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ABSTRACT 

 

 

TEMPERATURE DETECTION USING MICRO PLATE VIBRATIONS 

 

 

 

Pala, Sedat 

M.Sc., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Kıvanç Azgın 

 

June 2017, 97 pages 

 

This thesis presents the design, modelling, fabrication and characterization of a 

resonant MEMS plate temperature sensor. In the proposed application, temperature 

change is measured by tracking natural frequency shifts of a specific mode shape of 

the resonating micro plate.  

The design and modelling of the resonant MEMS plate temperature sensor are 

conducted for Chladni plate geometry that is square plate supported at the geometric 

center, having all edges free to move. Energy methods are utilized to solve the equation 

of motion of transversely vibrating Chladni plate structure to obtain the closed form 

equations for the mode shapes and respective natural frequencies with electrostatic 

softening effect. Thermo-electro-mechanical model is derived with the addition of 

thermal effect on top of the electromechanical solution. Finite Element (FE) 

simulations are conducted for each step of analytical model to verify the derived 

model. 
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The designed sensors are fabricated using a silicon-on-glass (SOG) process. The 

fabricated temperature sensors are characterized with frequency response and system 

level temperature tests. The Q-factors of modes (1,1) and (2,0) - (0,2) are measured to 

be 14300 and 10700 at a vacuum pressure level of 20mTorr, respectively. The Laser 

Doppler Vibrometer (LDV) tests at vacuum level of 0.364mTorr verify the analytical 

model and FE simulations. In addition, effect of electrostatic softening is also tested 

for a proof mass voltage range of 0-40V, and corresponding frequency shift is 

measured to be 0-26Hz. System level temperature tests are done with a Phase Locked 

Loop (PLL) to track frequency drifts with changing temperature at vacuum level of 

0.405mTorr. The scale factor of the fabricated sensor is obtained as 2.0214Hz/°C and 

2.7211Hz/°C for mode shapes (1,1) and (2,0) - (0,2), respectively. The temperature 

equivalent frequency instabilities of the fabricated sensor are measured to be 

0.3725mK for (1,1) mode shapes and 0.1499mK for (2,0) - (0,2) mode shape. 

Keywords: MEMS, micro plate, MEMS resonator, Chladni Plate, MEMS Resonant 

Temperature Sensor, Temperature Sensing. 
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ÖZ 

 

 

MİKRO PLAKA TİTREŞİMLERİNİ KULLANARAK SICAKLIK TESPİTİ 

 

 

 

Pala, Sedat 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Kıvanç Azgın 

 

Haziran 2017, 97 sayfa 

 

Bu tez rezonant MEMS plaka sıcaklık sensörünün tasarım, modelleme, üretim ve 

karekterizasyonunu sunmaktadır. Önerilen uygulamada sıcaklık değişimi, titreyen 

mikro plakanın belirli titreşim biçimine ait doğal frekansındaki değişim takip edilerek 

ölçülür. 

Rezonant MEMS plaka sıcaklık sensörünün tasarımı ve modellenmesi Chladni plaka 

geometrisi, geometrik merkezinden destekelnen ve tüm kenarları hareket edebilmesi 

için serbest olan kare plaka için yapıldı. Titreşim biçimleri ve bunlara karşılık gelen 

elektrosatik yumuşama etkisinin dahil edildiği doğal frekanslar için kapalı denklemler 

elde edebilmek amacıyla, enine titreşen Chladni plakanın hareket denklemlerinin 

çözümünde enerji yöntemleri kullanıldı. Elde edilen elektomekanik çözüme ısıl etkiler 

dahil edilerek termo-elektro-mekanik model elde edildi. Türetilmiş analitik modelin 

her bir adımını doğrulamak için Sonlu-Eleman (SE) benzetimleri yürütülmüştür. 
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Tasarımları yapılan sensörler cam üzeri silicon yöntemi ile üretilmiştir. Üretilen 

sıcaklık sensörleri frekans tepki ve sistem düzeyinde sıcaklık testleri ile karakterize 

edilmiştir. Titreşim şekli (1,1) ve (2,0) - (0,2) ait Q-faktörleri 20mTorr vakum basıncı 

seviyesinde sırasıyla 14300 ve 10700 olarak ölçülmüştür. 0.364mTorr vakum 

seviyesindeki Lazer Doppler Titreşimölçer (LDT) testleri analitik modelden ve SE 

benzetimlerinden elde edilen değerleri doğrulamaktadır. Buna ek olarak, elektrostatik 

tahrikin etkisi 0-40V arasında gövde kütle voltajı için test edilmiştir ve karşılık gelen 

doğal frekans kayması 0-26Hz olarak ölçülmüştür. Sistem seviyesi sıcaklık tesleri, 

sıcaklık değişimiyle kayan frekansı takip edebilmek için Faz Kilitli Döngü (FKD) ile 

birlikte 0.405mTorr vakum seviyesinde yapılmıştır. Üretilen sensörlerin ölçek çarpanı 

titreşim şekli (1,1) ve (2,0) - (0,2) için sırasıyla 2.0214Hz/°C ve 2.7211Hz/°C olarak 

ölçülmüştür. Üretilen sensörlerin sıcaklık eşdeğer frekans kararsızlıkları titreşim şekli 

(1,1) için 0.3725mK ve titreşim şekli (2,0) - (0,2) için 0.1499mK olarak ölçülmüştür. 

 

Anahtar Sözcükler: MEMS, mikro plaka, MEMS rezonatör, Chladni plaka, MEMS 

resonant sıcaklık sensörü, sıcaklık ölçümü.  
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

Miniaturization of devices has continuously gained more importance since the 

development of microelectronics due to the advantages of smaller size, lower cost, and 

lower power consumption. Rising energy demand directed researchers to energy 

efficient solutions for most of the problems, boosting the effort spent on miniaturized 

devices. This revolution of miniaturization starts with the invention of transistors, as 

Richard P. Feynman states that there are plenty of room at the bottom [1]. 

Developments in the microfabrication of the integrated circuits (IC) have made 

fabrication of micro scale mechanical structures possible. The combination of 

microelectronics and micromechanics has resulted in a new research area, Micro-

Electro-Mechanical-Systems (MEMS). The integration of mechanical and electrical 

structure on the same substrate has diversified the application areas of MEMS devices. 

Owing to their advantages of small size and mass, low power consumption, low cost 

of fabrication, and easy integration with other systems, MEMS devices are utilized in 

many industries including civil, automotive, military, and health. 

The dimensions of MEMS devices range from sub-micron to several millimeters. The 

first MEMS device realized was a pressure sensor developed in 1980s [2]. Since then, 

various devices as sensors and actuators have been designed, fabricated and developed. 

Market share of the MEMS industry has an exponential increase since the year 2004 

and it is predicted to increase exponentially in the upcoming years as well [3]. 

Although gyroscopes, accelerometers, pressure sensors and microphones has 
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dominated the field at the beginning, diversity of realized sensors, and actuators has 

increased. Among the variety of sensors, radio frequency (RF) MEMS devices and 

infrared (IR) detectors have a notable importance in MEMS industry [4]. In today’ s 

portable electronics, one key element of the circuits is the time sources they use. As 

an example, performances of global positioning system (GPS) are directly related with 

the synchronization of two clocks; the two clocks of GPS receiver and satellite. On the 

other hand, detecting lights with a wavelength outside the visible region is a 

fundamental need in most of the research areas such as space exploration. Also, light 

having a wavelength inside the infrared region is used to determine the temperature of 

the substance from which it comes. 

This chapter introduces a literature survey of time keeping and IR detecting 

mechanisms. As a first section of the chapter, literature of the plate vibrations is 

presented. Then, the literature on MEMS resonators is summarized for time keeping 

devices. Since a resonator is analyzed as a temperature detecting device in this study, 

temperature detection is the focus of next section. Lastly, research objectives and 

organization of the thesis are presented. 

1.1. Vibration of Plates and the Chladni Plate 

Plates, with other fundamental machine elements like beams and shells, have been 

heavily investigated since the first machine introduced. Both static and dynamic 

behavior of the plates have been studied [5]. Although most of the effort has been spent 

on the behavior of the plates under static conditions, dynamic behavior has also been 

investigated for the past two centuries [6]. This dynamic behavior, most of the time, is 

also called vibration characteristics.  

Several geometries and boundary conditions of the plate have been investigated [7, 8, 

11, 13, 14]. Among those, square plates having four edges free to move is focus of this 

study which are called the “Chladni plate” named after, Chladni, first scientist who 

discovered the nodal patterns [15]. These nodal patterns are then called “Chladni 

figures”. 
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Figure 1.1: Excitation of the Chladni plate by bowing the plate from one of its free 

edges and mode shapes of the square plate known as Chladni figures [6, 15]. 

Transverse vibration of thin plate structures have been investigated for past two 

centuries. Although accurate estimation of the natural frequencies and the mode shapes 

were absent back then due to its complicated formulation, the shapes of those modes 

have been known. Ernst Chladni was the first scientist who visualized the mode shapes 

of plates with different geometries by bowing a plate as shown in Figure 1.1. He has 

demonstrated the nodal lines of transversely vibrating plate using sand particles and 

obtained the mode shapes of the various plate geometries which can be found at [15]. 

At [7], the closed form equation of fundamental natural frequency of plate with four 

free edges is presented, which is mostly used in the MEMS literature. Even though [7] 

presents a good approximation for the first natural frequency, higher modes are not 

available. A comprehensive study is done by Leissa covering rectangular and circular 

plates with several different boundary conditions [8]. Moreover, Leissa also studied 

the free vibration of rectangular plates [9]. Analytical solution of plate is not available 

for some edge conditions such as all edges are free to move. Researchers focused on 

approximate solutions to obtain a reasonable solution of the problem [10]. At [11], 
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solution of free-free beam is used in Rayleigh-Ritz energy method to solve vibration 

problem of the plate having four edges free [12]. 

1.2. MEMS Resonators 

Performance of today’s digital systems is highly dependent on the stability and 

accuracy of the time source they use. For time and frequency control, different types 

of resonators are utilized which can be used as either filter or oscillators. Crystal 

oscillators have been used widely in recent decades due to their excellent properties of 

high accuracy and stability [16]. However, besides these two key properties, small 

size, low power consumption and low cost are also very important requirements, 

especially in today’s portable applications. 

There are several types of frequency references such as oven stabilized crystal 

oscillators, Cesium atoms of atomic clocks, etc. Among those, ceramic filters, surface 

acoustic wave (SAW) filters, quartz crystals and recently the film bulk acoustic 

resonators (FBAR) are capable of having high Quality Factor (Q) for many 

applications like filtering, sensing and time keeping. However, they are all off-chip 

components meaning that they need to be interfaced with the rest of the electronics, 

which results in a considerable size and assembly cost [16]. In this manner, micro-

electromechanical systems (MEMS) solutions satisfy the miniaturization and low 

power consumption without making any concession of Q-factor. One other advantage 

of MEMS devices is that they are usually compatible with CMOS (complementary 

metal-oxide-semiconductor) applications. Therefore, CMOS-MEMS resonators are 

widely viewed as an alternative for portable electronics [17, 18].  

In the literature, there are several examples of MEMS resonators used in applications 

of time keeping, force sensing, temperature sensing, and IR detection with different 

type and physical shape of the vibrating body. For instance, body modes of the 

mechanical vibration of beams (tines) are utilized in double ended tuning fork (DETF) 

structures. With proper selection of mode with vacuum operation, it is possible to 

achieve quality factors as high as 65000 [19]. DETF sensors are also utilized to sense 

several physical phenomenon such as force, magnetic field, temperature, rotational 
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rate so on [20-23]. FBAR resonators are used as IR detectors in one of the studies [24] 

with a quality factor of 1407. In another bulk acoustic wave resonator application [25], 

a MEMS resonator is used as IR sensor. In addition to beams, mechanical vibrations 

of plate structures are also utilized as resonators. A MEMS plate resonator having 

(resonance frequency)×Q=3.4×1011 has also been reported for mass detection in 

liquids [26]. 

Most of the applications of plate resonator structures are in the form plates supported 

from four corner as in the case of [27] which has quality factor ranging from 800 to 

1900. Corner support limits the number of available mode shapes due to anchor losses. 

If the corners are not on nodal lines, anchor losses will be higher, which decreases the 

Q-factor. Because of this reason, Chladni plate is selected in this work to enlarge the 

number of available mode shapes without changing the structure. The only example of 

a MEMS Chladni plate resonators in the literature is found at [28], which was targeting 

filter applications. In this study multiple plates are mechanically coupled, supporting 

each other from the corners. The reported quality factor of this structures exceeds 

9000.  

1.3. Temperature Detection 

Among all the physical quantities, temperature is the one that is the most commonly 

measured. Due to reason that almost all material properties are functions of 

temperature, performance of any measurement device (whether it is mechanical or 

electrical) is subject to change with ambient temperature.  

There has been great amount of work done to develop highly sensitive temperature 

sensors, which diversifies the types of these sensors. There are three main type of 

temperature detection method categorized according to geometric positions of the 

sensor and the substance of which its temperature will be measured. These categories 

are invasive, semi-invasive, and non-invasive temperature detection. In the case of 

invasive temperature detection, the sensor and the substance are in contact. On the 

other hand, the sensor and the substance are away from each other in the case of non-

invasive temperature detection. In semi-invasive detection, the detecting element is in 
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contact with the substance; however, the reading is done remotely. Heat sensitive 

paints can be given as an example, where the color change of the paint is observed 

remotely. 

Commonly used types of temperature sensors are thermocouples, resistor temperature 

detectors (RTD), thermistors, infrared (IR) sensors, semiconductors and 

thermometers. Among all, thermocouples are the most widely used ones, due to their 

low cost, high sensitivity, fast and linear response. Working range of thermocouples 

is the highest with some sacrifice in their accuracy. On the other hand, RTD 

measurements are more accurate and repeatable. As an example from the literature, a 

resolution of 6mK is achieved in one of the studies [29]. In another study, a resistor 

based temperature sensor with 2.8mK is demonstrated [30]. 

In this study, thermomechanical properties of silicon are utilized to detect the 

temperature of substances both in contact and contactless detectors, which are mostly 

called temperature sensors and IR detectors, respectively. There is a distinct difference 

between the temperature sensors and IR detectors, which is the means of thermal heat 

transfer. Temperature sensors heat up or cool down with the heat transferred from or 

into the detecting body in the form of convection and/or conduction. On the other hand, 

heat is transferred from the body to the IR detector by means of radiation. Both cases 

are visualized in Figure 1.2.  

 

Figure 1.2: (a) Invasive type temperature sensor in contact with the substrate, (b) 

Noninvasive type temperature sensor, i.e., IR detector. 

Microbolometer 

Element 

IR 

Radiation 

Monolithic 

Bipolar 

Transistor 

  (a)     



 

 

7 

 

In Figure 1.2 (a), a temperature sensor utilizing a double ended tuning fork (DETF) is 

shown. Sensing element is a thin double ended beam [31].The temperature of the 

substance in contact with the detector is measured by means of tracking one of the 

physical properties of the material, which should be a function of temperature [32]. 

Although the working principle of the IR detector shown in Figure 1.2 (b) is very 

similar to the one in Figure 1.2 (a), the temperature of the detector changes due to 

incident radiation onto the surface area of the detector. 

Scientists have developed many methods to detect infrared radiation since the first 

experiment done by Herschel (1800s) with thermometers [33]. In one of those 

experiments, Langley has combined two platinum tape as the legs of Wheatstone 

bridge in 1880 [34]. He has continued to develop his bolometer for about 20 years and 

managed to detect heat of a cow from a quarter mile distance [35]. 

IR detectors have been categorized into two main subjects; photon detectors and 

thermal detectors. Photon detectors have very high SNR (signal to noise ratio) and fast 

response; however, they need cryogenic cooling. On the other hand, thermal detectors 

eliminate the need for cryogenic cooling. Thus, they have been widely studied for three 

decades. As an example, a thermal detector having 650µs thermal time constant and 

noise equivalent power of 7nW/Hz1/2 has been demonstrated in [24]. In another study, 

a thermal detector having 63µs thermal time constant and 520Hz/µW sensitivity has 

been reported in [36]. In one of the studies which is compatible with CMOS 

techniques, very high electromechanical performance is reported with a quality factor 

of 1062, electromechanical coupling coefficient of 1.62% and noise equivalent power 

of 2.4 nW/Hz1/2 [37]. In a study, the fabricated prototype AlN MEMS resonator has a 

reported sensitivity of 310Hz/ µW, 1.3ms thermal time constant, 3.5nW/Hz1/2 and 

power consumption of 2.3mW [38], showing that resonators are promising candidates 

for uncooled IR detector applications. There are also examples of studies utilizing GaN 

(gallium nitride) resonators, having greater sensitivity and SNR than the other type of 

uncooled IR detectors [39]. 

Apart from these, resonators are also used as temperature sensors [40]. The advantages 

of high sensitivity, high dynamic range, low mechanical compliance and digital output 
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of DETFs are utilized for the purpose of temperature compensation of a capacitive 

accelerometer in one of the studies. The reported resolution is 1.1mK [41]. There are 

also examples of semi assisted and fully MEMS resonators used as temperature 

detectors. For a MEMS semi assisted temperature sensor, reported resolution is 20µK 

[42]. It is also reported that, a dual MEMS resonator temperature to digital converter 

have 40µK resolution [43]. 

1.4. Research Objectives and Thesis Organization 

With the increasing demand for energy, decreasing cost and ease of integration with 

other systems, MEMS become the focus of most researchers. It is not hard to predict 

that application areas of MEMS will continue to increase in the near future [3]. One of 

these application areas is thermal detectors on which world wide effort has been spent 

to develop high sensitive detectors [44]. This thesis proposes an application of 

resonators being used as thermal detectors. The designed and fabricated thermal 

detectors consist of a micro plate and underneath electrodes. Plate material is single 

crystalline silicon having physical properties susceptible to change with temperature. 

The electrodes are used in driving and sensing purposes. The main objectives of this 

research are: 

1. Development of a micromachined thermal sensor utilizing micro plate 

vibrations. Thermal detecting element should utilize a resonator to take the 

advantages such as high sensitivity, high dynamic range, low power 

consumptions. 

2. Derivation of the analytical electromechanical model of the silicon plate with 

four edges free to move under periodic loading for first and higher modes. Most 

of the work done in the literature for dynamic behavior of micro plate uses a 

well-known closed form equation for the first natural frequency for non-silicon 

materials; however, higher modes together with the first mode should be 

modelled for the structural material silicon. 
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3. Derivation of the analytical thermo-electro-mechanical model of the designed 

thermal sensor. The thermo-electro-mechanical model should include 

electrostatic actuation and thermal effects on the mechanical vibration.  

4. Finite element simulations of the mechanical, electro-mechanical, and thermo-

electro-mechanical models. The micro plate sits on top of a post being the 

support; therefore, effect of the post should be considered in the FE 

simulations. The analytical model and FE simulations should be compared in 

terms of natural frequencies, mode shapes, electrostatic effects and thermal 

effects. 

5. Characterization and performance tests of the fabricated micro plate resonant 

based temperature sensors to verify derived analytical models. 

Characterization tests should compose of frequency response and system level 

temperature tests. Performance tests should cover thermal sensitivity, range 

and bias instability. In the characterization tests, a closed loop excitation 

system should be implemented to keep the system at resonance while counting 

the frequency, which is directly related to the temperature change of the plate 

structure. 

The organization of the thesis is given as follows: 

Chapter 2 presents the design and modelling of resonant MEMS square plate 

temperature sensor. The proposed application is given in detail before the modelling 

subsection. This chapter contains fundamentals of plate vibration, equation of motion 

(EOM) of the transversely vibrating plate, solution method for the EOM, electrostatic 

driving and actuation, analytical model of the electrostatic softening and thermal 

effects on the natural frequencies of the plate. As a last subsection, finite element (FE) 

simulations are presented. In the FE simulation section, transverse vibration of the 

plate, electromechanical effect and thermo-electro-mechanical model is simulated. 

Results of analytical models and FE simulations are also compared. 

Chapter 3 presents the fabrication flow and characterization experiment results for the 

resonant MEMS square plate temperature sensor. In the first section, the micro 
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fabrication steps are explained and the flow is given. Then, experimental test setups 

for each test are explained. For the frequency response tests, test results are compared 

with the electromechanical model and corresponding FE simulation. For the system 

level tests, the results are compared with the thermo-electro-mechanical analytical 

mode and corresponding FE simulations. 

As the final chapter, Chapter 4 presents the conclusions derived from the results 

obtained in this research and recommendations for the future work.   
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CHAPTER 2 

 

 

2. DESIGN AND MODELLING OF RESONANT MEMS PLATE 

TEMPERATURE SENSOR 

 

 

 

In this chapter, the design and modeling of resonant a MEMS plate temperature sensor 

is presented. For micromachined devices, the modeling of the interaction between 

electrical and mechanical domains requires a multidisciplinary study. In this chapter, 

electromechanical study is presented with the thermal effect added. In Section 2.1, 

basic concepts related with the plate vibration theory are introduced. Definitions of 

mode shape, nodal line, natural frequency and naming of the Chladni figures are given. 

In addition to design parameters and physical structure of the sensor, the proposed 

application of the resonant MEMS plate as a temperature sensor is explained in detail 

in Section 2.2. As for Section 2.3, analytical model of plate vibrations are presented 

starting from EOM of transverse vibration of plate. Solution of EOM with Rayleigh - 

Ritz method is explained in detail as a subsection. Electrostatic actuation and sensing 

are formulated. Electrostatic softening effects on the natural frequencies of mode 

shapes are included. Lastly, in this section, thermal effects are added to the derived 

analytical model. Then, FEM simulations are given in Section 2.4 with the 

corresponding sequence in the analytical model section, that is transverse vibration of 

MEMS plate, electrostatic effect and thermal effect. As a last section, Section 2.5 gives 

the summary of the chapter in a nutshell. 
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2.1. Basic Concepts in Plate Vibration Theory 

A dynamic system is defined as the system in which single or multiple aspects change 

in time. Vibration, on the other hand, occurs in the presence of elements in the dynamic 

system having mass and elasticity. Vibration, by definition, is the oscillation around 

equilibrium point. In this chapter, the mechanical vibration of a micro plate is analyzed 

and modelled.  

Natural frequency, frequency of oscillation in free and harmonic vibration, is 

determined solely by system parameters. Therefore, it is an invariant property of the 

system [45]. Most of the time, fundamental frequency refers to the lowest natural 

frequency of the system. Undamped natural frequencies are the obtained eigenvalues 

from the solution of eigenvalue problem. Mode shape; on the other hand, is the shape 

which the vibrating body takes when it is vibrated with corresponding natural 

frequency. Mode shapes are the eigenvectors in the solution of eigenvalue problem. 

As the last basic concept, nodal points are defined as motionless points in the body of 

the vibrating structure. Sequencing the mode shape is related with the nodal points. 

Mode shapes are named with the number of half sine waves in the vibrating body 

which equals to one minus the number of nodal points. If the ends of the structure are 

supported, they are also counted as nodal points. It is necessary to systematically name 

mode shapes of a plate given in Figure 2.1. In the literature, mode shapes of a plate are 

named with the number of nodal lines parallel to x  and y  axes shown in Figure 2.2. 

Number of nodal lines are m  and n  parallel to x  and y  axes, respectively. As 

described above, this number includes the edge if the edge is supported. Nodal lines 

are approximately parallel to one of the edges if the plate is rectangular; however, they 

may not be parallel to edges if the plate is square. Those non-parallel nodal patterns 

(seen in Figure 2.1) were first observed by the 18th century researcher Chladni [15]. 

For the square plates, if one of m  and n  is odd and the other is even, normal modes 

of vibration is ( m , n ) type. For the other case, that is, both m  and n  are even or odd, 

normal mode shapes are of the type    mnnm ,,   or    mnnm ,,  . The details of the 

naming are not given here as they can be found in [8]. 
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Figure 2.1: Some of the Chladni plate mode shapes. 

Plates can be supported at any point; however, there are several boundary conditions 

on which a lot of effort has been made. As mentioned before, plates are used as 

structural elements; therefore, supporting from one or more edges is widely studied. 

To define the supported edges, the initial of the support type is abbreviated. For 

example, the plate having one of the edges clamped and other three edges free to move 

is called as CFFF (Clamped-Free-Free-Free) plate. Another example is CSCF plate, 

which is clamped from two opposite edges, one of the edges is simply supported and 

the other edge is free to move. In the scope of this thesis study, FFFF plates are 

analyzed. 
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2.2. Resonant MEMS Plate Temperature Sensor 

Temperature detection of a subject has so far been crucial in most engineering 

problems. As explained in Chapter 1, some of the applications are in manufacturing, 

global warming investigations, customer electronics, health monitoring, research and 

civil and military applications. Hence, temperature detection of a subject has been a 

one of the most focused area in the MEMS sensing applications. 

As mentioned in Section 2.1, for a structural system having mass and stiffness, natural 

frequency is a parameter of this system. Natural frequency, by definition, is the 

function of other system parameters which are mass, stiffness and damping. Most of 

the mechanical properties affecting the vibration characteristics of a structure such as 

modulus of elasticity, Poisson’s ratio, dimensions are subjected to change with 

temperature. In other words, natural frequency of the vibrating body is function of 

temperature through different mechanisms. In this thesis study, the temperature is 

measured using silicon MEMS plate vibrations. The designed thermal sensor is type 

of invasive temperature detector, i.e., the resonant MEMS plate temperature sensor 

measures the temperature of a substance which is in contact with the sensor. Change 

in temperature also causes changes in the frequency of oscillations of the plate. This 

frequency change can be tracked with a closed loop controller as amplitude detection, 

phase lock loop (PLL) etc. to detect the temperature change of the vibrating plate. 

2.2.1. Physical Structure of the MEMS Plate Resonator 

The structure of the resonator proposed in this thesis study is composed of single 

crystal silicon plate, glass post (stem) and gold electrodes beneath the plate and over 

glass substrate. The square plate sits on top of the post as visualized in Figure 2.2 (a). 

In Figure 2.2 (a), Cartesian coordinate system used in analytical modelling is shown. 

a  is the side length in the direction of both x  and y axes. The electrostatic gap 

between plate and electrodes is given as g .  
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Figure 2.2: (a) Schematic of the plate supported at the geometric center with four 

edges free to move: The coordinate system and geometric dimensions used in 

modelling are shown. (b) Electrode layouts in the proposed MEMS plate resonator 

and orientation of electrodes with respect to plate which is shown in dark gray. 

Among the several actuating and sensing principles in the literature for MEMS 

devices, capacitive actuation and sensing principle are utilized in this study due to the 

availability of experimental setups in the laboratory and their well-defined 

mathematical model. The capacitive plates are the resonating plate itself and the 

electrodes on top of the glass substrate. Trapezoid shaped electrodes are shown in 

Figure 2.2 (b). In the figure, 1L  is the distance from the origin to the point where 

trapezoid electrode starts to be beneath the plate, 3L  is the short side length, 4L  is 

height of the trapezoidal electrode. Long side length of the trapezoidal electrode equals 

to summation of 1L , 2L , and 3L . 

2.2.2. Geometric Dimensions and Specifications of the Design 

The proposed micro plate resonator is a square plate as it can also have rectangular or 

circular shape. However, as explained in Chapter 1, square plates supported at their 

geometric center, Chladni plates, have distinctive mode shapes. Almost all the mode 

shapes shown in Figure 2.1 have a nodal point at the geometric center. One should 

(a) (b) 
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notice that for a two dimensional structure, there are nodal lines instead of nodal points. 

There are several advantages of selecting square geometry and supporting the square 

plate at its geometric center. They can be summarized as follow: 

1. One of the key concerns in supporting the vibrating structures in MEMS 

applications is to minimize the anchor loss. Supporting point is selected as the 

intersection of the nodal lines, which minimizes shear and normal stresses on 

the post and mitigates coupling to the structure. 

2. Decreasing anchor loses improves the quality factor, Q-factor, of the resonator. 

Quality factor of a resonator is one of the most significant parameter for 

ranking the performance of the resonators. 

3.  The effect of excitation of the base on the mode shapes is mitigated with the 

same reasoning that no strains are coupled between the plate and post. 

4. This advantage is specific to this study. The analytical model of transverse 

vibration of the plate is derived using free-free beam solutions. Since the plate 

is fixed at one of the nodal points of the beam, the effect of post on the 

frequencies is suppressed, which simplifies the analytical model. 

5. To investigate large number of mode shapes without modifying the resonator, 

square geometry is selected and supported at the geometric center. The number 

of nodal lines may pass through center contrary to rectangular shape, which 

allows for at most two nodal lines passing through center. 

6. Modes-of-interest in this study have large deflections compared to higher order 

modes, which increases both the signal-to-noise ratio for the detection 

electrodes and generated force for the driving electrodes. 

7. In spite of the complexities of MEMS fabrication processes, designing such a 

robust geometry enables to produce simpler and high yielding fabrication 

process flow. 
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In addition, for the electrode layout shown in Figure 2.2, a DC biased applied wire is 

placed between all the AC electrodes without forming a closed loop. Proof mass 

voltage is applied to transversely vibrating plate with a wire placed between all 

electrodes. A DC bias is applied as proof mass voltage and it prevents the interaction 

of nearby AC signals created or applied to the electrodes. However, one should notice 

that, this wire does not form a close loop in order not to create a current picked up 

from electromagnetic induction. Another comment on the design is that trapezoidal 

electrodes are bigger than the plate. With the fringing field created, driving and sensing 

electrodes create higher forces and signal-to-noise ratio, respectively. 

The summary of the geometric dimensions, material parameters and some of the test 

parameters used in this study are given in Table 2.1. Some of the parameters used in 

tests are not given in this table as they are subject to change in each test. Hence, they 

are given in the corresponding sections. 

Table 2.1: Summary of the geometric dimensions, the material parameters for the 

plate resonator and some of the test parameters used in this study. See Figure 2.2 for 

variable definitions. 

Quantity Symbol Value 

Side length in x and y directions  a  1400 m  

Plate thickness h  35 m  

Capacitive gap (Plate handle length) g  8.73 m  

Trapezoidal angle of the electrodes    45o 

Side length of trapezoidal electrode 

outside the plate 
1L  50 m  

Rest of the long side length of trapezoidal 

electrode underneath the plate 
2L  450 m  

Short side length of trapezoidal electrode 

beneath the plate 
3L  172 m  

Height of the trapezoidal electrode 4L  450 m  
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Young's modulus of (111) Si [20] E  170 GPa  

Poisson's ratio of (111) Si [46]   0.262 

Mass density of Si [20]   2330 3/ mkg  

Permittivity of the dielectric (vacuum) 0  8.85 mFx /10 12  

Thermal coefficient of expansion of 

silicon [47] 
Si  K/106.2 6  

Thermal expansion coefficient of  silicon 

dioxide [48] 
2SiO  K/105.0 6  

Thermal coefficient of Young’s Modulus 

of silicon [49] 
E  K/1060 6  

Proof mass voltage PMV  15 V  

Feedback resistance in read out trans 

impedance amplifier 
fbR  1 MΩ 

Ambient room temperature 0T  Co25  

2.3. Modelling of Resonant MEMS Plate Temperature Sensor 

Plates are, by definition, the structural elements with one of the dimensions, generally 

called thickness, being much smaller than the other two dimensions. Oscillations in 

the direction of thickness are called transverse vibration of plates. Deformations are 

measured from midplane in the direction of normal vector of midplane. Midplane is 

defined as the plane parallel to faces of plate dividing thickness into two halves. In the 

literature, plates are classified in terms of thin and thick plates; however, only thin 

plates are analyzed in the scope of this thesis study.  

The problem in hand is composed of transverse vibration of plate, called mechanical 

part, electrostatic driving and actuating part, called electrostatic part and thermal effect 

on those two parts. Therefore, analytical modelling is divided into three parts to 

analyze all of them. The results of the analytical model are compared with the Finite 

Element Model (FEM) in this section and will be compared with test results in the next 
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chapter. FE models are also divided into three parts to be consistent with analytical 

modelling. 

2.3.1. Analytical Model of MEMS Square Plate Vibrations 

For the analytical model, equation of motion (EOM) of a transversely vibrating plate 

can be obtained via Equilibrium Approach or Variational Approach. In both approach, 

there are several assumptions given as [14]: 

1. It is a thin plate that is thickness is very small compared to other two 

dimensions and deflection of the mid surface is small when compared to 

thickness. 

2. The midplane remains unstrained upon the application of bending load also 

called as neutral surface. 

3. Plane sections which are initially normal to midplane remain plane upon the 

application of bending load. This implies that the vertical shear strains are 

negligible. In other words, plate resists lateral and in plane loads by bending, 

not trough block like compression or tension in the thickness direction. 

4. The effect of transverse shear deformations and rotary inertia are neglected. 

5. Transverse normal strain under transverse loading can be neglected. 

Transverse normal stresses are small; hence, they can be neglected compared 

to other stress components. 

6. Throughout the study, material silicon is assumed to be isotropic and has 

uniform thickness. 

With this assumptions, small deflection theory of thin plates which is also called as 

classical plate theory or Kirchhoff’s theory is built upon the similar assumptions used 

in thin beam theory, also known as Euler-Bernoulli beam theory. 

 



 

 

20 

 

2.3.1.1. Equation of Motion: Equilibrium Approach 

For a given plate, stresses and coordinate system used in driving EOM is given in 

Figure 2.3. As seen, mid plane of the plate coincides with the xy plane of the 

coordinate system. Transverse deflection denoted as ),,,( tzyxw  is function of spatial 

coordinates and time. 

 

Figure 2.3: Induced stresses on a differential plate element under de application of 

bending load and coordinate system used in the modelling. 

In plate theory, it is convenient to work with stress resultant along on the mid surface 

edges instead of stresses on the edges. For the given plate under bending loading 

(transverse loads and bending), direct stresses in z direction, zz , are usually 

neglected, which can be inferred from the fifth assumption given above. Since only 

flexural (bending) deformations are considered, there is no net force in the directions 

of x  and y axes. Stress resultants in x  and y directions are written as: 
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As in the beam theory, stresses vary linearly and parabolic as shown in Figure 2.3. 

Those stresses are used to get following force and moment resultants. 
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Stress resultants in all edges given Equation 2.2. Using  these equations, Figure 2.3 is 

converted to a free body diagram (FBD) of differential element and presented Figure 

2.4. 

 

Figure 2.4: Free body diagram of a differential plate element. Force and moment 

resultants are shown on the four edges of mid plane which coincides with the xy plane 

of coordinate system. 

Since the FBD of the plate given as force and moment resultant, one should notice that 

given  tyxf ,,  is the intensity of the externally distributed force. Dynamic 

equilibrium equations are written to derive EOM. Writing force balance equation in z  

direction results as follow.  
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Force equilibrium in z  direction is simplified as: 
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Equilibrium of moments in x  direction is given as: 
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Cancelling the terms having opposite signs and neglecting the higher order terms, 

Equation 2.5 is simplified in Equation 2.6. 
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Similarly, moment equilibrium in y direction is given as: 
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At this point, strain - displacement relations which can be found in [5] are used. 

Bending deformation of a differential element is: 
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From the small deformations theory, linear strain - displacement relations are given 

as: 
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Inserting Equation 2.8 into Equation 2.9 gives: 
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The state of the stress in the plane is assume to be plane stress. Stress - strain relations 

are defined by the well-known relation, Hooke’ s Law as: 
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Inserting strain – stress displacement and stress – strain relations into Equation 2.2 and 

defining flexural rigidity of the plate as in Equation 2.12 result in the force and moment 

resultants as a function of displacements given in Equation 2.13. 

 
 2

3

112 


Eh
D  (2.12) 

where h  is the plate thickness, E  is the Young’ s modulus and   is the Poisson’ s 

ratio. Force and moment resultants are; 
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To get EOM of the plate, force and moment resultants and flexural rigidity are 

introduced in the Equation 2.4. 
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where   is the density of the plate material. Biharmonic operator is defined as: 
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Then, most general form of EOM of a transversely vibrating thin plate is found in 

Equation 2.16. 
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2.3.1.2. Equation of Motion: Variational Approach 

This method also known as Hamilton Principle utilizes potential and kinetic energy 

equations to derive EOM, which helps understanding of the method described in 

section 2.3.1.3. Due assumptions done previously, stress state is assumed to be plane 
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stress. Stresses given in Equation 2.11 can be written as a function of displacement 

instead of strains with the given strain – displacement equations given in Equation 

2.10. 
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Strain energy density is defined as in Equation 2.18 as it can be found in [50].  
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Inserting Equations 2.10 and 2.17 into Equation 2.18 gives: 
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Integration of strain energy over volume of the plate gives the total potential energy of 

the plate as given in Equation 2.20.  
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Note that 
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From the definition of flexural rigidity of the plate; 
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Then the potential equation becomes 
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With the same assumptions, kinetic energy equation is written as: 
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Lastly, the work done on the plate by the external force is calculated as below. 

  
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wdxdytyxfW ,,  (2.25) 

Lagrange is defined as: 

 WTVL   (2.26) 

Applying Hamilton’ s principle to Lagrange given above gives the EOM of the 

transversely vibrating plate. 
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Substituting energy equations given in Equation 2.23, 2.24 and 2.25 into Equation 2.27 

to get: 
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Harmonic operator is defined as: 
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Equation 2.28 is divided into four simpler integrations and solved in detail in [50]. As 

the solution of this complicated integration, EOM and boundary conditions (BC) are 

obtained. In the Equation 2.30, C denotes boundary of the plate, n indicates outward 

drawn normal to the boundary. 
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(2.30) 

where s is tangent line to the boundary and the angle   is angle between the outward 

normal and x  axis. Each term inside the integral in Equation 2.30 should be zero, since 

w  is arbitrary. Then EQM and BCs are obtained by equation each of them to zero, 

separately. 
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Then the EOM obtained by variational approach can be written as: 
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As expected, EOMs obtained from both approaches are the same. Equilibrium 

approach is straightforward and does not require calculation of integral as complicated 

as variational approach requires. However, there are two significant advantages of 

using variational approach. First one is that variational approach gives not only the 

equation of motion but also boundary conditions which are very hard to construct time 

to time. Second advantage is that energy equations are calculated in the procedure of 

the variational approach. These equations can be used in the solution of EOM, if one 

of the energy method is selected as in the case of this thesis study. It helps to 

understand the solution procedure. 

2.3.1.3. Solution of EOM of Plate Using Rayleigh – Ritz Method 

Solution method for equation of motion of plate varies with boundary conditions. 

Boundary conditions of having two opposite edges are simply supported and other two 

are either free or clamped have been widely studied and well documented. As stated 

in [7], the problem of vibration of plate having all edges free or clamped is much more 

complicated. It is possible to find exact and simple characteristic equation for the six 

cases which includes two simply supported (SS), clamped (C) and free (F) edges. 

These exact solutions for SS-C-SS-F, SS-SS-SS-SS, SS-C-SS-C, SS-F-SS-F, SS-SS-

SS-F and SS-SS-SS-C plates are given in [9]. However, due to difficulties and 
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complexities in obtaining simple and compact solution for FFFF plate as stated before, 

energy methods are utilized. For the plate having all edges free, there are only natural 

boundary conditions at the free edges and free corners. Therefore, selected trial 

functions which are comparison functions for assumed modes should satisfy those 

natural boundary conditions, as described later. 

For the free vibration of plates, EOM is reduced to Equation 2.33. Corresponding 

boundary conditions are the zero shear force and moments at all of the edges. 
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The transverse displacement of any point in xy  plane  tyxw ,,  is given by: 

        tyxBtyxw  sin,,   (2.34) 

where  x  and  y  are characteristic beam functions for different mode shapes as 

proposed in [11] and B  is the amplitude of oscillations. In general, it is possible to 

find a deflection wave form ),,( tyxw  satisfying Equation 2.33 and all boundary 

conditions. An infinite series is assumed for the mode shape with the condition that 

each of the terms in the assumed series satisfy the natural boundary conditions. 

However, this method yields a matrix with infinite dimensions. Determinant of that 

matrix later will be equated to zero to obtain characteristic equation. Roots of the 

determinant is actually eigenvalues of the eigenvalue problem obtained using the 

assumed mode shapes. Natural frequencies are obtained by taking square root of the 

eigenvalues [11]. Since it is impractical to calculate determinant of matrix having 

infinite dimensions, energy methods are utilized with the assumed mode shapes 

satisfying geometric boundary conditions. This principle is known as Rayleigh method 

and it is described in [12]. In this method, maximum value of a natural frequency is 

calculated for only one mode shape. In other words, natural frequency of the mode 

shape is always smaller than the value found using Rayleigh method, because incorrect 

assumption of the mode shape imposes extra constraints to the system. In this thesis 

study, Rayleigh-Ritz method used due to two main advantages: 
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1. One can calculate several number of natural frequencies and mode shapes at 

once.  In this method, number of trial functions (p) is equal to the dimensions 

of square stiffness and mass matrices. It will be equal to number of eigenvalues 

obtained from the eigenvalue problem constructed using these matrices. 

2. As the number of assumed mode shapes, trial functions, increased, accuracy of 

the mode shapes increases. The most significant improvement in accuracy is 

on the first natural frequency. Effect of the improvement decreases from the 

first to the last mode shape of interest. 

Energy equations for a rectangular plate are given at [13] which are also given in 

Section 2.3.1.2. The variational approach method for deriving the EOM is chosen to 

understand the energy methods used in solution better, as described. The method for 

solution is based on Rayleigh’ s principle which can be stated as that the frequency of 

vibration of a conservative system (no dissipating elements and non-conservative 

forces) has a stationary value in the neighborhood of a natural mode which is, in fact, 

a minimum value in the neighborhood of the fundamental natural mode [51]. Rayleigh 

principle is actually a minimization problem of the Rayleigh quotient ( R ) which is 

defined as: 
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In the Rayleigh-Ritz method, a closer approximation to the stationary value can be 

obtained by superposing several trial functions rather than using a single one. As the 

number of trial functions increases, accuracy and computational work also increase. 

The Potential energy equation is given as: 
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Kinetic energy equation is: 
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Mode shapes in the form of given Equation 2.38 are assumed to be as follow for the 

Rayleigh-Ritz method. 

      
m n

mn yxCyxW ,  (2.38) 

where mnC  are unknown constant, Ritz coefficients, and   x  and  y  are 

characteristic beam functions for different mode shapes and boundary conditions. For 

the beams with both ends are free to move, the characteristic beam functions are given 

as: 
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For  y , one needs to replace x  with y . With the assumed mode given in Equation 

2.38, the maximum strain and kinetic energy can then be expressed as: 
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From the theory of Rayleigh principle, 

 max
*2

max TT   (2.42) 

In the maximum energy equations (Equations 2.40 and 2.41),  K  and  M are stiffness 

and mass matrices, respectively. c


 is the vector composed of unknown constant 

coefficients which are denoted as mnC  in the assumed mode shape Equation 2.38. p  

is the number of terms in that mode shape that is: 

 nmp   (2.43) 

The unknown coefficient vector is: 
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Putting the potential and kinetic energy terms given in Equations 2.40 and 2.41 into 

Rayleigh quotient given in Equation 2.35, R is obtained as a function of unknown 

coefficients. 
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As stated before, vibration frequencies have stationary value in the neighborhood of 

natural frequencies. That is the minimum value of Rayleigh’ s quotient and it can be 

found by equating rate of change of R with respect to constant coefficients to zero. 
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(2.46) 

where )( p  is the thp  eigenvalue of the eigenvalue problem. Moreover, )( p  is defined 

as Rayleigh’ s quotient and it is equal to 2 . Equation 2.46 can be written in matrix 

form as well, which gives the correlation between stiffness and mass distributions 

found in Equations 2.40 and 2.41. 
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where  

 

 

 Mc
c

T

Kc
c

V

Tmax
*

Tmax

2

1

2

1

















 (2.48) 

Then the Equation 2.46 is written in matrix form follow: 

      0)(


 cMK p  (2.49) 

which is an eigenvalue problem of order p . Well known nontrivial solution of this 

eigenvalue problem gives the natural frequencies of the plate. 
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After finding natural frequencies of the plate, the vector of Ritz coefficients, ic


, 

corresponding to thi  natural frequency should be determined by solving the 

eigenvector part of the eigenvalue problem.  

      0)(),(
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 iip cMK   (2.51) 

Then the mode shape of thi  mode is given as: 
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In this thesis work, first two mode shapes, (1,1) and (2,0) - (0,2), of a Chladni plate is 

studied due to two main reasons; 

1. In the modelling of vibration of plate, shear deformations are neglected. Shear 

deformations are smallest at these mode shapes. Therefore, analytical model is 

more accurate for those mode shapes. 

2. Deflections in modes-of-interest are greater than the higher mode shapes, 

which results higher actuating force and sense signal. 

The transverse vibration of a square plate can be solved with infinite series assumption 

as stated before. However, it is solved by an equivalent n-degree-of-freedom system. 

The accuracy of results of Rayleigh-Ritz method increases with increasing number of 

trial functions. To see this effect clearly, number of terms in the mode shapes 

assumption for p=3, 4, 9, 16, 25, 36 and 64 are studied. Changes in natural frequencies 

of modes-of-interest are smaller than 0.1% for 16n . Moreover, it is observed that 

effect of hyperbolic functions in the assumed mode shape is very small. Therefore, 

they can also be dropped. In this study, results of assumed mode shapes with 16 terms 

containing hyperbolic functions are given. In Table 2.2, mode shapes for modes (1,1) 
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and (2,0) - (0,2) are presented. The given mode shapes are normalized with respect to 

second norm of the coefficient vector. 

Table 2.2: Obtained mode shapes for mode-of-interest with Rayleigh-Ritz method. 

Mode shapes are normalized with respect to second norm of coefficient vector. 

Mode shapes of modes-of-interest 
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Mode shapes obtained with Rayleigh-Ritz method are useful in building a closed form 

equation for natural frequencies of the plate. To write a closed form equation for 

natural frequencies, total strain and kinetic energy stored in the mode shape are written. 

Equivalent stiffness and masses are found for each mode shapes. 
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where  000 , yxW  is the point on the square plate which has the maximum deflection 

and  00 , yx  is the location of that point. The maximum deflection point differs for 

different mode shapes. Then, undamped natural frequency in Hz is calculated as: 
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In Table 2.3, closed form expressions for effective stiffness and mass together with the 

closed form natural frequency equations for the modes-of-interest are presented. 

Table 2.3: Closed form equations for equivalent stiffness, mass and un undamped 

natural frequencies for modes-of-interest, which are obtained using resulting modes 

shapes of Rayleigh-Ritz method. 

 Mode (1,1) Mode (2,0) – (0,2) 

effK   
 24

3
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Eh

a
 (2.63) 

 

 

The constant coefficients in the closed form equations of natural frequency are 13.869 

and 20.249 for modes (1,1) and (2,0) – (0,2), respectively. Corresponding constants 

for each mode shape are stated as 13.49 and 19.79 in [9]. Both values are very close. 

The reasons of difference are; 

1. Number of trial functions in the assumed mode shape is different. 

2. In the literature, researcher have investigated material steel; however, 

specifically for this thesis study, material silicon is used and it has a Poisson’ s 

ratio different than steel. 

It is well known and proved that electrostatic actuation has a negative effect on 

stiffness [52]. In the effective stiffness equations given in Table 2.3, effect of 

electrostatic actuation is not included as it will be included in Section 2.3.2.3. 
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Figure 2.5: Mode shapes of modes-of-interest  obtained by assuming characteristic 

beam function of free-free beam with 16 terms. a) (1,1) mode shape and b) (2,0) – (0,2) 

mode shape. Underneath the mode shapes counter lines are drawn and green counter 

lines stand for nodal lines, motionless lines and referred to Chladni figures. 

With the analytical model given above for transverse vibration of FFFF plate, the 

natural frequencies of mode (1,1) and (2,0) – (0,2) are calculated to be 100.71 kHz and 

147.04 kHz, respectively. Corresponding mode shapes are given in Figure 2.6. Green 

counter lines are the nodal lines and they are identical to Chladni figures of 

corresponding modes. As stated before, the mode shapes are normalized with respect 

to length of Ritz coefficients vector; therefore, maximum deflections are not unity. 

2.3.2. Analytical Model of Capacitive Actuation and Detection 

Capacitive actuation and sensing is one of the mostly used technique for the purpose 

of driving and sensing in MEMS devices. Mechanical displacement of a conductive 

material is converted to electrical signal or vice versa. In both case, energy is 

transduced between two domains, mechanical and electrical. 

2.3.2.1.Capacitive Actuation 

Electrostatic force is induced to minimize the stored electrostatic energy by the 

attraction or repelling of two differently charged conductive substances. The 

(a) (b) 
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electrostatic force driving the MEMS square plate resonator is due to attraction 

between the plate itself and the electrodes placed underneath the plate. 

Electrostatic force is equal to the gradient of the electrostatic energy with respect to 

spatial coordinates. In the case of plate resonator, electrostatic potential energy is 

function of one spatial coordinate, since displacement is in one axis, z . Then the 

electrostatic force is calculated as: 
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(2.64) 

where C  is the capacitance and V  is the difference of potentials applied to the 

resonating plate and electrodes. In Figure 2.6, formed capacitance and applied 

potentials are visualized.  

 

Figure 2.6: The capacitance formed by plate and electrodes with applied voltages. 

A DC voltage is applied to resonating body as proof mass voltage and a AC voltage is 

applied to the driving electrodes. Then the formed capacitance is calculated as: 

 
g

A
C 0  (2.65) 

In Equation 2.65, 0  is the dielectric permittivity of the medium between the plate and 

the electrodes, A  is the capacitive area that is the overlapping area, and g  is the 

capacitive gap. It is also well known that there are fringing field effects for the formed 
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capacitance. Fringing field factor is an empirical factor and it depends on the shape 

and thickness of the structure [23]. In this study, the effect of this fringing field is 

ignored. The gap between the proof mass and the electrodes subject to change upon 

the application of potentials to the proof mass and the electrodes. Since the capacitance 

is function of the gap, it also changes. Then, the force generated is calculated as: 
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In Equation 2.66, only the gap is function of displacement. Then the derivative is 

calculated as: 
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As stated before, a  represents the side length of a square plate. Potential difference 

between the plate and electrodes is the difference of AC and DC voltages shown in 

Figure 2.6. 
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Rearranging the terms with half sine formula yields: 
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(2.69) 

Combining Equations 2.66 and 2.69, electrostatic force due to the displacement of 

capacitive plates is calculated as: 
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The main driving force is the single frequency term in Equation 2.70. This force is 

linearly dependent on the magnitudes of applied AC and DC voltages. In addition, 

driving force and AC voltage are in phase. On the other hand, there are DC and double 

frequency terms in the generated force as well. DC term is proportional to sum of the 

squares of amplitude of applied AC and DC voltages. Double frequency term has a 

frequency of twice the frequency of applied AC voltage and its magnitude is function 

of magnitude of the AC voltage. Most of the time in tests, the magnitude of the AC 

voltage is very small due to device capabilities used in frequency response 

characterizations. Therefore, double frequency term has very small magnitude 

compared to the single frequency term. By designing natural frequency of the 

resonator at the frequency of applied AC voltage, the DC term and double frequency 

term in force equation can be neglected, since the amplitude of oscillations in 

resonance are very large compared to the amplitudes at zero and double frequencies.  

In the modelling of electrostatic actuation, static deflection of the plate under the 

applied proof mass voltage is much smaller than the original capacitive gap. This 

assumption is validated with an electromechanical FE simulation in the Section 2.4.1. 

2.3.2.2.Capacitive Detection 

The displacement of the proof mass affects the capacitance formed between electrodes 

and the proof mass. Capacitive sensing is based on this capacitance change as in the 

case of capacitive driving. As the capacitance between proof mass and sense electrodes 

changes, stored charge in the capacitance also changes by means of the current flowing 

through sense electrodes. There are two types of capacitive sensing: varying gap and 

varying overlap area. In the former, capacitance change is due to change in gap 

between capacitive plates. On the other hand, capacitance changes due to the change 
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in the overlapping area of the capacitive plates for the letter case. In the varying gap 

capacitors, capacitance is a nonlinear function of displacement, whereas overlap area 

capacitors are linear functions of the displacement. The sensitivity of varying gap 

capacitor is higher, since it depends on square of the gap. 

As stated, stored charges varies with a current passing through the capacitor. This 

current is converted into voltages with a trans-impedance amplifier (TIA) as shown in 

Figure 2.7. 

 

Figure 2.7: Capacitive sensing application. Some of the eight electrodes are used for 

driving the resonator and the others used for sensing. These electrodes may be 

interchanged according to mode shape under test. 

Electrodes used for driving and sensing purposes are grouped according to the mode 

shape of interest. There are eight electrodes standing on the glass substrate and each 

of them can be used either for driving or sensing. The charge in a capacitor is calculated 

as follows: 

 CVQ   (2.71) 

where Q  is the charge. Then the current through that capacitor equals to time rate of 

change of the charge. That is:  
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As stated before, the magnitude of AC signal is very small compared to the proof mass 

voltage and sensing electrodes are connected to the virtual ground of operational 

amplifier. Therefore, the second term in Equation 2.72 is almost zero and it is 

neglected. Then, the current is written as follows using the chain rule of differentiation: 
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Equation 2.73 implies that, the current output of a capacitance change is actually a 

measure of velocity of the proof mass with a DC voltage applied. As seen in Figure 

2.7, an op-amp is used in TIA. The output is connected to inverting leg with an 

impedance. Then: 

 fbout iRiZV   (2.74) 

The impedance is a feedback resistor and values of all the parameters are given in 

Table 2.1.  Inserting Equation 2.73 into Equation 2.74 yields: 
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It is obvious that output voltage is expected to have a 90° phase difference with respect 

to the applied AC signal, since there is a differentiation. 

2.3.2.3.Softening Effect of Capacitive Actuation 

Capacitances formed by moving parts experience a softening affect due to the 

nonlinear nature of the forces created by the electrical field within the capacitor. This 

effect is studied and formulated for beam structures as it can be found in [19]. For this 

study, energy equations are utilized to model this softening effect in transverse 
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vibration of the plates. As before, the electrostatic energy in the capacitance formed 

by electrodes and the plate is given as: 

 
2

2

1
CVE   (2.76) 

The potential difference between proof mass and electrodes is taken as PMV , since the 

amplitude of AC voltage applied to the electrodes are very small compared to proof 

mass voltage. The capacitance is written in terms of deflections in the modes-of-

interest. 
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 (2.77) 

where B  is the amplitude of vibration, 0  is the permittivity of the medium between 

plate and electrodes and A is the overlapping area. Then the energy equation yields to: 
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The overlapping area is important at this point. For the actual design, overlapping area 

composes of eight trapezoids that are the electrodes. Therefore, the integration limits 

should be taken accordingly. To validate the correctness of the approach of finding 

electrostatic stiffness, the overlapping area is taken as both a single square electrode 

having side length exactly same as the plate side length and actual design that is the 

area of eight trapezoidal electrodes. Results of both case is compared with the finite 

element simulations and test results whichever is available in the upcoming sections. 

The equivalent electrostatic stiffness at the maximum deflection points is calculated 

with the same approach used for equivalent stiffness and mass calculation. That is: 
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The integral in Equation 2.79 can be simplified as follow: 
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(2.80) 

Further simplification is done using Taylor Series expansion to the term inside the 

integral 2.80. 
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(2.81) 

For the modes-pf interest, integral of odd power of deflection equals to zero due to fact 

that positively and negatively deflected regions are equal and they cancel each other. 

Knowing that the effect of higher terms is small, they are neglected. The oscillations 

are around the equilibrium point. Therefore, the constant one in the Equation 2.81 

which is not function of oscillations is responsible for static deflection and has no 

effect on the softening. Hence; it also neglected and following equation is obtained. 
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 (2.82) 

Inserting Equation 2.82 into Equation 2.79 yields to electrostatic spring constant. 
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Table 2.4 summarizes the calculated electrostatic spring constant for both single square 

electrode case, SSE, which is all the plate area is used as capacitive area and 

trapezoidal electrode case, TE, which is the designed case. 

Table 2.4: Closed form expressions of electrostatic spring constants for both single 

square electrode and trapezoidal electrodes 

Electrostatic spring 

constant 
Mode (1,1) Mode (2,0) – (0,2) 

SSEek ,   
2

3

2

0136.0
PMV

g

a
 (2.84) 

 

 
2

3
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g
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 (2.85) 

 

TEek ,   
2

3

2

0106.0
PMV

g

a
 (2.86) 

 

 
2

3

2

0174.0
PMV

g

a
 (2.87) 

 

 

Closed form frequency equation is obtained by utilizing the electrostatic spring 

constant given in Table 2.4 and Equation 2.57. For the designed electrode layout, the 

closed form natural frequency equation for mode (1,1) is given in Table 2.5. 

Table 2.5: Closed form equation of natural frequency of mode (1,1) with the 

electrostatic softening effect included for trapezoidal electrode layout. 

 Mode (1,1) 
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(2.91) 
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For the designed electrode layout, the closed form natural frequency equation for mode 

(2,0) – (0,2) is given in Table 2.6. 

Table 2.6: Closed form equation of natural frequency of mode (2,0) – (0,2) with the 

electrostatic softening effect included for trapezoidal electrode layout. 

 Mode (2,0) – (0,2) 
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(2.95) 

 

 

As expected, increasing proof mass voltage decreases the natural frequency of the 

structure due to softening effect. Derived formulas are validated with finite element 

simulations and test results whichever is available in the next sections. 

2.3.3. Analytical Model of Temperature Effect on Natural Frequencies of 

Modes-of-Interest 

As mentioned before, natural frequency of a structural system having mass and 

stiffness is a system parameter. Natural frequency, by definition, is function of other 

system parameters which are mass, stiffness and damping. Most of the mechanical 

properties effecting the vibration characteristics of a substance such as modulus of 

elasticity, Poisson’s ratio, dimensions are subjected to change with temperature. That 

means, natural frequency of the vibrating body is function of temperature. Given 

closed form equations in Section 2.3.2.3 are functions of geometric and material 

parameters, all of which are also function of temperature. Then, the effect of 
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temperature on the natural frequencies are modelled by inserting the temperature effect 

into each and every parameter. 

Thermal coefficient of modulus of elasticity, thermal coefficient of expansion for the 

materials silicon and silicon dioxide are given in Table 2.1. In this section, the 

subscribe zero stand for the initial state that is the state at room temperature. Table 2.1 

contains the values of initial states. 

Effect of temperature on the density is obtained as: 

 



m

  (2.96) 

where m  is the mass and   is the volume of the structure. Since the mass of the body 

does not change as it is heated up to a comparable value with the room temperature, 

density is obtained from the initial mass and volume. 

 

)1()1( 0

22

0

0

2

0
0

0
0

00

ThTa

ha

m

SiSi 














 (2.97) 

Then density is obtained as a function of temperature difference as follow: 

 3

0

)1( TSi





  (2.98) 

Temperature effect on the natural frequencies is modelled by inserting all of the 

parameters as a function of temperature into the natural frequency equations of modes-

of-interest. 
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Table 2.7: Closed form natural frequency equations as a function of temperature for 

modes-of-interest. 

Mode Shape Undamped Natural Frequency, n  
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Closed form natural frequency equations as a function of temperature are given in 

Table 2.7. Using these closed form equations, it is possible to obtain thermal sensitivity 

of the designed resonant plate, which will be a long and complicated equation. Results 

of all the analytical models are validated with the finite element simulations in the next 

sections. 

2.4. Finite Element Modelling of Resonant MEMS Plate Temperature Sensor  

The analytical models provided in the previous sections are validated with 3D Finite 

Element Modelling (FEM). FEM simulations are held in COMSOL Multiphysics 

environment. This section contains Modal Analysis, Electro-Mechanical Analysis and 

Thermal Analysis in order to validate analytical models. Moreover, FEM simulations 

are held in order to see the static deflections under applied proof mass voltage, parasitic 

modes and behavior of the resonator with changing temperature.  

In the FEM analysis, a tetrahedral mesh having size of 0.1µm – 20µm range is used as 

a result of mesh convergence study given in Figure 2.8. There is only one physical 

boundary condition which is the fixed post of the resonator. All four edges of the plate 

are free to move. For the material parameters, values in Table 2.1 are utilized. The 

built-in library for materials in COMSOL Multiphysics is used for the parameters not 

given in Table 2.1. 



 

 

49 

 

 

Figure 2.8: Mesh convergence study results done to determine mesh size 

As seen, the result of the FE simulation does not change much (smaller than 0.01%) 

for the mesh sizes smaller than 17µm. The mesh size used in the FE simulations is 

determined as 0.1-10µm from the results obtained mesh convergence study. 

2.4.1. Static Deflection and Pull-in Voltage Simulation of MEMS Plate 

In the analytical model of undamped natural frequencies, static deflections are 

neglected, since they are very small compared to initial gap. To validate this 

assumption, a static deflection FEM simulations are done for 15V proof mass voltage 

and grounded bottom electrodes. In this electromechanical FE simulation, 

electromechanical solver of COMSOL Multiphysics is used. Three dimensional (3D) 

geometry of the thermal sensor is drawn in SIEMENS Unigraphics software and then 

it is imported to COMSOL environment. For the physics definitions, all of the bodies, 

i.e. plate, post and electrodes, are defined as linear elastic materials with the material 

properties given in Table 2.1. Electrodes underneath the plate are fixed using fixed 

constraint in the domains selection, since all electrodes are three dimensional bodies. 

The bottom surface of the post which is connected to substrate is fixed using fixed 

constraint in the boundaries selection as it is being a surface boundary condition. In 

addition to these mechanical boundary conditions, there are also electrical boundary 
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conditions The plate is applied a proof mass voltage of 15V with the selection of 

terminal and type of terminal is selected as voltage. As mentioned before, applied AC 

voltage to the electrodes is very small in magnitude compared to proof mass voltage. 

Therefore, in the static deflection simulations, electrodes are grounded. The capacitive 

gap between plate and electrodes is filled with a material having unity relative 

permittivity representing the vacuum.  

For the meshing of the geometry, a built-in mesh of type tetrahedral mesh having size 

of 0.1µm – 20µm range is used. The substrate is not drawn and not included in the FE 

simulations, since it will create high number of meshes, which increases the simulation 

time. For the solution, a stationary study utilizing the electromechanics as physics 

interface is used. In Figure 2.9, the deflection pattern for the applied proof mass 

voltage of 15V is given. A maximum deflection of 0.773nm is observed at the corners 

of FFFF plate. 

 

Figure 2.9: Static deflection pattern with exact electrodes and 15V proof mass 
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Maximum deflections at the corner is very small compared to initial capacitive gap. 

Therefore, neglecting static deflections for 15V proof mass voltage is reasonable 

approximation in the modelling. In addition to that, effect of gravity is also simulated 

by adding a gravity physics to the electromechanical simulations and it is observed 

that deflections due to gravity is much smaller than the static deflections. It is in the 

order of one tenth of the static deflections and they are also ignored in the analytical 

model. 

In addition to static deflections, a pull-in analysis done in FE simulations to determine 

the pull-in voltage. For this electromechanical FE simulation, the electrodes are biased 

to voltages ranging from 0-1000V in the COMSOL Multiphysics. 

 

Figure 2.10: FE simulation of maximum static deflection of the plate at the corners 

versus applied DC proof mass voltage.  

In Figure 2.10, the relation between static deflection and applied proof mass voltage 

is given. FE simulations show that the pull-in voltage is 775V. FE simulations are done 

for 1V increment each step. Therefore, Pull-in voltage may not be exactly 775V; 

however, purpose of this analysis is to see the order of pull-in voltage which is much 

greater than the proof mass voltage used in tests. At this polarization voltage, the modal 

frequency of mode shape (1,1) is also analyzed and it is found to drop down to 

80.49kHz.  
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2.4.2. Modal Simulations of the Resonant MEMS Square Plate  

The modal simulations are held to validate the results obtained from the analytical 

model of natural frequency calculation of the modes-of-interest. In this part, 3D solid 

model of only MEMS plate and post are drawn in SIMENS Unigraphics due to purpose 

of minimizing the number of mashes in FE simulations. In modal FE simulation, solid 

mechanics solver is used in COMSOL Multiphysics.  

 

Figure 2.11: Undamped, free vibration modal simulation results obtained via 

COMSOL Multiphysics for the resonant MEMS square plate with a cylindrical post 

support at the geometric center. 
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The only boundary condition in the modal analysis is the fixed surface of the post. 

Fixed constraint selection in the boundaries list is used to define this boundary 

condition. For the materials, single crystal, isotropic silicon is used for plate and silicon 

dioxide is used for the post with the parameters given in Table 2.1. An eigenfrequency 

study is conducted to model the first twenty mode shapes. Geometric nonlinearities 

are included in the FE model. In Figure 2.11, some of the mode shapes are given. 

FE modal simulation shows both  nm,  and    mnnm ,,   modes. There are mode 

shapes having natural frequencies very close to each other. As an example, modes (4,1) 

and (1,4) are called “sibling” modes, which is the result of symmetric structure of 

square plate resonator. Another important outcome of the modal simulations is to see 

the effect of post. Anchoring the plate at the nodal lines is important to decrease anchor 

loss by minimizing the normal and shear stresses at the anchor during oscillations. It 

is also verified that modes-of-interest are the only two modes having the largest area 

of deflection, that maximizes the signal created at the formed capacitance.  

As stated, eigenfunctions of free-free beam are used in the mathematical model of plate 

vibrations as trial functions in Rayleigh-Ritz method, meaning that the presence of the 

post is not included in the model. Instead, the post is placed at the intersection of nodal 

lines which suppresses the effect. However, as the diameter of the post increases, the 

effect becomes more prominent. FE modal simulations show the effect of post more 

clearly. The deviation in natural frequency calculations of (1,1) mode shape is only 

3.35%. For the mode shape (2,0) – (0,2), the deviation is 6.15%. This deviation can be 

decreased by decreasing the post diameter, since the post tries to resist to motion, the 

structure is more stiff and the natural frequencies obtained from analytical model is 

greater than the FE simulations. To make analytical model and FE simulation 

comparable, another modal simulation is done for the plate only; in other words, modal 

analysis is done for plate without the post. Undamped, free natural frequencies of 

modes (1,1) and (2,0) – (0,2) are found to be 100057.752 Hz and 145981.065 Hz, 

respectively. These values correspond to deviation of 0.65% and 0.72% for the modes-

of-interest. This FE modal simulations reveals the effect of post and validates the 

analytical model derived using Rayleigh-Ritz method. 
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2.4.3. Finite Element Model Simulations of the Electrostatic Effect  

For this FE modelling, an electromechanical simulation is done just in the cases of 

static deflection, but this time simulation is done for the modal analysis. Three 

dimensional (3D) geometry of the thermal sensor is drawn in SIEMENS Unigraphics 

software and then it is imported to COMSOL environment. For the physics definitions, 

all of the bodies, i.e. plate, post and electrodes, are defined as linear elastic materials 

with the material properties given in Table 2.1. Electrodes underneath the plate are 

fixed using fixed constraint in the domains selection, since all electrodes are three 

dimensional bodies. In addition to mechanical boundary conditions, there are also 

electrical boundary conditions The plate is applied a proof mass voltage of 0-40V 

range with the selection of terminal and type of the terminal is selected as voltage. As 

mentioned before, applied AC voltage to the electrodes is very small in magnitude 

compared to proof mass voltage. Therefore, in the modal analysis simulations, 

electrodes are grounded. The capacitive gap between plate and electrodes is filled with 

a material having relative permittivity of unity representing the vacuum.  

The mesh dimensions and types are exactly same as the previous FE simulation. For 

the solution, both stationary and prestressed eigenfrequency studies which utilize the 

electromechanics as physics interface is used. The analytical model of electrostatic 

softening is given for both single electrode and exact trapezoidal electrodes. To 

validate the approach used in the analytical model, FE simulations of both cases is 

done and the results are presented in Figure 2.12 and Figure 2.13. 

Effect of electrostatic softening on the natural frequency of mode (1,1) in the analytical 

model perfectly agrees with the FE simulations for the single electrode layout that is a 

single square electrode underneath the plate. Moreover, results are in well agreement 

for the proof mass voltage values smaller than 20V for the trapezoidal electrode layout 

as seen in Figure 2.13. This results validate the method used to drive closed form 

equation for electrostatic softening effect for the square plate resonators. 
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Figure 2.12: Effect of electrostatic softening on the natural frequency of mode (1,1) 

with analytical model and FE simulation  for a single piece of square electrode fully 

covering the area underneath the plate. 

 

Figure 2.13:Effect of electrostatic softening on the natural frequency of mode (1,1) 

with analytical model and FE simulation  for trapezoidal electrode layout. 

It is also observed that electrostatic softening shifts the natural frequency of mode (1,1) 

by 3.6 Hz for applied proof mass voltage of 15V in both analytical model and FEM 

simulations.  
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2.4.4. Finite Element Model Simulations of the Thermal Effect 

The analytical model of the temperature effect on the modes-of-interest shape is 

validated with FE simulation. For this FE modelling, an electromechanical simulation 

is done just in the cases of static deflection and modal analysis, but this time linear 

elastic materials have thermal expansion nodes. 

For the physics definitions, all of the bodies, i.e. plate, post and electrodes, are defined 

as linear elastic materials with the material properties given in Table 2.1 having 

thermal expansion nodes. All of the mechanical boundary conditions are same as 

before. The plate is applied a proof mass voltage of 15V. As mentioned before, applied 

AC voltage to the electrodes is very small in magnitude compared to proof mass 

voltage. Therefore, in the thermal simulations also, electrodes are grounded. The 

capacitive gap between plate and electrodes is filled with a material having relative 

permittivity of unity representing the vacuum.  

Same mesh size and type as before is utilized for thermal simulations. The temperature 

distribution in the vibrating plate is assumed to be uniform. A thermal response 

simulation is conducted to obtain thermal time constant. As described before 

temperature of a substance in contact with the sensor is determined. Figure 2.14 shows 

the time domain response of the designed sensor placed on top of a hotter substance.  

 

Figure 2.14: Time domain response of the designed resonant MEMS plate temperature 

sensor. 
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The time constant is around 0.1-0.125s showing that the sensor can be used as 

temperature detection for the applications where temperature change occurs in periods 

larger than 0.1-0.125s. Comparison of the derived analytical and FE simulation is 

given in Figure 2.15. The analyzed range of temperature difference is limited to 22-66 

°C, since the test setup is capable of change the sensor that much. 

 

Figure 2.15: Comparison of frequency shifts due to temperature change for the 

derived analytical model and FE model for mode (1,1) with 15V proof mass applied. 

 

Figure 2.16: Comparison of frequency shifts due to temperature change for the derived 

analytical model and FE model for mode (2,0) - (0,2) with 15V proof mass applied. 
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As seen, results of both analytical and FE models are very close to each other for the 

small temperature differences for mode (1,1). However, as the temperature difference 

increases, the two models deviate from each other, but one should note that the 

deviation is less than 1 % at the maximum value of 44 °C temperature difference. For 

the mode (2,0) - (0,2), the discrepancy between the analytical model and FE 

simulations gets bigger as the temperature increases. However, for the small 

temperature differences, these model support each other. One of the reasons of the 

discrepancy of the between the analytical model and FE simulations for both modes is 

the fact that the plate and the post have different material having different thermal 

expansion coefficients. Therefore, upon the presence of temperature difference, strains 

built on them are different, which creates an internal stress in both them [31]. This 

stress is not included in the analytical model.  

2.5. Summary 

In this chapter, both analytical and finite element modelling of resonant based MEMS 

plate temperature sensor is presented. Basic concepts in vibration theory of thin plates 

are provided. The proposed application is explained in detail with dimensions and 

design concerns. The kinematics of vibration, equation of motion, is investigated in 

detail. Additionally, solution of EOM is provided using Rayleigh – Ritz method. 

Moreover, electrostatics of the sensor is given in the subsections of electrostatic 

driving and sensing technique. As one of the important contributions of this study, 

electrostatic softening effect on the natural frequencies of modes-of-interest are 

presented for plate resonators. Corresponding closed form equations are given. 

Thermal effect on the natural frequencies are included on top of the electro mechanic 

analytical model. Later, each and every analytical model is validated with FE 

simulation. In the last section, comparison of analytical and FE model is given. All 

possible reasons of dispersions between analytical model and FEM simulations are 

underlined. 
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CHAPTER 3 

 

 

3. FABRICATION AND CHARACTERIZATION EXPERIMENTS OF 

RESONANT MEMS PLATE TEMPERATURE SENSOR 

 

 

 

In this chapter, the fabrication and characterization experiments of resonant MEMS 

plate temperature sensor are presented. MEMS devices are fabricated in clean rooms 

due to the fact that any contamination may result in malfunctioning in the device. In 

Section 3.1, microfabrication flow of resonant MEMS plate temperature sensors is 

explained. In the subsections, details of the fabrication flow and SEM images of the 

fabricated devices are presented. Section 3.2 explains the frequency response 

characterization test setup and results. In this section, frequency responses of the 

modes-of-interest, result of Laser Doppler Vibrometer experiment and electrostatic 

softening effect tests are presented. The acquired data from the experiments is 

compared with the analytical model and FE simulations. In the Section 3.3, system 

level temperature tests are given. As a subsection, system level experimental setup is 

explained and the results are presented in the upcoming subsection. Frequency stability 

analysis is done for the system level temperature test results. Finally, Section 2.5 gives 

the summary of the chapter in a nutshell and gives the characteristic values of the 

developed temperature sensor. 

3.1. Fabrication of Resonant MEMS Plate Temperature Sensor 

For the fabrication of resonator plates, the advance MEMS (aMEMS) process is used, 

which is a high-yielding and reliable silicon on insulator (SOI) based microfabrication 

technique developed at the METU-MEMS Research and Application Center. Two 
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wafers are used in the fabrication; substrate wafer (glass wafer) and device wafer (SOI 

wafer). The two wafers are bonded with anodic bonding after patterning. Then sensor 

structures are obtained after removal of handle and buried oxide layers of SOI wafer. 

3.1.1. Microfabrication Process Flow 

Microfabrication starts with an SOI wafer having 35µm thick device layer (Figure 3.2 

(a)). Device layer of SOI wafer is patterned to form sensor structure using deep-

reactive-ion-etching (DRIE). This step is visualized in Figure 3.2 (b). The patterned 

SOI wafer is ready to be bonded after a piranha cleaning. As a substrate, glass wafer 

is used (Figure 3.2 (c)). Device layer of the SOI wafer is bonded on top of parts which 

are plate post and the anchors defined on the glass wafer, as seen in Figure 3.2 (d). 

Plate post and anchors are formed with etching using hydrofluoric acid, HF, solution. 

Metal wires and electrodes are defined with consecutive thermal evaporation and 

etching steps (Figure 3.2 (e)). First chromium (Cr) layer is evaporated on top of the 

patterned glass wafer in order gold to stick better to the surface. Then gold (Au) is 

thermally evaporated on top of chromium. To pattern electrical connections, 

chromium and gold are wet etched in the reverse order of deposition sequence. The 

anodic bonding takes place after piranha cleaning of glass wafer. Bonded wafers are 

shown in Figure 3.2 (f). After anodic bonding, first handle layer, then buried oxide 

layer of SOI wafer is removed to release the suspended resonator structures (Figure 

3.2 (g)). 

 

Figure 3.1: 3D solid model of designed sensor structure. (a) Shows the plate and pads. 

(b) A portion of the plate is removed to see post, anchors, electrodes and wires clearly. 
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Figure 3.2: Microfabrication steps of the sensor in aMEMS process flow. Given 

figures are for cross-sectional views of the wafer. (a) The SOI wafer used in the 

fabrication. (b) DRIE of device layer of SOI wafer to obtained vibrating square 

plates. (c) The glass wafer used in the fabrication. (d) Wet etching of glass wafer to 

obtain plate post and anchors. (e) Obtained metal pattern after consecutive thermal 

evaporation and etching of metal. (f) Anodic bonding of the two wafers. (g) Handle 

and buried oxide layer of SOI wafer is removed to release the suspended structures. 

The details of the fabrication process are not given here as they can be found in [31]. 

In addition, details of the aMEMS process are given in [53]. In Figure 3.1, the 3D solid 

model of the resonant MEMS plate temperature sensors drawn in SIEMENS 

Unigraphics is given. Figure 3.1 (a) shows the single resonant MEMS plate 

temperature sensors with pads used to access electrodes and proof mass. Figure 3.1 (b) 

shows the single sensor structure and some portion of the resonator plate is removed 

to see post, anchors, electrodes and wires clearly.  
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3.1.2. Microfabrication Results 

In Figure 3.3 and Figure 3.4, scanning electron microscope images of fabricated 

sensors with the details of electrodes, post, plate and gap are given. The SEM images 

are taken at METU-MEMS Research and Application Center. In addition, resonator 

plate is removed in Figure 3.3 to have visual access to the electrodes.  

 

Figure 3.3: Scanning Electron Microscope (SEM) image of the fabricated sensor 

with the plate removed to have visual access to the electrodes and plate post. 

As seen in these figures, the designed structures are well fabricated to proceed further 

for test; however, fabrication is not perfect. Sides of the resonator is not perfect lines, 

there are some undercuts which affect the natural frequency and mode shapes. Natural 

frequency of a square plate having smaller side lengths is greater than that of square 

plate having larger side lengths. Natural frequencies of the fabricated devices are 

expected to be greater than the calculated and simulated ones due to these undercuts 

making the structure stiffer in the transverse direction and effective mass less.  
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Figure 3.4: SEM image of the fabricated sensors 

Another unavoidable common problem in MEMS fabrication is the contamination. It 

may result from both environments of the clean-room and process itself. In Figure 3.3, 

it is possible to observe a little contamination; however, there is no contamination 

observed on the surfaces of the suspended structure, the plate. It is important to have 

clean moving parts and electrodes, since they affect the displacement and generated 

force and read signals.  

3.2. Frequency Response Characterization Tests 

For the purpose of verification of the validated analytical model with FE simulations, 

frequency responses of the fabricated MEMS resonators are measured in a vacuum 

chamber at a vacuum level of around 20mTorr. Laser Doppler Vibrometer tests are 

held to verify closed form equations for both natural frequency and corresponding 

mode shape. 
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3.2.1. Frequency Response Test Setup 

The experimental setup for frequency response tests composes of vacuum pump, 

vacuum chamber, vacuum level indicator, trans-impedance amplifier circuitry (TIA) 

and device under test (DUT). Experimental setup is given in Figure 3.5. 

 

Figure 3.5: Experimental setup for the frequency response test of fabricated MEMS 

plate resonator. 

In all of the experiments in this study, Agilent E5061B Network Analyzer is used to 

drive the resonators by applying AC voltage and used to collect response data to draw 

frequency response plots (Bode plots). As seen in the experimental setup, TIA is 

placed close vicinity of the resonator in order to minimize the feedthrough (stray) 

capacitance. A trans-impedance amplifier with 1 MΩ feedback resistance is used for 

characterization of the plate resonator. There are eight electrodes underneath the plate, 

which enables to drive several modes in single design. For testing (1,1) mode shape, 

corresponding electrode layout for driving and sensing is given in Figure 3.6 together 

with network analyzer and TIA. For DC voltages supplied to op-amps, Agilent 

E3631A Power Supply is used.  
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Figure 3.6: Read out circuitry used in frequency response tests of mode shape (1,1)  of 

MEMS plate resonator together with network analyzer. 

Frequency response tests are held at 20mTorr ambient pressure. Driving signals are 

applied to the corresponding electrodes for each mode shape and applied AC voltage 

has a magnitude of 100mVpp (peak to peak). Current pumped out from the sensing 

capacitance is converted to voltage with the TIA utilizing LF353 operational amplifier 

by Texas Instrument. For proof mass voltage, 15V DC voltage is applied to mass of 

the resonating body. Mechanical response of the resonator is measured by subtracting 

stray response from overall response. In other words, the frequency response is 

collected with 15V proof mass voltage and logged in the network analyzer. Then, proof 

mass of the resonator is grounded. The data called as stray or feedthrough data is 

collected. These two logged data are subtracted from each other in the complex domain 

and mechanical response is obtained. This subtraction is done on a separate computer 

using MS Excel and/or MATLAB. Final frequency response is plotted utilizing one of 

these two commercial software.  

3.2.2. Frequency Response Test Results 

Frequency responses of modes-of-interest are obtained with the test procedure 

explained previous section. To locate the frequency of each mode shapes, first, 

frequency response of the resonator is taken for a very large frequency span. From 0 
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Hz to 200 kHz, response is collected and following results are obtained. After located 

each mode shape, response is recollected in smaller frequency span of 100-200 Hz. 

At around 65 kHz, two distinct mode shapes are captured which are not modelled in 

the modelling section. These mode shapes are actually pitch and roll of the plate 

around the axis passing through the center and parallel to x  and y , respectively. The 

given frequency response in Figure 3.7 shows these modes in the frequency range of 

63-68 kHz. 

 

Figure 3.7: Frequency response of MEMS plate resonator at 20mTorr vacuum level 

with 15V proof mass voltage in the frequency span of 63-68 kHz shows the pitch and 

roll motion of the plate around the axis passing through the post and parallel to x 

and y axis, respectively. 

The pitch and roll motion are expected to be at the same frequency, since the square 

plate structure is symmetric about its center. However, the fabrication imperfections 

mentioned in the previous section causes these modes to separate. The amount of 
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separation in terms of frequency is very small. One of these modes is at 64.46 kHz and 

the other mode shape is at 65.98 kHz. 

The measured frequency response of mode (1,1) at 20mTorr ambient pressure with 

proof mass voltage of 15V is given in Figure 3.8.  

 

Figure 3.8: Frequency response test result of mode (1,1) of fabricated MEMS plate 

resonator at 20mTorr vacuum level with 15V proof mass voltage. 

As expected, resonance frequency of mode (1,1) is in good agreement with the 

analytical model and FE simulations. Natural frequency of mode (1,1) is measured to 

be 104.225 kHz with a Q-factor around 14300. Quality factor is one of the key 

properties of the resonators but not only. In terms of Q-factor comparison, resonator 

in this study is placed at a good point among the ones in literature. Differences in 

frequency between analytical model and test results are originated from facts that:  
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1. Analytical model does not take post into account. It is discussed that post 

increases the transverse stiffness of the plate resulting higher natural 

frequencies. 

2. Fabrication imperfections such as undercut effect the geometry of the plate. 

Natural frequency of the plate is inversely proportional to side length of square 

plate and directly proportional to thickness of the plate. Therefore, undercuts 

increase the natural frequency as measured in this study. 

In addition to mode (1,1), result of analytical model and FE simulations are also 

verified with frequency response tests for mode (2,0) – (0,2). Figure 3.9 shows the 

frequency response of mode (2,0) – (0,2) at 20mTorr vacuum level with 16V proof 

mass voltage.  

 

Figure 3.9: Frequency response test result of mode (2,0) - (0,2) of fabricated MEMS 

plate resonator at 20mTorr vacuum level with 16V proof mass voltage. 

As expected, resonance frequency of mode (2,0) – (0,2) is also in good agreement with 

the analytical model and FE simulations. Natural frequency of mode (2,0) – (0,2) is 
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measured to be 156.682 kHz with a Q-factor around 10700. The differences between 

models and tests result from exactly same arguments made for mode (1,1). 

 

Figure 3.10: Frequency response of the fabricated resonator at 20mTorr ambient 

pressure with 15V proof mass voltage between 22-66 °C 

In addition to identification of mode shapes, temperature effect on (1,1) mode is also 

tested. The Figure 3.10 shows the frequency response of the fabricated resonators at 

vacuum level of 20mTorr with 15V proof mass voltage. The frequency response test 

with changing temperature of the resonator is repeated for increasing and decreasing 

temperature. As a result, Figure 3.11 is obtained. 

Temperature increases from 22 to 66 °C 
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Figure 3.11: Frequency response of the fabricated resonator with changing 

temperature from 22 to 66 °C at 20mTorr ambient pressure. The proof mass voltage 

is 15V. Both increasing and decreasing cases are presented. 

Frequency shift is given as parts per million (ppm) over the temperature range of 22 – 

66 °C. Note that, the given response is the mechanical response of the resonator, 

meaning that feedthrough capacitance is subtracted from the overall response. It is seen 

that both increasing and decreasing case show similar response. 

3.2.3. Laser Doppler Vibrometer Test Results 

Laser Doppler Vibrometer (LDV) tests are carried out to verify mathematical model 

for both natural frequencies and corresponding mode shapes. In addition, all of the 

mode shapes are scanned between 0-175 kHz frequency range to locate the parasitic 

modes. Frequency response of the plate at vacuum level of 0.364mTorr with 15V proof 

mass voltage is measured with Ploytec micro system analyzer MSA – 500 Scanning 

Laser Doppler Vibrometer. Figure 3.12 shows the measured response. 
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Figure 3.12: Frequency response of the plate at vacuum level of 0.364mTorr measured 

with Ploytec micro system analyzer MSA - 500 Scanning Laser Doppler Vibrometer 

between 0-175 kHz frequency range at 0.364mTorr vacuum pressure level with 15V 

proof mass voltage. Mode shapes are measured for the one quarter of the plate due to 

optical capabilities of the measurement device. 

Notice that presented mode shapes in Figure 3.12 show only one quarter of the plate 

due to optical capabilities of the measurement device. As a result of overall 

comparison, the measured values of natural frequencies for modes-of interests are 

close to analytical model and FE simulations.  

First two peaks which are very close to each other around 65 kHz are the pitch and roll 

of the plate around post which were also observed in frequency response tests. These 

modes are at 63.65 kHz and 66.65 kHz, respectively. Differences in vacuum level, 

measuring technique and circuitry used in these tests cause slight discrepancy in 

natural frequencies between frequency response and LDV tests. Once more, these 

pitch and roll modes are expected to be at the same frequency for completely 

symmetric structure. However, fabrication imperfections distort the symmetric and 

separate them. Third peak in the LDV results corresponds to mode (1,1) at 103.76 kHz 

and last peak shown is the natural frequency of mode (2,0) - (0,2) at 158.1 kHz.  
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3.2.4. Electrostatic Softening Effect Test Results 

Verifying the analytical model and FE simulations of natural frequencies and mode 

shapes model, the analytical model of electrostatic softening effect is also tested and 

verified. In the modelling chapter, electrostatic softening effect is analyzed for two 

cases: single square electrode layout and trapezoid electrode layout. Analytical model 

of the softening effect for single square electrode layout case is validated with FE 

simulation; however, it is not verified with test results, since single electrode layout is 

not fabricated. This is done to be sure the validity of the method used. On the other 

hand, electrostatic softening effect for trapezoidal electrode layout is tested also. 

Figure 3.13 shows the electrostatic effect for proof mass voltage of 0-40 V range, 

verifying the validity of the method to find electrostatic spring constant. Tests are done 

at 20mTorr ambient vacuum pressure level. The results are published in [54].  

 

Figure 3.13: Test results of electrostatic softening effect on the natural frequency of 

mode (1,1) with analytical model and FE simulation for trapezoidal electrode layout 

at 20mTorr ambient vacuum pressure for proof mass voltage of 0-40V. 
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3.3. System Level Temperature Tests 

As described in the proposed application section, temperature of the resonator plate 

shifts the natural frequencies. To be able to detect the frequency shift, a closed loop 

controller is implemented to keep the MEMS plate in resonance. If the resonance 

frequency shifts, the controller should follow that shift and drive the plate at the new 

resonance frequency. That driving signal, input, of the plate is generated from voltage 

controlled oscillator (VCO).  

One of the methods used as a closed loop controller for resonance in oscillators is 

Phase Locked Loop (PLL). Phase difference between the input and output of the 

resonator is measured by the PLL and this is fed to the controller as an error signal. 

The controller adjusts the input voltage of the VCO which generates the input signal 

having adjusted frequency for the resonator. 

The error signal for the controller is generated by multiplying the drive and sense 

signal. If these two signals have same frequency but different phase, then the 

multiplication gives: 

          tABtBtA  2coscos
2

1
sinsin  (3.1) 

Multiplication results a DC term and a double frequency term. Notice that the DC 

terms is composed of only cosine of the phase angle. Therefore, one can extract the 

phase information filtering out the double frequency term using a low pass filter (LPF). 

From the basics of control theory, controllers try to make error signal, cosine of the 

phase angle in this case, zero. Cosine of an angle zero if and only if the angle equals 

to π/2 or 3π/2. Due to the known fact that input of the TIA is derivative of the resonator 

output signal, the output of TIA is shifted by π/2. 

If the frequencies of the signals are not equal, then the multiplication is: 

            ttABtBtA 212121 coscos
2

1
sinsin   (3.2) 
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This time the terms are separated as low frequency and high frequency term. The low 

frequency term is the useful part. The output of the controller fluctuates due to 

fluctuation in the error; however, an integral control takes care of this fluctuation due 

to accumulation of error [55]. 

In Figure 3.14, a PLL system is shown with basic components used in this thesis study.  

 

Figure 3.14: The PLL controller with its main elements that are VCO, plate resonator, 

TIA, phase shifter, multiplier and controller used in this study. 

Frequency change is tracked with the PLL controller. The fabricated sensors are placed 

in the vacuum chamber on top of a thermoelectric cooler (TE cooler) and it is heated 

up and cooled down with the TE cooler. The temperature data is collected with a 

commercial temperature sensor LM35 produced by Texas Instruments. It is placed 

inside the package to acquire precise measurements. Both the frequency and 

temperature data are logged simultaneously. 

3.3.1. System Level Temperature Test Setup 

In the temperature tests, same experimental setup is used with the addition of PLL 

controller, TE cooler, temperature sensor and data logging computer. Vacuum level 
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for the system level temperature tests is 0.405mTorr. The experimental setup is shown 

in Figure 3.15. 

 

Figure 3.15: Experimental setup for the system level temperature tests showing 

oscilloscope, frequency counter, signal generator used as VCO, power supply, vacuum 

pump and chamber, network analyzer and readout circuitry. 

The output of the fabricated sensor is converted to voltage with a TIA placed near the 

sensor inside the vacuum chamber as in the frequency response experiments. Output 

signal of TIA is first passed through a HPF (high pass filter) to eliminate the DC offsets 

if there is any and then it is amplified due to fact that multiplier input has a minimum 

threshold value. For the amplifier stage shown in Figure 3.16, LF353 operational 

amplifiers are used. The multiplier stage works as a comparator as explained in the 

theory of the system level tests section. Multiplication of two signals having same 

frequency results with a cosine term of phase difference between those signals. As 

seen, driving and sensing signals of the plate resonators are multiplied which are 

expected to have same frequency at the resonance. Therefore, multiplier is actually 

comparator for the circuitry given in Figure 3.16. 
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Figure 3.16: The PLL  circuit shown in detail with main blocks that are , VCO, a 

controller, amplifier stages and a phase detector (multiplier). 

AD630 is used to multiply input and output of the resonator. The output goes to the 

controller as error. Output of the controller change the frequency output of the Voltage-

Controlled-Oscillator (VCO). A signal generator is used as a VCO. Then the generated 

sine signal is manipulated to get two sine signal having 180° phase difference. The 

fabricated plate is differentially derived to minimize the feedthrough capacitance 

present in the system. To differentially drive the plate resonator, the signal produced 

by VCO is converted into two signal having exactly same amplitude but 180° phase 

difference. For this purpose, single to differential converter is utilized. These two sine 

signals drive the plate resonator and output signal of the resonator is fed to the TIA 

and the loop closes. The controller forces error to be zero which corresponds to 90° 

phase difference between input and output of the plate resonator. As explained before, 

this occurs at the resonance. The frequency of the output of sine shaper is logged using 

HP 5334A Universal Counter.  
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3.3.2. System Level Temperature Test Results 

System level temperature tests results are obtained with the experimental setup 

explained in previous section. The temperature tests are held at the vacuum level of 

0.405mTorr with proof mass voltage of 42V. The commercial products of AD620 of 

Analog Devices and LF353 of Texas Instruments are used as instrumentation and 

operational amplifiers, respectively. The commercial product with the code AD630 of 

Analog Devices is used to multiply input and output signals of the resonator. As 

explained, sine shaper and VCO are combined in the Keysight 33500B Series 

Waveform Generator. Agilent E3631A Power supplies energize the readout circuitry 

and the fabricated sensors. For counting and logging frequency data, HP5443A 

Universal Counter with a logging computer is used. Lastly, frequency responses are 

collected by Agilent E5061B Network Analyzer.  

The obtained response of the plate resonators with changing temperature for mode 

(1,1) in given in Figure 3.17. 

 

Figure 3.17: The obtained results for natural frequency of mode (1,1) of the fabricated 

plate resonator and its temperature vs time. 

The natural frequency shift of the fabricated device with a larger temperature range is 

also tested and corresponding response is given in Figure 3.18. 
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Figure 3.18: Natural frequency of mode (1,1) of the fabricated plate resonator and its 

temperature vs time in larger temperature range. 

The scale factor for mode (1,1) is calculated to be 2.0214Hz/°C from the obtained 

results of system level temperature tests shown in Figure 3.19.  

 

Figure 3.19: Change of natural frequency of mode (1,1) with respect to temperature. 
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The results are compared with the analytical model and FE simulation for the thermal 

effect in Figure 3.20.  

 

Figure 3.20: Test results of thermal effect on the natural frequency of mode (1,1) with 

analytical model and FE simulation for the temperature of 25-55°C. 

Analytical model, FE simulations and obtained test results have same behavior. 

Analytical model neglects the effects of post, feedthrough capacitance and fabrication 

impurities; therefore, there is a discrepancy as expected. Therefore; the 

characterization data in the next chapter are obtained from the tests rather than model 

and simulations. 

To experimentally determine the maximum temperature resolution, the frequency data 

for mode (1,1) is acquired over 50000 seconds with a sample rate of 6.01 Hz (0.17 

seconds sampling time). Obtained frequency data over a time is given in Figure 3.21. 

It should be noted that the collected data is for sensor and PLL electronics together.  
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Figure 3.21: Natural frequency vs Time for mode (1,1) plot obtained from the data 

acquired over 50000s with a sampling rate of 6.01 Hz for the sensor and PLL 

electronics together. 

The frequency stability analysis is done using Allan variation method [56]. The Allan 

variance of the drift data is given in Figure 3.22. The Allan variance analysis is 

concluded that resolutions as low as 0.0003725°C are obtained with an integration 

time of 8 seconds for mode (1,1). 

 

Figure 3.22: Allan variance plot for the natural frequency of mode (1,1). 
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The obtained response of the plate resonators with changing temperature for mode 

(2,0) – (0,2) in given in Figure 3.23. 

 

Figure 3.23: Natural frequency of mode (2,0) – (0,2) of the fabricated plate resonator 

and its temperature vs time. 

The natural frequency shift of the fabricated device with a larger temperature range is 

also tested and corresponding response is given in Figure 3.24. 

 

Figure 3.24: Natural frequency of mode (2,0) – (0,2) of the fabricated plate resonator 

and its temperature vs time in larger temperature range. 
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The scale factor for mode (2,0) – (0,2) is calculated to be 2.7211Hz/°C from the 

obtained results of system level temperature tests shown in Figure 3.25.  

 

Figure 3.25: Change of natural frequency of mode (2,0) – (0,2) with respect to 

temperature. 

The results are compared with the analytical model and FE simulation for the thermal 

effect in Figure 3.26. The results behave in the same manner; however, there is a 

discrepancy reasons of which are given above for the mode (1,1).  

 

Figure 3.26: Test results of thermal effect on the natural frequency of mode (2,0) – 

(0,2)  with analytical model and FE simulation for the temperature of 25-66°C. 
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To experimentally determine the maximum temperature resolution, the frequency data 

for mode (2,0) – (0,2) is acquired over 40000 seconds with a sample rate of 200 Hz 

(0.005 seconds sampling time). Obtained frequency data over a time is given in Figure 

3.27. It should be noted that the collected data is for sensor and PLL electronics 

together.  

 

Figure 3.27: Natural frequency vs Time  for mode (2,0) – (0,2) plot obtained from the 

data acquired over 40000s with a sampling rate of 200Hz for the sensor and PLL 

electronics together. 

The frequency stability analysis is done using Allan variation method [56]. The Allan 

variance of the drift data is given in Figure 3.28. The Allan variance analysis is 

concluded that resolutions as low as 0.0001499°C are obtained for mode (2,0) – (0,2). 
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Figure 3.28: Allan variance plot for the natural frequency of mode (2,0) – (0,2). The 

Allan variance analysis is done to determine minimum detectable temperature. 

3.4. Summary 

In this chapter, the fabrication and characterization tests of resonant MEMS plate 

temperature sensor are presented. The SEM images of the fabricated devices are 

presented and fabrication imperfections are underlined. The test setup and results are 

presented in two categories; frequency response tests and system level temperature 

tests. The results of experiments are compared with the results obtained from analytical 

model and FE simulations.  

Characterization of the fabricated devices divided into two stage; frequency response 

and system level temperature experiments. In the frequency response tests, the 

resonance frequency and Q-factor of mode (1,1) are measured to be 104.2 kHz and 

14300, respectively. For mode (2,0) - (0,2), the measured resonance frequency and Q-

factor are 156.68 kHz and 10700, respectively. All the frequency response tests are 

conducted at the ambient vacuum level of 20mTorr. The natural frequency results are 

slightly different than the model due to two main reasons being that there is a post 
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holding the plate which is not included into analytical model and microfabrication is 

not perfect as it has impurities. The LDV tests done at vacuum level of 0.364mTorr 

support the values obtained from frequency response test, analytical model and FE 

simulations. In addition, effect of electrostatic actuation is also tested for the proof 

mass voltage range of 0-40V. For proof mass voltage of 15V, frequency of (1,1) mode 

shifts 3.6Hz, which is in perfect agreement with the analytical model and FE 

simulation. As the proof mass voltage increased, test results verify the analytical model 

and FE simulation. At the maximum proof mass voltage, 40V, the frequency shift is 

around 26Hz. The frequency response tests are done between 22-66°C. 

System level temperature tests are done with an implemented PLL controller to track 

frequency drifts with changing temperature. Tests are done at vacuum level of 

0.405mTorr. Natural frequency of the fabricated plate tracks the temperature change, 

that is, natural frequency decreases as the temperature increases and vice versa. The 

scale factor of the fabricated sensor is obtained as 2.0214Hz/°C and 2.7211Hz/°C for 

mode shapes (1,1) and (2,0) - (0,2), respectively. The temperature equivalent 

frequency instability of the fabricated sensor is measured to be 0.3725mK for (1,1) 

mode shapes and 0.1499mK for (2,0) - (0,2) mode shape. When compared with the 

smart temperature sensors realized in the literature [57], the minimum detectable 

temperature values of 0.3725mK and 0.1499mK. 

In conclusion, microfabrication of the designed sensors, the frequency response tests 

and system level temperature tests are successfully completed and the results are in 

great agreement with the analytical model and FE simulations, supporting the model 

to be used in further studies.  
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CHAPTER 4 

 

 

4. CONCLUSION AND FUTURE WORK 

 

 

 

In this research, a resonant MEMS plate temperature sensor is developed. The 

proposed application utilizes micro plate vibration to detect temperature of a substance 

which is in contact with the sensor. Within the scope of this research, the design, 

modelling, fabrication and characterization experiments of the sensor are carried out 

and reported. The conclusions drawn from the results of this research are summarized 

as follows: 

 The theory, principles of operation and application areas of MEMS resonators 

are investigated. Temperature detection, MEMS resonators and plate 

vibrations are introduced separately. One of the driving and sensing method 

commonly used in MEMS devices, electrostatic actuation and detection, is 

introduced. The electrostatic softening effect is explained and modelled. 

 The proposed application is explained in detail which is detecting temperature 

by tracking natural frequency shifts of the resonating micro plate. Each mode 

behaves different under the same temperature effect. The natural frequency 

shifts for mode (1,1) and mode (2,0) – (0,2) are compared. 

 The theory of plate vibrations is examined in order to build a valid analytical 

model of the behavior of a transversely vibrating plate having four edges free 

to move. Transverse vibration of the plate modelled as a continuous media; 

however, it is seen that the analytical solution of the transverse vibration of the 
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plate with all edges free to move requires infinite series solution. Due to this 

impractical solution, Rayleigh and Rayleigh-Ritz method is applied. The effect 

of number of trial functions used in the solution of the problem is analyzed and 

optimized considering the computational power needed. The closed form 

analytical model of the natural frequencies and mode shapes of transversely 

vibrating plate is constructed. 

 As the problem is composed of thermal, electrical and mechanical parts, 

analytical model of the mechanical part is developed with the addition of 

thermal and electrical effects. First the electrostatic softening effect, then the 

thermal effects are added to the mechanical model.  

 The preliminary verification of the analytical model is done with FE 

simulations. The FE simulations are closer to actual system, but has some 

discrepancy due to the fact that effect of post and fringing fields are ignored in 

the analytical model. In the order of mechanical, electromechanical and 

thermo-electro-mechanical FE simulations are held in order to compare the 

electrical and thermal effects with the analytical model. The maxima of the 

operational parameters such as feasible range of proof mass voltage to be 

applied without pull-in and static deflections are determined based on the 

results obtained from FE simulations. Modal FE simulations are conducted in 

order to verify analytical model. Electromechanical FE simulations validates 

the analytical model with electrostatic softening effect. Lastly, results obtained 

from thermo-electro-mechanical analytic model and FE simulations are 

compared. 

 The fabrication of the designed temperature sensors is performed with a 

silicon-on-glass process, aMEMS, which is an optimized, high yielding 

microfabrication process developed in METU MEMS Center. SEM images of 

the fabricated sensors are given to see the quality of the fabrication. The device 

layer thickness of the sensors is 35µm and side length of the square plate is 

1400µm. In each die having lengths of 7.6mm x 7mm, two resonant MEMS 

plate temperature sensors are placed with 18 electrical pads. 
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 Characterization tests are divided into two parts; frequency response and system 

level temperature tests. The Q-factors of modes (1,1) and (2,0) - (0,2) are measured 

to be 14300 and 10700 at a vacuum pressure level of 20mTorr, respectively. 

Natural frequencies of modes-of-interest are measured to be very close to values 

obtained from analytical model and FE simulations. The LDV tests done at vacuum 

level of 0.364mTorr support the values obtained from frequency response test, 

analytical model and FE simulations. In addition, effect of electrostatic actuation 

is also tested for the proof mass voltage range of 0-40V and corresponding 

frequency shift is measured to be 0-26Hz. System level temperature tests are done 

with a PLL controller to track frequency drifts with changing temperature at 

vacuum level of 0.405mTorr. The scale factor of the fabricated sensor is obtained 

as 2.0214Hz/°C and 2.7211Hz/°C for mode shapes (1,1) and (2,0) - (0,2), 

respectively. The temperature equivalent frequency instability of the fabricated 

sensor is measured to be 0.3725mK for (1,1) mode shape and 0.1499mK for (2,0) 

- (0,2) mode shape. 

Apart from these major achievements obtained from this research, below points should 

be considered as future work. 

 All three dimension of the resonating plate should be decreased in order to 

get more portable device and measure more local temperatures. As the 

dimensions get smaller, the temperature sensor can be placed more 

precisely. Since the analytical model is verified with FE simulations and 

characterization tests, it is suggested to be used for further development. 

 The readout circuitry and the electronic for PLL control should be printed 

in order to minimize the feedthrough capacitance. The vacuum chamber 

used in this study does not allow much room for all the circuitry to be 

placed nearby the sensor. 

 In order to measure the exact temperature of the vibrating plate, a laser type 

temperature sensor should be used. In fact, a high precision temperature 
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controlled-oven would be a better solution for the tracking temperature of 

the resonating body. 

 Higher mode shapes of the resonating plate should be analyzed in order to 

see the temperature characteristics of these modes. As the interested 

frequency gets higher, readout circuitry specifically the operational and 

instrumentation amplifiers may need to be changed. 

 The developed thermal sensor can be used in IR detecting applications 

because of the reason that the working principle of the sensor is based on 

temperature of the resonating plate. For detecting the substrate temperature, 

the heat from the substance should reach to the plate and change its 

temperature. However, for IR applications, the heat energy directly comes 

to the plate in terms of infrared radiation. 

 The diameter of the post should be decreased in order to reduce the heat 

transfer from plate to substrate by conduction, which will increase the 

temperature change of the plate as a result of incident radiation. 

 For the IR detection application, it is better to isolate the detecting element, 

the micro plate, from rest of the structure thermally. Therefore, the micro 

plate should be suspended using inner or outer crab legs with a small cross 

sectional are to minimize the heat flow from the plate to the substrate. 

 Since the fabrication flow is composed of very small number of masks, the 

cost of fabrication is low. Therefore, the resonant MEMS plate temperature 

sensors is a cost effective solution for thermal imaging as uncooled 

bolometers. Focal plane array (FPA) of resonant MEMS plate temperature 

sensors can also be realized for thermal imaging purposes.  



 

 

91 

 

 

REFERENCES 

 

 

 

[1] R. P. Feynman. There's Plenty of Room at the Bottom [Online]. Available: 

http://www.phy.pku.edu.cn/~qhcao/resources/class/QM/Feynman's-Talk.pdf, 

[Last accessed: 23.05.2017] 

[2] K. D. Wise, "Integrated Microsystems: Merging MEMS, micropower 

electronics, and wireless communications," in Twelfth Annual IEEE 

International ASIC/SOC Conference (Cat. No.99TH8454), 1999, pp. 23-29. 

[3] Y. Développement. (2015, 23.05.2017). Status of the MEMS Industry 2015  

[Online]. Available: 

http://www.yole.fr/iso_upload/Samples/Status_of_The_MEMS_Industry_201

5_Sample.pdf, [Last accessed: 23.05.2017] 

[4] K. Lightman. MEMS and Sensor Trends Smaller, Faster and Available to the 

Mass Market [Online]. Available: 

https://c.ymcdn.com/sites/memsindustrygroup.site-

ym.com/resource/collection/A1DAAF83-11BC-4D42-A98F-

BF250C325EE8/MEMS_and_Sensor_Trends_Smaller_Faster_and_Available

_to_the_Mass_Market.pdf 

[5] M. H. Sadd, Elasticity Theory, Applicaions and Numerics, 2 ed. Oxford, UK: 

Academic Press, 2009. 

[6] E. F. F. Chladni, Entdeckungen über die Theorie des Klanges, 1787. 

[7] S. Timoshenko, Vibration Problems in Engineering, Second ed. New York: D. 

Van Nostrand Company, INC., 1937. 



 

 

92 

 

[8] A. W. Leissa, Vibrations of Plates. Washington, DC: Office of Technology 

Utilization - National Aeronautics and Space Administration, 1969. 

[9] A. W. Leissa, "The Free Vibration of Rectangular Plates," Journal of Sound 

and Vibration, vol. 31, pp. 257-293, 1973. 

[10] S. F. Bassily and S. M. Dickinson, "On the Use of Beam Functions for 

Problems of Plates Involving Free Edges," Journal of Applied Mechanics, vol. 

42, pp. 858-864, 1975. 

[11] G. B. Warburton, "The Vibration of Rectangular Plates," Proceedings of the 

Institution of Mechanical Engineers, pp. 371-384, 1954. 

[12] L. Rayleigh, The Theory of Sound, Second ed. New York: Dover Publications, 

1894. 

[13] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells. San 

Francisco: McGraw-Hill Book Company, 1987. 

[14] A. C. Ugural, Stresses in Beams, Plates and Shells, 3 ed. Boca Raton: CRC 

Press Taylor and Francis Group, 2010. 

[15] E. F. F. Chladni, Die Akustik: Leipzig, 1802. 

[16] C. T. C. Nguyen, "MEMS technology for timing and frequency control," IEEE 

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, 

pp. 251-270, 2007. 

[17] H. K. Lee, R. Melamud, B. Kim, M. A. Hopcroft, J. C. Salvia, and T. W. 

Kenny, "Electrostatic Tuning to Achieve Higher Stability 

Microelectromechanical Composite Resonators," Journal of 

Microelectromechanical Systems, vol. 20, pp. 1355-1365, 2011. 

[18] H. Yuan-Ta, T. Sheng-Hsiang, F. Chiao-Li, W. Jian-Fu, T. Hann-Huei, and J. 

Ying-Zong, "Ultra-low power boost DC-DC converter with integrated MEMS 



 

 

93 

 

resonator," in Power Electronics and Drive Systems (PEDS), 2015 IEEE 11th 

International Conference on, 2015, pp. 711-714. 

[19] K. Azgin and L. Valdevit, "The effects of tine coupling and geometrical 

imperfections on the response of DETF resonators," Journal of 

Micromechanics and Microengineering, vol. 23, p. 125011, 2013. 

[20] K. Azgin, T. Akin, and L. Valdevit, "Ultrahigh-Dynamic-Range Resonant 

MEMS Load Cells for Micromechanical Test Frames," 

Microelectromechanical Systems, Journal of, vol. 21, pp. 1519-1529, 2012. 

[21] T. Kose, K. Azgin, and T. Akin, "Temperature compensation of a capacitive 

MEMS accelerometer by using a MEMS oscillator," in 2016 IEEE 

International Symposium on Inertial Sensors and Systems, 2016, pp. 33-36. 

[22] S. Pala, M. Çiçek, and K. Azgın, "A Lorentz force MEMS magnetometer," in 

2016 IEEE SENSORS, 2016, pp. 1-3. 

[23] K. Azgın, "High Performance MEMS Gyroscopes," Master of Science, 

Department of Electrical and Electronics Engineering, Middle East Technical 

University, Ankara, 2007. 

[24] H. Yu and M. Rinaldi, "Spectrally selective infrared detector based on an ultra-

thin piezoelectric resonant metamaterial," in Micro Electro Mechanical 

Systems (MEMS), 2015 28th IEEE International Conference on, 2015, pp. 984-

987. 

[25] M. B. Pisani, K. Ren, K. Ping, and S. Tadigadapa, "Application of 

Micromachined Y-Cut-Quartz Bulk Acoustic Wave Resonator for Infrared 

Sensing," Microelectromechanical Systems, Journal of, vol. 20, pp. 288-296, 

2011. 

[26] V. Agache, G. Blanco-Gomez, M. Cochet, and P. Caillat, "Suspended 

nanochannel in MEMS plate resonator for mass sensing in liquid," in Micro 



 

 

94 

 

Electro Mechanical Systems (MEMS), 2011 IEEE 24th International 

Conference on, 2011, pp. 157-160. 

[27] M. H. Li, W. C. Chen, and S. S. Li, "CMOS-MEMS transverse-mode square 

plate resonator with high Q and low motional impedance," in Solid-State 

Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 

16th International, 2011, pp. 1500-1503. 

[28] M. U. Demirci and C. T. C. Nguyen, "Mechanically Corner-Coupled Square 

Microresonator Array for Reduced Series Motional Resistance," Journal of 

Microelectromechanical Systems, vol. 15, pp. 1419-1436, 2006. 

[29] M. Shahmohammadi, K. Souri, and K. A. A. Makinwa, "A resistor-based 

temperature sensor for MEMS frequency references," in 2013 Proceedings of 

the ESSCIRC (ESSCIRC), 2013, pp. 225-228. 

[30] P. Park, K. A. A. Makinwa, and D. Ruffieux, "A resistor-based temperature 

sensor for a real time clock with &#x00B1;2ppm frequency stability," in 

ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), 

2014, pp. 391-394. 

[31] T. Köse, "Development of an Integration Resonant MEMS Temperature 

Sensor," Master of Science, Department of Mechanical Engineering, Middle 

East Technical University, Ankara, 2016. 

[32] M. A. Hopcroft, "Temperature-stabilized Silicon Resonators for Frequency 

References," Doctor of Philosophy, Department of Mechanical Engineering, 

Stanford University, 2007. 

[33] A. Rogalski, "Infrared detectors: an overview," Infrared Physics & 

Technology, vol. 43, pp. 187-210, 6// 2002. 

[34] E. S. Barr, "The infrared pioneers—III. Samuel Pierpont Langley," Infrared 

Physics, vol. 3, pp. 195-206, 12// 1963. 



 

 

95 

 

[35] S. P. Langley, "The Bolometer and Radiant Energy," Proceedings of the 

American Academy, pp. 342-358, 1881. 

[36] H. Yu and M. Rinaldi, "Ultra-fast and high resolution NEMS thermal detector 

based on a nano-air-gap piezoelectric resonant structure," in Sensors, 2012 

IEEE, 2012, pp. 1-4. 

[37] Y. Hui and M. Rinaldi, "High performance NEMS resonant infrared detector 

based on an aluminum nitride nano-plate resonator," in Solid-State Sensors, 

Actuators and Microsystems, 2013 Transducers & Eurosensors XXVII: The 

17th International Conference on, 2013, pp. 968-971. 

[38] H. Yu and M. Rinaldi, "Aluminum Nitride nano-plate infrared sensor with self-

sustained CMOS oscillator for nano-watts range power detection," in 

European Frequency and Time Forum & International Frequency Control 

Symposium (EFTF/IFC), 2013 Joint, 2013, pp. 62-65. 

[39] V. J. Gokhale and M. Rais-Zadeh, "Uncooled Infrared Detectors Using 

Gallium Nitride on Silicon Micromechanical Resonators," 

Microelectromechanical Systems, Journal of, vol. 23, pp. 803-810, 2014. 

[40] P. Kao and S. Tadigadapa, "Micromachined quartz resonator based infrared 

detector array," Sensors and Actuators A: Physical, vol. 149, pp. 189-192, 

2/16/ 2009. 

[41] W. C. Chen, M. H. Li, Y. C. Liu, D. Weinstein, W. Fang, and S. S. Li, "Fully 

differential CMOS-MEMS square-plate oxide resonators with embedded poly-

silicon electrodes," in 2013 Transducers & Eurosensors XXVII: The 17th 

International Conference on Solid-State Sensors, Actuators and Microsystems 

(Transducers & Eurosensors XXVII), 2013, pp. 2292-2295. 

[42] M. H. Roshan, S. Zaliasl, K. Joo, K. Souri, R. Palwai, L. W. Chen, et al., "A 

MEMS-Assisted Temperature Sensor With 20- $mu text{K}$ Resolution, 



 

 

96 

 

Conversion Rate of 200 S/s, and FOM of 0.04 pJK2," IEEE Journal of Solid-

State Circuits, vol. 52, pp. 185-197, 2017. 

[43] M. H. Roshan, S. Zaliasl, K. Joo, K. Souri, R. Palwai, W. Chen, et al., "11.1 

Dual-MEMS-resonator temperature-to-digital converter with 40 K resolution 

and FOM of 0.12pJK2," in 2016 IEEE International Solid-State Circuits 

Conference (ISSCC), 2016, pp. 200-201. 

[44] S. Eminoglu, M. Y. Tanrikulu, and T. Akin, "A Low-Cost 128x128 Uncooled 

Infrared Detector Array in CMOS Process," Journal of 

Microelectromechanical Systems, vol. 17, pp. 20-30, 2008. 

[45] B. E. Platin, M. Çalışkan, and H. N. Özgüven, Dynamics of Engineering 

Systems. Ankara: Middle East Technical University, 1991. 

[46] J. Kim, D.-i. D. Cho, and R. S. Muller, "Why is (111) silicon a better 

mechanical material for MEMS ?," in Proc. 11th Int. Conf. TRANSDUCERS, 

Munich, Germany, 2001, pp. 662–665. 

[47] K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, "Linear thermal 

expansion measurements on silicon from 6 to 340 K " Journal of Applied 

Physics, vol. 48, pp. 865-868, 1977. 

[48] H. Tada, A. E. Kumpel, R. E. Lathrop, J. B. S. Nieva, P. ZavrackyIoannis, N. 

Miaoulis, et al., "Thermal expansion coefficient of polycrystalline silicon and 

silicon dioxide thin films at high temperatures," Journal of Applied Physics, 

vol. 87, pp. 4189-4193, 2000/05/01 2000. 

[49] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus 

of Silicon?," Microelectromechanical Systems, Journal of, vol. 19, pp. 229-

238, 2010. 

[50] S. S. Rao, Vibration of Continuous Systems. New Jersey: John Wiley & Sons, 

2007. 



 

 

97 

 

[51] S. S. Rao, Mechanical Vibrations, 5 ed. Upper Saddle River, NJ: Prentice Hall, 

2011. 

[52] T. A. W. Roessig, "Integrated MEMS Tuning Fork Oscillators for Sensor 

Appliations," Doctor of Philosophy, Department of Mechanical Engineering, 

University of California, Berkeley, 1998. 

[53] M. M. Torunbalci, S. E. Alper, and T. Akin, "Advanced MEMS Process for 

Wafer Level Hermetic Encapsulation of MEMS Devices Using SOI Cap 

Wafers With Vertical Feedthroughs," Microelectromechanical Systems, 

Journal of, vol. 24, pp. 556-564, 2015. 

[54] P. Sedat and A. Kıvanç, "A MEMS square Chladni plate resonator," Journal 

of Micromechanics and Microengineering, vol. 26, p. 105016, 2016. 

[55] K. Azgın, "Very High Dynamic Range Resonant MEMS Load Cells for 

Micromechanial Test Frames," Doctor of Philosophy, Department of 

Mechanical and Aerospace Engineering, University of California, Irvine, 2012. 

[56] W. J. Riley, Handbook of Frequency Stability Analysis. Washington: U.S. 

Government Printing Office, 2008. 

[57] K. A. A. Makinwa. Smart Temperature Survey [Online]. Available: 

http://ei.ewi.tudelft.nl/ei/index.php/people-ei/17-group-makinwa/59-smart-

temperature-sensor-survey, [Last accessed: 23.05.2017] 

 


