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ABSTRACT

CO-CLUSTERING SIGNED 3-PARTITE GRAPHS

Koç, Sefa Şahin

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. İsmail Hakkı Toroslu

February 2017, 55 pages

Real world data is complex and multi-related among itself. Considering a social

media, multiple users can interact with same item such as commenting, liking

etc. Data composed of these actions contains many nodes from different types

(user, item, sentiment). Therefore, clustering nodes with same type will not

be sufficient to analyze it. It will ignore relations between nodes from different

types. Such data should be dealt with heterogeneous multi-partite clustering

methods. Thus, clustering does not ignore relations among different types. At

the end, heterogeneous clusters are found, which are effective to represent inter-

partition relations as well as intra-partition ones. To exemplify, from a complex

big relations of <user,keyword,issue>, clusters may be extracted such that they

contains users who uses similar sentiments to address same issues. I present a

new algorithm, called STriCluster, which evaluates heterogeneous data which

contains relations of three different types. Each relation is called an hyperedge

where each links three nodes from distinct types. Moreover, hyperedges carry

a sentiment, which is either positive or negative. The algorithm finds tripartite
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clusters which express high positivity. Overlap of hyperedges among clusters

are not allowed while a node can be part of many clusters. Furthermore, our

algorithm handles negative property and sparseness of hyperedges while discov-

ering tripartite clusters of hyperedges with positive properties. I will show its

effectiveness via experiments and results. Experiments are performed on both

synthetic and real-world data.

Keywords: data mining, clustering, multi-partite, graph, twitter, sentiment anal-

ysis
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ÖZ

3 KUTUPLU İFADELİ GRAFİK AĞLARININ GRUPLANMASI

Koç, Sefa Şahin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. İsmail Hakkı Toroslu

Şubat 2017 , 55 sayfa

Gerçek veri, karmaşık ve kendi içirisinde çok ilişkilidir. Bu yüzden, türdeş kü-

meleme metotları bu verileri incelemek için yeterli desteği sağlamaz. Bu tarz

kümeleme, farklı tür veri nesneleri arasındaki bağlantıları göz ardı eder. Buna

dayanarak, gerçek verinin aynı türden olmayan nesneleri aynı kümeye koyabi-

lecek yöntemler ile analiz edilmesi gerekir. Bu noktada, ihtiyaca cevap veren

yöntem, k-kutuplu kümelemedir. Bu yöntem, farklı türden nesneler arasındaki

bağlantıları değerlendirerek karışık kümeleme yapma yeteneğine sahiptir. Bulu-

nan kümeler, hem aynı türdeki hem de farklı türdeki nesnelerin aralarındaki iliş-

kileri göstermek açısından etkilidir. Örneklemek gerekirse, <kişi,konu,kelime>

üçlülerinden oluşan büyük ve karmaşık bir veriden, aynı konu hakkında benzer

kelimeleri kullanarak olumlu ifadelerini belirten kişiler bulunabilir. Bu tezde,

farklı cinsten nesneler içeren kümeler bularak bu tarz analizler yapılmasını sağ-

layacak STriCluster algoritmasını anlatacağım. Bu algoritma 3 farklı tür ve

aralarındaki üçlü ilişkilerden oluşan veri üzerinden koşar. Her bir ilişki, her bir
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türden olmak üzere tam olarak 3 nesne arasındadır ve olumlu ya da olumsuz

bir ifade taşır. Bu algoritma, olumlu ifadelerin yoğunlukta olduğu 3-kutuplu

kümeler bulur. Bir nesne birden fazla küme tarafından içerilebilir ya da hiçbir

kümeye ait olmayabilir. Bu kümeleri bulurken bir takım sezgisel yöntemler kul-

lanır. Ek olarak, algoritmamız olumsuz ifade taşıyan ilişkileri ve boşlukları etkili

şekilde kontrol altında tutar. Algoritmanın 3-kutuplu kümeleme işlemini tutarlı

ve etkili bir şekilde gerçekleştirdiğini, yapay ve gerçek veri üzerinde koşulan test-

lerle göstereceğim. Bu testlerden elde edilen ölçümler ve grafikler, algoritmanın

etkinliğini destekleyecektir.

Anahtar Kelimeler: veri madenciliği, gruplama, çok-kutuplu, twitter, fikir ana-

lizi
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CHAPTER 1

INTRODUCTION

When data is represented on a virtual platform, it is desired to protect all

information such as meta-data, relations, changes etc. Some types of data are

suitable to store in a simple table. For some, these homogeneous structures

are not sufficient, though. Generally, data gathered from real world systems

are complex enough that requires more relational structures like graphs, also

called networks [28]. The systems like a social media preserves many relations

among various types of nodes. Such data with many relations can be drawn

as a heterogeneous graph. It is called heterogeneous because its vertices are

from different types. It is quite effective for representing not only users but

also their staff and relations with them. As this approach is a quite good way

of preserving data, the size of graph and its connectivity are so interesting for

computer scientists. Analyzing user actions to understand minds under different

circumstances is an exciting research area. This is one of the main reasons why

social network analysis is quite popular.

For a simple data structure, its analysis is relatively easy. Let us consider a

table. Data retrieval with desired properties can be performed by a single query

which can be written in a few lines. When it comes to analyzing a homogeneous

graph, more sophisticated algorithms are needed such as Dijkstra’s shortest path

[11], rather than a simple query. If the structure and type of analysis becomes

more complicated, the applied algorithm needs an enhancement. One of the

good examples to this is analyzing k-partite graphs [4]. k-partite graphs are

commonly used to store relations among partite groups where each group refers
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to a type. Nodes inside same partite groups are not connected among themselves.

To illustrate this characteristic, <user,photo,comment> triple can be considered.

Two photos are not directly connected. But, it is indirectly linked via a user

who writes comments on both.

Main purpose of using k-partite graphs is generating clusters, which preserves

relations among nodes from different types. Therefore, more specific analysis can

be done about nodes rather than only about their similarity. A partite group

is a sub-unit in the underlying cluster where it is closely related with other

partite ones. Such structure will provide insight about node characteristics and

composite information about the cluster. Finally, the acquisitions are more

relative to other nodes. For example, by clustering pictures which share same

tags, group of nature or sport pictures can be found. On the other hand, k-

partite clustering can give users who like nature photos in a cluster.

In partitioning and hierarchical clustering methods, we call traditional cluster-

ing, generally homogeneous graphs are focused. In these graphs, nodes are from

same type. Homogeneous clustering methods aim to find clusters of the nodes,

which are highly connected among themselves but loosely connected with out-

side [7, 13, 16]. However, real world systems are generally more complex and

includes various types of nodes (heterogeneous). Trying to cluster such systems

homogeneously will cause to ignore connectivity between different types. This

leads to lack of valuable information. For example, for the social network, In-

stagram1, a user can upload photos and tag them with keywords. Moreover,

they can follow other users as they can be followed inside that social network. A

way of grouping users can be obtained using connectivity among them. Group of

friends can be discovered from such clusters. However, in order to find users with

same interests or same perception on same photos can be discovered by eval-

uating users with photos and tags. This is where k-partite clustering becomes

significant.

1 https://www.instagram.com/
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1.1 Problem Definition

Considering the wide-range of applications of multi-partite clustering and great

interest to this approach, we address a special version of it. The aim is to find

k-partite clusters where k is constant and equal to 3. Respectively, the addressed

data is a hypergraph which is composed of hyperedges which link nodes from

three different types. This hypergraph can also be represented as a 3-D matrix.

A hyperedge represents a connection among three nodes from different types.

In input, each hyperedge carries a label, either a positive or negative. This

represents the attitude of hyperedge relation. For example, a user tags a resource

and this tagging represents either positive or negative opinion.

By considering this input data, we aim to find tripartite clusters with maximal

size, which are mainly composed of positively labeled hyperedges. Negative ones

and sparseness can be tolerated at some level. To the best our knowledge, this

is a new problem in this literature.

This problem can be adapted to many systems. However, especially data gath-

ered from social platforms are suitable. Actions can be easily represented as

relations of many nodes, such as user, photo, comment, topic etc. Moreover, the

attitude of each action can be more apparent. The words or action itself such

as liking will point out either positive or negative feeling. The obtained clusters

hold actions with similar sentiments on same objects. They can be analyzed in

many ways. For example, objects about which humans express positive senti-

ments at particular states can be discovered. On this perspective, the results

could be promising to find user groups of similar interests.

1.2 Solution

To address the problem, we will introduce a new algorithm, named as STri-

Cluster. It is applied on heterogeneous data composed of hyperedges with

three distinct types of nodes and a label, either positive or negative. The algo-

rithm finds tripartite clusters which contains mainly positive hyperedges. Fur-
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thermore, it has the following properties: 1) A minimum threshold for density

ratio of positively signed hyperedge over all possible hyperedges inside a cluster

is defined, and, it must be satisfied by clusters. 2) A greedy approach is used

in order to trim the hyperedges from tri-clusters with negative signs to increase

the positive density ratio of the cluster. 3) In order to prevent constructing

very small clusters, both negative signed hyperedges and triples with no con-

nections are also allowed as long as they satisfy user defined density threshold

constraints. 4) Clusters are not allowed to have overlaps in terms of hyperedges.

A simple heuristic is used to mark hyperedges in order to prevent hyperedge

overlaps among clusters, and fast termination of the algorithm while searching

potentially maximal clusters. 5) A node can be part of one or more clusters as it

can be idle. In this manner, node overlap is allowed due to positive connectivity

of a node. Weak nodes or nodes with high negative connectivity are likely to

remain out of clusters. 6) The effectiveness of our approach is shown using a

coverage-based metric.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 contains literature survey

about previous researches in this area. There is brief information about graphs

and hypergraphs. They are related because the input data can be represented

as a hypergraph. Each link between nodes refers to an hyperedge. Additionally,

homogeneous and heterogeneous clustering is exemplified. Then, the main focus

area of this thesis, multi-partite clustering is explained. The example solutions

on this area are given. The reason why they do not provide a solution to the

problem are discussed. Finally, the differences between our solution and existing

solutions are examined.

Chapter 3 starts with introducing our solution, STriCluster algorithm. Then,

the algorithm is deeply explained. Heuristic approaches are given. The mainstay

of these approaches is remarked.

Chapter 4 contains the experiments of STriCluster algorithm. The experi-
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ments are performed on both synthetic and real data. Data acquisition for them

is explained. Finally, interpretations on the test results are given.

Chapter 5 concludes the thesis with a brief summary of our solution. It also

includes future works which can be added on the solution.
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CHAPTER 2

LITERATURE SURVEY

Multi-partite clustering is a method to find clusters inside a graph which con-

sists of various type of nodes. Clusters are coalescence of partitions, where each

partition is composed of same type of nodes. The simplest version is bi-partite

clustering which results clusters of only two partite groups. It is more com-

mon research area compared to k-partite clustering where k > 2. Our problem

addresses 3-partite hypergraphs which consists of hyperedges which contains ex-

actly three nodes with different types. These hypergraphs can be representable

in a 3D matrix, where each entry refers to an hyperedge. Similar manner, ma-

trix is a common structure to represent graphs. The reason is not only that

matrix construction is easy on memory, but also that operations can be applied

on graphs via matrix structure more easily. For better understanding, I will

explaining terminologies and techniques of multi-partite clustering.

In this section, first I will explain graphs. As a representation of complex data,

graphs play significant role on clustering operations.

Secondly, I will give information about clustering methodology. I will mention

previous research done about it.

Finally, I will explain works related to multi-partite clustering methodology on

literature, especially about tripartite clustering. Depending on their approach

styles and results, I will discuss in what senses our solution is different.
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2.1 Graphs

This section is written based on Bondy’s book [3].

A graph consists of three main parts (V (G), E(G), ψG), where V (G) is the set

of vertices, E(G) is the set of edges and ψG is the incident function to bind two

vertices with an edge. For example, for {u, v} ∈ V (G), e ∈ E(), if ψG(e) = uv,

then it is said that e connects u and v.

To exemplify the definition, let G = (V (G), E(G), ψG) where

V (G) = {u, v, x, w}
E(G) = {a, b, c, d, e},

(2.1)

ψG(a) = uv ψG(b) = vx ψG(b) = xw

ψG(d) = uw ψG(e) = vw.
(2.2)

Figure 2.1: Representation of Graph G

Identical Graphs: LetG andH be graphs. They are identical if V (G) = V (H)

and E(G) = E(G) and ψG = ψH . If two graphs are identical, they can be

8



a b c d e f
u 1 0 0 1 0 0
v 1 1 0 0 1 0
x 0 1 1 0 0 2
w 0 0 1 1 1 0

(a) M(G)

u v x w
u 0 1 0 1
v 1 0 1 1
x 0 1 1 1
w 1 1 1 0

(b) A(G)

Figure 2.2: Incidence and Adjacency Matrices of Graph G in Figure 2.1

represented on same diagram. However, having same diagram does not require

that these two graphs are identical.

Complete Graphs: Let G be a graph. If each pair of distinct vertices in G is

linked by an edge, then G is a complete graph.

Incidence Matrix: Incidence matrix of graph G, denoted by M(G) is a v × e
matrix whose entries mij keeps the number of times that vi and ej are incident,

which is either 0, 1 or 2 (Figure 2.2a).

Adjacency Matrix: Adjacency matrix of graph G, denoted by A(G) is v × v
matrix whose entries mij keeps the number of edges by which vi and vj are

connected (Figure 2.2b).

Degree Matrices: The degree of vertex v in G, denoted by dG(v) refers to

number of edges which are incident with v. Loop edges, whose endpoints are on

same vertices count twice.

Degree matrix of graph G, denoted by D(G) is v × v diagonal matrix whose

entries mii refers to dG(vi) (Figure 2.3). mij = 0 if i 6= j.

u v x w
u 2 0 0 0
v 0 3 0 0
x 0 0 4 0
w 0 0 0 3

Figure 2.3: Degree Matrix of G

Paths and Connection: A finite sequence W = v0e1v1...ekvk is composed of

9



an ordered vertices together with edges which connect vertices on this order. All

vertices from v0 to vk are in V (G), and edges e1 to ek are in E(G). Then, W

is called a walk in graph G. It is also denoted as (v0, vk)-walk. v0 as a starting

point is called origin, and vk is called terminus in the same manner.

A special version of walk is called trail if all edges in W are distinct. Addition-

ally, if all vertices are also distinct, then W is called a path. For illustration,

udwevaudwcx is a walk in graph on Figure 2.1. On same graph, vaudwevbx is

a trail. wcxbv is a path.

A walk whose origin and terminus is same vertex with positive length is a closed

walk. A closed trail is a trail whose internal vertices are different from the origin

vertex. A closed trail whose internal vertices are distinct is a cycle. A cycle is

named depending on its length. A k-cycle is a cycle with length k. For example,

when k is 3, it is called 3-cycle, often called triangle. If k is even, then k-cycle

is called even. Similar, it is applied for odd. An illustration to closed trail on

graph G in Figure 2.1 is vbxfxcwev. On the same graph, vewduav is a cycle.

A graph is bipartite if it does not contain any odd cycle.

Vertex Cut: A vertex cut of connected graph G is a set of vertices V ′ whose

removal from G makes G disconnected. k-vertex cut is cut of k number of

vertices. Connectivity of G, denoted by κ(G) is defined as size of minimal

vertex cut. There is no vertex cut for complete graphs. If there is at least one

pair of vertices which are not adjacent, then κ(G) is k of minimum vertex cut

in G. If there is no such vertex cut, then κ(G) is defined as v − 1. Therefore,

for trivial or already disconnected graphs, κ(G) = 0. if κ(G) ≥ k, then it is said

that G is k-connected. This brings the corollary that all non trivial connected

graphs are 1-connected.
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2.2 Hypergraph

A hypergraph [2] H = (V,E = (ei)i∈I) is the family of (ei)i∈I of subsets of V,

such that

ei 6= ∅ (i = 1, 2, ...,m), (2.3)
m⋃
i=1

ei = V. (2.4)

V is the set of vertices {v1, v2, ..., vn} and {e1, e2, ..., em} is the set of edges of

hypergraph. ei is also called as hyperedge. Number of vertices which ei connects

is defined as cardinality of ei. This terminology is shortly represented as |ei|.

A hypergraph of E = {e1, e2, ..., em} is simple hypergraph (or "Sperner family")

such that

ei ⊂ ej ⇒ i = j. (2.5)

A simple graph is a simple hypergraph such that

|ei| = 2 (i = 1, 2, ...,m). (2.6)

A hypergraph H can be visualized as a set of points which represent vertices.

Edges are drawn depending on their cardinality. If |ei| is 1, then ei will be a

circle on the node. If |ei| is 2, then two vertices will be connected by line. If

|ei| is greater than 2, the edge will be a closed curve which contains all vertices

(Figure 2.4).

A hypergraph H can be also defined with an incident matrix A = ((aji )).

Columns are representing e1, e2, ..., em and rows are v1, v2, ..., vn. aji is 0 if vi 6∈ ej,
aji is 1 if vi ∈ ej (Figure 2.5).

2.3 Clustering

Grouping a set of objects depending on their similarities as classes is called clus-

tering. A cluster contains objects which are similar among ones inside class, but

less similar to objects of different classes. Clustering is a widely used method
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Figure 2.4: Representation of a Hypergraph

e1 e2 e3 e4
v1 0 0 1 1
v2 1 0 0 0
v3 0 1 1 0
v4 1 0 1 0
v5 1 1 0 0

Figure 2.5: Incident Matrix of the Hypergraph in Figure 2.4

in many areas, such as marketing, social analysis, machine learning, image pro-

cessing etc [18, 21, 27, 30]. In commerce, clustering can help to identify distinct

group of users depending on their purchases. Depending on these clusters, more

effective offers can be served. In biology, it can be useful to find genes with

similar characteristics on particular symptoms. Clustering can be effective to

identify similar patterns on land to analyze dispersion of life zones.

Clustering is an old research topic but it is still under development. There are

basic methods for this purpose, but they are enhanced as data gets bigger and

more complex. These methods can be explained under various titles. I explain

them depending on data type they address. One type of methods clusters same

type of objects, for example set of integers, strings or coordinates etc. Such data

is called homogeneous. Each node in data is evaluated in the same manner. If

data is composed of distinct types, for example set of age, nationality, profession,

then it is heterogeneous.

12



2.3.1 Homogeneous Clustering

Each item in input can be treated as same type and grouped due to their simi-

larity. This is called homogeneous clustering.

One of the most popular and commonly used approaches is distance based.

The data is partitioned as close items are placed into same partitions. Natural

language processing is the area where distance based clustering methods are

widely used. It enables to group documents due to its concept or common ideas

or topics addressed. It is highly necessary for librarians when scale of documents

are considered. To fulfill this need, Dhillon and Modha have applied k-means

algorithm on document vectors to make concept decomposition [10]. k-means

algorithm is one of the popular distance based partitioning algorithm. By this

method, thousands of documents can be evaluated and grouped simultaneously

depending on their conceptual ideas.

Bioinformatics is another area where clustering methodology is highly used.

Genome data is quite big and complex. It is suitable for many type of clustering.

One of the works is k-means clustering on gene expressions [34]. Because it has

many parameters and gene expression data is quite big, clustering methods may

give very different results. But the results are promising for future researches.

2.3.2 Heterogeneous Clustering

Homogeneous clustering does not fulfill needs for many real world systems, be-

cause data gathered from them are complex. They are generally heterogeneous.

It means data is composed of different type of items. Homogeneous clustering

may discard relations among nodes from distinct types. This results lack of

information at the end. On the other hand, on last decades, there has been

an increasing interest to data mining as computing power increases. There are

powerful resources, they can process many operations on data blocks simultane-

ously. Together with this, data becomes huge, especially with the help of social

platforms. Therefore, many researchers have interests to extract more deep and

relational information from them. Since they are directly trace of humans, many
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organizations such as governments, marketers etc. have interests to make more

discovery on this area, too. Considering these reasons, more complex cluster-

ing approach are necessary. Heterogeneous clustering enters the concept at this

point. It helps to evaluate different types. By considering relations between

nodes, it clusters of different type of nodes.

Under this discipline, multi-partite clustering, also called as k-partite clustering

where k refers to number of partite groups inside a cluster has a significant

place. It is applied on a graph data such that edges are not established among

nodes from same types but from distinct types. In an obtained cluster, there

are different number of partite groups, where each one represent a type. As a

corollary, edges are only present between these groups. None of nodes inside

same groups are adjacent.

Multi-partite clustering methodology has some advantages compared to homo-

geneous one. Because there are different types in clusters, nodes characteristics

are more precisely determined. Rather than guessing similarity depending on

being close to a node with same type, relations of nodes with same and different

types are interpreted. This gives stronger meaning about that node. Therefore,

multi-clustering is an early research topic and applied many disciplines. As an

example for marketing, as people become more active in digital world, marketers

aim to do customer analysis to understand needs of customers better. At the be-

ginning, products similar to what bought are offered. As bi-clustering method is

followed, first they find customers who buy same product. Then, depending on

other purchases, people are offered to buy them. This is how recommendation

engines entered and evolved in marketing [20].

Main disadvantage of multi-partite clustering is that it requires high computing

power. Time complexity is directly proportional to the number k for k-partite

clustering. As k increases, the complexity increases as well. Additionally, the

main approach to clustering is that the size of clusters should be as big as possi-

ble, together with that the commonness inside clusters are preserved. However,

mining maximum multi-partite clusters is proven to be NP-hard [8]. Therefore,

researchers mostly aim to find considerably big clusters.
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2.3.2.1 Bi-partite Clusters

As an entrance step to heterogeneous clustering, bi-partite clustering is a method

to group nodes from two distinct types. Relations only exist between nodes from

different types. The data used as input to this method can be also represented as

bi-partite graph (Figure 2.6). This type of graphs are composed of two different

type of elements, such as <user,photo>. If a user likes a photo, then an edge

is established. But a user cannot like a user, also same for photos. If types are

increased, then there will be more groups inside a graph. In the same manner,

edges will be established only among nodes from different groups. This will be

explained in subsection 2.3.2.2.

Figure 2.6: A Bi-Partite Graph

Bi-partite clustering is widely used in different fields. Natural language process-

ing is an area where significance of biclustering has been demonstrated [9] by

Dhillion. He has applied biclustering method to cluster documents and words

simultaneously. He showed that his algorithm is generic and can be applied to

any language. Depending on this base, Wieling and Nerbonne follow biclustering

approach to do sensible geographical grouping of people depending on dialect

pronunciation data for Dutch language [32].

15



2.3.2.2 Multi-partite Clusters

Multi-partite clusters are basically composed of groups where edges are estab-

lished among groups, not inside groups. Nodes inside same groups in a cluster

are highly similar. If the number of groups is 2, then this will be a bi-partite

cluster; if 3, then tripartite and it goes on. This methodology is very useful

and preferable for many real world scenarios. Because the data gathered from

these systems are generally heterogeneous and complex, homogeneous cluster-

ing methodology [7, 23] is not sufficient to cover relations among different types.

As contrast, multi-partite clusters keeps relations among heterogeneous data.

It also keeps similar node inside same groups. Considering these features, this

type of clustering methodology gives information from both inside of each group

separately and among them. To illustrate this point, let us consider Instagram.

There are many actions in it. One of the actions is that a user drops a comment

under a photo. In this action, there are three nodes <user,comment,photo>

and an hyperedge which connects all, which is the action itself. A set of this

type of actions will be set of three different groups <user, comment,photo>.

These groups are only interconnected. When this action set is represented as a

graph, this graph will be multi-partite or k-partite graph where k is 3 (Figure

2.7). Tripartite clusters found on this graph will be helpful to analyze similar

actions. Such composite information can be interpreted in many ways. It can

be interpreted presumably as each node inside same group has a similar point

of view. Another way of analyzing is considering groups due to other groups as

parts of same cluster. For a user group, this method may give following ideas:

They like similar photos. They use similar words for commenting on a photo

from a particular genre. The photos which are commented by a group of users

are instances of artistic photography. Then, these users are interested in pho-

tography art. The number of examples can be increased. The main point is that

multi-partite clustering method provides deeper information as the reflection of

real world actions.

Although multi-partite partite clustering is an old terminology, it becomes more

popular in last decades together with social platforms. Social platforms produces
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Figure 2.7: A k-Partite Graph (k = 3)

many composite relations. Experts from different areas want to analyze it to

enhance their services. For example, research of Grinberg et al. analyze user

actions at Facebook1 platform to propose better feed to them [14]. The purpose

is to guess what people would like to see on their feed. Hiding the unnecessary

posts are crucial. However, the concept of being unnecessary is so subjective. It

can significantly change depending on cultures, nations, age etc. At this stage,

multi-partite clustering is helpful to identify similar users by grouping them

depending on their actions, likes, who they follow etc. Then, similar strategy

can be applied to arrange feeds of these users.

In this thesis, I will be addressing tripartite hypergraphs to find clusters on.

This input graph is composed of relations where each connects three nodes from

three different types. Therefore, each relation is a hyperedge with cardinality

3. There is an important difference between tripartite graphs and hypergraphs

which our problem addresses. In tripartite graph, an edge can be established

among two nodes independently from other third type. However, in the input

hypergraph to the problem, if there is a connection between two nodes, then

this connection must include a node from other third type, too.

Main drawback of multi-partite clustering is that mining multi-partite clusters
1 https://www.facebook.com/

17



from such highly connected data brings performance issues. Furthermore, as

type of nodes increases, finding clusters with maximal size will be more costly.

Considering these points, for two types of nodes, searching for a bipartite graph

with maximum size is proven to be NP-hard. In the same manner, mining

three-partite clusters will be harder as increasing number of partitions will dra-

matically increase the hardness respectively [8]. Therefore, works in literature

generally apply heuristics to find such clusters [25, 26, 35, 36]. Our solution also

uses heuristics to find maximal clusters.

Heuristic approaches: As a common strategy, tripartite clusters are generated

by first constructing bi-clusters between each pair of three partite groups [36].

Then, each bi-cluster is matched with two others in order to construct tripartite

clusters. This approach requires evaluating same nodes repeatedly, though. As

another alternative, Zhao and Zaki [35] first select two dimensions, and, then,

discover bi-clusters for each node in third dimension. Then, it looks for intersec-

tion among bi-clusters of different nodes from 3rd dimension. If an intersection

is found, this part is claimed as a tripartite cluster. However, since the first two

partitions are fixed, this approach has bias against the third partition.

Dhillon has approached differently on his work about co-clustering documents

and words [9]. It is one of the early adaptations of multi-partite clustering to this

area. In this work, he applied spectral co-clustering method on data and finding

communities between words and documents. For partitioning, the heuristic is

weight of vertices. One option is that all vertices have equal weight such as 1.

This is called ratio cut [15]. Another option is that weight of a vertex is equal

to sum of weights of edges incident on it. This is called normalized cut [31].

In this approach, it is aimed to find clusters depending on given input graph

characteristics. Optimal partitioning is done if outgoing edges are minimum

among all edges for each vertex set of two partitions. Cut approach has some

drawbacks considering the problem we address. In order to find tripartite clus-

ters for our problem, they must satisfy some density ratio values for negative

and positive hyperedges. Cutting a graph could dramatically change the ratio

values. However, for clusters whose values just pass the threshold ones, cutting

operation should be performed delicately. Moreover, in spectral clustering nodes
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can belong to only one cluster. It avoids node overlap.

Another approach is applying partitioning algorithm such as k-means. It is a

popular method under clustering discipline. On social tagging system research,

Lu et al. aim to find tripartite clusters inside a graph composed of three type of

nodes; users, tags, resources [26]. He has adapted k-means approach to find such

clusters inside a social tagging system. Their approach depends on connectivity

of heterogeneous nodes. Furthermore, they do not consider weighted edges. In

this manner, our problem is different.

As Internet has become a part of daily life, products or marketers looks for ways

to address people more effectively. This is where recommendation systems be-

come important. Such systems are essential to offer items due to users’ interests.

It is also a popular research area. Work of Cheng et al. is a good example of

adaptation of k-partite graphs in order to provide such specialty [5]. In this

work, each pair of node type has an adjacency matrix. Then, by non-negative

factorization approach, clustering is done. This approach does not carry out

density ratio properties of given graph. Second example is the tagging system.

There are platforms where users can attach tags on items. But there can be

some ambiguities on these tags, such as an abbreviation used as tag can refer to

distinct meanings. Yeung et al. apply tripartite structure to discard ambiguities

[33]. GN approach, introduced by Girvan and Newman [29], is applied on graph

data to find tripartite communities. This modularity-based approach focuses on

communities in which nodes are strongly connected, but between communities

are loosely connected. However, clusters found are various. They can be ho-

mogeneous cluster as well as heterogeneous ones. It does not consider density

ratios, too. When it is considered that our aim is to find tripartite clusters with

certain specialties, this approach is not very suitable.

Another example is that Zhao and Zaki introduce TriCluster algorithm to

cluster three different types: genes, samples and time slots [35]. To start clus-

tering in heterogeneous data, source of the motivations is the effectiveness and

adaptability of bi-clustering method [6]. Second, the results which comes from

applying bi-clustering on microarray data are very promising [12]. Depending
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on this approach, first ratios for each pair of gene and sample are calculated.

From valid ratio-ranges, range multigraph is constructed. They search maximal

bi-clusters of genes and samples depending on these multigraphs. Finally, max-

imal tripartite clusters are constructed based on the bi-clusters. Hyperedges in

same tripartite clusters have relative ratios. They are the rates which stand for

the characteristic of genes. If a gene cannot follow same ratio pattern, then it

is out of that cluster.

TriCluster algorithm looks for clusters with different characteristics. Hyper-

edges in these clusters follow same pattern of existential ratio for time dimension.

Positive or negative property is different.

Overlapping: One of the main considerations in multi-partite clustering is

whether a node can be a part of many clusters or not. In the input graph,

a node can be connected via many hyperedges. So, both approach is possible.

However, if it is contained by only one (one-to-one correspondence), it brings less

number of clusters with small sizes [22, 24]. Because real world data is generally

more complex and bigger, a node is more likely to be a part of many hyperedges

and also clusters. It requires a node to be connected with many nodes from

other types (many-to-many correspondence). For the example of social-tagging

system, a user can tag many resources with using many keywords. If a user can

be a member of only one cluster, then for this user, interactions out of the cluster

are discarded. This results and incomplete analysis of this user. Therefore, it will

be more informative if clusters share nodes. This is named as node overlapping.

Including node overlapping, hyperedges can be shared among clusters, too. This

may be an option where hyperedges are so much important and they put a great

value on clusters. Such example is TriCluster algorithm [35]. In this algo-

rithm, clusters are constructed depending on existence ratio of a gene in samples

at particular times. Therefore, a set of hyperedges of <gene,sample,time> triple

can be contained by many clusters. For such approach, hyperedge overlapping

could be crucial not to miss any important cluster. In our problem, node over-

lapping is desired, but hyperedge overlapping needs to be avoided.
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CHAPTER 3

MINING 3-PARTITE CLUSTERS

Our solution is based on 3 different constraints. These constraints depends on

five user-defined parameters. Three of these parameters are for controlling the

sizes of each dimension of the clusters and the other two parameters are used to

control the positive/negative hyperedge ratios in clusters. These input parame-

ters, together with related cluster features and the definitions of the size and the

ratio constraints, are given in Table 3.1. Since, the positive sign of the hyperedge

means three nodes forming this edge agree, and the negative sign means they

disagree, the idea is to form clusters on three dimensions using this agreement

relationship and maximizing the agreement while minimizing the disagreement

among the nodes of co-clusters. Furthermore, we want to generate the largest

possible clusters possible. So, we have two conflicting objectives. For a given tri-

partite graph, we would like to construct the largest possible tripartite clusters,

as well as generate clusters with maximum density of positive signed hyperedges

and minimum density of negative signed hyperedges. There is a trade-off be-

tween these two objectives. By trying various values of the parameters in Table

3.1, clusters with different properties/qualities may be generated. As expected,

only very small size or trivial perfect clusters can be generated with full positive

labeled edges. In order to generate more meaningful and useful clusters with

larger sizes, we may tolerate some negative labeled edges in clusters and reduce

the minimum positive edge ratio requirement.

To simplify the process, we have generated a fully connected tripartite graph by

adding hyperedges with no sign between all 3 nodes from 3 different dimensions,
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Table3.1: Cluster Control Parameters and Constraints

Symbol Meaning

Input Parameters
εp minimum h+ edges ratio parameter in a cluster
εn maximum h− edges ratio parameter in a cluster
λi minimum size of dimension i parameter in a cluster
Cluster Properties
Li number of nodes for type i in a cluster (size of type i)
Cp number of h+ edges in a cluster
Cn number of h− edges in a cluster
Constraints
εp ≤ Cp

L1×L2×L3
ratio of h+ edges constraint in a cluster

εn ≥ Cn

L1×L2×L3
ratio of h− edges constraint in a cluster

Li ≥ λi size for dimension i constraint in a cluster

if they are not already connected in the original graph with negative or positive

signed edges. We have developed a simple and efficient greedy heuristic in order

to generate clusters satisfying above mentioned constraints. The general idea is

to start with the whole graph as a cluster, then trim less effective nodes until

ratio constraints are satisfied, or it cannot satisfy the size constraint. Effective-

ness of the nodes is also defined using simple formulas which will be discussed

below. Our method works as follows:

1. Start with a single co-cluster of the whole graph and trim the least effec-

tive node from it in order to increase its positive density and decrease its

negative density as much as possible. Notice that this trimming operation

reduces the size of the cluster.

2. Repeat this trimming operation until a cluster is obtained satisfying both

the density constraints and the cluster size constraints, or until one of the

minimum cluster size constraints are violated.

• If the obtained cluster satisfies all the constraints, it is added to the

cluster list. Then, in order to remove the hyperedges used in this

cluster, least effective nodes incident to each hyperedge is removed
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a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

(a) Matrix Representation

(b) Graph Representation

Figure 3.1: Input Data

from the graph. The process then repeats itself from the beginning

using the remaining graph.

• If the obtained cluster violates one of the size constraints, all node re-

movals from this iteration were backtracked, and only one hyperedge

with negative sign is selected from the graph and one of the nodes

incident to that edge is removed from the graph. The process repeats

itself from the beginning using the remaining graph.

In this paper, we use the notations given in Table 3.1. STriCluster algo-

rithm takes a set of hyperedges, Γ as an input, such that each hyperedge h

connects three nodes from three different types U = (U1, U2, U3). Figure 3.1
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a1 b1 b2

c2 – +
c3 +

a2 b1 b2

c2 + +
c3 + +

(a) Matrix Representation

(b) Graph Representation

Figure 3.2: Output Cluster, when εp=0.75, εn=0.15

illustrates hyperedges given as 3D matrix. These hyperedges have either posi-

tive or negative labels, represented by positive and negative signs respectively in

Figure 3.1. Remaining entries (white cells) correspond to node triples without

connecting hyperedges. In the example, nodes are {{a1, a2}, {b1, b2, b3, b4, b5},

{c1, c2, c3, c4, c5}} from types U1, U2, U3 respectively.

The aim of STriCluster is to find tripartite clusters of hyperedges with highly

positive labels. To be a valid tripartite cluster, it has to satisfy threshold values

for both density and size. The density threshold values are εp and εn, such

that 0 ≤ εp, εn ≤ 1, (εp + εn) ≤ 1. The former one represents the minimum

ratio density of positive hyperedges (h+) among all possible hyperedges (i.e.,

there may be L1×L2×L3 number of possible hyperedges for a cluster with size

(L1, L2, L3), where Li is number of nodes with Ui type in the cluster). If Cp is
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the number of h+, then:

εp ≤
Cp

L1 × L2 × L3

, (3.1)

If εp = 1, generated tripartite clusters become tripartite cliques as well. εn is

the value to control the density of negatively signed hyperedges (h−). If Cn
represents the number of h−, then:

εn ≥
Cn

L1 × L2 × L3

, (3.2)

shows maximum allowed tolerance of h− in a cluster if εn 6= 0.

In order to prevent constructing very small clusters λi is defined, such that:

Li ≥ λi, (3.3)

for 1 ≤ i ≤ 3, i ∈ N. i stands for the corresponding dimension. This constraint

should also be satisfied by every cluster.

An example cluster obtained from the input graph given in Figure 3.1 is depicted

in Figure 3.2.

STriCluster algorithm (Algorithm 1) starts by generating a potential clus-

ter α which contains all hyperedges in Γ. The main loop (lines from 4 to 24

in Algorithm 1) iteratively constructs clusters satisfying both size and density

constraints.

It begins with the remaining nodes of the graph and removes least effective

nodes (through while loop in lines 6 to 9), until either all density constraints are

satisfied (conditions at lines 6 and 7), or until the graph becomes too small to

satisfy minimum size constraints due to these node removals.

If both the density and size constraints are satisfied, the remaining nodes of the

graph form a cluster which is added to the cluster list (at line 12). In addition, its

edges (all signed edges) are removed from the graph (by adding them to invalid

hyperedge list at lines 13 and 15), so they cannot be used in the construction of

a new cluster. This way guarantees clusters will not share edges, but can still

share nodes.

As mentioned above, due to trimming of the graph by removing its least effective

nodes to satisfy density constraints, the graph may become too small and unable
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Algorithm 1 STriCluster Algorithm
1: procedure STriCluster(Γ, εp, εn, λ1, λ2, λ3)

2: Γ′ ← Γ

3: < ← ∅
4: loop

5: α← Γ′

6: while (SizeCheck(α, λ1, λ2, λ3)) and

7: not DensityCheck(α, εp, εn) do

8: RemLeastEffNode(α)

9: end while

10: if DensityCheck(α, εp, εn) and

11: SizeCheck(α, λ1, λ2, λ3) then

12: < ← <
⋃
{α}

13: for each h−/+ ∈ α do

14: Γiv ← Γiv
⋃
{h−/+}

15: end for

16: else

17: h− = RandomNegativeEdge(α)

18: Γiv ← h−

19: end if

20: CleanInvalids(Γ,Γiv,Γ′)

21: if not SizeCheck(Γ′, λ1, λ2, λ3) then

22: return <
23: end if

24: end loop

25: end procedure
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to satisfy the size constraints any more, and thus, the else branch of the if

statement between the lines 16 and 19 of the algorithm is executed. A very

simple heuristic is done here. A negative edge is looked for in α, and the one

first found is selected and added into the invalid edge set. This way, the next

round of iteration of the main loop starts with a graph with one less negative

edge, and the chance for generating higher positive density clusters increases.

After this main if statement (from lines 10 to 19 in the algorithm) either one

cluster is generated and its edges are added to the invalid edge list, or just one

negative edge is added to the invalid edge list. Then, these invalid edges must be

removed from the graph. This is done by removing one of the nodes incident to

these edges in order to be able to reduce the graph size as well. The procedure

at line 20 removes one node for each invalid edges from the original graph, then

the remaining graph (Γ′) is used in the next iteration to discover another cluster

from it. However, the remaining graph may be too small, and if it does not

satisfy the size constraints (checked at line 21), the process ends and clusters

obtained so far are returned (at line 22).

3.1 Density Check

DensityCheck is a procedure with 3 input parameters. They are a potential

cluster α and two constraints values εp and εn. The purpose of this sub-procedure

is controlling quality of given cluster due to constraints 1 and 2. If both con-

straints are satisfied, then this sub-procedure returns true. Otherwise, it returns

false to point out that removing a node is necessary.

3.2 Size Check

SizeCheck is a procedure with 4 input parameters. The first one is a potential

cluster α, the others are size constraints for each of 3 dimensions. This sub-

procedure checks the size of given cluster. If size of each dimension is not below

of its corresponding limit (constraint 3.3), then this sub-procedure returns true.
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Otherwise, it returns false.

3.3 Remove Least Effective Node

RemLeastEffNode procedure takes one input parameter which is a potential

cluster α. It removes a node from α.

a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

Figure 3.3: Removing Node b3

Heuristic calculations are used to determine which node to remove. There is

a simple approach behind this. If a node is connected by high number of h+,

it should be less likely to be removed. If a node is highly linked by negatively

signed hyperedges or it is loosely connected, its probability of being removed is

high. Due to the statement of the problem, positively labeled hyperedges are

valuable. Therefore, it is not desired to extract them from a cluster. In order to

keep them inside, they are valued by a positive number. In contrast, a negative

number is given the ones carrying negative labels (Equation 3.4).

val(h) =

1 if h has positive label

−1 if h has negative label.
(3.4)

With the help of it, effectiveness of each node is determined. For this purpose,

Equation 3.5 is used.

Eir =
1

Si
×

∑
h∈α

val(h) if r ∈ h

0 otherwise.
(3.5)

Eir is the effectiveness value of node r from type i. It is a density calculation of

hyperedges which connect a node to the cluster. Si refers to maximum number
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of hyperedges which can be linked to that node. For each type, Si value differs

(Table 3.2). The lowest effectiveness value gives the node to remove. An example

is given in Figure 3.3, where the least effective node is b3.

Table3.2: Maximum Possible Number of Hyperedges for Each Type

Type Value
S1 L2 × L3

S2 L1 × L3

S3 L1 × L2

3.4 Random Negative Edge

RandomNegativeEdge is a procedure taking 1 input parameter, which is a

potential cluster α. This sub-procedure helps to invalidate a hyperedge. It finds

and returns one which is not significant whether it is covered or not. Predictably,

it is the negatively signed one. The sub-procedure traverses all hyperedges and

returns the first h− it finds.

3.5 Clean Invalids

Invalid hyperedges are not desired to be part of future clusters. The hyperedges

of all tripartite clusters previously found are invalid. Moreover, hyperedges re-

turned by RandomNegativeEdge procedure are added to the list of invalids.

CleanInvalids (Algorithm 2) procedure aims to remove all invalid hyperedges

inside potential cluster Γ′. Γ is copied as Γ′ at the beginning of this procedure.

As a result, Γ′ does not contain any hyperedge in Γiv (the list of invalids). This

procedure returns. Then, the algorithm searches a valid cluster inside Γ′.

In order to remove a hyperedge, one of the nodes linked by this hyperedge should

be removed. In this manner, to remove an invalid hyperedge, CleanInvalids

procedure looks for a node, then removes. It repeats the same removing action

until no invalid hyperedge is left in Γ′. While selecting a node, it uses a heuristic

29



Algorithm 2 Clean Invalids Procedure
1: procedure CleanInvalids(Γ,Γiv,Γ′)

2: Γ′ ← Γ

3: Calculate(γ)

4: while max(γ) 6= 0 do

5: γx = max(γ)

6: γ ← γ 	 γx
7: Γ′ ← Γ′ 	 hx
8: Update(γ) . affected from x

9: end while

10: end procedure

that reduces side effects of removing nodes on the cluster size as much as possible.

On the heuristic calculation, first, the number of invalid hyperedges connected

to each node is counted. This value is then divided by Si where i refers to the

type of that node (Equation 3.6). The final value θir is the density of invalids

for that node. If θir is high, the node r is more likely to be removed.

Qir =
1

Si
×

∑
h∈α

1 if r ∈ h ∧ h is invalid

0 otherwise
. (3.6)

Next, the effectiveness of each node in Γ′ for its all valid hyperedges is calculated.

This calculation is a modified version of Equation (3.5). Additionally it checks if

hyperedges are valid. If not, they are not counted in the calculation (Equation

3.7). As another modification to Equation 3.5, add-1-smoothing approach is

applied. Because it will be denominator on the next calculation (Equation 3.8),

it is guaranteed that this value will never be negative. The final value Ev
ir is the

effectiveness value for node r. A node with high Ev
ir will likely not be excluded.

Ev
ir =

1

Si
×

∑
h∈α

1 + val(h) if r ∈ h ∧ h is valid

0 otherwise
. (3.7)

θir is directly proportional with selecting a node to remove, as Ev
ir value is in-

versely proportional. Therefore, the final calculation is performed as in Equation
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3.8. c is a constant value which is generally set to 1.

γir = θir ×
1

c+ Ev
ir

. (3.8)

Among all nodes, the one with the highest γ value is removed (from line 5 to

7). Then, γ values for remaining nodes inside Γ′ are updated, excluding the

ones from same type with recently removed node x. This update operation is

performed for the nodes whose γ value calculations count hyperedges omitted

via removing node x. It is done as follows. Qir and Ev
ir values for each node r

from type i is stored. For each node, these values are reduced by subtracting

recently omitted hyperedges. Then, Equation 3.8 for each recalculated again.

Then, this procedure continues removing node with maximum γ value.

If a node is not linked to any invalid hyperedges, then Equation 3.6 will result 0

for that node. This causes γ value for this node to be 0, too. By this manner, if

maximum γ value is 0, then it means there is no invalid hyperedges in Γ′ (line

4). This procedure returns. Removing a node continues until this state will be

reached (from line 4 to 9).

For the input data in Figure 3.1, STriCluster algorithm finds the cluster

in Figure 3.2 in the first iteration. Then, hyperedges of this newly generated

cluster are invalidated. To construct a new potential cluster, CleanInvalids

procedure is called. At the beginning, Γ′ (Figure 3.4a) is generated from Γ. But

Γ′ contains some invalid hyperedges (colored with purple in Figure 3.4a). To

find a node to remove, γ values are calculated. First, node b1 is removed since

γ3b1 is (4÷10)× (10÷14) ∼= 0.29 which is the maximum among γ values. Then,

node b2 is selected and removed (Figure 3.4b). This will result a clean Γ′ (Figure

3.4c) and the procedure terminates.

3.6 Complexity Analysis

Worst case scenario for STriCluster algorithm is that no tripartite cluster

is found. In this case, in each iteration RandomNegativeEdge is called to

throw an he. Then, this hyperedge is invalidated. It means that hyperedges in Γ
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a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

(a) Removing First Node

a1 b2 b3 b4 b5

c1 – + –
c2 + + +
c3 +
c4 – +
c5 – +

a2 b2 b3 b4 b5

c1 + – +
c2 + +
c3 + – –
c4 + + +
c5

(b) Removing Second Node

a1 b3 b4 b5

c1 + –
c2 + +
c3 +
c4 +
c5 – +

a2 b3 b4 b5

c1 – +
c2 +
c3 – –
c4 + +
c5

(c) Clean Γ′

Figure 3.4: Cleaning Invalids
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will be invalidated one by one in each iteration. Therefore, the outer loop (line

from 4 to 24) in STriCluster (Algorithm 1) will iterate (L1 × L2 × L3) (n

refers to this value ) times. In each iteration, the loop between lines 6 and 9 re-

moves all nodes one by one until SizeCheck returns false. It is (L1 + L2 + L3)

number of iterations. Additionally, for effectiveness value calculations of nodes,

all hyperedges with a sign are visited. Total hyperedge count depends on the

input data. However, it can be n at maximum. Finally, time complexity of

loop in lines 6 and 9 is O(n) = n× (L1 + L2 + L3). Similarly, CleanInvalids

procedure does node removal depending on hyperedge values. Therefore, its

complexity is also O(n) = n × (L1 + L2 + L3). As a result, time complexity of

STriCluster algorithm in worst case is O(n2 × (L1 + L2 + L3)).

In best case, whole input is one cluster. Then, the most outer loop only iterates

once. Additionally, node removing operation is not performed at line 8. But

all nodes are removed in CleanInvalids, since all hyperedges are contained

by previously found cluster. Then, the algorithm concludes at line 22, because

SizeCheck is not satisfied for Γ′. This shows that time complexity of the

algorithm in best case is O(n× (L1 + L2 + L3))

Considering space usage, STriCluster algorithm holds whole input in memory

in a 1D array. Size of this array is n = (L1 × L2 × L3). Γ′ holds hyperedges

whose count has upper bound n. Similarly, Γiv can have a hyperedge only

once. Therefore, its size is limited to n, too. < is the list of obtained clusters.

Since there is no hyperedge shared by clusters, each hyperedge can only be

present once inside <. Therefore, it contains at most n number of hyperedges.

Additionally, heuristic values for each node are hold in memory. There can be

2×(L1 × L2 × L3) values at maximum. This analysis shows that STriCluster

algorithm works in linear space. Its space complexity is O(n).
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CHAPTER 4

EXPERIMENTS

Two different types of experiments have been performed to test STriCluster

algorithm. The first one is done on a synthetic data. In the second one, a

real-world data is used.

4.1 Synthetic Data

In this case, input data is generated artificially. The densities of positive and

negative hyperedges in it are under control. Depending on data size and custom

parameters which are passed to STriCluster algorithm, different test cases

are defined. This test is convenient to see how the algorithm performs on data

with different densities. Moreover, for different number of positive and negative

hyperedges, behavior of the algorithm is observed.

4.1.1 Data Acquisition

Generated input data is a 3-D matrix with three cell types: +, - or empty.

Additionally, some rules are followed. Firstly, h+ and h− in input data have

density ratios. After input generation, it is ensured that the data contains h+
and h− with corresponding density ratios. As another rule, we fix these ratios

while changing input size. Other parameters are constant in these scenarios,

which are listed on Table 4.1.

In order to briefly mention the constants in Table 4.1, the constraints in these
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Table4.1: Constants for Test Cases

Symbol Value
εp 0.75
εn 0.10
λi (2,2,2)

test scenarios can be explained respectively as follows. h+ ratio of a cluster will

be equal to or grater than 0.75. Ratio of h− will be equal to or lower than 0.10.

Dimension sizes of each cluster will be at least 2.

On test scenarios, STriCluster algorithm is run on each sample data sepa-

rately. After an execution is ended, two values are recorded. The first one is

execution time of the algorithm (blue dots on Figure 4.1). The second one is the

cover of nodes. The cover represents number of distinct hyperedges contained

by clusters (green sticks on Figure 4.1). We have plotted these values for each

cases.

4.1.2 Test on Inputs with Different Sizes

In the first test, we have 6 sample data. In 3D matrix format, each sample

contains positive hyperedges with %60, negative hyperedges with %20. %20 of

the input is empty. The distribution is done randomly. (L1 × L2 × L3) values,

sizes of matrices, for these samples are (31.25K, 62.5K, 125K, 250K, 500K, 1M)

respectively.

As shown in Figure 4.1a, consumed time values are exponentially increasing

with n2. This is expected due to heuristic calculations. Because all hyperedges

of discovered clusters are invalidated, it is expected that number of hyperedges

used for heuristic calculations will decrease fast. In the best case, this reduction

will be logarithmic.

On the other hand, the number of hyperedges covered by clusters are directly

proportional with size of input. In this test, the ratio of this number with size

of input is about %20.
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Figure 4.1: Experiment Results on Synthetic Data
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4.1.3 Test on Inputs with Different Densities

In the second test, we have 5 different sample data. We fix the input size as

(L1 × L2 × L3) = 125K. Density ratio values for h+ and h− are listed in Table

4.2.

Table4.2: Density Ratio Values for h+ and h− in Input Data

Sample No Ratio for h+ Ratio for h−
1 0.2 0.2
2 0.2 0.4
3 0.4 0.2
4 0.4 0.4
5 0.6 0.2

Test results are plotted in Figure 4.1b. As density ratio of h+ increases, execution

time decreases, because bigger clusters can be obtained. Bigger clusters will

fasten to consume valid hyperedges. It results that the algorithm ends quickly.

When density ratio of h+ is low, the algorithm struggles more to discover a clus-

ter. One of the reasons is that node removal is done one by one. In addition,

obtained clusters will be smaller. This situation causes number of valid hyper-

edges to reduce slowly. On such case, by increasing size constraints (λi), mining

small clusters can be avoided. This will also help the algorithm to conclude

faster.

On the other hand, execution time is also directly proportional with density of

h− and sparseness in input data. Since h− in clusters are also controlled by εn,

more work is necessary when their number is high.
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4.2 Real-World Data

Brexit1 referendum is a very popular political event of 2016. The citizens of

UK have voted if UK should leave EU or not. To effect opinions, many talks

have been done by political parties. Heralds worked to emphasize people for

their sides, not only on televisions and public talks, but also on social media.

Social media is a very effective platform where vast number of people can be

readily reached. Therefore, social media is particularly focused for sharing ideas

about Brexit. Millions of tweets have been posted. Since there are great number

of expressive tweets, it is easier to find numerous ones which have many com-

mon parts among themselves. This is why we have collected data about Brexit

referendum from Twitter to run the algorithm on.

4.2.1 Data Acquisition

We collect tweets of 412 number of Twitter accounts which belong to politicians

from 5 major political parties in United Kingdom. Then, we utilize Twitter

Search API to get the latest 3200 tweets of each politician. For preprocessing,

tweets dated before January 1, 2016 are removed.

To represent each politician’s stance towards the issue in binary we utilize off-the-

shelf sentiment analysis tool SentiStrength2. We assume that overall sentiment

score of the tweet implies the opinion of the tweet towards the issue word that the

tweet contains. Each sentiment is saved as either positive, negative or neutral.

Additionally, an issue of a tweet and deterministic keywords in it are attached

to the sentiment.

Major 5 political parties viewpoints can be summarized as below [17];

• Labour: Overwhelming majority of Labour Party members campaign for

staying in European Union although there were raising concerns about the

structure and function of the European Union.

1 https://en.wikipedia.org/wiki/Brexit
2 http://sentistrength.wlv.ac.uk/
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• Conservatives: The leader of the Conservative Party, David Cameron of-

fered the referendum and started the campaign for remaining in EU. There

was a clear leaning towards leaving the EU despite the Cameron’s efforts.

• Libdem: Liberal Democrats campaigned for staying in the EU.

• UKIP: UK Independence Party was a prominent figure in the referendum

campaign. They passionately advocated to leave the EU. Blocking the

refugees from entering the country, opposing international and EU-wide

trade agreements, defending UK-born workers’ rights over immigrants’

rights were standing out as motivating factors in their campaign.

• SNP: Scottish National Party campaigns to stay in EU.

After sentiment analysis, we have 453, 519 tweets of 412 users. There are 36

different issues. The data contains 27, 208 distinct keywords. Occurrence of

each keyword is counted. This data is so sparse. The fullness ratio is ∼ 0.0011.

In order to decrease sparseness, most frequent 1000 keywords are selected, by

keeping number of users and issues stable.

Final size of input matrix is 412 × 36 × 1000 = 14, 832, 000. The total number

of hyperedges in it is 175, 421. The rest of it is sparse. Thus, the density of

hyperedges in the input is ∼ 0.011. 119, 525 number of them are with negative

label. 55, 896 number of them are positive ones. Since the negative ones doubles

the positives and the algorithm finds clusters with high positive density, the

labels of hyperedges are switched.

4.2.2 Baseline Methodology

This work is done by Mert Özer from ASU.

As a baseline method we apply Tucker decomposition to Γ to find user, issue

and sentiment word clusters in the Brexit data set. To that end, we utilize the

Tucker decomposition component [19] of MATLAB Tensor Toolbox Version 2.6

of [1].
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With the expectation to determine Remain and Leave camps, we have generated

2 clusters for the user dimension and 3 clusters for the issues and sentiment words

dimensions, respectively. When two opposing camps exist, it is also likely that

the other dimensions will have reflections of these two camps as two clusters and

there may be a third cluster for the remaining issues and the sentiment words.

Since spectral clustering includes all the nodes of all these dimensions, we have

obtained very large clusters with very low edge densities. Notable results that

we have observed from this experiment are as follows:

• Issues are unevenly distributed to 3 clusters. The first one contains three of

the most popular issues, namely citizenship, Brussels and worker. There is

a strong negative reaction towards these issues from the first user cluster.

The next cluster contains 11 issues, and against those issues, there is less

negative reaction from the second user cluster. This issue cluster contains

issues like humanrights, tuition, EU etc. The reaction is not very clear on

remaining clusters. Thus, it is not possible to obtain any useful information

from issue dimension.

• Sentiment keywords have also been unevenly distributed across three clus-

ters. Even the smallest cluster contains 105 sentiment words. Positive

and negative sentiment words were also distributed through the clusters.

There is no useful result that can be obtained from these clusters either.

• The user clusters obtained from this method are also not very informative.

The first cluster contains 133 politicians from a variety of parties. The

largest group in this cluster is Labours with 62 members, which is followed

by 44 members of the Conservatives. It also contains 8 SNP, 8 Liberal and

5 UKIP members, as well as 6 members from other parties. The second

cluster contains 239 politicians. Labours increase to 95, Conservatives

almost double to 90, and other parties also increase, Liberals to 25, UKIP

to 11, and SNP to 15. So, these clusters do not give any information about

the party membership vs issue relationship either.
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4.2.3 Test Results

Five different runs of STriCluster have been performed with different values

of input parameters λi, εp and εn. The values are listed on the Table 4.3 with

respect to test numbers. λi values are for users, issues and keywords respectively.

Table4.3: Variables for Tests with Real Data

Case No λi εp εn

1 (7,3,5) 0.7 0.07
2 (10,3,10) 0.5 0.05
3 (20,3,10) 0.5 0.05
4 (20,3,10) 0.3 0.03

Rather than performance of the executions, the focus is the analysis of output

clusters on this test. The obtained clusters are interpreted by considering the

sides and their opinions on Brexit. Due to the approach of the algorithm, people

are not placed in same cluster by only considering their political views. Their

opinions about specific issues make them members of same clusters. Further-

more, if users use identical keywords for specific issues, then they are more likely

to be in same clusters. This is also helpful to discover which keywords are more

popular to describe those particular issues.

Case 1: More dense clusters are aimed to be found. Minimum value for the

density ratio of positive hyperedges are kept high. It is 0.7 in this test. The size

thresholds are relatively low. Since the density threshold values are high, it is

more likely to have small clusters. The sparseness of the input is also effective

on this result. Small number of clusters are predicted. Consequently, only one

cluster with size 17× 3× 6 is found.

On Figure 4.2, 17 number of yellow nodes show users. They are all from labors

group. Light green ones in square shape are issues, which represents tax, NHS

(National Health Service) and EU (European Union). The blue ones in triangle

shape are keywords. The keywords are use, claims, hate, lost, things and cham-

ber. This clusters are very compact and dense. Therefore, it can be claimed
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Figure 4.2: 1 Cluster in Case-1

that these users express quite similar opinions about the issues.

Case 2: In this case, density constraints εp and εn are lowered to 0.5 and

0.05 respectively. Relatively, size limits are increased(Table 4.3). Under these

circumstances, the algorithm has found 3 different clusters (Figure 4.3). Four

square nodes (colored as yellow) represent 4 distinct issues which are tax, NHS,

EU and immigration. tax, NHS, EU are shared among all obtained clusters.

The issue partition of 3rd cluster contain immigration instead of tax.

Keywords are highly separated. There is no overlap among them. This property

makes them apparent on the Figure 4.3. They are drawn as three different groups

of triangles (green). First group contains keywords: conservatives, use, Muslim,

look, increasing, claims, hate, lost, price, things, chamber, gave, term. Second

group is composed of keywords: interest, reform, give, first, want, revealed, idea,

manifesto, safety, possible, rich, poll, completely, paying. Finally, third group

consists of the ones: Theresa, pleased, sad, hall, piece, year, soon, live, improve,

start, voting, history, target.
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Figure 4.3: 3 Clusters in Case-2

For user nodes (blue circles), there are 3 different partitions in different clusters.

The first one is composed of 49 nodes, which are mainly labors. There exists

4 nodes for conservatives, 6 ones for UKIP and 1 for SNP. Second partition

consists of 14 nodes , again mainly for Labors including 2 ones for UKIP. As

contrast, user partition of 3rd cluster does not contain any one from Labors. 8

of 11 nodes are from UKIP, the others are from Conservatives.

When density constraints get low, the variety of opinions in a cluster increases.

In test case 1, two users share 6 of 8 opinions in a cluster. In this case, this

ratio is about 5 of 10 opinions. This reduction increases variety of users from

different political perspective in user partition of a cluster. This level difference is

good to discover which opinions are shared among different political campaigns.

Moreover, level of diversity can give an opinion about how far or close different

political parties are in terms of what they support.

Case 3: In this case, density constraints εp and εn remains same with case 2 as

size constraints are increased (Table 4.3). These circumstances results that the
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algorithm has found 2 different clusters (Figure 4.4). It is expected since it is

forced to look for bigger ones. By this approach, it is aimed to find bigger user

group which shares similar opinions.

Figure 4.4: 2 Clusters in Case-3

The size of first cluster is 49×3×13. Since this cluster also satisfies the constrains

in case 2, it is present in the cluster list of it, too. However, the second clusters

are different (Table 4.4). In case 3, the 2nd cluster has 20 users, 3 issues and 10

keywords. Size constraints has just been reached. It contains 327 hyperedges,

301 of them are with positive label, 26 of them are with negative ones. The fill

ratio of the whole cluster is 0.545. In case 2, the second cluster is smaller in

size even though the size constraints does not effect while mining as in case 2.

The size is 14 × 3 × 14. Its fill ratio is lower, too. It is ∼ 0.536. It contains

315 hyperedges, with 296 positive ones and 19 negative ones. Such scenario

can happen, because the algorithm follows a greedy approach. At a state, the

algorithm removes a least effective node. But removing this node may cause

the algorithm to yield at lower local maxima. Therefore, running the algorithm

several times on same input with various input parameters can help to strain it
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more effectively.

Table4.4: Properties of 2nd Clusters Found in Test Cases 2 and 3

Case No Size Fill Ratio # Hyperedges # + # - + Ratio

2 (14,3,14) 0.536 315 296 19 0.5034
3 (20,3,10) 0.545 327 301 26 0.5017

Case 4: This case has small density constraints (εp, εn). Size constraints remain

same with case 3. It has tendency to find bigger clusters but with less density of

hyperedges. Sparseness will be dominant in the clusters. It is expected to have

more clusters compared to case 3. As expected, it finds more clusters. There

are 5 different ones (Figure 4.5).

Figure 4.5: 5 Clusters in Case-4

In this case, it is more likely that obtained clusters contains higher diversity

compared to ones in previous test cases. This is directly proportional to εp

value. Since it is 0.3, users who shares a few opinions can be part of same
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clusters. In results, there is a cluster whose users are mainly from Labours.

There is also a cluster in which UKIP, the Conservatives and the Labours have

equal weight.

Obstacles: On real data tests, we have faced some obstacles. The main one is

that it is hard to find a data which is considerably big and dense. Since there

are lots of different words in a language, users can express same feelings about

an issue in various ways. This results size increase in keywords dimension which

results more sparseness.

Second obstacle is hardness of extracting the real issue in a tweet which is

addressed by its sentiment. For example, a user wants to satirize a politician for

his/her ideas about EU. The issue of this tweet can be extracted as EU, while

its sentiment will be negative. However, this opposition is not towards EU,

but towards the politician. Another tweet which expresses a negative criticism

about EU can be placed into a cluster of the previous tweet, because of issue

and sentiment match. As a result, two tweets of same topic can be placed into

same cluster. In reality, they address different issues. This situation leads to a

false positive action.

4.3 Comparison

When we compare STriCluster algorithm with Tucker decomposition, the

basic difference is the node cover. In tucker decomposition, each node is a

member of a cluster. A node can not be a part of more than one cluster.

Additionally, it can not be idle, too. This is against density approach, since it

increases sparseness inside clusters. Moreover, it results to ignore other potential

clusters. For example, in Brexit data, one of the most popular topic is EU. If

EU is covered by a cluster, then opinions of people from outside who also talk

about EU may not be analyzed, because they are in different clusters. On the

other hand, STriCluster allows that a node can be a member of many or

none. Test results on Brexit shows that tax, NHS and EU are shared among

many clusters. Therefore, different analysis about same topic can be mined.
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Furthermore, these clusters have desired quality. This feature enables us to

interpret them more easily.

48



CHAPTER 5

CONCLUSION

In this thesis, we propose a new method, called STriCluster, to find tripartite

clusters of positively labeled hyperedges. The input data is composed of three

dimensions. In other words, it is a hypergraph such that cardinality of each

hyperedge in it is exactly 3. Each hyperedge connects three nodes from each

dimension. Obtained clusters have high positivity and low negativity. These

ratios are controlled by user-defined threshold values. While density of h+ cannot

be below of the threshold, density of h− cannot exceed its own threshold. To

achieve this goal, nodes in a potential cluster are removed one by one until

density constraints are satisfied. On this stage, the algorithm follows a greedy

approach. It determines node to remove by heuristic calculations. Least effective

node is determined depending on number of h+ by which a node is linked. The

density ratio of that number helps to determine the node to omit. This way

helps to cut sparseness and negativeness in the first place. As another specialty,

all generated clusters satisfy some size threshold values for each dimension. This

avoids to spare time and effort to look for clusters with undesired sizes. Since

heuristic calculations are performed based on threshold values passed as input

parameters, changing input parameters can help to discover different clusters.

Furthermore, our algorithm avoids overlap of hyperedges among generated tri-

partite clusters. A hyperedge of a cluster can not be contained by another one.

While mining, STriCluster aims to do least number of node removal to keep

cluster sizes as big as possible. Heuristic approaches are helpful for this pur-

pose. Once size and density constraints are satisfied, node removal operation is

49



stopped. This behavior can be observed on test results of synthetic data. If the

density of h+ are high in the input, then number of discovered clusters reduces.

It shows that big clusters are obtained. Big clusters results to reduce number of

valid hyperedges quickly. Therefore, the algorithm concludes faster.

Our algorithm is willing to cover nodes as many as possible. But the nodes

should be connected considerably much with positivity. Nodes which are loosely

connected or negatively connected are generally out of clusters. In this manner,

nodes linked by many hyperedges express stronger sentiments. They can be

contained by one or more clusters, because they are more helpful on analysis.

As contrast, less effective ones will contribute less for analysis. Therefore, they

are more likely to be out of clusters. This behavior can be considered as filtering.

In our approach, it is not necessary that a node will be a member of at least one

cluster.

The other promise of our algorithm is avoiding hyperedge overlapping while

allowing node overlapping. A node can be part of one or more clusters, called as

node overlap. It is helpful to discover different information about nodes, since

different clusters which they are part of are analyzed.

As another flexibility, since STriCluster algorithm considers all dimensions

with equal weights, it can be easily adapted to many real-world scenarios. In

tests on Twitter data, promising results are obtained. Therefore, it may be

worth to test the algorithm on other real world systems.

As a future work, the algorithm may follow more hybrid approach in node re-

moval. To converge desired state more quickly, it can start with normalized cuts.

Then, when it becomes closer to limits, it continues removals one by one. This

may be helpful for data where sparseness is high. Moreover, it improves time

complexity of the algorithm since the data size will decrease in a logarithmic

way when cuts are applied.

Calculations of node effectiveness can be performed more efficiently. It is a

complex calculation and it can be divided into sub-problems. Because sub-

problems can be shared by many ones, first these sub-problems are solved, then
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the calculations can use them to generate the final values. This approach is

helpful in order not to repeat same problems. Consequently, the running time

of the algorithm is improved.
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