispersion diagram shows every single frequency has 

different type of interactions with the same periodic structures that is computed to 

obtain its band diagram. Here we intend to study the difference of those computed 

eigenvalues which is specified for a given structure in (Figure 3.6). 

a) 

 

b) 
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c) 

 

Figure 3.6 - Numerical simulation results of, a) band diagram (3D), b) zoomed band diagram, c) 

transmission spectra in 2D structure. 

51. Then, we discuss how the refractive index is calculated numerically through the band 

diagram. 

3.4 Effective Index 

52. It is a clear concept that light refract through mediums that are allowed based on 

atomic level of matters. Moreover, the refractive index is geometry dependant which 

makes designer to manipulate this value according to their aims. However, the concept 

of effective refractive index explain overall refraction index of a combined material 

with specific shape and periodicity. Although this concept can be explained from two 

different points of views that are related to the real and imaginary portion of refractive 

index, but our case of study has nothing to do with the imaginary portion of refractive 

index since we are not interested to deal with a mediums to absorb light energy. On 

the other hand, the real portion of the refractive index represents phase, amplitude and 

direction of light flow. Therefore, the items that effect a real part of the refractive 

index can be skimmed in this section briefly. However, this value depends on some 

parameters like temperature and dielectric but we will examine the wavelength 
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dependency of it.  Refractive index of a suggested PhC changes with wavelength that 

is called dispersion of refractive index. We discuss this dispersion through the band 

diagram. However, the fact that it is related to the wavelength of applied pulse is also 

necessary for the sake of clarification. According to the Cauchy's equation [75], 

refractive index follows bunch of coefficients that is multiplied to the adjacent 

wavelength of incident that is applied. Meaning that, in reality any incident have a 

Gaussian spectrum, which appears wavelengths around the central wavelength. 

Existence of inevitable extra wavelengths in even a small laser pulses bring dispersion 

relation which is called photonic band diagram. As a result, slope of band diagram or 

effect of adjacent wavelength determines the effective refractive index of suggested 

medium. The effective refractive index starts to jump at PBG since the slop of band 

bending is almost zero and the variation of energy level is about zero with respect to 

the position in k space. Thus, the enhanced energy is expected around band bending 

of photonic band gap. In this part we have a plan of studying the effective refractive 

index in different proposed components that we used to form our suggestion 

modulated structure besides those that we attached them for the sake of 

comparison.The effective refractive index of the photonic crystal is calculated from 

the slope of the band diagram with the following formula [78].  

𝑣𝑔 = ∇𝑘𝜔(𝑘) (3.2) 

53. , in which the variation of band with respect to the angular frequency gives us the 

group velocity which contains group of waves and it describe the ratio of the light 

inside the introduced materials (PhC) with respect to the vacuum and consequently the 

refractive index value can be computed as well. 

54.  

55.  
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3.5 Formalism 

56. The numerical results for finding effective refractive index from the band diagrams of 

3D lattice that discussed above summarize in (Figure 3.7). 

57. As described in the introduction section of this chapter, obtaining an effective zero 

index is an important application of the photonic crystals. One of the ways that is used 

in the literature is to design a superlattice which consists of negatively refracting and 

positively refracting sections and as mentioned before, negative refraction comes from 

the photonic crystal and the positive refraction comes from the slab in the example in 

the literature [80]. Therefore, calculation of positive refractive index for a slab 

waveguide is presented in next section. Here we are seeing the variation of refractive 

index versus the angular frequency with which one able to use it to obtain average 

zero refractive index. We will study this approach at the end of this chapter and the 

improved version of it in the next chapter. 

a) 
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b) 

 

Figure 3.7 - Effective index in regular hexagonal lattice (a) computed from first band (b) computed 

from second band 

3.6 Effective refractive index of Slab 

58. The way to compute the effective index of a slab waveguide is a well-known 

calculation[76] and will be repeated here. The slab waveguide, shown in (Figure 3.8), 

includes an asymmetric structure including high-index dielectric layer covered on both 

sides by lower index materials. The slab is assumed to have infinite extensionsin the 

yz-plane, and defined values in the x direction. In order to compute index of refraction 

of the slab structure, 𝑛𝑓, one should end up with a value that is larger than that of the 

cover material, 𝑛𝑐 , or the substrate material, 𝑛𝑠 , based on having total internal 

reflection occurrence at the interfaces. By assuming the direction of propagation along 

the z-axis, the slab is considered within a one-dimensional analysis. In other words, 

for the sake of simplicity, we are solving a 1D problem but it is directly applicable to 

many real problems like our case of study in superlattice as the thickness of the slab 

is much shorter than its width and the length.  
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Figure 3.8 - The planar slab (silicon film) on a substrate (SiO2) that have covered with an air layer. The 

refractive index of three materials is mentioned on its layer 

59. Assuming wave equation in mentioned planar slab is: 

∇2𝐸𝑦 + 𝑘0
2𝑛𝑖

2𝐸𝑦 = 0 (3.3) 

60. Based on fixed translational in the z-direction of suggested structure, we ignore the 

amplitudes of variation along the z-axis, but phase variation is included as below:  

𝐸𝑦(𝑥, 𝑧) = 𝐸𝑦(𝑥)𝑒−𝑗𝛽𝑧 (3.4) 

61. Plug in this trial solution into (3.3) and rewrite the equation is: 

𝜕2𝐸𝑦

𝜕𝑥2
+ (𝑘0

2𝑛𝑖
2 − 𝛽2)𝐸𝑦 = 0 

(3.5) 

62. By considering, the evanescent light of a coupled field to form a total internally 

reflected (TIR) wave at an interface the solved equation wave can be either oscillate 

or decay exponentially. 
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63. As a result, for both cases we can re-write the solved wave equation in an exponential 

form: 

𝐸𝑦(𝑥) = 𝐸0𝑒
±√𝑘0

2𝑛𝑖
2−𝛽2𝑥

  , 𝑓𝑜𝑟𝛽 < 𝑘0𝑛𝑖 
(3.6) 

64. Or we can consider it as an exponential decay solution:  

𝐸𝑦(𝑥) = 𝐸0𝑒
±√𝛽2−𝑘0

2𝑛𝑖
2𝑥

  , 𝑓𝑜𝑟𝛽 > 𝑘0𝑛𝑖 
(3.7) 

65. In which, we consider √𝛽2 − 𝑘0
2𝑛𝑖

2 term as an attenuation part of wave: 

𝛾 = √𝛽2 − 𝑘0
2𝑛𝑖

2 
(3.8) 

66. Thus, a traveling wave in z direction will have simplified to the equation below: 

𝐸𝑦(𝑥) = 𝐸0𝑒−𝛾𝑥 (3.9) 

67. According to the (Figure 3.9) we can conclude transverse wave-vector, 𝜅, as below: 

𝜅 =  √𝑘0
2𝑛𝑖

2 − 𝛽2 
(3.10) 

68. The (Figure 3.9) the mentioned equation is based on Pythagoras theory that we are 

using to define both transverse and longitudinal components of light flow. 

69.  
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70.  

71. Figure 3.9 - Schematic of wave components where 𝐾 = √𝜅2 + 𝛽2. 

72. Considering a plane wave with two components 𝑲 =  𝜅𝑥̂ +  𝛽𝑦̂, and 𝑲 =  −𝜅𝑥̂ +  𝛽𝑦̂ 

with which each k-vector has a plane wave related to wave function.This means that, 

these components end up with either destructive or instructive interference. Thus, 

establishments of modes (solutions for β) can be examined through those possible 

options. However, when the existed modes interfere in a constructive manner, the 

electric field is in its maximum amplitude, and while destructive interference of 

existed modes occurs, the intensity reduces to minimum value. 

73. For the TM case, the eigenvalue equation for 𝛽 is [76]: 

tan(ℎ𝜅𝑓) =  
𝜅𝑓 [

𝑛𝑓
2

𝑛𝑠
2 𝛾𝑠 + 

𝑛𝑓
2

𝑛𝑐
2 𝛾𝑐]

𝜅𝑓
2 −

𝑛𝑓
4

𝑛𝑐
2𝑛𝑠

2 𝛾𝑐𝛾𝑠

 (3.11) 

74. Then the slab structure can be solved through the equation to give the eigenvalues of 

existed modes inside the waveguide. As a result, we can plug in the results to the 

equation below to find the effective refractive index: 

𝑛𝑒𝑓𝑓 =
𝛽

𝑘0
⁄  (3.12) 

75. Using numerical technique, eigenvalue in (Eq. 3.8),gives us the values of kappa in 

each crossing point of tangent operator with its equal function graphically. Then, for 
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each desired spatial angular frequency k0one can find the propagation constant  and 

follow the (Eq. 3.11) to find out the effective index of engineered structure. 

76. In (Eq. 3.12) consider 𝑘0 =
2𝜋

𝜆
  for any particular wavelength. In (Table 3.1), the 

process of calculating effective index is provided in each row to end up with the last 

row in which the second row value is extracted from the graphical crossing of (Eq. 

3.9) like what is shown in (Figure 3.10). 

77.  

 

Figure 3.10 - The graphical computation solution to find 𝜅𝑓 according to the provided equations 

78. Then, we obtained this numerical calculation through the graphical methods for a 

range of desired frequencies as below: 

79.  

80.  

81.  



36 

 

Table 3-1 - Calculated effective refractive index in slab (silicon) vs. (1⁄λ) 

(𝟏
𝝀⁄ )[𝜇𝑚−1] 0.61 0.625 0.64 0.65 0.665 

𝜿𝒇(𝒄𝒎−𝟏) 90700 91000 91400 91500 91700 

𝜷 (𝒄𝒎−𝟏) 97701 101861 105873 108659 109918 

𝒌𝟎(𝒄𝒎−𝟏) 38308 39250 40192 40820 41134 

𝒏𝒆𝒇𝒇 2.55 2.59 2.634 2.66 2.67 

82.  

83. When we consider the lattice constant and the negative refraction region of the 

example from the literature (around 0.5 µm, and 0.2875 respectively), it is clear that 

we need to use the effective index value of around 2.66 for the positive refraction 

region. In addition, one can simply select the proper values for designing in this range 

according to what we computed for possible range of frequencies in (Figure 3.11). 
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Figure 3.11 - Graphical computation results of refractive index for slab vs. angular frequency. 

3.7 Constructing superlattice:(Effective refractive index of superlattice) 

84. When we analyze the calculated negative effective refractive index for the photonic 

crystal structure, we see that the index value is around two before it gets closer to the 

band edge. On the other hand, we have calculated the positive refractive index for the 

slab part as 2.66. Therefore, if we combine these two structure in order to form a 

superlattice that has a zero average refractive index, we need to use a ratio of (
𝑑2

𝑑1
=

0.65) in which d1 is the thickness of the photonic crystal part and d2 is the thickness 

of the slab. In (Figure 3.12) shows what we computed in (Table 3.1) as the dielectric 

value of slab (silicon film with 0.32 [um] thickness) and the negative refractive index 

of PhC with the parameters of a = 0.5 [um] as a lattice constant and the radii 0.31 on 

top of substrate (silicon dioxide with 1 [um] thickness).  
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Figure 3.12 - Refractive index profile in slab (blue), PhC (red) and superlattice (black). 

85. In (Figure 3.12) we are seeing the refractive index of a slab that varies gradually with 

respect to the variation of wavelength. On the other hand, the variation of effective 

refractive index in small range of frequency is an obvious fact that is shown at the 

same figure. It is noticeable that combination of mentioned slab with the proposed 

PhC gives us a unique result that ends up with a zero value of effective refractive 

index. As it mentioned this result is not only material dependent but also a geometry 

dependent. Meaning that, the ratio of combination of these two optical components 

plays major role in determination of having effective refractive index. Applying 

(
𝑑2

𝑑1
⁄ ) equal to the 0.65 which, determines the ratio of slab layer on PhC thickness, 

ends up with the zero index of supper lattice around 0.62 [𝜇𝑚−1].  
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Figure 3.13 - Calculated refractive index in an inhomogeneous superlattice (crystal-slab)with (
𝑑2

𝑑1
⁄ ) = 

0.65 thickness ratio, where it forms a zero-index with asymmetric refractive-indexprofile. 

86. To have better understanding of proportionality of effective refractive index we 

changed the ratio of (
𝑑2

𝑑1
⁄ ) slightly from 0.65 to the 0.67 and the results of gaining 

zero refractive index modified as shown in (Figure 3.14).  

87.  
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Figure 3.14 - Calculated refractive index in an inhomogeneous superlattice (crystal-slab) with (
𝑑2

𝑑1
⁄ ) = 

0.67 thickness ratio, where it forms two zero-index with asymmetric refractive-index profile..  (delete 

effective from the graph) 

88. In order to understand what happens theoretically when the average index becomes 

zero, we also visit the literature [80]. According to the physical origin of the zero- ñ 

band gap in which the transfer matrix T of the 1D binary periodic superlattice can be 

concluded through the Bloch theorem [77]:  

Tr[T(ω)] = 2cos κΛ ,  (3.13) 

89. Where к is the wave vector and Tr represents the trace operator. For a double layer 

unit cell we have (3.14): 

𝑇𝑟[𝑇(𝜔)] = 2 cos (
𝑛̃𝜔𝛬

𝑐
) − (

𝑍1

𝑍2
+

𝑍2

𝑍1
− 2)

× 𝑠𝑖𝑛 (
𝑛1𝜔𝑑1

𝑐
) 𝑠𝑖𝑛 (

𝑛2𝜔𝑑2

𝑐
) 

(3.14) 
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90. where n1(2) , d1(2) , and Z 1(2) are the refractive index, thickness and impedance of the 

first (second) layer and ñ represents the average refractive index, 𝑛̂(𝑥) =

(1
Ʌ⁄ ) ∫ 𝑛(𝑥) 𝑑𝑥

Ʌ

0
respectively. In the general case, when (Z2 = Z1) , if {κ0 Λ = (ñω 

Λ/c) = m 𝜋 }, witch (m) an integer, the relation 𝑇𝑟[𝑇(𝜔)] = |2 + (
𝑧1

𝑧2
+

𝑧2

𝑧1
−

2) 𝑠𝑖𝑛2 (
𝑛1𝑑1𝜔

𝑐
) ≥ 2|holds. This relation clarifies that the dispersion relation has not 

any real solution for κ except (
𝑛2𝑑2𝜔

𝑐
) term should be an integer number times (𝜋) that 

satisfies the Bragg condition. Meaning that, the PBG will form at the corresponding 

wavelength. However, if the suggested lattice satisfies the special condition of a 

particularly averaged zero refraction index (ñ = 0), the transmission spectra Tr[T(ω)] 

with respect to the given frequency as defined in Eq. (3.14) , similarly, get the value 

higher than two (2). Thus, the imaginary solutions for all κ and consequently a spectral 

gap that is not necessary to be scaled with the given lattice constant of suggested 

structure will be concluded. This means, we have non-Bragg type gap and it could 

have a very interesting properties such as zero phase accumulation between various 

components of the photonic integrated circuits. 

91. We now analyze this non Bragg type novel PBG, namely we change the lattice 

constant and check the band diagram and the transmission spectrum. 

3.8 Lattice dependence of the zero-𝒏̂ (Band diagram computing of superlattice) 

92. In this section, we provide three cases from what we obtained to admit the calculated 

transmission spectrum of crystal-slab class of superlattice. Here in (Figure 3.15) the 

schematic of combination of PhC with slab in which the number of holes in each stack 

is three and the ratio of thickness is about 0.65. Note that we are considering the PhC 

zone from the adjacent Gamma in left to the last Gamma at the left side of the periodic 

holes. Meaning that the length of three holes is 4 times the length of(𝑎𝑐𝑜𝑠𝜃 ) that 

represents the length of reciprocal lattice in first Brillouin zone of hexagonal lattice. 
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93.  

 

Figure 3.15 - Schematic of Crystal-Slab superlattice with 3 holes in crystal side with 0.65 slab section 

thickness ratio 

94. In addition, the band diagram of what we are seeing in (Figure 3.15) is attached in the 

next figure that provides schematic explanation of existence of hexagonal lattice inside 

the 1D periodic structure of superlattice (Figure 3.16). 

95. The procedure of analysis to this class of band diagram can be described as it is shown 

in ( ) that the unit cell inside the superlattice contains the multiple irreducible Brillouin 

zone. As a result, we expect the repeating of computed band diagram for each unit cell 

while we are traveling through the entire k-space of modulated superlattice. Each 

minima can be considered as a Γ for hexagonal lattice inside the superlattice and each 

maxima at the band bending part can be representation of M for the mentioned lattice. 

By increasing the thickness of alternated lattice inside the superlattice it expects to see 

more up and down fluctuation of band diagram that will provide in the next cases. 

96.  

97.  

98.  
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Figure 3.16 - Band diagram of superlattice for 3 holes case. 

99. In addition, the zoomed in portion of what we are interested to illustrate is attached in 

(Figure 3.17) that clarifies the existence of PBG for the suggested superlattice in 

(Figure 3.15). The existence of PBG at X1 represents the continuous PBG through the 

whole lattice in X1 direction. Meaning that, if we compute the transmission spectrum 

the same reflection spectrum should be seen in the same range of photonic band 

diagram. In (Figure 3.18) the normalized transmission spectrum is added that is what 

we expected. 

100.  



44 

 

 

Figure 3.17 - Zoomed PBG superlattice in 3 holes case. 

101. The normalized spectrum of transmission spectra is obtained by dividing the flux 

values of component at the end of the superlattice to the given Gaussian pulse with a 

specified range of frequency and finally scaling it in logarithm scale as it is shown in 

the (Figure 3.18).  Note that each decade of Log scale represents 10 percent of 

reflection of what we applied due to either existence of PBG or specific condition that 

is dominant in one particular sample of study. It is important to have an accurate 

examining of transmission spectrum since we want to compare these results with what 

we have a plan of comparing with the improved one. However, some normalized 

scales is experiencing extra step of dividing what we explained to gain normalized 

values to the maximum values of whole data based on showing normalization 

spectrum at the maximum level of Log scale which is 1 that represent 100 percent 

transmission. We did not apply this step since we need to show this class of structures 

experience Fresnel reflection [74], since the combination of introduced elements are 

not homogeneous. Meaning that, whole structure designed in a way that light 

experience both Fresnelreflection and the PBG. That is why all transmission spectrum 

of this type of superlattice are below one (1) normalized spectrum (Figure 3.18). 
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102.  

 

Figure 3.18 - Logarithmic normalized transmission spectrum plotin3 holes case 

103. Again, we are changing the number of holes with the same amount of slab with 

the 0.65 ratio (Figure 3.19) and start to examine superlattice band diagram and 

transmission spectra respectively which are attached the results in (Figure 3.20) and 

(Figure 3.22). 

104. Note that like previous case, we are considering the PhC zone from the adjacent 

Gamma in left till the last Gamma at the left side of the periodic holes. Meaning that 

the length of five holes is 6 times the length of(𝑎𝑐𝑜𝑠𝜃 ) that represents the length of 

reciprocal lattice in first Brillouin zone of hexagonal lattice. 

105.  



46 

 

 

Figure 3.19 - Schematic of Crystal-Slab superlattice with 5 holes in crystal side with 0.65 slab section 

thickness ratio 

106. (Figure 3.20) is showing band diagram of what is attached schematically as a 1D 

distribution of periodic superlattice. Since we are interested to examine light flow in 

X1 direction the computational process is focused on this at the existence reciprocal 

space. Note that the light line which is shown in each band diagram represents the 

included k-vectors of computed structure and the eigenvalues are solving through 

MPB to end up with band diagram structures its own. For example, in this band 

diagram one simply can figure out that existence of two-dimensional periodicity inside 

another periodicity parallel to the Gamma-M direction. Thus, the light-line boundary 

plays a major role in separating the included band diagrams from not included regimes. 

Unlike the one dimensional structure, the TM or TE mode starts from the beginning 

of the axis and end in the last computational number according to the given resolution 

of computation.   
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Figure 3.20 - Band diagram insuperlattice for 5 holes case. 

107. The zoomed in portion of superlattice PBG is shown in the (Figure 3.21) that is in 

total agreement with the transmission spectrum of numerically computed. However, 

this band diagram provides useful information about the presented structure and it is 

well clear that there is no need for extending the cell to form a superlattice of 

complicated band diagram. Since our goal is to approve fixed value of computed 

wavenumber around  0.62[𝑢𝑚−1] unlike the scaled method of computing PBG. 
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Figure 3.21 - Zoomed PBG superlattice for the 5 holes case 

108. As we mentioned the important part of this study is to remove the low flux volume 

at the output. By considering the 5 holes case, we are seeing the same problem that 

the suggested structure deals with is demonstrated in (Figure 3.22). In other words, 

one can simply conclude that the whole structure has one decade reflection for all 

applied Gaussian pulse based on Fresnel's reflection light that occurs inside the 

superlattice and gives rise to destructive interference of coming wave with the 

reflected light. 
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Figure 3.22 - Logarithmic normalized transmission spectrum plotin5 holes case 

109. The Next case is follow the same parameters with the same ratio but in this case 

we merely increased the thickness of stacks to make sure about the existence of zero-

ñ gap based on what we will explain later. 

 

Figure 3.23 - Schematic of Crystal-Slab superlattice with 7 holes in crystal side with 0.65 slab section 

thickness ratio 

110.  
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111. The result of band diagram for 7 holes cases that is shown in (Figure 3.23) is 

attached in the (Figure 3.24).  

 

Figure 3.24 - Band diagram of superlattice for 7 holes case. (the orange bar line shows the PBGs) 

112. In superlattice band diagram one might scale the existence band gaps and examine 

them in transmission spectra but the fact is for zero-ñ gap this is not following since 

the zeroorder of PBG does not follow the Brag condition anymore. Therefore, 

exploring any photonic band gap through the band structure is possible to be scaled 

except for the zero-ñ one. Meaning that, introducing any lattice constant cannot affect 

the existence of a calculated band gap. 

113. The (Figure 3.25) shows the zoomed in portion of superlattice PBG that we 

calculated for 7 holes shown schematically in the (Figure 3.23). 
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Figure 3.25 - Zoomed PBG of superlattice in 7 holes case 

114. According to the last results, we expect the reflection spectra like (Figure 3.26) 

with both existence of zero-ñ gap and attenuated flux which implies the destructive 

interference of travelling wave through the superlattice. The other reflection profiles 

are based on Brags condition effect that are appears around the desired frequency. We 

also did simulation of other structures and attached them after introducing the 

calculation of refractive index which is really essential for understanding of 

originating zero-ñ gap. 
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Figure 3.26 - Logarithmic normalized transmission spectrum plotin7 holes case 

115. To conclude what we obtained from three different cases, we can imply to the 

fixed existence of reflection spectrum at a particular frequency around 1
𝜆⁄ ≅

0.62 [𝜇𝑚−1] and consistent of attenuated flux at the output about one decade. The 

attenuation of signal through the suggested structure can affect the sensor application 

and signal to noise ratio which is not desired for any optical components. We will 

provide a solution, by a modulated structure of what is gained through the disordered 

structure and demonstrate the high transmission spectrum without any attenuation 

merely by replacing homogeneous component instead of slab. 

116.  

117.  



53 

 

 

 

Figure 3.27 - Logarithmic normalized transmission spectrum plotincluding 5 stacks with3, 5, 7 and 9  holes 

in each stack shows in blue, red, green and black colour, a) Transmission spectrum in log scale, b) the 

existence of zero-ñ gap gives rise to no shifting in phase 

118. In the (Figure 3.27), we are demonstrate numerically that there exist a zero-𝑛̂ gap 

at  
1

𝜆
= 0.622 since the variation of layers in superlattice does not influence the created 
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gap at  
1

𝜆
= 0.622. However, the other spectrum profiles starts to change either to the 

higher or lower frequencies while the geometry of lattice is changed. This 

Transmission spectrum shows the existence of   zero-𝑛̂ gap in a crystal-slab class of 

superlattice. For the same ratio and the same parameters, we examine the effect of 

increasing the number of stacks and try it with a longer structure. The results of longer 

compositions are attached in (Figure 3.28). 

 

 

Figure 3.28 - Logarithmic normalized transmission spectrum plotincluding 9 stacks with3, 5 and 7 holes in 

each stack shows in blue, red, green and black colour in whichthe existence of zero-ñ gap gives rise to no 

shifting in phase 

In the (Figure 3.28), weconclude that the suggested structure is not only suffering from Fresnel reflection 

(attenuation of signal)but also increasing in length of the superlattice and adding up the number of stacks is 

not influencingthat much to have deep of stop band and efficient contrast and applicable in switching 

components of PIC type of devices.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

In this chapter, we will study the effect of disorder on the band diagramof PhCs and will 

apply it to form a superlattice. In addition, it will open new options of controlling light 

through the designed complicated lattices. The aim of this approach is to have deep 

understanding of changing density of states inside the lattice and realize proportionalities 

of effective refractive index with introduced dielectric while we are modifying the density 

of certain dielectric with respect to the regular structure. We suggest a disordered 

modulated hexagonal structure in which the position of holes varies in a paralleled 

direction of applied light direction and study, with numerical methods and simulation, its 

influence on both effective refractive index and photonic band gap. Fortunately, the results 

of this approach are promising enough to utilize it in various applications of on-chip 

integrated circuits. Therefore, we obtained new version of modifying PBG, swinging PBG 

to either high or low level of frequencies, that is obtained simply by modifying the 

geometry of traditional hexagonal without altering any other parameters. We applied this 

class of suggested structure in one particular superlattice to gain zero-𝑛̂ gap for the sake 

of comparison with the reported structures recently [80]. However, self-collimation is an 

interesting topic of PhC field but the challenging matters in this path made it the less 

affordable results [81] for mass production. However, previous results are suffering from 

energy losing since the modulated PhC, square lattice with Dirac cones band diagram, has 

utilized metallic material inside the lattice. In this set of computation, we brought two 

types of suggested Supperlattices together to have clarification of difference between 

them. In addition, we are trying to form a broadband zero-𝑛̂ gap with lossless energy and 

improve the reported experimental results recently [82]. We also added some unsteady 

simulation of proposed structure about E-field distribution to acknowledge our computed 

results with Meep and MPB. 
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4.1 Photonic Band diagram 

The photonic band diagram of regular hexagonal is shown in (Figure 4.1), and its zoomed 

in figure is attached to give more details about the existence of band gap at the Γ-M 

direction between first and second band diagrams. In addition the geometry of suggested 

regular hexagonal include 0.5 [𝜇𝑚] lattice constant with the 0.32[𝜇𝑚]film of silicon on 

top of 1[𝜇𝑚] substrate which is silicon dioxide. The (r/a) is 0.35 with the cylindrical holes 

that have the same height of film (silicon).  

 

Figure 4.1 - Photonic band diagram in regular hexagonal latticewhere lattice constant is 0.5 [𝜇𝑚], and 

0.32 [𝜇𝑚] silicon film thickness on a 1[𝜇𝑚]thickness silicon dioxide substrate. with (r/a = 0.35) 
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Figure 4.2 - Zoomed section of photonic band diagram with PBG in Γto M direction 

In order to have different PhCs with different characteristics, there might be many 

methods of modifying such as changing radius, lattice constant, thickness and even type 

of lattice like hexagonal, square and triangular and so on [69]. However, we study 

hexagonal structure without changing any other parameters to produce both positive and 

negative refraction indexes in the range of 1500 ~ 1600 [nm] wavelength. This variation 

is based on reducing the angle of  Γ-M & Γ-K direction, However, it is a new type of 

disordered hexagonal structures which are enormously useful for on-chip 2D devices. This 

new type of PhCs helps to have a broad manipulation range of complicated superlattice 

since this modification gives rise to swing PBG. In other words, this type of disorders 

provides broad options with expected results of designing and efficient constituent. The 

variation of angles can be accomplished by means of shifting holes in either x-axis or y-

axis and even it is possible to change it in both axes simultaneously. Here we showed in 

(Figure 4.3) the variation of angle by shifting in X-axis with fixed length of Y-axis, since 

we are interested to examine variation of PBG in M direction (X-axis). As a result, the 

whole lattice will have fixed width of lattice beside the same applied parameters such as 
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thickness and radii for the regular PhC. In (Figure 4.3) the changing parameters in both 

Cartesian and K space are clarified with some other details. in (Figure 4.4) 

 

Figure 4.3 - Schematic of shifted structure from regular position (red) to the new disordered position 

(black)where the black holes generate new Brillouin zone. 

This modulation that is originated from the disordered theory can be explained in another 

fashion. By assuming the holes (cylindrical air) inside the lattice with a particular 

dielectric, one can simply mention the density of state to examine effect of manipulation 

of PBG by fluctuating a particular density of dielectric inside the lattice. In our case of 

study, the increasing mentioned angle ends up with the compression of holes and finally 

increasing lower dielectric state inside the silicon with higher epsilon. 



59 

 

 

Figure 4.4 - New parameters for disordered hexagonal structure after shifting in X-axis. 

In (Figure 4.4) the result of disordered well explained that causes the compression of holes 

inside the lattice. Since we are studying the effect of this phenomena numerically, 

existence of two lattice constant might be a little confusing. However, the lattice constant 

is considered according to the regular hexagonal structure since the determination of film 

thickness and even substrate is computed according to the regular hexagonal structure. 

Meaning that (a1) as a regular lattice constant determines the thickness of silicon film and 

substrate not (a2) which is coming from the disordered effect. For example, for our 

computation of band diagram the scaled parameters (h/a) , (r/a) are 0.64 and 0.35 which 

gives us 0.32[𝜇𝑚] thick silicon and 0.175 [𝜇𝑚] radius of holes if the lattice constant get 

the value of a1= 0.5 [𝜇𝑚].  

In (Figure 4.5) the computed band diagram of all angles is shown all together for the sake 

of clarifying swinging PBG with disorder effect. However, the first and second bands of 

applied parameters (r/a=0.35, thickness of silicon=0.32 [𝜇𝑚] and constant thickness of 

substrate) creates photonic band gap at certain range of frequencies with different lattice 

geometry. In other words, variation of angles starting from 28 degree to 34 degree gives 

rise to modification of lattice constant but with fixed width of previous structure. 

However, reducing the angle of Γ-M and Γ-K direction gives rise to increasing of lattice 

constant and shifting the PBG to the lower frequencies. Moreover, increasing the 
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mentioned angle makes reduction of lattice constant and shifting of PBG to the higher 

frequencies. The reason of rising first band in the band diagram is due to increasing the 

density of lower epsilon (air) at the same geometry which gives rise to enhancing the 

energy level at higher band because of large tendency of photons to flow in high refractive 

index. The (Figure 4.5) illustrates the reduction of lower dielectric density at higher 

degrees of disordered𝜃 > 30𝑜between Γ-M and Γ-K in hexagonal lattice. 

 

Figure 4.5 - Zoomed portion of band diagrams for PhCs with different angles between Γ-M and Γ-K 

direction. Increasing the angle gives rise to increasing the PBG and swinging it to the higher angular 

frequencies, (orange bar line) shows the PBG range for 28 degree, (red bar line) shows the PBG range 

for regular lattice, (gray bar line) shows the PBG range for 34 degree 

In (Figure 4.6.a), (Figure 4.6.b), (Figure 4.6.c) the procedure of variation of density of 

states is illustrated by changing the order of disorders, which is discussed already. 
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a) 

 

b) 

 

c) 

 

Figure 4.6 - Angle variation effect in hexagonal lattice on lower dielectric density inside the 

lattice, a) 28 degree, b) regular hexagonal with 30 degree, c) 34 degree. 

For example if one needs to have a PBG at higher frequencies it can be realized merely 

by increasing the lower dielectric (real part) like what is shown (Figure 4.6) in which all 

parameters are the same as regular hexagonal structure but the degree of disordered 

increased from 30 degree to the 34 degree. 

We also did simulation of transmission spectrum, using FDTD in Meep, to examine results 

of computed photonic band diagrams in (Figure 4.5). According to the normalized 

spectrum of transmission versus frequency in (Figure 4.7) the PBG is swinging and it is 
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in complete agreement with the transmission spectrum results. As a result, this new class 

of disorder in hexagonal structure provides complete manipulation of PBG, 

negative/positive and even combination of different types with each other to gain so many 

complicated approaches.  

 

Figure 4.7 - Logarithm Scale of transmission spectrum of different PhCs 

4.2 Superlattice PBG calculation of Crystal-Crystal 

We discuss the superlattice of crystal-crystal band diagram which is provided in (Figure 

4.5).Therefore, we expect multiple dispersion alternation values in one superlattice since 

it is not irreducible zone to one portion of included unitcells. However, before examining 

the agreements of both transmission spectrums with the superlattice band diagram we need 

to know: 

In first case, we start with the three holes in each alternating layer as it is shown in (Figure 

4.8) that is the smallest modulated of our investigating. 
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Figure 4.8 - Schematic of Crystal-Crystal superlattice with 3 holes in each side where one column of 

holes (air) is in common for both sides. 

According what we discussed in third chapter the computed band diagram of superlattice 

is computed only in x1 direction since we are interested to see the effect of disorder in Γ-

M direction and our computed PBG for the regular crystal is in this region too. 

 

Figure 4.9 - Band diagram of superlattice for 3 holes (crystal-crystal) case. 

The zoomed in part of computed band diagram is attached in (Figure 4.10) clarify 

existence of both zero order gap and those which are following Bragg condition. One can 

simply can take a frequency from those bands and scale it to estimate the range of stop 

band in transmission spectra. One of the advantages in designed structure is that there is 
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no necessity for scaling step. In other words, the existed PBG in the band diagram can be 

explored in the transmission spectra directly without scaling. 

 

Figure 4.10 - Zoomed PBG of superlattice (crystal-crystal) in 3 holes case. 

The transmission spectrum of what we introduced is shown in (Figure 4.11) in which the 

normalized spectra shows no attenuation of applied signals at the output of superlattice 

structure. Thus, the computed flux is almost higher than the previous case that is addressed 

in last chapter. 
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Figure 4.11 - Logarithmic normalized transmission spectrum plotin3 holes case 

For thicker layer we increased the number of holes in each side and produced 5 holes in 

each section of PIM (disordered lattice with 34 degree) and NIM (regular lattice with 30 

degree) in which the one column is in common (Figure 4.12). 

 

Figure 4.12 - Schematic of Crystal-Crystal superlattice with 5 holes in each side where one column of 

holes (air) is in common for both sides. 

For the shown schematic we compute the band diagram and it is shown in (Figure 4.13) 

for more details it is zoomed in (Figure 4.14). 
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Figure 4.13 - Band diagram of superlattice for 5 holes (crystal-crystal) case. 

Zoomed inpart of what we need to observe as a superlattice band gap is attached in (Figure 

4.14). The transparent band shows whole reflected spectrum but except the zero-ñ gap the 

other frequencies should be scaled to follow the Brag's gap based on finding the same 

computed PBG in the transmission spectra. Thus, the illustrated frequency around the 0.66 

[𝑢𝑚−1] is not required to be scaled since it is absolute zero order of gap which is discussed 

in (Eq. 3.14). 
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Figure 4.14 - Zoomed PBG of superlattice (crystal-crystal) in 5 holes case.. 

Transmission spectrum for the case of 5 holes admit the computed superlattice band gap 

which is shown in (Figure 4.15) and admit the existence of fixed gap with a symmetric 

profile of refractive index. One can simply, compute either by scaling the computed band 

diagram from (Figure 4.14) and see the result in transmission spectra or for zero-𝑛̂gap it 

is realized by comparing the computed frequency range in the band diagram with the same 

value of stop band at the transmission spectrum in (Figure 4.15). Perhaps, to compare with 

the other cases this thickness has a good contrast of comparing signal, transmitted 

frequency near the gap, to the gap transmission power. In other words, the logarithm scale 

of what this case provides is desirable to use for example in a switch components of PIC. 
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Figure 4.15 - Logarithmic normalized transmission spectrum plotin5 holes case 

In third case we have 7 holes in each section of both positive and negative layers and one 

column of holes are common in between. Meaning that, the seventh column in the first 

layer (PIM) is belonged to both sides of the stack. The ration of these thickness is designed 

in a way to form a equal number of holes in both sides to end up with the zero-ñ gap 

profile at the desired frequency. In other words, the (
𝑑2

𝑑1
= 1.1) in which the d2 is the 

negative layer's thickness with a regular hexagonal structure and the d1 is the thickness of 

disordered hexagonal layer with a negative value of effective refractive index. Note that, 

the mentioned ration is equal to (𝑎𝑥2 𝑎𝑥1)⁄  so increasing the number of holes has to be 

the same. Thus, we will have the equality of number of holes in each side to form a 

superlattice to gain zero-ñ gap. 
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Figure 4.16 - Schematic of Crystal-Crystal superlattice with 7 holes in each side where one column of 

holes (air) is in common for both sides. 

Following band structure in (Figure 4.17) shows so many fluctuation of bands since the 

computed cell contains multiple reduced Wigner-Seitz cell that gives rise to having 

multiple k-vectors through the superlattice k-space. 

 

Figure 4.17 - Band diagram of superlattice for 7 holes (crystal-crystal) case. 

In addition, in (Figure 4.18) the zoomed in section of superlattice PBG is shown with a 

gray band. As it is clear from the figure the reduction of one particular band of frequencies 

due to increasing the thickness of the structure which gives rise to narrowing of the 

superlattice PBG. 
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Figure 4.18 - Zoomed PBG of superlattice (crystal-crystal) in 7 holes case. 

The transmission spectrum includes this PBG and the variation of other Brag's gap should 

be defined through the scaled calculation. For example, any selected gap frequency 

according to the band diagram structure should be multiplied to the superlattice constant 

and divided by the suggested lattice constant to figure out which wavenumber should be 

resonate as a gap in transmission spectra.  
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Figure 4.19 - Logarithmic normalized transmission spectrum plotin7 holes case, the importance of stop 

band due to the existence of zero-𝑛̂ gap is clear since it is not shifting by changing the structure. 

Consequently, all selected cases admit the existence of PBG at the same range of 

frequencies that proves zero-𝑛̂gap at (1/λ =0.655). In this set of calculation we assume the 

lattice constant as a function of disorder, however, it is determine from the thickness of 

the film (silicon) which is computed to the regular one. Therefore, the lattice constant has 

not to be changed for computation process since the thickness of silicon is the same 

through the lattice either it is regular or disordered region. It is noticeable that the rough 

value of (a = 0.511) is for the sake of computing in range not in exact value of zero-𝑛̂gap. 

In other words, it is also possible to recalculate the 1/λ with (a = 0.5) for any frequencies 

included in superlattice band diagram and illustrate the existence of fixed gap in broad 

band. In addition, we provide the both band-diagram and computation of crystal-slab type, 

which we showed in previous section. 

4.3 Effective refractive index of Crystal-Crystal superlattice 

As we discussed the importance of the band diagram in previous chapter and the effect of 

changes of band diagram with respect to the k-space variation. Here we provide the 

numerical results of finding effective refractive index with respect to the slop of both light 
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line and band diagrams. First, we compute the refractive index of regular hexagonal PhC 

around the PBG. 

 

Figure 4.20 - Refractive index vs. angular frequency 

In (Figure 4.20) the refractive index of regular hexagonal lattice calculated through the 

(Eq.3.10) for first band. Moreover, it is applied to the second band and the results attached 

in (Figure 4.21) in which the negative values of refractive index versus angular frequency 

are gained due to negative slop of second band with respect to the k-vectors in band 

diagram. 
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Figure 4.21 - Refractive index vs. angular frequency 

Second, the calculation of refractive index in disordered hexagonal structure in which the 

density of lower epsilon is increased with respect to the regular one. In other words,  the 

first band which represents the lower epsilon and second band which represents the energy 

level of higher epsilon shifts in upper states due to increasing density of lower dielectric 

inside the PhC. (Figure 4.22) shows the creation of sharp slop with enhanced refractive 

index around the band gap. 
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Figure 4.22 - Refractive index vs. angular frequency 

Moreover, we compute the second band slop and plug in the (Eq.3.2) that gives us the 

results of (Figure 4.23) in which the negative values of refractive index versus angular 

frequency is shown. The same approach for gaining zero average is realized by accurate 

calculation of these two different index value including negative and positive. 

Consequently, the ratio of combination will help us to manage the suggested component 

to have a crystal-crystal superlattice that has useful advantages over the last structure. We 

will examine these priorities after computing the index values of first and second band 

diagram which gives positive and negative value due to their slope effect on group velocity 

respectively.    
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Figure 4.23 - Refractive index vs. angular frequency 

In addition, the combination of two types of crystals, regular and disordered, gives rise to 

obtain almost zero index around the normalized frequency of (1/λ = 0.655) .  

As it is seen from the computed values in (Figure 4.22) this values are proper to use them 

with mentioned ratio NIM over PIM in which the positive layers have comparable values 

with the NIM structure. In other words, the regular hexagonal lattice has suitable negative 

values at the same range of frequency that the disordered one (34 degree) give us with 

mentioned process of calculation. 
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Figure 4.24 - Refractive index profile in regular PhC (blue), disordered PhC (red) and superlattice (black). 

One of the plausible designing for these type of superlattices is the number of holes in 

each layer which determine the average zero index. In our suggested structure we choose 

the degree of disordered in a way to form integer number of holes for each side. We will 

study this to see the effect of variation of both thickness and number of stacks for some 

conceptual cases in this field later and see the advantages of having this priority over last 

case. 
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Figure 4.25 - Zoomedsection of symmetric refractive index profile in crystal-crystal superlattice vs. 

angular frequency. 

4.4 Zero-ñ gap in Crystal-Crystal superlattice type 

Combination of two types of crystals in atomic level ends up with huge number of 

achievements in electronic [83]. By reviewing all governing rules at atomic level, the 

matter of compatibility, energy states and feasibility of suggested materials are one of the 

challenging in this field. In solid-state devices, the matter of having either heterogeneous 

or homogeneous component is occupied in high level of consideration since play a major 

role at the desired results [84]. We also introduce the new type of PhCs in a homogeneous 

superlattice to gain zero-𝑛̂gap with an enhanced electric fieldand flux at the output of the 

suggested component. One of the advantages of having crystal-crystal superlattice instead 

of crystal-slab one is forming a zero-𝑛̂ gap with a symmetric transmission spectrum since 

the refractive-index profile of these suggested homogeneous structures approve the idea 

(Figure 4.25). Unlike the homogeneous structure having inhomogeneoussuperlattice, 

crystal-slab, gives rise to either short-band (Figure 3.12) zero index or two zero index at 

two separated range of frequencies (Figure 3.13). Recently, so many attempts has been 
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suggested to make  negative refractive index materials , zero-𝑛̂gap PhCs and complete 

photonic band gap to have an expected manipulation of light inside the matter. However, 

controlling phase of single mode in on-chip application relies on having symmetric 

refractive index profile, possessing positive, negative and zero index in broad range of 

frequencies, in short range of distance. This novel component toward the forming a 

component with symmetric refractive index profile in a broad band is a straightforward 

approach to fulfill all optical goals with the ease of designing step. In other words, there 

are so many alternative PhCs with the same parameters with many existed options. In this 

thesis, we suggest two modulated PhCs, one with the regular hexagonal structure and the 

other with disordered 34 degree to create a superlattice and make sure about combination 

of left hand side materials (LHM) with right hand side material to end up with the zeroth 

order of gap.  

As in on-chip devices the range of frequencies are limited having one constant dielectric 

like slab gives rise to limited parameters of PhC. In other words, to have zero-𝑛̂gap at the 

range of 1500 [nm] ~1600 [nm] the parameters of PhC should be arranged in a way to 

gain negative refractive index at this small range of frequencies. Even if one could find 

this which is a typical step the harder step is limited components of LHM since the number 

of holes have to be integer. One of the hardships of designing a structure with a computed 

ratio of (d1/d2) is limitation of cutting PhCs from the calculated thickness of either d1 or 

d2 to make a desired superlattice. In other words, it is not possible in reality to select a 

desired distance for LHM or RHM since the cutting line should end up at the symmetric 

potential values according to the periodicity of PhC.  Thus, this calculated cutting lines 

should be designed in a way either to chose this crossing line exactly after a defined unit 

cell. However, all (d1/d2) ratios are not feasible except having alternative options of 

creating either right or left hand side materials with different segment size. Angle variation 

of hexagonal structure obviate this hardship step of computing and make ease of designing 

with variety of components in any desired wavelength since the designer can chose any 

optional disordered angles. In this thesis, we combined 34 degree disordered hexagonal 
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with the regular one to have superlattice of obtaining zero-𝑛̂gap. (Figure 4.26) illustrates 

the transmission spectrum of superlattice with respect to the number of holes in each 

section of superlattice and transmission spectrum of superlattice which forms the zero-

𝑛̂gap at frequency of 0.657 with different number of holes. The parameters that we used 

to gain this zero phase delay, are as following: 0.32 [um] silicon on top of 1 [um] silicon 

dioxide with a hexagonal cylindrical holes (air) radii 0.35 and lattice constants are 0.5 

[um] and 0.447 [um] for 30 and 34 degree respectively and also the ratio of  (d1/d2)is equal 

to (ax2 / ax1) which ax2 and ax1 are shown in (Figure 4.4) of 30 and 34 degree respectively.  

 

 

Figure 4.26 - Logarithmic normalized transmission spectrum plotin3, 5, 7 and 11 holes cases, a) 

Transmission spectrum in log scale, b) the existence of zero-ñ gap gives rise to no shifting in phase. 
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To compare two class of structure, homogeneous and inhomogeneous, we attached both 

results in zoomed in form to have better discussion on them in (Figure 4.27) and (Figure 

4.28) 

 

Figure 4.27 - Zoomed section of transmission spectrum for inhomogeneous (crystal-slab) superlattice that 

shows 1 decade of attenuation. 

As it is clear from (Figure 4.27) the transmission spectrum suffer from attenuated signal 

and obviously there is no symmetric in the zero-ñ band section that is based on having 

unsymmetrical profile of refractive index which is presented in (Figure 3.12). Meaning 

that, the effective refractive index of suggested inhomogeneous structure have two 

negative refractive index in both sides of the zero index that leads to having unsymmetrical 

index profile.  Unlike the inhomogeneous one, the effective refractive index profile in 

crystal-crystal structure (homogeneous) has symmetrical values including both negative 

and positive in both sides of the zero index (Figure 4.25). 
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Figure 4.28 - Zoomed section of transmission spectrum for homogeneous (crystal-crystal) superlattice, 

(blue) 3holes, (red) 5 holes, (yellow) 7 holes and  (green) 11 holes in each layer 

In addition, we attached the larger structures to have acceptable contrast between 

transmission region and zero-ñ gap range of frequencies in (Figure 4.29). 
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Figure 4.29 - Transmission spectrum for longer structure (8 stacks), a) zoomed zero-ñ gap with deep 

reflection spectra , b) existence of zero-ñ gap gives rise to no shift in phase 

By considering the fact that, speed of light wave is constant in non-dispersive media, the 

Gaussian pulse function that contain multiple frequencies tend to have dispersion and lose 

the shape of pulse if the speed of applied light depends on frequency of the wave. Meaning 

that, higher frequencies tend to travel faster than lower frequencies and gives rise to pulse 

spread out and lose its shape as it travels. Not that the middle of the pulse is expected to 

travel with the same speed as already did but the only thing that fix this asymmetric 

dispersion is to have an asymmetric refractive index profile. In other words, providing a 

media with a zero index for the middle of the pulse and negative refractive index for higher 

frequency and positive values of index for the lower frequencies of the pulse give a chance 

of having the same speed through the lattice while it is travelling. As a result, we changed 

the properties of material by engineering it in a proper way to modify a dispersive media 

to a non-dispersive media. The results clarifies in (Figure 4.28) the non-dispersive profile 

of modulated structure. 

Showing electric field distribution helps to have different perspective of what we 

achieved. In (Figure 4.30) we applied a continuous wave instead of Gaussian pulse to 
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monitor its flux at the end of the structure. This result shows the brag condition for all 

other frequencies except 
1

𝜆
= 0.655 which included in the zero-𝑛̂ . In other words, applied 

planer wave comes out at the end with high transmission spectrum which is shown with 

the red-blue color. 

 

 

 

Figure 4.30 - The electric field (introduced from source with 1
𝜆⁄ = 0.633) distribution through: a) 

crystal-crystal superlattice (5 holes 9 stacks) with the frequency from transmission range, b)crystal-slab 

superlattice (5 holes 10 stacks) with the frequency from transmission range experience destructive 

interaction between transmitting and reflecting light flow. 

To compare this achieved result with the conventional one which are introducing slab for 

the positive layer, the attenuated electric field distribution is well clear that the structure 

does not let the wave flows with high transmission spectra due to constructive interference 

of going and coming wave inside the superlattice that is shown in (Figure 4.30b). On the 

other hand the obviated mentioned issue in suggested superlattice gives rise to no 

destructive Fresnel reflection and monitoring high transmission at the end of the 

developed component (Figure 4.30a). In addition, we attached the results of same layers 

(5 holes in each layer) to have clear comparison of two structures in (Figure 4.31) that 

shows increasing the number of stacks causes to lose transmission more and more. 
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However, increasing the length and number of stacks in (Figure 4.31a) shows no decaying 

in transmission at the end of the structure. As a result, this type of superlattices have no 

contrast while they have large geometry. 

 

Figure 4.31 - Comparing transmission spectra in three different structures with the same thickness, a) 

homogeneous superlattice (crystal-crystal) with no decaying b) inhomogeneous superlattice (crystal-slab) 

cases decays with increasing the number of stacks. 

As a conclusion, controlling phase and amplitude of light is only possible while we have 

an accurate values of band diagram which is obtained by solving Eigenvaluess. We 
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proceed this computational process using MPB and the whole results are in total 

agreement with each other. However, the preference of suggested modulation can be 

discussed through the comparison of (Figure 4.27) and (Figure 4.28) in which they are 

showing transmission spectra of both superlattices one with slab and the other applied 

disordered PhC. One simply recognizes that in the case of slab, whole transmission 

spectrum is one decade below from what we obtained in suggested modulation one. 

Meaning that the amount of applied light at the beginning of superlattice experience 

Fresnel reflection [74] due to facing with inhomogeneous structure and gives rise to 

destructive interference of light through the lattice. On the other hand, the modulated 

disordered structure improved this problem to gain high transmission spectrum with zero-

ñ phase at the desired range of frequency.  

4.5 Summary in future work 

In this chapter, we learned the calculated band diagram of disordered structure that is a 

typical issue of fabrication. However, it has a logical road map of exploring and realizing 

these class of structures. In addition, it provides vast options of expected results and 

solutions to have an understanding of facing any error in research process. Moreover, we 

designed and used the modulation of hexagonal structure to form a crystal-crystal 

superlattice. In addition, by considering the theory behind what researchers are interested 

to scrutinize and get the step of action for any faced problems in their field of study, 

therefore, this knowledge would be a useful one. For example, we proved manipulation 

of photonic band gap without any modification in parameters involved with the regular 

hexagonal structure. Meaning that homogeneous fashion through lattice gives rise to have 

ease of manipulation based on controlling light flow. This approach provides swinging 

PBG which is one of the essential concerns of PhC science. This case of study also 

provides the predicted results and range of errors while we are dealing with imperfect 

tools of micro fabrication. In addition, we demonstrated existence of negative refractive 

index merely by variation of angles inside the suggested hexagonal structure. This ease of 

controlling in dispersion phenomena leads to design a superlattice with a homogeneous 
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structure and compare it with inhomogeneous one and some other experimental results. 

More importantly, this modulated homogeneous superlattice reduce Fresnell reflection 

since both sides of alternative stacks are PhC. In other words, this class of superlattice 

gives high transmission spectrum and consequently high sensitive signals for sensor 

applications. We also compute the refractive index profiles with a highly values in both 

negative and positive. It provides a great opportunity for one who needs to design a strong 

coupling of light with the component since the regular component does not possess vast 

options of alternating in particular rang of frequency. We will examine the defect-less 

waveguide merely by introducing the disorder instead of having defect path through the 

lattice. In addition, our next step is examining the experimental results of suggested 

modulated structure and go further and track the light's behavior in amorphous distribution 

of dielectric inside a particular lattice. 
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