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ABSTRACT 

 

 

INTERACTIVE APPROACHES FOR BI-OBJECTIVE UAV ROUTE 

PLANNING IN CONTINUOUS SPACE 

 

TÜRECİ, Hannan 

 

M.S., Department of Industrial Engineering 

Supervisor  : Prof. Dr. Murat Köksalan  

Co-Supervisor : Assist. Prof. Dr. Diclehan Tezcaner Öztürk 

 

February 2017, 69 pages 

 

We study the route planning problem of unmanned air vehicles (UAVs). We consider 

two objectives; minimizing total distance traveled and minimizing total radar 

detection threat since these objectives cover most of the other related factors. We 

consider routing in a two-dimensional continuous terrain, in which we have infinitely 

many efficient trajectories between target pairs.  

We develop interactive algorithms that find the most preferred solution of a route 

planner (RP), who has either of the underlying preference function structures: linear 

or quasiconvex. To implement the algorithms to route planning problems, we use 

approximated nondominated frontiers of the trajectories between targets. In the linear 

case, we search for supported efficient solutions in two stages. In the first stage, we 

find the best trajectory between each target pair. In the second stage, we find the tour 

visiting all targets (traveling salesperson problem, TSP). In the quasiconvex case, we 

search for both supported and unsupported efficient solutions. We first reduce the 

objective space to rectangular regions around at most three supported efficient 

solutions. We then search inside these rectangular regions to find 
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supported/unsupported efficient solutions and narrow our search region. We proceed 

with pairwise comparisons from the RP and reduce our search space until the two 

solutions to be compared are close enough. To generate random problem instances, 

we develop a mathematical model that randomly locates radars in a terrain with 

known target locations. We then demonstrate the interactive algorithm developed for 

linear preference functions on two randomly generated problems. 

 

Keywords: Bi-objective Routing, Interactive, Routing in Continuous Space, 

Unmanned Air Vehicles, UAV Route Planning 
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ÖZ 

 

 

SÜREKLİ UZAYDA İKİ AMAÇLI İHA GÜZERGAH PLANLAMASINA 

İLİŞKİN ETKİLEŞİMLİ YAKLAŞIMLAR 

 

TÜRECİ, Hannan 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi           : Prof. Dr. Murat Köksalan 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Diclehan Tezcaner Öztürk 

 

Şubat 2017, 69 Sayfa 

 

Bu tezde, İnsansız Hava Aracı (UAV) rota planlama problemlerini ele alıyoruz. İlgili 

faktörlerin çoğunu kapsamalarından dolayı toplam mesafeyi en aza indirmeyi ve 

toplam radara algılanma tehdidini en aza indirmeyi amaçlarımız olarak belirledik. 

Rotalamayı iki boyutlu sürekli hareket alanında yapıyoruz,dolayısıyla, hedefler 

arasında sonsuz sayıda etkin güzargah bulunduğunu biliyoruz.  

İki temel tercih fonksiyonu (doğrusal ve konveks benzeri) için rota planlayıcısı’nın 

(RP) en çok tercih ettiği çözümü bulan etkileşimli algoritmalar geliştirdik.  Rota 

planlama problemine algoritmaları uygulayabilmek için hedefler arasındaki etkin 

yolları tahmin eden yöntemleri kullandık. Doğrusal durumda desteklenen çözümler 

bulmak için, rota planlama problemini iki kısımda çözdük. İlk kısımda her hedef 

ikilisi arasında en iyi yolu bulduk. İkinci kısımda tüm hedefleri gezen turu bulduk 

(gezgin satıcı problemi). Konveks benzeri fonksiyonlar için geliştirilen algoritmada 

hem desteklenen hem desteklenmeyen etkin çözümleri arıyoruz. Öncelikle RP’nin en 

çok tercih ettiği çözümü içinde bulunduran dikdörtgen alanlar elde ediyoruz. 

Sonrasında bu bölgelerin içinde yeni çözüm (desteklenen/desteklenmeyen) arıyoruz. 

Algoritmalara RP’nin iki alternatif arasındaki tercihi ile ilerliyoruz ve 
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karşılaştırılacak çözümler yeterince yakın olunca algoritmaları durduruyoruz. 

Rastgele problemler oluşturmak için, belli bir alana radarlar yerleştiren bir model 

geliştirdik. Çalışmanın sonunda, doğrusal fonksiyonlar için geliştirdiğimiz 

algoritmayı rastgele oluşturulmuş iki problem üzerinde gösteriyoruz.  

 

Anahtar Kelimeler: İki amaçlı rotalama, İnteraktif, Sürekli Uzayda Rotalama, 

İnsansız Hava Aracı, İHA Rota Planlama  
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CHAPTERS 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

Unmanned air vehicles (UAVs) are unpiloted aircrafts that were originally designed 

for military purposes. Currently, these vehicles also serve civilian purposes in 

environments such as surveillance against crimes and minimizing hazardous effects 

of natural disasters. Route planning or a mission for these vehicles involves finding 

the path that the UAV follows in a terrain visiting all the predetermined target points. 

Several objectives may be of interest in the route planning problem. Minimizing 

distance traveled, fuel consumption, flight duration, detection threat, and maximizing 

navigation performance are some of the meaningful objectives.  

In this project, we consider multi-objective route planning of UAVs in a two-

dimensional continuous terrain. We consider two objectives: minimizing total 

distance traveled and minimizing total radar detection threat since they capture the 

main concerns. In a two dimensional continuous terrain, UAV can travel through 

infinitely many path alternatives.  

Tezcaner Öztürk (2013) considers multi-objective route planning problems as a 

combination of multi-objective Shortest Path Problem (MOSPP) and multi-objective 

Travelling Salesman Problem (MOTSP) for the discretized problems. She 

approximated efficient paths between targets for the continuous terrains in her study. 

In the continuous case, we do not have MOSPP between target pairs since we have 

infinitely many nodes between targets. Therefore, we do not have standard SPP 

between targets. However, we again find the best trajectory between targets by 

solving the approximated frontiers for a desired linear function.  In this thesis, we use 

her findings and develop interactive algorithms for bi-objective route planning 
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problem of UAVs. We consider two underlying preference function structures: linear 

and quasiconvex preference functions.  

In the rest of this study, we first present the background on UAV route planning in 

Chapter 2. In Chapter 3, we explain the UAV route planning problems in terms of 

problem terrain, UAV movements and objectives. In Chapter 4 and 5, we explain our 

interactive algorithms for linear and quasiconvex preference functions, respectively. 

We develop a mathematical model to randomly generate a problem instance for 

demonstration purposes. In Chapter 6, we give this model and demonstrate our 

interactive algorithm developed for linear functions on two example problems. We 

give our conclusions in Chapter 7. 
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CHAPTER 2 

 

 

2 LITERATURE REVIEW 

 

 

 

In the literature, there are many studies on the route planning problem of UAVs 

considering multiple objectives. The past work on UAV route planning typically 

addresses routing UAVs between an initial point and a destination. They consider a 

linear aggregation of objectives (hence convert the problem into a single-objective 

problem) and employ a heuristic approach to determine the route. Zheng et al. (2003) 

consider the routing problem of a UAV between two targets in three dimensional 

space. They develop an evolutionary algorithm (EA) that finds near-optimal routes 

by using the weighted combination of objectives. They consider three objectives; 

route length, average altitude of the route above the sea level, and closeness to threat 

zones.  Another study, Foo et al. (2009) again consider three objectives (target 

reconnaissance, total distance traveled and safety) for the route planning of UAVs in 

three dimensional space. They use particle swarm optimization and b-splines to 

generate altenative paths by changing the bias of objectives in the weighted 

combination of objectives. Then, they present alternative paths to the Decision 

Maker (DM). 

Zheng et al. (2005) develop EA for 3-D route planning of UAVs between two targets 

by considering some constraints related with UAVs separately. They consider single 

and multiple vehicles. Pohl and Lamont (2008) also consider multiple vehicles and 

develop an EA without aggregating the objectives.   

Many of the past work have treated the terrain the UAV flies through as a discretized 

terrain, approximating it by a grid structure. The early examples are Olsan (1993) 

and Gudaitis (1994). They consider route planning problem for a single UAV visiting 

a single target. They also linearly combine two objectives which are to be 

minimized; route length and radar exposure, and optimize this single composite 
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objective using heuristics. In Yavuz’s (2002) study, the UAV visits multiple targets 

optimizing the same two objectives. He develops an approach that is the synthesis of 

Particle Swarm Optimization and Ant System, to find a good solution.  

In practice, the terrain the UAV travels through is a continuous terrain. However, the 

literature on UAV route planning problem in continuous terrain is scarce, since even 

two conflicting objectives in a continuous terrain lead to infinitely many efficient 

solutions, and finding these efficient solutions is computationally demanding. The 

studies of Pachter and Hebert (2002) and Kan et al. (2011) can be considered as 

relevant studies for routing in continuous terrain. Pachter and Hebert (2002) find the 

best trajectory between two locations that minimizes the total detection for a given 

distance that the vehicle can move. Kan et al. (2011) consider the same problem with 

the same objectives. They get threshold altitude as an input and generate safe paths 

by using B-splines.   

As explained above, most of the previous studies dealt with a simplified linear 

aggregation of the two-objective version of the problem; converting it into a single-

objective problem. Using a linear aggregation of the objectives limits the solutions 

that can be found to a subset of the efficient solutions. An exception to linearly 

aggregating the objectives is the study of Tezcaner and Köksalan (2011), where they 

consider two objectives separately in a problem environment with multiple target 

points. They develop an interactive algorithm that finds the most preferred solution 

of a decision maker (DM) with an underlying linear preference function. Tezcaner 

Öztürk and Köksalan (2016) also consider the same two objectives separately. They 

develop an interactive algorithm to find the most preferred solution of a DM with an 

underlying quasiconvex preference function. In both of these studies, they use a 

discretized terrain. Later, Tezcaner Öztürk (2013) considered the route planning 

problem in continuous terrain for the same two objectives and developed solution 

methods to generate the efficient solutions, both by exact and heuristic methods. In 

our study, we also work on the route planning problem of UAVs in continuous 

terrain optimizing the same two objectives. Under the presence of a DM, it is not 

meaningful to generate all efficient solutions, since the DM would be interested in 

solutions satisfying a certain tradeoff between the objectives. Therefore, instead of 

generating all efficient solutions, we focus our search on the most preferred solutions 

of the decision maker. We develop two interactive algorithms that approximate the 
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most preferred solution of a decision maker. Our first algorithm assumes that the DM 

has an underlying linear preference structure. Our second algorithm addresses a more 

general case, where the DM has an underlying quasiconvex preference function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

7 
 

 

CHAPTER 3 

 

 

3 PROBLEM DEFINITION 

 

 

 

In this chapter, we explain route planning problem of UAVs. We give an example 

problem terrain to visualize the problem that we consider in this thesis. We give 

information about radars, objectives of route planning problem, and UAV 

movements in 2-D continuous space. At the end of the chapter, we present the 

formulation of the bi-objective UAV route planning problem, developed by Tezcaner 

Öztürk (2013). Before these, we give some definitions and the problem definition in 

Section 3.2. 

3.1 Definitions 

We give some definitions that we commonly use in this thesis. We adapted them 

from Tezcaner Öztürk and Köksalan (2016).  

Let 𝑥 be the decision variable vector in 𝑋, where 𝑋 is the feasible set. The image of 

feasible set in objective function space is denoted with 𝑍. Assume that there are 𝑝 

objectives to minimize and 𝑧(𝑥) = (𝑧1(𝑥), 𝑧2(𝑥), … , 𝑧𝑝(𝑥)) is the objective function 

vector of 𝑥. 

Definition 3.1 A solution x ∈ X is efficient if there does not exist 𝑥′ ∈ X such that 

𝑧𝑘(𝑥′) ≤ 𝑧𝑘(𝑥) for k = 1,2, … , p and 𝑧𝑘(𝑥′) < 𝑧𝑘(𝑥) for at least one objective. If 

there is such an 𝑥′, 𝑥 is said to be inefficient. All efficient solutions constitute the 

efficient frontier (set).  

Definition 3.2 If a solution 𝑥 ∈ 𝑋 is efficient, then 𝑧(𝑥) is said to be nondominated, 

and if 𝑥 is inefficient, and then  𝑧(𝑥) is said to be dominated. All nondominated 

points constitute the nondominated frontier (set). 
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Definition 3.3 A nondominated solution 𝑧(𝑥) is a supported nondominated solution 

iff there exists a positive linear combination of objectives minimized by 𝑥. If 𝑧(𝑥) is 

a supported nondominated solution then 𝑥 is supported efficient solution. Otherwise, 

𝑧(𝑥)  is an unsupported nondominated solution and 𝑥 is supported efficient solution.  

Definition 3.4 An extreme nondominated point 𝑧(𝑥) is a supported nondominated 

point that has the minimum possible value in at least one of the objectives. 

Definition 3.5 If 𝑋 ⊂ 𝑍𝑛 and 𝑍𝑁𝐷 is the set of all nondominated points, let 𝑇 =

{𝑡|𝑧(𝑥𝑡) ∈ 𝑍𝑁𝐷} and  𝑧(𝑥𝑖) ∈ 𝑍𝑁𝐷 be a supported nondominated point. 𝑥𝑖 is said to 

be adjacent efficient to 𝑥𝑗  iff there does not exist 𝑥𝑡 such that ∑ 𝜇𝑡𝑧(𝑥𝑡)𝑡≠𝑗 ≤

𝜆𝑧(𝑥𝑗) + (1 − 𝜆)𝑧(𝑥𝑖) where ∑ 𝜇𝑡 = 1,𝑡≠𝑗  0 ≤ 𝜇𝑡 ≤ 1 and 0 < 𝜆 ≤ 1. 

3.2 UAV Route Planning Problem  

UAVs travel through a continuous terrain visiting a number of target points. We 

consider a two-dimensional terrain and assume that the vehicle travels with a 

constant altitude. An example terrain structure can be seen in Figure 3.1. The vehicle 

is required to visit all five targets (triangles) in the figure, and the objectives are to 

minimize distance traveled and radar detection threat at radar-covered territories 

(circular regions). The radar is less effective towards the circumferences of the 

circular regions and ineffective in the white regions. We show several of the 

infinitely many efficient tours with dashed lines in Figure 3.1.  

 

Figure 3.1 Terrain Representation and Efficient Solutions     
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In this study, we make some assumptions about the problem terrain. As it is 

illustrated in the figure, radar regions do not intersect with each other and targets are 

located outside the radar regions. Also, for the sake of simplicity, we assume that 

there is only one effective radar region between each target pair, and if there is more 

than one radar region between a pair of targets, we select the most threatening radar 

region. We use radar detection threat measures for this selection. We select the radar 

region that gives the higher radar detection threat value over the straight path 

between a target pair. Therefore, we somewhat underestimate the radar detection 

threat if traveled trajectory goes inside more than one radar region. 

3.2.1 Objectives 

There are many factors affecting the route selection of UAVs. Weather, terrain 

conditions, traveled distance, time limitations, min-max altitude, fuel consumption/ 

refueling points and risk of detection to enemy threats can be given as examples 

(Bahnij,1985). In the literature related with UAV route planning problems, generally 

two or three objectives are used. We consider two objectives that cover most of the 

related factors in our study: minimizing total distance traveled and minimizing radar 

detection threat.  

The first objective is measured with the length of the path the UAV follows. For the 

second objective, we use the radar exposure measure that is developed by Gudaitis 

(1994). This measure sums up all radar detection probabilities on the path of the 

UAV. It is equivalent to approximating how long the UAV is exposed to each 

detection probability. More details on the calculation of these objectives can be 

found in Appendix A.  

The radar is located at the center of the radar region, and it is ineffective in detecting 

the UAV outside its region. Inside the radar region, we have two parts: (i) inner 

region where the detection probability is 1, (ii) outer region where the detection 

probability ranges between 0 and 1. These two regions can be seen in Figure 3.2. The 

detection probability reduces from 1 to 0 as we move from the inner radar region 

towards the circumference of the outer radar region.  
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Figure 3.2 Radar Region 

 

3.2.2 Movement of UAV in the Continuous Terrain  

In the route planning problem for UAVs, there are infinitely many path options for 

visiting a number of targets. Given that we have 𝑇 targets, the UAV can visit the 

targets in (𝑇 − 1)!/2 different orders (assuming that the terrain is symmetrical; 

going from target 𝑖 to target 𝑗 has the same objective values as going from 𝑗 to 𝑖). If 

there are 𝐸 efficient trajectories between each target pair, each order can be visited in 

𝐸𝑇 different combinations. In total we have 𝐸𝑇(𝑇 − 1)!/2 different path alternatives. 

In the route planning problem in continuous terrain, there can be infinitely many 

trajectories between any two targets, and thus we have infinitely many path 

alternatives to visit all targets.  

In our solution approach, we decompose the overall route planning problem into two 

parts. In the first part, we determine the efficient trajectories between consecutive 

target pairs. In the second part, we determine the visiting order to the targets. First 

problem is a multi-objective shortest path problem between each target pair, and the 

second problem is a multi-objective traveling salesperson problem (MOTSP) with 

multiple efficient edges between node pairs. Tezcaner and Köksalan (2011) refer this 

problem as generalized MOTSP.   

To find the efficient trajectories between target pairs, we use the findings of 

Tezcaner Öztürk (2013). We next explain the movement types between two targets, 

and the structure of their nondominated frontiers.  

Inner Radar Region 

Outer Radar Region 
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3.2.3 Movement of the UAV between Two Targets  

The two objectives conflict with each other only inside the radar regions since the 

radar is ineffective outside the radar regions. In the ineffective regions, we only 

minimize the total distance traveled. The UAV should follow the shortest distance 

between two points in the ineffective regions, which is the Euclidean distance (the 

straight line connecting two points). Inside the radar regions, Tezcaner Öztürk (2013) 

assumes that the UAV makes a circular move. To classify the moves between two 

targets, we first find the extreme efficient solution with smallest distance traveled. 

This path is on the straight line that connects two target points. If this path does not 

pass through any radar region, we classify this path as Type I, and conclude that 

there is only one efficient solution between these two targets. If the path with the 

smallest distance passes through only the outer radar region, we classify it as Type II, 

and if the path passes through both the inner and the outer radar regions, we classify 

it as Type III. The moves of the UAV between two targets can follow one of the 

three types. For each movement type, the calculation of the objectives is given 

below. To use the formulas presented below, we need to adjust the coordinates of the 

targets and the effective radar between the two targets. First, all coordinates are 

rearranged so that the radar center is located at the origin. A straight line connecting 

the initial and the final target should intersect with the y-axis where the intersection 

point’s y-coordinate is positive. Moreover, the angle between x-axis and the straight 

line should be in [−𝜋/4, 𝜋/4] range. If these conditions are not satisfied, targets are 

rotated around the origin for  𝜋/2 angle increments until all conditions are satisfied. 

For detailed information on terrain transformation, please see Tezcaner Öztürk’s 

(2013) study.  

Formulas and explanations for each movement type are taken directly from Tezcaner 

Öztürk (2013). Figures are also drawn similar to the ones present in her study. We 

give more details on the movement types below. 

Type 1. No Intersection with the Radar Region (Figure 3.3) 

In this type of move, the shortest distance between two targets does not pass through 

any radar region. We therefore have a single efficient solution with total distance, 𝐷, 
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and total radar detection threat, 𝑅𝐷𝑇 = 0. Assuming that the target with the smaller 

𝑥-coordinate is located at coordinates (𝑥𝑠, 𝑦𝑠), and the other target located at 

coordinates (𝑥𝑓 , 𝑦𝑓), we calculate the total distance (𝐷) with equation (3.1).  

𝐷 = √(𝑥𝑓 − 𝑥𝑠)
2

+ (𝑦𝑓 − 𝑦𝑠)
2
                 (3.1) 

 

 

 

 

 

 

 

 

Figure 3.3 Movement between Radar Regions – Type 1 

 

 

Type 2. Moves through only the Outer Radar Region (Figure 3.4) 

For this case, all efficient trajectories of the UAV pass through only the outer radar 

region. The trajectories that pass through the inner radar region result in longer paths 

with higher detection threats, and are therefore inefficient. As in Tezcaner Öztürk 

(2013), we assume that the vehicle makes a move inside the outer radar region as if it 

is moving on a circle, (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 centered at (𝑎, 𝑏) with radius 𝑟. For 

further information, please see Appendix B. The distance and radar detection threat 

measure are calculated with equations (3.2) and (3.3), respectively.  

𝐷 = √(𝑥𝑒𝑛 − 𝑥𝑠)2 + (𝑦𝑒𝑛 − 𝑦𝑠)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑒𝑥−𝑥𝑒𝑛)2+(𝑦𝑒𝑥−𝑦𝑒𝑛)2

2𝑟
) . 𝑟 +

√(𝑥𝑓 − 𝑥𝑒𝑥)
2

+ (𝑦𝑓 − 𝑦𝑒𝑥)
2
        

  (3.2) 

Here, the first and the last terms are the Euclidean distances corresponding to the 

straight paths outside the radar regions. First term is the direct distance between 

initial point (𝑥𝑠, 𝑦𝑠) and entrance point to the outer radar region (𝑥𝑒𝑛, 𝑦𝑒𝑛). Likewise, 

the last term is the distance of the straight path between exit point from the outer 

(𝑥𝑠, 𝑦𝑠) (𝑥𝑓 , 𝑦𝑓) 
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radar region (𝑥𝑒𝑥 , 𝑦𝑒𝑥) and destination point (𝑥𝑓 , 𝑦𝑓). The middle term is the length of 

the arc traveled inside the outer radar region. It gives the circular distance between 

entrance and exit points. 

𝑅𝐷𝑇 = ∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝑥𝑒𝑥

𝑥𝑒𝑛

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2 𝑑𝑥        

   (3.3) 

Above equation gives the total radar detection threat value for the arc traveled inside 

the outer radar region. For the derivation of the equations, please see Tezcaner 

Öztürk’s (2013) study.  

In Figure 3.4, we give the demonstration of type 2 move. Illustrated trajectory is one 

of the infinitely many efficient trajectories between origin and destination points. 

 

 

 

 

 

 

Figure 3.4 Example Movement between Radar Regions – Type 2 

 

 

Type 3. Moves through Both the Inner and the Outer Radar Regions (Figure 3.5) 

In this type, the efficient trajectories between two targets can pass through both the 

outer and the inner radar regions. Inside the outer radar region, it is assumed that 

UAV makes a circular movement as in Type 2 (centered at (𝑎, 𝑏) with radius r). 

Inside the inner radar region, objectives do not conflict with each other since the 

probability of detection is 1 throughout the region. In other words, both objectives 

(𝑥𝑠, 𝑦𝑠) (𝑥𝑓 , 𝑦𝑓) 
(𝑥𝑒𝑛, 𝑦𝑒𝑛) (𝑥𝑒𝑥, 𝑦𝑒𝑥) 
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can be decreased simultaneously. Therefore, UAV follows the shortest path inside 

the inner radar region. Formulas for the total distance and total radar detection threat 

are given in (3.4) and (3.5), respectively. Here, (𝑥𝑖𝑒𝑛, 𝑦𝑖𝑒𝑛) is the entrance point to 

the inner radar region and (𝑥𝑖𝑒𝑥, 𝑦𝑖𝑒𝑥) is the exit point from the inner radar region. 

𝐷 = √(𝑥𝑒𝑛 − 𝑥𝑠)2 + (𝑦𝑒𝑛 − 𝑦𝑠)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑖𝑒𝑛−𝑥𝑒𝑛)2+(𝑦𝑖𝑒𝑛−𝑦𝑒𝑛)2

2𝑟
) . 𝑟 +

√(𝑥𝑖𝑒𝑥 − 𝑥𝑖𝑒𝑛)2 + (𝑦𝑖𝑒𝑥 − 𝑦𝑖𝑒𝑛)2 + 2. 𝑎𝑟𝑐𝑠𝑖𝑛 (
√(𝑥𝑒𝑥−𝑥𝑖𝑒𝑥)2+(𝑦𝑒𝑥−𝑦𝑖𝑒𝑥)2

2𝑟
) . 𝑟 +

√(𝑥𝑓 − 𝑥𝑒𝑥)
2

+ (𝑦𝑓 − 𝑦𝑒𝑥)
2
       (3.4) 

Here, the first and the last terms are the lengths of straight paths outside the outer 

radar region. The middle term is the direct distance between the entrance point to the 

inner radar region and the exit point from the inner radar region. The rests are the 

lengths of the arcs traveled inside the outer radar region. 

𝑅𝐷𝑇 = ∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2 𝑑𝑥 
𝑥𝑖𝑒𝑛

𝑥𝑒𝑛
+

∫ (
10

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
𝑙𝑜𝑔10 (

𝐶

(𝑥2+(√𝑟2−(𝑥−𝑎)2+𝑏)
2

)
2) −

𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
) . √

𝑟2

𝑟2−(𝑥−𝑎)2 𝑑𝑥 +
𝑥𝑒𝑥

𝑥𝑖𝑒𝑥

√(𝑥𝑖𝑒𝑥 − 𝑥𝑖𝑒𝑛)2 + (𝑦𝑖𝑒𝑥 − 𝑦𝑖𝑒𝑛)
2

       (3.5) 

In the above equation, the first and the second terms give the radar detection threat 

values corresponding to the circular paths inside the outer radar region. Last term is 

the radar detection threat value of the movement inside the inner radar region. Inside 

the inner radar region, radar detection probability is always 1 so the total radar 

detection threat measure is proportional to the distance of the straight path.  

Due to conflicting objectives, there are infinitely many efficient trajectories between 

targets. In Figure 3.5, one of the efficient trajectories is illustrated. In the example, 

UAV goes inside the outer radar region first where it follows a curved path. Then, it 

goes inside the inner radar region and it follows a straight path.  
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Figure 3.5 Example Movement between Radar Regions – Type 3 

 

 

3.2.4 Nondominated Frontiers of Trajectories between two Targets 

Tezcaner Öztürk (2013) developed the structure of the nondominated frontiers for 

each type of move. Specifically, for moves of Type 1 we have a single nondominated 

point (𝑥𝑆), for moves of Type 2 we have a nondominated frontier that is curved, and 

for moves of Type 3 we have a two-piece nondominated frontier (one piece is a 

straight line and the other is curved). There are some important points that we use for 

determining the general structure of the nondominated frontiers. First we present 

extreme movements corresponding to these important points and then we show the 

structure of the nondominated frontiers.  

For Type 2 moves, we have two extreme movements as illustrated in Figure 3.6. In 

Figure 3.6 (a), UAV follows a straight path between targets. Therefore, it is the 

minimum distance trajectory. In Figure 3.6 (b), UAV avoids the radar region and 

passes through the circumference of the outer radar region. Thus, it shows the 

minimum radar detection threat and maximum distance trajectory for Type 2 moves.   

 

 

(𝑥𝑠, 𝑦𝑠) (𝑥𝑓 , 𝑦𝑓) 

(𝑥𝑒𝑛, 𝑦𝑒𝑛) (𝑥𝑒𝑥, 𝑦𝑒𝑥) 

(𝑥𝑖𝑒𝑛, 𝑦𝑖𝑒𝑛) (𝑥𝑖𝑒𝑥, 𝑦𝑖𝑒𝑥) 
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(a) Min 𝐷- Max 𝑅𝐷𝑇 path   (b) Max 𝐷- Min 𝑅𝐷𝑇 path 

 

Movements shown on the above figures form the two extreme efficient solutions of 

Type 2 nondominated frontier. Structure of the frontier is given in Figure 3.7. As it 

can be seen from the figure, the nondominated frontier consists of a curve. Left 

extreme point of the curve (𝑥(𝑖,𝑗)
𝐿𝐸𝐶) corresponds to the path with shortest distance 

between targets 𝑖 and j (see Figure 3.6 (a)). Right extreme of the curve (𝑥(𝑖,𝑗)
𝑅𝐸𝐶), on the 

other hand, corresponds to the objective values of the shortest path that poses no 

detection threat (Figure 3.6 (b)). 

 

 

 

 

 

 

For the third movement type, there are three special points used to define the 

structure of the nondominated frontier. As it is illustrated on Figure 3.8 (a), one of 

these points correspond to the straight path between targets. This is the minimum 

distance trajectory (with maximum radar detection threat). The maximum distance 

trajectory is given in Figure 3.8 (c). These two form the extreme solutions of the 

nondominated frontier. Beside these trajectories, UAV follows a curved path inside 

Total Distance 

T
o

ta
l 

R
ad

ar
 D

et
ec

ti
o

n
 T

h
re

at
 

z(𝑥𝐿𝐸𝐶) 

z(𝑥𝑅𝐸𝐶) 

Figure 3.6 Type 2 Extreme Movements 

Figure 3.7 Nondominated Frontier of Type 2 Moves 
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the outer radar region and it passes through the circumference of the inner radar 

region (see Figure 3.8 (b)). 

 

 

 

 

(a) Min 𝐷- Max 𝑅𝐷𝑇 path  (b) Path tangent to the inner radar region 

 

 

 

 

 

 

 

 

 

 

(c) Max 𝐷- Min 𝑅𝐷𝑇 path  

 

In Figure 3.9, Type 3 nondominated frontier structure is given. Left extreme solution 

of the nondominated frontier (𝑥(𝑖,𝑗)
𝐿𝐸 ) corresponds to the straight path between targets 

(Figure 3.8 (a)). Left extreme of the curved part (𝑥(𝑖,𝑗)
𝐿𝐸𝐶) is the path that does not get 

inside the inner radar region but passes through the boundary (Figure 3.8 (b)). Right 

extreme solution(𝑥(𝑖,𝑗)
𝑅𝐸𝐶) is the path with zero radar detection threat (Figure 3.8 (c)).  

 

 

 

 

 

 

z(𝑥𝑅𝐸𝐶) 

z(𝑥𝐿𝐸) 
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Figure 3.8 Type 3 Extreme Movements 

Figure 3.9 Nondominated Frontier of Type 3 Moves 
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Although there are infinitely many efficient trajectories in Type 2 and 3 moves, we 

do not need to generate all efficient solutions. Approximating the nondominated 

frontiers with equations that relate the two objectives is sufficient to characterize the 

nondominated solutions. Fitting an equation for the straight part in Type 3 move is 

straightforward. For the curved, convex, and continuous parts of the nondominated 

frontiers, we use Lq distance functions. These functions were first developed by 

Köksalan (1999) in a scheduling context. Later, Köksalan and Lokman (2009) 

showed on many combinatorial problems that an Lq distance function fitted using 

only a few nondominated points is able to approximate the nondominated set well. 

To fit an Lq distance function, we need three points on the nondominated frontiers; 

two points on the extremes of the curved-line and one central point on it, as shown in 

Figure 3.10. These three nondominated points can be found using exact or heuristic 

methods developed in Tezcaner Öztürk (2013).  

 

 

 

 

 

 

 

Figure 3.10 Lq Distance Function 

 

Let the first and second objective values of the left and right extreme points of the 

curved-line be (𝑐𝐿
1, 𝑐𝐿

2) and (𝑐𝑅
1 , 𝑐𝑅

2), respectively. Let the first and second objective 

values of a central point be (𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙
1 , 𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

2 ). Then, we find the Lq distance 

function using (3.6) below. 

 (1 − 𝑧𝑓1
𝑚)𝑞 + (1 − 𝑧𝑓2

𝑚)𝑞 = 1        (3.6) 

where, 𝑧𝑓𝑚 = (𝑧𝑓1
𝑚, 𝑧𝑓2

𝑚) = (
𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

1  − 𝑐𝐿
1

𝑐𝑅
1− 𝑐𝐿

1 ,
𝑐𝑐𝑒𝑛𝑡𝑟𝑎𝑙

2  − 𝑐𝑅
2

𝑐𝐿
2− 𝑐𝑅

2 ) 
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The only unknown in equation (3.6) is the q value, that can be found using a 

nonlinear programming problem with a pseudo objective function satisfying (3.6) as 

the only constraint.  

3.3 Formulation for Bi-objective UAV Route Planning Problem  

Tezcaner Öztürk (2013) developed the mathematical model for the bi-objective route 

planning problem with infinitely many efficient trajectories between target pairs. In 

the model, approximated nondominated frontiers of each target pair are used. 

Therefore, to use the formulation, nondominated frontiers of each target pair should 

be approximated first. 

Let 𝐺 = (𝑁, 𝐸) be an undirected graph with target (node) set 𝑁 = {1,2, . . , 𝑛}. 𝐸 is set 

of target pairs 𝑖 and 𝑗. Then, target pairs (𝐸) are classified into three sets as follows:  

  𝐸𝑠𝑎𝑓𝑒 : Set of target pairs having a single efficient solution (Type 1 move). 

  𝐸𝑜𝑢𝑡𝑒𝑟: Set of taget pairs whose nondominated frontier consists of a single 

curved part (Type 2 move). 

  𝐸𝑏𝑜𝑡ℎ : Set of target pairs whose nondominated frontier consists of two parts: 

curved and a straight line (Type 3 move). 

Some important points on the nondominated frontiers are illustrated in Section 3.1.4. 

These points are summarized below for the sake of completeness:  

 Type 1: First and second objective values of the single efficient solution are 

𝑧1(𝑥(𝑖,𝑗)
𝑆 ) and 𝑧2(𝑥(𝑖,𝑗)

𝑆 ). 

 Type 2: First and second objective values of the left and right extreme points 

of the nondominated frontier are (𝑧1(𝑥(𝑖,𝑗)
𝐿𝐸𝐶), 𝑧2(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)) and 

(𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶), 𝑧2(𝑥(𝑖,𝑗)

𝑅𝐸𝐶)), respectively. Approximated Lq function’s q value for 

target pair (i,j) is 𝑞(𝑖, 𝑗). 

 Type 3: (𝑧1(𝑥(𝑖,𝑗)
𝐿𝐸 ), 𝑧2(𝑥(𝑖,𝑗)

𝐿𝐸 )) are the first and second objective values of the 

nondominated frontier’s left extreme point. (𝑧1(𝑥(𝑖,𝑗)
𝐿𝐸𝐶), 𝑧2(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)) and 

(𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶), 𝑧2(𝑥(𝑖,𝑗)

𝑅𝐸𝐶)) are the objective values of the extreme points of the 

nondominated frontier’s curved part respectively. Moreover, q value of the 

fitted Lq curve is 𝑞(𝑖, 𝑗).  
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For (𝑖, 𝑗) ∈ 𝐸, 𝑖 < 𝑗, 𝑑𝑖𝑗 and 𝑟𝑖𝑗 state the distance and radar detection threat values of 

the chosen trajectory between targets 𝑖 and 𝑗. 𝑦1(𝑖,𝑗) determines whether a trajectory 

between targets 𝑖 and 𝑗 is used or not; it gets the value 0 if a trajectory between 

targets 𝑖 and 𝑗 is chosen and  it gets the value 1 otherwise. For type 3 moves, 

nondominated frontier consists of two parts: a straight line and a curved part. 

Therefore,  𝑦2(𝑖,𝑗) and 𝑦3(𝑖,𝑗) are used in addition to variables 𝑦1(𝑖,𝑗). If no arc is used 

between targets, 𝑦1(𝑖,𝑗) again takes value 1. If the arc that passes through the outer 

radar region is used, 𝑦2(𝑖,𝑗) takes value 1. If the arc that passes through the inner 

radar region is used, 𝑦3(𝑖,𝑗) takes value 1. Furthermore, we have variables 𝑡 in the 

model for Type 3 moves. These variables are used to define the region of the solution 

on the nondominated frontier. 

 

Formulation of the Bi-objective Route Planning Problem with infinitely many 

efficient trajectories between target pairs:  

Min 𝐷 = ∑ 𝑑𝑖𝑗(𝑖,𝑗)∈𝐸           (3.7) 

Min 𝑅𝐷𝑇 = ∑ 𝑟𝑖𝑗(𝑖,𝑗)∈𝐸          (3.8) 

𝑑𝑖𝑗 = 𝑧1(𝑥(𝑖,𝑗)
𝑆 )(1 − 𝑦1(𝑖,𝑗))    ∀(𝑖, 𝑗) ∈ 𝐸𝑠𝑎𝑓𝑒  (3.9) 

𝑟𝑖𝑗 = 𝑧2(𝑥(𝑖,𝑗)
𝑆 )(1 − 𝑦1(𝑖,𝑗))     ∀(𝑖, 𝑗) ∈ 𝐸𝑠𝑎𝑓𝑒  (3.10) 

𝑑𝑖𝑗 ≤ 𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶)(1 − 𝑦1(𝑖,𝑗))       ∀(𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟  (3.11) 

𝑑𝑖𝑗 ≥ 𝑧1(𝑥(𝑖,𝑗)
𝐿𝐸𝐶)(1 − 𝑦1(𝑖,𝑗))       ∀(𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟  (3.12) 

𝑟𝑖𝑗 ≤ 𝑧2(𝑥(𝑖,𝑗)
𝐿𝐸𝐶)(1 − 𝑦1(𝑖,𝑗))       ∀(𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟  (3.13) 

𝑟𝑖𝑗 ≥ 𝑧2(𝑥(𝑖,𝑗)
𝐿𝐸𝐶) − 𝑧2(𝑥(𝑖,𝑗)

𝐿𝐸𝐶) (1 − (1 −
𝑑𝑖𝑗−𝑧1(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)

𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶)−𝑧1(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)
)

𝑞(𝑖,𝑗)

)

1/𝑞(𝑖,𝑗)

− 𝑀𝑦1(𝑖,𝑗)    

       ∀(𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟  (3.14) 

𝑑𝑖𝑗 = 0 ∗ 𝑡1(𝑖,𝑗) + 𝑧1(𝑥(𝑖,𝑗)
𝐿𝐸 ) ∗ 𝑡2(𝑖,𝑗) + 𝑧1(𝑥(𝑖,𝑗)

𝐿𝐸𝐶) ∗ 𝑡3(𝑖,𝑗) + 𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶) ∗ 𝑡4(𝑖,𝑗)  

                    ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ  (3.15)  

𝑡1(𝑖,𝑗) + 𝑡2(𝑖,𝑗) + 𝑡3(𝑖,𝑗) + 𝑡4(𝑖,𝑗) = 1    ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ   (3.16) 

𝑡1(𝑖,𝑗) ≤ 𝑦1(𝑖,𝑗)        ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ  (3.17) 
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𝑡2(𝑖,𝑗) ≤ 𝑦2(𝑖,𝑗)        ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ   (3.18) 

𝑡3(𝑖,𝑗) ≤ 𝑦2(𝑖,𝑗) + 𝑦3(𝑖,𝑗)     ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ   (3.19) 

𝑡4(𝑖,𝑗) ≤ 𝑦3(𝑖,𝑗)        ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ   (3.20) 

𝑦1(𝑖,𝑗) + 𝑦2(𝑖,𝑗) + 𝑦3(𝑖,𝑗) = 1     ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ   (3.21) 

𝑟𝑖𝑗 ≤ 𝑧2(𝑥(𝑖,𝑗)
𝐿𝐸 )(1 − 𝑦1(𝑖,𝑗))       ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ  (3.22) 

𝑟𝑖𝑗 ≥ 𝑚𝑖𝑗𝑑𝑖𝑗 + 𝑛𝑖𝑗 − 𝑀(1 − 𝑦2(𝑖,𝑗))      ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ  (3.23) 

𝑟𝑖𝑗 ≥ 𝑧2(𝑥(𝑖,𝑗)
𝐿𝐸𝐶) − 𝑧2(𝑥(𝑖,𝑗)

𝐿𝐸𝐶) (1 − (1 −
𝑑𝑖𝑗−𝑧1(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)

𝑧1(𝑥(𝑖,𝑗)
𝑅𝐸𝐶)−𝑧1(𝑥(𝑖,𝑗)

𝐿𝐸𝐶)
)

𝑞(𝑖,𝑗)

)

1/𝑞(𝑖,𝑗)

− 𝑀(1 − 𝑦3(𝑖,𝑗))   

       ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ  (3.24) 

∑ 𝑦1(𝑗,𝑖)𝑗∈𝑁,𝑗<𝑖 + ∑ 𝑦1(𝑖,𝑗)𝑗∈𝑁,𝑗>𝑖 = |𝑁| − 3           ∀𝑖 ∈ 𝑁   (3.25) 

∑ ∑ 𝑦1(𝑖,𝑗)𝑗∈𝑁−𝑆𝑖∈𝑆 ≤ |𝑆||𝑁 − 𝑆| − 2       |𝑆| = 3, … , ⌊𝑁/2⌋      (3.26) 

0 ≤ 𝑡𝑡(𝑖,𝑗) ≤ 1       ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ , 𝑡 = 1, … ,4     (3.27) 

𝑑𝑖𝑗 , 𝑟𝑖𝑗 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐸    (3.28)  

𝑦1(𝑖,𝑗) ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟 , 𝐸𝑠𝑎𝑓𝑒  (3.29)  

𝑦𝑡(𝑖,𝑗) ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ , 𝑡 = 1, … ,4 (3.30)  

 

In constraints (3.7) and (3.8), total distance and radar detection threat values of the 

route is minimized, respectively. If an edge of a type 1 target pair is used, 𝐷 and 𝑅𝐷𝑇 

values of the chosen trajectory are set to the single solution’s values, (3.9) and (3.10), 

respectively. If type 2 target pair is selected, 𝐷 value of the trajectory should be 

between the extreme distance values of the nondominated frontier ((3.11) and 

(3.12)). 𝑅𝐷𝑇 value of the trajectory should also be between the extreme 𝑅𝐷𝑇 values 

of the frontier ((3.13) and (3.14)). 𝐷 and 𝑅𝐷𝑇 values should satisfy Lq function 

together (3.14). Furthermore, if a type 3 target pair is selected (𝑦1(𝑖,𝑗) = 0), distance 

value of the chosen trajectory is written as a convex combination of special points of 

nondominated frontier in (3.15) and (3.16). If the selected movement goes inside 

inner radar region 𝑦2(𝑖,𝑗) takes value 1, if outer radar region is passed 𝑦3(𝑖,𝑗) takes 

value 1. In (3.16) and (3.17), 𝑡1(𝑖,𝑗) takes value 1 if a target pair is not used in the tour 
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(𝑦1(𝑖,𝑗) = 1) and other 𝑡 variables take value 0. (3.18), (3.19), (3.20) and (3.21) are 

used to define the area in which the trajectory lies on the nondominated frontier. In 

(3.22), (3.23) and (3.24), constraints on 𝑅𝐷𝑇 value of the trajectory is stated. Finally, 

(3.25) ensures that for each node there is only one incoming and one outgoing 

trajectory.  Equations (3.26) are the subtour elimination constraints. The rest states 

the variable types and bounds. For more detailed explanation on the constraints, 

please see Tezcaner Öztürk (2013). 
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CHAPTER 4 

 

 

4 INTERACTIVE ALGORITHM FOR UNDERLYING LINEAR 

PREFERENCE FUNCTIONS 

 

 

 

We develop an interactive algorithm to find the most preferred solution of a route 

planner (RP) where the RP has an underlying linear preference function. A linear 

function implies that the marginal rates of substitution between the objective function 

values are constant. In our approach, we consider two objectives and we treat them 

separately. The problem terrain is two dimensional and it is continuous. In the 

literature, there are studies working on the same problem but most of the related 

studies discretize the problem terrain. Therefore, the main contribution of our study 

is that we develop interactive algorithms for the route planning problem of UAVs in 

continuous terrain. In this section, we assume that RP has an underlying linear 

preference function. We first give the idea of our interactive algorithm and its steps 

which is followed by the implementation details. 

4.1 Solution Approach for Underlying Linear Preference Functions 

The general form of a linear preference function 𝑈(𝑥), is as follows: 

𝑈(𝑥) = 𝑤1 𝑧1(𝑥) + 𝑤2 𝑧2(𝑥) + ⋯ + 𝑤𝑝 𝑧𝑝(𝑥)  

Here, there are p objectives, 𝑧𝑘(𝑥) represents the value of the kth objective 

corresponding to solution x, and 𝑤𝑘 represents the weight (importance) given to 

objective 𝑘.  
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In our case, we have two objective functions, and without loss of generality, we 

normalize the weights given to the two objectives such that they sum to 1. Then the 

preference function reduces to (4.1).  

𝑈(𝑥) = 𝑤 𝑧1(𝑥) + (1 − 𝑤) 𝑧2(𝑥) where 0 < 𝑤 < 1   (4.1) 

The most preferred solution of the RP is the nondominated point that gives the 

smallest 𝑈(𝑥) value.  

Before starting the algorithm, the only information we have is that 𝑤 takes a value 

between 0 and 1; 𝑤 ∈ (0,1). During the algorithm, we ask the RP to compare a pair 

of points, and we reduce the search region and find a shorter interval around the 

exact value of 𝑤 as 𝑤 ∈ [𝑙, 𝑢]. We next explain how we interpret the preferences of 

the RP, and demonstrate the algorithm on a figure.  

4.1.1 Interpreting the Pairwise Comparisons of the RP 

Each time the RP compares two solutions, s/he can either state a preference, or be 

indifferent between the two alternatives. For the first case, assume that alternative 𝐴 

is the preferred one among alternatives 𝐴 and 𝐵. We assume that the RP can only 

make a preference if the preference function values of the two alternatives differ 

more than a threshold, 𝛿. The motivation behind this threshold is that, we select 

nondominated points on a continuous frontier, where the objective function values of 

the chosen solutions 𝐴 and 𝐵 can be really close. In reality, the RP may not be that 

sensitive to such small preference function differences and may not be able to 

differentiate between very similar alternatives. We write inequality (4.2) when 𝐴 is 

preferred to 𝐵. 

𝑈(𝑧(𝑥𝐵))  − 𝑈(𝑧(𝑥𝐴)) ≥ 𝛿        (4.2) 

This provides a lower or upper bound on the value of 𝑤 as given in (4.3) and (4.4). 

𝑤 ≥
𝛿−[ 𝑧2(𝑥𝐵)−𝑧2(𝑥𝐴)]

[ 𝑧1(𝑥𝐵)−𝑧1(𝑥𝐴)− 𝑧2(𝑥𝐵)+𝑧2(𝑥𝐴)]
  if [ 𝑧1(𝑥𝐵) − 𝑧1(𝑥𝐴) −  𝑧2(𝑥𝐵) + 𝑧2(𝑥𝐴)] > 0  (4.3) 

𝑤 ≤
𝛿−[ 𝑧2(𝑥𝐵)−𝑧2(𝑥𝐴)]

[ 𝑧1(𝑥𝐵)−𝑧1(𝑥𝐴)− 𝑧2(𝑥𝐵)+𝑧2(𝑥𝐴)]
  if [ 𝑧1(𝑥𝐵) − 𝑧1(𝑥𝐴) −  𝑧2(𝑥𝐵) + 𝑧2(𝑥𝐴)] < 0  (4.4) 
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If the RP is indifferent between alternatives 𝐴 and 𝐵, then their preference function 

value difference is at most the threshold, 𝛿. We write inequality (4.5) for this case. 

−𝛿 ≤ 𝑈(𝑧(𝑥𝐵))  − 𝑈(𝑧(𝑥𝐴)) ≤ 𝛿       (4.5) 

Inequality (4.5) results in estimates on both the lower and upper bounds on 𝑤. Let the 

current lower bound on the weight be 𝑤𝐿𝐵 and the new lower bound estimated after a 

preference from the RP be 𝑤𝐿𝐵,𝑛𝑒𝑤. The 𝑤𝐿𝐵 is updated only if 𝑤𝐿𝐵,𝑛𝑒𝑤 > 𝑤𝐿𝐵. 

Otherwise, we do not make any updates on the current bound. That is, 

𝑤𝐿𝐵 ← 𝑚𝑎𝑥{𝑤𝐿𝐵, 𝑤𝐿𝐵,𝑛𝑒𝑤}  

Similarly, the upper bound estimate is updated only if the new estimate is smaller. 

𝑤𝑈𝐵 ← 𝑚𝑖𝑛{𝑤𝑈𝐵, 𝑤𝑈𝐵,𝑛𝑒𝑤}  

Throughout the algorithm, we keep a range (a lower and an upper bound) for the 

weight, 𝑤. These new bounds help us reduce the search area around a smaller region 

near the most preferred solution of the RP.  

4.1.2 The Steps of the Interactive Algorithm 

Our approach is inspired from Tezcaner and Köksalan’s (2011) study, in which they 

develop algorithm BestSol to find the most preferred solution of a decision maker for 

bi-objective integer programs. The main idea of our algorithm is to ask for 

comparison between point pairs in order to make a sizeable update on the bounds of 

𝑤. Each time the bounds on 𝑤 are updated, we narrow the region on the 

nondominated frontier that covers the most preferred point of the DM. Since we have 

a continuous nondominated frontier with infinitely many points, it is not meaningful 

to expect the algorithm to finally result in a single most preferred point of the RP, 

since the RP could be indifferent between many solutions that have close preference 

values with the most preferred solution. Rather, we expect to the algorithm to give a 

point that is close to the most preferred point of the RP.  

We illustrate the algorithm on Figure 4.1. Let the nondominated frontier and the 

underlying linear preference function be as shown in Figure 4.1 (a), and the most 
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preferred solution of the RP be solution 𝐸. Before starting the algorithm, we do not 

have any information on the structure of the nondominated frontier and the 

preference function. The initial bounds on 𝑤 are represented by the two linear lines 

on the top right corner, 𝑤 ∈ (0,1), and will be updated during the algorithm as the 

RP states preferences among alternatives. We can ask for comparison between any 

two solutions, but we try to select a meaningful pair that would result in useful 

information on the weight range.  

We start the algorithm by finding the left and right extreme efficient tours, 𝑥𝐿𝐸and 

𝑥𝑅𝐸 , as shown in Figure 4.1 (b). We then divide the weight range into three equal-

length intervals, and obtain two weights (𝑤𝐴, 𝑤𝐵) that correspond to the end points 

of the first and second intervals. Let the corresponding solutions for  𝑤 = 𝑤𝐴 and 𝑤𝐵 

be 𝐴 and 𝐵, respectively. The objective function values of 𝐴 and 𝐵 are compared by 

the RP, and since the underlying preference function results in a lower value for 

solution 𝐵, the RP prefers solution 𝐵. This preference results in an update on the 

upper bound on weight (as shown on the top right corner) and the left extreme 

nondominated point is updated accordingly (Figure 4.1 (c)). We divide the new range 

on 𝑤 to three equal-length intervals, and find new solutions, 𝐴 and 𝐵, to compare 

(Figure 4.1 (d)). Here, assume that the RP is indifferent between the two alternatives 

since their preference function values are very close to each other. Let us assume that 

this indifference does not lead to an update in the weight range. In this case, we find 

a new solution 𝐶 in between 𝐴 and 𝐵, and ask the RP to compare 𝐶 with one of the 

solutions, 𝐴 or 𝐵 (Figure 4.1 (e)). Assume that 𝐶 is compared with 𝐵, and the RP 

prefers 𝐶. We update the upper bound on the weight and find a new right extreme 

nondominated point (Figure 4.1 (f)). We find new points 𝐴, 𝐵 and 𝐶 and this time ask 

for comparison between 𝐴 and 𝐶 (Figure 4.1 (g)). Assume that the RP is indifferent 

between these two solutions, and we cannot update the bounds on the weight. After 

the RP is indifferent twice (Figure 4.1 (d) and (g)), we terminate the algorithm. We 

estimate that the most preferred solution corresponds to the weight dividing the 

weight region to two equal intervals. In this example, solution 𝐹 is estimated as the 

most preferred solution (Figure 4.1 (h)), which is a solution that is close to the true 

most preferred solution of the RP (solution 𝐸). 
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The algorithm starts with the comparison of two solutions that divide the feasible 

region equally, and proceeds in the same manner until the RP is indifferent between 

two alternatives. After this first indifference answer, we find three points, and ask for 

comparison between the solution in the middle and one solution from either side. We 

continue until we obtain another indifference answer, in which we terminate the 

algorithm. Alternatively, we may terminate the algorithm if the normalized 

Euclidean distance in the objective space between two solutions that are to be 

compared is less than a threshold, ∆. We then estimate the most preferred solution 

using the same method.  

When we terminate the algorithm, we know that the true best solution lies between 

the extreme solutions and we present the solution dividing the extreme region to two 

in terms of the preference weight, w, to the RP. However, more detailed search can 

be performed between the extreme solutions. Weight range can be discretized into 

small intervals and solutions corresponding to these weights can be found and 

presented to the RP. Then, the RP can select among these solutions.   

 

 

 

 

 

 

(a) Nondominated  Frontier      (b) Extreme Solutions and Solutions A and B 
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(c) Updated Left Extreme Solution   (d) New Solutions A and B 

 

 

 

 

 

 

 

 

 

  (e) Solution C         (f) Updated Right Extreme Solution 
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 (g) New Solutions A, B and C  (h) Estimated Solution F and Best Solution E 

Figure 4.1 Demonstration of the Interactive Algorithm for Linear Preference Functions 

 

Until now, the steps of the algorithm is explained and demonstrated. The interactive 

algorithm uses another algorithm; OptTSP. OptTSP is used to find a solution (a tour) 

that minimizes the preference function for a 𝑤 value. We first explain Algorithm 

OptTSP below and then present the steps of the interactive algorithm. 

Algorithm OptTSP 

To find the most preferred tour corresponding to a 𝑤 value, we do not need to 

consider all efficient trajectories between each target pair. Rather, there is a single 

best trajectory between each target pair that is certainly used for that 𝑤 value if the 

vehicle moves between these two targets consecutively. Because of this 

simplification, to find the most preferred tour corresponding to a 𝑤 value, we find 

the single best trajectory to be used between each target pair. We first find the move 

types between target pairs as explained in 3.1.3, and then construct their 

nondominated frontiers as explained in 3.1.4. Then we use Algorithm OptTSP to find 

the best trajectory to be used between each target pair, for a 𝑤 value and construct 

the best tour for that 𝑤 value. Some points used in the OptTSP Algorithm are shown 

in Figure 4.2. We refer these points in the algorithm OptTSP. 
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In Figure 4.2, it is shown that for a specific linear weight (𝑤𝑇𝐴𝑁) the preference 

function values of the left extreme point, 𝑥𝐿𝐸 , and the tangent point, 𝑥𝑇𝐴𝑁, are the 

same. For higher values than 𝑤𝑇𝐴𝑁, slope of the preference function gets steeper. If 

the preference line is steeper than the tangent line, there is a single preferred solution 

which is the left extreme point. On the other hand, for lower values than 𝑤𝑇𝐴𝑁, the 

most preferred solution lies on the curve between 𝑥𝑇𝐴𝑁
 and 𝑥𝑅𝐸𝐶 .  

Steps of Algorithm OptTSP 

Step 1: For a given weight (𝑤), find a single best solution (𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡) for each target pair 

(𝑖, 𝑗) ∈ 𝐸 depending on the pair’s nondominated frontier structure as follows: 

 If (𝑖, 𝑗) ∈ 𝐸𝑠𝑎𝑓𝑒 (Type 1): Set 𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡  to the single efficient solution. 

 If (𝑖, 𝑗) ∈ 𝐸𝑜𝑢𝑡𝑒𝑟 (Type 2): Solve the following model and set 𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡  to the 

resulting solution. 

(𝑀𝑇2(𝑖,𝑗))  Min 𝑤 𝑧1(𝑥) + (1- 𝑤) 𝑧2(𝑥)    

   [1 −
𝑧1(𝑥) −𝑧1(𝑥𝐿𝐸𝐶)

𝑧1(𝑥𝑅𝐸𝐶) −𝑧1(𝑥𝐿𝐸𝐶)
]

𝑞

+ [1 −
𝑧2(𝑥) −𝑧2(𝑥𝑅𝐸𝐶)

𝑧2(𝑥𝐿𝐸𝐶) −𝑧2(𝑥𝑅𝐸𝐶)
]

𝑞

= 1 

𝑧1(𝑥𝐿𝐸𝐶) ≤ 𝑧1(𝑥) ≤ 𝑧1(𝑥𝑅𝐸𝐶) 

𝑧2(𝑥𝑅𝐸𝐶) ≤ 𝑧2(𝑥) ≤ 𝑧2(𝑥𝐿𝐸𝐶) 

Figure 4.2 Tangent line and points representation on target pair's nondominated frontiers 

– Movement Type 3 

𝑧(𝑥𝐿𝐸) = (𝑧1(𝑥𝐿𝐸), 𝑧2(𝑥𝐿𝐸)) 

𝑧(𝑥𝑇𝐴𝑁) = (𝑧1(𝑥𝑇𝐴𝑁), 𝑧2(𝑥𝑇𝐴𝑁)) 
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𝑧(𝑥𝐿𝐸𝐶) = (𝑧1(𝑥𝐿𝐸𝐶), 𝑧2(𝑥𝐿𝐸𝐶)) 

𝑧(𝑥𝑅𝐸𝐶) = (𝑧1(𝑥𝑅𝐸𝐶), 𝑧2(𝑥𝑅𝐸𝐶)) 

−𝑤𝑇𝐴𝑁/(1 − 𝑤𝑇𝐴𝑁) 
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 If (𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ (Type 3): Solve the following model and find 𝑤𝑇𝐴𝑁 : 

(𝑀𝑇3(𝑖,𝑗))   Max 𝑤TAN       

  [1 −
𝑧1(𝑥𝑇𝐴𝑁) −𝑧1(𝑥𝐿𝐸𝐶)

𝑧1(𝑥𝑅𝐸𝐶) −𝑧1(𝑥𝐿𝐸𝐶)
]

𝑞

+ [1 −
𝑧2(𝑥𝑇𝐴𝑁) −𝑧2(𝑥𝑅𝐸𝐶)

𝑧2(𝑥𝐿𝐸𝐶) −𝑧2(𝑥𝑅𝐸𝐶)
]

𝑞

= 1 

𝑤𝑇𝐴𝑁𝑧1(𝑥𝐿𝐸) + (1 − 𝑤𝑇𝐴𝑁)𝑧2(𝑥𝐿𝐸)

=  𝑤𝑇𝐴𝑁𝑧1(𝑥𝑇𝐴𝑁) + (1 − 𝑤𝑇𝐴𝑁)𝑧2(𝑥𝑇𝐴𝑁) 

𝑧1(𝑥𝐿𝐸𝐶) ≤ 𝑧1(𝑥𝑇𝐴𝑁)  ≤ 𝑧1(𝑥𝑅𝐸𝐶) 

𝑧2(𝑥𝑅𝐸𝐶) ≤ 𝑧2(𝑥𝑇𝐴𝑁) ≤ 𝑧2(𝑥𝐿𝐸𝐶) 

 

o If 𝑤 ≥ 𝑤𝑇𝐴𝑁, set 𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡 = 𝑥𝐿𝐸.  

o If 𝑤 < 𝑤𝑇𝐴𝑁, solve model (𝑀𝑇2(𝑖,𝑗)) and set 𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡 to the resulting 

solution. 

(𝑀𝑇2(𝑖,𝑗))  Min 𝑤 𝑧1(𝑥) + (1- 𝑤) 𝑧2(𝑥)    

 [1 −
𝑧1(𝑥) −𝑧1(𝑥𝐿𝐸𝐶)

𝑧1(𝑥𝑅𝐸𝐶) −𝑧1(𝑥𝐿𝐸𝐶)
]

𝑞

+ [1 −
𝑧2(𝑥) −𝑧2(𝑥𝑅𝐸𝐶)

𝑧2(𝑥𝐿𝐸𝐶) −𝑧2(𝑥𝑅𝐸𝐶)
]

𝑞

= 1 

𝑧1(𝑥𝐿𝐸𝐶) ≤ 𝑧1(𝑥) ≤ 𝑧1(𝑥𝑅𝐸𝐶) 

𝑧2(𝑥𝑅𝐸𝐶) ≤ 𝑧2(𝑥) ≤ 𝑧2(𝑥𝐿𝐸𝐶) 

Step 2: For each target pair (𝑖, 𝑗), calculate the edge cost as follows:  

𝐸𝑑𝑔𝑒𝑐𝑜𝑠𝑡(𝑖,𝑗)  =  𝑤 ∗ 𝑧1(𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡)  +  (1 −  𝑤) ∗  𝑧2(𝑥(𝑖,𝑗)

𝐵𝑒𝑠𝑡) 

Step 3: Find the tour visiting all targets that minimizes the sum of edge costs. In Step 

2, we find the cost of each trajectory to be followed between the target pairs. After 

multiple trajectories reduce to a single trajectory, the problem turns into a single 

objective Traveling Salesperson Problem (TSP) whose mathematical model is given 

in Appendix C. We find the best TSP solution 𝑧(𝑥𝑇𝑆𝑃𝐵𝑒𝑠𝑡) solving this problem 

exactly in Step 3. In UAV route planning problems, the vehicle generally visits a few 

number of targets. Therefore, we solve this model using CPLEX, since it is not 

computationally demanding. Alternatively, CONCORDE (single objective 

symmetric TSP solver) can be used.  
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Steps of the Interactive Algorithm: 

Step 0: (Initialization) Set the parameters 𝜀 and ∆. Let 𝑤∗ ∈ [𝑤𝑈𝐵, 𝑤𝐿𝐵] for  𝑤𝑈𝐵 =

1 − 𝜌 and 𝑤𝐿𝐵 = 𝜌 where 𝜌 is a very small positive constant. Find 𝑤𝑇𝐴𝑁(𝑖, 𝑗), 

(𝑖, 𝑗) ∈ 𝐸𝑏𝑜𝑡ℎ using model (𝑀𝑇3(𝑖,𝑗)). 

Step 1: Find 𝑧(𝑥𝑇𝑆𝑃𝐿𝐸)  and 𝑧(𝑥𝑇𝑆𝑃𝑅𝐸) using Algorithm OptTSP for weights 𝑤𝑈𝐵 

and 𝑤𝐿𝐵, respectively. 

Step 2: Divide the feasible weight range into three equal intervals. Let the end points 

of first and second intervals be 𝑤𝐴 and 𝑤𝐵, respectively. 

 𝑤𝐴 =
2

3
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵 

 𝑤𝐵 =
1

3
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵 

Find 𝑧(𝑥𝐴)  and 𝑧(𝑥𝐵) using Algorithm OptTSP for weights 𝑤𝐴  and 𝑤𝐵, 

respectively. Let the alternative with the lower first objective value be 𝑥𝐿  and the 

other one be 𝑥𝑅 without loss of generality.  

Step 3: Calculate the relative distance, 𝑑𝑟𝑒𝑙, between 𝑥𝐿  and 𝑥𝑅 as follows: 

𝑑𝑟𝑒𝑙 = √(𝑧1(𝑥𝐿) − 𝑧1(𝑥𝑅))2 + (𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅))2 

 If 𝑑𝑟𝑒𝑙 ≤ ∆, go to Step 6. 

 If 𝑑𝑟𝑒𝑙 > ∆, ask the DM to compare 𝑧(𝑥𝐿)and 𝑧(𝑥𝑅).  

o If 𝑧(𝑥𝐿) is preferred to 𝑧(𝑥𝑅), find 𝑤𝐿𝐵 as follows: 

𝑤𝐿𝐵 =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) + Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Find 𝑧(𝑥𝑇𝑆𝑃𝑅𝐸)  using Algorithm OptTSP for weight 𝑤𝐿𝐵  and go to 

Step 2. 

o If 𝑧(𝑥𝑅) is preferred to 𝑧(𝑥𝐿), find 𝑤𝑈𝐵 as follows: 

𝑤𝑈𝐵 =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) − Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Find 𝑧(𝑥𝑇𝑆𝑃𝐿𝐸)  using Algorithm OptTSP for weight 𝑤𝑈𝐵  and go to 

Step 2. 
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o If the DM is indifferent, find 𝑤𝐿𝐵′ and 𝑤𝑈𝐵′ as follows: 

𝑤𝐿𝐵′ =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) + Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

𝑤𝑈𝐵′ =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) − Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Set  𝑤𝐿𝐵 ← 𝑚𝑎𝑥{𝑤𝐿𝐵, 𝑤𝐿𝐵′} and 𝑤𝑈𝐵 ← 𝑚𝑖𝑛{𝑤𝑈𝐵, 𝑤𝑈𝐵′} and find 

𝑧(𝑥𝑇𝑆𝑃𝑅𝐸) and 𝑧(𝑥𝑇𝑆𝑃𝐿𝐸) using Algorithm OptTSP for weights 𝑤𝐿𝐵 

and 𝑤𝑈𝐵, respectively. Go to Step 4. 

Step 4: Divide the feasible weight range into six equal intervals. Let the end points 

of second and fourth intervals be 𝑤𝐴 and 𝑤𝐵, respectively. If there is no Point C 

available, let the end point of third interval be 𝑤𝐶. 

 𝑤𝐴 =
2

3
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵 

 𝑤𝐶 =
1

2
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵 

 𝑤𝐵 =
1

3
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵 

Find 𝑧(𝑥𝐴) and 𝑧(𝑥𝐵) using Algorithm OptTSP for weights 𝑤𝐴 and 𝑤𝐵, respectively. 

If there is no Point C available, find 𝑧(𝑥𝐶) using Algorithm OptTSP for weight 𝑤𝐶. 

Each time in this step, choose one of the points A or B sequentially to compare with 

Point C. Rename Point C and the selected point (A or B) such that the one with the 

lower first objective value be 𝑥𝐿  and the other one be 𝑥𝑅 without loss of generality.  

Calculate the relative distance, 𝑑𝑟𝑒𝑙, between 𝑥𝐿  and 𝑥𝑅 as follows: 

𝑑𝑟𝑒𝑙 = √(𝑧1(𝑥𝐿) − 𝑧1(𝑥𝑅))2 + (𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅))2 

 If 𝑑𝑟𝑒𝑙 ≤ ∆, change the selected point. Rename them such that the one with 

the lower first objective value be 𝑥𝐿  and the other one be 𝑥𝑅 without loss of 

generality. Calculate 𝑑𝑟𝑒𝑙 with new 𝑥𝐿 and 𝑥𝑅 points. 

o If 𝑑𝑟𝑒𝑙 ≤ ∆, go to Step 6. 

o If 𝑑𝑟𝑒𝑙 > ∆, go to Step 5. 

 If 𝑑𝑟𝑒𝑙 > ∆, go to Step 5. 
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Step 5: Ask the DM to compare 𝑧(𝑥𝐿) and 𝑧(𝑥𝑅).  

 If 𝑧(𝑥𝐿) is preferred to 𝑧(𝑥𝑅), find 𝑤𝐿𝐵 as follows: 

𝑤𝐿𝐵 =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) + Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Let 𝑥𝐶   be 𝑥𝐿. Find 𝑧(𝑥𝑇𝑆𝑃𝑅𝐸)  using Algorithm OptTSP for weight 𝑤𝐿𝐵 and 

go to Step 4. 

 If 𝑧(𝑥𝑅) is preferred to 𝑧(𝑥𝐿), find 𝑤𝑈𝐵 as follows: 

𝑤𝑈𝐵 =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) − Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Let 𝑥𝐶   be 𝑥𝑅. Find 𝑧(𝑥𝑇𝑆𝑃𝐿𝐸)  using Algorithm OptTSP for weight 𝑤𝑈𝐵  and 

go to Step 4. 

 If the DM is indifferent, find 𝑤𝐿𝐵′ and 𝑤𝑈𝐵′ as follows: 

𝑤𝐿𝐵′ =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) + Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

𝑤𝑈𝐵′ =
𝑧2(𝑥𝐿) − 𝑧2(𝑥𝑅) − Ɛ

𝑧1(𝑥𝑅) − 𝑧1(𝑥𝐿) − 𝑧2(𝑥𝑅) + 𝑧2(𝑥𝐿)
 

Set  𝑤𝐿𝐵 ← 𝑚𝑎𝑥{𝑤𝐿𝐵, 𝑤𝐿𝐵′} and 𝑤𝑈𝐵 ← 𝑚𝑖𝑛{𝑤𝑈𝐵, 𝑤𝑈𝐵′}  and find 

𝑧(𝑥𝑇𝑆𝑃𝑅𝐸)  and 𝑧(𝑥𝑇𝑆𝑃𝐿𝐸) using Algorithm OptTSP for weights 𝑤𝐿𝐵  and 

𝑤𝑈𝐵, respectively. Go to Step 6. 

Step 6: Find the estimate for the most preferred point 𝑧(𝑥∗) using Algorithm 

OptTSP for weight 𝑤∗, where 𝑤∗= 
1

2
(𝑤𝑈𝐵 − 𝑤𝐿𝐵) + 𝑤𝐿𝐵. 

4.2 Scaling the Objectives 

During the interactive algorithm, we find a narrow weight range around the true 

weight of the RP. Since we are combining the two objectives linearly, the 

magnitudes of the objectives should be comparable. For this, we scale both of the 

objectives between 0-1 scale using their extreme values. Then, the weight estimate 

gives an insight of the relative importance of the objectives. We next show how we 
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transfer the true weight, w, of the RP for the route planning problem to the weight we 

use in 𝑀𝑇2(𝑖,𝑗) and 𝑀𝑇3(𝑖,𝑗).   

Let 𝑥𝑇𝑆𝑃𝐿𝐸 and 𝑥𝑇𝑆𝑃𝑅𝐸 be the left and right extreme points for the routing problem. 

We obtain the following preference function (to be minimized) when the two 

objectives are scaled between 0 and 1 using these extreme points:  

Min  𝑤
z1(𝑥𝑇𝑆𝑃) −z1(𝑥𝑇𝑆𝑃𝐿𝐸)

z1(𝑥𝑇𝑆𝑃𝑅𝐸) −z1(𝑥𝑇𝑆𝑃𝐿𝐸)
+ (1 − 𝑤)

z2(𝑥𝑇𝑆𝑃) −z2(𝑥𝑇𝑆𝑃𝑅𝐸)

z2(𝑥𝑇𝑆𝑃𝐿𝐸) −z2(𝑥𝑇𝑆𝑃𝑅𝐸)
  (4.6) 

Here, z1(𝑥𝑇𝑆𝑃) = ∑ z1(𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗 and z2(𝑥𝑇𝑆𝑃) = ∑ z2(𝑥(𝑖,𝑗)

𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗 where 

𝑦𝑖𝑗 states whether the trajectory between targets 𝑖 and 𝑗 is used or not. 

When we rewrite (4.6), we obtain the following:  

Min 𝑤 
[∑ z1(𝑥(𝑖,𝑗)

𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗]−z1(𝑥𝑇𝑆𝑃𝐿𝐸)

z1(𝑥𝑇𝑆𝑃𝑅𝐸)–z1(𝑥𝑇𝑆𝑃𝐿𝐸)
+ (1 − 𝑤)

[∑ z2(𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗] −𝑧2(𝑥𝑇𝑆𝑃𝑅𝐸)

𝑧2(𝑥𝑇𝑆𝑃𝐿𝐸) −𝑧2(𝑥𝑇𝑆𝑃𝑅𝐸)
        

=  𝑤
[∑ z1(𝑥(𝑖,𝑗)

𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗]

z1(𝑥𝑇𝑆𝑃𝑅𝐸)–z1(𝑥𝑇𝑆𝑃𝐿𝐸)
+ (1 − 𝑤)

[∑ z2(𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗]

𝑧2(𝑥𝑇𝑆𝑃𝐿𝐸) −𝑧2(𝑥𝑇𝑆𝑃𝑅𝐸)
−    

[w
z1(𝑥𝑇𝑆𝑃𝐿𝐸)

z1(𝑥𝑇𝑆𝑃𝑅𝐸) − z1(𝑥𝑇𝑆𝑃𝐿𝐸)
+ (1 − w)

z2(𝑥𝑇𝑆𝑃𝑅𝐸)

z2(𝑥𝑇𝑆𝑃𝐿𝐸)  − z2(𝑥𝑇𝑆𝑃𝑅𝐸)
] 

We can omit the last term in square brackets which is constant and does not affect 

the objective function. Moreover, if we set z1(𝑥𝑇𝑆𝑃𝑅𝐸) − z1(𝑥𝑇𝑆𝑃𝐿𝐸) =

TSPrange1 and z2(𝑥𝑇𝑆𝑃𝐿𝐸) − z2(𝑥𝑇𝑆𝑃𝑅𝐸) = TSPrange2, then we can write the 

objective function as follows: 

Min 𝑤
[∑ z1(𝑥(𝑖,𝑗)

𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗]

TSPrange1
+ (1 − 𝑤)

[∑ z2(𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡)(𝑖,𝑗)∈𝐸 𝑦𝑖𝑗]

TSPrange2
      (4.7) 

Equation (4.7) is made of independent terms for each target pair, so that for each pair 

(i,j) we can find the edge minimizing the following objective function and set the 

resulting solution to 𝑥(𝑖,𝑗)
𝐵𝑒𝑠𝑡: 

Min  𝑤
𝑧1(𝑥)

TSPrange1
 +(1 − 𝑤)

𝑧2(𝑥) 

TSPrange2
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Thus, while we are applying the interactive algorithm to the scaled-TSP, we need to 

modify models 𝑀𝑇2(𝑖,𝑗) and 𝑀𝑇3(𝑖,𝑗). In this case, to find the preferred solution for 

one-region frontier pairs, the model below should be solved instead of 𝑀𝑇2(𝑖,𝑗): 

(𝑀𝑇2′(𝑖,𝑗))  Min 𝑤
z1(x)

TSPrange1
+ (1- w) 

z2(x)

TSPrange2
    

[1 −
z1(x) −z1(𝑥𝐿𝐸𝐶)

z1(𝑥𝑅𝐸𝐶) −z1(𝑥𝐿𝐸𝐶)
]

q

+ [1 −
z2(x) −z2(𝑥𝑅𝐸𝐶)

z2(𝑥𝐿𝐸𝐶) −z2(𝑥𝑅𝐸𝐶)
]

q

= 1 (When all 

points are scaled in Lq function, they cancel out each other and the resulting 

equation is the same equation for the unscaled Lq function) 

𝑧1(𝑥𝐿𝐸𝐶) ≤ 𝑧1(𝑥) ≤ 𝑧1(𝑥𝑅𝐸𝐶) 

𝑧2(𝑥𝑅𝐸𝐶) ≤ 𝑧2(𝑥) ≤ 𝑧2(𝑥𝐿𝐸𝐶) 

Furthermore, the updated model for 𝑀𝑇3(𝑖,𝑗) is as follows: 

(𝑀𝑇3′(𝑖,𝑗))  Max 𝑤𝑇𝐴𝑁        

  [1 −
z1(𝑥𝑇𝐴𝑁) −z1(𝑥𝐿𝐸𝐶)

z1(𝑥𝑅𝐸𝐶) −z1(𝑥𝐿𝐸𝐶)
]

q

+ [1 −
z2(𝑥𝑇𝐴𝑁) −z2(𝑥𝑅𝐸𝐶)

z2(𝑥𝐿𝐸𝐶) −z2(𝑥𝑅𝐸𝐶)
]

q

= 1 

wTAN

z1(𝑥𝐿𝐸)

TSPrange1
+ (1 − wTAN)

z2(𝑥𝐿𝐸)

TSPrange2

=  wTAN

z1(𝑥𝑇𝐴𝑁)

TSPrange1
+ (1 − wTAN)

z2(𝑥𝑇𝐴𝑁)

TSPrange2
 

z1(𝑥𝐿𝐸𝐶) ≤ z1(𝑥𝑇𝐴𝑁)  ≤ 𝑧1(𝑥𝑅𝐸𝐶) 

z2(𝑥𝑅𝐸𝐶) ≤ z2(𝑥𝑇𝐴𝑁) ≤ 𝑧2(𝑥𝐿𝐸𝐶) 
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CHAPTER 5 

 

 

5 INTERACTIVE ALGORITHM FOR UNDERLYING 

QUASICONVEX PREFERENCE FUNCTIONS 

 

 

 

We develop an interactive algorithm for two underlying preference functions. In the 

previous chapter, we assume that RP has an underlying linear preference function 

and develop interactive algorithm. In this chapter, we consider a similar problem 

with the exception of the underlying preference function. We have two objectives to 

be minimized: total distance and total radar detection threat. We consider routing of 

UAVs in continuous space. However, this time we assume that RP has a more 

general quasiconvex underlying preference function. Quasiconvex preference 

functions are a family of preference functions, including linear preference functions. 

In the literature, these functions are widely used since they are considered to 

represent human behavior well. The marginal rate of substitution is decreasing for 

these functions; as one criterion gets better, to further improve that criterion, the 

amount of sacrifice from the other criterion decreases. We give the structure of 

quasiconvex functions in the following definition.  

Definition 5.1 𝑓 is a quasiconvex function if 𝑓(∑ 𝜇𝑖𝑥𝑖) ≤ 𝑚𝑎𝑥
𝑖

𝑓(𝑥𝑖) 𝑝
𝑖=1 for 

∑ 𝜇𝑖 = 1𝑝
𝑖=1 , 𝜇𝑖 ≥ 0.  

We do not have a general closed form for quasiconvex preference functions as we 

had for the linear preference functions, but due to their special structures, we can 

eliminate some regions in the search area that we are sure the RP is not interested in. 

The following lemma shows this idea for minimization type objectives. Korhonen et 

al. (1984) developed cone dominance idea for maximization type objectives and 

Tezcaner Öztürk (2013) adapted it to minimization problems.  
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Lemma 1 (Tezcaner Öztürk, 2013) Consider a quasiconvex function 𝑓 defined in a 

p-dimensional Euclidean space 𝑅𝑝. Consider distinct points 𝑥𝑖 ∈ 𝑅𝑝, 𝑖 = 1,2, … , 𝑚 

and let 𝑓(𝑥𝑘) > 𝑓(𝑥𝑖), 𝑖 ≠ 𝑘. If 𝑧 ∈ 𝑍 and 𝑧 ≠ 𝑥𝑘, where  𝑍 = {𝑧|𝑧 = 𝑥𝑘 +

∑ 𝜇𝑖(
𝑚
𝑖=1;𝑖≠𝑘 𝑥𝑘 − 𝑥𝑖), 𝜇𝑖 ≥ 0} it follows that  𝑓(𝑧) ≥ 𝑓(𝑥𝑘). 

To illustrate this idea, assume that we have two objectives to be minimized, and two 

solutions 𝐴 and 𝐵, in the objective function space as demonstrated in Figure 5.1. If 

the RP prefers solution 𝐴 to solution 𝐵, we infer that all solutions in the shaded 

region are at most as preferred as solution 𝐵 (please see Korhonen et al., 1984 for 

more details). These solutions are referred as cone-dominated solutions, which are 

dominated by the cone (the dashed line) that initiates at solution 𝐵 and moves in the 

south-east direction, with the same slope of the line that connects solutions 𝐴 and 𝐵. 

The RP is not interested in any of the solutions on the right side of solution 𝐵, and 

we should only consider efficient solutions on the left side of 𝐵. Solution 𝐵 is now 

the extreme efficient solution of the region at which the most preferred solution of 

the RP lies.  

 

 

 

 

 

 

 

 

Figure 5.1 Elimination of Inferior Regions – Quasiconvex Preference Functions 

 

Unlike linear preference functions, the most preferred solution for a RP with an 

underlying quasiconvex preference function, can be either an unsupported efficient 

solution or a supported efficient solution. Finding supported efficient solutions in 
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biobjective problems is easier, since each supported efficient solution minimizes a 

weighted combination of the two objectives. This, in turn, reduces to a single 

objective variant of the biobjective problem, which is easier to solve. Finding 

unsupported efficient solutions is harder since we need to introduce more constraints 

in the objective space to restrict the search region. Our approach focuses on these 

two types of solutions separately, and uses the above properties for quasiconvex 

preference functions, to narrow the search region around the true preferred solution 

of the RP. 

We next explain our interactive algorithm for underlying quasiconvex preference 

functions in details.  

5.1 Solution Approach for Underlying Quasiconvex Preference Functions 

For underlying quasiconvex preference functions, we develop an interactive 

algorithm that consists of two parts. In the first part, similar to our approach for the 

linear case, we ask for comparison between supported nondominated solutions. 

However, we do not limit our search with only supported nondominated solutions 

since the most preferred solution of an RP can also be an unsupported nondominated 

solution as explained above. Therefore, to find solutions close to the true most 

preferred solution, we search all type of nondominated solutions, supported and 

unsupported in the second part of the algorithm.  

First Part of the Interactive Algorithm for Quasiconvex Preference Functions 

In the first part, our aim is to find a region between supported efficient solutions that 

the true most preferred solution of the RP lies. Suppose we want to decide on the 

region that the true most preferred solution lies between 𝑛 supported nondominated 

solutions. Since these are supported nondominated solutions, each solution 

minimizes a weighted combination of the objectives for a different 𝑤 value in 

equation (4.1). Instead of finding all 𝑛 solutions, we only find the corresponding 

linear weights, and when we need a solution, we optimize objective (4.1) for that 

weight. For this purpose, initial linear weight range of (0,1) is divided into 𝑛 − 1 

equal-length intervals. The end point of each interval i is set to 𝑤𝑖+1 where 1 ≤ 𝑖 ≤
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𝑛 − 2 and 𝑤1 and 𝑤𝑛 are set to 𝜌 and 1 − 𝜌, respectively. These weights will be used 

to find the supported nondominated solutions as required. Each time a preference 

information is obtained, we also update the linear weight range (as we did for the 

linear preference functions), but this range is not used to define the structure of the 

preference function. Rather, it is used to find two points to be compared. A weight 

dividing the weight range into two equal-length intervals is found and the closest 

weight out of predefined 𝑛 weights is selected. Assume that this weight is 𝑤𝑋. Then 

the solution 𝑋 corresponding to 𝑤𝑋 is found with the same method used in linear 

case. To find the other solution for pairwise comparison, We select one of the closest 

predefined weights to 𝑤𝑋 . Let this weight be 𝑤𝑌 and its corresponding solution be 𝑌. 

We refer the two solutions, 𝑋 and 𝑌, as neighboring solutions. We present 𝑋 and 𝑌 to 

the RP and depending on her/his answer, we update linear weight range using 

equations (4.3) and (4.4).  Range is updated so that the weight corresponding to the 

inferior solution is assigned to one of the linear weight bounds by using the cone 

dominance idea. Algorithm continues in the same manner. When we come up with a 

solution which is preferred to both of its neighboring solutions, we stop the first part 

of the algorithm.  

This approach is inspired from Tezcaner and Köksalan’s (2011) approach, where 

they find the most preferred solution of a DM for bicriteria integer programs. They 

ask for comparison between adjacent efficient solutions and find the solution that is 

preferred to both its adjacent solutions. In this algorithm, we try to implement this 

idea to the routing problem with a continuous nondominated frontier. Since we have 

infinitely many efficient solutions, finding adjacent solutions is not meaningful. 

Therefore, we ask for comparison between neighboring solutions; whose linear 

weights are the closest among the predefined weights. For example, among three 

consecutive supported solutions out of 𝑛 solutions demonstrated in Figure 5.2, 

suppose 𝐿 is the most preferred one. It is preferred to its neighboring solutions 𝑀 and 

𝐾. Therefore, we know that the true best solution lies in one of the two shaded 

rectangular regions in Figure 5.2.  
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Figure 5.2 First stage stopping case of the algorithm 

 

If the most preferred supported solution out of 𝑛 solutions is one of the extreme 

nondominated solutions, we conclude this stage with one rectangular region. For 

example, in Figure 5.3 right extreme solution is the most preferred solution among 𝑛 

supported nondominated solutions. Therefore, we ended up with one rectangular 

region for further examination. 

 

 

 

 

 

 

Figure 5.3 First stage stopping case when extreme solution is the most preferred solution out 

of 𝑛 solutions 

  

Second Part of the Interactive Algorithm for Quasiconvex Preference Functions 

In the second part of the algorithm, we search inside the rectangular regions obtained 

in the first part. We again ask pairwise comparisons to the RP. However, we do not 

limit the search with supported solutions. We use the mathematical model developed 
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by Lokman et al. (2016) to find the true best solution for multi-objective integer 

programs for underlying quasiconcave preference functions. After getting a 

preference information, they write constraints to reduce the inferior regions by using 

the cone dominance idea and solve a model to find a new nondominated solution. We 

find new solutions in the same way. However, since we are working on a problem 

with a continuous nondominated frontier, finding the exact true best solution would 

require asking infinitely many questions to the RP. Instead, our aim is to get as close 

to the true best solution as possible and make a good estimate. Therefore, when the 

incumbent solution and newly obtained solution are close to each other in terms of a 

threshold distance, ∆, the algorithm terminates.   

First, we present the theorem in Lokman et al. (2016) which leads us to inferior 

region elimination constraints for a maximization problem. Then, we explain how we 

implement their findings on a minimization problem. 

In the paper, they assume that the DM has an underlying nondecreasing 

quasiconcave preference function. They partition the criteria indices into two sets 

𝑆≤
𝑀,𝐾

 and 𝑆>
𝑀,𝐾

 for any two points 𝑥𝑀 and 𝑥𝐾 such that: 

𝑆≤
𝑀,𝐾 = {𝑖: 𝑧𝑖(𝑥𝐾) − 𝑧𝑖(𝑥𝑀) ≤ 0} 

𝑆>
𝑀,𝐾 = {𝑗: 𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀) > 0} 

Theorem (Lokman et al. 2016) Let 𝑈 be a nondecreasing quasiconvex function 

defined in a p-dimensional Euclidean space ℜ𝑝. Consider two distinct nondominated 

points 𝑥𝑀 and 𝑥𝐾 such that 𝑈(𝑥𝐾) < 𝑈(𝑥𝑀). Then, a point 𝑥 is cone dominated by 

cone 𝐶(𝑥𝑀 ; 𝑥𝐾) if and only if the following conditions hold: 

(i) 𝑧𝑖(𝑥) ≤ 𝑧𝑖(𝑥𝐾),     ∀𝑖 ∈ 𝑆≤
𝑀,𝐾

  

(ii) 𝑧𝑖(𝑥) (𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀)) + 𝑧𝑗(𝑥)(𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)) ≤ 𝑧𝑗(𝑥𝐾)𝑧𝑖(𝑥𝑀) −

𝑧𝑖(𝑥𝐾)𝑧𝑗(𝑥𝑀),    ∀𝑖 ∈ 𝑆≤
𝑀,𝐾, ∀𝑗 ∈ 𝑆>

𝑀,𝐾
 

From the above theorem, they make an inference about points which are not cone 

dominated. A solution 𝑥  is not cone dominated by 𝐶(𝑥𝑀 ; 𝑥𝐾)  if at least one of the 

following conditions holds: 
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(i’)   There exists 𝑖 ∈ 𝑆≤
𝑀,𝐾

 satisfying  𝑧𝑖(𝑥𝐾) < 𝑧𝑖(𝑥).      

(ii’) There exists 𝑖 ∈ 𝑆≤
𝑀,𝐾

 and 𝑗 ∈ 𝑆>
𝑀,𝐾

 satisfying 𝑧𝑗(𝑥𝐾)𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)𝑧𝑗(𝑥𝑀) <

𝑧𝑖(𝑥) (𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀)) + 𝑧𝑗(𝑥)(𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)) 

Similarly, for a minimization problem, a point 𝑥  is not cone dominated by 

𝐶(𝑥𝑀 ; 𝑥𝐾)  if at least one of the following conditions holds where the criteria index 

partition stays the same: 

(i’’)  There exists 𝑗 ∈ 𝑆>
𝑀,𝐾

 satisfying  𝑧𝑗(𝑥𝐾) > 𝑧𝑗(𝑥).      

(ii’’) There exists 𝑖 ∈ 𝑆≤
𝑀,𝐾

 and 𝑗 ∈ 𝑆>
𝑀,𝐾

 satisfying 𝑧𝑗(𝑥𝐾)𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)𝑧𝑗(𝑥𝑀) >

𝑧𝑖(𝑥) (𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀)) + 𝑧𝑗(𝑥)(𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)) 

These conditions are represented on a bi-criteria example in Figure 5.4. Conditions 

(i’’) and (ii’’) are represented by C1 and C2, respectively. If either C1 or C2 is 

satisfied, a solution is not cone dominated by 𝐶(𝑥𝑀 ; 𝑥𝐾) where 𝑆>
𝑀,𝐾 = {1} and 

𝑆≤
𝑀,𝐾 = {2}. 

 

 

 

 

 

 

 

 

In Lokman et al. (2016)’s paper, they develop a mathematical model to find a new 

nondominated solution satisfying conditions (i’) and (ii’). We modified their model 

which makes use of conditions (i’’) and (ii’’) for a bi-objective routing problem 

where both objectives are to be minimized.  

Figure 5.4 Conditions for a solution for not being cone dominated in a minimization 

problem 

𝑧(𝑥𝑀) = (𝑧1(𝑥𝑀), 𝑧2(𝑥𝑀)) 

𝑧(𝑥𝐾) = (𝑧1(𝑥𝐾), 𝑧2(𝑥𝐾)) 

 

C1 

C2 
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We also want the new point to be on the nondominated frontier of routing problem. 

Therefore, we added additional constraints specific to our bi-objective routing 

problem. These constraints are developed by Tezcaner Öztürk and Köksalan (2013) 

and given in 3.2. The model is as follows:  

𝑇 = {(𝑥𝑀, 𝑥𝐾): 𝑈(𝑥𝐾) > 𝑈(𝑥𝑀)} is the set of preferences 

𝑆≤
𝑀,𝐾 = {𝑖: 𝑧𝑖(𝑥𝐾) − 𝑧𝑖(𝑥𝑀) ≤ 0} 

𝑆>
𝑀,𝐾 = {𝑗: 𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀) > 0} 

𝑥𝑖𝑛𝑐 = (𝑧1(𝑥𝑖𝑛𝑐), 𝑧2(𝑥𝑖𝑛𝑐)) is the incumbent solution whose preference function value 

is the smallest among all considered solutions. Then, the formulation is as follows: 

Min  𝛼 

𝛼 ≥ 𝜆(𝑧1(𝑥) − 𝑧1(𝑥𝑇𝑆𝑃𝐿𝐸))/(𝑧1(𝑥𝑇𝑆𝑃𝑅𝐸) − 𝑧1(𝑥𝐿𝑇𝑆𝑃𝐸))   (5.1) 

𝛼 ≥ (1 − 𝜆)(𝑧2(𝑥) − 𝑧2(𝑥𝑇𝑆𝑃𝑅𝐸))/(𝑧2(𝑥𝑇𝑆𝑃𝐿𝐸) − 𝑧1(𝑥𝑇𝑆𝑃𝑅𝐸))  (5.2) 

𝑧𝑗(𝑥𝐾) − 𝜀 + 𝑀(1 − 𝑟𝑗
𝑀,𝐾) ≥ 𝑧𝑗(𝑥) ,          ∀(𝑥𝑀, 𝑥𝐾) ∈ 𝑇,      ∀𝑖 ∈ 𝑆≤

𝑀,𝐾    (5.3) 

𝑧𝑗(𝑥𝐾)𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)𝑧𝑗(𝑥𝑀) − 𝜀 + 𝑀(1 − 𝑡𝑖𝑗
𝑀,𝐾) ≥ 𝑧𝑖(𝑥) (𝑧𝑗(𝑥𝐾) − 𝑧𝑗(𝑥𝑀)) +

𝑧𝑗(𝑥)(𝑧𝑖(𝑥𝑀) − 𝑧𝑖(𝑥𝐾)),          ∀(𝑥𝑀, 𝑥𝐾) ∈ 𝑇,      ∀𝑖 ∈ 𝑆≤
𝑀,𝐾,      ∀𝑗 ∈ 𝑆>

𝑀,𝐾 (5.4) 

∑ 𝑟𝑗
𝑀,𝐾 + ∑ 𝑡𝑖𝑗

𝑀,𝐾
𝑖∈𝑆≤

𝑀,𝐾

𝑗∈𝑆>
𝑀,𝐾

= 1
𝑗∈𝑆>

𝑀,𝐾 ,      ∀(𝑥𝑀, 𝑥𝐾) ∈ 𝑇    (5.5) 

𝑧𝑖(𝑥𝑖𝑛𝑐) − 𝜀 + 𝑀(1 − 𝑦𝑖) ≥ 𝑧𝑖(𝑥)                         𝑖 = 1,2              (5.6) 

∑ 𝑦𝑖
2
𝑖=1 = 1           (5.7) 

𝑟𝑗
𝑀,𝐾, 𝑡𝑖𝑗

𝑀,𝐾 ∈ {0,1},      ∀(𝑥𝑀, 𝑥𝐾) ∈ 𝑇,      ∀𝑖 ∈ 𝑆≤
𝑀,𝐾,      ∀𝑗 ∈ 𝑆>

𝑀,𝐾   (5.8) 

𝑦𝑖 ∈ {0,1}        𝑖 = 1,2        (5.9) 

𝑥 ∈ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 𝑜𝑓 𝑅𝑜𝑢𝑡𝑒 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑃𝑟𝑜𝑏𝑙𝑒𝑚   (5.10) 

The model tries to find a new point on the predefined Tchebycheff direction from the 

ideal point. (5.1) and (5.2) are written for this purpose and the maximum weighted 
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distance is minimized in the objective. (5.3) and (5.4) are the cone constraints 

explained previously. (5.5) ensures that at least one the constraints (5.3) or (5.4) is 

satisfied. We search for a new nondominated solution different than the incumbent 

solution in constraint (5.6). In one criterion, the new solution should be better than 

the incumbent solution ((5.6) and (5.7)). (5.8) and (5.9) state variable types. (5.10) 

are the constraints given in Section 3.2, and they guarantee that the new point is on 

the nondominated frontier of the route planning problem.  

In the second part of our interactive algorithm, each time we search for a new 

nondominated solution, we solve the model given above. We specify the direction 

from the ideal point for finding the new solution by setting the weight, 𝜆. For this 

purpose, after each RP’s answer, we update the Tchebycheff weight range which we 

use in finding new nondominated solutions in the search region. We select a weight 

(𝜆) dividing the weight range into two equal length intervals to find the new point in 

that direction. Each time we find a new nondominated point, we ask for comparison 

with the incumbent solution. The algorithm terminates when the relative distance 

between the two solutions to be compared is less than a threshold distance value.  

Tchebycheff weight range update 

We update Tchebycheff weight range with the method suggested by Bozkurt et al. 

(2010). In their paper, for bi-criteria case, boundary weight giving the same weighted 

Tchebycheff function value for two points is found. Depending on the preference, 

one of the Tchebycheff weight range bounds can be updated to the boundary weight. 

However, since the RP’s underlying preference function may be different than 

Tchebycheff, we may get infeasibility after some questions. If we encounter such 

situations, we remove the past preferences until we obtain feasibility. 

To summarize, our interactive algorithm for underlying quasiconvex preference 

functions is developed in two stages. In the first stage, we search the objective space 

with supported nondominated solutionsand reduce the search region to rectangular 

regions around the most preferred supported nondominated solution. In the second 

stage, we search inside the rectangular regions using the mathematical model 

developed by Lokman et al. (2016). We terminate the algorithm when the incumbent 
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and the newly found nondominated solutions are close enough in terms of a 

predefined threshold distance.  
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CHAPTER 6 

 

 

6 DEMONSTRATION OF THE ALGORITHM 

 

 

 

6.1 Problem Generation 

Tezcaner Öztürk (2013) randomly generated an example five-target UAV route 

planning problem. The locations of the radars and targets are given in Appendix D. 

We implement the interactive algorithms on her problem. Additionally, we 

implement the algorithms on a larger problem that we generate randomly. For this, 

we develop a mathematical model to locate a given number of radars and targets to a 

predefined terrain size.  

First, we randomly locate the targets. Depending on the targets’ locations, we place 

the radars. Targets are located randomly one by one into the terrain. While doing 

this, we make sure that the direct distances between the target to-be-located and all 

pre-located targets are greater than the diameter of the radar region. By doing so, we 

leave enough space for radars to be located between any two targets. After target 

locations are set, we locate the radars use the mathematical model below. Radars 

should be located such that they are responsible from the surveillance of a group of 

targets. Therefore, we assign each target to one radar and locate each radar close to 

the targets assigned to it. For this, we minimize the maximum Tchebycheff distance 

between each radar and the targets assigned to it.  

Model takes the target locations as inputs and finds the radar locations. The details 

are given as follows: 
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Sets: 

𝐼 : Set of targets 

𝐽 : Set of radars 

Decision Variables: 

𝑚𝑎𝑥𝑑𝑖𝑠𝑡𝑗 : Maximum of Tchebycheff distances of targets assigned to radar 𝑗 

𝛼𝑖𝑗 : Tchebycheff distance between target 𝑖 and radar 𝑗 

𝑏𝑖𝑗 : 1 if target 𝑖 is assigned to radar 𝑗, 0 otherwise 

𝑟𝑥𝑗 : x- coordinate of radar 𝑗 

𝑟𝑦𝑗 : y- coordinate of radar 𝑗 

𝑢1𝑖𝑗 , 𝑢2𝑖𝑗 , 𝑢3𝑖𝑗 , 𝑢4𝑖𝑗.... 𝑢12𝑖𝑗  : Binary variables for the corresponding constraints 

Parameters: 

𝑡𝑥𝑖 : x- coordinate of target 𝑖 

𝑡𝑦𝑖 : y- coordinate of target 𝑖 

𝑛 : Number of targets to be assigned to each radar 𝑗 

𝑡 : Number of targets 

𝑀 : Very large positive constant 

𝜀 : Very small positive constant 

𝑅: Radar radius 

Model: 

Min ∑ 𝑚𝑎𝑥𝑑𝑖𝑠𝑡𝑗𝑗  

S.to: 𝛼𝑖𝑗 ≥ 𝑡𝑥𝑖 − 𝑟𝑥𝑗        ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.1) 

 𝛼𝑖𝑗 ≥ −𝑡𝑥𝑖 + 𝑟𝑥𝑗        ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.2) 
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 𝛼𝑖𝑗 ≥ 𝑡𝑦𝑖 − 𝑟𝑦𝑗        ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.3) 

 𝛼𝑖𝑗 ≥ −𝑡𝑦𝑖 + 𝑟𝑦𝑗       ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.4) 

 𝑚𝑎𝑥𝑑𝑖𝑠𝑡𝑗 ≥ 𝛼𝑖𝑗 − 𝑀(1 − 𝑏𝑖𝑗)     ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.5) 

 ∑ 𝑏𝑖𝑗𝑖  = 𝑛      ∀ 𝑗 ∈ 𝐽  (6.6) 

 ∑ 𝑏𝑖𝑗𝑗  = 1      ∀ 𝑖 ∈ 𝐼  (6.7) 

 𝑡𝑥𝑖 − 𝑟𝑥𝑗 + 𝑀𝑢1𝑖𝑗  ≥ 𝑅 + 𝜀    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.8) 

 −𝑡𝑥𝑖 + 𝑟𝑥𝑗 + 𝑀𝑢2𝑖𝑗  ≥ 𝑅 + 𝜀   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.9) 

 𝑡𝑦𝑖 − 𝑟𝑦𝑗 + 𝑀𝑢3𝑖𝑗 ≥ 𝑅 + 𝜀    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.10) 

 −𝑡𝑦𝑖 + 𝑟𝑦𝑗 + 𝑀𝑢4𝑖𝑗 ≥ 𝑅 + 𝜀   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.11) 

 𝑢1𝑖𝑗 + 𝑢2𝑖𝑗 + 𝑢3𝑖𝑗 + 𝑢4𝑖𝑗 ≤ 3   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.12) 

 𝑟𝑥𝑗 − 𝑟𝑥𝑘 + 𝑀𝑢5𝑗𝑘 ≥ 2𝑅 + 𝜀   ∀ (𝑗, 𝑘) ∈ 𝐽 (6.13) 

 −𝑟𝑥𝑗 + 𝑟𝑥𝑘 + 𝑀𝑢6𝑗𝑘 ≥ 2𝑅 + 𝜀   ∀ (𝑗, 𝑘) ∈ 𝐽 (6.14) 

 𝑟𝑦𝑗 − 𝑟𝑦𝑘 + 𝑀𝑢7𝑗𝑘 ≥ 2𝑅 + 𝜀   ∀ (𝑗, 𝑘) ∈ 𝐽 (6.15) 

 −𝑟𝑦𝑗 + 𝑟𝑦𝑘 + 𝑀𝑢8𝑗𝑘 ≥ 2𝑅 + 𝜀   ∀ (𝑗, 𝑘) ∈ 𝐽 (6.16) 

 𝑢5𝑗𝑘 + 𝑢6𝑗𝑘 + 𝑢7𝑗𝑘 + 𝑢8𝑗𝑘 ≤ 3   ∀ (𝑗, 𝑘) ∈ 𝐽 (6.17) 

𝑟𝑥𝑗  ≤ 𝑡𝑥𝑖 − 𝑀(1 − 𝑏𝑖𝑗) + 2𝑀𝑢9𝑖𝑗    ∀ (𝑗, 𝑘) ∈ 𝐽 (6.18) 

∑ 𝑢9𝑖𝑗  ≤ 𝑡 − 1𝑖      ∀ 𝑗 ∈ 𝐽  (6.19) 

𝑟𝑥𝑗  ≥ 𝑡𝑥𝑖 − 𝑀(1 − 𝑏𝑖𝑗) − 𝑀𝑢10𝑖𝑗   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.20) 

∑ 𝑢10𝑖𝑗  ≤ 𝑡 − 1𝑖      ∀ 𝑗 ∈ 𝐽  (6.21) 

𝑟𝑦𝑗  ≤ 𝑡𝑦𝑖 − 𝑀(1 − 𝑏𝑖𝑗) + 2𝑀𝑢11𝑖𝑗   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.22) 

∑ 𝑢11𝑖𝑗  ≤ 𝑡 − 1𝑖      ∀ 𝑗 ∈ 𝐽  (6.23) 
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𝑟𝑦𝑗  ≥ 𝑡𝑦𝑖 − 𝑀(1 − 𝑏𝑖𝑗) − 𝑀𝑢12𝑖𝑗   ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (6.24) 

∑ 𝑢12𝑖𝑗  ≤ 𝑡 − 1𝑖      ∀ 𝑗 ∈ 𝐽  (6.25) 

Maximum Tchebycheff distance between each radar and the targets assigned to it is 

calculated. These maximum distances are summed for all radars and minimized in 

the objective function. 

Constraints (6.1) and (6.2) find the x-coordinate differences for each radar-target 

pair. (6.3) and (6.4), on the other hand, calculates the y- coordinate differences. In all 

of these constraints, α𝑖𝑗 is set to be greater than or equal to these differences. Since 

we are minimizing the sum of distances in the objective function, 𝛼𝑖𝑗  gets the 

maximum difference value. In other words,  𝛼𝑖𝑗 stands for the Tchebycheff distance 

between pair (𝑖,𝑗). For each radar, the maximum Tchebycheff distance to itself from 

all targets assigned to it is found in constraint (6.5). In constraint (6.6), the number of 

targets that can be assigned to each radar is set to n. It is assumed that the number of 

targets is a multiple of the number of radars. Furthermore, in (6.7) we assign all 

targets to one radar.  

Constraints (6.8), (6.9), (6.10), (6.11) and (6.12) ensure that distances between 

targets and radars are greater than radar radius in at least one coordinate. This 

guarantees that targets are located outside of radar regions, which is one of our 

assumptions stated in Chapter 3. Likewise, it is also desired to have non-overlapping 

radar regions as stated in constraints (6.13), (6.14), (6.15), (6.16) and (6.17). 

Tchebycheff distances between radar centers are forced to be greater than the 

effective radar diameter.   

Constraints (6.18), (6.19), (6.20) and (6.21) allow radars to be placed between the x- 

coordinates of the targets assigned to it. Similarly, constraints (6.22), (6.23), (6.24) 

and (6.25) prevent radar center from being located outside of the y-coordinates of the 

targets assigned to it.  

We use MATLAB for solving the terrain generation model. For locating the radars, 

we call CPLEX from MATLAB. This method can be used to generate different sized 
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UAV route planning problems. By using the above method, we generate a nine-target 

problem with three radars which is given Appendix E.  

6.2 Results of Interactive Algorithm for Linear Preference Functions 

We assume that the RP has the following underlying linear preference function, 

whose parameter, 𝑤, is unknown to us.  

U(𝑧) = 𝑤 𝑧1(𝑥) + (1 − 𝑤) 𝑧2(𝑥)  where  0 < 𝑤 < 1. 

We set four values to w; 0.2, 0.4, 0.6, and 0.8; and solved the interactive algorithm 

for each case simulating the preferences of the RP for the given w. We assume that 

the RP cannot make a preference between two solutions if the difference between 

their preference function values is less than 0.001 (=δ). A termination condition 

for the algorithm is when the Euclidean distance between two solutions to be 

compared is less than 0.0001 (= ∆).  

For the implementation of the interactive algorithms, we use two UAV Routing 

Problems; five-target and nine-target. The results of the interactive algorithm 

developed for linear underlying preference functions is presented separately for five-

target and nine-target problems in the following subsections.  

6.2.1 Five-Target UAV Route Planning Problem Results 

The results of the interactive algorithm on five-target problem can be seen in Table 

6.1. We report the most preferred solution of the RP in the first column for 

comparison purposes. We obtain the most preferred solution by solving bi-objective 

UAV route planning problem (see section 2.3) for the underlying linear preference 

function. In the second column, we present the interactive algorithm’s results. 

Furthermore, extreme solutions obtained at the end of the interactive algorithm are 

given in the third column. The last column gives the total number of comparisons the 

RP makes.     
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Table 6.1 Results of the Interactive Algorithm for Linear Preference Functions – 5 Target 

Problem 

 

As it is stated above, we solve bi-objective UAV route planning formulation to find 

the most preferred solution of RP. Formulation uses the approximated nondominated 

frontiers between target pairs. Therefore, the obtained solution is actually an 

approximate solution. We want to find the true best solution. In Table 6.2, we take 

the distance measure of the tour obtained from the bi-objective UAV route planning 

formulation and find its corresponding radar detection threat value. We use a 

heuristic developed by Tezcaner Öztürk (2013) to find the real radar detection threat 

value. Heuristic finds the radar detection threat value of a path for a given distance 

between a target pair. Then, total distance and total radar detection threat values for 

the true best solution are obtained and given in the ‘Optimal Results’ column. We 

also find the real radar detection threat values of the tours obtained from the 

interactive algorithm. In other words, all radar detection threat values are updated in 

Table 6.2 to make a proper comparison.  

Table 6.2 Results of the Interactive Algorithm for Linear Preference Functions with updated 

RDT values – 5 Target Problem 

 

The true most preferred solutions are (by construction) always between the extreme 

solutions at the final iteration. Preference value differences between the true best 

solution and the solution obtained by our algorithm are 0.000519, 0.000164, 

0.000650, and 0.000247, for w=0.2, 0.4, 0.6, and 0.8, respectively. The respective 

preference value ranges between the true best and the worst nondominated solutions 

are 0.001841, 0.000192, 0.001249 and 0.000890, to put the performance of our 

algorithm in perspective. Left and right extreme solutions of the five target problem 
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used for the scaling of the objectives are (53.181000, 11.929956) and (55.578398, 

0.000000), respectively.   

We demonstrate the routes that the algorithm finds for w =0.2 and 0.8 in Figure 6.1, 

with dashed and continuous lines, respectively.   

 

Figure 6.1 Resulting Routes for w =0.2 and 0.8, five-target problem 

 

We also try different threshold values (distance and/or preference difference) and it 

is observed that when the threshold values decrease, the extremes at the end of the 

algorithm gets closer and the number of comparisons that the RP makes increases. 

6.2.2 Nine-Target UAV Route Planning Problem Results 

We solve the nine-target problem with the same parameter setting. We report the 

results for w =0.2, 0.4, 0.6, and 0.8. We scale both of the objectives between 0-1 

scale using their extreme values of the route planning problem. Left and right 

extreme solutions of the nine target problem are (63.455953, 5.827748) and 

(63.963704, 0.000000), respectively.  

The results of the interactive algorithm can be seen in Table 6.3. In Table 6.4, we 

present the results with updated RDT values as in the 5-target case. We finalize the 
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algorithm in a few questions for all values of w. The resulting solutions of our 

algorithm are very close to the true best solutions of the RP. 

Table 6.3 Results of the Interactive Algorithm for Linear Preference Functions – 9 Target 

Problem 

 

 
 

Table 6.4 Results of the Interactive Algorithm for Linear Preference Functions with updated 

RDT values – 9 Target Problem 
 

 

Preference value differences between the true best solution and the solution found by 

our algorithm are 0.000242, 0.000198, 0.000296, and 0.000153, for w=0.2, 0.4, 0.6, 

and 0.8, respectively. The respective preference value ranges between the true best 

and the worst nondominated solutions are 0.000192, 0.001382, 0.000780, and 

0.000829.  

The resulting routes of the interactive algorithm for w =0.2 and 0.8 are shown 

together in Figure 6.2. Continuous lines correspond to w=0.2 and dashed lines 

represent the route found for w=0.8. 
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Figure 6.2 Resulting Routes for w =0.2 and 0.8, nine-target problem 

 

Routing problem of UAVs is an NP-Hard problem. Therefore, obtaining a solution 

approach with reasonable computational time is important. Before each flight of 

UAV, we need to use the approach and find the route of the UAV. Our proposed 

interactive algorithm lasts less than a minute for all of these presented 

implementations. In UAV route planning problems, UAV visits few targets. 

Therefore, we do not expect to get high computational times for the algorithm.  
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CHAPTER 7 

 

 

7 CONCLUSIONS 

 

 

 

In this study, we consider the route planning problem of UAVs. The vehicle travels 

through a continuous terrain visiting a set of targets. We develop routes based on two 

objectives: minimization of distance traveled and minimization of radar detection 

threat. Although this problem is composed of infinitely many efficient solutions that 

have a different tradeoff between the two objectives, generating all these solutions is 

computationally demanding, and not meaningful under the presence of a RP. 

We develop two interactive algorithms that find the most preferred solution of a RP. 

The algorithms are developed for two underlying preference function structures; 

linear and quasiconvex. For the linear case, we make use of the special structure of 

linear preference functions and make further reduction in the objective space. We 

always search for supported efficient solutions. In the quasiconvex case, we divide 

the algorithm into two stages. First stage of the algorithm is similar to the linear case. 

At the end of the first stage, we define rectangular regions in the objective space for 

the true most preferred solution. Then, we continue our search in these regions using 

the cone dominance idea in the second stage of the algorithm.  

In Chapter 6, we demonstrate the linear algorithm on two randomly generated 

problems with 5 and 9 targets distributed in 400 km2 and 289 km2 terrains, 

respectively. The results show fast convergence to the most preferred regions of the 

RP by quickly eliminating the inferior regions. The solutions suggested by the 

algorithms are sufficiently close to the true most preferred solutions. As a future 

study, we are planning to demonstrate the interactive algorithm developed for 

underlying quasiconvex preference functions on 5 and 9 target problems.  
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There are a number of future research areas related with UAV route planning 

problems. In this thesis, we considered 2-D environment; we do not consider the 

altitude of the UAVs. When the altitude of the UAV is taken into consideration as 

the third dimension, we need to modify the calculations of total distance and total 

radar detection threat measures. Furthermore, we assume in this study, that the 

locations of threat areas and targets are known in advance and they are static. 

However, a more realistic version of this problem is that the targets and the threat 

areas change their locations dynamically. For this, “pop-up” threat areas can be 

considered and dynamic solution approach could be developed.   
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APPENDICES 

 

 

APPENDIX A 

 

 

8 COMPUTATION OF THE OBJECTIVES 

 

 

 

Formulas given in this part are directly taken from Tezcaner Öztürk (2013)’s study.  

A.1. Distance Calculation 

Total distance from an initial point (𝑥𝑠, 𝑦𝑠) to destination point (𝑥𝑓 , 𝑦𝑓) is calculated 

as follows: 

𝐷 = ∫ 𝑑𝑠
(𝑥𝑓,𝑦𝑓)

(𝑥𝑠,𝑦𝑠)
         (A.1) 

In this formula, 𝑑𝑠 corresponds to the infinitesimal part of a path traveled. In other 

words, total distance is the summation of infinitely small parts of the movement.  

A.2. Radar Detection Threat Calculation 

First of all, signal to noise ratio (S/N) of a point (𝑥, 𝑦) is calculated by using the 

formula below (A.2). All parameters, except 𝑅, are constant throughout the terrain. 

Therefore, we combine all constants under 𝐶, and reduce the formula as follows: 

𝑆/𝑁(𝑥,𝑦) = 10𝑙𝑜𝑔 (
𝑃𝑡𝐺𝑡

2𝜆2𝜎

(4𝜋)3𝐾𝑇𝑠𝐵𝑛𝐿𝑡
2𝑅4) = 10𝑙𝑜𝑔 (

𝐶

𝑅4)    (A.2) 

         

𝑃𝑡: Power transmitted by radar (Watts) 

𝐺𝑡: Power gain of transmitting antenna 
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𝐿𝑡: Transmitting system loss 

𝜆: Wave lenght of signal frequency (Meters) 

𝑇𝑠: Receive system noise temperature (Kelvin) 

𝐵𝑛:Noise bandwidth of receiver (Hertz) 

𝐾: Boltzman’s constant (Joules/Kelvin) 

𝜎: Aircraft radar cross section (RCS) (Square Meters) 

𝑅: Distance from the transmitter to aircraft’s location (𝑥, 𝑦) (Meters) 

Then, depending on the value of 𝑆/𝑁(𝑥,𝑦), probability of detection of a point 

(𝑝𝑑(𝑥,𝑦)) is found as in A.3.  

𝑝𝑑(𝑥,𝑦) = {

1                                                 𝑖𝑓 𝑆/𝑁(𝑥,𝑦) > 𝑈𝐵𝑆 𝑁⁄

𝑆/𝑁(𝑥,𝑦)−𝐿𝐵𝑆 𝑁⁄

𝑈𝐵𝑆 𝑁⁄ −𝐿𝐵𝑆 𝑁⁄
                       𝑖𝑓 𝐿𝐵𝑆 𝑁⁄ < 𝑆/𝑁(𝑥,𝑦) ≤ 𝑈𝐵𝑆 𝑁⁄

0                                                  𝑖𝑓 𝑆/𝑁(𝑥,𝑦) ≤ 𝐿𝐵𝑆 𝑁⁄

  (A.3) 

Total radar detection threat, 𝑅𝐷𝑇, between points (𝑥𝑠, 𝑦𝑠) and (𝑥𝑓 , 𝑦𝑓) is the 

summation of all the detection probabilities over the trajectory. 

𝑅𝐷𝑇 = ∫ 𝑝𝑑(𝑥,𝑦)𝑑𝑠
(𝑥𝑓,𝑦𝑓)

(𝑥𝑠,𝑦𝑠)
          (A.4) 
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APPENDIX B 

 

 

9 CURVED MOVEMENT INSIDE THE OUTER RADAR 

REGION 

 

 

 

Tezcaner Öztürk (2013) assumes that UAV follows a circular path inside the outer 

radar region due to tradeoff between objectives. As it is illustrated on the below 

figure, center of the circular move is at (𝑎, 𝑏) and the radius of the circle is 𝑟. The 

equation of the circle is then (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 .  

For each efficient trajectory between a target pair, entrance point to radar region 

changes so does the circular movement of UAV. In other words, circle equation of 

movement is different for each efficient trajectory. For further information on 

calculations of entrance-exit points and equation of circular moves, please see 

Tezcaner Öztürk’s study.    

 

(𝑥𝑠, 𝑦𝑠) (𝑥𝑓 , 𝑦𝑓) 
(𝑥𝑒𝑛, 𝑦𝑒𝑛) (𝑥𝑒𝑥, 𝑦𝑒𝑥) 

(𝑎, 𝑏) 

𝑟 

Figure B.1 Circular Move Inside Outer Radar Region 
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APPENDIX C 

 

 

10 TRAVELING SALESPERSON PROBLEM 

 

 

 

Formulation of the single objective TSP with 𝑛 nodes is given below. 𝑐𝑖𝑗 denotes the 

distance between nodes 𝑖 and 𝑗 and 𝑥𝑖𝑗  states whether a connection between node 𝑖 

and 𝑗 is used or not. 

Min  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1   𝑗 = 1, . . , 𝑛 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1   𝑖 = 1, . . , 𝑛 

𝑢𝑖 − 𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1  𝑖 = 2, . . , 𝑛, 𝑗 = 2, . . , 𝑛 and 𝑖 ≠ 𝑗 

𝑥𝑖𝑗 ∈ {0,1}   𝑖 = 1, . . , 𝑛, 𝑗 = 1, . . , 𝑛 

0 ≤ 𝑢𝑖  𝑖 = 2, . . , 𝑛 
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APPENDIX D 

 

 

11 FIVE-TARGET PROBLEM REGION 

 

 

 

Five-target problem is developed by Tezcaner Öztürk (2013). She randomly placed 

five targets and four radars in a 400 km2 terrain as shown in the below figure. 

 

 

Figure D.1 Five-target problem region 
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APPENDIX E 

 

 

12 NINE-TARGET PROBLEM REGION 

 

 

 

Nine-target problem region generated by the method explained in Section 6.1 is 

given in the figure below. There are 9 targets and 3 radar areas in 289 km2 terrain. 

We locate the radars and targets such that each radar is responsible from surveillance 

of three targets, and is therefore located close to those targets. 

 

 

 

Figure E.1 Nine-target problem region 


